Science.gov

Sample records for large target volumes

  1. Dosimetric Comparison of Split Field and Fixed Jaw Techniques for Large IMRT Target Volumes in the Head and Neck

    SciTech Connect

    Srivastava, Shiv P.; Das, Indra J.; Kumar, Arvind; Johnstone, Peter A.S.

    2011-04-01

    Some treatment planning systems (TPSs), when used for large-field (>14 cm) intensity-modulated radiation therapy (IMRT), create split fields that produce excessive multiple-leaf collimator segments, match-line dose inhomogeneity, and higher treatment times than nonsplit fields. A new method using a fixed-jaw technique (FJT) forces the jaw to stay at a fixed position during optimization and is proposed to reduce problems associated with split fields. Dosimetric comparisons between split-field technique (SFT) and FJT used for IMRT treatment is presented. Five patients with head and neck malignancies and regional target volumes were studied and compared with both techniques. Treatment planning was performed on an Eclipse TPS using beam data generated for Varian 2100C linear accelerator. A standard beam arrangement consisting of nine coplanar fields, equally spaced, was used in both techniques. Institutional dose-volume constraints used in head and neck cancer were kept the same for both techniques. The dosimetric coverage for the target volumes between SFT and FJT for head and neck IMRT plan is identical within {+-}1% up to 90% dose. Similarly, the organs at risk (OARs) have dose-volume coverage nearly identical for all patients. When the total monitor unit (MU) and segments were analyzed, SFT produces statistically significant higher segments (17.3 {+-} 6.3%) and higher MU (13.7 {+-} 4.4%) than the FJT. There is no match line in FJT and hence dose uniformity in the target volume is superior to the SFT. Dosimetrically, SFT and FJT are similar for dose-volume coverage; however, the FJT method provides better logistics, lower MU, shorter treatment time, and better dose uniformity. The number of segments and MU also has been correlated with the whole body radiation dose with long-term complications. Thus, FJT should be the preferred option over SFT for large target volumes.

  2. Dosimetric comparison of split field and fixed jaw techniques for large IMRT target volumes in the head and neck.

    PubMed

    Srivastava, Shiv P; Das, Indra J; Kumar, Arvind; Johnstone, Peter A S

    2011-01-01

    Some treatment planning systems (TPSs), when used for large-field (>14 cm) intensity-modulated radiation therapy (IMRT), create split fields that produce excessive multiple-leaf collimator segments, match-line dose inhomogeneity, and higher treatment times than nonsplit fields. A new method using a fixed-jaw technique (FJT) forces the jaw to stay at a fixed position during optimization and is proposed to reduce problems associated with split fields. Dosimetric comparisons between split-field technique (SFT) and FJT used for IMRT treatment is presented. Five patients with head and neck malignancies and regional target volumes were studied and compared with both techniques. Treatment planning was performed on an Eclipse TPS using beam data generated for Varian 2100C linear accelerator. A standard beam arrangement consisting of nine coplanar fields, equally spaced, was used in both techniques. Institutional dose-volume constraints used in head and neck cancer were kept the same for both techniques. The dosimetric coverage for the target volumes between SFT and FJT for head and neck IMRT plan is identical within ± 1% up to 90% dose. Similarly, the organs at risk (OARs) have dose-volume coverage nearly identical for all patients. When the total monitor unit (MU) and segments were analyzed, SFT produces statistically significant higher segments (17.3 ± 6.3%) and higher MU (13.7 ± 4.4%) than the FJT. There is no match line in FJT and hence dose uniformity in the target volume is superior to the SFT. Dosimetrically, SFT and FJT are similar for dose-volume coverage; however, the FJT method provides better logistics, lower MU, shorter treatment time, and better dose uniformity. The number of segments and MU also has been correlated with the whole body radiation dose with long-term complications. Thus, FJT should be the preferred option over SFT for large target volumes. Copyright © 2011 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights

  3. Hierarchical imaging: a new concept for targeted imaging of large volumes from cells to tissues.

    PubMed

    Wacker, Irene; Spomer, Waldemar; Hofmann, Andreas; Thaler, Marlene; Hillmer, Stefan; Gengenbach, Ulrich; Schröder, Rasmus R

    2016-12-12

    Imaging large volumes such as entire cells or small model organisms at nanoscale resolution seemed an unrealistic, rather tedious task so far. Now, technical advances have lead to several electron microscopy (EM) large volume imaging techniques. One is array tomography, where ribbons of ultrathin serial sections are deposited on solid substrates like silicon wafers or glass coverslips. To ensure reliable retrieval of multiple ribbons from the boat of a diamond knife we introduce a substrate holder with 7 axes of translation or rotation specifically designed for that purpose. With this device we are able to deposit hundreds of sections in an ordered way in an area of 22 × 22 mm, the size of a coverslip. Imaging such arrays in a standard wide field fluorescence microscope produces reconstructions with 200 nm lateral resolution and 100 nm (the section thickness) resolution in z. By hierarchical imaging cascades in the scanning electron microscope (SEM), using a new software platform, we can address volumes from single cells to complete organs. In our first example, a cell population isolated from zebrafish spleen, we characterize different cell types according to their organelle inventory by segmenting 3D reconstructions of complete cells imaged with nanoscale resolution. In addition, by screening large numbers of cells at decreased resolution we can define the percentage at which different cell types are present in our preparation. With the second example, the root tip of cress, we illustrate how combining information from intermediate resolution data with high resolution data from selected regions of interest can drastically reduce the amount of data that has to be recorded. By imaging only the interesting parts of a sample considerably less data need to be stored, handled and eventually analysed. Our custom-designed substrate holder allows reproducible generation of section libraries, which can then be imaged in a hierarchical way. We demonstrate, that EM

  4. Volumetric-modulated arc therapy for the treatment of a large planning target volume in thoracic esophageal cancer.

    PubMed

    Abbas, Ahmar S; Moseley, Douglas; Kassam, Zahra; Kim, Sun Mo; Cho, Charles

    2013-05-06

    Recently, volumetric-modulated arc therapy (VMAT) has demonstrated the ability to deliver radiation dose precisely and accurately with a shorter delivery time compared to conventional intensity-modulated fixed-field treatment (IMRT). We applied the hypothesis of VMAT technique for the treatment of thoracic esophageal carcinoma to determine superior or equivalent conformal dose coverage for a large thoracic esophageal planning target volume (PTV) with superior or equivalent sparing of organs-at-risk (OARs) doses, and reduce delivery time and monitor units (MUs), in comparison with conventional fixed-field IMRT plans. We also analyzed and compared some other important metrics of treatment planning and treatment delivery for both IMRT and VMAT techniques. These metrics include: 1) the integral dose and the volume receiving intermediate dose levels between IMRT and VMATI plans; 2) the use of 4D CT to determine the internal motion margin; and 3) evaluating the dosimetry of every plan through patient-specific QA. These factors may impact the overall treatment plan quality and outcomes from the individual planning technique used. In this study, we also examined the significance of using two arcs vs. a single-arc VMAT technique for PTV coverage, OARs doses, monitor units and delivery time. Thirteen patients, stage T2-T3 N0-N1 (TNM AJCC 7th edn.), PTV volume median 395 cc (range 281-601 cc), median age 69 years (range 53 to 85), were treated from July 2010 to June 2011 with a four-field (n = 4) or five-field (n = 9) step-and-shoot IMRT technique using a 6 MV beam to a prescribed dose of 50 Gy in 20 to 25 F. These patients were retrospectively replanned using single arc (VMATI, 91 control points) and two arcs (VMATII, 182 control points). All treatment plans of the 13 study cases were evaluated using various dose-volume metrics. These included PTV D99, PTV D95, PTV V9547.5Gy(95%), PTV mean dose, Dmax, PTV dose conformity (Van't Riet conformation number (CN)), mean lung dose

  5. Analysis of Lung Tumor Motion in a Large Sample: Patterns and Factors Influencing Precise Delineation of Internal Target Volume.

    PubMed

    Knybel, Lukas; Cvek, Jakub; Molenda, Lukas; Stieberova, Natalie; Feltl, David

    2016-11-15

    To evaluate lung tumor motion during respiration and to describe factors affecting the range and variability of motion in patients treated with stereotactic ablative radiation therapy. Log file analysis from online respiratory tumor tracking was performed in 145 patients. Geometric tumor location in the lungs, tumor volume and origin (primary or metastatic), sex, and tumor motion amplitudes in the superior-inferior (SI), latero-lateral (LL), and anterior-posterior (AP) directions were recorded. Tumor motion variability during treatment was described using intrafraction/interfraction amplitude variability and tumor motion baseline changes. Tumor movement dependent on the tumor volume, position and origin, and sex were evaluated using statistical regression and correlation analysis. After analysis of >500 hours of data, the highest rates of motion amplitudes, intrafraction/interfraction variation, and tumor baseline changes were in the SI direction (6.0 ± 2.2 mm, 2.2 ± 1.8 mm, 1.1 ± 0.9 mm, and -0.1 ± 2.6 mm). The mean motion amplitudes in the lower/upper geometric halves of the lungs were significantly different (P<.001). Motion amplitudes >15 mm were observed only in the lower geometric quarter of the lungs. Higher tumor motion amplitudes generated higher intrafraction variations (R=.86, P<.001). Interfraction variations and baseline changes >3 mm indicated tumors contacting mediastinal structures or parietal pleura. On univariate analysis, neither sex nor tumor origin (primary vs metastatic) was an independent predictive factor of different movement patterns. Metastatic lesions in women, but not men, showed significantly higher mean amplitudes (P=.03) and variability (primary, 2.7 mm; metastatic, 4.9 mm; P=.002) than primary tumors. Online tracking showed significant irregularities in lung tumor movement during respiration. Motion amplitude was significantly lower in upper lobe tumors; higher interfraction amplitude variability indicated

  6. Targeted Screening and Quantification of dl-PCBs and Dioxins in Various Foodstuffs by Programmed-temperature Vaporizer Large-volume Injection Coupled to GC-MS.

    PubMed

    Ho, Ngoc Huy; Bugey, Aurélie; Zimmerli, Pierre; Nançoz, Joëlle; Ortelli, Didier; Edder, Patrick

    2014-10-01

    In 2009, high concentrations of polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs) and dioxin-like polychlorinated biphenyls (dl-PCBs) were found in soils located near the municipal garbage incinerator of Geneva. The matter of food contamination in this area was raised. Based on exposure criteria, a strategy of analysis of animal fats has been established with farmers in the Geneva area. Most methods of analysis of dl-PCBs, dioxins and furans, are based on gas chromatography coupled to high-resolution mass spectrometry (GC-HRMS) and considered as the reference methodology. An innovative approach was developed by programmed-temperature vaporizer large-volume injection (PTV-LV) and gas chromatography coupled with triple quadrupole mass spectrometry (GC-MS/MS) analysis. This analytical method was validated and was found suitable for screening and quantification of target compounds in animal fats (beef, pork, sheep, etc. ). PTV-LV coupled to GC-MS/MS appeared to be a good alternative compared to the GC-HRMS strategy, offering a good compromise between sensitivity, versatility of instrumentation, and economical aspects. A survey of 121 samples was conducted.

  7. Suspect screening and target quantification of multi-class pharmaceuticals in surface water based on large-volume injection liquid chromatography and time-of-flight mass spectrometry.

    PubMed

    Vergeynst, Leendert; Van Langenhove, Herman; Joos, Pieter; Demeestere, Kristof

    2014-04-01

    The ever-growing number of emerging micropollutants such as pharmaceuticals requests rapid and sensitive full-spectrum analytical techniques. Time-of-flight high-resolution mass spectrometry (TOF-HRMS) is a promising alternative for the state-of-the-art tandem mass spectrometry instruments because of its ability to simultaneously screen for a virtually unlimited number of suspect analytes and to perform target quantification. The challenge for such suspect screening is to develop a strategy, which minimizes the false-negative rate without restraining numerous false-positives. At the same time, omitting laborious sample enrichment through large-volume injection ultra-performance liquid chromatography (LVI-UPLC) avoids selective preconcentration. A suspect screening strategy was developed using LVI-UPLC-TOF-MS aiming the detection of 69 multi-class pharmaceuticals in surface water without the a priori availability of analytical standards. As a novel approach, the screening takes into account the signal-intensity-dependent accurate mass error of TOF-MS, hereby restraining 95 % of the measured suspect pharmaceuticals present in surface water. Application on five Belgian river water samples showed the potential of the suspect screening approach, as exemplified by a false-positive rate not higher than 15 % and given that 30 out of 37 restrained suspect compounds were confirmed by the retention time of analytical standards. Subsequently, this paper discusses the validation and applicability of the LVI-UPLC full-spectrum HRMS method for target quantification of the 69 pharmaceuticals in surface water. Analysis of five Belgian river water samples revealed the occurrence of 17 pharmaceuticals in a concentration range of 17 ng L(-1) up to 3.1 μg L(-1).

  8. SU-E-T-480: Radiobiological Dose Comparison of Single Fraction SRS, Multi-Fraction SRT and Multi-Stage SRS of Large Target Volumes Using the Linear-Quadratic Formula

    SciTech Connect

    Ding, C; Hrycushko, B; Jiang, S; Meyer, J; Timmerman, R

    2014-06-01

    Purpose: To compare the radiobiological effect on large tumors and surrounding normal tissues from single fraction SRS, multi-fractionated SRT, and multi-staged SRS treatment. Methods: An anthropomorphic head phantom with a centrally located large volume target (18.2 cm{sup 3}) was scanned using a 16 slice large bore CT simulator. Scans were imported to the Multiplan treatment planning system where a total prescription dose of 20Gy was used for a single, three staged and three fractionated treatment. Cyber Knife treatment plans were inversely optimized for the target volume to achieve at least 95% coverage of the prescription dose. For the multistage plan, the target was segmented into three subtargets having similar volume and shape. Staged plans for individual subtargets were generated based on a planning technique where the beam MUs of the original plan on the total target volume are changed by weighting the MUs based on projected beam lengths within each subtarget. Dose matrices for each plan were export in DICOM format and used to calculate equivalent dose distributions in 2Gy fractions using an alpha beta ratio of 10 for the target and 3 for normal tissue. Results: Singe fraction SRS, multi-stage plan and multi-fractionated SRT plans had an average 2Gy dose equivalent to the target of 62.89Gy, 37.91Gy and 33.68Gy, respectively. The normal tissue within 12Gy physical dose region had an average 2Gy dose equivalent of 29.55Gy, 16.08Gy and 13.93Gy, respectively. Conclusion: The single fraction SRS plan had the largest predicted biological effect for the target and the surrounding normal tissue. The multi-stage treatment provided for a more potent biologically effect on target compared to the multi-fraction SRT treatments with less biological normal tissue than single-fraction SRS treatment.

  9. Large volume manufacture of dymalloy

    SciTech Connect

    1998-06-22

    The purpose of this research was to test the commercial viability and feasibility of Dymalloy, a composite material to measure thermal conductivity. Dymalloy was developed as part of a CRADA with Sun Microsystems. Sun Microsystems was a potential end user of Dymalloy as a substrate for MCMS. Sun had no desire to be involved in the manufacture of this material. The goal of this small business CRADA with Spectra Mat was to establish the high volume commercial manufacturing industry source for Dymalloy required by an end-user such as Sun Microsystems. The difference between the fabrication technique developed during the CRADA and this proposed work related to the mechanical technique of coating the diamond powder. Mechanical parts for the high-volume diamond powder coating process existed; however, they needed to be installed in an existing coating system for evaluation. Sputtering systems similar to the one required for this project were available at LLNL. Once the diamond powder was coated, both LLNL and Spectra Mat could make and test the Dymalloy composites. Spectra Mat manufactured Dymalloy composites in order to evaluate and establish a reasonable cost estimate on their existing processing capabilities. This information was used by Spectra Mat to define the market and cost-competitive products that could be commercialized from this new substrate material.

  10. Simulating cosmic reionization: how large a volume is large enough?

    NASA Astrophysics Data System (ADS)

    Iliev, Ilian T.; Mellema, Garrelt; Ahn, Kyungjin; Shapiro, Paul R.; Mao, Yi; Pen, Ue-Li

    2014-03-01

    We present the largest-volume (425 Mpc h-1 = 607 Mpc on a side) full radiative transfer simulation of cosmic reionization to date. We show that there is significant additional power in density fluctuations at very large scales. We systematically investigate the effects this additional power has on the progress, duration and features of reionization and on selected reionization observables. We find that comoving volume of ˜100 Mpc h-1 per side is sufficient for deriving a convergent mean reionization history, but that the reionization patchiness is significantly underestimated. We use jackknife splitting to quantify the convergence of reionization properties with simulation volume. We find that sub-volumes of ˜100 Mpc h-1 per side or larger yield convergent reionization histories, except for the earliest times, but smaller volumes of ˜50 Mpc h-1 or less are not well converged at any redshift. Reionization history milestones show significant scatter between the sub-volumes, as high as Δz ˜ 1 for ˜50 Mpc h-1 volumes. If we only consider mean-density sub-regions the scatter decreases, but remains at Δz ˜ 0.1-0.2 for the different size sub-volumes. Consequently, many potential reionization observables like 21-cm rms, 21-cm PDF skewness and kurtosis all show good convergence for volumes of ˜200 Mpc h-1, but retain considerable scatter for smaller volumes. In contrast, the three-dimensional 21-cm power spectra at large scales (k < 0.25 h Mpc-1) do not fully converge for any sub-volume size. These additional large-scale fluctuations significantly enhance the 21-cm fluctuations, which should improve the prospects of detection considerably, given the lower foregrounds and greater interferometer sensitivity at higher frequencies.

  11. Variation in the Gross Tumor Volume and Clinical Target Volume for Preoperative Radiotherapy of Primary Large High-Grade Soft Tissue Sarcoma of the Extremity Among RTOG Sarcoma Radiation Oncologists

    SciTech Connect

    Wang Dian; Bosch, Walter; Kirsch, David G.; Al Lozi, Rawan; El Naqa, Issam; Roberge, David; Finkelstein, Steven E.; Petersen, Ivy; Haddock, Michael; Chen, Yen-Lin E.; Saito, Naoyuki G.; Hitchcock, Ying J.; Wolfson, Aaron H.; DeLaney, Thomas F.

    2011-12-01

    Purpose: To evaluate variability in the definition of preoperative radiotherapy gross tumor volume (GTV) and clinical target volume (CTV) delineated by sarcoma radiation oncologists. Methods and Materials: Extremity sarcoma planning CT images along with the corresponding diagnostic MRI from two patients were distributed to 10 Radiation Therapy Oncology Group sarcoma radiation oncologists with instructions to define GTV and CTV using standardized guidelines. The CT data with contours were then returned for central analysis. Contours representing statistically corrected 95% (V95) and 100% (V100) agreement were computed for each structure. Results: For the GTV, the minimum, maximum, mean (SD) volumes (mL) were 674, 798, 752 {+-} 35 for the lower extremity case and 383, 543, 447 {+-} 46 for the upper extremity case. The volume (cc) of the union, V95 and V100 were 882, 761, and 752 for the lower, and 587, 461, and 455 for the upper extremity, respectively. The overall GTV agreement was judged to be almost perfect in both lower and upper extremity cases (kappa = 0.9 [p < 0.0001] and kappa = 0.86 [p < 0.0001]). For the CTV, the minimum, maximum, mean (SD) volumes (mL) were 1145, 1911, 1605 {+-} 211 for the lower extremity case and 637, 1246, 1006 {+-} 180 for the upper extremity case. The volume (cc) of the union, V95, and V100 were 2094, 1609, and 1593 for the lower, and 1533, 1020, and 965 for the upper extremity cases, respectively. The overall CTV agreement was judged to be almost perfect in the lower extremity case (kappa = 0.85 [p < 0.0001]) but only substantial in the upper extremity case (kappa = 0.77 [p < 0.0001]). Conclusions: Almost perfect agreement existed in the GTV of these two representative cases. Tshere was no significant disagreement in the CTV of the lower extremity, but variation in the CTV of upper extremity was seen, perhaps related to the positional differences between the planning CT and the diagnostic MRI.

  12. Interobserver Variation of Clinical Target Volume Delineation in Gastric Cancer

    SciTech Connect

    Jansen, Edwin; Verheij, Marcel

    2010-07-15

    Purpose: To evaluate interobserver variability in clinical target volume (CTV) delineation in gastric cancer performed with the help of a delineation guide. Patients and Methods: Ten radiotherapy centers that participate in the CRITICS Phase III trial were provided with a delineation atlas, preoperative CT scans, a postoperative planning CT scan, and clinical information for a gastric cancer case and were asked to construct a CTV and create a dosimetric plan according to departmental policy. Results: The volumes of the CTVs and planning target volumes (PTVs) differed greatly, with a mean (SD) CTV volume of 392 (176) cm{sup 3} (range, 240-821cm{sup 3}) and PTV volume of 915 (312) cm{sup 3} (range, 634-1677cm{sup 3}). The overlapping volume was 376cm{sup 3} for the CTV and 890cm{sup 3} for the PTV. The greatest differences in the CTV were seen at the cranial and caudal parts. After planning, dose coverage of the overlapping PTV volume showed less variability than the CTV. Conclusion: In this series of 10 plans, variability of the CTV in postoperative chemoradiotherapy for gastric cancer is large. Strict and clear delineation guidelines should be provided, especially in Phase III multicenter studies. Adaptations of these guidelines should be evaluated in clinical studies.

  13. Large volume flow-through scintillating detector

    DOEpatents

    Gritzo, Russ E.; Fowler, Malcolm M.

    1995-01-01

    A large volume flow through radiation detector for use in large air flow situations such as incinerator stacks or building air systems comprises a plurality of flat plates made of a scintillating material arranged parallel to the air flow. Each scintillating plate has a light guide attached which transfers light generated inside the scintillating plate to an associated photomultiplier tube. The output of the photomultiplier tubes are connected to electronics which can record any radiation and provide an alarm if appropriate for the application.

  14. New method for rapid solid-phase extraction of large-volume water samples and its application to non-target screening of North Sea water for organic contaminants by gas chromatography-mass spectrometry.

    PubMed

    Weigel, S; Bester, K; Hühnerfuss, H

    2001-03-30

    A method has been developed that allows the solid-phase extraction of microorganic compounds from large volumes of water (10 l) for non-target analysis of filtered seawater. The filtration-extraction system is operated with glass fibre filter candles and the polymeric styrene-divinylbenzene sorbent SDB-1 at flow-rates as high as 500 ml/min. Recovery studies carried out for a couple of model substances covering a wide range of polarity and chemical classes revealed a good performance of the method. Especially for polar compounds (log Kow 3.3-0.7) quantitative recovery was achieved. Limits of detection were between 0.1 and 0.7 ng/l in the full scan mode of the MS. The suitability of the method for the analysis of marine water samples is demonstrated by the non-target screening of water from the German Bight for the presence of organic contaminants. In the course of this screening a large variety of substances was identified including pesticides, industrial chemicals and pharmaceuticals. For some of the identified compounds their occurrence in marine ecosystems has not been reported before, such as dichloropyridines, carbamazepine, propyphenazone and caffeine.

  15. Safety considerations in large-volume lipoplasty.

    PubMed

    Giese, S Y

    2001-11-01

    Proper patient selection, diligent fluid management, and attention to body temperature are important safety considerations in large-volume lipoplasty (LVL). Complications related to fluid overload, lidocaine toxicity, coagulopathies, and lengthy combined surgical procedures are preventable and not directly linked to LVL technique. Benefits as well as morbidity and mortality from LVL can be weighed against risk factors such as obesity, a prediabetic condition, and/or adverse effects of weight-loss medications. The author describes how she incorporates safeguards into her LVL procedures. (Aesthetic Surg J 2001;21:545-548.).

  16. Progressive volume rendering of large unstructured grids.

    PubMed

    Callahan, Steven P; Bavoil, Louis; Pascucci, Valerio; Silva, Cláudio T

    2006-01-01

    We describe a new progressive technique that allows real-time rendering of extremely large tetrahedral meshes. Our approach uses a client-server architecture to incrementally stream portions of the mesh from a server to a client which refines the quality of the approximate rendering until it converges to a full quality rendering. The results of previous steps are re-used in each subsequent refinement, thus leading to an efficient rendering. Our novel approach keeps very little geometry on the client and works by refining a set of rendered images at each step. Our interactive representation of the dataset is efficient, light-weight, and high quality. We present a framework for the exploration of large datasets stored on a remote server with a thin client that is capable of rendering and managing full quality volume visualizations.

  17. LARGE volume string compactifications at finite temperature

    SciTech Connect

    Anguelova, Lilia; Calò, Vincenzo; Cicoli, Michele E-mail: v.calo@qmul.ac.uk

    2009-10-01

    We present a detailed study of the finite-temperature behaviour of the LARGE Volume type IIB flux compactifications. We show that certain moduli can thermalise at high temperatures. Despite that, their contribution to the finite-temperature effective potential is always negligible and the latter has a runaway behaviour. We compute the maximal temperature T{sub max}, above which the internal space decompactifies, as well as the temperature T{sub *}, that is reached after the decay of the heaviest moduli. The natural constraint T{sub *} < T{sub max} implies a lower bound on the allowed values of the internal volume V. We find that this restriction rules out a significant range of values corresponding to smaller volumes of the order V ∼ 10{sup 4}l{sub s}{sup 6}, which lead to standard GUT theories. Instead, the bound favours values of the order V ∼ 10{sup 15}l{sub s}{sup 6}, which lead to TeV scale SUSY desirable for solving the hierarchy problem. Moreover, our result favours low-energy inflationary scenarios with density perturbations generated by a field, which is not the inflaton. In such a scenario, one could achieve both inflation and TeV-scale SUSY, although gravity waves would not be observable. Finally, we pose a two-fold challenge for the solution of the cosmological moduli problem. First, we show that the heavy moduli decay before they can begin to dominate the energy density of the Universe. Hence they are not able to dilute any unwanted relics. And second, we argue that, in order to obtain thermal inflation in the closed string moduli sector, one needs to go beyond the present EFT description.

  18. SUSY's Ladder: reframing sequestering at Large Volume

    NASA Astrophysics Data System (ADS)

    Reece, Matthew; Xue, Wei

    2016-04-01

    Theories with approximate no-scale structure, such as the Large Volume Scenario, have a distinctive hierarchy of multiple mass scales in between TeV gaugino masses and the Planck scale, which we call SUSY's Ladder. This is a particular realization of Split Supersymmetry in which the same small parameter suppresses gaugino masses relative to scalar soft masses, scalar soft masses relative to the gravitino mass, and the UV cutoff or string scale relative to the Planck scale. This scenario has many phenomenologically interesting properties, and can avoid dangers including the gravitino problem, flavor problems, and the moduli-induced LSP problem that plague other supersymmetric theories. We study SUSY's Ladder using a superspace formalism that makes the mysterious cancelations in previous computations manifest. This opens the possibility of a consistent effective field theory understanding of the phenomenology of these scenarios, based on power-counting in the small ratio of string to Planck scales. We also show that four-dimensional theories with approximate no-scale structure enforced by a single volume modulus arise only from two special higher-dimensional theories: five-dimensional supergravity and ten-dimensional type IIB supergravity. This gives a phenomenological argument in favor of ten dimensional ultraviolet physics which is different from standard arguments based on the consistency of superstring theory.

  19. Comments on large-N volume independence

    SciTech Connect

    Poppitz, Erich; Unsal, Mithat; /SLAC /Stanford U., Phys. Dept.

    2010-06-02

    We study aspects of the large-N volume independence on R{sup 3} X L{sup {Gamma}}, where L{sup {Gamma}} is a {Gamma}site lattice for Yang-Mills theory with adjoint Wilson-fermions. We find the critical number of lattice sites above which the center-symmetry analysis on L{sup {Gamma}} agrees with the one on the continuum S{sup 1}. For Wilson parameter set to one and {Gamma}{>=}2, the two analyses agree. One-loop radiative corrections to Wilson-line masses are finite, reminiscent of the UV-insensitivity of the Higgs mass in deconstruction/Little-Higgs theories. Even for theories with {Gamma}=1, volume independence in QCD(adj) may be guaranteed to work by tuning one low-energy effective field theory parameter. Within the parameter space of the theory, at most three operators of the 3d effective field theory exhibit one-loop UV-sensitivity. This opens the analytical prospect to study 4d non-perturbative physics by using lower dimensional field theories (d=3, in our example).

  20. Why Matter Occupies so Large a Volume?

    NASA Astrophysics Data System (ADS)

    E. B., Manoukian

    2013-12-01

    The paper represents a rigorous treatment of the underlying quantum theory, not just in words but providing the underlying technical details, as to why matter occupies so large a volume and its intimate connection with the Pauli exclusion principle, as more and more matter is put together, as well as of the contraction or shrinkage of “bosonic matter”, upon collapse, for which the Pauli exclusion is abolished. From the derived explicit bounds of integrals of powers of the particle number densities, explicit bounds on probabilities of the occurrences of the events just described are extracted. These probabilities lead one to infer the change of the “size” or extension of such matter, upon expansion or contraction, respectively, as their content is increased.

  1. Combined Recipe for Clinical Target Volume and Planning Target Volume Margins

    SciTech Connect

    Stroom, Joep; Gilhuijs, Kenneth; Vieira, Sandra; Chen, Wei; Salguero, Javier; Moser, Elizabeth; Sonke, Jan-Jakob

    2014-03-01

    Purpose: To develop a combined recipe for clinical target volume (CTV) and planning target volume (PTV) margins. Methods and Materials: A widely accepted PTV margin recipe is M{sub geo} = aΣ{sub geo} + bσ{sub geo}, with Σ{sub geo} and σ{sub geo} standard deviations (SDs) representing systematic and random geometric uncertainties, respectively. On the basis of histopathology data of breast and lung tumors, we suggest describing the distribution of microscopic islets around the gross tumor volume (GTV) by a half-Gaussian with SD Σ{sub micro}, yielding as possible CTV margin recipe: M{sub micro} = ƒ(N{sub i}) × Σ{sub micro}, with N{sub i} the average number of microscopic islets per patient. To determine ƒ(N{sub i}), a computer model was developed that simulated radiation therapy of a spherical GTV with isotropic distribution of microscopic disease in a large group of virtual patients. The minimal margin that yielded D{sub min} <95% in maximally 10% of patients was calculated for various Σ{sub micro} and N{sub i}. Because Σ{sub micro} is independent of Σ{sub geo}, we propose they should be added quadratically, yielding for a combined GTV-to-PTV margin recipe: M{sub GTV-PTV} = √([aΣ{sub geo}]{sup 2} + [ƒ(N{sub i})Σ{sub micro}]{sup 2}) + bσ{sub geo}. This was validated by the computer model through numerous simultaneous simulations of microscopic and geometric uncertainties. Results: The margin factor ƒ(N{sub i}) in a relevant range of Σ{sub micro} and N{sub i} can be given by: ƒ(N{sub i}) = 1.4 + 0.8log(N{sub i}). Filling in the other factors found in our simulations (a = 2.1 and b = 0.8) yields for the combined recipe: M{sub GTV-PTV} = √((2.1Σ{sub geo}){sup 2} + ([1.4 + 0.8log(N{sub i})] × Σ{sub micro}){sup 2}) + 0.8σ{sub geo}. The average margin difference between the simultaneous simulations and the above recipe was 0.2 ± 0.8 mm (1 SD). Calculating M{sub geo} and M{sub micro} separately and adding them linearly overestimated PTVs by on

  2. Large-volume sampling and preconcentration for trace explosives detection.

    SciTech Connect

    Linker, Kevin Lane

    2004-05-01

    A trace explosives detection system typically contains three subsystems: sample collection, preconcentration, and detection. Sample collection of trace explosives (vapor and particulate) through large volumes of airflow helps reduce sampling time while increasing the amount of dilute sample collected. Preconcentration of the collected sample before introduction into the detector improves the sensitivity of the detector because of the increase in sample concentration. By combining large-volume sample collection and preconcentration, an improvement in the detection of explosives is possible. Large-volume sampling and preconcentration is presented using a systems level approach. In addition, the engineering of large-volume sampling and preconcentration for the trace detection of explosives is explained.

  3. Large space systems technology, 1980, volume 1

    NASA Technical Reports Server (NTRS)

    Kopriver, F., III (Compiler)

    1981-01-01

    The technological and developmental efforts in support of the large space systems technology are described. Three major areas of interests are emphasized: (1) technology pertient to large antenna systems; (2) technology related to large space systems; and (3) activities that support both antenna and platform systems.

  4. The persistence of the large volumes in black holes

    NASA Astrophysics Data System (ADS)

    Ong, Yen Chin

    2015-08-01

    Classically, black holes admit maximal interior volumes that grow asymptotically linearly in time. We show that such volumes remain large when Hawking evaporation is taken into account. Even if a charged black hole approaches the extremal limit during this evolution, its volume continues to grow; although an exactly extremal black hole does not have a "large interior". We clarify this point and discuss the implications of our results to the information loss and firewall paradoxes.

  5. High density three-dimensional localization microscopy across large volumes

    PubMed Central

    Legant, Wesley R.; Shao, Lin; Grimm, Jonathan B.; Brown, Timothy A.; Milkie, Daniel E.; Avants, Brian B.; Lavis, Luke D.; Betzig, Eric

    2016-01-01

    Extending three-dimensional (3D) single molecule localization microscopy away from the coverslip and into thicker specimens will greatly broaden its biological utility. However, localizing molecules in 3D with high precision in such samples, while simultaneously achieving the extreme labeling densities required for high resolution of densely crowded structures is challenging due to the limitations both of conventional imaging modalities and of conventional labeling techniques. Here, we combine lattice light sheet microscopy with newly developed, freely diffusing, cell permeable chemical probes with targeted affinity towards either DNA, intracellular membranes, or the plasma membrane. We use this combination to perform high localization precision, ultra-high labeling density, multicolor localization microscopy in samples up to 20 microns thick, including dividing cells and the neuromast organ of a zebrafish embryo. We also demonstrate super-resolution correlative imaging with protein specific photoactivable fluorophores, providing a mutually compatible, single platform alternative to correlative light-electron microscopy over large volumes. PMID:26950745

  6. Volume Independence in Large Nc QCD-like Gauge Theories

    SciTech Connect

    Kovtun, Pavel; Unsal, Mithat; Yaffe, Laurence G.

    2007-02-06

    Volume independence in large N{sub c} gauge theories may be viewed as a generalized orbifold equivalence. The reduction to zero volume (or Eguchi-Kawai reduction) is a special case of this equivalence. So is temperature independence in confining phases. A natural generalization concerns volume independence in ''theory space'' of quiver gauge theories. In pure Yang-Mills theory, the failure of volume independence for sufficiently small volumes (at weak coupling) due to spontaneous breaking of center symmetry, together with its validity above a critical size, nicely illustrate the symmetry realization conditions which are both necessary and sufficient for large N{sub c} orbifold equivalence. The existence of a minimal size below which volume independence fails also applies to Yang-Mills theory with antisymmetric representation fermions [QCD(AS)]. However, in Yang-Mills theory with adjoint representation fermions [QCD(Adj)], endowed with periodic boundary conditions, volume independence remains valid down to arbitrarily small size. In sufficiently large volumes, QCD(Adj) and QCD(AS) have a large N{sub c} ''orientifold'' equivalence, provided charge conjugation symmetry is unbroken in the latter theory. Therefore, via a combined orbifold-orientifold mapping, a well-defined large N{sub c} equivalence exists between QCD(AS) in large, or infinite, volume and QCD(Adj) in arbitrarily small volume. Since asymptotically free gauge theories, such as QCD(Adj), are much easier to study (analytically or numerically) in small volume, this equivalence should allow greater understanding of large N{sub c} QCD in infinite volume.

  7. Large mode-volume, large beta, photonic crystal laser resonator

    SciTech Connect

    Dezfouli, Mohsen Kamandar; Dignam, Marc M.

    2014-12-15

    We propose an optical resonator formed from the coupling of 13, L2 defects in a triangular-lattice photonic crystal slab. Using a tight-binding formalism, we optimized the coupled-defect cavity design to obtain a resonator with predicted single-mode operation, a mode volume five times that of an L2-cavity mode and a beta factor of 0.39. The results are confirmed using finite-difference time domain simulations. This resonator is very promising for use as a single mode photonic crystal vertical-cavity surface-emitting laser with high saturation output power compared to a laser consisting of one of the single-defect cavities.

  8. Technologies for imaging neural activity in large volumes

    PubMed Central

    Ji, Na; Freeman, Jeremy; Smith, Spencer L.

    2017-01-01

    Neural circuitry has evolved to form distributed networks that act dynamically across large volumes. Collecting data from individual planes, conventional microscopy cannot sample circuitry across large volumes at the temporal resolution relevant to neural circuit function and behaviors. Here, we review emerging technologies for rapid volume imaging of neural circuitry. We focus on two critical challenges: the inertia of optical systems, which limits image speed, and aberrations, which restrict the image volume. Optical sampling time must be long enough to ensure high-fidelity measurements, but optimized sampling strategies and point spread function engineering can facilitate rapid volume imaging of neural activity within this constraint. We also discuss new computational strategies for the processing and analysis of volume imaging data of increasing size and complexity. Together, optical and computational advances are providing a broader view of neural circuit dynamics, and help elucidate how brain regions work in concert to support behavior. PMID:27571194

  9. Large volume continuous counterflow dialyzer has high efficiency

    NASA Technical Reports Server (NTRS)

    Mandeles, S.; Woods, E. C.

    1967-01-01

    Dialyzer separates macromolecules from small molecules in large volumes of solution. It takes advantage of the high area/volume ratio in commercially available 1/4-inch dialysis tubing and maintains a high concentration gradient at the dialyzing surface by counterflow.

  10. Sparticle spectra from Large-Volume String Compactifications

    SciTech Connect

    Conlon, Joseph P.

    2007-11-20

    Large-volume models are a promising approach to stabilising moduli and generating the weak hierarchy through TeV-supersymmetry. I describe the pattern of sparticle mass spectra that arises in these models.

  11. The Newly Upgraded Large COMPASS Polarized Target

    SciTech Connect

    Gautheron, F.

    2007-06-13

    During the CERN SPS 2005 shutdown the COMPASS target system received a major hardware upgrade for the new period of data taking starting in 2006. A new superconducting magnet with a larger acceptance combined with a new microwave cavity and a three cell target setup have been installed and already showed excellent performances that we present for the first time.

  12. [Clinical to planning target volume margins in prostate cancer radiotherapy].

    PubMed

    Ramiandrisoa, F; Duvergé, L; Castelli, J; Nguyen, T D; Servagi-Vernat, S; de Crevoisier, R

    2016-10-01

    The knowledge of inter- and intrafraction motion and deformations of the intrapelvic target volumes (prostate, seminal vesicles, prostatectomy bed and lymph nodes) as well as the main organs at risk (bladder and rectum) allow to define rational clinical to planning target volume margins, depending on the different radiotherapy techniques and their uncertainties. In case of image-guided radiotherapy, prostate margins and seminal vesicles margins can be between 5 and 10mm. The margins around the prostatectomy bed vary from 10 to 15mm and those around the lymph node clinical target volume between 7 and 10mm. Stereotactic body radiotherapy allows lower margins, which are 3 to 5mm around the prostate. Image-guided and stereotactic body radiotherapy with adequate margins allow finally moderate or extreme hypofractionation.

  13. [Radiotherapy for cervix carcinomas: clinical target volume delineation].

    PubMed

    Gnep, K; Mazeron, R

    2013-10-01

    Concurrent chemoradiation followed by brachytherapy is currently the standard treatment for locally advanced cervix carcinomas. Modern radiation techniques require planning based on 3D images, and therefore an accurate delineation of target volumes. The clinical target volume (CTV) used for the different phases of treatment are now well defined, but are not always easy to delineate on a CT scan which is currently the standard examination for simulation in radiotherapy. MRI and PET-CT are routinely performed at diagnosis, and can be used to improve the accuracy of the delineation. The objective of this review is to describe the definitions and recommendations of CTV in the treatment of cervical cancer.

  14. Coherent motility measurements of biological objects in a large volume

    NASA Astrophysics Data System (ADS)

    Ebersberger, J.; Weigelt, G.; Li, Yajun

    1986-05-01

    We have performed space-time intensity cross-correlation measurements of boiling image plane speckle interferograms to investigate the motility of a large number of small biological objects. Experiments were carried out with Artemia Salina species at various water temperatures. The advantage of this method is the fact that many objects in a large volume can be measured simultaneously.

  15. Diffusion tensor imaging for target volume definition in glioblastoma multiforme.

    PubMed

    Berberat, Jatta; McNamara, Jane; Remonda, Luca; Bodis, Stephan; Rogers, Susanne

    2014-10-01

    Diffusion tensor imaging (DTI) is an MR-based technique that may better detect the peritumoural region than MRI. Our aim was to explore the feasibility of using DTI for target volume delineation in glioblastoma patients. MR tensor tracts and maps of the isotropic (p) and anisotropic (q) components of water diffusion were coregistered with CT in 13 glioblastoma patients. An in-house image processing program was used to analyse water diffusion in each voxel of interest in the region of the tumour. Tumour infiltration was mapped according to validated criteria and contralateral normal brain was used as an internal control. A clinical target volume (CTV) was generated based on the T1-weighted image obtained using contrast agent (T1Gd), tractography and the infiltration map. This was compared to a conventional T2-weighted CTV (T2-w CTV). Definition of a diffusion-based CTV that included the adjacent white matter tracts proved highly feasible. A statistically significant difference was detected between the DTI-CTV and T2-w CTV volumes (p < 0.005, t = 3.480). As the DTI-CTVs were smaller than the T2-w CTVs (tumour plus peritumoural oedema), the pq maps were not simply detecting oedema. Compared to the clinical planning target volume (PTV), the DTI-PTV showed a trend towards volume reduction. These diffusion-based volumes were smaller than conventional volumes, yet still included sites of tumour recurrence. Extending the CTV along the abnormal tensor tracts in order to preserve coverage of the likely routes of dissemination, whilst sparing uninvolved brain, is a rational approach to individualising radiotherapy planning for glioblastoma patients.

  16. A prediction model of radiation-induced necrosis for intracranial radiosurgery based on target volume.

    PubMed

    Zhao, Bo; Wen, Ning; Chetty, Indrin J; Huang, Yimei; Brown, Stephen L; Snyder, Karen C; Siddiqui, Farzan; Movsas, Benjamin; Siddiqui, M Salim

    2017-08-01

    This study aims to extend the observation that the 12 Gy-radiosurgical-volume (V12Gy) correlates with the incidence of radiation necrosis in patients with intracranial tumors treated with radiosurgery by using target volume to predict V12Gy. V12Gy based on the target volume was used to predict the radiation necrosis probability (P) directly. Also investigated was the reduction in radiation necrosis rates (ΔP) as a result of optimizing the prescription isodose lines for linac-based SRS. Twenty concentric spherical targets and 22 patients with brain tumors were retrospectively studied. For each case, a standard clinical plan and an optimized plan with prescription isodose lines based on gradient index were created. V12Gy were extracted from both plans to analyze the correlation between V12Gy and target volume. The necrosis probability P as a function of V12Gy was evaluated. To account for variation in prescription, the relation between V12Gy and prescription was also investigated. A prediction model for radiation-induced necrosis was presented based on the retrospective study. The model directly relates the typical prescribed dose and the target volume to the radionecrosis probability; V12Gy increased linearly with the target volume (R(2)  > 0.99). The linear correlation was then integrated into a logistic model to predict P directly from the target volume. The change in V12Gy as a function of prescription was modeled using a single parameter, s (=-1.15). Relatively large ΔP was observed for target volumes between 7 and 28 cm(3) with the maximum reduction (8-9%) occurring at approximately 18 cm(3) . Based on the model results, optimizing the prescription isodose line for target volumes between 7 and 28 cm(3) results in a significant reduction in necrosis probability. V12Gy based on the target volume could provide clinicians a predictor of radiation necrosis at the contouring stage thus facilitating treatment decisions. © 2017 American Association of

  17. Large-Volume High-Pressure Mineral Physics in Japan

    NASA Astrophysics Data System (ADS)

    Liebermann, Robert C.; Prewitt, Charles T.; Weidner, Donald J.

    American high-pressure research with large sample volumes developed rapidly in the 1950s during the race to produce synthetic diamonds. At that time the piston cylinder, girdle (or belt), and tetrahedral anvil devices were invented. However, this development essentially stopped in the late 1950s, and while the diamond anvil cell has been used extensively in the United States with spectacular success for high-pressure experiments in small sample volumes, most of the significant technological advances in large-volume devices have taken place in Japan. Over the past 25 years, these technical advances have enabled a fourfold increase in pressure, with many important investigations of the chemical and physical properties of materials synthesized at high temperatures and pressures that cannot be duplicated with any apparatus currently available in the United States.

  18. Stroke volume variation as a guide for fluid resuscitation in patients undergoing large-volume liposuction.

    PubMed

    Jain, Anil Kumar; Khan, Asma M

    2012-09-01

    : The potential for fluid overload in large-volume liposuction is a source of serious concern. Fluid management in these patients is controversial and governed by various formulas that have been advanced by many authors. Basically, it is the ratio of what goes into the patient and what comes out. Central venous pressure has been used to monitor fluid therapy. Dynamic parameters, such as stroke volume and pulse pressure variation, are better predictors of volume responsiveness and are superior to static indicators, such as central venous pressure and pulmonary capillary wedge pressure. Stroke volume variation was used in this study to guide fluid resuscitation and compared with one guided by an intraoperative fluid ratio of 1.2 (i.e., Rohrich formula). : Stroke volume variation was used as a guide for intraoperative fluid administration in 15 patients subjected to large-volume liposuction. In another 15 patients, fluid resuscitation was guided by an intraoperative fluid ratio of 1.2. The amounts of intravenous fluid administered in the groups were compared. : The mean amount of fluid infused was 561 ± 181 ml in the stroke volume variation group and 2383 ± 1208 ml in the intraoperative fluid ratio group. The intraoperative fluid ratio when calculated for the stroke volume variation group was 0.936 ± 0.084. All patients maintained hemodynamic parameters (heart rate and systolic, diastolic, and mean blood pressure). Renal and metabolic indices remained within normal limits. : Stroke volume variation-guided fluid application could result in an appropriate amount of intravenous fluid use in patients undergoing large-volume liposuction. : Therapeutic, II.

  19. Large-volume en-bloc staining for electron microscopy-based connectomics

    PubMed Central

    Hua, Yunfeng; Laserstein, Philip; Helmstaedter, Moritz

    2015-01-01

    Large-scale connectomics requires dense staining of neuronal tissue blocks for electron microscopy (EM). Here we report a large-volume dense en-bloc EM staining protocol that overcomes the staining gradients, which so far substantially limited the reconstructable volumes in three-dimensional (3D) EM. Our protocol provides densely reconstructable tissue blocks from mouse neocortex sized at least 1 mm in diameter. By relaxing the constraints on precise topographic sample targeting, it makes the correlated functional and structural analysis of neuronal circuits realistic. PMID:26235643

  20. Volume-targeted ventilation and arterial carbon dioxide in neonates.

    PubMed

    Dawson, Catherine; Davies, Mark William

    2005-01-01

    To review the arterial carbon dioxide tensions (PaCO(2)) in newborn infants ventilated using synchronized intermittent mandatory ventilation (SIMV) in volume guarantee mode (using the Dräger Babylog 8000+) with a unit policy targeting tidal volumes of approximately 4 mL/kg. Data on ventilator settings and arterial PaCO(2) levels were collected on all arterial blood gases (ABG; n = 288) from 50 neonates (<33 weeks gestational age) ventilated using the Dräger Babylog 8000+ ventilator (Dräger Medizintechnik GmbH, Lübeck, Germany) in SIMV plus volume guarantee mode. Data were analysed for all blood gases done on the entire cohort in the first 48 h of life and a subanalysis was done on the first gas for each infant (n = 38) ventilated using volume guarantee from admission to the nursery. The number of ABG showing severe hypocapnoea (PaCO(2) < 25 mmHg) and/or severe hypercapnoea (PaCO(2) > 65 mmHg) were determined. The mean (SD) PaCO(2) during the first 48 h was 46.6 (9.0) mmHg. The mean (SD) PaCO(2) on the first blood gas of those infants commenced on volume guarantee from admission was 45.1 (12.5) mmHg. Severe hypo- or hypercapnoea occurred in 8% of infants at the time of their first blood gas measurement, and in <4% of blood gas measurements in the first 48 h. Infants ventilated with volume guarantee ventilation targeting approximately 4 mL/kg (range: 2.9-5.1) have acceptable PaCO(2) levels at the first blood gas measurement and during the first 48 h of life; and avoid severe hypo- or hypercapnoea over 90% of the time.

  1. Large discharge-volume, silent discharge spark plug

    DOEpatents

    Kang, Michael

    1995-01-01

    A large discharge-volume spark plug for providing self-limiting microdischarges. The apparatus includes a generally spark plug-shaped arrangement of a pair of electrodes, where either of the two coaxial electrodes is substantially shielded by a dielectric barrier from a direct discharge from the other electrode, the unshielded electrode and the dielectric barrier forming an annular volume in which self-terminating microdischarges occur when alternating high voltage is applied to the center electrode. The large area over which the discharges occur, and the large number of possible discharges within the period of an engine cycle, make the present silent discharge plasma spark plug suitable for use as an ignition source for engines. In the situation, where a single discharge is effective in causing ignition of the combustible gases, a conventional single-polarity, single-pulse, spark plug voltage supply may be used.

  2. A method to individualize adaptive planning target volumes for deformable targets

    NASA Astrophysics Data System (ADS)

    Wright, Pauliina; Redpath, Anthony Thomas; Høyer, Morten; Muren, Ludvig Paul

    2009-12-01

    We have investigated a method to individualize the planning target volume (PTV) for deformable targets in radiotherapy by combining a computer tomography (CT) scan with multiple cone beam (CB)CT scans. All combinations of the CT and up to five initial CBCTs were considered. To exclude translational motion, the clinical target volumes (CTVs) in the CBCTs were matched to the CTV in the CT. PTVs investigated were the unions, the intersections and all other structures defined by a volume with a constant CTV location frequency. The method was investigated for three bladder cancer patients with a CT and 20-27 CBCTs. Reliable alternatives to a standard PTV required use of at least four scans for planning. The CTV unions of four or five scans gave similar results when considering the fraction of individual repeat scan CTVs they volumetrically covered to at least 99%. For patient 1, 64% of the repeat scan CTVs were covered by these unions and for patient 2, 86% were covered. Further, the PTVs defined by the volume occupied by the CTV in all except one of the four or five planning scans seemed clinically feasible. On average, 52% of the repeat CBCT CTVs for patient 1 and 64% for patient 2 were covered to minimum 99% of their total volume. For patient 3, the method failed due to poor volume control of the bladder. The suggested PTVs could, with considerably improved conformity, complement the standard PTV.

  3. Monte Carlo Simulations for Dosimetry in Prostate Radiotherapy with Different Intravesical Volumes and Planning Target Volume Margins

    PubMed Central

    Lv, Wei; Yu, Dong; He, Hengda; Liu, Qian

    2016-01-01

    In prostate radiotherapy, the influence of bladder volume variation on the dose absorbed by the target volume and organs at risk is significant and difficult to predict. In addition, the resolution of a typical medical image is insufficient for visualizing the bladder wall, which makes it more difficult to precisely evaluate the dose to the bladder wall. This simulation study aimed to quantitatively investigate the relationship between the dose received by organs at risk and the intravesical volume in prostate radiotherapy. The high-resolution Visible Chinese Human phantom and the finite element method were used to construct 10 pelvic models with specific intravesical volumes ranging from 100 ml to 700 ml to represent bladders of patients with different bladder filling capacities during radiotherapy. This series of models was utilized in six-field coplanar 3D conformal radiotherapy simulations with different planning target volume (PTV) margins. Each organ’s absorbed dose was calculated using the Monte Carlo method. The obtained bladder wall displacements during bladder filling were consistent with reported clinical measurements. The radiotherapy simulation revealed a linear relationship between the dose to non-targeted organs and the intravesical volume and indicated that a 10-mm PTV margin for a large bladder and a 5-mm PTV margin for a small bladder reduce the effective dose to the bladder wall to similar degrees. However, larger bladders were associated with evident protection of the intestines. Detailed dosimetry results can be used by radiation oncologists to create more accurate, individual water preload protocols according to the patient’s anatomy and bladder capacity. PMID:27441944

  4. Large volume leukapheresis: Efficacy and safety of processing patient's total blood volume six times.

    PubMed

    Bojanic, Ines; Dubravcic, Klara; Batinic, Drago; Cepulic, Branka Golubic; Mazic, Sanja; Hren, Darko; Nemet, Damir; Labar, Boris

    2011-04-01

    Large-volume leukapheresis (LVL) differs from standard leukapheresis by increased blood flow and an altered anticoagulation regimen. An open issue is to what degree a further increase in processed blood volume is reasonable in terms of higher yields and safety. In 30 LVL performed in patients with hematologic malignancies, 6 total blood volumes were processed. LVL resulted in a higher CD34+ cell yield without a change in graft quality. Although a marked platelet decrease can be expected, LVL is safe and can be recommended as the standard procedure for patients who mobilize low numbers of CD34+ cells and when high number of CD34+ cells are required.

  5. Accessibility and Analysis to NASA's New Large Volume Missions

    NASA Astrophysics Data System (ADS)

    Hausman, J.; Gangl, M.; McAuley, J.; Toaz, R., Jr.

    2016-12-01

    Each new satellite mission continues to measure larger volumes of data than the last. This is especially true with the new NASA satellite missions NISAR and SWOT, launching in 2020 and 2021, which will produce petabytes of data a year. A major concern is how will users be able to analyze such volumes? This presentation will show how cloud storage and analysis can help overcome and accommodate multiple users' needs. While users may only need gigabytes of data for their research, the data center will need to leverage the processing power of the cloud to perform search and subsetting capabilities over the large volume of data. There is also a vast array of user types that require different tools and services to access and analyze the data. Some users need global data to run climate models, while others require small, dynamic regions with lots of analysis and transformations. There will also be a need to generate data that have different inputs or correction algorithms that the project may not be able to provide as those will be very specialized for specific regions or evolve quicker than what the project can reprocess. By having the data and tools side by side, users will be able to access the data they require and analyze it all in one place. By placing data in the cloud, users can analyze the data there, shifting the current "download and analyze" paradigm to "log-in and analyze". The cloud will provide adequate processing power needed to analyze large volumes of data, subset small regions over large volumes of data, and regenerate/reformat data to the specificity each user requires.

  6. Concentration of Enteroviruses from Large Volumes of Water

    PubMed Central

    Sobsey, Mark D.; Wallis, Craig; Henderson, Marilyn; Melnick, Joseph L.

    1973-01-01

    An improved method for concentrating viruses from large volumes of clean waters is described. It was found that, by acidification, viruses in large volumes of water could be efficiently adsorbed to epoxy-fiber-glass and nitrocellulose filters in the absence of exogenously added salts. Based upon this finding, a modified version of our previously described virus concentration system was developed for virus monitoring of clean waters. In this procedure the water being tested is acidified by injection of N HCl prior to passage through a virus adsorber consisting of a fiber-glass cartridge depth filter and an epoxy-fiber-glass membrane filter in series. The adsorbed viruses are then eluted with a 1-liter volume of pH 11.5 eluent and reconcentrated by adsorption to and elution from a small epoxy-fiber-glass filter series. With this method small quantities of poliovirus in 100-gallon (378.5-liter) volumes of tapwater were concentrated nearly 40,000-fold with an average virus recovery efficiency of 77%. Images PMID:16349972

  7. Identifying radiotherapy target volumes in brain cancer by image analysis.

    PubMed

    Cheng, Kun; Montgomery, Dean; Feng, Yang; Steel, Robin; Liao, Hanqing; McLaren, Duncan B; Erridge, Sara C; McLaughlin, Stephen; Nailon, William H

    2015-10-01

    To establish the optimal radiotherapy fields for treating brain cancer patients, the tumour volume is often outlined on magnetic resonance (MR) images, where the tumour is clearly visible, and mapped onto computerised tomography images used for radiotherapy planning. This process requires considerable clinical experience and is time consuming, which will continue to increase as more complex image sequences are used in this process. Here, the potential of image analysis techniques for automatically identifying the radiation target volume on MR images, and thereby assisting clinicians with this difficult task, was investigated. A gradient-based level set approach was applied on the MR images of five patients with grades II, III and IV malignant cerebral glioma. The relationship between the target volumes produced by image analysis and those produced by a radiation oncologist was also investigated. The contours produced by image analysis were compared with the contours produced by an oncologist and used for treatment. In 93% of cases, the Dice similarity coefficient was found to be between 60 and 80%. This feasibility study demonstrates that image analysis has the potential for automatic outlining in the management of brain cancer patients, however, more testing and validation on a much larger patient cohort is required.

  8. Identifying radiotherapy target volumes in brain cancer by image analysis

    PubMed Central

    Cheng, Kun; Montgomery, Dean; Feng, Yang; Steel, Robin; Liao, Hanqing; McLaren, Duncan B.; Erridge, Sara C.; McLaughlin, Stephen

    2015-01-01

    To establish the optimal radiotherapy fields for treating brain cancer patients, the tumour volume is often outlined on magnetic resonance (MR) images, where the tumour is clearly visible, and mapped onto computerised tomography images used for radiotherapy planning. This process requires considerable clinical experience and is time consuming, which will continue to increase as more complex image sequences are used in this process. Here, the potential of image analysis techniques for automatically identifying the radiation target volume on MR images, and thereby assisting clinicians with this difficult task, was investigated. A gradient-based level set approach was applied on the MR images of five patients with grades II, III and IV malignant cerebral glioma. The relationship between the target volumes produced by image analysis and those produced by a radiation oncologist was also investigated. The contours produced by image analysis were compared with the contours produced by an oncologist and used for treatment. In 93% of cases, the Dice similarity coefficient was found to be between 60 and 80%. This feasibility study demonstrates that image analysis has the potential for automatic outlining in the management of brain cancer patients, however, more testing and validation on a much larger patient cohort is required. PMID:26609418

  9. Large volume multiple-path nuclear pumped laser

    NASA Technical Reports Server (NTRS)

    Hohl, F.; Deyoung, R. J. (Inventor)

    1981-01-01

    Large volumes of gas are excited by using internal high reflectance mirrors that are arranged so that the optical path crosses back and forth through the excited gaseous medium. By adjusting the external dielectric mirrors of the laser, the number of paths through the laser cavity can be varied. Output powers were obtained that are substantially higher than the output powers of previous nuclear laser systems.

  10. Target-based fiber assignment for large survey spectrographs

    NASA Astrophysics Data System (ADS)

    Schaefer, Christoph E. R.; Makarem, Laleh; Kneib, Jean-Paul

    2016-07-01

    Next generation massive spectroscopic survey projects have to process a massive amount of targets. The preparation of subsequent observations should be feasible in a reasonable amount of time. We present a fast algorithm for target assignment that scales as O(log(n)). Our proposed algorithm follow a target based approach, which enables to assign large number of targets to their positioners quickly and with a very high assignment efficiency. We also discuss additional optimization of the fiber positioning problem to take into account the positioner collision problems and how to use the algorithm for an optimal survey strategy. We apply our target-based algorithm in the context of the MOONS project.

  11. Large volume high-pressure cell for inelastic neutron scattering

    NASA Astrophysics Data System (ADS)

    Wang, W.; Sokolov, D. A.; Huxley, A. D.; Kamenev, K. V.

    2011-07-01

    Inelastic neutron scattering measurements typically require two orders of magnitude longer data collection times and larger sample sizes than neutron diffraction studies. Inelastic neutron scattering measurements on pressurised samples are particularly challenging since standard high-pressure apparatus restricts sample volume, attenuates the incident and scattered beams, and contributes background scattering. Here, we present the design of a large volume two-layered piston-cylinder pressure cell with optimised transmission for inelastic neutron scattering experiments. The design and the materials selected for the construction of the cell enable its safe use to a pressure of 1.8 GPa with a sample volume in excess of 400 mm3. The design of the piston seal eliminates the need for a sample container, thus providing a larger sample volume and reduced absorption. The integrated electrical plug with a manganin pressure gauge offers an accurate measurement of pressure over the whole range of operational temperatures. The performance of the cell is demonstrated by an inelastic neutron scattering study of UGe2.

  12. Parallel Rendering of Large Time-Varying Volume Data

    NASA Technical Reports Server (NTRS)

    Garbutt, Alexander E.

    2005-01-01

    Interactive visualization of large time-varying 3D volume datasets has been and still is a great challenge to the modem computational world. It stretches the limits of the memory capacity, the disk space, the network bandwidth and the CPU speed of a conventional computer. In this SURF project, we propose to develop a parallel volume rendering program on SGI's Prism, a cluster computer equipped with state-of-the-art graphic hardware. The proposed program combines both parallel computing and hardware rendering in order to achieve an interactive rendering rate. We use 3D texture mapping and a hardware shader to implement 3D volume rendering on each workstation. We use SGI's VisServer to enable remote rendering using Prism's graphic hardware. And last, we will integrate this new program with ParVox, a parallel distributed visualization system developed at JPL. At the end of the project, we Will demonstrate remote interactive visualization using this new hardware volume renderer on JPL's Prism System using a time-varying dataset from selected JPL applications.

  13. Large volume high-pressure cell for inelastic neutron scattering.

    PubMed

    Wang, W; Sokolov, D A; Huxley, A D; Kamenev, K V

    2011-07-01

    Inelastic neutron scattering measurements typically require two orders of magnitude longer data collection times and larger sample sizes than neutron diffraction studies. Inelastic neutron scattering measurements on pressurised samples are particularly challenging since standard high-pressure apparatus restricts sample volume, attenuates the incident and scattered beams, and contributes background scattering. Here, we present the design of a large volume two-layered piston-cylinder pressure cell with optimised transmission for inelastic neutron scattering experiments. The design and the materials selected for the construction of the cell enable its safe use to a pressure of 1.8 GPa with a sample volume in excess of 400 mm(3). The design of the piston seal eliminates the need for a sample container, thus providing a larger sample volume and reduced absorption. The integrated electrical plug with a manganin pressure gauge offers an accurate measurement of pressure over the whole range of operational temperatures. The performance of the cell is demonstrated by an inelastic neutron scattering study of UGe(2).

  14. Large volume high-pressure cell for inelastic neutron scattering

    SciTech Connect

    Wang, W.; Kamenev, K. V.; Sokolov, D. A.; Huxley, A. D.

    2011-07-15

    Inelastic neutron scattering measurements typically require two orders of magnitude longer data collection times and larger sample sizes than neutron diffraction studies. Inelastic neutron scattering measurements on pressurised samples are particularly challenging since standard high-pressure apparatus restricts sample volume, attenuates the incident and scattered beams, and contributes background scattering. Here, we present the design of a large volume two-layered piston-cylinder pressure cell with optimised transmission for inelastic neutron scattering experiments. The design and the materials selected for the construction of the cell enable its safe use to a pressure of 1.8 GPa with a sample volume in excess of 400 mm{sup 3}. The design of the piston seal eliminates the need for a sample container, thus providing a larger sample volume and reduced absorption. The integrated electrical plug with a manganin pressure gauge offers an accurate measurement of pressure over the whole range of operational temperatures. The performance of the cell is demonstrated by an inelastic neutron scattering study of UGe{sub 2}.

  15. Parallel Rendering of Large Time-Varying Volume Data

    NASA Technical Reports Server (NTRS)

    Garbutt, Alexander E.

    2005-01-01

    Interactive visualization of large time-varying 3D volume datasets has been and still is a great challenge to the modem computational world. It stretches the limits of the memory capacity, the disk space, the network bandwidth and the CPU speed of a conventional computer. In this SURF project, we propose to develop a parallel volume rendering program on SGI's Prism, a cluster computer equipped with state-of-the-art graphic hardware. The proposed program combines both parallel computing and hardware rendering in order to achieve an interactive rendering rate. We use 3D texture mapping and a hardware shader to implement 3D volume rendering on each workstation. We use SGI's VisServer to enable remote rendering using Prism's graphic hardware. And last, we will integrate this new program with ParVox, a parallel distributed visualization system developed at JPL. At the end of the project, we Will demonstrate remote interactive visualization using this new hardware volume renderer on JPL's Prism System using a time-varying dataset from selected JPL applications.

  16. Large- N volume independence in conformal and confining gauge theories

    NASA Astrophysics Data System (ADS)

    Ünsal, Mithat; Yaffe, Laurence G.

    2010-08-01

    Consequences of large N volume independence are examined in conformal and confining gauge theories. In the large N limit, gauge theories compactified on {mathbb{R}^{d - k}} × {left( {{S^1}} right)^k} are independent of the S 1 radii, provided the theory has unbroken center symmetry. In particular, this implies that a large N gauge theory which, on {mathbb{R}^d} , flowstoan IR fixed point, retains the infinite correlation length and other scale invariant properties of the decompactified theory even when compactified on {mathbb{R}^{d - k}} × {left( {{S^1}} right)^k} . In other words, finite volume effects are 1 /N suppressed. In lattice formulations of vector-like theories, this implies that numerical studies to determine the boundary between confined and conformal phases may be performed on one-site lattice models. In mathcal{N} = 4 supersymmetric Yang-Mills theory, the center symmetry realization is a matter of choice: the theory on {mathbb{R}^{4 - k}} × {left( {{S^1}} right)^k} has a moduli space which contains points with all possible realizations of center symmetry. Large N QCD with massive adjoint fermions and one or two compactified dimensions has a rich phase structure with an infinite number of phase transitions coalescing in the zero radius limit.

  17. The Combination of Tissue Dissection and External Volume Expansion Generates Large Volumes of Adipose Tissue.

    PubMed

    He, Yunfan; Dong, Ziqing; Xie, Gan; Zhou, Tao; Lu, Feng

    2017-04-01

    Noninvasive external volume expansion device has been applied to stimulate nonsurgical breast enlargement in clinical settings. Although previous results demonstrate the capacity of external volume expansion to increase the number of adipocytes, this strategy alone is insufficient to reconstruct soft-tissue defects or increase breast mass. The authors combined a minimally invasive tissue dissection method with external volume expansion to generate large volumes of adipose tissue. In vitro, various densities of adipose-derived stem cells were prepared to evaluate relations between cell contacts and cell proliferation. In vivo, dorsal adipose tissue of rabbits was thoroughly dissected and the external volume expansion device was applied to maintain the released state. External volume expansion without tissue dissection served as the control. In the dissection group, the generated adipose tissue volume was much larger than that in the control group at all time points. A larger number of proliferating cells appeared in the dissection samples than in the control samples at the early stage after tissue dissection. At low cell density, adipose-derived stem cells displayed an increasing proliferation rate compared to high cell density. Protein expression analysis revealed that cell proliferation was mediated by a similar mechanism both in vivo and in vitro, involving the release of cell contact inhibition and Hippo/Yes-associated protein pathway activation. Adipose tissue dissection releases cell-to-cell contacts and induces adipose-derived stem cell proliferation. Preexpanded adipose-derived stem cells undergo adipogenesis under the adipogenic environment created by external volume expansion, leading to better adipose regeneration compared with the control.

  18. Geometric Measures of Large Biomolecules: Surface, Volume and Pockets

    PubMed Central

    Mach, Paul; Koehl, Patrice

    2011-01-01

    Geometry plays a major role in our attempt to understand the activity of large molecules. For example, surface area and volume are used to quantify the interactions between these molecules and the water surrounding them in implicit solvent models. In addition, the detection of pockets serves as a starting point for predictive studies of biomolecule-ligand interactions. The alpha shape theory provides an exact and robust method for computing these geometric measures. Several implementations of this theory are currently available. We show however that these implementations fail on very large macromolecular systems. We show that these difficulties are not theoretical; rather, they are related to the architecture of current computers that rely on the use of cache memory to speed up calculation. By rewriting the algorithms that implement the different steps of the alpha shape theory such that we enforce locality, we show that we can remediate these cache problems; the corresponding code, UnionBall has an apparent (n) behavior over a large range of values of n (up to tens of millions), where n is the number of atoms. As an example, it takes 136 seconds with UnionBall to compute the contribution of each atom to the surface area and volume of a viral capsid with more than five million atoms on a commodity PC. UnionBall includes functions for computing the surface area and volume of the intersection of two, three and four spheres that are fully detailed in an appendix. UnionBall is available as an OpenSource software. PMID:21823134

  19. Electrolyte and plasma enzyme analyses during large-volume liposuction.

    PubMed

    Lipschitz, Avron H; Kenkel, Jeffrey M; Luby, Maureen; Sorokin, Evan; Rohrich, Rod J; Brown, Spencer A

    2004-09-01

    Substantial fluid shifts occur during liposuction as wetting solution is infiltrated subcutaneously and fat is evacuated, causing potential electrolyte imbalances. In the porcine model for large-volume liposuction, plasma aspartate aminotransferase and alanine transaminase levels were elevated following liposuction. These results raised concerns for possible mechanical injury and/or lidocaine-induced hepatocellular toxicity in a clinical setting. The first objective of this human model study was to explore the effect of the liposuction procedure on electrolyte balance. The second objective was to determine whether elevated plasma aminotransferase levels were observed subsequent to large-volume liposuction. Five female volunteers underwent three-stage, ultrasound-assisted liposuction. Blood samples were collected perioperatively. Plasma levels of sodium, potassium, venous carbon dioxide, blood urea nitrogen, chloride, and creatinine were determined. Liver function analyte levels were measured, including albumin, total protein, aspartate aminotransferase, and alanine transaminase, alkaline phosphatase, gamma-glutamyl transpeptidase, and total bilirubin. To further define intracellular enzyme release, creatine kinase levels were measured. Mild hyponatremia was evident postoperatively (134 to 136 mmol/liter) in four patients. Hypokalemia was evident intraoperatively in all subjects (mean +/- SEM; 3.3 +/- 0.16 mmol/liter; range, 3.0 to 3.4 mmol/liter). Hypoalbuminemia and hypoproteinemia were observed throughout the study (baseline: 2.9 +/- 0.2 g/dl; range, 2.6 to 3.5 g/dl), decreasing to 10 to 40 percent 24 hours postoperatively (2.0 +/- 0.2 g/dl; range, 1.7 to 2.1 g/dl). Aspartate aminotransferase, alanine transaminase, and creatine kinase levels were significantly elevated after the procedure (190 +/- 47.1 U/liter, 50 +/- 7.7 U/liter, and 11,219 +/- 2556.7 U/liter, respectively) (p < 0.01). Release of antidiuretic hormone and even mildly hypotonic intravenous fluid

  20. Comparison of three image segmentation techniques for target volume delineation in positron emission tomography.

    PubMed

    Drever, Laura A; Roa, Wilson; McEwan, Alexander; Robinson, Don

    2007-03-09

    Incorporation of positron emission tomography (PET) data into radiotherapy planning is currently under investigation for numerous sites including lung, brain, head and neck, breast, and prostate. Accurate tumor-volume quantification is essential to the proper utilization of the unique information provided by PET. Unfortunately,target delineation within PET currently remains a largely unaddressed problem. We therefore examined the ability of three segmentation methods-thresholding, Sobel edge detection, and the watershed approach-to yield accurate delineation of PET target cross-sections. A phantom study employing well-defined cylindrical and spherical volumes and activity distributions provided an opportunity to assess the relative efficacy with which the three approaches could yield accurate target delineation in PET. Results revealed that threshold segmentation can accurately delineate target cross-sections, but that the Sobel and watershed techniques both consistently fail to correctly identify the size of experimental volumes. The usefulness of threshold-based segmentation is limited, however, by the dependence of the correct threshold (that which returns the correct area at each image slice) on target size.

  1. Effect of large volume paracentesis on plasma volume--a cause of hypovolemia

    SciTech Connect

    Kao, H.W.; Rakov, N.E.; Savage, E.; Reynolds, T.B.

    1985-05-01

    Large volume paracentesis, while effectively relieving symptoms in patients with tense ascites, has been generally avoided due to reports of complications attributed to an acute reduction in intravascular volume. Measurements of plasma volume in these subjects have been by indirect methods and have not uniformly confirmed hypovolemia. We have prospectively evaluated 18 patients (20 paracenteses) with tense ascites and peripheral edema due to chronic liver disease undergoing 5 liter paracentesis for relief of symptoms. Plasma volume pre- and postparacentesis was assessed by a /sup 125/I-labeled human serum albumin dilution technique as well as by the change in hematocrit and postural blood pressure difference. No significant change in serum sodium, urea nitrogen, hematocrit or postural systolic blood pressure difference was noted at 24 or 48 hr after paracentesis. Serum creatinine at 24 hr after paracentesis was unchanged but a small but statistically significant increase in serum creatinine was noted at 48 hr postparacentesis. Plasma volume changed -2.7% (n = 6, not statistically significant) during the first 24 hr and -2.8% (n = 12, not statistically significant) during the 0- to 48-hr period. No complications from paracentesis were noted. These results suggest that 5 liter paracentesis for relief of symptoms is safe in patients with tense ascites and peripheral edema from chronic liver disease.

  2. Specific detection of DNA using quantum dots and magnetic beads for large volume samples

    SciTech Connect

    Kim, Yeon S.; Kim, Byoung CHAN; Lee, Jin Hyung; Kim, Jungbae; Gu, Man Bock

    2006-10-01

    Here we present a sensitive DNA detection protocol using quantum dots (QDs) and magnetic beads (MBs) for large volume samples. In this study, QDs, conjugated with streptavidin, were used to produce fluorescent signals while magnetic beads (MBs) were used to isolate and concentrate the signals. The presence of target DNAs lead to the sandwich hybridization between the functionalized QDs, the target DNAs and the MBs. In fact, the QDs-MBs complex, which is bound using the target DNA, can be isolated and then concentrated. The binding of the QDs to the surface of the MBs was confirmed by confocal microscopy and Cd elemental analysis. It was found that the fluorescent intensity was proportional to concentration of the target DNA, while the presence of noncomplementary DNA produced no significant fluorescent signal. In addition, the presence of low copies of target DNAs such as 0.5 pM in large volume samples up to 40 ml were successfully detected by using a magnet-assisted concentration protocol which consequently results in the enhancement of the sensitivity more than 100-fold.

  3. Volumetric leak detection in large underground storage tanks. Volume 1

    SciTech Connect

    Starr, J.W.; Wise, R.F.; Maresca, J.W.

    1991-08-01

    A set of experiments was conducted to determine whether volumetric leak detection system presently used to test underground storage tanks (USTs) up to 38,000 L (10,000 gal) in capacity could meet EPA's regulatory standards for tank tightness and automatic tank gauging systems when used to test tanks up to 190,000 L (50,000 gal) in capacity. The experiments, conducted on two partially filled 190,000-L (50,000-gal) USTs at Griffiss Air Force Base in upstate New York during late August 1990, showed that a system's performance in large tanks depends primarily on the accuracy of the temperature compensation, which is inversely proportional to the volume of product in the tank. Errors in temperature compensation that were negligible in tests in small tanks were important in large tanks. The experiments further suggest that a multiple-test strategy is also required.

  4. Optimized planning target volume for intact cervical cancer.

    PubMed

    Khan, Alvin; Jensen, Lindsay G; Sun, Shuai; Song, William Y; Yashar, Catheryn M; Mundt, Arno J; Zhang, Fu-Quan; Jiang, Steve B; Mell, Loren K

    2012-08-01

    To model interfraction clinical target volume (CTV) variation in patients with intact cervical cancer and design a planning target volume (PTV) that minimizes normal tissue dose while maximizing CTV coverage. We analyzed 50 patients undergoing external-beam radiotherapy for intact cervical cancer using daily online cone-beam computed tomography (CBCT). The CBCTs (n = 972) for each patient were rigidly registered to the planning CT. The CTV was delineated on the planning CT (CTV(0)) and the set of CBCTs ({CTV(1)-CTV(25)}). Manual (n = 98) and automated (n = 668) landmarks were placed over the surface of CTV(0) with reference to defined anatomic structures. Normal vectors were extended from each landmark, and the minimum length required for a given probability of encompassing CTV(1)-CTV(25) was computed. The resulting expansions were used to generate an optimized PTV. The mean (SD; range) normal vector length to ensure 95% coverage was 4.3 mm (2.7 mm; 1-16 mm). The uniform expansion required to ensure 95% probability of CTV coverage was 13 mm. An anisotropic margin of 20 mm anteriorly and posteriorly and 10 mm superiorly, inferiorly, and laterally also would have ensured a 95% probability of CTV coverage. The volume of the 95% optimized PTV (1470 cm(3)) was significantly lower than both the anisotropic PTV (2220 cm(3)) and the uniformly expanded PTV (2110 cm(3)) (p < 0.001). For a 95% probability of CTV coverage, normal lengths of 1-3 mm were found along the superior and lateral regions of CTV(0), 5-10 mm along the interfaces of CTV(0) with the bladder and rectum, and 10-14 mm along the anterior surface of CTV(0) at the level of the uterus. Optimizing PTV definition according to surface landmarking resulted in a high probability of CTV coverage with reduced PTV volumes. Our results provide data justifying planning margins to use in practice and clinical trials. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. Optimized Planning Target Volume for Intact Cervical Cancer

    SciTech Connect

    Khan, Alvin; Jensen, Lindsay G.; Sun Shuai; Song, William Y.; Yashar, Catheryn M.; Mundt, Arno J.; Zhang Fuquan; Jiang, Steve B.; Mell, Loren K.

    2012-08-01

    Purpose: To model interfraction clinical target volume (CTV) variation in patients with intact cervical cancer and design a planning target volume (PTV) that minimizes normal tissue dose while maximizing CTV coverage. Methods and Materials: We analyzed 50 patients undergoing external-beam radiotherapy for intact cervical cancer using daily online cone-beam computed tomography (CBCT). The CBCTs (n = 972) for each patient were rigidly registered to the planning CT. The CTV was delineated on the planning CT (CTV{sub 0}) and the set of CBCTs ({l_brace}CTV{sub 1}-CTV{sub 25}{r_brace}). Manual (n = 98) and automated (n = 668) landmarks were placed over the surface of CTV{sub 0} with reference to defined anatomic structures. Normal vectors were extended from each landmark, and the minimum length required for a given probability of encompassing CTV{sub 1}-CTV{sub 25} was computed. The resulting expansions were used to generate an optimized PTV. Results: The mean (SD; range) normal vector length to ensure 95% coverage was 4.3 mm (2.7 mm; 1-16 mm). The uniform expansion required to ensure 95% probability of CTV coverage was 13 mm. An anisotropic margin of 20 mm anteriorly and posteriorly and 10 mm superiorly, inferiorly, and laterally also would have ensured a 95% probability of CTV coverage. The volume of the 95% optimized PTV (1470 cm{sup 3}) was significantly lower than both the anisotropic PTV (2220 cm{sup 3}) and the uniformly expanded PTV (2110 cm{sup 3}) (p < 0.001). For a 95% probability of CTV coverage, normal lengths of 1-3 mm were found along the superior and lateral regions of CTV{sub 0}, 5-10 mm along the interfaces of CTV{sub 0} with the bladder and rectum, and 10-14 mm along the anterior surface of CTV{sub 0} at the level of the uterus. Conclusion: Optimizing PTV definition according to surface landmarking resulted in a high probability of CTV coverage with reduced PTV volumes. Our results provide data justifying planning margins to use in practice and

  6. Lymphatic atlas-based target volume definition for intensity-modulated radiation therapy planning

    NASA Astrophysics Data System (ADS)

    Qatarneh, S. M.; Kiricuta, I. C.; Brahme, A.; Noz, M. E.; Ferreira, B.; Kim, W. C.; Lind, B. K.

    2007-10-01

    Despite the improvements in current imaging modalities such as CT and MRI, the detection of normal or malignant lymph nodes remains a challenge due to the large variability in lymph node characteristics and the variation in imaging quality and the limited imaging resolution. A computerized lymph node atlas could be the ideal tool for target volume definition based on the distribution of normal lymph nodes surrounding the verified malignant nodes to improve the accuracy of intensity-modulated radiation therapy planning. The standard lymph node topography in the newly constructed 3D lymph node atlas offers a detailed topographical distribution of discrete nodal locations in relation to surrounding organs at risk. In the present paper, the recently developed lymph node atlas is used for selection and delineation of target volumes in the head and neck, thorax and pelvic region. Image registration techniques were implemented to integrate the topography of the lymph node atlas into the patient's data set. By combining the knowledge-based lymph node distribution with the patient's data set, more detailed definitions of the target volumes were obtained to facilitate biologically based treatment plan optimization. The response values of the biologically optimized treatment plans were used to derive the probability of tumor control and the probability of complications in organs at risk. The treatment outcome of the lung reference plan showed a lower probability of recurrence in comparison to planning without the lymph node atlas. The lymph node atlas can improve and standardize the target volume definition by including more accurate anatomical knowledge for target volume definition and biologically optimized radiation therapy planning.

  7. Construction of an unyielding target for large horizontal impacts.

    SciTech Connect

    Ammerman, Douglas James; Davie, Neil Thomas; Kalan, Robert J.

    2010-10-01

    Sandia National Laboratories has constructed an unyielding target at the end of its 2000-foot rocket sled track. This target is made up of approximately 5 million pounds of concrete, an embedded steel load spreading structure, and a steel armor plate face that varies from 10 inches thick at the center to 4 inches thick at the left and right edges. The target/track combination will allow horizontal impacts at regulatory speeds of very large objects, such as a full-scale rail cask, or high-speed impacts of smaller packages. The load-spreading mechanism in the target is based upon the proven design that has been in use for over 20 years at Sandia's aerial cable facility. That target, with a weight of 2 million pounds, has successfully withstood impact forces of up to 25 million pounds. It is expected that the new target will be capable of withstanding impact forces of more than 70 million pounds. During construction various instrumentation was placed in the target so that the response of the target during severe impacts can be monitored. This paper will discuss the construction of the target and provide insights on the testing capabilities at the sled track with this new target.

  8. Ultra-rapid formation of large volumes of evolved magma

    NASA Astrophysics Data System (ADS)

    Michaut, C.; Jaupart, C.

    2006-10-01

    We discuss evidence for, and evaluate the consequences of, the growth of magma reservoirs by small increments of thin (⋍ 1-2 m) sills. For such thin units, cooling proceeds faster than the nucleation and growth of crystals, which only allows a small amount of crystallization and leads to the formation of large quantities of glass. The heat balance equation for kinetic-controlled crystallization is solved numerically for a range of sill thicknesses, magma injection rates and crustal emplacement depths. Successive injections lead to the accumulation of poorly crystallized chilled magma with the properties of a solid. Temperatures increase gradually with each injection until they become large enough to allow a late phase of crystal nucleation and growth. Crystallization and latent heat release work in a positive feedback loop, leading to catastrophic heating of the magma pile, typically by 200 °C in a few decades. Large volumes of evolved melt are made available in a short time. The time for the catastrophic heating event varies as Q- 2 , where Q is the average magma injection rate, and takes values in a range of 10 5-10 6 yr for typical geological magma production rates. With this mechanism, storage of large quantities of magma beneath an active volcanic center may escape detection by seismic methods.

  9. SUSY’s Ladder: Reframing sequestering at Large Volume

    SciTech Connect

    Reece, Matthew; Xue, Wei

    2016-04-07

    Theories with approximate no-scale structure, such as the Large Volume Scenario, have a distinctive hierarchy of multiple mass scales in between TeV gaugino masses and the Planck scale, which we call SUSY's Ladder. This is a particular realization of Split Supersymmetry in which the same small parameter suppresses gaugino masses relative to scalar soft masses, scalar soft masses relative to the gravitino mass, and the UV cutoff or string scale relative to the Planck scale. This scenario has many phenomenologically interesting properties, and can avoid dangers including the gravitino problem, flavor problems, and the moduli-induced LSP problem that plague other supersymmetric theories. We study SUSY's Ladder using a superspace formalism that makes the mysterious cancelations in previous computations manifest. This opens the possibility of a consistent effective field theory understanding of the phenomenology of these scenarios, based on power-counting in the small ratio of string to Planck scales. We also show that four-dimensional theories with approximate no-scale structure enforced by a single volume modulus arise only from two special higher-dimensional theories: five-dimensional supergravity and ten-dimensional type IIB supergravity. As a result, this gives a phenomenological argument in favor of ten dimensional ultraviolet physics which is different from standard arguments based on the consistency of superstring theory.

  10. SUSY’s Ladder: Reframing sequestering at Large Volume

    DOE PAGES

    Reece, Matthew; Xue, Wei

    2016-04-07

    Theories with approximate no-scale structure, such as the Large Volume Scenario, have a distinctive hierarchy of multiple mass scales in between TeV gaugino masses and the Planck scale, which we call SUSY's Ladder. This is a particular realization of Split Supersymmetry in which the same small parameter suppresses gaugino masses relative to scalar soft masses, scalar soft masses relative to the gravitino mass, and the UV cutoff or string scale relative to the Planck scale. This scenario has many phenomenologically interesting properties, and can avoid dangers including the gravitino problem, flavor problems, and the moduli-induced LSP problem that plague othermore » supersymmetric theories. We study SUSY's Ladder using a superspace formalism that makes the mysterious cancelations in previous computations manifest. This opens the possibility of a consistent effective field theory understanding of the phenomenology of these scenarios, based on power-counting in the small ratio of string to Planck scales. We also show that four-dimensional theories with approximate no-scale structure enforced by a single volume modulus arise only from two special higher-dimensional theories: five-dimensional supergravity and ten-dimensional type IIB supergravity. As a result, this gives a phenomenological argument in favor of ten dimensional ultraviolet physics which is different from standard arguments based on the consistency of superstring theory.« less

  11. Large volume water sprays for dispersing warm fogs

    NASA Astrophysics Data System (ADS)

    Keller, V. W.; Anderson, B. J.; Burns, R. A.; Lala, G. G.; Meyer, M. B.

    A new method for dispersing of warm fogs which impede visibility and alter schedules is described. The method uses large volume recycled water sprays to create curtains of falling drops through which the fog is processed by the ambient wind and spray-induced air flow; the fog droplets are removed by coalescence/rainout. The efficiency of this fog droplet removal process depends on the size spectra of the spray drops and optimum spray drop size is calculated as between 0.3-1.0 mm in diameter. Water spray tests were conducted in order to determine the drop size spectra and temperature response of sprays produced by commercially available fire-fighting nozzles, and nozzle array tests were utilized to study air flow patterns and the thermal properties of the overall system. The initial test data reveal that the fog-dispersal procedure is effective.

  12. Large space telescope, phase A. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The Phase A study of the Large Space Telescope (LST) is reported. The study defines an LST concept based on the broad mission guidelines provided by the Office of Space Science (OSS), the scientific requirements developed by OSS with the scientific community, and an understanding of long range NASA planning current at the time the study was performed. The LST is an unmanned astronomical observatory facility, consisting of an optical telescope assembly (OTA), scientific instrument package (SIP), and a support systems module (SSM). The report consists of five volumes. The report describes the constraints and trade off analyses that were performed to arrive at a reference design for each system and for the overall LST configuration. A low cost design approach was followed in the Phase A study. This resulted in the use of standard spacecraft hardware, the provision for maintenance at the black box level, growth potential in systems designs, and the sharing of shuttle maintenance flights with other payloads.

  13. Large volume water sprays for dispersing warm fogs

    NASA Technical Reports Server (NTRS)

    Keller, V. W.; Anderson, B. J.; Burns, R. A.; Lala, G. G.; Meyer, M. B.

    1986-01-01

    A new method for dispersing of warm fogs which impede visibility and alter schedules is described. The method uses large volume recycled water sprays to create curtains of falling drops through which the fog is processed by the ambient wind and spray-induced air flow; the fog droplets are removed by coalescence/rainout. The efficiency of this fog droplet removal process depends on the size spectra of the spray drops and optimum spray drop size is calculated as between 0.3-1.0 mm in diameter. Water spray tests were conducted in order to determine the drop size spectra and temperature response of sprays produced by commercially available fire-fighting nozzles, and nozzle array tests were utilized to study air flow patterns and the thermal properties of the overall system. The initial test data reveal that the fog-dispersal procedure is effective.

  14. Multisystem organ failure after large volume injection of castor oil.

    PubMed

    Smith, Silas W; Graber, Nathan M; Johnson, Rudolph C; Barr, John R; Hoffman, Robert S; Nelson, Lewis S

    2009-01-01

    We report a case of multisystem organ failure after large volume subcutaneous injection of castor oil for cosmetic enhancement. An unlicensed practitioner injected 500 mL of castor oil bilaterally to the hips and buttocks of a 28-year-old male to female transsexual. Immediate local pain and erythema were followed by abdominal and chest pain, emesis, headache, hematuria, jaundice, and tinnitus. She presented to an emergency department 12 hours postinjection. Persistently hemolyzed blood samples complicated preliminary laboratory analysis. She rapidly deteriorated despite treatment and developed fever, tachycardia, hemolysis, thrombocytopenia, hepatitis, respiratory distress, and anuric renal failure. An infectious diseases evaluation was negative. After intensive supportive care, including mechanical ventilation and hemodialysis, she was discharged 11 days later, requiring dialysis for an additional 1.5 months. Castor oil absorption was inferred from recovery of the Ricinus communis biomarker, ricinine, in the patient's urine (41 ng/mL). Clinicians should anticipate multiple complications after unapproved methods of cosmetic enhancement.

  15. Striped Bass, morone saxatilis, egg incubation in large volume jars

    USGS Publications Warehouse

    Harper, C.J.; Wrege, B.M.; Jeffery, Isely J.

    2010-01-01

    The standard McDonald jar was compared with a large volume jar for striped bass, Morone saxatilis, egg incubation. The McDonald jar measured 16 cm in diameter by 45 cm in height and had a volume of 6 L. The experimental jar measured 0.4 m in diameter by 1.3 m in height and had a volume of 200 L. The hypothesis is that there is no difference in percent survival of fry hatched in experimental jars compared with McDonald jars. Striped bass brood fish were collected from the Coosa River and spawned using the dry spawn method of fertilization. Four McDonald jars were stocked with approximately 150 g of eggs each. Post-hatch survival was estimated at 48, 96, and 144 h. Stocking rates resulted in an average egg loading rate (??1 SE) in McDonald jars of 21.9 ?? 0.03 eggs/mL and in experimental jars of 10.9 ?? 0.57 eggs/mL. The major finding of this study was that average fry survival was 37.3 ?? 4.49% for McDonald jars and 34.2 ?? 3.80% for experimental jars. Although survival in experimental jars was slightly less than in McDonald jars, the effect of container volume on survival to 48 h (F = 6.57; df = 1,5; P > 0.05), 96 h (F = 0.02; df = 1, 4; P > 0.89), and 144 h (F = 3.50; df = 1, 4; P > 0.13) was not statistically significant. Mean survival between replicates ranged from 14.7 to 60.1% in McDonald jars and from 10.1 to 54.4% in experimental jars. No effect of initial stocking rate on survival (t = 0.06; df = 10; P > 0.95) was detected. Experimental jars allowed for incubation of a greater number of eggs in less than half the floor space of McDonald jars. As hatchery production is often limited by space or water supply, experimental jars offer an alternative to extending spawning activities, thereby reducing labor and operations cost. As survival was similar to McDonald jars, the experimental jar is suitable for striped bass egg incubation. ?? Copyright by the World Aquaculture Society 2010.

  16. Volume visualization of multiple alignment of large genomicDNA

    SciTech Connect

    Shah, Nameeta; Dillard, Scott E.; Weber, Gunther H.; Hamann, Bernd

    2005-07-25

    Genomes of hundreds of species have been sequenced to date, and many more are being sequenced. As more and more sequence data sets become available, and as the challenge of comparing these massive ''billion basepair DNA sequences'' becomes substantial, so does the need for more powerful tools supporting the exploration of these data sets. Similarity score data used to compare aligned DNA sequences is inherently one-dimensional. One-dimensional (1D) representations of these data sets do not effectively utilize screen real estate. As a result, tools using 1D representations are incapable of providing informatory overview for extremely large data sets. We present a technique to arrange 1D data in 3D space to allow us to apply state-of-the-art interactive volume visualization techniques for data exploration. We demonstrate our technique using multi-millions-basepair-long aligned DNA sequence data and compare it with traditional 1D line plots. The results show that our technique is superior in providing an overview of entire data sets. Our technique, coupled with 1D line plots, results in effective multi-resolution visualization of very large aligned sequence data sets.

  17. Large-scale Direct Targeting for Drug Repositioning and Discovery

    PubMed Central

    Zheng, Chunli; Guo, Zihu; Huang, Chao; Wu, Ziyin; Li, Yan; Chen, Xuetong; Fu, Yingxue; Ru, Jinlong; Ali Shar, Piar; Wang, Yuan; Wang, Yonghua

    2015-01-01

    A system-level identification of drug-target direct interactions is vital to drug repositioning and discovery. However, the biological means on a large scale remains challenging and expensive even nowadays. The available computational models mainly focus on predicting indirect interactions or direct interactions on a small scale. To address these problems, in this work, a novel algorithm termed weighted ensemble similarity (WES) has been developed to identify drug direct targets based on a large-scale of 98,327 drug-target relationships. WES includes: (1) identifying the key ligand structural features that are highly-related to the pharmacological properties in a framework of ensemble; (2) determining a drug’s affiliation of a target by evaluation of the overall similarity (ensemble) rather than a single ligand judgment; and (3) integrating the standardized ensemble similarities (Z score) by Bayesian network and multi-variate kernel approach to make predictions. All these lead WES to predict drug direct targets with external and experimental test accuracies of 70% and 71%, respectively. This shows that the WES method provides a potential in silico model for drug repositioning and discovery. PMID:26155766

  18. On the specificity of antibiotics targeting the large ribosomal subunit.

    PubMed

    Wilson, Daniel N

    2011-12-01

    The peptidyltransferase center of the large ribosomal subunit is responsible for catalyzing peptide bonds. This active site is the target of a variety of diverse antibiotics, many of which are used clinically. The past decade has seen a plethora of structures of antibiotics in complex with the large ribosomal subunit, providing unprecedented insight into the mechanism of action of these inhibitors. Ten distinct antibiotics (chloramphenicol, clindamycin, linezolid, tiamulin, sparsomycin, and five macrolides) have been crystallized in complex with four distinct ribosomal species, three bacterial, and one archaeal. This review aims to compare these structures in order to provide insight into the conserved and species-specific modes of interaction for particular members of each class of antibiotics. Coupled with the wealth of biochemical data, a picture is emerging defining the specific functional states of the ribosome that antibiotics preferentially target. Such mechanistic insight into antibiotic inhibition will be important for the development of the next generation of antimicrobial agents.

  19. Testing large volume water treatment and crude oil ...

    EPA Pesticide Factsheets

    Report EPA’s Homeland Security Research Program (HSRP) partnered with the Idaho National Laboratory (INL) to build the Water Security Test Bed (WSTB) at the INL test site outside of Idaho Falls, Idaho. The WSTB was built using an 8-inch (20 cm) diameter cement-mortar lined drinking water pipe that was previously taken out of service. The pipe was exhumed from the INL grounds and oriented in the shape of a small drinking water distribution system. Effluent from the pipe is captured in a lagoon. The WSTB can support drinking water distribution system research on a variety of drinking water treatment topics including biofilms, water quality, sensors, and homeland security related contaminants. Because the WSTB is constructed of real drinking water distribution system pipes, research can be conducted under conditions similar to those in a real drinking water system. In 2014, WSTB pipe was experimentally contaminated with Bacillus globigii spores, a non-pathogenic surrogate for the pathogenic B. anthracis, and then decontaminated using chlorine dioxide. In 2015, the WSTB was used to perform the following experiments: • Four mobile disinfection technologies were tested for their ability to disinfect large volumes of biologically contaminated “dirty” water from the WSTB. B. globigii spores acted as the biological contaminant. The four technologies evaluated included: (1) Hayward Saline C™ 6.0 Chlorination System, (2) Advanced Oxidation Process (A

  20. An innovative piston corer for large-volume sediment samples.

    PubMed

    Gallmetzer, Ivo; Haselmair, Alexandra; Stachowitsch, Michael; Zuschin, Martin

    2016-11-01

    Coring is one of several standard procedures to extract sediments and their faunas from open marine, estuarine, and limnic environments. Achieving sufficiently deep penetration, obtaining large sediment volumes in single deployments, and avoiding sediment loss upon retrieval remain problematic. We developed a piston corer with a diameter of 16 cm that enables penetration down to 1.5 m in a broad range of soft bottom types, yields sufficient material for multiple analyses, and prevents sediment loss due to a specially designed hydraulic core catcher. A novel extrusion system enables very precise slicing and preserves the original sediment stratification by keeping the liners upright. The corer has moderate purchase costs and a robust and simple design that allows for a deployment from relatively small vessels as available at most marine science institutions. It can easily be operated by two to three researchers rather than by specially trained technicians. In the northern Adriatic Sea, the corer successfully extracted more than 50 cores from a range of fine mud to coarse sand, at water depths from three to 45 m. The initial evaluation of the cores demonstrated their usefulness for fauna sequences along with heavy metal, nutrient and pollutant analyses. Their length is particularly suited for historical ecological work requiring sedimentary and faunal sequences to reconstruct benthic communities over the last millennia.

  1. New Large Volume Press Beamlines at the Canadian Light Source

    NASA Astrophysics Data System (ADS)

    Mueller, H. J.; Hormes, J.; Lauterjung, J.; Secco, R.; Hallin, E.

    2013-12-01

    The Canadian Light Source, the German Research Centre for Geosciences and the Western University recently agreed to establish two new large volume press beamlines at the Canadian Lightsource. As the first step a 250 tons DIA-LVP will be installed at the IDEAS beamline in 2014. The further development is associated with the construction of a superconducting wiggler beamline at the Brockhouse sector. A 1750 tons DIA LVP will be installed there about 2 years later. Up to the completion of this wiggler beamline the big press will be used for offline high pressure high temperature experiments under simulated Earth's mantle conditions. In addition to X-ray diffraction, all up-to-date high pressure techniques as ultrasonic interferometry, deformation analyses by X-radiography, X-ray densitometry, falling sphere viscosimetry, multi-staging etc. will be available at both beamlines. After the required commissioning the beamlines will be open to the worldwide user community from Geosciences, general material sciences, physics, chemistry, biology etc. based on the evaluation and ranking of the submitted user proposals by an international review panel.

  2. Accuracy estimation for projection-to-volume targeting during rotational therapy: a feasibility study.

    PubMed

    Long, Yong; Fessler, Jeffrey A; Balter, James M

    2010-06-01

    Estimating motion and deformation parameters from a series of projection radiographs acquired during arc therapy using a reference CT volume has become a promising technique for targeting treatment. The purpose of this work is to investigate the influence of rotational arc length on maximum achievable accuracy of motion estimation. The projection-to-volume alignment procedure used a nonrigid model to describe motion in thorax area, a cost function consisting of a least-squared error metric and a simple regularizer that encourages local invertibility, and a four-level multiresolution scheme with a conjugate gradient method to optimize the cost function. The authors tested both small and large scale deformations typically found in the thorax of a radiotherapy patient at different breathing states and limited-angle scans of six angular widths (12 degrees, 18 degrees, 24 degrees, 36 degrees, 60 degrees, and 90 degrees) centered at three angles (0 degrees, 45 degrees, and 90 degrees). The experiments illustrate the potential accuracy of limited-angle projection-to-volume alignment. Registration accuracy can be sensitive to angular center, tends to be lower along direction of the projection set, and tends to decrease away from the rotation center. The studies of small as well as large but realistically scaled deformations show similar dependencies. These trends appear to have fairly low sensitivity to quantum noise effects. There is potentially sufficient information present in a small spread of projections to monitor the configuration of reasonably high contrast tumors without implanted markers.

  3. Accuracy of TomoTherapy treatments for superficial target volumes.

    PubMed

    Cheek, Dennis; Gibbons, John P; Rosen, Isaac I; Hogstrom, Kenneth R

    2008-08-01

    Helical tomotherapy is a technique for delivering intensity modulated radiation therapy treatments using a continuously rotating linac. In this approach, fan beams exiting the linac are dynamically modulated in synchrony with the motion of the gantry and couch. Helical IMRT deliveries have been applied to treating surface lesions, and the purpose of this study was to evaluate the accuracy of dose calculated by the TomoTherapy HiArt treatment planning system for superficial planning target volumes (PTVs). TomoTherapy treatment plans were developed for three superficial PTVs (2-, 4-, and 6-cm deep radially by 90 degrees azimuthally by 4-cm longitudinally) contoured on a 27-cm diameter cylindrical white opaque, high-impact polystyrene phantom. The phantom included removable transverse and sagittal film cassettes that contained bare Kodak EDR2 films cut such that their edges matched the phantom surface (+/-0.05 cm). The phantom was aligned to the machine's isocenter (+/-0.05 cm) and was irradiated according to the treatment plans. Films were scanned with a Vidar film digitizer, and optical densities were converted to dose using a calibration determined from a 6 MV perpendicular film exposure. This perpendicular calibration required that axial film doses (parallel irradiation) be scaled by 1.02 so that mid-arc depth doses matched those measured in the sagittal plane (perpendicular irradiation). All film readings were scaled by 0.935 to correct for over-response due to phantom Cerenkov light. Measured dose distributions were registered to calculated ones and compared. Calculated doses overpredicted measured doses by as much as 9.5% of the prescribed dose at depths less than 1 cm. At depths greater than 1 cm, calculated dose distributions showed agreement to measurement within 5% in the high-dose region and within 0.2 cm distance-to-agreement in the dose falloff regions. In the low-dose region posterior to the PTVs (<10% of the prescribed dose), the dose algorithm

  4. Feasibility of large volume tumor ablation using multiple-mode strategy with fast scanning method: A numerical study

    NASA Astrophysics Data System (ADS)

    Wu, Hao; Shen, Guofeng; Qiao, Shan; Chen, Yazhu

    2017-03-01

    Sonication with fast scanning method can generate homogeneous lesions without complex planning. But when the target region is large, switching focus too fast will reduce the heat accumulation, the margin of which may not ablated. Furthermore, high blood perfusion rate will reduce this maximum volume that can be ablated. Therefore, fast scanning method may not be applied to large volume tumor. To expand the therapy scope, this study combines the fast scan method with multiple mode strategy. Through simulation and experiment, the feasibility of this new strategy is evaluated and analyzed.

  5. An experimental study on the excitation of large volume airguns in a small volume body of water

    NASA Astrophysics Data System (ADS)

    Wang, Baoshan; Yang, Wei; Yuan, Songyong; Guo, Shijun; Ge, Hongkui; Xu, Ping; Chen, Yong

    2010-12-01

    A large volume airgun array is effective in generating seismic waves, which is extensively used in large volume bodies of water such as oceans, lakes and reservoirs. So far, the application of large volume airguns is subject to the distribution of large volume bodies of water. This paper reports an attempt to utilize large volume airguns in a small body of water as a seismic source for seismotectonic studies. We carried out a field experiment in Mapaoquan pond, Fangshan district, Beijing, during the period 25-30 May 2009. Bolt LL1500 airguns, each with volumes of 2000 in3, the largest commercial airguns available today, were used in this experiment. We tested the excitation of the airgun array with one or two guns. The airgun array was placed 7-11 m below the water's surface. The near- and far-field seismic motions induced by the airgun source were recorded by a 100 km long seismic profile composed of 16 portable seismometers and a 100 m long strong motion seismograph profile, respectively. The following conclusions can be drawn from this experiment. First, it is feasible to excite large volume airguns in a small volume body of water. Second, seismic signals from a single shot of one airgun can be recognized at the offset up to 15 km. Taking advantage of high source repeatability, we stacked records from 128 shots to enhance the signal-to-noise ratio, and direct P-waves can be easily identified at the offset ~50 km in stacked records. Third, no detectable damage to fish or near-field constructions was caused by the airgun shots. Those results suggest that large volume airguns excited in small bodies of water can be used as a routinely operated seismic source for mid-scale (tens of kilometres) subsurface explorations and monitoring under various running conditions.

  6. FDG-PET-based differential uptake volume histograms: a possible approach towards definition of biological target volumes.

    PubMed

    Devic, Slobodan; Mohammed, Huriyyah; Tomic, Nada; Aldelaijan, Saad; De Blois, François; Seuntjens, Jan; Lehnert, Shirley; Faria, Sergio

    2016-06-01

    Integration of fluorine-18 fludeoxyglucose ((18)F-FDG)-positron emission tomography (PET) functional data into conventional anatomically based gross tumour volume delineation may lead to optimization of dose to biological target volumes (BTV) in radiotherapy. We describe a method for defining tumour subvolumes using (18)F-FDG-PET data, based on the decomposition of differential uptake volume histograms (dUVHs). For 27 patients with histopathologically proven non-small-cell lung carcinoma (NSCLC), background uptake values were sampled within the healthy lung contralateral to a tumour in those image slices containing tumour and then scaled by the ratio of mass densities between the healthy lung and tumour. Signal-to-background (S/B) uptake values within volumes of interest encompassing the tumour were used to reconstruct the dUVHs. These were subsequently decomposed into the minimum number of analytical functions (in the form of differential uptake values as a function of S/B) that yielded acceptable net fits, as assessed by χ(2) values. Six subvolumes consistently emerged from the fitted dUVHs over the sampled volume of interest on PET images. Based on the assumption that each function used to decompose the dUVH may correspond to a single subvolume, the intersection between the two adjacent functions could be interpreted as a threshold value that differentiates them. Assuming that the first two subvolumes spread over the tumour boundary, we concentrated on four subvolumes with the highest uptake values, and their S/B thresholds [mean ± standard deviation (SD)] were 2.88 ± 0.98, 4.05 ± 1.55, 5.48 ± 2.06 and 7.34 ± 2.89 for adenocarcinoma, 3.01 ± 0.71, 4.40 ± 0.91, 5.99 ± 1.31 and 8.17 ± 2.42 for large-cell carcinoma and 4.54 ± 2.11, 6.46 ± 2.43, 8.87 ± 5.37 and 12.11 ± 7.28 for squamous cell carcinoma, respectively. (18)F-FDG-based PET data may potentially be used to identify BTV within the tumour in

  7. Technology transfer from NASA to targeted industries, volume 2

    NASA Technical Reports Server (NTRS)

    Mccain, Wayne; Schroer, Bernard J.; Souder, William E.; Spann, Mary S.; Watters, Harry; Ziemke, M. Carl

    1993-01-01

    This volume contains the following materials to support Volume 1: (1) Survey of Metal Fabrication Industry in Alabama; (2) Survey of Electronics Manufacturing/Assembly Industry in Alabama; (3) Apparel Modular Manufacturing Simulators; (4) Synopsis of a Stereolithography Project; (5) Transferring Modular Manufacturing Technology to an Apparel Firm; (6) Letters of Support; (7) Fact Sheets; (8) Publications; and (9) One Stop Access to NASA Technology Brochure.

  8. Re-accretion Efficiencies in Small Impactor - Large Target Collisions

    NASA Astrophysics Data System (ADS)

    Jankowski, Tim; Wurm, G.; Jens, T.

    2013-10-01

    During the formation process of planets, small dust particles grow to km-sized planetesimals via collisions. While the collision partners are equally sized in early phases, fragmentation, catastrophic destruction and other recycling processes can lead to collisions between partners with various size ranges. The gas in protoplanetary disks exerts size- and mass-dependent drag forces on the dust particles and bodies present which is why the relative velocities between the small particles and larger bodies increase. A field of investigation are the small-impactor large-target collisions where (partial) erosion can occur and small ejected dust particles can be produced. These ejecta can couple to the gas quite rapidly and can then be recaptured by the target and stick to it in secondary collisions. We use a Monte-Carlo code to calculate re-accretion efficiencies under certain conditions i.e. in free molecular flow regime (stream lines end on target body; impactors are completely coupled to the gas). Using experimental data we developed a model for the amount, masses, directions, and velocities of the ejecta depending on the impactor mass and velocity and the position of impact. The amount of re-accreted ejecta as well as the total re-accreted mass can be determined by using the solution of the equation of motion for particles in gaseous environments. Both - the amount dependent efficiency as well as the mass dependent efficiency - are highly dependent on the seven free parameters (impact velocity, impactor size and density, target size and density, gas pressure and temperature) but generally benefit from high gas velocities and a large size difference between target and impactor. Our final intention is to provide an analytical expression for the re-accretion efficiencies in respect to the free parameters and to use this in different disk models for sweeping the free parameters dependent on the distance to the central star. One major advantage of our code is the

  9. Target prediction utilising negative bioactivity data covering large chemical space.

    PubMed

    Mervin, Lewis H; Afzal, Avid M; Drakakis, Georgios; Lewis, Richard; Engkvist, Ola; Bender, Andreas

    2015-01-01

    In silico analyses are increasingly being used to support mode-of-action investigations; however many such approaches do not utilise the large amounts of inactive data held in chemogenomic repositories. The objective of this work is concerned with the integration of such bioactivity data in the target prediction of orphan compounds to produce the probability of activity and inactivity for a range of targets. To this end, a novel human bioactivity data set was constructed through the assimilation of over 195 million bioactivity data points deposited in the ChEMBL and PubChem repositories, and the subsequent application of a sphere-exclusion selection algorithm to oversample presumed inactive compounds. A Bernoulli Naïve Bayes algorithm was trained using the data and evaluated using fivefold cross-validation, achieving a mean recall and precision of 67.7 and 63.8 % for active compounds and 99.6 and 99.7 % for inactive compounds, respectively. We show the performances of the models are considerably influenced by the underlying intraclass training similarity, the size of a given class of compounds, and the degree of additional oversampling. The method was also validated using compounds extracted from WOMBAT producing average precision-recall AUC and BEDROC scores of 0.56 and 0.85, respectively. Inactive data points used for this test are based on presumed inactivity, producing an approximated indication of the true extrapolative ability of the models. A distance-based applicability domain analysis was also conducted; indicating an average Tanimoto Coefficient distance of 0.3 or greater between a test and training set can be used to give a global measure of confidence in model predictions. A final comparison to a method trained solely on active data from ChEMBL performed with precision-recall AUC and BEDROC scores of 0.45 and 0.76. The inclusion of inactive data for model training produces models with superior AUC and improved early recognition capabilities, although

  10. Delineation of Supraclavicular Target Volumes in Breast Cancer Radiation Therapy

    SciTech Connect

    Brown, Lindsay C.; Diehn, Felix E.; Boughey, Judy C.; Childs, Stephanie K.; Park, Sean S.; Yan, Elizabeth S.; Petersen, Ivy A.; Mutter, Robert W.

    2015-07-01

    Purpose: To map the location of gross supraclavicular metastases in patients with breast cancer, in order to determine areas at highest risk of harboring subclinical disease. Methods and Materials: Patients with axial imaging of gross supraclavicular disease were identified from an institutional breast cancer registry. Locations of the metastatic lymph nodes were transferred onto representative axial computed tomography images of the supraclavicular region and compared with the Radiation Therapy Oncology Group (RTOG) breast cancer atlas for radiation therapy planning. Results: Sixty-two patients with 161 supraclavicular nodal metastases were eligible for study inclusion. At the time of diagnosis, 117 nodal metastases were present in 44 patients. Forty-four nodal metastases in 18 patients were detected at disease recurrence, 4 of whom had received prior radiation to the supraclavicular fossa. Of the 161 nodal metastases, 95 (59%) were within the RTOG consensus volume, 4 nodal metastases (2%) in 3 patients were marginally within the volume, and 62 nodal metastases (39%) in 30 patients were outside the volume. Supraclavicular disease outside the RTOG consensus volume was located in 3 regions: at the level of the cricoid and thyroid cartilage (superior to the RTOG volume), in the posterolateral supraclavicular fossa (posterolateral to the RTOG volume), and in the lateral low supraclavicular fossa (lateral to the RTOG volume). Only women with multiple supraclavicular metastases had nodal disease that extended superiorly to the level of the thyroid cartilage. Conclusions: For women with risk of harboring subclinical supraclavicular disease warranting the addition of supraclavicular radiation, coverage of the posterior triangle and the lateral low supraclavicular region should be considered. For women with known supraclavicular disease, extension of neck coverage superior to the cricoid cartilage may be warranted.

  11. Delineation of Supraclavicular Target Volumes in Breast Cancer Radiation Therapy.

    PubMed

    Brown, Lindsay C; Diehn, Felix E; Boughey, Judy C; Childs, Stephanie K; Park, Sean S; Yan, Elizabeth S; Petersen, Ivy A; Mutter, Robert W

    2015-07-01

    To map the location of gross supraclavicular metastases in patients with breast cancer, in order to determine areas at highest risk of harboring subclinical disease. Patients with axial imaging of gross supraclavicular disease were identified from an institutional breast cancer registry. Locations of the metastatic lymph nodes were transferred onto representative axial computed tomography images of the supraclavicular region and compared with the Radiation Therapy Oncology Group (RTOG) breast cancer atlas for radiation therapy planning. Sixty-two patients with 161 supraclavicular nodal metastases were eligible for study inclusion. At the time of diagnosis, 117 nodal metastases were present in 44 patients. Forty-four nodal metastases in 18 patients were detected at disease recurrence, 4 of whom had received prior radiation to the supraclavicular fossa. Of the 161 nodal metastases, 95 (59%) were within the RTOG consensus volume, 4 nodal metastases (2%) in 3 patients were marginally within the volume, and 62 nodal metastases (39%) in 30 patients were outside the volume. Supraclavicular disease outside the RTOG consensus volume was located in 3 regions: at the level of the cricoid and thyroid cartilage (superior to the RTOG volume), in the posterolateral supraclavicular fossa (posterolateral to the RTOG volume), and in the lateral low supraclavicular fossa (lateral to the RTOG volume). Only women with multiple supraclavicular metastases had nodal disease that extended superiorly to the level of the thyroid cartilage. For women with risk of harboring subclinical supraclavicular disease warranting the addition of supraclavicular radiation, coverage of the posterior triangle and the lateral low supraclavicular region should be considered. For women with known supraclavicular disease, extension of neck coverage superior to the cricoid cartilage may be warranted. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. High volume fabrication of laser targets using MEMS techniques

    NASA Astrophysics Data System (ADS)

    Spindloe, C.; Arthur, G.; Hall, F.; Tomlinson, S.; Potter, R.; Kar, S.; Green, J.; Higginbotham, A.; Booth, N.; Tolley, M. K.

    2016-04-01

    The latest techniques for the fabrication of high power laser targets, using processes developed for the manufacture of Micro-Electro-Mechanical System (MEMS) devices are discussed. These laser targets are designed to meet the needs of the increased shot numbers that are available in the latest design of laser facilities. Traditionally laser targets have been fabricated using conventional machining or coarse etching processes and have been produced in quantities of 10s to low 100s. Such targets can be used for high complexity experiments such as Inertial Fusion Energy (IFE) studies and can have many complex components that need assembling and characterisation with high precision. Using the techniques that are common to MEMS devices and integrating these with an existing target fabrication capability we are able to manufacture and deliver targets to these systems. It also enables us to manufacture novel targets that have not been possible using other techniques. In addition, developments in the positioning systems that are required to deliver these targets to the laser focus are also required and a system to deliver the target to a focus of an F2 beam at 0.1Hz is discussed.

  13. Analysis of Laser-Target Interaction. Volume 1. Theory

    DTIC Science & Technology

    1979-03-01

    Previously, a model was constructed to describe energy transfer to an aluminum alloy target A12024 by a plasma ignited over the target surface. 1,2 The...intensity absorbed by the three non- aluminum alloys is shown as a function of time. A similar plot for oxidized steel is given in Fig. 3. 5. Typical...such as aluminum or copper cover poorly con- ducting targets such as SS304 and Ti6Al4V. 347 For an aluminum target over an aluminum alloy , the substrate

  14. The 1980 Large space systems technology. Volume 2: Base technology

    NASA Technical Reports Server (NTRS)

    Kopriver, F., III (Compiler)

    1981-01-01

    Technology pertinent to large antenna systems, technology related to large space platform systems, and base technology applicable to both antenna and platform systems are discussed. Design studies, structural testing results, and theoretical applications are presented with accompanying validation data. A total systems approach including controls, platforms, and antennas is presented as a cohesive, programmatic plan for large space systems.

  15. Data fusion for planning target volume and isodose prediction in prostate brachytherapy

    NASA Astrophysics Data System (ADS)

    Nouranian, Saman; Ramezani, Mahdi; Mahdavi, S. Sara; Spadinger, Ingrid; Morris, William J.; Salcudean, Septimiu E.; Abolmaesumi, Purang

    2015-03-01

    In low-dose prostate brachytherapy treatment, a large number of radioactive seeds is implanted in and adjacent to the prostate gland. Planning of this treatment involves the determination of a Planning Target Volume (PTV), followed by defining the optimal number of seeds, needles and their coordinates for implantation. The two major planning tasks, i.e. PTV determination and seed definition, are associated with inter- and intra-expert variability. Moreover, since these two steps are performed in sequence, the variability is accumulated in the overall treatment plan. In this paper, we introduce a model based on a data fusion technique that enables joint determination of PTV and the minimum Prescribed Isodose (mPD) map. The model captures the correlation between different information modalities consisting of transrectal ultrasound (TRUS) volumes, PTV and isodose contours. We take advantage of joint Independent Component Analysis (jICA) as a linear decomposition technique to obtain a set of joint components that optimally describe such correlation. We perform a component stability analysis to generate a model with stable parameters that predicts the PTV and isodose contours solely based on a new patient TRUS volume. We propose a framework for both modeling and prediction processes and evaluate it on a dataset of 60 brachytherapy treatment records. We show PTV prediction error of 10:02+/-4:5% and the V100 isodose overlap of 97+/-3:55% with respect to the clinical gold standard.

  16. Collection of more hematopoietic progenitor cells with large volume leukapheresis in patients with multiple myeloma.

    PubMed

    Desikan, K R; Jagannath, S; Siegel, D; Nelson, J; Bracy, D; Barlogie, B; Tricot, G

    1998-02-01

    Reinfusion of mobilized peripheral blood stem cells (PBSC) after high dose chemotherapy accelerates hematopoietic recovery. Because of the relatively low content of hematopoietic progenitors in the peripheral blood even after mobilization, multiple leukapheresis procedures are necessary to reach the required target number of CD34 cells to ensure prompt engraftment post-transplantation. Our previous studies have shown that the highest proportions of hematopoietic progenitors cells (CD34) are collected during the first three days of apheresis, whereas peak levels of myeloma cells are observed during subsequent days. Therefore, large volume leukapheresis (LVL), defined as processing of greater than 3 blood volumes or a total of at least 15 liters, was explored in 23 myeloma patients, undergoing 91 procedures; 14 patients were mobilized with high dose cyclophosphamide (6g/m2) and hematopoietic growth factors and 9 with G-CSF only. CD34 yields were measured separately for the first and last two hours of collection. We observed no decrease in CD34 cells/kg during the last two hours of collection and when the LVL collections were compared to historical matched controls, mobilized with the same regimen, the median quantity of CD34 cells/kg/liter collected remained equivalent during all days of apheresis. When compared to G-CSF only, mobilization with high dose cyclophosphamide appeared to result in superior hematopoietic stem cell collections. Interestingly, the G-CSF group experienced a progressive decrease in platelets during consecutive days of LVL, while the opposite was seen in the cyclophosphamide group. LVL procedures were not associated with a higher complication rate than standard volume apheresis. We conclude that LVL procedures allow collection of more CD34 cell per session while not jeopardizing progenitor cell collections during subsequent sessions. Since more CD34 cells are collected, fewer days are required to attain the optimal target of progenitor cells

  17. Speed-up of the volumetric method of moments for the approximate RCS of large arbitrary-shaped dielectric targets

    NASA Astrophysics Data System (ADS)

    Moreno, Javier; Somolinos, Álvaro; Romero, Gustavo; González, Iván; Cátedra, Felipe

    2017-08-01

    A method for the rigorous computation of the electromagnetic scattering of large dielectric volumes is presented. One goal is to simplify the analysis of large dielectric targets with translational symmetries taken advantage of their Toeplitz symmetry. Then, the matrix-fill stage of the Method of Moments is efficiently obtained because the number of coupling terms to compute is reduced. The Multilevel Fast Multipole Method is applied to solve the problem. Structured meshes are obtained efficiently to approximate the dielectric volumes. The regular mesh grid is achieved by using parallelepipeds whose centres have been identified as internal to the target. The ray casting algorithm is used to classify the parallelepiped centres. It may become a bottleneck when too many points are evaluated in volumes defined by parametric surfaces, so a hierarchical algorithm is proposed to minimize the number of evaluations. Measurements and analytical results are included for validation purposes.

  18. Large volume reconstruction from laser scanning microscopy using micro-CT as a template for deformation compensation

    NASA Astrophysics Data System (ADS)

    Subramanian, A.; Krol, A.; Poddar, A. H.; Price, R. L.; Swarnkar, R.; Feiglin, D. H.

    2007-03-01

    In biomedical research, there is an increased need for reconstruction of large soft tissue volumes (e.g. whole organs) at the microscopic scale from images obtained using laser scanning microscopy (LSM) with fluorescent dyes targeting selected cellular features. However, LSM allows reconstruction of volumes not exceeding a few hundred ım in size and most LSM procedures require physical sectioning of soft tissue resulting in tissue deformation. Micro-CT (μCT) can provide deformation free tomographic image of the whole tissue volume before sectioning. Even though, the spatial resolution of μCT is around 5 μm and its contrast resolution is poor, it could provide information on external and internal interfaces of the investigated volume and therefore could be used as a template in the volume reconstruction from a very large number of LSM images. Here we present a method for accurate 3D reconstruction of the murine heart from large number of images obtained using confocal LSM. The volume is reconstructed in the following steps: (i) Montage synthesis of individual LSM images to form a set of aligned optical planes within given physical section; (ii) Image enhancement and segmentation to correct for non-uniform illumination and noise; (iii) Volume matching of a synthesized physical section to a corresponding sub-volume of μCT (iv) Affine registration of the physical section to the selected μCT sub-volume. We observe correct gross alignment of the physical sections. However, many sections still exhibit local misalignment that could be only corrected via local nonrigid registration to μCT template and we plan to do it in the future.

  19. Atlas-based semiautomatic target volume definition (CTV) for head-and-neck tumors.

    PubMed

    Strassmann, Gerd; Abdellaoui, Soulimane; Richter, Detlef; Bekkaoui, Fayzal; Haderlein, Marlene; Fokas, Emmanouil; Timmesfeld, Nina; Vogel, Birgitt; Henzel, Martin; Engenhart-Cabillic, Rita

    2010-11-15

    To develop a new semiautomatic method to improve target delineation in head-and-neck cancer. We implemented an atlas-based software program using fourteen anatomic landmarks as well as the most superior and inferior computerd tomography slices for automatic target delineation, using an advanced laryngeal carcinoma as an example. Registration was made by an affine transformation. Evaluation was performed with manually drawn contours for comparison. Three physicians sampled and further applied a target volume atlas to ten other computer tomography data sets. In addition, a rapid three-dimensional (3D) correction program was developed. The mean time to the first semiautomatic target delineation proposal was 2.7 minutes. Manual contouring required 20.2 minutes per target, whereas semiautomatic target volume definition with the rapid 3D correction was completed in only 9.7 minutes. The net calculation time for image registration of the target volume atlas was negligible (approximately 0.6 seconds). Our method depicted a sufficient adaptation of the target volume atlas on the new data sets, with a mean similarity index of 77.2%. The similarity index increased up to 85% after 3D correction performed by the physicians. We have developed a new, feasible method for semiautomatic contouring that saves a significant amount (51.8%) of target delineation time for head-and-neck cancer patients. This approach uses a target volume atlas and a landmark model. The software was evaluated by means of laryngeal cancer but has important implications for various tumor types whereby target volumes remain constant in form and do not move with respiration. Copyright © 2010 Elsevier Inc. All rights reserved.

  20. Atlas-Based Semiautomatic Target Volume Definition (CTV) for Head-and-Neck Tumors

    SciTech Connect

    Strassmann, Gerd; Abdellaoui, Soulimane; Richter, Detlef; Bekkaoui, Fayzal; Haderlein, Marlene; Fokas, Emmanouil; Timmesfeld, Nina; Vogel, Birgitt M.D.; Henzel, Martin; Engenhart-Cabillic, Rita

    2010-11-15

    Purpose: To develop a new semiautomatic method to improve target delineation in head-and-neck cancer. Methods and Materials: We implemented an atlas-based software program using fourteen anatomic landmarks as well as the most superior and inferior computerd tomography slices for automatic target delineation, using an advanced laryngeal carcinoma as an example. Registration was made by an affine transformation. Evaluation was performed with manually drawn contours for comparison. Three physicians sampled and further applied a target volume atlas to ten other computer tomography data sets. In addition, a rapid three-dimensional (3D) correction program was developed. Results: The mean time to the first semiautomatic target delineation proposal was 2.7 minutes. Manual contouring required 20.2 minutes per target, whereas semiautomatic target volume definition with the rapid 3D correction was completed in only 9.7 minutes. The net calculation time for image registration of the target volume atlas was negligible (approximately 0.6 seconds). Our method depicted a sufficient adaptation of the target volume atlas on the new data sets, with a mean similarity index of 77.2%. The similarity index increased up to 85% after 3D correction performed by the physicians. Conclusions: We have developed a new, feasible method for semiautomatic contouring that saves a significant amount (51.8%) of target delineation time for head-and-neck cancer patients. This approach uses a target volume atlas and a landmark model. The software was evaluated by means of laryngeal cancer but has important implications for various tumor types whereby target volumes remain constant in form and do not move with respiration.

  1. Accuracy estimation for projection-to-volume targeting during rotational therapy: A feasibility study.

    PubMed

    Long, Yong; Fessler, Jeffrey A; Balter, James M

    2010-06-01

    Estimating motion and deformation parameters from a series of projection radiographs acquired during arc therapy using a reference CT volume has become a promising technique for targeting treatment. The purpose of this work is to investigate the influence of rotational arc length on maximum achievable accuracy of motion estimation. The projection-to-volume alignment procedure used a nonrigid model to describe motion in thorax area, a cost function consisting of a least-squared error metric and a simple regularizer that encourages local invertibility, and a four-level multiresolution scheme with a conjugate gradient method to optimize the cost function. The authors tested both small and large scale deformations typically found in the thorax of a radiotherapy patient at different breathing states and limited-angle scans of six angular widths (12°, 18°, 24°, 36°, 60°, and 90°) centered at three angles (0°, 45°, and 90°). The experiments illustrate the potential accuracy of limited-angle projection-to-volume alignment. Registration accuracy can be sensitive to angular center, tends to be lower along direction of the projection set, and tends to decrease away from the rotation center. The studies of small as well as large but realistically scaled deformations show similar dependencies. These trends appear to have fairly low sensitivity to quantum noise effects. There is potentially sufficient information present in a small spread of projections to monitor the configuration of reasonably high contrast tumors without implanted markers. © 2010 American Association of Physicists in Medicine.

  2. Lobe Emplacement of a Large-Volume, Evolved lava flow: Large-scale Pahoehoe

    NASA Astrophysics Data System (ADS)

    Semple, A. M.; Gregg, T.; Bonnichsen, B.; Godchaux, M.

    2006-12-01

    The Bruneau-Jarbidge eruptive center (BJEC) in southwestern Idaho is responsible for more than 10 large- volume lava flows ranging from a few km3 to > 200 km3. These Miocene flows have high SiO2 contents of between 70 and 75 wt% and range in thickness from a few tens of meters to 200 m thick. Well exposed in deep canyon walls, these flows typically display massive, columnar jointed interiors which give way to marginal outcrops with more lobate upper surfaces and more irregular jointing. Also observed at the most distal reaches are sub-circular shaped outcrops about 6 15 m across exposed in the canyon walls. These sub-circular outcrops display a specific jointing pattern, and are inferred to be the cross- section of individual flow lobes. These lobes tend to display a massive exterior rind of 1 1.5 m thickness with crude jointing perpendicular to the outside. Inside this massive exterior is an area of densely jointed rock, where the joints are roughly concentric to the exterior rind and are 1 4 cm thick. Not always present is a massive center that has crude radial jointing. This pattern of jointing probably results from the passage of the rhyolite lavas under a solidified carapace, with the sub-concentric jointing caused by lava shearing between the mobile lobe interior and the exterior carapace. In this way, the emplacement of these lavas appears to be similar to that of pahoehoe, in which lava advances by lobes or toes protruding from the flow front and there is coalescence of the flow lobes in the flow interior.

  3. Technology transfer from NASA to targeted industries, volume 1

    NASA Technical Reports Server (NTRS)

    Mccain, Wayne; Schroer, Bernard J.; Souder, William E.; Spann, Mary S.; Watters, Harry; Ziemke, M. Carl

    1993-01-01

    This report summarizes the University of Alabama in Huntsville (UAH) technology transfer to three target industries with focus on the apparel manufacturing industry in Alabama. Also included in this report are an analysis of the 1992 problem statements submitted by Alabama firms, the results of the survey of 1987-88 NASA Tech Brief requests, the results of the followup to Alabama submitted problem statements, and the development of the model describing the MSFC technology transfer process.

  4. International Spine Radiosurgery Consortium Consensus Guidelines for Target Volume Definition in Spinal Stereotactic Radiosurgery

    SciTech Connect

    Cox, Brett W.; Spratt, Daniel E.; Lovelock, Michael; Bilsky, Mark H.; Lis, Eric; Ryu, Samuel; Sheehan, Jason; Gerszten, Peter C.; Chang, Eric; Gibbs, Iris; Soltys, Scott; Sahgal, Arjun; Deasy, Joe; Flickinger, John; Quader, Mubina; Mindea, Stefan; and others

    2012-08-01

    Purpose: Spinal stereotactic radiosurgery (SRS) is increasingly used to manage spinal metastases. However, target volume definition varies considerably and no consensus target volume guidelines exist. This study proposes consensus target volume definitions using common scenarios in metastatic spine radiosurgery. Methods and Materials: Seven radiation oncologists and 3 neurological surgeons with spinal radiosurgery expertise independently contoured target and critical normal structures for 10 cases representing common scenarios in metastatic spine radiosurgery. Each set of volumes was imported into the Computational Environment for Radiotherapy Research. Quantitative analysis was performed using an expectation maximization algorithm for Simultaneous Truth and Performance Level Estimation (STAPLE) with kappa statistics calculating agreement between physicians. Optimized confidence level consensus contours were identified using histogram agreement analysis and characterized to create target volume definition guidelines. Results: Mean STAPLE agreement sensitivity and specificity was 0.76 (range, 0.67-0.84) and 0.97 (range, 0.94-0.99), respectively, for gross tumor volume (GTV) and 0.79 (range, 0.66-0.91) and 0.96 (range, 0.92-0.98), respectively, for clinical target volume (CTV). Mean kappa agreement was 0.65 (range, 0.54-0.79) for GTV and 0.64 (range, 0.54-0.82) for CTV (P<.01 for GTV and CTV in all cases). STAPLE histogram agreement analysis identified optimal consensus contours (80% confidence limit). Consensus recommendations include that the CTV should include abnormal marrow signal suspicious for microscopic invasion and an adjacent normal bony expansion to account for subclinical tumor spread in the marrow space. No epidural CTV expansion is recommended without epidural disease, and circumferential CTVs encircling the cord should be used only when the vertebral body, bilateral pedicles/lamina, and spinous process are all involved or there is extensive metastatic

  5. RADON DIAGNOSTIC MEASUREMENT GUIDANCE FOR LARGE BUILDINGS - VOLUME 2. APPENDICES

    EPA Science Inventory

    The report discusses the development of radon diagnostic procedures and mitigation strategies applicable to a variety of large non-residential buildings commonly found in Florida. The investigations document and evaluate the nature of radon occurrence and entry mechanisms for rad...

  6. Large space telescope, phase A. Volume 5: Support systems module

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The development and characteristics of the support systems module for the Large Space Telescope are discussed. The following systems and described: (1) thermal control, (2) electrical, (3) communication and data landing, (4) attitude control system, and (5) structural features. Analyses of maintainability and reliability considerations are included.

  7. Large space telescope, phase A. Volume 4: Scientific instrument package

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The design and characteristics of the scientific instrument package for the Large Space Telescope are discussed. The subjects include: (1) general scientific objectives, (2) package system analysis, (3) scientific instrumentation, (4) imaging photoelectric sensors, (5) environmental considerations, and (6) reliability and maintainability.

  8. Large space telescope, phase A. Volume 3: Optical telescope assembly

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The development and characteristics of the optical telescope assembly for the Large Space Telescope are discussed. The systems considerations are based on mission-related parameters and optical equipment requirements. Information is included on: (1) structural design and analysis, (2) thermal design, (3) stabilization and control, (4) alignment, focus, and figure control, (5) electronic subsystem, and (6) scientific instrument design.

  9. RADON DIAGNOSTIC MEASUREMENT GUIDANCE FOR LARGE BUILDINGS - VOLUME 2. APPENDICES

    EPA Science Inventory

    The report discusses the development of radon diagnostic procedures and mitigation strategies applicable to a variety of large non-residential buildings commonly found in Florida. The investigations document and evaluate the nature of radon occurrence and entry mechanisms for rad...

  10. Large-volume leukaphereses may be more efficient than standard-volume leukaphereses for collection of peripheral blood progenitor cells.

    PubMed

    Passos-Coelho, J L; Machado, M A; Lúcio, P; Leal-Da-Costa, F; Silva, M R; Parreira, A

    1997-10-01

    To overcome the need for multiple leukaphereses to collect enough PBPC for autologous transplantation, large-volume leukaphereses (LVL) are used to process multiple blood volumes per session. We compared the efficiency of CD34+ cell collection by LVL (n = 63; median blood volumes processed 11.1) with that of standard-volume leukaphereses (SVL) (n = 38; median blood volumes processed 1.9). To achieve this in patients with different peripheral blood concentrations of CD34+ cells, we analyzed the ratio of CD34+ cells collected per unit of blood volume processed, divided by the number of CD34+ cells in total blood volume at the beginning of apheresis. For LVL, 30% (9%-323%) of circulating CD34+ cells were collected per blood volume compared with 42% (7%-144%) for SVL (p = 0.02). However, in LVL patients, peripheral blood CD34+ cells/L decreased a median of 54% during LVL (similar data for SVL not available). The number of CD34+ cells collected per blood volume processed after 4 and 8 blood volumes and at the end of LVL were 0.32 (0.01-2.05), 0.24 (0.01-1.68), and 0.22 (0.01-2.40) x 10(6) CD34+ cells/kg, respectively (p = 0.0007), despite the 54% decrease in peripheral blood CD34+ cells/L throughout LVL. A median 66% decrease in the platelet count was also observed during LVL. Thus, LVL may be more efficient than SVL for PBPC collection, allowing, in most patients, the collection in one LVL of sufficient PBPC to support autologous transplantation.

  11. Large-Volume Resonant Microwave Discharge for Plasma Cleaning of a CEBAF 5-Cell SRF Cavity

    SciTech Connect

    J. Mammosser, S. Ahmed, K. Macha, J. Upadhyay, M. Nikoli, S. Popovi, L. Vuakovi

    2012-07-01

    We report the preliminary results on plasma generation in a 5-cell CEBAF superconducting radio-frequency (SRF) cavity for the application of cavity interior surface cleaning. CEBAF currently has {approx}300 of these five cell cavities installed in the Jefferson Lab accelerator which are mostly limited by cavity surface contamination. The development of an in-situ cavity surface cleaning method utilizing a resonant microwave discharge could lead to significant CEBAF accelerator performance improvement. This microwave discharge is currently being used for the development of a set of plasma cleaning procedures targeted to the removal of various organic, metal and metal oxide impurities. These contaminants are responsible for the increase of surface resistance and the reduction of RF performance in installed cavities. The CEBAF five cell cavity volume is {approx} 0.5 m2, which places the discharge in the category of large-volume plasmas. CEBAF cavity has a cylindrical symmetry, but its elliptical shape and transversal power coupling makes it an unusual plasma application, which requires special consideration of microwave breakdown. Our preliminary study includes microwave breakdown and optical spectroscopy, which was used to define the operating pressure range and the rate of removal of organic impurities.

  12. [Multimodalities imaging for target volume definition in radiotherapy].

    PubMed

    Daisne, Jean-François; Grégoire, Vincent

    2006-12-01

    Modern radiotherapy delivery nowadays relies on tridimensional, conformal techniques. The aim is to better target the tumor while decreasing the dose administered to surrounding normal tissues. Gold standard imaging modality remains computed-tomography (CT) scanner. However, the intrinsic lack of contrast between soft tissues leads to high variabilities in target definition. The risks are : a geographical miss with tumor underirradiation on the one hand, and a tumor overestimation with undue normal tissues irradiation on the other hand. Alternative imaging modalities like magnetic resonance imaging and functional positron emission tomography could theoretically overcome the lack of soft tissues contrast of CT. However, the fusion of the different imaging modalities images requires the use of sophisticated computer algorithms. We will briefly review them. We will then review the different clinical results reported with multi-modalities imaging for tumors of the head, neck, lung, esophagus, cervix and lymphomas. Finally, we will briefly give practical recommendations for multi-modality imaging in radiotherapy treatment planning process.

  13. Real-time visualization of large volume datasets on standard PC hardware.

    PubMed

    Xie, Kai; Yang, Jie; Zhu, Y M

    2008-05-01

    In medical area, interactive three-dimensional volume visualization of large volume datasets is a challenging task. One of the major challenges in graphics processing unit (GPU)-based volume rendering algorithms is the limited size of texture memory imposed by current GPU architecture. We attempt to overcome this limitation by rendering only visible parts of large CT datasets. In this paper, we present an efficient, high-quality volume rendering algorithm using GPUs for rendering large CT datasets at interactive frame rates on standard PC hardware. We subdivide the volume dataset into uniform sized blocks and take advantage of combinations of early ray termination, empty-space skipping and visibility culling to accelerate the whole rendering process and render visible parts of volume data. We have implemented our volume rendering algorithm for a large volume data of 512 x 304 x 1878 dimensions (visible female), and achieved real-time performance (i.e., 3-4 frames per second) on a Pentium 4 2.4GHz PC equipped with NVIDIA Geforce 6600 graphics card ( 256 MB video memory). This method can be used as a 3D visualization tool of large CT datasets for doctors or radiologists.

  14. Large-volume protein crystal growth for neutron macromolecular crystallography

    DOE PAGES

    Ng, Joseph D.; Baird, James K.; Coates, Leighton; ...

    2015-03-30

    Neutron macromolecular crystallography (NMC) is the prevailing method for the accurate determination of the positions of H atoms in macromolecules. As neutron sources are becoming more available to general users, finding means to optimize the growth of protein crystals to sizes suitable for NMC is extremely important. Historically, much has been learned about growing crystals for X-ray diffraction. However, owing to new-generation synchrotron X-ray facilities and sensitive detectors, protein crystal sizes as small as in the nano-range have become adequate for structure determination, lessening the necessity to grow large crystals. Here, some of the approaches, techniques and considerations for themore » growth of crystals to significant dimensions that are now relevant to NMC are revisited. We report that these include experimental strategies utilizing solubility diagrams, ripening effects, classical crystallization techniques, microgravity and theoretical considerations.« less

  15. Large-volume protein crystal growth for neutron macromolecular crystallography

    SciTech Connect

    Ng, Joseph D.; Baird, James K.; Coates, Leighton; Garcia-Ruiz, Juan M.; Hodge, Teresa A.; Huang, Sijay

    2015-03-30

    Neutron macromolecular crystallography (NMC) is the prevailing method for the accurate determination of the positions of H atoms in macromolecules. As neutron sources are becoming more available to general users, finding means to optimize the growth of protein crystals to sizes suitable for NMC is extremely important. Historically, much has been learned about growing crystals for X-ray diffraction. However, owing to new-generation synchrotron X-ray facilities and sensitive detectors, protein crystal sizes as small as in the nano-range have become adequate for structure determination, lessening the necessity to grow large crystals. Here, some of the approaches, techniques and considerations for the growth of crystals to significant dimensions that are now relevant to NMC are revisited. We report that these include experimental strategies utilizing solubility diagrams, ripening effects, classical crystallization techniques, microgravity and theoretical considerations.

  16. Large-volume protein crystal growth for neutron macromolecular crystallography

    PubMed Central

    Ng, Joseph D.; Baird, James K.; Coates, Leighton; Garcia-Ruiz, Juan M.; Hodge, Teresa A.; Huang, Sijay

    2015-01-01

    Neutron macromolecular crystallography (NMC) is the prevailing method for the accurate determination of the positions of H atoms in macromolecules. As neutron sources are becoming more available to general users, finding means to optimize the growth of protein crystals to sizes suitable for NMC is extremely important. Historically, much has been learned about growing crystals for X-ray diffraction. However, owing to new-generation synchrotron X-ray facilities and sensitive detectors, protein crystal sizes as small as in the nano-range have become adequate for structure determination, lessening the necessity to grow large crystals. Here, some of the approaches, techniques and considerations for the growth of crystals to significant dimensions that are now relevant to NMC are revisited. These include experimental strategies utilizing solubility diagrams, ripening effects, classical crystallization techniques, microgravity and theoretical considerations. PMID:25849493

  17. Cone-Beam CT Localization of Internal Target Volumes for Stereotactic Body Radiotherapy of Lung Lesions

    SciTech Connect

    Wang Zhiheng Wu, Q. Jackie; Marks, Lawrence B.; Larrier, Nicole; Yin Fangfang

    2007-12-01

    Purpose: In this study, we investigate a technique of matching internal target volumes (ITVs) in four-dimensional (4D) simulation computed tomography (CT) to the composite target volume in free-breathing on-board cone-beam (CB) CT. The technique is illustrated by using both phantom and patient cases. Methods and Materials: A dynamic phantom with a target ball simulating respiratory motion with various amplitude and cycle times was used to verify localization accuracy. The dynamic phantom was scanned using simulation CT with a phase-based retrospective sorting technique. The ITV was then determined based on 10 sets of sorted images. The size and epicenter of the ITV identified from 4D simulation CT images and the composite target volume identified from on-board CBCT images were compared to assess localization accuracy. Similarly, for two clinical cases of patients with lung cancer, ITVs defined from 4D simulation CT images and CBCT images were compared. Results: For the phantom, localization accuracy between the ITV in 4D simulation CT and the composite target volume in CBCT was within 1 mm, and ITV was within 8.7%. For patient cases, ITVs on simulation CT and CBCT were within 8.0%. Conclusion: This study shows that CBCT is a useful tool to localize ITV for targets affected by respiratory motion. Verification of the ITV from 4D simulation CT using on-board free-breathing CBCT is feasible for the target localization of lung tumors.

  18. Radiation from Large Gas Volumes and Heat Exchange in Steam Boiler Furnaces

    SciTech Connect

    Makarov, A. N.

    2015-09-15

    Radiation from large cylindrical gas volumes is studied as a means of simulating the flare in steam boiler furnaces. Calculations of heat exchange in a furnace by the zonal method and by simulation of the flare with cylindrical gas volumes are described. The latter method is more accurate and yields more reliable information on heat transfer processes taking place in furnaces.

  19. An instrument for collecting discrete large-volume water samples suitable for ecological studies of microorganisms

    NASA Astrophysics Data System (ADS)

    Wommack, K. Eric; Williamson, Shannon J.; Sundbergh, Arthur; Helton, Rebekah R.; Glazer, Brian T.; Portune, Kevin; Craig Cary, S.

    2004-11-01

    Microbiological investigations utilizing molecular genetic approaches to characterize microbial communities can require large volume water samples, tens to hundreds of liters. The requirement for large volume samples can be especially challenging in deep-sea hydrothermal vent environments of the oceanic ridge system. By and large studies of these environments rely on deep submergence vehicles. However collection of large volume (>100 L) water samples adjacent to the benthos is not feasible due to weight considerations. To address the technical difficulty of collecting large volume water samples from hydrothermal diffuse flow environments, a semi-autonomous large-volume water sampler (LVWS) was designed. The LVWS is capable of reliably collecting and bringing to the surface 120 L water samples from diffuse flow environments. Microscopy, molecular genetic and chemical analyses of water samples taken from 9°N East Pacific Rise are shown to demonstrate the utility of the LVWS for studies of near-benthos environments. To our knowledge this is the first report of virioplankton abundance within diffuse-flow waters of a deep-sea hydrothermal vent environment. Because of its simple design and relatively low cost, the LVWS should be applicable to a variety of studies which require large-volume water samples collected immediately adjacent to the benthos.

  20. Large Volume Self-Organization of Polymer/Nanoparticle Hybrids with Millimeter Scale Grain Sizes using Brush Block Copolymers

    NASA Astrophysics Data System (ADS)

    Song, Dongpo; Watkins, James

    The lack of sufficient long-range order in self-assembled nanostructures is a bottleneck for many nanotechnology applications. In this work, we report that exceptionally large volume of highly ordered arrays (single grains) on the order of millimeters in scale can be rapidly created through a unique innate guiding mechanism of brush block copolymers (BBCPs). The grain volume is over 1 billion times larger relative to that of typical self-assembled linear BCPs (LBCPs). The use of strong interactions between nanoparticles (NPs) and BBCPs enables the high loadings of functional materials, up to 76 wt% (46 vol%) in the target domain, while maintaining excellent long-range order. Overall this work provides a simple route to precisely control the spatial orientation of functionalities at nanometer length scales over macroscopic volumes, thereby enabling the production of hybrid materials for many important applications.

  1. Systems and methods for the detection of low-level harmful substances in a large volume of fluid

    DOEpatents

    Carpenter, Michael V.; Roybal, Lyle G.; Lindquist, Alan; Gallardo, Vincente

    2016-03-15

    A method and device for the detection of low-level harmful substances in a large volume of fluid comprising using a concentrator system to produce a retentate and analyzing the retentate for the presence of at least one harmful substance. The concentrator system performs a method comprising pumping at least 10 liters of fluid from a sample source through a filter. While pumping, the concentrator system diverts retentate from the filter into a container. The concentrator system also recirculates at least part of the retentate in the container again through the filter. The concentrator system controls the speed of the pump with a control system thereby maintaining a fluid pressure less than 25 psi during the pumping of the fluid; monitors the quantity of retentate within the container with a control system, and maintains a reduced volume level of retentate and a target volume of retentate.

  2. Evaluation of Peritumoral Edema in the Delineation of Radiotherapy Clinical Target Volumes for Glioblastoma

    SciTech Connect

    Chang, Eric L. . E-mail: echang@mdanderson.org; Akyurek, Serap; Avalos, Tedde C; Rebueno, Neal C; Spicer, Chris C; Garcia, John C; Famiglietti, Robin; Allen, Pamela K.; Chao, K.S. Clifford; Mahajan, Anita; Woo, Shiao Y.; Maor, Moshe H.

    2007-05-01

    Purpose: To evaluate the spatial relationship between peritumoral edema and recurrence pattern in patients with glioblastoma (GBM). Methods and Materials: Forty-eight primary GBM patients received three-dimensional conformal radiotherapy that did not intentionally include peritumoral edema within the clinical target volume between July 2000 and June 2001. All 48 patients have subsequently recurred, and their original treatment planning parameters were used for this study. New theoretical radiation treatment plans were created for the same 48 patients, based on Radiation Therapy Oncology Group (RTOG) target delineation guidelines that specify inclusion of peritumoral edema. Target volume and recurrent tumor coverage, as well as percent volume of normal brain irradiated, were assessed for both methods of target delineation using dose-volume histograms. Results: A comparison between the location of recurrent tumor and peritumoral edema volumes from all 48 cases failed to show correlation by linear regression modeling (r {sup 2} 0.0007; p = 0.3). For patients with edema >75 cm{sup 3}, the percent volume of brain irradiated to 46 Gy was significantly greater in treatment plans that intentionally included peritumoral edema compared with those that did not (38% vs. 31%; p = 0.003). The pattern of failure was identical between the two sets of plans (40 central, 3 in-field, 3 marginal, and 2 distant recurrence). Conclusion: Clinical target volume delineation based on a 2-cm margin rather than on peritumoral edema did not seem to alter the central pattern of failure for patients with GBM. For patients with peritumoral edema >75 cm{sup 3}, using a constant 2-cm margin resulted in a smaller median percent volume of brain being irradiated to 30 Gy, 46 Gy, and 50 Gy compared with corresponding theoretical RTOG plans that deliberately included peritumoral edema.

  3. Search for spin coupled WIMPs with the large volume NaI(Tl) scintillators

    NASA Astrophysics Data System (ADS)

    Yoshida, S.; Ejiri, H.; Fushimi, K.; Hayashi, K.; Kishimoto, T.; Kudomi, N.; Kume, K.; Kuramoto, H.; Matsuoka, K.; Ohsumi, H.; Takahisa, K.; Tsujimoto, Y.; Umehara, S.

    2001-06-01

    The cold dark matter search has been carried out at Oto Cosmo Observatory with the large volume NaI(Tl) scintillators of ELEGANT V. The new limits on WIMPs could be obtained by the analysis of the annual modulation. .

  4. Sand tank experiment of a large volume biodiesel spill

    NASA Astrophysics Data System (ADS)

    Scully, K.; Mayer, K. U.

    2015-12-01

    Although petroleum hydrocarbon releases in the subsurface have been well studied, the impacts of subsurface releases of highly degradable alternative fuels, including biodiesel, are not as well understood. One concern is the generation of CH4­ which may lead to explosive conditions in underground structures. In addition, the biodegradation of biodiesel consumes O2 that would otherwise be available for the degradation of petroleum hydrocarbons that may be present at a site. Until now, biodiesel biodegradation in the vadose zone has not been examined in detail, despite being critical to understanding the full impact of a release. This research involves a detailed study of a laboratory release of 80 L of biodiesel applied at surface into a large sandtank to examine the progress of biodegradation reactions. The experiment will monitor the onset and temporal evolution of CH4 generation to provide guidance for site monitoring needs following a biodiesel release to the subsurface. Three CO2 and CH4 flux chambers have been deployed for long term monitoring of gas emissions. CO2 fluxes have increased in all chambers over the 126 days since the start of the experiment. The highest CO2 effluxes are found directly above the spill and have increased from < 0.5 μmol m-2 s-1 to ~3.8 μmol m-2 s-1, indicating an increase in microbial activity. There were no measurable CH4 fluxes 126 days into the experiment. Sensors were emplaced to continuously measure O2, CO2, moisture content, matric potential, EC, and temperature. In response to the release, CO2 levels have increased across all sensors, from an average value of 0.1% to 0.6% 126 days after the start of the experiment, indicating the rapid onset of biodegradation. The highest CO2 values observed from samples taken in the gas ports were 2.5%. Average O2 concentrations have decreased from 21% to 17% 126 days after the start of the experiment. O2 levels in the bottom central region of the sandtank declined to approximately 12%.

  5. Large Variations in Ice Volume During the Middle Eocene "Doubthouse"

    NASA Astrophysics Data System (ADS)

    Dawber, C. F.; Tripati, A. K.

    2008-12-01

    The onset of glacial conditions in the Cenozoic is widely held to have begun ~34 million years ago, coincident with the Eocene-Oligocene boundary1. Warm and high pCO2 'greenhouse' intervals such as the Eocene are generally thought to be ice-free2. Yet the sequence stratigraphic record supports the occurrence of high-frequency sea-level change of tens of meters in the Middle and Late Eocene3, and large calcite and seawater δ18O excursions (~0.5-1.0 permil) have been reported in foraminifera from open ocean sediments4. As a result, the Middle Eocene is often considered the intermediary "doubthouse". The extent of continental ice during the 'doubthouse' is controversial, with estimates of glacioeustatic sea level fall ranging from 30 to 125m2,3,5. We present a new δ18Osw reconstruction for Ocean Drilling Project (ODP) Site 1209 in the tropical Pacific Ocean. It is the first continuous high-resolution record for an open-ocean site that is not directly influenced by changes in the carbonate compensation depth, which enables us to circumvent many of the limitations of existing records. Our record shows increases of 0.8 ± 0.2 (1 s.e) permil and 1.1 ± 0.2 permil at ~44-45 and ~42-41 Ma respectively, which suggests glacioeustatic sea level variations of ~90 m during the Middle Eocene. Modelling studies have shown that fully glaciating Antarctica during the Eocene should drive a change in seawater (δ18Osw) of 0.45 permil, and lower sea level by ~55 m6. Our results therefore support significant ice storage in both the Northern and Southern Hemisphere during the Middle Eocene 'doubthouse'. 1.Miller, Kenneth G. et al., 1990, Eocene-Oligocene sea-level changes in the New Jersey coastal plain linked to the deep-sea record. Geological Society of America Bulletin 102, 331-339 2.Pagani, M. et al., 2005, Marked decline in atmospheric carbon dioxide concentrations during the Paleogene. Science 309 (5734), 600-603. 3.Browning, J., Miller, K., and Pak, D., 1996, Global implications

  6. Testbed for large volume surveillance through distributed fusion and resource management

    NASA Astrophysics Data System (ADS)

    Valin, Pierre; Guitouni, Adel; Bossé, Éloi; Wehn, Hans; Yates, Richard; Zwick, Harold

    2007-04-01

    DRDC Valcartier has initiated, through a PRECARN partnership project, the development of an advanced simulation testbed for the evaluation of the effectiveness of Network Enabled Operations in a coastal large volume surveillance situation. The main focus of this testbed is to study concepts like distributed information fusion, dynamic resources and networks configuration management, and self synchronising units and agents. This article presents the requirements, design and first implementation builds, and reports on some preliminary results. The testbed allows to model distributed nodes performing information fusion, dynamic resource management planning and scheduling, as well as configuration management, given multiple constraints on the resources and their communications networks. Two situations are simulated: cooperative and non-cooperative target search. A cooperative surface target behaves in ways to be detected (and rescued), while an elusive target attempts to avoid detection. The current simulation consists of a networked set of surveillance assets including aircraft (UAVs, helicopters, maritime patrol aircraft), and ships. These assets have electrooptical and infrared sensors, scanning and imaging radar capabilities. Since full data sharing over datalinks is not feasible, own-platform data fusion must be simulated to evaluate implementation and performance of distributed information fusion. A special emphasis is put on higher-level fusion concepts using knowledge-based rules, with level 1 fusion already providing tracks. Surveillance platform behavior is also simulated in order to evaluate different dynamic resource management algorithms. Additionally, communication networks are modeled to simulate different information exchange concepts. The testbed allows the evaluation of a range of control strategies from independent platform search, through various levels of platform collaboration, up to a centralized control of search platforms.

  7. Inter- and Intrafractional Movement-Induced Dose Reduction of Prostate Target Volume in Proton Beam Treatment

    SciTech Connect

    Yoon, Myonggeun; Kim, Dongwook; Shin, Dong Ho; Park, Sung Yong Lee, Se Byeong; Kim, Dae Yong; Kim, Joo Young; Pyo, Hong Ryull; Cho, Kwan Ho

    2008-07-15

    Purpose: To quantify proton radiotherapy dose reduction in the prostate target volume because of the three-dimensional movement of the prostate based on an analysis of dose-volume histograms (DVHs). Methods and Materials: Twelve prostate cancer patients underwent scanning in supine position, and a target contour was delineated for each using a proton treatment planning system. To simulate target movement, the contour was displaced from 3 to 15 mm in 3-mm intervals in the superior-to-inferior (SI), inferior-to-superior (IS), anterior-to-posterior (AP), posterior-to-anterior (PA), and left-to-right (LR) directions. Results: For both intra- and interfractional movements, the average coverage index and conformity index of the target were reduced in all directions. For interfractional movements, the magnitude of dose reduction was greater in the LR direction than in the AP, PA, SI. and IS directions. Although the reduction of target dose was proportional to the magnitude of intrafractional movement in all directions, a proportionality between dose reduction and the magnitude of interfractional target movement was clear only in the LR direction. Like the coverage index and conformity index, the equivalent uniform dose and homogeneity index showed similar reductions for both types of target movements. Conclusions: Small target movements can significantly reduce target proton radiotherapy dose during treatment of prostate cancer patients. Attention should be given to interfractional target movement along the longitudinal direction, as image-guided radiotherapy may be ineffective if margins are not sufficient.

  8. Clinicopathologic Analysis of Microscopic Extension in Lung Adenocarcinoma: Defining Clinical Target Volume for Radiotherapy

    SciTech Connect

    Grills, Inga S.; Fitch, Dwight L.; Goldstein, Neal S.; Yan Di; Chmielewski, Gary W.; Welsh, Robert J.; Kestin, Larry L.

    2007-10-01

    Purpose: To determine the gross tumor volume (GTV) to clinical target volume margin for non-small-cell lung cancer treatment planning. Methods: A total of 35 patients with Stage T1N0 adenocarcinoma underwent wedge resection plus immediate lobectomy. The gross tumor size and microscopic extension distance beyond the gross tumor were measured. The nuclear grade and percentage of bronchoalveolar features were analyzed for association with microscopic extension. The gross tumor dimensions were measured on a computed tomography (CT) scan (lung and mediastinal windows) and compared with the pathologic dimensions. The potential coverage of microscopic extension for two different lung stereotactic radiotherapy regimens was evaluated. Results: The mean microscopic extension distance beyond the gross tumor was 7.2 mm and varied according to grade (10.1, 7.0, and 3.5 mm for Grade 1 to 3, respectively, p < 0.01). The 90th percentile for microscopic extension was 12.0 mm (13.0, 9.7, and 4.4 mm for Grade 1 to 3, respectively). The CT lung windows correlated better with the pathologic size than did the mediastinal windows (gross pathologic size overestimated by a mean of 5.8 mm; composite size [gross plus microscopic extension] underestimated by a mean of 1.2 mm). For a GTV contoured on the CT lung windows, the margin required to cover microscopic extension for 90% of the cases would be 9 mm (9, 7, and 4 mm for Grade 1 to 3, respectively). The potential microscopic extension dosimetric coverage (55 Gy) varied substantially between the stereotactic radiotherapy schedules. Conclusion: For lung adenocarcinomas, the GTV should be contoured using CT lung windows. Although a GTV based on the CT lung windows would underestimate the gross tumor size plus microscopic extension by only 1.2 mm for the average case, the clinical target volume expansion required to cover the microscopic extension in 90% of cases could be as large as 9 mm, although considerably smaller for high-grade tumors

  9. [Definition of accurate planning target volume margins for esophageal cancer radiotherapy].

    PubMed

    Lesueur, P; Servagi-Vernat, S

    2016-10-01

    More than 4000 cases of esophagus neoplasms are diagnosed every year in France. Radiotherapy, which can be delivered in preoperative or exclusive with a concomitant chemotherapy, plays a central role in treatment of esophagus cancer. Even if efficacy of radiotherapy no longer has to be proved, the prognosis of esophagus cancer remains unfortunately poor with a high recurrence rate. Toxicity of esophageal radiotherapy is correlated with the irradiation volume, and limits dose escalation and local control. Esophagus is a deep thoracic organ, which undergoes cardiac and respiratory motion, making the radiotherapy delivery more difficult and increasing the planning target volume margins. Definition of accurate planning target volume margins, taking into account the esophagus' intrafraction motion and set up margins is very important to be sure to cover the clinical target volume and restrains acute and late radiotoxicity. In this article, based on a review of the literature, we propose planning target volume margins adapted to esophageal radiotherapy. Copyright © 2016 Société française de radiothérapie oncologique (SFRO). Published by Elsevier SAS. All rights reserved.

  10. Magnetic Resonance Imaging- Versus Computed Tomography-Based Target Volume Delineation of the Glandular Breast Tissue (Clinical Target Volume Breast) in Breast-Conserving Therapy: An Exploratory Study

    SciTech Connect

    Giezen, Marina; Kouwenhoven, Erik; Scholten, Astrid N.; Coerkamp, Emile G.; Heijenbrok, Mark; Jansen, Wim P.A.; Mast, Mirjam E.; Petoukhova, Anna L.; Struikmans, Henk

    2011-11-01

    Purpose: To examine MRI and CT for glandular breast tissue (GBT) volume delineation and to assess interobserver variability. Methods and Materials: Fifteen breast cancer patients underwent a planning CT and MRI, consecutively, in the treatment position. Four observers (two radiation oncologists and two radiologists) delineated the GBT according to the CT and separately to the MR images. Volumes, centers of mass, maximum extensions with standard deviations (SD), and interobserver variability were quantified. Observers viewed delineation differences between MRI and CT and delineation differences among observers. Results: In cranio-lateral and cranio-medial directions, GBT volumes were delineated larger using MRI when compared with those delineated with CT. Center of mass on MRI shifted a mean (SD) 17% (4%) into the cranial direction and a mean 3% (4%) into the dorsal direction when compared with that on the planning CT. Only small variations between observers were noted. The GBT volumes were approximately 4% larger on MRI (mean [SD] ratio MRI to CT GBT volumes, 1.04 [0.06]). Findings were concordant with viewed MRI and CT images and contours. Conformity indices were only slightly different; mean conformity index was 77% (3%) for MRI and 79% (4%) for CT. Delineation differences arising from personal preferences remained recognizable irrespective of the imaging modality used. Conclusions: Contoured GBT extends substantially further into the cranio-lateral and cranio-medial directions on MRI when compared with CT. Interobserver variability is comparable for both imaging modalities. Observers should be aware of existing personal delineation preferences. Institutions are recommended to review and discuss target volume delineations and to design supplementary guidelines if necessary.

  11. Center-stabilized Yang-Mills Theory:Confinement and Large N Volume Independence

    SciTech Connect

    Unsal, Mithat; Yaffe, Laurence G.; /Washington U., Seattle

    2008-03-21

    We examine a double trace deformation of SU(N) Yang-Mills theory which, for large N and large volume, is equivalent to unmodified Yang-Mills theory up to O(1/N{sup 2}) corrections. In contrast to the unmodified theory, large N volume independence is valid in the deformed theory down to arbitrarily small volumes. The double trace deformation prevents the spontaneous breaking of center symmetry which would otherwise disrupt large N volume independence in small volumes. For small values of N, if the theory is formulated on R{sup 3} x S{sup 1} with a sufficiently small compactification size L, then an analytic treatment of the non-perturbative dynamics of the deformed theory is possible. In this regime, we show that the deformed Yang-Mills theory has a mass gap and exhibits linear confinement. Increasing the circumference L or number of colors N decreases the separation of scales on which the analytic treatment relies. However, there are no order parameters which distinguish the small and large radius regimes. Consequently, for small N the deformed theory provides a novel example of a locally four-dimensional pure gauge theory in which one has analytic control over confinement, while for large N it provides a simple fully reduced model for Yang-Mills theory. The construction is easily generalized to QCD and other QCD-like theories.

  12. A 3D time reversal cavity for the focusing of high-intensity ultrasound pulses over a large volume

    NASA Astrophysics Data System (ADS)

    Robin, J.; Arnal, B.; Tanter, M.; Pernot, M.

    2017-02-01

    Shock wave ultrasound therapy techniques, increasingly used for non-invasive surgery, require extremely high pressure amplitudes in precise focal spots, and large high-power transducers arranged on a spherical shell are usually used to achieve that. This solution allows limited steering of the beam around the geometrical focus of the device at the cost of a large number of transducer elements, and the treatment of large and moving organs like the heart is challenging or impossible. This paper validates numerically and experimentally the possibility of using a time reversal cavity (TRC) for the same purpose. A 128-element, 1 MHz power transducer combined with different multiple scattering media in a TRC was used. We were able to focus high-power ultrasound pulses over a large volume in a controlled manner, with a limited number of transducer elements. We reached sufficiently high pressure amplitudes to erode an Ultracal® target over a 10 cm2 area.

  13. Large woody debris in a second-growth central Appalachian hardwood stand: volume, composition, and dynamics

    Treesearch

    M. B. Adams; T. M. Schuler; W. M. Ford; J. N. Kochenderfer

    2003-01-01

    We estimated the volume of large woody debris in a second-growth stand and evaluated the importance of periodic windstorms as disturbances in creating large woody debris. This research was conducted on a reference watershed (Watershed 4) on the Fernow Experimental Forest in West Virginia. The 38-ha stand on Watershed 4 was clearcut around 1911 and has been undisturbed...

  14. New conformity indices based on the calculation of distances between the target volume and the volume of reference isodose

    PubMed Central

    Park, J M; Park, S-Y; Ye, S-J; Kim, J H; Carlson, J

    2014-01-01

    Objective: To present conformity indices (CIs) based on the distance differences between the target volume (TV) and the volume of reference isodose (VRI). Methods: The points on the three-dimensional surfaces of the TV and the VRI were generated. Then, the averaged distances between the points on the TV and the VRI were calculated (CIdistance). The performance of the presented CIs were evaluated by analysing six situations, which were a perfect match, an expansion and a reduction of the distance from the centroid to the VRI compared with the distance from the centroid to the TV by 10%, a lateral shift of the VRI by 3 cm, a rotation of the VRI by 45° and a spherical-shaped VRI having the same volume as the TV. The presented CIs were applied to the clinical prostate and head and neck (H&N) plans. Results: For the perfect match, CIdistance was 0 with 0 as the standard deviation (SD). When expanding and reducing, CIdistance was 10 and −10 with SDs <1.3, respectively. With shifting and rotating of the VRI, the CIdistance was almost 0 with SDs >11. The average value of the CIdistance in the prostate and H&N plans was 0.13 ± 7.44 and 6.04 ± 23.27, respectively. Conclusion: The performance of the CIdistance was equal or better than those of the conventional CIs. Advances in knowledge: The evaluation of target conformity by the distances between the surface of the TV and the VRI could be more accurate than evaluation with volume information. PMID:25225915

  15. Plasma response to electron energy filter in large volume plasma device

    SciTech Connect

    Sanyasi, A. K.; Awasthi, L. M.; Mattoo, S. K.; Srivastava, P. K.; Singh, S. K.; Singh, R.; Kaw, P. K.

    2013-12-15

    An electron energy filter (EEF) is embedded in the Large Volume Plasma Device plasma for carrying out studies on excitation of plasma turbulence by a gradient in electron temperature (ETG) described in the paper of Mattoo et al. [S. K. Mattoo et al., Phys. Rev. Lett. 108, 255007 (2012)]. In this paper, we report results on the response of the plasma to the EEF. It is shown that inhomogeneity in the magnetic field of the EEF switches on several physical phenomena resulting in plasma regions with different characteristics, including a plasma region free from energetic electrons, suitable for the study of ETG turbulence. Specifically, we report that localized structures of plasma density, potential, electron temperature, and plasma turbulence are excited in the EEF plasma. It is shown that structures of electron temperature and potential are created due to energy dependence of the electron transport in the filter region. On the other hand, although structure of plasma density has origin in the particle transport but two distinct steps of the density structure emerge from dominance of collisionality in the source-EEF region and of the Bohm diffusion in the EEF-target region. It is argued and experimental evidence is provided for existence of drift like flute Rayleigh-Taylor in the EEF plasma.

  16. Accelerated large volume irradiation with dynamic Jaw/Dynamic Couch Helical Tomotherapy

    PubMed Central

    2012-01-01

    Background Helical Tomotherapy (HT) has unique capacities for the radiotherapy of large and complicated target volumes. Next generation Dynamic Jaw/Dynamic Couch HT delivery promises faster treatments and reduced exposure of organs at risk due to a reduced dose penumbra. Methods Three challenging clinical situations were chosen for comparison between Regular HT delivery with a field width of 2.5 cm (Reg 2.5) and 5.0 cm (Reg 5.0) and DJDC delivery with a maximum field width of 5.0 cm (DJDC 5.0): Hemithoracic Irradiation, Whole Abdominal Irradiation (WAI) and Total Marrow Irradiation (TMI). For each setting, five CT data sets were chosen, and target coverage, conformity, integral dose, dose exposure of organs at risk (OAR) and treatment time were calculated. Results Both Reg 5.0 and DJDC 5.0 achieved a substantial reduction in treatment time while maintaining similar dose coverage. Treatment time could be reduced from 10:57 min to 3:42 min / 5:10 min (Reg 5.0 / DJDC 5.0) for Hemithoracic Irradiation, from 18:03 min to 8:02 min / 8:03 min for WAI and to 18:25 min / 18:03 min for TMI. In Hemithoracic Irradiation, OAR exposure was identical in all modalities. For WAI, Reg 2.5 resulted in lower exposure of liver and bone. DJDC plans showed a small but significant increase of ∼ 1 Gy to the kidneys, the parotid glans and the thyroid gland. While Reg 5.0 and DJDC were identical in terms of OAR exposure, integral dose was substantially lower with DJDC, caused by a smaller dose penumbra. Conclusions Although not clinically available yet, next generation DJDC HT technique is efficient in improving the treatment time while maintaining comparable plan quality. PMID:23146914

  17. Intra and interfraction mediastinal nodal region motion: implications for internal target volume expansions.

    PubMed

    Thomas, Jonathan G; Kashani, Rojano; Balter, James M; Tatro, Daniel; Kong, Feng-Ming; Pan, Charlie C

    2009-01-01

    The purpose of this study was to determine the intra and interfraction motion of mediastinal lymph node regions. Ten patients with nonsmall-cell lung cancer underwent controlled inhale and exhale computed tomography (CT) scans during two sessions (40 total datasets) and mediastinal nodal stations 1-8 were outlined. Corresponding CT scans from different sessions were registered to remove setup error and, in this reference frame, the centroid of each nodal station was compared for right-left (RL), anterior-posterior (AP), and superior-inferior (SI) displacement. In addition, an anisotropic volume expansion encompassing the change of the nodal region margins in all directions was used. Intrafraction displacement was determined by comparing same session inhale-exhale scans. Interfraction reproducibility of nodal regions was determined by comparing the same respiratory phase scans between two sessions. Intrafraction displacement of centroid varied between nodal stations. All nodal regions moved posteriorly and superiorly with exhalation, and inferior nodal stations showed the most motion. Based on anisotropic expansion, nodal regions expanded mostly in the RL direction from inhale to exhale. The interpatient variations in intrafraction displacement were large compared with the displacements themselves. Moreover, there was substantial interfractional displacement ( approximately 5 mm). Mediastinal lymph node regions clearly move during breathing. In addition, deformation of nodal regions between inhale and exhale occurs. The degree of motion and deformation varies by station and by individual. This study indicates the potential advantage of characterizing individualized nodal region motion to safely maximize conformality of mediastinal nodal targets.

  18. Sparing Healthy Tissue and Increasing Tumor Dose Using Bayesian Modeling of Geometric Uncertainties for Planning Target Volume Personalization

    SciTech Connect

    Herschtal, Alan; Te Marvelde, Luc; Mengersen, Kerrie; Foroudi, Farshad; Eade, Thomas; Pham, Daniel; Caine, Hannah; Kron, Tomas

    2015-06-01

    Objective: To develop a mathematical tool that can update a patient's planning target volume (PTV) partway through a course of radiation therapy to more precisely target the tumor for the remainder of treatment and reduce dose to surrounding healthy tissue. Methods and Materials: Daily on-board imaging was used to collect large datasets of displacements for patients undergoing external beam radiation therapy for solid tumors. Bayesian statistical modeling of these geometric uncertainties was used to optimally trade off between displacement data collected from previously treated patients and the progressively accumulating data from a patient currently partway through treatment, to optimally predict future displacements for that patient. These predictions were used to update the PTV position and margin width for the remainder of treatment, such that the clinical target volume (CTV) was more precisely targeted. Results: Software simulation of dose to CTV and normal tissue for 2 real prostate displacement datasets consisting of 146 and 290 patients treated with a minimum of 30 fractions each showed that re-evaluating the PTV position and margin width after 8 treatment fractions reduced healthy tissue dose by 19% and 17%, respectively, while maintaining CTV dose. Conclusion: Incorporating patient-specific displacement patterns from early in a course of treatment allows PTV adaptation for the remainder of treatment. This substantially reduces the dose to healthy tissues and thus can reduce radiation therapy–induced toxicities, improving patient outcomes.

  19. Three dimensional planning target volumes: a model and a software tool.

    PubMed

    Austin-Seymour, M; Kalet, I; McDonald, J; Kromhout-Schiro, S; Jacky, J; Hummel, S; Unger, J

    1995-12-01

    Three dimensional (3D) target volumes are an essential component of conformal therapy because the goal is to shape the treatment volume to the target volume. The planning target volume (PTV) is defined by ICRU 50 as the clinical target volume (CTV) plus a margin to ensure that the CTV receives the prescribed dose. The margin must include all interfractional and intrafractional treatment variations. This paper describes a software tool that automatically generates 3D PTVs from CTVs for lung cancers and immobile head and neck cancers. Values for the interfractional and intrafractional treatment variations were determined by a literature review and by targeted interviews with physicians. The software tool is written in Common LISP and conforms to the specifications for shareable software of the Radiotherapy Treatment Planning Tools Collaborative Working Group. The tool is a rule-based expert system in which the inputs are the CTV contours, critical structure contours, and qualitative information about the specific patient. The output is PTV contours, which are a cylindrical expansion of the CTV. A model for creating PTVs from CTVs is embedded in the tool. The interfractional variation of setup uncertainty and the intrafractional variations of movement of the CTV (e.g., respiration) and patient motion are included in the model. Measured data for the component variations is consistent with modeling the components as independent samples from 3D Gaussian distributions. The components are combined using multivariate normal statistics to yield the cylindrical expansion factors. Rules are used to represent the values of the components for certain patient conditions (e.g., setup uncertainty for a head and neck patient immobilized in a mask). The tool uses a rule interpreter to combine qualitative information about a specific patient with rules representing the value of the components and to enter the appropriate component values for that patient into the cylindrical expansion

  20. Refined universal laws for hull volumes and perimeters in large planar maps

    NASA Astrophysics Data System (ADS)

    Guitter, Emmanuel

    2017-07-01

    We consider ensembles of planar maps with two marked vertices at distance k from each other, and look at the closed line separating these vertices and lying at distance d from the first one (d  <  k). This line divides the map into two components, the hull at distance d which corresponds to the part of the map lying on the same side as the first vertex and its complementary. The number of faces within the hull is called the hull volume, and the length of the separating line the hull perimeter. We study the statistics of the hull volume and perimeter for arbitrary d and k in the limit of infinitely large planar quadrangulations, triangulations and Eulerian triangulations. We consider more precisely situations where both d and k become large with the ratio d/k remaining finite. For infinitely large maps, two regimes may be encountered: either the hull has a finite volume and its complementary is infinitely large, or the hull itself has an infinite volume and its complementary is of finite size. We compute the probability for the map to be in either regime as a function of d/k as well as a number of universal statistical laws for the hull perimeter and volume when maps are conditioned to be in one regime or the other.

  1. Low energy prompt gamma-ray tests of a large volume BGO detector.

    PubMed

    Naqvi, A A; Kalakada, Zameer; Al-Anezi, M S; Raashid, M; Khateeb-ur-Rehman; Maslehuddin, M; Garwan, M A

    2012-01-01

    Tests of a large volume Bismuth Germinate (BGO) detector were carried out to detect low energy prompt gamma-rays from boron and cadmium-contaminated water samples using a portable neutron generator-based Prompt Gamma Neutron Activation Analysis (PGNAA) setup. Inspite of strong interference between the sample- and the detector-associated prompt gamma-rays, an excellent agreement has been observed between the experimental and calculated yields of the prompt gamma-rays, indicating successful application of the large volume BGO detector in the PGNAA analysis of bulk samples using low energy prompt gamma-rays. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Production of large resonant plasma volumes in microwave electron cyclotron resonance ion sources

    DOEpatents

    Alton, Gerald D.

    1998-01-01

    Microwave injection methods for enhancing the performance of existing electron cyclotron resonance (ECR) ion sources. The methods are based on the use of high-power diverse frequency microwaves, including variable-frequency, multiple-discrete-frequency, and broadband microwaves. The methods effect large resonant "volume" ECR regions in the ion sources. The creation of these large ECR plasma volumes permits coupling of more microwave power into the plasma, resulting in the heating of a much larger electron population to higher energies, the effect of which is to produce higher charge state distributions and much higher intensities within a particular charge state than possible in present ECR ion sources.

  3. Production of large resonant plasma volumes in microwave electron cyclotron resonance ion sources

    DOEpatents

    Alton, G.D.

    1998-11-24

    Microwave injection methods are disclosed for enhancing the performance of existing electron cyclotron resonance (ECR) ion sources. The methods are based on the use of high-power diverse frequency microwaves, including variable-frequency, multiple-discrete-frequency, and broadband microwaves. The methods effect large resonant ``volume`` ECR regions in the ion sources. The creation of these large ECR plasma volumes permits coupling of more microwave power into the plasma, resulting in the heating of a much larger electron population to higher energies, the effect of which is to produce higher charge state distributions and much higher intensities within a particular charge state than possible in present ECR ion sources. 5 figs.

  4. Comparison of four radiofrequency ablation systems at two target volumes in an ex vivo bovine liver model

    PubMed Central

    Rathke, Hendrik; Hamm, Bernd; Güttler, Felix; Rathke, Joern; Rump, Jens; Teichgräber, Ulf; de Bucourt, Maximilian

    2014-01-01

    PURPOSE We aimed to validate actually achieved macroscopic ablation volumes in relation to calculated target volumes using four different radiofrequency ablation (RFA) systems operated with default settings and protocols for 3 cm and 5 cm target volumes in ex vivo bovine liver. MATERIALS AND METHODS Sixty-four cuboid liver specimens were ablated with four commercially available RFA systems (Radionics Cool-tip, AngioDynamic 1500X, Boston Scientific RF 3000, Celon CelonPower LAB): 16 specimens for each system; eight for 3 cm, and eight for 5 cm. Ablation diameters were measured, volumes were calculated, and RFA times were recorded. RESULTS For the 3 cm target ablation volume, all tested RFA systems exceeded the mathematically calculated volume of 14.14 cm3. For the 3 cm target ablation volume, mean ablation volume and mean ablation time for each RFA system were as follows: 28.5±6.5 cm3, 12.0±0.0 min for Radionics Cool-tip; 17.1±4.9 cm3, 9.36±0.63 min for AngioDynamic 1500X; 29.7±11.7 cm3, 4.60±0.50 min for Boston Scientific RF 3000; and 28.8±7.0 cm3, 20.85±0.86 min for Celon Celon-Power LAB. For the 5 cm target ablation volume, Radionics Cool-tip (48.3±9.9 cm3, 12.0±0.0 min) and AngioDynamic 1500X (39.4±16.2 cm3, 19.59±1.13 min) did not reach the mathematically calculated target ablation volume (65.45 cm3), whereas Boston Scientific RF 3000 (71.8±14.5 cm3, 9.15±2.93 min) and Celon CelonPower LAB (93.9±28.1 cm3, 40.21±1.78 min) exceeded it. CONCLUSION While all systems reached the 3 cm target ablation volume, results were variable for the 5 cm target ablation volume. Only Boston Scientific RF 3000 and Celon CelonPower LAB created volumes above the target, whereas Radionics Cool-tip and AngioDynamic 1500X remained below the target volume. For the 3 cm target ablation volume, AngioDynamic 1500X with 21% deviation was closest to the target volume. For the 5 cm target volume Boston Scientific RF 3000 with 10% deviation was closest. PMID:24509185

  5. Comparison of four radiofrequency ablation systems at two target volumes in an ex vivo bovine liver model.

    PubMed

    Rathke, Hendrik; Hamm, Bernd; Güttler, Felix; Rathke, Joern; Rump, Jens; Teichgräber, Ulf; de Bucourt, Maximilian

    2014-01-01

    We aimed to validate actually achieved macroscopic ablation volumes in relation to calculated target volumes using four different radiofrequency ablation (RFA) systems operated with default settings and protocols for 3 cm and 5 cm target volumes in ex vivo bovine liver. Sixty-four cuboid liver specimens were ablated with four commercially available RFA systems (Radionics Cool-tip, AngioDynamic 1500X, Boston Scientific RF 3000, Celon CelonPower LAB): 16 specimens for each system; eight for 3 cm, and eight for 5 cm. Ablation diameters were measured, volumes were calculated, and RFA times were recorded. For the 3 cm target ablation volume, all tested RFA systems exceeded the mathematically calculated volume of 14.14 cm3. For the 3 cm target ablation volume, mean ablation volume and mean ablation time for each RFA system were as follows: 28.5 ± 6.5 cm3, 12.0 ± 0.0 min for Radionics Cool-tip; 17.1 ± 4.9 cm3, 9.36 ± 0.63 min for AngioDynamic 1500X; 29.7 ± 11.7 cm3, 4.60 ± 0.50 min for Boston Scientific RF 3000; and 28.8 ± 7.0 cm3, 20.85 ± 0.86 min for Celon CelonPower LAB. For the 5 cm target ablation volume, Radionics Cool-tip (48.3 ± 9.9 cm3, 12.0 ± 0.0 min) and AngioDynamic 1500X (39.4 ± 16.2 cm3, 19.59 ± 1.13 min) did not reach the mathematically calculated target ablation volume (65.45 cm3), whereas Boston Scientific RF 3000 (71.8 ± 14.5 cm3, 9.15 ± 2.93 min) and Celon CelonPower LAB (93.9 ± 28.1 cm3, 40.21 ± 1.78 min) exceeded it. While all systems reached the 3 cm target ablation volume, results were variable for the 5 cm target ablation volume. Only Boston Scientific RF 3000 and Celon CelonPower LAB created volumes above the target, whereas Radionics Cool-tip and AngioDynamic 1500X remained below the target volume. For the 3 cm target ablation volume, AngioDynamic 1500X with 21% deviation was closest to the target volume. For the 5 cm target volume Boston Scientific RF 3000 with 10% deviation was closest.

  6. [Organs at risk and target volumes: definition for conformal radiation therapy in breast cancer].

    PubMed

    Atean, I; Pointreau, Y; Barillot, I; Kirova, Y-M

    2012-09-01

    Adjuvant radiotherapy is a standard component of breast cancer treatment. The addition of radiotherapy after breast conserving surgery has been shown to reduce local recurrence rate and improve long-term survival. Accurate delineation of target volumes and organs at risk is crucial to the quality of treatment planning and delivered accomplished with innovate technologies in radiation therapy. This allows the radiation beam to be shaped specifically to each individual patient's anatomy. Target volumes include the mammary gland and surgical bed in case of breast conserving surgery, the chest wall in case of mastectomy, and if indicated, regional lymph nodes (axillary, supra- and infraclavicular and internal mammary). Organs at risk include lungs, thyroid, brachial plexus, heart, spinal cord and oesophagus. The aim of this article is to encourage the use of conformal treatment and delineation of target volumes and organs at risk and to describe specifically the definition of these volumes. Copyright © 2012 Société française de radiothérapie oncologique (SFRO). Published by Elsevier SAS. All rights reserved.

  7. 3D porous sol-gel matrix incorporated microdevice for effective large volume cell sample pretreatment.

    PubMed

    Lee, Chan Joo; Jung, Jae Hwan; Seo, Tae Seok

    2012-06-05

    In this study, we demonstrated an effective sample pretreatment microdevice that could perform the capture, purification, and release of pathogenic bacteria with a large-volume sample and at a high speed and high-capture yield. We integrated a sol-gel matrix into the microdevice which forms three-dimensional (3D) micropores for the cell solution to pass through and provides a large surface area for the immobilization of antibodies to capture the target Staphylococcus aureus (S. aureus) cells. The antibody was linked to the surface of the sol-gel via a photocleavable linker, allowing the cell-captured antibody moiety to be released by UV irradiation. In addition to the optimization of the antibody immobilization and UV cleavage processes, the cell-capture efficiency was maximized by controlling the sample flow rate with a pumping scheme (3 steps, 5 steps: 3 steps with one flutter step, 7 steps: 3 steps with two flutter steps) and the pumping time (100, 200, and 300 ms). A quantitative capture analysis was performed by targeting a specific gene site of protein A of S. aureus in real-time PCR (RT-PCR). While the 3-step process with an actuation time of 100 ms showed the fastest flow rate (1 mL sample processing time in 10 min), the pumping scheme with the 7-step process and the 300 ms actuation time revealed the highest cell-capture efficiency. A limit of detection study with the 7-step and the 300 ms pumping scheme demonstrated that 100 cells per 100 μL were detected with a 70% yield, and even a single cell could be analyzed via on-chip sample preparation. Thus, our novel sol-gel based microdevice was proven more cost-effective, simple, and efficient in terms of its sample pretreatment ability compared to the use of a conventional 2D flat microdevice. This proposed sample pretreatment device can be further incorporated to an analytical functional unit to realize a micrototal analysis system (μTAS) with sample-in-answer-out capability in the fields of biomedical

  8. The effect of image-guided radiation therapy on the margin between the clinical target volume and planning target volume in lung cancer

    SciTech Connect

    Liang, Jun; Li, Minghui; Zhang, Tao; Han, Wei; Chen, Dongfu; Hui, Zhouguang; Lv, Jima; Zhang, Zhong; Zhang, Yin; Zhang, Liansheng; Zheng, Rong; Dai, Jianrong; Wang, Luhua

    2014-02-15

    Introduction: This study aimed to evaluate the effect of image-guided radiation therapy (IGRT) on the margin between the clinical target volume (CTV) and planning target volume (PTV) in lung cancer. Methods: The CTV and PTV margin were determined in three dimensions by four radiation oncologists using a standard method in 10 lung cancer patients, and compared to consensus values. Transfer error was measured using a rigid phantom containing gold markers. Systematic error and random error set up errors were calculated in three dimensions from pre-treatment and post-treatment cone beam CT scans. Finally, the margin between the CTV and PTV was corrected for set up error and calculated. Results: The margins between the CTV and PTV with IGRT (and without IGRT) were 0.88 cm (0.96 cm), 0.99 cm (1.08 cm) and 1.28 cm (1.82 cm) in the anterior and posterior (AP), left and right (LR) and superior and inferior (SI) directions, respectively. Images from two other patients verified the validity of the corrected margin. The target delineation errors of the radiation oncologists are considered to be the largest compared with the set up errors. The application of IGRT reduced the set up errors and the margins between CTV and PTV. Conclusions: The delineation errors of radiation oncologists are the most important factor to consider for the margin between CTV and PTV for lung cancer. IGRT can reduce the margins by reducing the set up errors, especially in the SI direction. Further research is required to assess whether the reduction in the margin is solely based on set up errors.

  9. Safety limit of large-volume hepatic radiofrequency ablation in a rat model.

    PubMed

    Ng, Kelvin K; Lam, Chi Ming; Poon, Ronnie T; Shek, Tony W; Ho, David W; Fan, Sheung Tat

    2006-03-01

    Large-volume hepatic radiofrequency ablation (RFA) has been used to treat large liver tumors, but its safety limit is unknown. This study aimed to investigate the possible systemic responses of large-volume hepatic RFA and to estimate its safety limit in normal and cirrhotic rats. Large-volume hepatic RFA causes a significant systemic inflammatory reaction. Experimental study. University teaching hospital. Using the Cool-tip RF System (Radionics, Burlington, Mass), RFA was performed for different percentages of the liver volume by weight in normal and cirrhotic Sprague-Dawley rats. Changes in concentrations of serum inflammatory markers (tumor necrosis factor alpha [TNF-alpha] and interleukin [IL] 6), functions of various end organs, and survival rates were assessed. In the normal liver groups, the concentrations of TNF-alpha and IL-6 were significantly elevated in the early postoperative period when 50% (mean +/- SD TNF-alpha concentration, 130.3 +/- 15.6 pg/mL; mean +/- SD IL-6 concentration, 163.2 +/- 12.2 pg/mL) and 60% (mean +/- SD TNF-alpha concentration, 145.7 +/- 13.0 pg/mL; mean +/- SD IL-6 concentration, 180.8 +/- 11.0 pg/mL) of the liver volume were ablated compared with the control group (mean +/- SD TNF-alpha concentration, 30.4 +/- 9.9 pg/mL, P<.001; mean +/- SD IL-6 concentration, 28.4 +/- 6.7 pg/mL, P<.001). The concentrations of TNF-alpha and IL-6 in other groups remained similar to those in the control group. Thrombocytopenia, prolonged clotting time, and interstitial pneumonitis occurred when 50% and 60% of the liver volume were ablated. The 4-week survival rates were 100%, 60%, and 0% when 40%, 50%, and 60%, respectively, of the liver volume were ablated. Similar systemic inflammatory responses and poor survival rates were observed among the cirrhotic liver groups when 30% and 40% of the liver volume were ablated. The normal rats can tolerate RFA of 40% of the liver volume with minimal morbidity and no mortality whereas the cirrhotic rats can

  10. Rapid estimate of solid volume in large tuff cores using a gas pycnometer

    SciTech Connect

    Thies, C.; Geddis, A.M.; Guzman, A.G.

    1996-09-01

    A thermally insulated, rigid-volume gas pycnometer system has been developed. The pycnometer chambers have been machined from solid PVC cylinders. Two chambers confine dry high-purity helium at different pressures. A thick-walled design ensures minimal heat exchange with the surrounding environment and a constant volume system, while expansion takes place between the chambers. The internal energy of the gas is assumed constant over the expansion. The ideal gas law is used to estimate the volume of solid material sealed in one of the chambers. Temperature is monitored continuously and incorporated into the calculation of solid volume. Temperature variation between measurements is less than 0.1{degrees}C. The data are used to compute grain density for oven-dried Apache Leap tuff core samples. The measured volume of solid and the sample bulk volume are used to estimate porosity and bulk density. Intrinsic permeability was estimated from the porosity and measured pore surface area and is compared to in-situ measurements by the air permeability method. The gas pycnometer accommodates large core samples (0.25 m length x 0.11 m diameter) and can measure solid volume greater than 2.20 cm{sup 3} with less than 1% error.

  11. Large-volume diamond cells for neutron diffraction above 90GPa

    SciTech Connect

    Boehler, Reinhard; Guthrie, Malcolm; Molaison, Jamie J; Moreira Dos Santos, Antonio F; Sinogeikin, Stanislav; Machida, Shinichi; Pradhan, Neelam; Tulk, Christopher A

    2013-01-01

    Quantitative high pressure neutron-diffraction measurements have traditionally required large sample volumes of at least 25 mm3 due to limited neutron flux. Therefore, pressures in these experiments have been limited to below 25 GPa. In comparison, for X-ray diffraction, sample volumes in conventional diamond cells for pressures up to 100 GPa have been less than 1 10 4 mm3. Here, we report a new design of strongly supported conical diamond anvils for neutron diffraction that has reached 94 GPa with a sample volume of 2 10 2 mm3, a 100-fold increase. This sample volume is sufficient to measure full neutron-diffraction patterns of D2O ice to this pressure at the high flux Spallation Neutrons and Pressure beamline at the Oak Ridge National Laboratory. This provides an almost fourfold extension of the previous pressure regime for such measurements.

  12. Periumbilical fat graft: a new resource to replace large volume in the orbit.

    PubMed

    Medel, Ramon; Vasquez, LuzMaria

    2014-10-01

    To describe the technique we use to obtain a fat graft from the periumbilical area to replace volume in our patients requiring total or partial orbital volume restoration or replacement. Under local anaesthesia a one-piece fat auto-graft is obtained from one of the quadrants of the periumbilical zone through a 10- to 15-mm incision at the umbilicus edge. Excised adipose tissue contains connective tracts, with medium and small vascular vessels with discrete thickened wall and preserved endothelium, with more blood cells, and less dead cells. Fat grafts are the ideal fillers for patients requiring orbital volume replacement. The periumbilical fat graft technique we describe is simple, safe and fast, the learning slope shallow and the results gratifying in both the replaced volume, and the donor area with an invisible scar. The amount of fat that can be obtained with this technique through a minimal incision can be large enough.

  13. ALK Signaling and Target Therapy in Anaplastic Large Cell Lymphoma

    PubMed Central

    Tabbó, Fabrizio; Barreca, Antonella; Piva, Roberto; Inghirami, Giorgio

    2012-01-01

    The discovery by Morris et al. (1994) of the genes contributing to the t(2;5)(p23;q35) translocation has laid the foundation for a molecular based recognition of anaplastic large cell lymphoma and highlighted the need for a further stratification of T-cell neoplasia. Likewise the detection of anaplastic lymphoma kinase (ALK) genetic lesions among many human cancers has defined unique subsets of cancer patients, providing new opportunities for innovative therapeutic interventions. The objective of this review is to appraise the molecular mechanisms driving ALK-mediated transformation, and to maintain the neoplastic phenotype. The understanding of these events will allow the design and implementation of novel tailored strategies for a well-defined subset of cancer patients. PMID:22649787

  14. Effects of large volume, ice-cold intravenous fluid infusion on respiratory function in cardiac arrest survivors.

    PubMed

    Jacobshagen, Claudius; Pax, Anja; Unsöld, Bernhard W; Seidler, Tim; Schmidt-Schweda, Stephan; Hasenfuss, Gerd; Maier, Lars S

    2009-11-01

    International guidelines for cardiopulmonary resuscitation recommend mild hypothermia (32-34 degrees C) for 12-24h in comatose survivors of cardiac arrest. To induce therapeutic hypothermia a variety of external and intravascular cooling devices are available. A cheap and effective method for inducing hypothermia is the infusion of large volume, ice-cold intravenous fluid. There are concerns regarding the effects of rapid infusion of large volumes of fluid on respiratory function in cardiac arrest survivors. We have retrospectively studied the effects of high volume cold fluid infusion on respiratory function in 52 resuscitated cardiac arrest patients. The target temperature of 32-34 degrees C was achieved after 4.1+/-0.5h (cooling rate 0.48 degrees C/h). During this period 3427+/-210 mL ice-cold fluid was infused. Despite significantly reduced LV-function (EF 35.8+/-2.2%) the respiratory status of these patients did not deteriorate significantly. On intensive care unit admission the mean PaO(2) was 231.4+/-20.6 mmHg at a F(i)O(2) of 0.82+/-0.03 (PaO(2)/F(i)O(2)=290.0+/-24.1) and a PEEP level of 7.14+/-0.31 mbar. Until reaching the target temperature of large volume, ice-cold fluid is an effective and inexpensive method for inducing therapeutic hypothermia. Resuscitation from cardiac arrest is associated with a deterioration in respiratory function. The infusion of large volumes of cold fluid does not cause a statistically significant further deterioration in respiratory function. A larger, randomized and prospective study is required to assess the efficacy and safety of ice-cold fluid infusion for

  15. High Energy Performance Tests of Large Volume LaBr{sub 3}:Ce Detector

    SciTech Connect

    Naqvi, A.A.; Gondal, M.A.; Khiari, F.Z.; Dastageer, M.A.; Maslehuddin, M.M.; Al-Amoudi, O.S.B.

    2015-07-01

    High energy prompt gamma ray tests of a large volume cylindrical 100 mm x 100 mm (height x diameter) LaBr{sub 3}:Ce detector were carried out using a portable neutron generator-based Prompt Gamma Neutron Activation Analysis (PGNAA) setup. In this study prompt gamma-rays yield were measured from water samples contaminated with toxic elements such nickel, chromium and mercury compounds with gamma ray energies up to 10 MeV. The experimental yield of prompt gamma-rays from toxic elements were compared with the results of Monte Carlo calculations. In spite of its higher intrinsic background due to its larger volume, an excellent agreement between the experimental and calculated yields of high energy gamma-rays from Ni, Cr and Hg samples has been achieved for the large volume LaBr{sub 3}:Ce detector. (authors)

  16. A universal and flexible theodolite-camera system for making accurate measurements over large volumes

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaohu; Zhu, Zhaokun; Yuan, Yun; Li, Lichun; Sun, Xiangyi; Yu, Qifeng; Ou, Jianliang

    2012-11-01

    Typically, optical measurement systems can achieve high accuracy over a limited volume, or cover a large volume with low accuracy. In this paper, we propose a universal way of integrating a camera with a theodolite to construct a theodolite-camera (TC) measurement system that can make measurements over a large volume with high accuracy. The TC inherits the advantages of high flexibility and precision from theodolite and camera, but it avoids the need to perform elaborate adjustments on the camera and theodolite. The TC provides a universal and flexible approach to the camera-on-theodolite system. We describe three types of TC based separately on: (i) a total station; (ii) a theodolite; and (iii) a general rotation frame. We also propose three corresponding calibration methods for the different TCs. Experiments have been conducted to verify the measuring accuracy of each of the three types of TC.

  17. Mechanically Cooled Large-Volume Germanium Detector Systems for Nuclear Explosion Monitoring DOENA27323-1

    SciTech Connect

    Hull, E.L.

    2006-07-28

    Compact maintenance free mechanical cooling systems are being developed to operate large volume germanium detectors for field applications. To accomplish this we are utilizing a newly available generation of Stirling-cycle mechanical coolers to operate the very largest volume germanium detectors with no maintenance. The user will be able to leave these systems unplugged on the shelf until needed. The flip of a switch will bring a system to life in ~ 1 hour for measurements. The maintenance-free operating lifetime of these detector systems will exceed 5 years. These features are necessary for remote long-duration liquid-nitrogen free deployment of large-volume germanium gamma-ray detector systems for Nuclear Explosion Monitoring. The Radionuclide Aerosol Sampler/Analyzer (RASA) will greatly benefit from the availability of such detectors by eliminating the need for liquid nitrogen at RASA sites while still allowing the very largest available germanium detectors to be reliably utilized.

  18. A general method for assessing the effects of uncertainty in individual-tree volume model predictions on large-area volume estimates with a subtropical forest illustration

    Treesearch

    Ronald E. McRoberts; Paolo Moser; Laio Zimermann Oliveira; Alexander C. Vibrans

    2015-01-01

    Forest inventory estimates of tree volume for large areas are typically calculated by adding the model predictions of volumes for individual trees at the plot level, calculating the mean over plots, and expressing the result on a per unit area basis. The uncertainty in the model predictions is generally ignored, with the result that the precision of the large-area...

  19. Variations of target volume definition and daily target volume localization in stereotactic body radiotherapy for early-stage non-small cell lung cancer patients under abdominal compression.

    PubMed

    Han, Chunhui; Sampath, Sagus; Schultheisss, Timothy E; Wong, Jeffrey Y C

    2017-01-01

    We aimed to compare gross tumor volumes (GTV) in 3-dimensional computed tomography (3DCT) simulation and daily cone beam CT (CBCT) with the internal target volume (ITV) in 4-dimensional CT (4DCT) simulation in stereotactic body radiotherapy (SBRT) treatment of patients with early-stage non-small cell lung cancer (NSCLC) under abdominal compression. We retrospectively selected 10 patients with NSCLC who received image-guided SBRT treatments under abdominal compression with daily CBCT imaging. GTVs were contoured as visible gross tumor on the planning 3DCT and daily CBCT, and ITVs were contoured using maximum intensity projection (MIP) images of the planning 4DCT. Daily CBCTs were registered with 3DCT and MIP images by matching of bony landmarks in the thoracic region to evaluate interfractional GTV position variations. Relative to MIP-based ITVs, the average 3DCT-based GTV volume was 66.3 ± 17.1% (range: 37.5% to 92.0%) (p < 0.01 in paired t-test), and the average CBCT-based GTV volume was 90.0 ± 6.7% (daily range: 75.7% to 107.1%) (p = 0.02). Based on bony anatomy matching, the center-of-mass coordinates for CBCT-based GTVs had maximum absolute shift of 2.4 mm (left-right), 7.0 mm (anterior-posterior [AP]), and 5.2 mm (superior-inferior [SI]) relative to the MIP-based ITV. CBCT-based GTVs had average overlapping ratio of 81.3 ± 11.2% (range: 45.1% to 98.9%) with the MIP-based ITV, and 57.7 ± 13.7% (range: 35.1% to 83.2%) with the 3DCT-based GTV. Even with abdominal compression, both 3DCT simulations and daily CBCT scans significantly underestimated the full range of tumor motion. In daily image-guided patient setup corrections, automatic bony anatomy-based image registration could lead to target misalignment. Soft tissue-based image registration should be performed for accurate treatment delivery. Copyright © 2017 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.

  20. SparseLeap: Efficient Empty Space Skipping for Large-Scale Volume Rendering.

    PubMed

    Hadwiger, Markus; Al-Awami, Ali K; Beyer, Johanna; Agus, Marco; Pfister, Hanspeter

    2017-08-29

    Recent advances in data acquisition produce volume data of very high resolution and large size, such as terabyte-sized microscopy volumes. These data often contain many fine and intricate structures, which pose huge challenges for volume rendering, and make it particularly important to efficiently skip empty space. This paper addresses two major challenges: (1) The complexity of large volumes containing fine structures often leads to highly fragmented space subdivisions that make empty regions hard to skip efficiently. (2) The classification of space into empty and non-empty regions changes frequently, because the user or the evaluation of an interactive query activate a different set of objects, which makes it unfeasible to pre-compute a well-adapted space subdivision. We describe the novel SparseLeap method for efficient empty space skipping in very large volumes, even around fine structures. The main performance characteristic of SparseLeap is that it moves the major cost of empty space skipping out of the ray-casting stage. We achieve this via a hybrid strategy that balances the computational load between determining empty ray segments in a rasterization (object-order) stage, and sampling non-empty volume data in the ray-casting (image-order) stage. Before ray-casting, we exploit the fast hardware rasterization of GPUs to create a ray segment list for each pixel, which identifies non-empty regions along the ray. The ray-casting stage then leaps over empty space without hierarchy traversal. Ray segment lists are created by rasterizing a set of fine-grained, view-independent bounding boxes. Frame coherence is exploited by re-using the same bounding boxes unless the set of active objects changes. We show that SparseLeap scales better to large, sparse data than standard octree empty space skipping.

  1. A New Electropositive Filter for Concentrating Enterovirus and Norovirus from Large Volumes of Water - MCEARD

    EPA Science Inventory

    The detection of enteric viruses in environmental water usually requires the concentration of viruses from large volumes of water. The 1MDS electropositive filter is commonly used for concentrating enteric viruses from water but unfortunately these filters are not cost-effective...

  2. Development of a Solid Phase Extraction Method for Agricultural Pesticides in Large-Volume Water Samples

    EPA Science Inventory

    An analytical method using solid phase extraction (SPE) and analysis by gas chromatography/mass spectrometry (GC/MS) was developed for the trace determination of a variety of agricultural pesticides and selected transformation products in large-volume high-elevation lake water sa...

  3. A New Electropositive Filter for Concentrating Enterovirus and Norovirus from Large Volumes of Water - MCEARD

    EPA Science Inventory

    The detection of enteric viruses in environmental water usually requires the concentration of viruses from large volumes of water. The 1MDS electropositive filter is commonly used for concentrating enteric viruses from water but unfortunately these filters are not cost-effective...

  4. Large Scale Information Processing System. Volume I. Compiler, Natural Language, and Information Processing.

    ERIC Educational Resources Information Center

    Peterson, Philip L.; And Others

    This volume, the first of three dealing with a number of investigations and studies into the formal structure, advanced technology and application of large scale information processing systems, is concerned with the areas of compiler languages, natural languages and information storage and retrieval. The first report is entitled "Semantics and…

  5. Development of a Solid Phase Extraction Method for Agricultural Pesticides in Large-Volume Water Samples

    EPA Science Inventory

    An analytical method using solid phase extraction (SPE) and analysis by gas chromatography/mass spectrometry (GC/MS) was developed for the trace determination of a variety of agricultural pesticides and selected transformation products in large-volume high-elevation lake water sa...

  6. A two isocenter IMRT technique with a controlled junction dose for long volume targets

    NASA Astrophysics Data System (ADS)

    Zeng, G. G.; Heaton, R. K.; Catton, C. N.; Chung, P. W.; O'Sullivan, B.; Lau, M.; Parent, A.; Jaffray, D. A.

    2007-07-01

    Most IMRT techniques have been designed to treat targets smaller than the field size of conventional linac accelerators. In order to overcome the field size restrictions in applying IMRT, we developed a two isocenter IMRT technique to treat long volume targets. The technique exploits an extended dose gradient throughout a junction region of 4-6 cm to minimize the impact of field match errors on a junction dose and manipulates the inverse planning and IMRT segments to fill in the dose gradient and achieve dose uniformity. Techniques for abutting both conventional fields with IMRT ('Static + IMRT') and IMRT fields ('IMRT + IMRT') using two separate isocenters have been developed. Five long volume sarcoma cases have been planned in Pinnacle (Philips, Madison, USA) using Elekta Synergy and Varian 2100EX linacs; two of the cases were clinically treated with this technique. Advantages were demonstrated with well-controlled junction target uniformity and tolerance to setup uncertainties. The junction target dose heterogeneity was controlled at a level of ±5% for 3 mm setup errors at the field edges, the junction target dose changed less than 5% and the dose sparing to organs at risk (OARs) was maintained. Film measurements confirmed the treatment planning results.

  7. A two isocenter IMRT technique with a controlled junction dose for long volume targets.

    PubMed

    Zeng, G G; Heaton, R K; Catton, C N; Chung, P W; O'Sullivan, B; Lau, M; Parent, A; Jaffray, D A

    2007-08-07

    Most IMRT techniques have been designed to treat targets smaller than the field size of conventional linac accelerators. In order to overcome the field size restrictions in applying IMRT, we developed a two isocenter IMRT technique to treat long volume targets. The technique exploits an extended dose gradient throughout a junction region of 4-6 cm to minimize the impact of field match errors on a junction dose and manipulates the inverse planning and IMRT segments to fill in the dose gradient and achieve dose uniformity. Techniques for abutting both conventional fields with IMRT ('Static + IMRT') and IMRT fields ('IMRT + IMRT') using two separate isocenters have been developed. Five long volume sarcoma cases have been planned in Pinnacle (Philips, Madison, USA) using Elekta Synergy and Varian 2100EX linacs; two of the cases were clinically treated with this technique. Advantages were demonstrated with well-controlled junction target uniformity and tolerance to setup uncertainties. The junction target dose heterogeneity was controlled at a level of +/-5%; for 3 mm setup errors at the field edges, the junction target dose changed less than 5% and the dose sparing to organs at risk (OARs) was maintained. Film measurements confirmed the treatment planning results.

  8. Guidelines for delineation of lymphatic clinical target volumes for high conformal radiotherapy: head and neck region

    PubMed Central

    2011-01-01

    The success of radiotherapy depends on the accurate delineation of the clinical target volume. The delineation of the lymph node regions has most impact, especially for tumors in the head and neck region. The purpose of this article was the development an atlas for the delineation of the clinical target volume for patients, who should receive radiotherapy for a tumor of the head and neck region. Literature was reviewed for localisations of the adjacent lymph node regions and their lymph drain in dependence of the tumor entity. On this basis the lymph node regions were contoured on transversal CT slices. The probability for involvement was reviewed and a recommendation for the delineation of the CTV was generated. PMID:21854585

  9. Target Earth: evidence for large-scale impact events.

    PubMed

    Grieve, R A

    1997-05-30

    Unlike the Moon, the Earth has retained only a small sample of its population of impact structures. Currently, over 150 impact structures are known and there are 15 instances of impact known from the stratigraphic record, some of which have been correlated with known impact structures. The terrestrial record is biased toward younger and larger structures on the stable cratonic areas of the crust, because of the effects of constant surface renewal on the Earth. The high level of endogenic geologic activity also affects the morphology and morphometry of terrestrial impact structures; although, the same general morphologic forms that occur on the other terrestrial planets can be observed. A terrestrial cratering rate of 5.6 +/- 2.8 x 10(-15) km-1 a-1 for structures > or = 20 km in diameter can be derived, which is equivalent to that estimated from astronomical observations. Although there are claims to the contrary, the overall uncertainties in the ages of structures in the impact record preclude the determination of any periodicity in the record. Small terrestrial impact structures are the result of the impact of iron or stony iron bodies, with weaker stony and icy bodies being crushed on atmospheric passage. At larger structures (>1 km), trace element geochemistry suggests that approximately 50% of the impact flux is from chondritic bodies, but this may be a function of the signal:noise ratio of the meteoritic tracer elements. Evidence for impact in the stratigraphic record is both chemical and physical. Although currently small in number, there are indications that more evidence will be forthcoming with time. Such searches for evidence of impact have been stimulated by the chemical and physical evidence of the involvement of impact at the K/T boundary. There will, however, be problems in differentiating geochemically the signal of even relatively large impact events from the background cosmic flux of every day meteoritic debris. Even with these biases and

  10. Evaluation of Bacillus oleronius as a Biological Indicator for Terminal Sterilization of Large-Volume Parenterals.

    PubMed

    Izumi, Masamitsu; Fujifuru, Masato; Okada, Aki; Takai, Katsuya; Takahashi, Kazuhiro; Udagawa, Takeshi; Miyake, Makoto; Naruyama, Shintaro; Tokuda, Hiroshi; Nishioka, Goro; Yoden, Hikaru; Aoki, Mitsuo

    2016-01-01

    In the production of large-volume parenterals in Japan, equipment and devices such as tanks, pipework, and filters used in production processes are exhaustively cleaned and sterilized, and the cleanliness of water for injection, drug materials, packaging materials, and manufacturing areas is well controlled. In this environment, the bioburden is relatively low, and less heat resistant compared with microorganisms frequently used as biological indicators such as Geobacillus stearothermophilus (ATCC 7953) and Bacillus subtilis 5230 (ATCC 35021). Consequently, the majority of large-volume parenteral solutions in Japan are manufactured under low-heat sterilization conditions of F0 <2 min, so that loss of clarity of solutions and formation of degradation products of constituents are minimized. Bacillus oleronius (ATCC 700005) is listed as a biological indicator in "Guidance on the Manufacture of Sterile Pharmaceutical Products Produced by Terminal Sterilization" (guidance in Japan, issued in 2012). In this study, we investigated whether B. oleronius is an appropriate biological indicator of the efficacy of low-heat, moist-heat sterilization of large-volume parenterals. Specifically, we investigated the spore-forming ability of this microorganism in various cultivation media and measured the D-values and z-values as parameters of heat resistance. The D-values and z-values changed depending on the constituents of large-volume parenteral products. Also, the spores from B. oleronius showed a moist-heat resistance that was similar to or greater than many of the spore-forming organisms isolated from Japanese parenteral manufacturing processes. Taken together, these results indicate that B. oleronius is suitable as a biological indicator for sterility assurance of large-volume parenteral solutions subjected to low-heat, moist-heat terminal sterilization.

  11. Large-volume leukapheresis for peripheral blood stem cell collection in patients with hematologic malignancies.

    PubMed

    Malachowski, M E; Comenzo, R L; Hillyer, C D; Tiegerman, K O; Berkman, E M

    1992-10-01

    Large-volume leukapheresis (LVL, 15-35 L) was performed in two groups of patients (n = 10) with hematologic malignancies to obtain peripheral blood stem cells for bone marrow rescue following high-dose chemotherapy. The target cell count was 7 x 10(8) mononuclear cells (MNCs = lymphocytes and monocytes) per kg of body weight. Group A patients (n = 4) were studied on Day 1 of LVL, and components were collected from them as four sequential samples. Total MNCs collected averaged 1.29 x 10(10), total colony-forming-units granulocyte-macrophage (CFU-GM) averaged 12.1 x 10(6), and a 1.8-fold mobilization of CFU-GM was observed (p < 0.05, Sample 1 vs. Sample 4). Group B patients (n = 6) were studied throughout the three consecutive planned days of 5-hour LVL. An average of three LVL procedures per patient was performed (range, 1.25-4), and an average of 27 L (range, 24-33) of blood per LVL was processed. The blood:ACD-A ratio was 24:1 with 3000 units of heparin per 500 mL of ACD-A; heparin was also added to the collection bags. The component had an average hematocrit (Hct) of 0.02 and MNC content of 93 percent. The patients' pre-LVL and post-LVL average Hct varied significantly (before Day 1, 0.36 +/- 0.08; after Day 3, 0.28 +/- 0.06; p < 0.05). Platelet counts also decreased, with post-Day 3 counts averaging 19 percent of the average pre-Day 1 counts (p < 0.05). A decrease in the average MNC count after LVL was significant on Day 1 only (p < 0.05).(ABSTRACT TRUNCATED AT 250 WORDS)

  12. SU-E-T-578: On Definition of Minimum and Maximum Dose for Target Volume

    SciTech Connect

    Gong, Y; Yu, J; Xiao, Y

    2015-06-15

    Purpose: This study aims to investigate the impact of different minimum and maximum dose definitions in radiotherapy treatment plan quality evaluation criteria by using tumor control probability (TCP) models. Methods: Dosimetric criteria used in RTOG 1308 protocol are used in the investigation. RTOG 1308 is a phase III randomized trial comparing overall survival after photon versus proton chemoradiotherapy for inoperable stage II-IIIB NSCLC. The prescription dose for planning target volume (PTV) is 70Gy. Maximum dose (Dmax) should not exceed 84Gy and minimum dose (Dmin) should not go below 59.5Gy in order for the plan to be “per protocol” (satisfactory).A mathematical model that simulates the characteristics of PTV dose volume histogram (DVH) curve with normalized volume is built. The Dmax and Dmin are noted as percentage volumes Dη% and D(100-δ)%, with η and d ranging from 0 to 3.5. The model includes three straight line sections and goes through four points: D95%= 70Gy, Dη%= 84Gy, D(100-δ)%= 59.5 Gy, and D100%= 0Gy. For each set of η and δ, the TCP value is calculated using the inhomogeneously irradiated tumor logistic model with D50= 74.5Gy and γ50=3.52. Results: TCP varies within 0.9% with η; and δ values between 0 and 1. With η and η varies between 0 and 2, TCP change was up to 2.4%. With η and δ variations from 0 to 3.5, maximum of 8.3% TCP difference is seen. Conclusion: When defined maximum and minimum volume varied more than 2%, significant TCP variations were seen. It is recommended less than 2% volume used in definition of Dmax or Dmin for target dosimetric evaluation criteria. This project was supported by NIH grants U10CA180868, U10CA180822, U24CA180803, U24CA12014 and PA CURE Grant.

  13. Comparison of various radiation therapy techniques in breast cancer where target volume includes mammaria interna region.

    PubMed

    Dogan, Mehmet Hakan; Zincircioglu, Seyit Burhanedtin; Zorlu, Faruk

    2009-01-01

    In breast cancer radiotherapy, the internal mammary lymphatic chain is treated in the target volume in a group of patients with high-risk criteria. Because of the variability of the anatomic region and structures in the irradiation field, there are a number of different techniques in breast radiotherapy. While irradiating the target volume, we also consider minimizing the dose to critical structures such as heart, lung, and contralateral breast tissue. In this study, we evaluated the dose distribution of different radiotherapy techniques in patients with left-sided breast cancer who had breast-conserving surgery. A three-dimensional computerized planning system (3DCPS) was used for each patient to compare wide-field, oblique photon-electron, and perpendicular photon-electron techniques in terms of dose homogeneities in the target volume; the doses received by the contralateral breast, heart, and lung; and the coverage of the internal mammary chain. Data from 3DCPS were controlled by the Rando-phantom and thermoluminescence dosimetry. Critical structures were irradiated with acceptable dose percentages in addition to the internal mammary chain with both wide-field and photon-electron techniques. We detected more frequent hot spots in the oblique photon-electron technique than in the other techniques, and this situation necessitated changing the junctions. The wide-field technique was easy to perform and exposed less radiation dose to the heart than photon-electron techniques. In conclusion, we suggest the use of the wide-field technique in breast irradiation when the internal mammary area is in the target volume.

  14. Postoperative radiation in esophageal squamous cell carcinoma and target volume delineation

    PubMed Central

    Zhu, Yingming; Li, Minghuan; Kong, Li; Yu, Jinming

    2016-01-01

    Esophageal cancer is the sixth leading cause of cancer death worldwide, and patients who are treated with surgery alone, without neoadjuvant therapies, experience frequent relapses. Whether postoperative therapies could reduce the recurrence or improve overall survival is still controversial for these patients. The purpose of our review is to figure out the value of postoperative adjuvant therapy and address the disputes about target volume delineation according to published data. Based on the evidence of increased morbidity and disadvantages on patient survival caused by postoperative chemotherapy or radiotherapy (RT) alone provided by studies in the early 1990s, the use of postoperative adjuvant therapies in cases of esophageal squamous cell carcinoma has diminished substantially and has been replaced gradually by neoadjuvant chemoradiation. With advances in surgery and RT, accumulating evidence has recently rekindled interest in the delivery of postoperative RT or chemoradiotherapy in patients with stage T3/T4 or N1 (lymph node positive) carcinomas after radical surgery. However, due to complications with the standard radiation field, a nonconforming modified field has been adopted in most studies. Therefore, we analyze different field applications and provide suggestions on the optimization of the radiation field based on the major sites of relapse and the surgical non-clearance area. For upper and middle thoracic esophageal carcinomas, the bilateral supraclavicular and superior mediastinal areas remain common sites of recurrence and should be encompassed within the clinical target volume. In contrast, a consensus has yet to be reached regarding lower thoracic esophageal carcinomas; the “standard” clinical target volume is still recommended. Further studies of larger sample sizes should focus on different recurrence patterns, categorized by tumor locations, refined classifications, and differing molecular biology, to provide more information on the

  15. Comparison of Various Radiation Therapy Techniques in Breast Cancer Where Target Volume Includes Mammaria Interna Region

    SciTech Connect

    Dogan, Mehmet Hakan; Zincircioglu, Seyit Burhanedtin Zorlu, Faruk

    2009-04-01

    In breast cancer radiotherapy, the internal mammary lymphatic chain is treated in the target volume in a group of patients with high-risk criteria. Because of the variability of the anatomic region and structures in the irradiation field, there are a number of different techniques in breast radiotherapy. While irradiating the target volume, we also consider minimizing the dose to critical structures such as heart, lung, and contralateral breast tissue. In this study, we evaluated the dose distribution of different radiotherapy techniques in patients with left-sided breast cancer who had breast-conserving surgery. A three-dimensional computerized planning system (3DCPS) was used for each patient to compare wide-field, oblique photon-electron, and perpendicular photon-electron techniques in terms of dose homogeneities in the target volume; the doses received by the contralateral breast, heart, and lung; and the coverage of the internal mammary chain. Data from 3DCPS were controlled by the Rando-phantom and thermoluminescence dosimetry. Critical structures were irradiated with acceptable dose percentages in addition to the internal mammary chain with both wide-field and photon-electron techniques. We detected more frequent hot spots in the oblique photon-electron technique than in the other techniques, and this situation necessitated changing the junctions. The wide-field technique was easy to perform and exposed less radiation dose to the heart than photon-electron techniques. In conclusion, we suggest the use of the wide-field technique in breast irradiation when the internal mammary area is in the target volume.

  16. Understanding Subcutaneous Tissue Pressure for Engineering Injection Devices for Large-Volume Protein Delivery.

    PubMed

    Doughty, Diane V; Clawson, Corbin Z; Lambert, William; Subramony, J Anand

    2016-07-01

    Subcutaneous injection allows for self-administration of monoclonal antibodies using prefilled syringes, autoinjectors, and on-body injector devices. However, subcutaneous injections are typically limited to 1 mL due to concerns of injection pain from volume, viscosity, and formulation characteristics. Back pressure can serve as an indicator for changes in subcutaneous mechanical properties leading to pain during injection. The purpose of this study was to investigate subcutaneous pressures and injection site reactions as a function of injection volume and flow rate. A pressure sensor in the fluid path recorded subcutaneous pressures in the abdomen of Yorkshire swine. The subcutaneous tissue accommodates large-volume injections and with little back pressure as long as low flow rates are used. A 1 mL injection in 10 seconds (360 mL/h flow rate) generated a pressure of 24.0 ± 3.4 kPa, whereas 10 mL delivered in 10 minutes (60 mL/h flow rate) generated a pressure of 7.4 ± 7.8 kPa. After the injection, the pressure decays to 0 over several seconds. The subcutaneous pressures and mechanical strain increased with increasing flow rate but not increasing dose volume. These data are useful for the design of injection devices to mitigate back pressure and pain during subcutaneous large-volume injection. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  17. Tumor target volume for focal therapy of prostate cancer-does multiparametric magnetic resonance imaging allow for a reliable estimation?

    PubMed

    Cornud, F; Khoury, Gaby; Bouazza, Naim; Beuvon, Frederic; Peyromaure, Michael; Flam, Thierry; Zerbib, Marc; Legmann, Paul; Delongchamps, Nicolas B

    2014-05-01

    We determined whether endorectal multiparametric magnetic resonance imaging at 1.5 Tesla could predict tumor target volume in the perspective of focal therapy of prostate cancer. A total of 84 consecutive patients underwent multiparametric magnetic resonance imaging before radical prostatectomy. The volume of each suspicious area detected on magnetic resonance imaging and of all surgical histological foci was determined by planimetry. We first used each magnetic resonance imaging sequence (T2-weighted, diffusion weighted and dynamic contrast enhanced) and then the sequence showing the largest tumor area (multiparametric volume). Finally, the largest area of any sequence was used to calculate a target volume according to the volume of a cylinder. Agreement between magnetic resonance imaging and pathological findings was assessed by linear regression and residual analysis. Histology revealed 99 significant tumors with a volume of greater than 0.2 cc and/or a Gleason score of greater than 6. Of the tumors 16 (16.2%) were undetected by multiparametric magnetic resonance imaging. Linear regression analysis showed that tumor volume estimated by T2-weighted or diffusion weighted imaging correlated significantly with pathological volume (r(2) = 0.82 and 0.83, respectively). Residuals from diffusion weighted imaging volume estimations did not significantly differ from 0. Nevertheless, diffusion weighted imaging underestimated pathological volume in 43 of 87 cases (49%) by a mean of 0.56 cc (range 0.005 to 2.84). Multiparametric and target volumes significantly overestimated pathological volume by a mean of 16% and 44% with underestimation in 28 (32%) and 15 cases (17%), respectively. Volume underestimation was significantly higher for tumor foci less than 0.5 cc. The percent of Gleason grade 4 did not influence tumor volume estimation. Magnetic resonance imaging can detect most significant tumors. However, delineating a target volume may require further adjustment before

  18. Large Eddy Simulations of Volume Restriction Effects on Canopy-Induced Increased-Uplift Regions

    NASA Astrophysics Data System (ADS)

    Chatziefstratiou, E.; Bohrer, G.; Velissariou, V.

    2012-12-01

    ABSTRACT Previous modeling and empirical work have shown the development of important areas of increased uplift past forward-facing steps, and recirculation zones past backward-facing steps. Forests edges represent a special kind of step - a semi-porous one. Current models of the effects of forest edges on the flow represent the forest with a prescribed drag term and does not account for the effects of the solid volume in the forest that restrict the airflow. The RAMS-based Forest Large Eddy Simulation (RAFLES) resolves flows inside and above forested canopies. RAFLES is spatially explicit, and uses the finite volume method to solve a descretized set of Navier-Stokes equations. It accounts for vegetation drag effects on the flow and on the flux exchange between the canopy and the canopy air, proportional to the local leaf density. For a better representation of the vegetation structure in the numerical grid within the canopy sub-domain, the model uses a modified version of the cut cell coordinate system. The hard volume of vegetation elements, in forests, or buildings, in urban environments, within each numerical grid cell is represented via a sub-grid-scale process that shrinks the open apertures between grid cells and reduces the open cell volume. We used RAFLES to simulate the effects of a canopy of varying foliage and stem densities on flow over virtual qube-shaped barriers under neutrally buoyant conditions. We explicitly tested the effects of the numerical representation of volume restriction, independent of the effects of the leaf drag by comparing drag-only simulations, where we prescribed no volume or aperture restriction to the flow, restriction-only simulations, where we prescribed no drag, and control simulations, where both drag and volume plus aperture restriction were included. Our simulations show that representation of the effects of the volume and aperture restriction due to obstacles to flow is important (figure 1) and leads to differences in the

  19. Intra- and Inter-Fraction Mediastinal Nodal Region Motion: Implications for Internal Target Volume Expansions

    PubMed Central

    Thomas, Jonathan G.; Kashani, Rojano; Balter, James M.; Tatro, Daniel; Kong, Feng-Ming; Pan, Charlie C.

    2009-01-01

    Purpose/Objective The purpose of this study is to determine the intra- and inter-fraction motion of mediastinal lymph node regions. Materials/Methods Ten patients with non-small cell lung cancer underwent controlled inhale and exhale CT scans during two sessions (40 total data sets) and mediastinal nodal stations 1–8 [Chapet, et al, IJROBP 2005;63:170–8] were outlined. Corresponding CT scans from different sessions were registered to remove setup error and in this reference frame, the center-of-mass (COM) of each nodal station was compared for right-left (RL), anterior-posterior (AP), and superior-inferior (SI) displacement. In addition, an anisotropic volume expansion encompassing the change of the nodal region margins in all directions was used. Intra-fraction displacement was determined by comparing same session inhale-exhale scans. Inter-fraction reproducibility of nodal regions was determined by comparing the same respiratory phase scans between two sessions. Results Intra-fraction displacement of COM varied between nodal stations. All nodal regions moved posteriorly and superiorly with exhalation, and inferior nodal stations showed the most motion. Based on anisotropic expansion, nodal regions expanded mostly in the RL direction from inhale to exhale. The inter-patient variations in intra-fraction displacement were large compared to the displacements themselves. Moreover, there was substantial inter-fractional displacement (∼5 mm). Conclusions Mediastinal lymph node regions clearly move during breathing. Additionally, deformation of nodal regions between inhale and exhale occurs. The degree of motion and deformation varies by station and by individual. This study indicates the potential advantage of characterizing individualized nodal region motion to safely maximize conformality of mediastinal nodal targets. PMID:19410142

  20. The large volume radiometric calorimeter system: A transportable device to measure scrap category plutonium

    SciTech Connect

    Duff, M.F.; Wetzel, J.R.; Breakall, K.L.; Lemming, J.F.

    1987-01-01

    An innovative design concept has been used to design a large volume calorimeter system. The new design permits two measuring cells to fit in a compact, nonevaporative environmental bath. The system is mounted on a cart for transportability. Samples in the power range of 0.50 to 12.0 W can be measured. The calorimeters will receive samples as large as 22.0 cm in diameter by 43.2 cm high, and smaller samples can be measured without lengthening measurement time or increasing measurement error by using specially designed sleeve adapters. This paper describes the design considerations, construction, theory, applications, and performance of the large volume calorimeter system. 2 refs., 5 figs., 1 tab.

  1. Multicenter evaluation of different target volume delineation concepts in pediatric Hodgkin's lymphoma. A case study.

    PubMed

    Lütgendorf-Caucig, C; Fotina, I; Gallop-Evans, E; Claude, L; Lindh, J; Pelz, T; Knäusl, B; Georg, D; Pötter, R; Dieckmann, K

    2012-11-01

    In pediatric Hodgkin's lymphoma (PHL) improvements in imaging and multiagent chemotherapy have allowed for a reduction in target volume. The involved-node (IN) concept is being tested in several treatment regimens for adult Hodgkin's lymphoma. So far there is no consensus on the definition of the IN. To improve the reproducibility of the IN, we tested a new involved-node-level (INL) concept, using defined anatomical boundaries as basis for target delineation. The aim was to evaluate the feasibility of IN and INL concepts for PHL in terms of interobserver variability. The INL concept was defined for the neck and mediastinum by the PHL Radiotherapy Group based on accepted concepts for solid tumors. Seven radiation oncologists from six European centers contoured neck and mediastinal clinical target volumes (CTVs) of 2 patients according to the IN and the new INL concepts. The median CTVs, coefficient of variation (COV), and general conformity index (CI) were assessed. The intraclass correlation coefficient (ICC) for reliability of delineations was calculated. All observers agreed that INL is a feasible and practicable delineation concept resulting in stronger interobserver concordance than the IN (mediastinum CI(INL) = 0.39 vs. CI(IN) = 0.28, neck left CI(INL) = 0.33; CI(IN) = 0.18; neck right CI(INL) = 0.24, CI(IN) = 0.14). The COV showed less dispersion and the ICC indicated higher reliability of contouring for INL (ICC(INL) = 0.62, p < 0.05) as for IN (ICC(IN) = 0.40, p < 0.05). INL is a practical and feasible alternative to IN resulting in more homogeneous target delineation, and it should be therefore considered as a future target volume concept in PHL.

  2. Resonators for solid-state lasers with large-volume fundamental mode and high alignment stability

    SciTech Connect

    Magni, V.

    1986-01-01

    Resonators containing a focusing rod are thoroughly analyzed. It is shown that, as a function of the dioptric power of the rod, two stability zones of the same width exist and that the mode volume in the rod always presents a stationary point. At this point, the output power is insensitive to the focal length fluctuations, and the mode volume inside the rod is inversely proportional to the range of the input power for which the resonator is stable. The two zones are markedly different with respect to misalignment sensitivity, which is, in general, much greater in one zone than in the other. Two design procedures are presented for monomode solid-state laser resonators with large mode volume and low sensitivity both to focal length fluctuations and to misalignment.

  3. Simplification and validation of a large volume polyurethane foam sampler for the analysis of persistent hydrophobic compounds in drinking water.

    PubMed

    Choi, J W; Lee, J H; Moon, B S; Kannan, K

    2008-08-01

    The use of a large volume polyurethane foam (PUF) sampler was validated for rapid extraction of persistent organic pollutants (POPs), such as polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs), in raw water and treated water from drinking water plants. To validate the recovery of target compounds in the sampling process, a (37)Cl-labeled standard was spiked into the 1st PUF plug prior to filtration. An accelerated solvent extraction method, as a pressurized liquid extractor (PLE), was optimized to extract the PUF plug. For sample preparation, tandem column chromatography (TCC) clean-up was used for rapid analysis. The recoveries of labeled compounds in the analytical method were 80-110% (n = 9). The optimized PUF-PLE-TCC method was applied in the analysis of raw water and treated potable water from seven drinking water plants in South Korea. The sample volume used was between 18 and 102 L for raw water at a flow rate of 0.4-2 L min(-1), 95 and 107 L for treated water at a flow rate of 1.5-2.2 L min(-1). Limit of quantitation (LOQ) was a function of sample volume and it decreased with increasing sample volume. The LOQ of PCDD/Fs in raw waters analyzed by this method was 3-11 times lower than that described using large-size disk-type solid phase extraction (SPE) method. The LOQ of PCDD/F congeners in raw water and treated water were 0.022-3.9 ng L(-1) and 0.018-0.74 ng L(-1), respectively. Octachlorinated dibenzo-p-dioxin (OCDD) was found in some raw water samples, while their concentrations were well below the tentative criterion set by the Japanese Environmental Ministry for drinking water. OCDD was below the LOQ in the treated drinking water.

  4. Constitutive modeling of large inelastic deformation of amorphous polymers: Free volume and shear transformation zone dynamics

    NASA Astrophysics Data System (ADS)

    Voyiadjis, George Z.; Samadi-Dooki, Aref

    2016-06-01

    Due to the lack of the long-range order in their molecular structure, amorphous polymers possess a considerable free volume content in their inter-molecular space. During finite deformation, these free volume holes serve as the potential sites for localized permanent plastic deformation inclusions which are called shear transformation zones (STZs). While the free volume content has been experimentally shown to increase during the course of plastic straining in glassy polymers, thermal analysis of stored energy due to the deformation shows that the STZ nucleation energy decreases at large plastic strains. The evolution of the free volume, and the STZs number density and nucleation energy during the finite straining are formulated in this paper in order to investigate the uniaxial post-yield softening-hardening behavior of the glassy polymers. This study shows that the reduction of the STZ nucleation energy, which is correlated with the free volume increase, brings about the post-yield primary softening of the amorphous polymers up to the steady-state strain value; and the secondary hardening is a result of the increased number density of the STZs, which is required for large plastic strains, while their nucleation energy is stabilized beyond the steady-state strain. The evolutions of the free volume content and STZ nucleation energy are also used to demonstrate the effect of the strain rate, temperature, and thermal history of the sample on its post-yield behavior. The obtained results from the model are compared with the experimental observations on poly(methyl methacrylate) which show a satisfactory consonance.

  5. Evaluation of internal target volume in patients undergoing image-guided intensity modulated adjuvant radiation for gastric cancers.

    PubMed

    Aggarwal, A; Chopra, S; Paul, S N; Engineer, R; Srivastava, S K

    2014-01-01

    To evaluate three-dimensional (3D) displacements of gastric remnant during adjuvant radiation. From January 2011 to September 2012, patients undergoing adjuvant image-guided intensity-modulated radiation on tomotherapy were included. Megavoltage CT (MVCT) data sets from daily treatment were coregistered with Day 1 MVCT. Residual stomach remnant was delineated on the data set, while the remaining were blinded to previous day contours. Gastric volume and centre of mass (COM) were determined for all data sets. The 3D deviation of COM was calculated for each fraction. Mean 3D and standard deviation (SD) were calculated for each patient and study population, and a 95% confidence interval (CI) was determined. Also, systematic and random errors for patient population and internal target volume (ITV) margin were calculated using the van Herk formula. There were 119 images available for 15 patients. Mean volume of remnant was 319 cm(3) (146-454 cm(3)). Gastric remnant expanded in different directions with no specific directional expansion. Average deviations in mediolateral, superoinferior and anteroposterior directions were 9 mm (3-25 mm; SD, 5 mm), 6 mm (3-16 mm; SD, 4 mm) and 5 mm (1-10 mm; SD, 3 mm), respectively, with 95% CI of 18, 15 and 11 mm, and ITV margins of 19.2, 13.5 and 7.8 mm, respectively. There is large variation in gastric remnant volume during the course of radiation. Large displacements observed in the present study necessitate the need to investigate adaptive techniques for optimizing intensity-modulated radiotherapy (IMRT) delivery. An adaptive strategy needs to be developed to optimize IMRT delivery for adjuvant gastric irradiation.

  6. Pyrometry in the Multianvil Press: New approach for temperature measurement in large volume press experiments

    NASA Astrophysics Data System (ADS)

    Sanehira, T.; Wang, Y.; Prakapenka, V.; Rivers, M. L.

    2008-12-01

    Temperature measurement in large volume press experiments has been based on thermocouple emf, which has well known problems: unknown pressure dependence of emf [e.g., 1], chemical reaction between thermocouple and other materials, deformation related texture development in the thermocouple wires [2], and so on. Thus, different techniques to measure temperatures in large volume press experiments other than thermocouples are required to measure accurate temperatures under high pressures. Here we report a new development using pyrometry in the multianvil press, where temperatures are derived on the basis of spectral radiometry. Several high pressure runs were conducted using the 1000 ton press with a DIA module installed at 13 ID-D GSECARS beamline at Advanced Photon Source (APS) [3]. The cubic pressure medium, 14 mm edge length, was made of soft-fired pyrophyllite with a graphite furnace. A moissanite (SiC) single crystal was built inside the pressure medium as a window for the thermal emission signal to go through. An MgO disk with 1.0 mm thickness was inserted in a gap between the top of the SiC crystal and thermocouple hot junction. The bottom of the window crystal was in direct contact with the tip of the anvil, which had a 1.5 mm diameter hole drilled all the way through the anvil axis. An optical fiber was inserted in this hole and the open end of fiber was in contact with the SiC crystal. Thermal spectral radiance from the inner cell assembly was obtained via the fiber and recorded by an Ocean Optics HP2000 spectrometer. The system response of spectrometer was calibrated by a tungsten ribbon ramp (OL550S, Optronic Laboratories, Inc.) with standard of spectral radiance. The cell assembly was compressed up to target value of 15 tons and then temperature was increased up to 1573 K. Radiation spectra were mainly obtained above 873 K and typical integration time was 1 ms or 10 ms. Data collection was done in the process of increase and decrease of temperature. In

  7. Geophysics Under Pressure: Large-Volume Presses Versus the Diamond-Anvil Cell

    NASA Astrophysics Data System (ADS)

    Hazen, R. M.

    2002-05-01

    Prior to 1970, the legacy of Harvard physicist Percy Bridgman dominated high-pressure geophysics. Massive presses with large-volume devices, including piston-cylinder, opposed-anvil, and multi-anvil configurations, were widely used in both science and industry to achieve a range of crustal and upper mantle temperatures and pressures. George Kennedy of UCLA was a particularly influential advocate of large-volume apparatus for geophysical research prior to his death in 1980. The high-pressure scene began to change in 1959 with the invention of the diamond-anvil cell, which was designed simultaneously and independently by John Jamieson at the University of Chicago and Alvin Van Valkenburg at the National Bureau of Standards in Washington, DC. The compact, inexpensive diamond cell achieved record static pressures and had the advantage of optical access to the high-pressure environment. Nevertheless, members of the geophysical community, who favored the substantial sample volumes, geothermally relevant temperature range, and satisfying bulk of large-volume presses, initially viewed the diamond cell with indifference or even contempt. Several factors led to a gradual shift in emphasis from large-volume presses to diamond-anvil cells in geophysical research during the 1960s and 1970s. These factors include (1) their relatively low cost at time of fiscal restraint, (2) Alvin Van Valkenburg's new position as a Program Director at the National Science Foundation in 1964 (when George Kennedy's proposal for a Nation High-Pressure Laboratory was rejected), (3) the development of lasers and micro-analytical spectroscopic techniques suitable for analyzing samples in a diamond cell, and (4) the attainment of record pressures (e.g., 100 GPa in 1975 by Mao and Bell at the Geophysical Laboratory). Today, a more balanced collaborative approach has been adopted by the geophysics and mineral physics community. Many high-pressure laboratories operate a new generation of less expensive

  8. Fabrication and testing of gas filled targets for large scale plasma experiments on Nova

    SciTech Connect

    Stone, G.F.; Spragge, M.; Wallace, R.J.; Rivers, C.J. |

    1995-03-06

    An experimental campaign on the Nova laser was started in July 1993 to study one st of target conditions for the point design of the National Ignition Facility (NIF). The targets were specified to investigate the current NIF target conditions--a plasma of {approximately}3 keV electron temperature and an electron density of {approximately}1.0 E + 21 cm{sup {minus}3}. A gas cell target design was chosen to confine as gas of {approximately}0.01 cm{sup 3} in volume at {approximately} 1 atmosphere. This paper will describe the major steps and processes necessary in the fabrication, testing and delivery of these targets for shots on the Nova Laser at LLNL.

  9. Large-aperture chirped volume Bragg grating based fiber CPA system.

    PubMed

    Liao, Kai-Hsiu; Cheng, Ming-Yuan; Flecher, Emilie; Smirnov, Vadim I; Glebov, Leonid B; Galvanauskas, Almantas

    2007-04-16

    A fiber chirped pulse amplification system at 1558 nm was demonstrated using a large-aperture volume Bragg grating stretcher and compressor made of Photo-Thermal-Refractive (PTR) glass. Such PTR glass based gratings represent a new type of pulse stretching and compressing devices which are compact, monolithic and optically efficient. Furthermore, since PTR glass technology enables volume gratings with transverse apertures which are large, homogeneous and scalable, it also enables high pulse energies and powers far exceeding those achievable with other existing compact pulse-compression technologies. Additionally, reciprocity of chirped gratings with respect to stretching and compression also enables to address a long-standing problem in CPA system design of stretcher-compressor dispersion mismatch.

  10. Large-aperture chirped volume Bragg grating based fiber CPA system

    NASA Astrophysics Data System (ADS)

    Liao, Kai-Hsiu; Cheng, Ming-Yuan; Flecher, Emilie; Smirnov, Vadim I.; Glebov, Leonid B.; Galvanauskas, Almantas

    2007-04-01

    A fiber chirped pulse amplification system at 1558nm was demonstrated using a large-aperture volume Bragg grating stretcher and compressor made of Photo-Thermal-Refractive (PTR) glass. Such PTR glass based gratings represent a new type of pulse stretching and compressing devices which are compact, monolithic and optically efficient. Furthermore, since PTR glass technology enables volume gratings with transverse apertures which are large, homogeneous and scalable, it also enables high pulse energies and powers far exceeding those achievable with other existing compact pulse-compression technologies. Additionally, reciprocity of chirped gratings with respect to stretching and compression also enables to address a long-standing problem in CPA system design of stretcher-compressor dispersion mismatch.

  11. Assembly, operation and disassembly manual for the Battelle Large Volume Water Sampler (BLVWS)

    SciTech Connect

    Thomas, V.W.; Campbell, R.M.

    1984-12-01

    Assembly, operation and disassembly of the Battelle Large Volume Water Sampler (BLVWS) are described in detail. Step by step instructions of assembly, general operation and disassembly are provided to allow an operator completely unfamiliar with the sampler to successfully apply the BLVWS to his research sampling needs. The sampler permits concentration of both particulate and dissolved radionuclides from large volumes of ocean and fresh water. The water sample passes through a filtration section for particle removal then through sorption or ion exchange beds where species of interest are removed. The sampler components which contact the water being sampled are constructed of polyvinylchloride (PVC). The sampler has been successfully applied to many sampling needs over the past fifteen years. 9 references, 8 figures.

  12. HYBRID BRIDGMAN ANVIL DESIGN: AN OPTICAL WINDOW FOR IN-SITU SPECTROSCOPY IN LARGE VOLUME PRESSES

    SciTech Connect

    Lipp, M J; Evans, W J; Yoo, C S

    2005-07-29

    The absence of in-situ optical probes for large volume presses often limits their application to high-pressure materials research. In this paper, we present a unique anvil/optical window-design for use in large volume presses, which consists of an inverted diamond anvil seated in a Bridgman type anvil. A small cylindrical aperture through the Bridgman anvil ending at the back of diamond anvil allows optical access to the sample chamber and permits direct optical spectroscopy measurements, such as ruby fluorescence (in-situ pressure) or Raman spectroscopy. This performance of this anvil-design has been demonstrated by loading KBr to a pressure of 14.5 GPa.

  13. The large volume calorimeter for measuring the pressure cooker'' shipping container

    SciTech Connect

    Kasperski, P.W.; Duff, M.F.; Wetzel, J.R. ); Baker, L.B.; MacMurdo, K.W. )

    1991-01-01

    A precise, low wattage, large volume calorimeter system has been developed at Mound to measure two configurations of the 12081 containment vessel. This system was developed and constructed to perform verification measurements at the Savannah River Site. The calorimeter system has performance design specifications of {plus minus}0.3% error above the 2-watt level, and {plus minus}(0.03% plus 0.006 watts) at power levels below 2 watts (one sigma). Data collected during performance testing shows measurement errors well within this range, even down to 0.1-watt power levels. The development of this calorimeter shows that ultra-precise measurements can be achieved on extremely large volume sample configurations. 1 ref., 5 figs.

  14. [Clinical to target volume margins determination in radiotherapy for anal cancers].

    PubMed

    Libois, V; Mahé, M-A; Rio, E; Maingon, P

    2016-10-01

    There are very few data on the expansion from the clinical target volume (CTV) to the planning target volume (PTV) in the anal cancer treatment. This article aims to collect the different elements needed for the construction of a PTV from scientific data based on a literature analysis. We reviewed the articles published in the medical literature from the last 20years. They concerned setup errors and internal organ mobility of the different volumes of patients treated by conformational radiotherapy and intensity-modulated radiotherapy (anal canal, meso-rectum, common, intern and extern, inguinal and pre-sacral lymph nodes). CTV to PTV margins admitted in the guidelines and atlas of consensus groups (SFRO, RTOG, AGITG) are from 0.7 to 1cm in all directions, based on expert's opinions but not on scientific data. There are no specific studies on the canal anal mobility. Most of the data are from other pelvis cancers (gynecologic, rectum and prostate). Setup errors can be reduced by daily imaging. Patient repositioning and immobilization modalities are mostly local habits rather than scientific consensus. A three-dimensional 1cm margin is generally admitted. Margins reduction must be careful and has to be assessed.

  15. Using Histopathology Breast Cancer Data to Reduce Clinical Target Volume Margins at Radiotherapy

    SciTech Connect

    Stroom, Joep Schlief, Angelique; Alderliesten, Tanja; Peterse, Hans; Bartelink, Harry; Gilhuijs, Kenneth

    2009-07-01

    Purpose: This study aimed to quantify the incidence and extension of microscopic disease around primary breast tumors in patients undergoing breast-conserving therapy (BCT), focusing on a potential application to reduce radiotherapy boost volumes. Methods and Materials: An extensive pathology tumor-distribution study was performed using 38 wide local excision specimens of BCT patients. Specimen orientation was recorded and microscopic findings reconstructed to assess the incidence of microscopic disease around the macroscopic tumor. A model of disease spread was built, showing probability of disease extension outside a treated volume (P{sub out,vol}). The model was applied in 10 new BCT patients. Taking asymmetry of tumor excision into account, new asymmetric margins for the clinical target volume of the boost (CTV{sub boost}) were evaluated that minimize the volume without increasing P{sub out,TTV} (TTV being total treated volume: V{sub surgery} + CTV{sub boost}). Potential reductions in CTV{sub boost} and TTV were evaluated. Results: Microscopic disease beyond the tumor boundary occurred isotropically at distances > 1 cm (intended surgical margin) and > 1.5 cm (intended TTV margin) in 53% and 36% of the excision specimens, respectively. In the 10 prospective patients, the average P{sub out,TTV} was, however, only 16% due to larger surgical margins than intended in some directions. Asymmetric CTV{sub boost} margins reduced the CTV{sub boost} and TTV by 27% (20 cc) and 12% (21 cc) on average, without compromising tumor coverage. Conclusions: Microscopic disease extension may occur beyond the current CTV{sub boost} in approximately one sixth of patients. An asymmetric CTV{sub boost} that corrects for asymmetry of the surgical excision has the potential to reduce boost volumes while maintaining tumor coverage.

  16. Target Volume Delineation for Partial Breast Radiotherapy Planning: Clinical Characteristics Associated with Low Interobserver Concordance

    SciTech Connect

    Petersen, Ross P.; Truong, Pauline T. Kader, Hosam A.; Berthelet, Eric; Lee, Junella C.; Hilts, Michelle L.; Kader, Adam S.; Beckham, Wayne A.; Olivotto, Ivo A.

    2007-09-01

    Purpose: To examine variability in target volume delineation for partial breast radiotherapy planning and evaluate characteristics associated with low interobserver concordance. Methods and Materials: Thirty patients who underwent planning CT for adjuvant breast radiotherapy formed the study cohort. Using a standardized scale to score seroma clarity and consensus contouring guidelines, three radiation oncologists independently graded seroma clarity and delineated seroma volumes for each case. Seroma geometric center coordinates, maximum diameters in three axes, and volumes were recorded. Conformity index (CI), the ratio of overlapping volume and encompassing delineated volume, was calculated for each case. Cases with CI {<=}0.50 were analyzed to identify features associated with low concordance. Results: The median time from surgery to CT was 42.5 days. For geometric center coordinates, variations from the mean were 0.5-1.1 mm and standard deviations (SDs) were 0.5-1.8 mm. For maximum seroma dimensions, variations from the mean and SDs were predominantly <5 mm, with the largest SDs observed in the medial-lateral axis. The mean CI was 0.61 (range, 0.27-0.84). Five cases had CI {<=}0.50. Conformity index was significantly associated with seroma clarity (p < 0.001) and seroma volume (p < 0.002). Features associated with reduced concordance included tissue stranding from the surgical cavity, proximity to muscle, dense breast parenchyma, and benign calcifications that may be mistaken for surgical clips. Conclusion: Variability in seroma contouring occurred in three dimensions, with the largest variations in the medial-lateral axis. Awareness of clinical features associated with reduced concordance may be applied toward training staff and refining contouring guidelines for partial breast radiotherapy trials.

  17. Rapid Adaptive Optical Recovery of Optimal Resolution over LargeVolumes

    PubMed Central

    Wang, Kai; Milkie, Dan; Saxena, Ankur; Engerer, Peter; Misgeld, Thomas; Bronner, Marianne E.; Mumm, Jeff; Betzig, Eric

    2014-01-01

    Using a de-scanned, laser-induced guide star and direct wavefront sensing, we demonstrate adaptive correction of complex optical aberrations at high numerical aperture and a 14 ms update rate. This permits us to compensate for the rapid spatial variation in aberration often encountered in biological specimens, and recover diffraction-limited imaging over large (> 240 μm)3 volumes. We applied this to image fine neuronal processes and subcellular dynamics within the zebrafish brain. PMID:24727653

  18. Technical note: rapid, large-volume resuscitation at resuscitative thoracotomy by intra-cardiac catheterization

    PubMed Central

    Cawich, Shamir O; Naraynsingh, Vijay

    2016-01-01

    An emergency thoracotomy may be life-saving by achieving four goals: (i) releasing cardiac tamponade, (ii) controlling haemorrhage, (iii) allowing access for internal cardiac massage and (iv) clamping the descending aorta to isolate circulation to the upper torso in damage control surgery. We theorize that a new goal should be achieving rapid, large-volume fluid resuscitation and we describe a technique to achieve this. PMID:27887010

  19. A magnetic sorbent for the efficient and rapid extraction of organic micropollutants from large-volume environmental water samples.

    PubMed

    Zhang, Mancheng; Zhou, Qing; Li, Aimin; Shuang, Chendong; Wang, Wei; Wang, Mengqiao

    2013-11-05

    A magnetic solid-phase extraction (MSPE) method based on a novel magnetic sorbent was proposed for the extraction of target compounds from large-volume water samples. First, magnetic hypercrosslinked microspheres (NAND-1) were prepared via membrane emulsification-suspension polymerization and post crosslinking reaction. To ensure that the Fe3O4 nanoparticles could completely pass through the membrane without blocking the pores, oleic acid was used to modify the Fe3O4 nanoparticles, which enhanced lipophilicity and monodispersity of the magnetite nanoparticles. The obtained NAND-1 microspheres exhibited super paramagnetic characteristics and excellent magnetic responsiveness with a saturation magnetization of 2.53 emu/g. In addition, a uniform particle size (~8 μm) and a large average surface area (1303.59 m(2)/g) were also observed, which were both beneficial for the extraction of the target compounds. Thus, NAND-1 has the potential to simultaneously exhibit good extraction efficiencies toward different types of organic micropollutants (OMPs), including triazines, carbamazepine and diethyl phthalate. The conditions of the MSPE based on NAND-1 were optimized by single factor and orthogonal design experiments. This MSPE method needed only a small amount of sorbent (50mg/L) for the extraction of OMPs from a large-volume aquatic sample (5L) and reached equilibrium in a short amount of time (30 min). Moreover, the solution volume, the pH, and the salinity had insignificant influences on the extraction of the eight target OMPs. Under the optimum conditions, the recoveries of the eight OMPs calculated by analyzing the spiked samples were from 91.7% to 99.4%. The NAND-1 could be recycled ten times and still achieve recoveries of the eight OMPs higher than 86%. The limits of detection of the eight OMPs ranged from 1.76 to 27.56 ng/L, and the limits of quantification were from 5.71 to 92.05 ng/L. These results indicated that the proposed method, based on the use of NAND-1

  20. Scanning laser optical computed tomography system for large volume 3D dosimetry

    NASA Astrophysics Data System (ADS)

    Dekker, Kurtis H.; Battista, Jerry J.; Jordan, Kevin J.

    2017-04-01

    Stray light causes artifacts in optical computed tomography (CT) that negatively affect the accuracy of radiation dosimetry in gels or solids. Scatter effects are exacerbated by a large dosimeter volume, which is desirable for direct verification of modern radiotherapy treatment plans such as multiple-isocenter radiosurgery. The goal in this study was to design and characterize an optical CT system that achieves high accuracy primary transmission measurements through effective stray light rejection, while maintaining sufficient scan speed for practical application. We present an optical imaging platform that uses a galvanometer mirror for horizontal scanning, and a translation stage for vertical movement of a laser beam and small area detector for minimal stray light production and acceptance. This is coupled with a custom lens-shaped optical CT aquarium for parallel ray sampling of projections. The scanner images 15 cm diameter, 12 cm height cylindrical volumes at 0.33 mm resolution in approximately 30 min. Attenuation coefficients reconstructed from CT scans agreed with independent cuvette measurements within 2% for both absorbing and scattering solutions as well as small 1.25 cm diameter absorbing phantoms placed within a large, scattering medium that mimics gel. Excellent linearity between the optical CT scanner and the independent measurement was observed for solutions with between 90% and 2% transmission. These results indicate that the scanner should achieve highly accurate dosimetry of large volume dosimeters in a reasonable timeframe for clinical application to radiotherapy dose verification procedures.

  1. Scanning laser optical computed tomography system for large volume 3D dosimetry.

    PubMed

    Dekker, Kurtis H; Battista, Jerry J; Jordan, Kevin J

    2017-04-07

    Stray light causes artifacts in optical computed tomography (CT) that negatively affect the accuracy of radiation dosimetry in gels or solids. Scatter effects are exacerbated by a large dosimeter volume, which is desirable for direct verification of modern radiotherapy treatment plans such as multiple-isocenter radiosurgery. The goal in this study was to design and characterize an optical CT system that achieves high accuracy primary transmission measurements through effective stray light rejection, while maintaining sufficient scan speed for practical application. We present an optical imaging platform that uses a galvanometer mirror for horizontal scanning, and a translation stage for vertical movement of a laser beam and small area detector for minimal stray light production and acceptance. This is coupled with a custom lens-shaped optical CT aquarium for parallel ray sampling of projections. The scanner images 15 cm diameter, 12 cm height cylindrical volumes at 0.33 mm resolution in approximately 30 min. Attenuation coefficients reconstructed from CT scans agreed with independent cuvette measurements within 2% for both absorbing and scattering solutions as well as small 1.25 cm diameter absorbing phantoms placed within a large, scattering medium that mimics gel. Excellent linearity between the optical CT scanner and the independent measurement was observed for solutions with between 90% and 2% transmission. These results indicate that the scanner should achieve highly accurate dosimetry of large volume dosimeters in a reasonable timeframe for clinical application to radiotherapy dose verification procedures.

  2. 3D cell-printing of large-volume tissues: Application to ear regeneration.

    PubMed

    Lee, Jung-Seob; Kim, Byung Soo; Seo, Dong Hwan; Park, Jeong Hun; Cho, Dong-Woo

    2017-01-17

    The three-dimensional (3D) printing of large-volume cells, printed in a clinically relevant size, is one of the most important challenges in the field of tissue engineering. However, few studies have reported the fabrication of large-volume cell-printed constructs (LCCs). To create LCCs, appropriate fabrication conditions should be established: factors involved include fabrication time, residence time, and temperature control of the cell-laden hydrogel in the syringe to ensure high cell viability and functionality. The prolonged time required for 3D printing of LCCs can reduce cell viability and result in insufficient functionality of the construct, because the cells are exposed to a harsh environment during the printing process. In this regard, we present an advanced 3D cell-printing system composed of a clean air workstation, humidifier, and Peltier system, which provides a suitable printing environment for production of LCCs with high cell viability. We confirmed that the advanced 3D cell-printing system was capable of providing enhanced printability of hydrogels and fabricating an ear-shaped LCC with high cell viability. In vivo results for the ear-shaped LCC also showed that printed chondrocytes proliferated sufficiently and differentiated into cartilage tissue. Thus, we conclude that the advanced 3D cell-printing system is a versatile tool to create cell-printed constructs for the generation of large-volume tissues.

  3. Large N_c volume reduction and chiral random matrix theory

    NASA Astrophysics Data System (ADS)

    Lee, J. W.; Hanada, M.; Yamada, N.

    Motivated by recent progress on the understanding of the Eguchi-Kawai (EK) volume equivalence and growing interest in conformal window, we simultaneously use the large-Nc volume reduction and Chiral Random Matrix Theory (chRMT) to study the chiral symmetry breaking of four dimensional SU(Nc) gauge theory with adjoint fermions in the large Nc limit. Although some cares are required because the chRMT limit and 't Hooft limit are not compatible in general, we show that the breakdown of the chiral symmetry can be detected in large-Nc gauge theories. As a first step, we mainly focus on the quenched approximation to establish the methodology. We first confirm that heavy adjoint fermions, introduced as the center symmetry preserver, work as expected and thanks to them the volume reduction holds. Using massless overlap fermion as a probe, we then calculate the low-lying Dirac spectrum for fermion in the adjoint representation to compare to that of chRMT, and find that chiral symmetry is indeed broken in the quenched theory.

  4. Prospects of the search for neutrino bursts from supernovae with Baksan large volume scintillation detector

    NASA Astrophysics Data System (ADS)

    Petkov, V. B.

    2016-11-01

    Observing a high-statistics neutrino signal from the supernova explosions in the Galaxy is a major goal of low-energy neutrino astronomy. The prospects for detecting all flavors of neutrinos and antineutrinos from the core-collapse supernova (ccSN) in operating and forthcoming large liquid scintillation detectors (LLSD) are widely discussed now. One of proposed LLSD is Baksan Large Volume Scintillation Detector (BLVSD). This detector will be installed at the Baksan Neutrino Observatory (BNO) of the Institute for Nuclear Research, Russian Academy of Sciences, at a depth of 4800 m.w.e. Low-energy neutrino astronomy is one of the main lines of research of the BLVSD.

  5. Conference on physics from large gamma-ray detec tor arrays. Volume 2: Proceedings

    NASA Astrophysics Data System (ADS)

    The conference on 'Physics from Large gamma-ray Detector Arrays' is a continuation of the series of conferences that have been organized every two years by the North American Heavy-ion Laboratories. The aim of the conference this year was to encourage discussion of the physics that can be studied with such large arrays. This volume is the collected proceedings from this conference. It discusses properties of nuclear states which can be created in heavy-ion reactions, and which can be observed via such detector systems.

  6. Retroperitoneal Sarcoma Target Volume and Organ at Risk Contour Delineation Agreement Among NRG Sarcoma Radiation Oncologists

    SciTech Connect

    Baldini, Elizabeth H.; Abrams, Ross A.; Bosch, Walter; Roberge, David; Haas, Rick L.M.; Catton, Charles N.; Indelicato, Daniel J.; Olsen, Jeffrey R.; Deville, Curtiland; Chen, Yen-Lin; Finkelstein, Steven E.; DeLaney, Thomas F.; Wang, Dian

    2015-08-01

    Purpose: The purpose of this study was to evaluate the variability in target volume and organ at risk (OAR) contour delineation for retroperitoneal sarcoma (RPS) among 12 sarcoma radiation oncologists. Methods and Materials: Radiation planning computed tomography (CT) scans for 2 cases of RPS were distributed among 12 sarcoma radiation oncologists with instructions for contouring gross tumor volume (GTV), clinical target volume (CTV), high-risk CTV (HR CTV: area judged to be at high risk of resulting in positive margins after resection), and OARs: bowel bag, small bowel, colon, stomach, and duodenum. Analysis of contour agreement was performed using the simultaneous truth and performance level estimation (STAPLE) algorithm and kappa statistics. Results: Ten radiation oncologists contoured both RPS cases, 1 contoured only RPS1, and 1 contoured only RPS2 such that each case was contoured by 11 radiation oncologists. The first case (RPS 1) was a patient with a de-differentiated (DD) liposarcoma (LPS) with a predominant well-differentiated (WD) component, and the second case (RPS 2) was a patient with DD LPS made up almost entirely of a DD component. Contouring agreement for GTV and CTV contours was high. However, the agreement for HR CTVs was only moderate. For OARs, agreement for stomach, bowel bag, small bowel, and colon was high, but agreement for duodenum (distorted by tumor in one of these cases) was fair to moderate. Conclusions: For preoperative treatment of RPS, sarcoma radiation oncologists contoured GTV, CTV, and most OARs with a high level of agreement. HR CTV contours were more variable. Further clarification of this volume with the help of sarcoma surgical oncologists is necessary to reach consensus. More attention to delineation of the duodenum is also needed.

  7. Variation of clinical target volume definition in three-dimensional conformal radiation therapy for prostate cancer.

    PubMed

    Valicenti, R K; Sweet, J W; Hauck, W W; Hudes, R S; Lee, T; Dicker, A P; Waterman, F M; Anne, P R; Corn, B W; Galvin, J M

    1999-07-01

    Currently, three-dimensional conformal radiation therapy (3D-CRT) planning relies on the interpretation of computed tomography (CT) axial images for defining the clinical target volume (CTV). This study investigates the variation among multiple observers to define the CTV used in 3D-CRT for prostate cancer. Seven observers independently delineated the CTVs (prostate +/- seminal vesicles [SV]) from the CT simulation data of 10 prostate cancer patients undergoing 3D-CRT. Six patients underwent CT simulation without the use of contrast material and serve as a control group. The other 4 had urethral and bladder opacification with contrast medium. To determine interobserver variation, we evaluated the derived volume, the maximum dimensions, and the isocenter for each examination of CTV. We assessed the reliability in the CTVs among the observers by correlating the variation for each class of measurements. This was estimated by intraclass correlation coefficient (ICC), with 1.00 defining absolute correlation. For the prostate volumes, the ICC was 0.80 (95% confidence interval [CI]: 0.56-0.96). This changed to 0.92 (95% CI: 0.75-0.99) with the use of contrast material. Similarly, the maximal prostatic dimensions were reliable and improved. There was poor agreement in defining the SV. For this structure, the ICC never exceeded 0.28. The reliability of the isocenter was excellent, with the ICC exceeding 0.83 and 0.90 for the prostate +/- SV, respectively. In 3D-CRT for prostate cancer, there was excellent agreement among multiple observers to define the prostate target volume but poor agreement to define the SV. The use of urethral and bladder contrast improved the reliability of localizing the prostate. For all CTVs, the isocenter was very reliable and should be used to compare the variation in 3D dosimetry among multiple observers.

  8. Potential implications of the bystander effect on TCP and EUD when considering target volume dose heterogeneity.

    PubMed

    Balderson, Michael J; Kirkby, Charles

    2015-01-01

    In light of in vitro evidence suggesting that radiation-induced bystander effects may enhance non-local cell killing, there is potential for impact on radiotherapy treatment planning paradigms such as the goal of delivering a uniform dose throughout the clinical target volume (CTV). This work applies a bystander effect model to calculate equivalent uniform dose (EUD) and tumor control probability (TCP) for external beam prostate treatment and compares the results with a more common model where local response is dictated exclusively by local absorbed dose. The broad assumptions applied in the bystander effect model are intended to place an upper limit on the extent of the results in a clinical context. EUD and TCP of a prostate cancer target volume under conditions of increasing dose heterogeneity were calculated using two models: One incorporating bystander effects derived from previously published in vitro bystander data ( McMahon et al. 2012 , 2013a); and one using a common linear-quadratic (LQ) response that relies exclusively on local absorbed dose. Dose through the CTV was modelled as a normal distribution, where the degree of heterogeneity was then dictated by changing the standard deviation (SD). Also, a representative clinical dose distribution was examined as cold (low dose) sub-volumes were systematically introduced. The bystander model suggests a moderate degree of dose heterogeneity throughout a target volume will yield as good or better outcome compared to a uniform dose in terms of EUD and TCP. For a typical intermediate risk prostate prescription of 78 Gy over 39 fractions maxima in EUD and TCP as a function of increasing SD occurred at SD ∼ 5 Gy. The plots only dropped below the uniform dose values for SD ∼ 10 Gy, almost 13% of the prescribed dose. Small, but potentially significant differences in the outcome metrics between the models were identified in the clinically-derived dose distribution as cold sub-volumes were introduced. In terms of

  9. Large-volume paracentesis with indwelling peritoneal catheter and albumin infusion: a community hospital study

    PubMed Central

    Martin, Daniel K.; Walayat, Saqib; Jinma, Ren; Ahmed, Zohair; Ragunathan, Karthik; Dhillon, Sonu

    2016-01-01

    Background The management of ascites can be problematic. This is especially true in patients with diuretic refractory ascites who develop a tense abdomen. This often results in hypotension and decreased venous return with resulting renal failure. In this paper, we further examine the risks and benefits of utilizing an indwelling peritoneal catheter to remove large-volume ascites over a 72-h period while maintaining intravascular volume and preventing renal failure. Methods We retrospectively reviewed charts and identified 36 consecutive patients undergoing continuous large-volume paracentesis with an indwelling peritoneal catheter. At the time of drain placement, no patients had signs or laboratory parameters suggestive of spontaneous bacterial peritonitis. The patients underwent ascitic fluid removal through an indwelling peritoneal catheter and were supported with scheduled albumin throughout the duration. The catheter was used to remove up to 3 L every 8 h for a maximum of 72 h. Regular laboratory and ascitic fluid testing was performed. All patients had a clinical follow-up within 3 months after the drain placement. Results An average of 16.5 L was removed over the 72-h time frame of indwelling peritoneal catheter maintenance. The albumin infusion utilized correlated to 12 mg/L removed. The average creatinine trend improved in a statistically significant manner from 1.37 on the day of admission to 1.21 on the day of drain removal. No patients developed renal failure during the hospital course. There were no documented episodes of neutrocytic ascites or bacterial peritonitis throughout the study review. Conclusion Large-volume peritoneal drainage with an indwelling peritoneal catheter is safe and effective for patients with tense ascites. Concomitant albumin infusion allows for maintenance of renal function, and no increase in infectious complications was noted. PMID:27802853

  10. Cerebrospinal fluid volume replacement following large endoscopic anterior cranial base resection.

    PubMed

    Blount, Angela; Riley, Kristen; Cure, Joel; Woodworth, Bradford A

    2012-01-01

    Large endoscopic skull-base resections often result in extensive postoperative pneumocephalus secondary to copious evacuation of cerebrospinal fluid (CSF) during the procedures. Replacing CSF lost during craniotomy with saline is a common technique in neurosurgery, but is difficult after extensive transnasal resection of the anterior cranial base because direct transnasal CSF augmentation will escape until the skull base reconstruction is sealed. The present study evaluated the effectiveness of intraoperative CSF volume replacement via lumbar drains on improving postoperative outcomes. Ten large endoscopic anterior skull-base resections (>2.5 cm) were performed from 2008 to 2011. Sellar, parasellar, and transplanum resections were excluded. Etiologies included esthesioneuroblastoma (2), squamous cell carcinoma (2), intracranial dermoid (2), adenocarcinoma (1), adenoid cystic carcinoma (1), melanoma (1), and meningioma (1). Six patients were administered preservative-free normal saline via lumbar drain during skull-base reconstruction. Data collected included volume of postoperative pneumocephalus, intravenous pain medicine requirements 24 hours after surgery, and length of hospital stay. Volume of pneumocephalus (4.78 cm vs 12.8 cm(3) , p = 0.04) and length of hospital stay (2.17 days vs 8.5 days, p = 0.03) were significantly decreased in the normal saline volume replacement group. Average intravenous pain medication requirements were reduced in the first 24 hours postoperatively (8 mg morphine vs 14 mg morphine, p = 0.25), but did not reach statistical significance. Evacuation of intracranial air by transthecal administration of saline during reconstruction of large anterior cranial base defects was an effective technique to decrease postoperative pneumocephalus and length of hospital stay. Further evaluation is warranted. Copyright © 2012 American Rhinologic Society-American Academy of Otolaryngic Allergy, LLC.

  11. Prostate bed target interfractional motion using RTOG consensus definitions and daily CT on rails : Does target motion differ between superior and inferior portions of the clinical target volume?

    PubMed

    Verma, Vivek; Chen, Shifeng; Zhou, Sumin; Enke, Charles A; Wahl, Andrew O

    2017-01-01

    Using high-quality CT-on-rails imaging, the daily motion of the prostate bed clinical target volume (PB-CTV) based on consensus Radiation Therapy Oncology Group (RTOG) definitions (instead of surgical clips/fiducials) was studied. It was assessed whether PB motion in the superior portion of PB-CTV (SUP-CTV) differed from the inferior PB-CTV (INF-CTV). Eight pT2-3bN0-1M0 patients underwent postprostatectomy intensity-modulated radiotherapy, totaling 300 fractions. INF-CTV and SUP-CTV were defined as PB-CTV located inferior and superior to the superior border of the pubic symphysis, respectively. Daily pretreatment CT-on-rails images were compared to the planning CT in the left-right (LR), superoinferior (SI), and anteroposterior (AP) directions. Two parameters were defined: "total PB-CTV motion" represented total shifts from skin tattoos to RTOG-defined anatomic areas; "PB-CTV target motion" (performed for both SUP-CTV and INF-CTV) represented shifts from bone to RTOG-defined anatomic areas (i. e., subtracting shifts from skin tattoos to bone). Mean (± standard deviation, SD) total PB-CTV motion was -1.5 (± 6.0), 1.3 (± 4.5), and 3.7 (± 5.7) mm in LR, SI, and AP directions, respectively. Mean (± SD) PB-CTV target motion was 0.2 (±1.4), 0.3 (±2.4), and 0 (±3.1) mm in the LR, SI, and AP directions, respectively. Mean (± SD) INF-CTV target motion was 0.1 (± 2.8), 0.5 (± 2.2), and 0.2 (± 2.5) mm, and SUP-CTV target motion was 0.3 (± 1.8), 0.5 (± 2.3), and 0 (± 5.0) mm in LR, SI, and AP directions, respectively. No statistically significant differences between INF-CTV and SUP-CTV motion were present in any direction. There are no statistically apparent motion differences between SUP-CTV and INF-CTV. Current uniform planning target volume (PTV) margins are adequate to cover both portions of the CTV.

  12. 3D coronary MR angiography at 1.5 T: Volume-targeted versus whole-heart acquisition.

    PubMed

    Jin, Hang; Zeng, Meng-Su; Ge, Mei-Ying; Yun, Hong; Yang, Shan

    2013-09-01

    To compare volume-targeted acquisition with whole-heart acquisition in 1.5-T free-breathing 3D coronary magnetic resonance angiography (MRA) with parallel imaging. The major coronary arteries were imaged in 36 subjects using the whole-heart and volume-targeted acquisitions with comparable imaging parameters. The quantitative and semiquantitative data derived from these two acquisition methods were analyzed statistically, with P < 0.05 considered significant. Both the right coronary artery (RCA) / left circumflex artery (LCX)- and the left main (LM) / left anterior descending (LAD)-targeted acquisitions had similar results in navigator efficiencies and apparent signal-to-noise ratio (SNR) in comparison with whole-heart acquisition. Apparent contrast-to-noise ratio (CNR) of the volume-targeted imaging was significantly higher than that of the whole-heart imaging. The imaging time required for a whole-heart scan was significantly longer than each of the RCA/LCX- and LM/LAD-targeted acquisitions. However, the sum of scanning times derived from volume-targeted imaging was significantly longer than that of whole-heart acquisition. Both RCA/LCX- and LM/LAD-targeted acquisition yield higher vessel sharpness and overall image quality in comparison with whole-heart acquisition. The lengths of the major coronary arteries were not significantly different for the whole-heart and volume-targeted approaches. The whole-heart method was obviously superior to the volume-targeted method in terms of visualization of the posterior descending artery. For current 1.5-T navigator coronary MRA, volume-targeted and whole-heart acquisitions have their own advantages and the choice of methods may vary in accordance with the different aims of clinical practice. Copyright © 2013 Wiley Periodicals, Inc., a Wiley company.

  13. Enhanced FIB-SEM systems for large-volume 3D imaging

    PubMed Central

    Xu, C Shan; Hayworth, Kenneth J; Lu, Zhiyuan; Grob, Patricia; Hassan, Ahmed M; García-Cerdán, José G; Niyogi, Krishna K; Nogales, Eva; Weinberg, Richard J; Hess, Harald F

    2017-01-01

    Focused Ion Beam Scanning Electron Microscopy (FIB-SEM) can automatically generate 3D images with superior z-axis resolution, yielding data that needs minimal image registration and related post-processing. Obstacles blocking wider adoption of FIB-SEM include slow imaging speed and lack of long-term system stability, which caps the maximum possible acquisition volume. Here, we present techniques that accelerate image acquisition while greatly improving FIB-SEM reliability, allowing the system to operate for months and generating continuously imaged volumes > 106 µm3. These volumes are large enough for connectomics, where the excellent z resolution can help in tracing of small neuronal processes and accelerate the tedious and time-consuming human proofreading effort. Even higher resolution can be achieved on smaller volumes. We present example data sets from mammalian neural tissue, Drosophila brain, and Chlamydomonas reinhardtii to illustrate the power of this novel high-resolution technique to address questions in both connectomics and cell biology. DOI: http://dx.doi.org/10.7554/eLife.25916.001 PMID:28500755

  14. Enhanced FIB-SEM systems for large-volume 3D imaging

    DOE PAGES

    Xu, C. Shan; Hayworth, Kenneth J.; Lu, Zhiyuan; ...

    2017-05-13

    Focused Ion Beam Scanning Electron Microscopy (FIB-SEM) can automatically generate 3D images with superior z-axis resolution, yielding data that needs minimal image registration and related post-processing. Obstacles blocking wider adoption of FIB-SEM include slow imaging speed and lack of long-term system stability, which caps the maximum possible acquisition volume. Here, we present techniques that accelerate image acquisition while greatly improving FIB-SEM reliability, allowing the system to operate for months and generating continuously imaged volumes > 10 6 ?m 3 . These volumes are large enough for connectomics, where the excellent z resolution can help in tracing of small neuronalmore » processes and accelerate the tedious and time-consuming human proofreading effort. Even higher resolution can be achieved on smaller volumes. We present example data sets from mammalian neural tissue, Drosophila brain, and Chlamydomonas reinhardtii to illustrate the power of this novel high-resolution technique to address questions in both connectomics and cell biology.« less

  15. Multiple myeloma patients receiving large volume leukapheresis efficiently yield enough CD34+ cells to allow double transplants.

    PubMed

    Zubair, A C; Rymer, R; Young, J; Keeton, U; Befort, R; Nolot, B; Evans, C; Bleach, T; Torloni, A

    2009-01-01

    Current protocols for myeloma patients require more than one autologous transplant. We performed a retrospective study to determine the cost-effectiveness of large volume leukapheresis (LVL) compared with standard volume leukapheresis (SVL) collection when two transplants are required. We evaluated 87 patients who underwent a cumulative total of 260 LVL and SVL collections. The median product volume per collection was 356 ml for LVL, and this was significantly higher than the median product volume per collection for SVL (median 149.5 ml, P < 0.001). The median total CD34+ cell yield/kg was 6.4 x 10(6) for LVL and 5.2 x 10(6) for SVL. This difference was statistically significant (P = 0.005). Because the target CD34+ cell dose for a single transplant was 3 x 10(6)/kg at our institution, overall the LVL yields enough CD34+ cells that could allow for two transplants. Therefore, more patients in the LVL group were able to undergo a potential second transplant. Because of the reserved cells for a second transplant, LVL patients received significantly less CD34+ cell/kg per transplant than the patients in SVL group (P = <0.001). As a result, LVL group had statistically significant but clinically insignificant delay in neutrophil (P = <0.001) and platelet (P = 0.02) engraftments. Additionally, using LVL instead of SVL to collect >or=6 x 10(6)/kg CD34+ cells may potentially save $7,497 per patient. We therefore conclude that LVL is the method of choice for collection of multiple myeloma patients when two transplants are anticipated.

  16. SDSS-III Baryon Oscillation Spectroscopic Survey data release 12: Galaxy target selection and large-scale structure catalogues

    DOE PAGES

    Reid, Beth; Ho, Shirley; Padmanabhan, Nikhil; ...

    2015-11-17

    The Baryon Oscillation Spectroscopic Survey (BOSS), part of the Sloan Digital Sky Survey (SDSS) III project, has provided the largest survey of galaxy redshifts available to date, in terms of both the number of galaxy redshifts measured by a single survey, and the effective cosmological volume covered. Key to analysing the clustering of these data to provide cosmological measurements is understanding the detailed properties of this sample. Potential issues include variations in the target catalogue caused by changes either in the targeting algorithm or properties of the data used, the pattern of spectroscopic observations, the spatial distribution of targets formore » which redshifts were not obtained, and variations in the target sky density due to observational systematics. We document here the target selection algorithms used to create the galaxy samples that comprise BOSS. We also present the algorithms used to create large-scale structure catalogues for the final Data Release (DR12) samples and the associated random catalogues that quantify the survey mask. The algorithms are an evolution of those used by the BOSS team to construct catalogues from earlier data, and have been designed to accurately quantify the galaxy sample. Furthermore, the code used, designated mksample, is released with this paper.« less

  17. SDSS-III Baryon Oscillation Spectroscopic Survey data release 12: Galaxy target selection and large-scale structure catalogues

    SciTech Connect

    Reid, Beth; Ho, Shirley; Padmanabhan, Nikhil; Percival, Will J.; Tinker, Jeremy; Tojeiro, Rito; White, Marin; Daniel J. Einstein; Maraston, Claudia; Ross, Ashley J.; Sanchez, Ariel G.; Schlegel, David; Sheldon, Erin; Strauss, Michael A.; Thomas, Daniel; Wake, David; Beutler, Florian; Bizyaev, Dmitry; Bolton, Adam S.; Brownstein, Joel R.; Chuang, Chia -Hsun; Dawson, Kyle; Harding, Paul; Kitaura, Francisco -Shu; Leauthaud, Alexie; Masters, Karen; McBride, Cameron K.; More, Surhud; Olmstead, Matthew D.; Oravetz, Daniel; Nuza, Sebastian E.; Pan, Kaike; Parejko, John; Pforr, Janine; Prada, Francisco; Rodriguez-Torres, Sergio; Salazar-Albornoz, Salvador; Samushia, Lado; Schneider, Donald P.; Scoccola, Claudia G.; Simmons, Audrey; Vargas-Magana, Mariana

    2015-11-17

    The Baryon Oscillation Spectroscopic Survey (BOSS), part of the Sloan Digital Sky Survey (SDSS) III project, has provided the largest survey of galaxy redshifts available to date, in terms of both the number of galaxy redshifts measured by a single survey, and the effective cosmological volume covered. Key to analysing the clustering of these data to provide cosmological measurements is understanding the detailed properties of this sample. Potential issues include variations in the target catalogue caused by changes either in the targeting algorithm or properties of the data used, the pattern of spectroscopic observations, the spatial distribution of targets for which redshifts were not obtained, and variations in the target sky density due to observational systematics. We document here the target selection algorithms used to create the galaxy samples that comprise BOSS. We also present the algorithms used to create large-scale structure catalogues for the final Data Release (DR12) samples and the associated random catalogues that quantify the survey mask. The algorithms are an evolution of those used by the BOSS team to construct catalogues from earlier data, and have been designed to accurately quantify the galaxy sample. Furthermore, the code used, designated mksample, is released with this paper.

  18. Does targeted pre-load optimisation by stroke volume variation attenuate a reduction in cardiac output in the prone position.

    PubMed

    Wu, C-Y; Lee, T-S; Chan, K-C; Jeng, C-S; Cheng, Y-J

    2012-07-01

    The prone position can reduce cardiac output by up to 25% due to reduced preload. We hypothesised that preload optimisation targeted to stroke volume variation before turning prone might alleviate this. A supine threshold stroke volume variation of 14% in a preliminary study identified patients whose cardiac outputs would decline when turned prone. In 45 patients, cardiac output declined only in the group whose supine stroke volume variation was high (mean (SD) 5.1 (2.0) to 3.9 (1.9) l.min(-1) ; p < 0.001), but not in patients in whom it was low, or in those in whom stroke volume variation was high, but who received volume preload (p = 0.525 and 0.941, respectively). We conclude that targeted preload optimisation using a supine stroke volume variation value < 14% is effective in preventing falls in cardiac output induced by the prone position.

  19. Gain characteristics of large volume CuBr laser active media

    NASA Astrophysics Data System (ADS)

    Gubarev, F. A.; Troitskiy, V. O.; Trigub, M. V.; Sukhanov, V. B.

    2011-05-01

    The paper presents the experimental results on how the active additive HBr and the temperatures of the containers with CuBr influence the gain characteristics of large volume (8 cm bore, 90 cm long) CuBr laser active media with the external heating of the active zone of the gas discharge tube (GDT). It has been demonstrated that an increase in the concentration of CuBr vapors results in the contraction of the gain profile of the active medium, consistent with the increase of the gain factor in the axial region of GDT. The contraction is also imposed by HBr addition. Despite the fact that we used the external heating of GDT at the pump power of 1.5 kW and less, the energy input is still not sufficient to produce the effective generation for large active volume lasers; and it is evident from the small gain profile width. The maximum gain profile width under experimental conditions (consider Pout/ Pin > 2) was 3 cm; this value was obtained without HBr-additive within the active volume, while the concentration of CuBr vapors being significantly less than optimal, that corresponds to the maximum average lasing power.

  20. Colorimetric paper-based detection of Escherichia coli, Salmonella spp., and Listeria monocytogenes from large volumes of agricultural water.

    PubMed

    Bisha, Bledar; Adkins, Jaclyn A; Jokerst, Jana C; Chandler, Jeffrey C; Pérez-Méndez, Alma; Coleman, Shannon M; Sbodio, Adrian O; Suslow, Trevor V; Danyluk, Michelle D; Henry, Charles S; Goodridge, Lawrence D

    2014-06-09

    This protocol describes rapid colorimetric detection of Escherichia coli, Salmonella spp., and Listeria monocytogenes from large volumes (10 L) of agricultural waters. Here, water is filtered through sterile Modified Moore Swabs (MMS), which consist of a simple gauze filter enclosed in a plastic cartridge, to concentrate bacteria. Following filtration, non-selective or selective enrichments for the target bacteria are performed in the MMS. For colorimetric detection of the target bacteria, the enrichments are then assayed using paper-based analytical devices (µPADs) embedded with bacteria-indicative substrates. Each substrate reacts with target-indicative bacterial enzymes, generating colored products that can be detected visually (qualitative detection) on the µPAD. Alternatively, digital images of the reacted µPADs can be generated with common scanning or photographic devices and analyzed using ImageJ software, allowing for more objective and standardized interpretation of results. Although the biochemical screening procedures are designed to identify the aforementioned bacterial pathogens, in some cases enzymes produced by background microbiota or the degradation of the colorimetric substrates may produce a false positive. Therefore, confirmation using a more discriminatory diagnostic is needed. Nonetheless, this bacterial concentration and detection platform is inexpensive, sensitive (0.1 CFU/ml detection limit), easy to perform, and rapid (concentration, enrichment, and detection are performed within approximately 24 hr), justifying its use as an initial screening method for the microbiological quality of agricultural water.

  1. Colorimetric Paper-based Detection of Escherichia coli, Salmonella spp., and Listeria monocytogenes from Large Volumes of Agricultural Water

    PubMed Central

    Bisha, Bledar; Adkins, Jaclyn A.; Jokerst, Jana C.; Chandler, Jeffrey C.; Pérez-Méndez, Alma; Coleman, Shannon M.; Sbodio, Adrian O.; Suslow, Trevor V.; Danyluk, Michelle D.; Henry, Charles S.; Goodridge, Lawrence D.

    2014-01-01

    This protocol describes rapid colorimetric detection of Escherichia coli, Salmonella spp., and Listeria monocytogenes from large volumes (10 L) of agricultural waters. Here, water is filtered through sterile Modified Moore Swabs (MMS), which consist of a simple gauze filter enclosed in a plastic cartridge, to concentrate bacteria. Following filtration, non-selective or selective enrichments for the target bacteria are performed in the MMS. For colorimetric detection of the target bacteria, the enrichments are then assayed using paper-based analytical devices (µPADs) embedded with bacteria-indicative substrates. Each substrate reacts with target-indicative bacterial enzymes, generating colored products that can be detected visually (qualitative detection) on the µPAD. Alternatively, digital images of the reacted µPADs can be generated with common scanning or photographic devices and analyzed using ImageJ software, allowing for more objective and standardized interpretation of results. Although the biochemical screening procedures are designed to identify the aforementioned bacterial pathogens, in some cases enzymes produced by background microbiota or the degradation of the colorimetric substrates may produce a false positive. Therefore, confirmation using a more discriminatory diagnostic is needed. Nonetheless, this bacterial concentration and detection platform is inexpensive, sensitive (0.1 CFU/ml detection limit), easy to perform, and rapid (concentration, enrichment, and detection are performed within approximately 24 hr), justifying its use as an initial screening method for the microbiological quality of agricultural water. PMID:24962090

  2. A pyramid-based approach to visual exploration of a large volume of vehicle trajectory data

    NASA Astrophysics Data System (ADS)

    Sun, Jing; Li, Xiang

    2012-12-01

    Advances in positioning and wireless communicating technologies make it possible to collect large volumes of trajectory data of moving vehicles in a fast and convenient fashion. These data can be applied to traffic studies. Behind this application, a methodological issue that still requires particular attention is the way these data should be spatially visualized. Trajectory data physically consists of a large number of positioning points. With the dramatic increase of data volume, it becomes a challenge to display and explore these data. Existing commercial software often employs vector-based indexing structures to facilitate the display of a large volume of points, but their performance downgrades quickly when the number of points is very large, for example, tens of millions. In this paper, a pyramid-based approach is proposed. A pyramid method initially is invented to facilitate the display of raster images through the tradeoff between storage space and display time. A pyramid is a set of images at different levels with different resolutions. In this paper, we convert vector-based point data into raster data, and build a gridbased indexing structure in a 2D plane. Then, an image pyramid is built. Moreover, at the same level of a pyramid, image is segmented into mosaics with respect to the requirements of data storage and management. Algorithms or procedures on grid-based indexing structure, image pyramid, image segmentation, and visualization operations are given in this paper. A case study with taxi trajectory data in Shanghai is conducted. Results demonstrate that the proposed method outperforms the existing commercial software.

  3. Volume-staged radiosurgery for large arteriovenous malformations: an evolving paradigm.

    PubMed

    Seymour, Zachary A; Sneed, Penny K; Gupta, Nalin; Lawton, Michael T; Molinaro, Annette M; Young, William; Dowd, Christopher F; Halbach, Van V; Higashida, Randall T; McDermott, Michael W

    2016-01-01

    OBJECT Large arteriovenous malformations (AVMs) remain difficult to treat, and ideal treatment parameters for volume-staged stereotactic radiosurgery (VS-SRS) are still unknown. The object of this study was to compare VS-SRS treatment outcomes for AVMs larger than 10 ml during 2 eras; Era 1 was 1992-March 2004, and Era 2 was May 2004-2008. In Era 2 the authors prospectively decreased the AVM treatment volume, increased the radiation dose per stage, and shortened the interval between stages. METHODS All cases of VS-SRS treatment for AVM performed at a single institution were retrospectively reviewed. RESULTS Of 69 patients intended for VS-SRS, 63 completed all stages. The median patient age at the first stage of VS-SRS was 34 years (range 9-68 years). The median modified radiosurgery-based AVM score (mRBAS), total AVM volume, and volume per stage in Era 1 versus Era 2 were 3.6 versus 2.7, 27.3 ml versus 18.9 ml, and 15.0 ml versus 6.8 ml, respectively. The median radiation dose per stage was 15.5 Gy in Era 1 and 17.0 Gy in Era 2, and the median clinical follow-up period in living patients was 8.6 years in Era 1 and 4.8 years in Era 2. All outcomes were measured from the first stage of VS-SRS. Near or complete obliteration was more common in Era 2 (log-rank test, p = 0.0003), with 3- and 5-year probabilities of 5% and 21%, respectively, in Era 1 compared with 24% and 68% in Era 2. Radiosurgical dose, AVM volume per stage, total AVM volume, era, compact nidus, Spetzler-Martin grade, and mRBAS were significantly associated with near or complete obliteration on univariate analysis. Dose was a strong predictor of response (Cox proportional hazards, p < 0.001, HR 6.99), with 3- and 5-year probabilities of near or complete obliteration of 5% and 16%, respectively, at a dose < 17 Gy versus 23% and 74% at a dose ≥ 17 Gy. Dose per stage, compact nidus, and total AVM volume remained significant predictors of near or complete obliteration on multivariate analysis. Seventeen

  4. The complex aerodynamic footprint of desert locusts revealed by large-volume tomographic particle image velocimetry

    PubMed Central

    Henningsson, Per; Michaelis, Dirk; Nakata, Toshiyuki; Schanz, Daniel; Geisler, Reinhard; Schröder, Andreas; Bomphrey, Richard J.

    2015-01-01

    Particle image velocimetry has been the preferred experimental technique with which to study the aerodynamics of animal flight for over a decade. In that time, hardware has become more accessible and the software has progressed from the acquisition of planes through the flow field to the reconstruction of small volumetric measurements. Until now, it has not been possible to capture large volumes that incorporate the full wavelength of the aerodynamic track left behind during a complete wingbeat cycle. Here, we use a unique apparatus to acquire the first instantaneous wake volume of a flying animal's entire wingbeat. We confirm the presence of wake deformation behind desert locusts and quantify the effect of that deformation on estimates of aerodynamic force and the efficiency of lift generation. We present previously undescribed vortex wake phenomena, including entrainment around the wing-tip vortices of a set of secondary vortices borne of Kelvin–Helmholtz instability in the shear layer behind the flapping wings. PMID:26040598

  5. The use of digital volume tomography in imaging an unusually large composite odontoma in the mandible.

    PubMed

    Bhatavadekar, Neel B; Bouquot, Jerry E

    2009-01-01

    The odontoma is the most common of all odontogenic tumors. Digital volume tomography (DVT) provides a major advantage of decreased radiation and cost-effectiveness, as compared to a conventional computed tomography. There is no known published report utilizing this DVT analysis for assessing and localizing on odontomo. The purpose of this case report was to document the use of digital volume tomography to assess an unusually large composite odontoma in the mondible. Tomographic sections revealed expansion of the buccol cortex and occasional thinning of both the buccol and lingual cortical plates, although there was no pronounced clinically detectable cortical expansion. The sections further demonstrated enomel ond dentin in on irregular mass bearing no morphologic similority to rudimentary teeth. This case highlights the importance of early diagnosis and intervention for treating on odontoma while demonstrating the value of tomographic imaging as on aid to diagnosis.

  6. Non-contact spectroscopic determination of large blood volume fractions in turbid media

    PubMed Central

    Bremmer, Rolf H.; Kanick, Stephen C.; Laan, Nick; Amelink, Arjen; van Leeuwen, Ton G.; Aalders, Maurice C. G.

    2011-01-01

    We report on a non-contact method to quantitatively determine blood volume fractions in turbid media by reflectance spectroscopy in the VIS/NIR spectral wavelength range. This method will be used for spectral analysis of tissue with large absorption coefficients and assist in age determination of bruises and bloodstains. First, a phantom set was constructed to determine the effective photon path length as a function of μa and μs′ on phantoms with an albedo range: 0.02-0.99. Based on these measurements, an empirical model of the path length was established for phantoms with an albedo > 0.1. Next, this model was validated on whole blood mimicking phantoms, to determine the blood volume fractions ρ = 0.12-0.84 within the phantoms (r = 0.993; error < 10%). Finally, the model was proved applicable on cotton fabric phantoms. PMID:21339884

  7. The complex aerodynamic footprint of desert locusts revealed by large-volume tomographic particle image velocimetry.

    PubMed

    Henningsson, Per; Michaelis, Dirk; Nakata, Toshiyuki; Schanz, Daniel; Geisler, Reinhard; Schröder, Andreas; Bomphrey, Richard J

    2015-07-06

    Particle image velocimetry has been the preferred experimental technique with which to study the aerodynamics of animal flight for over a decade. In that time, hardware has become more accessible and the software has progressed from the acquisition of planes through the flow field to the reconstruction of small volumetric measurements. Until now, it has not been possible to capture large volumes that incorporate the full wavelength of the aerodynamic track left behind during a complete wingbeat cycle. Here, we use a unique apparatus to acquire the first instantaneous wake volume of a flying animal's entire wingbeat. We confirm the presence of wake deformation behind desert locusts and quantify the effect of that deformation on estimates of aerodynamic force and the efficiency of lift generation. We present previously undescribed vortex wake phenomena, including entrainment around the wing-tip vortices of a set of secondary vortices borne of Kelvin-Helmholtz instability in the shear layer behind the flapping wings.

  8. Mechanically Cooled Large-Volume Germanium Detector Systems for Neclear Explosion Monitoring DOENA27323-2

    SciTech Connect

    Hull, E.L.

    2006-10-30

    Compact maintenance free mechanical cooling systems are being developed to operate large volume high-resolution gamma-ray detectors for field applications. To accomplish this we are utilizing a newly available generation of Stirling-cycle mechanical coolers to operate the very largest volume germanium detectors with no maintenance. The user will be able to leave these systems unplugged on the shelf until needed. The maintenance-free operating lifetime of these detector systems will exceed 5 years. Three important factors affect the operation of mechanically cooled germanium detectors: temperature, vacuum, and vibration. These factors will be studied in the laboratory at the most fundamental levels to insure a solid understanding of the physical limitations each factor places on a practical mechanically cooled germanium detector system. Using this knowledge, mechanically cooled germanium detector prototype systems will be designed and fabricated.

  9. A volume law for specification of linear channel storage for estimation of large floods

    NASA Astrophysics Data System (ADS)

    Zhang, Shangyou; Cordery, Ian; Sharma, Ashish

    2000-02-01

    A method of estimating large floods using a linear storage-routing approach is presented. The differences between the proposed approach and those traditionally used are (1) that the flood producing properties of basins are represented by a linear system, (2) the storage parameters of the distributed model are determined using a volume law which, unlike other storage-routing models, accounts for the distribution of storage in natural basins, and (3) the basin outflow hydrograph is determined analytically and expressed in a succinct mathematical form. The single model parameter is estimated from observed data without direct fitting, unlike most traditionally used methods. The model was tested by showing it could reproduce observed large floods on a number of basins. This paper compares the proposed approach with a traditionally used storage routing approach using observed flood data from the Hacking River basin in New South Wales, Australia. Results confirm the usefulness of the proposed approach for estimation of large floods.

  10. Very Large Area/Volume Microwave ECR Plasma and Ion Source

    NASA Technical Reports Server (NTRS)

    Foster, John E. (Inventor); Patterson, Michael J. (Inventor)

    2009-01-01

    The present invention is an apparatus and method for producing very large area and large volume plasmas. The invention utilizes electron cyclotron resonances in conjunction with permanent magnets to produce dense, uniform plasmas for long life ion thruster applications or for plasma processing applications such as etching, deposition, ion milling and ion implantation. The large area source is at least five times larger than the 12-inch wafers being processed to date. Its rectangular shape makes it easier to accommodate to materials processing than sources that are circular in shape. The source itself represents the largest ECR ion source built to date. It is electrodeless and does not utilize electromagnets to generate the ECR magnetic circuit, nor does it make use of windows.

  11. Plastic embedding immunolabeled large-volume samples for three-dimensional high-resolution imaging.

    PubMed

    Gang, Yadong; Liu, Xiuli; Wang, Xiaojun; Zhang, Qi; Zhou, Hongfu; Chen, Ruixi; Liu, Ling; Jia, Yao; Yin, Fangfang; Rao, Gong; Chen, Jiadong; Zeng, Shaoqun

    2017-08-01

    High-resolution three-dimensional biomolecule distribution information of large samples is essential to understanding their biological structure and function. Here, we proposed a method combining large sample resin embedding with iDISCO immunofluorescence staining to acquire the profile of biomolecules with high spatial resolution. We evaluated the compatibility of plastic embedding with an iDISCO staining technique and found that the fluorophores and the neuronal fine structures could be well preserved in the Lowicryl HM20 resin, and that numerous antibodies and fluorescent tracers worked well upon Lowicryl HM20 resin embedding. Further, using fluorescence Micro-Optical sectioning tomography (fMOST) technology combined with ultra-thin slicing and imaging, we were able to image the immunolabeled large-volume tissues with high resolution.

  12. Plastic embedding immunolabeled large-volume samples for three-dimensional high-resolution imaging

    PubMed Central

    Gang, Yadong; Liu, Xiuli; Wang, Xiaojun; Zhang, Qi; Zhou, Hongfu; Chen, Ruixi; Liu, Ling; Jia, Yao; Yin, Fangfang; Rao, Gong; Chen, Jiadong; Zeng, Shaoqun

    2017-01-01

    High-resolution three-dimensional biomolecule distribution information of large samples is essential to understanding their biological structure and function. Here, we proposed a method combining large sample resin embedding with iDISCO immunofluorescence staining to acquire the profile of biomolecules with high spatial resolution. We evaluated the compatibility of plastic embedding with an iDISCO staining technique and found that the fluorophores and the neuronal fine structures could be well preserved in the Lowicryl HM20 resin, and that numerous antibodies and fluorescent tracers worked well upon Lowicryl HM20 resin embedding. Further, using fluorescence Micro-Optical sectioning tomography (fMOST) technology combined with ultra-thin slicing and imaging, we were able to image the immunolabeled large-volume tissues with high resolution. PMID:28856037

  13. [Comparison of the volume and localization of internal gross target volume and planning target volume delineated by clips and seroma based on 4D-CT scan for external-beam partial breast irradiation after breast conserving surgery].

    PubMed

    Ding, Yun; Li, Jianbin; Wang, Wei; Wang, Suzhen; Wang, Jinzhi; Ma, Zhifang

    2014-10-01

    To explore the differences in volume and localization of the internal gross target volume and planning target volume delineated by clips and/or seroma based on four-dimensional computed tomography (4D-CT) during free-breathing in breast cancer patients after breast conserving surgery. Fifteen breast cancer patients after breast-conserving surgery (BCS) were recruited for external-beam partial breast irradiation (EB-PBI). On the ten sets CT images, the gross tumor volumes (GTV) formed by the clips, the seroma, and both the clips and seroma were delineated and defined as GTVc, GTVs and GTVc+s, respectively. Ten GTVc, GTVs and GTVc+s on the ten sets CT images produced the IGTVc, IGTVs, IGTVc+s. The PTVc, PTVs, PTVc+s were created by adding 15 mm to the IGTVc, IGTVs, IGTVc+s, respectively. The IGTV and PTV volume and distance between the centers of IGTVc, IGTVs, IGTVc+s and PTVc, PTVs, PTVc+s were all recorded. Conformity index (CI) and degree of inclusion (DI) were calculated for IGTV/IGTV and PTV/PTV, respectively. The volume of IGTVc+s[(35.73 ± 19.77) cm³] was significantly larger than the IGTVc [(28.35 ± 17.54) cm³] and IGTVs [(24.19 ± 21.53) cm³] (P < 0.05), and the volume of PTVc+s [(191.59 ± 69.74) cm³] was significantly larger than that of the PTVc [(161.53 ± 61.07) cm³] and PTVs [(148.98 ± 62.22)cm³] (P < 0.05). There were significant differences between the DIs of IGTVc in IGTVc+s and IGTVc+s in IGTVc, the DIs of IGTVs in IGTVc+s and IGTVc+s in IGTVs, the DIs of PTVc in PTVc+s and PTVc+s in PTVc, and the DIs of PTVs vs. PTVc+s and PTVc+s in PTVs (P < 0.05 for all). The CI of IGTVc/IGTVc+s (0.63 ± 0.14) and the CI of IGTVs/IGTVc+s (0.54 ± 0.17) were significant larger than that of the CI of IGTVc/IGTVs (0.40 ± 0.14)(P < 0.05). There were non-significant differences among the CI of PTVc/PTVs, PTVc/PTVc+s and PTVs/PTVc+s (0.73 ± 0.12, 0.78 ± 0.13 vs. 0.75 ± 0.17). The DIs and CIs of IGTV/IGTV and PTV/PTV were negatively correlated with their

  14. Motion mitigation in intensity modulated particle therapy by internal target volumes covering range changes.

    PubMed

    Graeff, Christian; Durante, Marco; Bert, Christoph

    2012-10-01

    Particle therapy offers benefits over conventional photon therapy but also introduces sensitivity to changes in the water-equivalent path length (WEPL) in case of target motion, e.g., breathing. Target motion can be addressed by the internal target volume (ITV) approach, defined as the CTV plus target movement. In photon therapy, the ITV can be constructed as the geometric union of CTVs in all motion states (GEO-ITV) of a 4D-CT, but this does not account for WEPL-changes. An ITV including WEPL-changes can be defined as the union of all CTVs transformed to a WEPL-equivalent axis along beam's eye view. The resulting WEPL-ITV is field-specific and thus unsuitable for intensity modulated particle therapy (IMPT). The purpose of this study was an IMPT-compatible ITV by splitting geometrical motion and field-specific WEPL changes, following ICRU 78 recommendations. For all fields, the GEO-ITV was used as a common target. This identical geometry for all fields was mapped to an enlarged WEPL extent with a field-specific transformation. As the dose distribution is determined by the WEPL, this is sufficient to achieve equivalent dose coverage as for a geometrically enlarged target volume. The WEPL enlargement is only visible to the specific field and therefore does not increase the target volume of other fields. This avoids unnecessary lateral field extensions, reducing the dose to normal tissue. Homogeneous dose coverage in IMPT is achieved only if the inhomogeneous doses from the individual fields match up during delivery. As the course of the WEPL within each motion phase differs, this cannot be guaranteed by optimizing the fields only in the reference phase. The WEPL-ITV for the reference phase can be amended by CTVs from a subset of motion phases (4D-WEPL-ITV). Here, end-exhale as the reference phase was combined with end-inhale to cover the whole motion range. The GEO-ITV, WEPL-ITV, and 4D-WEPL-ITV were applied in an IMPT simulation of a lung cancer patient case using a

  15. Using four-dimensional computed tomography images to optimize the internal target volume when using volume-modulated arc therapy to treat moving targets.

    PubMed

    Yakoumakis, Nikolaos; Winey, Brian; Killoran, Joseph; Mayo, Charles; Niedermayr, Thomas; Panayiotakis, George; Lingos, Tania; Court, Laurence

    2012-11-08

    In this work we used 4D dose calculations, which include the effects of shape deformations, to investigate an alternative approach to creating the ITV. We hypothesized that instead of needing images from all the breathing phases in the 4D CT dataset to create the outer envelope used for treatment planning, it is possible to exclude images from the phases closest to the inhale phase. We used 4D CT images from 10 patients with lung cancer. For each patient, we drew a gross tumor volume on the exhale-phase image and propagated this to the images from other phases in the 4D CT dataset using commercial image registration software. We created four different ITVs using the N phases closest to the exhale phase (where N = 10, 8, 7, 6). For each ITV contour, we created a volume-modulated arc therapy plan on the exhale-phase CT and normalized it so that the prescribed dose covered at least 95% of the ITV. Each plan was applied to CT images from each CT phase (phases 1-10), and the calculated doses were then mapped to the exhale phase using deformable registration. The effect of the motion was quantified using the dose to 95% of the target on the exhale phase (D95) and tumor control probability. For the three-dimensional and 4D dose calculations of the plan where N = 10, differences in the D95 value varied from 3% to 14%, with an average difference of 7%. For 9 of the 10 patients, the reduction in D95 was less than 5% if eight phases were used to create the ITV. For three of the 10 patients, the reduction in the D95 was less than 5% if seven phases were used to create the ITV. We were unsuccessful in creating a general rule that could be used to create the ITV. Some reduction (8/10 phases) was possible for most, but not all, of the patients, and the ITV reduction was small.

  16. Two-field Kaehler moduli inflation in large volume moduli stabilization

    SciTech Connect

    Yang, Huan-Xiong; Ma, Hong-Liang E-mail: hlma@mail.ustc.edu.cn

    2008-08-15

    In this paper we present a two-field inflation model, which is distinctive in having a non-canonical kinetic Lagrangian and comes from the large volume approach to the moduli stabilization in flux compactification of type IIB superstring on a Calabi-Yau orientifold with h{sup (1,2)}>h{sup (1,1)}{>=}4. The Kaehler moduli are classified as the volume modulus, heavy moduli and two light moduli. The axion-dilaton, complex structure moduli and all heavy Kaehler moduli including the volume modulus are frozen by a non-perturbatively corrected flux superpotential and the {alpha}{sup '}-corrected Kaehler potential in the large volume limit. The minimum of the scalar potential at which the heavy moduli are stabilized provides the dominant potential energy for the surviving light Kaehler moduli. We consider a simplified case where the axionic components in the light Kaehler moduli are further stabilized at the potential minimum and only the geometrical components are taken as scalar fields to drive an assisted-like inflation. For a certain range of moduli stabilization parameters and inflation initial conditions, we obtain a nearly flat power spectrum of the curvature perturbation, with n{sub s} Almost-Equal-To 0.96 at Hubble exit, and an inflationary energy scale of 3 Multiplication-Sign 10{sup 14} GeV. In our model, there is significant correlation between the curvature and isocurvature perturbations on super-Hubble scales, so at the end of inflation a great deal of the curvature power spectrum originates from this correlation.

  17. The mechanism for large-volume fluid pumping via reversible snap-through of dielectric elastomer

    NASA Astrophysics Data System (ADS)

    Li, Zhe; Wang, Yingxi; Foo, Choon Chiang; Godaba, Hareesh; Zhu, Jian; Yap, Choon Hwai

    2017-08-01

    Giant deformation of dielectric elastomers (DEs) via electromechanical instability (or the "snap-through" phenomenon) is a promising mechanism for large-volume fluid pumping. Snap-through of a DE membrane coupled with compressible air has been previously investigated. However, the physics behind reversible snap-through of a DE diaphragm coupled with incompressible fluid for the purpose of fluid pumping has not been well investigated, and the conditions required for reversible snap-through in a hydraulic system are unknown. In this study, we have proposed a concept for large-volume fluid pumping by harnessing reversible snap-through of the dielectric elastomer. The occurrence of snap-through was theoretically modeled and experimentally verified. Both the theoretical and experimental pressure-volume curves of the DE membrane under different actuation voltages were used to design the work loop of the pump, and the theoretical work loop agreed with the experimental work loop. Furthermore, the feasibility of reversible snap-through was experimentally verified, and specific conditions were found necessary for this to occur, such as a minimum actuation voltage, an optimal range of hydraulic pressure exerted on the DE membrane and a suitable actuation frequency. Under optimal working conditions, we demonstrated a pumping volume of up to 110 ml per cycle, which was significantly larger than that without snap-through. Furthermore, we have achieved fluid pumping from a region of low pressure to another region of high pressure. Findings of this study would be useful for real world applications such as the blood pump.

  18. Trace analysis of environmental matrices by large-volume injection and liquid chromatography-mass spectrometry.

    PubMed

    Busetti, Francesco; Backe, Will J; Bendixen, Nina; Maier, Urs; Place, Benjamin; Giger, Walter; Field, Jennifer A

    2012-01-01

    The time-honored convention of concentrating aqueous samples by solid-phase extraction (SPE) is being challenged by the increasingly widespread use of large-volume injection (LVI) liquid chromatography-mass spectrometry (LC-MS) for the determination of traces of polar organic contaminants in environmental samples. Although different LVI approaches have been proposed over the last 40 years, the simplest and most popular way of performing LVI is known as single-column LVI (SC-LVI), in which a large-volume of an aqueous sample is directly injected into an analytical column. For the purposes of this critical review, LVI is defined as an injected sample volume that is ≥10% of the void volume of the analytical column. Compared with other techniques, SC-LVI is easier to set up, because it requires only small hardware modifications to existing autosamplers and, thus, it will be the main focus of this review. Although not new, SC-LVI is gaining acceptance and the approach is emerging as a technique that will render SPE nearly obsolete for many environmental applications. In this review, we discuss: the history and development of various forms of LVI; the critical factors that must be considered when creating and optimizing SC-LVI methods; and typical applications that demonstrate the range of environmental matrices to which LVI is applicable, for example drinking water, groundwater, and surface water including seawater and wastewater. Furthermore, we indicate direction and areas that must be addressed to fully delineate the limits of SC-LVI.

  19. Flow rates of large animal fluid delivery systems used for high-volume crystalloid resuscitation.

    PubMed

    Nolen-Walston, Rose D

    2012-12-01

    Large animal species in states of shock can require particularly high flow rates for volume resuscitation and the ability to deliver adequate volumes rapidly may be a rate-limiting step. The objective of this study was to determine the maximum flow rates of common combinations of IV catheter, extension set, and fluid administration sets. University veterinary teaching hospital. In vitro experimental study. Maximum flow rates were measured using combinations of 4 IV catheters (3 14-Ga and a single 10-Ga), 2 IV catheter extension sets (small bore and large bore), and 2 types of fluid administration sets (standard 2-lead large animal coiled IV set and nonpressurized 4-lead arthroscopic irrigation set). The catheter, extension sets, and administration sets were arranged in 16 configurations, and flow rates measured in triplicate using tap water flowing into an open receptacle. Flow rates ranged from 7.4 L/h with an over-the-wire 14-Ga catheter, small-bore extension, and coil set, to 51.2 L/h using a 10-Ga catheter, no extension, and arthroscopic irrigation set. There was an increase of 1.3-8.9% in flow rates between the large- versus small-bore extension sets. Crystalloid delivery in vivo to an adult horse was 21% slower (9.1 L/h versus 11.5 L/h) than the corresponding in vitro measurement. Extremely high flow rates can be achieved in vitro using large-bore catheters and delivery systems, although the clinical necessity for rates >50 L/h has not been determined. The use of large-bore extension sets resulted in only a minimal increase in flow rate. © Veterinary Emergency and Critical Care Society 2012.

  20. Comparative Study With New Accuracy Metrics for Target Volume Contouring in PET Image Guided Radiation Therapy

    PubMed Central

    Shepherd, T; Teras, M; Beichel, RR; Boellaard, R; Bruynooghe, M; Dicken, V; Gooding, MJ; Julyan, PJ; Lee, JA; Lefèvre, S; Mix, M; Naranjo, V; Wu, X; Zaidi, H; Zeng, Z; Minn, H

    2017-01-01

    The impact of positron emission tomography (PET) on radiation therapy is held back by poor methods of defining functional volumes of interest. Many new software tools are being proposed for contouring target volumes but the different approaches are not adequately compared and their accuracy is poorly evaluated due to the ill-definition of ground truth. This paper compares the largest cohort to date of established, emerging and proposed PET contouring methods, in terms of accuracy and variability. We emphasize spatial accuracy and present a new metric that addresses the lack of unique ground truth. Thirty methods are used at 13 different institutions to contour functional volumes of interest in clinical PET/CT and a custom-built PET phantom representing typical problems in image guided radiotherapy. Contouring methods are grouped according to algorithmic type, level of interactivity and how they exploit structural information in hybrid images. Experiments reveal benefits of high levels of user interaction, as well as simultaneous visualization of CT images and PET gradients to guide interactive procedures. Method-wise evaluation identifies the danger of over-automation and the value of prior knowledge built into an algorithm. PMID:22692898

  1. Influence of FDG-PET on primary nodal target volume definition for head and neck carcinomas.

    PubMed

    van Egmond, Sylvia L; Piscaer, Vera; Janssen, Luuk M; Stegeman, Inge; Hobbelink, Monique G; Grolman, Wilko; Terhaard, Chris H

    The role of 2-[(18)F]-fluoro-2-deoxy-D-glucose (FDG)-positron emission tomography (PET)/computed tomography (CT) in routine diagnostic staging remains controversial. In case of discordance between FDG-PET and CT, a compromise has to be made between the risk of false positive FDG-PET and the risk of delaying appropriate salvage intervention. Second, with intensity modulated radiation therapy (IMRT), smaller radiation fields allow tissue sparing, but could also lead to more marginal failures. We retrospectively studied 283 patients with head and neck carcinoma scheduled for radiotherapy between 2002 and 2010. We analyzed the influence of FDG-PET/CT versus CT alone on defining nodal target volume definition and evaluated its long-term clinical results. Second, the location of nodal recurrences was related to the radiation regional dose distribution. In 92 patients, CT and FDG-PET, performed in mold, showed discordant results. In 33%, nodal staging was altered by FDG-PET. In 24%, FDG-PET also led to an alteration in nodal treatment, including a nodal upstage of 18% and downstage of 6%. In eight of these 92 patients, a regional recurrence occurred. Only two patients had a recurrence in the discordant node on FDG-PET and CT and both received a boost (high dose radiation). These results support the complementary value of FDG-PET/CT compared to CT alone in defining nodal target volume definition for radiotherapy of head and neck cancer.

  2. Gas-filled targets for large scalelength plasma interaction experiments on Nova

    SciTech Connect

    Powers, L.V.; Berger, R.L.; Munro, D.H.

    1994-11-01

    Stimulated Brillouin backscatter from large scale length gas-filled targets has been measured on Nova. These targets were designed to approximate conditions in indirect drive ignition target designs in underdense plasma electron density (n{sub e}{approximately}10{sup 21}/cm{sup 3}), temperature (T{sub e}>3 keV), and gradient scale lengths (L{sub n}{approximately} mm, L{sub v}>6 mm) as well as calculated gain for stimulated Brillouin scattering (SBS). The targets used in these experiments were gas-filled balloons with polyimide walls (gasbags) and gas-filled hohlraums. Detailed characterization using x-ray imaging and x-ray and optical spectroscopy verifies that the calculated plasma conditions are achieved. Time-resolved SBS backscatter from these targets is <3% for conditions similar to ignition target designs.

  3. Delineation of Internal Mammary Nodal Target Volumes in Breast Cancer Radiation Therapy.

    PubMed

    Jethwa, Krishan R; Kahila, Mohamed M; Hunt, Katie N; Brown, Lindsay C; Corbin, Kimberly S; Park, Sean S; Yan, Elizabeth S; Boughey, Judy C; Mutter, Robert W

    2017-03-15

    The optimal clinical target volume for internal mammary (IM) node irradiation is uncertain in an era of increasingly conformal volume-based treatment planning for breast cancer. We mapped the location of gross internal mammary lymph node (IMN) metastases to identify areas at highest risk of harboring occult disease. Patients with axial imaging of IMN disease were identified from a breast cancer registry. The IMN location was transferred onto the corresponding anatomic position on representative axial computed tomography images of a patient in the treatment position and compared with consensus group guidelines of IMN target delineation. The IMN location in 67 patients with 130 IMN metastases was mapped. The location was in the first 3 intercostal spaces in 102 of 130 nodal metastases (78%), whereas 18 of 130 IMNs (14%) were located caudal to the third intercostal space and 10 of 130 IMNs (8%) were located cranial to the first intercostal space. Of the 102 nodal metastases within the first 3 intercostal spaces, 54 (53%) were located within the Radiation Therapy Oncology Group consensus volume. Relative to the IM vessels, 19 nodal metastases (19%) were located medially with a mean distance of 2.2 mm (SD, 2.9 mm) whereas 29 (28%) were located laterally with a mean distance of 3.6 mm (SD, 2.5 mm). Ninety percent of lymph nodes within the first 3 intercostal spaces would have been encompassed within a 4-mm medial and lateral expansion on the IM vessels. In women with indications for elective IMN irradiation, a 4-mm medial and lateral expansion on the IM vessels may be appropriate. In women with known IMN involvement, cranial extension to the confluence of the IM vein with the brachiocephalic vein with or without caudal extension to the fourth or fifth interspace may be considered provided that normal tissue constraints are met. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Routine gastric residual volume measurement and energy target achievement in the PICU: a comparison study.

    PubMed

    Tume, Lyvonne N; Bickerdike, Anna; Latten, Lynne; Davies, Simon; Lefèvre, Madeleine H; Nicolas, Gaëlle W; Valla, Frédéric V

    2017-09-18

    Critically ill children frequently fail to achieve adequate energy intake, and some care practices, such as the measurement of gastric residual volume (GRV), may contribute to this problem. We compared outcomes in two similar European Paediatric Intensive Care Units (PICUs): one which routinely measures GRV (PICU-GRV) to one unit that does not (PICU-noGRV). An observational pilot comparison study was undertaken. Eighty-seven children were included in the study, 42 (PICU-GRV) and 45 (PICU-noGRV). There were no significant differences in the percentage of energy targets achieved in the first 4 days of PICU admission although PICU-noGRV showed more consistent delivery of median (and IQR) energy targets and less under and over feeding for PICU-GRV and PICU-noGRV: day 1 37 (14-72) vs 44 (0-100), day 2 97 (53-126) vs 100 (100-100), day 3 84 (45-112) vs 100 (100-100) and day 4 101 (63-124) vs 100 (100-100). The incidence of vomiting was higher in PICU-GRV. No necrotising enterocolitis was confirmed in either unit, and ventilator-acquired pneumonia rates were not significantly different (7.01 vs 12 5.31 per 1000 ventilator days; p = 0.70) between PICU-GRV and PICU-noGRV units. The practice of routine gastric residual measurement did not significantly impair energy targets in the first 4 days of PICU admission. However, not measuring GRV did not increase vomiting, ventilator-acquired pneumonia or necrotising enterocolitis, which is the main reason clinicians cite for measuring GRV. What is known: • The practice of routinely measuring gastric residual volume is widespread in critical care units • This practice is increasingly being questioned in critically ill patients, both as a practice that increases • The likelihood of delivering inadequate enteral nutrition amounts and as a tool to assess feeding tolerance What is new: • Not routinely measuring gastric residual volume did not increase adverse events of ventilator acquired pneumonia, necrotising enterocolitis

  5. A Novel Technique for Endovascular Removal of Large Volume Right Atrial Tumor Thrombus

    SciTech Connect

    Nickel, Barbara; McClure, Timothy Moriarty, John

    2015-08-15

    Venous thromboembolic disease is a significant cause of morbidity and mortality, particularly in the setting of large volume pulmonary embolism. Thrombolytic therapy has been shown to be a successful treatment modality; however, its use somewhat limited due to the risk of hemorrhage and potential for distal embolization in the setting of large mobile thrombi. In patients where either thrombolysis is contraindicated or unsuccessful, and conventional therapies prove inadequate, surgical thrombectomy may be considered. We present a case of percutaneous endovascular extraction of a large mobile mass extending from the inferior vena cava into the right atrium using the Angiovac device, a venovenous bypass system designed for high-volume aspiration of undesired endovascular material. Standard endovascular methods for removal of cancer-associated thrombus, such as catheter-directed lysis, maceration, and exclusion, may prove inadequate in the setting of underlying tumor thrombus. Where conventional endovascular methods either fail or are unsuitable, endovascular thrombectomy with the Angiovac device may be a useful and safe minimally invasive alternative to open resection.

  6. A Novel Technique for Endovascular Removal of Large Volume Right Atrial Tumor Thrombus.

    PubMed

    Nickel, Barbara; McClure, Timothy; Moriarty, John

    2015-08-01

    Venous thromboembolic disease is a significant cause of morbidity and mortality, particularly in the setting of large volume pulmonary embolism. Thrombolytic therapy has been shown to be a successful treatment modality; however, its use somewhat limited due to the risk of hemorrhage and potential for distal embolization in the setting of large mobile thrombi. In patients where either thrombolysis is contraindicated or unsuccessful, and conventional therapies prove inadequate, surgical thrombectomy may be considered. We present a case of percutaneous endovascular extraction of a large mobile mass extending from the inferior vena cava into the right atrium using the Angiovac device, a venovenous bypass system designed for high-volume aspiration of undesired endovascular material. Standard endovascular methods for removal of cancer-associated thrombus, such as catheter-directed lysis, maceration, and exclusion, may prove inadequate in the setting of underlying tumor thrombus. Where conventional endovascular methods either fail or are unsuitable, endovascular thrombectomy with the Angiovac device may be a useful and safe minimally invasive alternative to open resection.

  7. Large-volume liposuction: a review of 631 consecutive cases over 12 years.

    PubMed

    Commons, G W; Halperin, B; Chang, C C

    2001-11-01

    Since the advent of epinephrine-containing wetting solutions and sophisticated fluid management techniques, increasingly larger and larger volumes of liposuction aspirations have been reported. Unfortunately, with these larger volumes of liposuction being routinely performed, greater rates of complications have also been reported, with the worst of these resulting in deaths. In a response to the increasing concerns over the safety of large-volume liposuction, a critical review of the senior author's own series has been performed to evaluate risks and benefits and to recommend guidelines for safe and effective large-volume liposuction. A retrospective chart review was performed on 631 consecutive patients who underwent liposuction procedures of at least 3000 cc total aspirate. All procedures were performed by the same senior surgeon between January of 1986 and March of 1998. Before September of 1996, traditional liposuction techniques were used. After September of 1996, ultrasound-assisted liposuction was performed. The superwet technique of fluid management was employed for all procedures performed after 1991. The particulars of the surgical and anesthetic techniques used are reviewed in the article. Data collection included preoperative patient demographics, preoperative and postoperative weights and measurements, and preoperative and postoperative photographs. Total aspirate volumes, fluid intakes, and fluid outputs were measured, and all complications were tallied. Average follow-up was 1 year. Results showed the majority of patients to be women, aged 17 to 74 years old. Of the preoperative weights, 98.7 percent were within 50 pounds of ideal chart weight. Total aspirate volumes ranged from 3 to 17 liters, with 94.5 percent of these under 10 liters. Fluid balance measurements showed an average of 120 cc/kg positive fluid balance at the end of the procedure, with none of these patients experiencing any significant fluid balance abnormalities. Cosmetic results

  8. Relapse patterns after radiochemotherapy of glioblastoma with FET PET-guided boost irradiation and simulation to optimize radiation target volume.

    PubMed

    Piroth, Marc D; Galldiks, Norbert; Pinkawa, Michael; Holy, Richard; Stoffels, Gabriele; Ermert, Johannes; Mottaghy, Felix M; Shah, N Jon; Langen, Karl-Josef; Eble, Michael J

    2016-06-24

    O-(2-18 F-fluoroethyl)-L-tyrosine-(FET)-PET may be helpful to improve the definition of radiation target volumes in glioblastomas compared with MRI. We analyzed the relapse patterns in FET-PET after a FET- and MRI-based integrated-boost intensity-modulated radiotherapy (IMRT) of glioblastomas to perform an optimized target volume definition. A relapse pattern analysis was performed in 13 glioblastoma patients treated with radiochemotherapy within a prospective phase-II-study between 2008 and 2009. Radiotherapy was performed as an integrated-boost intensity-modulated radiotherapy (IB-IMRT). The prescribed dose was 72 Gy for the boost target volume, based on baseline FET-PET (FET-1) and 60 Gy for the MRI-based (MRI-1) standard target volume. The single doses were 2.4 and 2.0 Gy, respectively. Location and volume of recurrent tumors in FET-2 and MRI-2 were analyzed related to initial tumor, detected in baseline FET-1. Variable target volumes were created theoretically based on FET-1 to optimally cover recurrent tumor. The tumor volume overlap in FET and MRI was poor both at baseline (median 12 %; range 0-32) and at time of recurrence (13 %; 0-100). Recurrent tumor volume in FET-2 was localized to 39 % (12-91) in the initial tumor volume (FET-1). Over the time a shrinking (mean 12 (5-26) ml) and shifting (mean 6 (1-10 mm) of the resection cavity was seen. A simulated target volume based on active tumor in FET-1 with an additional safety margin of 7 mm around the FET-1 volume covered recurrent FET tumor volume (FET-2) significantly better than a corresponding target volume based on contrast enhancement in MRI-1 with a same safety margin of 7 mm (100 % (54-100) versus 85 % (0-100); p < 0.01). A simulated planning target volume (PTV), based on FET-1 and additional 7 mm margin plus 5 mm margin for setup-uncertainties was significantly smaller than the conventional, MR-based PTV applied in this study (median 160 (112-297) ml versus 231 (117-386) ml, p < 0.001). In this

  9. The role of delineation education programs for improving interobserver variability in target volume delineation in gastric cancer.

    PubMed

    Onal, Cem; Cengiz, Mustafa; Guler, Ozan C; Dolek, Yemliha; Ozkok, Serdar

    2017-05-01

    To assess whether delineation courses for radiation oncologists improve interobserver variability in target volume delineation for post-operative gastric cancer radiotherapy planning. 29 radiation oncologists delineated target volumes in a gastric cancer patient. An experienced radiation oncologist lectured about delineation based on contouring atlas and delineation recommendations. After the course, the radiation oncologists, blinded to the previous delineation, provided delineation for the same patient. The difference between delineated volumes and reference volumes for pre- and post-course clinical target volume (CTV) were 19.8% (-42.4 to 70.6%) and 12.3% (-12.0 to 27.3%) (p = 0.26), respectively. The planning target volume (PTV) differences pre- and post-course according to the reference volume were 20.5% (-40.7 to 93.7%) and 13.1% (-10.6 to 29.5%) (p = 0.30), respectively. The concordance volumes between the pre- and post-course CTVs and PTVs were 467.1 ± 89.2 vs 597.7 ± 54.6 cm(3) (p < 0.001) and 738.6 ± 135.1 vs 893.2 ± 144.6 cm(3) (p < 0.001), respectively. Minimum and maximum observer variations were seen at the cranial part and splenic hilus and at the caudal part of the CTV. The kappa indices compared with the reference contouring at pre- and post-course delineations were 0.68 and 0.82, respectively. The delineation course improved interobserver variability for gastric cancer. However, impact of target volume changes on toxicity and local control should be evaluated for further studies. Advances in knowledge: This study demonstrated that a delineation course based on current recommendations helped physicians delineate smaller and more homogeneous target volumes. Better target volume delineation allows proper target volume irradiation and preventing unnecessary normal tissue irradiation.

  10. GMP Cryopreservation of Large Volumes of Cells for Regenerative Medicine: Active Control of the Freezing Process

    PubMed Central

    Massie, Isobel; Selden, Clare; Hodgson, Humphrey; Gibbons, Stephanie; Morris, G. John

    2014-01-01

    Cryopreservation protocols are increasingly required in regenerative medicine applications but must deliver functional products at clinical scale and comply with Good Manufacturing Process (GMP). While GMP cryopreservation is achievable on a small scale using a Stirling cryocooler-based controlled rate freezer (CRF) (EF600), successful large-scale GMP cryopreservation is more challenging due to heat transfer issues and control of ice nucleation, both complex events that impact success. We have developed a large-scale cryocooler-based CRF (VIA Freeze) that can process larger volumes and have evaluated it using alginate-encapsulated liver cell (HepG2) spheroids (ELS). It is anticipated that ELS will comprise the cellular component of a bioartificial liver and will be required in volumes of ∼2 L for clinical use. Sample temperatures and Stirling cryocooler power consumption was recorded throughout cooling runs for both small (500 μL) and large (200 mL) volume samples. ELS recoveries were assessed using viability (FDA/PI staining with image analysis), cell number (nuclei count), and function (protein secretion), along with cryoscanning electron microscopy and freeze substitution techniques to identify possible injury mechanisms. Slow cooling profiles were successfully applied to samples in both the EF600 and the VIA Freeze, and a number of cooling and warming profiles were evaluated. An optimized cooling protocol with a nonlinear cooling profile from ice nucleation to −60°C was implemented in both the EF600 and VIA Freeze. In the VIA Freeze the nucleation of ice is detected by the control software, allowing both noninvasive detection of the nucleation event for quality control purposes and the potential to modify the cooling profile following ice nucleation in an active manner. When processing 200 mL of ELS in the VIA Freeze—viabilities at 93.4%±7.4%, viable cell numbers at 14.3±1.7 million nuclei/mL alginate, and protein secretion at 10.5±1.7

  11. GMP cryopreservation of large volumes of cells for regenerative medicine: active control of the freezing process.

    PubMed

    Massie, Isobel; Selden, Clare; Hodgson, Humphrey; Fuller, Barry; Gibbons, Stephanie; Morris, G John

    2014-09-01

    Cryopreservation protocols are increasingly required in regenerative medicine applications but must deliver functional products at clinical scale and comply with Good Manufacturing Process (GMP). While GMP cryopreservation is achievable on a small scale using a Stirling cryocooler-based controlled rate freezer (CRF) (EF600), successful large-scale GMP cryopreservation is more challenging due to heat transfer issues and control of ice nucleation, both complex events that impact success. We have developed a large-scale cryocooler-based CRF (VIA Freeze) that can process larger volumes and have evaluated it using alginate-encapsulated liver cell (HepG2) spheroids (ELS). It is anticipated that ELS will comprise the cellular component of a bioartificial liver and will be required in volumes of ∼2 L for clinical use. Sample temperatures and Stirling cryocooler power consumption was recorded throughout cooling runs for both small (500 μL) and large (200 mL) volume samples. ELS recoveries were assessed using viability (FDA/PI staining with image analysis), cell number (nuclei count), and function (protein secretion), along with cryoscanning electron microscopy and freeze substitution techniques to identify possible injury mechanisms. Slow cooling profiles were successfully applied to samples in both the EF600 and the VIA Freeze, and a number of cooling and warming profiles were evaluated. An optimized cooling protocol with a nonlinear cooling profile from ice nucleation to -60°C was implemented in both the EF600 and VIA Freeze. In the VIA Freeze the nucleation of ice is detected by the control software, allowing both noninvasive detection of the nucleation event for quality control purposes and the potential to modify the cooling profile following ice nucleation in an active manner. When processing 200 mL of ELS in the VIA Freeze-viabilities at 93.4% ± 7.4%, viable cell numbers at 14.3 ± 1.7 million nuclei/mL alginate, and protein secretion at 10.5 ± 1.7

  12. Incarceration of umbilical hernia: a rare complication of large volume paracentesis

    PubMed Central

    Khodarahmi, Iman; Shahid, Muhammad Usman; Contractor, Sohail

    2015-01-01

    We present two cases of umbilical hernia incarceration following large volume paracentesis (LVP) in patients with cirrhotic ascites. Both patients became symptomatic within 48 hours after the LVP. Although being rare, given the significantly higher mortality rate of cirrhotic patients undergoing emergent herniorrhaphy, this complication of LVP is potentially serious. Therefore, it is recommended that patients be examined closely for the presence of umbilical hernias before removal of ascitic fluid and an attempt should be made for external reduction of easily reducible hernias, if a hernia is present. PMID:26629305

  13. Fan-beam scanning laser optical computed tomography for large volume dosimetry

    NASA Astrophysics Data System (ADS)

    Dekker, K. H.; Battista, J. J.; Jordan, K. J.

    2017-05-01

    A prototype scanning-laser fan beam optical CT scanner is reported which is capable of high resolution, large volume dosimetry with reasonable scan time. An acylindrical, asymmetric aquarium design is presented which serves to 1) generate parallel-beam scan geometry, 2) focus light towards a small acceptance angle detector, and 3) avoid interference fringe-related artifacts. Preliminary experiments with uniform solution phantoms (11 and 15 cm diameter) and finger phantoms (13.5 mm diameter FEP tubing) demonstrate that the design allows accurate optical CT imaging, with optical CT measurements agreeing within 3% of independent Beer-Lambert law calculations.

  14. Cryogenic loading of large volume presses for high-pressure experimentation and synthesis of novel materials

    SciTech Connect

    Lipp, M J; Evans, W J; Yoo, C S

    2005-01-21

    We present an efficient easily implemented method for loading cryogenic fluids in a large volume press. We specifically apply this method to the high-pressure synthesis of an extended solid derived from CO using a Paris-Edinburgh cell. This method employs cryogenic cooling of Bridgman type WC anvils well insulated from other press components, condensation of the load gas within a brass annulus surrounding the gasket between the Bridgman anvils. We demonstrate the viability of the described approach by synthesizing macroscopic amounts (several milligrams) of polymeric CO-derived material, which were recovered to ambient conditions after compression of pure CO to 5 GPa or above.

  15. Large Volume, Optical and Opto-Mechanical Metrology Techniques for ISIM on JWST

    NASA Technical Reports Server (NTRS)

    Hadjimichael, Theo

    2015-01-01

    The final, flight build of the Integrated Science Instrument Module (ISIM) element of the James Webb Space Telescope is the culmination of years of work across many disciplines and partners. This paper covers the large volume, ambient, optical and opto-mechanical metrology techniques used to verify the mechanical integration of the flight instruments in ISIM, including optical pupil alignment. We present an overview of ISIM's integration and test program, which is in progress, with an emphasis on alignment and optical performance verification. This work is performed at NASA Goddard Space Flight Center, in close collaboration with the European Space Agency, the Canadian Space Agency, and the Mid-Infrared Instrument European Consortium.

  16. Capillary gas chromatographic analysis of nerve agents using large volume injections.

    PubMed

    Degenhardt-Langelaan, C E; Kientz, C E

    1996-02-02

    The use of large volume injections has been studied for the verification of intact organophosphorus chemical warfare agents in water samples. As the use of ethyl acetate caused severe detection problems new potential solvents were evaluated. With the developed procedure, the nerve agents sarin, tabun, soman, DFP and VX can be determined in freshly prepared water samples at ppt levels. Except for the nerve agent tabun all other agents added to the water samples were still present after 8 days at 20-60% levels, if the pH of the water sample is adjusted to ca. 5 shortly after sampling and adjusted to pH 7 for analysis.

  17. Incarceration of umbilical hernia: a rare complication of large volume paracentesis.

    PubMed

    Khodarahmi, Iman; Shahid, Muhammad Usman; Contractor, Sohail

    2015-09-01

    We present two cases of umbilical hernia incarceration following large volume paracentesis (LVP) in patients with cirrhotic ascites. Both patients became symptomatic within 48 hours after the LVP. Although being rare, given the significantly higher mortality rate of cirrhotic patients undergoing emergent herniorrhaphy, this complication of LVP is potentially serious. Therefore, it is recommended that patients be examined closely for the presence of umbilical hernias before removal of ascitic fluid and an attempt should be made for external reduction of easily reducible hernias, if a hernia is present.

  18. Dosimetric Advantages of Midventilation Compared With Internal Target Volume for Radiation Therapy of Pancreatic Cancer.

    PubMed

    Lens, Eelco; van der Horst, Astrid; Versteijne, Eva; van Tienhoven, Geertjan; Bel, Arjan

    2015-07-01

    The midventilation (midV) approach can be used to take respiratory-induced pancreatic tumor motion into account during radiation therapy. In this study, the dosimetric consequences for organs at risk and tumor coverage of using a midV approach compared with using an internal target volume (ITV) were investigated. For each of the 18 patients, 2 treatment plans (25 × 2.0 Gy) were created, 1 using an ITV and 1 using a midV approach. The midV dose distribution was blurred using the respiratory-induced motion from 4-dimensional computed tomography. The resulting planning target volume (PTV) coverage for this blurred dose distribution was analyzed; PTV coverage was required to be at least V95% >98%. In addition, the change in PTV size and the changes in V10Gy, V20Gy, V30Gy, V40Gy, Dmean and D2cc for the stomach and for the duodenum were analyzed; differences were tested for significance using the Wilcoxon signed-rank test. Using a midV approach resulted in sufficient target coverage. A highly significant PTV size reduction of 13.9% (P<.001) was observed. Also, all dose parameters for the stomach and duodenum, except the D2cc of the duodenum, improved significantly (P≤.002). By using the midV approach to account for respiratory-induced tumor motion, a significant PTV reduction and significant dose reductions to the stomach and to the duodenum can be achieved when irradiating pancreatic tumors. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Dosimetric Advantages of Midventilation Compared With Internal Target Volume for Radiation Therapy of Pancreatic Cancer

    SciTech Connect

    Lens, Eelco Horst, Astrid van der; Versteijne, Eva; Tienhoven, Geertjan van; Bel, Arjan

    2015-07-01

    Purpose: The midventilation (midV) approach can be used to take respiratory-induced pancreatic tumor motion into account during radiation therapy. In this study, the dosimetric consequences for organs at risk and tumor coverage of using a midV approach compared with using an internal target volume (ITV) were investigated. Methods and Materials: For each of the 18 patients, 2 treatment plans (25 × 2.0 Gy) were created, 1 using an ITV and 1 using a midV approach. The midV dose distribution was blurred using the respiratory-induced motion from 4-dimensional computed tomography. The resulting planning target volume (PTV) coverage for this blurred dose distribution was analyzed; PTV coverage was required to be at least V{sub 95%} >98%. In addition, the change in PTV size and the changes in V{sub 10Gy}, V{sub 20Gy}, V{sub 30Gy}, V{sub 40Gy}, D{sub mean} and D{sub 2cc} for the stomach and for the duodenum were analyzed; differences were tested for significance using the Wilcoxon signed-rank test. Results: Using a midV approach resulted in sufficient target coverage. A highly significant PTV size reduction of 13.9% (P<.001) was observed. Also, all dose parameters for the stomach and duodenum, except the D{sub 2cc} of the duodenum, improved significantly (P≤.002). Conclusions: By using the midV approach to account for respiratory-induced tumor motion, a significant PTV reduction and significant dose reductions to the stomach and to the duodenum can be achieved when irradiating pancreatic tumors.

  20. Evaluation of interfractional variation of the centroid position and volume of internal target volume during stereotactic body radiotherapy of lung cancer using cone-beam computed tomography.

    PubMed

    Sun, Yanan; Ge, Hong; Cheng, Siguo; Yang, Chengliang; Zhu, Qianqian; Li, Dingjie; Tian, Yuan

    2016-03-08

    The purpose of this study was to determine interfractional variation of the centroid position and volume of internal target volume (ITV) during stereotactic body radiation therapy (SBRT) of lung cancer. From January 2014 to August 2014, a total of 32 patients with 37 primary or metastatic lung tumors were enrolled in our study. All patients received SBRT treatment in 4-5 fractions to a median dose of 48 Gy. Both 3D CT and 4D CT scans were used for radiotherapy treatment planning. 3D CBCT was acquired prior to treatment delivery to verify patient positioning. A total of 163 3D CBCT images were available for evaluation. 3D CBCT scans acquired for verification were registered with simulation CT scans. The ITVs were contoured on all verification 3D CBCT scans and compared to the initial gross target volume (GTV) or ITV in treatment planning system. GTV was based on 3D CT while ITV was based on both 3D CT and 4D CT. To assess the interfractional variation of ITV centroid position, we used vertebrae body adja-cent to the tumor as reference point when performing the registration procedure. To eliminate the effect of time on tumor volume between simulation CT scan and the first fraction, the interfractional variation of ITV was evaluated from the first fraction to the last fraction. The overall 3D vector shift was 4.4 ± 2.5 mm (range: 0.4-13.8 mm). The interfractional variation of ITV centroid position in superior-inferior, anterior-posterior, and left-right directions were -0.7 ± 2.7 mm, -1.4 ± 3.4 mm, and -0.5 ± 2.2 mm, respectively. No significant difference was observed between three directions (p = 0.147). Large interfractional variations (≥ 5 mm) were observed in 12 fractions (9.3%) in superior-inferior direction, 24 fractions (18.6%) in anterior-posterior direction, and 5 fractions (3.9%) in left-right direction. No time trend of tumor volume change measured in 3D CBCT was detected during four fractions (p = 0.074). A significant (p = 0.010) time trend was

  1. Alginate Hydrogel Microencapsulation Inhibits Devitrification and Enables Large-Volume Low-CPA Cell Vitrification.

    PubMed

    Huang, Haishui; Choi, Jung Kyu; Rao, Wei; Zhao, Shuting; Agarwal, Pranay; Zhao, Gang; He, Xiaoming

    2015-11-25

    Cryopreservation of stem cells is important to meet their ever-increasing demand by the burgeoning cell-based medicine. The conventional slow freezing for stem cell cryopreservation suffers from inevitable cell injury associated with ice formation and the vitrification (i.e., no visible ice formation) approach is emerging as a new strategy for cell cryopreservation. A major challenge to cell vitrification is intracellular ice formation (IIF, a lethal event to cells) induced by devitrification (i.e., formation of visible ice in previously vitrified solution) during warming the vitrified cells at cryogenic temperature back to super-zero temperatures. Consequently, high and toxic concentrations of penetrating cryoprotectants (i.e., high CPAs, up to ~8 M) and/or limited sample volumes (up to ~2.5 μl) have been used to minimize IIF during vitrification. We reveal that alginate hydrogel microencapsulation can effectively inhibit devitrification during warming. Our data show that if ice formation were minimized during cooling, IIF is negligible in alginate hydrogel-microencapsulated cells during the entire cooling and warming procedure of vitrification. This enables vitrification of pluripotent and multipotent stem cells with up to ~4 times lower concentration of penetrating CPAs (up to 2 M, low CPA) in up to ~100 times larger sample volume (up to ~250 μl, large volume).

  2. Alginate Hydrogel Microencapsulation Inhibits Devitrification and Enables Large-Volume Low-CPA Cell Vitrification

    PubMed Central

    Huang, Haishui; Choi, Jung Kyu; Rao, Wei; Zhao, Shuting; Agarwal, Pranay; Zhao, Gang

    2015-01-01

    Cryopreservation of stem cells is important to meet their ever-increasing demand by the burgeoning cell-based medicine. The conventional slow freezing for stem cell cryopreservation suffers from inevitable cell injury associated with ice formation and the vitrification (i.e., no visible ice formation) approach is emerging as a new strategy for cell cryopreservation. A major challenge to cell vitrification is intracellular ice formation (IIF, a lethal event to cells) induced by devitrification (i.e., formation of visible ice in previously vitrified solution) during warming the vitrified cells at cryogenic temperature back to super-zero temperatures. Consequently, high and toxic concentrations of penetrating cryoprotectants (i.e., high CPAs, up to ~8 M) and/or limited sample volumes (up to ~2.5 μl) have been used to minimize IIF during vitrification. We reveal that alginate hydrogel microencapsulation can effectively inhibit devitrification during warming. Our data show that if ice formation were minimized during cooling, IIF is negligible in alginate hydrogel-microencapsulated cells during the entire cooling and warming procedure of vitrification. This enables vitrification of pluripotent and multipotent stem cells with up to ~4 times lower concentration of penetrating CPAs (up to 2 M, low CPA) in up to ~100 times larger sample volume (up to ~250 μl, large volume). PMID:26640426

  3. A scale down process for the development of large volume cryopreservation☆

    PubMed Central

    Kilbride, Peter; Morris, G. John; Milne, Stuart; Fuller, Barry; Skepper, Jeremy; Selden, Clare

    2014-01-01

    The process of ice formation and propagation during cryopreservation impacts on the post-thaw outcome for a sample. Two processes, either network solidification or progressive solidification, can dominate the water–ice phase transition with network solidification typically present in small sample cryo-straws or cryo-vials. Progressive solidification is more often observed in larger volumes or environmental freezing. These different ice phase progressions could have a significant impact on cryopreservation in scale-up and larger volume cryo-banking protocols necessitating their study when considering cell therapy applications. This study determines the impact of these different processes on alginate encapsulated liver spheroids (ELS) as a model system during cryopreservation, and develops a method to replicate these differences in an economical manner. It was found in the current studies that progressive solidification resulted in fewer, but proportionally more viable cells 24 h post-thaw compared with network solidification. The differences between the groups diminished at later time points post-thaw as cells recovered the ability to undertake cell division, with no statistically significant differences seen by either 48 h or 72 h in recovery cultures. Thus progressive solidification itself should not prove a significant hurdle in the search for successful cryopreservation in large volumes. However, some small but significant differences were noted in total viable cell recoveries and functional assessments between samples cooled with either progressive or network solidification, and these require further investigation. PMID:25219980

  4. Large intestine-targeted nanoparticle-releasing oral vaccine to control genitorectal viral infection

    PubMed Central

    Zhu, Qing; Talton, James; Zhang, Guofeng; Cunningham, Tshaka; Wang, Zijian; Waters, Robert C.; Kirk, James; Eppler, Bärbel; Dennis M, Klinman; Sui, Yongjun; Gagnon, Susan; Belyakov, Igor M.; Mumper, Russell J.; Berzofsky, Jay A.

    2012-01-01

    Both rectal and vaginal mucosal surfaces serve as transmission routes for pathogenic microorganisms. Vaccination through large intestinal mucosa, previously proven protective for both mucosal sites in animal studies, can be achieved successfully by direct intra-colorectal (i.c.r.) administration, which is, however, clinically impractical. Oral delivery seems preferable, but risks vaccine destruction in the upper gastrointestinal tract. Therefore, we designed a large intestine-targeted oral delivery with pH-dependent microparticles containing vaccine nanoparticles, which induced colorectal immunity in mice comparably to colorectal vaccination and protected against rectal or vaginal viral challenge. Conversely, vaccine targeted to the small intestine induced only small intestinal immunity and provided no rectal or vaginal protection, demonstrating functional compartmentalization within the gut mucosal immune system. Therefore, using this oral vaccine delivery system to target the large intestine, but not the small intestine, may represent a feasible novel strategy for immune protection of rectal and vaginal mucosa. PMID:22797811

  5. Coordinated stabilization for space robot after capturing a noncooperative target with large inertia

    NASA Astrophysics Data System (ADS)

    Zhang, Bo; Liang, Bin; Wang, Ziwei; Mi, Yilin; Zhang, Yiman; Chen, Zhang

    2017-05-01

    A noncooperative target with large inertia grasped by space robot may contain a large unkonwn initial angular momentum, which will cause the compound system unstable. Unloading the unkonwn angular momentum of the compound system is a necessary and diffcult task. In the paper, a coordinated stabilization scenario is introduced to reduce the angular momentum, which has two stages, Momentum Reduction and Momentum Redistribution. For the Momentum Reduction, a modified adaptive sliding mode control algorithm is proposed and used to reduce the unknown angular momentum of target, which uses a new signum function and time-delay estimation to assure fast convergence and achieve good performance with small chattering effect. Finally, a plane dual-arm space robot is simulated, the numerical simulations show that the proposed control algorithm is able to stabilize a noncooperative target with large inertia successfully, while the attitude disturbance of base is small. The control algorithm also has a good robust performance.

  6. MPI-hybrid Parallelism for Volume Rendering on Large, Multi-core Systems

    SciTech Connect

    Howison, Mark; Bethel, E. Wes; Childs, Hank

    2010-03-20

    This work studies the performance and scalability characteristics of"hybrid'" parallel programming and execution as applied to raycasting volume rendering -- a staple visualization algorithm -- on a large, multi-core platform. Historically, the Message Passing Interface (MPI) has become the de-facto standard for parallel programming and execution on modern parallel systems. As the computing industry trends towards multi-core processors, with four- and six-core chips common today and 128-core chips coming soon, we wish to better understand how algorithmic and parallel programming choices impact performance and scalability on large, distributed-memory multi-core systems. Our findings indicate that the hybrid-parallel implementation, at levels of concurrency ranging from 1,728 to 216,000, performs better, uses a smaller absolute memory footprint, and consumes less communication bandwidth than the traditional, MPI-only implementation.

  7. Hybrid Parallelism for Volume Rendering on Large, Multi-core Systems

    SciTech Connect

    Howison, Mark; Bethel, E. Wes; Childs, Hank

    2010-07-12

    This work studies the performance and scalability characteristics of"hybrid'"parallel programming and execution as applied to raycasting volume rendering -- a staple visualization algorithm -- on a large, multi-core platform. Historically, the Message Passing Interface (MPI) has become the de-facto standard for parallel programming and execution on modern parallel systems. As the computing industry trends towards multi-core processors, with four- and six-core chips common today and 128-core chips coming soon, we wish to better understand how algorithmic and parallel programming choices impact performance and scalability on large, distributed-memory multi-core systems. Our findings indicate that the hybrid-parallel implementation, at levels of concurrency ranging from 1,728 to 216,000, performs better, uses a smaller absolute memory footprint, and consumes less communication bandwidth than the traditional, MPI-only implementation.

  8. Hybrid Parallelism for Volume Rendering on Large, Multi-core Systems

    SciTech Connect

    Howison, Mark; Bethel, E. Wes; Childs, Hank

    2010-06-14

    This work studies the performance and scalability characteristics of"hybrid" parallel programming and execution as applied to raycasting volume rendering -- a staple visualization algorithm -- on a large, multi-core platform. Historically, the Message Passing Interface (MPI) has become the de-facto standard for parallel programming and execution on modern parallel systems. As the computing industry trends towards multi-core processors, with four- and six-core chips common today and 128-core chips coming soon, we wish to better understand how algorithmic and parallel programming choices impact performance and scalability on large, distributed-memory multi-core systems. Our findings indicate that the hybrid-parallel implementation, at levels of concurrency ranging from 1,728 to 216,000, performs better, uses a smaller absolute memory footprint, and consumes less communication bandwidth than the traditional, MPI-only implementation.

  9. Hybrid Parallelism for Volume Rendering on Large, Multi- and Many-core Systems

    SciTech Connect

    Howison, Mark; Bethel, E. Wes; Childs, Hank

    2011-01-01

    With the computing industry trending towards multi- and many-core processors, we study how a standard visualization algorithm, ray-casting volume rendering, can benefit from a hybrid parallelism approach. Hybrid parallelism provides the best of both worlds: using distributed-memory parallelism across a large numbers of nodes increases available FLOPs and memory, while exploiting shared-memory parallelism among the cores within each node ensures that each node performs its portion of the larger calculation as efficiently as possible. We demonstrate results from weak and strong scaling studies, at levels of concurrency ranging up to 216,000, and with datasets as large as 12.2 trillion cells. The greatest benefit from hybrid parallelism lies in the communication portion of the algorithm, the dominant cost at higher levels of concurrency. We show that reducing the number of participants with a hybrid approach significantly improves performance.

  10. Hybrid Parallelism for Volume Rendering on Large, Multi-core Systems

    NASA Astrophysics Data System (ADS)

    Howison, M.; Bethel, E. W.; Childs, H.

    2011-10-01

    This work studies the performance and scalability characteristics of "hybrid" parallel programming and execution as applied to raycasting volume rendering - a staple visualization algorithm - on a large, multi-core platform. Historically, the Message Passing Interface (MPI) has become the de-facto standard for parallel programming and execution on modern parallel systems. As the computing industry trends towards multi-core processors, with four- and six-core chips common today, as well as processors capable of running hundreds of concurrent threads (GPUs), we wish to better understand how algorithmic and parallel programming choices impact performance and scalability on large, distributed-memory multi-core systems. Our findings indicate that the hybrid-parallel implementation, at levels of concurrency ranging from 1,728 to 216,000, performs better, uses a smaller absolute memory footprint, and consumes less communication bandwidth than the traditional, MPI-only implementation.

  11. Effectiveness of nuclear interceptors against large single volume chemical/biological warheads

    SciTech Connect

    Mendelsohn, E.

    1993-01-01

    In a continuing series of calculations which explore potential nuclear defenses against chemical and/or bacteriological warheads the author has now completed a study in which he postulated a large canister geometry. Instead of looking at a collection of smaller submunitions as done previously, he has now one single large volume of Sarin (a nerve agent). This is a more stressing case for nuclear defense, in that neutrons must traverse a long path in the hydrogenous solution if they are to deposit their energy in the region of Sarin farthest from the source. The author presents results from Monte Carlo calculations which indicate that differences in energy deposition between Sarin regions close to the source and those farthest from the source have increased very significantly.

  12. Large volume leukapheresis maximizes the progenitor cell yield for allogeneic peripheral blood progenitor donation.

    PubMed

    Kobbe, G; Soehngen, D; Heyll, A; Fischer, J; Thiele, K P; Aul, C; Wernet, P

    1997-04-01

    We have investigated the efficiency and safety of large volume leukapheresis (LVL) for the collection of granulocyte colony-stimulating factor (G-CSF)-mobilized peripheral blood progenitor cells (PBPCs) from healthy donors. In six apheresis sessions in four healthy individuals on a COBE-BCT Spectra cell separator (median processed volume 3.5 X total blood volume, TBV, range 3.3-4.4 X TBV), harvested cells were collected sequentially into three single bags. The collection bags were changed after processing 33%, 66%, and 100% of the prospective apheresis volume, allowing analysis of PBPCs collected at different periods during one harvest. Mononuclear cells (MNCs), CD34+ cells, CD34+ subsets, and lymphocyte subsets were determined in each bag. Substantially more PBPCs were harvested than were in the circulation before G-CSF administration preceding LVL (median 171%, range 69-267%), reflecting progenitor release during the procedure. In donors 1 and 3, the CD34+ cell yields decreased in the third bag to 53% and 42% of that collected in the first bag, whereas the progenitor cell yields in donors 2 and 4 were stable or rose during the procedure, achieving in the third bag 157% and 105% of the number of CD34+ cells collected in the first bag. Minor changes were found in the subsets of CD34+ cells, lymphocytes, and monocytes collected at different periods during a single harvest. LVL was well tolerated. Reversible thombocytopenia developed in all cases. No late effects attributable to LVL or G-CSF were found in the 4 donors and 16 other healthy individuals who have undergone LVL in our institution. We conclude that LVL is safe and maximizes PBPC yields for allogeneic transplantation.

  13. Intensity modulated radiotherapy for high risk prostate cancer based on sentinel node SPECT imaging for target volume definition

    PubMed Central

    Ganswindt, Ute; Paulsen, Frank; Corvin, Stefan; Eichhorn, Kai; Glocker, Stefan; Hundt, Ilse; Birkner, Mattias; Alber, Markus; Anastasiadis, Aristotelis; Stenzl, Arnulf; Bares, Roland; Budach, Wilfried; Bamberg, Michael; Belka, Claus

    2005-01-01

    Background The RTOG 94-13 trial has provided evidence that patients with high risk prostate cancer benefit from an additional radiotherapy to the pelvic nodes combined with concomitant hormonal ablation. Since lymphatic drainage of the prostate is highly variable, the optimal target volume definition for the pelvic lymph nodes is problematic. To overcome this limitation, we tested the feasibility of an intensity modulated radiation therapy (IMRT) protocol, taking under consideration the individual pelvic sentinel node drainage pattern by SPECT functional imaging. Methods Patients with high risk prostate cancer were included. Sentinel nodes (SN) were localised 1.5–3 hours after injection of 250 MBq 99mTc-Nanocoll using a double-headed gamma camera with an integrated X-Ray device. All sentinel node localisations were included into the pelvic clinical target volume (CTV). Dose prescriptions were 50.4 Gy (5 × 1.8 Gy / week) to the pelvis and 70.0 Gy (5 × 2.0 Gy / week) to the prostate including the base of seminal vesicles or whole seminal vesicles. Patients were treated with IMRT. Furthermore a theoretical comparison between IMRT and a three-dimensional conformal technique was performed. Results Since 08/2003 6 patients were treated with this protocol. All patients had detectable sentinel lymph nodes (total 29). 4 of 6 patients showed sentinel node localisations (total 10), that would not have been treated adequately with CT-based planning ('geographical miss') only. The most common localisation for a probable geographical miss was the perirectal area. The comparison between dose-volume-histograms of IMRT- and conventional CT-planning demonstrated clear superiority of IMRT when all sentinel lymph nodes were included. IMRT allowed a significantly better sparing of normal tissue and reduced volumes of small bowel, large bowel and rectum irradiated with critical doses. No gastrointestinal or genitourinary acute toxicity Grade 3 or 4 (RTOG) occurred. Conclusion IMRT

  14. Pathways of deep cyclones associated with large volume changes (LVCs) and major Baltic inflows (MBIs)

    NASA Astrophysics Data System (ADS)

    Lehmann, Andreas; Höflich, Katharina; Post, Piia; Myrberg, Kai

    2016-04-01

    Large volume changes (LVCs) and major Baltic inflows (MBIs) are essential processes for the water exchange and renewal of the deep stagnant deep water in the Baltic Sea deep basins. MBIs are considered as subset of LVCs transporting with the large water volume a big amount of highly saline and oxygenated water into the Baltic Sea. Since the early 1980s the frequency of MBIs has dropped drastically from 5 to 7 events to only one inflow per decade, and long lasting periods without MBIs became the usual state. Only in January 1993, 2003 and December 2014 MBIs occurred that were able to interrupt the stagnation periods in the deep basins of the Baltic Sea. However, in spite of the decreasing frequency of MBIs, there is no obvious decrease of LVCs. Large volume changes have been calculated for the period 1887-2014 filtering daily time series of Landsort sea surface elevation anomalies. The Landsort sea level is known to reflect the mean sea level of the Baltic Sea very well. Thus, LVCs can be calculated from the mean sea level variations. The cases with local minimum and maximum difference resulting of at least 100 km³ of water volume change have been chosen for a closer study of characteristic pathways of deep cyclones. The average duration of a LVC is about 40 days. During this time, 5-6 deep cyclones will move along characteristic storm tracks. We obtained three main routes of deep cyclones which were associated with LVCs, but also with the climatology. One is approaching from the west at about 58-62°N, passing the northern North Sea, Oslo, Sweden and the Island of Gotland, while a second, less frequent one, is approaching from the west at about 65°N, crossing Scandinavia south-eastwards passing the Sea of Bothnia and entering Finland. A third very frequent one is entering the study area north of Scotland turning north-eastwards along the northern coast of Scandinavia. Thus, the conditions for a LVC to happen are a temporal clustering of deep cyclones in certain

  15. Targeted Large-Scale Deletion of Bacterial Genomes Using CRISPR-Nickases.

    PubMed

    Standage-Beier, Kylie; Zhang, Qi; Wang, Xiao

    2015-11-20

    Programmable CRISPR-Cas systems have augmented our ability to produce precise genome manipulations. Here we demonstrate and characterize the ability of CRISPR-Cas derived nickases to direct targeted recombination of both small and large genomic regions flanked by repetitive elements in Escherichia coli. While CRISPR directed double-stranded DNA breaks are highly lethal in many bacteria, we show that CRISPR-guided nickase systems can be programmed to make precise, nonlethal, single-stranded incisions in targeted genomic regions. This induces recombination events and leads to targeted deletion. We demonstrate that dual-targeted nicking enables deletion of 36 and 97 Kb of the genome. Furthermore, multiplex targeting enables deletion of 133 Kb, accounting for approximately 3% of the entire E. coli genome. This technology provides a framework for methods to manipulate bacterial genomes using CRISPR-nickase systems. We envision this system working synergistically with preexisting bacterial genome engineering methods.

  16. Mechanically Cooled Large-Volume Germanium Detector Systems for Nuclear Explosion Monitoring

    SciTech Connect

    Hull, Ethan L.; Pehl, Richard H.; Lathrop, James R.; Martin, Gregory N.; Mashburn, R. B.; Miley, Harry S.; Aalseth, Craig E.; Hossbach, Todd W.; Bowyer, Ted W.

    2006-09-21

    Compact maintenance free mechanical cooling systems are being developed to operate large volume (~570 cm3, ~3 kg, 140% or larger) germanium detectors for field applications. We are using a new generation of Stirling-cycle mechanical coolers for operating the very largest volume germanium detectors with absolutely no maintenance or liquid nitrogen requirements. The user will be able to leave these systems unplugged on the shelf until needed. The flip of a switch will bring a system to life in ~1 hour for measurements. The maintenance-free operating lifetime of these detector systems will exceed five years. These features are necessary for remote long-duration liquid-nitrogen free deployment of large-volume germanium gamma-ray detector systems for Nuclear Explosion Monitoring (NEM). The Radionuclide Aerosol Sampler/Analyzer (RASA) will greatly benefit from the availability of such detectors by eliminating the need for liquid nitrogen at RASA sites while still allowing the very largest available germanium detectors to be utilized. These mechanically cooled germanium detector systems being developed here will provide the largest, most sensitive detectors possible for use with the RASA. To provide such systems, the appropriate technical fundamentals are being researched. Mechanical cooling of germanium detectors has historically been a difficult endeavor. The success or failure of mechanically cooled germanium detectors stems from three main technical issues: temperature, vacuum, and vibration. These factors affect one another. There is a particularly crucial relationship between vacuum and temperature. These factors will be experimentally studied both separately and together to insure a solid understanding of the physical limitations each factor places on a practical mechanically cooled germanium detector system for field use. Using this knowledge, a series of mechanically cooled germanium detector prototype systems are being designed and fabricated. Our collaborators

  17. Geochemical correlation of three large-volume ignimbrites from the Yellowstone hotspot track, Idaho, USA

    NASA Astrophysics Data System (ADS)

    Ellis, Ben S.; Branney, M. J.; Barry, T. L.; Barfod, D.; Bindeman, I.; Wolff, J. A.; Bonnichsen, B.

    2012-01-01

    Three voluminous rhyolitic ignimbrites have been identified along the southern margin of the central Snake River Plain. As a result of wide-scale correlations, new volume estimates can be made for these deposits: ~350 km3 for the Steer Basin Tuff and Cougar Point Tuff XI, and ~1,000 km3 for Cougar Point Tuff XIII. These volumes exclude any associated regional ashfalls and correlation across to the north side of the plain, which has yet to be attempted. Each correlation was achieved using a combination of methods including field logging, whole rock and mineral chemistry, magnetic polarity, oxygen isotope signature and high-precision 40Ar/39Ar geochronology. The Steer Basin Tuff, Cougar Point Tuff XI and Cougar Point Tuff XIII have deposit characteristics typical of `Snake River (SR)-type' volcanism: they are very dense, intensely welded and rheomorphic, unusually well sorted with scarce pumice and lithic lapilli. These features differ significantly from those of deposits from the better-known younger eruptions of Yellowstone. The ignimbrites also exhibit marked depletion in δ18O, which is known to characterise the SR-type rhyolites of the central Snake River Plain, and cumulatively represent ~1,700 km3 of low δ18O rhyolitic magma (feldspar values 2.3-2.9‰) erupted within 800,000 years. Our work reduces the total number of ignimbrites recognised in the central Snake River Plain by 6, improves the link with the ashfall record of Yellowstone hotspot volcanism and suggests that more large-volume ignimbrites await discovery through detailed correlation work amidst the vast ignimbrite record of volcanism in this bimodal large igneous province.

  18. Large-volume flux closure during plasmoid-mediated reconnection in coaxial helicity injection

    SciTech Connect

    Ebrahimi, F.; Raman, R.

    2016-03-23

    A large-volume flux closure during transient coaxial helicity injection (CHI) in NSTX-U is demonstrated through resistive magnetohydrodynamics (MHD) simulations. Several major improvements, including the improved positioning of the divertor poloidal field coils, are projected to improve the CHI start-up phase in NSTX-U. Simulations in the NSTX-U configuration with constant in time coil currents show that with strong flux shaping the injected open field lines (injector flux) rapidly reconnect and form large volume of closed flux surfaces. This is achieved by driving parallel current in the injector flux coil and oppositely directed currents in the flux shaping coils to form a narrow injector flux footprint and push the injector flux into the vessel. As the helicity and plasma are injected into the device, the oppositely directed field lines in the injector region are forced to reconnect through a local Sweet-Parker type reconnection, or to spontaneously reconnect when the elongated current sheet becomes MHD unstable to form plasmoids. In these simulations for the first time, it is found that the closed flux is over 70% of the initial injector flux used to initiate the discharge. Furthermore, these results could work well for the application of transient CHI in devices that employ super conducting coils to generate and sustain the plasma equilibrium.

  19. Colloids Versus Albumin in Large Volume Paracentesis to Prevent Circulatory Dysfunction: Evidence-based Case Report.

    PubMed

    Widjaja, Felix F; Khairan, Paramita; Kamelia, Telly; Hasan, Irsan

    2016-04-01

    Large volume paracentesis may cause paracentesis induced circulatory dysfunction (PICD). Albumin is recommended to prevent this abnormality. Meanwhile, the price of albumin is too expensive and there should be another alternative that may prevent PICD. This report aimed to compare albumin to colloids in preventing PICD. Search strategy was done using PubMed, Scopus, Proquest, dan Academic Health Complete from EBSCO with keywords of "ascites", "albumin", "colloid", "dextran", "hydroxyethyl starch", "gelatin", and "paracentesis induced circulatory dysfunction". Articles was limited to randomized clinical trial and meta-analysis with clinical question of "In hepatic cirrhotic patient undergone large volume paracentesis, whether colloids were similar to albumin to prevent PICD". We found one meta-analysis and four randomized clinical trials (RCT). A meta analysis showed that albumin was still superior of which odds ratio 0.34 (0.23-0.51). Three RCTs showed the same results and one RCT showed albumin was not superior than colloids. We conclude that colloids could not constitute albumin to prevent PICD, but colloids still have a role in patient who undergone paracentesis less than five liters.

  20. Large-volume flux closure during plasmoid-mediated reconnection in coaxial helicity injection

    DOE Data Explorer

    Ebrahimi, F. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Raman, R. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)

    2016-04-01

    A large-volume flux closure during transient coaxial helicity injection (CHI) in NSTX-U is demonstrated through resistive magnetohydrodynamics (MHD) simulations. Several major improvements, including the improved positioning of the divertor poloidal field coils, are projected to improve the CHI start-up phase in NSTX-U. Simulations in the NSTX-U configuration with constant in time coil currents show that with strong flux shaping the injected open field lines (injector flux) rapidly reconnect and form large volume of closed flux surfaces. This is achieved by driving parallel current in the injector flux coil and oppositely directed currents in the flux shaping coils to form a narrow injector flux footprint and push the injector flux into the vessel. As the helicity and plasma are injected into the device, the oppositely directed field lines in the injector region are forced to reconnect through a local Sweet–Parker type reconnection, or to spontaneously reconnect when the elongated current sheet becomes MHD unstable to form plasmoids. In these simulations for the first time, it is found that the closed flux is over 70% of the initial injector flux used to initiate the discharge. These results could work well for the application of transient CHI in devices that employ super conducting coils to generate and sustain the plasma equilibrium.

  1. Large-volume flux closure during plasmoid-mediated reconnection in coaxial helicity injection

    DOE Data Explorer

    Ebrahimi, Fatima [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)] (ORCID:0000000331095367); Raman, Roger [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)] (ORCID:0000000220273271)

    2016-01-01

    A large-volume flux closure during transient coaxial helicity injection (CHI) in NSTX-U is demonstrated through resistive magnetohydrodynamics (MHD) simulations. Several major improvements, including the improved positioning of the divertor poloidal field coils, are projected to improve the CHI start-up phase in NSTX-U. Simulations in the NSTX-U configuration with constant in time coil currents show that with strong flux shaping the injected open field lines (injector flux) rapidly reconnect and form large volume of closed flux surfaces. This is achieved by driving parallel current in the injector flux coil and oppositely directed currents in the flux shaping coils to form a narrow injector flux footprint and push the injector flux into the vessel. As the helicity and plasma are injected into the device, the oppositely directed field lines in the injector region are forced to reconnect through a local Sweet–Parker type reconnection, or to spontaneously reconnect when the elongated current sheet becomes MHD unstable to form plasmoids. In these simulations for the first time, it is found that the closed flux is over 70% of the initial injector flux used to initiate the discharge. These results could work well for the application of transient CHI in devices that employ super conducting coils to generate and sustain the plasma equilibrium.

  2. Controlled ice nucleation--Is it really needed for large-volume sperm cryopreservation?

    PubMed

    Saragusty, Joseph; Osmers, Jan-Hendrik; Hildebrandt, Thomas Bernd

    2016-04-15

    Controlled ice nucleation (CIN) is an integral stage of slow freezing process when relatively large volumes (usually 1 mL or larger) of biological samples in suspension are involved. Without it, a sample will supercool to way below its melting point before ice crystals start forming, resulting in multiple damaging processes. In this study, we tested the hypothesis that when freezing large volumes by the directional freezing technique, a CIN stage is not needed. Semen samples collected from ten bulls were frozen in 2.5-mL HollowTubes in a split-sample manner with and without a CIN stage. Thawed samples were evaluated for viability, acrosome integrity, rate of normal morphology, and, using computer-aided sperm analysis system, for a wide range of motility parameters that were also evaluated after 3 hours of incubation at 37 °C. Analysis of the results found no difference between freezing with and without CIN stage in any and all of the 29 parameters compared (P > 0.1 for all). This similarity was maintained through 3 hours of incubation at 37 °C. Possibly, because of its structure, the directional freezing device promotes continuous ice nucleation so a specific CIN stage is no longer needed, thus reducing costs, energy use, and carbon footprint. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Development of large volume double ring penning plasma discharge source for efficient light emissions.

    PubMed

    Prakash, Ram; Vyas, Gheesa Lal; Jain, Jalaj; Prajapati, Jitendra; Pal, Udit Narayan; Chowdhuri, Malay Bikas; Manchanda, Ranjana

    2012-12-01

    In this paper, the development of large volume double ring Penning plasma discharge source for efficient light emissions is reported. The developed Penning discharge source consists of two cylindrical end cathodes of stainless steel having radius 6 cm and a gap 5.5 cm between them, which are fitted in the top and bottom flanges of the vacuum chamber. Two stainless steel anode rings with thickness 0.4 cm and inner diameters 6.45 cm having separation 2 cm are kept at the discharge centre. Neodymium (Nd(2)Fe(14)B) permanent magnets are physically inserted behind the cathodes for producing nearly uniform magnetic field of ~0.1 T at the center. Experiments and simulations have been performed for single and double anode ring configurations using helium gas discharge, which infer that double ring configuration gives better light emissions in the large volume Penning plasma discharge arrangement. The optical emission spectroscopy measurements are used to complement the observations. The spectral line-ratio technique is utilized to determine the electron plasma density. The estimated electron plasma density in double ring plasma configuration is ~2 × 10(11) cm(-3), which is around one order of magnitude larger than that of single ring arrangement.

  4. Development of large volume double ring penning plasma discharge source for efficient light emissions

    SciTech Connect

    Prakash, Ram; Vyas, Gheesa Lal; Jain, Jalaj; Prajapati, Jitendra; Pal, Udit Narayan; Chowdhuri, Malay Bikas; Manchanda, Ranjana

    2012-12-15

    In this paper, the development of large volume double ring Penning plasma discharge source for efficient light emissions is reported. The developed Penning discharge source consists of two cylindrical end cathodes of stainless steel having radius 6 cm and a gap 5.5 cm between them, which are fitted in the top and bottom flanges of the vacuum chamber. Two stainless steel anode rings with thickness 0.4 cm and inner diameters 6.45 cm having separation 2 cm are kept at the discharge centre. Neodymium (Nd{sub 2}Fe{sub 14}B) permanent magnets are physically inserted behind the cathodes for producing nearly uniform magnetic field of {approx}0.1 T at the center. Experiments and simulations have been performed for single and double anode ring configurations using helium gas discharge, which infer that double ring configuration gives better light emissions in the large volume Penning plasma discharge arrangement. The optical emission spectroscopy measurements are used to complement the observations. The spectral line-ratio technique is utilized to determine the electron plasma density. The estimated electron plasma density in double ring plasma configuration is {approx}2 Multiplication-Sign 10{sup 11} cm{sup -3}, which is around one order of magnitude larger than that of single ring arrangement.

  5. Clinical, biochemical, and hormonal changes after a single, large-volume paracentesis in cirrhosis with ascites.

    PubMed

    Gentile, S; Angelico, M; Bologna, E; Capocaccia, L

    1989-03-01

    The use of paracentesis has recently been reproposed as a safe and effective alternative to diuretics for management of ascites. We have investigated the clinical and biochemical effects of large-volume paracentesis in 19 cirrhotics with tense ascites, and the relative changes in the hormones involved in sodium and water renal handling. Plasma renin activity (PRA), aldosterone (PA), and arginine vasopressin (AVP) levels and conventional liver and renal function tests were measured before and after 1, 2, and 7 days after the paracentesis. No complications were observed, but patients regained 37% of the weight lost after 1 wk. Percent weight regained was significantly and directly correlated with PA concentration measured before the paracentesis. No changes were recorded after paracentesis in biochemical and clinical data, except for a significant drop in diastolic blood pressure. No changes in AVP levels were observed. A significant increase in PA occurred after paracentesis, with a maximum peak after 48 h. The increase in PA was not accompanied by changes in PRA, but was associated with a reduction of urinary sodium excretion. A relevant fraction of body aldosterone was confined to the ascitic fluid. We conclude that the clinical results of a large-volume paracentesis can be predicted in part on the basis of PA measurement, and that removal of ascites is followed by an increase of PA of uncertain origin and effectiveness.

  6. Concentration of enteroviruses from large volumes of tap water, treated sewage, and seawater.

    PubMed Central

    Gerba, C P; Farrah, S R; Goyal, S M; Wallis, C; Melnick, J L

    1978-01-01

    Methods are described for the efficient concentration of an enterovirus from large volumes of tap water, sewage, and seawater. Virus in acidified water (pH 3.5) in the presence of aluminum chloride was adsorbed to a 10-inch (ca. 25.4 cm) fiberglass depth cartridge and a 10-inch pleated epoxy-fiberglass filter in a series at flow rates of up to 37.8 liters (10 gallons) per min. Adsorbed viruses were eluted from the filters with glycine buffer (pH 10.5 to 11.5), and the eluate was reconcentrated by using a combination of aluminum flocculation followed by hydroextraction. With this procedure, poliovirus in large volumes of tap water, seawater, and sewage could be concentrated with an average efficiency of 52, 53, and 50%, respectively. It was demonstrated that this method is capable of detecting surface solid-associated viruses originating from sewage treatment plants. No difference in virus recovery between laboratory batch studies and a set-up with acid-salt injection was found. This unified scheme for the concentration of viruses has many advantages over previously described systems. These include: high operating flow rates, low weight and small size, effectiveness with a variety of waters with widely varying qualities, and filters with a high resistance to clogging. PMID:205175

  7. Broadband frequency ECR ion source concepts with large resonant plasma volumes

    SciTech Connect

    Alton, G.D.

    1995-12-31

    New techniques are proposed for enhancing the performances of ECR ion sources. The techniques are based on the use of high-power, variable-frequency, multiple-discrete-frequency, or broadband microwave radiation, derived from standard TWT technology, to effect large resonant ``volume`` ECR sources. The creation of a large ECR plasma ``volume`` permits coupling of more power into the plasma, resulting in the heating of a much larger electron population to higher energies, the effect of which is to produce higher charge state distributions and much higher intensities within a particular charge state than possible in present forms of the ECR ion source. If successful, these developments could significantly impact future accelerator designs and accelerator-based, heavy-ion-research programs by providing multiply-charged ion beams with the energies and intensities required for nuclear physics research from existing ECR ion sources. The methods described in this article can be used to retrofit any ECR ion source predicated on B-minimum plasma confinement techniques.

  8. Large-volume flux closure during plasmoid-mediated reconnection in coaxial helicity injection

    DOE PAGES

    Ebrahimi, F.; Raman, R.

    2016-03-23

    A large-volume flux closure during transient coaxial helicity injection (CHI) in NSTX-U is demonstrated through resistive magnetohydrodynamics (MHD) simulations. Several major improvements, including the improved positioning of the divertor poloidal field coils, are projected to improve the CHI start-up phase in NSTX-U. Simulations in the NSTX-U configuration with constant in time coil currents show that with strong flux shaping the injected open field lines (injector flux) rapidly reconnect and form large volume of closed flux surfaces. This is achieved by driving parallel current in the injector flux coil and oppositely directed currents in the flux shaping coils to form amore » narrow injector flux footprint and push the injector flux into the vessel. As the helicity and plasma are injected into the device, the oppositely directed field lines in the injector region are forced to reconnect through a local Sweet-Parker type reconnection, or to spontaneously reconnect when the elongated current sheet becomes MHD unstable to form plasmoids. In these simulations for the first time, it is found that the closed flux is over 70% of the initial injector flux used to initiate the discharge. Furthermore, these results could work well for the application of transient CHI in devices that employ super conducting coils to generate and sustain the plasma equilibrium.« less

  9. Enrichment of diluted cell populations from large sample volumes using 3D carbon-electrode dielectrophoresis.

    PubMed

    Islam, Monsur; Natu, Rucha; Larraga-Martinez, Maria Fernanda; Martinez-Duarte, Rodrigo

    2016-05-01

    Here, we report on an enrichment protocol using carbon electrode dielectrophoresis to isolate and purify a targeted cell population from sample volumes up to 4 ml. We aim at trapping, washing, and recovering an enriched cell fraction that will facilitate downstream analysis. We used an increasingly diluted sample of yeast, 10(6)-10(2) cells/ml, to demonstrate the isolation and enrichment of few cells at increasing flow rates. A maximum average enrichment of 154.2 ± 23.7 times was achieved when the sample flow rate was 10 μl/min and yeast cells were suspended in low electrically conductive media that maximizes dielectrophoresis trapping. A COMSOL Multiphysics model allowed for the comparison between experimental and simulation results. Discussion is conducted on the discrepancies between such results and how the model can be further improved.

  10. Calculation of Lung Cancer Volume of Target Based on Thorax Computed Tomography Images using Active Contour Segmentation Method for Treatment Planning System

    NASA Astrophysics Data System (ADS)

    Patra Yosandha, Fiet; Adi, Kusworo; Edi Widodo, Catur

    2017-06-01

    In this research, calculation process of the lung cancer volume of target based on computed tomography (CT) thorax images was done. Volume of the target calculation was done in purpose to treatment planning system in radiotherapy. The calculation of the target volume consists of gross tumor volume (GTV), clinical target volume (CTV), planning target volume (PTV) and organs at risk (OAR). The calculation of the target volume was done by adding the target area on each slices and then multiply the result with the slice thickness. Calculations of area using of digital image processing techniques with active contour segmentation method. This segmentation for contouring to obtain the target volume. The calculation of volume produced on each of the targets is 577.2 cm3 for GTV, 769.9 cm3 for CTV, 877.8 cm3 for PTV, 618.7 cm3 for OAR 1, 1,162 cm3 for OAR 2 right, and 1,597 cm3 for OAR 2 left. These values indicate that the image processing techniques developed can be implemented to calculate the lung cancer target volume based on CT thorax images. This research expected to help doctors and medical physicists in determining and contouring the target volume quickly and precisely.

  11. Dosimetric evaluation of planning target volume margin reduction for prostate cancer via image-guided intensity-modulated radiation therapy

    NASA Astrophysics Data System (ADS)

    Hwang, Taejin; Kang, Sei-Kwon; Cheong, Kwang-Ho; Park, Soah; Yoon, Jai-Woong; Han, Taejin; Kim, Haeyoung; Lee, Meyeon; Kim, Kyoung-Joo; Bae, Hoonsik; Suh, Tae-Suk

    2015-07-01

    The aim of this study was to quantitatively estimate the dosimetric benefits of the image-guided radiation therapy (IGRT) system for the prostate intensity-modulated radiation therapy (IMRT) delivery. The cases of eleven patients who underwent IMRT for prostate cancer without a prostatectomy at our institution between October 2012 and April 2014 were retrospectively analyzed. For every patient, clinical target volume (CTV) to planning target volume (PTV) margins were uniformly used: 3 mm, 5 mm, 7 mm, 10 mm, 12 mm, and 15 mm. For each margin size, the IMRT plans were independently optimized by one medical physicist using Pinnalce3 (ver. 8.0.d, Philips Medical System, Madison, WI) in order to maintain the plan quality. The maximum geometrical margin (MGM) for every CT image set, defined as the smallest margin encompassing the rectum at least at one slice, was between 13 mm and 26 mm. The percentage rectum overlapping PTV (%V ROV ), the rectal normal tissue complication probability (NTCP) and the mean rectal dose (%RD mean ) increased in proportion to the increase of PTV margin. However the bladder NTCP remained around zero to some extent regardless of the increase of PTV margin while the percentage bladder overlapping PTV (%V BOV ) and the mean bladder dose (%BD mean ) increased in proportion to the increase of PTV margin. Without relatively large rectum or small bladder, the increase observed for rectal NTCP, %RDmean and %BD mean per 1-mm PTV margin size were 1.84%, 2.44% and 2.90%, respectively. Unlike the behavior of the rectum or the bladder, the maximum dose on each femoral head had little effect on PTV margin. This quantitative study of the PTV margin reduction supported that IG-IMRT has enhanced the clinical effects over prostate cancer with the reduction of normal organ complications under the similar level of PTV control.

  12. Evaluation of potential internal target volume of liver tumors using cine-MRI.

    PubMed

    Akino, Yuichi; Oh, Ryoong-Jin; Masai, Norihisa; Shiomi, Hiroya; Inoue, Toshihiko

    2014-11-01

    Four-dimensional computed tomography (4DCT) is widely used for evaluating moving tumors, including lung and liver cancers. For patients with unstable respiration, however, the 4DCT may not visualize tumor motion properly. High-speed magnetic resonance imaging (MRI) sequences (cine-MRI) permit direct visualization of respiratory motion of liver tumors without considering radiation dose exposure to patients. Here, the authors demonstrated a technique for evaluating internal target volume (ITV) with consideration of respiratory variation using cine-MRI. The authors retrospectively evaluated six patients who received stereotactic body radiotherapy (SBRT) to hepatocellular carcinoma. Before acquiring planning CT, sagittal and coronal cine-MRI images were acquired for 30 s with a frame rate of 2 frames/s. The patient immobilization was conducted under the same condition as SBRT. Planning CT images were then acquired within 15 min from cine-MRI image acquisitions, followed by a 4DCT scan. To calculate tumor motion, the motion vectors between two continuous frames of cine-MRI images were calculated for each frame using the pyramidal Lucas-Kanade method. The target contour was delineated on one frame, and each vertex of the contour was shifted and copied onto the following frame using neighboring motion vectors. 3D trajectory data were generated with the centroid of the contours on sagittal and coronal images. To evaluate the accuracy of the tracking method, the motion of clearly visible blood vessel was analyzed with the motion tracking and manual detection techniques. The target volume delineated on the 50% (end-exhale) phase of 4DCT was translated with the trajectory data, and the distribution of the occupancy probability of target volume was calculated as potential ITV (ITV Potential). The concordance between ITV Potential and ITV estimated with 4DCT (ITV 4DCT) was evaluated using the Dice's similarity coefficient (DSC). The distance between blood vessel positions

  13. Evaluation of potential internal target volume of liver tumors using cine-MRI

    SciTech Connect

    Akino, Yuichi; Oh, Ryoong-Jin; Masai, Norihisa; Shiomi, Hiroya; Inoue, Toshihiko

    2014-11-01

    Purpose: Four-dimensional computed tomography (4DCT) is widely used for evaluating moving tumors, including lung and liver cancers. For patients with unstable respiration, however, the 4DCT may not visualize tumor motion properly. High-speed magnetic resonance imaging (MRI) sequences (cine-MRI) permit direct visualization of respiratory motion of liver tumors without considering radiation dose exposure to patients. Here, the authors demonstrated a technique for evaluating internal target volume (ITV) with consideration of respiratory variation using cine-MRI. Methods: The authors retrospectively evaluated six patients who received stereotactic body radiotherapy (SBRT) to hepatocellular carcinoma. Before acquiring planning CT, sagittal and coronal cine-MRI images were acquired for 30 s with a frame rate of 2 frames/s. The patient immobilization was conducted under the same condition as SBRT. Planning CT images were then acquired within 15 min from cine-MRI image acquisitions, followed by a 4DCT scan. To calculate tumor motion, the motion vectors between two continuous frames of cine-MRI images were calculated for each frame using the pyramidal Lucas–Kanade method. The target contour was delineated on one frame, and each vertex of the contour was shifted and copied onto the following frame using neighboring motion vectors. 3D trajectory data were generated with the centroid of the contours on sagittal and coronal images. To evaluate the accuracy of the tracking method, the motion of clearly visible blood vessel was analyzed with the motion tracking and manual detection techniques. The target volume delineated on the 50% (end-exhale) phase of 4DCT was translated with the trajectory data, and the distribution of the occupancy probability of target volume was calculated as potential ITV (ITV {sub Potential}). The concordance between ITV {sub Potential} and ITV estimated with 4DCT (ITV {sub 4DCT}) was evaluated using the Dice’s similarity coefficient (DSC). Results

  14. Modalities of Mechanical Ventilation: Volume-Targeted Versus Pressure-Limited.

    PubMed

    Lozano, Shanny M; Newnam, Katherine M

    2016-04-01

    Respiratory distress syndrome remains the most common admission diagnosis in the neonatal intensive care unit. Healthcare providers have a clear appreciation for the potential harm to pulmonary structures that have been associated with mechanical ventilation (MV) in the preterm infant. Although life sustaining, the goal is to optimally ventilate while limiting trauma to the neonatal lung in order to preserve long-term cardiopulmonary and neurodevelopmental outcomes. To describe, compare, and contrast 2 primary methods of neonatal MV, pressure-limited ventilation (PLV) and volume-targeted ventilation (VTV), highlighting key considerations during therapy. A comprehensive search of the literature was completed using the following databases: CINAHL, Cochrane, Google Scholar, and PubMed. Research articles that were published in English over the last 10 years were reviewed for key information to describe and support the topic. Expert content review was conducted prior to publication by respiratory care providers, neonatal nurse practitioners, staff nurses, and neonatologist. Technology is rapidly evolving, with the newest mechanical ventilators providing the clinician with real-time data not previously available. Advanced microprocessors and feedback mechanisms can better support various ventilatory strategies including PLV and VTV. Renewed interest in volume ventilation has led many clinicians to ask about current evidence to support ventilatory modalities with regard to timing, settings, and short- and long-term effects. The clinician understands that neonatal pulmonary status is frequently changing based on gestational age, current age, and physiologic influences. Evidence supporting recommendations for the described MV modalities of PLV and VTV is provided for both preterm and term neonates. Comparison between MV strategies, specifically PLV and VTV, including short- and long-term neurodevelopmental outcomes, is needed. Recommendations regarding physiologic tidal

  15. Localization Accuracy of the Clinical Target Volume During Image-Guided Radiotherapy of Lung Cancer

    SciTech Connect

    Hugo, Geoffrey D.; Weiss, Elisabeth; Badawi, Ahmed; Orton, Matthew

    2011-10-01

    Purpose: To evaluate the position and shape of the originally defined clinical target volume (CTV) over the treatment course, and to assess the impact of gross tumor volume (GTV)-based online computed tomography (CT) guidance on CTV localization accuracy. Methods and Materials: Weekly breath-hold CT scans were acquired in 17 patients undergoing radiotherapy. Deformable registration was used to propagate the GTV and CTV from the first weekly CT image to all other weekly CT images. The on-treatment CT scans were registered rigidly to the planning CT scan based on the GTV location to simulate online guidance, and residual error in the CTV centroids and borders was calculated. Results: The mean GTV after 5 weeks relative to volume at the beginning of treatment was 77% {+-} 20%, whereas for the prescribed CTV, it was 92% {+-} 10%. The mean absolute residual error magnitude in the CTV centroid position after a GTV-based localization was 2.9 {+-} 3.0 mm, and it varied from 0.3 to 20.0 mm over all patients. Residual error of the CTV centroid was associated with GTV regression and anisotropy of regression during treatment (p = 0.02 and p = 0.03, respectively; Spearman rank correlation). A residual error in CTV border position greater than 2 mm was present in 77% of patients and 50% of fractions. Among these fractions, residual error of the CTV borders was 3.5 {+-} 1.6 mm (left-right), 3.1 {+-} 0.9 mm (anterior-posterior), and 6.4 {+-} 7.5 mm (superior-inferior). Conclusions: Online guidance based on the visible GTV produces substantial error in CTV localization, particularly for highly regressing tumors. The results of this study will be useful in designing margins for CTV localization or for developing new online CTV localization strategies.

  16. Volume dependence of two-dimensional large-N QCD with a nonzero density of baryons

    SciTech Connect

    Bringoltz, Barak

    2009-05-15

    We take a first step towards the solution of QCD in 1+1 dimensions at nonzero density. We regularize the theory in the UV by using a lattice and in the IR by putting the theory in a box of spatial size L. After fixing to axial gauge we use the coherent states approach to obtain the large-N classical Hamiltonian H that describes color neutral quark-antiquark pairs interacting with spatial Polyakov loops in the background of baryons. Minimizing H we get a regularized form of the 't Hooft equation that depends on the expectation values of the Polyakov loops. Analyzing the L dependence of this equation we show how volume independence, a la Eguchi and Kawai, emerges in the large-N limit, and how it depends on the expectation values of the Polyakov loops. We describe how this independence relies on the realization of translation symmetry, in particular, when the ground state contains a baryon crystal. Finally, we remark on the implications of our results on studying baryon density in large-N QCD within single-site lattice theories and on some general lessons concerning the way four-dimensional large-N QCD behaves in the presence of baryons.

  17. MetCap: a bioinformatics probe design pipeline for large-scale targeted metagenomics.

    PubMed

    Kushwaha, Sandeep K; Manoharan, Lokeshwaran; Meerupati, Tejashwari; Hedlund, Katarina; Ahrén, Dag

    2015-02-28

    Massive sequencing of genes from different environments has evolved metagenomics as central to enhancing the understanding of the wide diversity of micro-organisms and their roles in driving ecological processes. Reduced cost and high throughput sequencing has made large-scale projects achievable to a wider group of researchers, though complete metagenome sequencing is still a daunting task in terms of sequencing as well as the downstream bioinformatics analyses. Alternative approaches such as targeted amplicon sequencing requires custom PCR primer generation, and is not scalable to thousands of genes or gene families. In this study, we are presenting a web-based tool called MetCap that circumvents the limitations of amplicon sequencing of multiple genes by designing probes that are suitable for large-scale targeted metagenomics sequencing studies. MetCap provides a novel approach to target thousands of genes and genomic regions that could be used in targeted metagenomics studies. Automatic analysis of user-defined sequences is performed, and probes specifically designed for metagenome studies are generated. To illustrate the advantage of a targeted metagenome approach, we have generated more than 400,000 probes that match more than 300,000 [corrected] publicly available sequences related to carbon degradation, and used these probes for target sequencing in a soil metagenome study. The results show high enrichment of target genes and a successful capturing of the majority of gene families. MetCap is freely available to users from: http://soilecology.biol.lu.se/metcap/ . MetCap is facilitating probe-based target enrichment as an easy and efficient alternative tool compared to complex primer-based enrichment for large-scale investigations of metagenomes. Our results have shown efficient large-scale target enrichment through MetCap-designed probes for a soil metagenome. The web service is suitable for any targeted metagenomics project that aims to study several genes

  18. Determination of planning target volume for whole stomach irradiation using daily megavoltage computed tomographic images.

    PubMed

    Johnson, Matthew E; Pereira, Gisele C; El Naqa, Issam M; Goddu, S Murty; Al-Lozi, Rawan; Apte, Aditya; Mansur, David B

    2012-01-01

    Whole stomach radiation therapy is often used in the management of gastric lymphoma. However, very limited data exist with regard to planning target volume requirements for the whole stomach. This study retrospectively analyzed daily megavoltage computed tomographic (CT) scans of gastric lymphoma patients in order to help determine the interfraction variation of the stomach position. Forty-one daily megavoltage CT images from 3 gastric lymphoma patients were used for stomach contouring. Each patient's megavoltage CT images were rigidly registered to their CT simulation data sets, and the margin in each direction that covered at least 95% of the daily stomach volumes was computed using a simple grid search. Patient setup variation was also calculated from the daily patient shifts. The organ motion margin was then added to the setup margin to render the total margin. A uniform margin of 2.2 cm is required to cover 95% of the stomach over the treatment course. However, direction-specific margins were observed from 1.72, 1.88, 0.92, 2.23, 1.90, and 0.86 cm for the right, left, posterior, anterior, superior, and inferior directions, respectively. The results of this study provide helpful 3-dimensional volumetric information to the limited existing data on margin requirements for whole stomach radiation therapy. Copyright © 2012 American Society for Radiation Oncology. Published by Elsevier Inc. All rights reserved.

  19. Postoperative Radiotherapy for Glioma: Improved Delineation of the Clinical Target Volume Using the Geodesic Distance Calculation

    PubMed Central

    Yan, DanFang; Yan, SenXiang; Lu, ZhongJie; Xie, Cong; Chen, Wei; Xu, Xing; Li, Xinke; Yu, Haogang; Zhu, Xinli; Zheng, LingYan

    2014-01-01

    Objects To introduce a new method for generating the clinical target volume (CTV) from gross tumor volume (GTV) using the geodesic distance calculation for glioma. Methods One glioblastoma patient was enrolled. The GTV and natural barriers were contoured on each slice of the computer tomography (CT) simulation images. Then, a graphic processing unit based on a parallel Euclidean distance transform was used to generate the CTV considering natural barriers. Three-dimensional (3D) visualization technique was applied to show the delineation results. Speed of operation and precision were compared between this new delineation method and the traditional method. Results In considering spatial barriers, the shortest distance from the point sheltered from these barriers equals the sum of the distance along the shortest path between the two points; this consists of several segments and evades the spatial barriers, rather than being the direct Euclidean distance between two points. The CTV was generated irregularly rather than as a spherical shape. The time required to generate the CTV was greatly reduced. Moreover, this new method improved inter- and intra-observer variability in defining the CTV. Conclusions Compared with the traditional CTV delineation, this new method using geodesic distance calculation not only greatly shortens the time to modify the CTV, but also has better reproducibility. PMID:24896082

  20. Pathways of deep cyclones associated with large volume changes (LVCs) and major Baltic inflows (MBIs)

    NASA Astrophysics Data System (ADS)

    Lehmann, Andreas; Höflich, Katharina; Post, Piia; Myrberg, Kai

    2017-03-01

    Large volume changes (LVCs) and major Baltic inflows (MBIs) are essential processes for the water exchange and renewal of the stagnant water in the Baltic Sea deep basins. These strong inflows are known to be forced by persistent westerly wind conditions. In this study, MBIs are considered as subset of LVCs transporting with the large water volume a big amount of highly saline and oxygenated water into the Baltic Sea. Since the early 1980s the frequency of MBIs has dropped drastically from 5 to 7 events to only one inflow per decade, and long lasting periods without MBIs became the usual state. Only in January 1993, 2003 and December 2014 MBIs occurred that were able to interrupt the stagnation periods in the deep basins of the Baltic Sea. However, in spite of the decreasing frequency of MBIs, there is no obvious decrease of LVCs. The Landsort sea level is known to reflect the mean sea level of the Baltic Sea very well, and hence LVCs have been calculated for the period 1887-2015 filtering daily time series of Landsort sea surface elevation anomalies. The cases with local minimum and maximum difference resulting in at least 60 km3 of water volume change excluding the volume change due to runoff have been chosen for a closer study (1948-2013) of characteristic pathways of deep cyclones. The average duration of LVCs is about 40 days. During this time, 5-6 deep cyclones move along characteristic storm tracks. Furthermore, MBIs are characterized by even higher cyclonic activity compared to average LVCs. We obtained four main routes of deep cyclones which were associated with LVCs, but also with the climatology. One is approaching from the west at about 56-60°N, passing the northern North Sea, northern Denmark, Sweden and the Island of Gotland. A second broad corridor of frequent cyclone pathways enters the study area north of Scotland between 60 and 66°N turning north-eastwards along the northern coast of Scandinavia. This branch bifurcates into smaller routes. One

  1. Predicting nurse staffing needs for a labor and birth unit in a large-volume perinatal service.

    PubMed

    Simpson, Kathleen Rice

    2015-01-01

    This project was designed to test a nurse staffing model for its ability to accurately determine staffing needs for a large-volume labor and birth unit based on a staffing gap analysis using the nurse staffing guidelines from the Association of Women's Health, Obstetric and Neonatal Nurses (AWHONN). The staffing model and the AWHONN staffing guidelines were found to be reliable methods to predict staffing needs for a large-volume labor and birth unit.

  2. Calcium isolation from large-volume human urine samples for 41Ca analysis by accelerator mass spectrometry.

    PubMed

    Miller, James J; Hui, Susanta K; Jackson, George S; Clark, Sara P; Einstein, Jane; Weaver, Connie M; Bhattacharyya, Maryka H

    2013-08-01

    Calcium oxalate precipitation is the first step in preparation of biological samples for (41)Ca analysis by accelerator mass spectrometry. A simplified protocol for large-volume human urine samples was characterized, with statistically significant increases in ion current and decreases in interference. This large-volume assay minimizes cost and effort and maximizes time after (41)Ca administration during which human samples, collected over a lifetime, provide (41)Ca:Ca ratios that are significantly above background.

  3. Targeted tandem duplication of a large chromosomal segment in Aspergillus oryzae.

    PubMed

    Takahashi, Tadashi; Sato, Atsushi; Ogawa, Masahiro; Hanya, Yoshiki; Oguma, Tetsuya

    2014-08-01

    We describe here the first successful construction of a targeted tandem duplication of a large chromosomal segment in Aspergillus oryzae. The targeted tandem chromosomal duplication was achieved by using strains that had a 5'-deleted pyrG upstream of the region targeted for tandem chromosomal duplication and a 3'-deleted pyrG downstream of the target region. Consequently,strains bearing a 210-kb targeted tandem chromosomal duplication near the centromeric region of chromosome 8 and strains bearing a targeted tandem chromosomal duplication of a 700-kb region of chromosome 2 were successfully constructed. The strains bearing the tandem chromosomal duplication were efficiently obtained from the regenerated protoplast of the parental strains. However, the generation of the chromosomal duplication did not depend on the introduction of double-stranded breaks(DSBs) by I-SceI. The chromosomal duplications of these strains were stably maintained after five generations of culture under nonselective conditions. The strains bearing the tandem chromosomal duplication in the 700-kb region of chromosome 2 showed highly increased protease activity in solid-state culture, indicating that the duplication of large chromosomal segments could be a useful new breeding technology and gene analysis method.

  4. Random forest classification of large volume structures for visuo-haptic rendering in CT images

    NASA Astrophysics Data System (ADS)

    Mastmeyer, Andre; Fortmeier, Dirk; Handels, Heinz

    2016-03-01

    For patient-specific voxel-based visuo-haptic rendering of CT scans of the liver area, the fully automatic segmentation of large volume structures such as skin, soft tissue, lungs and intestine (risk structures) is important. Using a machine learning based approach, several existing segmentations from 10 segmented gold-standard patients are learned by random decision forests individually and collectively. The core of this paper is feature selection and the application of the learned classifiers to a new patient data set. In a leave-some-out cross-validation, the obtained full volume segmentations are compared to the gold-standard segmentations of the untrained patients. The proposed classifiers use a multi-dimensional feature space to estimate the hidden truth, instead of relying on clinical standard threshold and connectivity based methods. The result of our efficient whole-body section classification are multi-label maps with the considered tissues. For visuo-haptic simulation, other small volume structures would have to be segmented additionally. We also take a look into these structures (liver vessels). For an experimental leave-some-out study consisting of 10 patients, the proposed method performs much more efficiently compared to state of the art methods. In two variants of leave-some-out experiments we obtain best mean DICE ratios of 0.79, 0.97, 0.63 and 0.83 for skin, soft tissue, hard bone and risk structures. Liver structures are segmented with DICE 0.93 for the liver, 0.43 for blood vessels and 0.39 for bile vessels.

  5. Measurements of Elastic and Inelastic Properties under Simulated Earth's Mantle Conditions in Large Volume Apparatus

    NASA Astrophysics Data System (ADS)

    Mueller, H. J.

    2012-12-01

    The interpretation of highly resolved seismic data from Earths deep interior require measurements of the physical properties of Earth's materials under experimental simulated mantle conditions. More than decade ago seismic tomography clearly showed subduction of crustal material can reach the core mantle boundary under specific circumstances. That means there is no longer space for the assumption deep mantle rocks might be much less complex than deep crustal rocks known from exhumation processes. Considering this geophysical high pressure research is faced the challenge to increase pressure and sample volume at the same time to be able to perform in situ experiments with representative complex samples. High performance multi anvil devices using novel materials are the most promising technique for this exciting task. Recent large volume presses provide sample volumes 3 to 7 orders of magnitude bigger than in diamond anvil cells far beyond transition zone conditions. The sample size of several cubic millimeters allows elastic wave frequencies in the low to medium MHz range. Together with the small and even adjustable temperature gradients over the whole sample this technique makes anisotropy and grain boundary effects in complex systems accessible for elastic and inelastic properties measurements in principle. The measurements of both elastic wave velocities have also no limits for opaque and encapsulated samples. The application of triple-mode transducers and the data transfer function technique for the ultrasonic interferometry reduces the time for saving the data during the experiment to about a minute or less. That makes real transient measurements under non-equilibrium conditions possible. A further benefit is, both elastic wave velocities are measured exactly simultaneously. Ultrasonic interferometry necessarily requires in situ sample deformation measurement by X-radiography. Time-resolved X-radiography makes in situ falling sphere viscosimetry and even the

  6. Safety of large-volume leukapheresis for collection of peripheral blood progenitor cells.

    PubMed

    Reik, R A; Noto, T A; Fernandez, H F

    1997-01-01

    Large volume leukapheresis (LVL) reduces the number of procedures required to obtain adequate peripheral blood progenitor cells (PBPCs) for autologous hematopoietic reconstitution. LVL involves the processing of > 15 L or 5 patient blood volumes using high flow rates. We report our experience with LVL evaluating its efficiency and adverse effects in 71 adult patients with hematologic or solid organ malignancies. All were mobilized with chemotherapy and granulocyte colony-stimulating factor (G-CSF). All collections used a double lumen apheresis catheter. Mean values per LVL were as follows: blood processed, 24.6 L; patient blood volumes processed, 5.9; ACD-A used, 1,048 ml; heparin used, 6,148 units; collect time, 290 min; blood flow rate, 89 ml/min. Eighty percent of the collections were completed in one or two procedures to obtain > or = 6.0 x 10(8) MNCs/kg body weight. The most frequent side effect (39%) was parasthesia due to citrate-related hypocalcemia. This was managed with oral calcium supplements and/or slower flow rates. Post-LVL electrolyte changes were generally asymptomatic. Prophylactic oral potassium supplements were administered in 57% of cases. Other reactions included hypotension (4%), prolonged parasthesia (1.4%), and headache (1.4%). Catheter problems in 9 (13%) of the procedures were attributed to clot formation (37%) or positional effects (63%). No bleeding occurred. Post-LVL decreases in hematocrit and platelet count averaged 3.5% and 46%, respectively. Six (4%) of the procedures required red blood cell transfusions. Platelet transfusions were given in 19 (13%) of the procedures. We conclude that adverse reactions with LVL are similar to those reported for conventional PBPC collections, making it safe and efficacious as an outpatient procedure.

  7. Determination of the large scale volume weighted halo velocity bias in simulations

    NASA Astrophysics Data System (ADS)

    Zheng, Yi; Zhang, Pengjie; Jing, Yipeng

    2015-06-01

    A profound assumption in peculiar velocity cosmology is bv=1 at sufficiently large scales, where bv is the volume-weighted halo(galaxy) velocity bias with respect to the matter velocity field. However, this fundamental assumption has not been robustly verified in numerical simulations. Furthermore, it is challenged by structure formation theory (Bardeen, Bond, Kaiser and Szalay, Astrophys. J. 304, 15 (1986); Desjacques and Sheth, Phys. Rev D 81, 023526 (2010), which predicts the existence of velocity bias (at least for proto-halos) due to the fact that halos reside in special regions (local density peaks). The major obstacle to measuring the volume-weighted velocity from N-body simulations is an unphysical sampling artifact. It is entangled in the measured velocity statistics and becomes significant for sparse populations. With recently improved understanding of the sampling artifact (Zhang, Zheng and Jing, 2015, PRD; Zheng, Zhang and Jing, 2015, PRD), for the first time we are able to appropriately correct this sampling artifact and then robustly measure the volume-weighted halo velocity bias. (1) We verify bv=1 within 2% model uncertainty at k ≲0.1 h /Mpc and z =0 - 2 for halos of mass ˜1012- 1013h-1M⊙ and, therefore, consolidate a foundation for the peculiar velocity cosmology. (2) We also find statistically significant signs of bv≠1 at k ≳0.1 h /Mpc . Unfortunately, whether this is real or caused by a residual sampling artifact requires further investigation. Nevertheless, cosmology based on the k ≳0.1 h /Mpc velocity data should be careful with this potential velocity bias.

  8. Radiotherapy planning for glioblastoma based on a tumor growth model: improving target volume delineation

    NASA Astrophysics Data System (ADS)

    Unkelbach, Jan; Menze, Bjoern H.; Konukoglu, Ender; Dittmann, Florian; Le, Matthieu; Ayache, Nicholas; Shih, Helen A.

    2014-02-01

    Glioblastoma differ from many other tumors in the sense that they grow infiltratively into the brain tissue instead of forming a solid tumor mass with a defined boundary. Only the part of the tumor with high tumor cell density can be localized through imaging directly. In contrast, brain tissue infiltrated by tumor cells at low density appears normal on current imaging modalities. In current clinical practice, a uniform margin, typically two centimeters, is applied to account for microscopic spread of disease that is not directly assessable through imaging. The current treatment planning procedure can potentially be improved by accounting for the anisotropy of tumor growth, which arises from different factors: anatomical barriers such as the falx cerebri represent boundaries for migrating tumor cells. In addition, tumor cells primarily spread in white matter and infiltrate gray matter at lower rate. We investigate the use of a phenomenological tumor growth model for treatment planning. The model is based on the Fisher-Kolmogorov equation, which formalizes these growth characteristics and estimates the spatial distribution of tumor cells in normal appearing regions of the brain. The target volume for radiotherapy planning can be defined as an isoline of the simulated tumor cell density. This paper analyzes the model with respect to implications for target volume definition and identifies its most critical components. A retrospective study involving ten glioblastoma patients treated at our institution has been performed. To illustrate the main findings of the study, a detailed case study is presented for a glioblastoma located close to the falx. In this situation, the falx represents a boundary for migrating tumor cells, whereas the corpus callosum provides a route for the tumor to spread to the contralateral hemisphere. We further discuss the sensitivity of the model with respect to the input parameters. Correct segmentation of the brain appears to be the most

  9. Application of microdroplet PCR for large-scale targeted bisulfite sequencing

    PubMed Central

    Komori, H. Kiyomi; LaMere, Sarah A.; Torkamani, Ali; Hart, G. Traver; Kotsopoulos, Steve; Warner, Jason; Samuels, Michael L.; Olson, Jeff; Head, Steven R.; Ordoukhanian, Phillip; Lee, Pauline L.; Link, Darren R.; Salomon, Daniel R.

    2011-01-01

    Cytosine methylation of DNA CpG dinucleotides in gene promoters is an epigenetic modification that regulates gene transcription. While many methods exist to interrogate methylation states, few current methods offer large-scale, targeted, single CpG resolution. We report an approach combining bisulfite treatment followed by microdroplet PCR with next-generation sequencing to assay the methylation state of 50 genes in the regions 1 kb upstream of and downstream from their transcription start sites. This method yielded 96% coverage of the targeted CpGs and demonstrated high correlation between CpG island (CGI) DNA methylation and transcriptional regulation. The method was scaled to interrogate the methylation status of 77,674 CpGs in the promoter regions of 2100 genes in primary CD4 T cells. The 2100 gene library yielded 97% coverage of all targeted CpGs and 99% of the target amplicons. PMID:21757609

  10. GC/MS with post-column switching for large volume injection of headspace samples: sensitive determination of volatile organic compounds in human whole blood and urine.

    PubMed

    Watanabe, Kanako; Fujita, Hiroki; Hasegawa, Koutaro; Gonmori, Kunio; Suzuki, Osamu

    2011-02-15

    When volatile or semivolatile compounds are measured by headspace (HS) gas chromatography (GC)/mass spectrometry (MS), the maximum gas volume to be injected is usually 0.5-1.0 mL; over the volume, the MS detector automatically shuts down due to impairment of the vacuum rate of the MS ionization chamber. To overcome the problem, we modified the gas flow routes of a new type of GC/MS instrument to create a postcolumn switching system, which can eliminate the large volume of gas before introduction of target compounds into the MS ionization chamber. Our HS-GC/MS system enabled injection of as large as 5 mL of HS gas without any disturbance. As the first example analysis, we tried to establish the analysis of naphthalene and p-dichlorobenzene in human whole blood and urine by this method with large volume injection. The limits of detection for both compounds in whole blood and urine were as low as about 10 and 5 pg/mL, respectively. The validation data and actual measurements were also demonstrated. The new GC/MS system has great potential to analyze any type of volatile or semivolatile organic compounds in biological matrixes with very high sensitivity and full automation.

  11. Assessing in situ crystal-liquid separation in a fossil, large-volume, silicic, magma reservoir

    NASA Astrophysics Data System (ADS)

    Eddy, M. P.

    2016-12-01

    The origin of high-SiO2 rhyolites is controversial. Geochemical gradients in large ignimbrites and regional-scale variations in pluton geochemistry suggest that some of these magmas are generated through differentiation of silicic (>65 wt% SiO2) parent melts in upper crustal magma `mush' zones. This process predicts that large volumes of vertically stratified silicic cumulate should be present within the upper crustal plutonic record. Nevertheless, the number of individual plutons with this type of stratification is limited and geochronologic data has demonstrated that many large, upper crustal plutonic complexes were emplaced at rates too slow (< 0.003 km3/a) and durations too long (>> 1 Ma) to construct a large mush. These observations have led to an alternative hypothesis whereby high-SiO2rhyolites form within the middle or lower crust with little to no differentiation in the upper crust. The Eocene Golden Horn batholith, WA offers a unique opportunity to test the efficiency of crystal-liquid separation. This composite batholith was emplaced at 7-8 km depth and is composed of several distinct magmatic sheets. U-Pb zircon geochronology from the largest sheet, a >424 km3 body of granodiorite and granite with a distinctive rapakivi texture, suggests that it was built at magma emplacement rates compatible with building a large silicic mush. Initial field and geochemical evidence, including lenticular bodies of leucogranite at high elevations and systematic vertical variations in whole rock geochemistry in a short vertical section, suggest that this fossil magma reservoir may have undergone some degree of crystal-liquid separation. I expand on these initial results and present new detailed geologic mapping of textural and compositional variation within a 1 km vertical section coupled with new whole rock geochemical measurements and zircon trace element data to assess the degree to which in situ differentiation may have occurred within this fossil magma reservoir.

  12. A Scanning Transmission Electron Microscopy (STEM) Approach to Analyzing Large Volumes of Tissue to Detect Nanoparticles

    PubMed Central

    Kempen, Paul J.; Thakor, Avnesh S.; Zavaleta, Cristina; Gambhir, Sanjiv S.; Sinclair, Robert

    2013-01-01

    The use of nanoparticles for the diagnosis and treatment of cancer requires the complete characterization of their toxicity, including accurately locating them within biological tissues. Owing to their size, traditional light microscopy techniques are unable to resolve them. Transmission electron microscopy provides the necessary spatial resolution to image individual nanoparticles in tissue but is severely limited by the very small analysis volume, usually on the order of tens of cubic microns. In this work we developed a scanning transmission electron microscopy (STEM) approach to analyze large volumes of tissue for the presence of polyethylene glycol coated Raman-active-silica-gold-nanoparticles (PEG-R-Si-Au-NPs). This approach utilizes the simultaneous bright and dark field imaging capabilities of STEM along with careful control of the image contrast settings to readily identify PEG-R-Si-Au-NPs in mouse liver tissue without the need for additional time consuming analytical characterization. We utilized this technique to analyze 243,000 µm3 of mouse liver tissue for the presence of PEG-R-Si-Au-NPs. Nanoparticles injected into the mice intravenously via the tail-vein accumulated in the liver while those injected intrarectally did not, indicating that they remain in the colon and do not pass through the colon wall into the systemic circulation. PMID:23803218

  13. A large volume cell for in situ neutron diffraction studies of hydrothermal crystallizations.

    PubMed

    Xia, Fang; Qian, Gujie; Brugger, Joël; Studer, Andrew; Olsen, Scott; Pring, Allan

    2010-10-01

    A hydrothermal cell with 320 ml internal volume has been designed and constructed for in situ neutron diffraction studies of hydrothermal crystallizations. The cell design adopts a dumbbell configuration assembled with standard commercial stainless steel components and a zero-scattering Ti-Zr alloy sample compartment. The fluid movement and heat transfer are simply driven by natural convection due to the natural temperature gradient along the fluid path, so that the temperature at the sample compartment can be stably sustained by heating the fluid in the bottom fluid reservoir. The cell can operate at temperatures up to 300 °C and pressures up to 90 bars and is suitable for studying reactions requiring a large volume of hydrothermal fluid to damp out the negative effect from the change of fluid composition during the course of the reactions. The capability of the cell was demonstrated by a hydrothermal phase transformation investigation from leucite (KAlSi(2)O(6)) to analcime (NaAlSi(2)O(6)⋅H(2)O) at 210 °C on the high intensity powder diffractometer Wombat in ANSTO. The kinetics of the transformation has been resolved by collecting diffraction patterns every 10 min followed by Rietveld quantitative phase analysis. The classical Avrami/Arrhenius analysis gives an activation energy of 82.3±1.1 kJ  mol(-1). Estimations of the reaction rate under natural environments by extrapolations agree well with petrological observations.

  14. A large volume cell for in situ neutron diffraction studies of hydrothermal crystallizations

    NASA Astrophysics Data System (ADS)

    Xia, Fang; Qian, Gujie; Brugger, Joël; Studer, Andrew; Olsen, Scott; Pring, Allan

    2010-10-01

    A hydrothermal cell with 320 ml internal volume has been designed and constructed for in situ neutron diffraction studies of hydrothermal crystallizations. The cell design adopts a dumbbell configuration assembled with standard commercial stainless steel components and a zero-scattering Ti-Zr alloy sample compartment. The fluid movement and heat transfer are simply driven by natural convection due to the natural temperature gradient along the fluid path, so that the temperature at the sample compartment can be stably sustained by heating the fluid in the bottom fluid reservoir. The cell can operate at temperatures up to 300 °C and pressures up to 90 bars and is suitable for studying reactions requiring a large volume of hydrothermal fluid to damp out the negative effect from the change of fluid composition during the course of the reactions. The capability of the cell was demonstrated by a hydrothermal phase transformation investigation from leucite (KAlSi2O6) to analcime (NaAlSi2O6ṡH2O) at 210 °C on the high intensity powder diffractometer Wombat in ANSTO. The kinetics of the transformation has been resolved by collecting diffraction patterns every 10 min followed by Rietveld quantitative phase analysis. The classical Avrami/Arrhenius analysis gives an activation energy of 82.3±1.1 kJ mol-1. Estimations of the reaction rate under natural environments by extrapolations agree well with petrological observations.

  15. A large volume uniform plasma generator for the experiments of electromagnetic wave propagation in plasma

    SciTech Connect

    Yang Min; Li Xiaoping; Xie Kai; Liu Donglin; Liu Yanming

    2013-01-15

    A large volume uniform plasma generator is proposed for the experiments of electromagnetic (EM) wave propagation in plasma, to reproduce a 'black out' phenomenon with long duration in an environment of the ordinary laboratory. The plasma generator achieves a controllable approximate uniform plasma in volume of 260 mm Multiplication-Sign 260 mm Multiplication-Sign 180 mm without the magnetic confinement. The plasma is produced by the glow discharge, and the special discharge structure is built to bring a steady approximate uniform plasma environment in the electromagnetic wave propagation path without any other barriers. In addition, the electron density and luminosity distributions of plasma under different discharge conditions were diagnosed and experimentally investigated. Both the electron density and the plasma uniformity are directly proportional to the input power and in roughly reverse proportion to the gas pressure in the chamber. Furthermore, the experiments of electromagnetic wave propagation in plasma are conducted in this plasma generator. Blackout phenomena at GPS signal are observed under this system and the measured attenuation curve is of reasonable agreement with the theoretical one, which suggests the effectiveness of the proposed method.

  16. A scanning transmission electron microscopy approach to analyzing large volumes of tissue to detect nanoparticles.

    PubMed

    Kempen, Paul J; Thakor, Avnesh S; Zavaleta, Cristina; Gambhir, Sanjiv S; Sinclair, Robert

    2013-10-01

    The use of nanoparticles for the diagnosis and treatment of cancer requires the complete characterization of their toxicity, including accurately locating them within biological tissues. Owing to their size, traditional light microscopy techniques are unable to resolve them. Transmission electron microscopy provides the necessary spatial resolution to image individual nanoparticles in tissue, but is severely limited by the very small analysis volume, usually on the order of tens of cubic microns. In this work, we developed a scanning transmission electron microscopy (STEM) approach to analyze large volumes of tissue for the presence of polyethylene glycol-coated Raman-active-silica-gold-nanoparticles (PEG-R-Si-Au-NPs). This approach utilizes the simultaneous bright and dark field imaging capabilities of STEM along with careful control of the image contrast settings to readily identify PEG-R-Si-Au-NPs in mouse liver tissue without the need for additional time-consuming analytical characterization. We utilized this technique to analyze 243,000 mm³ of mouse liver tissue for the presence of PEG-R-Si-Au-NPs. Nanoparticles injected into the mice intravenously via the tail vein accumulated in the liver, whereas those injected intrarectally did not, indicating that they remain in the colon and do not pass through the colon wall into the systemic circulation.

  17. Evaluation of Large Volume SrI2(Eu) Scintillator Detectors

    SciTech Connect

    Sturm, B W; Cherepy, N J; Drury, O B; Thelin, P A; Fisher, S E; Magyar, A F; Payne, S A; Burger, A; Boatner, L A; Ramey, J O; Shah, K S; Hawrami, R

    2010-11-18

    There is an ever increasing demand for gamma-ray detectors which can achieve good energy resolution, high detection efficiency, and room-temperature operation. We are working to address each of these requirements through the development of large volume SrI{sub 2}(Eu) scintillator detectors. In this work, we have evaluated a variety of SrI{sub 2} crystals with volumes >10 cm{sup 3}. The goal of this research was to examine the causes of energy resolution degradation for larger detectors and to determine what can be done to mitigate these effects. Testing both packaged and unpackaged detectors, we have consistently achieved better resolution with the packaged detectors. Using a collimated gamma-ray source, it was determined that better energy resolution for the packaged detectors is correlated with better light collection uniformity. A number of packaged detectors were fabricated and tested and the best spectroscopic performance was achieved for a 3% Eu doped crystal with an energy resolution of 2.93% FWHM at 662keV. Simulations of SrI{sub 2}(Eu) crystals were also performed to better understand the light transport physics in scintillators and are reported. This study has important implications for the development of SrI{sub 2}(Eu) detectors for national security purposes.

  18. Computation and volume rendering of large-scale EOF coherent modes in rotating turbulent flow data

    NASA Astrophysics Data System (ADS)

    Ostrouchov, G.; Pugmire, D.; Rosenberg, D. L.; Chen, W.; Pouquet, A.

    2013-12-01

    The computation of empirical orthogonal functions (EOF) is used to extract major coherent modes of variability in spatio-temporal data. We explore the computation of EOF in three spatial dimensions over time and present the result with volume rendering software. To accomplish this, we use an HPC extension of the R language, pbdR (see r-pbd.org), that we embed in the VisIt visualization system. VisIt provides parallel data reader capability as well as the volume rendering ability to present the computed EOFs. The data we consider derives from direct numerical simulation on a grid of 20483 points of rapidly rotating turbulent flows that are forced at intermediate scales. Injection of energy at these scales at small Rossby number (~0.04) leads to a direct cascade of energy to small scales, and an inverse cascade to large scales. We will use pdbR to examine the spatio-temporal interactions and ergodicity of waves and turbulent eddies in these flows.

  19. Large-volume lateral magma transport from the Mull volcano: An insight to magma chamber processes

    NASA Astrophysics Data System (ADS)

    Ishizuka, Osamu; Taylor, Rex N.; Geshi, Nobuo; Mochizuki, Nobutatsu

    2017-04-01

    Long-distance lateral magma transport within the crust has been inferred for various magmatic systems including oceanic island volcanoes, mid-oceanic ridges, and large igneous provinces. However, studying the physical and chemical properties of active fissure systems is difficult. Hence, this study investigates the movement of magma away from the Mull volcano in the North Atlantic Igneous Province, where erosion has exposed its upper crustal dike networks. Magmatic lineations within dikes indicate that the magma flow in the Mull dike suite changed from near vertical to horizontal within 30 km of the volcanic center. This implies that distal dikes were fed by lateral magma transport from Mull. Geochemical characteristics indicate that many <50 km long dikes have deep crustal signatures, reflecting storage and assimilation in Lewisian basement. Following crystallization and assimilation in the lower crust, magma fed an upper crustal reservoir, where further fractionation and incorporation of Moinian rocks generated felsic compositions. Distal dikes are andesitic and reflect events in which large volumes of mafic and felsic magma were combined by mixing between lower and upper crustal reservoirs to generate the 30-80 km3 required to supply the long-distance dikes. Once propagated, compositions along dikes were not significantly affected by assimilation and crystallization. Supplying the distal dikes with magma would have required a large-scale evacuation of the crustal reservoirs that acted as a potential trigger for explosive volcanism and the caldera formation recorded in Mull central complex.

  20. Detection of fast flying nanoparticles by light scattering over a large volume

    NASA Astrophysics Data System (ADS)

    Pettazzi, F.; Bäumer, S.; van der Donck, J.; Deutz, A.

    2015-06-01

    is a well-known detection method which is applied in many different scientific and technology domains including atmospheric physics, environmental control, and biology. It allows contactless and remote detection of sub-micron size particles. However, methods for detecting a single fast moving particle smaller than 100 nm are lacking. In the present work we report a preliminary design study of an inline large area detector for nanoparticles larger than 50 nm which move with velocities up to 100 m/s. The detector design is based on light scattering using commercially available components. The presented design takes into account all challenges connected to the inline implementation of the scattering technique in the system: the need for the detector to have a large field of view to cover a volume with a footprint commensurate to an area of 100mm x 100mm, the necessity to sense nanoparticles transported at high velocity, and the requirement of large capture rate with a false detection as low as one false positive per week. The impact of all these stringent requirements on the expected sensitivity and performances of the device is analyzed by mean of a dedicated performance model.

  1. Target-Based Drug Repositioning Using Large-Scale Chemical-Protein Interactome Data.

    PubMed

    Sawada, Ryusuke; Iwata, Hiroaki; Mizutani, Sayaka; Yamanishi, Yoshihiro

    2015-12-28

    Drug repositioning, or the identification of new indications for known drugs, is a useful strategy for drug discovery. In this study, we developed novel computational methods to predict potential drug targets and new drug indications for systematic drug repositioning using large-scale chemical-protein interactome data. We explored the target space of drugs (including primary targets and off-targets) based on chemical structure similarity and phenotypic effect similarity by making optimal use of millions of compound-protein interactions. On the basis of the target profiles of drugs, we constructed statistical models to predict new drug indications for a wide range of diseases with various molecular features. The proposed method outperformed previous methods in terms of interpretability, applicability, and accuracy. Finally, we conducted a comprehensive prediction of the drug-target-disease association network for 8270 drugs and 1401 diseases and showed biologically meaningful examples of newly predicted drug targets and drug indications. The predictive model is useful to understand the mechanisms of the predicted drug indications.

  2. The core collapse supernova rate from 24 years of data of the Large Volume Detector

    NASA Astrophysics Data System (ADS)

    Bruno, G.; Fulgione, W.; Molinario, A.; Vigorito, C.; LVD Collaboration

    2017-09-01

    The Large Volume Detector (LVD) at INFN Laboratori Nazionali del Gran Sasso, Italy is a 1 kt liquid scintillator neutrino observatory mainly designed to study low energy neutrinos from Gravitational Stellar Collapses (GSC) with 100% efficiency over the entire Galaxy. Here we summarize the results of the search for supernova neutrino bursts over the full data set lasting from June 1992 to May 2016 for a total live time of 8211 days. In the lack of a positive observation, either in standalone mode or in coincidence with other experiments, we establish the upper limit to the rate of GSC event in the Milky Way: 0.1 year‑1 at 90% c.l..

  3. Aerodynamics of the Large-Volume, Flow-Through Detector System. Final report

    SciTech Connect

    Reed, H.; Saric, W.; Laananen, D.; Martinez, C.; Carrillo, R.; Myers, J.; Clevenger, D.

    1996-03-01

    The Large-Volume Flow-Through Detector System (LVFTDS) was designed to monitor alpha radiation from Pu, U, and Am in mixed-waste incinerator offgases; however, it can be adapted to other important monitoring uses that span a number of potential markets, including site remediation, indoor air quality, radon testing, and mine shaft monitoring. Goal of this effort was to provide mechanical design information for installation of LVFTDS in an incinerator, with emphasis on ability to withstand the high temperatures and high flow rates expected. The work was successfully carried out in three stages: calculation of pressure drop through the system, materials testing to determine surrogate materials for wind-tunnel testing, and wind-tunnel testing of an actual configuration.

  4. Measurement of the velocity of neutrinos from the CNGS beam with the large volume detector.

    PubMed

    Agafonova, N Yu; Aglietta, M; Antonioli, P; Ashikhmin, V V; Bari, G; Bertoni, R; Bressan, E; Bruno, G; Dadykin, V L; Fulgione, W; Galeotti, P; Garbini, M; Ghia, P L; Giusti, P; Kemp, E; Mal'gin, A S; Miguez, B; Molinario, A; Persiani, R; Pless, I A; Ryasny, V G; Ryazhskaya, O G; Saavedra, O; Sartorelli, G; Shakyrianova, I R; Selvi, M; Trinchero, G C; Vigorito, C; Yakushev, V F; Zichichi, A; Razeto, A

    2012-08-17

    We report the measurement of the time of flight of ∼17 GeV ν(μ) on the CNGS baseline (732 km) with the Large Volume Detector (LVD) at the Gran Sasso Laboratory. The CERN-SPS accelerator has been operated from May 10th to May 24th 2012, with a tightly bunched-beam structure to allow the velocity of neutrinos to be accurately measured on an event-by-event basis. LVD has detected 48 neutrino events, associated with the beam, with a high absolute time accuracy. These events allow us to establish the following limit on the difference between the neutrino speed and the light velocity: -3.8 × 10(-6) < (v(ν)-c)/c < 3.1 × 10(-6) (at 99% C.L.). This value is an order of magnitude lower than previous direct measurements.

  5. Determination of 137Cs in large volume seawater using Cu-hexacyanoferrate cartridge filters

    NASA Astrophysics Data System (ADS)

    Visetpotjanakit, S.; Tumnoi, Y.

    2017-06-01

    A simple method to determine 137Cs in seawater has been developed based on the use of a Cu-hexacyanoferrate scavenger. The Cu-hexacyanoferrate supported on cotton wound cartridge filter was used to absorb 137Cs from seawater by passing large volumes over the cartridge filters with flowrate of 240 L hr-1. Results from the Cu-hexacyanoferrate method were proved acceptable for accuracy with bias below ± 20 % i.e. - 9.16 to + 18.55 % when compared with the traditional ammonium molybdophosphate pre-concentration method. This developed method is cost-effective and less time consuming. In addition it can be easily performed at sampling fields.

  6. Isolation of organic acids from large volumes of water by adsorption on macroporous resins

    USGS Publications Warehouse

    Aiken, George R.; Suffet, I.H.; Malaiyandi, Murugan

    1987-01-01

    Adsorption on synthetic macroporous resins, such as the Amberlite XAD series and Duolite A-7, is routinely used to isolate and concentrate organic acids from forge volumes of water. Samples as large as 24,500 L have been processed on site by using these resins. Two established extraction schemes using XAD-8 and Duolite A-7 resins are described. The choice of the appropriate resin and extraction scheme is dependent on the organic solutes of interest. The factors that affect resin performance, selectivity, and capacity for a particular solute are solution pH, resin surface area and pore size, and resin composition. The logistical problems of sample handling, filtration, and preservation are also discussed.

  7. AC Magnetic Properties of Large Volume of Water — Susceptibility Measurement in Unshielded Environment

    NASA Astrophysics Data System (ADS)

    Tsukada, Keiji; Kiwa, Toshihiko; Masuda, Yuuki

    2006-10-01

    To investigate the effect of low-frequency magnetic-field exposure of a human body, the low-frequency AC magnetic property of a large volume of water was measured by low-frequency magnetic field exposure (from 50 Hz to 1.2 kHz). The results indicate that the AC magnetic property of water is due to diamagnetism in the low-frequency range. The phase between the main magnetic field and the generated magnetic field remained constant at about 180°. Results were not affected by conductivity or pH. Moreover, the magnetic-field strength from water showed a susceptibility frequency dependence proportional to the frequency above approximately 400 Hz. Because of the incremental effects of susceptibility, the magnetic field from water was measured using a conventional magnetic sensor (magnetic resistive; MR) in an unshielded environment.

  8. Monte Carlo calculations of the HPGe detector efficiency for radioactivity measurement of large volume environmental samples.

    PubMed

    Azbouche, Ahmed; Belgaid, Mohamed; Mazrou, Hakim

    2015-08-01

    A fully detailed Monte Carlo geometrical model of a High Purity Germanium detector with a (152)Eu source, packed in Marinelli beaker, was developed for routine analysis of large volume environmental samples. Then, the model parameters, in particular, the dead layer thickness were adjusted thanks to a specific irradiation configuration together with a fine-tuning procedure. Thereafter, the calculated efficiencies were compared to the measured ones for standard samples containing (152)Eu source filled in both grass and resin matrices packed in Marinelli beaker. From this comparison, a good agreement between experiment and Monte Carlo calculation results was obtained highlighting thereby the consistency of the geometrical computational model proposed in this work. Finally, the computational model was applied successfully to determine the (137)Cs distribution in soil matrix. From this application, instructive results were achieved highlighting, in particular, the erosion and accumulation zone of the studied site.

  9. Isolation of organic acids from large volumes of water by adsorption chromatography

    USGS Publications Warehouse

    Aiken, George R.

    1984-01-01

    The concentrations of dissolved organic carbon from most natural waters ranges from 1 to 20 milligrams carbon per liter, of which approximately 75 percent are organic acids. These acids can be chromatographically fractionated into hydrophobic organic acids, such as humic substances, and hydrophilic organic acids. To effectively study any of these organic acids, they must be isolated from other organic and inorganic species, and concentrated. Usually, large volumes of water must be processed to obtain sufficient quantities of material, and adsorption chromatography on synthetic, macroporous resins has proven to be a particularly effective method for this purpose. The use of the nonionic Amberlite XAD-8 and Amberlite XAD-4 resins and the anion exchange resin Duolite A-7 for isolating and concentrating organic acids from water is presented.

  10. Large volume liquid helium relief device verifacation apparatus for the alpha magnetic spectrometer

    NASA Astrophysics Data System (ADS)

    Klimas, Richard John; McIntyre, P.; Colvin, John; Zeigler, John; Van Sciver, Steven; Ting, Samual

    2012-06-01

    Here we present details of an experiment for verifying the liquid helium vessel relief device for the Alpha Magnetic Spectrometer-02 (AMS-02). The relief device utilizes a series of rupture discs designed to open in the event of a vacuum failure of the AMS-02 cryogenic system. A failure of this type is classified to be a catastrophic loss of insulating vacuum accident. This apparatus differs from other approaches due to the size of the test volumes used. The verification apparatus consists of a 250 liter vessel used for the test quantity of liquid helium that is located inside a vacuum insulated vessel. A large diameter valve is suddenly opened to simulate the loss of insulating vacuum in a repeatable manner. Pressure and temperature vs. time data are presented and discussed in the context of the AMS-02 hardware configuration.

  11. A large volume 2000 MPA air source for the radiatively driven hypersonic wind tunnel

    SciTech Connect

    Constantino, M

    1999-07-14

    An ultra-high pressure air source for a hypersonic wind tunnel for fluid dynamics and combustion physics and chemistry research and development must provide a 10 kg/s pure air flow for more than 1 s at a specific enthalpy of more than 3000 kJ/kg. The nominal operating pressure and temperature condition for the air source is 2000 MPa and 900 K. A radial array of variable radial support intensifiers connected to an axial manifold provides an arbitrarily large total high pressure volume. This configuration also provides solutions to cross bore stress concentrations and the decrease in material strength with temperature. [hypersonic, high pressure, air, wind tunnel, ground testing

  12. Improved large-volume sampler for the collection of bacterial cells from aerosol.

    PubMed

    White, L A; Hadley, D J; Davids, D E; Naylor, R

    1975-03-01

    A modified large-volume sampler was demonstrated to be an efficient device for the collection of mono-disperse aerosols of rhodamine B and poly-disperse aerosols of bacterial cells. Absolute efficiency for collection of rhodamine B varied from 100% with 5-mum particles to about 70% with 0.5-mum particles. The sampler concentrated the particles from 950 liters of air into a flow of between 1 and 2 ml of collecting fluid per min. Spores of Bacillus subtilis var. niger were collected at an efficiency of about 82% compared to the collection in the standard AGI-30 sampler. In the most desirable collecting fluids tested, aerosolized cells of Serratia marcescens, Escherichia coli, and Aerobacter aerogenes were collected at comparative efficiencies of approximately 90, 80, and 90%, respectively. The modified sampler has practical application in the study of aerosol transmission of respiratory pathogens.

  13. Floating substructure flexibility of large-volume 10MW offshore wind turbine platforms in dynamic calculations

    NASA Astrophysics Data System (ADS)

    Borg, Michael; Melchior Hansen, Anders; Bredmose, Henrik

    2016-09-01

    Designing floating substructures for the next generation of 10MW and larger wind turbines has introduced new challenges in capturing relevant physical effects in dynamic simulation tools. In achieving technically and economically optimal floating substructures, structural flexibility may increase to the extent that it becomes relevant to include in addition to the standard rigid body substructure modes which are typically described through linear radiation-diffraction theory. This paper describes a method for the inclusion of substructural flexibility in aero-hydro-servo-elastic dynamic simulations for large-volume substructures, including wave-structure interactions, to form the basis of deriving sectional loads and stresses within the substructure. The method is applied to a case study to illustrate the implementation and relevance. It is found that the flexible mode is significantly excited in an extreme event, indicating an increase in predicted substructure internal loads.

  14. Anatomic Landmarks Versus Fiducials for Volume-Staged Gamma Knife Radiosurgery for Large Arteriovenous Malformations

    SciTech Connect

    Petti, Paula L. . E-mail: ppetti@radonc.ucsf.edu; Coleman, Joy; McDermott, Michael; Smith, Vernon; Larson, David A.

    2007-04-01

    Purpose: The purpose of this investigation was to compare the accuracy of using internal anatomic landmarks instead of surgically implanted fiducials in the image registration process for volume-staged gamma knife (GK) radiosurgery for large arteriovenous malformations. Methods and Materials: We studied 9 patients who had undergone 10 staged GK sessions for large arteriovenous malformations. Each patient had fiducials surgically implanted in the outer table of the skull at the first GK treatment. These markers were imaged on orthogonal radiographs, which were scanned into the GK planning system. For the same patients, 8-10 pairs of internal landmarks were retrospectively identified on the three-dimensional time-of-flight magnetic resonance imaging studies that had been obtained for treatment. The coordinate transformation between the stereotactic frame space for subsequent treatment sessions was then determined by point matching, using four surgically embedded fiducials and then using four pairs of internal anatomic landmarks. In both cases, the transformation was ascertained by minimizing the chi-square difference between the actual and the transformed coordinates. Both transformations were then evaluated using the remaining four to six pairs of internal landmarks as the test points. Results: Averaged over all treatment sessions, the root mean square discrepancy between the coordinates of the transformed and actual test points was 1.2 {+-} 0.2 mm using internal landmarks and 1.7 {+-} 0.4 mm using the surgically implanted fiducials. Conclusion: The results of this study have shown that using internal landmarks to determine the coordinate transformation between subsequent magnetic resonance imaging scans for volume-staged GK arteriovenous malformation treatment sessions is as accurate as using surgically implanted fiducials and avoids an invasive procedure.

  15. Large-volume liposuction and prevention of type 2 diabetes: a preliminary report.

    PubMed

    Narsete, Thomas; Narsete, Michele; Buckspan, Randy; Ersek, Robert

    2012-04-01

    This report presents a preliminary study investigating the effects of large-volume liposuction on the parameters that determine type 2 diabetes. The study enrolled 31 patients with a body mass index (BMI) exceeding 30 kg/m(2) over a 1-year period. All the liposuction procedures were performed with the patient under local anesthesia using ketamine/valium sedation. Pre- and postoperative blood pressure, fasting glucose, glycosylated hemoglobin (HbA1C), weight, and BMI were evaluated for 16 of the 30 patients who returned for a follow-up visit 3 to 12 months postoperatively. The average aspirate was 8,455 ml without dermolipectomy and 5,795 ml with dermolipectomy. The data reveal a trend of improvement in blood sugar levels associated with weight loss that helps the patients. The average blood sugar level dropped 18% in our return patients, and the average weight loss was 9.2%. The average drop in BMI was 6.2%, and HbA1C showed a decrease of 2.3%. The patients with the best weight loss had the best reduction in blood sugar level and blood pressure. No transfers to the hospital and no thromboebolism occurred for any of the 31 patients. One dehiscence, two wound infections, and three seromas were reported. The authors hypothesize that large-volume liposuction in their series may have motivated some to diet, which could be explored in a larger series with control groups. Liposuction alone did not improve obesity but helped to motivate some of the patients to lose weight. These patients had the best results.

  16. Rapid concentration of Bacillus and Clostridium spores from large volumes of milk, using continuous flow centrifugation.

    PubMed

    Agoston, Réka; Soni, Kamlesh A; McElhany, Katherine; Cepeda, Martha L; Zuckerman, Udi; Tzipori, Saul; Mohácsi-Farkas, Csilla; Pillai, Suresh D

    2009-03-01

    Deliberate or accidental contamination of foods such as milk, soft drinks, and drinking water with infectious agents or toxins is a major concern to health authorities. There is a critical need to develop technologies that can rapidly and efficiently separate and concentrate biothreat agents from food matrices. A key limitation of current centrifugation and filtration technologies is that they are batch processes with extensive hands-on involvement and processing times. The objective of our studies was to evaluate the continuous flow centrifugation (CFC) technique for the rapid separation and concentration of bacterial spores from large volumes of milk. We determined the effectiveness of the CFC technology for concentrating approximately 10(3) bacterial spores in 3.7 liters (1 gal) of whole milk and skim milk, using Bacillus subtilis, Bacillus atrophaeus, and Clostridium sporogenes spores as surrogates for biothreat agents. The spores in the concentrated samples were enumerated by using standard plating techniques. Three independent experiments were performed at 10,000 rpm and 0.7 liters/min flow rate. The mean B. subtilis spore recoveries were 71.3 and 56.5% in skim and whole milk, respectively, and those for B. atrophaeus were 55 and 59.3% in skim and whole milk, respectively. In contrast, mean C. sporogenes spore recoveries were 88.2 and 78.6% in skim and whole milk, respectively. The successful use of CFC to concentrate these bacterial spores from 3.7 liters of milk in 10 min shows promise for rapidly concentrating other spores from large volumes of milk.

  17. Studies on plasma production in a large volume system using multiple compact ECR plasma sources

    NASA Astrophysics Data System (ADS)

    Tarey, R. D.; Ganguli, A.; Sahu, D.; Narayanan, R.; Arora, N.

    2017-01-01

    This paper presents a scheme for large volume plasma production using multiple highly portable compact ECR plasma sources (CEPS) (Ganguli et al 2016 Plasma Source Sci. Technol. 25 025026). The large volume plasma system (LVPS) described in the paper is a scalable, cylindrical vessel of diameter  ≈1 m, consisting of source and spacer sections with multiple CEPS mounted symmetrically on the periphery of the source sections. Scaling is achieved by altering the number of source sections/the number of sources in a source section or changing the number of spacer sections for adjusting the spacing between the source sections. A series of plasma characterization experiments using argon gas were conducted on the LVPS under different configurations of CEPS, source and spacer sections, for an operating pressure in the range 0.5-20 mTorr, and a microwave power level in the range 400-500 W per source. Using Langmuir probes (LP), it was possible to show that the plasma density (~1  -  2  ×  1011 cm-3) remains fairly uniform inside the system and decreases marginally close to the chamber wall, and this uniformity increases with an increase in the number of sources. It was seen that a warm electron population (60-80 eV) is always present and is about 0.1% of the bulk plasma density. The mechanism of plasma production is discussed in light of the results obtained for a single CEPS (Ganguli et al 2016 Plasma Source Sci. Technol. 25 025026).

  18. Building high-performance system for processing a daily large volume of Chinese satellites imagery

    NASA Astrophysics Data System (ADS)

    Deng, Huawu; Huang, Shicun; Wang, Qi; Pan, Zhiqiang; Xin, Yubin

    2014-10-01

    The number of Earth observation satellites from China increases dramatically recently and those satellites are acquiring a large volume of imagery daily. As the main portal of image processing and distribution from those Chinese satellites, the China Centre for Resources Satellite Data and Application (CRESDA) has been working with PCI Geomatics during the last three years to solve two issues in this regard: processing the large volume of data (about 1,500 scenes or 1 TB per day) in a timely manner and generating geometrically accurate orthorectified products. After three-year research and development, a high performance system has been built and successfully delivered. The high performance system has a service oriented architecture and can be deployed to a cluster of computers that may be configured with high end computing power. The high performance is gained through, first, making image processing algorithms into parallel computing by using high performance graphic processing unit (GPU) cards and multiple cores from multiple CPUs, and, second, distributing processing tasks to a cluster of computing nodes. While achieving up to thirty (and even more) times faster in performance compared with the traditional practice, a particular methodology was developed to improve the geometric accuracy of images acquired from Chinese satellites (including HJ-1 A/B, ZY-1-02C, ZY-3, GF-1, etc.). The methodology consists of fully automatic collection of dense ground control points (GCP) from various resources and then application of those points to improve the photogrammetric model of the images. The delivered system is up running at CRESDA for pre-operational production and has been and is generating good return on investment by eliminating a great amount of manual labor and increasing more than ten times of data throughput daily with fewer operators. Future work, such as development of more performance-optimized algorithms, robust image matching methods and application

  19. Large Volume Coagulation Utilizing Multiple Cavitation Clouds Generated by Array Transducer Driven by 32 Channel Drive Circuits

    NASA Astrophysics Data System (ADS)

    Nakamura, Kotaro; Asai, Ayumu; Sasaki, Hiroshi; Yoshizawa, Shin; Umemura, Shin-ichiro

    2013-07-01

    High-intensity focused ultrasound (HIFU) treatment is a noninvasive treatment, in which focused ultrasound is generated outside the body and coagulates a diseased tissue. The advantage of this method is minimal physical and mental stress to the patient, and the disadvantage is the long treatment time caused by the smallness of the therapeutic volume by a single exposure. To improve the efficiency and shorten the treatment time, we are focusing attention on utilizing cavitation bubbles. The generated microbubbles can convert the acoustic energy into heat with a high efficiency. In this study, using the class D amplifiers, which we have developed, to drive the array transducer, we demonstrate a new method to coagulate a large volume by a single HIFU exposure through generating cavitation bubbles distributing in a large volume and vibrating all of them. As a result, the coagulated volume by the proposed method was 1.71 times as large as that of the conventional method.

  20. Determination of 235U enrichment with a large volume CZT detector

    NASA Astrophysics Data System (ADS)

    Mortreau, Patricia; Berndt, Reinhard

    2006-01-01

    Room-temperature CdZnTe and CdTe detectors have been routinely used in the field of Nuclear Safeguards for many years [Ivanov et al., Development of large volume hemispheric CdZnTe detectors for use in safeguards applications, ESARDA European Safeguards Research and Development Association, Le Corum, Montpellier, France, 1997, p. 447; Czock and Arlt, Nucl. Instr. and Meth. A 458 (2001) 175; Arlt et al., Nucl. Instr. and Meth. A 428 (1999) 127; Lebrun et al., Nucl. Instr. and Meth. A 448 (2000) 598; Aparo et al., Development and implementation of compact gamma spectrometers for spent fuel measurements, in: Proceedings, 21st Annual ESARDA, 1999; Arlt and Rudsquist, Nucl. Instr. and Meth. A 380 (1996) 455; Khusainov et al., High resolution pin type CdTe detectors for the verification of nuclear material, in: Proceedings, 17th Annual ESARDA European Safeguards Research and Development Association, 1995; Mortreau and Berndt, Nucl. Instr. and Meth. A 458 (2001) 183; Ruhter et al., UCRL-JC-130548, 1998; Abbas et al., Nucl. Instr. and Meth. A 405 (1998) 153; Ruhter and Gunnink, Nucl. Instr. and Meth. A 353 (1994) 716]. Due to their performance and small size, they are ideal detectors for hand-held applications such as verification of spent and fresh fuel, U/Pu attribute tests as well as for the determination of 235U enrichment. The hemispherical CdZnTe type produced by RITEC (Riga, Latvia) [Ivanov et al., 1997] is the most widely used detector in the field of inspection. With volumes ranging from 2 to 1500 mm 3, their spectral performance is such that the use of electronic processing to correct the pulse shape is not required. This paper reports on the work carried out with a large volume (15×15×7.5 mm 3) and high efficiency hemispherical CdZnTe detector for the determination of 235U enrichment. The measurements were made with certified uranium samples whose enrichment ranging from 0.31% to 92.42%, cover the whole range of in-field measurement conditions. The interposed

  1. Designing an elastomeric binder for large-volume-change electrodes for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Chen, Zonghai

    It is of commercial importance to develop high capacity negative and positive electrode materials for lithium-ion batteries to meet the energy requirements of portable electronic devices. Excellent capacity retention has been achieved for thin sputtered films of amorphous Si, Ge and Si-Sn alloys even when cycled to 2000 mAh/g and above, which suggests that amorphous alloys are capable of extended cycling. However, PVDF-based composite electrodes incorporating a-Si0.64Sn0.36/Ag powder (10 wt% silver coating) (˜10mum) still suffer from severe capacity fading because of the huge volumetric changes of a-Si0.64Sn0.36/Ag during charge/discharge cycling. It is the objective of this thesis to understand the problem scientifically and to propose practical solutions to solve this problem. Mechanical studies of binders for lithium battery electrodes have never been reported in the literature. The mechanical properties of commonly used binders, such as poly(vinylidene fluoride) (PVDF), haven't been challenged because commercially used active materials, such as LiCoO2 and graphite, have small volumetric changes (<10%) during charge/discharge cycling. However, the recently proposed metallic alloys have huge volumetric changes (up to 250%) during cycling. In this case, the mechanical properties of the binder become critical. A tether model is proposed to qualitatively understand the capacity fading of high-volume-change electrodes, and to predict the properties of a good binder system. A crosslinking/coupling route was used to modify the binder system according to the requirements of the tether model. A poly(vinylidene fluoride-tetrafluoroethylenepropylene)-based elastomeric binder system was designed to successfully improve the capacity retention of a-Si0.64 Sn0.36/Ag composite electrodes. In this thesis, it has also proven nontrivial to maximize the capacity retention of large-volume-change electrodes even when a fixed elastomeric binder system was used. The parameters that

  2. Large-volume hot spots in gold spiky nanoparticle dimers for high-performance surface-enhanced spectroscopy.

    PubMed

    Li, Anran; Li, Shuzhou

    2014-11-07

    Hot spots with a large electric field enhancement usually come in small volumes, limiting their applications in surface-enhanced spectroscopy. Using a finite-difference time-domain method, we demonstrate that spiky nanoparticle dimers (SNPD) can provide hot spots with both large electric field enhancement and large volumes because of the pronounced lightning rod effect of spiky nanoparticles. We find that the strongest electric fields lie in the gap region when SNPD is in a tip-to-tip (T-T) configuration. The enhancement of electric fields (|E|(2)/|E0|(2)) in T-T SNPD with a 2 nm gap can be as large as 1.21 × 10(6). And the hot spot volume in T-T SNPD is almost 7 times and 5 times larger than those in the spike dimer and sphere dimer with the same gap size of 2 nm, respectively. The hot spot volume in SNPD can be further improved by manipulating the arrangements of spiky nanoparticles, where crossed T-T SNPD provides the largest hot spot volume, which is 1.5 times that of T-T SNPD. Our results provide a strategy to obtain hot spots with both intense electric fields and large volume by adding a bulky core at one end of the spindly building block in dimers.

  3. Structure-Promiscuity Relationship Puzzles-Extensively Assayed Analogs with Large Differences in Target Annotations.

    PubMed

    Hu, Ye; Jasial, Swarit; Gilberg, Erik; Bajorath, Jürgen

    2017-03-06

    Publicly available screening data were systematically searched for extensively assayed structural analogs with large differences in the number of targets they were active against. Screening compounds with potential chemical liabilities that may give rise to assay artifacts were identified and excluded from the analysis. "Promiscuity cliffs" were frequently identified, defined here as pairs of structural analogs with a difference of at least 20 target annotations across all assays they were tested in. New assay indices were introduced to prioritize cliffs formed by screening compounds that were extensively tested in comparably large numbers of assays including many shared assays. In these cases, large differences in promiscuity degrees were not attributable to differences in assay frequency and/or lack of assay overlap. Such analog pairs have high priority for further exploring molecular origins of multi-target activities. Therefore, these promiscuity cliffs and associated target annotations are made freely available. The corresponding analogs often represent equally puzzling and interesting examples of structure-promiscuity relationships.

  4. [Margin determination from clinical to planning target volume for lung cancer treated with conformal or intensity-modulated irradiation].

    PubMed

    Berthelot, K; Thureau, S; Giraud, P

    2016-10-01

    Technological progress in radiotherapy enables more precision for treatment planning and delivery. The margin determination between the clinical target volume and the planning target volumes stem from the estimation of geometric uncertainties of the tumour localization into the radiation beam. The inner motion complexity of lung tumours has led to the use of 4D computed tomography and nurtures specific dosimetric concerns. Few strategies consisting in integrating tumour motion allow margin reduction regarding inner movements. The patient immobilization and onboard imagery improvement decrease the setup uncertainties. Each step between the initial planning imagery and treatment delivery has to be analysed as systematic or random errors to calculate the optimal planning margin.

  5. Large area thermal target board: An improvement to environmental effects and system parameters characterization

    NASA Astrophysics Data System (ADS)

    Watkins, Wendell R.; Bean, Brent L.; Munding, Peter D.

    1994-06-01

    Recent field tests have provided excellent opportunities to use a new characterization tool associated with the Mobile Imaging Spectroscopy Laboratory (MISL) of the Battlefield Environment Directorate, formerly the U.S. Army Atmospheric Sciences Laboratory. The MISL large area (1.8 by 1.8 m, uniform temperature, thermal target) was used for characterization and isolation of phenomena which impact target contrast. By viewing the target board from closeup and distant ranges simultaneously with the MISL thermal imagers, the inherent scene content could be calibrated and the degrading effects of atmospheric propagation could be isolated. The target board is equipped with several spatial frequency bar patterns, but only the largest 3.5-cycle full area bar pattern was used for the distant range of 1.6 km. The quantities measured with the target board include the inherent background change, the contrast transmission, and the atmospheric modulation transfer function. The MISL target board has a unique design which makes it lightweight with near perfect transition between the hot and cold portions of the bar pattern. The heated portion of the target is an elongated rectangular even which is tilted back at a 30 deg angle to form a 1.8 by 1.8 m square when viewed from the front. The cold bars we positioned in front of the heated oven surface and can be oriented in either the vertical or horizontal direction. The oven is mounted on a lightweight trailer for one- or two-man positioning. An attached metal and canvas structure is used to shield the entire target from both solar loading and cooling winds. The target board has a thin aluminum sheet front surface which is insulated from the oven's heating structure.

  6. Long term average rates of large-volume explosive volcanism are not average

    NASA Astrophysics Data System (ADS)

    Connor, C.; Kiyosugi, K.

    2011-12-01

    How good are our estimates of long term recurrence rates of large magnitude explosive volcanic eruptions? To investigate this question, we created a data set of all known explosive eruptions in Japan since 1.8 Ma and VEI magnitude 4 or greater. This data set contains 696 explosive eruptions. We use this data set to consider the change in apparent recurrence rate of large volume explosive eruptions through time. Assuming there has been little change in recurrence rate of volcanism since 2.25 Ma, apparent changes are due to erosion of explosive eruption deposits and a lower rate of identification of older deposits preserved in the geologic record. Surprisingly, one half of the eruptions in the data set occurred within the last 65 ka. 77% of the total eruptions occurred since 200 ka; the oldest eruption in the database is 2.25 Ma. Overall, there is a roughly exponential decrease in the numbers of eruptions of a given magnitude identified in the geological record as a function of time. This result clearly indicates that even large magnitude eruptions are significantly under-reported. In addition, percentages of explosive eruptions in the entire data set by eruption magnitude are: VEI 4 (40%), VEI 5 (42%), VEI 6 (13%) and VEI 7 (5%). Because it is reasonable to assume that smaller eruptions occur much more frequently, fewer VEI 4 eruptions than VEI 5 eruptions indicates that small eruptions are missing in this data set. We quantify these variations by plotting survivor functions, noting that there is little change in apparent rate of activity (or the preservation potential of deposits) with geographic and tectonic setting in Japan. These data indicate that eruption probabilities based on long term recurrence rate may underestimate rates of activity. This result also indicates there is considerable uncertainty about the future recurrence rate of large magnitude eruptions, as our best estimates of frequency are based on an unrealistically short record.

  7. Differences in Effective Target Volume Between Various Techniques of Accelerated Partial Breast Irradiation

    SciTech Connect

    Shaitelman, Simona F.; Vicini, Frank A.; Grills, Inga S.; Martinez, Alvaro A.; Yan Di; Kim, Leonard H.

    2012-01-01

    Purpose: Different cavity expansions are used to define the clinical target volume (CTV) for accelerated partial breast irradiation (APBI) delivered via balloon brachytherapy (1 cm) vs. three-dimensional conformal radiotherapy (3D-CRT) (1.5 cm). Previous studies have argued that the CTVs generated by these different margins are effectively equivalent. In this study, we use deformable registration to assess the effective CTV treated by balloon brachytherapy on clinically representative 3D-CRT planning images. Methods and Materials: Ten patients previously treated with the MammoSite were studied. Each patient had two computed tomography (CT) scans, one acquired before and one after balloon implantation. In-house deformable registration software was used to deform the MammoSite CTV onto the balloonless CT set. The deformed CTV was validated using anatomical landmarks common to both CT scans. Results: The effective CTV treated by the MammoSite was on average 7% {+-} 10% larger and 38% {+-} 4% smaller than 3D-CRT CTVs created using uniform expansions of 1 and 1.5 cm, respectively. The average effective CTV margin was 1.0 cm, the same as the actual MammoSite CTV margin. However, the effective CTV margin was nonuniform and could range from 5 to 15 mm in any given direction. Effective margins <1 cm were attributable to poor cavity-balloon conformance. Balloon size relative to the cavity did not significantly correlate with the effective margin. Conclusion: In this study, the 1.0-cm MammoSite CTV margin treated an effective volume that was significantly smaller than the 3D-CRT CTV based on a 1.5-cm margin.

  8. Stereotactic radiosurgery (SRS) in high-grade glioma: judicious selection of small target volumes improves results.

    PubMed

    Bokstein, Felix; Blumenthal, Deborah T; Corn, Benjamin W; Gez, Eliahu; Matceyevsky, Diana; Shtraus, Natan; Ram, Zvi; Kanner, Andrew A

    2016-02-01

    We present a retrospective review of 55 Stereotactic Radiosurgery (SRS) procedures performed in 47 consecutive patients with high-grade glioma (HGG). Thirty-three (70.2%) patients were diagnosed with glioblastoma and 14 (29.8%) with grade III glioma. The indications for SRS were small (up to 30 mm in diameter) locally progressing lesions in 32/47 (68%) or new distant lesions in 15/47 (32%) patients. The median target volume was 2.2 cc (0.2-9.5 cc) and the median prescription dose was 18 Gy (14-24 Gy). Three patients (5.5% incidence in 55 treatments) developed radiation necrosis. In eight cases (17%) patients received a second salvage SRS treatment to nine new lesions detected during follow-up. In 22/55 SRS treatments (40.0%) patients received concurrent chemo- or biological therapy, including temozolamide (TMZ) (15 patients), bevacizumab (BVZ) (6 patients) and carboplatin in one patient. Median time to progression after SRS was 5.0 months (1.0-96.4). Median survival time after SRS was 15.9 months (2.3-109.3) overall median survival (since diagnosis) was 37.4 months (9.6-193.6 months). Long-lasting responses (>12 months) after SRS were observed in 25/46 (54.3%) patients. We compared a matched (histology, age, KPS) cohort of patients with recurrent HGG treated with BVZ alone with the current study group. Median survival was significantly longer for SRS treated patients compared to the BVZ only cohort (12.6 vs. 7.3 months, p = 0.0102). SRS may be considered an effective salvage procedure for selected patients with small volume, recurrent high-grade gliomas. Long-term radiological control was observed in more than 50% of the patients.

  9. Impact Factors for Microinvasion in Intrahepatic Cholangiocarcinoma: A Possible System for Defining Clinical Target Volume

    SciTech Connect

    Bi Aihong; Zeng Zhaochong; Ji Yuan; Zeng Haiying; Xu Chen; Tang Zhaoyou; Fan Jia; Zhou Jian; Zeng Mengsu; Tan Yunshan

    2010-12-01

    Purpose: To quantify microscopic invasion of intrahepatic cholangiocarcinoma (IHC) into nontumor tissue and define the gross tumor volume (GTV)-to-clinical target volume (CTV) expansion necessary for radiotherapy. Methods and Materials: One-hundred IHC patients undergoing radical resection from January 2004 to July 2008 were enrolled in this study. Pathologic and clinical data including maximum tumor diameter, tumor boundary type, TNM stage, histologic grade, tumor markers, and liver enzymes were reviewed. The distance of microinvasion from the tumor boundary was measured by microscopy. The contraction coefficient for tumor measurements in radiographs and slide-mounted tissue was calculated. SPSS15.0 was used for statistical analysis. Results: Sixty-five patients (65%) exhibited tumor microinvasions. Microinvasions ranged from 0.4-8 mm, with 96% of patients having a microinvasion distance {<=}6 mm measured on slide. The radiograph-to-slide contraction coefficient was 82.1%. The degree of microinvasion was correlated with tumor boundary type, TNM stage, histologic grade, and serum levels of carbohydrate antigen 19-9, alanine aminotransferase, aspartate aminotransferase, {gamma}-glutamyltransferase and alkaline phosphatase. To define CTV accurately, we devised a scoring system based on combination of these factors. According to this system, a score {<=}1.5 is associated with 96.1% sensitivity in detecting patients with a microextension {<=}4.9 mm in radiographs, whereas a score {>=}2 has a 95.1% sensitivity in detecting microextension {<=}7.9 mm measured on radiograph. Conclusions: Patients with a score {<=}1.5 and {>=}2 require a radiographic GTV-to-CTV expansions of 4.9 and 7.9 mm, respectively, to encompass >95% of microinvasions.

  10. Anatomic Boundaries of the Clinical Target Volume (Prostate Bed) After Radical Prostatectomy

    SciTech Connect

    Wiltshire, Kirsty L.; Brock, Kristy K.; Haider, Masoom A.; Zwahlen, Daniel; Kong, Vickie; Chan, Elisa; Moseley, Joanne; Bayley, Andrew; Catton, Charles; Chung, Peter W.M.; Gospodarowicz, Mary; Milosevic, Michael; Kneebone, Andrew; Warde, Padraig; Menard, Cynthia

    2007-11-15

    Purpose: We sought to derive and validate an interdisciplinary consensus definition for the anatomic boundaries of the postoperative clinical target volume (CTV, prostate bed). Methods and Materials: Thirty one patients who had planned for radiotherapy after radical prostatectomy were enrolled and underwent computed tomography and magnetic resonance imaging (MRI) simulation prior to radiotherapy. Through an iterative process of consultation and discussion, an interdisciplinary consensus definition was derived based on a review of published data, patterns of local failure, surgical practice, and radiologic anatomy. In validation, we analyzed the distribution of surgical clips in reference to the consensus CTV and measured spatial uncertainties in delineating the CTV and vesicourethral anastomosis. Clinical radiotherapy plans were retrospectively evaluated against the consensus CTV (prostate bed). Results: Anatomic boundaries of the consensus CTV (prostate bed) are described. Surgical clips (n = 339) were well distributed throughout the CTV. The vesicourethral anastomosis was accurately localized using central sagittal computed tomography reconstruction, with a mean {+-} standard deviation uncertainty of 1.8 {+-} 2.5 mm. Delineation uncertainties were small for both MRI and computed tomography (mean reproducibility, 0-3.8 mm; standard deviation, 1.0-2.3); they were most pronounced in the anteroposterior and superoinferior dimensions and at the superior/posterior-most aspect of the CTV. Retrospectively, the mean {+-} standard deviation CTV (prostate bed) percentage of volume receiving 100% of prescribed dose was only 77% {+-} 26%. Conclusions: We propose anatomic boundaries for the CTV (prostate bed) and present evidence supporting its validity. In the absence of gross recurrence, the role of MRI in delineating the CTV remains to be confirmed. The CTV is larger than historically practiced at our institution and should be encompassed by a microscopic tumoricidal dose.

  11. Uncertainties in target volume delineation in radiotherapy – are they relevant and what can we do about them?

    PubMed Central

    Segedin, Barbara

    2016-01-01

    Abstract Background Modern radiotherapy techniques enable delivery of high doses to the target volume without escalating dose to organs at risk, offering the possibility of better local control while preserving good quality of life. Uncertainties in target volume delineation have been demonstrated for most tumour sites, and various studies indicate that inconsistencies in target volume delineation may be larger than errors in all other steps of the treatment planning and delivery process. The aim of this paper is to summarize the degree of delineation uncertainties for different tumour sites reported in the literature and review the effect of strategies to minimize them. Conclusions Our review confirmed that interobserver variability in target volume contouring represents the largest uncertainty in the process for most tumour sites, potentially resulting in a systematic error in dose delivery, which could influence local control in individual patients. For most tumour sites the optimal combination of imaging modalities for target delineation still needs to be determined. Strict use of delineation guidelines and protocols is advisable both in every day clinical practice and in clinical studies to diminish interobserver variability. Continuing medical education of radiation oncologists cannot be overemphasized, intensive formal training on interpretation of sectional imaging should be included in the program for radiation oncology residents. PMID:27679540

  12. Generating lung tumor internal target volumes from 4D-PET maximum intensity projections

    PubMed Central

    Lamb, J. M.; Robinson, C.; Bradley, J.; Laforest, R.; Dehdashti, F.; White, B. M.; Wuenschel, S.; Low, D. A.

    2011-01-01

    Purpose: Positron emission tomography (PET) of lung tumors suffers from breathing-motion induced blurring. Respiratory-correlated PET ameliorates motion blurring and enables visualization of lung tumor functional uptake throughout the breathing cycle but has achieved limited clinical use in radiotherapy planning. In this work, the authors propose a process for generating a gated PET maximum intensity projection (MIP), a breathing-phase projection of the 4D image set comprising gated PET images, as a technique to quantitatively and efficiently incorporate respiratory-correlated PET information into radiotherapy treatment planning.Methods: 4D-CT and respiratory-gated PET using [18F]fluorodeoxyglucose (FDG) were acquired of three patients with a total of four small (4–18 cc), clearly defined lower-lobe lung tumors. Internal target volumes (ITVs) for the lung tumors were generated by threshold-based segmentation of PET-MIP images and ungated PET images (ITVPET-MIP and ITV3D-PET, respectively), and by manual contouring of CT-MIP and end-exhale and end-inhale phases of 4D-CT (ITVCT-MIP) by a radiation oncologist. Because of the sensitivity of tumor segmentation to threshold value, several different thresholds were tested for ITV generation, including 40%, 30%, and 20% of maximum standardized uptake value (SUVmax) for FDG as well as absolute SUV thresholds of 2.5 and 3.0. The normalized overlap and relative volumes of ITVPET-MIP and ITV3D-PET with respect to ITVCT-MIP were compared. The images were also visually compared. ITVCT-MIP was considered a gold standard for these tumors with CT-visible morphology.Results: The mean and standard deviation normalized overlap and relative volumes between ITVPET-MIP and ITVCT-MIP were 0.68 ± 0.07 and 1.07 ± 0.42, respectively, averaged over all four tumors and all five threshold values. The mean and standard deviation normalized overlap and relative volumes of ITV3D-PET and ITVCT-MIP were 0.47 ± 0.12 and 0.69 ± 0

  13. Major risk from rapid, large-volume landslides in Europe (EU Project RUNOUT)

    NASA Astrophysics Data System (ADS)

    Kilburn, Christopher R. J.; Pasuto, Alessandro

    2003-08-01

    Project RUNOUT has investigated methods for reducing the risk from large-volume landslides in Europe, especially those involving rapid rates of emplacement. Using field data from five test sites (Bad Goisern and Köfels in Austria, Tessina and Vajont in Italy, and the Barranco de Tirajana in Gran Canaria, Spain), the studies have developed (1) techniques for applying geomorphological investigations and optical remote sensing to map landslides and their evolution; (2) analytical, numerical, and cellular automata models for the emplacement of sturzstroms and debris flows; (3) a brittle-failure model for forecasting catastrophic slope failure; (4) new strategies for integrating large-area Global Positioning System (GPS) arrays with local geodetic monitoring networks; (5) methods for raising public awareness of landslide hazards; and (6) Geographic Information System (GIS)-based databases for the test areas. The results highlight the importance of multidisciplinary studies of landslide hazards, combining subjects as diverse as geology and geomorphology, remote sensing, geodesy, fluid dynamics, and social profiling. They have also identified key goals for an improved understanding of the physical processes that govern landslide collapse and runout, as well as for designing strategies for raising public awareness of landslide hazards and for implementing appropriate land management policies for reducing landslide risk.

  14. Large-volume ultralow background germanium-germanium coincidence/anticoincidence gamma-ray spectrometer

    SciTech Connect

    Brodzinski, R.L.; Brown, D.P.; Evans, J.C. Jr.; Hensley, W.K.; Reeves, J.H.; Wogman, N.A.; Avignone, F.T. III; Miley, H.S.; Moore, R.S.

    1984-03-01

    A large volume (approx. 1440 cm/sup 3/), multicrystal, high resolution intrinsic germanium gamma-ray spectrometer has been designed based on 3 generations of experiments. The background from construction materials used in standard commercial configurations has been reduced by at least two orders of magnitude. Data taken with a 132 cm/sup 3/ prototype detector, installed in the Homestake Gold Mine, are presented. The first application of the full scale detector will be an ultrasensitive search for neutrinoless and two-neutrino double beta decay of /sup 76/Ge. The size and geometrical configuration of the crystals is chosen to optimize detection of double decay to the first excited state of /sup 76/Se with subsequent emission of a 559 keV gamma ray. The detector will be sufficiently sensitive for measuring the neutrinoless double beta decay to the ground state to establish a minimum half life of 1.4.10/sup 24/ y. Application of the large spectrometer system to the analysis of low level environmental and biological samples is discussed.

  15. Early changes of volume and spatial location in target and normal tissues caused by IMRT for cervical cancer.

    PubMed

    Chen, Jianwu; Liu, Ping; Chen, Wenjuan; Bai, Penggang; Li, Jiangshan; Ni, Xiaolei; Chen, Kaiqiang; Li, Qixin

    2016-12-01

    To investigate the early changes of volume and spatial location in target and normal tissues caused by intensity-modulated radiotherapy (IMRT) for cervical cancer. Forty patients with cervical cancer were included in this study and treated by IMRT. Computed tomography (CT) was performed before radiotherapy and when the patient had received 27 Gy in 15 fractions. After image registration, the volume of interest (VOI) for the targets and organs at risk was delineated by clinicians on the CT images. Changes of volume, spatial location and Dice similarity were calculated for all VOIs. There were significant changes in gross tumor volume (GTV) in the primary tumor (GTV-T) with t = 8.304 (p<0.01) and visible pelvic lymph nodes (GTV-N) with t = 4.996 (p<0.01) caused by IMRT. The mean volume differences for GTV-T and GTV-N were 38.64% ± 19.50% (range 3.16%-86.49%) and 42.49% ± 25.68% (range 2.79%-87.42%), respectively. Among the organs at risk, the bladder had the greatest volume change with 55.13% ± 33.40% (range 3.25%-116.01%). The Dice similarity for GTV-T and GTV-N was 0.50 ± 0.18 (range 0.10-0.85) and 0.31 ± 0.20 (range 0.00-0.71), respectively. The rectum had the least Dice similarity among the normal tissues, with a mean value of 0.57 ± 0.14 (range 0.18-0.76). There were significant changes in volume and spatial location of the target and normal tissues after 27 Gy IMRT. In order to maintain the radiation dose to the targets and minimize the radiation to normal tissues, it is necessary to modify the radiotherapy planning.

  16. Note: Development of a volume-limited dot target for a high brightness extreme ultraviolet microplasma source

    SciTech Connect

    Dinh, Thanh Hung Suzuki, Yuhei; Hara, Hiroyuki; Higashiguchi, Takeshi; Hirose, Ryoichi; Ohashi, Hayato; Li, Bowen; Dunne, Padraig; O’Sullivan, Gerry; Sunahara, Atsushi

    2014-11-15

    We report on production of volume-limited dot targets based on electron beam lithographic and sputtering technologies for use in efficient high brightness extreme ultraviolet microplasma sources. We successfully produced cylindrical tin (Sn) targets with diameters of 10, 15, and 20 μm and a height of 150 nm. The calculated spectrum around 13.5 nm was in good agreement with that obtained experimentally.

  17. Sphaeropsidin A shows promising activity against drug-resistant cancer cells by targeting regulatory volume increase

    PubMed Central

    Mathieu, Véronique; Chantôme, Aurélie; Lefranc, Florence; Cimmino, Alessio; Miklos, Walter; Paulitschke, Verena; Mohr, Thomas; Maddau, Lucia; Kornienko, Alexander; Berger, Walter; Vandier, Christophe; Evidente, Antonio; Delpire, Eric; Kiss, Robert

    2016-01-01

    Despite the recent advances in the treatment of tumors with intrinsic chemotherapy resistance, such as melanoma and renal cancers, their prognosis remains poor and new chemical agents with promising activity against these cancers are urgently needed. Sphaeropsidin A, a fungal metabolite whose anticancer potential had previously received little attention, was isolated from Diplodia cupressi and found to display specific anticancer activity in vitro against melanoma and kidney cancer subpanels in the National Cancer Institute (NCI) 60-cell line screen. The NCI data revealed a mean LC50 of ca. 10 μM and a cellular sensitivity profile that did not match that of any other agent in the 765,000 compound database. Subsequent mechanistic studies in melanoma and other multidrug-resistant in vitro cancer models showed that sphaeropsidin A can overcome apoptosis as well as multidrug resistance by inducing a marked and rapid cellular shrinkage related to the loss of intracellular Cl− and the decreased HCO3− concentration in the culture supernatant. These changes in ion homeostasis and the absence of effects on the plasma membrane potential were attributed to the sphaeropsidin A-induced impairment of regulatory volume increase (RVI). Preliminary results also indicate that depending on the type of cancer, the sphaeropsidin A effects on RVI could be related to Na–K–2Cl electroneutral cotransporter or Cl−/HCO3− anion exchanger(s) targeting. This study underscores the modulation of ion-transporter activity as a promising therapeutic strategy to combat drug-resistant cancers and identifies the fungal metabolite, sphaeropsidin A, as a lead to develop anticancer agents targeting RVI in cancer cells. PMID:25868554

  18. WE-D-17A-04: Magnetically Focused Proton Irradiation of Small Volume Targets

    SciTech Connect

    McAuley, G; Slater, J; Wroe, A

    2014-06-15

    Purpose: To explore the advantages of magnetic focusing for small volume proton irradiations and the potential clinical benefits for radiosurgery targets. The primary goal is to create narrow elongated proton beams of elliptical cross section with superior dose delivery characteristics compared to current delivery modalities (eg, collimated beams). In addition, more general beam shapes are also under investigation. Methods: Two prototype magnets consisting of 24 segments of samarium-cobalt (Sm2Co17) permanent magnetic material adhered into hollow cylinders were manufactured for testing. A single focusing magnet was placed on a positioning track on our Gantry 1 treatment table and 15 mm diameter proton beams with energies and modulation relevant to clinical radiosurgery applications (127 to 186 MeV, and 0 to 30 mm modulation) were delivered to a terminal water tank. Beam dose distributions were measured using a PTW diode detector and Gafchromic EBT2 film. Longitudinal and transverse dose profiles were analyzed and compared to data from Monte Carlo simulations analogous to the experimental setup. Results: The narrow elongated focused beam spots showed high elliptical symmetry indicating high magnet quality. In addition, when compared to unfocused beams, peak-to-entrance depth dose ratios were 11 to 14% larger (depending on presence or extent of modulation), and minor axis penumbras were 11 to 20% smaller (again depending on modulation) for focused beams. These results suggest that the use of rare earth magnet assemblies is practical and could improve dose-sparing of normal tissue and organs at risk while delivering enhanced dose to small proton radiosurgery targets. Conclusion: Quadrapole rare earth magnetic assemblies are a promising and inexpensive method to counteract particle out scatter that tends to degrade the peak to entrance performance of small field proton beams. Knowledge gained from current experiments will inform the design of a prototype treatment

  19. Effects of Pre-Existing Target Structure on the Formation of Large Craters

    NASA Technical Reports Server (NTRS)

    Barnouin-Jha, O. S.; Cintala, M. J.; Crawford, D. A.

    2003-01-01

    The shapes of large-scale craters and the mechanics responsible for melt generation are influenced by broad and small-scale structures present in a target prior to impact. For example, well-developed systems of fractures often create craters that appear square in outline, good examples being Meteor Crater, AZ and the square craters of 433 Eros. Pre-broken target material also affects melt generation. Kieffer has shown how the shock wave generated in Coconino sandstone at Meteor crater created reverberations which, in combination with the natural target heterogeneity present, created peaks and troughs in pressure and compressed density as individual grains collided to produce a range of shock mineralogies and melts within neighboring samples. In this study, we further explore how pre-existing target structure influences various aspects of the cratering process. We combine experimental and numerical techniques to explore the connection between the scales of the impact generated shock wave and the pre-existing target structure. We focus on the propagation of shock waves in coarse, granular media, emphasizing its consequences on excavation, crater growth, ejecta production, cratering efficiency, melt generation, and crater shape. As a baseline, we present a first series of results for idealized targets where the particles are all identical in size and possess the same shock impedance. We will also present a few results, whereby we increase the complexities of the target properties by varying the grain size, strength, impedance and frictional properties. In addition, we investigate the origin and implications of reverberations that are created by the presence of physical and chemical heterogeneity in a target.

  20. The oligocene Lund Tuff, Great Basin, USA: A very large volume monotonous intermediate

    USGS Publications Warehouse

    Maughan, L.L.; Christiansen, E.H.; Best, M.G.; Gromme, C.S.; Deino, A.L.; Tingey, D.G.

    2002-01-01

    Unusual monotonous intermediate ignimbrites consist of phenocryst-rich dacite that occurs as very large volume (> 1000 km3) deposits that lack systematic compositional zonation, comagmatic rhyolite precursors, and underlying plinian beds. They are distinct from countless, usually smaller volume, zoned rhyolite-dacite-andesite deposits that are conventionally believed to have erupted from magma chambers in which thermal and compositional gradients were established because of sidewall crystallization and associated convective fractionation. Despite their great volume, or because of it, monotonous intermediates have received little attention. Documentation of the stratigraphy, composition, and geologic setting of the Lund Tuff - one of four monotonous intermediate tuffs in the middle-Tertiary Great Basin ignimbrite province - provides insight into its unusual origin and, by implication, the origin of other similar monotonous intermediates. The Lund Tuff is a single cooling unit with normal magnetic polarity whose volume likely exceeded 3000 km3. It was emplaced 29.02 ?? 0.04 Ma in and around the coeval White Rock caldera which has an unextended north-south diameter of about 50 km. The tuff is monotonous in that its phenocryst assemblage is virtually uniform throughout the deposit: plagioclase > quartz ??? hornblende > biotite > Fe-Ti oxides ??? sanidine > titanite, zircon, and apatite. However, ratios of phenocrysts vary by as much as an order of magnitude in a manner consistent with progressive crystallization in the pre-eruption chamber. A significant range in whole-rock chemical composition (e.g., 63-71 wt% SiO2) is poorly correlated with phenocryst abundance. These compositional attributes cannot have been caused wholly by winnowing of glass from phenocrysts during eruption, as has been suggested for the monotonous intermediate Fish Canyon Tuff. Pumice fragments are also crystal-rich, and chemically and mineralogically indistinguishable from bulk tuff. We

  1. Targeted therapies used sequentially in metastatic renal cell cancer: overall results from a large experience.

    PubMed

    Procopio, Giuseppe; Verzoni, Elena; Iacovelli, Roberto; Guadalupi, Valentina; Gelsomino, Francesco; Buzzoni, Roberto

    2011-11-01

    Targeted therapies have improved survival in patients with metastatic renal cell cancer (RCC); however, expert opinion on the optimal therapeutic strategy is divided. This retrospective study evaluates different sequential schemes of targeted therapies in 310 patients with advanced/metastatic RCC who received different systemic agents - sorafenib, sunitinib, bevacizumab, everolimus, temsirolimus and axitinib - alone or in different sequences, until disease progression or intolerable toxicity (median follow-up: 37 months). The median overall survival (OS) was 22 months and the 5-year OS was 23.4%; differential therapeutic schemes were not associated with differences in OS. A worse performance status, no nephrectomy and a poor-risk classification according to the Motzer criteria was associated with a shorter OS. These findings support the use of targeted therapies in the treatment of RCC, even in a large unselected population from a single institution, and suggest that treatment should be tailored to meet individual circumstances and needs.

  2. Gross tumor volume and clinical target volume in prostate cancer: How do satellites relate to the index lesion.

    PubMed

    Hollmann, Birgit G; van Triest, Baukelien; Ghobadi, Ghazaleh; Groenendaal, Greetje; de Jong, Jeroen; van der Poel, Henk G; van der Heide, Uulke A

    2015-04-01

    There is an increasing interest for dose differentiation in prostate radiotherapy. The purpose of our study was to analyze the spatial distribution of tumor satellites inside the prostate. 61 prostatectomy specimens were stained with H&E. Tumor regions were delineated by the uro-pathologist. Volumes, distances and cell densities of all delineated tumor regions were measured and further analyzed. Multifocal disease was seen in 84% of the patients. The median number of tumor foci was 3. The median distance between the index lesion and the satellites was 1.0 cm, with a maximum of 4.4 cm. The index lesions accounted for 88% of the total tumor volume. The contribution of tumor foci<0.1 cm(3) to the total tumor volume was 2%. The median cell density of the index lesion and all satellites, regardless of size, were significantly higher than that of the prostate. Satellites do not appear in a limited margin around the index lesion (GTV). Consequently, a fixed CTV margin would not effectively cover all satellites. Thus if the aim is to treat all tumor foci, the entire prostate gland should be considered CTV. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  3. Large voided volume suggestive of abnormal uroflow pattern and elevated post-void residual urine.

    PubMed

    Chang, Shang-Jen; Yang, Stephen Shei-Dei; Chiang, I-Ni

    2011-01-01

    To report the cut-off value for large voided volume (LVV) suggestive of abnormal uroflow pattern or elevated post-void residual urine (PVR) in healthy kindergarteners. From 2003 through 2008, we enrolled 417 healthy kindergarten children for evaluation of uroflowmetry tests and PVR. The uroflowmetry curves were interpreted if voided volumes (VV) were >50 ml, and categorized as bell-shaped, staccato, plateau, and interrupted. Only bell-shaped curves were categorized as normal. After 2006, PVR was assessed within 5 min after each voiding with a VV >50 ml. A PVR >20 ml is regarded as elevated. Receiver operative characteristic (ROC) curves were constructed to evaluate the cut-off value of VV/expected bladder capacity (EBC) with regard to nonbell-shaped uroflowmetry curves, and/or elevated PVR. Of 385 children (mean age: 4.85 ± 0.96 years), 699 uroflowmetry, and 556 PVR data were eligible for analysis. There were 502 (71.8%) bell-shaped, 76 (10.9%) plateau, 102 (14.6%) staccato, and 19 (2.7%) interrupted curves. Mean and median PVR were 12.4 ± 21.2 and 5.5 ml, respectively. Of 556 PVRs, 96 (17.3%) were >20 ml. Based on the ROC curve for the nonbell-shaped curves and/or elevated PVR, VV >100% EBC was best defined as LVV. There were statistically more elevated PVR, and more nonbell-shaped curves in the voidings with than without LVV. There is a trend that peak flow rate decreased when VV was >150% EBC. VV of more than 100% EBC can be defined as LVV which was associated with higher rates of abnormal uroflow pattern and/or elevated PVR. Copyright © 2010 Wiley-Liss, Inc.

  4. Hematopoietic progenitor cell large volume leukapheresis (LVL) on the Fenwal Amicus blood separator.

    PubMed

    Burgstaler, Edwin A; Pineda, Alvaro A; Winters, Jeffrey L

    2004-01-01

    A technique for large volume leukapheresis (LVL) for hematopoietic progenitor cell (HPC) collection using the Fenwal Amicus is presented. It was compared to standard collections (STD) with regard to CD34+ cell yields and cross-cellular content. Optimal cycle volumes and machine settings were evaluated for LVL procedures. A total of 68 patients underwent 80 HPC collection procedures. Because of differences in CD34+ cell yields associated with peripheral white blood cell counts (WBC), the comparison was divided into groups of 20 with WBC < or =35 x 10(9)/L (< or =35 K) and those >35 x 10(9)/L (>35 K). Baseline CD34+ cell counts (peripheral count when patient started HPC collection) were used (median 18-23 cells/microl). Significantly more whole blood (corrected for anticoagulant) was processed with LVL (LVL 20 l vs. STD 13.5 l). For < or =35 K, median CD34+ x 10(6), WBC x 10(9), RBC ml, Plt x 10(11) yields/collection were 183, 21.2, 14, 0.8, respectively, for STD vs. 307, 22.1, 11, 1.0, respectively, for LVL. For >35 K, median CD34+ x 10(6), WBC x 10(9), RBC ml, Plt x 10(11) yields/collection were 189, 32.7, 15, 1.4, respectively, for STD vs. 69, 40.8, 21, 1.3, respectively, for LVL. We have described a method of LVL using the Amicus that, in patients with pre-procedure WBC < or =35 x 10(9)/L, collects more CD34+ cells than a standard procedure with acceptable cross-cellular content. This method is not recommended when pre-procedure WBC counts are >35 x 10(9)/L.

  5. Clinical target volume delineation including elective nodal irradiation in preoperative and definitive radiotherapy of pancreatic cancer

    PubMed Central

    2012-01-01

    Background Radiotherapy (RT) is widely used in the treatment of pancreatic cancer. Currently, recommendation has been given for the delineation of the clinical target volume (CTV) in adjuvant RT. Based on recently reviewed pathologic data, the aim of this study is to propose criteria for the CTV definition and delineation including elective nodal irradiation (ENI) in the preoperative and definitive treatment of pancreatic cancer. Methods The anatomical structures of interest, as well as the abdominal vasculature were identified on intravenous contrast-enhanced CT scans of two different patients with pancreatic cancer of the head and the body. To delineate the lymph node area, a margin of 10 mm was added to the arteries. Results We proposed a set of guidelines for elective treatment of high-risk nodal areas and CTV delineation. Reference CT images were provided. Conclusions The proposed guidelines could be used for preoperative or definitive RT for carcinoma of the head and body of the pancreas. Further clinical investigations are needed to validate the defined CTVs. PMID:22691275

  6. Proposed definition of the vaginal cuff and paracolpium clinical target volume in postoperative uterine cervical cancer.

    PubMed

    Murakami, Naoya; Norihisa, Yoshiki; Isohashi, Fumiaki; Murofushi, Keiko; Ariga, Takuro; Kato, Tomoyasu; Inaba, Koji; Okamoto, Hiroyuki; Ito, Yoshinori; Toita, Takafumi; Itami, Jun

    2016-01-01

    The aim of this study was to develop an appropriate definition for vaginal cuff and paracolpium clinical target volume (CTV) for postoperative intensity modulated radiation therapy in patients with uterine cervical cancer. A working subgroup was organized within the Radiation Therapy Study Group of the Japan Clinical Oncology Group to develop a definition for the postoperative vaginal cuff and paracolpium CTV in December 2013. The group consisted of 5 radiation oncologists who specialized in gynecologic oncology and a gynecologic oncologist. A comprehensive literature review that included anatomy, surgery, and imaging fields was performed and was followed by multiple discreet face-to-face discussions and e-mail messages before a final consensus was reached. Definitions for the landmark structures in all directions that demarcate the vaginal cuff and paracolpium CTV were decided by consensus agreement of the working group. A table was created that showed boundary structures of the vaginal cuff and paracolpium CTV in each direction. A definition of the postoperative cervical cancer vaginal cuff and paracolpium CTV was developed. It is expected that this definition guideline will serve as a template for future radiation therapy clinical trial protocols, especially protocols involving intensity modulated radiation therapy. Copyright © 2016 American Society for Radiation Oncology. Published by Elsevier Inc. All rights reserved.

  7. The ADVANCE project: Formal evaluation of the targeted deployment. Volume 1

    SciTech Connect

    1997-01-01

    The Advanced Driver and Vehicle Advisory Navigation ConcEpt (ADVANCE) was an invehicle advanced traveler information system (ATIS) that operated in the northwest suburbs of Chicago, Illinois. It was designed to provide origin-destination shortest-time route guidance to a vehicle based on (a) an on-board static (fixed) data base of average network link travel times by time of day, combined as available and appropriate with (b) dynamic (real-time) information on traffic conditions provided by radio frequency (RF) communications to and from a traffic information center (TIC). Originally conceived in 1990 as a major project that would have installed 3,000 to 5,000 route guidance units in privately owned vehicles throughout the test area, ADVANCE was restructured in 1995 as a {open_quotes}targeted deployment,{close_quotes} in which approximately 80 vehicles were to be equipped with the guidance units - Mobile Navigation Assistants (MNAs) - to be in full communication with the TIC while driving the ADVANCE test area road system. Volume one consists of the evaluation managers overview report, and several appendices containing test results.

  8. Assessment of target volume doses in radiotherapy based on the standard and measured calibration curves.

    PubMed

    Mohammadi, Gholamreza Fallah; Alam, Nader Riyahi; Rezaeejam, Hamed; Pourfallah, Tayyeb Allahverdi; Zakariaee, Seyed Salman

    2015-01-01

    In radiation treatments, estimation of the dose distribution in the target volume is one of the main components of the treatment planning procedure. To estimate the dose distribution, the information of electron densities is necessary. The standard curves determined by computed tomography (CT) scanner that may be different from that of other oncology centers. In this study, the changes of dose calculation due to the different calibration curves (HU-ρel) were investigated. Dose values were calculated based on the standard calibration curve that was predefined for the treatment planning system (TPS). The calibration curve was also extracted from the CT images of the phantom, and dose values were calculated based on this curve. The percentage errors of the calculated values were determined. The statistical analyses of the mean differences were performed using the Wilcoxon rank-sum test for both of the calibration curves. The results show no significant difference for both of the measured and standard calibration curves (HU-ρel) in 6, 15, and 18 MeV energies. In Wilcoxon ranked sum nonparametric test for independent samples with P<0.05, the equality of monitor units for both of the curves to transfer 200 cGy doses to reference points was resulted. The percentage errors of the calculated values were lower than 2% and 1.5% in 6 and 15 MeV, respectively. From the results, it could be concluded that the standard calibration curve could be used in TPS dose calculation accurately.

  9. Impact of Node Negative Target Volume Delineation on Contralateral Parotid Gland Dose Sparing Using IMRT in Head and Neck Cancer.

    PubMed

    Magnuson, William J; Urban, Erich; Bayliss, R Adam; Harari, Paul M

    2015-06-01

    There is considerable practice variation in treatment of the node negative (N0) contralateral neck in patients with head and neck cancer. In this study, we examined the impact of N0 neck target delineation volume on radiation dose to the contralateral parotid gland. Following institutional review board approval, 12 patients with head and neck cancer were studied. All had indications for treatment of the N0 neck, such as midline base of tongue or soft palate extension or advanced ipsilateral nodal disease. The N0 neck volumes were created using the Radiation Therapy Oncology Group head and neck contouring atlas. The physician-drawn N0 neck clinical target volume (CTV) was expanded by 25% to 200% to generate volume variation, followed by a 3-mm planning target volume (PTV) expansion. Surrounding organs at risk were contoured and complete intensity-modulated radiation therapy plans were generated for each N0 volume expansion. The median N0 target volume drawn by the radiation oncologist measured 93 cm(3) (range 71-145). Volumetric expansion of the N0 CTV by 25% to 200% increased the resultant mean dose to the contralateral parotid gland by 1.4 to 8.5 Gray (Gy). For example, a 4.1-mm increase in the N0 neck CTV translated to a 2.0-Gy dose increase to the parotid, 7.4 mm to a 4.5 Gy dose increase, and 12.5 mm to an 8.5 Gy dose increase, respectively. The treatment volume designated for the N0 neck has profound impact on resultant dose to the contralateral parotid gland. Variations of up to 15 mm are routine across physicians in target contouring, reflecting individual preference and training expertise. Depending on the availability of immobilization and image guidance techniques, experts commonly recommend 3 to 10 mm margin expansions to generate the PTV. Careful attention to the original volume of the N0 neck CTV, as well as expansion margins, is important in achieving effective contralateral gland sparing to reduce the resultant xerostomia and dysguesia that may ensue

  10. The Coordination of Program Planning and Evaluation Systems for Occupational Education. Volume 2: A Targeting System for Occupational Education.

    ERIC Educational Resources Information Center

    Riverside Research Inst., New York, NY.

    The second volume of the final report deals with the targeting system--one of a hierarchy of systems required to support the effective delivery of superior occupational education. It determines that program objectives match student training in occupations, that the best choice of occupations in which to train students has been made, and that the…

  11. Alfapump® system vs. large volume paracentesis for refractory ascites: A multicenter randomized controlled study.

    PubMed

    Bureau, Christophe; Adebayo, Danielle; Chalret de Rieu, Mael; Elkrief, Laure; Valla, Dominique; Peck-Radosavljevic, Markus; McCune, Anne; Vargas, Victor; Simon-Talero, Macarena; Cordoba, Juan; Angeli, Paolo; Rosi, Silvia; MacDonald, Stewart; Malago, Massimo; Stepanova, Maria; Younossi, Zobair M; Trepte, Claudia; Watson, Randall; Borisenko, Oleg; Sun, Sun; Inhaber, Neil; Jalan, Rajiv

    2017-06-21

    Patients with refractory ascites (RA) require repeated large volume paracenteses (LVP), which involves frequent hospital visits and is associated with a poor quality-of-life. This study assessed safety and efficacy of an automated, low-flow pump (alfapump® [AP]) compared with LVP standard of care [SoC]. A randomized controlled trial, in seven centers, with six month patient observation was conducted. Primary outcome was time to first LVP. Secondary outcomes included paracentesis requirement, safety, health-related quality-of-life (HRQoL), and survival. Nutrition, hemodynamics, and renal injury biomarkers were assessed in a sub-study at three months. Sixty patients were randomized and 58 were analyzed (27 AP, 31 SoC, mean age 61.9years, mean MELD 11.7). Eighteen patients were included in the sub-study. Compared with SoC, median time to first LVP was not reached after six months in the AP group, meaning a significant reduction in LVP requirement for the AP patients (AP, median not reached; SoC, 15.0days (HR 0.13; 95%CI 13.0-22.0; p<0.001), and AP patients also showed significantly improved Chronic Liver Disease Questionnaire (CLDQ) scores compared with SoC patients (p<0.05 between treatment arms). Improvements in nutritional parameters were observed for hand-grip strength (p=0.044) and body mass index (p<0.001) in the sub-study. Compared with SoC, more AP patients reported adverse events (AEs; 96.3% vs. 77.4%, p=0.057) and serious AEs (85.2 vs. 45.2%, p=0.002). AEs consisted predominantly of acute kidney injury in the immediate post-operative period, and re-intervention for pump related issues, and were treatable in most cases. Survival was similar in AP and SoC. The AP system is effective for reducing the need for paracentesis and improving HRQoL in cirrhotic patients with RA. Although the frequency of Quality of Life (and by inference hospitalizations) was significantly higher in the AP group, they were generally limited and did not impact survival. www

  12. Storage and eruption of large volumes of rhyolite lava: Example from Solfatara Plateau, Yellowstone Caldera

    NASA Astrophysics Data System (ADS)

    Befus, K.; Gardner, J. E.; Zinke, R.

    2010-12-01

    The cataclysmic volcanic history of Yellowstone caldera has been extensively documented in both popular media and scholarly journals. High-silica magmas should erupt explosively because of their high viscosity and volatile content; however, numerous passively-erupted, large-volume rhyolite lava flows have also erupted from Yellowstone caldera. We use petrologic observations of one such flow, the Solfatara Plateau obsidian lava, to provide insights into the eruptive dynamics and pre-eruptive magmatic conditions of large-volume rhyolite lava. Solfatara Plateau, a 7 km3 high-silica rhyolite lava that extends 4-15 km from vent, erupted 103±8 ka within the Yellowstone caldera1. Quartz and sanidine are the dominant phenocrysts, with crystal contents of 5-10% throughout. FTIR analyses of glass inclusions in quartz and sanidine phenocrysts indicate that pre-eruptive dissolved volatile contents were up to 3.0 wt. % H2O and 250 ppm CO2. Myrmekite blebs partially envelop quartz and sanidine phenocrysts in all samples from along the margins of the flow (up to 3 km from flow front). Sanidines in samples from near vent are unzoned at Or49±2. Those at the flow front have similar cores, but rims are more sodic (Or44±6). Alkali feldspars in myrmekite range from Or27 to Or50. Petrologic observations, such as heavily embayed quartz phenocrysts and dissolution of myrmekite indicate disequilibrium within the system, likely as a result of significant heating that caused portions of the magma body to go from near-solidus to near-liquidus conditions prior to erupting. When it did erupt, volatile loss during eruptive ascent led to undercooling and significant microlite crystallization of Fe-Ti oxide and clinopyroxene microlites. Fe-Ti microlites occur as roughly equidimensional crystals, 1-10 µm across, as well as high-aspect-ratio needles, 3-60 µm long. Clinopyroxene microlites occur primarily as individual prismatic crystals, but also occur as linked, curved chains or as overgrowths

  13. Physiological and Psychological Changes Following Liposuction of Large Volumes of Fat in Overweight and Obese Women

    PubMed Central

    Geliebter, Allan; Krawitz, Emily; Ungredda, Tatiana; Peresechenski, Ella; Giese, Sharon Y.

    2016-01-01

    Background Liposuction can remove a substantial amount of body fat. We investigated the effects of liposuction of large volumes of fat on anthropometrics, body composition (BIA), metabolic hormones, and psychological measures in overweight/obese women. To our knowledge, this is the first study to examine both physiological and psychological changes following liposuction of large volumes of fat in humans. Method Nine premenopausal healthy overweight/obese women (age = 35.9 ± 7.1 SD, weight = 84.4 kg ± 13.6, BMI = 29.9 kg/m2 ± 2.9) underwent liposuction, removing 3.92 kg ± 1.04 SD of fat. Following an overnight fast, height, weight, waist, and hip circumferences were measured at baseline (one week pre-surgery) and post-surgery (wk 1,4,12). Blood samples were drawn for fasting concentrations of glucose, insulin, leptin, and ghrelin. The Body Shape Questionnaire (BSQ), Body Dysmorphic Disorder (BDD) Examination Self-Report (BDDE-SR), and Zung Self-Rating Depression Scale (ZDS) were administered. Results Body weight, BMI, waist circumference, and body fat consistently decreased over time (p < .05). Glucose did not change significantly, but insulin decreased from wk 1 to wk 12 (p < .05). Leptin decreased from baseline to wk 1 (p = .01); ghrelin increased but not significantly. Changes in body fat and waist circumference (baseline to wk 1) correlated positively with changes in insulin during that period, and correlated inversely with changes in ghrelin (p < .05). BSQ scores decreased significantly over time (p = .004), but scores for BDDE-SR (p = .10) and ZDS (p = .24) did not change significantly. Conclusion Liposuction led to significant decreases in body weight and fat, waist circumference, and leptin levels. Changes in body fat and waist circumference correlated with concurrent changes in the adipose-related hormones, insulin and ghrelin (baseline to wk 1), and body shape perception improved. Thus, besides the obvious cosmetic effects, liposuction led to several

  14. Use of volume-targeted non-invasive bilevel positive airway pressure ventilation in a patient with amyotrophic lateral sclerosis*,**

    PubMed Central

    Diaz-Abad, Montserrat; Brown, John Edward

    2014-01-01

    Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease in which most patients die of respiratory failure. Although volume-targeted non-invasive bilevel positive airway pressure (BPAP) ventilation has been studied in patients with chronic respiratory failure of various etiologies, its use in ALS has not been reported. We present the case of a 66-year-old woman with ALS and respiratory failure treated with volume-targeted BPAP ventilation for 15 weeks. Weekly data downloads showed that disease progression was associated with increased respiratory muscle weakness, decreased spontaneous breathing, and increased use of non-invasive positive pressure ventilation, whereas tidal volume and minute ventilation remained relatively constant. PMID:25210968

  15. Microdroplet-based PCR enrichment for large-scale targeted sequencing.

    PubMed

    Tewhey, Ryan; Warner, Jason B; Nakano, Masakazu; Libby, Brian; Medkova, Martina; David, Patricia H; Kotsopoulos, Steve K; Samuels, Michael L; Hutchison, J Brian; Larson, Jonathan W; Topol, Eric J; Weiner, Michael P; Harismendy, Olivier; Olson, Jeff; Link, Darren R; Frazer, Kelly A

    2009-11-01

    Targeted enrichment of specific loci of the human genome is a promising approach to enable sequencing-based studies of genetic variation in large populations. Here we describe an enrichment approach based on microdroplet PCR, which enables 1.5 million amplifications in parallel. We sequenced six samples enriched by microdroplet or traditional singleplex PCR using primers targeting 435 exons of 47 genes. Both methods generated similarly high-quality data: 84% of the uniquely mapping reads fell within the targeted sequences; coverage was uniform across approximately 90% of targeted bases; sequence variants were called with >99% accuracy; and reproducibility between samples was high (r(2) = 0.9). We scaled the microdroplet PCR to 3,976 amplicons totaling 1.49 Mb of sequence, sequenced the resulting sample with both Illumina GAII and Roche 454, and obtained data with equally high specificity and sensitivity. Our results demonstrate that microdroplet technology is well suited for processing DNA for massively parallel enrichment of specific subsets of the human genome for targeted sequencing.

  16. 3D modeling of large targets and clutter utilizing Ka band monopulse SAR

    NASA Astrophysics Data System (ADS)

    Ray, Jerry A.; Barr, Doug; Shurtz, Ric; Channell, Rob

    2006-05-01

    The U.S. Army Research, Development and Engineering Command at Redstone Arsenal, Alabama have developed a dual mode, Ka Band Radar and IIR system for the purpose of data collection and tracker algorithm development. The system is comprised of modified MMW and IIR sensors and is mounted in a stabilized ball on a UH-1 helicopter operated by Redstone Technical Test Center. Several missile programs under development require MMW signatures of multiple target and clutter scenes. Traditionally these target signatures have been successfully collected using static radars and targets mounted on a turntable to produce models from ISAR images; clutter scenes have been homogeneously characterized using information on various classes of clutter. However, current and future radar systems require models of many targets too large for turntables, as well as high resolution 3D scattering characteristics of urban and other non-homogenous clutter scenes. In partnership with industry independent research and development (IRAD) activities the U.S. Army RDEC has developed a technique for generating 3D target and clutter models using SAR imaging in the MMW spectrum. The purpose of this presentation is to provide an overview of funded projects and resulting data products with an emphasis on MMW data reduction and analysis, especially the unique 3D modeling capabilities of the monopulse radar flying SAR profiles. Also, a discussion of lessons learned and planned improvements will be presented.

  17. FDG-PET/CT during concomitant chemo radiotherapy for esophageal cancer: Reducing target volumes to deliver higher radiotherapy doses.

    PubMed

    Nkhali, Lamyaa; Thureau, Sébastien; Edet-Sanson, Agathe; Doyeux, Kaya; Benyoucef, Ahmed; Gardin, Isabelle; Michel, Pierre; Vera, Pierre; Dubray, Bernard

    2015-06-01

    A planning study investigated whether reduced target volumes defined on FDG-PET/CT during radiotherapy allow total dose escalation without compromising normal tissue tolerance in patients with esophageal cancer. Ten patients with esophageal squamous cell carcinoma (SCC), candidate to curative-intent concomitant chemo-radiotherapy (CRT), had FDG-PET/CT performed in treatment position, before and during (Day 21) radiotherapy (RT). Four planning scenarios were investigated: 1) 50 Gy total dose with target volumes defined on pre-RT FDG-PET/CT; 2) 50 Gy with boost target volume defined on FDG-PET/CT during RT; 3) 66 Gy with target volumes from pre-RT FDG-PET/CT; and 4) 66 Gy with boost target volume from during-RT FDG-PET/CT. The median metabolic target volume decreased from 12.9 cm3 (minimum 3.7-maximum 44.8) to 5.0 cm3 (1.7-13.5) (p=0.01) between pre- and during-RCT FDG-PET/CT. The median PTV66 was smaller on during-RT than on baseline FDG-PET/CT [108 cm3 (62.5-194) vs. 156 cm3 (68.8-251), p=0.02]. When total dose was set to 50 Gy, planning on during-RT FDG-PET/CT was associated with a marginal reduction in normal tissues irradiation. When total dose was increased to 66 Gy, planning on during-RT PET yielded significantly lower doses to the spinal cord [Dmax=44.1Gy (40.8-44.9) vs. 44.7Gy (41.5-45.0), p=0.007] and reduced lung exposure [V20Gy=23.2% (17.3-27) vs. 26.8% (19.7-30.2), p=0.006]. This planning study suggests that adaptive RT based on target volume reduction assessed on FDG-PET/CT during treatment could facilitate dose escalation up to 66 Gy in patients with esophageal SCC.

  18. Comparative evaluation of target volumes defined by deformable and rigid registration of diagnostic PET/CT to planning CT in primary esophageal cancer.

    PubMed

    Guo, Yanluan; Li, Jianbin; Zhang, Peng; Shao, Qian; Xu, Min; Li, Yankang

    2017-01-01

    To evaluate the geometrical differences of target volumes propagated by deformable image registration (DIR) and rigid image registration (RIR) to assist target volume delineation between diagnostic Positron emission tomography/computed tomography (PET/CT) and planning CT for primary esophageal cancer (EC). Twenty-five patients with EC sequentially underwent a diagnostic F-fluorodeoxyglucose (F-FDG) PET/CT scan and planning CT simulation. Only 19 patients with maximum standardized uptake value (SUVmax) ≥ 2.0 of the primary volume were available. Gross tumor volumes (GTVs) were delineated using CT and PET display settings. The PET/CT images were then registered with planning CT using MIM software. Subsequently, the PET and CT contours were propagated by RIR and DIR to planning CT. The properties of these volumes were compared. When GTVCT delineated on CT of PET/CT after both RIR and DIR was compared with GTV contoured on planning CT, significant improvements using DIR were observed in the volume, displacements of the center of mass (COM) in the 3-dimensional (3D) direction, and Dice similarity coefficient (DSC) (P = 0.003; 0.006; 0.014). Although similar improvements were not observed for the same comparison using DIR for propagated PET contours from diagnostic PET/CT to planning CT (P > 0.05), for DSC and displacements of COM in the 3D direction of PET contours, the DIR resulted in the improved volume of a large percentage of patients (73.7%; 68.45%; 63.2%) compared with RIR. For diagnostic CT-based contours or PET contours at SUV2.5 propagated by DIR with planning CT, the DSC and displacements of COM in 3D directions in the distal segment were significantly improved compared to the upper and middle segments (P > 0.05). We observed a trend that deformable registration might improve the overlap for gross target volumes from diagnostic PET/CT to planning CT. The distal EC might benefit more from DIR.

  19. Comparative evaluation of target volumes defined by deformable and rigid registration of diagnostic PET/CT to planning CT in primary esophageal cancer

    PubMed Central

    Guo, Yanluan; Li, Jianbin; Zhang, Peng; Shao, Qian; Xu, Min; Li, Yankang

    2017-01-01

    Abstract Background: To evaluate the geometrical differences of target volumes propagated by deformable image registration (DIR) and rigid image registration (RIR) to assist target volume delineation between diagnostic Positron emission tomography/computed tomography (PET/CT) and planning CT for primary esophageal cancer (EC). Methods: Twenty-five patients with EC sequentially underwent a diagnostic 18F-fluorodeoxyglucose (18F-FDG) PET/CT scan and planning CT simulation. Only 19 patients with maximum standardized uptake value (SUVmax) ≥ 2.0 of the primary volume were available. Gross tumor volumes (GTVs) were delineated using CT and PET display settings. The PET/CT images were then registered with planning CT using MIM software. Subsequently, the PET and CT contours were propagated by RIR and DIR to planning CT. The properties of these volumes were compared. Results: When GTVCT delineated on CT of PET/CT after both RIR and DIR was compared with GTV contoured on planning CT, significant improvements using DIR were observed in the volume, displacements of the center of mass (COM) in the 3-dimensional (3D) direction, and Dice similarity coefficient (DSC) (P = 0.003; 0.006; 0.014). Although similar improvements were not observed for the same comparison using DIR for propagated PET contours from diagnostic PET/CT to planning CT (P > 0.05), for DSC and displacements of COM in the 3D direction of PET contours, the DIR resulted in the improved volume of a large percentage of patients (73.7%; 68.45%; 63.2%) compared with RIR. For diagnostic CT-based contours or PET contours at SUV2.5 propagated by DIR with planning CT, the DSC and displacements of COM in 3D directions in the distal segment were significantly improved compared to the upper and middle segments (P > 0.05). Conclusion: We observed a trend that deformable registration might improve the overlap for gross target volumes from diagnostic PET/CT to planning CT. The distal EC might benefit more from DIR

  20. Analysis of FET-PET imaging for target volume definition in patients with gliomas treated with conformal radiotherapy.

    PubMed

    Rieken, Stefan; Habermehl, Daniel; Giesel, Frederik L; Hoffmann, Christoph; Burger, Ute; Rief, Harald; Welzel, Thomas; Haberkorn, Uwe; Debus, Jürgen; Combs, Stephanie E

    2013-12-01

    Modern radiotherapy (RT) techniques such as stereotactic RT, intensity-modulated RT, or particle irradiation allow local dose escalation with simultaneous sparing of critical organs. Several trials are currently investigating their benefit in glioma reirradiation and boost irradiation. Target volume definition is of critical importance especially when steep dose gradient techniques are employed. In this manuscript we investigate the impact of O-(2-(F-18)fluoroethyl)-l-tyrosine-positron emission tomography/computer tomography (FET-PET/CT) on target volume definition in low and high grade glioma patients undergoing either first or re-irradiation with particles. We investigated volumetric size and uniformity of magnetic resonance imaging (MRI)- vs. FET-PET/CT-derived gross tumor volumes (GTVs) and planning target volumes (PTVs) of 41 glioma patients. Clinical cases are presented to demonstrate potential benefits of integrating FET-PET/CT-planning into daily routine. Integrating FET-uptake into the delineation of GTVs yields larger volumes. Combined modality-derived PTVs are significantly enlarged in high grade glioma patients and in case of primary RT. The congruence of MRI and FET signals for the identification of glioma GTVs is poor with mean uniformity indices of 0.39. MRI-based PTVs miss 17% of FET-PET/CT-based GTVs. Non significant alterations were detected in low grade glioma patients and in those undergoing reirradiation. Target volume definition for malignant gliomas during initial RT may yield significantly differing results depending upon the imaging modality, which the contouring process is based upon. The integration of both MRI and FET-PET/CT may help to improve GTV coverage by avoiding larger incongruences between physical and biological imaging techniques. In low grade gliomas and in cases of reirradiation, more studies are needed in order to investigate a potential benefit of FET-PET/CT for planning of RT. Copyright © 2013 Elsevier Ireland Ltd. All

  1. The influence of target and patient characteristics on the volume obtained from cone beam CT in lung stereotactic body radiation therapy.

    PubMed

    Liu, Hong-Wei; Khan, Rao; D'Ambrosi, Rafael; Krobutschek, Krista; Nugent, Zoann; Lau, Harold

    2013-03-01

    To investigate the influence of tumor and patient characteristics on the target volume obtained from cone beam CT (CBCT) in lung stereotactic body radiation therapy (SBRT). For a given cohort of 71 patients, the internal target volume (ITV) in CBCT obtained from four different datasets was compared with a reference ITV drawn on a four-dimensional CT (4DCT). The significance of the tumor size, location, relative target motion (RM) and patient's body mass index (BMI) and gender on the adequacy of ITV obtained from CBCT was determined. The median ITV-CBCT was found to be smaller than the ITV-4DCT by 11.8% (range: -49.8 to +24.3%, P<0.001). Small tumors located in the lower lung were found to have a larger RM than large tumors in the upper lung. Tumors located near the central lung had high CT background which reduced the target contrast near the edges. Tumor location close to center vs. periphery was the only significant factor (P=0.046) causing underestimation of ITV in CBCT, rather than RM (P=0.323) and other factors. The current clinical study has identified that the location of tumor is a major source of discrepancy between ITV-CBCT and ITV-4DCT for lung SBRT. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  2. TU-A-12A-06: Intra-Observer Variability in Delineation of Target Volumes in Breast Radiotherapy and Its Effect On Accuracy of Deformation Measurements

    SciTech Connect

    Juneja, P; Harris, E; Bonora, M; Evans, P

    2014-06-15

    Purpose: In breast radiotherapy, the target volume may change during treatment and need adaptation of the treatment plan. This is possible for both tumour bed (TB) and whole breast (WB) target volumes. Delineation of the target (to detect changes) is also subject to uncertainty due to intra- and inter-observer variability. This work measured the uncertainty, due to intraobserver variability, in the quantification of tissue deformation. Methods: Datasets consisting of paired prone and supine CT scans of three patients were used. Significant deformation in target volumes is expected between prone and supine patient positions. The selected cases had 1) no seroma, 2) some seroma, and 3) large seroma. The TB and WB were outlined on each dataset three times by one clinician. Delineation variability was defined as the standard deviations of the distances between observer outlines. For each target volume and each case, tissue deformation between prone and supine delineations was quantified using the Dice similarity coefficient (DSC) and the average surface distance (ASD). The uncertainty in the tissue deformation (due to delineation variability) was quantified by measuring the ranges of DSC and ASD using all combinations of pairs of outlines (9 pairs). Results: For the TB, the range of delineation variability was 0.44-1.16 mm. The deformation, DSC and ASD, (and uncertainty in measurement) of the TB between prone and supine position of the cases were: 1) 0.21 (0.17-0.28) and 12.4 mm (11.8-13 mm); 2) 0.54 (0.51-0.57) and 3.3 mm (3.1-3.5 mm); 3) 0.62 (0.61-0.64) and 4.9 mm (4.6-5.2 mm). WB deformation measurements were subject to less uncertainty due to delineation variability than TB deformation measurements. Conclusion: For the first time, the uncertainty, due to observer variability, in the measurement of the deformation of breast target volumes was investigated. Deformations in these ranges would be difficult to detect. This work was supported in part by Cancer Research

  3. Annealing as grown large volume CZT single crystals increased spectral resolution

    SciTech Connect

    Dr. Longxia Li

    2008-03-19

    The spectroscopic performance of current large-volume Cadmium 10% Zinc Telluride, Cd{sub 0.9}Zn{sub 0.1}Te, (CZT) detectors is impaired by cumulative effect of tellurium precipitates (secondary phases) presented in CZT single-crystal grown by low-pressure Bridgman techniques(1). This statistical effect may limit the energy resolution of large-volume CZT detectors (typically 2-5% at 662 keV for 12-mm thick devices). The stochastic nature of the interaction prevents the use of any electronic or digital charge correction techniques without a significant reduction in the detector efficiency. This volume constraint hampers the utility of CZT since the detectors are inefficient at detecting photons >1MeV and/or in low fluency situations. During the project, seven runs CZT ingots have been grown, in these ingots the indium dopant concentrations have been changed in the range between 0.5ppm to 6ppm. The I-R mapping imaging method has been employed to study the Te-precipitates. The Teprecipitates in as-grown CZT wafers, and after annealing wafers have been systematically studied by using I-R mapping system (home installed, resolution of 1.5 {micro}m). We employed our I-R standard annealing CZT (Zn=4%) procedure or two-steps annealing into radiation CZT (Zn=10%), we achieved the 'non'-Te precipitates (size < 1 {micro}m) CZT n+-type with resistivity > 10{sup 9-10} {Omega}-cm. We believe that the Te-precipitates are the p-type defects, its reducing number causes the CZT became n+-type, therefore we varied or reduced the indium dapant concentration during the growth and changed the Te-precipitates size and density by using different Cd-temperature and different annealing procedures. We have made the comparisons among Te-precipitates size, density and Indium dopant concentrations, and we found that the CZT with smaller size of Te-precipitates is suitable for radiation uses but non-Te precipitates is impossible to be used in the radiation detectors, because the CZT would became

  4. Photoperiod is associated with hippocampal volume in a large community sample.

    PubMed

    Miller, Megan A; Leckie, Regina L; Donofry, Shannon D; Gianaros, Peter J; Erickson, Kirk I; Manuck, Stephen B; Roecklein, Kathryn A

    2015-04-01

    Although animal research has demonstrated seasonal changes in hippocampal volume, reflecting seasonal neuroplasticity, seasonal differences in human hippocampal volume have yet to be documented. Hippocampal volume has also been linked to depressed mood, a seasonally varying phenotype. Therefore, we hypothesized that seasonal differences in day-length (i.e., photoperiod) would predict differences in hippocampal volume, and that this association would be linked to low mood. Healthy participants aged 30-54 (M=43; SD=7.32) from the University of Pittsburgh Adult Health and Behavior II project (n=404; 53% female) were scanned in a 3T MRI scanner. Hippocampal volumes were determined using an automated segmentation algorithm using FreeSurfer. A mediation model tested whether hippocampal volume mediated the relationship between photoperiod and mood. Secondary analyses included seasonally fluctuating variables (i.e., sleep and physical activity) which have been shown to influence hippocampal volume. Shorter photoperiods were significantly associated with higher BDI scores (R(2)=0.01, β=-0.12, P=0.02) and smaller hippocampal volumes (R(2)=0.40, β=0.08, P=0.04). However, due to the lack of an association between hippocampal volume and Beck Depression Inventory scores in the current sample, the mediation hypothesis was not supported. This study is the first to demonstrate an association between season and hippocampal volume. These data offer preliminary evidence that human hippocampal plasticity could be associated with photoperiod and indicates a need for longitudinal studies.

  5. Radiometric Dating of Large Volume Flank Collapses in The Lesser Antilles Arc.

    NASA Astrophysics Data System (ADS)

    Quidelleur, X.; Samper, A.; Boudon, G.; Le Friant, A.; Komorowski, J.

    2004-12-01

    It is now admitted that flank collapses, probably triggered by magmatic inflation and/or gravitational collapses, is a recurrent process of the evolution of the Lesser Antilles Arc volcanoes. Large magnitude debris avalanche deposits have been identified offshore, in the Grenada basin (Deplus et al., 2001; Le Friant et al., 2001). The widest extensions have been observed off the coast of Dominica and St Lucia, with associated volumes up to 20 km3. Another large-scale event, with marine evidences probably covered by sediments and latter flank collapses, has been inferred onland from morphological evidences and characteristic deposits of the Carbets structure in Martinique. We present radiometric dating of these three major events using the K-Ar Cassignol-Gillot technique performed on selected groundmass. Both volcanic formations preceding flank collapses (remnants of the horseshoe shaped structures or basal lava flows) and following landslides (lava domes) have been dated. In the Qualibou depression of St. Lucia, the former structure has been dated at 1096+-16 ka and the collapse constrained by dome emplacement prior to 97+-2 ka (Petit Piton). In Dominica, several structures have been associated with repetitive flank collapse events inferred from marine data (Le Friant et al., 2002). The Plat-Pays event probably occurred after 96+-2 ka. Inside the inherited depression, Scotts Head, which is interpreted as a proximal pluri-kilometric megabloc from the Soufriere avalanche, has been dated at 14+-1 ka, providing an older bound for this event. In Martinique Island, three different domes within the Carbets structure have been dated at 335+-5 ka. Assuming a rapid magma emplacement following pressure release due to deloading, this constrains the age of this high magnitude event. Finally, these results obtained from three of the most voluminous flank collapses provide constraints to estimate the recurrence of these events, which represent one of the major hazards associated

  6. Radiometric dating of three large volume flank collapses in the Lesser Antilles Arc

    NASA Astrophysics Data System (ADS)

    Samper, A.; Quidelleur, X.; Boudon, G.; Le Friant, A.; Komorowski, J. C.

    2008-10-01

    It is now recognised that flank collapses are a recurrent process in the evolution of the Lesser Antilles Arc volcanoes. Large magnitude debris-avalanche deposits have been identified off the coast of Dominica, Martinique and St. Lucia, with associated volumes up to 20 km 3 [Deplus, C., Le Friant, A., Boudon, G., Komorowski, J.-C., Villemant, B., Harford, C., Ségoufin, J., Cheminée, J.-L., 2001. Submarine evidence for large-scale debris avalanches in the Lesser Antilles Arc. Earth Planet. Sci. Lett., 192: 145-157.]. We present new radiometric dating of three major events using the K-Ar Cassignol-Gillot technique. In the Qualibou depression of St. Lucia, a collapse has been constrained by dome emplacement prior to 95 ± 2 ka. In Dominica, where repetitive flank collapse events have occurred [Le Friant, A., Boudon, G., Komorowski, J.-C., Deplus, C., 2002. L'île de la Dominique, à l'origine des avalanches de débris les plus volumineuses de l'arc des Petites Antilles. C.R. Geoscience, 334: 235-243], the Plat Pays event probably occurred after 96 ± 2 ka. Inside the depression caused by this event, Scotts Head, which is interpreted as a proximal megabloc from the subsequent Soufriere avalanche event has been dated at 14 ± 1 ka, providing an older bound for this event. On Martinique three different domes within the Carbets structure dated at 337 ± 5 ka constrain the age of this high magnitude event. Finally, these results obtained from three of the most voluminous flank collapses provide constraints to estimate the recurrence of these events, which represent one of the major hazards associated with volcanoes of the Lesser Antilles Arc.

  7. A simple method for the production of large volume 3D macroporous hydrogels for advanced biotechnological, medical and environmental applications

    PubMed Central

    Savina, Irina N.; Ingavle, Ganesh C.; Cundy, Andrew B.; Mikhalovsky, Sergey V.

    2016-01-01

    The development of bulk, three-dimensional (3D), macroporous polymers with high permeability, large surface area and large volume is highly desirable for a range of applications in the biomedical, biotechnological and environmental areas. The experimental techniques currently used are limited to the production of small size and volume cryogel material. In this work we propose a novel, versatile, simple and reproducible method for the synthesis of large volume porous polymer hydrogels by cryogelation. By controlling the freezing process of the reagent/polymer solution, large-scale 3D macroporous gels with wide interconnected pores (up to 200 μm in diameter) and large accessible surface area have been synthesized. For the first time, macroporous gels (of up to 400 ml bulk volume) with controlled porous structure were manufactured, with potential for scale up to much larger gel dimensions. This method can be used for production of novel 3D multi-component macroporous composite materials with a uniform distribution of embedded particles. The proposed method provides better control of freezing conditions and thus overcomes existing drawbacks limiting production of large gel-based devices and matrices. The proposed method could serve as a new design concept for functional 3D macroporous gels and composites preparation for biomedical, biotechnological and environmental applications. PMID:26883390

  8. A simple method for the production of large volume 3D macroporous hydrogels for advanced biotechnological, medical and environmental applications

    NASA Astrophysics Data System (ADS)

    Savina, Irina N.; Ingavle, Ganesh C.; Cundy, Andrew B.; Mikhalovsky, Sergey V.

    2016-02-01

    The development of bulk, three-dimensional (3D), macroporous polymers with high permeability, large surface area and large volume is highly desirable for a range of applications in the biomedical, biotechnological and environmental areas. The experimental techniques currently used are limited to the production of small size and volume cryogel material. In this work we propose a novel, versatile, simple and reproducible method for the synthesis of large volume porous polymer hydrogels by cryogelation. By controlling the freezing process of the reagent/polymer solution, large-scale 3D macroporous gels with wide interconnected pores (up to 200 μm in diameter) and large accessible surface area have been synthesized. For the first time, macroporous gels (of up to 400 ml bulk volume) with controlled porous structure were manufactured, with potential for scale up to much larger gel dimensions. This method can be used for production of novel 3D multi-component macroporous composite materials with a uniform distribution of embedded particles. The proposed method provides better control of freezing conditions and thus overcomes existing drawbacks limiting production of large gel-based devices and matrices. The proposed method could serve as a new design concept for functional 3D macroporous gels and composites preparation for biomedical, biotechnological and environmental applications.

  9. Curling probe measurement of large-volume pulsed plasma confined by surface magnetic field

    NASA Astrophysics Data System (ADS)

    Pandey, Anil; Sakakibara, Wataru; Matsuoka, Hiroyuki; Nakamura, Keiji; Sugai, Hideo; Chubu University Team; DOWA Thermotech Collaboration

    2015-09-01

    Curling probe (CP) has recently been developed which enables the local electron density measurement even in plasma for non-conducting film CVD. The electron density is obtained from a shift of resonance frequency of spiral antenna in discharge ON and OFF monitored by a network analyzer (NWA). In case of a pulsed glow discharge, synchronization of discharge pulse with frequency sweep of NWA must be established. In this paper, we report time and space-resolved CP measurement of electron density in a large volume plasma (80 cm diameter, 110 cm length) confined by surface magnetic field (multipole cusp field ~0.03 T). For plasma-aided modification of metal surface, the plasma is produced by 1 kV glow discharge at pulse frequency of 0.3 - 25 kHz with various duty ratio in gas (Ar, N2, C2H2) at pressure ~ 1 Pa. A radially movable CP revealed a remarkable effect of surface magnetic confinement: detach of plasma from the vessel wall and a fairly uniform plasma in the central region. In afterglow phase, the electron density was observed to decrease much faster in C2H2 discharge than in Ar discharge.

  10. A new large-volume metal reference standard for radioactive waste management

    PubMed Central

    Tzika, F.; Hult, M.; Stroh, H.; Marissens, G.; Arnold, D.; Burda, O.; Kovář, P.; Suran, J.; Listkowska, A.; Tyminski, Z.

    2016-01-01

    A new large-volume metal reference standard has been developed. The intended use is for calibration of free-release radioactivity measurement systems and is made up of cast iron tubes placed inside a box of the size of a Euro-pallet (80 × 120 cm). The tubes contain certified activity concentrations of 60Co (0.290±0.006 Bq g−1) and 110mAg (3.05±0.09 Bq g−1) (reference date: 30 September 2013). They were produced using centrifugal casting from a smelt into which 60Co was first added and then one piece of neutron irradiated silver wire was progressively diluted. The iron castings were machined to the desirable dimensions. The final material consists of 12 iron tubes of 20 cm outer diameter, 17.6 cm inner diameter, 40 cm length/height and 245.9 kg total mass. This paper describes the reference standard and the process of determining the reference activity values. PMID:25977349

  11. Detecting boosted dark matter from the Sun with large volume neutrino detectors

    SciTech Connect

    Berger, Joshua; Cui, Yanou; Zhao, Yue E-mail: ycui@perimeterinstitute.ca

    2015-02-01

    We study novel scenarios where thermal dark matter (DM) can be efficiently captured in the Sun and annihilate into boosted dark matter. In models with semi-annihilating DM, where DM has a non-minimal stabilization symmetry, or in models with a multi-component DM sector, annihilations of DM can give rise to stable dark sector particles with moderate Lorentz boosts. We investigate both of these possibilities, presenting concrete models as proofs of concept. Both scenarios can yield viable thermal relic DM with masses O(1)-O(100) GeV. Taking advantage of the energetic proton recoils that arise when the boosted DM scatters off matter, we propose a detection strategy which uses large volume terrestrial detectors, such as those designed to detect neutrinos or proton decays. In particular, we propose a search for proton tracks pointing towards the Sun. We focus on signals at Cherenkov-radiation-based detectors such as Super-Kamiokande (SK) and its upgrade Hyper-Kamiokande (HK). We find that with spin-dependent scattering as the dominant DM-nucleus interaction at low energies, boosted DM can leave detectable signals at SK or HK, with sensitivity comparable to DM direct detection experiments while being consistent with current constraints. Our study provides a new search path for DM sectors with non-minimal structure.

  12. Configuration Analysis of the ERS Points in Large-Volume Metrology System.

    PubMed

    Jin, Zhangjun; Yu, Cijun; Li, Jiangxiong; Ke, Yinglin

    2015-09-22

    In aircraft assembly, multiple laser trackers are used simultaneously to measure large-scale aircraft components. To combine the independent measurements, the transformation matrices between the laser trackers' coordinate systems and the assembly coordinate system are calculated, by measuring the enhanced referring system (ERS) points. This article aims to understand the influence of the configuration of the ERS points that affect the transformation matrix errors, and then optimize the deployment of the ERS points to reduce the transformation matrix errors. To optimize the deployment of the ERS points, an explicit model is derived to estimate the transformation matrix errors. The estimation model is verified by the experiment implemented in the factory floor. Based on the proposed model, a group of sensitivity coefficients are derived to evaluate the quality of the configuration of the ERS points, and then several typical configurations of the ERS points are analyzed in detail with the sensitivity coefficients. Finally general guidance is established to instruct the deployment of the ERS points in the aspects of the layout, the volume size and the number of the ERS points, as well as the position and orientation of the assembly coordinate system.

  13. On `light' fermions and proton stability in `big divisor' D3/ D7 large volume compactifications

    NASA Astrophysics Data System (ADS)

    Misra, Aalok; Shukla, Pramod

    2011-06-01

    Building on our earlier work (Misra and Shukla, Nucl. Phys. B 827:112, 2010; Phys. Lett. B 685:347-352, 2010), we show the possibility of generating "light" fermion mass scales of MeV-GeV range (possibly related to the first two generations of quarks/leptons) as well as eV (possibly related to first two generations of neutrinos) in type IIB string theory compactified on Swiss-Cheese orientifolds in the presence of a mobile space-time filling D3-brane restricted to (in principle) stacks of fluxed D7-branes wrapping the "big" divisor Σ B . This part of the paper is an expanded version of the latter half of Sect. 3 of a published short invited review (Misra, Mod. Phys. Lett. A 26:1, 2011) written by one of the authors [AM]. Further, we also show that there are no SUSY GUT-type dimension-five operators corresponding to proton decay, and we estimate the proton lifetime from a SUSY GUT-type four-fermion dimension-six operator to be 1061 years. Based on GLSM calculations in (Misra and Shukla, Nucl. Phys. B 827:112, 2010) for obtaining the geometric Kähler potential for the "big divisor," using further the Donaldson's algorithm, we also briefly discuss in the first of the two appendices the metric for the Swiss-Cheese Calabi-Yau used, which we obtain and which becomes Ricci flat in the large-volume limit.

  14. A uniform laminar air plasma plume with large volume excited by an alternating current voltage

    NASA Astrophysics Data System (ADS)

    Li, Xuechen; Bao, Wenting; Chu, Jingdi; Zhang, Panpan; Jia, Pengying

    2015-12-01

    Using a plasma jet composed of two needle electrodes, a laminar plasma plume with large volume is generated in air through an alternating current voltage excitation. Based on high-speed photography, a train of filaments is observed to propagate periodically away from their birth place along the gas flow. The laminar plume is in fact a temporal superposition of the arched filament train. The filament consists of a negative glow near the real time cathode, a positive column near the real time anode, and a Faraday dark space between them. It has been found that the propagation velocity of the filament increases with increasing the gas flow rate. Furthermore, the filament lifetime tends to follow a normal distribution (Gaussian distribution). The most probable lifetime decreases with increasing the gas flow rate or decreasing the averaged peak voltage. Results also indicate that the real time peak current decreases and the real time peak voltage increases with the propagation of the filament along the gas flow. The voltage-current curve indicates that, in every discharge cycle, the filament evolves from a Townsend discharge to a glow one and then the discharge quenches. Characteristic regions including a negative glow, a Faraday dark space, and a positive column can be discerned from the discharge filament. Furthermore, the plasma parameters such as the electron density, the vibrational temperature and the gas temperature are investigated based on the optical spectrum emitted from the laminar plume.

  15. Development testing of large volume water sprays for warm fog dispersal

    NASA Technical Reports Server (NTRS)

    Keller, V. W.; Anderson, B. J.; Burns, R. A.; Lala, G. G.; Meyer, M. B.; Beard, K. V.

    1986-01-01

    A new brute-force method of warm fog dispersal is described. The method uses large volume recycled water sprays to create curtains of falling drops through which the fog is processed by the ambient wind and spray induced air flow. Fog droplets are removed by coalescence/rainout. The efficiency of the technique depends upon the drop size spectra in the spray, the height to which the spray can be projected, the efficiency with which fog laden air is processed through the curtain of spray, and the rate at which new fog may be formed due to temperature differences between the air and spray water. Results of a field test program, implemented to develop the data base necessary to assess the proposed method, are presented. Analytical calculations based upon the field test results indicate that this proposed method of warm fog dispersal is feasible. Even more convincingly, the technique was successfully demonstrated in the one natural fog event which occurred during the test program. Energy requirements for this technique are an order of magnitude less than those to operate a thermokinetic system. An important side benefit is the considerable emergency fire extinguishing capability it provides along the runway.

  16. Development of a large mosaic volume phase holographic (VPH) grating for APOGEE

    NASA Astrophysics Data System (ADS)

    Arns, James; Wilson, John C.; Skrutskie, Mike; Smee, Steve; Barkhouser, Robert; Eisenstein, Daniel; Gunn, Jim; Hearty, Fred; Harding, Al; Maseman, Paul; Holtzman, Jon; Schiavon, Ricardo; Gillespie, Bruce; Majewski, Steven

    2010-07-01

    Volume phase holographic (VPH) gratings are increasingly being used as diffractive elements in astronomical instruments due to their potential for very high peak diffraction efficiencies and the possibility of a compact instrument design when the gratings are used in transmission. Historically, VPH grating (VPHG) sizes have been limited by the size of manufacturer's holographic recording optics. We report on the design, specification and fabrication of a large, 290 mm × 475 mm elliptically-shaped, mosaic VPHG for the Apache Point Observatory Galactic Evolution Experiment (APOGEE) spectrograph. This high-resolution near-infrared multi-object spectrograph is in construction for the Sloan Digital Sky Survey III (SDSS III). The 1008.6 lines/mm VPHG was designed for optimized performance over a wavelength range from 1.5 to 1.7 μm. A step-and-repeat exposure method was chosen to fabricate a three-segment mosaic on a 305 mm × 508 mm monolithic fused-silica substrate. Specification considerations imposed on the VPHG to assure the mosaic construction will satisfy the end use requirements are discussed. Production issues and test results of the mosaic VPHG are discussed.

  17. Detecting Boosted Dark Matter from the Sun with Large Volume Neutrino Detectors

    SciTech Connect

    Berger, Joshua; Cui, Yanou; Zhao, Yue; /Stanford U., ITP /Stanford U., Phys. Dept.

    2015-04-02

    We study novel scenarios where thermal dark matter (DM) can be efficiently captured in the Sun and annihilate into boosted dark matter. In models with semi-annihilating DM, where DM has a non-minimal stabilization symmetry, or in models with a multi-component DM sector, annihilations of DM can give rise to stable dark sector particles with moderate Lorentz boosts. We investigate both of these possibilities, presenting concrete models as proofs of concept. Both scenarios can yield viable thermal relic DM with masses O(1)-O(100) GeV. Taking advantage of the energetic proton recoils that arise when the boosted DM scatters off matter, we propose a detection strategy which uses large volume terrestrial detectors, such as those designed to detect neutrinos or proton decays. In particular, we propose a search for proton tracks pointing towards the Sun. We focus on signals at Cherenkov-radiation-based detectors such as Super-Kamiokande (SK) and its upgrade Hyper-Kamiokande (HK). We find that with spin-dependent scattering as the dominant DM-nucleus interaction at low energies, boosted DM can leave detectable signals at SK or HK, with sensitivity comparable to DM direct detection experiments while being consistent with current constraints. Our study provides a new search path for DM sectors with non-minimal structure.

  18. Peak distortions arising from large-volume injections in supercritical fluid chromatography.

    PubMed

    Dai, Yun; Li, Geng; Rajendran, Arvind

    2015-05-01

    Preparative separations in supercritical fluid chromatography (SFC) involve the injection of large volumes of the solute. In SFC, the mobile phase is typically high pressure CO2+modifier and the solute to be injected is usually dissolved in the modifier. Two-types of injection methods, modifier-stream and mixed-stream, are common in commercial preparative SFC systems. In modifier-stream injection, the injection is made in the modifier stream which is later mixed with the CO2 stream, while in the mixed-stream injection, the injection is made in a mixed CO2+modifier stream. In this work a systematic experimental and modelling study of the two techniques is reported using single-enantiomers of flurbiprofen on Chiralpak AD-H with CO2+methanol as the mobile phase. While modifier-stream injection shows non-distorted peaks, mixed-stream injection results in severe peak-distortion. By comparing the modelling and experimental results, it is shown that the modifier "plug" introduced in the mixed-stream injection is the primary cause of the peak distortions. The experimental results also point to the possible existence of viscous fingering which contributes to further peak distortion.

  19. Curling probe measurement of a large-volume pulsed plasma with surface magnetic confinement

    NASA Astrophysics Data System (ADS)

    Pandey, A.; Tashiro, H.; Sakakibara, W.; Nakamura, K.; Sugai, H.

    2016-12-01

    A curling probe (CP) based on microwave resonance is applied to the measurement of electron density in a pulsed DC glow discharge under surface magnetic confinement (SMC) provided by a number of permanent magnets on a chamber wall. Owing to the SMC effects, a 1 m scale large-volume plasma is generated by a relatively low voltage (~1 kV) at low pressure (~1 Pa) in various gases (Ar, CH4, and C2H2). Temporal variation of the electron density is measured for pulse frequency f  =  0.5-25 kHz for various discharge-on times (T ON) with a high resolution time (~0.2 µs), using the on-point mode. In general, the electron density starts to increase at time t  =  0 after turn-on of the discharge voltage, reaches peak density at t  =  T ON, and then decreases after turn-off. The peak electron density is observed to increase with the pulse frequency f for constant T ON owing to the residual plasma. This dependence is successfully formulated using a semi-empirical model. The spatio-temporal evolution of the cathode sheath in the pulsed discharge is revealed by a 1 m long movable CP. The measured thickness of the high-voltage cathode fall in a steady state coincides with the value of the so-called Child-Langmuir sheath.

  20. Multi-stage polymer systems for the autonomic regeneration of large damage volumes

    NASA Astrophysics Data System (ADS)

    Santa Cruz, Windy Ann

    Recovery of catastrophic damage requires a robust chemistry capable of addressing the complex challenges encountered by autonomic regeneration. Although self-healing polymers have the potential to increase material lifetimes and safety, these systems have been limited to recovery of internal microcracks and surface damage. Current technologies thereby fail to address the restoration of large, open damage volumes. A regenerative chemistry was developed by incorporating a gel scaffold within liquid healing agents. The healing system undergoes two stages, sol-gel and gel-polymer. Stage 1, rapid formation of a crosslinked gel, creates a synthetic support for the healing agents as they deposit across the damage region. Stage 2 comprises the polymerization of monomer using a room temperature redox initiation system to recover the mechanical properties of the substrate. The two stages are chemically compatible and only react when a specific reaction trigger is introduced -- an acid catalyst for gelation and initiator-promoter for polymerization. Cure kinetics, chemical and mechanical properties can be tuned by employing different monomer systems. The versatile gelation chemistry gels over 20 vinyl monomers to yield both thermoplastic and thermosetting polymers. The healing efficacy of the two-stage system was studied in thin, vascularized epoxy sheets. By splitting the chemistry into two low viscosity fluids, we demonstrated regeneration of gaps up to 9 mm in diameter. The combination of microvascular networks and a new healing chemistry demonstrates an innovative healing system that significantly exceeds the performance of traditional methods.

  1. Spectroscopic properties of large-volume virtual Frisch-grid CdMnTe detectors

    NASA Astrophysics Data System (ADS)

    Kim, K. H.; Park, Chansun; Kim, Pilsu; Cho, Shinhaeng; Lee, Jinseo; Hong, T. K.; Hossain, A.; Bolotnikov, A. E.; James, R. B.

    2015-06-01

    CdMnTe(CMT) is a promising alternative material for use as a room-temperature radiation detector. Frisch-grid detectors have a simple configuration and outstanding spectral performance compared with other single-carrier collection techniques. The energy resolution of large-volume virtual Frisch-grid CMT detectors was tested by using several isotopes such as 57Co, 22 Na, 133Ba, and 137Cs together or separately. Energy resolutions of 6.7% and 2.1% were obtained for 122-keV 57Co and 662-keV 137Cs gamma rays, respectively, without using any additional signal processing techniques. Also, a 12-mm-thick CMT detector detected the 511-keV and 1.277-MeV gamma peaks of 22Na with values of the full width at half maximum (FWHM) of 2.7% and 1.5%, respectively. In addition, multiple low- and high-energy gamma peaks of 133Ba were well separated. The mobilitylifetime product calculated from the shift of the 662-keV photo-peak vs. bias by using Hecht's equation was 7 × 10 -3 cm2/V. These results show the possibility of using CMT detectors in response to various requirements for gamma-ray detection at room-temperature.

  2. Twinning in vapour-grown, large volume Cd1-xZnxTe crystals

    NASA Astrophysics Data System (ADS)

    Tanner, B. K.; Mullins, J. T.; Pym, A. T. G.; Maneuski, D.

    2016-08-01

    The onset of twinning from (2 bar 1 bar 1 bar) to (1 bar 3 bar 3 bar) in large volume Cd1-xZnxTe crystals, grown by vapour transport on (2 bar 1 bar 1 bar) , often referred to as (211)B, oriented GaAs seeds, has been investigated using X-ray diffraction imaging (X-ray topography). Twinning is not associated with strains at the GaAs/CdTe interface as the initial growth was always in (2 bar 1 bar 1 bar) orientation. Nor is twinning related to lattice strains associated with injection of Zn subsequent to initial nucleation and growth of pure CdTe as in both cases twinning occurred after growth of several mm length of Cd1-xZnxTe. While in both cases examined, there was a region of disturbed growth prior to the twinning transition, in neither crystal does this strain appear to have nucleated the twinning process. In both cases, un-twinned material remained after twinning was observed, the scale of the resulting twin boundaries being sub-micron. Simultaneous twinning across the whole sample surface was observed in one sample, whereas in the other, twinning was nucleated at different points and times in the growth.

  3. Detecting boosted dark matter from the Sun with large volume neutrino detectors

    NASA Astrophysics Data System (ADS)

    Berger, Joshua; Cui, Yanou; Zhao, Yue

    2015-02-01

    We study novel scenarios where thermal dark matter (DM) can be efficiently captured in the Sun and annihilate into boosted dark matter. In models with semi-annihilating DM, where DM has a non-minimal stabilization symmetry, or in models with a multi-component DM sector, annihilations of DM can give rise to stable dark sector particles with moderate Lorentz boosts. We investigate both of these possibilities, presenting concrete models as proofs of concept. Both scenarios can yield viable thermal relic DM with masses O(1)-O(100) GeV. Taking advantage of the energetic proton recoils that arise when the boosted DM scatters off matter, we propose a detection strategy which uses large volume terrestrial detectors, such as those designed to detect neutrinos or proton decays. In particular, we propose a search for proton tracks pointing towards the Sun. We focus on signals at Cherenkov-radiation-based detectors such as Super-Kamiokande (SK) and its upgrade Hyper-Kamiokande (HK). We find that with spin-dependent scattering as the dominant DM-nucleus interaction at low energies, boosted DM can leave detectable signals at SK or HK, with sensitivity comparable to DM direct detection experiments while being consistent with current constraints. Our study provides a new search path for DM sectors with non-minimal structure.

  4. Pressure calibration in solid pressure transmitting medium in large volume press.

    PubMed

    Yan, Xiaozhi; Ren, Xiangting; He, Duanwei

    2016-12-01

    The pressure limit in the large-volume-press (LVP) is increasing, but the in situ pressure calibration in LVP is still not a well resolved problem. The variation of the electrical resistance of the manganin with pressure in a hydrostatic condition is well known and is widely used in the pressure calibration in LVP. However, the hydrostatic pressure condition is hard to be maintained for the unavoidable solidification of the pressure transmitting medium (PTM) with pressure increasing. Moreover, our understanding about the relationship between pressure and manganin's resistance in a solid transmitting medium is still limited. Therefore, it is difficult to calibrate higher pressure using manganin. We measured the electrical resistance of manganin under pressure in pyrophyllite, MgO, and NaCl, respectively. The results show a linear relationship between the resistance and pressure in the same PTM with good reproducibility. In addition, the resistance-pressure relationships of manganin in different PTM are obviously different. So the resistance of manganin in a given solid PTM can be satisfactorily used as a pressure gauge only in the same PTM but cannot be used in other pressure media. Our results make it possible to calibrate higher pressure in a solid pressure transmitting medium in LVP.

  5. High-resolution and large-volume tomography reconstruction for x-ray microscopy

    NASA Astrophysics Data System (ADS)

    Cheng, Chang-Chieh; Hwu, Yeukuang; Ching, Yu-Tai

    2016-03-01

    This paper presents a method of X-ray image acquisition for the high-resolution tomography reconstruction that uses a light source of synchrotron radiation to reconstruct a three-dimensional tomographic volume dataset for a nanoscale object. For large objects, because of the limited field-of-view, a projection image of an object should to be taken by several shots from different locations, and using an image stitching method to combine these image blocks together. In this study, the overlap of image blocks should be small because our light source is the synchrotron radiation and the X-ray dosage should be minimized as possible. We use the properties of synchrotron radiation to enable the image stitching and alignment success when the overlaps between adjacent image blocks are small. In this study, the size of overlaps can reach to 15% of the size of each image block. During the reconstruction, the mechanical stability should be considered because it leads the misalignment problem in tomography. We adopt the feature-based alignment

  6. Exploring the limiting timing resolution for large volume CZT detectors with waveform analysis.

    PubMed

    Meng, L J; He, Z

    2005-09-11

    This paper presents a study for exploring the limiting timing resolution that can be achieved with a large volume 3-D position sensitive CZT detector. The interaction timing information was obtained by fitting the measured cathode waveforms to pre-defined waveform models. We compared the results from using several different waveform models. Timing resolutions, of ~9.5 ns for 511 keV full-energy events and ~11.6 ns for all detected events with energy deposition above 250 keV, were achieved with a detailed modeling of the cathode waveform as a function of interaction location and energy deposition. This detailed modeling also allowed us to derive a theoretical lower bound for the error on estimated interaction timing. Both experimental results and theoretical predications matched well, which indicated that the best timing resolution achievable in the 1 cm(3) CZT detector tested is ~10 ns. It is also showed that the correlation between sampled amplitudes in cathode waveforms is an important limiting factor for the achievable timing resolution.

  7. Exploring the limiting timing resolution for large volume CZT detectors with waveform analysis

    PubMed Central

    Meng, L.J.; He, Z.

    2016-01-01

    This paper presents a study for exploring the limiting timing resolution that can be achieved with a large volume 3-D position sensitive CZT detector. The interaction timing information was obtained by fitting the measured cathode waveforms to pre-defined waveform models. We compared the results from using several different waveform models. Timing resolutions, of ~9.5 ns for 511 keV full-energy events and ~11.6 ns for all detected events with energy deposition above 250 keV, were achieved with a detailed modeling of the cathode waveform as a function of interaction location and energy deposition. This detailed modeling also allowed us to derive a theoretical lower bound for the error on estimated interaction timing. Both experimental results and theoretical predications matched well, which indicated that the best timing resolution achievable in the 1 cm3 CZT detector tested is ~10 ns. It is also showed that the correlation between sampled amplitudes in cathode waveforms is an important limiting factor for the achievable timing resolution. PMID:28260808

  8. Bretylium tosylate intravenous admixture compatibility. I: Stability in common large-volume parenteral solutions.

    PubMed

    Lee, Y C; Baaske, D M; Amann, A H; Carter, J E; Mooers, M A; Wagenknecht, D M; Lai, C M

    1980-06-01

    The stability of bretylium tosylate in 11 common large-volume parenteral solutions was studied. Two containers of each solution, one glass and one plastic (except for mannitol and sodium bicarbonate solutions, which were available in glass only), were stored at each of the following conditions: intense light (1400-2000 foot candles), ambient room temperature with normal light, 40 degrees C, and 4 degrees C. All samples were tested at 0 and 24 hours; some samples were also tested at 48 hours and 7 days. Testing included measurement for optical density at 4000 and 600 nm, pH level, and bretylium content as determined by HPLC. The admixtures remained clear and colorless, except that mannitol precipitated out of mannitol solutions stored at 4 degrees C. No appreciable changes in pH were observed. HPLC assays showed no significant changes in bretylium tosylate concentrations. Bretylium tosylate is compatible with each of the 11 common intravenous solutions chosen for investigation under the storage conditions studied. Admixtures with mannitol should not be refrigerated, because mannitol crystallizes from solution at refrigerator temperatures.

  9. A new large-volume metal reference standard for radioactive waste management.

    PubMed

    Tzika, F; Hult, M; Stroh, H; Marissens, G; Arnold, D; Burda, O; Kovář, P; Suran, J; Listkowska, A; Tyminski, Z

    2016-03-01

    A new large-volume metal reference standard has been developed. The intended use is for calibration of free-release radioactivity measurement systems and is made up of cast iron tubes placed inside a box of the size of a Euro-pallet (80 × 120 cm). The tubes contain certified activity concentrations of (60)Co (0.290 ± 0.006 Bq g(-1)) and (110m)Ag (3.05 ± 0.09 Bq g(-1)) (reference date: 30 September 2013). They were produced using centrifugal casting from a smelt into which (60)Co was first added and then one piece of neutron irradiated silver wire was progressively diluted. The iron castings were machined to the desirable dimensions. The final material consists of 12 iron tubes of 20 cm outer diameter, 17.6 cm inner diameter, 40 cm length/height and 245.9 kg total mass. This paper describes the reference standard and the process of determining the reference activity values. © The Author 2015. Published by Oxford University Press.

  10. A Parallel, Finite-Volume Algorithm for Large-Eddy Simulation of Turbulent Flows

    NASA Technical Reports Server (NTRS)

    Bui, Trong T.

    1999-01-01

    A parallel, finite-volume algorithm has been developed for large-eddy simulation (LES) of compressible turbulent flows. This algorithm includes piecewise linear least-square reconstruction, trilinear finite-element interpolation, Roe flux-difference splitting, and second-order MacCormack time marching. Parallel implementation is done using the message-passing programming model. In this paper, the numerical algorithm is described. To validate the numerical method for turbulence simulation, LES of fully developed turbulent flow in a square duct is performed for a Reynolds number of 320 based on the average friction velocity and the hydraulic diameter of the duct. Direct numerical simulation (DNS) results are available for this test case, and the accuracy of this algorithm for turbulence simulations can be ascertained by comparing the LES solutions with the DNS results. The effects of grid resolution, upwind numerical dissipation, and subgrid-scale dissipation on the accuracy of the LES are examined. Comparison with DNS results shows that the standard Roe flux-difference splitting dissipation adversely affects the accuracy of the turbulence simulation. For accurate turbulence simulations, only 3-5 percent of the standard Roe flux-difference splitting dissipation is needed.

  11. High-Dimensional Function Approximation With Neural Networks for Large Volumes of Data.

    PubMed

    Andras, Peter

    2017-01-25

    Approximation of high-dimensional functions is a challenge for neural networks due to the curse of dimensionality. Often the data for which the approximated function is defined resides on a low-dimensional manifold and in principle the approximation of the function over this manifold should improve the approximation performance. It has been show that projecting the data manifold into a lower dimensional space, followed by the neural network approximation of the function over this space, provides a more precise approximation of the function than the approximation of the function with neural networks in the original data space. However, if the data volume is very large, the projection into the low-dimensional space has to be based on a limited sample of the data. Here, we investigate the nature of the approximation error of neural networks trained over the projection space. We show that such neural networks should have better approximation performance than neural networks trained on high-dimensional data even if the projection is based on a relatively sparse sample of the data manifold. We also find that it is preferable to use a uniformly distributed sparse sample of the data for the purpose of the generation of the low-dimensional projection. We illustrate these results considering the practical neural network approximation of a set of functions defined on high-dimensional data including real world data as well.

  12. Characteristics of Movement-Induced Dose Reduction in Target Volume: A Comparison Between Photon and Proton Beam Treatment

    SciTech Connect

    Yoon, Myonggeun; Shin, Dongho; Kwak, Jungwon; Park, Soah; Lim, Young Kyung; Kim, Dongwook; Park, Sung Yong Lee, Se Byeong; Shin, Kyung Hwan; Kim, Tae Hyun; Cho, Kwan Ho

    2009-10-01

    We compared the main characteristics of movement-induced dose reduction during photon and proton beam treatment, based on an analysis of dose-volume histograms. To simulate target movement, a target contour was delineated in a scanned phantom and displaced by 3 to 20 mm. Although the dose reductions to the target in the 2 treatment systems were similar for transverse (perpendicular to beam direction) target motion, they were completely different for longitudinal (parallel to beam direction) target motion. While both modalities showed a relationship between the degree of target shift and the reduction in dose coverage, dose reduction showed a strong directional dependence in proton beam treatment. Clinical simulation of target movement for a prostate cancer patient showed that, although coverage and conformity indices for a 6-mm lateral movement of the prostate were reduced by 9% and 16%, respectively, for proton beam treatment, they were reduced by only 1% and 7%, respectively, for photon treatment. This difference was greater for a 15-mm target movement in the lateral direction, which lowered the coverage and conformity indices by 34% and 54%, respectively, for proton beam treatment, but changed little during photon treatment. In addition, we found that the equivalent uniform dose (EUD) and homogeneity index show similar characteristics during target movement. These results suggest that movement-induced dose reduction differs significantly between photon and proton beam treatment. Attention should be paid to the target margin in proton beam treatment due to the distinct characteristics of heavy ion beams.

  13. Volume-dependent collection of peripheral blood progenitor cells during large-volume leukapheresis for patients with solid tumours and haematological malignancies.

    PubMed

    Cassens, U; Ostkamp-Ostermann, P; van der Werf, N; Garritsen, H; Ostermann, H; Sibrowski, W

    1999-12-01

    We investigated the efficacy of peripheral blood progenitor cell (PBPC) collection during large-volume leukapheresis (LVL) in patients with solid tumours and haematological malignancies (n = 18). The time- and volume-dependent harvest of leucocytes (WBC), mononuclear cells (MNC), CD34+ cells and colony-forming cells (CFU-GM) during LVL was analysed in six sequentially filled collection bags processing four times the patient's blood volumes. The amounts of leucocytes (WBC) and the purity of mononuclear cells (MNC%) did not show any significant changes during LVL. The percentage of CD34+ cells remained constant for the first three bags but consecutively decreased from initially 1.71% CD34+ cells in the beginning of LVL to finally 1.34% CD34+ cells (P = 0.02). The mean numbers of colony-forming cells (CFU-GM) decreased from 74 microL-1 to 59 microL-1 during LVL (P = 0.16). Furthermore, the comparison of volume-dependent PBPC collection for patients with high, medium and low total yields of CD34+ cells showed similar kinetics on different levels for the three groups. We concluded that - relative to the initial total amount of PBPC harvested - comparable numbers of progenitor cells can be collected during all stages of LVL with a slight decreasing trend processing four times the patient's blood volumes.

  14. Risks and benefits of reducing target volume margins in breast tangent radiotherapy.

    PubMed

    Basaula, Deepak; Quinn, Alexandra; Walker, Amy; Batumalai, Vikneswary; Kumar, Shivani; Delaney, Geoff P; Holloway, Lois

    2017-02-27

    This study investigates the potential benefits of planning target volume (PTV) margin reduction for whole breast radiotherapy in relation to dose received by organs at risk (OARs), as well as reductions in radiation-induced secondary cancer risk. Such benefits were compared to the increased radiation-induced secondary cancer risk attributed from increased ionizing radiation imaging doses. Ten retrospective patients' computed tomography datasets were considered. Three computerized treatment plans with varied PTV margins (0, 5 and 10 mm) were created for each patient complying with the Radiation Therapy Oncology Group (RTOG) 1005 protocol requirements. The BEIR VII lifetime attributable risk (LAR) model was used to estimate secondary cancer risk to OARs. The LAR was assessed for all treatment plans considering (a) doses from PTV margin variation and (b) doses from two (daily and weekly) kilovoltage cone beam computed tomography (kV CBCT) imaging protocols during the course of treatment. We found PTV margins from largest to smallest resulted in a mean OAR relative dose reduction of 31% (heart), 28% (lung) and 23% (contralateral breast) and the risk of radiation-induced secondary cancer by a relative 23% (contralateral breast) and 22% (contralateral lung). Daily image-guidance using kV CBCT increased the risk of radiation induced secondary cancer to the contralateral breast and contralateral lung by a relative 1.6-1.9% and 1.9-2.5% respectively. Despite the additional dose from kV CBCT for the two considered imaging protocols, smaller PTV margins would still result in an overall reduction in secondary cancer risk.

  15. Definition and delineation of the clinical target volume for rectal cancer

    SciTech Connect

    Roels, Sarah; Duthoy, Wim; Haustermans, Karin . E-mail: Karin.Haustermans@uzleuven.be; Penninckx, Freddy; Vandecaveye, Vincent; Boterberg, Tom; Neve, Wilfried de

    2006-07-15

    Purpose: Optimization of radiation techniques to maximize local tumor control and to minimize small bowel toxicity in locally advanced rectal cancer requires proper definition and delineation guidelines for the clinical target volume (CTV). The purpose of this investigation was to analyze reported data on the predominant locations and frequency of local recurrences and lymph node involvement in rectal cancer, to propose a definition of the CTV for rectal cancer and guidelines for its delineation. Methods and Materials: Seven reports were analyzed to assess the incidence and predominant location of local recurrences in rectal cancer. The distribution of lymphatic spread was analyzed in another 10 reports to record the relative frequency and location of metastatic lymph nodes in rectal cancer, according to the stage and level of the primary tumor. Results: The mesorectal, posterior, and inferior pelvic subsites are most at risk for local recurrences, whereas lymphatic tumor spread occurs mainly in three directions: upward into the inferior mesenteric nodes; lateral into the internal iliac lymph nodes; and, in a few cases, downward into the external iliac and inguinal lymph nodes. The risk for recurrence or lymph node involvement is related to the stage and the level of the primary lesion. Conclusion: Based on a review of articles reporting on the incidence and predominant location of local recurrences and the distribution of lymphatic spread in rectal cancer, we defined guidelines for CTV delineation including the pelvic subsites and lymph node groups at risk for microscopic involvement. We propose to include the primary tumor, the mesorectal subsite, and the posterior pelvic subsite in the CTV in all patients. Moreover, the lateral lymph nodes are at high risk for microscopic involvement and should also be added in the CTV.

  16. Defining the Clinical Target Volume for Bladder Cancer Radiotherapy Treatment Planning

    SciTech Connect

    Jenkins, Peter; Anjarwalla, Salim; Gilbert, Hugh; Kinder, Richard

    2009-12-01

    Purpose: There are currently no data for the expansion margin required to define the clinical target volume (CTV) around bladder tumors. This information is particularly relevant when perivesical soft tissue changes are seen on the planning scan. While this appearance may reflect extravesical extension (EVE), it may also be an artifact of previous transurethral resection (TUR). Methods and Materials: Eighty patients with muscle-invasive bladder cancer who had undergone radical cystectomy were studied. All patients underwent preoperative TUR and staging computed tomography (CT) scans. The presence and extent of tumor growth beyond the outer bladder wall was measured radiologically and histopathologically. Results: Forty one (51%) patients had histologically confirmed tumor extension into perivesical fat. The median and mean extensions beyond the outer bladder wall were 1.7 and 3.1 mm, respectively. Thirty five (44%) patients had EVE, as seen on CT scans. The sensitivity and specificity of CT scans for EVE were 56% and 79%, respectively. False-positive results were infrequent and not affected by either the timing or the amount of tissue resected at TUR. CT scans consistently tended to overestimate the extent of EVE. Tumor size and the presence of either lymphovascular invasion or squamoid differentiation predict a greater extent of EVE. Conclusions: In patients with radiological evidence of extravesical disease, the CTV should comprise the outer bladder wall plus a 10-mm margin. In patients with no evidence of extravesical disease on CT scans, the CTV should be restricted to the outer bladder wall plus a 6-mm margin. These recommendations would encompass microscopic disease extension in 90% of cases.

  17. Chronic daily intrathecal injections of a large volume of fluid increase mast cells in the thalamus of mice.

    PubMed

    Taiwo, Oludare B; Kovács, Katalin J; Larson, Alice A

    2005-09-14

    Mast cells are found in the central nervous system (CNS) as well as in the periphery. In the brain of mice, they are localized primarily in the thalamus and meninges. Although their numbers increase in response to stress, the mediator of their recruitment is not known. During studies in which drugs were delivered intrathecally in a volume sufficiently large to distribute to the brain, we discovered that repeated daily injections of this large volume increased the number of mast cells in the thalamus. The increase was not due to changes in electrolyte composition of the cerebrospinal fluid (CSF) as chronically administered artificial CSF produced similar effects. Repeated injections of even small volumes (2 mul) increased mast cells in the medial intralaminar (Med), ventral posterior (VP) and posterior (Po) nuclei. Increasing the volume injected daily to 20 mul increased mast cells in the lateral intralaminar (Lat), laterodorsal (LD), ventrolateral (VL) and lateral geniculate (LG) nuclei and further increased those in the lateral extension of the Po nucleus. Thus, small and large volumes augment distinct populations of mast cells. While stem cell factor (SCF) is abundant in the CNS and is chemotactic to mast cells in the periphery, thalamic mast cells in the rodent do not express c-kit, the SCF receptor, suggesting that this factor may not be responsible for the effect. Consistent with this, centrally injected SCF was incapable of increasing thalamic mast cell populations after either single or chronic (21 days) daily injections compared to the effect of saline alone. Although the mechanism is not known, repeated injections of a large volume of fluid dramatically increase mast cells in the CNS, a phenomenon that may be relevant to clinical conditions of increased CSF pressure or volume.

  18. Comparative analysis of the post-lumpectomy target volume versus the use of pre-lumpectomy tumor volume for early-stage breast cancer: implications for the future.

    PubMed

    Nichols, Elizabeth M; Dhople, Anil A; Mohiuddin, Majid M; Flannery, Todd W; Yu, Cedric X; Regine, William F

    2010-05-01

    Three-dimensional conformal accelerated partial breast irradiation (APBI-3D-CRT) is commonly associated with the treatment of large amounts of normal breast tissue. We hypothesized that a planning tumor volume (PTV) generation based on an expansion of the pre-lumpectomy (pre-LPC) intact tumor volume would result in smaller volumes of irradiated normal breast tissue compared with using a PTV based on the post-lumpectomy cavity (post-LPC). Use of PTVs based on the pre-LPC might also result in greater patient eligibility for APBI-3D-CRT. Forty-one early-stage breast cancers were analyzed. Preoperative imaging was used to determine a pre-LPC tumor volume. PTVs were developed in the pre- and post-LPC settings as per National Surgical Breast and Bowel Project (NSABP)-B39 guidelines. The pre- and post-LPC PTV volumes were compared and eligibility for APBI-3D-CRT determined using NSABP-B39 criteria. The post-LPC PTV exceeded the pre-LPC PTV in all cases. The median volume for the pre- and post-LPC PTVs were 93 cm(3) (range, 24-570 cm(3)) and 250 cm(3) (range, 45-879 cm(3)), respectively, p <0.001. The difference between pre- and post-LPC PTVs represented a median of 165 cc (range, 21-482 cc) or 16% (range, 3%-42%) of the whole breast volume. Three of 41 vs. 13 of 41 cases were ineligible for APBI-3D-CRT when using the pre- and post-LPC PTVs, respectively. PTVs based on pre-LPC tumor expansion are likely associated with reduced amounts of irradiated normal breast tissue compared with post-LPC PTVs, possibly leading to greater patient eligibility for APBI-3D-CRT. These findings support future investigation as to the feasibility of neoadjuvant APBI-3D-CRT.

  19. Performance tests of a large volume cerium tribromide (CeBr3) scintillation detector.

    PubMed

    Naqvi, A A; Khiari, F Z; Liadi, F A; Khateeb-Ur-Rehman; Isab, A A

    2016-08-01

    The response of a large cylindrical 76mm×76mm (height×diameter) cerium tribromide (CeBr3) detector was measured for prompt gamma rays. The total intrinsic activity of the CeBr3 detector, which was measured over 0.33-3.33MeV range, was found to be 0.022±0.001 counts/s/cm(3). The partial intrinsic activity ( due to (227)Ac contamination), was measured over a energy range of 1.22-2.20MeV energy, was found to be 0.007±0.001 counts/s/cm(3). Compared to intrinsic activities of LaBr3:Ce and LaCl3:Ce detectors of equivalent volume, the CeBr3 detector has 7-8 times less total intrinsic activity. The detector response for low energy prompt gamma rays was measured over 0.3-0.6MeVgamma energy range using a portable neutron generator-based Prompt Gamma Neutron Activation Analysis (PGNAA) setup. The experimental yield of boron, cadmium and mercury prompt gamma-rays was measured from water samples contaminated with 0.75-2.5wt% mercury, 0.31-2.50wt% boron, and 0.0625-0.500wt% cadmium, respectively. An excellent agreement has been observed between the calculated and experimental yields of the gamma rays. Also minimum detection limit (MDC) of the CeBr3 detector was measured for boron, cadmium and mercury samples. The CeBr3 detector has 23% smaller value of MDCB and 18% larger value of MDCCd than those of a LaBr3:Ce detector of equivalent size. This study has shown that CeBr3 detector has an excellent response for the low energy prompt gamma-rays with almost an order of magnitude low intrinsic activity as compared to LaCl3:Ce and LaBr3:Ce detectors of equivalent volume. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Large-angle production of charged pions with incident pion beams on nuclear targets

    SciTech Connect

    Apollonio, M.; Chimenti, P.; Giannini, G.; Artamonov, A.; Giani, S.; Gilardoni, S.; Gorbunov, P.; Grant, A.; Grossheim, A.; Ivanchenko, A.; Ivanchenko, V.; Kayis-Topaksu, A.; Panman, J.; Papadopoulos, I.; Tcherniaev, E.; Tsukerman, I.; Wiebusch, C.; Zucchelli, P.; Bagulya, A.; Grichine, V.

    2009-12-15

    Measurements of the double-differential {pi}{sup {+-}} production cross section in the range of momentum 100{<=}p{<=}800 MeV/c and angle 0.35{<=}{theta}{<=}2.15 rad using {pi}{sup {+-}} beams incident on beryllium, aluminum, carbon, copper, tin, tantalum, and lead targets are presented. The data were taken with the large-acceptance hadron production (HARP) detector in the T9 beam line of the CERN Proton Synchrotron. The secondary pions were produced by beams in a momentum range from 3 to 12.9GeV/c hitting a solid target with a thickness of 5% of a nuclear interaction length. The tracking and identification of the produced particles was performed using a small-radius cylindrical time projection chamber placed inside a solenoidal magnet. Incident particles were identified by an elaborate system of beam detectors. Results are obtained for the double-differential cross sections d{sup 2}{sigma}/dp d{theta} at six incident-beam momenta. Data at 3,5,8, and 12GeV/c are available for all targets, while additional data at 8.9 and 12.9GeV/c were taken in positive particle beams on Be and Al targets, respectively. The measurements are compared with several generators of GEANT4 and the MARS Monte Carlo simulation.

  1. RTOG Sarcoma Radiation Oncologists Reach Consensus on Gross Tumor Volume and Clinical Target Volume on Computed Tomographic Images for Preoperative Radiotherapy of Primary Soft Tissue Sarcoma of Extremity in Radiation Therapy Oncology Group Studies

    SciTech Connect

    Wang Dian; Bosch, Walter; Roberge, David; Finkelstein, Steven E.; Petersen, Ivy; Haddock, Michael; Chen, Yen-Lin E.; Saito, Naoyuki G.; Kirsch, David G.; Hitchcock, Ying J.; Wolfson, Aaron H.; DeLaney, Thomas F.

    2011-11-15

    Objective: To develop a Radiation Therapy Oncology Group (RTOG) atlas delineating gross tumor volume (GTV) and clinical target volume (CTV) to be used for preoperative radiotherapy of primary extremity soft tissue sarcoma (STS). Methods and Materials: A consensus meeting was held during the RTOG meeting in January 2010 to reach agreement about GTV and CTV delineation on computed tomography (CT) images for preoperative radiotherapy of high-grade large extremity STS. Data were presented to address the local extension of STS. Extensive discussion ensued to develop optimal criteria for GTV and CTV delineation on CT images. Results: A consensus was reached on appropriate CT-based GTV and CTV. The GTV is gross tumor defined by T1 contrast-enhanced magnetic resonance images. Fusion of magnetic resonance and images is recommended to delineate the GTV. The CTV for high-grade large STS typically includes the GTV plus 3-cm margins in the longitudinal directions. If this causes the field to extend beyond the compartment, the field can be shortened to include the end of a compartment. The radial margin from the lesion should be 1.5 cm, including any portion of the tumor not confined by an intact fascial barrier, bone, or skin surface. Conclusion: The consensus on GTV and CTV for preoperative radiotherapy of high-grade large extremity STS is available as web-based images and in a descriptive format through the RTOG. This is expected to improve target volume consistency and allow for rigorous evaluation of the benefits and risks of such treatment.

  2. Influence of bone volume fraction and architecture on computed large-deformation failure mechanisms in human trabecular bone.

    PubMed

    Bevill, Grant; Eswaran, Senthil K; Gupta, Atul; Papadopoulos, Panayiotis; Keaveny, Tony M

    2006-12-01

    Large-deformation bending and buckling have long been proposed as failure mechanisms by which the strength of trabecular bone can be affected disproportionately to changes in bone density, and thus may represent an important aspect of bone quality. We sought here to quantify the contribution of large-deformation failure mechanisms on strength, to determine the dependence of these effects on bone volume fraction and architecture, and to confirm that the inclusion of large-deformation effects in high-resolution finite element models improves predictions of strength versus experiment. Micro-CT-based finite element models having uniform hard tissue material properties were created from 54 cores of human trabecular bone taken from four anatomic sites (age = 70+/-11; 24 male, 27 female donors), which were subsequently biomechanically tested to failure. Strength predictions were made from the models first including, then excluding, large-deformation failure mechanisms, both for compressive and tensile load cases. As expected, strength predictions versus experimental data for the large-deformation finite element models were significantly improved (p < 0.001) relative to the small deformation models in both tension and compression. Below a volume fraction of about 0.20, large-deformation failure mechanisms decreased trabecular strength from 5-80% for compressive loading, while effects were negligible above this volume fraction. Step-wise nonlinear multiple regression revealed that structure model index (SMI) and volume fraction (BV/TV) were significant predictors of these reductions in strength (R2 = 0.83, p < 0.03). Even so, some low-density specimens having nearly identical volume fraction and SMI exhibited up to fivefold differences in strength reduction. We conclude that within very low-density bone, the potentially important biomechanical effect of large-deformation failure mechanisms on trabecular bone strength is highly heterogeneous and is not well explained by

  3. Neurogenomics and the role of a large mutational target on rapid behavioral change.

    PubMed

    Stanley, Craig E; Kulathinal, Rob J

    2016-11-08

    Behavior, while complex and dynamic, is among the most diverse, derived, and rapidly evolving traits in animals. The highly labile nature of heritable behavioral change is observed in such evolutionary phenomena as the emergence of converged behaviors in domesticated animals, the rapid evolution of preferences, and the routine development of ethological isolation between diverging populations and species. In fact, it is believed that nervous system development and its potential to evolve a seemingly infinite array of behavioral innovations played a major role in the successful diversification of metazoans, including our own human lineage. However, unlike other rapidly evolving functional systems such as sperm-egg interactions and immune defense, the genetic basis of rapid behavioral change remains elusive. Here we propose that the rapid divergence and widespread novelty of innate and adaptive behavior is primarily a function of its genomic architecture. Specifically, we hypothesize that the broad diversity of behavioral phenotypes present at micro- and macroevolutionary scales is promoted by a disproportionately large mutational target of neurogenic genes. We present evidence that these large neuro-behavioral targets are significant and ubiquitous in animal genomes and suggest that behavior's novelty and rapid emergence are driven by a number of factors including more selection on a larger pool of variants, a greater role of phenotypic plasticity, and/or unique molecular features present in large genes. We briefly discuss the origins of these large neurogenic genes, as they relate to the remarkable diversity of metazoan behaviors, and highlight key consequences on both behavioral traits and neurogenic disease across, respectively, evolutionary and ontogenetic time scales. Current approaches to studying the genetic mechanisms underlying rapid phenotypic change primarily focus on identifying signatures of Darwinian selection in protein-coding regions. In contrast

  4. Application of ultradisperse magnetic adsorbents for removal of small concentrations of pollutants from large volumes of water

    NASA Astrophysics Data System (ADS)

    Nechitailo, Galina S.; Kuznetsov, Anatoli; Kuznetsov, Oleg

    2016-07-01

    with the adsorbed toluidine blue were removed from the solution by magnetic separation. The sorbent was proven to have high sorption capacity and rapid adsorption kinetics for toluidine blue. These experiments demonstrated the validity of the method, where a small concentration of a pollutant was successfully collected from a large volume of water. By varying the ratio of the sorbent/pollutant, it is possible to optimize the sorbent use and the time required to adsorb all pollutant present in the treated water. A variety of magnetically controlled sorbents can be designed and used in this method, from broad-spectrum adsorbing sorbents to sorbents specifically targeting a particular pollutant. These sorbents can be used either individually or as mixtures of sorbents with different properties, depending on the desired purification goals. Simplicity and scalability of this method allow a variety of ecological applications, as well as industrial ones, from process water purification to wastewater treatment.

  5. Mapsembler, targeted and micro assembly of large NGS datasets on a desktop computer.

    PubMed

    Peterlongo, Pierre; Chikhi, Rayan

    2012-03-23

    The analysis of next-generation sequencing data from large genomes is a timely research topic. Sequencers are producing billions of short sequence fragments from newly sequenced organisms. Computational methods for reconstructing whole genomes/transcriptomes (de novo assemblers) are typically employed to process such data. However, these methods require large memory resources and computation time. Many basic biological questions could be answered targeting specific information in the reads, thus avoiding complete assembly. We present Mapsembler, an iterative micro and targeted assembler which processes large datasets of reads on commodity hardware. Mapsembler checks for the presence of given regions of interest that can be constructed from reads and builds a short assembly around it, either as a plain sequence or as a graph, showing contextual structure. We introduce new algorithms to retrieve approximate occurrences of a sequence from reads and construct an extension graph. Among other results presented in this paper, Mapsembler enabled to retrieve previously described human breast cancer candidate fusion genes, and to detect new ones not previously known. Mapsembler is the first software that enables de novo discovery around a region of interest of repeats, SNPs, exon skipping, gene fusion, as well as other structural events, directly from raw sequencing reads. As indexing is localized, the memory footprint of Mapsembler is negligible. Mapsembler is released under the CeCILL license and can be freely downloaded from http://alcovna.genouest.org/mapsembler/.

  6. Mapsembler, targeted and micro assembly of large NGS datasets on a desktop computer

    PubMed Central

    2012-01-01

    Background The analysis of next-generation sequencing data from large genomes is a timely research topic. Sequencers are producing billions of short sequence fragments from newly sequenced organisms. Computational methods for reconstructing whole genomes/transcriptomes (de novo assemblers) are typically employed to process such data. However, these methods require large memory resources and computation time. Many basic biological questions could be answered targeting specific information in the reads, thus avoiding complete assembly. Results We present Mapsembler, an iterative micro and targeted assembler which processes large datasets of reads on commodity hardware. Mapsembler checks for the presence of given regions of interest that can be constructed from reads and builds a short assembly around it, either as a plain sequence or as a graph, showing contextual structure. We introduce new algorithms to retrieve approximate occurrences of a sequence from reads and construct an extension graph. Among other results presented in this paper, Mapsembler enabled to retrieve previously described human breast cancer candidate fusion genes, and to detect new ones not previously known. Conclusions Mapsembler is the first software that enables de novo discovery around a region of interest of repeats, SNPs, exon skipping, gene fusion, as well as other structural events, directly from raw sequencing reads. As indexing is localized, the memory footprint of Mapsembler is negligible. Mapsembler is released under the CeCILL license and can be freely downloaded from http://alcovna.genouest.org/mapsembler/. PMID:22443449

  7. Large scale RNAi screen in Tribolium reveals novel target genes for pest control and the proteasome as prime target.

    PubMed

    Ulrich, Julia; Dao, Van Anh; Majumdar, Upalparna; Schmitt-Engel, Christian; Schwirz, Jonas; Schultheis, Dorothea; Ströhlein, Nadi; Troelenberg, Nicole; Grossmann, Daniela; Richter, Tobias; Dönitz, Jürgen; Gerischer, Lizzy; Leboulle, Gérard; Vilcinskas, Andreas; Stanke, Mario; Bucher, Gregor

    2015-09-03

    Insect pest control is challenged by insecticide resistance and negative impact on ecology and health. One promising pest specific alternative is the generation of transgenic plants, which express double stranded RNAs targeting essential genes of a pest species. Upon feeding, the dsRNA induces gene silencing in the pest resulting in its death. However, the identification of efficient RNAi target genes remains a major challenge as genomic tools and breeding capacity is limited in most pest insects impeding whole-animal-high-throughput-screening. We use the red flour beetle Tribolium castaneum as a screening platform in order to identify the most efficient RNAi target genes. From about 5,000 randomly screened genes of the iBeetle RNAi screen we identify 11 novel and highly efficient RNAi targets. Our data allowed us to determine GO term combinations that are predictive for efficient RNAi target genes with proteasomal genes being most predictive. Finally, we show that RNAi target genes do not appear to act synergistically and that protein sequence conservation does not correlate with the number of potential off target sites. Our results will aid the identification of RNAi target genes in many pest species by providing a manageable number of excellent candidate genes to be tested and the proteasome as prime target. Further, the identified GO term combinations will help to identify efficient target genes from organ specific transcriptomes. Our off target analysis is relevant for the sequence selection used in transgenic plants.

  8. Variation in the Definition of Clinical Target Volumes for Pelvic Nodal Conformal Radiation Therapy for Prostate Cancer

    SciTech Connect

    Lawton, Colleen A.F. Michalski, Jeff; El-Naqa, Issam; Kuban, Deborah; Lee, W. Robert; Rosenthal, Seth A.; Zietman, Anthony; Sandler, Howard; Shipley, William; Ritter, Mark; Valicenti, Richard; Catton, Charles; Roach, Mack; Pisansky, Thomas M.; Seider, Michael

    2009-06-01

    Purpose: We conducted a comparative study of clinical target volume (CTV) definition of pelvic lymph nodes by multiple genitourinary (GU) radiation oncologists looking at the levels of discrepancies amongst this group. Methods and Materials: Pelvic computed tomography (CT) scans from 2 men were distributed to 14 Radiation Therapy Oncology Group GU radiation oncologists with instructions to define CTVs for the iliac and presacral lymph nodes. The CT data with contours were then returned for analysis. In addition, a questionnaire was completed that described the physicians' method for target volume definition. Results: Significant variation in the definition of the iliac and presacral CTVs was seen among the physicians. The minimum, maximum, mean (SD) iliac volumes (mL) were 81.8, 876.6, 337.6 {+-} 203 for case 1 and 60.3, 627.7, 251.8 {+-} 159.3 for case 2. The volume of 100% agreement was 30.6 and 17.4 for case 1 and 2 and the volume of the union of all contours was 1,012.0 and 807.4 for case 1 and 2, respectively. The overall agreement was judged to be moderate in both cases (kappa = 0.53 (p < 0.0001) and kappa = 0.48 (p < 0.0001). There was no volume of 100% agreement for either of the two presacral volumes. These variations were confirmed in the responses to the associated questionnaire. Conclusions: Significant disagreement exists in the definition of the CTV for pelvic nodal radiation therapy among GU radiation oncology specialists. A consensus needs to be developed so as to accurately assess the merit and safety of such treatment.

  9. The effect of irregular breathing patterns on internal target volumes in four-dimensional CT and cone-beam CT images in the context of stereotactic lung radiotherapy

    SciTech Connect

    Clements, N.; Kron, T.; Roxby, P.; Franich, R.; Dunn, L.; Aarons, Y.; Chesson, B.; Siva, S.; Duplan, D.; Ball, D.

    2013-02-15

    Purpose: Stereotactic lung radiotherapy is complicated by tumor motion from patient respiration. Four-dimensional CT (4DCT) imaging is a motion compensation method used in treatment planning to generate a maximum intensity projection (MIP) internal target volume (ITV). Image guided radiotherapy during treatment may involve acquiring a volumetric cone-beam CT (CBCT) image and visually aligning the tumor to the planning 4DCT MIP ITV contour. Moving targets imaged with CBCT can appear blurred and currently there are no studies reporting on the effect that irregular breathing patterns have on CBCT volumes and their alignment to 4DCT MIP ITV contours. The objective of this work was therefore to image a phantom moving with irregular breathing patterns to determine whether any configurations resulted in errors in volume contouring or alignment. Methods: A Perspex thorax phantom was used to simulate a patient. Three wooden 'lung' inserts with embedded Perspex 'lesions' were moved up to 4 cm with computer-generated motion patterns, and up to 1 cm with patient-specific breathing patterns. The phantom was imaged on 4DCT and CBCT with the same acquisition settings used for stereotactic lung patients in the clinic and the volumes on all phantom images were contoured. This project assessed the volumes for qualitative and quantitative changes including volume, length of the volume, and errors in alignment between CBCT volumes and 4DCT MIP ITV contours. Results: When motion was introduced 4DCT and CBCT volumes were reduced by up to 20% and 30% and shortened by up to 7 and 11 mm, respectively, indicating that volume was being under-represented at the extremes of motion. Banding artifacts were present in 4DCT MIP images, while CBCT volumes were largely reduced in contrast. When variable amplitudes from patient traces were used and CBCT ITVs were compared to 4DCT MIP ITVs there was a distinct trend in reduced ITV with increasing amplitude that was not seen when compared to true ITVs

  10. The effect of irregular breathing patterns on internal target volumes in four-dimensional CT and cone-beam CT images in the context of stereotactic lung radiotherapy.

    PubMed

    Clements, N; Kron, T; Franich, R; Dunn, L; Roxby, P; Aarons, Y; Chesson, B; Siva, S; Duplan, D; Ball, D

    2013-02-01

    Stereotactic lung radiotherapy is complicated by tumor motion from patient respiration. Four-dimensional CT (4DCT) imaging is a motion compensation method used in treatment planning to generate a maximum intensity projection (MIP) internal target volume (ITV). Image guided radiotherapy during treatment may involve acquiring a volumetric cone-beam CT (CBCT) image and visually aligning the tumor to the planning 4DCT MIP ITV contour. Moving targets imaged with CBCT can appear blurred and currently there are no studies reporting on the effect that irregular breathing patterns have on CBCT volumes and their alignment to 4DCT MIP ITV contours. The objective of this work was therefore to image a phantom moving with irregular breathing patterns to determine whether any configurations resulted in errors in volume contouring or alignment. A Perspex thorax phantom was used to simulate a patient. Three wooden "lung" inserts with embedded Perspex "lesions" were moved up to 4 cm with computer-generated motion patterns, and up to 1 cm with patient-specific breathing patterns. The phantom was imaged on 4DCT and CBCT with the same acquisition settings used for stereotactic lung patients in the clinic and the volumes on all phantom images were contoured. This project assessed the volumes for qualitative and quantitative changes including volume, length of the volume, and errors in alignment between CBCT volumes and 4DCT MIP ITV contours. When motion was introduced 4DCT and CBCT volumes were reduced by up to 20% and 30% and shortened by up to 7 and 11 mm, respectively, indicating that volume was being under-represented at the extremes of motion. Banding artifacts were present in 4DCT MIP images, while CBCT volumes were largely reduced in contrast. When variable amplitudes from patient traces were used and CBCT ITVs were compared to 4DCT MIP ITVs there was a distinct trend in reduced ITV with increasing amplitude that was not seen when compared to true ITVs. Breathing patterns with a

  11. High Pressure Research in the Large-Volume Press at the Advanced Photon Source

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Shen, G.

    2013-05-01

    We present an overview of current status of high-pressure research using large-volume presses (LVP) at both GSECARS (Sector 13) and HPCAT (Sector 16) at the third-generation synchrotron facility of the Advanced Photon Source (APS), Argonne National Laboratory. These combined facilities provide a wide range of research capabilities for the high pressure community. The 230 ton Paris-Edinburgh device (jointly developed by HPCAT and GSECARS, with partial support from COMPRES) at the bending magnet (BM) beamline 16-BM-B has been used primarily for studies on liquids and glasses. We use the multi-angle energy-dispersive diffraction technique to probe structures of non-crystalline materials, and ultrasonic and falling sphere techniques to measure elasticity and viscosity of these materials. These capabilities allow us to examine the close link between structure and physical properties of non-crystalline metarials. The 1000 ton system at the insertion device (ID) beamline 13-ID-D is used extensively for acoustic velocity measurement for solids and melts. The newly developed DDIA-30 module, when used in a double-stage apparatus with sintered diamond anvils, can generate pressures in excess of 40 GPa routinely. DDIA-30 can also be used as a deformation device for larger samples or higher pressure experiments. The 250 ton system at beamline 13-BM-D as just been upgraded and can accommodate a variety of LVP techniques. Among them the D-DIA and the high-pressure x-ray tomography microscope (HPXTM) are at high demand. The D-DIA has been used for deformation at mantle conditions in both ductile and brittle regime, with acoustic emission detection. The HPXTM has been used to study volumetric properties of glasses and melts as well as 3D microstructure imaging under pressure. Latest scientific results will be highlighted.

  12. A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes.

    PubMed

    Liu, Nian; Lu, Zhenda; Zhao, Jie; McDowell, Matthew T; Lee, Hyun-Wook; Zhao, Wenting; Cui, Yi

    2014-03-01

    Silicon is an attractive material for anodes in energy storage devices, because it has ten times the theoretical capacity of its state-of-the-art carbonaceous counterpart. Silicon anodes can be used both in traditional lithium-ion batteries and in more recent Li-O2 and Li-S batteries as a replacement for the dendrite-forming lithium metal anodes. The main challenges associated with silicon anodes are structural degradation and instability of the solid-electrolyte interphase caused by the large volume change (∼300%) during cycling, the occurrence of side reactions with the electrolyte, and the low volumetric capacity when the material size is reduced to a nanometre scale. Here, we propose a hierarchical structured silicon anode that tackles all three of these problems. Our design is inspired by the structure of a pomegranate, where single silicon nanoparticles are encapsulated by a conductive carbon layer that leaves enough room for expansion and contraction following lithiation and delithiation. An ensemble of these hybrid nanoparticles is then encapsulated by a thicker carbon layer in micrometre-size pouches to act as an electrolyte barrier. As a result of this hierarchical arrangement, the solid-electrolyte interphase remains stable and spatially confined, resulting in superior cyclability (97% capacity retention after 1,000 cycles). In addition, the microstructures lower the electrode-electrolyte contact area, resulting in high Coulombic efficiency (99.87%) and volumetric capacity (1,270 mAh cm(-3)), and the cycling remains stable even when the areal capacity is increased to the level of commercial lithium-ion batteries (3.7 mAh cm(-2)).

  13. Hepatic Arterial Embolization and Chemoembolization in the Management of Patients with Large-Volume Liver Metastases

    SciTech Connect

    Kamat, Paresh P.; Gupta, Sanjay Ensor, Joe E.; Murthy, Ravi; Ahrar, Kamran; Madoff, David C.; Wallace, Michael J.; Hicks, Marshall E.

    2008-03-15

    The purpose of this study was to assess the role of hepatic arterial embolization (HAE) and chemoembolization (HACE) in patients with large-volume liver metastases. Patients with metastatic neuroendocrine tumors, melanomas, or gastrointestinal stromal tumors (GISTs) with >75% liver involvement who underwent HAE or HACE were included in the study. Radiologic response, progression-free survival (PFS), overall survival (OS), and postprocedure complications were assessed. Sixty patients underwent 123 treatment sessions. Of the 48 patients for whom follow-up imaging was available, partial response was seen in 12 (25%) patients, minimal response in 6 (12%), stable disease in 22 (46%), and progressive disease in 8 (17%). Median OS and PFS were 9.3 and 4.9 months, respectively. Treatment resulted in radiologic response or disease stabilization in 82% and symptomatic response in 65% of patients with neuroendocrine tumors. Patients with neuroendocrine tumors had higher response rates (44% vs. 27% and 0%; p = 0.31) and longer PFS (9.2 vs. 2.0 and 2.3 months; p < 0.0001) and OS (17.9 vs. 2.4 and 2.3 months; p < 0.0001) compared to patients with melanomas and GISTs. Major complications occurred in 21 patients after 23 (19%) of the 123 sessions. Nine of the 12 patients who developed major complications resulting in death had additional risk factors-carcinoid heart disease, sepsis, rapidly worsening performance status, or anasarca. In conclusion, in patients with neuroendocrine tumors with >75% liver involvement, HAE/HACE resulted in symptom palliation and radiologic response or disease stabilization in the majority of patients. Patients with hepatic metastases from melanomas and GISTs, however, did not show any appreciable benefit from this procedure. Patients with massive liver tumor burden, who have additional risk factors, should not be subjected to HAE/HACE because of the high risk of procedure-related mortality.

  14. Large-volume lava flow fields on Venus: Dimensions and morphology

    NASA Technical Reports Server (NTRS)

    Lancaster, M. G.; Guest, J. E.; Roberts, K. M.; Head, James W., III

    1992-01-01

    Of all the volcanic features identified in Magellan images, by far the most extensive and really important are lava flow fields. Neglecting the widespread lava plains themselves, practically every C1-MIDR produced so far contains several or many discrete lava flow fields. These range in size from a few hundred square kilometers in area (like those fields associated with small volcanic edifices for example), through all sizes up to several hundred thousand square kilometers in extent (such as many rift related fields). Most of these are related to small, intermediate, or large-scale volcanic edifices, coronae, arachnoids, calderas, fields of small shields, and rift zones. An initial survey of 40 well-defined flow fields with areas greater than 50,000 sq km (an arbitrary bound) has been undertaken. Following Columbia River Basalt terminology, these have been termed great flow fields. This represents a working set of flow fields, chosen to cover a variety of morphologies, sources, locations, and characteristics. The initial survey is intended to highlight representative flow fields, and does not represent a statistical set. For each flow field, the location, total area, flow length, flow widths, estimated flow thicknesses, estimated volumes, topographic slope, altitude, backscatter, emissivity, morphology, and source has been noted. The flow fields range from about 50,000 sq km to over 2,500,000 sq km in area, with most being several hundred square kilometers in extent. Flow lengths measure between 140 and 2840 km, with the majority of flows being several hundred kilometers long. A few basic morphological types have been identified.

  15. Addressing challenges in bar-code scanning of large-volume infusion bags.

    PubMed

    Raman, Kirthana; Heelon, Mark; Kerr, Gary; Higgins, Thomas L

    2011-08-01

    A hospital pharmacy's efforts to identify and address challenges with bedside scanning of bar codes on large-volume parenteral (LVP) infusion bags are described. Bar-code-assisted medication administration (BCMA) has been shown to reduce medication errors and improve patient safety. After the pilot implementation of a BCMA system and point-of-care scanning procedures at a medical center's intensive care unit, it was noted that nurses' attempted bedside scans of certain LVP bags for product identification purposes often were not successful. An investigation and root-cause analysis, including observation of nurses' scanning technique by a multidisciplinary team, determined that the scanning failures stemmed from the placement of two bar-code imprints-one with the product identification code and another, larger imprint with the expiration date and lot number-adjacently on the LVP bags. The nursing staff was educated on a modified scanning technique, which resulted in significantly improved success rates in the scanning of the most commonly used LVP bags. Representatives of the LVP bag manufacturer met with hospital staff to discuss the problem and corrective measures. As part of a subsequent infusion bag redesign, the manufacturer discontinued the use of the bar-code imprint implicated in the scanning failures. Failures in scanning LVP bags were traced to problematic placement of bar-code imprints on the bags. Interdisciplinary collaboration, consultation with the bag manufacturer, and education of the nursing and pharmacy staff resulted in a reduction in scanning failures and the manufacturer's removal of one of the bar codes from its LVP bags.

  16. Toroidal transducer with two large focal zones for increasing the coagulated volume

    NASA Astrophysics Data System (ADS)

    Vincenot, J.; Melodelima, D.; Kocot, A.; Chavrier, F.; Chapelon, J. Y.

    2012-11-01

    Toroidal HIFU transducers have been shown to generate large conical ablations (7 cm3 in 40 seconds). The focal zone is composed of a first ring-shaped focal zone and an overlap of ultrasound beams behind this first focus. A HIFU device has been developed on this principle to treat liver metastases during an open procedure. Although these large lesions contribute to reduce treatment time, it is still needed to juxtapose 4 to 9 single HIFU lesions to treat liver metastasis (2 cm in diameter) with safety margins. In this work, a different toroidal geometry was used. With this transducer, the overlap area is located between the probe and the focal ring. The objective was to use this transducer with electronic focusing in order to create a spherical shape lesion with sufficient volume for the destruction of a metastasis of 2 cm in diameter without any mechanical displacement. The operating frequency of the toroidal transducer was 2.5 MHz. The radius of curvature was 70 mm with a diameter of 67 mm. The focal ring had a radius of 15 mm. The overlap zone extent between 35 to 55 mm from the emitting surface. An ultrasound-imaging probe (working at 7.5 MHz) was placed in a central circular opening of 26 mm in the HIFU transducer and was aligned with the focal plane. The transducer was divided into 32 rings of 78 mm2. Using a 32 channels amplifier with a phase resolution of 1.4 degrees, it was possible to change the diameter (0 to 15 mm) and depth (45 to 85 mm) of the focus circle to maximize dimensions of the lesion. Tests were conducted in vitro, in bovine liver samples. This toroidal geometry and the use of electronic beam steering allow the creation of roughly spherical lesions (diameter of 47 mm, depth of 35 mm). This treatment was obtained in 6 minutes and 10 seconds without any mechanical displacement of the transducer. The lesions obtained were homogeneous and no untreated area was observed. In conclusion, these results indicate that the treatment of a liver

  17. Large-Angle Scattering of Multi-GeV Muons on Thin Lead Targets

    NASA Astrophysics Data System (ADS)

    Longhin, A.; Paoloni, A.; Pupilli, F.

    2015-10-01

    The probability of large-angle scattering for multi-GeV muons in lead targets with a thickness of O(10 - 1) radiation lengths is studied. The new estimates presented here are based both on simulation programs (GEANT4 libraries) and theoretical calculations. In order to validate the results provided by simulation, a comparison is drawn with experimental data from the literature. This study is particularly relevant when applied to muons originating from νμ CC interactions of CNGS beam neutrinos. In that circumstance the process under study represents the dominant background for the νμ → ντ search in the τ→ μ channel for the OPERA experiment at LNGS. Finally we also investigate, in the CNGS context, possible contributions from the muon photo-nuclear process which might in principle also produce a large-angle muon scattering signature in the detector.

  18. 21 CFR 201.323 - Aluminum in large and small volume parenterals used in total parenteral nutrition.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... used in total parenteral nutrition. 201.323 Section 201.323 Food and Drugs FOOD AND DRUG ADMINISTRATION... parenteral nutrition. (a) The aluminum content of large volume parenteral (LVP) drug products used in total parenteral nutrition (TPN) therapy must not exceed 25 micrograms per liter (µg/L). (b) The package insert...

  19. 21 CFR 201.323 - Aluminum in large and small volume parenterals used in total parenteral nutrition.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... used in total parenteral nutrition. 201.323 Section 201.323 Food and Drugs FOOD AND DRUG ADMINISTRATION... parenteral nutrition. (a) The aluminum content of large volume parenteral (LVP) drug products used in total parenteral nutrition (TPN) therapy must not exceed 25 micrograms per liter (µg/L). (b) The package insert...

  20. 21 CFR 201.323 - Aluminum in large and small volume parenterals used in total parenteral nutrition.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... used in total parenteral nutrition. 201.323 Section 201.323 Food and Drugs FOOD AND DRUG ADMINISTRATION... parenteral nutrition. (a) The aluminum content of large volume parenteral (LVP) drug products used in total parenteral nutrition (TPN) therapy must not exceed 25 micrograms per liter (µg/L). (b) The package insert...

  1. 21 CFR 201.323 - Aluminum in large and small volume parenterals used in total parenteral nutrition.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... used in total parenteral nutrition. 201.323 Section 201.323 Food and Drugs FOOD AND DRUG ADMINISTRATION... parenteral nutrition. (a) The aluminum content of large volume parenteral (LVP) drug products used in total parenteral nutrition (TPN) therapy must not exceed 25 micrograms per liter (µg/L). (b) The package insert...

  2. 21 CFR 201.323 - Aluminum in large and small volume parenterals used in total parenteral nutrition.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... used in total parenteral nutrition. 201.323 Section 201.323 Food and Drugs FOOD AND DRUG ADMINISTRATION... parenteral nutrition. (a) The aluminum content of large volume parenteral (LVP) drug products used in total parenteral nutrition (TPN) therapy must not exceed 25 micrograms per liter (µg/L). (b) The package insert of...

  3. Effect of filtration rates on hollow fiber ultrafilter concentration of viruses and protozoans from large volumes of water

    EPA Science Inventory

    Aims: To describe the ability of tangential flow hollow-fiber ultrafiltration to recover viruses from large volumes of water when run either at high filtration rates or lower filtration rates and recover Cryptosporidium parvum at high filtration rates. Methods and Results: Wate...

  4. Effect of filtration rates on hollow fiber ultrafilter concentration of viruses and protozoans from large volumes of water

    EPA Science Inventory

    Aims: To describe the ability of tangential flow hollow-fiber ultrafiltration to recover viruses from large volumes of water when run either at high filtration rates or lower filtration rates and recover Cryptosporidium parvum at high filtration rates. Methods and Results: Wate...

  5. ANALYSIS OF LOW-LEVEL PESTICIDES FROM HIGH-ELEVATION LAKE WATERS BY LARGE VOLUME INJECTION GCMS

    EPA Science Inventory

    This paper describes the method development for the determination of ultra-low level pesticides from high-elevation lake waters by large-volume injection programmable temperature vaporizer (LVI-PTV) GC/MS. This analytical method is developed as a subtask of a larger study, backgr...

  6. ANALYSIS OF LOW-LEVEL PESTICIDES FROM HIGH-ELEVATION LAKE WATERS BY LARGE VOLUME INJECTION GCMS

    EPA Science Inventory

    This paper describes the method development for the determination of ultra-low level pesticides from high-elevation lake waters by large-volume injection programmable temperature vaporizer (LVI-PTV) GC/MS. This analytical method is developed as a subtask of a larger study, backgr...

  7. Rationally designed BCL6 inhibitors target activated B cell diffuse large B cell lymphoma.

    PubMed

    Cardenas, Mariano G; Yu, Wenbo; Beguelin, Wendy; Teater, Matthew R; Geng, Huimin; Goldstein, Rebecca L; Oswald, Erin; Hatzi, Katerina; Yang, Shao-Ning; Cohen, Joanna; Shaknovich, Rita; Vanommeslaeghe, Kenno; Cheng, Huimin; Liang, Dongdong; Cho, Hyo Je; Abbott, Joshua; Tam, Wayne; Du, Wei; Leonard, John P; Elemento, Olivier; Cerchietti, Leandro; Cierpicki, Tomasz; Xue, Fengtian; MacKerell, Alexander D; Melnick, Ari M

    2016-09-01

    Diffuse large B cell lymphomas (DLBCLs) arise from proliferating B cells transiting different stages of the germinal center reaction. In activated B cell DLBCLs (ABC-DLBCLs), a class of DLBCLs that respond poorly to current therapies, chromosomal translocations and amplification lead to constitutive expression of the B cell lymphoma 6 (BCL6) oncogene. The role of BCL6 in maintaining these lymphomas has not been investigated. Here, we designed small-molecule inhibitors that display higher affinity for BCL6 than its endogenous corepressor ligands to evaluate their therapeutic efficacy for targeting ABC-DLBCL. We used an in silico drug design functional-group mapping approach called SILCS to create a specific BCL6 inhibitor called FX1 that has 10-fold greater potency than endogenous corepressors and binds an essential region of the BCL6 lateral groove. FX1 disrupted formation of the BCL6 repression complex, reactivated BCL6 target genes, and mimicked the phenotype of mice engineered to express BCL6 with corepressor binding site mutations. Low doses of FX1 induced regression of established tumors in mice bearing DLBCL xenografts. Furthermore, FX1 suppressed ABC-DLBCL cells in vitro and in vivo, as well as primary human ABC-DLBCL specimens ex vivo. These findings indicate that ABC-DLBCL is a BCL6-dependent disease that can be targeted by rationally designed inhibitors that exceed the binding affinity of natural BCL6 ligands.

  8. Alpha-particle radiotherapy: For large solid tumors diffusion trumps targeting.

    PubMed

    Zhu, Charles; Sempkowski, Michelle; Holleran, Timothy; Linz, Thomas; Bertalan, Thomas; Josefsson, Anders; Bruchertseifer, Frank; Morgenstern, Alfred; Sofou, Stavroula

    2017-06-01

    Diffusion limitations on the penetration of nanocarriers in solid tumors hamper their therapeutic use when labeled with α-particle emitters. This is mostly due to the α-particles' relatively short range (≤100 μm) resulting in partial tumor irradiation and limited killing. To utilize the high therapeutic potential of α-particles against solid tumors, we designed non-targeted, non-internalizing nanometer-sized tunable carriers (pH-tunable liposomes) that are triggered to release, within the slightly acidic tumor interstitium, highly-diffusive forms of the encapsulated α-particle generator Actinium-225 ((225)Ac) resulting in more homogeneous distributions of the α-particle emitters, improving uniformity in tumor irradiation and increasing killing efficacies. On large multicellular spheroids (400 μm-in-diameter), used as surrogates of the avascular areas of solid tumors, interstitially-releasing liposomes resulted in best growth control independent of HER2 expression followed in performance by (a) the HER2-targeting radiolabeled antibody or (b) the non-responsive liposomes. In an orthotopic human HER2-negative mouse model, interstitially-releasing (225)Ac-loaded liposomes resulted in the longest overall and median survival. This study demonstrates the therapeutic potential of a general strategy to bypass the diffusion-limited transport of radionuclide carriers in solid tumors enabling interstitial release from non-internalizing nanocarriers of highly-diffusing and deeper tumor-penetrating molecular forms of α-particle emitters, independent of cell-targeting.

  9. Rationally designed BCL6 inhibitors target activated B cell diffuse large B cell lymphoma

    PubMed Central

    Cardenas, Mariano G.; Yu, Wenbo; Beguelin, Wendy; Teater, Matthew R.; Geng, Huimin; Goldstein, Rebecca L.; Oswald, Erin; Hatzi, Katerina; Yang, Shao-Ning; Cohen, Joanna; Shaknovich, Rita; Vanommeslaeghe, Kenno; Cheng, Huimin; Liang, Dongdong; Cho, Hyo Je; Tam, Wayne; Du, Wei; Leonard, John P.; Elemento, Olivier; Cierpicki, Tomasz; Xue, Fengtian; MacKerell, Alexander D.; Melnick, Ari M.

    2016-01-01

    Diffuse large B cell lymphomas (DLBCLs) arise from proliferating B cells transiting different stages of the germinal center reaction. In activated B cell DLBCLs (ABC-DLBCLs), a class of DLBCLs that respond poorly to current therapies, chromosomal translocations and amplification lead to constitutive expression of the B cell lymphoma 6 (BCL6) oncogene. The role of BCL6 in maintaining these lymphomas has not been investigated. Here, we designed small-molecule inhibitors that display higher affinity for BCL6 than its endogenous corepressor ligands to evaluate their therapeutic efficacy for targeting ABC-DLBCL. We used an in silico drug design functional-group mapping approach called SILCS to create a specific BCL6 inhibitor called FX1 that has 10-fold greater potency than endogenous corepressors and binds an essential region of the BCL6 lateral groove. FX1 disrupted formation of the BCL6 repression complex, reactivated BCL6 target genes, and mimicked the phenotype of mice engineered to express BCL6 with corepressor binding site mutations. Low doses of FX1 induced regression of established tumors in mice bearing DLBCL xenografts. Furthermore, FX1 suppressed ABC-DLBCL cells in vitro and in vivo, as well as primary human ABC-DLBCL specimens ex vivo. These findings indicate that ABC-DLBCL is a BCL6-dependent disease that can be targeted by rationally designed inhibitors that exceed the binding affinity of natural BCL6 ligands. PMID:27482887

  10. PBPC collection techniques: standard versus large volume leukapheresis (LVL) in donors and in patients.

    PubMed

    Gasová, Zdenka; Marinov, Iuri; Vodvárková, Sárka; Böhmová, Martina; Bhuyian-Ludvíková, Zdenka

    2005-04-01

    Transplantations of autologous and allogeneic peripheral blood progenitor cells (PBPC) are able to assure a complete hematopoietic and immunologic reconstitution in patients. PBPC are collected by leukapheresis technique after prior mobilization therapy, but procedures and results remain still highly variable and are poorly characterized. An optimum regimen for PBPC collections has not yet been recommended, but 2-3 total blood volumes (TBV) of the donor or patient are regarded as a standard. Another promising technique is large volume leukapheresis (LVL) with processing of 3-6 TBV of donor or patient. The aim of this paper is to find the most efficient and safe collection technique for an individual donor or patient and, consequently minimize the number of procedures required. Finding the optimal collection procedure would be helpful while considering which method would be preferred in an individual donor or patient with respect to the result of mobilization, health state and required yield of CD 34+ cells for transplantation. We evaluated the results in a total of 134 standard and LVL procedures, which were performed in 21 well mobilized donors (Group I), in 65 well mobilized patients (Group II), and in 14 weakly mobilized patients (Group III) with hemato-oncological diseases. A precollection concentration of CD 34+ cells in peripheral blood higher than 20 x 10(3)/mL was considered to be the criterion for efficient mobilization. Such levels of concentration indicating the start of PBPC collections could be easily reached in Group I of donors and Group II of well mobilized patients. Heavily pretreated patients at advanced stages of disease (Group III) did not respond to mobilization sufficiently and had a concentration of CD 34+ cells lower than 20x10(3)/mL. LVL technique made it possible to obtain higher numbers of CD 34+ cells than in the standard collection in well mobilized donors (Group I), well mobilized patients (Group II), and even in weakly mobilized

  11. Expediting SRM assay development for large-scale targeted proteomics experiments

    SciTech Connect

    Wu, Chaochao; Shi, Tujin; Brown, Joseph N.; He, Jintang; Gao, Yuqian; Fillmore, Thomas L.; Shukla, Anil K.; Moore, Ronald J.; Camp, David G.; Rodland, Karin D.; Qian, Weijun; Liu, Tao; Smith, Richard D.

    2014-08-22

    Due to their high sensitivity and specificity, targeted proteomics measurements, e.g. selected reaction monitoring (SRM), are becoming increasingly popular for biological and translational applications. Selection of optimal transitions and optimization of collision energy (CE) are important assay development steps for achieving sensitive detection and accurate quantification; however, these steps can be labor-intensive, especially for large-scale applications. Herein, we explored several options for accelerating SRM assay development evaluated in the context of a relatively large set of 215 synthetic peptide targets. We first showed that HCD fragmentation is very similar to CID in triple quadrupole (QQQ) instrumentation, and by selection of top six y fragment ions from HCD spectra, >86% of top transitions optimized from direct infusion on QQQ instrument are covered. We also demonstrated that the CE calculated by existing prediction tools was less accurate for +3 precursors, and a significant increase in intensity for transitions could be obtained using a new CE prediction equation constructed from the present experimental data. Overall, our study illustrates the feasibility of expediting the development of larger numbers of high-sensitivity SRM assays through automation of transitions selection and accurate prediction of optimal CE to improve both SRM throughput and measurement quality.

  12. Expediting SRM Assay Development for Large-Scale Targeted Proteomics Experiments

    PubMed Central

    2015-01-01

    Because of its high sensitivity and specificity, selected reaction monitoring (SRM)-based targeted proteomics has become increasingly popular for biological and translational applications. Selection of optimal transitions and optimization of collision energy (CE) are important assay development steps for achieving sensitive detection and accurate quantification; however, these steps can be labor-intensive, especially for large-scale applications. Herein, we explored several options for accelerating SRM assay development evaluated in the context of a relatively large set of 215 synthetic peptide targets. We first showed that HCD fragmentation is very similar to that of CID in triple quadrupole (QQQ) instrumentation and that by selection of the top 6 y fragment ions from HCD spectra, >86% of the top transitions optimized from direct infusion with QQQ instrumentation are covered. We also demonstrated that the CE calculated by existing prediction tools was less accurate for 3+ precursors and that a significant increase in intensity for transitions could be obtained using a new CE prediction equation constructed from the present experimental data. Overall, our study illustrated the feasibility of expediting the development of larger numbers of high-sensitivity SRM assays through automation of transition selection and accurate prediction of optimal CE to improve both SRM throughput and measurement quality. PMID:25145539

  13. Expediting SRM assay development for large-scale targeted proteomics experiments

    DOE PAGES

    Wu, Chaochao; Shi, Tujin; Brown, Joseph N.; ...

    2014-08-22

    Due to their high sensitivity and specificity, targeted proteomics measurements, e.g. selected reaction monitoring (SRM), are becoming increasingly popular for biological and translational applications. Selection of optimal transitions and optimization of collision energy (CE) are important assay development steps for achieving sensitive detection and accurate quantification; however, these steps can be labor-intensive, especially for large-scale applications. Herein, we explored several options for accelerating SRM assay development evaluated in the context of a relatively large set of 215 synthetic peptide targets. We first showed that HCD fragmentation is very similar to CID in triple quadrupole (QQQ) instrumentation, and by selection ofmore » top six y fragment ions from HCD spectra, >86% of top transitions optimized from direct infusion on QQQ instrument are covered. We also demonstrated that the CE calculated by existing prediction tools was less accurate for +3 precursors, and a significant increase in intensity for transitions could be obtained using a new CE prediction equation constructed from the present experimental data. Overall, our study illustrates the feasibility of expediting the development of larger numbers of high-sensitivity SRM assays through automation of transitions selection and accurate prediction of optimal CE to improve both SRM throughput and measurement quality.« less

  14. Discovery of Manassantin A Protein Targets Using Large-Scale Protein Folding and Stability Measurements.

    PubMed

    Geer Wallace, M Ariel; Kwon, Do-Yeon; Weitzel, Douglas H; Lee, Chen-Ting; Stephenson, Tesia N; Chi, Jen-Tsan; Mook, Robert A; Dewhirst, Mark W; Hong, Jiyong; Fitzgerald, Michael C

    2016-08-05

    Manassantin A is a natural product that has been shown to have anticancer activity in cell-based assays, but has a largely unknown mode-of-action. Described here is the use of two different energetics-based approaches to identify protein targets of manassantin A. Using the stability of proteins from rates of oxidation technique with an isobaric mass tagging strategy (iTRAQ-SPROX) and the pulse proteolysis technique with a stable isotope labeling with amino acids in cell culture strategy (SILAC-PP), over 1000 proteins in a MDA-MB-231 cell lysate grown under hypoxic conditions were assayed for manassantin A interactions (both direct and indirect). A total of 28 protein hits were identified with manassantin A-induced thermodynamic stability changes. Two of the protein hits (filamin A and elongation factor 1α) were identified using both experimental approaches. The remaining 26 hit proteins were only assayed in either the iTRAQ-SPROX or the SILAC-PP experiment. The 28 potential protein targets of manassantin A identified here provide new experimental avenues along which to explore the molecular basis of manassantin A's mode of action. The current work also represents the first application iTRAQ-SPROX and SILAC-PP to the large-scale analysis of protein-ligand binding interactions involving a potential anticancer drug with an unknown mode-of-action.

  15. Human-computer interaction in radiotherapy target volume delineation: a prospective, multi-institutional comparison of user input devices.

    PubMed

    2011-10-01

    The purpose of this study was the prospective comparison of objective and subjective effects of target volume region of interest (ROI) delineation using mouse-keyboard and pen-tablet user input devices (UIDs). The study was designed as a prospective test/retest sequence, with Wilcoxon signed rank test for matched-pair comparison. Twenty-one physician-observers contoured target volume ROIs on four standardized cases (representative of brain, prostate, lung, and head and neck malignancies) twice: once using QWERTY keyboard/scroll-wheel mouse UID and once with pen-tablet UID (DTX2100, Wacom Technology Corporation, Vancouver, WA, USA). Active task time, ROI manipulation task data, and subjective survey data were collected. One hundred twenty-nine target volume ROI sets were collected, with 62 paired pen-tablet/mouse-keyboard sessions. Active contouring time was reduced using the pen-tablet UID, with mean ± SD active contouring time of 26 ± 23 min, compared with 32 ± 25 with the mouse (p ≤ 0.01). Subjective estimation of time spent was also reduced from 31 ± 26 with mouse to 27 ± 22 min with the pen (p = 0.02). Task analysis showed ROI correction task reduction (p = 0.045) and decreased panning and scrolling tasks (p < 0.01) with the pen-tablet; drawing, window/level changes, and zoom commands were unchanged (p = n.s.) Volumetric analysis demonstrated no detectable differences in ROI volume nor intra- or inter-observer volumetric coverage. Fifty-two of 62 (84%) users preferred the tablet for each contouring task; 5 of 62 (8%) denoted no preference, and 5 of 62 (8%) chose the mouse interface. The pen-tablet UID reduced active contouring time and reduced correction of ROIs, without substantially altering ROI volume/coverage.

  16. Brain tumor target volume determination for radiation therapy treatment planning through the use of automated MRI segmentation

    NASA Astrophysics Data System (ADS)

    Mazzara, Gloria Patrika

    Radiation therapy seeks to effectively irradiate the tumor cells while minimizing the dose to adjacent normal cells. Prior research found that the low success rates for treating brain tumors would be improved with higher radiation doses to the tumor area. This is feasible only if the target volume can be precisely identified. However, the definition of tumor volume is still based on time-intensive, highly subjective manual outlining by radiation oncologists. In this study the effectiveness of two automated Magnetic Resonance Imaging (MRI) segmentation methods, k-Nearest Neighbors (kNN) and Knowledge-Guided (KG), in determining the Gross Tumor