Adaptive latitudinal variation in Common Blackbird Turdus merula nest characteristics
Mainwaring, Mark C; Deeming, D Charles; Jones, Chris I; Hartley, Ian R
2014-01-01
Nest construction is taxonomically widespread, yet our understanding of adaptive intraspecific variation in nest design remains poor. Nest characteristics are expected to vary adaptively in response to predictable variation in spring temperatures over large spatial scales, yet such variation in nest design remains largely overlooked, particularly amongst open-cup-nesting birds. Here, we systematically examined the effects of latitudinal variation in spring temperatures and precipitation on the morphology, volume, composition, and insulatory properties of open-cup-nesting Common Blackbirds’ Turdus merula nests to test the hypothesis that birds living in cooler environments at more northerly latitudes would build better insulated nests than conspecifics living in warmer environments at more southerly latitudes. As spring temperatures increased with decreasing latitude, the external diameter of nests decreased. However, as nest wall thickness also decreased, there was no variation in the diameter of the internal nest cups. Only the mass of dry grasses within nests decreased with warmer temperatures at lower latitudes. The insulatory properties of nests declined with warmer temperatures at lower latitudes and nests containing greater amounts of dry grasses had higher insulatory properties. The insulatory properties of nests decreased with warmer temperatures at lower latitudes, via changes in morphology (wall thickness) and composition (dry grasses). Meanwhile, spring precipitation did not vary with latitude, and none of the nest characteristics varied with spring precipitation. This suggests that Common Blackbirds nesting at higher latitudes were building nests with thicker walls in order to counteract the cooler temperatures. We have provided evidence that the nest construction behavior of open-cup-nesting birds systematically varies in response to large-scale spatial variation in spring temperatures. PMID:24683466
Adaptive latitudinal variation in Common Blackbird Turdus merula nest characteristics.
Mainwaring, Mark C; Deeming, D Charles; Jones, Chris I; Hartley, Ian R
2014-03-01
Nest construction is taxonomically widespread, yet our understanding of adaptive intraspecific variation in nest design remains poor. Nest characteristics are expected to vary adaptively in response to predictable variation in spring temperatures over large spatial scales, yet such variation in nest design remains largely overlooked, particularly amongst open-cup-nesting birds. Here, we systematically examined the effects of latitudinal variation in spring temperatures and precipitation on the morphology, volume, composition, and insulatory properties of open-cup-nesting Common Blackbirds' Turdus merula nests to test the hypothesis that birds living in cooler environments at more northerly latitudes would build better insulated nests than conspecifics living in warmer environments at more southerly latitudes. As spring temperatures increased with decreasing latitude, the external diameter of nests decreased. However, as nest wall thickness also decreased, there was no variation in the diameter of the internal nest cups. Only the mass of dry grasses within nests decreased with warmer temperatures at lower latitudes. The insulatory properties of nests declined with warmer temperatures at lower latitudes and nests containing greater amounts of dry grasses had higher insulatory properties. The insulatory properties of nests decreased with warmer temperatures at lower latitudes, via changes in morphology (wall thickness) and composition (dry grasses). Meanwhile, spring precipitation did not vary with latitude, and none of the nest characteristics varied with spring precipitation. This suggests that Common Blackbirds nesting at higher latitudes were building nests with thicker walls in order to counteract the cooler temperatures. We have provided evidence that the nest construction behavior of open-cup-nesting birds systematically varies in response to large-scale spatial variation in spring temperatures.
Multigrid Solution of the Navier-Stokes Equations at Low Speeds with Large Temperature Variations
NASA Technical Reports Server (NTRS)
Sockol, Peter M.
2002-01-01
Multigrid methods for the Navier-Stokes equations at low speeds and large temperature variations are investigated. The compressible equations with time-derivative preconditioning and preconditioned flux-difference splitting of the inviscid terms are used. Three implicit smoothers have been incorporated into a common multigrid procedure. Both full coarsening and semi-coarsening with directional fine-grid defect correction have been studied. The resulting methods have been tested on four 2D laminar problems over a range of Reynolds numbers on both uniform and highly stretched grids. Two of the three methods show efficient and robust performance over the entire range of conditions. In addition none of the methods have any difficulty with the large temperature variations.
NASA Astrophysics Data System (ADS)
Feng, Bin; Shi, Zelin; Zhang, Chengshuo; Xu, Baoshu; Zhang, Xiaodong
2016-05-01
The point spread function (PSF) inconsistency caused by temperature variation leads to artifacts in decoded images of a wavefront coding infrared imaging system. Therefore, this paper proposes an analytical model for the effect of temperature variation on the PSF consistency. In the proposed model, a formula for the thermal deformation of an optical phase mask is derived. This formula indicates that a cubic optical phase mask (CPM) is still cubic after thermal deformation. A proposed equivalent cubic phase mask (E-CPM) is a virtual and room-temperature lens which characterizes the optical effect of temperature variation on the CPM. Additionally, a calculating method for PSF consistency after temperature variation is presented. Numerical simulation illustrates the validity of the proposed model and some significant conclusions are drawn. Given the form parameter, the PSF consistency achieved by a Ge-material CPM is better than the PSF consistency by a ZnSe-material CPM. The effect of the optical phase mask on PSF inconsistency is much slighter than that of the auxiliary lens group. A large form parameter of the CPM will introduce large defocus-insensitive aberrations, which improves the PSF consistency but degrades the room-temperature MTF.
Couvillon, Margaret J; Fitzpatrick, Ginny; Dornhaus, Anna
Bumble bees are important pollinators of crops and other plants. However, many aspects of their basic biology remain relatively unexplored. For example, one important and unusual natural history feature in bumble bees is the massive size variation seen between workers of the same nest. This size polymorphism may be an adaptation for division of labor, colony economics, or be nonadaptive. It was also suggested that perhaps this variation allows for niche specialization in workers foraging at different temperatures: larger bees might be better suited to forage at cooler temperatures and smaller bees might be better suited to forage at warmer temperatures. This we tested here using a large, enclosed growth chamber, where we were able to regulate the ambient temperature. We found no significant effect of ambient or nest temperature on the average size of bees flying to and foraging from a suspended feeder. Instead, bees of all sizes successfully flew and foraged between 16°C and 36°C. Thus, large bees foraged even at very hot temperatures, which we thought might cause overheating. Size variation therefore could not be explained in terms of niche specialization for foragers at different temperatures.
Kieffer, H H; Christensen, P R; Martin, T Z; Miner, E D; Palluconi, F D
1976-12-11
Selected observations made with the Viking infrared thermal mapper after the first landing are reported. Atmospheric temperatures measured at the latitude of the Viking 2 landing site (48 degrees N) over most of a martian day reveal a diurnal variation of at least 15 K, with peak temperatures occurring near 2.2 hours after noon, implying significant absorption of sunlight in the lower 30 km of the atmosphere by entrained dust. The summit temperature of Arsia Mons varies by a factor of nearly two each day; large diurnal temperature variation is characteristic of the south Tharsis upland and implies the presence of low thermal inertia material. The thermal inertia of material on the floors of several typical large craters is found to be higher than for the surrounding terrain; this suggests that craters are somehow effective in sorting aeolian material. Brightness temperatures of the Viking 1 landing area decrease at large emission angles; the intensity of reflected sunlight shows a more complex dependence on geometry than expected, implying atmospheric as well as surface scattering.
Seasonal variation in survival and reproduction can be a large source of prediction uncertainty in models used for conservation and management. A seasonally varying matrix population model is developed that incorporates temperature-driven differences in mortality and reproduction...
Infrared temperature measurements over bare soil and vegetation - A HAPEX perspective
NASA Technical Reports Server (NTRS)
Carlson, Toby N.; Perry, Eileen M.; Taconet, Odile
1987-01-01
Preliminary analyses of aircraft and ground measurements made in France during the HAPEX experiment show that horizontal radiometric surface temperature variations, as viewed by aircraft, can reflect the vertical profile of soil moisture (soil versus root zone) because of horizontal variations in vegetation density. Analyses based on one day's data show that, although horizontal variations in soil moisture were small, the vertical differences between a dry surface and a wet root zone were large. Horizontal temperature differences between bare soil, corn and oats reflect differences in the fractional vegetation cover, as seen by the radiometer. On the other hand, these horizontal variations in radiometric surface temperature seem to reflect real horizontal variations in surface turbulent energy fluxes.
HCMM Heat Capacity Mapping Mission
NASA Technical Reports Server (NTRS)
Jackson, R. D. (Principal Investigator)
1978-01-01
The author has identified the following significant results. Thermal imagery shows a large temperature variation over the 640 acre experimental site. The variation is due to the slope and aspect of the terrain as well as the aircraft flight direction (east-west versus north-south). In spite of these individual temperature differences, mean temperature values from 40 to 640 acre blocks are essentially identical regardless of aircraft flight direction.
Insect eggs protected from high temperatures by limited homeothermy of plant leaves.
Potter, Kristen; Davidowitz, Goggy; Woods, H Arthur
2009-11-01
Virtually all aspects of insect biology are affected by body temperature, and many taxa have evolved sophisticated temperature-control mechanisms. All insects, however, begin life as eggs and lack the ability to thermoregulate. Eggs laid on leaves experience a thermal environment, and thus a body temperature, that is strongly influenced by the leaves themselves. Because plants can maintain leaf temperatures that differ from ambient, e.g. by evapotranspiration, plant hosts may protect eggs from extreme ambient temperatures. We examined the degree to which leaves buffer ambient thermal variation and whether that buffering benefits leaf-associated insect eggs. In particular, we: (1) measured temperature variation at oviposition sites in the field, (2) manipulated temperatures in the laboratory to determine the effect of different thermal conditions on embryo development time and survival, and (3) tested embryonic metabolic rates over increasing temperatures. Our results show that Datura wrightii leaves buffer Manduca sexta eggs from fatally high ambient temperatures in the southwestern USA. Moreover, small differences in temperature profiles among leaves can cause large variation in egg metabolic rate and development time. Specifically, large leaves were hotter than small leaves during the day, reaching temperatures that are stressfully high for eggs. This study provides the first mechanistic demonstration of how this type of leaf-constructed thermal refuge interacts with egg physiology.
On the origin of multi-decadal to centennial Greenland temperature anomalies over the past 800 yr
NASA Astrophysics Data System (ADS)
Kobashi, T.; Shindell, D. T.; Kodera, K.; Box, J. E.; Nakaegawa, T.; Kawamura, K.
2012-11-01
The surface temperature of the Greenland ice sheet is among the most important climate variables for assessing how climate change may impact human societies associated with accelerating sea level rise. However, the causes of multi-decadal-to-centennial temperature changes in Greenland are not well understood, largely owing to short observational records. To examine the causes of the Greenland temperature variability, we calculated the Greenland temperature anomalies (GTA(G-NH)) over the past 800 yr by subtracting the standardised NH temperature from the standardised Greenland temperature. It decomposes the Greenland temperature variation into background climate (NH); Polar amplification; and Regional variability (GTA(G-NH)). The Central Greenland polar amplification factor as expressed by the variance ratio = Greenland/NH is 2.6 over the past 161 yr, and 3.3-4.2 over the past 800 yr. The GTA explains 31-35% of the variation of Greenland temperature in the multi-decadal-to-centennial time scale over the past 800 yr. Another orthogonal component of the Greenland and NH temperatures, GTP(G+NH) (Greenland temperature plus = standardized Greenland temperature + standardized NH temperature) exhibited the multi-decadal variations that were likely induced by large volcanic eruptions, increasing greenhouse gasses, and internal variation of climate. We found that the GTA(G-NH) has been influenced by solar-induced changes in atmospheric circulation patterns such as those produced by North Atlantic Oscillation/Arctic Oscillation (NAO/AO). Climate modelling indicates that the anomaly is also likely linked to solar-paced changes in the Atlantic meridional overturning circulation (AMOC) and to associated changes in northward oceanic heat transport.
Variations in phenology and growth of European white birch (Betula pendula) clones.
Rousi, Matti; Pusenius, Jyrki
2005-02-01
Phenology can have a profound effect on growth and climatic adaptability of northern tree species. Although the large interannual variations in dates of bud burst and growth termination have been widely discussed, little is known about the genotypic and spatial variations in phenology and how these sources of variation are related to temporal variation. We measured bud burst of eight white birch (Betula pendula Roth) clones in two field experiments daily over 6 years, and determined the termination of growth for the same clones over 2 years. We also measured yearly height growth. We found considerable genetic variation in phenological characteristics among the birch clones. There was large interannual variation in the date of bud burst and especially in the termination of growth, indicating that, in addition to genetic effects, environmental factors have a strong influence on both bud burst and growth termination. Height growth was correlated with timing of growth termination, length of growth period and bud burst, but the relationships were weak and varied among years. We accurately predicted the date of bud burst from the temperature accumulation after January 1, and base temperatures between +2 and -1 degrees C. There was large clonal variation in the duration of bud burst. Interannual variation in bud burst may have important consequences for insect herbivory of birches.
NASA Technical Reports Server (NTRS)
Kim, Seung-Bum; Lee, Tong; Fukumori, Ichiro
2007-01-01
The present study examines processes governing the interannual variation of MLT in the eastern equatorial Pacific.Processes controlling the interannual variation of mixed layer temperature (MLT) averaged over the Nino-3 domain (5 deg N-5 deg S, 150 deg-90 deg W) are studied using an ocean data assimilation product that covers the period of 1993-2003. The overall balance is such that surface heat flux opposes the MLT change but horizontal advection and subsurface processes assist the change. Advective tendencies are estimated here as the temperature fluxes through the domain's boundaries, with the boundary temperature referenced to the domain-averaged temperature to remove the dependence on temperature scale. This allows the authors to characterize external advective processes that warm or cool the water within the domain as a whole. The zonal advective tendency is caused primarily by large-scale advection of warm-pool water through the western boundary of the domain. The meridional advective tendency is contributed to mostly by Ekman current advecting large-scale temperature anomalies through the southern boundary of the domain. Unlike many previous studies, the subsurface processes that consist of vertical mixing and entrainment are explicitly evaluated. In particular, a rigorous method to estimate entrainment allows an exact budget closure. The vertical mixing across the mixed layer (ML) base has a contribution in phase with the MLT change. The entrainment tendency due to the temporal change in ML depth is negligible compared to other subsurface processes. The entrainment tendency by vertical advection across the ML base is dominated by large-scale changes in upwelling and the temperature of upwelling water. Tropical instability waves (TIWs) result in smaller-scale vertical advection that warms the domain during La Nina cooling events. However, such a warming tendency is overwhelmed by the cooling tendency associated with the large-scale upwelling by a factor of 2. In summary, all the balance terms are important in the MLT budget except the entrainment due to lateral induction and temporal variation in ML depth. All three advective tendencies are primarily caused by large-scale and low-frequency processes, and they assist the Nino-3 MLT change.
Global properties of the plasma in the outer heliosphere. I - Large-scale structure and evolution
NASA Technical Reports Server (NTRS)
Barnes, A.; Mihalov, J. D.; Gazis, P. R.; Lazarus, A. J.; Belcher, J. W.; Gordon, G. S., Jr.; Mcnutt, R. L., Jr.
1992-01-01
Pioneers 10 and 11, and Voyager 2, have active plasma analyzers as they proceed through heliocentric distances of the order of 30-50 AU, facilitating comparative studies of the global character of the outer solar wind and its variation over the solar cycle. Careful study of these data show that wind ion temperature remains constant beyond 15 AU, and that there may be large-scale variations of temperature with celestial longitude and heliographic latitude. There has thus far been no indication of a heliospheric terminal shock.
NASA Astrophysics Data System (ADS)
Vialard, J.; Drushka, K.; Bellenger, H.; Lengaigne, M.; Pous, S.; Duvel, J. P.
2013-12-01
The strongest large-scale intraseasonal (30-110 day) sea surface temperature (SST) variations in austral summer in the tropics are found in the eastern Indian Ocean between Australia and Indonesia (North-Western Australian Basin, or NWAB). TMI and Argo observations indicate that the temperature signal (std. ~0.4 °C) is most prominent within the top 20 m. This temperature signal appears as a standing oscillation with a 40-50 day timescale within the NWAB, associated with ~40 Wm-2 net heat fluxes (primarily shortwave and latent) and ~0.02 Nm-2 wind stress perturbations. This signal is largely related to the Madden-Julian Oscillation. A slab ocean model with climatological observed mixed-layer depth and an ocean general circulation model both accurately reproduce the observed intraseasonal SST oscillations in the NWAB. Both indicate that most of the intraseasonal SST variations in the NWAB in austral winter are related to surface heat flux forcing, and that intraseasonal SST variations are largest in austral summer because the mixed-layer is shallow (~20 m) and thus more responsive during that season. The general circulation model indicates that entrainment cooling plays little role in intraseasonal SST variations. The larger intraseasonal SST variations in the NWAB as compared to the widely-studied thermocline-ridge of the Indian Ocean region is explained by the larger convective and air-sea heat flux perturbations in the NWAB.
Periodic variations in stratospheric-mesospheric temperature from 20-65 km at 80 N to 30 S
NASA Technical Reports Server (NTRS)
Nastrom, G. D.; Belmont, A. D.
1975-01-01
Results on large-scale periodic variations of the stratospheric-mesospheric temperature field based on Meteorological Rocket Network (MRN) measurements are reported for a long-term (12-year) mean, the quasi-biennial oscillation (QBO), and the first three harmonics of the annual wave (annual wave, semi-annual wave, and terannual wave or 4-month variation). Station-to-station comparisons are tabulated and charted for amplitude and phase of periodic variations in the temperature field. Masking and biasing factors, such as diurnal tides, solar radiation variations, mean monthly variations, instrument lag, aerodynamic heating, are singled out for attention. Models of the stratosphere will have to account for these oscillations of different periods in the thermal field and related properties of the wind fields, with multilayered horizontal stratification with height taken into account.-
The Rotational Excitation Temperature of the 6614 DIB Carrier
NASA Technical Reports Server (NTRS)
Cami, J.; Salama, F.; Jimenez-Vicente, J.; Galazutdinov, G.; Krelowski, J.
2004-01-01
Analysis of high spectral resolution observations of the lambda6614 DIB line profile show systematic variations in the positions of the peaks in the substructure of the profile. These variations can only be understood in the framework of rotational contours of large molecules, where the variations are caused by changes in the rotational excitation temperature. We show that the rotational excitation temperature for the DIB carrier is of the order 10-40 K - much lower than the gas kinetic temperature - indicating that for this particular DIB carrier angular momentum buildup is not very efficient. The rotational constant indicates that the carrier of this DIB is smaller than previously assumed:7-22 C atoms, depending on the geometry.
A search for relativistic electron induced stratospheric ozone depletion
NASA Technical Reports Server (NTRS)
Aikin, Arthur C.
1994-01-01
Possible ozone changes at 1 mb associated with the time variation and precipitation of relativistic electrons are investigated by examining the NIMBUS 7 SBUV ozone data set and corresponding temperatures derived from NMC data. No ozone depletion was observed in high-latitude summer when temperature fluctuations are small. In winter more variation in ozone occurs, but large temperature changes make it difficult to identify specific ozone decreases as being the result of relativistic electron precipitation.
Huber, John H; Childs, Marissa L; Caldwell, Jamie M; Mordecai, Erin A
2018-05-01
Dengue, chikungunya, and Zika virus epidemics transmitted by Aedes aegypti mosquitoes have recently (re)emerged and spread throughout the Americas, Southeast Asia, the Pacific Islands, and elsewhere. Understanding how environmental conditions affect epidemic dynamics is critical for predicting and responding to the geographic and seasonal spread of disease. Specifically, we lack a mechanistic understanding of how seasonal variation in temperature affects epidemic magnitude and duration. Here, we develop a dynamic disease transmission model for dengue virus and Aedes aegypti mosquitoes that integrates mechanistic, empirically parameterized, and independently validated mosquito and virus trait thermal responses under seasonally varying temperatures. We examine the influence of seasonal temperature mean, variation, and temperature at the start of the epidemic on disease dynamics. We find that at both constant and seasonally varying temperatures, warmer temperatures at the start of epidemics promote more rapid epidemics due to faster burnout of the susceptible population. By contrast, intermediate temperatures (24-25°C) at epidemic onset produced the largest epidemics in both constant and seasonally varying temperature regimes. When seasonal temperature variation was low, 25-35°C annual average temperatures produced the largest epidemics, but this range shifted to cooler temperatures as seasonal temperature variation increased (analogous to previous results for diurnal temperature variation). Tropical and sub-tropical cities such as Rio de Janeiro, Fortaleza, and Salvador, Brazil; Cali, Cartagena, and Barranquilla, Colombia; Delhi, India; Guangzhou, China; and Manila, Philippines have mean annual temperatures and seasonal temperature ranges that produced the largest epidemics. However, more temperate cities like Shanghai, China had high epidemic suitability because large seasonal variation offset moderate annual average temperatures. By accounting for seasonal variation in temperature, the model provides a baseline for mechanistically understanding environmental suitability for virus transmission by Aedes aegypti. Overlaying the impact of human activities and socioeconomic factors onto this mechanistic temperature-dependent framework is critical for understanding likelihood and magnitude of outbreaks.
NASA Astrophysics Data System (ADS)
Lavergne, Aliénor; Daux, Valérie; Villalba, Ricardo; Pierre, Monique; Stievenard, Michel; Srur, Ana Marina
2017-02-01
Very few studies of stable isotopes exist across the Andes in South America. This study is the first presenting annually resolved chronologies of both δ18 O and δ13 C in Nothofagus pumilio and Fitzroya cupressoides trees from Northern Patagonia. Interannual variability in δ18 O and δ13 C was assessed over the period 1952-2011. Based on these chronologies, we determined the primary climatic controls on stable isotopes and tree physiological responses to changes in atmospheric CO2 concentrations (ca), temperature and humidity. Changes in specific intrinsic water use efficiency (iWUE) were inferred from variations in δ13 C whereas the effects of CO2 increase on stomatal conductance were explored using δ18 O. Over the 60-year period, iWUE increased significantly (by ca. 25%) in coincidence with the rise of ca. The two species appear to have different strategies of gas-exchange. Whereas iWUE variations were likely driven by both stomatal conductance and photosynthetic assimilation rates in F. cupressoides, they were largely related to stomatal conductance in N. pumilio. After removing the low-frequency trends related to increasing ca, significant relationships between δ13 C and summer temperatures were recorded for both species. However, δ13 C variations in F. cupressoides were more strongly influenced by summer temperatures than in N. pumilio. Our results advocate for an indirect effect of summer temperatures on stable isotope ratios, which is mostly influenced by sunlight radiation in F. cupressoides and relative humidity/soil moisture in N. pumilio. δ13 C variations in F. cupressoides were spatially correlated to a large area south of 35°S in southern South America. These promising results encourage the use of δ13 C variations in F. cupressoides for reconstructing past variations in temperature and large-scale circulation indexes such as the Southern Annular Mode (SAM) in the Southern Hemisphere.
Straile, Dietmar; Adrian, Rita; Schindler, Daniel E.
2012-01-01
Spring phenologies are advancing in many ecosystems associated with climate warming causing unpredictable changes in ecosystem functioning. Here we establish a phenological model for Daphnia, an aquatic keystone herbivore based on decadal data on water temperatures and the timing of Daphnia population maxima from Lake Constance, a large European lake. We tested this model with long-term time-series data from two lakes (Müggelsee, Germany; Lake Washington, USA), and with observations from a diverse set of 49 lakes/sites distributed widely across the Northern Hemisphere (NH). The model successfully captured the observed temporal variation of Daphnia phenology in the two case study sites (r2 = 0.25 and 0.39 for Müggelsee and Lake Washington, respectively) and large-scale spatial variation in the NH (R2 = 0.57). These results suggest that Daphnia phenology follows a uniform temperature dependency in NH lakes. Our approach – based on temperature phenologies – has large potential to study and predict phenologies of animal and plant populations across large latitudinal gradients in other ecosystems. PMID:23071520
NASA Astrophysics Data System (ADS)
Cai, Zhen-Yi; Wang, Jun-Xian; Zhu, Fei-Fan; Sun, Mou-Yuan; Gu, Wei-Min; Cao, Xin-Wu; Yuan, Feng
2018-03-01
The tight interband correlation and the lag–wavelength relation among UV/optical continua of active galactic nuclei have been firmly established. They are usually understood within the widespread reprocessing scenario; however, the implied interband lags are generally too small. Furthermore, it is challenged by new evidence, such as that the X-ray reprocessing yields too much high-frequency UV/optical variation and that it fails to reproduce the observed timescale-dependent color variations among the Swift light curves of NGC 5548. In a different manner, we demonstrate that an upgraded inhomogeneous accretion disk model, whose local independent temperature fluctuations are subject to a speculated common large-scale temperature fluctuation, can intrinsically generate the tight interband correlation and lag across the UV/optical and be in nice agreement with several observational properties of NGC 5548, including the timescale-dependent color variation. The emergent lag is a result of the differential regression capability of local temperature fluctuations when responding to the large-scale fluctuation. An average speed of propagations as large as ≳15% of the speed of light may be required by this common fluctuation. Several potential physical mechanisms for such propagations are discussed. Our interesting phenomenological scenario may shed new light on comprehending the UV/optical continuum variations of active galactic nuclei.
On the Regulation of the Pacific Warm Pool Temperature
NASA Technical Reports Server (NTRS)
Chou, Ming-Dah; Chou, Sue-Hsien; Chan, Pui-King; Lau, William K. M. (Technical Monitor)
2002-01-01
In the tropical western Pacific, regions of the highest sea surface temperature (SST) and the largest cloud cover are found to have the largest surface heating, primarily due to the weak evaporative cooling associated with weak winds. This situation is in variance with the suggestions that the temperature in the Pacific warm pool is regulated either by the reduced solar heating due to an enhanced cloudiness or by the enhanced evaporative cooling due to an elevated SST. It is clear that an enhanced surface heating in an enhanced convection region is not sustainable and must be interrupted by variations in large-scale atmospheric circulation. As the deep convective regions shift away from regions of high SST due primarily to seasonal variation and secondarily to interannual variation of the large-scale atmospheric and oceanic circulation, both trade wind and evaporative cooling in the high SST region increase, leading to a reduction in SST. We conclude that the evaporative cooling associated with the seasonal and interannual variations of trade winds in the primary factor that prevent the warm pool SST from increasing to a value much higher than what is observed.
NASA Technical Reports Server (NTRS)
Schey, Oscar W; Pinkel, Benjamin; Ellerbrock, Herman H , Jr
1939-01-01
Factors are obtained from semiempirical equations for correcting engine-cylinder temperatures for variation in important engine and cooling conditions. The variation of engine temperatures with atmospheric temperature is treated in detail, and correction factors are obtained for various flight and test conditions, such as climb at constant indicated air speed, level flight, ground running, take-off, constant speed of cooling air, and constant mass flow of cooling air. Seven conventional air-cooled engine cylinders enclosed in jackets and cooled by a blower were tested to determine the effect of cooling-air temperature and carburetor-air temperature on cylinder temperatures. The cooling air temperature was varied from approximately 80 degrees F. to 230 degrees F. and the carburetor-air temperature from approximately 40 degrees F. to 160 degrees F. Tests were made over a large range of engine speeds, brake mean effective pressures, and pressure drops across the cylinder. The correction factors obtained experimentally are compared with those obtained from the semiempirical equations and a fair agreement is noted.
Measurements of temperature profiles at the exit of small rockets.
Griggs, M; Harshbarger, F C
1966-02-01
The sodium line reversal technique was used to determine the reversal temperature profile across the exit of small rockets. Measurements were made on one 73-kg thrust rocket, and two 23-kg thrust rockets with different injectors. The large rocket showed little variation of reversal temperature across the plume. However, the 23-kg rockets both showed a large decrease of reversal temperature from the axis to the edge of the plume. In addition, the sodium line reversal technique of temperature measurement was compared with an infrared technique developed in these laboratories.
Characterization Report on Fuels for NEAMS Model Validation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gofryk, Krzysztof
Nearly 20% of the world’s electricity today is generated by nuclear energy from uranium dioxide (UO 2) fuel. The thermal conductivity of UO 2 governs the conversion of heat produced from fission events into electricity and it is an important parameter in reactor design and safety. While nuclear fuel operates at high to very high temperatures, thermal conductivity and other materials properties lack sensitivity to temperature variations and to material variations at reactor temperatures. As a result, both the uncertainties in laboratory measurements at high temperatures and the small differences in properties of different materials inevitably lead to large uncertaintiesmore » in models and little predictive power. Conversely, properties measured at low to moderate temperatures have more sensitivity, less uncertainty, and have larger differences in properties for different materials. These variations need to be characterized as they will afford the highest predictive capability in modeling and offer best assurances for validation and verification at all temperatures. This is well emphasized in the temperature variation of the thermal conductivity of UO 2.« less
Temperature Variations Recorded During Interinstitutional Air Shipments of Laboratory Mice
Syversen, Eric; Pineda, Fernando J; Watson, Julie
2008-01-01
Despite extensive guidelines and regulations that govern most aspects of rodent shipping, few data are available on the physical environment experienced by rodents during shipment. To document the thermal environment experienced by mice during air shipments, we recorded temperatures at 1-min intervals throughout 103 routine interinstitutional shipments originating at our institution. We found that 49.5% of shipments were exposed to high temperatures (greater than 29.4 °C), 14.6% to low temperatures (less than 7.2 °C), and 61% to temperature variations of 11 °C or more. International shipments were more likely than domestic shipments to experience temperature extremes and large variations in temperature. Freight forwarders using passenger airlines rather than their own airplanes were more likely to have shipments that experienced temperature extremes or variations. Temperature variations were most common during stopovers. Some airlines were more likely than others to experience inflight temperature extremes or swings. Most domestic shipments lasted at least 24 h, whereas international shipments lasted 48 to 72 h. Despite exposure to high and low temperatures, animals in all but 1 shipment arrived alive. We suggest that simple measures, such as shipping at night during hot weather, provision of nesting material in shipping crates, and specifying aircraft cargo-hold temperatures that are suitable for rodents, could reduce temperature-induced stress. Measures such as additional training for airport ground crews, as previously recommended by the American Veterinary Medical Association, could further reduce exposure of rodents to extreme ambient temperatures during airport stopovers. PMID:18210996
Temperature variations recorded during interinstitutional air shipments of laboratory mice.
Syversen, Eric; Pineda, Fernando J; Watson, Julie
2008-01-01
Despite extensive guidelines and regulations that govern most aspects of rodent shipping, few data are available on the physical environment experienced by rodents during shipment. To document the thermal environment experienced by mice during air shipments, we recorded temperatures at 1-min intervals throughout 103 routine interinstitutional shipments originating at our institution. We found that 49.5% of shipments were exposed to high temperatures (greater than 29.4 degrees C), 14.6% to low temperatures (less than 7.2 degrees C), and 61% to temperature variations of 11 degrees C or more. International shipments were more likely than domestic shipments to experience temperature extremes and large variations in temperature. Freight forwarders using passenger airlines rather than their own airplanes were more likely to have shipments that experienced temperature extremes or variations. Temperature variations were most common during stopovers. Some airlines were more likely than others to experience inflight temperature extremes or swings. Most domestic shipments lasted at least 24 h, whereas international shipments lasted 48 to 72 h. Despite exposure to high and low temperatures, animals in all but 1 shipment arrived alive. We suggest that simple measures, such as shipping at night during hot weather, provision of nesting material in shipping crates, and specifying aircraft cargo-hold temperatures that are suitable for rodents, could reduce temperature-induced stress. Measures such as additional training for airport ground crews, as previously recommended by the American Veterinary Medical Association, could further reduce exposure of rodents to extreme ambient temperatures during airport stopovers.
Response of Marine Taxa to Climate Variability in the Southeast U.S.
NASA Astrophysics Data System (ADS)
Morley, J. W.; Pinsky, M. L.; Batt, R. D.
2016-02-01
Climate change has led to large-scale redistributions of marine taxa in many coastal regions around North America. Specifically, marine populations respond to spatial shifts in their preferred temperature conditions, or thermal envelope, as they shift across a seascape. The influence of climate change on the coastal fisheries of the southeast U.S. has been largely unexplored. We analyzed 25 years of trawl survey data (1990-2014) from the Southeast Area Monitoring and Assessment Program (SEAMAP), which samples the nearshore continental shelf of the South Atlantic Bight during spring, summer, and fall. Bottom temperatures exhibited no trend over this period and the assemblage showed no net shift north or south. However, taxa distributions were sensitive to interannual temperature variation. Annual projections of taxa thermal envelopes explained variation in centroid location for many species, particularly during spring. Accordingly, long-term latitudinal shifts in taxa-specific thermal envelopes, which trended to the north or south depending on the species, were highly correlated with centroid shifts during spring. One explanation for our results is that the phenology of taxa migration is adaptable to temperature variation. In particular, the inshore-offshore movement of species during spring and fall appears quite responsive to interannual temperature variability.
Variations on the "Whoosh" Bottle Alcohol Explosion Demonstration Including Safety Notes.
ERIC Educational Resources Information Center
Fortman, John J.; Rush, Andrea C.; Stamper, Jennifer E.
1999-01-01
Presents several variations on a demonstration in which alcohol vapors are combusted in large small-necked bottles, causing a blue flame to shoot from the bottle's mouth. Describes variations with different pure alcohols, temperature, alcohol/water solution concentration, oxygen concentration, type of container, and the addition of salt for color.…
Biktash, Lilia
2017-07-01
The effects of total solar irradiance (TSI) and volcanic activity on long-term global temperature variations during solar cycles 19-23 were studied. It was shown that a large proportion of climate variations can be explained by the mechanism of action of TSI and cosmic rays (CRs) on the state of the lower atmosphere and other meteorological parameters. The role of volcanic signals in the 11-year variations of the Earth's climate can be expressed as several years of global temperature drop. Conversely, it was shown that the effects of solar, geophysical, and human activity on climate change interact. It was concluded that more detailed investigations of these very complicated relationships are required, in order to be able to understand issues that affect ecosystems on a global scale.
Interaction between stream temperature, streamflow, and groundwater exchanges in alpine streams
Constantz, James E.
1998-01-01
Four alpine streams were monitored to continuously collect stream temperature and streamflow for periods ranging from a week to a year. In a small stream in the Colorado Rockies, diurnal variations in both stream temperature and streamflow were significantly greater in losing reaches than in gaining reaches, with minimum streamflow losses occurring early in the day and maximum losses occurring early in the evening. Using measured stream temperature changes, diurnal streambed infiltration rates were predicted to increase as much as 35% during the day (based on a heat and water transport groundwater model), while the measured increase in streamflow loss was 40%. For two large streams in the Sierra Nevada Mountains, annual stream temperature variations ranged from 0° to 25°C. In summer months, diurnal stream temperature variations were 30–40% of annual stream temperature variations, owing to reduced streamflows and increased atmospheric heating. Previous reports document that one Sierra stream site generally gains groundwater during low flows, while the second Sierra stream site may lose water during low flows. For August the diurnal streamflow variation was 11% at the gaining stream site and 30% at the losing stream site. On the basis of measured diurnal stream temperature variations, streambed infiltration rates were predicted to vary diurnally as much as 20% at the losing stream site. Analysis of results suggests that evapotranspiration losses determined diurnal streamflow variations in the gaining reaches, while in the losing reaches, evapotranspiration losses were compounded by diurnal variations in streambed infiltration. Diurnal variations in stream temperature were reduced in the gaining reaches as a result of discharging groundwater of relatively constant temperature. For the Sierra sites, comparison of results with those from a small tributary demonstrated that stream temperature patterns were useful in delineating discharges of bank storage following dam releases. Direct coupling may have occurred between streamflow and stream temperature for losing stream reaches, such that reduced streamflows facilitated increased afternoon stream temperatures and increased afternoon stream temperatures induced increased streambed losses, leading to even greater increases in both stream temperature and streamflow losses.
Variation of the channel temperature in the transmission of lightning leader
NASA Astrophysics Data System (ADS)
Chang, Xuan; Yuan, Ping; Cen, Jianyong; Wang, Xuejuan
2017-06-01
According to the time-resolved spectra of the lightning stepped leader and dart leader processes, the channel temperature, its evolution characteristics with time and the variation along the channel height in the transmission process were analyzed. The results show that the stepped leader tip has a slightly higher temperature than the trailing end, which should be caused by a large amount of electric charges on the leader tip. In addition, both temperature and brightness are enhanced at the position of the channel node. The dart leader has a higher channel temperature than the stepped leader but a lower temperature than the return stroke. Meanwhile, the channel temperature of the dart leader obviously increases when the dart leader propagates to the ground.
Viking-1 meteorological measurements - First impressions
NASA Technical Reports Server (NTRS)
Hess, S. L.; Henry, R. M.; Leovy, C. B.; Tillman, J. E.; Ryan, J. A.
1976-01-01
A preliminary evaluation is given of in situ meteorological measurements made by Viking 1 on Mars. The data reported show that: (1) the atmosphere has approximate volume mixing ratios of 1.5% argon, 3% nitrogen, and 95% carbon dioxide; (2) the diurnal temperature range is large and regular, with a sunrise minimum of about 188 K and a midafternoon maximum near 244 K; (3) air and ground temperatures coincide quite closely during the night, but ground temperature exceeds air temperature near midday by as much as 25 C; (4) the winds exhibit a marked diurnal cycle; and (5) a large diurnal pressure variation with an afternoon minimum and an early-morning maximum parallels the wind pattern. The variations are explained in terms of familiar meteorological processes. It is suggested that latent heat is unlikely to play an important role on Mars because no evidence has been observed for traveling synoptic-scale disturbances such as those that occur in the terrestrial tropics.
Biro, Peter A; Beckmann, Christa; Stamps, Judy A
2010-01-07
Consistent individual differences in behaviour, termed personality, are common in animal populations and can constrain their responses to ecological and environmental variation, such as temperature. Here, we show for the first time that normal within-daytime fluctuations in temperature of less than 3 degrees C have large effects on personality for two species of juvenile coral reef fish in both observational and manipulative experiments. On average, individual scores on three personality traits (PTs), activity, boldness and aggressiveness, increased from 2.5- to sixfold as a function of temperature. However, whereas most individuals became more active, aggressive and bold across temperature contexts (were plastic), others did not; this changed the individual rank order across temperatures and thus altered personality. In addition, correlations between PTs were consistent across temperature contexts, e.g. fish that were active at a given temperature also tended to be both bold and aggressive. These results (i) highlight the importance of very carefully controlling for temperature when studying behavioural variation among and within individuals and (ii) suggest that individual differences in energy metabolism may contribute to animal personality, given that temperature has large direct effects on metabolic rates in ectotherms.
Three-dimensional hydrodynamic simulations of OMEGA implosions
NASA Astrophysics Data System (ADS)
Igumenshchev, I. V.; Michel, D. T.; Shah, R. C.; Campbell, E. M.; Epstein, R.; Forrest, C. J.; Glebov, V. Yu.; Goncharov, V. N.; Knauer, J. P.; Marshall, F. J.; McCrory, R. L.; Regan, S. P.; Sangster, T. C.; Stoeckl, C.; Schmitt, A. J.; Obenschain, S.
2017-05-01
The effects of large-scale (with Legendre modes ≲ 10) asymmetries in OMEGA direct-drive implosions caused by laser illumination nonuniformities (beam-power imbalance and beam mispointing and mistiming), target offset, and variation in target-layer thickness were investigated using the low-noise, three-dimensional Eulerian hydrodynamic code ASTER. Simulations indicate that these asymmetries can significantly degrade the implosion performance. The most important sources of the asymmetries are the target offsets ( ˜10 to 20 μm), beam-power imbalance ( σrms˜10 %), and variations ( ˜5 %) in target-layer thickness. Large-scale asymmetries distort implosion cores, resulting in a reduced hot-spot confinement and an increased residual kinetic energy of implosion targets. The ion temperature inferred from the width of simulated neutron spectra is influenced by bulk fuel motion in the distorted hot spot and can result in up to an ˜1 -keV increase in apparent temperature. Similar temperature variations along different lines of sight are observed. Demonstrating hydrodynamic equivalence to ignition designs on OMEGA requires a reduction in large-scale target and laser-imposed nonuniformities, minimizing target offset, and employing highly efficient mid-adiabat (α = 4) implosion designs, which mitigate cross-beam energy transfer and suppress short-wavelength Rayleigh-Taylor growth.
Three-dimensional hydrodynamic simulations of OMEGA implosions
Igumenshchev, I. V.; Michel, D. T.; Shah, R. C.; ...
2017-03-30
Here, the effects of large-scale (with Legendre modes ≲10) asymmetries in OMEGA direct-drive implosions caused by laser illumination nonuniformities (beam-power imbalance and beam mispointing and mistiming), target offset, and variation in target-layer thickness were investigated using the low-noise, three-dimensional Eulerian hydrodynamic code ASTER. Simulations indicate that these asymmetries can significantly degrade the implosion performance. The most important sources of the asymmetries are the target offsets (~10 to 20 μm), beam-power imbalance (σ rms ~ 10%), and variations (~5%) in target-layer thickness. Large-scale asymmetries distort implosion cores, resulting in a reduced hot-spot confinement and an increased residual kinetic energy of implosionmore » targets. The ion temperature inferred from the width of simulated neutron spectra is influenced by bulk fuel motion in the distorted hot spot and can result in up to an ~1 -keV increase in apparent temperature. Similar temperature variations along different lines of sight are observed. Demonstrating hydrodynamic equivalence to ignition designs on OMEGA requires a reduction in large-scale target and laser-imposed nonuniformities, minimizing target offset, and employing highly efficient mid-adiabat (α = 4) implosion designs, which mitigate cross-beam energy transfer and suppress short-wavelength Rayleigh–Taylor growth.« less
Three-dimensional hydrodynamic simulations of OMEGA implosions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Igumenshchev, I. V.; Michel, D. T.; Shah, R. C.
Here, the effects of large-scale (with Legendre modes ≲10) asymmetries in OMEGA direct-drive implosions caused by laser illumination nonuniformities (beam-power imbalance and beam mispointing and mistiming), target offset, and variation in target-layer thickness were investigated using the low-noise, three-dimensional Eulerian hydrodynamic code ASTER. Simulations indicate that these asymmetries can significantly degrade the implosion performance. The most important sources of the asymmetries are the target offsets (~10 to 20 μm), beam-power imbalance (σ rms ~ 10%), and variations (~5%) in target-layer thickness. Large-scale asymmetries distort implosion cores, resulting in a reduced hot-spot confinement and an increased residual kinetic energy of implosionmore » targets. The ion temperature inferred from the width of simulated neutron spectra is influenced by bulk fuel motion in the distorted hot spot and can result in up to an ~1 -keV increase in apparent temperature. Similar temperature variations along different lines of sight are observed. Demonstrating hydrodynamic equivalence to ignition designs on OMEGA requires a reduction in large-scale target and laser-imposed nonuniformities, minimizing target offset, and employing highly efficient mid-adiabat (α = 4) implosion designs, which mitigate cross-beam energy transfer and suppress short-wavelength Rayleigh–Taylor growth.« less
Dielectric studies on PEG-LTMS based polymer composites
NASA Astrophysics Data System (ADS)
Patil, Ravikumar V.; Praveen, D.; Damle, R.
2018-02-01
PEG LTMS based polymer composites were prepared and studied for dielectric constant variation with frequency and temperature as a potential candidate with better dielectric properties. Solution cast technique is used for the preparation of polymer composite with five different compositions. Samples show variation in dielectric constant with frequency and temperature. Dielectric constant is large at low frequencies and higher temperatures. Samples with larger space charges have shown larger dielectric constant. The highest dielectric constant observed was about 29244 for PEG25LTMS sample at 100Hz and 312 K.
Climatic variation and age-specific survival in Asian elephants from Myanmar.
Mumby, Hannah S; Courtiol, Alexandre; Mar, Khyne U; Lummaa, Virpi
2013-05-01
Concern about climate change has intensified interest in understanding how climatic variability affects animal life histories. Despite such effects being potentially most dramatic in large, long-lived, and slowly reproducing terrestrial mammals, little is known of the effects of climatic variation on survival in those species. Asian elephants (Elephas maximus) are endangered across their distribution, and inhabit regions characterized by high seasonality of temperature and rainfall. We investigated the effects of monthly climatic variation on survival and causes of death in Asian elephants using a unique demographic data set of 1024 semi-captive, longitudinally monitored elephants from four sites in Myanmar between 1965 and 2000. Temperature had a significant effect on survival in both sexes and across all ages. For elephants between 1 month and 17 years of age, maximal survival was reached at -24 degrees C, and any departures from this temperature increased mortality, whereas neonates and mature elephants had maximal survival at even lower temperatures. Although males experienced higher mortality overall, sex differences in these optimal temperatures were small. Because the elephants spent more time during a year in temperatures above 24 degrees C than in temperatures below it, most deaths occurred at hot (temperatures>24 degrees C) rather than cold periods. Decreased survival at higher temperatures resulted partially from increased deaths from infectious disease and heat stroke, whereas the lower survival in the coldest months was associated with an increase in noninfectious diseases and poor health in general. Survival was also related to rainfall, with the highest survival rates during the wettest months for all ages and sexes. Our results show that even the normal-range monsoon variation in climate can exert a large impact on elephant survival in Myanmar, leading to extensive absolute differences in mortality; switching from favorable to unfavorable climatic conditions within average years doubled the odds for mortality. The persistence of a long-term trend toward higher global temperatures, combined with the possibility of higher variation in temperature between seasons, may pose a challenge to the survival of species such as Asian elephants.
Clustering of arc volcanoes caused by temperature perturbations in the back-arc mantle
Lee, Changyeol; Wada, Ikuko
2017-01-01
Clustering of arc volcanoes in subduction zones indicates along-arc variation in the physical condition of the underlying mantle where majority of arc magmas are generated. The sub-arc mantle is brought in from the back-arc largely by slab-driven mantle wedge flow. Dynamic processes in the back-arc, such as small-scale mantle convection, are likely to cause lateral variations in the back-arc mantle temperature. Here we use a simple three-dimensional numerical model to quantify the effects of back-arc temperature perturbations on the mantle wedge flow pattern and sub-arc mantle temperature. Our model calculations show that relatively small temperature perturbations in the back-arc result in vigorous inflow of hotter mantle and subdued inflow of colder mantle beneath the arc due to the temperature dependence of the mantle viscosity. This causes a three-dimensional mantle flow pattern that amplifies the along-arc variations in the sub-arc mantle temperature, providing a simple mechanism for volcano clustering. PMID:28660880
Clustering of arc volcanoes caused by temperature perturbations in the back-arc mantle.
Lee, Changyeol; Wada, Ikuko
2017-06-29
Clustering of arc volcanoes in subduction zones indicates along-arc variation in the physical condition of the underlying mantle where majority of arc magmas are generated. The sub-arc mantle is brought in from the back-arc largely by slab-driven mantle wedge flow. Dynamic processes in the back-arc, such as small-scale mantle convection, are likely to cause lateral variations in the back-arc mantle temperature. Here we use a simple three-dimensional numerical model to quantify the effects of back-arc temperature perturbations on the mantle wedge flow pattern and sub-arc mantle temperature. Our model calculations show that relatively small temperature perturbations in the back-arc result in vigorous inflow of hotter mantle and subdued inflow of colder mantle beneath the arc due to the temperature dependence of the mantle viscosity. This causes a three-dimensional mantle flow pattern that amplifies the along-arc variations in the sub-arc mantle temperature, providing a simple mechanism for volcano clustering.
Antarctic Surface Temperatures Using Satellite Infrared Data from 1979 Through 1995
NASA Technical Reports Server (NTRS)
Comiso, Josefino C.; Stock, Larry
1997-01-01
The large scale spatial and temporal variations of surface ice temperature over the Antarctic region are studied using infrared data derived from the Nimbus-7 Temperature Humidity Infrared Radiometer (THIR) from 1979 through 1985 and from the NOAA Advanced Very High Resolution Radiometer (AVHRR) from 1984 through 1995. Enhanced techniques suitable for the polar regions for cloud masking and atmospheric correction were used before converting radiances to surface temperatures. The observed spatial distribution of surface temperature is highly correlated with surface ice sheet topography and agrees well with ice station temperatures with 2K to 4K standard deviations. The average surface ice temperature over the entire continent fluctuates by about 30K from summer to winter while that over the Antarctic Plateau varies by about 45K. Interannual fluctuations of the coldest interannual variations in surface temperature are highest at the Antarctic Plateau and the ice shelves (e.g., Ross and Ronne) with a periodic cycle of about 5 years and standard deviations of about 11K and 9K, respectively. Despite large temporal variability, however, especially in some regions, a regression analysis that includes removal of the seasonal cycle shows no apparent trend in temperature during the period 1979 through 1995.
Understanding Climate Variability of Urban Ecosystems Through the Lens of Citizen Science
NASA Astrophysics Data System (ADS)
Ripplinger, J.; Jenerette, D.; Wang, J.; Chandler, M.; Ge, C.; Koutzoukis, S.
2017-12-01
The Los Angeles megacity is vulnerable to climate warming - a process that locally exacerbates the urban heat island effect as it intensifies with size and density of the built-up area. We know that large-scale drivers play a role, but in order to understand local-scale climate variation, more research is needed on the biophysical and sociocultural processes driving the urban climate system. In this study, we work with citizen scientists to deploy a high-density network of microsensors across a climate gradient to characterize geographic variation in neighborhood meso- and micro-climates. This research asks: How do urbanization, global climate, and vegetation interact across multiple scales to affect local-scale experiences of temperature? Additionally, citizen scientist-led efforts generated research questions focused on examining microclimatic differences among yard groundcover types (rock mulch vs. lawn vs. artificial turf) and also on variation in temperature related to tree cover. Combining sensor measurements with Weather Research and Forecasting (WRF) spatial models and satellite-based temperature, we estimate spatially-explicit maps of land surface temperature and air temperature to illustrate the substantial difference between surface and air urban heat island intensities and the variable degree of coupling between land surface and air temperature in urban areas. Our results show a strong coupling between air temperature variation and landcover for neighborhoods, with significant detectable signatures from tree cover and impervious surface. Temperature covaried most strongly with urbanization intensity at nighttime during peak summer season, when daily mean air temperature ranged from 12.8C to 30.4C across all groundcover types. The combined effects of neighborhood geography and vegetation determine where and how temperature and tree canopy vary within a city. This citizen science-enabled research shows how large-scale climate drivers and urbanization intensity jointly influence the nature and magnitude of coupling between air temperature and tree cover, and demonstrate how urban vegetation provides an important ecosystem service in cities by decreasing the intensity of local urban heat islands.
Wang, Shang; Dong, Hailiang; Hou, Weiguo; Jiang, Hongchen; Huang, Qiuyuan; Briggs, Brandon R.; Huang, Liuqin
2014-01-01
Temporal variation in geochemistry can cause changes in microbial community structure and diversity. Here we studied temporal changes of microbial communities in Tengchong hot springs of Yunnan Province, China in response to geochemical variations by using microbial and geochemical data collected in January, June and August of 2011. Greater temporal variations were observed in individual taxa than at the whole community structure level. Water and sediment communities exhibited different temporal variation patterns. Water communities were largely stable across three sampling times and dominated by similar microbial lineages: Hydrogenobaculum in moderate-temperature acidic springs, Sulfolobus in high-temperature acidic springs, and Hydrogenobacter in high-temperature circumneutral to alkaline springs. Sediment communities were more diverse and responsive to changing physicochemical conditions. Most of the sediment communities in January and June were similar to those in waters. However, the August sediment community was more diverse and contained more anaerobic heterotrophs than the January and June: Desulfurella and Acidicaldus in moderate-temperature acidic springs, Ignisphaera and Desulfurococcus in high-temperature acidic springs, the candidate division OP1 and Fervidobacterium in alkaline springs, and Thermus and GAL35 in neutral springs. Temporal variations in physicochemical parameters including temperature, pH, and dissolved organic carbon may have triggered the observed microbial community shifts. PMID:25524763
NASA Astrophysics Data System (ADS)
Anderson, V. J.; Shanahan, T. M.; Saylor, J.; Horton, B. K.
2012-12-01
Recently, the distribution of branched GDGT's (glycerol dialkyl glycerol tetraethers) has been proposed as a proxy for temperature and pH in soils via the MBT/CBT index, and has been used to reconstruct past temperature variations in a number of settings ranging from marine sediments to loess deposits and paleosols. However, empirical calibrations of the MBT/CBT index against temperature show significant scatter, leading to uncertainties as large as ±2 degrees C . In this study we seek to add to and improve upon the existing soil calibration using a new set of samples spanning a large elevation (and temperature) gradient in the Eastern Cordillera of Colombia. At each site we buried temperature loggers to constrain the diurnal and seasonal temperature experienced by each soil sample. Located only 5 degrees north of the equator, our sites experience a very small seasonal temperature variation - most sites display an annual range of less than 4 degrees C. In addition, the pH of all of the soils is almost invariant across the transect, with the vast majority of samples having pH's between 4 and 5. This dataset represents a "best-case" scenario - small variations in seasonal temperature, pH, and well-constrained instrumental data - which allow us to examine the brGDGT-temperature relationship in the absence of major confounding factors such as seasonality and soil chemistry. Interestingly, the relationship between temperature and the MBT/CBT index is not improved using this dataset, suggesting that these factors are not the cause of the anomalous scatter in the calibration dataset. However, we find that using other parameterizations for the regression equation instead of the MBT and CBT indices, the errors in our temperature estimates are significantly reduced.
Martin, Thomas E.; Ton, Riccardo; Oteyza, Juan C.
2018-01-01
Understanding intrinsic (physiological) and extrinsic (e.g., temperature) causes of variation in embryonic development time (incubation period) is important because they can have different impacts on individual quality. Robert Ricklefs and colleagues have argued that longer incubation periods result primarily from intrinsic physiological programs that increase individual quality and adult survival. They claim that incubation periods are largely invariant and that extrinsic factors like temperature have little impact. We have argued that adult survival may be a cause rather than a consequence of much of the variation in embryonic development time. A reduction in extrinsic sources of annual adult mortality (e.g., migration, predation, nonbreeding-season mortality) favors reduced parental effort during incubation to minimize costs to future reproduction and survival. Reduced parental effort, in turn, manifests as cooler average egg temperatures that yield longer incubation periods. Ricklefs and colleagues mischaracterized our hypothesis and deconstructed their own incorrect version, while also making some incorrect statements. We show that reevaluation of previous evidence provided by this group actually supports a role of egg temperature for the variation in incubation periods. We also summarize other observational and experimental evidence that incubation periods are not invariant and that egg temperature has a strong causal influence on variation within and among species. In fact, egg temperature explains ∼60% of the difference in incubation periods among species. The remaining ∼40% reflects intrinsic physiological programs and other factors, potentially providing intrinsic benefits. Ultimately, annual adult mortality explains substantial variation in parental effort and egg temperature, and the latter strongly explains variation in incubation periods. Both intrinsic programs and extrinsic temperature effects need to be considered in attempts to understand incubation strategies.
Ozolina, Karlina; Shiels, Holly A; Ollivier, Hélène; Claireaux, Guy
2016-01-01
Abstract The European sea bass (Dicentrarchus labrax) is an economically important fish native to the Mediterranean and Northern Atlantic. Its complex life cycle involves many migrations through temperature gradients that affect the energetic demands of swimming. Previous studies have shown large intraspecific variation in swimming performance and temperature tolerance, which could include deleterious and advantageous traits under the evolutionary pressure of climate change. However, little is known of the underlying determinants of this individual variation. We investigated individual variation in temperature tolerance in 30 sea bass by exposing them to a warm temperature challenge test. The eight most temperature-tolerant and eight most temperature-sensitive fish were then studied further to determine maximal swimming speed (UCAT), aerobic scope and post-exercise oxygen consumption. Finally, ventricular contractility in each group was determined using isometric muscle preparations. The temperature-tolerant fish showed lower resting oxygen consumption rates, possessed larger hearts and initially recovered from exhaustive exercise faster than the temperature-sensitive fish. Thus, whole-animal temperature tolerance was associated with important performance traits. However, the temperature-tolerant fish also demonstrated poorer maximal swimming capacity (i.e. lower UCAT) than their temperature-sensitive counterparts, which may indicate a trade-off between temperature tolerance and swimming performance. Interestingly, the larger relative ventricular mass of the temperature-tolerant fish did not equate to greater ventricular contractility, suggesting that larger stroke volumes, rather than greater contractile strength, may be associated with thermal tolerance in this species. PMID:27382468
Ozolina, Karlina; Shiels, Holly A; Ollivier, Hélène; Claireaux, Guy
2016-01-01
The European sea bass (Dicentrarchus labrax) is an economically important fish native to the Mediterranean and Northern Atlantic. Its complex life cycle involves many migrations through temperature gradients that affect the energetic demands of swimming. Previous studies have shown large intraspecific variation in swimming performance and temperature tolerance, which could include deleterious and advantageous traits under the evolutionary pressure of climate change. However, little is known of the underlying determinants of this individual variation. We investigated individual variation in temperature tolerance in 30 sea bass by exposing them to a warm temperature challenge test. The eight most temperature-tolerant and eight most temperature-sensitive fish were then studied further to determine maximal swimming speed (U CAT), aerobic scope and post-exercise oxygen consumption. Finally, ventricular contractility in each group was determined using isometric muscle preparations. The temperature-tolerant fish showed lower resting oxygen consumption rates, possessed larger hearts and initially recovered from exhaustive exercise faster than the temperature-sensitive fish. Thus, whole-animal temperature tolerance was associated with important performance traits. However, the temperature-tolerant fish also demonstrated poorer maximal swimming capacity (i.e. lower U CAT) than their temperature-sensitive counterparts, which may indicate a trade-off between temperature tolerance and swimming performance. Interestingly, the larger relative ventricular mass of the temperature-tolerant fish did not equate to greater ventricular contractility, suggesting that larger stroke volumes, rather than greater contractile strength, may be associated with thermal tolerance in this species.
NASA Technical Reports Server (NTRS)
Didwall, E. M.
1981-01-01
Low latitude magnetic field variations (magnetic storms) caused by large fluctuations in the equatorial ring current were derived from magnetic field magnitude data obtained by OGO 2, 4, and 6 satellites over an almost 5 year period. Analysis procedures consisted of (1) separating the disturbance field into internal and external parts relative to the surface of the Earth; (2) estimating the response function which related to the internally generated magnetic field variations to the external variations due to the ring current; and (3) interpreting the estimated response function using theoretical response functions for known conductivity profiles. Special consideration is given to possible ocean effects. A temperature profile is proposed using conductivity temperature data for single crystal olivine. The resulting temperature profile is reasonable for depths below 150-200 km, but is too high for shallower depths. Apparently, conductivity is not controlled solely by olivine at shallow depths.
NASA Technical Reports Server (NTRS)
Gao, Bo-Cai; Wiscombe, W. J.
1994-01-01
A method for detecting cirrus clouds in terms of brightness temperature differences between narrowbands at 8, 11, and 12 microns has been proposed by Ackerman et al. In this method, the variation of emissivity with wavelength for different surface targets was not taken into consideration. Based on state-of-the-art laboratory measurements of reflectance spectra of terrestrial materials by Salisbury and D'Aria, it is found that the brightness temperature differences between the 8- and 11-microns bands for soils, rocks, and minerals, and dry vegetation can vary between approximately -8 and +8 K due solely to surface emissivity variations. The large brightness temperature differences are sufficient to cause false detection of cirrus clouds from remote sensing data acquired over certain surface targets using the 8-11-12-microns method directly. It is suggested that the 8-11-12-microns method should be improved to include the surface emissivity effects. In addition, it is recommended that in the future the variation of surface emissivity with wavelength should be taken into account in algorithms for retrieving surface temperatures and low-level atmospheric temperature and water vapor profiles.
Holland Bartels, L. E.; Dewey, M.R.; Zigler, S.J.
1989-01-01
The cumulative effects of collection, handling, and marking with fluorescent pigment on the mortality of adult minnows, young-of-the-year centrarchids, and large centrarchids and percids was determined at five water temperatures (10-20.6 degree C) in field trials. There have been few field trials of this type. The mortality of centrarchids and percids was directly related to temperature and decreased noticeably when the temperature was below 19.5 degree C. The mortality of minnows decreased somewhat as river temperatures cooled but was always at least 50%. Variation was high in the temperature-related patterns of mortality in different taxa and sizes of fish. This variation complicates the accuracy and usefulness of pigment in marking field-collected fish for mark-recapture studies in warmwater systems.
George E. Myers
1985-01-01
An analysis has been conducted on available data related to temperature and humidity effects on formaldehyde concentrations that are produced by emission from particleboard and hardwood plywood paneling. Temperature changes are described by an exponential relation while a linear relation suffices for humidity effects. Large variations exist in the results from...
Hower, James C.; Henke, Kevin R.; O'Keefe, Jennifer M.K.; Engle, Mark A.; Blake, Donald R.; Stracher, Glenn B.
2009-01-01
Variation in gas temperatures, nearly 300 °C during the January visit to the fire versus < 50 °C in May, demonstrates the large temporal variability in fire intensity at the Tiptop mine. These preliminary results suggest that emissions from coal fires may be important, but additional data are required that address the reasons for significant variations in the composition, flow, and temperature of vent gases.
Cator, Lauren J; Thomas, Shalu; Paaijmans, Krijn P; Ravishankaran, Sangamithra; Justin, Johnson A; Mathai, Manu T; Read, Andrew F; Thomas, Matthew B; Eapen, Alex
2013-03-02
Environmental temperature is an important driver of malaria transmission dynamics. Both the parasite and vector are sensitive to mean ambient temperatures and daily temperature variation. To understand transmission ecology, therefore, it is important to determine the range of microclimatic temperatures experienced by malaria vectors in the field. A pilot study was conducted in the Indian city of Chennai to determine the temperature variation in urban microclimates and characterize the thermal ecology of the local transmission setting. Temperatures were measured in a range of probable indoor and outdoor resting habitats of Anopheles stephensi in two urban slum malaria sites. Mean temperatures and daily temperature fluctuations in local transmission sites were compared with standard temperature measures from the local weather station. The biological implications of the different temperatures were explored using temperature-dependent parasite development models to provide estimates of the extrinsic incubation period (EIP) of Plasmodium vivax and Plasmodium falciparum. Mean daily temperatures within the urban transmission sites were generally warmer than those recorded at the local weather station. The main reason was that night-time temperatures were higher (and hence diurnal temperature ranges smaller) in the urban settings. Mean temperatures and temperature variation also differed between specific resting sites within the transmission environments. Most differences were of the order of 1-3°C but were sufficient to lead to important variation in predicted EIPs and hence, variation in estimates of transmission intensity. Standard estimates of environmental temperature derived from local weather stations do not necessarily provide realistic measures of temperatures within actual transmission environments. Even the small differences in mean temperatures or diurnal temperature ranges reported in this study can lead to large variations in key mosquito and/or parasite life history traits that determine transmission intensity. Greater effort should be directed at quantifying adult mosquito resting behaviour and determining the temperatures actually experienced by mosquitoes and parasites in local transmission environments. In the absence of such highly resolved data, the approach used in the current study provides a framework for improved thermal characterization of transmission settings.
Characterizing microclimate in urban malaria transmission settings: a case study from Chennai, India
2013-01-01
Background Environmental temperature is an important driver of malaria transmission dynamics. Both the parasite and vector are sensitive to mean ambient temperatures and daily temperature variation. To understand transmission ecology, therefore, it is important to determine the range of microclimatic temperatures experienced by malaria vectors in the field. Methods A pilot study was conducted in the Indian city of Chennai to determine the temperature variation in urban microclimates and characterize the thermal ecology of the local transmission setting. Temperatures were measured in a range of probable indoor and outdoor resting habitats of Anopheles stephensi in two urban slum malaria sites. Mean temperatures and daily temperature fluctuations in local transmission sites were compared with standard temperature measures from the local weather station. The biological implications of the different temperatures were explored using temperature-dependent parasite development models to provide estimates of the extrinsic incubation period (EIP) of Plasmodium vivax and Plasmodium falciparum. Results Mean daily temperatures within the urban transmission sites were generally warmer than those recorded at the local weather station. The main reason was that night-time temperatures were higher (and hence diurnal temperature ranges smaller) in the urban settings. Mean temperatures and temperature variation also differed between specific resting sites within the transmission environments. Most differences were of the order of 1-3°C but were sufficient to lead to important variation in predicted EIPs and hence, variation in estimates of transmission intensity. Conclusions Standard estimates of environmental temperature derived from local weather stations do not necessarily provide realistic measures of temperatures within actual transmission environments. Even the small differences in mean temperatures or diurnal temperature ranges reported in this study can lead to large variations in key mosquito and/or parasite life history traits that determine transmission intensity. Greater effort should be directed at quantifying adult mosquito resting behaviour and determining the temperatures actually experienced by mosquitoes and parasites in local transmission environments. In the absence of such highly resolved data, the approach used in the current study provides a framework for improved thermal characterization of transmission settings. PMID:23452620
NASA Astrophysics Data System (ADS)
Tung, S.-T.; Glisic, B.
2016-12-01
Sensing sheets based on large-area electronics consist of a dense array of unit strain sensors. This new technology has potential for becoming an effective and affordable monitoring tool that can identify, localize and quantify surface damage in structures. This research contributes to their development by investigating the response of full-bridge unit strain sensors to thermal variations. Overall, this investigation quantifies the effects of temperature on thin-film full-bridge strain sensors monitoring uncracked and cracked concrete. Additionally, an empirical formula is developed to estimate crack width given an observed strain change and a measured temperature change. This research led to the understanding of the behavior of full-bridge strain sensors installed on cracked concrete and exposed to temperature variations. It proves the concept of the sensing sheet and its suitability for application in environments with variable temperature.
NASA Astrophysics Data System (ADS)
Pecháček, Pavel; Stella, David; Keil, Petr; Kleisner, Karel
2014-12-01
The males of the Brimstone butterfly ( Gonepteryx rhamni) have ultraviolet pattern on the dorsal surfaces of their wings. Using geometric morphometrics, we have analysed correlations between environmental variables (climate, productivity) and shape variability of the ultraviolet pattern and the forewing in 110 male specimens of G. rhamni collected in the Palaearctic zone. To start with, we subjected the environmental variables to principal component analysis (PCA). The first PCA axis (precipitation, temperature, latitude) significantly correlated with shape variation of the ultraviolet patterns across the Palaearctic. Additionally, we have performed two-block partial least squares (PLS) analysis to assess co-variation between intraspecific shape variation and the variation of 11 environmental variables. The first PLS axis explained 93 % of variability and represented the effect of precipitation, temperature and latitude. Along this axis, we observed a systematic increase in the relative area of ultraviolet colouration with increasing temperature and precipitation and decreasing latitude. We conclude that the shape variation of ultraviolet patterns on the forewings of male Brimstones is correlated with large-scale environmental factors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malgin, A. S., E-mail: malgin@lngs.infn.it
The parameters of the seasonal modulations in the intensity of muons and cosmogenic neutrons generated by them at a mean muon energy of 280 GeV have been determined in the LVD (Large Volume Detector) experiment. The modulations of muons and neutrons are caused by a temperature effect, the seasonal temperature and density variations of the upper atmospheric layers. The analysis performed here leads to the conclusion that the variations in the mean energy of the muon flux are the main source of underground cosmogenic neutron variations, because the energy of muons is more sensitive to the temperature effect than theirmore » intensity. The parameters of the seasonal modulations in the mean energy of muons and the flux of cosmogenic neutrons at the LVD depth have been determined from the data obtained over seven years of LVD operation.« less
Sharip, Zati; Zaki, Ahmad Taqiyuddin Ahmad
2014-08-01
Thermal structure and water quality in a large and shallow lake in Malaysia were studied between January 2012 and June 2013 in order to understand variations in relation to water level fluctuations and in-stream mining activities. Environmental variables, namely temperature, turbidity, dissolved oxygen, pH, electrical conductivity, chlorophyll-A and transparency, were measured using a multi-parameter probe and a Secchi disk. Measurements of environmental variables were performed at 0.1 m intervals from the surface to the bottom of the lake during the dry and wet seasons. High water level and strong solar radiation increased temperature stratification. River discharges during the wet season, and unsustainable sand mining activities led to an increased turbidity exceeding 100 NTU, and reduced transparency, which changed the temperature variation and subsequently altered the water quality pattern.
Swanson, David L; King, Marisa O; Culver, William; Zhang, Yufeng
Metabolic rates of passerine birds are flexible traits that vary both seasonally and among and within winters. Seasonal variation in summit metabolic rates (M sum = maximum thermoregulatory metabolism) in birds is consistently correlated with changes in pectoralis muscle and heart masses and sometimes with variation in cellular aerobic metabolic intensity, so these traits might also be associated with shorter-term, within-winter variation in metabolic rates. To determine whether these mechanisms are associated with within-winter variation in M sum , we examined the effects of short-term (ST; 0-7 d), medium-term (MT; 14-30 d), and long-term (LT; 30-yr means) temperature variables on pectoralis muscle and heart masses, pectoralis expression of the muscle-growth inhibitor myostatin and its metalloproteinase activators TLL-1 and TLL-2, and pectoralis and heart citrate synthase (CS; an indicator of cellular aerobic metabolic intensity) activities for two temperate-zone resident passerines, house sparrows (Passer domesticus) and dark-eyed juncos (Junco hyemalis). For both species, pectoralis mass residuals were positively correlated with ST temperature variables, suggesting that cold temperatures resulted in increased turnover of pectoralis muscle, but heart mass showed little within-winter variation for either species. Pectoralis mRNA and protein expression of myostatin and the TLLs were only weakly correlated with ST and MT temperature variables, which is largely consistent with trends in muscle masses for both species. Pectoralis and heart CS activities showed weak and variable trends with ST temperature variables in both species, suggesting only minor effects of temperature variation on cellular aerobic metabolic intensity. Thus, neither muscle or heart masses, regulation by the myostatin system, nor cellular aerobic metabolic intensity varied consistently with winter temperature, suggesting that other factors regulate within-winter metabolic variation in these birds.
NASA Astrophysics Data System (ADS)
Gao, Zhenxun; Wang, Jingying; Jiang, Chongwen; Lee, Chunhian
2014-11-01
In the framework of Reynolds-averaged Navier-Stokes simulation, supersonic turbulent combustion flows at the German Aerospace Centre (DLR) combustor and Japan Aerospace Exploration Agency (JAXA) integrated scramjet engine are numerically simulated using the flamelet model. Based on the DLR combustor case, theoretical analysis and numerical experiments conclude that: the finite rate model only implicitly considers the large-scale turbulent effect and, due to the lack of the small-scale non-equilibrium effect, it would overshoot the peak temperature compared to the flamelet model in general. Furthermore, high-Mach-number compressibility affects the flamelet model mainly through two ways: the spatial pressure variation and the static enthalpy variation due to the kinetic energy. In the flamelet library, the mass fractions of the intermediate species, e.g. OH, are more sensible to the above two effects than the main species such as H2O. Additionally, in the combustion flowfield where the pressure is larger than the value adopted in the generation of the flamelet library or the conversion from the static enthalpy to the kinetic energy occurs, the temperature obtained by the flamelet model without taking compressibility effects into account would be undershot, and vice versa. The static enthalpy variation effect has only little influence on the temperature simulation of the flamelet model, while the effect of the spatial pressure variation may cause relatively large errors. From the JAXA case, it is found that the flamelet model cannot in general be used for an integrated scramjet engine. The existence of the inlet together with the transverse injection scheme could cause large spatial variations of pressure, so the pressure value adopted for the generation of a flamelet library should be fine-tuned according to a pre-simulation of pure mixing.
NASA Astrophysics Data System (ADS)
Barangi, Mahmood; Mazumder, Pinaki
2015-11-01
A theoretical model quantifying the effect of temperature variations on the magnetic properties and static and dynamic behavior of the straintronics magnetic tunneling junction is presented. Four common magnetostrictive materials (Nickel, Cobalt, Terfenol-D, and Galfenol) are analyzed to determine their temperature sensitivity and to provide a comprehensive database for different applications. The variations of magnetic anisotropies are studied in detail for temperature levels up to the Curie temperature. The energy barrier of the free layer and the critical voltage required for flipping the magnetization vector are inspected as important metrics that dominate the energy requirements and noise immunity when the device is incorporated into large systems. To study the dynamic thermal noise, the effect of the Langevin thermal field on the free layer's magnetization vector is incorporated into the Landau-Lifshitz-Gilbert equation. The switching energy, flipping delay, write, and hold error probabilities are studied, which are important metrics for nonvolatile memories, an important application of the straintronics magnetic tunneling junctions.
Natural variation reveals that OsSAP16 controls low-temperature germination in rice.
Wang, Xiang; Zou, Baohong; Shao, Qiaolin; Cui, Yongmei; Lu, Shan; Zhang, Yan; Huang, Quansheng; Huang, Ji; Hua, Jian
2018-01-23
Low temperature affects seed germination in plants, and low-temperature germination (LTG) is an important agronomic trait. Natural variation of LTG has been reported in rice, but the molecular basis for this variation is largely unknown. Here we report the phenotypic analysis of LTG in 187 rice natural accessions and a genome-wide association study (GWAS) of LTG in this collection. A total of 53 quantitative trait loci (QTLs) were found to be associated with LTG, of which 20 were located in previously reported QTLs. We further identified Stress-Associated Protein 16 (OsSAP16), coding for a zinc-finger domain protein, as a causal gene for one of the major LTG QTLs. Loss of OsSAP16 function reduces germination while greater expression of OsSAP16 enhances germination at low temperature. In addition, accessions with extremely high and low LTG values have correspondingly high and low OsSAP16 expression at low temperatures, suggesting that variation in expression of the OsSAP16 gene contributes to LTG variation. As the first case of identification of an LTG gene through GWAS, this study indicates that GWAS of natural accessions is an effective strategy in genetically dissecting LTG processes and gaining molecular understanding of low-temperature response and germination. © The Author(s) 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.
Large-Eddy Simulations of Noise Generation in Supersonic Jets at Realistic Engine Temperatures
NASA Astrophysics Data System (ADS)
Liu, Junhui; Corrigan, Andrew; Kailasanath, K.; Taylor, Brian
2015-11-01
Large-eddy simulations (LES) have been carried out to investigate the noise generation in highly heated supersonic jets at temperatures similar to those observed in high-performance jet engine exhausts. It is found that the exhaust temperature of high-performance jet engines can range from 1000K at an intermediate power to above 2000K at a maximum afterburning power. In low-temperature jets, the effects of the variation of the specific heat ratio as well as the radial temperature profile near the nozzle exit are small and are ignored, but it is not clear whether those effects can be also ignored in highly heated jets. The impact of the variation of the specific heat ratio is assessed by comparing LES results using a variable specific heat ratio with those using a constant specific heat ratio. The impact on both the flow field and the noise distributions are investigated. Because the total temperature near the nozzle wall can be substantially lower than the nozzle total temperature either due to the heating loss through the nozzle wall or due to the cooling applied near the wall, this lower wall temperature may impact the temperature in the shear layer, and thus impact the noise generation. The impact of the radial temperature profile on the jet noise generation is investigated by comparing results of lower nozzle wall temperatures with those of the adiabatic wall condition.
Streicher, Sonja; Boyles, Justin G.; Oosthuizen, Maria K.; Bennett, Nigel C.
2011-01-01
Body temperature (Tb) is an important physiological component that affects endotherms from the cellular to whole organism level, but measurements of Tb in the field have been noticeably skewed towards heterothermic species and seasonal comparisons are largely lacking. Thus, we investigated patterns of Tb patterns in a homeothermic, free-ranging small mammal, the Damaraland mole-rat (Fukomys damarensis) during both the summer and winter. Variation in Tb was significantly greater during winter than summer, and greater among males than females. Interestingly, body mass had only a small effect on variation in Tb and there was no consistent pattern relating ambient temperature to variation in Tb. Generally speaking, it appears that variation in Tb patterns varies between seasons in much the same way as in heterothermic species, just to a lesser degree. Both cosinor analysis and Fast Fourier Transform analysis revealed substantial individual variation in Tb rhythms, even within a single colony. Some individuals had no Tb rhythms, while others appeared to exhibit multiple rhythms. These data corroborate previous laboratory work showing multiplicity of rhythms in mole-rats and suggest the variation seen in the laboratory is a true indicator of the variation seen in the wild. PMID:22028861
Thermal analysis of turbulent flow of a supercritical fluid
NASA Technical Reports Server (NTRS)
Yamane, E.
1979-01-01
The influence of the large variation of thermodynamics and transport properties near the pseudocritical temperature on the heat transfer coefficient of supercritical fluid in turbulent flow was studied. The formation of the characteristics peak in the heat transfer coefficient vs. bulk temperature curve is described, and the necessity of the fluid element at pseudocritical temperature located in the buffer layer is discussed.
Response to Comment on "Does the Earth Have an Adaptive Infrared Iris?"
NASA Technical Reports Server (NTRS)
Bell, Thomas L.; Chou, Ming-Dah; Lindzen, Richard S.; Hou, Arthur Y.
2001-01-01
In his comment on Lindzen et al., Harrison found that the amount of high-level clouds, A, and the sea-surface temperature beneath clouds, T, averaged over a large oceanic domain in the western Pacific have secular linear trends of opposite signs over a period of 20 months. He found that when the linear trends are subtracted from the data, the correlation between the residual A and T is much reduced. His estimates of the confidence levels for the correlation indicate, moreover, that this correlation is not statistically significant. The domain-averaged A and, to a lesser degree, T, have distinct intra-seasonal and seasonal variations. These variations are influenced by the large-scale wind and temperature distributions and by the seasonal variation of insolation. To separate the local effect from the effect of slowly changing large-scale conditions, rather than subtracting 20-month linear trends from the series, which has the potential to spuriously extrapolate intra-seasonal and seasonal variations to even longer time scales, we subtracted 30-day running means of A and T from each time series; in effect, the data were high-pass filtered. The number of points (days), N, is reduced by this process from the original value of 510 to 480.
Depth and temperature of permafrost on the Alaskan Arctic Slope; preliminary results
Lachenbruch, Arthur H.; Sass, J.H.; Lawver, L.A.; Brewer, M.C.; Moses, T.H.
1982-01-01
As permafrost is defined by its temperature, the only way to determine its depth is to monitor the return to equilibrium of temperatures in boreholes that penetrate permafrost. Such measurements are under way in 25 wells on the Alaskan Arctic Slope; 21 are in Naval Petroleum Reserve Alaska (NPRA), and 4 are in the foothills to the east. Near-equilibrium results indicate that permafrost thickness in NPRA generally ranges between 200 and 400 m (compared to 600+ m at Prudhoe Bay); there are large local variations and no conspicuous regional trends. By contrast the long-term mean temperature of the ground surface (one factor determining permafrost depth) varies systematically from north to south in a pattern modified by the regional topography. The observed variation in permafrost temperature and depth cannot result primarily from effects of surface bodies of water or regional variations in heat flow; they are consistent, however, with expectable variations in the thermal conductivity of the sediments. It remains to be determined (with conductivity measurements) whether certain sites with anomalously high local gradients have anomalously high heat flow; if they do, they might indicate upwelling of interstitial fluids in the underlying basin sediments.
Small lakes show muted climate change signal in deepwater temperatures
Winslow, Luke A.; Read, Jordan S.; Hansen, Gretchen J. A.; Hanson, Paul C.
2015-01-01
Water temperature observations were collected from 142 lakes across Wisconsin, USA, to examine variation in temperature of lakes exposed to similar regional climate. Whole lake water temperatures increased across the state from 1990 to 2012, with an average trend of 0.042°C yr−1 ± 0.01°C yr−1. In large (>0.5 km2) lakes, the positive temperature trend was similar across all depths. In small lakes (<0.5 km2), the warming trend was restricted to shallow waters, with no significant temperature trend observed in water >0.5 times the maximum lake depth. The differing response of small versus large lakes is potentially a result of wind-sheltering reducing turbulent mixing magnitude in small lakes. These results demonstrate that small lakes respond differently to climate change than large lakes, suggesting that current predictions of impacts to lakes from climate change may require modification.
Fabrication of large tungsten structures by chemical vapor deposition
NASA Technical Reports Server (NTRS)
Kahle, V. E.; Lewis, W. J.; Stubbs, V. R.
1971-01-01
Process is accomplished by reducing tungsten hexafluoride with hydrogen. Metallic tungsten of essentially 100 percent purity and density is produced and built up as dense deposit on heated mandrel assembly. Process variations are building up, sealing or bonding refractory metals at temperatures below transition temperatures of base metal substrates.
Variational principle model for the nuclear caloric curve
DOE Office of Scientific and Technical Information (OSTI.GOV)
Das Gupta, S.
2005-12-15
Following the lead of a recent work, I perform a variational principle model calculation for the nuclear caloric curve. A Skyrme-type interaction with and without momentum dependence is used. The calculation is done for a large nucleus, i.e., in the nuclear matter limit. Thus I address the issue of volume fragmentation only. Nonetheless, the results are similar to the previous, largely phenomenological calculation for a finite nucleus. I find that the onset of fragmentation can be sudden as a function of temperature or excitation energy.
Increasing occurrence of cold and warm extremes during the recent global warming slowdown.
Johnson, Nathaniel C; Xie, Shang-Ping; Kosaka, Yu; Li, Xichen
2018-04-30
The recent levelling of global mean temperatures after the late 1990s, the so-called global warming hiatus or slowdown, ignited a surge of scientific interest into natural global mean surface temperature variability, observed temperature biases, and climate communication, but many questions remain about how these findings relate to variations in more societally relevant temperature extremes. Here we show that both summertime warm and wintertime cold extreme occurrences increased over land during the so-called hiatus period, and that these increases occurred for distinct reasons. The increase in cold extremes is associated with an atmospheric circulation pattern resembling the warm Arctic-cold continents pattern, whereas the increase in warm extremes is tied to a pattern of sea surface temperatures resembling the Atlantic Multidecadal Oscillation. These findings indicate that large-scale factors responsible for the most societally relevant temperature variations over continents are distinct from those of global mean surface temperature.
2012-03-01
temperature ranges, as well as with and without hot dwell periods. Table 4. Specimens chosen for SEM fractography . Samples ID Temperature variation...intersecting with crystallographic facet. Comparison with the fractography of the specimen (19776A) tested to %25.0 mechanical strain at the 800 F Figure... fractography of the specimen (19777B) tested to %4.0 mechanical strain (see Table 2). Large mechanical strain range generates large stresses around the hole
NASA Astrophysics Data System (ADS)
Niu, Y.; O'Hara, M. J.
2014-12-01
Mantle temperature variation, plate spreading rate variation and mantle compositional variation have been considered to be the three fundamental variables that govern the working of global ocean ridges [1]. An analysis demonstrates that mantle compositional variation exerts the primary control on ocean ridge processes; it determines (1) variation in both composition and mode of mantle mineralogy, (2) variation of mantle density, (3) variation of ridge axial depth, (4) source-inherited MORB compositional variation, (4) density-controlled variation in the amplitude of mantle upwelling, (5) apparent variation in the extent of melting, and (6) the correlated variation of MORB chemistry with ridge axial depth [2]. The above interpretations are reinforced by the updated MORB database [3]. The new database also confirms spreading rate control on the extent of melting as shown previously [4]. Mantle temperature variation could play a part, but its overstated role [3,5] results from a basic error (1) in treating ridge axial depth variation as evidence of mantle temperature variation by ignoring the intrinsic control of mantle composition, (2) in treating "mantle plume" influenced ridges (e.g., Iceland) as normal ridges of plate spreading origin, and (3) in treating low Vs at greater depths (> 300 km vs. < 200 km beneath ridges) beneath these "mantle plume" influenced ridges as evidence for hot ridge mantle. In order to understand the working of global ocean ridges, we must avoid plume-influenced ridges (e.g., in the vicinity of Iceland) and remove/average out data from such ridges. As a result, the correlations (e.g., between ridge axial depth, mantle low Vs anomaly, and some geochemical parameters) required for the interpretation of mantle temperature control all disappear. There is thus no evidence for large mantle temperature variation away from ridges influenced by "mantle plumes". References: [1] Niu et al., 2001, Earth Planet Sci. Lett., 186, 383-399; [2] Niu & O'Hara, 2008, J. Petrol., 49, 633-664; [3] Gale et al., 2014, J. Petrol, 55, 1051-1082; [4] Niu & Hékinian, 1997, Nature, 385, 326-329; [5] Dalton et al., 2014, Science, 334, 80-83; [6]Niu & Hékinian, 2004, In Oceanic Hotspots, Springer-Verlag, 285-307.
USDA-ARS?s Scientific Manuscript database
The Choptank basin and estuary are located on the Mid-Atlantic coastal plain on the Delmarva Peninsula. The regional hydrology is characterized by nearly uniform rainfall, but large seasonal variations in temperature and evapotranspiration (maximum in summer) drive large seasonal changes in groundwa...
NASA Astrophysics Data System (ADS)
Singh, A.; Saraswati, P. K.; Pande, K.; Sanyal, P.
2015-12-01
The reports of inter-species variability to intra-test heterogeneity in Mg/Ca in several species of foraminifera have raised question about its use in estimation of seawater temperatures and necessitate field and culture studies to verify it for species from different habitats. In this study, we attempt to investigate if Mg/Ca in larger benthic foraminifera (LBF) could be a potential proxy of seawater temperatures for shallow marine carbonates. The samples were collected in different seasons from coral reef at Akajima (Okinawa, Japan). The Ca and Mg of 13 species of LBF and small benthic foraminifera from the same season were determined to examine variation in Mg/Ca among the species calcified under presumably the same temperature and salinity conditions. We also analyzed Amphistegina lessoni from different seasons for Ca, Mg and δ18O to determine variation in Mg/Ca with temperature and see how the two proxies of temperatures, Mg/Ca and δ18O, correlate in the same species. The species cluster about two distinctly separated Mg/Ca values. The first group comprising species of Amphistegina, Gypsina, Ammonia and Elphidium have relatively lower Mg/Ca, varying from 30 to 45 mmol/mol. The second group, having average Mg/Ca ranging from ~110 to 170 mmol/mol, includes species of Schlumbergerella, Baculogypsinoides, Baculogypsina, Heterostegina, Operculina, Calcarina, Amphisorus, Alveolinella and Poroeponides. The result suggests large interspecies variability implying vital effect in foraminiferal Mg/Ca. There is no distinct difference in Mg/Ca values between porcelaneous and hyaline types or symbiont-bearing and symbiont-free types. In Amphistegina lessoni the variation in Mg/Ca between individuals of the same season is as large as variation across the seasons. There is no correlation between Mg/Ca and seawater temperature. Lack of correlation between Mg/Ca and δ18O further suggests that Mg/Ca in the species is not primarily controlled by temperature.
NASA Technical Reports Server (NTRS)
Stevenson, Thomas R.; Balvin, M. A.; Denis, K. L.; Hsieh, W.-T.; Sadleir, J. E.; Bandler, Simon E.; Busch, Sarah E.; Merrell, W.; Kelly, Daniel P.; Nagler, Peter C.;
2012-01-01
We have made high resolution x-ray microcalorimeters using superconducting MoAu bilayers and Nb meander coils. The temperature sensor is a Magnetic Penetration Thermometer (MPT). Operation is similar to metallic magnetic calorimeters, but instead of the magnetic susceptibility of a paramagnetic alloy, we use the diamagnetic response of the superconducting MoAu to sense temperature changes in an x-ray absorber. Flux-temperature responsivtty can be large for small sensor heat capacity, with enough dynamic range for applications. We find models of observed flux-temperature curves require several effects to explain flux penetration or expulsion in the microscopic devices. The superconductor is non-local, with large coherence length and weak pinning of flux. At lowest temperatures, behavior is dominated by screening currents that vary as a result of the temperature dependence of the magnetic penetration depth, modified by the effect of the nonuniformity of the applied field occurring on a scale comparable to the coherence length. In the temperature regime where responslvity is greatest, spadal variations in the order parameter become important: both local variations as flux enters/leaves the film and an intermediate state is formed, and globally as changing stability of the electrical circuit creates a Meissner transition and flux is expelled/penetrates to minimize free energy.
NASA Technical Reports Server (NTRS)
Neugebauer, G. T.; Wilcox, William R.
1992-01-01
Azulene-doped naphthalene was directionally solidified during the vertical Bridgman-Stockbarger technique. Doping homogeneity and convection were determined as a function of the temperature profile in the furnace and the freezing rate. Convection velocities were two orders of magnitude lower when the temperature increased with height. Rarely was the convection pattern axisymmetric, even though the temperature varied less than 0.1 K around the circumference of the growth ampoule. Correspondingly the cross sectional variation in azulene concentration tended to be asymmetric, especially when the temperature increased with height. This cross sectional variation changed dramatically along the ingot, reflecting changes in convection presumably due to the decreasing height of the melt. Although there was large scatter and irreproducibility in the cross sectional variation in doping, this variation tended to be least when the growth rate was low and the convection was vigorous. It is expected that compositional variations would also be small at high growth rates with weak convection and flat interfaces, although this was not investigated in the present experiments. Neither rotation of the ampoule nor deliberate introduction of thermal asymmetries during solidification had a significant influence on cross sectional variations in doping. It is predicted that slow directional solidification under microgravity conditions could produce greater inhomogeneities than on Earth. Combined use of microgravity and magnetic fields would be required to achieve homogeneity when it is necessary to freeze slowly in order to avoid constitutional supercooling.
Global variations of zonal mean ozone during stratospheric warming events
NASA Technical Reports Server (NTRS)
Randel, William J.
1993-01-01
Eight years of Solar Backscatter Ultraviolet (SBUV) ozone data are examined to study zonal mean variations associated with stratospheric planetary wave (warming) events. These fluctuations are found to be nearly global in extent, with relatively large variations in the tropics, and coherent signatures reaching up to 50 deg in the opposite (summer) hemisphere. These ozone variations are a manifestation of the global circulation cells associated with stratospheric warming events; the ozone responds dynamically in the lower stratosphere to transport, and photochemically in the upper stratosphere to the circulation-induced temperature changes. The observed ozone variations in the tropics are of particular interest because transport is dominated by zonal-mean vertical motions (eddy flux divergences and mean meridional transports are negligible), and hence, substantial simplifications to the governing equations occur. The response of the atmosphere to these impulsive circulation changes provides a situation for robust estimates of the ozone-temperature sensitivity in the upper stratosphere.
Model for energy transfer in the solar wind: Model results
NASA Technical Reports Server (NTRS)
Barnes, A. A., Jr.; Hartle, R. E.
1972-01-01
A description is given of the results of solar wind flow in which the heating is due to (1) propagation and dissipation of hydromagnetic waves generated near the base of the wind, and (2) thermal conduction. A series of models is generated for fixed values of density, electron and proton temperature, and magnetic field at the base by varying the wave intensity at the base of the model. This series of models predicts the observed correlation between flow speed and proton temperature for a large range of velocities. The wave heating takes place in a shell about the sun greater than or approximately equal to 10 R thick. We conclude that large-scale variations observed in the solar wind are probably due mainly to variation in the hydromagnetic wave flux near the sun.
Temporal Gain Correction for X-Ray Calorimeter Spectrometers
NASA Technical Reports Server (NTRS)
Porter, F. S.; Chiao, M. P.; Eckart, M. E.; Fujimoto, R.; Ishisaki, Y.; Kelley, R. L.; Kilbourne, C. A.; Leutenegger, M. A.; McCammon, D.; Mitsuda, K.
2016-01-01
Calorimetric X-ray detectors are very sensitive to their environment. The boundary conditions can have a profound effect on the gain including heat sink temperature, the local radiation temperature, bias, and the temperature of the readout electronics. Any variation in the boundary conditions can cause temporal variations in the gain of the detector and compromise both the energy scale and the resolving power of the spectrometer. Most production X-ray calorimeter spectrometers, both on the ground and in space, have some means of tracking the gain as a function of time, often using a calibration spectral line. For small gain changes, a linear stretch correction is often sufficient. However, the detectors are intrinsically non-linear and often the event analysis, i.e., shaping, optimal filters etc., add additional non-linearity. Thus for large gain variations or when the best possible precision is required, a linear stretch correction is not sufficient. Here, we discuss a new correction technique based on non-linear interpolation of the energy-scale functions. Using Astro-HSXS calibration data, we demonstrate that the correction can recover the X-ray energy to better than 1 part in 104 over the entire spectral band to above 12 keV even for large-scale gain variations. This method will be used to correct any temporal drift of the on-orbit per-pixel gain using on-board calibration sources for the SXS instrument on the Astro-H observatory.
Experimental performance of an internal resistance heater for Langley 6-inch expansion tube driver
NASA Technical Reports Server (NTRS)
Creel, T. R., Jr.
1972-01-01
An experimental investigation of the heating characteristics of an internal resistance heating element was conducted in the driver of the Langley 6-inch expansion tube to obtain actual operating conditions, to compare these results to theory, and to determine whether any modification need be made to the heater element. The heater was operated in pressurized helium from 138. MN/sq m to 62.1 MN/sq m. This investigation revealed large temperature variations within the heater element caused primarily by area reductions at insulator locations. These large temperature variations were reduced by welding small tabs over all grooves. Previous predictions of heater element and driver gas temperature were unacceptable so new equations were derived. These equations predict element and gas temperature within 10 percent of the test data when either the constant power cycle or the interrupted power cycle is used. Visual observation of the heater element, when exposed to the atmosphere with power on, resulted in a decision to limit the heater element to 815 K. Experimental shock Mach numbers are in good agreement with theory.
The seasonal timing of warming that controls onset of the growing season.
Clark, James S; Melillo, Jerry; Mohan, Jacqueline; Salk, Carl
2014-04-01
Forecasting how global warming will affect onset of the growing season is essential for predicting terrestrial productivity, but suffers from conflicting evidence. We show that accurate estimates require ways to connect discrete observations of changing tree status (e.g., pre- vs. post budbreak) with continuous responses to fluctuating temperatures. By coherently synthesizing discrete observations with continuous responses to temperature variation, we accurately quantify how increasing temperature variation accelerates onset of growth. Application to warming experiments at two latitudes demonstrates that maximum responses to warming are concentrated in late winter, weeks ahead of the main budbreak period. Given that warming will not occur uniformly over the year, knowledge of when temperature variation has the most impact can guide prediction. Responses are large and heterogeneous, yet predictable. The approach has immediate application to forecasting effects of warming on growing season length, requiring only information that is readily available from weather stations and generated in climate models. © 2013 John Wiley & Sons Ltd.
Natural Changes in Brain Temperature Underlie Variations in Song Tempo during a Mating Behavior
Aronov, Dmitriy; Fee, Michale S.
2012-01-01
The song of a male zebra finch is a stereotyped motor sequence whose tempo varies with social context – whether or not the song is directed at a female bird – as well as with the time of day. The neural mechanisms underlying these changes in tempo are unknown. Here we show that brain temperature recorded in freely behaving male finches exhibits a global increase in response to the presentation of a female bird. This increase strongly correlates with, and largely explains, the faster tempo of songs directed at a female compared to songs produced in social isolation. Furthermore, we find that the observed diurnal variations in song tempo are also explained by natural variations in brain temperature. Our findings suggest that brain temperature is an important variable that can influence the dynamics of activity in neural circuits, as well as the temporal features of behaviors that some of these circuits generate. PMID:23112858
Infrared-temperature variability in a large agricultural field
NASA Technical Reports Server (NTRS)
Millard, J. P.; Goettelman, R. C.; Leroy, M. J.
1981-01-01
Dunnigan Agro-Meteorological Experiment airborne thermal scanner images of a large varying-terrain barley field are acquired and analyzed. Temperature variability that may occur within instantaneous fields of view (IFOV) is defined (coefficient of variation: standard deviation/mean temperature in degrees C), and the percentage of the area within various IFOV's within + or - 1, 2, 3, and 5 degrees of the mean is determined. With the exception of very rugged terrain, over 80% of the area within 4, 16, 65 and 258 ha cells was at temperatures within + or - 3 C of the mean cell temperature. Remote measurements of field temperature appeared to be slightly influenced by pixel size in the range 4 ha to 259 ha, and the area percentage within any pixel which contributes within + or - 1, 2, 3, and 5 degrees C of the mean, is nominally the same. In conclusion, no great advantage is found in utilizing a small IFOV instead of a large one for remote sensing of crop temperature.
Passive Resistor Temperature Compensation for a High-Temperature Piezoresistive Pressure Sensor.
Yao, Zong; Liang, Ting; Jia, Pinggang; Hong, Yingping; Qi, Lei; Lei, Cheng; Zhang, Bin; Li, Wangwang; Zhang, Diya; Xiong, Jijun
2016-07-22
The main limitation of high-temperature piezoresistive pressure sensors is the variation of output voltage with operating temperature, which seriously reduces their measurement accuracy. This paper presents a passive resistor temperature compensation technique whose parameters are calculated using differential equations. Unlike traditional experiential arithmetic, the differential equations are independent of the parameter deviation among the piezoresistors of the microelectromechanical pressure sensor and the residual stress caused by the fabrication process or a mismatch in the thermal expansion coefficients. The differential equations are solved using calibration data from uncompensated high-temperature piezoresistive pressure sensors. Tests conducted on the calibrated equipment at various temperatures and pressures show that the passive resistor temperature compensation produces a remarkable effect. Additionally, a high-temperature signal-conditioning circuit is used to improve the output sensitivity of the sensor, which can be reduced by the temperature compensation. Compared to traditional experiential arithmetic, the proposed passive resistor temperature compensation technique exhibits less temperature drift and is expected to be highly applicable for pressure measurements in harsh environments with large temperature variations.
Passive Resistor Temperature Compensation for a High-Temperature Piezoresistive Pressure Sensor
Yao, Zong; Liang, Ting; Jia, Pinggang; Hong, Yingping; Qi, Lei; Lei, Cheng; Zhang, Bin; Li, Wangwang; Zhang, Diya; Xiong, Jijun
2016-01-01
The main limitation of high-temperature piezoresistive pressure sensors is the variation of output voltage with operating temperature, which seriously reduces their measurement accuracy. This paper presents a passive resistor temperature compensation technique whose parameters are calculated using differential equations. Unlike traditional experiential arithmetic, the differential equations are independent of the parameter deviation among the piezoresistors of the microelectromechanical pressure sensor and the residual stress caused by the fabrication process or a mismatch in the thermal expansion coefficients. The differential equations are solved using calibration data from uncompensated high-temperature piezoresistive pressure sensors. Tests conducted on the calibrated equipment at various temperatures and pressures show that the passive resistor temperature compensation produces a remarkable effect. Additionally, a high-temperature signal-conditioning circuit is used to improve the output sensitivity of the sensor, which can be reduced by the temperature compensation. Compared to traditional experiential arithmetic, the proposed passive resistor temperature compensation technique exhibits less temperature drift and is expected to be highly applicable for pressure measurements in harsh environments with large temperature variations. PMID:27455271
Variations in incubator temperature and humidity management: a survey of current practice.
Deguines, C; Décima, P; Pelletier, A; Dégrugilliers, L; Ghyselen, L; Tourneux, P
2012-03-01
To describe and assess routine procedures and practices for incubator temperature and humidity management in France in 2009. A questionnaire was sent to all the 186 neonatal care units in France. The questionnaire return rate was 86%. Seventy-five per cent of the units preferred skin servo-control to air temperature control in routine practice. Air temperature control was mainly used for infants with a gestational age of more than 28 weeks and aged over 7 days of life. In general, thermal management decisions did not depend on the infant's age but were based on a protocol applied specifically by each unit. All units humidified the incubator air, but there was a large difference between the lowest and highest reported humidity values (45% and 100% assumed to be a maximal value, respectively). More than 65% of the units used a fixed humidity value, rather than a variable, protocol-derived value. We observed large variations in incubator temperature and humidity management approaches from one neonatal care unit to another. There is a need for more evidence to better inform practice. A task force should be formed to guide clinical practice. © 2011 The Author(s)/Acta Paediatrica © 2011 Foundation Acta Paediatrica.
Liu, Yu; Sun, Changfeng; Li, Qiang; Cai, Qiufang
2016-01-01
The historical May-October mean temperature since 1831 was reconstructed based on tree-ring width of Qinghai spruce (Picea crassifolia Kom.) collected on Mt. Dongda, North of the Hexi Corridor in Northwest China. The regression model explained 46.6% of the variance of the instrumentally observed temperature. The cold periods in the reconstruction were 1831-1889, 1894-1901, 1908-1934 and 1950-1952, and the warm periods were 1890-1893, 1902-1907, 1935-1949 and 1953-2011. During the instrumental period (1951-2011), an obvious warming trend appeared in the last twenty years. The reconstruction displayed similar patterns to a temperature reconstruction from the east-central Tibetan Plateau at the inter-decadal timescale, indicating that the temperature reconstruction in this study was a reliable proxy for Northwest China. It was also found that the reconstruction series had good consistency with the Northern Hemisphere temperature at a decadal timescale. Multi-taper method spectral analysis detected some low- and high-frequency cycles (2.3-2.4-year, 2.8-year, 3.4-3.6-year, 5.0-year, 9.9-year and 27.0-year). Combining these cycles, the relationship of the low-frequency change with the Pacific Decadal Oscillation (PDO), North Atlantic Oscillation (NAO) and Southern Oscillation (SO) suggested that the reconstructed temperature variations may be related to large-scale atmospheric-oceanic variations. Major volcanic eruptions were partly reflected in the reconstructed temperatures after high-pass filtering; these events promoted anomalous cooling in this region. The results of this study not only provide new information for assessing the long-term temperature changes in the Hexi Corridor of Northwest China, but also further demonstrate the effects of large-scale atmospheric-oceanic circulation on climate change in Northwest China.
Boreal and temperate trees show strong acclimation of respiration to warming.
Reich, Peter B; Sendall, Kerrie M; Stefanski, Artur; Wei, Xiaorong; Rich, Roy L; Montgomery, Rebecca A
2016-03-31
Plant respiration results in an annual flux of carbon dioxide (CO2) to the atmosphere that is six times as large as that due to the emissions from fossil fuel burning, so changes in either will impact future climate. As plant respiration responds positively to temperature, a warming world may result in additional respiratory CO2 release, and hence further atmospheric warming. Plant respiration can acclimate to altered temperatures, however, weakening the positive feedback of plant respiration to rising global air temperature, but a lack of evidence on long-term (weeks to years) acclimation to climate warming in field settings currently hinders realistic predictions of respiratory release of CO2 under future climatic conditions. Here we demonstrate strong acclimation of leaf respiration to both experimental warming and seasonal temperature variation for juveniles of ten North American tree species growing for several years in forest conditions. Plants grown and measured at 3.4 °C above ambient temperature increased leaf respiration by an average of 5% compared to plants grown and measured at ambient temperature; without acclimation, these increases would have been 23%. Thus, acclimation eliminated 80% of the expected increase in leaf respiration of non-acclimated plants. Acclimation of leaf respiration per degree temperature change was similar for experimental warming and seasonal temperature variation. Moreover, the observed increase in leaf respiration per degree increase in temperature was less than half as large as the average reported for previous studies, which were conducted largely over shorter time scales in laboratory settings. If such dampening effects of leaf thermal acclimation occur generally, the increase in respiration rates of terrestrial plants in response to climate warming may be less than predicted, and thus may not raise atmospheric CO2 concentrations as much as anticipated.
Variation of Soil Organic Carbon and Its Major Constraints in East Central Asia
Lee, Xinqing; Huang, Yimin; Huang, Daikuan; Hu, Lu; Feng, Zhaodong; Cheng, Jianzhong; Wang, Bing; Ni, Jian; Shurkhuu, Tserenpil
2016-01-01
Variation of soil organic carbon (SOC) and its major constraints in large spatial scale are critical for estimating global SOC inventory and projecting its future at environmental changes. By analyzing SOC and its environment at 210 sites in uncultivated land along a 3020km latitudinal transect in East Central Asia, we examined the effect of environmental factors on the dynamics of SOC. We found that SOC changes dramatically with the difference as high as 5 times in north China and 17 times in Mongolia. Regardless, C:N remains consistent about 12. Path analysis indicated that temperature is the dominant factor in the variation of SOC with a direct effect much higher than the indirect one, the former breaks SOC down the year round while the latter results in its growth mainly via precipitation in the winter half year. Precipitation helps accumulate SOC, a large part of the effect, however, is taken via temperature. NH4+-N and topography also affect SOC, their roles are played primarily via climatic factors. pH correlates significantly with SOC, the effect, however, is taken only in the winter months, contributing to the decay of SOC primarily via temperature. These factors explained as much as 79% of SOC variations, especially in the summer months, representing the major constraints on the SOC stock. Soil texture gets increasingly fine southward, it does not, however, constitute an apparent factor. Our results suggested that recent global warming should have been adversely affecting SOC stock in the mid-latitude as temperature dominates other factors as the constraint. PMID:26934707
NASA Technical Reports Server (NTRS)
Jeong, Su-Jong; Schimel, David; Frankenberg, Christian; Drewry, Darren T.; Fisher, Joshua B.; Verma, Manish; Berry, Joseph A.; Lee, Jung-Eun; Joiner, Joanna
2016-01-01
This study evaluates the large-scale seasonal phenology and physiology of vegetation over northern high latitude forests (40 deg - 55 deg N) during spring and fall by using remote sensing of solar-induced chlorophyll fluorescence (SIF), normalized difference vegetation index (NDVI) and observation-based estimate of gross primary productivity (GPP) from 2009 to 2011. Based on GPP phenology estimation in GPP, the growing season determined by SIF time-series is shorter in length than the growing season length determined solely using NDVI. This is mainly due to the extended period of high NDVI values, as compared to SIF, by about 46 days (+/-11 days), indicating a large-scale seasonal decoupling of physiological activity and changes in greenness in the fall. In addition to phenological timing, mean seasonal NDVI and SIF have different responses to temperature changes throughout the growing season. We observed that both NDVI and SIF linearly increased with temperature increases throughout the spring. However, in the fall, although NDVI linearly responded to temperature increases, SIF and GPP did not linearly increase with temperature increases, implying a seasonal hysteresis of SIF and GPP in response to temperature changes across boreal ecosystems throughout their growing season. Seasonal hysteresis of vegetation at large-scales is consistent with the known phenomena that light limits boreal forest ecosystem productivity in the fall. Our results suggest that continuing measurements from satellite remote sensing of both SIF and NDVI can help to understand the differences between, and information carried by, seasonal variations vegetation structure and greenness and physiology at large-scales across the critical boreal regions.
Short-term cyclic variations and diurnal variations of the Venus upper atmosphere
NASA Technical Reports Server (NTRS)
Keating, G. M.; Taylor, F. W.; Nicholson, J. Y.; Hinson, E. W.
1979-01-01
The vertical structure of the nighttime thermosphere and exosphere of Venus was discussed. A comparison of the day and nighttime profiles indicates, contrary to the model of Dickinson and Riley (1977), that densities (principally atomic oxygen) dropped sharply from day to night. It was suggested either that the lower estimates were related to cooler exospheric temperatures at night or that the atomic bulge was flatter than expected at lower altitudes. Large periodic oscillations, in both density and inferred exospheric temperatures, were detected with periods of 5 to 6 days. The possibility that cyclic variations in the thermosphere and stratosphere were caused by planetary-scale waves, propagated upward from the lower atmosphere, was investigated using simultaneous temperature measurements obtained by the Venus radiometric temperature experiment (VORTEX). Inferred exospheric temperatures in the morning were found to be lower than in the evening as if the atmosphere rotated in the direction of the planet's rotation, similar to that of earth. Superrotation of the thermosphere and exosphere was discussed as a possible extension of the 4-day cyclic atmospheric rotation near the cloud tops.
Streicher, Sonja; Boyles, Justin G; Oosthuizen, Maria K; Bennett, Nigel C
2011-01-01
Body temperature (T(b)) is an important physiological component that affects endotherms from the cellular to whole organism level, but measurements of T(b) in the field have been noticeably skewed towards heterothermic species and seasonal comparisons are largely lacking. Thus, we investigated patterns of T(b) patterns in a homeothermic, free-ranging small mammal, the Damaraland mole-rat (Fukomys damarensis) during both the summer and winter. Variation in T(b) was significantly greater during winter than summer, and greater among males than females. Interestingly, body mass had only a small effect on variation in T(b) and there was no consistent pattern relating ambient temperature to variation in T(b). Generally speaking, it appears that variation in T(b) patterns varies between seasons in much the same way as in heterothermic species, just to a lesser degree. Both cosinor analysis and Fast Fourier Transform analysis revealed substantial individual variation in T(b) rhythms, even within a single colony. Some individuals had no T(b) rhythms, while others appeared to exhibit multiple rhythms. These data corroborate previous laboratory work showing multiplicity of rhythms in mole-rats and suggest the variation seen in the laboratory is a true indicator of the variation seen in the wild.
Cryptic impacts of temperature variability on amphibian immune function.
Terrell, Kimberly A; Quintero, Richard P; Murray, Suzan; Kleopfer, John D; Murphy, James B; Evans, Matthew J; Nissen, Bradley D; Gratwicke, Brian
2013-11-15
Ectothermic species living in temperate regions can experience rapid and potentially stressful changes in body temperature driven by abrupt weather changes. Yet, among amphibians, the physiological impacts of short-term temperature variation are largely unknown. Using an ex situ population of Cryptobranchus alleganiensis, an aquatic North American salamander, we tested the hypothesis that naturally occurring periods of temperature variation negatively impact amphibian health, either through direct effects on immune function or by increasing physiological stress. We exposed captive salamanders to repeated cycles of temperature fluctuations recorded in the population's natal stream and evaluated behavioral and physiological responses, including plasma complement activity (i.e. bacteria killing) against Pseudomonas aeruginosa, Escherichia coli and Aeromonas hydrophila. The best-fit model (ΔAICc=0, wi=0.9992) revealed 70% greater P. aeruginosa killing after exposure to variable temperatures and no evidence of thermal acclimation. The same model predicted 50% increased E. coli killing, but had weaker support (ΔAICc=1.8, wi=0.2882). In contrast, plasma defenses were ineffective against A. hydrophila, and other health indicators (leukocyte ratios, growth rates and behavioral patterns) were maintained at baseline values. Our data suggest that amphibians can tolerate, and even benefit from, natural patterns of rapid warming/cooling. Specifically, temperature variation can elicit increased activity of the innate immune system. This immune response may be adaptive in an unpredictable environment, and is undetectable by conventional health indicators (and hence considered cryptic). Our findings highlight the need to consider naturalistic patterns of temperature variation when predicting species' susceptibility to climate change.
NASA Technical Reports Server (NTRS)
Los, Sietse Oene
1998-01-01
A monthly global 1 degree by 1 degree data set from 1982 until 1990 was derived from data collected by the Advanced Very High Resolution Radiometer on board the NOAA 7, 9, and 11 satellites. This data set was used to study the interactions between variations in climate and variations in the "greenness" of vegetation. Studies with the Colorado State University atmospheric general circulation model coupled to the Simple Biosphere model showed a large sensitivity of the hydrological balance to changes in vegetation at low latitudes. The depletion of soil moisture as a result of increased vegetation density provided a negative feedback in an otherwise positive association between increased vegetation, increased evaporation, and increased precipitation proposed by Charney and coworkers. Analysis of climate data showed, at temperate to high latitudes, a positive association between variation in land surface temperature, sea surface temperature and vegetation greenness. At low latitudes the data indicated a positive association between variations in sea surface temperature, rainfall and vegetation greenness. The variations in mid- to high latitude temperatures affected the global average greenness and this could provide an explanation for the increased carbon uptake by the terrestrial surface over the past couple of decades.
van Sleeuwen, Rutger M T; Zhang, Suying; Normand, Valéry
2012-03-12
A model was developed to predict spatial glass transition temperature (T(g)) distributions in glassy maltodextrin particles during transient moisture sorption. The simulation employed a numerical mass transfer model with a concentration dependent apparent diffusion coefficient (D(app)) measured using Dynamic Vapor Sorption. The mass average moisture content increase and the associated decrease in T(g) were successfully modeled over time. Large spatial T(g) variations were predicted in the particle, resulting in a temporary broadening of the T(g) region. Temperature modulated differential scanning calorimetry confirmed that the variation in T(g) in nonequilibrated samples was larger than in equilibrated samples. This experimental broadening was characterized by an almost doubling of the T(g) breadth compared to the start of the experiment. Upon reaching equilibrium, both the experimental and predicted T(g) breadth contracted back to their initial value.
Regulation of heart rate and rumen temperature in red deer: effects of season and food intake
Turbill, Christopher; Ruf, Thomas; Mang, Thomas; Arnold, Walter
2012-01-01
SUMMARY Red deer, Cervus elaphus, like other temperate-zone animals, show a large seasonal fluctuation in energy intake and expenditure. Many seasonal phenotypic adjustments are coordinated by endogenous signals entrained to the photoperiod. The cues determining variation in the resting metabolism of ungulates remain equivocal, however, largely because of the confounding effects of food intake and thus the heat increment of feeding. To distinguish endogenous seasonal and environmental effects on metabolism, we subjected 15 female red deer to two feeding treatments, 80% food restriction and low/high protein content, over two winter seasons in a cross-over design experiment. We used rumen-located transmitters to measure heart rate and rumen temperature, which provided indices of metabolism and core body temperature, respectively. Our mixed model (R2=0.85) indicated a residual seasonal effect on mean daily heart rate that was unexplained by the pellet food treatments, activity, body mass or air temperature. In addition to an apparently endogenous down-regulation of heart rate in winter, the deer further reduced heart rate over about 8 days in response to food restriction. We found a strong correlation between rumen temperature and seasonal or periodic variation in heart rate. An effect of lowered rumen (and hence core body) temperature was enhanced during winter, perhaps owing to peripheral cooling, which is known to accompany bouts of hypometabolism. Our experimental results therefore support the hypothesis that a reduction in body temperature is a physiological mechanism employed even by large mammals, like red deer, to reduce their energy expenditure during periods of negative energy balance. PMID:21346124
Fluid valve with wide temperature range
NASA Technical Reports Server (NTRS)
Kast, Howard Berdolt (Inventor)
1976-01-01
A fluid valve suitable for either metering or pressure regulating fluids at various temperatures is provided for a fuel system as may be utilized in an aircraft gas turbine engine. The valve includes a ceramic or carbon pad which cooperates with a window in a valve plate to provide a variable area orifice which remains operational during large and sometimes rapid variations in temperature incurred from the use of different fuels.
The long-range correlation and evolution law of centennial-scale temperatures in Northeast China.
Zheng, Xiaohui; Lian, Yi; Wang, Qiguang
2018-01-01
This paper applies the detrended fluctuation analysis (DFA) method to investigate the long-range correlation of monthly mean temperatures from three typical measurement stations at Harbin, Changchun, and Shenyang in Northeast China from 1909 to 2014. The results reveal the memory characteristics of the climate system in this region. By comparing the temperatures from different time periods and investigating the variations of its scaling exponents at the three stations during these different time periods, we found that the monthly mean temperature has long-range correlation, which indicates that the temperature in Northeast China has long-term memory and good predictability. The monthly time series of temperatures over the past 106 years also shows good long-range correlation characteristics. These characteristics are also obviously observed in the annual mean temperature time series. Finally, we separated the centennial-length temperature time series into two time periods. These results reveal that the long-range correlations at the Harbin station over these two time periods have large variations, whereas no obvious variations are observed at the other two stations. This indicates that warming affects the regional climate system's predictability differently at different time periods. The research results can provide a quantitative reference point for regional climate predictability assessment and future climate model evaluation.
Aspinwall, Michael J; Lowry, David B; Taylor, Samuel H; Juenger, Thomas E; Hawkes, Christine V; Johnson, Mari-Vaughn V; Kiniry, James R; Fay, Philip A
2013-09-01
Examining intraspecific variation in growth and function in relation to climate may provide insight into physiological evolution and adaptation, and is important for predicting species responses to climate change. Under common garden conditions, we grew nine genotypes of the C₄ species Panicum virgatum originating from different temperature and precipitation environments. We hypothesized that genotype productivity, morphology and physiological traits would be correlated with climate of origin, and a suite of adaptive traits would show high broad-sense heritability (H(2)). Genotype productivity and flowering time increased and decreased, respectively, with home-climate temperature, and home-climate temperature was correlated with genotypic differences in a syndrome of morphological and physiological traits. Genotype leaf and tiller size, leaf lamina thickness, leaf mass per area (LMA) and C : N ratios increased with home-climate temperature, whereas leaf nitrogen per unit mass (Nm ) and chlorophyll (Chl) decreased with home-climate temperature. Trait variation was largely explained by genotypic differences (H(2) = 0.33-0.85). Our results provide new insight into the role of climate in driving functional trait coordination, local adaptation and genetic divergence within species. These results emphasize the importance of considering intraspecific variation in future climate change scenarios. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.
Spectral feature variations in x-ray diffraction imaging systems
NASA Astrophysics Data System (ADS)
Wolter, Scott D.; Greenberg, Joel A.
2016-05-01
Materials with different atomic or molecular structures give rise to unique scatter spectra when measured by X-ray diffraction. The details of these spectra, though, can vary based on both intrinsic (e.g., degree of crystallinity or doping) and extrinsic (e.g., pressure or temperature) conditions. While this sensitivity is useful for detailed characterizations of the material properties, these dependences make it difficult to perform more general classification tasks, such as explosives threat detection in aviation security. A number of challenges, therefore, currently exist for reliable substance detection including the similarity in spectral features among some categories of materials combined with spectral feature variations from materials processing and environmental factors. These factors complicate the creation of a material dictionary and the implementation of conventional classification and detection algorithms. Herein, we report on two prominent factors that lead to variations in spectral features: crystalline texture and temperature variations. Spectral feature comparisons between materials categories will be described for solid metallic sheet, aqueous liquids, polymer sheet, and metallic, organic, and inorganic powder specimens. While liquids are largely immune to texture effects, they are susceptible to temperature changes that can modify their density or produce phase changes. We will describe in situ temperature-dependent measurement of aqueous-based commercial goods in the temperature range of -20°C to 35°C.
Temperature Distribution and Influence Mechanism on Large Reflector Antennas under Solar Radiation
NASA Astrophysics Data System (ADS)
Wang, C. S.; Yuan, S.; Liu, X.; Xu, Q.; Wang, M.; Zhu, M. B.; Chen, G. D.; Duan, Y. H.
2017-10-01
The solar impact on antenna must be lessened for the large reflector antenna operating at high frequencies to have great electromagnetic performances. Therefore, researching the temperature distribution and its influence on large reflector antenna is necessary. The variation of solar incidence angle is first calculated. Then the model is simulated by the I-DEAS software, with the temperature, thermal stress, and thermal distortion distribution through the day obtained. In view of the important influence of shadow on antenna structure, a newly proposed method makes a comprehensive description of the temperature distribution on the reflector and its influence through the day by dividing a day into three different periods. The sound discussions and beneficial summary serve as the scientific foundation for the engineers to compensate the thermal distortion and optimize the antenna structure.
The effects of orbital and climatic variations on Martian surface heat flow
NASA Technical Reports Server (NTRS)
Mellon, Michael T.; Jakosky, Bruce M.
1993-01-01
Large changes in the orbital elements of Mars on timescales of 10(exp 4) to 10(exp 6) years will cause widely varying climate, specifically surface temperatures, as a result of varying insolation. These surface temperature oscillations will produce subsurface thermal gradients which contribute to the total surface heat flux. We investigate the thermal behavior of the Martian regolith on orbital timescales and show that this climatological surface heat flux is spatially variable and contributes significantly to the total surface heat flux at many locations. We model the thermal behavior of the Martian regolith by calculating the mean annual surface temperatures for each epoch (spaced 1000 years apart to resolve orbital variations) for the past 200,000 years at a chosen location on the surface. These temperatures are used as a boundary condition for the deeper regolith and subsurface temperature oscillation are then computed. The surface climatological heat flux due to past climate changes can then be found from the temperature gradient between the surface and about 150 m depth (a fraction of the thermal skin depth on these timescales). This method provides a fairly accurate determination of the climatological heat flow component at a point; however, this method is computationally time consuming and cannot be applied to all points on the globe. To map the spatial variations in the surface heat flow we recognize that the subsurface temperature structure will be largely dominated by the most recent surface temperature oscillations. In fact, the climate component of the surface heat flow will be approximately proportional to the magnitude of the most recent surface temperature change. By calculating surface temperatures at all points globally for the present epoch and an appropriate past epoch, and combining these results with a series of more precise calculations described above, we estimate the global distribution of climatological surface heat flow.
Obermeyer, Ziad; Samra, Jasmeet K; Mullainathan, Sendhil
2017-12-13
To estimate individual level body temperature and to correlate it with other measures of physiology and health. Observational cohort study. Outpatient clinics of a large academic hospital, 2009-14. 35 488 patients who neither received a diagnosis for infections nor were prescribed antibiotics, in whom temperature was expected to be within normal limits. Baseline temperatures at individual level, estimated using random effects regression and controlling for ambient conditions at the time of measurement, body site, and time factors. Baseline temperatures were correlated with demographics, medical comorbidities, vital signs, and subsequent one year mortality. In a diverse cohort of 35 488 patients (mean age 52.9 years, 64% women, 41% non-white race) with 243 506 temperature measurements, mean temperature was 36.6°C (95% range 35.7-37.3°C, 99% range 35.3-37.7°C). Several demographic factors were linked to individual level temperature, with older people the coolest (-0.021°C for every decade, P<0.001) and African-American women the hottest (versus white men: 0.052°C, P<0.001). Several comorbidities were linked to lower temperature (eg, hypothyroidism: -0.013°C, P=0.01) or higher temperature (eg, cancer: 0.020, P<0.001), as were physiological measurements (eg, body mass index: 0.002 per m/kg 2 , P<0.001). Overall, measured factors collectively explained only 8.2% of individual temperature variation. Despite this, unexplained temperature variation was a significant predictor of subsequent mortality: controlling for all measured factors, an increase of 0.149°C (1 SD of individual temperature in the data) was linked to 8.4% higher one year mortality (P=0.014). Individuals' baseline temperatures showed meaningful variation that was not due solely to measurement error or environmental factors. Baseline temperatures correlated with demographics, comorbid conditions, and physiology, but these factors explained only a small part of individual temperature variation. Unexplained variation in baseline temperature, however, strongly predicted mortality. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Individual differences in normal body temperature: longitudinal big data analysis of patient records
Samra, Jasmeet K; Mullainathan, Sendhil
2017-01-01
Abstract Objective To estimate individual level body temperature and to correlate it with other measures of physiology and health. Design Observational cohort study. Setting Outpatient clinics of a large academic hospital, 2009-14. Participants 35 488 patients who neither received a diagnosis for infections nor were prescribed antibiotics, in whom temperature was expected to be within normal limits. Main outcome measures Baseline temperatures at individual level, estimated using random effects regression and controlling for ambient conditions at the time of measurement, body site, and time factors. Baseline temperatures were correlated with demographics, medical comorbidities, vital signs, and subsequent one year mortality. Results In a diverse cohort of 35 488 patients (mean age 52.9 years, 64% women, 41% non-white race) with 243 506 temperature measurements, mean temperature was 36.6°C (95% range 35.7-37.3°C, 99% range 35.3-37.7°C). Several demographic factors were linked to individual level temperature, with older people the coolest (–0.021°C for every decade, P<0.001) and African-American women the hottest (versus white men: 0.052°C, P<0.001). Several comorbidities were linked to lower temperature (eg, hypothyroidism: –0.013°C, P=0.01) or higher temperature (eg, cancer: 0.020, P<0.001), as were physiological measurements (eg, body mass index: 0.002 per m/kg2, P<0.001). Overall, measured factors collectively explained only 8.2% of individual temperature variation. Despite this, unexplained temperature variation was a significant predictor of subsequent mortality: controlling for all measured factors, an increase of 0.149°C (1 SD of individual temperature in the data) was linked to 8.4% higher one year mortality (P=0.014). Conclusions Individuals’ baseline temperatures showed meaningful variation that was not due solely to measurement error or environmental factors. Baseline temperatures correlated with demographics, comorbid conditions, and physiology, but these factors explained only a small part of individual temperature variation. Unexplained variation in baseline temperature, however, strongly predicted mortality. PMID:29237616
NASA Astrophysics Data System (ADS)
Vajed Samiei, Jahangir; Saleh, Abolfazl; Shirvani, Arash; Sheijooni Fumani, Neda; Hashtroudi, Mehri; Pratchett, Morgan Stuart
2016-12-01
There is a strong interest in understanding how coral calcification varies with changing environmental conditions, especially given the projected changes in temperature and aragonite saturation due to climate change. This study explores in situ variation in calcification rates of Acropora downingi in the northeastern Persian Gulf relative to seasonal changes in temperature, irradiance and aragonite saturation state ( Ω arag). Calcification rates of A. downingi were highest in the spring and lowest in the winter, and intra-annual variation in calcification rate was significantly related to temperature ( r 2 = 0.30) and irradiance ( r 2 = 0.36), but not Ω arag ( r 2 = 0.02). Seasonal differences in temperature are obviously confounded by differences in other environmental conditions and vice versa. Therefore, we used published relationships from experimental studies to establish which environmental parameter(s) (temperature, irradiance, and/or Ω arag) placed greatest constraints on calcification rate (relative to the maximum spring rate) in each season. Variation in calcification rates was largely attributable to seasonal changes in irradiance and temperature (possibly 57.4 and 39.7% respectively). Therefore, we predict that ocean warming may lead to increased rates of calcification during winter, but decelerate calcification during spring, fall and especially summer, resulting in net deceleration of calcification for A. downingi in the Persian Gulf.
Selective Reverberation Cancellation via Adaptive Beamforming
1985-12-01
pteropods , euphausiids and fish. The diurnal migrating cycle of the DSL and its frequency-selective backscattering properties have been studied inten...1976]. It is characterized by large fluctuations of temperature and salinity. In addition to the usual seasonal variations 72 in the top ~30m...a period of two years has revealed multiple scattering layers with substantial seasonal variations [Anderson, 1981]. The maximum measured volume
NASA Astrophysics Data System (ADS)
Bowles, J. A.; Jackson, M. J.; Berquo, T. S.; Solheid, P.; Lappe, S. L.; Gee, J. S.
2013-12-01
We will present the results of recent work demonstrating that some natural titanomagnetites of common composition undergo cation reordering on laboratory timescales and at temperatures just above or below the Curie temperature (TC). This cation reordering produces changes in Curie temperature that have important implications for paleomagnetic studies and our understanding of remanence acquisition when TC is a function of prior thermal history. The bulk composition of the titanomagnetites (Fe3-xTixO4) varies between approximately 0.2 < x < 0.4, with moderate degrees of Mg and Al substitution. This composition is extremely common in rocks of andesitic, dacitic, and rhyolitic composition, as well as in some basalts. Samples were annealed for 10-1 to 103 hr at 350-425°C, producing large and reversible changes in TC (up to 150°C) that are roughly linear with log(anneal time). By ruling out oxidation/reduction and compositional unmixing, we interpret the variations in TC as arising from the re-distribution of ferric and ferrous iron cations between the octahedral and tetrahedral sites. Mössbauer spectroscopy supports this interpretation. Unlike pure titanomagnetite, the kinetics of the reordering process in these Mg- and Al-substituted natural titanomagnetites are apparently slow enough that intermediate degrees of ordering can be preserved by rapid quenching. The magnitude of the variation in TC produced by annealing at moderate temperatures correlates most strongly with Mg and Ti content and weakly with Al content. While strong variations are observed in TC, no detectible variation is found in saturation magnetization, and blocking temperature variations only weakly correlate with TC variation.
Atmospheric Structure and Diurnal Variations at Low Altitudes in the Martian Tropics
NASA Astrophysics Data System (ADS)
Hinson, David P.; Spiga, A.; Lewis, S.; Tellmann, S.; Pätzold, M.; Asmar, S.; Häusler, B.
2013-10-01
We are using radio occultation measurements from Mars Express, Mars Reconnaissance Orbiter, and Mars Global Surveyor to characterize the diurnal cycle in the lowest scale height above the surface. We focus on northern spring and summer, using observations from 4 Martian years at local times of 4-5 and 15-17 h. We supplement the observations with results obtained from large-eddy simulations and through data assimilation by the UK spectral version of the LMD Mars Global Circulation Model. We previously investigated the depth of the daytime convective boundary layer (CBL) and its variations with surface elevation and surface properties. We are now examining unusual aspects of the temperature structure observed at night. Most important, predawn profiles in the Tharsis region contain an unexpected layer of neutral static stability at pressures of 200-300 Pa with a depth of 4-5 km. The mixed layer is bounded above by a midlevel temperature inversion and below by another strong inversion adjacent to the surface. The narrow temperature minimum at the base of the midlevel inversion suggests the presence of a water ice cloud layer, with the further implication that radiative cooling at cloud level can induce convective activity at lower altitudes. Conversely, nighttime profiles in Amazonis show no sign of a midlevel inversion or a detached mixed layer. These regional variations in the nighttime temperature structure appear to arise in part from large-scale variations in topography, which have several notable effects. First, the CBL is much deeper in the Tharsis region than in Amazonis, owing to a roughly 6-km difference in surface elevation. Second, large-eddy simulations show that daytime convection is not only deeper above Tharsis but also considerably more intense than it is in Amazonis. Finally, the daytime surface temperatures are comparable in the two regions, so that Tharsis acts as an elevated heat source throughout the CBL. These topographic effects are expected to enhance the vertical mixing of water vapor above elevated terrain, which might lead to the formation and regional confinement of nighttime clouds.
Modification of Soil Temperature and Moisture Budgets by Snow Processes
NASA Astrophysics Data System (ADS)
Feng, X.; Houser, P.
2006-12-01
Snow cover significantly influences the land surface energy and surface moisture budgets. Snow thermally insulates the soil column from large and rapid temperature fluctuations, and snow melting provides an important source for surface runoff and soil moisture. Therefore, it is important to accurately understand and predict the energy and moisture exchange between surface and subsurface associated with snow accumulation and ablation. The objective of this study is to understand the impact of land surface model soil layering treatment on the realistic simulation of soil temperature and soil moisture. We seek to understand how many soil layers are required to fully take into account soil thermodynamic properties and hydrological process while also honoring efficient calculation and inexpensive computation? This work attempts to address this question using field measurements from the Cold Land Processes Field Experiment (CLPX). In addition, to gain a better understanding of surface heat and surface moisture transfer process between land surface and deep soil involved in snow processes, numerical simulations were performed at several Meso-Cell Study Areas (MSAs) of CLPX using the Center for Ocean-Land-Atmosphere (COLA) Simplified Version of the Simple Biosphere Model (SSiB). Measurements of soil temperature and soil moisture were analyzed at several CLPX sites with different vegetation and soil features. The monthly mean vertical profile of soil temperature during October 2002 to July 2003 at North Park Illinois River exhibits a large near surface variation (<5 cm), reveals a significant transition zone from 5 cm to 25 cm, and becomes uniform beyond 25cm. This result shows us that three soil layers are reasonable in solving the vertical variation of soil temperature at these study sites. With 6 soil layers, SSiB also captures the vertical variation of soil temperature during entire winter season, featuring with six soil layers, but the bare soil temperature is underestimated and root-zone soil temperature is overestimated during snow melting; which leads to overestimated temperature variations down to 20 cm. This is caused by extra heat loss from upper soil level and insufficient heat transport from the deep soil. Further work will need to verify if soil temperature displays similar vertical thermal structure for different vegetation and soil types during snow season. This study provides insight to the surface and subsurface thermodynamic and hydrological processes involved in snow modeling which is important for accurate snow simulation.
USDA-ARS?s Scientific Manuscript database
BACKGROUND: Diurnal variation in blood pressure (BP) is regulated, in part, by an endogenous circadian clock; however, few human studies have identified associations between clock genes and BP. Accounting for environmental temperature may be necessary to correct for seasonal bias. METHODS: We examin...
Knight, Christopher G.; Knight, Sylvia H. E.; Massey, Neil; Aina, Tolu; Christensen, Carl; Frame, Dave J.; Kettleborough, Jamie A.; Martin, Andrew; Pascoe, Stephen; Sanderson, Ben; Stainforth, David A.; Allen, Myles R.
2007-01-01
In complex spatial models, as used to predict the climate response to greenhouse gas emissions, parameter variation within plausible bounds has major effects on model behavior of interest. Here, we present an unprecedentedly large ensemble of >57,000 climate model runs in which 10 parameters, initial conditions, hardware, and software used to run the model all have been varied. We relate information about the model runs to large-scale model behavior (equilibrium sensitivity of global mean temperature to a doubling of carbon dioxide). We demonstrate that effects of parameter, hardware, and software variation are detectable, complex, and interacting. However, we find most of the effects of parameter variation are caused by a small subset of parameters. Notably, the entrainment coefficient in clouds is associated with 30% of the variation seen in climate sensitivity, although both low and high values can give high climate sensitivity. We demonstrate that the effect of hardware and software is small relative to the effect of parameter variation and, over the wide range of systems tested, may be treated as equivalent to that caused by changes in initial conditions. We discuss the significance of these results in relation to the design and interpretation of climate modeling experiments and large-scale modeling more generally. PMID:17640921
Berkhout, Boris W; Lloyd, Melanie M; Poulin, Robert; Studer, Anja
2014-11-01
Climates are changing worldwide, and populations are under selection to adapt to these changes. Changing temperature, in particular, can directly impact ectotherms and their parasites, with potential consequences for whole ecosystems. The potential of parasite populations to adapt to climate change largely depends on the amount of genetic variation they possess in their responses to environmental fluctuations. This study is, to our knowledge, the first to look at differences among parasite genotypes in response to temperature, with the goal of quantifying the extent of variation among conspecifics in their responses to increasing temperature. Snails infected with single genotypes of the trematode Maritrema novaezealandensis were sequentially acclimatised to two different temperatures, 'current' (15°C) and 'elevated' (20°C), over long periods. These temperatures are based on current average field conditions in the natural habitat and those predicted to occur during the next few decades. The output and activity of cercariae (free-swimming infective stages emerging from snails) were assessed for each genotype at each temperature. The results indicate that, on average, both cercarial output and activity are higher at the elevated acclimation temperature. More importantly, the output and activity of cercariae are strongly influenced by a genotype-by-temperature interaction, such that different genotypes show different responses to increasing temperature. Both the magnitude and direction (increase or decrease) of responses to temperature varied widely among genotypes. Therefore, there is much potential for natural selection to act on this variation, and predicting how the trematode M. novaezealandensis will respond to the climate changes predicted for the next century will prove challenging. Copyright © 2014 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.
Soil and surface temperatures at the Viking landing sites
NASA Technical Reports Server (NTRS)
Kieffer, H. H.
1976-01-01
The annual temperature range for the Martian surface at the Viking lander sites is computed on the basis of thermal parameters derived from observations made with the infrared thermal mappers. The Viking lander 1 (VL1) site has small annual variations in temperature, whereas the Viking lander 2 (VL2) site has large annual changes. With the Viking lander images used to estimate the rock component of the thermal emission, the daily temperature behavior of the soil alone is computed over the range of depths accessible to the lander; when the VL1 and VL2 sites were sampled, the daily temperature ranges at the top of the soil were 183 to 263 K and 183 to 268 K, respectively. The diurnal variation decreases with depth with an exponential scale of about 5 centimeters. The maximum temperature of the soil sampled from beneath rocks at the VL2 site is calculated to be 230 K. These temperature calculations should provide a reference for study of the active chemistry reported for the Martian soil.
Soil and surface temperatures at the viking landing sites.
Kieffer, H H
1976-12-11
The annual temperature range for the martian surface at the Viking lander sites is computed on the basis of thermal parameters derived from observations made with the infrared thermal mappers. The Viking lander 1 (VL1) site has small annual variations in temperature, whereas the Viking lander 2 (VL2) site has large annual changes. With the Viking lander images used to estimate the rock component of the thermal emission, the daily temperature behavior of the soil alone is computed over the range of depths accessible to the lander; when the VL1 and VL2 sites were sampled, the daily temperature ranges at the top of the soil were 183 to 263 K and 183 to 268 K, respectively. The diurnal variation decreases with depth with an exponential scale of about 5 centimeters. The maximum temperature of the soil sampled from beneath rocks at the VL2 site is calculated to be 230 K. These temperature calculations should provide a reference for study of the active chemistry reported for the martian soil.
Monthly mean forecast experiments with the GISS model
NASA Technical Reports Server (NTRS)
Spar, J.; Atlas, R. M.; Kuo, E.
1976-01-01
The GISS general circulation model was used to compute global monthly mean forecasts for January 1973, 1974, and 1975 from initial conditions on the first day of each month and constant sea surface temperatures. Forecasts were evaluated in terms of global and hemispheric energetics, zonally averaged meridional and vertical profiles, forecast error statistics, and monthly mean synoptic fields. Although it generated a realistic mean meridional structure, the model did not adequately reproduce the observed interannual variations in the large scale monthly mean energetics and zonally averaged circulation. The monthly mean sea level pressure field was not predicted satisfactorily, but annual changes in the Icelandic low were simulated. The impact of temporal sea surface temperature variations on the forecasts was investigated by comparing two parallel forecasts for January 1974, one using climatological ocean temperatures and the other observed daily ocean temperatures. The use of daily updated sea surface temperatures produced no discernible beneficial effect.
Kondo effect in single cobalt phthalocyanine molecules adsorbed on Au(111) monoatomic steps
NASA Astrophysics Data System (ADS)
Zhao, Aidi; Hu, Zhenpeng; Wang, Bing; Xiao, Xudong; Yang, Jinlong; Hou, J. G.
2008-06-01
The Kondo effect in single dehydrogenated cobalt phthalocyanine (CoPc) molecules adsorbed on Au(111) monoatomic steps was studied with a low temperature scanning tunneling microscope. The CoPc molecules adsorbed on Au(111) monoatomic steps show two typical configurations, which can be dehydrogenated to reveal Kondo effect. Moreover, the Kondo temperatures (TK) measured for different molecules vary in a large range from ~150 to ~550 K, increasing monotonically with decreasing Co-Au distance. A simple model consisting of a single Co 3dz2 orbital and a Au 6s orbital is considered and gives a qualitative explanation to the dependence. The large variation of TK is attributed to the variation of the interaction between the magnetic-active cobalt ion and the Au substrate resulted from different Co-Au distances.
The uncertainties and causes of the recent changes in global evapotranspiration from 1982 to 2010
NASA Astrophysics Data System (ADS)
Dong, Bo; Dai, Aiguo
2017-07-01
Recent studies have shown considerable changes in terrestrial evapotranspiration (ET) since the early 1980s, but the causes of these changes remain unclear. In this study, the relative contributions of external climate forcing and internal climate variability to the recent ET changes are examined. Three datasets of global terrestrial ET and the CMIP5 multi-model ensemble mean ET are analyzed, respectively, to quantify the apparent and externally-forced ET changes, while the unforced ET variations are estimated as the apparent ET minus the forced component. Large discrepancies of the ET estimates, in terms of their trend, variability, and temperature- and precipitation-dependence, are found among the three datasets. Results show that the forced global-mean ET exhibits an upward trend of 0.08 mm day-1 century-1 from 1982 to 2010. The forced ET also contains considerable multi-year to decadal variations during the latter half of the 20th century that are caused by volcanic aerosols. The spatial patterns and interannual variations of the forced ET are more closely linked to precipitation than temperature. After removing the forced component, the global-mean ET shows a trend ranging from -0.07 to 0.06 mm day-1 century-1 during 1982-2010 with varying spatial patterns among the three datasets. Furthermore, linkages between the unforced ET and internal climate modes are examined. Variations in Pacific sea surface temperatures (SSTs) are found to be consistently correlated with ET over many land areas among the ET datasets. The results suggest that there are large uncertainties in our current estimates of global terrestrial ET for the recent decades, and the greenhouse gas (GHG) and aerosol external forcings account for a large part of the apparent trend in global-mean terrestrial ET since 1982, but Pacific SST and other internal climate variability dominate recent ET variations and changes over most regions.
Forest productivity varies with soil moisture more than temperature in a small montane watershed
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wei, Liang; Zhou, Hang; Link, Timothy E
Mountainous terrain creates variability in microclimate, including nocturnal cold air drainage and resultant temperature inversions. Driven by the elevational temperature gradient, vapor pressure deficit (VPD) also varies with elevation. Soil depth and moisture availability often increase from ridgetop to valley bottom. These variations complicate predictions of forest productivity and other biological responses. We analyzed spatiotemporal air temperature (T) and VPD variations in a forested, 27-km 2 catchment that varied from 1000 to 1650 m in elevation. Temperature inversions occurred on 76% of mornings in the growing season. The inversion had a clear upper boundary at midslope (~1370 m a.s.l.). Vapormore » pressure was relatively constant across elevations, therefore VPD was mainly controlled by T in the watershed. Here, we assessed the impact of microclimate and soil moisture on tree height, forest productivity, and carbon stable isotopes (δ 13C) using a physiological forest growth model (3-PG). Simulated productivity and tree height were tested against observations derived from lidar data. The effects on photosynthetic gas-exchange of dramatic elevational variations in T and VPD largely cancelled as higher temperature (increasing productivity) accompanies higher VPD (reducing productivity). Although it was not measured, the simulations suggested that realistic elevational variations in soil moisture predicted the observed decline in productivity with elevation. Therefore, in this watershed, the model parameterization should have emphasized soil moisture rather than precise descriptions of temperature inversions.« less
Forest productivity varies with soil moisture more than temperature in a small montane watershed
Wei, Liang; Zhou, Hang; Link, Timothy E; ...
2018-05-16
Mountainous terrain creates variability in microclimate, including nocturnal cold air drainage and resultant temperature inversions. Driven by the elevational temperature gradient, vapor pressure deficit (VPD) also varies with elevation. Soil depth and moisture availability often increase from ridgetop to valley bottom. These variations complicate predictions of forest productivity and other biological responses. We analyzed spatiotemporal air temperature (T) and VPD variations in a forested, 27-km 2 catchment that varied from 1000 to 1650 m in elevation. Temperature inversions occurred on 76% of mornings in the growing season. The inversion had a clear upper boundary at midslope (~1370 m a.s.l.). Vapormore » pressure was relatively constant across elevations, therefore VPD was mainly controlled by T in the watershed. Here, we assessed the impact of microclimate and soil moisture on tree height, forest productivity, and carbon stable isotopes (δ 13C) using a physiological forest growth model (3-PG). Simulated productivity and tree height were tested against observations derived from lidar data. The effects on photosynthetic gas-exchange of dramatic elevational variations in T and VPD largely cancelled as higher temperature (increasing productivity) accompanies higher VPD (reducing productivity). Although it was not measured, the simulations suggested that realistic elevational variations in soil moisture predicted the observed decline in productivity with elevation. Therefore, in this watershed, the model parameterization should have emphasized soil moisture rather than precise descriptions of temperature inversions.« less
NASA Astrophysics Data System (ADS)
Nhalil, Hariharan; Elizabeth, Suja
2016-12-01
Highly non-linear I-V characteristics and apparent colossal electro-resistance were observed in non-charge ordered manganite Tb0.5Sr0.5MnO3 single crystal in low temperature transport measurements. Significant changes were noticed in top surface temperature of the sample as compared to its base while passing current at low temperature. By analyzing these variations, we realize that the change in surface temperature (ΔTsur) is too small to have caused by the strong negative differential resistance. A more accurate estimation of change in the sample temperature was made by back-calculating the sample temperature from the temperature variation of resistance (R-T) data (ΔTcal), which was found to be higher than ΔTsur. This result indicates that there are large thermal gradients across the sample. The experimentally derived ΔTcal is validated with the help of a simple theoretical model and estimation of Joule heating. Pulse measurements realize substantial reduction in Joule heating. With decrease in sample thickness, Joule heating effect is found to be reduced. Our studies reveal that Joule heating plays a major role in the nonlinear electrical response of Tb0.5Sr0.5MnO3. By careful management of the duty cycle and pulse current I-V measurements, Joule heating can be mitigated to a large extent.
Comprehensive phase diagram of two-dimensional space charge doped Bi2Sr2CaCu2O8+x.
Sterpetti, Edoardo; Biscaras, Johan; Erb, Andreas; Shukla, Abhay
2017-12-12
The phase diagram of hole-doped high critical temperature superconductors as a function of doping and temperature has been intensively studied with chemical variation of doping. Chemical doping can provoke structural changes and disorder, masking intrinsic effects. Alternatively, a field-effect transistor geometry with an electrostatically doped, ultra-thin sample can be used. However, to probe the phase diagram, carrier density modulation beyond 10 14 cm -2 and transport measurements performed over a large temperature range are needed. Here we use the space charge doping method to measure transport characteristics from 330 K to low temperature. We extract parameters and characteristic temperatures over a large doping range and establish a comprehensive phase diagram for one-unit-cell-thick BSCCO-2212 as a function of doping, temperature and disorder.
Crous, K Y; Wallin, G; Atkin, O K; Uddling, J; Af Ekenstam, A
2017-08-01
Quantifying the adjustments of leaf respiration in response to seasonal temperature variation and climate warming is crucial because carbon loss from vegetation is a large but uncertain part of the global carbon cycle. We grew fast-growing Eucalyptus globulus Labill. trees exposed to +3 °C warming and elevated CO2 in 10-m tall whole-tree chambers and measured the temperature responses of leaf mitochondrial respiration, both in light (RLight) and in darkness (RDark), over a 20-40 °C temperature range and during two different seasons. RLight was assessed using the Laisk method. Respiration rates measured at a standard temperature (25 °C - R25) were higher in warm-grown trees and in the warm season, related to higher total leaf nitrogen (N) investment with higher temperatures (both experimental and seasonal), indicating that leaf N concentrations modulated the respiratory capacity to changes in temperature. Once differences in leaf N were accounted for, there were no differences in R25 but the Q10 (i.e., short-term temperature sensitivity) was higher in late summer compared with early spring. The variation in RLight between experimental treatments and seasons was positively correlated with carboxylation capacity and photorespiration. RLight was less responsive to short-term changes in temperature than RDark, as shown by a lower Q10 in RLight compared with RDark. The overall light inhibition of R was ∼40%. Our results highlight the dynamic nature of leaf respiration to temperature variation and that the responses of RLight do not simply mirror those of RDark. Therefore, it is important not to assume that RLight is the same as RDark in ecosystem models, as doing so may lead to large errors in predicting plant CO2 release and productivity. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
THE TWO REGIMES OF PHOTOSPHERIC MOTIONS IN {alpha} HYDRA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gray, David F., E-mail: dfgray@uwo.ca
2013-02-10
High-resolution spectroscopic observations of {alpha} Hya were acquired between 2003 and 2010. Analysis of line shifts, differential shifts, line widths, and line bisectors points to two regimes of velocity fields in the photosphere of {alpha} Hya: (1) normal granulation embedded in (2) large convection cells. Variations occur on a wide range of timescales, from several years on down. Radial velocity variations, which are irregular and span 786 m s{sup -1}, have a distribution consistent with a true mean rise velocity of the large cells of {approx}725 m s{sup -1} and a dispersion of {approx}220 m s{sup -1}. The distribution ofmore » granulation velocities, as measured from the widths of spectral lines, shows only small variations, consistent with the two regime concepts. On the multi-year timescale, radial velocity changes, small temperature variations ({approx}10 K), and small line-width variations ({approx}<0.8%) track each other, possibly with phase shifts. The granulation velocity gradient for {alpha} Hya is about half as large as the Sun's and no variation with time was seen, implying that any variation in velocity gradient from one large cell to the next must be less than a few percent. The asymmetry in the granulation velocity distribution, as specified in the flux deficit, is smaller than expected for {alpha} Hya's position in the HR diagram and appears to be variable.« less
Solar gravitational energy and luminosity variations
NASA Astrophysics Data System (ADS)
Fazel, Z.; Rozelot, J. P.; Lefebvre, S.; Ajabshirizadeh, A.; Pireaux, S.
2008-02-01
Due to non-homogeneous mass distribution and non-uniform velocity rate inside the Sun, the solar outer shape is distorted in latitude. In this paper, we analyze the consequences of a temporal change in this figure on the luminosity. To do so, we use the Total Solar Irradiance (TSI) as an indicator of luminosity. Considering that most of the authors have explained the largest part of the TSI modulation with magnetic network (spots and faculae) but not the whole, we could set constraints on radius and effective temperature variations. Our best fit of modelled to observed irradiance gives d T = 1.2 K at d R = 10 mas. However computations show that the amplitude of solar irradiance modulation is very sensitive to photospheric temperature variations. In order to understand discrepancies between our best fit and recent observations of [Livingston, W.C., Gray, D., Wallace, L., White, O.R., 2005. In: Sankarasubramanian, K., Penn, M., Pevtsov, A. (Eds.), Large-scale Structures and their Role in Solar Activity, ASP Conference Series, vol. 346. Astronomical Society of the Pacific, p. 353], showing no effective surface temperature variation during the solar cycle, we investigated small effective temperature variation in irradiance modeling. We emphasized a phase-shift (correlated or anticorrelated radius and irradiance variations) in the (d R, d T)-parameter plane. We further obtained an upper limit on the amplitude of cyclic solar radius variations between 3.87 and 5.83 km, deduced from the gravitational energy variations. Our estimate is consistent with both observations of the helioseismic radius through the analysis of f-mode frequencies and observations of the basal photospheric temperature at Kitt Peak. Finally, we suggest a mechanism to explain weak changes in the solar shape due to variation of magnetic pressure which modifies the granules size. This mechanism is supported by an estimate of the asphericity-luminosity parameter, w = -7.61 × 10 -3, which implies an effectiveness of convective heat transfer only in very outer layers of the Sun.
Diel Surface Temperature Range Scales with Lake Size
Woolway, R. Iestyn; Jones, Ian D.; Maberly, Stephen C.; French, Jon R.; Livingstone, David M.; Monteith, Donald T.; Simpson, Gavin L.; Thackeray, Stephen J.; Andersen, Mikkel R.; Battarbee, Richard W.; DeGasperi, Curtis L.; Evans, Christopher D.; de Eyto, Elvira; Feuchtmayr, Heidrun; Hamilton, David P.; Kernan, Martin; Krokowski, Jan; Rimmer, Alon; Rose, Kevin C.; Rusak, James A.; Ryves, David B.; Scott, Daniel R.; Shilland, Ewan M.; Smyth, Robyn L.; Staehr, Peter A.; Thomas, Rhian; Waldron, Susan; Weyhenmeyer, Gesa A.
2016-01-01
Ecological and biogeochemical processes in lakes are strongly dependent upon water temperature. Long-term surface warming of many lakes is unequivocal, but little is known about the comparative magnitude of temperature variation at diel timescales, due to a lack of appropriately resolved data. Here we quantify the pattern and magnitude of diel temperature variability of surface waters using high-frequency data from 100 lakes. We show that the near-surface diel temperature range can be substantial in summer relative to long-term change and, for lakes smaller than 3 km2, increases sharply and predictably with decreasing lake area. Most small lakes included in this study experience average summer diel ranges in their near-surface temperatures of between 4 and 7°C. Large diel temperature fluctuations in the majority of lakes undoubtedly influence their structure, function and role in biogeochemical cycles, but the full implications remain largely unexplored. PMID:27023200
Verwer, Cynthia M; van der Ark, Arno; van Amerongen, Geert; van den Bos, Ruud; Hendriksen, Coenraad F M
2009-04-01
This paper describes the results of a study of the effects of modified housing conditions, conditioning and habituation on humans using a rabbit model for monitoring whole-cell pertussis vaccine (pWCV)-induced adverse effects. The study has been performed with reference to previous vaccine safety studies of pWCV in rabbits in which results were difficult to interpret due to the large variation in experimental outcome, especially in the key parameter deep-body temperature (T(b)). Certain stressful laboratory conditions, as well as procedures involving humans, e.g. blood sampling, inoculation and cage-cleaning, were hypothesized to cause this large variation. The results of this study show that under modified housing conditions rabbits have normal circadian body temperatures. This allowed discrimination of pWCV-induced adverse effects in which handled rabbits tended to show a dose-related increase in temperature after inoculation with little variance, whereas non-handled rabbits did not. Effects of experimental and routine procedures on body temperature were significantly reduced under modified conditions and were within the normal T(b) range. Handled animals reacted less strongly and with less variance to experimental procedures, such as blood sampling, injection and cage-cleaning, than non-handled rabbits. Overall, handling had a positive effect on the behaviour of the animals. Data show that the housing modifications have provided a more robust model for monitoring pWCV adverse effects. Furthermore, conditioning and habituation of rabbits to humans reduce the variation in experimental outcome, which might allow for a reduction in the number of animals used. In addition, this also reduces distress and thus contributes to refining this animal model.
Sanny, M; Jinap, S; Bakker, E J; van Boekel, M A J S; Luning, P A
2012-05-01
Acrylamide is a probable human carcinogen, and its presence in a range of fried and oven-cooked foods has raised considerable health concern world-wide. Dietary intake studies observed significant variations in acrylamide concentrations, which complicate risk assessment and the establishment of effective control measures. The objective of this study was to obtain an insight into the actual variation in acrylamide concentrations in French fries prepared under typical conditions in a food service establishment (FSE). Besides acrylamide, frying time, frying temperature, and reducing sugars were measured and the actual practices at receiving, thawing and frying during French fries preparation were observed and recorded. The variation in the actual frying temperature contributed most to the variation in acrylamide concentrations, followed by the variation in actual frying time; no obvious effect of reducing sugars was found. The lack of standardised control of frying temperature and frying time (due to inadequate frying equipment) and the variable practices of food handlers seem to contribute most to the large variation and high acrylamide concentrations in French fries prepared in a restaurant type of FSE as compared to chain fast-food services, and institutional caterers. The obtained insights in this study can be used to develop dedicated control measures in FSE, which may contribute to a sustainable reduction in the acrylamide intake. Copyright © 2011 Elsevier Ltd. All rights reserved.
Konietschke, U; Kruse, B D; Müller, R; Stockhaus, C; Hartmann, K; Wehner, A
2014-01-01
Measurement of rectal temperature is the most common method and considered gold standard for obtaining body temperature in dogs. So far, no study has been performed comparing agreement between rectal and auricular measurements in a large case series. The purpose of the study was to assess agreement between rectal and auricular temperature measurement in normothermic, hypothermic, and hyperthermic dogs with consideration of different environmental conditions and ear conformations. Reference values for both methods were established using 62 healthy dogs. Three hundred dogs with various diseases (220 normothermic, 32 hypothermic, 48 hyperthermic) were enrolled in this prospective study. Rectal temperature was compared to auricular temperature and differences in agreement with regard to environmental temperature, relative humidity, and different ear conformations (pendulous versus prick ears) were evaluated using Pearson's correlation coefficient and Bland-Altman analysis. Correlation between rec- tal and auricular temperature was significant (r: 0.892; p < 0.01). However, Bland-Altman plots showed an inacceptable variation of values (bias: 0.300 °C; limits of agreement: -0.606 to 1.206 °C). This variation was above a maximal clinical tolerance of 0.3 °C, which was established by experts' opinion (n = 16). Relative humidity had a significant influence (p = 0.001), whereas environmental temperature did not. Variation between the two methods of measuring body temperature was clinically unacceptable. Although measurement of auricular temperature is fast, simple, and well tolerated, this method provides a clinically unacceptable difference to the rectal measurement.
NASA Astrophysics Data System (ADS)
Timofeev, Evgeny; Kangas, Jorma; Vallinkoski, Matti
Quasi-periodic (consisting of a dozen electro-thermal structures, ETS) variations of ionospheric parameters during April, 10 and March, 23 1988 substorms were investigated using the data of EISCAT radars in Tromso. These variations were measured at the lower edge of dynamo-layer 106 km and include the ion and electron temperature, electron density and ionospheric electric field; all data were smoothed out using moving average with optimal lag window. It was shown that: 1) ETS clusters are observed when value of the electric field is < 10 mV/m and average electron density is about (5-10)*10 (4) /sm (3) , 2) For each ETS the envelop demonstrate the so called mirror symmetry, that is antiphased variations of the ion and electron temperature (when Ti increases and Te decreases), 3) The symmetry breaks when the electric field is larger than FB instability threshold (15-20 mVm), 4) The periods of these variations is in the range of 3-10 min, 5) The self-similarity of the scales is observed: smaller scales are included into the larger scales, 6) Temperature variations were accompanied by the electric field variations with amplitude of 4-7 mV/m, 7) Large scale structures (and sometimes dyads formed by two subsequent structures) were accompanied by the electric field rotation up to the whole circle. Specific ETS and plasma parameters variations can be interpreted as a result of Ekman-type instability in the dusty plasma of the dynamo layer. The mirror symmetry of plasma temperature variations is an evidence of a partial blocking of energy transfer between the ions and electrons at low values of the external electric field (below FB instability threshold) because the main energy in such a kind of plasma is attributed to dusty macro-particles (Fortov et al., 2010). Under these conditions the time scale of the dust particle energy variations are considerably larger than the corresponding scales of the temperature variations. According to our previous results (Timofeev et al, 2009-2013) the coherent increase of correlation coefficient (CC) of plasma temperature time variations and smoothed value of the electric field means that the CC can be used as an indicator of the ETS "rigidity" (hence the energy and charge of macro-particles). We used this coherence to estimate the time scale of the macro-particles energy growth (during preliminary phase of March 23, 1988 substorm) and get values of 12-19 min. In the present study we used the same event to estimate the time scale of the plasma temperatures mirror variations and obtained that they are at least 2-3 times shorter. Such a difference in the time scale determines the ETS formation. Finally, after FB instability excitation the electrons can quickly exchange their energy with plasmons, so that the mirror symmetry in temperature variations breaks down.
NASA Astrophysics Data System (ADS)
Jenerette, D.; Wang, J.; Chandler, M.; Ripplinger, J.; Koutzoukis, S.; Ge, C.; Castro Garcia, L.; Kucera, D.; Liu, X.
2017-12-01
Large uncertainties remain in identifying the distribution of urban air quality and temperature risks across neighborhood to regional scales. Nevertheless, many cities are actively expanding vegetation with an expectation to moderate both climate and air quality risks. We address these uncertainties through an integrated analysis of satellite data, atmospheric modeling, and in-situ environmental sensor networks maintained by citizen scientists. During the summer of 2017 we deployed neighborhood-scale networks of air temperature and ozone sensors through three campaigns across urbanized southern California. During each five-week campaign we deployed six sensor nodes that included an EPA federal equivalent method ozone sensor and a suite of meteorological sensors. Each node was further embedded in a network of 100 air temperature sensors that combined a randomized design developed by the research team and a design co-created by citizen scientists. Between 20 and 60 citizen scientists were recruited for each campaign, with local partners supporting outreach and training to ensure consistent deployment and data gathering. We observed substantial variation in both temperature and ozone concentrations at scales less than 4km, whole city, and the broader southern California region. At the whole city scale the average spatial variation with our ozone sensor network just for city of Long Beach was 26% of the mean, while corresponding variation in air temperature was only 7% of the mean. These findings contrast with atmospheric model estimates of variation at the regional scale of 11% and 1%. Our results show the magnitude of fine-scale variation underestimated by current models and may also suggest scaling functions that can connect neighborhood and regional variation in both ozone and temperature risks in southern California. By engaging citizen science with high quality sensors, satellite data, and real-time forecasting, our results help identify magnitudes of climate and air quality risk variation across scales and can guide individual decisions and urban policies surrounding vegetation to moderate these risks.
Dolomite clumped isotope constraints on the oxygen isotope composition of the Phanerozoic Sea
NASA Astrophysics Data System (ADS)
Ryb, U.; Eiler, J. M.
2017-12-01
The δ18O value of the Phanerozoic Sea has been debated several decades, largely motivated by an 8‰ increase in δ18O of sedimentary carbonates between the Cambrian and the present. Some previous studies have interpreted this increase to be a primary depositional signal, resulting from an increase in the 18O content of ocean water over time, or from a decrease in ocean temperature increasing the oxygen isotope fractionation between seawater and carbonates. In contrast, other studies have interpreted lower δ18O compositions as the products of diagenetic alteration at elevated burial temperatures. Here, we show that the Phanerozoic dolomite δ18O record overlaps with that of well-preserved calcite fossils, and use carbonate clumped isotope measurements of Cambrian to Pleistocene dolomites to calculate their formation temperatures and the isotopic compositions of their parent-waters. The observed variation in dolomite δ18O is largely explained by dolomite formation at burial temperatures of up to 158°C. The δ18O values of dolomite parent-waters range -2 to +12‰ and are correlated with formation temperatures. Such correlation is consistent with the modification of seawater (0±2‰, VSMOW) toward isotopically heavier compositions through water-rock reactions at elevated burial temperatures. The similarity between the dolomite and calcite δ18O records, and published clumped isotope-based calculations of water compositions, suggests that like dolomite, temporal variations of the calcite δ18O record may also be largely driven by diagenetic alteration. Finally, the relationship we observe between temperature of dolomitization and d18O of dolomite suggests platform carbonates generally undergo dolomitization through reaction with modified marine waters, and that there is no evidence those waters were ever significantly lower in d18O than the modern ocean.
NASA Astrophysics Data System (ADS)
Meenu, S.; Rajeev, K.; Parameswaran, K.; Suresh Raju, C.
2006-12-01
Quantitative estimates of the spatio-temporal variations in deep convective events over the Indian subcontinent, Arabian Sea, Bay of Bengal, and tropical Indian Ocean are carried out using the data obtained from Advanced Very High Resolution Radiometer (AVHRR) onboard NOAA-14 and NOAA-16 during the period 1996-2003. Pixels having thermal IR brightness temperature (BT) less than 245K are considered as high altitude clouds and those having BT<220 K are considered as very high altitude clouds. Very deep convective clouds are observed over north Bay of Bengal during the Asian summer monsoon season when the mean cloud top temperature reaches as low as 190K. Over the Head Bay of Bengal (HBoB) from June to September, more than 50% of the observed clouds are deep convective type and more than half of these deep convective clouds are very deep convective clouds. Histogram analysis of the cloud top temperatures during this period shows that over HBoB the most prominent cloud top temperature of the deep convective clouds is ~205K over the HBoB while that over southeast Arabian Sea (SEAS) is ~220K. This indicates that most probably the cloud top altitude over HBoB is ~2 km larger than that over SEAS during the Asian summer monsoon period. Another remarkable feature observed during the Asian summer monsoon period is the significantly low values of deep convective clouds observed over the south Bay of Bengal close to Srilanka, which appears as a large pool of reduced cloud amount surrounded by regions of large-scale deep convection. Over both SEAS and HBoB, the total, deep convective and very deep convective cloud amounts as well as their corresponding cloud top temperatures (or the altitude of the cloud top) undergo large seasonal variations, while such variations are less prominent over the eastern equatorial Indian Ocean.
NASA Astrophysics Data System (ADS)
Plavcová, Eva; Kyselý, Jan
2010-09-01
The study examines the relationship between sudden changes in weather conditions in summer, represented by (1) sudden air temperature changes, (2) sudden atmospheric pressure changes, and (3) passages of strong atmospheric fronts; and variations in daily mortality in the population of the Czech Republic. The events are selected from data covering 1986-2005 and compared with the database of daily excess all-cause mortality for the whole population and persons aged 70 years and above. Relative deviations of mortality, i.e., ratios of the excess mortality to the expected number of deaths, were averaged over the selected events for days D-2 (2 days before a change) up to D+7 (7 days after), and their statistical significance was tested by means of the Monte Carlo method. We find that the periods around weather changes are associated with pronounced patterns in mortality: a significant increase in mortality is found after large temperature increases and on days of large pressure drops; a decrease in mortality (partly due to a harvesting effect) occurs after large temperature drops, pressure increases, and passages of strong cold fronts. The relationship to variations in excess mortality is better expressed for sudden air temperature/pressure changes than for passages of atmospheric fronts. The mortality effects are usually more pronounced in the age group 70 years and above. The impacts associated with large negative changes of pressure are statistically independent of the effects of temperature; the corresponding dummy variable is found to be a significant predictor in the ARIMA model for relative deviations of mortality. This suggests that sudden weather changes should be tested also in time series models for predicting excess mortality as they may enhance their performance.
Elsawwaf, Mohamed; Willems, Patrick
2012-04-01
Variations in lake evaporation have a significant impact on the energy and water budgets of lakes. Understanding these variations and the role of climate is important for water resources management as well as predicting future changes in lake hydrology as a result of climate change. This study presents a comprehensive, 10-year analysis of seasonal, intraseasonal, and interannual variations in lake evaporation for Lake Nasser in South Egypt. Meteorological and lake temperature measurements were collected from an instrumented platform (Raft floating weather station) at 2 km upstream ofthe Aswan High Dam. In addition to that, radiation measurements at three locations on the lake: Allaqi, Abusembel and Arqeen (respectively at 75, 280 and 350 km upstream of the Aswan High Dam) are used. The data were analyzed over 14-day periods from 1995 to 2004 to provide bi-weekly energy budget estimates of evaporation rate. The mean evaporation rate for lake Nasser over the study period was 5.88 mm day(-1), with a coefficient of variation of 63%. Considerable variability in evaporation rates was found on a wide range of timescales, with seasonal changes having the highest coefficient of variation (32%), followed by the intraseasonal (28%) and interannual timescales (11.6%; for summer means). Intraseasonal changes in evaporation were primarily associated with synoptic weather variations, with high evaporation events tending to occur during incursions of cold, dry air (due, in part, to the thermal lag between air and lake temperatures). Seasonal variations in evaporation were largely driven by temperature and net energy advection, but are out-of-phase with changes in wind speed. On interannual timescales, changes in summer evaporation rates were strongly associated with changes in net energy advection and showed only moderate connections to variations in temperature or humidity.
Improving Pyroelectric Energy Harvesting Using a Sandblast Etching Technique
Hsiao, Chun-Ching; Siao, An-Shen
2013-01-01
Large amounts of low-grade heat are emitted by various industries and exhausted into the environment. This heat energy can be used as a free source for pyroelectric power generation. A three-dimensional pattern helps to improve the temperature variation rates in pyroelectric elements by means of lateral temperature gradients induced on the sidewalls of the responsive elements. A novel method using sandblast etching is successfully applied in fabricating the complex pattern of a vortex-like electrode. Both experiment and simulation show that the proposed design of the vortex-like electrode improved the electrical output of the pyroelectric cells and enhanced the efficiency of pyroelectric harvesting converters. A three-dimensional finite element model is generated by commercial software for solving the transient temperature fields and exploring the temperature variation rate in the PZT pyroelectric cells with various designs. The vortex-like type has a larger temperature variation rate than the fully covered type, by about 53.9%.The measured electrical output of the vortex-like electrode exhibits an obvious increase in the generated charge and the measured current, as compared to the fully covered electrode, by of about 47.1% and 53.1%, respectively. PMID:24025557
Lewicki, Jennifer L.; Corentin Caudron,; Vincent van Hinsberg,; George Hilley,
2016-01-01
The crater lake of Kawah Ijen volcano, East Java, Indonesia, has displayed large and rapid changes in temperature at point locations during periods of unrest, but measurement techniques employed to-date have not resolved how the lake’s thermal regime has evolved over both space and time. We applied a novel approach for mapping and monitoring variations in crater-lake apparent surface (“skin”) temperatures at high spatial (~32 cm) and temporal (every two minutes) resolution at Kawah Ijen on 18 September 2014. We used a ground-based FLIR T650sc camera with digital and thermal infrared (TIR) sensors from the crater rim to collect (1) a set of visible imagery around the crater during the daytime and (2) a time series of co-located visible and TIR imagery at one location from pre-dawn to daytime. We processed daytime visible imagery with the Structure-from-Motion photogrammetric method to create a digital elevation model onto which the time series of TIR imagery was orthorectified and georeferenced. Lake apparent skin temperatures typically ranged from ~21 to 33oC. At two locations, apparent skin temperatures were ~ 4 and 7 oC less than in-situ lake temperature measurements at 1.5 and 5 m depth, respectively. These differences, as well as the large spatio-temporal variations observed in skin temperatures, were likely largely associated with atmospheric effects such as evaporative cooling of the lake surface and infrared absorption by water vapor and SO2. Calculations based on orthorectified TIR imagery thus yielded underestimates of volcanic heat fluxes into the lake, whereas volcanic heat fluxes estimated based on in-situ temperature measurements (68 to 111 MW) were likely more representative of Kawah Ijen in a quiescent state. The ground-based imaging technique should provide a valuable tool to continuously monitor crater-lake temperatures and contribute insight into the spatio-temporal evolution of these temperatures associated with volcanic activity.
NASA Astrophysics Data System (ADS)
Holland, Elisabeth A.; Neff, Jason C.; Townsend, Alan R.; McKeown, Becky
2000-12-01
Tropical ecosystems play a central role in the global carbon cycle. Large changes in tropical temperature over geologic time and the significant responses of tropical ecosystems to shorter-term variations such as El Niño/La Niña argue for a robust understanding of the temperature sensitivity of tropical decomposition. To examine the responsiveness of heterotrophic respiration to temperature, we measured rates of heterotrophic respiration from a wide range of tropical soils in a series of laboratory incubations. Under conditions of optimal soil water and nonlimiting substrate availability, heterotrophic respiration rose exponentially with rising temperature. The meanQ10measured across all temperature ranges in these short-term incubations was 2.37, but there was significant variation inQ10s across sites. The source of this variation could not be explained by soil carbon or nitrogen content, soil texture, site climate, or lignin to nitrogen ratio. At the beginning of the incubation, heterotrophic respiration increased exponentially with temperature for all sites, despite the fact that the fluxes differed by an order of magnitude. When substrate availability became limiting later in the incubation, the temperature response changed, and heterotrophic response declined above 35°C. The documented changes in temperature sensitivity with substrate availability argue for using temperature relationships developed under optimal conditions of substrate availability for models which include temperature regulation of heterotrophic respiration. To evaluate the significance of this natural variation in temperature control over decomposition, we used the Century ecosystem model gridded for the areas between the tropics of Cancer and Capricorn. These simulations used the mean and upper and lower confidence limits of the normalized exponential temperature response of our experimental studies. We found that systems with the lowest temperature sensitivity accumulated a total of 70 Pg more carbon in soil organic carbon and respired 5.5 Pg yr-1 less carbon compared to the systems with the highest sensitivity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takemasa, Yuichi; Togari, Satoshi; Arai, Yoshinobu
1996-11-01
Vertical temperature differences tend to be great in a large indoor space such as an atrium, and it is important to predict variations of vertical temperature distribution in the early stage of the design. The authors previously developed and reported on a new simplified unsteady-state calculation model for predicting vertical temperature distribution in a large space. In this paper, this model is applied to predicting the vertical temperature distribution in an existing low-rise atrium that has a skylight and is affected by transmitted solar radiation. Detailed calculation procedures that use the model are presented with all the boundary conditions, andmore » analytical simulations are carried out for the cooling condition. Calculated values are compared with measured results. The results of the comparison demonstrate that the calculation model can be applied to the design of a large space. The effects of occupied-zone cooling are also discussed and compared with those of all-zone cooling.« less
Egg size variation among tropical and temperate songbirds: An embryonic temperature hypothesis
Martin, Thomas E.
2008-01-01
Species with “slow” life history strategies (long life, low fecundity) are thought to produce high-quality offspring by investing in larger, but fewer, young. Larger eggs are indeed associated with fewer eggs across taxa and can yield higher-quality offspring. Tropical passerines appear to follow theory because they commonly exhibit slow life history strategies and produce larger, but fewer, eggs compared with northern species. Yet, I show here that relative egg mass (corrected for adult mass) varies extensively in the tropics and subtropics for the same clutch size, and this variation is unexplained. I propose a hypothesis to explain egg size variation both within the tropics and between latitudes: Relative egg mass increases in species with cooler egg temperatures and longer embryonic periods to offset associated increases in energetic requirements of embryos. Egg temperatures of birds are determined by parental incubation behavior and are often cooler among tropical passerines because of reduced parental attentiveness of eggs. Here, I show that cooler egg temperatures and longer embryonic periods explained the enigmatic variation in egg mass within and among regions, based on field studies in tropical Venezuela (36 species), subtropical Argentina (16 species), and north temperate Arizona (20 species). Alternative explanations are not supported. Thus, large egg sizes may reflect compensation for increased energetic requirements of cool egg temperatures and long embryonic periods that result from reduced parental attentiveness in tropical birds. PMID:18591674
Frost and leaf-size gradients in forests: global patterns and experimental evidence.
Lusk, Christopher H; Clearwater, Michael J; Laughlin, Daniel C; Harrison, Sandy P; Prentice, Iain Colin; Nordenstahl, Marisa; Smith, Benjamin
2018-05-16
Explanations of leaf size variation commonly focus on water availability, yet leaf size also varies with latitude and elevation in environments where water is not strongly limiting. We provide the first conclusive test of a prediction of leaf energy balance theory that may explain this pattern: large leaves are more vulnerable to night-time chilling, because their thick boundary layers impede convective exchange with the surrounding air. Seedlings of 15 New Zealand evergreens spanning 12-fold variation in leaf width were exposed to clear night skies, and leaf temperatures were measured with thermocouples. We then used a global dataset to assess several climate variables as predictors of leaf size in forest assemblages. Leaf minus air temperature was strongly correlated with leaf width, ranging from -0.9 to -3.2°C in the smallest- and largest-leaved species, respectively. Mean annual temperature and frost-free period were good predictors of evergreen angiosperm leaf size in forest assemblages, but no climate variable predicted deciduous leaf size. Although winter deciduousness makes large leaves possible in strongly seasonal climates, large-leaved evergreens are largely confined to frost-free climates because of their susceptibility to radiative cooling. Evergreen leaf size data can therefore be used to enhance vegetation models, and to infer palaeotemperatures from fossil leaf assemblages. © 2018 The Authors New Phytologist © 2018 New Phytologist Trust.
The Solar Cycle Variation of Coronal Temperature and Density During Cycle 21-22
1994-06-15
We notice that a dramatic change in the intensity ratio implies a small change in temperature and therefore the precise calibration of each...The higher temperature material of these zones tends to lie over regions where magnetograph observations indicate a change in polarity of weak large...SPIE, 331,442, 1982. 7. Altrock, LC., Clmate Impact of Solar Variability Greenbelt, MD, NASA Conf. Publ. 3086, p. 287, 1990. 8. Fisher, LRL., McCabe, M
DNS of High Pressure Supercritical Combustion
NASA Astrophysics Data System (ADS)
Chong, Shao Teng; Raman, Venkatramanan
2016-11-01
Supercritical flows have always been important to rocket motors, and more recently to aircraft engines and stationary gas turbines. The purpose of the present study is to understand effects of differential diffusion on reacting scalars using supercritical isotropic turbulence. Focus is on fuel and oxidant reacting in the transcritical region where density, heat capacity and transport properties are highly sensitive to variations in temperature and pressure. Reynolds and Damkohler number vary as a result and although it is common to neglect differential diffusion effects if Re is sufficiently large, this large variation in temperature with heat release can accentuate molecular transport differences. Direct numerical simulations (DNS) for one step chemistry reaction between fuel and oxidizer are used to examine the differential diffusion effects. A key issue investigated in this paper is if the flamelet progress variable approach, where the Lewis number is usually assumed to be unity and constant for all species, can be accurately applied to simulate supercritical combustion.
Inter-Diffusion in the Presence of Free Convection
NASA Technical Reports Server (NTRS)
Gupta, Prabhat K.
1999-01-01
Because of their technological importance, establishment of the precise values of interdiffusion coefficients is important in multicomponent fluid systems. Such values are not available because diffusion is influenced by free convection due to compositionally induced density variations. In this project, earth based diffusion experiments are being performed in a viscous fluid system PbO-SiO2 at temperatures between 500-1000 C. This system is chosen because it shows a large variation in density with small changes in composition and is expected to show a large free convection effect. Infinite diffusion couples at different temperatures and times are being studied with different orientations with respect to gravity. Composition fields will be measured using an Electron Microprobe Analyzer and will be compared with the results of a complementary modeling study to extract the values of the true diffusion coefficient from the measured diffusion profiles.
Chen, Feng; Yuan, Yujiang
2014-01-01
Cores of Pinus tabulaformis from Tianshui were subjected to densitometric analysis to obtain mean earlywood density data. Climate response analysis indicates that May–June maximum temperature is the main factor limiting the mean earlywood density (EWD) of Chinese pine trees in the Shimen Mountains. Based on the EWD chronology, we have reconstructed May–June maximum temperature 1666 to 2008 for Tianshui, north central China. The reconstruction explains 40.1% of the actual temperature variance during the common period 1953–2008. The temperature reconstruction is representative of temperature conditions over a large area to the southeast and northwest of the sampling site. Preliminary analysis of links between large-scale climatic variation and the temperature reconstruction shows that there is a relationship between extremes in spring temperature and anomalous atmospheric circulation in the region. It is thus revealed that the mean earlywood density chronology of Pinus tabulaformis has enough potential to reconstruct the temperature variability further into the past. PMID:25207554
NASA Astrophysics Data System (ADS)
Alster, Charlotte J.; Koyama, Akihiro; Johnson, Nels G.; Wallenstein, Matthew D.; von Fischer, Joseph C.
2016-06-01
There is compelling evidence that microbial communities vary widely in their temperature sensitivity and may adapt to warming through time. To date, this sensitivity has been largely characterized using a range of models relying on versions of the Arrhenius equation, which predicts an exponential increase in reaction rate with temperature. However, there is growing evidence from laboratory and field studies that observe nonmonotonic responses of reaction rates to variation in temperature, indicating that Arrhenius is not an appropriate model for quantitatively characterizing temperature sensitivity. Recently, Hobbs et al. (2013) developed macromolecular rate theory (MMRT), which incorporates thermodynamic temperature optima as arising from heat capacity differences between isoenzymes. We applied MMRT to measurements of respiration from soils incubated at different temperatures. These soils were collected from three grassland sites across the U.S. Great Plains and reciprocally transplanted, allowing us to isolate the effects of microbial community type from edaphic factors. We found that microbial community type explained roughly 30% of the variation in the CO2 production rate from the labile C pool but that temperature and soil type were most important in explaining variation in labile and recalcitrant C pool size. For six out of the nine soil × inoculum combinations, MMRT was superior to Arrhenius. The MMRT analysis revealed that microbial communities have distinct heat capacity values and temperature sensitivities sometimes independent of soil type. These results challenge the current paradigm for modeling temperature sensitivity of soil C pools and understanding of microbial enzyme dynamics.
Physical Retrieval of Surface Emissivity Spectrum from Hyperspectral Infrared Radiances
NASA Technical Reports Server (NTRS)
Li, Jun; Weisz, Elisabeth; Zhou, Daniel K.
2007-01-01
Retrieval of temperature, moisture profiles and surface skin temperature from hyperspectral infrared (IR) radiances requires spectral information about the surface emissivity. Using constant or inaccurate surface emissivities typically results in large retrieval errors, particularly over semi-arid or arid areas where the variation in emissivity spectrum is large both spectrally and spatially. In this study, a physically based algorithm has been developed to retrieve a hyperspectral IR emissivity spectrum simultaneously with the temperature and moisture profiles, as well as the surface skin temperature. To make the solution stable and efficient, the hyperspectral emissivity spectrum is represented by eigenvectors, derived from the laboratory measured hyperspectral emissivity database, in the retrieval process. Experience with AIRS (Atmospheric InfraRed Sounder) radiances shows that a simultaneous retrieval of the emissivity spectrum and the sounding improves the surface skin temperature as well as temperature and moisture profiles, particularly in the near surface layer.
Relations among low ionosphere parameters and high frequency radio wave absorption
NASA Technical Reports Server (NTRS)
Cipriano, J. P.
1973-01-01
Charged particle conductivities measured in the very low ionosphere at White Sands Missile Range, New Mexico, and Wallops Island, Virginia, are compared with atmospheric parameters and high frequency radio wave absorption measurements. Charged particle densities are derived from the conductivity data. Between 33 and 58 km, positive conductivity correlated well with neutral atmospheric temperature, with temperature coefficients as large as 4.6%/deg K. Good correlations were also found between HF radio wave absorption and negative conductivity at altitudes as low as 53 km, indicating that the day-to-day absorption variations were principally due to variations in electron loss rate.
Recent Climate Variability in Antarctica from Satellite-derived Temperature Data
NASA Technical Reports Server (NTRS)
Schneider, David P.; Steig, Eric J.; Comiso, Josefino C.
2004-01-01
Recent Antarctic climate variability on month-to-month to interannual time scales is assessed through joint analysis of surface temperatures from satellite thermal infrared observations (T(sub IR)) and passive microwave brightness temperatures (T(sub B)). Although Tw data are limited to clear-sky conditions and T(sub B) data are a product of the temperature and emissivity of the upper approx. 1m of snow, the two data sets share significant covariance. This covariance is largely explained by three empirical modes, which illustrate the spatial and temporal variability of Antarctic surface temperatures. T(sub B) variations are damped compared to TIR variations, as determined by the period of the temperature forcing and the microwave emission depth; however, microwave emissivity does not vary significantly in time. Comparison of the temperature modes with Southern Hemisphere (SH) 500-hPa geopotential height anomalies demonstrates that Antarctic temperature anomalies are predominantly controlled by the principal patterns of SH atmospheric circulation. The leading surface temperature mode strongly correlates with the Southern Annular Mode (SAM) in geopotential height. The second temperature mode reflects the combined influences of the zonal wavenumber-3 and Pacific South American (PSA) patterns in 500-hPa height on month-to-month timescales. ENSO variability projects onto this mode on interannual timescales, but is not by itself a good predictor of Antarctic temperature anomalies. The third temperature mode explains winter warming trends, which may be caused by blocking events, over a large region of the East Antarctic plateau. These results help to place recent climate changes in the context of Antarctica's background climate variability and will aid in the interpretation of ice core paleoclimate records.
Strecker, Angela L; Casselman, John M; Fortin, Marie-Josée; Jackson, Donald A; Ridgway, Mark S; Abrams, Peter A; Shuter, Brian J
2011-07-01
Species present in communities are affected by the prevailing environmental conditions, and the traits that these species display may be sensitive indicators of community responses to environmental change. However, interpretation of community responses may be confounded by environmental variation at different spatial scales. Using a hierarchical approach, we assessed the spatial and temporal variation of traits in coastal fish communities in Lake Huron over a 5-year time period (2001-2005) in response to biotic and abiotic environmental factors. The association of environmental and spatial variables with trophic, life-history, and thermal traits at two spatial scales (regional basin-scale, local site-scale) was quantified using multivariate statistics and variation partitioning. We defined these two scales (regional, local) on which to measure variation and then applied this measurement framework identically in all 5 study years. With this framework, we found that there was no change in the spatial scales of fish community traits over the course of the study, although there were small inter-annual shifts in the importance of regional basin- and local site-scale variables in determining community trait composition (e.g., life-history, trophic, and thermal). The overriding effects of regional-scale variables may be related to inter-annual variation in average summer temperature. Additionally, drivers of fish community traits were highly variable among study years, with some years dominated by environmental variation and others dominated by spatially structured variation. The influence of spatial factors on trait composition was dynamic, which suggests that spatial patterns in fish communities over large landscapes are transient. Air temperature and vegetation were significant variables in most years, underscoring the importance of future climate change and shoreline development as drivers of fish community structure. Overall, a trait-based hierarchical framework may be a useful conservation tool, as it highlights the multi-scaled interactive effect of variables over a large landscape.
Anttila, Katja; Dhillon, Rashpal S; Boulding, Elizabeth G; Farrell, Anthony P; Glebe, Brian D; Elliott, Jake A K; Wolters, William R; Schulte, Patricia M
2013-04-01
In fishes, performance failure at high temperature is thought to be due to a limitation on oxygen delivery (the theory of oxygen and capacity limited thermal tolerance, OCLTT), which suggests that thermal tolerance and hypoxia tolerance might be functionally associated. Here we examined variation in temperature and hypoxia tolerance among 41 families of Atlantic salmon (Salmo salar), which allowed us to evaluate the association between these two traits. Both temperature and hypoxia tolerance varied significantly among families and there was a significant positive correlation between critical maximum temperature (CTmax) and hypoxia tolerance, supporting the OCLTT concept. At the organ and cellular levels, we also discovered support for the OCLTT concept as relative ventricle mass (RVM) and cardiac myoglobin (Mb) levels both correlated positively with CTmax (R(2)=0.21, P<0.001 and R(2)=0.17, P=0.003, respectively). A large RVM has previously been shown to be associated with high cardiac output, which might facilitate tissue oxygen supply during elevated oxygen demand at high temperatures, while Mb facilitates the oxygen transfer from the blood to tissues, especially during hypoxia. The data presented here demonstrate for the first time that RVM and Mb are correlated with increased upper temperature tolerance in fish. High phenotypic variation between families and greater similarity among full- and half-siblings suggests that there is substantial standing genetic variation in thermal and hypoxia tolerance, which could respond to selection either in aquaculture or in response to anthropogenic stressors such as global climate change.
Thermodynamic and kinetic modeling of Mn-Ni-Si precipitates in low-Cu reactor pressure vessel steels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ke, Huibin; Wells, Peter; Edmondson, Philip D.
Formation of large volume fractions of Mn-Ni-Si precipitates (MNSPs) causes excess irradiation embrittlement of reactor pressure vessel (RPV) steels at high, extended-life fluences. Thus, a new and unique, semi-empirical cluster dynamics model was developed to study the evolution of MNSPs in low-Cu RPV steels. The model is based on CALPHAD thermodynamics and radiation enhanced diffusion kinetics. The thermodynamics dictates the compositional and temperature dependence of the free energy reductions that drive precipitation. The model treats both homogeneous and heterogeneous nucleation, where the latter occurs on cascade damage, like dislocation loops. The model has only four adjustable parameters that were fitmore » to an atom probe tomography (APT) database. The model predictions are in semi-quantitative agreement with systematic Mn, Ni and Si composition variations in alloys characterized by APT, including a sensitivity to local tip-to-tip variations even in the same steel. The model predicts that heterogeneous nucleation plays a critical role in MNSP formation in lower alloy Ni contents. Single variable assessments of compositional effects show that Ni plays a dominant role, while even small variations in irradiation temperature can have a large effect on the MNSP evolution. Within typical RPV steel ranges, Mn and Si have smaller effects. Furthermore, the delayed but then rapid growth of MNSPs to large volume fractions at high fluence is well predicted by the model. For purposes of illustration, the effect of MNSPs on transition temperature shifts are presented based on well-established microstructure-property and property-property models.« less
Thermodynamic and kinetic modeling of Mn-Ni-Si precipitates in low-Cu reactor pressure vessel steels
Ke, Huibin; Wells, Peter; Edmondson, Philip D.; ...
2017-07-12
Formation of large volume fractions of Mn-Ni-Si precipitates (MNSPs) causes excess irradiation embrittlement of reactor pressure vessel (RPV) steels at high, extended-life fluences. Thus, a new and unique, semi-empirical cluster dynamics model was developed to study the evolution of MNSPs in low-Cu RPV steels. The model is based on CALPHAD thermodynamics and radiation enhanced diffusion kinetics. The thermodynamics dictates the compositional and temperature dependence of the free energy reductions that drive precipitation. The model treats both homogeneous and heterogeneous nucleation, where the latter occurs on cascade damage, like dislocation loops. The model has only four adjustable parameters that were fitmore » to an atom probe tomography (APT) database. The model predictions are in semi-quantitative agreement with systematic Mn, Ni and Si composition variations in alloys characterized by APT, including a sensitivity to local tip-to-tip variations even in the same steel. The model predicts that heterogeneous nucleation plays a critical role in MNSP formation in lower alloy Ni contents. Single variable assessments of compositional effects show that Ni plays a dominant role, while even small variations in irradiation temperature can have a large effect on the MNSP evolution. Within typical RPV steel ranges, Mn and Si have smaller effects. Furthermore, the delayed but then rapid growth of MNSPs to large volume fractions at high fluence is well predicted by the model. For purposes of illustration, the effect of MNSPs on transition temperature shifts are presented based on well-established microstructure-property and property-property models.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kataria, T.; Showman, A. P.; Fortney, J. J.
We present three-dimensional atmospheric circulation models of GJ 1214b, a 2.7 Earth-radius, 6.5 Earth-mass super Earth detected by the MEarth survey. Here we explore the planet's circulation as a function of atmospheric metallicity and atmospheric composition, modeling atmospheres with a low mean molecular weight (MMW; i.e., H{sub 2}-dominated) and a high MMW (i.e., water- and CO{sub 2}-dominated). We find that atmospheres with a low MMW have strong day-night temperature variations at pressures above the infrared photosphere that lead to equatorial superrotation. For these atmospheres, the enhancement of atmospheric opacities with increasing metallicity lead to shallower atmospheric heating, larger day-night temperaturemore » variations, and hence stronger superrotation. In comparison, atmospheres with a high MMW have larger day-night and equator-to-pole temperature variations than low MMW atmospheres, but differences in opacity structure and energy budget lead to differences in jet structure. The circulation of a water-dominated atmosphere is dominated by equatorial superrotation, while the circulation of a CO{sub 2}-dominated atmosphere is instead dominated by high-latitude jets. By comparing emergent flux spectra and light curves for 50× solar and water-dominated compositions, we show that observations in emission can break the degeneracy in determining the atmospheric composition of GJ 1214b. The variation in opacity with wavelength for the water-dominated atmosphere leads to large phase variations within water bands and small phase variations outside of water bands. The 50× solar atmosphere, however, yields small variations within water bands and large phase variations at other characteristic wavelengths. These observations would be much less sensitive to clouds, condensates, and hazes than transit observations.« less
Liu, Yu; Sun, Changfeng; Li, Qiang; Cai, Qiufang
2016-01-01
The historical May–October mean temperature since 1831 was reconstructed based on tree-ring width of Qinghai spruce (Picea crassifolia Kom.) collected on Mt. Dongda, North of the Hexi Corridor in Northwest China. The regression model explained 46.6% of the variance of the instrumentally observed temperature. The cold periods in the reconstruction were 1831–1889, 1894–1901, 1908–1934 and 1950–1952, and the warm periods were 1890–1893, 1902–1907, 1935–1949 and 1953–2011. During the instrumental period (1951–2011), an obvious warming trend appeared in the last twenty years. The reconstruction displayed similar patterns to a temperature reconstruction from the east-central Tibetan Plateau at the inter-decadal timescale, indicating that the temperature reconstruction in this study was a reliable proxy for Northwest China. It was also found that the reconstruction series had good consistency with the Northern Hemisphere temperature at a decadal timescale. Multi-taper method spectral analysis detected some low- and high-frequency cycles (2.3–2.4-year, 2.8-year, 3.4–3.6-year, 5.0-year, 9.9-year and 27.0-year). Combining these cycles, the relationship of the low-frequency change with the Pacific Decadal Oscillation (PDO), North Atlantic Oscillation (NAO) and Southern Oscillation (SO) suggested that the reconstructed temperature variations may be related to large-scale atmospheric-oceanic variations. Major volcanic eruptions were partly reflected in the reconstructed temperatures after high-pass filtering; these events promoted anomalous cooling in this region. The results of this study not only provide new information for assessing the long-term temperature changes in the Hexi Corridor of Northwest China, but also further demonstrate the effects of large-scale atmospheric-oceanic circulation on climate change in Northwest China. PMID:27509206
Dependence of the muon intensity on the atmospheric temperature measured by the GRAPES-3 experiment
NASA Astrophysics Data System (ADS)
Arunbabu, K. P.; Ahmad, S.; Chandra, A.; Dugad, S. R.; Gupta, S. K.; Hariharan, B.; Hayashi, Y.; Jagadeesan, P.; Jain, A.; Jhansi, V. B.; Kawakami, S.; Kojima, H.; Mohanty, P. K.; Morris, S. D.; Nayak, P. K.; Oshima, A.; Rao, B. S.; Reddy, L. V.; Shibata, S.; Tanaka, K.; Zuberi, M.
2017-09-01
The large area (560 m2) GRAPES-3 tracking muon telescope has been operating uninterruptedly at Ooty, India since 2001. Every day, it records 4 × 109 muons of ≥1 GeV with an angular resolution of ∼4°. The variation of atmospheric temperature affects the rate of decay of muons produced by the galactic cosmic rays (GCRs), which in turn modulates the muon intensity. By analyzing the GRAPES-3 data of six years (2005-2010), a small (amplitude ∼0.2%) seasonal variation (1 year (Yr) period) in the intensity of muons could be measured. The effective temperature 'Teff' of the upper atmosphere also displays a periodic variation with an amplitude of ∼1 K which was responsible for the observed seasonal variation in the muon intensity. At GeV energies, the muons detected by the GRAPES-3 are expected to be anti-correlated with Teff. The anti-correlation between the seasonal variation of Teff, and the muon intensity was used to measure the temperature coefficient αT by fast Fourier transform (FFT) technique. The magnitude of αT was found to scale with the assumed attenuation length 'λ' of the hadrons in the range λ = 80-180 g cm-2. However, the magnitude of the correction in the muon intensity was found to be almost independent of the value of λ used. For λ = 120 g cm-2 the value of temperature coefficient αT was found to be (- 0.17 ± 0.02)% K-1.
NASA Astrophysics Data System (ADS)
Liu, Yuan; He, Nianpeng
2017-04-01
How to assess the temperature sensitivity (Q10) of soil organic matter (SOM) decomposition and its regional variation with high accuracy is one of the largest uncertainties in determining the intensity and direction of the global carbon (C) cycle in response to climate change. In this study, we collected a series of soils from 22 forest sites and 30 grassland sites across China to explore regional variation in Q10 and its underlying mechanisms. We conducted a novel incubation experiment with periodically changing temperature (5-30 °C), while continuously measuring soil microbial respiration rates. The results showed that Q10 varied significantly across different ecosystems, ranging from 1.16 to 3.19 (mean 1.63). Q10 was ordered as follows: alpine grasslands (2.01) > temperate grasslands (1.81) > tropical forests (1.59) > temperate forests (1.55) > subtropical forests (1.52). The Q10 of grasslands (1.90) was significantly higher than that of forests (1.54). Furthermore, Q10 significantly increased with increasing altitude and decreased with increasing longitude. Environmental variables and substrate properties together explained 52% of total variation in Q10 across all sites. Overall, pH and soil electrical conductivity primarily explained spatial variation in Q10. The general negative relationships between Q10 and substrate quality among all ecosystem types supported the C quality temperature (CQT) hypothesis at a large scale, which indicated that soils with low quality should have higher temperature sensitivity. Furthermore, alpine grasslands, which had the highest Q10, were predicted to be more sensitive to climate change under the scenario of global warming.
NASA Astrophysics Data System (ADS)
Liu, Y.; He, N.; Zhu, J.; Yu, G.; Xu, L.; Niu, S.; Sun, X.; Wen, X.
2017-12-01
How to assess the temperature sensitivity (Q10) of soil organic matter (SOM) decomposition and its regional variation with high accuracy is one of the largest uncertainties in determining the intensity and direction of the global carbon (C) cycle in response to climate change. In this study, we collected a series of soils from 22 forest sites and 30 grassland sites across China to explore regional variation in Q10 and its underlying mechanisms. We conducted a novel incubation experiment with periodically changing temperature (5-30 °C), while continuously measuring soil microbial respiration rates. The results showed that Q10 varied significantly across different ecosystems, ranging from 1.16 to 3.19 (mean 1.63). Q10 was ordered as follows: alpine grasslands (2.01) > temperate grasslands (1.81) > tropical forests (1.59) > temperate forests (1.55) > subtropical forests (1.52). The Q10 of grasslands (1.90) was significantly higher than that of forests (1.54). Furthermore, Q10 significantly increased with increasing altitude and decreased with increasing longitude. Environmental variables and substrate properties together explained 52% of total variation in Q10 across all sites. Overall, pH and soil electrical conductivity primarily explained spatial variation in Q10. The general negative relationships between Q10 and substrate quality among all ecosystem types supported the C quality temperature (CQT) hypothesis at a large scale, which indicated that soils with low quality should have higher temperature sensitivity. Furthermore, alpine grasslands, which had the highest Q10, were predicted to be more sensitive to climate change under the scenario of global warming.
Langille, B L; Crisp, B
1980-09-01
The temperature dependence of the viscosity of blood from frogs and turtles has been assessed for temperatures between 5 and 40 degrees C. Viscosity of turtles' blood was, on average, reduced from 3.50 +/- 0.16 to 2.13 +/- 0.10 cP between 10 and 30 degrees C, a decline of 39%. Even larger changes in viscosity were observed for frogs' blood with viscosity falling from 4.55 +/- 0.32 to 2.55 +/- 0.25 cP over the same temperature range, a change of 44%. Blood viscosity was highly correlated with hematocrit in both species at all temperatures. Viscosity of blood from both frogs and turtles showed a large standard deviation at all temperatures and this was attributed to large individual-to-individual variations in hematocrit. Turtles heat faster than they cool, regardless of whether tests are performed at temperatures above or below the range of thermal preference. The effect of temperature dependence of blood viscosity on heating and cooling rates is demonstrated.
Jennifer D. Knoepp; Craig R. See; James M. Vose; Chelcy F. Miniat; James S. Clark
2018-01-01
The interactions of terrestrial C pools and fluxes with spatial and temporal variation in climate are not well understood. We conducted this study in the southern Appalachian Mountains where complex topography provides variability in temperature, precipitation, and forest communities. In 1990, we established five large plots across an elevation gradient...
Temperature Inversions and Nighttime Convection in the Martian Tropics
NASA Astrophysics Data System (ADS)
Hinson, D. P.; Spiga, A.; Lewis, S.; Tellmann, S.; Paetzold, M.; Asmar, S. W.; Häusler, B.
2013-12-01
We are using radio occultation measurements from Mars Express, Mars Reconnaissance Orbiter, and Mars Global Surveyor to characterize the diurnal cycle in the lowest scale height above the surface. We focus on northern spring and summer, using observations from 4 Martian years at local times of 4-5 and 15-17 h. We supplement the observations with results obtained from large-eddy simulations and through data assimilation by the UK spectral version of the LMD Mars Global Circulation Model. We previously investigated the depth of the daytime convective boundary layer (CBL) and its variations with surface elevation and surface properties. We are now examining unusual aspects of the temperature structure observed at night. Most important, predawn profiles in the Tharsis region contain an unexpected layer of neutral static stability at pressures of 200-300 Pa with a depth of 4-5 km. The mixed layer is bounded above by a midlevel temperature inversion and below by another strong inversion adjacent to the surface. The sharp temperature minimum at the base of the midlevel inversion suggests the presence of a thin water ice cloud layer, with the further implication that radiative cooling at cloud level can induce convective activity at lower altitudes. Conversely, nighttime profiles in Amazonis show no sign of a midlevel inversion or a detached mixed layer. These regional variations in the nighttime temperature structure appear to arise in part from large-scale variations in topography, which have several notable effects. First, the CBL is much deeper in the Tharsis region than in Amazonis, owing to a roughly 6-km difference in surface elevation. Second, large-eddy simulations show that daytime convection is not only deeper above Tharsis but also considerably more intense than it is in Amazonis. Finally, the daytime surface temperatures are comparable in the two regions, so that Tharsis acts as an elevated heat source throughout the CBL. These topographic effects are expected to enhance the vertical mixing of water vapor above elevated terrain, which might lead to the formation and regional confinement of nighttime clouds.
NASA Astrophysics Data System (ADS)
Sadro, S.; Melack, J. M.; Sickman, J. O.; Skeen, K.
2016-12-01
Water temperature regulates a broad range of fundamental ecosystem processes in lakes. While climate can be an important factor regulating lake temperatures, heterogeneity in the warming response of lakes is large, and variation in precipitation is rarely considered. We analyzed three decades of climate and water temperature data from a high-elevation catchment in the southern Sierra Nevada of California to illustrate the magnitude of warming taking place during different seasons and the role of precipitation in regulating lake temperatures. Significant climate warming trends were evident during all seasons except spring. Nighttime rates of climate warming were approximately 25% higher than daytime rates. Spatial patterns in warming were elevation dependent, with rates of temperature increase higher at sites above 2800 m.a.s.l. than below. Although interannual variation in snow deposition was high, the frequency and severity of recent droughts has contributed to a significant 3.4 mm year -1 decline in snow water equivalent over the last century. Snow accumulation, more than any other climate factor, regulated lake temperature; 94% of variation in summer lake temperature was regulated by precipitation as snow. For every 100 mm decrease in snow water equivalent there was a 0.62 ° increase in lake temperature. Drought years amplify warming in lakes by reducing the role of cold spring meltwaters in lake energy budgets and prolonging the ice-free period during which lakes warm. The combination of declining winter snowpack and warming air temperatures has the capacity to amplify the effect of climate warming on lake temperatures during drought years. Interactions among climatic factors need to be considered when evaluating ecosystem level effects, especially in mountain regions. For mountain lakes already affected by drought, continued climate warming during spring and autumn has the greatest potential to impact mean lake temperatures.
NASA Astrophysics Data System (ADS)
Laska, Kamil; Prošek, Pavel; Budík, Ladislav
2010-05-01
Key words: air temperature, seasonal variation, James Ross Island, Antarctic Peninsula Recently, significant role of the atmospheric and oceanic circulation variation on positive trend of near surface air temperature along the Antarctic Peninsula has been reported by many authors. However, small number of the permanent meteorological stations located on the Peninsula coast embarrasses a detail analysis. It comprises analysis of spatiotemporal variability of climatic conditions and validation of regional atmospheric climate models. However, geographical location of the Czech Johann Gregor Mendel Station (hereafter Mendel Station) newly established on the northern ice-free part of the James Ross Island provides an opportunity to fill the gap. There are recorded important meteorological characteristics which allow to evaluate specific climatic regime of the region and their impact on the ice-shelf disintegration and glacier retreat. Mendel Station (63°48'S, 57°53'W) is located on marine terrace at the altitude of 7 m. In 2006, a monitoring network of several automatic weather stations was installed at different altitudes ranging from the seashore level up to mesas and tops of glaciers (514 m a.s.l.). In this contribution, a seasonal variation of near surface air temperature at the Mendel Station in the period of 2006-2009 is presented. Annual mean air temperature was -7.2 °C. Seasonal mean temperature ranged from +1.4 °C (December-February) to -17.7 °C (June-August). Frequently, the highest temperature occurred in the second half of January. It reached maximum of +8.1 °C. Sudden changes of atmospheric circulation pattern during winter caused a large interdiurnal variability of air temperature with the amplitude of 30 °C.
NASA Technical Reports Server (NTRS)
Mayr, Hans G.; Mengel, John G.; Huang, Frank T.
2007-01-01
The Numerical Spectral Model (NSM) simulates the Quasi-biennial Oscillation (QBO) that dominates the zonal circulation of the lower stratosphere at low latitudes. In the model, the QBO is generated with parameterized small-scale gravity waves (GW), which are partially augmented in 3D with planetary waves owing to baroclinic instability. Due to GW filtering, the QBO extends into the upper mesosphere, evident in UARS zonal wind and TIMED temperature measurements. While the QBO zonal winds are confined to equatorial latitudes, even in simulations with latitude-independent wave source, the associated temperature variations extend to high latitudes. The meridional circulation redistributes some of the QBO energy to focus it partially onto the Polar Regions. The resulting QBO temperature variations away from the equator tend to increase at higher altitudes to produce inter-annual variations that can exceed 5 K in the polar mesopause region -- and our 3D model simulations show that the effect is variable from year to year and can produce large differences between the two hemispheres, presumably due to interactions involving the seasonal variations. Modeling studies with the NSM have shown that long-term variations can also be generated by the QBO interacting with the seasonal cycles through OW node-filtering. A 30-month QBO, optimally synchronized by the 6-month Semi-Annual Oscillation (SAO), thus produces a 5-year or semi-decadal (SD) oscillation -- and observational evidence for that has been provided by a recent analysis of stratospheric NCEP data. In a simulation with the 2D version of the NSM, this SD oscillation extends into the upper mesosphere, and we present results to show that the related temperature variations could contribute significantly to the long-term variations of the polar mesopause region. Quasi-decadal variations could furthermore arise from the modeled solar cycle modulations of the QBO and 12-month annual oscillation. Our numerical results are discussed in the context of the observed low summer temperatures reproduced by the model, to demonstrate that the above interannual and long-term variations could contribute significantly to the climatology of Polar Mesospheric Clouds (PMC) investigated by the Aeronomy of Ice in the Mesosphere (AIM) mission.
Anomalously large isotope effect in the glass transition of water
Gainaru, Catalin; Agapov, Alexander L.; Fuentes-Landete, Violeta; ...
2014-11-24
Here we present the discovery of an unusually large isotope effect in the structural relaxation and the glass transition temperature T g of water. Dielectric relaxation spectroscopy of low-density as well as of vapor deposited amorphous water reveal T g differences of 10±2K between H 2O and D 2O, sharply contrasting with other hydrogen bonded liquids for which H/D exchange increases T g by typically less than 1K. We show that the large isotope effect and the unusual variation of relaxation times in water at low temperatures can be explained in terms of quantum effects. Thus, our findings shed newmore » light on water's peculiar low-temperature dynamics and the possible role of quantum effects in its structural relaxation, and possibly in dynamics of other low molecular weight liquids.« less
Yahya, S M; Anwer, S F; Sanghi, S
2013-10-01
In this work, Thermal Large Eddy Simulation (TLES) is performed to study the behavior of weakly compressible Newtonian fluids with anisotropic temperature-dependent viscosity in forced convection turbulent flow. A systematic analysis of variable-viscosity effects, isolated from gravity, with relevance to industrial cooling/heating applications is being carried out. A LES of a planar channel flow with significant heat transfer at a low Mach number was performed to study effects of fluid property variation on the near-wall turbulence structure. In this flow configuration the top wall is maintained at a higher temperature (T hot ) than the bottom wall (T cold ). The temperature ratio (R θ = T hot /T cold ) is fixed at 1.01, 2 and 3 to study the effects of property variations at low Mach number. Results indicate that average and turbulent fields undergo significant changes. Compared with isothermal flow with constant viscosity, we observe that turbulence is enhanced in the cold side of the channel, characterized by locally lower viscosity whereas a decrease of turbulent kinetic energy is found at the hot wall. The turbulent structures near the cold wall are very short and densely populated vortices but near the hot wall there seems to be a long streaky structure or large elongated vortices. Spectral study reveals that turbulence is completely suppressed at the hot side of the channel at a large temperature ratio because no inertial zone is obtained (i.e. index of Kolmogorov scaling law is zero) from the spectra in these region.
Superparamagnetic nanocrystalline ZnFe2O4 with a very high Curie temperature.
Deka, Sasanka; Joy, P A
2008-08-01
Studies on the magnetic properties of nanocrystalline ZnFe2O4 synthesized by an autocombustion method are reported. Superparamagnetic behavior is observed for the nanocrystalline materials with particle sizes of 8 nm and 17 nm, with superparamagnetic blocking temperatures of 65 K and 75 K, respectively. Magnetic hysteresis with very large coercivities of 533 Oe and 325 Oe, respectively, are observed at 12 K. Studies on the temperature variation of the magnetization above room temperature indicate that the Curie temperature is as high as approximately 800 K when compared to the paramagnetic nature of bulk zinc ferrite at room temperature.
Scaling of confinement and profiles in the EXTRAP T2 reversed-field pinch
NASA Astrophysics Data System (ADS)
Welander, A.
1999-01-01
In the EXTRAP T2 reversed-field pinch the diagnostic techniques for the measurement of electron density and temperature include; Thomson scattering which gives values at three radial positions in the core (r/a = 0, 0.28, 0.56), Langmuir probes which give values at the edge (r/a > 0.9) and interferometry which gives a line-averaged density. The empirical scaling of electron density and temperature including profile information with global plasma parameters has been studied. The density profile is subject to large variations, with an average parabolic shape when the density is low and flatter shapes when the density is increased. The change in the profile shape can be attributed to a shift in the penetration length of neutrals from the vicinity of the wall. The temperature scales roughly as I/n1/2 where I is the plasma current and n is the density. The temperature profile is always quite flat with lower variations and there is a tendency for a flatter profile at higher temperatures.
Multi-channel programmable power supply with temperature compensation for silicon sensors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shukla, R. A.; Achanta, V. G.; Dugad, S. R., E-mail: dugad@cern.ch
Silicon Photo-Multipliers (SiPMs) are increasingly becoming popular for discrete photon counting applications due to the wealth of advantages they offer over conventional photo-detectors such as photo-multiplier tubes and hybrid photo-diodes. SiPMs are used in variety of applications ranging from high energy physics and nuclear physics experiments to medical diagnostics. The gain of a SiPM is directly proportional to the difference between applied and breakdown voltage of the device. However, the breakdown voltage depends critically on the ambient temperature and has a large temperature co-efficient in the range of 40-60 mV/°C resulting in a typical gain variation of 3%-5%/°C [Dinu etmore » al., in IEEE Nuclear Science Symposium, Medical Imaging Conference and 17th Room Temperature Semiconductor Detector Workshop (IEEE, 2010), p. 215]. We plan to use the SiPM as a replacement for PMT in the cosmic ray experiment (GRAPES-3) at Ooty [Gupta et al., Nucl. Instrum. Methods Phys. Res., Sect. A 540, 311 (2005)]. There the SiPMs will be operated in an outdoor environment subjected to temperature variation of about 15 °C over a day. A gain variation of more than 50% was observed for such large variations in the temperature. To stabilize the gain of the SiPM under such operating conditions, a low-cost, multi-channel programmable power supply (0-90 V) was designed that simultaneously provides the bias voltage to 16 SiPMs. The programmable power supply (PPS) was designed to automatically adjust the operating voltage for each channel with a built-in closed loop temperature feedback mechanism. The PPS provides bias voltage with a precision of 6 mV and measures the load current with a precision of 1 nA. Using this PPS, a gain stability of 0.5% for SiPM (Hamamatsu, S10931-050P) has been demonstrated over a wide temperature range of 15 °C. The design methodology of the PPS system, its validation, and the results of the tests carried out on the SiPM is presented in this article. The proposed design also has the capability of gain stabilization of devices with non-linear thermal response.« less
Li, Yu Ran; Wang, Xing Chang; Wang, Chuan Kuan; Liu, Fan; Zhang, Quan Zhi
2017-10-01
Plant temperature is an important parameter for estimating energy balance and vegetation respiration of forest ecosystem. To examine spatial variation in diurnal courses of stem temperatures (T s ) and its influencing factors, we measured the T s with copper constantan thermocouples at different depths, heights and azimuths within the stems of two broadleaved tree species with contrasting bark and wood properties, Betula platyphylla and Fraxinus mandshurica. The results showed that the monthly mean diurnal courses of the T s largely followed that of air temperature with a 'sinusoi dal' pattern, but the T s lagged behind the air temperature by 0 h at the stem surface to 4 h at 6 cm depth. The daily maximal values and ranges of the diurnal course of T s decreased gradually with increasing measuring depth across the stem and decreasing measuring height along the stem. The circumferential variation in T s was marginal, with slightly higher daily maximal values in the south and west directions during the daytime of the dormant season. Differences in thermal properties (i.e. , specific heat capacity and thermal conductivity) of both bark and wood tissue between the two species contributed to the inter specific variations in the radial variation in T s through influencing the heat exchange between the stem surface and ambient air as well as heat diffusion within the stem. The higher reflectance of the bark of B. platyphylla decreased the influence of solar radiation on T s . The stepwise regression showed that the diurnal courses of T s could be well predicted by the environmental factors (R 2 > 0.85) with an order of influence ranking as air temperature > water vapor pressure > net radiation > wind speed. It is necessary to take the radial, vertical and inter specific varia-tions in T s into account when estimating biomass heat storage and stem CO2 efflux.
Intra-seasonal Oscillations Inferred from SABER (TIMED) and MLS (UARS) Temperature Measurements
NASA Technical Reports Server (NTRS)
Huang, F. T.; Mayr, H. G.; Russell, J.; Mlynczak, M.; Reber, C. A.; Mengel, J. G.
2006-01-01
In the zonal mean meridional winds of the upper mesosphere, intra-seasonal oscillations with periods between 1 and 4 months have been inferred from UARS measurements and independently predicted with the Numerical Spectral Model WSM). The wind oscillations tend to be confined to low latitudes and appear to be driven, at least in part, by small-scale gravity waves propagating in the meridional direction. Winds across the equator should generate, due to dynamical heating and cooling, temperature oscillations with opposite phase in the two hemispheres. Investigating this phenomenon, we have analyzed SABER temperatures from TIMED in the altitude range between 55 and 95 km to delineate with an empirical model, the year-long variability of the migrating tides and zonal mean components. The inferred seasonal variations of the diurnal tide, characterized by amplitude maxima near equinox, are in substantial agreement with UARS observations and results from the NSM. For the zonal mean, the dominant seasonal variations in the SABER temperatures, with annual (12 months) and semiannual (6 months) periodicities, agree well with those derived from UARS measurements. The intra-seasonal variations with periods between 2 and 4 months have amplitudes close to 2 K, almost half as large as those for the dominant seasonal variations. Their amplitudes are in qualitative agreement with the corresponding values inferred from UARS during different years. The SABER and UARS temperature variations reveal pronounced hemispherical asymmetries, consistent with meridional wind oscillations across the equator. The phase of the semi-annual temperature oscillations from the NSM agrees with the observations from UARS and SABER. But the amplitudes are systematically smaller, which may indicate that planetary waves are more important than is allowed for in the model. For the shorter-period intra-seasonal variations, which can be generated by gravity wave drag, the model results are generally in better agreement with the observations.
Role of Atmospheric CO2 in the Ice Ages (Invited)
NASA Astrophysics Data System (ADS)
Toggweiler, J. R.
2010-12-01
Ice cores from Antarctica provide our most highly resolved records of glacial-interglacial climate change. They feature big transitions every 100,000 years or so in which Antarctica warms by up to 10 deg. C while the level of atmospheric CO2 rises by up to 100 ppm. We have no other records like these from any other location, so the assumption is often made that the Earth's mean temperature varies like the temperatures in Antarctica. The striking co-variation between the two records is taken to mean 1) that there is a causal relationship between the global temperature and atmospheric CO2 and 2) that atmospheric CO2 is a powerful agent of climate change during the ice ages. The problem is that the mechanism most often invoked to explain the CO2 variations operates right next to Antarctica and, as such, provides a fairly direct way to explain the temperature variations in Antarctica as well. If so, Antarctic temperatures go up and down for the same reason that atmospheric CO2 goes up and down, in which case no causation can be inferred. Climate models suggest that the 100-ppm CO2 increases during the big transitions did not increase surface temperatures by more than 2 deg. C. This is not nearly enough to explain the observed variability. A better reason for thinking that atmospheric CO2 is important is that its temporal variations are concentrated in the 100,000-yr band. In my presentation I will argue that atmospheric CO2 is important because it has the longest time scale in the system. We observe empirically that atmospheric CO2 remains low for 50,000 years during the second half of each 100,000-yr cycle. The northern ice sheets become especially large toward the ends of these intervals, and it is large ice sheets that make the Earth especially cold. This leads me to conclude that atmospheric CO2 is important because of its slow and persistent influence on the northern ice sheets over the second half of each 100,000-yr cycle.
Application for temperature and humidity monitoring of data center environment
NASA Astrophysics Data System (ADS)
Albert, Ş.; Truşcǎ, M. R. C.; Soran, M. L.
2015-12-01
The technology and computer science registered a large development in the last years. Most systems that use high technologies require special working conditions. The monitoring and the controlling are very important. The temperature and the humidity are important parameters in the operation of computer systems, industrial and research, maintaining it between certain values to ensure their proper functioning being important. Usually, the temperature is maintained in the established range using an air conditioning system, but the humidity is affected. In the present work we developed an application based on a board with own firmware called "AVR_NET_IO" using a microcontroller ATmega32 type for temperature and humidity monitoring in Data Center of INCDTIM. On this board, temperature sensors were connected to measure the temperature in different points of the Data Center and outside of this. Humidity monitoring is performed using data from integrated sensors of the air conditioning system, thus achieving a correlation between humidity and temperature variation. It was developed a software application (CM-1) together with the hardware, which allows temperature monitoring and register inside Data Center and trigger an alarm when variations are greater with 3°C than established limits of the temperature.
NASA Astrophysics Data System (ADS)
Rödenbeck, Christian; Zaehle, Sönke; Keeling, Ralph; Heimann, Martin
2018-04-01
The response of the terrestrial net ecosystem exchange (NEE) of CO2 to climate variations and trends may crucially determine the future climate trajectory. Here we directly quantify this response on inter-annual timescales by building a linear regression of inter-annual NEE anomalies against observed air temperature anomalies into an atmospheric inverse calculation based on long-term atmospheric CO2 observations. This allows us to estimate the sensitivity of NEE to inter-annual variations in temperature (seen as a climate proxy) resolved in space and with season. As this sensitivity comprises both direct temperature effects and the effects of other climate variables co-varying with temperature, we interpret it as inter-annual climate sensitivity
. We find distinct seasonal patterns of this sensitivity in the northern extratropics that are consistent with the expected seasonal responses of photosynthesis, respiration, and fire. Within uncertainties, these sensitivity patterns are consistent with independent inferences from eddy covariance data. On large spatial scales, northern extratropical and tropical inter-annual NEE variations inferred from the NEE-T regression are very similar to the estimates of an atmospheric inversion with explicit inter-annual degrees of freedom. The results of this study offer a way to benchmark ecosystem process models in more detail than existing effective global climate sensitivities. The results can also be used to gap-fill or extrapolate observational records or to separate inter-annual variations from longer-term trends.
Sanny, M; Jinap, S; Bakker, E J; van Boekel, M A J S; Luning, P A
2012-12-01
The objective of this study was to obtain insight into the actual effectiveness of lowering reducing sugars concentration in par-fried potato strips on the concentration and variation of acrylamide in French fries prepared in real-life situations in food service establishments. Acrylamide, frying time, frying temperature, and reducing sugars were measured and characteristics of fryers were recorded. Data showed that the use of par-fried potato strips with lower concentrations of reducing sugars than the commonly used potato strips was an effective measure to reduce acrylamide concentrations in French fries prepared under standardised frying conditions. However, there was still large variation in the acrylamide concentrations in French fries, although the variation in reducing sugars concentrations in low and normal types of par-fried potato strips was very small and the frying conditions were similar. Factors that could affect the temperature-time profile of frying oil were discussed, such as setting a lower frying temperature at the end than at the start of frying, product/oil ratio and thawing practice. These need to be controlled in daily practice to reduce variation in acrylamide. Copyright © 2012 Elsevier Ltd. All rights reserved.
Leicht, Katja; Seppälä, Katri; Seppälä, Otto
2017-06-15
On-going global climate change poses a serious threat for natural populations unless they are able to evolutionarily adapt to changing environmental conditions (e.g. increasing average temperatures, occurrence of extreme weather events). A prerequisite for evolutionary change is within-population heritable genetic variation in traits subject to selection. In relation to climate change, mainly phenological traits as well as heat and desiccation resistance have been examined for such variation. Therefore, it is important to investigate adaptive potential under climate change conditions across a broader range of traits. This is especially true for life-history traits and defences against natural enemies (e.g. parasites) since they influence organisms' fitness both directly and through species interactions. We examined the adaptive potential of fitness-related traits and their responses to heat waves in a population of a freshwater snail, Lymnaea stagnalis. We estimated family-level variation and covariation in life history (size, reproduction) and constitutive immune defence traits [haemocyte concentration, phenoloxidase (PO)-like activity, antibacterial activity of haemolymph] in snails experimentally exposed to typical (15 °C) and heat wave (25 °C) temperatures. We also assessed variation in the reaction norms of these traits between the treatments. We found that at the heat wave temperature, snails were larger and reproduced more, while their immune defence was reduced. Snails showed high family-level variation in all examined traits within both temperature treatments. The only negative genetic correlation (between reproduction and antibacterial activity) appeared at the high temperature. However, we found no family-level variation in the responses of most examined traits to the experimental heat wave (i.e. largely parallel reaction norms between the treatments). Only the reduction of PO-like activity when exposed to the high temperature showed family-level variation, suggesting that the cost of heat waves may be lower for some families and could evolve under selection. Our results suggest that there is genetic potential for adaptation within both thermal environments and that trait evolution may not be strongly affected by trade-offs between them. However, rare differences in thermal reaction norms across families indicate limited evolutionary potential in the responses of snails to changing temperatures during extreme weather events.
Construction and Start-up of a Large-Volume Thermostat for Dielectric-Constant Gas Thermometry
NASA Astrophysics Data System (ADS)
Merlone, A.; Moro, F.; Zandt, T.; Gaiser, C.; Fellmuth, B.
2010-07-01
A liquid-bath thermostat with a volume of about 800 L was designed to provide a suitable thermal environment for a dielectric-constant gas thermometer (DCGT) in the range from the triple point of mercury to the melting point of gallium. In the article, results obtained with the unique, huge thermostat without the DCGT measuring chamber are reported to demonstrate the capability of controlling the temperature of very large systems at a metrological level. First tests showed that the bath together with its temperature controller provide a temperature variation of less than ±0.5mK peak-to-peak. This temperature instability could be maintained over a period of several days. In the central working volume (diameter—500mm, height—650mm), in which the vacuum chamber containing the measuring system of the DCGT will be placed later, the temperature inhomogeneity has been demonstrated to be also well below 1mK.
Is telomere length a molecular marker of past thermal stress in wild fish?
Debes, Paul V; Visse, Marko; Panda, Bineet; Ilmonen, Petteri; Vasemägi, Anti
2016-11-01
Telomeres protect eukaryotic chromosomes; variation in telomere length has been linked (primarily in homoeothermic animals) to variation in stress, cellular ageing and disease risk. Moreover, telomeres have been suggested to function as biomarker for quantifying past environmental stress, but studies in wild animals remain rare. Environmental stress, such as extreme environmental temperatures in poikilothermic animals, may result in oxidative stress that accelerates telomere attrition. However, growth, which may depend on temperature, can also contribute to telomere attrition. To test for associations between multitissue telomere length and past water temperature while accounting for the previous individual growth, we used quantitative PCR to analyse samples from 112 young-of-the-year brown trout from 10 natural rivers with average water temperature differences of up to 6°C (and an absolute maximum of 23°C). We found negative associations between relative telomere length (RTL) and both average river temperature and individual body size. We found no indication of RTL-temperature association differences among six tissues, but we did find indications for differences among the tissues for associations between RTL and body size; size trends, albeit nonsignificant in their differences, were strongest in muscle and weakest in fin. Although causal relationships among temperature, growth, oxidative stress, and cross-sectional telomere length remain largely unknown, our results indicate that telomere-length variation in a poikilothermic wild animal is associated with both past temperature and growth. © 2016 The Authors. Molecular Ecology Published by John Wiley & Sons Ltd.
Wan, Wei; Li, Huan; Xie, Hongjie; Hong, Yang; Long, Di; Zhao, Limin; Han, Zhongying; Cui, Yaokui; Liu, Baojian; Wang, Cunguang; Yang, Wenting
2017-01-01
Lake surface water temperature (LSWT) is sensitive to long-term changes in thermal structure of lakes and regional air temperature. In the context of global climate change, recent studies showed a significant warming trend of LSWT based on investigating 291 lakes (71% are large lakes, ≥50 km2 each) globally. However, further efforts are needed to examine variation in LSWT at finer regional spatial and temporal scales. The Tibetan Plateau (TP), known as ‘the Roof of the World’ and ‘Asia’s water towers’, exerts large influences on and is sensitive to regional and even global climates. Aiming to examine detailed changing patterns and potential driven mechanisms for temperature variations of lakes across the TP region, this paper presents the first comprehensive data set of 15-year (2001–2015) nighttime and daytime LSWT for 374 lakes (≥10 km2 each), using MODIS (Moderate Resolution Imaging Spectroradiometer) Land Surface Temperature (LST) products as well as four lake boundary shapefiles (i.e., 2002, 2005, 2009, and 2014) derived from Landsat/CBERS/GaoFen-1 satellite images. The data set itself reveals significant information on LSWT and its changes over the TP and is an indispensable variable for numerous applications related to climate change, water budget analysis (particularly lake evaporation), water storage changes, glacier melting and permafrost degradation, etc. PMID:28742066
Wan, Wei; Li, Huan; Xie, Hongjie; Hong, Yang; Long, Di; Zhao, Limin; Han, Zhongying; Cui, Yaokui; Liu, Baojian; Wang, Cunguang; Yang, Wenting
2017-07-25
Lake surface water temperature (LSWT) is sensitive to long-term changes in thermal structure of lakes and regional air temperature. In the context of global climate change, recent studies showed a significant warming trend of LSWT based on investigating 291 lakes (71% are large lakes, ≥50 km 2 each) globally. However, further efforts are needed to examine variation in LSWT at finer regional spatial and temporal scales. The Tibetan Plateau (TP), known as 'the Roof of the World' and 'Asia's water towers', exerts large influences on and is sensitive to regional and even global climates. Aiming to examine detailed changing patterns and potential driven mechanisms for temperature variations of lakes across the TP region, this paper presents the first comprehensive data set of 15-year (2001-2015) nighttime and daytime LSWT for 374 lakes (≥10 km 2 each), using MODIS (Moderate Resolution Imaging Spectroradiometer) Land Surface Temperature (LST) products as well as four lake boundary shapefiles (i.e., 2002, 2005, 2009, and 2014) derived from Landsat/CBERS/GaoFen-1 satellite images. The data set itself reveals significant information on LSWT and its changes over the TP and is an indispensable variable for numerous applications related to climate change, water budget analysis (particularly lake evaporation), water storage changes, glacier melting and permafrost degradation, etc.
NASA Astrophysics Data System (ADS)
Schuberth, Bernhard; Zaroli, Christophe; Nolet, Guust
2015-04-01
Of particular interest for the tectonic evolution of the Atlantic region is the influence of lower mantle structure under Africa on flow in the upper mantle beneath the ocean basin. Along with its Pacific counterpart, the large African anomaly in the lowermost mantle with strongly reduced seismic velocities has received considerable attention in seismological and geodynamic studies. Several seismological observations are typically taken as an indication that these two anomalies are being caused by large-scale compositional variations and that they are piles of material with higher density than normal mantle rock. This would imply negative buoyancy in the lowermost mantle under Africa, which has important implications for the flow at shallower depth and inferences on the processes that led to the formation of the Atlantic Ocean basin. However, a large number of recent studies argue for a strong thermal gradient across the core-mantle boundary that might provide an alternative explanation for the lower mantle anomaly through the resulting large lateral temperature variations. Recently, we developed a new joint forward modeling approach to test such geodynamic hypotheses directly against the seismic observations: Seismic heterogeneity is predicted by converting the temperature field of a high-resolution 3-D mantle circulation model into seismic velocities using thermodynamic models of mantle mineralogy. 3-D global wave propagation in the synthetic elastic structures is then simulated using a spectral element method. Being based on forward modelling only, this approach allows us to generate synthetic wavefields and seismograms independently of seismic observations. The statistics of observed long-period body wave traveltime variations show a markedly different behaviour for P- and S-waves: the standard deviation of P-wave delay times stays almost constant with ray turning depth, while that of the S-wave delay times increases strongly throughout the mantle. In an earlier study, we showed that synthetic traveltime variations computed for an isochemical mantle circulation model with strong core heating can reproduce these different trends. This was taken as a strong indication that seismic heterogeneity in the lower mantle is likely dominated by thermal variations on large length-scales (i.e., relevant for long-period body waves). We will discuss the robustness of this earlier conclusion by exploring the uncertainties in the mineralogical models used to convert temperatures to seismic velocities. In particular, we investigate the influence of anelasticity on the standard deviation of our synthetic traveltime variations. Owing to the differences in seismic frequency content between laboratory measurements (MHz to GHz) and the Earth (mHz to Hz), the seismic velocities given in the mineralogical model need to be adjusted; that is, corrected for dispersion due to anelastic effects.
Egg size variation among tropical and temperate songbirds: An embryonic temperature hypothesis
Martin, T.E.
2008-01-01
Species with 'slow' life history strategies (long life, low fecundity) are thought to produce high-quality offspring by investing in larger, but fewer, young. Larger eggs are indeed associated with fewer eggs across taxa and can yield higher-quality offspring. Tropical passerines appear to follow theory because they commonly exhibit slow life history strategies and produce larger, but fewer, eggs compared with northern species. Yet, I show here that relative egg mass (corrected for adult mass) varies extensively in the tropics and subtropics for the same clutch size, and this variation is unexplained. I propose a hypothesis to explain egg size variation both within the tropics and between latitudes: Relative egg mass increases in species with cooler egg temperatures and longer embryonic periods to offset associated increases in energetic requirements of embryos. Egg temperatures of birds are determined by parental incubation behavior and are often cooler among tropical passerines because of reduced parental attentiveness of eggs. Here, I show that cooler egg temperatures and longer embryonic periods explained the enigmatic variation in egg mass within and among regions, based on field studies in tropical Venezuela (36 species), subtropical Argentina (16 species), and north temperate Arizona (20 species). Alternative explanations are not supported. Thus, large egg sizes may reflect compensation for increased energetic requirements of cool egg temperatures and long embryonic periods that result from reduced parental attentiveness in tropical birds. ?? 2008 by The National Academy of Sciences of the USA.
A comparison of five methods for monitoring the precision of automated x-ray film processors.
Nickoloff, E L; Leo, F; Reese, M
1978-11-01
Five different methods for preparing sensitometric strips used to monitor the precision of automated film processors are compared. A method for determining the sensitivity of each system to processor variations is presented; the observed statistical variability is multiplied by the system response to temperature or chemical changes. Pre-exposed sensitometric strips required the use of accurate densitometers and stringent control limits to be effective. X-ray exposed sensitometric strips demonstrated large variations in the x-ray output (2 omega approximately equal to 8.0%) over a period of one month. Some light sensitometers were capable of detecting +/- 1.0 degrees F (+/- 0.6 degrees C) variations in developer temperature in the processor and/or about 10.0 ml of chemical contamination in the processor. Nevertheless, even the light sensitometers were susceptible to problems, e.g. film emulsion selection, line voltage variations, and latent image fading. Advantages and disadvantages of the various sensitometric methods are discussed.
NASA Technical Reports Server (NTRS)
Enginer, J. E.; Luedke, E. E.; Wanous, D. J.
1976-01-01
Continuing efforts in large gains in heat-pipe performance are reported. It was found that gas-controlled variable-conductance heat pipes can perform reliably for long periods in space and effectively provide temperature stabilization for spacecraft electronics. A solution was formulated that allows the control gas to vent through arterial heat-pipe walls, thus eliminating the problem of arterial failure under load, due to trace impurities of noncondensable gas trapped in an arterial bubble during priming. This solution functions well in zero gravity. Another solution was found that allows priming at a much lower fluid charge. A heat pipe with high capacity, with close temperature control of the heat source and independent of large variations in sink temperature was fabricated.
NASA Technical Reports Server (NTRS)
Nastrom, G. D.; Belmont, A. D.
1975-01-01
The diurnal component in meridional wind was observed for each season at twelve rocket stations. Amplitudes and phases are presented as a function of height-latitude or as vertical profiles. Many of the gross features of the tide persist throughout the year, but as they migrate in height and latitude the amplitude or phase at a given location may undergo large changes with season. Longitudinal variations in the diurnal tide are found in the mid-stratosphere, and it is suggested they are coupled with longitudinal variations in the tropospheric temperature structure.
Peng, Biaolin; Zhang, Qi; Li, Xing; Sun, Tieyu; Fan, Huiqing; Ke, Shanming; Ye, Mao; Wang, Yu; Lu, Wei; Niu, Hanben; Zeng, Xierong; Huang, Haitao
2015-06-24
A highly textured (111)-oriented Pb0.8Ba0.2ZrO3 (PBZ) relaxor thin film with the coexistence of antiferroelectric (AFE) and ferroelectric (FE) phases was prepared on a Pt/TiOx/SiO2/Si(100) substrate by using a sol-gel method. A large recoverable energy storage density of 40.18 J/cm(3) along with an efficiency of 64.1% was achieved at room temperature. Over a wide temperature range of 250 K (from room temperature to 523 K), the variation of the energy density is within 5%, indicating a high thermal stability. The high energy storage performance was endowed by a large dielectric breakdown strength, great relaxor dispersion, highly textured orientation, and the coexistence of FE and AFE phases. The PBZ thin film is believed to be an attractive material for applications in energy storage systems over a wide temperature range.
Ammann, Caspar M.; Joos, Fortunat; Schimel, David S.; Otto-Bliesner, Bette L.; Tomas, Robert A.
2007-01-01
The potential role of solar variations in modulating recent climate has been debated for many decades and recent papers suggest that solar forcing may be less than previously believed. Because solar variability before the satellite period must be scaled from proxy data, large uncertainty exists about phase and magnitude of the forcing. We used a coupled climate system model to determine whether proxy-based irradiance series are capable of inducing climatic variations that resemble variations found in climate reconstructions, and if part of the previously estimated large range of past solar irradiance changes could be excluded. Transient simulations, covering the published range of solar irradiance estimates, were integrated from 850 AD to the present. Solar forcing as well as volcanic and anthropogenic forcing are detectable in the model results despite internal variability. The resulting climates are generally consistent with temperature reconstructions. Smaller, rather than larger, long-term trends in solar irradiance appear more plausible and produced modeled climates in better agreement with the range of Northern Hemisphere temperature proxy records both with respect to phase and magnitude. Despite the direct response of the model to solar forcing, even large solar irradiance change combined with realistic volcanic forcing over past centuries could not explain the late 20th century warming without inclusion of greenhouse gas forcing. Although solar and volcanic effects appear to dominate most of the slow climate variations within the past thousand years, the impacts of greenhouse gases have dominated since the second half of the last century. PMID:17360418
Electronic effects on melting: Comparison of aluminum cluster anions and cations
NASA Astrophysics Data System (ADS)
Starace, Anne K.; Neal, Colleen M.; Cao, Baopeng; Jarrold, Martin F.; Aguado, Andrés; López, José M.
2009-07-01
Heat capacities have been measured as a function of temperature for aluminum cluster anions with 35-70 atoms. Melting temperatures and latent heats are determined from peaks in the heat capacities; cohesive energies are obtained for solid clusters from the latent heats and dissociation energies determined for liquid clusters. The melting temperatures, latent heats, and cohesive energies for the aluminum cluster anions are compared to previous measurements for the corresponding cations. Density functional theory calculations have been performed to identify the global minimum energy geometries for the cluster anions. The lowest energy geometries fall into four main families: distorted decahedral fragments, fcc fragments, fcc fragments with stacking faults, and "disordered" roughly spherical structures. The comparison of the cohesive energies for the lowest energy geometries with the measured values allows us to interpret the size variation in the latent heats. Both geometric and electronic shell closings contribute to the variations in the cohesive energies (and latent heats), but structural changes appear to be mainly responsible for the large variations in the melting temperatures with cluster size. The significant charge dependence of the latent heats found for some cluster sizes indicates that the electronic structure can change substantially when the cluster melts.
NASA Astrophysics Data System (ADS)
Christen, Hans M.; Ohkubo, Isao; Rouleau, Christopher M.; Jellison, Gerald E., Jr.; Puretzky, Alex A.; Geohegan, David B.; Lowndes, Douglas H.
2005-01-01
Parallel (multi-sample) approaches, such as discrete combinatorial synthesis or continuous compositional-spread (CCS), can significantly increase the rate of materials discovery and process optimization. Here we review our generalized CCS method, based on pulsed-laser deposition, in which the synchronization between laser firing and substrate translation (behind a fixed slit aperture) yields the desired variations of composition and thickness. In situ alloying makes this approach applicable to the non-equilibrium synthesis of metastable phases. Deposition on a heater plate with a controlled spatial temperature variation can additionally be used for growth-temperature-dependence studies. Composition and temperature variations are controlled on length scales large enough to yield sample sizes sufficient for conventional characterization techniques (such as temperature-dependent measurements of resistivity or magnetic properties). This technique has been applied to various experimental studies, and we present here the results for the growth of electro-optic materials (SrxBa1-xNb2O6) and magnetic perovskites (Sr1-xCaxRuO3), and discuss the application to the understanding and optimization of catalysts used in the synthesis of dense forests of carbon nanotubes.
NASA Astrophysics Data System (ADS)
Cardoso, Ricardo S.; Defeo, Omar
2004-11-01
Biogeographic patterns in life history traits of the Pan-American sandy beach isopod Excirolana braziliensis were analyzed to determine latitudinal variations along its distribution, from tropical (9°N) to temperate (39°S) sandy beaches in Atlantic and Pacific oceans. Population features exhibited systematic geographical patterns of variation: (1) an increase in individual sizes and growth rates towards temperate beaches, following an inverse relationship with mean water temperature of the surf zone; (2) a shift from almost continuous to seasonal growth from subtropical to temperate Atlantic beaches and a positive relationship between amplitude of intra-annual growth oscillations and temperature range; (3) a linear decrease in life span and an increase in natural mortality from temperate to subtropical beaches; and (4) an increase in the individual mass-at-size (length-mass relationship) from subtropical to temperate beaches. Analyses discriminated by sex were consistent with the patterns illustrated above. Local effects of temperature and beach morphodynamics are discussed. Our results demonstrate that the population dynamics of E. braziliensis is highly plastic over latitudinal gradients, with large-scale variations in temperature and concurrent environmental variables leading to an adjustment of the phenotype-environment relationship.
Genome Wide Analysis of Fatty Acid Desaturation and Its Response to Temperature1[OPEN
Menard, Guillaume N.; Moreno, Jose Martin; Bryant, Fiona M.; Munoz-Azcarate, Olaya; Hassani-Pak, Keywan; Kurup, Smita
2017-01-01
Plants modify the polyunsaturated fatty acid content of their membrane and storage lipids in order to adapt to changes in temperature. In developing seeds, this response is largely controlled by the activities of the microsomal ω-6 and ω-3 fatty acid desaturases, FAD2 and FAD3. Although temperature regulation of desaturation has been studied at the molecular and biochemical levels, the genetic control of this trait is poorly understood. Here, we have characterized the response of Arabidopsis (Arabidopsis thaliana) seed lipids to variation in ambient temperature and found that heat inhibits both ω-6 and ω-3 desaturation in phosphatidylcholine, leading to a proportional change in triacylglycerol composition. Analysis of the 19 parental accessions of the multiparent advanced generation intercross (MAGIC) population showed that significant natural variation exists in the temperature responsiveness of ω-6 desaturation. A combination of quantitative trait locus (QTL) analysis and genome-wide association studies (GWAS) using the MAGIC population suggests that ω-6 desaturation is largely controlled by cis-acting sequence variants in the FAD2 5′ untranslated region intron that determine the expression level of the gene. However, the temperature responsiveness of ω-6 desaturation is controlled by a separate QTL on chromosome 2. The identity of this locus is unknown, but genome-wide association studies identified potentially causal sequence variants within ∼40 genes in an ∼450-kb region of the QTL. PMID:28108698
Solar wind temperature observations in the outer heliosphere
NASA Technical Reports Server (NTRS)
Gazis, P. R.; Barnes, A.; Mihalov, J. D.; Lazarus, A. J.
1992-01-01
The Pioneer 10, Pioneer 11, and Voyager 2 spacecraft are now at heliocentric distances of 50, 32 and 33 AU, and heliographic latitudes of 3.5 deg N, 17 deg N, and 0 deg N, respectively. Pioneer 11 and Voyager 2 are at similar celestial longitudes, while Pioneer l0 is on the opposite side of the sun. The baselines defined by these spacecraft make it possible to resolve radial, longitudinal, and latitudinal variations of solar wind parameters. The solar wind temperature decreases with increasing heliocentric distance out to a distance of 10-15 AU. At larger heliocentric distances, this gradient disappears. These high solar wind temperatures in the outer heliosphere have persisted for at least 10 years, which suggests that they are not a solar cycle effect. The solar wind temperature varied with heliographic latitude during the most recent solar minimum. The solar wind temperature at Pioneer 11 and Voyager 2 was higher than that seen at Pioneer 10 for an extended period of time, which suggests the existence of a large-scale variation of temperature with celestial longitude, but the contribution of transient phenomena is yet to be clarified.
Feng, Jing; Duan, Wen-Biao; Chen, Li-Xin
2012-07-01
HOBO automatic weather stations were installed in the central parts and at the south, north, east, and west edges of large, medium, and small gaps in a Pinus koraiensis-dominated broadleaved mixed forest in Xiaoxing' anling Mountains to measure the air temperature, relative humidity, and photosynthetic photon flux density (PPFD) in these locations and the total radiation and precipitation in the gap centres from June to September 2010, taking the closed forest stand and open field as the controls. The differences in the microclimate between various size forest gaps and between the gap centers and their edges as well as the variations of the microclimatic factors over time were analyzed, and the effects of sunny and overcast days on the diurnal variations of the microclimatic factors within forest gaps were compared, aimed to offer basic data and practice reference for gap regeneration and sustainable management of Pinus koraiensis-dominated broadleaved mixed forest. The PPFD was decreased in the order of large gap, medium gap, and small gap. For the same gaps, the PPFD in gap centre was greater than that in gap edge. The mean monthly air temperature and total radiation in gap centres were declined in the sequence of July, June, August, and September, and the amplitudes of the two climatic factors were decreased in the order of open field, large gap, medium gap, small gap, and closed forest stand. The mean monthly relative humidity in gap centres dropped in the order of August, July, September, and June, and the amplitude of this climatic factor was decreased in the sequence of closed forest stand, small gap, medium gap, large gap, and open field. The total and monthly precipitations for the three different size gaps and open field during measurement period generally decreased in the order of open field, large gap, medium gap, small gap, and closed forest stand. In sunny days, the variations of PPFD, air temperature, and relative humidity were greater in large gap than in small gap, but in overcast days, it was in opposite.
NASA Astrophysics Data System (ADS)
Huntington, K. W.; Peters, N.; Roe, G.; Hoke, G. D.; Eiler, J.
2010-12-01
Soil carbonates archive a potentially rich record of past climate, but rates of pedogenic carbonate formation, erosion, and deposition impact how the isotopic composition and formation temperature of carbonate-bearing paleosols reflect the local environmental conditions under which they form. We investigate these processes using conventional stable isotope (δ18O and δ13C) and clumped isotope thermometry data for Quaternary pedogenic carbonates from the southern Central Andes at ~33°S, Argentina. The study area spans over 2 km of relief in the Río Mendoza and Río de las Cuevas valleys, accessing a range of mean annual temperature conditions and vegetative cover and exhibiting large seasonal variations in temperature, precipitation, and soil moisture. Variations in soil conditions influence carbonate precipitation and dissolution reactions and the rate and depth of pedogenic carbonate formation. Because soil temperature varies predictably as a function of depth in the soil and seasonal and secular variations in air temperature, clumped isotope thermometry of samples collected in soil pits offers a direct way to estimate the seasonality of pedogenic carbonate formation and potential biases in the long-term climate record. We explore potential complications due to the effects of radiative solar heating on the relationship between air and soil temperatures by examining clumped isotope thermometry results in the context of site-to-site variations in vegetative cover. Temperature estimates from clumped isotope thermometry of pedogenic carbonate collected 5-110 cm below geomorphically stable soil surfaces from 1200-3400 m a.s.l. are compared to temperature profiles predicted by simple rule-based models of soil carbonate formation. The models use climate reanalysis daily diagnostic data (soil temperature, soil moisture, and latent heat flux as a proxy for evaporation) and weather station data as input to assess how varying rates of pedogenic carbonate formation integrated over millennial timescales might impact the geologic record of temperature and isotopic composition.
NASA Astrophysics Data System (ADS)
Cai, Jiaxi; Guan, Zhaoyong; Ma, Fenhua
2016-12-01
Based on the temperature data from the China Meteorological Administration, NCEP-NCAR reanalysis data, and the TOMS Aerosol Index (AI), we analyze the variations in the summertime diurnal temperature range (DTR) and temperature maxima in the middle and lower reaches of the Yangtze River (MLRYR) in China. The possible relationships between the direct warming effect of the absorbing aerosol and temperature variations are further investigated, although with some uncertainties. It is found that the summertime DTR exhibits a decreasing trend over the most recent 50 years, along with a slight increasing tendency since the 1980s. The trend of the maximum temperature is in agreement with those of the DTR and the absorbing aerosols. To investigate the causes of the large anomalies in the temperature maxima, composite analyses of the circulation anomalies are performed. When anomalous AI and anomalous maximum temperature over the MLRYR have the same sign, an anomalous circulation with a quasi-barotropic structure occurs there. This anomalous circulation is modulated by the Rossby wave energy propagations from the regions northwest of the MLRYR and influences the northwestern Pacific subtropical high over the MLRYR. In combination with aerosols, the anomalous circulation may increase the maximum temperature in this region. Conversely, when the anomalous AI and anomalous maximum temperature in the MLRYR have opposite signs, the anomalous circulation is not equivalently barotropic, which possibly offsets the warming effect of aerosols on the maximum temperature changes in this region. These results are helpful for a better understanding of the DTR changes and the occurrences of temperature extremes in the MLRYR region during boreal summer.
Geng, Yan; Wang, Yonghui; Yang, Kuo; Wang, Shaopeng; Zeng, Hui; Baumann, Frank; Kuehn, Peter; Scholten, Thomas; He, Jin-Sheng
2012-01-01
The Tibetan Plateau is an essential area to study the potential feedback effects of soils to climate change due to the rapid rise in its air temperature in the past several decades and the large amounts of soil organic carbon (SOC) stocks, particularly in the permafrost. Yet it is one of the most under-investigated regions in soil respiration (Rs) studies. Here, Rs rates were measured at 42 sites in alpine grasslands (including alpine steppes and meadows) along a transect across the Tibetan Plateau during the peak growing season of 2006 and 2007 in order to test whether: (1) belowground biomass (BGB) is most closely related to spatial variation in Rs due to high root biomass density, and (2) soil temperature significantly influences spatial pattern of Rs owing to metabolic limitation from the low temperature in cold, high-altitude ecosystems. The average daily mean Rs of the alpine grasslands at peak growing season was 3.92 µmol CO2 m−2 s−1, ranging from 0.39 to 12.88 µmol CO2 m−2 s−1, with average daily mean Rs of 2.01 and 5.49 µmol CO2 m−2 s−1 for steppes and meadows, respectively. By regression tree analysis, BGB, aboveground biomass (AGB), SOC, soil moisture (SM), and vegetation type were selected out of 15 variables examined, as the factors influencing large-scale variation in Rs. With a structural equation modelling approach, we found only BGB and SM had direct effects on Rs, while other factors indirectly affecting Rs through BGB or SM. Most (80%) of the variation in Rs could be attributed to the difference in BGB among sites. BGB and SM together accounted for the majority (82%) of spatial patterns of Rs. Our results only support the first hypothesis, suggesting that models incorporating BGB and SM can improve Rs estimation at regional scale. PMID:22509373
Advancing decadal-scale climate prediction in the North Atlantic sector.
Keenlyside, N S; Latif, M; Jungclaus, J; Kornblueh, L; Roeckner, E
2008-05-01
The climate of the North Atlantic region exhibits fluctuations on decadal timescales that have large societal consequences. Prominent examples include hurricane activity in the Atlantic, and surface-temperature and rainfall variations over North America, Europe and northern Africa. Although these multidecadal variations are potentially predictable if the current state of the ocean is known, the lack of subsurface ocean observations that constrain this state has been a limiting factor for realizing the full skill potential of such predictions. Here we apply a simple approach-that uses only sea surface temperature (SST) observations-to partly overcome this difficulty and perform retrospective decadal predictions with a climate model. Skill is improved significantly relative to predictions made with incomplete knowledge of the ocean state, particularly in the North Atlantic and tropical Pacific oceans. Thus these results point towards the possibility of routine decadal climate predictions. Using this method, and by considering both internal natural climate variations and projected future anthropogenic forcing, we make the following forecast: over the next decade, the current Atlantic meridional overturning circulation will weaken to its long-term mean; moreover, North Atlantic SST and European and North American surface temperatures will cool slightly, whereas tropical Pacific SST will remain almost unchanged. Our results suggest that global surface temperature may not increase over the next decade, as natural climate variations in the North Atlantic and tropical Pacific temporarily offset the projected anthropogenic warming.
Liu, Yuan; He, Nianpeng; Zhu, Jianxing; Xu, Li; Yu, Guirui; Niu, Shuli; Sun, Xiaomin; Wen, Xuefa
2017-08-01
How to assess the temperature sensitivity (Q 10 ) of soil organic matter (SOM) decomposition and its regional variation with high accuracy is one of the largest uncertainties in determining the intensity and direction of the global carbon (C) cycle in response to climate change. In this study, we collected a series of soils from 22 forest sites and 30 grassland sites across China to explore regional variation in Q 10 and its underlying mechanisms. We conducted a novel incubation experiment with periodically changing temperature (5-30 °C), while continuously measuring soil microbial respiration rates. The results showed that Q 10 varied significantly across different ecosystems, ranging from 1.16 to 3.19 (mean 1.63). Q 10 was ordered as follows: alpine grasslands (2.01) > temperate grasslands (1.81) > tropical forests (1.59) > temperate forests (1.55) > subtropical forests (1.52). The Q 10 of grasslands (1.90) was significantly higher than that of forests (1.54). Furthermore, Q 10 significantly increased with increasing altitude and decreased with increasing longitude. Environmental variables and substrate properties together explained 52% of total variation in Q 10 across all sites. Overall, pH and soil electrical conductivity primarily explained spatial variation in Q 10 . The general negative relationships between Q 10 and substrate quality among all ecosystem types supported the C quality temperature (CQT) hypothesis at a large scale, which indicated that soils with low quality should have higher temperature sensitivity. Furthermore, alpine grasslands, which had the highest Q 10 , were predicted to be more sensitive to climate change under the scenario of global warming. © 2017 John Wiley & Sons Ltd.
Darnaude, Audrey M.; Sturrock, Anna; Trueman, Clive N.; Mouillot, David; EIMF; Campana, Steven E.; Hunter, Ewan
2014-01-01
Oxygen isotope ratios from fish otoliths are used to discriminate marine stocks and reconstruct past climate, assuming that variations in otolith δ18O values closely reflect differences in temperature history of fish when accounting for salinity induced variability in water δ18O. To investigate this, we exploited the environmental and migratory data gathered from a decade using archival tags to study the behaviour of adult plaice (Pleuronectes platessa L.) in the North Sea. Based on the tag-derived monthly distributions of the fish and corresponding temperature and salinity estimates modelled across three consecutive years, we first predicted annual otolith δ18O values for three geographically discrete offshore sub-stocks, using three alternative plausible scenarios for otolith growth. Comparison of predicted vs. measured annual δ18O values demonstrated >96% correct prediction of sub-stock membership, irrespective of the otolith growth scenario. Pronounced inter-stock differences in δ18O values, notably in summer, provide a robust marker for reconstructing broad-scale plaice distribution in the North Sea. However, although largely congruent, measured and predicted annual δ18O values of did not fully match. Small, but consistent, offsets were also observed between individual high-resolution otolith δ18O values measured during tag recording time and corresponding δ18O predictions using concomitant tag-recorded temperatures and location-specific salinity estimates. The nature of the shifts differed among sub-stocks, suggesting specific vital effects linked to variation in physiological response to temperature. Therefore, although otolith δ18O in free-ranging fish largely reflects environmental temperature and salinity, we counsel prudence when interpreting otolith δ18O data for stock discrimination or temperature reconstruction until the mechanisms underpinning otolith δ18O signature acquisition, and associated variation, are clarified. PMID:25279667
Li Isotope Studies of Olivine in Mantle Xenoliths by SIMS
NASA Technical Reports Server (NTRS)
Bell, D. R.; Hervig, R. L.; Buseck, P. R.
2005-01-01
Variations in the ratio of the stable isotopes of Li are a potentially powerful tracer of processes in planetary and nebular environments [1]. Large differences in the 7Li/6Li ratio between the terrestrial upper mantle and various crustal materials make Li isotope composition a potentially powerful tracer of crustal recycling processes on Earth [2]. Recent SIMS studies of terrestrial mantle and Martian meteorite samples report intra-mineral Li isotope zoning [3-5]. Substantial Li isotope heterogeneity also exists within and between the components of chondritic meteorites [6,7]. Experimental studies of Li diffusion suggest the potential for rapid isotope exchange at elevated temperatures [8]. Large variations in 7Li, exceeding the range of unaltered basalts, occur in terrestrial mantle-derived xenoliths from individual localities [9]. The origins of these variations are not fully understood.
Climate Impacts on Extreme Energy Consumption of Different Types of Buildings
Li, Mingcai; Shi, Jun; Guo, Jun; Cao, Jingfu; Niu, Jide; Xiong, Mingming
2015-01-01
Exploring changes of building energy consumption and its relationships with climate can provide basis for energy-saving and carbon emission reduction. Heating and cooling energy consumption of different types of buildings during 1981-2010 in Tianjin city, was simulated by using TRNSYS software. Daily or hourly extreme energy consumption was determined by percentile methods, and the climate impact on extreme energy consumption was analyzed. The results showed that days of extreme heating consumption showed apparent decrease during the recent 30 years for residential and large venue buildings, whereas days of extreme cooling consumption increased in large venue building. No significant variations were found for the days of extreme energy consumption for commercial building, although a decreasing trend in extreme heating energy consumption. Daily extreme energy consumption for large venue building had no relationship with climate parameters, whereas extreme energy consumption for commercial and residential buildings was related to various climate parameters. Further multiple regression analysis suggested heating energy consumption for commercial building was affected by maximum temperature, dry bulb temperature, solar radiation and minimum temperature, which together can explain 71.5 % of the variation of the daily extreme heating energy consumption. The daily extreme cooling energy consumption for commercial building was only related to the wet bulb temperature (R2= 0.382). The daily extreme heating energy consumption for residential building was affected by 4 climate parameters, but the dry bulb temperature had the main impact. The impacts of climate on hourly extreme heating energy consumption has a 1-3 hour delay in all three types of buildings, but no delay was found in the impacts of climate on hourly extreme cooling energy consumption for the selected buildings. PMID:25923205
Climate impacts on extreme energy consumption of different types of buildings.
Li, Mingcai; Shi, Jun; Guo, Jun; Cao, Jingfu; Niu, Jide; Xiong, Mingming
2015-01-01
Exploring changes of building energy consumption and its relationships with climate can provide basis for energy-saving and carbon emission reduction. Heating and cooling energy consumption of different types of buildings during 1981-2010 in Tianjin city, was simulated by using TRNSYS software. Daily or hourly extreme energy consumption was determined by percentile methods, and the climate impact on extreme energy consumption was analyzed. The results showed that days of extreme heating consumption showed apparent decrease during the recent 30 years for residential and large venue buildings, whereas days of extreme cooling consumption increased in large venue building. No significant variations were found for the days of extreme energy consumption for commercial building, although a decreasing trend in extreme heating energy consumption. Daily extreme energy consumption for large venue building had no relationship with climate parameters, whereas extreme energy consumption for commercial and residential buildings was related to various climate parameters. Further multiple regression analysis suggested heating energy consumption for commercial building was affected by maximum temperature, dry bulb temperature, solar radiation and minimum temperature, which together can explain 71.5 % of the variation of the daily extreme heating energy consumption. The daily extreme cooling energy consumption for commercial building was only related to the wet bulb temperature (R2= 0.382). The daily extreme heating energy consumption for residential building was affected by 4 climate parameters, but the dry bulb temperature had the main impact. The impacts of climate on hourly extreme heating energy consumption has a 1-3 hour delay in all three types of buildings, but no delay was found in the impacts of climate on hourly extreme cooling energy consumption for the selected buildings.
The Biological Nature of Geochemical Proxies: algal symbionts affect coral skeletal chemistry
NASA Astrophysics Data System (ADS)
Owens, K.; Cohen, A. L.; Shimizu, N.
2001-12-01
The strontium-calcium ratio (Sr/Ca) of reef coral skeleton is an important ocean temperature proxy that has been used to address some particularly controversial climate change issues. However, the paleothermometer has sometimes proven unreliable and there are indications that the temperature-dependence of Sr/Ca in coral aragonite is linked to the photosynthetic activity of algal symbionts (zooxanthellae) in coral tissue. We examined the effect of algal symbiosis on skeletal chemistry using Astrangia danae, a small colonial temperate scleractinian that occurs naturally with and without zooxanthellae. Live symbiotic (deep brown) and asymbiotic (white) colonies of similar size were collected in Woods Hole where water temperatures fluctuate seasonally between -2oC and 23oC. We used a microbeam technique (Secondary Ion Mass Spectrometry) and a 30 micron diameter sampling beam to construct high-resolution Sr/Ca profiles, 2500 microns long, down the growth axes of the outer calical (thecal) walls. Profiles generated from co-occuring symbiotic and asymbiotic colonies are remarkably different despite their exposure to identical water temperatures. Symbiotic coral Sr/Ca displays four large-amplitude annual cycles with high values in the winter, low values in the summer and a temperature dependence similar to that of tropical reef corals. By comparison, Sr/Ca profiles constructed from asymbiotic coral skeleton display little variability over the same time period. Asymbiont Sr/Ca is relatively insensitive to the enormous temperature changes experienced over the year; the temperature dependence is similar to that of nighttime skeletal deposits in tropical reef corals and non-biological aragonite precipitates. We propose that the large variations in skeletal Sr/Ca observed in all symbiont-hosting coral species are not related to SST variability per se but are driven primarily by large seasonal variations in skeletal calcification rate associated with symbiont photosynthesis. Our model provides a framework for understanding the role of biology in determining coral skeletal chemistry and an explanation for anomalous Sr/Ca-based paleotemperature derivations.
NASA Astrophysics Data System (ADS)
Greiner, Nathan J.
Modern turbine engines require high turbine inlet temperatures and pressures to maximize thermal efficiency. Increasing the turbine inlet temperature drives higher heat loads on the turbine surfaces. In addition, increasing pressure ratio increases the turbine coolant temperature such that the ability to remove heat decreases. As a result, highly effective external film cooling is required to reduce the heat transfer to turbine surfaces. Testing of film cooling on engine hardware at engine temperatures and pressures can be exceedingly difficult and expensive. Thus, modern studies of film cooling are often performed at near ambient conditions. However, these studies are missing an important aspect in their characterization of film cooling effectiveness. Namely, they do not model effect of thermal property variations that occur within the boundary and film cooling layers at engine conditions. Also, turbine surfaces can experience significant radiative heat transfer that is not trivial to estimate analytically. The present research first computationally examines the effect of large temperature variations on a turbulent boundary layer. Subsequently, a method to model the effect of large temperature variations within a turbulent boundary layer in an environment coupled with significant radiative heat transfer is proposed and experimentally validated. Next, a method to scale turbine cooling from ambient to engine conditions via non-dimensional matching is developed computationally and the experimentally validated at combustion temperatures. Increasing engine efficiency and thrust to weight ratio demands have driven increased combustor fuel-air ratios. Increased fuel-air ratios increase the possibility of unburned fuel species entering the turbine. Alternatively, advanced ultra-compact combustor designs have been proposed to decrease combustor length, increase thrust, or generate power for directed energy weapons. However, the ultra-compact combustor design requires a film cooled vane within the combustor. In both these environments, the unburned fuel in the core flow encounters the oxidizer rich film cooling stream, combusts, and can locally heat the turbine surface rather than the intended cooling of the surface. Accordingly, a method to quantify film cooling performance in a fuel rich environment is prescribed. Finally, a method to film cool in a fuel rich environment is experimentally demonstrated.
Tropical Convective Outflow and Near Surface Equivalent Potential Temperatures
NASA Technical Reports Server (NTRS)
Folkins, Ian; Oltmans, Samuel J.; Thompson, Anne M.; Einaudi, Franco (Technical Monitor)
2000-01-01
We use clear sky heating rates to show that convective outflow in the tropics decreases rapidly with height between the 350 K and 360 K potential temperature surfaces (or between roughly 13 and 15 km). There is also a rapid fall-off in the pseudoequivalent potential temperature probability distribution of near surface air parcels between 350 K and 360 K. This suggests that the vertical variation of convective outflow in the upper tropical troposphere is to a large degree determined by the distribution of sub cloud layer entropy.
Altitude profiles of temperature from 4 to 80 km over the tropics from MST radar and lidar
NASA Astrophysics Data System (ADS)
Parameswaran, K.; Sasi, M. N.; Ramkumar, G.; Nair, P. R.; Deepa, V.; Murthy, B. V. K.; Nayar, S. R. P.; Revathy, K.; Mrudula, G.; Satheesan, K.; Bhavanikumar, Y.; Sivakumar, V.; Raghunath, K.; Rajendraprasad, T.; Krishnaiah, M.
2000-10-01
Using ground-based techniques of MST radar and Lidar, temperature profiles in the entire height range of 4 to 75km are obtained for the first time at a tropical location. The temporal resolution of the profiles is ~1h in the lower altitudes and 12.5min in the higher altitudes and altitude resolution is ~300m. The errors involved in the derived values are presented. Preliminary analysis of temperature variations in a night revealed fluctuations with characteristics resembling those of large-scale gravity waves.
Solar receiver performance of point focusing collector system
NASA Technical Reports Server (NTRS)
Wu, Y. C.; Wen, L. C.
1978-01-01
The solar receiver performance of cavity receivers and external receivers used in dispersed solar power systems was evaluated for the temperature range 300-1300 C. Several parameters of receiver and concentrator are examined. It was found that cavity receivers are generally more efficient than external receivers, especially at high temperatures which require a large heat transfer area. The effects of variation in the ratio of receiver area to aperture area are considered.
Putilov, Arcady A
2017-01-01
Compared to literature on seasonal variation in mood and well-being, reports on seasonality of trouble sleeping are scarce and contradictive. To extend geography of such reports on example of people naturally exposed to high-amplitude annual variation in daylength and/or temperature. Participants were the residents of Turkmenia, West Siberia, South and North Yakutia, Chukotka, and Alaska. Health and sleep-wake adaptabilities, month-to-month variation in sleeping problems, well-being and behaviors were self-assessed. More than a half of 2398 respondents acknowledged seasonality of sleeping problems. Four of the assessed sleeping problems demonstrated three different patterns of seasonal variation. Rate of the problems significantly increased in winter months with long nights and cold days (daytime sleepiness and difficulties falling and staying asleep) as well as in summer months with either long days (premature awakening and difficulties falling and staying asleep) or hot nights and days (all 4 sleeping problems). Individual differences between respondents in pattern and level of seasonality of sleeping problems were significantly associated with differences in several other domains of individual variation, such as gender, age, ethnicity, physical health, morning-evening preference, sleep quality, and adaptability of the sleep-wake cycle. These results have practical relevance to understanding of the roles playing by natural environmental factors in seasonality of sleeping problems as well as to research on prevalence of sleep disorders and methods of their prevention and treatment in regions with large seasonal differences in temperature and daylength.
The Spatial Coherence of Interannual Temperature Variations in the Antarctic Peninsula
NASA Technical Reports Server (NTRS)
King, John C.; Comiso, Josefino C.; Koblinsky, Chester J. (Technical Monitor)
2002-01-01
Over 50 years of observations from climate stations on the west coast of the Antarctic Peninsula show that this is a region of extreme interannual variability in near-surface temperatures. The region has also experienced more rapid warming than any other part of the Southern Hemisphere. In this paper we use a new dataset of satellite-derived surface temperatures to define the extent of the region of extreme variability more clearly than was possible using the sparse station data. The region in which satellite surface temperatures correlate strongly with west Peninsula station temperatures is found to be quite small and is largely confined to the seas just west of the Peninsula, with a northward and eastward extension into the Scotia Sea and a southward extension onto the western slopes of Palmer Land. Correlation of Peninsula surface temperatures with surface temperatures over the rest of continental Antarctica is poor confirming that the west Peninsula is in a different climate regime. The analysis has been used to identify sites where ice core proxy records might be representative of variations on the west coast of the Peninsula. Of the five existing core sites examined, only one is likely to provide a representative record for the west coast.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lou, Sijia; Russell, Lynn M.; Yang, Yang
We used 150-year pre-industrial simulations of the Community Earth System Model (CESM) to quantify the impacts of interactively-modeled dust emissions on the interannual variations of temperature and precipitation over East Asia during the East Asian Winter Monsoon (EAWM) season. The simulated December-January-February dust column burden and dust optical depth are lower over northern China in the strongest EAWM years than those of the weakest years, with regional mean values lower by 38.3% and 37.2%, respectively. The decrease in dust over the dust source regions (the Taklamakan and Gobi Deserts) and the downwind region (such as the North China Plain) leadsmore » to an increase in direct radiative forcing (RF) both at the surface and top of atmosphere by up to 1.5 and 0.75 W m-2, respectively. The effects of EAWM-related variations in surface winds, precipitation and their effects on dust emissions and wet removal contribute about 67% to the total dust-induced variations of direct RF at the surface and partly offset the cooling that occurs with the EAWM strengthening by heating the surface. The variations of surface air temperature induced by the changes in wind and dust emissions increase by 0.4-0.6 K over eastern coastal China, northeastern China, and Japan, which weakens the impact of EAWM on surface air temperature by 3–18% in these regions. The warming results from the combined effects of changes in direct RF and easterly wind anomalies that bring warm air from the ocean to these regions. Moreover, the feedback of the changes in wind on dust emissions weakens the variations of the sea level pressure gradient on the Siberian High while enhancing the Maritime Continent Low. Therefore, cold air is prevented from being transported from Siberia, Kazakhstan, western and central China to the western Pacific Ocean and decreases surface air temperature by 0.6 K and 2 K over central China and the Tibetan Plateau, respectively. Over eastern coastal China, the variations of large-scale precipitation induced by the feedback of EAWM-related changes in wind on dust emissions increase by 10-30% in winter because of the increase in surface air temperature and the anomalous circulation.« less
NASA Astrophysics Data System (ADS)
Trolese, Matteo; Giordano, Guido; Cifelli, Francesca; Winkler, Aldo; Mattei, Massimo
2017-11-01
Few studies have detailed the thermal architecture of large-volume pyroclastic density current deposits, although such work has a clear importance for understanding the dynamics of eruptions of this magnitude. Here we examine the temperature of emplacement of large-volume caldera-forming ignimbrites related to magmatic and phreatomagmatic eruptions at the Colli Albani volcano, Italy, by using thermal remanent magnetization analysis on both lithic and juvenile clasts. Results show that all the magmatic ignimbrites were deposited at high temperature, between the maximum blocking temperature of the magnetic carrier (600-630 °C) and the glass transition temperature (about 710 °C). Temperature estimations for the phreatomagmatic ignimbrite range between 200 and 400 °C, with most of the clasts emplaced between 200 and 320 °C. Because all the investigated ignimbrites, magmatic and phreatomagmatic, share similar magma composition, volume and mobility, we attribute the temperature difference to magma-water interaction, highlighting its pronounced impact on thermal dissipation, even in large-volume eruptions. The homogeneity of the deposit temperature of each ignimbrite across its areal extent, which is maintained across topographic barriers, suggests that these systems are thermodynamically isolated from the external environment for several tens of kilometers. Based on these findings, we propose that these large-volume ignimbrites are dominated by the mass flux, which forces the lateral transport of mass, momentum, and thermal energy for distances up to tens of kilometers away from the vent. We conclude that spatial variation of the emplacement temperature can be used as a proxy for determining the degree of forced-convection flow.
Ro-vibrational averaging of the isotropic hyperfine coupling constant for the methyl radical
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adam, Ahmad Y.; Jensen, Per, E-mail: jensen@uni-wuppertal.de; Yachmenev, Andrey
2015-12-28
We present the first variational calculation of the isotropic hyperfine coupling constant of the carbon-13 atom in the CH{sub 3} radical for temperatures T = 0, 96, and 300 K. It is based on a newly calculated high level ab initio potential energy surface and hyperfine coupling constant surface of CH{sub 3} in the ground electronic state. The ro-vibrational energy levels, expectation values for the coupling constant, and its temperature dependence were calculated variationally by using the methods implemented in the computer program TROVE. Vibrational energies and vibrational and temperature effects for coupling constant are found to be in verymore » good agreement with the available experimental data. We found, in agreement with previous studies, that the vibrational effects constitute about 44% of the constant’s equilibrium value, originating mainly from the large amplitude out-of-plane bending motion and that the temperature effects play a minor role.« less
Huang, Guomin; Rymer, Paul D; Duan, Honglang; Smith, Renee A; Tissue, David T
2015-10-01
Intraspecific variation in phenotypic plasticity is a critical determinant of plant species capacity to cope with climate change. A long-standing hypothesis states that greater levels of environmental variability will select for genotypes with greater phenotypic plasticity. However, few studies have examined how genotypes of woody species originating from contrasting environments respond to multiple climate change factors. Here, we investigated the main and interactive effects of elevated [CO2 ] (CE ) and elevated temperature (TE ) on growth and physiology of Coastal (warmer, less variable temperature environment) and Upland (cooler, more variable temperature environment) genotypes of an Australian woody species Telopea speciosissima. Both genotypes were positively responsive to CE (35% and 29% increase in whole-plant dry mass and leaf area, respectively), but only the Coastal genotype exhibited positive growth responses to TE . We found that the Coastal genotype exhibited greater growth response to TE (47% and 85% increase in whole-plant dry mass and leaf area, respectively) when compared with the Upland genotype (no change in dry mass or leaf area). No intraspecific variation in physiological plasticity was detected under CE or TE , and the interactive effects of CE and TE on intraspecific variation in phenotypic plasticity were also largely absent. Overall, TE was a more effective climate factor than CE in exposing genotypic variation in our woody species. Our results contradict the paradigm that genotypes from more variable climates will exhibit greater phenotypic plasticity in future climate regimes. © 2015 John Wiley & Sons Ltd.
Microclimatic Variation Within Sleeve Cages Used in Ecological Studies
Nelson, Lori A.; Rieske, Lynne K.
2014-01-01
Abstract Sleeve cages for enclosing or excluding arthropods are essential components of field studies evaluating trophic interactions. Microclimatic variation in sleeve cages was evaluated to characterize its potential effects on subsequent long-term experiments. Two sleeve cage materials, polyester and nylon, and two cage sizes, 400 and 6000 cm 2 , were tested on eastern hemlock, Tsuga canadensis (L.) Carrière. Temperature and relative humidity inside and outside cages, and the cost and durability of the cage materials, were compared. Long-term effects of the sleeve cages were observed by measuring new growth on T. canadensis branches. The ultimate goal was to identify a material that minimizes bag-induced microclimatic variation. Bagged branches whose microclimates mimic those of surrounding unbagged branches should have minimal effects on plant growth and may prove ideal venues for assessing herbivore and predator behavior under natural conditions. No differences were found in temperature or humidity between caging materials. Small cages had higher average temperatures than large cages, especially in the winter, but this difference was confounded by the fact that small cages were positioned higher in trees than large cages. Differences in plant growth were detected. Eastern hemlock branches enclosed within polyester cages produced fewer new growth tips than uncaged controls. Both polyester and nylon cages reduced the length of new shoot growth relative to uncaged branches. In spite of higher costs, nylon cages were superior to polyester with respect to durability and ease of handling. PMID:25368083
Methyl bromide: ocean sources, ocean sinks, and climate sensitivity
NASA Technical Reports Server (NTRS)
Anbar, A. D.; Yung, Y. L.; Chavez, F. P.
1996-01-01
The oceans play an important role in the geochemical cycle of methyl bromide (CH3Br), the major carrier of O3-destroying bromine to the stratosphere. The quantity of CH3Br produced annually in seawater is comparable to the amount entering the atmosphere each year from natural and anthropogenic sources. The production mechanism is unknown but may be biological. Most of this CH3Br is consumed in situ by hydrolysis or reaction with chloride. The size of the fraction which escapes to the atmosphere is poorly constrained; measurements in seawater and the atmosphere have been used to justify both a large oceanic CH3Br flux to the atmosphere and a small net ocean sink. Since the consumption reactions are extremely temperature-sensitive, small temperature variations have large effects on the CH3Br concentration in seawater, and therefore on the exchange between the atmosphere and the ocean. The net CH3Br flux is also sensitive to variations in the rate of CH3Br production. We have quantified these effects using a simple steady state mass balance model. When CH3Br production rates are linearly scaled with seawater chlorophyll content, this model reproduces the latitudinal variations in marine CH3Br concentrations observed in the east Pacific Ocean by Singh et al. [1983] and by Lobert et al. [1995]. The apparent correlation of CH3Br production with primary production explains the discrepancies between the two observational studies, strengthening recent suggestions that the open ocean is a small net sink for atmospheric CH3Br, rather than a large net source. The Southern Ocean is implicated as a possible large net source of CH3Br to the atmosphere. Since our model indicates that both the direction and magnitude of CH3Br exchange between the atmosphere and ocean are extremely sensitive to temperature and marine productivity, and since the rate of CH3Br production in the oceans is comparable to the rate at which this compound is introduced to the atmosphere, even small perturbations to temperature or productivity can modify atmospheric CH3Br. Therefore atmospheric CH3Br should be sensitive to climate conditions. Our modeling indicates that climate-induced CH3Br variations can be larger than those resulting from small (+/- 25%) changes in the anthropogenic source, assuming that this source comprises less than half of all inputs. Future measurements of marine CH3Br, temperature, and primary production should be combined with such models to determine the relationship between marine biological activity and CH3Br production. Better understanding of the biological term is especially important to assess the importance of non-anthropogenic sources to stratospheric ozone loss and the sensitivity of these sources to global climate change.
Methyl bromide: ocean sources, ocean sinks, and climate sensitivity.
Anbar, A D; Yung, Y L; Chavez, F P
1996-03-01
The oceans play an important role in the geochemical cycle of methyl bromide (CH3Br), the major carrier of O3-destroying bromine to the stratosphere. The quantity of CH3Br produced annually in seawater is comparable to the amount entering the atmosphere each year from natural and anthropogenic sources. The production mechanism is unknown but may be biological. Most of this CH3Br is consumed in situ by hydrolysis or reaction with chloride. The size of the fraction which escapes to the atmosphere is poorly constrained; measurements in seawater and the atmosphere have been used to justify both a large oceanic CH3Br flux to the atmosphere and a small net ocean sink. Since the consumption reactions are extremely temperature-sensitive, small temperature variations have large effects on the CH3Br concentration in seawater, and therefore on the exchange between the atmosphere and the ocean. The net CH3Br flux is also sensitive to variations in the rate of CH3Br production. We have quantified these effects using a simple steady state mass balance model. When CH3Br production rates are linearly scaled with seawater chlorophyll content, this model reproduces the latitudinal variations in marine CH3Br concentrations observed in the east Pacific Ocean by Singh et al. [1983] and by Lobert et al. [1995]. The apparent correlation of CH3Br production with primary production explains the discrepancies between the two observational studies, strengthening recent suggestions that the open ocean is a small net sink for atmospheric CH3Br, rather than a large net source. The Southern Ocean is implicated as a possible large net source of CH3Br to the atmosphere. Since our model indicates that both the direction and magnitude of CH3Br exchange between the atmosphere and ocean are extremely sensitive to temperature and marine productivity, and since the rate of CH3Br production in the oceans is comparable to the rate at which this compound is introduced to the atmosphere, even small perturbations to temperature or productivity can modify atmospheric CH3Br. Therefore atmospheric CH3Br should be sensitive to climate conditions. Our modeling indicates that climate-induced CH3Br variations can be larger than those resulting from small (+/- 25%) changes in the anthropogenic source, assuming that this source comprises less than half of all inputs. Future measurements of marine CH3Br, temperature, and primary production should be combined with such models to determine the relationship between marine biological activity and CH3Br production. Better understanding of the biological term is especially important to assess the importance of non-anthropogenic sources to stratospheric ozone loss and the sensitivity of these sources to global climate change.
Sand lizard (Lacerta agilis) phenology in a warming world.
Ljungström, Gabriella; Wapstra, Erik; Olsson, Mats
2015-10-08
Present-day climate change has altered the phenology (the timing of periodic life cycle events) of many plant and animal populations worldwide. Some of these changes have been adaptive, leading to an increase in population fitness, whereas others have been associated with fitness decline. Representing short-term responses to an altered weather regime, hitherto observed changes are largely explained by phenotypic plasticity. However, to track climatically induced shifts in optimal phenotype as climate change proceeds, evolutionary capacity in key limiting climate- and fitness-related traits is likely to be crucial. In order to produce realistic predictions about the effects of climate change on species and populations, a main target for conservation biologists is thus to assess the potential of natural populations to respond by these two mechanisms. In this study we use a large 15-year dataset on an ectotherm model, the Swedish sand lizard (Lacerta agilis), to investigate how higher spring temperature is likely to affect oviposition timing in a high latitude population, a trait strongly linked to offspring fitness and survival. With an interest in both the short- and potential long-term effect of rising temperatures, we applied a random regression model, which yields estimates of population-level plasticity and among-individual variation in the average, as well as the plastic, response to temperature. Population plasticity represents capacity for short-term adjustments whereas variation among individuals in a fitness-related trait indicates an opportunity for natural selection and hence for evolutionary adaptation. The analysis revealed both population-level plasticity and individual-level variation in average laying date. In contrast, we found no evidence for variation among females in their plastic responses to spring temperature, which could demonstrate a similarity in responses amongst females, but may also be due to a lack of statistical power to detect such an effect. Our findings indicate that climate warming may have positive fitness effects in this lizard population through an advancement of oviposition date. This prediction is consistent over shorter and potentially also longer time scales as the analysis revealed both population-level plasticity and individual-level variation in average laying date. However, the genetic basis for this variation would have to be examined in order to predict an evolutionary response.
Davy, Richard; Esau, Igor
2016-05-25
The Earth has warmed in the last century and a large component of that warming has been attributed to increased anthropogenic greenhouse gases. There are also numerous processes that introduce strong, regionalized variations to the overall warming trend. However, the ability of a forcing to change the surface air temperature depends on its spatial and temporal distribution. Here we show that the efficacy of a forcing is determined by the effective heat capacity of the atmosphere, which in cold and dry climates is defined by the depth of the planetary boundary layer. This can vary by an order of magnitude on different temporal and spatial scales, and so we get a strongly amplified temperature response in shallow boundary layers. This must be accounted for to assess the efficacy of a climate forcing, and also implies that multiple climate forcings cannot be linearly combined to determine the temperature response.
Influence of soil environmental parameters on thoron exhalation rate.
Hosoda, M; Tokonami, S; Sorimachi, A; Ishikawa, T; Sahoo, S K; Furukawa, M; Shiroma, Y; Yasuoka, Y; Janik, M; Kavasi, N; Uchida, S; Shimo, M
2010-10-01
Field measurements of thoron exhalation rates have been carried out using a ZnS(Ag) scintillation detector with an accumulation chamber. The influence of soil surface temperature and moisture saturation on the thoron exhalation rate was observed. When the variation of moisture saturation was small, the soil surface temperature appeared to induce a strong effect on the thoron exhalation rate. On the other hand, when the variation of moisture saturation was large, the influence of moisture saturation appeared to be larger than the soil surface temperature. The number of data ranged over 405, and the median was estimated to be 0.79 Bq m(-2) s(-1). Dependence of geology on the thoron exhalation rate from the soil surface was obviously found, and a nationwide distribution map of the thoron exhalation rate from the soil surface was drawn by using these data. It was generally high in the southwest region than in the northeast region.
Yao, Y; Lian, Z; Liu, W; Jiang, C; Liu, Y; Lu, H
2009-04-01
Human thermal comfort researches mainly focus on the relation between the environmental factors (e.g. ambient temperature, air humidity, and air velocity, etc.) and the thermal comfort sensation based on a large amount of subjective field investigations. Although some physiological factors, such as skin temperature and metabolism were used in many thermal comfort models,they are not enough to establish a perfect thermal comfort model. In this paper,another two physiological factors, i.e. heart rate variation (HRV) and electroencephalograph (EEG), are explored for the thermal comfort study. Experiments were performed to investigate how these physiological factors respond to the environmental temperatures, and what is the relationship between HRV and EEG and thermal comfort. The experimental results indicate that HRV and EEG may be related to thermal comfort, and they may be useful to understand the mechanism of thermal comfort.
Davy, Richard; Esau, Igor
2016-01-01
The Earth has warmed in the last century and a large component of that warming has been attributed to increased anthropogenic greenhouse gases. There are also numerous processes that introduce strong, regionalized variations to the overall warming trend. However, the ability of a forcing to change the surface air temperature depends on its spatial and temporal distribution. Here we show that the efficacy of a forcing is determined by the effective heat capacity of the atmosphere, which in cold and dry climates is defined by the depth of the planetary boundary layer. This can vary by an order of magnitude on different temporal and spatial scales, and so we get a strongly amplified temperature response in shallow boundary layers. This must be accounted for to assess the efficacy of a climate forcing, and also implies that multiple climate forcings cannot be linearly combined to determine the temperature response. PMID:27221757
Spatial correlations of interdecadal variation in global surface temperatures
NASA Technical Reports Server (NTRS)
Mann, Michael E.; Park, Jeffrey
1993-01-01
We have analyzed spatial correlation patterns of interdecadal global surface temperature variability from an empirical perspective. Using multitaper coherence estimates from 140-yr records, we find that correlations between hemispheres are significant at about 95 percent confidence for nonrandomness for most of the frequency band in the 0.06-0.24 cyc/yr range. Coherence estimates of pairs of 100-yr grid-point temperature data series near 5-yr period reveal teleconnection patterns consistent with known patterns of ENSO variability. Significant correlated variability is observed near 15 year period, with the dominant teleconnection pattern largely confined to the Northern Hemisphere. Peak-to-peak Delta-T is at about 0.5 deg, with simultaneous warming and cooling of discrete patches on the earth's surface. A global average of this pattern would largely cancel.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thompson, Logan C.; Ciesielski, Peter N.; Jarvis, Mark W.
Here, biomass particles can experience variable thermal conditions during fast pyrolysis due to differences in their size and morphology, and from local temperature variations within a reactor. These differences lead to increased heterogeneity of the chemical products obtained in the pyrolysis vapors and bio-oil. Here we present a simple, high-throughput method to investigate the thermal history experienced by large ensembles of particles during fast pyrolysis by imaging and quantitative image analysis. We present a correlation between the surface luminance (darkness) of the biochar particle and the highest temperature that it experienced during pyrolysis. Next, we apply this correlation to large,more » heterogeneous ensembles of char particles produced in a laminar entrained flow reactor (LEFR). The results are used to interpret the actual temperature distributions delivered by the reactor over a range of operating conditions.« less
Thompson, Logan C.; Ciesielski, Peter N.; Jarvis, Mark W.; ...
2017-07-12
Here, biomass particles can experience variable thermal conditions during fast pyrolysis due to differences in their size and morphology, and from local temperature variations within a reactor. These differences lead to increased heterogeneity of the chemical products obtained in the pyrolysis vapors and bio-oil. Here we present a simple, high-throughput method to investigate the thermal history experienced by large ensembles of particles during fast pyrolysis by imaging and quantitative image analysis. We present a correlation between the surface luminance (darkness) of the biochar particle and the highest temperature that it experienced during pyrolysis. Next, we apply this correlation to large,more » heterogeneous ensembles of char particles produced in a laminar entrained flow reactor (LEFR). The results are used to interpret the actual temperature distributions delivered by the reactor over a range of operating conditions.« less
A new fundamental bioheat equation for muscle tissue--part II: Temperature of SAV vessels.
Zhu, Liang; Xu, Lisa X; He, Qinghong; Weinbaum, Sheldon
2002-02-01
In this study, a new theoretical framework was developed to investigate temperature variations along countercurrent SAV blood vessels from 300 to 1000 microm diameter in skeletal muscle. Vessels of this size lie outside the range of validity of the Weinbaum-Jiji bioheat equation and, heretofore, have been treated using discrete numerical methods. A new tissue cylinder surrounding these vessel pairs is defined based on vascular anatomy, Murray's law, and the assumption of uniform perfusion. The thermal interaction between the blood vessel pair and surrounding tissue is investigated for two vascular branching patterns, pure branching and pure perfusion. It is shown that temperature variations along these large vessel pairs strongly depend on the branching pattern and the local blood perfusion rate. The arterial supply temperature in different vessel generations was evaluated to estimate the arterial inlet temperature in the modified perfusion source term for the s vessels in Part I of this study. In addition, results from the current research enable one to explore the relative contribution of the SAV vessels and the s vessels to the overall thermal equilibration between blood and tissue.
Separating temperature from other factors in phenological measurements
NASA Astrophysics Data System (ADS)
Schwartz, Mark D.; Hanes, Jonathan M.; Liang, Liang
2014-09-01
Phenological observations offer a simple and effective way to measure climate change effects on the biosphere. While some species in northern mixed forests show a highly sensitive site preference to microenvironmental differences (i.e., the species is present in certain areas and absent in others), others with a more plastic environmental response (e.g., Acer saccharum, sugar maple) allow provisional separation of the universal "background" phenological variation caused by in situ (possibly biological/genetic) variation from the microclimatic gradients in air temperature. Moran's I tests for spatial autocorrelation among the phenological data showed significant ( α ≤ 0.05) clustering across the study area, but random patterns within the microclimates themselves, with isolated exceptions. In other words, the presence of microclimates throughout the study area generally results in spatial autocorrelation because they impact the overall phenological development of sugar maple trees. However, within each microclimate (where temperature conditions are relatively uniform) there is little or no spatial autocorrelation because phenological differences are due largely to randomly distributed in situ factors. The phenological responses from 2008 and 2009 for two sugar maple phenological stages showed the relationship between air temperature degree-hour departure and phenological change ranged from 0.5 to 1.2 days earlier for each additional 100 degree-hours. Further, the standard deviations of phenological event dates within individual microclimates (for specific events and years) ranged from 2.6 to 3.8 days. Thus, that range of days is inferred to be the "background" phenological variation caused by factors other than air temperature variations, such as genetic differences between individuals.
The character and mechanism of glacial variation in the peripheral Tibetan Plateau
NASA Astrophysics Data System (ADS)
Yi, S.; Wang, Q.; Sun, W.
2016-12-01
Global warming has accelerated glacier retreat in the peripheral Tibetan Plateau. Our study demonstrates consistent glacier variation in time series constructed by laser altimetry and space gravimetry in these regions. It largely enhances reliability of glacier changes and narrows down significant inconsistent in previous studies. The glacial melt is roughly weakening from southeast to northwest: from Nyenchen Tanglha to Himalaya then to Pamir even a positive gain in the Western Kunlun. A sharp melt of glacier on Nyenchen Tanglha is primarily caused by high temperature and rapid rise rather than decreasing in annual precipitation as previously thought. Glaciers on Hindu Kush, Karakoram and Western Kun even Pamir are less affect by slow rise of local temperature.
Stability characteristics of the mesopause region above the Andes
NASA Astrophysics Data System (ADS)
Yang, F.; Liu, A. Z.
2017-12-01
The structure and seasonal variations of static and dynamic (shear) instabilities in the upper atmosphere (80 to 110 km) are examined using 3-year high-resolution wind and temperature data obtained with the Na Lidar at Andes Lidar Observatory (30S,71W). The stabilities are primarily determined by background temperature and wind, but strongly affected by tidal and gravity wave variations. Gravity waves perturb the atmosphere, causing intermittent unstable layers. The stabilities are characterized by their vertical and seasonal distributions of probability of instabilities. As have been found in previous studies, there is a correlation between high static stability (large N2) and strong vertical wind shear. The mechanism for this relationship is investigated in the context of gravity waves interacting with varying background.
Research on Spectroscopy, Opacity, and Atmospheres
NASA Technical Reports Server (NTRS)
Kurucz, Robert L.
1996-01-01
I discuss errors in theory and in interpreting observations that are produced by the failure to consider resolution in space, time, and energy. I discuss convection in stellar model atmospheres and in stars. Large errors in abundances are possible such as the factor of ten error in the Li abundance for extreme Population II stars. Finally I discuss the variation of microturbulent velocity with depth, effective temperature, gravity and abundance. These variations must be dealt with in computing models and grids and in any type of photometric calibration.
Methane fluxes from the mound-building termite species of North Australian savannas
NASA Astrophysics Data System (ADS)
Jamali, H.; Livesely, S. J.; Arndt, S. K.; Dawes-Gromadzki, T.; Cook, G. D.; Hutley, L.
2009-04-01
Termites are estimated to contribute 3-19% to the global methane emissions. These estimates have large uncertainties because of the limited number of field-based studies and species studied, as well as issues of diel and seasonal variation. We measured methane fluxes from four common mound-building termite species (Microcerotermes nervosus, n=26; M. serratus, n=4; Tumulitermes pastinator, n=5; and Amitermes darwini, n=4) in tropical savannas near Darwin in the Northern Territory, Australia. Methane fluxes from replicated termite mounds were measured in the field using manual chambers with fluxes reported on a mound volume basis. Methane flux was measured in both wet and dry seasons and diel variation was investigated by measuring methane flux every 4 hours over a 24 hour period. Mound temperature was measured concurrently with flux to examine this relationship. In addition, five M. nervosus mounds removed from the field and incubated under controlled temperature conditions over a 24 hour period to remove the effect of varying temperature. During the observation campaigns, mean monthly minimum and maximum temperatures for February (wet season) were 24.7 and 30.8°C, respectively, and were 20.1 to 31.4 °C in June (dry season). Annual rainfall in 2008 for Darwin was 1970.1 mm, with a maximum of 670 mm falling in February and no rain in May and June. Methane fluxes were greatest in the wet season for all species, ranging from 265.1±101.1 (T. pastinator) to 2256.6±757.1 (M. serratus) µg CH4-C/m3/h. In the dry season, methane fluxes were at their lowest, ranging from 10.0±5.5 (T. pastinator) to 338.0±165.9 (M. serratus) µg CH4-C/m3/h. On a diel basis, methane fluxes were smallest at the coolest time of the day (~0700 hrs) and greatest at the warmest (~1400 hrs) for all species, and for both wet and dry seasons. Typical diel variation in flux from M. serratus dominated mounds ranged from 902.6±261.9 to 1392.1±408.1 µg CH4-C/m3/h in wet season and 99.6±57.4 to 556.2±254.9 µg CH4-C/m3/h in dry season. While mounds of M. nervosus had diel variations in methane fluxes in the field, no diel variation was observed when incubated under constant laboratory temperature for 24 hours. This demonstrates that diel variation was not due to the movement of termites in and out of the mounds, but was due to temperature variation. Methane flux varied significantly according to termite species and at seasonal and diel time scales which, if not accounted for, could result in large under- or over-estimation of methane emissions from termites when flux data are extrapolated to landscape scales.
NASA Astrophysics Data System (ADS)
Matthews, N. E.; Pyle, D. M.; Wilson, C. J.
2009-12-01
Chemical zoning of crystals provides an important archive of information that allows for the reconstruction of complex thermal histories and changes in melt composition of the magma reservoir during crystallization. Here we investigate cathodoluminescence (CL) and Ti zonation in quartz crystals extracted from pumices from the Whakamaru and Rangitaiki ignimbrite units (part of the large-volume Whakamaru Group Ignimbrites), New Zealand, to reconstruct the thermal history of the parent magma chamber(s). CL intensity images are taken as a proxy for Ti content and temperature variation during crystal growth, and direct estimates of temperature are made using the TitaniQ geothermometer (Wark & Watson 2006 Cont. Min. Pet.) based on Ti concentration in quartz. These results are reviewed in comparison with temperatures from Fe-Ti oxide geothermometry. Quartz zoning is also compared to zonation in feldspars (using BSE imaging) from the same pumice clasts in order to establish the degree to which different crystal species record similar or contrasting magmatic histories. Quartz crystals in Whakamaru pumice display a variety of CL zoning patterns and resorption boundaries. Overgrowths typically appear to truncate CL growth zoning within the crystal core, indicating periods of resorption and subsequent re-growth - consistent with magma recharge causing a marked change in conditions (temperature and/or volatile saturation) and multi-stage crystallisation. Crystals typically display a dark (lower Ti) resorbed core, with an abrupt change to a CL-bright rim, although irregular textures and complex variations between crystals are observed. Core-to-rim profiles of Ti concentration in analysed quartz crystals show Ti variations within the range 50-225 ppm, corresponding to crystallisation temperatures of 733-935°C (assuming TiO2 activity in the melt of 0.6), with the lowest values recorded in the crystal core, increasing in a step-wise pattern towards the rim. These values are consistent with Fe-Ti oxide temperature data for the same pumice clasts which provide a temperature range of 660-933°C. It is inferred that the major steps in Ti content (and thus CL brightness) represent short-term temperature fluctuations due to magma chamber recharge and rejuvenation of a crystal mush, while rim temperatures are likely to record the magma temperature at the time of eruption.
Estimation of sampling error uncertainties in observed surface air temperature change in China
NASA Astrophysics Data System (ADS)
Hua, Wei; Shen, Samuel S. P.; Weithmann, Alexander; Wang, Huijun
2017-08-01
This study examines the sampling error uncertainties in the monthly surface air temperature (SAT) change in China over recent decades, focusing on the uncertainties of gridded data, national averages, and linear trends. Results indicate that large sampling error variances appear at the station-sparse area of northern and western China with the maximum value exceeding 2.0 K2 while small sampling error variances are found at the station-dense area of southern and eastern China with most grid values being less than 0.05 K2. In general, the negative temperature existed in each month prior to the 1980s, and a warming in temperature began thereafter, which accelerated in the early and mid-1990s. The increasing trend in the SAT series was observed for each month of the year with the largest temperature increase and highest uncertainty of 0.51 ± 0.29 K (10 year)-1 occurring in February and the weakest trend and smallest uncertainty of 0.13 ± 0.07 K (10 year)-1 in August. The sampling error uncertainties in the national average annual mean SAT series are not sufficiently large to alter the conclusion of the persistent warming in China. In addition, the sampling error uncertainties in the SAT series show a clear variation compared with other uncertainty estimation methods, which is a plausible reason for the inconsistent variations between our estimate and other studies during this period.
Patterns of Cross-Continental Variation in Tree Seed Mass in the Canadian Boreal Forest
Liu, Jushan; Bai, Yuguang; Lamb, Eric G.; Simpson, Dale; Liu, Guofang; Wei, Yongsheng; Wang, Deli; McKenney, Daniel W.; Papadopol, Pia
2013-01-01
Seed mass is an adaptive trait affecting species distribution, population dynamics and community structure. In widely distributed species, variation in seed mass may reflect both genetic adaptation to local environments and adaptive phenotypic plasticity. Acknowledging the difficulty in separating these two aspects, we examined the causal relationships determining seed mass variation to better understand adaptability and/or plasticity of selected tree species to spatial/climatic variation. A total of 504, 481 and 454 seed collections of black spruce (Picea mariana (Mill.) B.S.P.), white spruce (Picea glauca (Moench) Voss) and jack pine (Pinus banksiana Lamb) across the Canadian Boreal Forest, respectively, were selected. Correlation analyses were used to determine how seed mass vary with latitude, longitude, and altitude. Structural Equation Modeling was used to examine how geographic and climatic variables influence seed mass. Climatic factors explained a large portion of the variation in seed mass (34, 14 and 29%, for black spruce, white spruce and jack pine, respectively), indicating species-specific adaptation to long term climate conditions. Higher annual mean temperature and winter precipitation caused greater seed mass in black spruce, but annual precipitation was the controlling factor for white spruce. The combination of factors such as growing season temperature and evapotranspiration, temperature seasonality and annual precipitation together determined seed mass of jack pine. Overall, sites with higher winter temperatures were correlated with larger seeds. Thus, long-term climatic conditions, at least in part, determined spatial variation in seed mass. Black spruce and Jack pine, species with relatively more specific habitat requirements and less plasticity, had more variation in seed mass explained by climate than did the more plastic species white spruce. As traits such as seed mass are related to seedling growth and survival, they potentially influence forest species composition in a changing climate and should be included in future modeling of vegetation shifts. PMID:23593392
Solid-propellant rocket motor ballistic performance variation analyses
NASA Technical Reports Server (NTRS)
Sforzini, R. H.; Foster, W. A., Jr.
1975-01-01
Results are presented of research aimed at improving the assessment of off-nominal internal ballistic performance including tailoff and thrust imbalance of two large solid-rocket motors (SRMs) firing in parallel. Previous analyses using the Monte Carlo technique were refined to permit evaluation of the effects of radial and circumferential propellant temperature gradients. Sample evaluations of the effect of the temperature gradients are presented. A separate theoretical investigation of the effect of strain rate on the burning rate of propellant indicates that the thermoelastic coupling may cause substantial variations in burning rate during highly transient operating conditions. The Monte Carlo approach was also modified to permit the effects on performance of variation in the characteristics between lots of propellants and other materials to be evaluated. This permits the variabilities for the total SRM population to be determined. A sample case shows, however, that the effect of these between-lot variations on thrust imbalances within pairs of SRMs is minor in compariosn to the effect of the within-lot variations. The revised Monte Carlo and design analysis computer programs along with instructions including format requirements for preparation of input data and illustrative examples are presented.
Heat resistance throughout ontogeny: body size constrains thermal tolerance.
Klockmann, Michael; Günter, Franziska; Fischer, Klaus
2017-02-01
Heat tolerance is a trait of paramount ecological importance and may determine a species' ability to cope with ongoing climate change. Although critical thermal limits have consequently received substantial attention in recent years, their potential variation throughout ontogeny remained largely neglected. We investigate whether such neglect may bias conclusions regarding a species' sensitivity to climate change. Using a tropical butterfly, we found that developmental stages clearly differed in heat tolerance. It was highest in pupae followed by larvae, adults and finally eggs and hatchlings. Strikingly, most of the variation found in thermal tolerance was explained by differences in body mass, which may thus impose a severe constraint on adaptive variation in stress tolerance. Furthermore, temperature acclimation was beneficial by increasing heat knock-down time and therefore immediate survival under heat stress, but it affected reproduction negatively. Extreme temperatures strongly reduced survival and subsequent reproductive success even in our highly plastic model organism, exemplifying the potentially dramatic impact of extreme weather events on biodiversity. We argue that predictions regarding a species' fate under changing environmental conditions should consider variation in thermal tolerance throughout ontogeny, variation in body mass and acclimation responses as important predictors of stress tolerance. © 2016 John Wiley & Sons Ltd.
Lightweight moving radiators for heat rejection in space
NASA Technical Reports Server (NTRS)
Knapp, K.
1981-01-01
Low temperature droplet stream radiators, using nonmetallic fluids, can be used to radiate large amounts of waste heat from large space facilities. Moving belt radiators are suitable for use on a smaller scale, radiating as few as 10 kW from shuttle related operations. If appropriate seal technology can be developed, moving belt radiators may prove to be important for high temperature systems as well. Droplet stream radiators suitable for operation at peak temperatures near 300 K and 1000 K were studied using both freezing and nonfreezing droplets. Moving belt radiators were also investigated for operation in both temperature ranges. The potential mass and performance characteristics of both concepts were estimated on the basis of parametric variations of analytical point designs. These analyses included all consideration of the equipment required to operate the moving radiator system and take into account the mass of fluid lost by evaporation during mission lifetimes. Preliminary results indicate that low temperature droplet stream radiator appears to offer the greatest potential for improvement over conventional flat plate radiators.
NASA Astrophysics Data System (ADS)
Fei, Yang-yang; Meng, Xiang-dong; Gao, Ming; Yang, Yi; Wang, Hong; Ma, Zhi
2018-07-01
The temperature of the semiconductor diode increases under strong light illumination whether thermoelectric cooler is installed or not, which changes the output wavelength of the laser (Lee et al., 2017). However, other characteristics also vary as temperature increases. These variations may help the eavesdropper in practical quantum key distribution systems. We study the effects of temperature increase on gain-switched semiconductor lasers by simulating temperature dependent rate equations. The results show that temperature increase may cause large intensity fluctuation, decrease the output intensity and lead the signal state and decoy state distinguishable. We also propose a modified photon number splitting attack by exploiting the effects of temperature increase. Countermeasures are also proposed.
Generation and mobility of radon in soil
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rose, A.W.; Jester, W.A.; Ciolkosz, E.J.
This study has confirmed large seasonal and daily variations of Rn in soil gas, developed models for the effects of temperature and moisture on air-water Rn partition, inhibited Rn diffusion from wet soil into sparse large air-filled pores and effects of diffusion into bedrock, demonstrated that organic matter is a major host for 226Ra in soils and that organic-bound Ra largely determines the proportion of 222Rn emanated to pore space, shown that in contrast 220Rn is emanated mainly from 224Ra in Fe-oxides, detected significant disequilibrium between 226Ra and 238U in organic matter and in some recent glacial soils, demonstrated bymore » computer models that air convection driven by temperature differences is expected in moderately permeable soils on hillsides.« less
Generation and mobility of radon in soil. Technical report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rose, A.W.; Jester, W.A.; Ciolkosz, E.J.
This study has confirmed large seasonal and daily variations of Rn in soil gas, developed models for the effects of temperature and moisture on air-water Rn partition, inhibited Rn diffusion from wet soil into sparse large air-filled pores and effects of diffusion into bedrock, demonstrated that organic matter is a major host for 226Ra in soils and that organic-bound Ra largely determines the proportion of 222Rn emanated to pore space, shown that in contrast 220Rn is emanated mainly from 224Ra in Fe-oxides, detected significant disequilibrium between 226Ra and 238U in organic matter and in some recent glacial soils, demonstrated bymore » computer models that air convection driven by temperature differences is expected in moderately permeable soils on hillsides.« less
Nozawa, Yoko
2012-06-01
This study was conducted at a high-latitude location (32°N; Kochi, Japan), where annual seawater temperatures show large fluctuations due to the meandering of the Kuroshio Current, providing a unique opportunity to examine the influence of temperature on coral reproduction. Annual spawning of individual colonies of four reef coral species-two Acropora species (Acropora hyacinthus and A. japonica) and two faviid species (Favites pentagona and Platygyra contorta)-was monitored in situ for 4 years in 2006-2009. The spawning of the four species always occurred around the last quarter moon in the local summer, July or August, irrespective of high annual variations in seawater temperatures (from 23.7 to 29.5 °C) and weather during the spawning period. However, the exact timing of spawning during the spawning period varied among the years and was correlated with the cumulative seawater temperature during the late period of gametogenesis (0-3 months before spawning). When seawater temperatures were higher, spawning occurred in the earlier spawning month (July) and vice versa, except in A. hyacinthus, which always spawned in July. In the case of the two Acropora species, higher (lower) temperatures led to spawning earlier (later) in the lunar cycle. Seawater temperature may have an influence on gametogenesis, causing the shift in spawning timing.
Validation of Ray Tracing Code Refraction Effects
NASA Technical Reports Server (NTRS)
Heath, Stephanie L.; McAninch, Gerry L.; Smith, Charles D.; Conner, David A.
2008-01-01
NASA's current predictive capabilities using the ray tracing program (RTP) are validated using helicopter noise data taken at Eglin Air Force Base in 2007. By including refractive propagation effects due to wind and temperature, the ray tracing code is able to explain large variations in the data observed during the flight test.
Monte Carlo simulations of skin exposure to electromagnetic field from 10 GHz to 1 THz
NASA Astrophysics Data System (ADS)
Sasaki, Kensuke; Mizuno, Maya; Wake, Kanako; Watanabe, Soichi
2017-09-01
In this study, we present an assessment of human-body exposure to an electromagnetic field at frequencies ranging from 10 GHz to 1 THz. The energy absorption and temperature elevation were assessed by solving boundary value problems of the one-dimensional Maxwell equations and a bioheat equation for a multilayer plane model. Dielectric properties were measured in~vitro at frequencies of up to 1 THz at body temperature. A Monte Carlo simulation was conducted to assess variations of the transmittance into a skin surface and temperature elevation inside a body by considering the variation of the tissue thickness due to individual differences among human bodies. Furthermore, the impact of the dielectric properties of adipose tissue on temperature elevation, for which large discrepancies between our present measurement results and those in past works were observed, was also examined. We found that the dielectric properties of adipose tissue do not impact on temperature elevation at frequencies over 30 GHz. The potential risk of skin burn was discussed on the basis of the temperature elevation in millimeter-wave and terahertz-wave exposure. Furthermore, the consistency of the basic restrictions in the international guidelines set by ICNIRP was discussed.
Valley floor climate observations from the McMurdo dry valleys, Antarctica, 1986-2000
Doran, P.T.; McKay, C.P.; Clow, G.D.; Dana, G.L.; Fountain, A.G.; Nylen, T.; Lyons, W.B.
2002-01-01
Climate observations from the McMurdo dry valleys, East Antarctica are presented from a network of seven valley floor automatic meteorological stations during the period 1986 to 2000. Mean annual temperatures ranged from -14.8??C to -30.0??C, depending on the site and period of measurement. Mean annual relative humidity is generally highest near the coast. Mean annual wind speed increases with proximity to the polar plateau. Site-to-site variation in mean annual solar flux and PAR is due to exposure of each station and changes over time are likely related to changes in cloudiness. During the nonsummer months, strong katabatic winds are frequent at some sites and infrequent at others, creating large variation in mean annual temperature owing to the warming effect of the winds. Katabatic wind exposure appears to be controlled to a large degree by the presence of colder air in the region that collects at low points and keeps the warm less dense katabatic flow from the ground. The strong influence of katabatic winds makes prediction of relative mean annual temperature based on geographical position (elevation and distance from the coast) alone, not possible. During the summer months, onshore winds dominate and warm as they progress through the valleys creating a strong linear relationship (r2 = 0.992) of increasing potential temperature with distance from the coast (0.09??C km-1). In contrast to mean annual temperature, summer temperature lends itself quite well to model predictions, and is used to construct a statistical model for predicting summer dry valley temperatures at unmonitored sites. Copyright 2002 by the American Geophysical Union.
A Functional Response Metric for the Temperature Sensitivity of Tropical Ecosystems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keppel-Aleks, Gretchen; Basile, Samantha J.; Hoffman, Forrest M.
Earth system models (ESMs) simulate a large spread in carbon cycle feedbacks to climate change, particularly in their prediction of cumulative changes in terrestrial carbon storage. Evaluating the performance of ESMs against observations and assessing the likelihood of long-term climate predictions are crucial for model development. Here, we assessed the use of atmospheric CO 2 growth rate variations to evaluate the sensitivity of tropical ecosystem carbon fluxes to interannual temperature variations. We found that the temperature sensitivity of the observed CO 2 growth rate depended on the time scales over which atmospheric CO 2 observations were averaged. The temperature sensitivitymore » of the CO 2 growth rate during Northern Hemisphere winter is most directly related to the tropical carbon flux sensitivity since winter variations in Northern Hemisphere carbon fluxes are relatively small. This metric can be used to test the fidelity of interactions between the physical climate system and terrestrial ecosystems within ESMs, which is especially important since the short-term relationship between ecosystem fluxes and temperature stress may be related to the long-term feedbacks between ecosystems and climate. If the interannual temperature sensitivity is used to constrain long-term temperature responses, the inferred sensitivity may be biased by 20%, unless the seasonality of the relationship between the observed CO 2 growth rate and tropical fluxes is taken into account. Lastly, these results suggest that atmospheric data can be used directly to evaluate regional land fluxes from ESMs, but underscore that the interaction between the time scales for land surface processes and those for atmospheric processes must be considered.« less
A Functional Response Metric for the Temperature Sensitivity of Tropical Ecosystems
Keppel-Aleks, Gretchen; Basile, Samantha J.; Hoffman, Forrest M.
2018-04-23
Earth system models (ESMs) simulate a large spread in carbon cycle feedbacks to climate change, particularly in their prediction of cumulative changes in terrestrial carbon storage. Evaluating the performance of ESMs against observations and assessing the likelihood of long-term climate predictions are crucial for model development. Here, we assessed the use of atmospheric CO 2 growth rate variations to evaluate the sensitivity of tropical ecosystem carbon fluxes to interannual temperature variations. We found that the temperature sensitivity of the observed CO 2 growth rate depended on the time scales over which atmospheric CO 2 observations were averaged. The temperature sensitivitymore » of the CO 2 growth rate during Northern Hemisphere winter is most directly related to the tropical carbon flux sensitivity since winter variations in Northern Hemisphere carbon fluxes are relatively small. This metric can be used to test the fidelity of interactions between the physical climate system and terrestrial ecosystems within ESMs, which is especially important since the short-term relationship between ecosystem fluxes and temperature stress may be related to the long-term feedbacks between ecosystems and climate. If the interannual temperature sensitivity is used to constrain long-term temperature responses, the inferred sensitivity may be biased by 20%, unless the seasonality of the relationship between the observed CO 2 growth rate and tropical fluxes is taken into account. Lastly, these results suggest that atmospheric data can be used directly to evaluate regional land fluxes from ESMs, but underscore that the interaction between the time scales for land surface processes and those for atmospheric processes must be considered.« less
Geographic variation in avian incubation periods and parental influences on embryonic temperature
Martin, T.E.; Auer, S.K.; Bassar, R.D.; Niklison, Alina M.; Lloyd, P.
2007-01-01
Theory predicts shorter embryonic periods in species with greater embryo mortality risk and smaller body size. Field studies of 80 passerine species on three continents yielded data that largely conflicted with theory; incubation (embryonic) periods were longer rather than shorter in smaller species, and egg (embryo) mortality risk explained some variation within regions, but did not explain larger differences in incubation periods among geographic regions. Incubation behavior of parents seems to explain these discrepancies. Bird embryos are effectively ectothermic and depend on warmth provided by parents sitting on the eggs to attain proper temperatures for development. Parents of smaller species, plus tropical and southern hemisphere species, commonly exhibited lower nest attentiveness (percent of time spent on the nest incubating) than larger and northern hemisphere species. Lower nest attentiveness produced cooler minimum and average embryonic temperatures that were correlated with longer incubation periods independent of nest predation risk or body size. We experimentally tested this correlation by swapping eggs of species with cool incubation temperatures with eggs of species with warm incubation temperatures and similar egg mass. Incubation periods changed (shortened or lengthened) as expected and verified the importance of egg temperature on development rate. Slower development resulting from cooler temperatures may simply be a cost imposed on embryos by parents and may not enhance offspring quality. At the same time, incubation periods of transferred eggs did not match host species and reflect intrinsic differences among species that may result from nest predation and other selection pressures. Thus, geographic variation in embryonic development may reflect more complex interactions than previously recognized. ?? 2007 The Author(s).
On the Origin of Multidecadal to Centennial Greenland Temperature Anomalies Over the Past 800 yr
NASA Technical Reports Server (NTRS)
Kobashi, T.; Shindell, D. T.; Kodera, K.; Box, J. E.; Nakaegawa, T.; Kawamura, K.
2013-01-01
The surface temperature of the Greenland ice sheet is among the most important climate variables for assessing how climate change may impact human societies due to its association with sea level rise. However, the causes of multidecadal-to-centennial temperature changes in Greenland temperatures are not well understood, largely owing to short observational records. To examine these, we calculated the Greenland temperature anomalies (GTA[G-NH]) over the past 800 yr by subtracting the standardized northern hemispheric (NH) temperature from the standardized Greenland temperature. This decomposes the Greenland temperature variation into background climate (NH); polar amplification; and regional variability (GTA[G-NH]). The central Greenland polar amplification factor as expressed by the variance ratio Greenland/NH is 2.6 over the past 161 yr, and 3.3-4.2 over the past 800 yr. The GTA[G-NH] explains 31-35%of the variation of Greenland temperature in the multidecadal-to-centennial time scale over the past 800 yr. We found that the GTA[G-NH] has been influenced by solar-induced changes in atmospheric circulation patterns such as those produced by the North Atlantic Oscillation/Arctic Oscillation (NAO/AO). Climate modeling and proxy temperature records indicate that the anomaly is also likely linked to solar-paced changes in the Atlantic meridional overturning circulation (AMOC) and associated changes in northward oceanic heat transport.
On the origin of multidecadal to centennial Greenland temperature anomalies over the past 800 yr
NASA Astrophysics Data System (ADS)
Kobashi, T.; Shindell, D. T.; Kodera, K.; Box, J. E.; Nakaegawa, T.; Kawamura, K.
2013-03-01
The surface temperature of the Greenland ice sheet is among the most important climate variables for assessing how climate change may impact human societies due to its association with sea level rise. However, the causes of multidecadal-to-centennial temperature changes in Greenland temperatures are not well understood, largely owing to short observational records. To examine these, we calculated the Greenland temperature anomalies (GTA[G-NH]) over the past 800 yr by subtracting the standardized northern hemispheric (NH) temperature from the standardized Greenland temperature. This decomposes the Greenland temperature variation into background climate (NH); polar amplification; and regional variability (GTA[G-NH]). The central Greenland polar amplification factor as expressed by the variance ratio Greenland/NH is 2.6 over the past 161 yr, and 3.3-4.2 over the past 800 yr. The GTA[G-NH] explains 31-35% of the variation of Greenland temperature in the multidecadal-to-centennial time scale over the past 800 yr. We found that the GTA[G-NH] has been influenced by solar-induced changes in atmospheric circulation patterns such as those produced by the North Atlantic Oscillation/Arctic Oscillation (NAO/AO). Climate modeling and proxy temperature records indicate that the anomaly is also likely linked to solar-paced changes in the Atlantic meridional overturning circulation (AMOC) and associated changes in northward oceanic heat transport.
2011-01-01
Background The evaluation of exposure to ambient temperatures in epidemiological studies has generally been based on records from meteorological stations which may not adequately represent local temperature variability. Here we propose a spatially explicit model to estimate local exposure to temperatures of large populations under various meteorological conditions based on satellite and meteorological data. Methods A general linear model was used to estimate surface temperatures using 15 LANDSAT 5 and LANDSAT 7 images for Quebec Province, Canada between 1987 and 2002 and spanning the months of June to August. The images encompassed both rural and urban landscapes and predictors included: meteorological records of temperature and wind speed, distance to major water bodies, Normalized Differential Vegetation Index (NDVI), land cover (built and bare land, water, or vegetation), latitude, longitude, and week of the year. Results The model explained 77% of the variance in surface temperature, accounting for both temporal and spatial variations. The standard error of estimates was 1.42°C. Land cover and NDVI were strong predictors of surface temperature. Conclusions This study suggests that a statistical approach to estimating surface temperature incorporating both spatially explicit satellite data and time-varying meteorological data may be relevant to assessing exposure to heat during the warm season in the Quebec. By allowing the estimation of space- and time-specific surface temperatures, this model may also be used to assess the possible impacts of land use changes under various meteorological conditions. It can be applied to assess heat exposure within a large population and at relatively fine-grained scale. It may be used to evaluate the acute health effect of heat exposure over long time frames. The method proposed here could be replicated in other areas around the globe for which satellite data and meteorological data is available. PMID:21251286
Horsák, Michal; Polášková, Vendula; Zhai, Marie; Bojková, Jindřiška; Syrovátka, Vít; Šorfová, Vanda; Schenková, Jana; Polášek, Marek; Peterka, Tomáš; Hájek, Michal
2018-09-01
Climate warming and associated environmental changes lead to compositional shifts and local extinctions in various ecosystems. Species closely associated with rare island-like habitats such as groundwater-dependent spring fens can be severely threatened by these changes due to a limited possibility to disperse. It is, however, largely unknown to what extent mesoclimate affects species composition in spring fens, where microclimate is buffered by groundwater supply. We assembled an original landscape-scale dataset on species composition of the most waterlogged parts of isolated temperate spring fens in the Western Carpathian Mountains along with continuously measured water temperature and hydrological, hydrochemical, and climatic conditions. We explored a set of hypotheses about the effects of mesoclimate air and local spring-water temperature on compositional variation of aquatic (macroinvertebrates), semi-terrestrial (plants) and terrestrial (land snails) components of spring-fen biota, categorized as habitat specialists and other species (i.e. matrix-derived). Water temperature did not show a high level of correlation with mesoclimate. For all components, fractions of compositional variation constrained to temperature were statistically significant and higher for habitat specialists than for other species. The importance of air temperature at the expense of water temperature and its fluctuation clearly increased with terrestriality, i.e. from aquatic macroinvertebrates via vegetation (bryophytes and vascular plants) to land snails, with January air temperature being the most important factor for land snails and plant specialists. Some calcareous-fen specialists with a clear distribution centre in temperate Europe showed a strong affinity to climatically cold sites in our study area and may hence be considered as threatened by climate warming. We conclude that prediction models solely based on air temperature may provide biased estimates of future changes in spring fen communities, because their aquatic and semiterrestrial components are largely affected by water temperature that is modified by local hydrological and landscape settings. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Stoll, Heather; Mendez-Vicente, Ana; Gonzalez-Lemos, Saul; Moreno, Ana; Cacho, Isabel; Cheng, Hai; Edwards, R. Lawrence
2015-11-01
Oxygen isotopes have been the most widely used climate indicator in stalagmites, applied to reconstruct past changes in rainfall δ18O and cave temperature. However, the δ18O signal in speleothems may also be influenced by variable kinetic fractionation effects, here conceived broadly as fractionation effects not arising from temperature variation. The regional reproducibility of speleothem δ18O signals has been proposed as a way to distinguish the δ18O variations arising directly from changes rainfall δ18O and cave temperature, from variations due to kinetic effects which may nonetheless be influenced by climate. Here, we compare isotopic records from 5 coeval stalagmites from two proximal caves in NW Spain covering the interval 140 to 70 ka, which experienced the same primary variations in temperature and rainfall δ18O, but exhibit a large range in growth rates and temporal trends in growth rate. Stalagmites growing at faster rates near 50 μm/yr have oxygen isotopic ratios over 1‰ more negative than coeval stalagmites with very slow (5 μm/yr) growth rates. Because growth rate variations also occur over time within any given stalagmite, the measured oxygen isotopic time series for a given stalagmite includes both climatic and kinetic components. Removal of the kinetic component of variation in each stalagmite, based on the dependence of the kinetic component on growth rate, is effective at distilling a common temporal evolution of among the oxygen isotopic records of the multiple stalagmites. However, this approach is limited by the quality of the age model. For time periods characterized by very slow growth and long durations between dates, the presence of crypto-hiatus may result in average growth rates which underestimate the instantaneous speleothem deposition rates and which therefore underestimate the magnitude of kinetic effects. The stacked growth rate-corrected speleothem δ18O is influenced by orbital scale variation in the cave temperature and the δ18O of the ocean moisture source, but also by temporally variable fractionation in the hydrological cycle. The most salient trend is increased hydrological fractionation during the GI-22 period, when warmer sea surface temperatures in the subtropical Atlantic moisture source region may have favored greater precipitation amounts.
Evaluation of catalytic combustion of actual coal-derived gas
NASA Technical Reports Server (NTRS)
Blanton, J. C.; Shisler, R. A.
1982-01-01
The combustion characteristics of a Pt-Pl catalytic reactor burning coal-derived, low-Btu gas were investigated. A large matrix of test conditions was explored involving variations in fuel/air inlet temperature and velocity, reactor pressure, and combustor exit temperature. Other data recorded included fuel gas composition, reactor temperatures, and exhaust emissions. Operating experience with the reactor was satisfactory. Combustion efficiencies were quite high (over 95 percent) over most of the operating range. Emissions of NOx were quite high (up to 500 ppm V and greater), owing to the high ammonia content of the fuel gas.
NASA Astrophysics Data System (ADS)
Roberts, C. D.; Palmer, M. D.; Allan, R. P.; Desbruyeres, D. G.; Hyder, P.; Liu, C.; Smith, D.
2017-01-01
We present an observation-based heat budget analysis for seasonal and interannual variations of ocean heat content (H) in the mixed layer (Hmld) and full-depth ocean (Htot). Surface heat flux and ocean heat content estimates are combined using a novel Kalman smoother-based method. Regional contributions from ocean heat transport convergences are inferred as a residual and the dominant drivers of Hmld and Htot are quantified for seasonal and interannual time scales. We find that non-Ekman ocean heat transport processes dominate Hmld variations in the equatorial oceans and regions of strong ocean currents and substantial eddy activity. In these locations, surface temperature anomalies generated by ocean dynamics result in turbulent flux anomalies that drive the overlying atmosphere. In addition, we find large regions of the Atlantic and Pacific oceans where heat transports combine with local air-sea fluxes to generate mixed layer temperature anomalies. In all locations, except regions of deep convection and water mass transformation, interannual variations in Htot are dominated by the internal rearrangement of heat by ocean dynamics rather than the loss or addition of heat at the surface. Our analysis suggests that, even in extratropical latitudes, initialization of ocean dynamical processes could be an important source of skill for interannual predictability of Hmld and Htot. Furthermore, we expect variations in Htot (and thus thermosteric sea level) to be more predictable than near surface temperature anomalies due to the increased importance of ocean heat transport processes for full-depth heat budgets.
Radial Variations in the Io Plasma Torus during the Cassini Era
NASA Technical Reports Server (NTRS)
Delamere, P. A.; Bagenal, F.; Steffl, A.
2005-01-01
A radial scan through the midnight sector of the Io plasma torus was made by the Cassini Ultraviolet Imaging Spectrograph on 14 January 2001, shortly after closest approach to Jupiter. From these data, Steffl et al. (2004a) derived electron temperature, plasma composition (ion mixing ratios), and electron column density as a function of radius from L = 6 to 0 as well as the total luminosity. We have advanced our homogeneous model of torus physical chemistry (Delamere and Bagenal, 2003) to include latitudinal and radial variations in a manner similar to the two-dimensional model by Schreier et al. (1998). The model variables include: (1) neutral source rate, (2) radial transport coefficient, (3) the hot electron fraction, (4) hot electron temperature, and (5) the neutral O/S ratio. The radial variation of parameters 1-4 are described by simple power laws, making a total of nine parameters. We have explored the sensitivity of the model results to variations in these parameters and compared the best fit with previous Voyager era models (schreier et al., 1998), galileo data (Crary et al., 1998), and Cassini observations (steffl et al., 2004a). We find that radial variations during the Cassini era are consistent with a neutral source rate of 700-1200 kg/s, an integrated transport time from L = 6 to 9 of 100-200 days, and that the core electron temperature is largely determined by a spatially and temporally varying superthermal electron population.
Diurnal Temperature Variations Affect Development of a Herbivorous Arthropod Pest and its Predators
Vangansbeke, Dominiek; Audenaert, Joachim; Nguyen, Duc Tung; Verhoeven, Ruth; Gobin, Bruno; Tirry, Luc; De Clercq, Patrick
2015-01-01
The impact of daily temperature variations on arthropod life history remains woefully understudied compared to the large body of research that has been carried out on the effects of constant temperatures. However, diurnal varying temperature regimes more commonly represent the environment in which most organisms thrive. Such varying temperature regimes have been demonstrated to substantially affect development and reproduction of ectothermic organisms, generally in accordance with Jensen’s inequality. In the present study we evaluated the impact of temperature alternations at 4 amplitudes (DTR0, +5, +10 and +15°C) on the developmental rate of the predatory mites Phytoseiulus persimilis Athias-Henriot and Neoseiulus californicus McGregor (Acari: Phytoseiidae) and their natural prey, the two-spotted spider mite Tetranychus urticae Koch (Acari: Tetranychidae). We have modelled their developmental rates as a function of temperature using both linear and nonlinear models. Diurnally alternating temperatures resulted in a faster development in the lower temperature range as compared to their corresponding mean constant temperatures, whereas the opposite was observed in the higher temperature range. Our results indicate that Jensen’s inequality does not suffice to fully explain the differences in developmental rates at constant and alternating temperatures, suggesting additional physiological responses play a role. It is concluded that diurnal temperature range should not be ignored and should be incorporated in predictive models on the phenology of arthropod pests and their natural enemies and their performance in biological control programmes. PMID:25874697
Diminished tektite ablation in the wake of a swarm
NASA Technical Reports Server (NTRS)
Sepri, P.; Chen, K. K.; Okeefe, J. A.
1981-01-01
Observations of ablation markings on tektite surfaces reveal that a large variation in aerodynamic heating must have occurred among the members of a swarm during atmospheric entry. In a few cases, the existence of jagged features indicates that these tektite surfaces may have barely reached the melting temperature. Such an observation seems to be incompatible with the necessarily large heating rates suffered by other tektites which exhibit the ring wave melt flow. A reconciliation is proposed in the form of a wake shielding model which is a natural consequence of swarm entry. Calculations indicate that the observed ablation variations are actually possible for swarm entry at greater than escape velocity. This aerodynamic conclusion provides support for the arguments favoring extraterrestrial origin of tektites.
Simmonds, Emily G; Sheldon, Ben C; Coulson, Tim; Cole, Ella F
2017-11-01
For organisms living in seasonal environments, synchronizing the peak energetic demands of reproduction with peak food availability is a key challenge. Understanding the extent to which animals can adjust behavior to optimize reproductive timing, and the cues they use to do this, is essential for predicting how they will respond to future climate change. In birds, the timing of peak energetic demand is largely determined by the timing of clutch initiation; however, considerable alterations can still occur once egg laying has begun. Here, we use a wild population of great tits ( Parus major ) to quantify individual variation in different aspects of incubation behavior (onset, duration, and daily intensity) and conduct a comprehensive assessment of the causes and consequences of this variation. Using a 54-year dataset, we demonstrate that timing of hatching relative to peak prey abundance (synchrony) is a better predictor of reproductive success than clutch initiation or clutch completion timing, suggesting adjustments to reproductive timing via incubation are adaptive in this species. Using detailed in-nest temperature recordings, we found that postlaying, birds improved their synchrony with the food peak primarily by varying the onset of incubation, with duration changes playing a lesser role. We then used a sliding time window approach to explore which spring temperature cues best predict variance in each aspect of incubation behavior. Variation in the onset of incubation correlated with mean temperatures just prior to laying; however, incubation duration could not be explained by any of our temperature variables. Daily incubation intensity varied in response to daily maximum temperatures throughout incubation, suggesting female great tits respond to temperature cues even in late stages of incubation. Our results suggest that multiple aspects of the breeding cycle influence the final timing of peak energetic demand. Such adjustments could compensate, in part, for poor initial timing, which has significant fitness impacts.
Guerra, Alexandra; Leite, Nuno; Marques, João Carlos; Ford, Alex T; Martins, Irene
2014-01-01
Understanding the environmental parameters that constrain the distribution of a species at its latitudinal extremes is critical for predicting how ecosystems react to climate change. Our first aim was to predict the variation in the amphipod populations of Echinogammarus marinus from the southernmost limit of its distribution under global warming scenarios. Our second aim was to test whether sex-ratio fluctuations - a mechanism frequently displayed by amphipods - respond to the variations in populations under altered climate conditions. To achieve these aims, scenarios were run with a validated model of E. marinus populations. Simulations were divided into: phase I - simulation of the effect of climate change on amphipod populations, and phase II - simulation of the effect of climate change on populations with male and female proportions. In both phases, temperature (T), salinity (S) and temperature and salinity (T-S) were tested. Results showed that E. marinus populations are highly sensitive to increases in temperature (>2 °C), which has adverse effects on amphipod recruitment and growth. Results from the climate change scenarios coupled with the sex-ratio fluctuations depended largely on the degree of female bias within population. Temperature increase of 2 °C had less impact on female-biased populations, particularly when conjugated with increases in salinity. Male-biased populations were highly sensitive to any variation in temperature and/or salinity; these populations exhibited a long-term decline in density. Simulations in which temperature increased more than 4 °C led to a continuous decline in the E. marinus population. According to this work, E. marinus populations at their southernmost limit are vulnerable to global warming. We anticipate that in Europe, temperature increases of 2 °C will incite a withdrawal of the population of 5°N from the amphipod species located at southernmost geographical borders. This effect is discussed in relation to the distribution of E. marinus along the Atlantic coast. © 2013 Elsevier B.V. All rights reserved.
15 years of VLT/UVES OH intensities and temperatures in comparison with TIMED/SABER data
NASA Astrophysics Data System (ADS)
Noll, Stefan; Kimeswenger, Stefan; Proxauf, Bastian; Unterguggenberger, Stefanie; Kausch, Wolfgang; Jones, Amy M.
2017-10-01
The high-resolution echelle spectrograph UVES of the Very Large Telescope at Cerro Paranal in Chile has been regularly operated since April 2000. Thus, UVES archival data originally taken for astronomical projects but also including sky emission can be used to study airglow variations on a time scale longer than a solar cycle. Focusing on OH emission and observations until March 2015, we considered about 3000 high-quality spectra from two instrumental set-ups centred on 760 and 860 nm, which cover about 380 nm each. These data allowed us to measure line intensities for several OH bands in order to derive band intensities and rotational temperatures for different upper vibrational levels as a function of solar activity and observing date. The results were compared with those derived from emission and temperature profile data of the radiometer SABER on the TIMED satellite taken in the Cerro Paranal area between 2002 and 2015. In agreement with the SABER data, the long-term variations in OH intensity and temperature derived from the UVES data are dominated by the solar cycle, whereas secular trends appear to be negligible. Combining the UVES and SABER results, the solar cycle effects for the OH intensity and temperature are about 12-17% and 4-5 K per 100 sfu and do not significantly depend on the selected OH band. The data also reveal that variations of the effective OH emission layer height and air density can cause significant changes in the OH rotational temperatures due to a varying ratio of OH thermalising collisions by air molecules and OH radiation, deactivation, and destruction processes which impede the rotational relaxation. However, this effect appears to be of minor importance for the explanation of the rotational temperature variations related to the solar activity cycle, which causes only small changes in the OH emission profile.
Learning, climate and the evolution of cultural capacity.
Whitehead, Hal
2007-03-21
Patterns of environmental variation influence the utility, and thus evolution, of different learning strategies. I use stochastic, individual-based evolutionary models to assess the relative advantages of 15 different learning strategies (genetic determination, individual learning, vertical social learning, horizontal/oblique social learning, and contingent combinations of these) when competing in variable environments described by 1/f noise. When environmental variation has little effect on fitness, then genetic determinism persists. When environmental variation is large and equal over all time-scales ("white noise") then individual learning is adaptive. Social learning is advantageous in "red noise" environments when variation over long time-scales is large. Climatic variability increases with time-scale, so that short-lived organisms should be able to rely largely on genetic determination. Thermal climates usually are insufficiently red for social learning to be advantageous for species whose fitness is very determined by temperature. In contrast, population trajectories of many species, especially large mammals and aquatic carnivores, are sufficiently red to promote social learning in their predators. The ocean environment is generally redder than that on land. Thus, while individual learning should be adaptive for many longer-lived organisms, social learning will often be found in those dependent on the populations of other species, especially if they are marine. This provides a potential explanation for the evolution of a prevalence of social learning, and culture, in humans and cetaceans.
Collective thermoregulation in bee clusters
Ocko, Samuel A.; Mahadevan, L.
2014-01-01
Swarming is an essential part of honeybee behaviour, wherein thousands of bees cling onto each other to form a dense cluster that may be exposed to the environment for several days. This cluster has the ability to maintain its core temperature actively without a central controller. We suggest that the swarm cluster is akin to an active porous structure whose functional requirement is to adjust to outside conditions by varying its porosity to control its core temperature. Using a continuum model that takes the form of a set of advection–diffusion equations for heat transfer in a mobile porous medium, we show that the equalization of an effective ‘behavioural pressure’, which propagates information about the ambient temperature through variations in density, leads to effective thermoregulation. Our model extends and generalizes previous models by focusing the question of mechanism on the form and role of the behavioural pressure, and allows us to explain the vertical asymmetry of the cluster (as a consequence of buoyancy-driven flows), the ability of the cluster to overpack at low ambient temperatures without breaking up at high ambient temperatures, and the relative insensitivity to large variations in the ambient temperature. Our theory also makes testable hypotheses for the response of the cluster to external temperature inhomogeneities and suggests strategies for biomimetic thermoregulation. PMID:24335563
Nakagawa, Hiroyuki; Kitagawa, Shinya; Araki, Shuki; Ohtani, Hajime
2006-02-01
Several alkyl benzenes are separated by pressurized flow-driven capillary electrochromatography using a temperature-controlled capillary column packed with octadecyl siloxane-modified silica gel, and the effect of applied voltage on the retention is investigated. The van't Hoff plot shows good linearity at the column temperature between 305 and 330 K under applications from -6 to +6 kV. The applied voltage causes a relatively large variation in the enthalpy and the entropy of transfer of the solute from the mobile phase to the stationary phase (> 20%). However, the direction of variation in the enthalpy is almost opposite to that in the entropy, both of which might compensate each other. Therefore, the retention factor is not significantly varied (< 4%) by the application of voltage.
NASA Astrophysics Data System (ADS)
Sun, L.; Cai, Y.
2017-12-01
Climate of dry-hot valley areas regarding their long term temporal changes are seldom studied. In this paper, climate change in lower reach of Yalongjiang River, a typical dry-hot valley area locating in upper Yangtze River Basin, was analyzed. Ten single meteorological factors were used to investigate basic climatic characteristics, and two integrated index (i.e. relative evapotranspiration(AET/P), standard precipitation evapotranspiration index(SPEI)) were selected to reflect changes from human activities and gauge climate drought regime. Mann-Kendall mutation test was applied to identify mutation year, and variation trends were diagnosed with linear regression and distance average analysis. Mean values were tested to find if there were significant changes resulting from a large artificial reservoir constructed in 1999. Results of mutation test showed that minimum temperature, relative humidity, and AET/P in two stations changed significantly in 2000s. Temperature increased since 1990s, and other single index fluctuated in recent 50 years. Precipitation decreased and temperature increased in autumn significantly, while precipitation in summer decreased slightly. The variation of SPEI implied that the area was humid from 1980s to 2000s, but drought in 2010s. The results of mean test indicated that 56% meteorological index changed significantly, which might be related to the construction of the large reservoir. This research not only reveals the climate change in a dry-hot valley, but also helps study concerning human activities especially the construction of cascade reservoirs in the future in this area.
Modeling of the static recrystallization for 7055 aluminum alloy by cellular automaton
NASA Astrophysics Data System (ADS)
Zhang, Tao; Lu, Shi-hong; Zhang, Jia-bin; Li, Zheng-fang; Chen, Peng; Gong, Hai; Wu, Yun-xin
2017-09-01
In order to simulate the flow behavior and microstructure evolution during the pass interval period of the multi-pass deformation process, models of static recovery (SR) and static recrystallization (SRX) by the cellular automaton (CA) method for the 7055 aluminum alloy were established. Double-pass hot compression tests were conducted to acquire flow stress and microstructure variation during the pass interval period. With the basis of the material constants obtained from the compression tests, models of the SR, incubation period, nucleation rate and grain growth were fitted by least square method. A model of the grain topology and a statistical computation of the CA results were also introduced. The effects of the pass interval time, temperature, strain, strain rate and initial grain size on the microstructure variation for the SRX of the 7055 aluminum alloy were studied. The results show that a long pass interval time, large strain, high temperature and large strain rate are beneficial for finer grains during the pass interval period. The stable size of the static recrystallized grain is not concerned with the initial grain size, but mainly depends on the strain rate and temperature. The SRX plays a vital role in grain refinement, while the SR has no effect on the variation of microstructure morphology. Using flow stress and microstructure comparisons of the simulated and experimental CA results, the established CA models can accurately predict the flow stress and microstructure evolution during the pass interval period, and provide guidance for the selection of optimized parameters for the multi-pass deformation process.
Thermophysical characteristics of the large main-belt asteroid (349) Dembowska
NASA Astrophysics Data System (ADS)
Yu, Liang Liang; Yang, Bin; Ji, Jianghui; Ip, Wing-Huen
2017-12-01
(349) Dembowska is a large, bright main-belt asteroid that has a fast rotation and an oblique spin axis. It might have experienced partial melting and differentiation. We constrain Dembowska's thermophysical properties, such as thermal inertia, roughness fraction, geometric albedo and effective diameter within 3σ uncertainty of Γ =20^{+12}_{-7} Jm-2 s-0.5 K-1, f_r=0.25^{+0.60}_{-0.25}, p_v=0.309^{+0.026}_{-0.038} and D_eff=155.8^{+7.5}_{-6.2} km, by utilizing the advanced thermophysical model to analyse four sets of thermal infrared data obtained by the Infrared Astronomy Satellite (IRAS), AKARI, the Wide-field Infrared Survey Explorer (WISE) and the Subaru/Cooled Mid-Infrared Camera and Spectrometer (COMICS) at different epochs. In addition, by modelling the thermal light curve observed by WISE, we obtain the rotational phases of each data set. These rotationally resolved data do not reveal significant variations of thermal inertia and roughness across the surface, indicating that the surface of Dembowska should be covered by a dusty regolith layer with few rocks or boulders. Besides, the low thermal inertia of Dembowska shows no significant difference with other asteroids larger than 100 km, which indicates that the dynamical lives of these large asteroids are long enough to make their surfaces have sufficiently low thermal inertia. Furthermore, based on the derived surface thermophysical properties, as well as the known orbital and rotational parameters, we can simulate Dembowska's surface and subsurface temperatures throughout its orbital period. The surface temperature varies from ∼40 to ∼220 K, showing significant seasonal variation, whereas the subsurface temperature achieves equilibrium temperature about 120-160 K below a depth of 30-50 cm.
Orbital thermal analysis of lattice structured spacecraft using color video display techniques
NASA Technical Reports Server (NTRS)
Wright, R. L.; Deryder, D. D.; Palmer, M. T.
1983-01-01
A color video display technique is demonstrated as a tool for rapid determination of thermal problems during the preliminary design of complex space systems. A thermal analysis is presented for the lattice-structured Earth Observation Satellite (EOS) spacecraft at 32 points in a baseline non Sun-synchronous (60 deg inclination) orbit. Large temperature variations (on the order of 150 K) were observed on the majority of the members. A gradual decrease in temperature was observed as the spacecraft traversed the Earth's shadow, followed by a sudden rise in temperature (100 K) as the spacecraft exited the shadow. Heating rate and temperature histories of selected members and color graphic displays of temperatures on the spacecraft are presented.
NASA Astrophysics Data System (ADS)
Baldi, G.; Giordano, V. M.; Ruta, B.; Dal Maschio, R.; Fontana, A.; Monaco, G.
2014-03-01
We report the observation, by means of high-resolution inelastic x-ray scattering, of an unusually large temperature dependence of the sound attenuation of a network glass at terahertz frequency, an unprecedentedly observed phenomenon. The anharmonicity can be ascribed to the interaction between the propagating acoustic wave and the bath of thermal vibrations. At low temperatures the sound attenuation follows a Rayleigh-Gans scattering law. As the temperature is increased the anharmonic process sets in, resulting in an almost quadratic frequency dependence of the damping in the entire frequency range. We show that the temperature variation of the sound damping accounts quantitatively for the temperature dependence of the density of vibrational states.
Frey, Desta L.; Gagnon, Patrick
2015-01-01
In eastern Canada, the destruction of kelp beds by dense aggregations (fronts) of the omnivorous green sea urchin, Strongylocentrotus droebachiensis, is a key determinant of the structure and dynamics of shallow reef communities. Recent studies suggest that hydrodynamic forces, but not sea temperature, determine the strength of urchin-kelp interactions, which deviates from the tenets of the metabolic theory of ecology (MTE). We tested the hypothesis that water temperature can predict short-term kelp bed destruction by S. droebachiensis in calm hydrodynamic environments. Specifically, we experimentally determined relationships among water temperature, body size, and individual feeding in the absence of waves, as well as among wave velocity, season, and aggregative feeding. We quantified variation in kelp-bed boundary dynamics, sea temperature, and wave height over three months at one subtidal site in Newfoundland to test the validity of thermal tipping ranges and regression equations derived from laboratory results. Consistent with the MTE, individual feeding during early summer (June-July) obeyed a non-linear, size- and temperature-dependent relationship: feeding in large urchins was consistently highest and positively correlated with temperature <12°C and dropped within and above the 12–15°C tipping range. This relationship was more apparent in large than small urchins. Observed and expected rates of kelp loss based on sea temperature and urchin density and size structure at the front were highly correlated and differed by one order of magnitude. The present study speaks to the importance of considering body size and natural variation in sea temperature in studies of urchin-kelp interactions. It provides the first compelling evidence that sea temperature, and not only hydrodynamic forces, can predict kelp bed destruction by urchin fronts in shallow reef communities. Studying urchin-seaweed-predator interactions within the conceptual foundations of the MTE holds high potential for improving capacity to predict and manage shifts in marine food web structure and productivity. PMID:25774674
Frey, Desta L; Gagnon, Patrick
2015-01-01
In eastern Canada, the destruction of kelp beds by dense aggregations (fronts) of the omnivorous green sea urchin, Strongylocentrotus droebachiensis, is a key determinant of the structure and dynamics of shallow reef communities. Recent studies suggest that hydrodynamic forces, but not sea temperature, determine the strength of urchin-kelp interactions, which deviates from the tenets of the metabolic theory of ecology (MTE). We tested the hypothesis that water temperature can predict short-term kelp bed destruction by S. droebachiensis in calm hydrodynamic environments. Specifically, we experimentally determined relationships among water temperature, body size, and individual feeding in the absence of waves, as well as among wave velocity, season, and aggregative feeding. We quantified variation in kelp-bed boundary dynamics, sea temperature, and wave height over three months at one subtidal site in Newfoundland to test the validity of thermal tipping ranges and regression equations derived from laboratory results. Consistent with the MTE, individual feeding during early summer (June-July) obeyed a non-linear, size- and temperature-dependent relationship: feeding in large urchins was consistently highest and positively correlated with temperature <12°C and dropped within and above the 12-15°C tipping range. This relationship was more apparent in large than small urchins. Observed and expected rates of kelp loss based on sea temperature and urchin density and size structure at the front were highly correlated and differed by one order of magnitude. The present study speaks to the importance of considering body size and natural variation in sea temperature in studies of urchin-kelp interactions. It provides the first compelling evidence that sea temperature, and not only hydrodynamic forces, can predict kelp bed destruction by urchin fronts in shallow reef communities. Studying urchin-seaweed-predator interactions within the conceptual foundations of the MTE holds high potential for improving capacity to predict and manage shifts in marine food web structure and productivity.
James M. Vose; Michael G. Ryan
2002-01-01
Autotrophic respiration may regulate how ecosystem productivity responds to changes in temperature, atmospheric [CO2], and N deposition. Estimates of autotrophic respiration are difficult for forest ecosystems, because of the large amount of biomass, different metabolic rates among tissues, and seasonal variation in respiration rates....
Predicting Southern Appalachian overstory vegetation with digital terrain data
Paul V. Bolstad; Wayne Swank; James Vose
1998-01-01
Vegetation in mountainous regions responds to small-scale variation in terrain, largely due to effects on both temperature and soil moisture. However, there are few studies of quantitative, terrain-based methods for predicting vegetation composition. This study investigated relationships between forest composition, elevation, and a derived index of terrain shape, and...
Long-Term Bacterial Dynamics in a Full-Scale Drinking Water Distribution System
Prest, E. I.; Weissbrodt, D. G.; Hammes, F.; van Loosdrecht, M. C. M.; Vrouwenvelder, J. S.
2016-01-01
Large seasonal variations in microbial drinking water quality can occur in distribution networks, but are often not taken into account when evaluating results from short-term water sampling campaigns. Temporal dynamics in bacterial community characteristics were investigated during a two-year drinking water monitoring campaign in a full-scale distribution system operating without detectable disinfectant residual. A total of 368 water samples were collected on a biweekly basis at the water treatment plant (WTP) effluent and at one fixed location in the drinking water distribution network (NET). The samples were analysed for heterotrophic plate counts (HPC), Aeromonas plate counts, adenosine-tri-phosphate (ATP) concentrations, and flow cytometric (FCM) total and intact cell counts (TCC, ICC), water temperature, pH, conductivity, total organic carbon (TOC) and assimilable organic carbon (AOC). Multivariate analysis of the large dataset was performed to explore correlative trends between microbial and environmental parameters. The WTP effluent displayed considerable seasonal variations in TCC (from 90 × 103 cells mL-1 in winter time up to 455 × 103 cells mL-1 in summer time) and in bacterial ATP concentrations (<1–3.6 ng L-1), which were congruent with water temperature variations. These fluctuations were not detected with HPC and Aeromonas counts. The water in the network was predominantly influenced by the characteristics of the WTP effluent. The increase in ICC between the WTP effluent and the network sampling location was small (34 × 103 cells mL-1 on average) compared to seasonal fluctuations in ICC in the WTP effluent. Interestingly, the extent of bacterial growth in the NET was inversely correlated to AOC concentrations in the WTP effluent (Pearson’s correlation factor r = -0.35), and positively correlated with water temperature (r = 0.49). Collecting a large dataset at high frequency over a two year period enabled the characterization of previously undocumented seasonal dynamics in the distribution network. Moreover, high-resolution FCM data enabled prediction of bacterial cell concentrations at specific water temperatures and time of year. The study highlights the need to systematically assess temporal fluctuations in parallel to spatial dynamics for individual drinking water distribution systems. PMID:27792739
Long-Term Bacterial Dynamics in a Full-Scale Drinking Water Distribution System.
Prest, E I; Weissbrodt, D G; Hammes, F; van Loosdrecht, M C M; Vrouwenvelder, J S
2016-01-01
Large seasonal variations in microbial drinking water quality can occur in distribution networks, but are often not taken into account when evaluating results from short-term water sampling campaigns. Temporal dynamics in bacterial community characteristics were investigated during a two-year drinking water monitoring campaign in a full-scale distribution system operating without detectable disinfectant residual. A total of 368 water samples were collected on a biweekly basis at the water treatment plant (WTP) effluent and at one fixed location in the drinking water distribution network (NET). The samples were analysed for heterotrophic plate counts (HPC), Aeromonas plate counts, adenosine-tri-phosphate (ATP) concentrations, and flow cytometric (FCM) total and intact cell counts (TCC, ICC), water temperature, pH, conductivity, total organic carbon (TOC) and assimilable organic carbon (AOC). Multivariate analysis of the large dataset was performed to explore correlative trends between microbial and environmental parameters. The WTP effluent displayed considerable seasonal variations in TCC (from 90 × 103 cells mL-1 in winter time up to 455 × 103 cells mL-1 in summer time) and in bacterial ATP concentrations (<1-3.6 ng L-1), which were congruent with water temperature variations. These fluctuations were not detected with HPC and Aeromonas counts. The water in the network was predominantly influenced by the characteristics of the WTP effluent. The increase in ICC between the WTP effluent and the network sampling location was small (34 × 103 cells mL-1 on average) compared to seasonal fluctuations in ICC in the WTP effluent. Interestingly, the extent of bacterial growth in the NET was inversely correlated to AOC concentrations in the WTP effluent (Pearson's correlation factor r = -0.35), and positively correlated with water temperature (r = 0.49). Collecting a large dataset at high frequency over a two year period enabled the characterization of previously undocumented seasonal dynamics in the distribution network. Moreover, high-resolution FCM data enabled prediction of bacterial cell concentrations at specific water temperatures and time of year. The study highlights the need to systematically assess temporal fluctuations in parallel to spatial dynamics for individual drinking water distribution systems.
Badets, Franck; Nouet, Pascal; Masmoudi, Mohamed
2018-01-01
A fully integrated sensor interface for a wide operational temperature range is presented. It translates the sensor signal into a pulse width modulated (PWM) signal that is then converted into a 12-bit digital output. The sensor interface is based on a pair of injection locked oscillators used to implement a differential time-domain architecture with low sensitivity to temperature variations. A prototype has been fabricated using a 180 nm partially depleted silicon-on-insulator (SOI) technology. Experimental results demonstrate a thermal stability as low as 65 ppm/°C over a large temperature range from −20 °C up to 220 °C. PMID:29621171
Convection in the Rayleigh-Bénard flow with all fluid properties variable
NASA Astrophysics Data System (ADS)
Sassos, Athanasios; Pantokratoras, Asterios
2011-10-01
In the present paper, the effect of variable fluid properties (density, viscosity, thermal conductivity and specific heat) on the convection in the classical Rayleigh-Bénard problem is investigated. The investigation concerns water, air, and engine oil by taking into account the variation of fluid properties with temperature. The results are obtained by numerically solving the governing equations, using the SIMPLE algorithm and covering large temperature differences. It is found that the critical Rayleigh number increases as the temperature difference increases considering all fluid properties variable. However, when the fluid properties are kept constant, calculated at the mean temperature, and only density is considered variable, the critical Rayleigh number either decreases or remains constant.
Variations in VLT/UVES-based OH rotational temperatures for time scales from hours to 15 years
NASA Astrophysics Data System (ADS)
Noll, Stefan; Kimeswenger, Stefan; Proxauf, Bastian; Kausch, Wolfgang; Unterguggenberger, Stefanie; Jones, Amy M.
2017-04-01
Hydroxyl (OH) emission is an important tracer of the climate, chemistry, and dynamics of the Earth's mesopause region. However, the relation of intensity variations in different OH lines is not well understood yet. This is critical for the most popular use of OH lines: the estimate of ambient temperatures based on transitions at low rotational levels of the same band. It is possible that the measured variability of the derived rotational temperature does not coincide with changes in the ambient temperature. Such differences can be caused by varying deviations from the local thermodynamic equilibrium (LTE) for the population distribution over the considered rotational levels. The non-LTE effects depend on the ratio of the thermalising collisions (mostly related to molecular oxygen) and competing radiative transitions or collisions without thermalisation of the rotational level distribution. Therefore, significant changes in the vertical structure of excited OH and its main quenchers can affect the temperature measurements. We have investigated the variability of OH rotational temperatures and the corresponding contributions of non-LTE effects for different OH bands and time scales up to 15 years based on data of the high-resolution echelle spectrograph UVES at the Very Large Telescope at Cerro Paranal in Chile. In order to link the measured rotational temperatures with the structure of the OH emission layer, we have also studied OH emission and kinetic temperature profiles from the multi-channel radiometer SABER on the TIMED satellite taken between 2002 and 2015. The results show that non-LTE contributions can significantly affect the OH rotational temperatures. Their variations can be especially strong during the night and for high upper vibrational levels of the transitions, where amplitudes of several Kelvins can be measured. They appear to be weak if long-term variations such as those caused by the solar cycle are investigated. These differences in the response correlate with changes in the effective height of the OH emission layer and the effective air density in the layer. The latter confirms the expected important role of molecular oxygen for the thermalisation of the OH rotational level populations.
Clark, Deborah J.; Clark, Thomas O.; Duniway, Michael C.; Flagg, Cody B.
2015-01-01
Population dynamics and effects of large ungulate disturbances on Winkler cactus (Pediocactus winkleri K.D. Heil) were documented annually over a 20-year time span at one plot within Capitol Reef National Park, Utah. This cactus species was federally listed as threatened in 1998. The study began in 1995 to gain a better understanding of life history aspects and threats to this species. Data were collected annually in early spring and included diameter, condition, reproductive structures, mortality, recruitment, and disturbance by large ungulates. We used odds ratio and probability model analyses to determine effects of large ungulate trampling and weather on these cacti. During the study, plot population declined by 18%, with trampling of cactus, low precipitation, and cold spring temperatures implicated as causal factors. Precipitation and temperature affected flowering, mortality, and recruitment. Large ungulate disturbances increased mortality and reduced the probability of flowering. These results suggest that large ungulate disturbances and recent climate regimes have had an adverse impact on long-term persistence of this cactus.
Temperature-dependent behaviours are genetically variable in the nematode Caenorhabditis briggsae.
Stegeman, Gregory W; de Mesquita, Matthew Bueno; Ryu, William S; Cutter, Asher D
2013-03-01
Temperature-dependent behaviours in Caenorhabditis elegans, such as thermotaxis and isothermal tracking, are complex behavioural responses that integrate sensation, foraging and learning, and have driven investigations to discover many essential genetic and neural pathways. The ease of manipulation of the Caenorhabditis model system also has encouraged its application to comparative analyses of phenotypic evolution, particularly contrasts of the classic model C. elegans with C. briggsae. And yet few studies have investigated natural genetic variation in behaviour in any nematode. Here we measure thermotaxis and isothermal tracking behaviour in genetically distinct strains of C. briggsae, further motivated by the latitudinal differentiation in C. briggsae that is associated with temperature-dependent fitness differences in this species. We demonstrate that C. briggsae performs thermotaxis and isothermal tracking largely similar to that of C. elegans, with a tendency to prefer its rearing temperature. Comparisons of these behaviours among strains reveal substantial heritable natural variation within each species that corresponds to three general patterns of behavioural response. However, intraspecific genetic differences in thermal behaviour often exceed interspecific differences. These patterns of temperature-dependent behaviour motivate further development of C. briggsae as a model system for dissecting the genetic underpinnings of complex behavioural traits.
MacMillan, Heath A.; Andersen, Jonas L.; Davies, Shireen A.; Overgaard, Johannes
2015-01-01
Many insects, including Drosophila, succumb to the physiological effects of chilling at temperatures well above those causing freezing. Low temperature causes a loss of extracellular ion and water homeostasis in such insects, and chill injuries accumulate. Using an integrative and comparative approach, we examined the role of ion and water balance in insect chilling susceptibility/ tolerance. The Malpighian tubules (MT), of chill susceptible Drosophila species lost [Na+] and [K+] selectivity at low temperatures, which contributed to a loss of Na+ and water balance and a deleterious increase in extracellular [K+]. By contrast, the tubules of chill tolerant Drosophila species maintained their MT ion selectivity, maintained stable extracellular ion concentrations, and thereby avoided injury. The most tolerant species were able to modulate ion balance while in a cold-induced coma and this ongoing physiological acclimation process allowed some individuals of the tolerant species to recover from chill coma during low temperature exposure. Accordingly, differences in the ability to maintain homeostatic control of water and ion balance at low temperature may explain large parts of the wide intra- and interspecific variation in insect chilling tolerance. PMID:26678786
Global temperature monitoring from space
NASA Technical Reports Server (NTRS)
Spencer, R. W.
1994-01-01
Global and regional temperature variations in the lower troposphere and lower stratosphere are examined for the period 1979-92 from Microwave Sounder Unit (MSU) data obtained by the Television Infrared Observation Satellite (TIROS)-N series of National Oceanic and Atmospheric Administration (NOAA) operational satellites. In the lower troposphere, globally-averaged temperature variations appear to be dominated by tropical El Nino (warm) and La Nina (cool) events and volcanic eruptions. The Pinatubo volcanic eruption in June 1991 appears to have initiated a cooling trend which persisted through the most recent data analyzed (July, 1992), and largely overwhelmed the warming from the 1991-92 El Nino. The cooling has been stronger in the Northern Hemisphere than in the Southern Hemisphere. The temperature trend over the 13.5 year satellite record is small (+0.03 C) compared to the year-to-year variability (0.2-0.4 C), making detection of any global warming signal fruitless to date. However, the future global warming trend, currently predicted to be around 0.3 C/decade, will be much easier to discern should it develop. The lower stratospheric temperature record is dominated by warm episodes from the Pinatubo eruption and the March 1982 eruption of El Chichon volcano.
Rohr, Jason R; Raffel, Thomas R
2010-05-04
The role of global climate change in the decline of biodiversity and the emergence of infectious diseases remains controversial, and the effect of climatic variability, in particular, has largely been ignored. For instance, it was recently revealed that the proposed link between climate change and widespread amphibian declines, putatively caused by the chytrid fungus Batrachochytrium dendrobatidis (Bd), was tenuous because it was based on a temporally confounded correlation. Here we provide temporally unconfounded evidence that global El Niño climatic events drive widespread amphibian losses in genus Atelopus via increased regional temperature variability, which can reduce amphibian defenses against pathogens. Of 26 climate variables tested, only factors associated with temperature variability could account for the spatiotemporal patterns of declines thought to be associated with Bd. Climatic predictors of declines became significant only after controlling for a pattern consistent with epidemic spread (by temporally detrending the data). This presumed spread accounted for 59% of the temporal variation in amphibian losses, whereas El Niño accounted for 59% of the remaining variation. Hence, we could account for 83% of the variation in declines with these two variables alone. Given that global climate change seems to increase temperature variability, extreme climatic events, and the strength of Central Pacific El Niño episodes, climate change might exacerbate worldwide enigmatic declines of amphibians, presumably by increasing susceptibility to disease. These results suggest that changes to temperature variability associated with climate change might be as significant to biodiversity losses and disease emergence as changes to mean temperature.
Effect of temperature on the orthodontic clinical applications of niti closed-coil springs
Espinar-Escalona, Eduardo; Llamas-Carreras, José M.; Barrera-Mora, José M.; Abalos-Lasbrucci, Camilo
2013-01-01
NiTi spring coils were used to obtain large deformation under a constant force. The device consists on a NiTi coil spring, superelastic at body temperature, in order to have a stress plateau during the austenitic retransformation during the unloading. The temperature variations induced changes in the spring force. Objectives: The aim of this study is to investigate the effect of the temperature variations in the spring forces and corrosion behaviour simulating the ingestion hot/cold drinks and food. Study Design: The springs were subjected to a tensile force using universal testing machine MTS-Adamel (100 N load cell). All tests were performed in artificial saliva maintained at different temperatures. The corrosion tests were performed according to the ISO-standard 10993-15:2000. Results: The increase in temperature of 18oC induced an increase in the spring force of 30%. However, when the temperature returns to 37oC the distraction force recovers near the initial level. After cooling down the spring to 15oC, the force decreased by 46%. This investigation show as the temperature increase, the corrosion potential shifts towards negative values and the corrosion density is rising. Conclusions: The changes of the temperatures do not modify the superelastic behaviour of the NiTi closed-coil springs. The corrosion potential of NiTi in artificial saliva is decreasing by the rise of the temperatures. Key words:Superelasticity, NiTi, springs, orthodontic, coils, recovery, temperature. PMID:23722142
Diel stream temperature regimes of Bukovsky regions of the conterminous United States
NASA Astrophysics Data System (ADS)
Ferencz, Stephen B.; Cardenas, M. Bayani
2017-03-01
Stream temperature which varies over daily to seasonal timescales is a primary control on myriad ecological, biogeochemical, and physical processes. Yet geographic patterns of its diel variations have not been fully characterized. Using daily temperature records spanning 15 years (2000-2014), monthly averaged mean daily temperature and diel temperature range were calculated for streams distributed across six Bukovsky regions of the conterminous U.S. Across all six regions, diel temperature fluctuations were lowest during the winter, around 1-2°C. During the summer there was wide distribution in diel temperatures (2°C-12°C). The regions revealed distinct differences in diel patterns for small and medium streams, but not for large streams. Small and medium streams exhibited notable hysteresis in their annual progression of diel temperature ranges, with larger diel temperature fluctuations in the spring than in the fall.
Operating Temperatures of a Sodium-Cooled Exhaust Valve as Measured by a Thermocouple
NASA Technical Reports Server (NTRS)
Sanders, J. C.; Wilsted, H. D.; Mulcahy, B. A.
1943-01-01
A thermocouple was installed in the crown of a sodium-cooled exhaust valve. The valve was then tested in an air-cooled engine cylinder and valve temperatures under various engine operating conditions were determined. A temperature of 1337 F was observed at a fuel-air ratio of 0.064, a brake mean effective pressure of 179 pounds per square inch, and an engine speed of 2000 rpm. Fuel-air ratio was found to have a large influence on valve temperature, but cooling-air pressure and variation in spark advance had little effect. An increase in engine power by change of speed or mean effective pressure increased the valve temperature. It was found that the temperature of the rear spark-plug bushing was not a satisfactory indication of the temperature of the exhaust valve.
NASA Astrophysics Data System (ADS)
Thomas, Yoann; Mazurié, Joseph; Alunno-Bruscia, Marianne; Bacher, Cédric; Bouget, Jean-François; Gohin, Francis; Pouvreau, Stéphane; Struski, Caroline
2011-11-01
In order to assess the potential of various marine ecosystems for shellfish aquaculture and to evaluate their carrying capacities, there is a need to clarify the response of exploited species to environmental variations using robust ecophysiological models and available environmental data. For a large range of applications and comparison purposes, a non-specific approach based on 'generic' individual growth models offers many advantages. In this context, we simulated the response of blue mussel ( Mytilus edulis L.) to the spatio-temporal fluctuations of the environment in Mont Saint-Michel Bay (North Brittany) by forcing a generic growth model based on Dynamic Energy Budgets with satellite-derived environmental data (i.e. temperature and food). After a calibration step based on data from mussel growth surveys, the model was applied over nine years on a large area covering the entire bay. These simulations provide an evaluation of the spatio-temporal variability in mussel growth and also show the ability of the DEB model to integrate satellite-derived data and to predict spatial and temporal growth variability of mussels. Observed seasonal, inter-annual and spatial growth variations are well simulated. The large-scale application highlights the strong link between food and mussel growth. The methodology described in this study may be considered as a suitable approach to account for environmental effects (food and temperature variations) on physiological responses (growth and reproduction) of filter feeders in varying environments. Such physiological responses may then be useful for evaluating the suitability of coastal ecosystems for shellfish aquaculture.
NASA Astrophysics Data System (ADS)
Stone, Hally B.; Banas, Neil S.; MacCready, Parker
2018-01-01
The Northern California Current System experiences highly variable seasonal upwelling in addition to larger basin-scale variability, both of which can significantly affect its water chemistry. Salinity and temperature fields from a 7 year ROMS hindcast model of this region (43°N-50°N), along with extensive particle tracking, were used to study interannual variability in water properties over both the upper slope and the midshelf bottom. Variation in slope water properties was an order of magnitude smaller than on the shelf. Furthermore, the primary relationship between temperature and salinity anomalies in midshelf bottom water consisted of variation in density (cold/salty versus warm/fresh), nearly orthogonal to the anomalies along density levels (cold/fresh versus warm/salty) observed on the upper slope. These midshelf anomalies were well-explained (R2 = 0.6) by the combination of interannual variability in local and remote alongshore wind stress, and depth of the California Undercurrent (CUC) core. Lagrangian analysis of upper slope and midshelf bottom water shows that both are affected simultaneously by large-scale alongcoast advection of water through the northern and southern boundaries. The amplitude of anomalies in bottom oxygen and dissolved inorganic carbon (DIC) on the shelf associated with upwelling variability are larger than those associated with typical variation in alongcoast advection, and are comparable to observed anomalies in this region. However, a large northern intrusion event in 2004 illustrates that particular, large-scale alongcoast advection anomalies can be just as effective as upwelling variability in changing shelf water properties on the interannual scale.
Kozak, Leslie P
2014-03-01
The recent characterization of brown fat in humans has generated much excitement on the possibility that increased energy expenditure by heat production by this tissue will be able to reduce obesity. This expectation has largely been stimulated by studies with mice that show strong associations between increased brown fat activity and reductions in obesity and insulin resistance. Research in the mouse has been largely based upon the induction or suppression of brown fat and mitochondrial uncoupling protein by genetic methods. The review of this research literature underscores the idea that reductions in obesity in mice are secondary to the primary role of brown adipose tissue in the regulation of body temperature. Given that the variation in brown fat in humans, as detected by PET imaging, is highly associated with administration of adrenergic agonists and reductions in ambient temperature, the effects on obesity in humans may also be secondary to the regulation of body temperature. Induction of thermogenesis by reduced ambient temperature now becomes like muscle and physical activity, another natural method of increased energy expenditure to combat obesity. Furthermore, there is no evidence to indicate that heat production by adrenergic stimulation via cold exposure or drug treatment or the enriched physical environment is restricted to the thermogenic activity of the brown adipocyte. This article is part of a Special Issue entitled: Modulation of Adipose Tissue in Health and Disease. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Shi, Shiyuan; Li, Jinbao; Shi, Jiangfeng; Zhao, Yesi; Huang, Gang
2017-08-01
Long-term, high-resolution proxy records containing cold season temperature signals are scarce on the southeastern Tibetan Plateau (TP), limiting our understanding of regional climate and the potential driving forces. In this study, we present a nearly three centuries long reconstruction of winter (December-February) mean temperature for the central Hengduan Mountains, southeastern TP. The reconstruction is derived from a composite tree-ring width chronology of Pinus yunnanensis Franch from two high elevation sites (>3000 m above sea level). Our reconstruction passes all standard calibration-verification schemes and explains nearly 73 % of the variance of the original instrumental data. However, we were constrained to calibrate our full period (1718-2013) reconstruction of December-February mean temperature on the calibration period from 1959 to 1992 only, due to a decrease in temperature sensitivity of tree-ring index exhibited after 1992. Spatial correlation analysis shows that our reconstruction represents large-scale temperature variations in southwest China and the eastern TP. Our reconstructed December-February mean temperature shows a close association with the Atlantic Multidecadal Oscillation (AMO) over the past three centuries, with warm (cold) periods coinciding with the positive (negative) phases of the AMO. This persistent relationship suggests that the AMO may have been a key driver of multidecadal winter temperature variations on the southeastern TP.
Cable tunnel fire experiment study based on linear optical fiber fire detectors
NASA Astrophysics Data System (ADS)
Fan, Dian; Ding, Hongjun
2013-09-01
Aiming at exiting linear temperature fire detection technology including temperature sensing cable, fiber Raman scattering, fiber Bragg grating, this paper establish an experimental platform in cable tunnel, set two different experimental scenes of the fire and record temperature variation and fire detector response time in the processing of fire simulation. Since a small amount of thermal radiation and no flame for the beginning of the small-scale fire, only directly contacting heat detectors can make alarm response and the rest of other non- contact detectors are unable to respond. In large-scale fire, the alarm response time of the fiber Raman temperature sensing fire detector and fiber Bragg grating temperature sensing fire detector is about 30 seconds, and depending on the thermocouples' record the temperature over the fire is less than 35° in first 60 seconds of large-scale fire, while the temperature rising is more than 5°/min within the range of +/- 3m. According to the technical characteristics of the three detectors, the engineering suitability of the typical linear heat detectors in cable tunnels early fire detection is analyzed, which provide technical support for the preparation of norms.
NASA Technical Reports Server (NTRS)
Woods, Andrew W.; Self, Stephen
1992-01-01
Satellite images of large volcanic explosions reveal that the tops of volcanic eruptions columns are much cooler than the surrounding atmosphere. It is proposed that this effect occurs whenever a mixture of hot volcanic ash and entrained air ascends sufficiently high into a stably stratified atmosphere. Although the mixture is initially very hot, it expands and cools as the ambient pressure decreases. It is shown that cloud-top undercoolings in excess of 20 C may develop in clouds that penetrate the stratosphere, and it is predicted that, for a given cloud-top temperature, variations in the initial temperature of 100-200 C may correspond to variations in the column height of 5-10 km. It is deduced that the present practice of converting satellite-based measurements of the temperature at the top of volcanic eruptions columns to estimates of the column height will produce rather inaccurate results and should therefore be discontinued.
NASA Astrophysics Data System (ADS)
Soon, Willie W.-H.
2005-08-01
This letter offers new evidence motivating a more serious consideration of the potential Arctic temperature responses as a consequence of the decadal, multidecadal and longer-term persistent forcing by the ever-changing solar irradiance both in terms of total solar irradiance (TSI, i.e., integrated over all wavelengths) and the related UV irradiance. The support for such a solar modulator can be minimally derived from the large (>75%) explained variance for the decadally-smoothed Arctic surface air temperatures (SATs) by TSI and from the time-frequency structures of the TSI and Arctic SAT variability as examined by wavelet analyses. The reconstructed Arctic SAT time series based on the inverse wavelet transform, which includes decadal (5-15 years) and multidecadal (40-80 years) variations and a longer-term trend, contains nonstationary but persistent features that are highly correlated with the Sun's intrinsic magnetic variability especially on multidecadal time scales.
Hydrometer in the mantle: dln(Vs)/dln(Vp)
NASA Astrophysics Data System (ADS)
Li, L.; Weidner, D. J.
2010-12-01
The absorption of water into nominally non-hydrous phases is the probable storage mechanism of hydrogen throughout most of the mantle. Thus the water capacity in the mantle is greatest in the transition zone owing to the large water-solubility of ringwoodite and wadsleyite. However, the actual amount of water that is stored there is highly uncertain. Since water is probably brought down by subduction activity, it’s abundance is probably laterally variable. Thus, a metric that is sensitive to variations of water content are good candidates for hydrometers. Here we evaluate the parameter, dln(Vs)/dln(Vp), as such a parameter. It is useful to detect lateral variations of water if the effects of hydration on the parameter are different than those of temperature or composition. We compare the value of dln(Vs)/dln(Vp) due to the temperature with that due to the water content as a function of depth for the upper mantle. We have calculated dln(Vs)/dln(Vp) due to both water and temperature using a density functional theory approach, and available experimental data. Our results indicate that dln(Vs)/dln(Vp) due to water is distinguishable from dln(Vs)/dln(Vp) due to temperature or variations in iron content, particularly in ringwoodite. The difference increases with depth and making the lower part of the transition zone most identifiable as a water reservoir.
Broad-scale adaptive genetic variation in alpine plants is driven by temperature and precipitation
MANEL, STÉPHANIE; GUGERLI, FELIX; THUILLER, WILFRIED; ALVAREZ, NADIR; LEGENDRE, PIERRE; HOLDEREGGER, ROLF; GIELLY, LUDOVIC; TABERLET, PIERRE
2014-01-01
Identifying adaptive genetic variation is a challenging task, in particular in non-model species for which genomic information is still limited or absent. Here, we studied distribution patterns of amplified fragment length polymorphisms (AFLPs) in response to environmental variation, in 13 alpine plant species consistently sampled across the entire European Alps. Multiple linear regressions were performed between AFLP allele frequencies per site as dependent variables and two categories of independent variables, namely Moran’s eigenvector map MEM variables (to account for spatial and unaccounted environmental variation, and historical demographic processes) and environmental variables. These associations allowed the identification of 153 loci of ecological relevance. Univariate regressions between allele frequency and each environmental factor further showed that loci of ecological relevance were mainly correlated with MEM variables. We found that precipitation and temperature were the best environmental predictors, whereas topographic factors were rarely involved in environmental associations. Climatic factors, subject to rapid variation as a result of the current global warming, are known to strongly influence the fate of alpine plants. Our study shows, for the first time for a large number of species, that the same environmental variables are drivers of plant adaptation at the scale of a whole biome, here the European Alps. PMID:22680783
Atmospheric pressure, density, temperature and wind variations between 50 and 200 km
NASA Technical Reports Server (NTRS)
Justus, C. G.; Woodrum, A.
1972-01-01
Data on atmospheric pressure, density, temperature and winds between 50 and 200 km were collected from sources including Meteorological Rocket Network data, ROBIN falling sphere data, grenade release and pitot tube data, meteor winds, chemical release winds, satellite data, and others. These data were analyzed by a daily difference method and results on the distribution statistics, magnitude, and spatial structure of the irregular atmospheric variations are presented. Time structures of the irregular variations were determined by the analysis of residuals from harmonic analysis of time series data. The observed height variations of irregular winds and densities are found to be in accord with a theoretical relation between these two quantities. The latitude variations (at 50 - 60 km height) show an increasing trend with latitude. A possible explanation of the unusually large irregular wind magnitudes of the White Sands MRN data is given in terms of mountain wave generation by the Sierra Nevada range about 1000 km west of White Sands. An analytical method is developed which, based on an analogy of the irregular motion field with axisymmetric turbulence, allows measured or model correlation or structure functions to be used to evaluate the effective frequency spectra of scalar and vector quantities of a spacecraft moving at any speed and at any trajectory elevation angle.
NASA Astrophysics Data System (ADS)
Akin, S.; Winemiller, K. O.; Gelwick, F. P.
2003-05-01
Fish and macrocrustacean assemblage structure was analyzed along an estuarine gradient at Mad Island Marsh (MIM), Matagorda Bay, TX, during March 1998-August 1999. Eight estuarine-dependent fish species accounted for 94% of the individual fishes collected, and three species accounted for 96% of macrocrustacean abundance. Consistent with evidence from other Gulf of Mexico estuarine studies, species richness and abundance were highest during late spring and summer, and lowest during winter and early spring. Sites near the bay supported the most individuals and species. Associations between fish abundance and environmental variables were examined with canonical correspondence analysis. The dominant gradient was associated with water depth and distance from the bay. The secondary gradient reflected seasonal variation and was associated with temperature, salinity, dissolved oxygen, and vegetation cover. At the scales examined, estuarine biota responded to seasonal variation more than spatial variation. Estuarine-dependent species dominated the fauna and were common throughout the open waters of the shallow lake during winter-early spring when water temperature and salinity were low and dissolved oxygen high. During summer-early fall, sub-optimal environmental conditions (high temperature, low DO) in upper reaches accounted for strong spatial variation in assemblage composition. Small estuarine-resident fishes and the blue crab ( Callinectes sapidus) were common in warm, shallow, vegetated inland sites during summer-fall. Estuarine-dependent species were common at deeper, more saline locations near the bay during this period. During summer, freshwater species, such as gizzard shad ( Dorosoma cepedianum) and gars ( Lepisosteus spp.), were positively associated with water depth and proximity to the bay. The distribution and abundance of fishes in MIM appear to result from the combined effects of endogenous, seasonal patterns of reproduction and migration operating on large spatial scales, and species-specific response to local environmental variation.
Will phenotypic plasticity affecting flowering phenology keep pace with climate change?
Richardson, Bryce A; Chaney, Lindsay; Shaw, Nancy L; Still, Shannon M
2017-06-01
Rising temperatures have begun to shift flowering time, but it is unclear whether phenotypic plasticity can accommodate projected temperature change for this century. Evaluating clines in phenological traits and the extent and variation in plasticity can provide key information on assessing risk of maladaptation and developing strategies to mitigate climate change. In this study, flower phenology was examined in 52 populations of big sagebrush (Artemisia tridentata) growing in three common gardens. Flowering date (anthesis) varied 91 days from late July to late November among gardens. Mixed-effects modeling explained 79% of variation in flowering date, of which 46% could be assigned to plasticity and genetic variation in plasticity and 33% to genetics (conditional R 2 = 0.79, marginal R 2 = 0.33). Two environmental variables that explained the genetic variation were photoperiod and the onset of spring, the Julian date of accumulating degree-days >5 °C reaching 100. The genetic variation was mapped for contemporary and future climates (decades 2060 and 2090), showing flower date change varies considerably across the landscape. Plasticity was estimated to accommodate, on average, a ±13-day change in flowering date. However, the examination of genetic variation in plasticity suggests that the magnitude of plasticity could be affected by variation in the sensitivity to photoperiod and temperature. In a warmer common garden, lower-latitude populations have greater plasticity (+16 days) compared to higher-latitude populations (+10 days). Mapped climatypes of flowering date for contemporary and future climates illustrate the wide breadth of plasticity and large geographic overlap. Our research highlights the importance of integrating information on genetic variation, phenotypic plasticity and climatic niche modeling to evaluate plant responses and elucidate vulnerabilities to climate change. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.
Nanometre-scale thermometry in a living cell
NASA Astrophysics Data System (ADS)
Kucsko, G.; Maurer, P. C.; Yao, N. Y.; Kubo, M.; Noh, H. J.; Lo, P. K.; Park, H.; Lukin, M. D.
2013-08-01
Sensitive probing of temperature variations on nanometre scales is an outstanding challenge in many areas of modern science and technology. In particular, a thermometer capable of subdegree temperature resolution over a large range of temperatures as well as integration within a living system could provide a powerful new tool in many areas of biological, physical and chemical research. Possibilities range from the temperature-induced control of gene expression and tumour metabolism to the cell-selective treatment of disease and the study of heat dissipation in integrated circuits. By combining local light-induced heat sources with sensitive nanoscale thermometry, it may also be possible to engineer biological processes at the subcellular level. Here we demonstrate a new approach to nanoscale thermometry that uses coherent manipulation of the electronic spin associated with nitrogen-vacancy colour centres in diamond. Our technique makes it possible to detect temperature variations as small as 1.8 mK (a sensitivity of 9 mK Hz-1/2) in an ultrapure bulk diamond sample. Using nitrogen-vacancy centres in diamond nanocrystals (nanodiamonds), we directly measure the local thermal environment on length scales as short as 200 nanometres. Finally, by introducing both nanodiamonds and gold nanoparticles into a single human embryonic fibroblast, we demonstrate temperature-gradient control and mapping at the subcellular level, enabling unique potential applications in life sciences.
DOE Office of Scientific and Technical Information (OSTI.GOV)
A. S. Dhavale, G. Ciovati, G. R. Myneni
Measurements of superconducting properties such as bulk and surface critical fields and thermal conductivity have been carried out in the temperature range from 2 K to 8 K on large-grain samples of different purity and on a high-purity fine-grain sample, for comparison. The samples were treated by electropolishing and low temperature baking (120° C, 48 h). While the residual resistivity ratio changed by a factor of ~3 among the samples, no significant variation was found in their superconducting properties. The onset field for flux penetration at 2 K, Hffp, measured within a ~30 µm depth from the surface, was ~160more » mT, close to the bulk value. The baking effect was mainly to increase the field range up to which a coherent superconducting phase persists on the surface, above the upper critical field.« less
Logistics and quality control for DNA sampling in large multicenter studies.
Nederhand, R J; Droog, S; Kluft, C; Simoons, M L; de Maat, M P M
2003-05-01
To study associations between genetic variation and disease, large bio-banks need to be created in multicenter studies. Therefore, we studied the effects of storage time and temperature on DNA quality and quantity in a simulation experiment with storage up to 28 days frozen, at 4 degrees C and at room temperature. In the simulation experiment, the conditions did not influence the amount or quality of DNA to an unsatisfactory level. However, the amount of extracted DNA was decreased in frozen samples and in samples that were stored for > 7 days at room temperature. In a sample of patients from 24 countries of the EUROPA trial obtained by mail with transport times up to 1 month DNA yield and quality were adequate. From these results we conclude that transport of non-frozen blood by ordinary mail is usable and practical for DNA isolation for polymerase chain reaction in clinical and epidemiological studies.
Dang, Yunli; Zhao, Zhiyong; Tang, Ming; Zhao, Can; Gan, Lin; Fu, Songnian; Liu, Tongqing; Tong, Weijun; Shum, Perry Ping; Liu, Deming
2017-08-21
Featuring a dependence of Brillouin frequency shift (BFS) on temperature and strain changes over a wide range, Brillouin distributed optical fiber sensors are however essentially subjected to the relatively poor temperature/strain measurement resolution. On the other hand, phase-sensitive optical time-domain reflectometry (Φ-OTDR) offers ultrahigh temperature/strain measurement resolution, but the available frequency scanning range is normally narrow thereby severely restricts its measurement dynamic range. In order to achieve large dynamic range and high measurement resolution simultaneously, we propose to employ both the Brillouin optical time domain analysis (BOTDA) and Φ-OTDR through space-division multiplexed (SDM) configuration based on the multicore fiber (MCF), in which the two sensors are spatially separately implemented in the central core and a side core, respectively. As a proof of concept, the temperature sensing has been performed for validation with 2.5 m spatial resolution over 1.565 km MCF. Large temperature range (10 °C) has been measured by BOTDA and the 0.1 °C small temperature variation is successfully identified by Φ-OTDR with ~0.001 °C resolution. Moreover, the temperature changing process has been recorded by continuously performing the measurement of Φ-OTDR with 80 s frequency scanning period, showing about 0.02 °C temperature spacing at the monitored profile. The proposed system enables the capability to see finer and/or farther upon requirement in distributed optical fiber sensing.
Half the story: Thermal effects on within-host infectious disease progression in a warming climate.
Stewart, Alexander; Hablützel, Pascal I; Brown, Martha; Watson, Hayley V; Parker-Norman, Sophie; Tober, Anya V; Thomason, Anna G; Friberg, Ida M; Cable, Joanne; Jackson, Joseph A
2018-01-01
Immune defense is temperature dependent in cold-blooded vertebrates (CBVs) and thus directly impacted by global warming. We examined whether immunity and within-host infectious disease progression are altered in CBVs under realistic climate warming in a seasonal mid-latitude setting. Going further, we also examined how large thermal effects are in relation to the effects of other environmental variation in such a setting (critical to our ability to project infectious disease dynamics from thermal relationships alone). We employed the three-spined stickleback and three ecologically relevant parasite infections as a "wild" model. To generate a realistic climatic warming scenario we used naturalistic outdoors mesocosms with precise temperature control. We also conducted laboratory experiments to estimate thermal effects on immunity and within-host infectious disease progression under controlled conditions. As experimental readouts we measured disease progression for the parasites and expression in 14 immune-associated genes (providing insight into immunophenotypic responses). Our mesocosm experiment demonstrated significant perturbation due to modest warming (+2°C), altering the magnitude and phenology of disease. Our laboratory experiments demonstrated substantial thermal effects. Prevailing thermal effects were more important than lagged thermal effects and disease progression increased or decreased in severity with increasing temperature in an infection-specific way. Combining laboratory-determined thermal effects with our mesocosm data, we used inverse modeling to partition seasonal variation in Saprolegnia disease progression into a thermal effect and a latent immunocompetence effect (driven by nonthermal environmental variation and correlating with immune gene expression). The immunocompetence effect was large, accounting for at least as much variation in Saprolegnia disease as the thermal effect. This suggests that managers of CBV populations in variable environments may not be able to reliably project infectious disease risk from thermal data alone. Nevertheless, such projections would be improved by primarily considering prevailing thermal effects in the case of within-host disease and by incorporating validated measures of immunocompetence. © 2017 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Alberts, Samantha J.
The investigation of microgravity fluid dynamics emerged out of necessity with the advent of space exploration. In particular, capillary research took a leap forward in the 1960s with regards to liquid settling and interfacial dynamics. Due to inherent temperature variations in large spacecraft liquid systems, such as fuel tanks, forces develop on gas-liquid interfaces which induce thermocapillary flows. To date, thermocapillary flows have been studied in small, idealized research geometries usually under terrestrial conditions. The 1 to 3m lengths in current and future large tanks and hardware are designed based on hardware rather than research, which leaves spaceflight systems designers without the technological tools to effectively create safe and efficient designs. This thesis focused on the design and feasibility of a large length-scale thermocapillary flow experiment, which utilizes temperature variations to drive a flow. The design of a helical channel geometry ranging from 1 to 2.5m in length permits a large length-scale thermocapillary flow experiment to fit in a seemingly small International Space Station (ISS) facility such as the Fluids Integrated Rack (FIR). An initial investigation determined the proposed experiment produced measurable data while adhering to the FIR facility limitations. The computational portion of this thesis focused on the investigation of functional geometries of fuel tanks and depots using Surface Evolver. This work outlines the design of a large length-scale thermocapillary flow experiment for the ISS FIR. The results from this work improve the understanding thermocapillary flows and thus improve technological tools for predicting heat and mass transfer in large length-scale thermocapillary flows. Without the tools to understand the thermocapillary flows in these systems, engineers are forced to design larger, heavier vehicles to assure safety and mission success.
Consequences of Part Temperature Variability in Electron Beam Melting of Ti-6Al-4V
NASA Astrophysics Data System (ADS)
Fisher, Brian A.; Mireles, Jorge; Ridwan, Shakerur; Wicker, Ryan B.; Beuth, Jack
2017-12-01
To facilitate adoption of Ti-6Al-4V (Ti64) parts produced via additive manufacturing (AM), the ability to ensure part quality is critical. Measuring temperatures is an important component of part quality monitoring in all direct metal AM processes. In this work, surface temperatures were monitored using a custom infrared camera system attached to an Arcam electron beam melting (EBM®) machine. These temperatures were analyzed to understand their possible effect on solidification microstructure based on solidification cooling rates extracted from finite element simulations. Complicated thermal histories were seen during part builds, and temperature changes occurring during typical Ti64 builds may be large enough to affect solidification microstructure. There is, however, enough time between fusion of individual layers for spatial temperature variations (i.e., hot spots) to dissipate. This means that an effective thermal control strategy for EBM® can be based on average measured surface temperatures, ignoring temperature variability.
Jones, Clain A.; Nimick, D.A.; McCleskey, R. Blaine
2004-01-01
Diel (24 hr) cycles in dissolved metal and As concentrations have been documented in many northern Rocky Mountain streams in the U.S.A. The cause(s) of the cycles are unknown, although temperature- and pH-dependent sorption reactions have been cited as likely causes. A light/dark experiment was conducted to isolate temperature and pH as variables affecting diel metal cycles in Prickly Pear Creek, Montana. Light and dark chambers containing sediment and a strand of macrophyte were placed in the stream to simulate instream temperature oscillations. Photosynthesis-induced pH changes were allowed to proceed in the light chambers while photosynthesis was prevented in the dark chambers. Water samples were collected periodically for 22 hr in late July 2001 from all chambers and the stream. In the stream, dissolved Zn concentrations increased by 300% from late afternoon to early morning, while dissolved As concentrations exhibited the opposite pattern, increasing 33% between early morning and late afternoon. Zn and As concentrations in the light chambers showed similar, though less pronounced, diel variations. Conversely, Zn and As concentrations in the dark chambers had no obvious diel variation, indicating that light, or light-induced reactions, caused the variation. Temperature oscillations were nearly identical between light and dark chambers, strongly suggesting that temperature was not controlling the diel variations. As expected, pH was negatively correlated (P < 0.01) with dissolved Zn concentrations and positively correlated with dissolved As concentrations in both the light and dark chambers. From these experiments, photosynthesis-induced pH changes were determined to be the major cause of the diel dissolved Zn and As cycles in Prickly Pear Creek. Further research is necessary in other streams to verify that this finding is consistent among streams having large differences in trace-element concentrations and mineralogy of channel substrate. ?? 2004 Kluwer Academic Publishers.
NASA Astrophysics Data System (ADS)
Song, Lei; Wu, Renguang; Jiao, Yang
2018-06-01
The present study investigates the relative roles of intraseasonal oscillations (ISOs) and synoptic variations in strong cold events over eastern China during the boreal winter. The ISOs and synoptic variations explain about 55% and 20% of the total area-mean temperature anomaly in eastern China, respectively. The advection of synoptic winds on synoptic temperature gradients has a leading contribution to the temperature decrease before the cold events and thus the synoptic variations are important in determining the time of peak cold anomalies. The ISOs have a larger role in sustaining the cold events. The height anomalies associated with ISOs and synoptic variations are manifested as Rossby wave trains propagating along the polar front jet over the Eurasian continent before the cold events. They both contribute to the deepening of the East Asian trough and the development of cold events. Compared to the ISO wave train, the synoptic wave train has a smaller spatial scale and moves faster. There are obvious intraseasonal signals in the stratosphere about 1 week before the cold events over eastern China. Large negative height anomalies associated with the weakening of the polar vortex are observed over the North Atlantic. These anomalies move eastwards and propagate downwards after reaching the west coast of Europe. The downward moving stratospheric signal triggers height anomalies in the troposphere over the entrance region of the polar front jet. Then the anomalies propagate towards East Asia along the wave train, contributing to the intensification of the Siberian high and the East Asian trough and the occurrence of cold events over eastern China.
A Variational Assimilation Method for Satellite and Conventional Data: a Revised Basic Model 2B
NASA Technical Reports Server (NTRS)
Achtemeier, Gary L.; Scott, Robert W.; Chen, J.
1991-01-01
A variational objective analysis technique that modifies observations of temperature, height, and wind on the cyclone scale to satisfy the five 'primitive' model forecast equations is presented. This analysis method overcomes all of the problems that hindered previous versions, such as over-determination, time consistency, solution method, and constraint decoupling. A preliminary evaluation of the method shows that it converges rapidly, the divergent part of the wind is strongly coupled in the solution, fields of height and temperature are well-preserved, and derivative quantities such as vorticity and divergence are improved. Problem areas are systematic increases in the horizontal velocity components, and large magnitudes of the local tendencies of the horizontal velocity components. The preliminary evaluation makes note of these problems but detailed evaluations required to determine the origin of these problems await future research.
Precise measurement of the performance of thermoelectric modules
NASA Astrophysics Data System (ADS)
Díaz-Chao, Pablo; Muñiz-Piniella, Andrés; Selezneva, Ekaterina; Cuenat, Alexandre
2016-08-01
The potential exploitation of thermoelectric modules into mass market applications such as exhaust gas heat recovery in combustion engines requires an accurate knowledge of their performance. Further expansion of the market will also require confidence on the results provided by suppliers to end-users. However, large variation in performance and maximum operating point is observed for identical modules when tested by different laboratories. Here, we present the first metrological study of the impact of mounting and testing procedures on the precision of thermoelectric modules measurement. Variability in the electrical output due to mechanical pressure or type of thermal interface materials is quantified for the first time. The respective contribution of the temperature difference and the mean temperature to the variation in the output performance is quantified. The contribution of these factors to the total uncertainties in module characterisation is detailed.
Climate Change on Mars: Cloud Greenhouse Effects in the Recent Past
NASA Astrophysics Data System (ADS)
Haberle, Robert M.; Kahre, Melinda A.; Hollingsorth, Jeffery L.
2014-11-01
The large variations in Mars’ orbit parameters are known to be significant drivers of climate change. We present results from an updated version of the Ames GCM that shows at times of high obliquity it is possible that water ice clouds from a greatly intensified Martian hydrological cycle may have produced a greenhouse effect strong enough to raise global mean surface temperatures by several tens of degrees Kelvin. It is made possible by the ability of the Martian atmosphere to transport water to high altitudes where cold water ice clouds form, reduce the outgoing long wave radiation, and cause surface temperatures to rise to maintain global energy balance. Since Mars spends much of its time at high obliquity, these results suggest that Mars undergoes even more significant climate change due to orbital variations than previously thought.
Thermal control requirements for large space structures
NASA Technical Reports Server (NTRS)
Manoff, M.
1978-01-01
Performance capabilities and weight requirements of large space structure systems will be significantly influenced by thermal response characteristics. Analyses have been performed to determine temperature levels and gradients for structural configurations and elemental concepts proposed for advanced system applications ranging from relatively small, low-power communication antennas to extremely large, high-power Satellite Power Systems (SPS). Results are presented for selected platform configurations, candidate strut elements, and potential mission environments. The analyses also incorporate material and surface optical property variation. The results illustrate many of the thermal problems which may be encountered in the development of three systems.
Voltage sensor and dielectric material
Yakymyshyn, Christopher Paul; Yakymyshyn, Pamela Jane; Brubaker, Michael Allen
2006-10-17
A voltage sensor is described that consists of an arrangement of impedance elements. The sensor is optimized to provide an output ratio that is substantially immune to changes in voltage, temperature variations or aging. Also disclosed is a material with a large and stable dielectric constant. The dielectric constant can be tailored to vary with position or direction in the material.
Heilweil, Victor M.; Susong, David D.
2007-01-01
Sand Hollow, Utah, is the site of a surface-water reservoir completed in March 2002 and operated by the Washington County Water Conservancy District (WCWCD) primarily as an aquifer storage and recovery project. The reservoir is an off-channel facility that receives water from the Virgin River, diverted near the town of Virgin, Utah. Hydrologic data collected are described and listed in this report, including ground-water levels, reservoir stage, reservoir-water temperature, meteorology, evaporation, and estimated ground-water recharge. Since the construction of the reservoir in 2002, diversions from the Virgin River have resulted in generally rising stage and surface area. Large spring run-off volumes during 2005-06 allowed the WCWCD to fill the reservoir to near capacity, with a surface area of about 1,300 acres in 2006. Reservoir stage reached a record altitude of about 3,060 feet in May 2006, resulting in a depth of nearly 90 feet and a reservoir storage of about 51,000 acre-feet. Water temperature in the reservoir shows large seasonal variation and has ranged from about 5 to 32?C. Estimated ground-water recharge rates have ranged from 0.01 to 0.43 feet per day. Estimated recharge volumes have ranged from about 200 to about 3,500 acre-feet per month. Total ground-water recharge from March 2002 through August 2006 is estimated to be about 51,000 acre-feet. Estimated evaporation rates have varied from 0.05 to 0.97 feet per month, resulting in evaporation losses of 20 to 1,200 acre-feet per month. Total evaporation from March 2002 through August 2006 is estimated to be about 17,000 acre-feet. The combination of generally declining recharge rates and increasing reservoir altitude and area explains the trend of an increasing ratio of evaporation to recharge volume over time, with the total volume of water lost through evaporation nearly as large as the volume of ground-water recharge during the first 8 months of 2006. With removal of the viscosity effects (caused by seasonal water temperature variations), the intrinsic permeability indicates a large seasonal variation in clogging, with large winter increases likely caused by a combination of both decreased biofilms and the reduced volume of trapped gas bubbles.
Effects of temperature variability on community structure in a natural microbial food web.
Zander, Axel; Bersier, Louis-Félix; Gray, Sarah M
2017-01-01
Climate change research has demonstrated that changing temperatures will have an effect on community-level dynamics by altering species survival rates, shifting species distributions, and ultimately, creating mismatches in community interactions. However, most of this work has focused on increasing temperature, and still little is known about how the variation in temperature extremes will affect community dynamics. We used the model aquatic community held within the leaves of the carnivorous plant, Sarracenia purpurea, to test how food web dynamics will be affected by high temperature variation. We tested the community response of the first (bacterial density), second (protist diversity and composition), and third trophic level (predator mortality), and measured community respiration. We collected early and late successional stage inquiline communities from S. purpurea from two North American and two European sites with similar average July temperature. We then created a common garden experiment in which replicates of these communities underwent either high or normal daily temperature variation, with the average temperature equal among treatments. We found an impact of temperature variation on the first two, but not on the third trophic level. For bacteria in the high-variation treatment, density experienced an initial boost in growth but then decreased quickly through time. For protists in the high-variation treatment, alpha-diversity decreased faster than in the normal-variation treatment, beta-diversity increased only in the European sites, and protist community composition tended to diverge more in the late successional stage. The mortality of the predatory mosquito larvae was unaffected by temperature variation. Community respiration was lower in the high-variation treatment, indicating a lower ecosystem functioning. Our results highlight clear impacts of temperature variation. A more mechanistic understanding of the effects that temperature, and especially temperature variation, will have on community dynamics is still greatly needed. © 2016 John Wiley & Sons Ltd.
In-Situ Lithospheric Rheology Measurement Using Isostatic Response and Geophysical State
NASA Astrophysics Data System (ADS)
Lowry, A. R.; Becker, T. W.; Buehler, J. S.; ma, X.; Miller, M. S.; Perez-Gussinye, M.; Ravat, D.; Schutt, D.
2013-12-01
Measurements of effective elastic thickness, Te, from flexural isostatic modeling are sensitive to flow rheology of the lithosphere. Nevertheless, Te has not been widely used to estimate in-situ rheology. Past methodological controversies regarding Te measurement are partly to blame for under-utilization of isostatic response in rheology studies, but these controversies are now largely resolved. The remaining hurdles include uncertainties in properties of geophysical state such as temperature, lithology, and water content. These are ambiguous in their relative contributions to total strength, and the unknown state-of-stress adds to ambiguity in the rheology. Dense seismic and other geophysical arrays such as EarthScope's USArray are providing a wealth of new information about physical state of the lithosphere, however, and these data promise new insights into rheology and deformation processes. For example, new estimates of subsurface mass distributions derived from seismic data enable us to examine controversial assumptions about the nature of lithospheric loads. Variations in crustal lithology evident in bulk crustal velocity ratio, vP/vS, contribute a surprisingly large fraction of total loading. Perhaps the most interesting new information on physical state derives from imaging of uppermost mantle velocities using refracted mantle phases, Pn and Sn, and depths to negative velocity gradients imaged as converted phases in receiver functions (so-called seismic lithosphere-asthenosphere boundary, 'LAB', and mid-lithosphere discontinuity, 'MLD'). Imaging of the ~580°C isotherm associated with the phase transition from alpha- to beta-quartz affords another exciting new avenue for investigation, in part because the transition closely matches the Curie temperature thought to control magnetic bottom in some continental crust. Reconciling seismic estimates of temperature variations with measurements of Te and upper-mantle negative velocity gradients in the US requires that we invoke variations in lithology, water concentrations, and/or membrane stress. In deforming lithosphere, Te and Pn are best-reconciled using a wet quartz crustal lithology, wet olivine mantle lithology, and large membrane stress. More stable lithosphere to the east is best-modeled with a dry feldspar or pyroxene crustal lithology and dry olivine in the mantle. Greater crustal quartz abundance in deforming lithosphere (and in ancient orogens further east) is observed independently in measurements of bulk-crustal vP/vS. Independent evidence also supports the inference of variable water concentrations. Taken together, these lines of evidence suggest that lithology and water abundance are at least as important as temperature variation in determining rheological behavior of the lithosphere.
Lundquist, J.D.; Cayan, D.R.
2007-01-01
A realistic description of how temperatures vary with elevation is crucial for ecosystem studies and for models of basin-scale snowmelt and spring streamflow. This paper explores surface temperature variability using temperature data from an array of 37 sensors, called the Yosemite network, which traverses both slopes of the Sierra Nevada in the vicinity of Yosemite National Park, California. These data indicate that a simple lapse rate is often a poor description of the spatial temperature structure. Rather, the spatial pattern of temperature over the Yosemite network varies considerably with synoptic conditions. Empirical orthogonal functions (EOFs) were used to identify the dominant spatial temperature patterns and how they vary in time. Temporal variations of these surface temperature patterns were correlated with large-scale weather conditions, as described by National Centers for Environmental Prediction-National Center for Atmospheric Research Reanalysis data. Regression equations were used to downscale larger-scale weather parameters, such as Reanalysis winds and pressure, to the surface temperature structure over the Yosemite network. These relationships demonstrate that strong westerly winds are associated with relatively warmer temperatures on the east slope and cooler temperatures on the west slope of the Sierra, and weaker westerly winds are associated with the opposite pattern. Reanalysis data from 1948 to 2005 indicate weakening westerlies over this time period, a trend leading to relatively cooler temperatures on the east slope over decadal timescale's. This trend also appears in long-term observations and demonstrates the need to consider topographic effects when examining long-term changes in mountain regions. Copyright 2007 by the American Geophysical Union.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Emanuel, A.E.
1991-03-01
This article presents a preliminary analysis of the effect of randomly varying harmonic voltages on the temperature rise of squirrel-cage motors. The stochastic process of random variations of harmonic voltages is defined by means of simple statistics (mean, standard deviation, type of distribution). Computational models based on a first-order approximation of the motor losses and on the Monte Carlo method yield results which prove that equipment with large thermal time-constant is capable of withstanding for a short period of time larger distortions than THD = 5%.
Dalby, Andrew; Shamsir, Mohd Shahir
2015-01-01
Molecular dynamics simulations have been used extensively to model the folding and unfolding of proteins. The rates of folding and unfolding should follow the Arrhenius equation over a limited range of temperatures. This study shows that molecular dynamic simulations of the unfolding of crambin between 500K and 560K do follow the Arrhenius equation. They also show that while there is a large amount of variation between the simulations the average values for the rate show a very high degree of correlation.
Dalby, Andrew; Shamsir, Mohd Shahir
2015-01-01
Molecular dynamics simulations have been used extensively to model the folding and unfolding of proteins. The rates of folding and unfolding should follow the Arrhenius equation over a limited range of temperatures. This study shows that molecular dynamic simulations of the unfolding of crambin between 500K and 560K do follow the Arrhenius equation. They also show that while there is a large amount of variation between the simulations the average values for the rate show a very high degree of correlation. PMID:26539292
Huang, Xinru; Roth, Connie B
2016-06-21
Recent studies have measured or predicted thickness-dependent shifts in density or specific volume of polymer films as a possible means of understanding changes in the glass transition temperature Tg(h) with decreasing film thickness with some experimental works claiming unrealistically large (25%-30%) increases in film density with decreasing thickness. Here we use ellipsometry to measure the temperature-dependent index of refraction of polystyrene (PS) films supported on silicon and investigate the validity of the commonly used Lorentz-Lorenz equation for inferring changes in density or specific volume from very thin films. We find that the density (specific volume) of these supported PS films does not vary by more than ±0.4% of the bulk value for film thicknesses above 30 nm, and that the small variations we do observe are uncorrelated with any free volume explanation for the Tg(h) decrease exhibited by these films. We conclude that the derivation of the Lorentz-Lorenz equation becomes invalid for very thin films as the film thickness approaches ∼20 nm, and that reports of large density changes greater than ±1% of bulk for films thinner than this likely suffer from breakdown in the validity of this equation or in the difficulties associated with accurately measuring the index of refraction of such thin films. For larger film thicknesses, we do observed small variations in the effective specific volume of the films of 0.4 ± 0.2%, outside of our experimental error. These shifts occur simultaneously in both the liquid and glassy regimes uniformly together starting at film thicknesses less than ∼120 nm but appear to be uncorrelated with Tg(h) decreases; possible causes for these variations are discussed.
Seismic attenuation in the African LLSVP estimated from PcS phases
NASA Astrophysics Data System (ADS)
Liu, Chujie; Grand, Stephen P.
2018-05-01
Seismic tomography models have revealed two broad regions in the lowermost mantle marked by ∼3% slower shear velocity than normal beneath the south central Pacific and southern Africa. These two regions are known as large-low-shear-velocity provinces (LLSVP). There is debate over whether the LLSVPs can be explained by purely thermal variations or whether they must be chemically distinct from normal mantle. Elastic properties alone, have been unable to distinguish the thermal from chemical interpretations. Anelastic structure, however, can help discriminate among models of the LLSVPs since intrinsic attenuation is more sensitive to temperature than to chemical variations. Here we estimate Qμ (the shear wave quality factor) in the African LLSVP using PcS waves generated from a Scotia Arc earthquake, recorded by broadband seismometers deployed in Southern Africa during the Kaapvaal experiment. The upward leg of the PcS waves sweeps from normal mantle into the African LLSVP across the array. We use the spectral ratio (SR) and instantaneous frequency matching (IFM) techniques to measure the differential attenuation (Δt*) between waves sampling the African LLSVP and the waves that sample normal lower mantle. Using both methods for estimating Δt* we find that PcS waves sampling the LLSVP are more attenuated than the waves that miss the LLSVP yielding a Δt* difference of more than 1 s. Using the Δt* measurements we estimate the average Qμ in the LLSVP to be about 110. Using a range of activation enthalpy (H*) estimates, we find an average temperature anomaly within the LLSVP ranging from +250 to +800 K. Our estimated temperature anomaly range overlaps previous isochemical geodynamic studies that explain the LLSVP as a purely thermal structure although the large uncertainties cannot rule out chemical variations as well.
Browder, Joan A.; Restrepo, V.R.; Rice, J.K.; Robblee, M.B.; Zein-Eldin, Z.
1999-01-01
Two modeling approaches were used to explore the basis for variation in recruitment of pink shrimp, Farfantepenaeus duorarum, to the Tortugas fishing grounds. Emphasis was on development and juvenile densities on the nursery grounds. An exploratory simulation modeling exercise demonstrated large year-to-year variations in recruitment contributions to the Tortugas rink shrimp fishery may occur on some nursery grounds, and production may differ considerably among nursery grounds within the same year, simply on the basis of differences in temperature and salinity. We used a growth and survival model to simulate cumulative harvests from a July-centered cohort of early-settlement-stage postlarvae from two parts of Florida Bay (western Florida Bay and northcentral Florida Bay), using historic temperature and salinity data from these areas. Very large year-to-year differences in simulated cumulative harvests were found for recruits from Whipray Basin. Year-to-year differences in simulated harvests of recruits from Johnson Key Basin were much smaller. In a complementary activity, generalized linear and additive models and intermittent, historic density records were used to develop an uninterrupted multi-year time series of monthly density estimates for juvenile rink shrimp in the Johnson Key Basin. The developed data series was based on relationships of density with environmental variables. The strongest relationship was with sea-surface temperature. Three other environmental variables (rainfall, water level at Everglades National Park Well P35, and mean wind speed) also contributed significantly to explaining variation in juvenile densities. Results of the simulation model and two of the three statistical models yielded similar interannual patterns for Johnson Key Basin. While it is not possible to say that one result validates the other, the concordance of the annual patterns from the two models is supportive of both approaches.
Marvin, Glenn A; Davis, Kayla; Dawson, Jacob
2016-05-01
The low-temperature limit for feeding in some salamander species (Desmognathus, Plethodontidae) has been inferred from field studies of seasonal variation in salamander activity and gut contents, which could not determine whether feeding is more dependent on environmental conditions influencing salamander foraging behavior or prey availability and movement. We performed two controlled laboratory experiments to examine the effect of short-term (acute) low body temperature on predatory behavior and prey-capture efficiency in a semiaquatic plethodontid salamander (Desmognathus conanti). In the first experiment, we quantified variation in the feeding responses of cold salamanders (at 1, 3, 5 and 7°C) to a video recording of a walking, warm (15°C) cricket to determine the lower thermal limit for predatory behavior, independent of any temperature effect on movement of prey. Experimental-group salamanders exhibited vigorous feeding responses at 5 and 7°C, large variation in feeding responses both among and within individuals (over time) at 3°C, and little to no feeding response at 1°C. Feeding responses at both 1 and 3°C were significantly less than at each higher temperature, whereas responses of control-group individuals at 15°C did not vary over time. In the second experiment, we quantified feeding by cold salamanders (at 3, 5, 7 and 11°C) on live, warm crickets to examine thermal effects on prey-capture ability. The mean feeding response to live crickets was significantly less at 3°C than at higher temperatures; however, 50% of salamanders captured and ingested prey with high efficiency at this temperature. We conclude that many individuals stalk and capture prey at very low temperatures (down to 3°C). Our results support a growing body of data that indicate many plethodontid salamanders feed at temperatures only a few degrees above freezing. Copyright © 2016 Elsevier Inc. All rights reserved.
Decreases in beetle body size linked to climate change and warming temperatures.
Tseng, Michelle; Kaur, Katrina M; Soleimani Pari, Sina; Sarai, Karnjit; Chan, Denessa; Yao, Christine H; Porto, Paula; Toor, Anmol; Toor, Harpawantaj S; Fograscher, Katrina
2018-05-01
Body size is a fundamental ecological trait and is correlated with population dynamics, community structure and function, and ecosystem fluxes. Laboratory data from broad taxonomic groups suggest that a widespread response to a warming world may be an overall decrease in organism body size. However, given the myriad of biotic and abiotic factors that can also influence organism body size in the wild, it is unclear whether results from these laboratory assays hold in nature. Here we use datasets spanning 30 to 100 years to examine whether the body size of wild-caught beetles has changed over time, whether body size changes are correlated with increased temperatures, and we frame these results using predictions derived from a quantitative review of laboratory responses of 22 beetle species to temperature. We found that 95% of laboratory-reared beetles decreased in size with increased rearing temperature, with larger-bodied species shrinking disproportionately more than smaller-bodied beetles. In addition, the museum datasets revealed that larger-bodied beetle species have decreased in size over time, that mean beetle body size explains much of the interspecific variation in beetle responses to temperature, and that long-term beetle size changes are explained by increases in autumn temperature and decreases in spring temperature in this region. Our data demonstrate that the relationship between body size and temperature of wild-caught beetles matches relatively well with results from laboratory studies, and that variation in this relationship is largely explained by interspecific variation in mean beetle body size. This long-term beetle dataset is one of the most comprehensive arthropod body size datasets compiled to date, it improves predictions regarding the shrinking of organisms with global climate change, and together with the meta-analysis data, call for new hypotheses to explain why larger-bodied organisms may be more sensitive to temperature. © 2018 The Authors. Journal of Animal Ecology © 2018 British Ecological Society.
NASA Astrophysics Data System (ADS)
Thomas, Siby; Ajith, K. M.; Valsakumar, M. C.
2017-11-01
This work intents to put forth the results of a classical molecular dynamics study to investigate the temperature dependent elastic constants of monolayer hexagonal boron nitride (h-BN) between 100 and 1000 K for the first time using strain fluctuation method. The temperature dependence of out-of-plane fluctuations (ripples) is quantified and is explained using continuum theory of membranes. At low temperatures, negative in-plane thermal expansion is observed and at high temperatures, a transition to positive thermal expansion has been observed due to the presence of thermally excited ripples. The decrease of Young's modulus, bulk modulus, shear modulus and Poisson's ratio with increase in temperature has been analyzed. The thermal rippling in h-BN leads to strong anharmonic behaviour that causes large deviation from the isotropic elasticity. A detailed study shows that the strong thermal rippling in large systems is also responsible for the softening of elastic constants in h-BN. From the determined values of elastic constants and elastic moduli, it has been elucidated that 2D h-BN sheets meet the Born's mechanical stability criterion in the investigated temperature range. The variation of longitudinal and shear velocities with temperature is also calculated from the computed values of elastic constants and elastic moduli.
Operating Temperatures of a Sodium-Cooled Exhaust Valve as Measured by a Thermocouple
NASA Technical Reports Server (NTRS)
Sanders, J C; Wilsted, H D; Mulcahy, B A
1943-01-01
Report presents the results of a thermocouple installed in the crown of a sodium-cooled exhaust valve. The valve was tested in an air-cooled engine cylinder and valve temperatures under various engine operating conditions were determined. A temperature of 1337 degrees F. was observed at a fuel-air ratio of 0.064, a brake mean effective pressure of 179 pounds per square inch, and an engine speed of 2000 r.p.m. Fuel-air ratio was found to have a large influence on valve temperature, but cooling-air pressure and variation in spark advance had little effect. An increase in engine power by change of speed or mean effective pressure increased the valve temperature. It was found that the temperature of the rear-spark-plug bushing was not a satisfactory indication of the temperature of the exhaust valve.
NASA Astrophysics Data System (ADS)
Kroeger, D. M.; Koch, C. C.; Scarbrough, J. O.; McKamey, C. G.
1984-02-01
Measurements of the low-temperature specific heat Cp of liquid-quenched Zr-Ni glasses for a large number of compositions in the range from 55 to 74 at.% Zr revealed an unusual composition dependence of the density of states at the Fermi level, N(EF). Furthermore, for some compositions the variation of Cp near the superconducting transition temperature Tc indicated the presence of two superconducting phases, i.e., two superconducting transitions were detected. Comparison of the individual Tc's in phase-separated samples to the composition dependence of Tc for all of the samples suggests that amorphous phases with compositions near 60 and 66.7 at.% Zr occur. We discuss these results in terms of an "association model" for liquid alloys (due to Sommer), in which associations of unlike atoms with definite stoichiometries are assumed to exist in equilibrium with unassociated atoms. We conclude that in the composition range studied, associate clusters with the compositions Zr3Ni2 and Zr2Ni occur. In only a few cases are the clusters sufficiently large, compared with the superconducting coherence length, for separate superconducting transitions to be observed. The variation of N(EF) with composition is discussed, as well as the effects of this chemical short-range ordering on the crystallization behavior and glass-forming tendency.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leigh, A.; Sevanto, Sanna Annika; Close, J. D.
Laboratory studies on artificial leaves suggest that leaf thermal dynamics are strongly influenced by the two-dimensional size and shape of leaves and associated boundary layer thickness. Hot environments are therefore said to favour selection for small, narrow or dissected leaves. Empirical evidence from real leaves under field conditions is scant and traditionally based on point measurements that do not capture spatial variation in heat load. Here in this study, we used thermal imagery under field conditions to measure the leaf thermal time constant (τ) in summer and the leaf-to-air temperature difference (ΔT) and temperature range across laminae (T range) duringmore » winter, autumn and summer for 68 Proteaceae species. We investigated the influence of leaf area and margin complexity relative to effective leaf width (w e), the latter being a more direct indicator of boundary layer thickness. Normalized difference of margin complexity had no or weak effects on thermal dynamics, but w e strongly predicted τ and ΔT, whereas leaf area influenced T range. Unlike artificial leaves, however, spatial temperature distribution in large leaves appeared to be governed largely by structural variation. Therefore, we agree that small size, specifically we, has adaptive value in hot environments but not with the idea that thermal regulation is the primary evolutionary driver of leaf dissection.« less
Leigh, A.; Sevanto, Sanna Annika; Close, J. D.; ...
2016-11-05
Laboratory studies on artificial leaves suggest that leaf thermal dynamics are strongly influenced by the two-dimensional size and shape of leaves and associated boundary layer thickness. Hot environments are therefore said to favour selection for small, narrow or dissected leaves. Empirical evidence from real leaves under field conditions is scant and traditionally based on point measurements that do not capture spatial variation in heat load. Here in this study, we used thermal imagery under field conditions to measure the leaf thermal time constant (τ) in summer and the leaf-to-air temperature difference (ΔT) and temperature range across laminae (T range) duringmore » winter, autumn and summer for 68 Proteaceae species. We investigated the influence of leaf area and margin complexity relative to effective leaf width (w e), the latter being a more direct indicator of boundary layer thickness. Normalized difference of margin complexity had no or weak effects on thermal dynamics, but w e strongly predicted τ and ΔT, whereas leaf area influenced T range. Unlike artificial leaves, however, spatial temperature distribution in large leaves appeared to be governed largely by structural variation. Therefore, we agree that small size, specifically we, has adaptive value in hot environments but not with the idea that thermal regulation is the primary evolutionary driver of leaf dissection.« less
Huhe; Jiang, Chao; Wu, Yanpei; Cheng, Yunxiang
2017-12-01
During composting, the composition of microbial communities is subject to constant change owing to interactions with fluctuating physicochemical parameters. This study explored the changes in bacterial and fungal communities during cattle farm waste composting and aimed to identify and prioritize the contributing physicochemical factors. Microbial community compositions were determined by high-throughput sequencing. While the predominant phyla in the bacterial and fungal communities were largely consistent during the composting, differences in relative abundances were observed. Bacterial and fungal community diversity and relative abundance varied significantly, and inversely, over time. Relationships between physicochemical factors and microbial community compositions were evaluated by redundancy analysis. The variation in bacterial community composition was significantly related to water-soluble organic carbon (WSOC), and pile temperature and moisture (p < .05), while the largest portions of variation in fungal community composition were explained by pile temperature, WSOC, and C/N (p < .05). These findings indicated that those parameters are the most likely ones to influence, or be influenced by the bacterial and fungal communities. Variation partitioning analyses indicated that WSOC and pile temperature had predominant effects on bacterial and fungal community composition, respectively. Our findings will be useful for improving the quality of cattle farm waste composts. © 2017 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.
NASA Technical Reports Server (NTRS)
Raikes, S. A.
1978-01-01
The compressional velocity within the upper mantle beneath Southern California is investigated through observations of the dependence of teleseismic P-delays at all stations of the array on the distance and azimuth to the event. The variation of residuals with azimuth was found to be as large as 1.3 sec at a single station; the delays were stable as a function of time, and no evidence was found for temporal velocity variations related to seismic activity in the area. These delays were used in the construction of models for the upper mantle P-velocity structure to depths of 150 km, both by ray tracing and inversion techniques. The models exhibit considerable lateral heterogeneity including a region of low velocity beneath the Imperial Valley, and regions of increased velocity beneath the Sierra Nevada and much of the Transverse Ranges. The development is described of a technique for the experimental determination of post-shock temperatures, and its application to several metals and silicates shocked to pressures in the range 5 to 30 GPa. The technique utilizes an infra-red radiation detector to determine the brightness temperature of the free surface of the sample after the shock wave has passed through it.
Ellis, Lisa L.; Huang, Wen; Quinn, Andrew M.; Ahuja, Astha; Alfrejd, Ben; Gomez, Francisco E.; Hjelmen, Carl E.; Moore, Kristi L.; Mackay, Trudy F. C.; Johnston, J. Spencer; Tarone, Aaron M.
2014-01-01
We determined female genome sizes using flow cytometry for 211 Drosophila melanogaster sequenced inbred strains from the Drosophila Genetic Reference Panel, and found significant conspecific and intrapopulation variation in genome size. We also compared several life history traits for 25 lines with large and 25 lines with small genomes in three thermal environments, and found that genome size as well as genome size by temperature interactions significantly correlated with survival to pupation and adulthood, time to pupation, female pupal mass, and female eclosion rates. Genome size accounted for up to 23% of the variation in developmental phenotypes, but the contribution of genome size to variation in life history traits was plastic and varied according to the thermal environment. Expression data implicate differences in metabolism that correspond to genome size variation. These results indicate that significant genome size variation exists within D. melanogaster and this variation may impact the evolutionary ecology of the species. Genome size variation accounts for a significant portion of life history variation in an environmentally dependent manner, suggesting that potential fitness effects associated with genome size variation also depend on environmental conditions. PMID:25057905
Electrically tunable soft solid lens inspired by reptile and bird accommodation.
Pieroni, Michael; Lagomarsini, Clara; De Rossi, Danilo; Carpi, Federico
2016-10-26
Electrically tunable lenses are conceived as deformable adaptive optical components able to change focus without motor-controlled translations of stiff lenses. In order to achieve large tuning ranges, large deformations are needed. This requires new technologies for the actuation of highly stretchable lenses. This paper presents a configuration to obtain compact tunable lenses entirely made of soft solid matter (elastomers). This was achieved by combining the advantages of dielectric elastomer actuation (DEA) with a design inspired by the accommodation of reptiles and birds. An annular DEA was used to radially deform a central solid-body lens. Using an acrylic elastomer membrane, a silicone lens and a simple fabrication method, we assembled a tunable lens capable of focal length variations up to 55%, driven by an actuator four times larger than the lens. As compared to DEA-based liquid lenses, the novel architecture halves the required driving voltages, simplifies the fabrication process and allows for a higher versatility in design. These new lenses might find application in systems requiring large variations of focus with low power consumption, silent operation, low weight, shock tolerance, minimized axial encumbrance and minimized changes of performance against vibrations and variations in temperature.
The fluid mechanics of natural ventilation
NASA Astrophysics Data System (ADS)
Linden, Paul
1999-11-01
Natural ventilation of buildings is the flow generated by temperature differences and by the wind. Modern buildings have extreme designs with large, tall open plan spaces and large cooling requirements. Natural ventilation offers a means of cooling these buildings and providing good indoor air quality. The essential feature of ventilation is an exchange between an interior space and the external ambient. Recent work shows that in many circumstances temperature variations play a controlling feature on the ventilation since the directional buoyancy force has a large influence on the flow patterns within the space and on the nature of the exchange with the outside. Two forms of buoyancy-driven ventilation are discussed: mixing ventilation in which the interior is at approximately uniform temperature and displacement ventilation where there is strong internal stratification. The dynamics of these flows are considered and the effects of wind on them are examined both experimentally and theoretically. The aim behind this work is to give designers rules and intuition on how air moves within a building and the research shows a fascinating branch of fluid mechanics.
Narrowing the surface temperature range in CMIP5 simulations over the Arctic
NASA Astrophysics Data System (ADS)
Hao, Mingju; Huang, Jianbin; Luo, Yong; Chen, Xin; Lin, Yanluan; Zhao, Zongci; Xu, Ying
2018-05-01
Much uncertainty exists in reproducing Arctic temperature using different general circulation models (GCMs). Therefore, evaluating the performance of GCMs in reproducing Arctic temperature is critically important. In our study, 32 GCMs in the fifth phase of the Coupled Model Intercomparison Project (CMIP5) during the period 1900-2005 are used, and several metrics, i.e., bias, correlation coefficient ( R), and root mean square error (RMSE), are applied. The Cowtan data set is adopted as the reference data. The results suggest that the GCMs used can reasonably reproduce the Arctic warming trend during the period 1900-2005, as observed in the observational data, whereas a large variation of inter-model differences exists in modeling the Arctic warming magnitude. With respect to the reference data, most GCMs have large cold biases, whereas others have weak warm biases. Additionally, based on statistical thresholds, the models MIROC-ESM, CSIRO-Mk3-6-0, HadGEM2-AO, and MIROC-ESM-CHEM (bias ≤ ±0.10 °C, R ≥ 0.50, and RMSE ≤ 0.60 °C) are identified as well-performing GCMs. The ensemble of the four best-performing GCMs (ES4), with bias, R, and RMSE values of -0.03 °C, 0.72, and 0.39 °C, respectively, performs better than the ensemble with all 32 members, with bias, R, and RMSE values of -0.04 °C, 0.64, and 0.43 °C, respectively. Finally, ES4 is used to produce projections for the next century under the scenarios of RCP2.6, RCP4.5, and RCP8.0. The uncertainty in the projected temperature is greater in the higher emissions scenarios. Additionally, the projected temperature in the cold half year has larger variations than that in the warm half year.
Systematic variation in the temperature dependence of physiological and ecological traits.
Dell, Anthony I; Pawar, Samraat; Savage, Van M
2011-06-28
To understand the effects of temperature on biological systems, we compile, organize, and analyze a database of 1,072 thermal responses for microbes, plants, and animals. The unprecedented diversity of traits (n = 112), species (n = 309), body sizes (15 orders of magnitude), and habitats (all major biomes) in our database allows us to quantify novel features of the temperature response of biological traits. In particular, analysis of the rising component of within-species (intraspecific) responses reveals that 87% are fit well by the Boltzmann-Arrhenius model. The mean activation energy for these rises is 0.66 ± 0.05 eV, similar to the reported across-species (interspecific) value of 0.65 eV. However, systematic variation in the distribution of rise activation energies is evident, including previously unrecognized right skewness around a median of 0.55 eV. This skewness exists across levels of organization, taxa, trophic groups, and habitats, and it is partially explained by prey having increased trait performance at lower temperatures relative to predators, suggesting a thermal version of the life-dinner principle-stronger selection on running for your life than running for your dinner. For unimodal responses, habitat (marine, freshwater, and terrestrial) largely explains the mean temperature at which trait values are optimal but not variation around the mean. The distribution of activation energies for trait falls has a mean of 1.15 ± 0.39 eV (significantly higher than rises) and is also right-skewed. Our results highlight generalities and deviations in the thermal response of biological traits and help to provide a basis to predict better how biological systems, from cells to communities, respond to temperature change.
Systematic variation in the temperature dependence of physiological and ecological traits
Dell, Anthony I.; Pawar, Samraat; Savage, Van M.
2011-01-01
To understand the effects of temperature on biological systems, we compile, organize, and analyze a database of 1,072 thermal responses for microbes, plants, and animals. The unprecedented diversity of traits (n = 112), species (n = 309), body sizes (15 orders of magnitude), and habitats (all major biomes) in our database allows us to quantify novel features of the temperature response of biological traits. In particular, analysis of the rising component of within-species (intraspecific) responses reveals that 87% are fit well by the Boltzmann–Arrhenius model. The mean activation energy for these rises is 0.66 ± 0.05 eV, similar to the reported across-species (interspecific) value of 0.65 eV. However, systematic variation in the distribution of rise activation energies is evident, including previously unrecognized right skewness around a median of 0.55 eV. This skewness exists across levels of organization, taxa, trophic groups, and habitats, and it is partially explained by prey having increased trait performance at lower temperatures relative to predators, suggesting a thermal version of the life-dinner principle—stronger selection on running for your life than running for your dinner. For unimodal responses, habitat (marine, freshwater, and terrestrial) largely explains the mean temperature at which trait values are optimal but not variation around the mean. The distribution of activation energies for trait falls has a mean of 1.15 ± 0.39 eV (significantly higher than rises) and is also right-skewed. Our results highlight generalities and deviations in the thermal response of biological traits and help to provide a basis to predict better how biological systems, from cells to communities, respond to temperature change. PMID:21606358
He, Yuling; Tao, Wendong; Wang, Ziyuan; Shayya, Walid
2012-11-15
Design considerations to enhance simultaneous partial nitrification and anammox in constructed wetlands are largely unknown. This study examined the effects of pH and seasonal temperature variation on simultaneous partial nitrification and anammox in two free-water surface wetlands. In order to enhance partial nitrification and inhibit nitrite oxidation, furnace slag was placed on the rooting substrate to maintain different pH levels in the wetland water. The wetlands were batch operated for dairy wastewater treatment under oxygen-limited conditions at a cycle time of 7 d. Fluorescence in situ hybridization analysis found that aerobic ammonium oxidizing bacteria and anammox bacteria accounted for 42-73% of the bacterial populations in the wetlands, which was the highest relative abundance of ammonium oxidizing and anammox bacteria in constructed wetlands enhancing simultaneous partial nitrification and anammox. The two wetlands removed total inorganic nitrogen efficiently, 3.36-3.38 g/m(2)/d in the warm season with water temperatures at 18.9-24.9 °C and 1.09-1.50 g/m(2)/d in the cool season at 13.8-18.9 °C. Plant uptake contributed 2-45% to the total inorganic nitrogen removal in the growing season. A seasonal temperature variation of more than 6 °C would affect simultaneous partial nitrification and anammox significantly. Significant pH effects were identified only when the temperatures were below 18.9 °C. Anammox was the limiting stage of simultaneous partial nitrification and anammox in the wetlands. Water pH should be controlled along with influent ammonium concentration and temperature to avoid toxicity of free ammonia to anammox bacteria. Copyright © 2012 Elsevier Ltd. All rights reserved.
Global thermal models of the lithosphere
NASA Astrophysics Data System (ADS)
Cammarano, F.; Guerri, M.
2017-12-01
Unraveling the thermal structure of the outermost shell of our planet is key for understanding its evolution. We obtain temperatures from interpretation of global shear-velocity (VS) models. Long-wavelength thermal structure is well determined by seismic models and only slightly affected by compositional effects and uncertainties in mineral-physics properties. Absolute temperatures and gradients with depth, however, are not well constrained. Adding constraints from petrology, heat-flow observations and thermal evolution of oceanic lithosphere help to better estimate absolute temperatures in the top part of the lithosphere. We produce global thermal models of the lithosphere at different spatial resolution, up to spherical-harmonics degree 24, and provide estimated standard deviations. We provide purely seismic thermal (TS) model and hybrid models where temperatures are corrected with steady-state conductive geotherms on continents and cooling model temperatures on oceanic regions. All relevant physical properties, with the exception of thermal conductivity, are based on a self-consistent thermodynamical modelling approach. Our global thermal models also include density and compressional-wave velocities (VP) as obtained either assuming no lateral variations in composition or a simple reference 3-D compositional structure, which takes into account a chemically depleted continental lithosphere. We found that seismically-derived temperatures in continental lithosphere fit well, overall, with continental geotherms, but a large variation in radiogenic heat is required to reconcile them with heat flow (long wavelength) observations. Oceanic shallow lithosphere below mid-oceanic ridges and young oceans is colder than expected, confirming the possible presence of a dehydration boundary around 80 km depth already suggested in previous studies. The global thermal models should serve as the basis to move at a smaller spatial scale, where additional thermo-chemical variations required by geophysical observations can be included.
Thermodynamics constrains allometric scaling of optimal development time in insects.
Dillon, Michael E; Frazier, Melanie R
2013-01-01
Development time is a critical life-history trait that has profound effects on organism fitness and on population growth rates. For ectotherms, development time is strongly influenced by temperature and is predicted to scale with body mass to the quarter power based on 1) the ontogenetic growth model of the metabolic theory of ecology which describes a bioenergetic balance between tissue maintenance and growth given the scaling relationship between metabolism and body size, and 2) numerous studies, primarily of vertebrate endotherms, that largely support this prediction. However, few studies have investigated the allometry of development time among invertebrates, including insects. Abundant data on development of diverse insects provides an ideal opportunity to better understand the scaling of development time in this ecologically and economically important group. Insects develop more quickly at warmer temperatures until reaching a minimum development time at some optimal temperature, after which development slows. We evaluated the allometry of insect development time by compiling estimates of minimum development time and optimal developmental temperature for 361 insect species from 16 orders with body mass varying over nearly 6 orders of magnitude. Allometric scaling exponents varied with the statistical approach: standardized major axis regression supported the predicted quarter-power scaling relationship, but ordinary and phylogenetic generalized least squares did not. Regardless of the statistical approach, body size alone explained less than 28% of the variation in development time. Models that also included optimal temperature explained over 50% of the variation in development time. Warm-adapted insects developed more quickly, regardless of body size, supporting the "hotter is better" hypothesis that posits that ectotherms have a limited ability to evolutionarily compensate for the depressing effects of low temperatures on rates of biological processes. The remaining unexplained variation in development time likely reflects additional ecological and evolutionary differences among insect species.
NASA Astrophysics Data System (ADS)
Boissard, C.; Chervier, F.; Dutot, A. L.
2007-08-01
Using a statistical approach based on artificial neural networks, an emission algorithm (ISO_LF) accounting for high (instantaneous) to low (seasonal) frequency variations was developed for isoprene. ISO_LF was optimised using an isoprene emission data base (ISO-DB) specifically designed for this work. ISO-DB consists of 1321 emission rates collected in the literature, together with 34 environmental variables, measured or assessed using NCDC (National Climatic Data Center) or NCEP (National Centers for Environmental Predictions) meteorological databases. ISO-DB covers a large variety of emitters (25 species) and environmental conditions (10° S to 60° N). When only instantaneous environmental regressors (air temperature and photosynthetic active radiation, PAR) were used, a maximum of 60% of the overall isoprene variability was assessed and the highest emissions were underestimated. Considering a total of 9 high (instantaneous) to low (up to 3 weeks) frequency regressors, ISO_LF accounts for up to 91% of the isoprene emission variability, whatever the emission range, species or climate. Diurnal and seasonal variations are correctly reproduced for textit{Ulex europaeus} with a maximum factor of discrepancy of 4. ISO-LF was found to be mainly sensitive to air temperature cumulated over 3 weeks T21 and to instantaneous light L0 and air temperature T0 variations. T21, T0 and L0 only accounts for 76% of the overall variability. The use of ISO-LF for non stored monoterpene emissions was shown to give poor results.
NASA Astrophysics Data System (ADS)
Nyman, P.; Duff, T. J.; Sheridan, G. J.
2016-12-01
Moisture content in litter on the forest floor can control ignition and spread of forest fires. The micrometeorological factors driving variation in litter moisture at the landscape scale are poorly understood, particularly in areas with heterogeneous vegetation and complex terrain. In this research we seek to quantify how climate, vegetation and eco-hydrological feedbacks contribute to variation in net radiation and potential evaporation at the forest floor. Research sites were established at 12 locations in southeast Australia with variable precipitation, solar exposure, and drainage areas. Forests ranged from open woodland to tall temperate forests. We measured solar radiation, air temperature, relative humidity, litter moisture, soil moisture, and litter temperature. Forest structure was characterised using hemispherical photos and LIDAR. Using these data on microclimate and vegetation structure we parameterise a model of daily potential evaporation at the forest floor. Results show that variation in evaporation rates from litter is driven by net radiation and the role of vapour pressure deficit is almost negligible due to high aerodynamic resistance. In open woodlands the net radiation is directly related to short-wave radiation and evaporation remains high despite low temperatures. In the tall wet forests, commonly found along drainage lines and on slopes with polar-facing aspects, the long-wave radiation was just as important as the shortwave radiation. Air temperature is therefore important in determining the flammability of these more productive forests. By implication, in complex terrain with heterogeneous forests, the temperature in the wet parts of the landscape is important in controlling connectivity of fuels and large-scale fire activity.
Measuring the potential utility of seasonal climate predictions
NASA Astrophysics Data System (ADS)
Tippett, Michael K.; Kleeman, Richard; Tang, Youmin
2004-11-01
Variation of sea surface temperature (SST) on seasonal-to-interannual time-scales leads to changes in seasonal weather statistics and seasonal climate anomalies. Relative entropy, an information theory measure of utility, is used to quantify the impact of SST variations on seasonal precipitation compared to natural variability. An ensemble of general circulation model (GCM) simulations is used to estimate this quantity in three regions where tropical SST has a large impact on precipitation: South Florida, the Nordeste of Brazil and Kenya. We find the yearly variation of relative entropy is strongly correlated with shifts in ensemble mean precipitation and weakly correlated with ensemble variance. Relative entropy is also found to be related to measures of the ability of the GCM to reproduce observations.
On the variability of the Priestley-Taylor coefficient over water bodies
NASA Astrophysics Data System (ADS)
Assouline, Shmuel; Li, Dan; Tyler, Scott; Tanny, Josef; Cohen, Shabtai; Bou-Zeid, Elie; Parlange, Marc; Katul, Gabriel G.
2016-01-01
Deviations in the Priestley-Taylor (PT) coefficient αPT from its accepted 1.26 value are analyzed over large lakes, reservoirs, and wetlands where stomatal or soil controls are minimal or absent. The data sets feature wide variations in water body sizes and climatic conditions. Neither surface temperature nor sensible heat flux variations alone, which proved successful in characterizing αPT variations over some crops, explain measured deviations in αPT over water. It is shown that the relative transport efficiency of turbulent heat and water vapor is key to explaining variations in αPT over water surfaces, thereby offering a new perspective over the concept of minimal advection or entrainment introduced by PT. Methods that allow the determination of αPT based on low-frequency sampling (i.e., 0.1 Hz) are then developed and tested, which are usable with standard meteorological sensors that filter some but not all turbulent fluctuations. Using approximations to the Gram determinant inequality, the relative transport efficiency is derived as a function of the correlation coefficient between temperature and water vapor concentration fluctuations (RTq). The proposed approach reasonably explains the measured deviations from the conventional αPT = 1.26 value even when RTq is determined from air temperature and water vapor concentration time series that are Gaussian-filtered and subsampled to a cutoff frequency of 0.1 Hz. Because over water bodies, RTq deviations from unity are often associated with advection and/or entrainment, linkages between αPT and RTq offer both a diagnostic approach to assess their significance and a prognostic approach to correct the 1.26 value when using routine meteorological measurements of temperature and humidity.
Variations in atmospheric CO2 growth rates coupled with tropical temperature
Wang, Weile; Ciais, Philippe; Nemani, Ramakrishna R.; Canadell, Josep G.; Piao, Shilong; Sitch, Stephen; White, Michael A.; Hashimoto, Hirofumi; Milesi, Cristina; Myneni, Ranga B.
2013-01-01
Previous studies have highlighted the occurrence and intensity of El Niño–Southern Oscillation as important drivers of the interannual variability of the atmospheric CO2 growth rate, but the underlying biogeophysical mechanisms governing such connections remain unclear. Here we show a strong and persistent coupling (r2 ≈ 0.50) between interannual variations of the CO2 growth rate and tropical land–surface air temperature during 1959 to 2011, with a 1 °C tropical temperature anomaly leading to a 3.5 ± 0.6 Petagrams of carbon per year (PgC/y) CO2 growth-rate anomaly on average. Analysis of simulation results from Dynamic Global Vegetation Models suggests that this temperature–CO2 coupling is contributed mainly by the additive responses of heterotrophic respiration (Rh) and net primary production (NPP) to temperature variations in tropical ecosystems. However, we find a weaker and less consistent (r2 ≈ 0.25) interannual coupling between CO2 growth rate and tropical land precipitation than diagnosed from the Dynamic Global Vegetation Models, likely resulting from the subtractive responses of tropical Rh and NPP to precipitation anomalies that partly offset each other in the net ecosystem exchange (i.e., net ecosystem exchange ≈ Rh − NPP). Variations in other climate variables (e.g., large-scale cloudiness) and natural disturbances (e.g., volcanic eruptions) may induce transient reductions in the temperature–CO2 coupling, but the relationship is robust during the past 50 y and shows full recovery within a few years after any such major variability event. Therefore, it provides an important diagnostic tool for improved understanding of the contemporary and future global carbon cycle. PMID:23884654
Temporal and spatial temperature measurement in insulator-based dielectrophoretic devices.
Nakano, Asuka; Luo, Jinghui; Ros, Alexandra
2014-07-01
Insulator-based dielectrophoresis is a relatively new analytical technique with a large potential for a number of applications, such as sorting, separation, purification, fractionation, and preconcentration. The application of insulator-based dielectrophoresis (iDEP) for biological samples, however, requires the precise control of the microenvironment with temporal and spatial resolution. Temperature variations during an iDEP experiment are a critical aspect in iDEP since Joule heating could lead to various detrimental effects hampering reproducibility. Additionally, Joule heating can potentially induce thermal flow and more importantly can degrade biomolecules and other biological species. Here, we investigate temperature variations in iDEP devices experimentally employing the thermosensitive dye Rhodamin B (RhB) and compare the measured results with numerical simulations. We performed the temperature measurement experiments at a relevant buffer conductivity range commonly used for iDEP applications under applied electric potentials. To this aim, we employed an in-channel measurement method and an alternative method employing a thin film located slightly below the iDEP channel. We found that the temperature does not deviate significantly from room temperature at 100 μS/cm up to 3000 V applied such as in protein iDEP experiments. At a conductivity of 300 μS/cm, such as previously used for mitochondria iDEP experiments at 3000 V, the temperature never exceeds 34 °C. This observation suggests that temperature effects for iDEP of proteins and mitochondria under these conditions are marginal. However, at larger conductivities (1 mS/cm) and only at 3000 V applied, temperature increases were significant, reaching a regime in which degradation is likely to occur. Moreover, the thin layer method resulted in lower temperature enhancement which was also confirmed with numerical simulations. We thus conclude that the thin film method is preferable providing closer agreement with numerical simulations and further since it does not depend on the iDEP channel material. Overall, our study provides a thorough comparison of two experimental techniques for direct temperature measurement, which can be adapted to a variety of iDEP applications in the future. The good agreement between simulation and experiment will also allow one to assess temperature variations for iDEP devices prior to experiments.
NASA Technical Reports Server (NTRS)
Otterman, Joseph; Atlas, R.; Ingraham, J.; Ardizzone, J.; Starr, D.; Terry, J.
1998-01-01
Surface winds over the oceans are derived from Special Sensor Microwave Imager (SSM/I) measurements, assigning direction by Variational Analysis Method (VAM). Validations by comparison with other measurements indicate highly-satisfactory data quality. Providing global coverage from 1988, the dataset is a convenient source for surface-wind climatology. In this study, the interannual variability of zonal winds is analyzed concentrating on the westerlies in North Atlantic and North Pacific, above 30 N. Interannual differences in the westerlies exceeding 10 m sec (exp -1) are observed over large regions, often accompanied by changes of the same magnitude in the easterlies below 30 N. We concentrate on February/March, since elevated temperatures, by advancing snow-melt, can produce early spring. The extremely strong westerlies in 1997 observed in these months over North Atlantic (and also North Pacific) apparently contributed to large surface-temperature anomalies in western Europe, on the order of +3 C above the climatic monthly average for England and France. At these latitudes strong positive anomalies extended in a ring around the globe. We formulated an Index of South westerlies for the North Atlantic, which can serve as an indicator for day-by-day advection effects into Europe. In comparing 1997 and 1998 with the previous years, we establish significant correlations with the temperature anomalies (one to five days later, depending on the region, and on the season). This variability of the ocean-surface winds and of the temperature anomalies on land may be related to the El Nino/La Nina oscillations. Such large temperature fluctuations over large areas, whatever the cause, can be regarded as noise in attempts to assess long-term trends in global temperature.
NASA Technical Reports Server (NTRS)
Li, Xiaofan; Sui, C.-H.; Lau, K-M.; Adamec, D.
1999-01-01
A two-dimensional coupled ocean-cloud resolving atmosphere model is used to investigate possible roles of convective scale ocean disturbances induced by atmospheric precipitation on ocean mixed-layer heat and salt budgets. The model couples a cloud resolving model with an embedded mixed layer-ocean circulation model. Five experiment are performed under imposed large-scale atmospheric forcing in terms of vertical velocity derived from the TOGA COARE observations during a selected seven-day period. The dominant variability of mixed-layer temperature and salinity are simulated by the coupled model with imposed large-scale forcing. The mixed-layer temperatures in the coupled experiments with 1-D and 2-D ocean models show similar variations when salinity effects are not included. When salinity effects are included, however, differences in the domain-mean mixed-layer salinity and temperature between coupled experiments with 1-D and 2-D ocean models could be as large as 0.3 PSU and 0.4 C respectively. Without fresh water effects, the nocturnal heat loss over ocean surface causes deep mixed layers and weak cooling rates so that the nocturnal mixed-layer temperatures tend to be horizontally-uniform. The fresh water flux, however, causes shallow mixed layers over convective areas while the nocturnal heat loss causes deep mixed layer over convection-free areas so that the mixed-layer temperatures have large horizontal fluctuations. Furthermore, fresh water flux exhibits larger spatial fluctuations than surface heat flux because heavy rainfall occurs over convective areas embedded in broad non-convective or clear areas, whereas diurnal signals over whole model areas yield high spatial correlation of surface heat flux. As a result, mixed-layer salinities contribute more to the density differences than do mixed-layer temperatures.
Effects of tissue susceptibility on brain temperature mapping.
Maudsley, Andrew A; Goryawala, Mohammed Z; Sheriff, Sulaiman
2017-02-01
A method for mapping of temperature over a large volume of the brain using volumetric proton MR spectroscopic imaging has been implemented and applied to 150 normal subjects. Magnetic susceptibility-induced frequency shifts in gray- and white-matter regions were measured and included as a correction in the temperature mapping calculation. Additional sources of magnetic susceptibility variations of the individual metabolite resonance frequencies were also observed that reflect the cellular-level organization of the brain metabolites, with the most notable differences being attributed to changes of the N-Acetylaspartate resonance frequency that reflect the intra-axonal distribution and orientation of the white-matter tracts with respect to the applied magnetic field. These metabolite-specific susceptibility effects are also shown to change with age. Results indicate no change of apparent brain temperature with age from 18 to 84 years old, with a trend for increased brain temperature throughout the cerebrum in females relative for males on the order of 0.1°C; slightly increased temperatures in the left hemisphere relative to the right; and a lower temperature of 0.3°C in the cerebellum relative to that of cerebral white-matter. This study presents a novel acquisition method for noninvasive measurement of brain temperature that is of potential value for diagnostic purposes and treatment monitoring, while also demonstrating limitations of the measurement due to the confounding effects of tissue susceptibility variations. Copyright © 2016 Elsevier Inc. All rights reserved.
Flexible, multi-measurement guided wave damage detection under varying temperatures
NASA Astrophysics Data System (ADS)
Douglass, Alexander C. S.; Harley, Joel B.
2018-04-01
Temperature compensation in structural health monitoring helps identify damage in a structure by removing data variations due to environmental conditions, such as temperature. Stretch-based methods are one of the most commonly used temperature compensation methods. To account for variations in temperature, stretch-based methods optimally stretch signals in time to optimally match a measurement to a baseline. All of the data is then compared with the single baseline to determine the presence of damage. Yet, for these methods to be effective, the measurement and the baseline must satisfy the inherent assumptions of the temperature compensation method. In many scenarios, these assumptions are wrong, the methods generate error, and damage detection fails. To improve damage detection, a multi-measurement damage detection method is introduced. By using each measurement in the dataset as a baseline, error caused by imperfect temperature compensation is reduced. The multi-measurement method increases the detection effectiveness of our damage metric, or damage indicator, over time and reduces the presence of additional peaks caused by temperature that could be mistaken for damage. By using many baselines, the variance of the damage indicator is reduced and the effects from damage are amplified. Notably, the multi-measurement improves damage detection over single-measurement methods. This is demonstrated through an increase in the maximum of our damage signature from 0.55 to 0.95 (where large values, up to a maximum of one, represent a statistically significant change in the data due to damage).
Numerical investigation into thermal load responses of steel railway bridge
NASA Astrophysics Data System (ADS)
Saravana Raja Mohan, K.; Sreemathy, J. R.; Saravanan, U.
2017-07-01
Bridge design requires consideration of the effects produced by temperature variations and the resultant thermal gradients in the structure. Temperature fluctuation leads to expansion and contraction of bridges and these movements are taken care by providing expansion joints and bearings. Free movements of a member can be restrained by imposing certain boundary condition but at the same time considerable allowances should be made for the stresses resulting from this restrained condition since the additional deformations and stresses produced may affect the ultimate and serviceability limit states of the structure. If the reaction force generated by the restraints is very large, then its omission can lead to unsafe design. The principal objective of this research is to study the effects of temperature variation on stresses and deflection in a steel railway bridge. A numerical model, based on finite element analysis is presented for evaluating the thermal performance of the bridge. The selected bridge is analyzed and the temperature field distribution and the corresponding thermal stresses and strains are calculated using the finite element software ABAQUS. A thorough understanding of the thermal load responses of a structure will result in safer and dependable design practices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Silveston, P.L.; Hudgins, R.R.
Recently the author's attention was drawn to a note by Sudhakar Rao et al. that reports two cyclic experiments and a steady-state one and concludes that periodically turning off and on the flow of either hydrogen or benzene results in an increase in benzene conversion to cyclohexane. Although there is now a large literature documenting the possibility of conversion improvements, the data presented by the authors do not establish their claim. The authors show conversion and particle temperature measurements at what would appear to be the composition switching times. These data points are plotted against the number of completed cycles.more » Even though only data points taken after 5 to 8 cycles are shown, both conversion and particle temperatures vary irregularly. Three possible explanations come to mind for these irregular variations: sampling of the gas stream and the accompanying temperature measurement were not done at precisely the same time in each cycle, or the cycling system had not attained a stationary cycling state in which the variation of conversion and temperature within a cycle become constant and therefore reproducible, or the catalytic system is chaotic.« less
The thermal mismatch hypothesis explains host susceptibility to an emerging infectious disease.
Cohen, Jeremy M; Venesky, Matthew D; Sauer, Erin L; Civitello, David J; McMahon, Taegan A; Roznik, Elizabeth A; Rohr, Jason R
2017-02-01
Parasites typically have broader thermal limits than hosts, so large performance gaps between pathogens and their cold- and warm-adapted hosts should occur at relatively warm and cold temperatures, respectively. We tested this thermal mismatch hypothesis by quantifying the temperature-dependent susceptibility of cold- and warm-adapted amphibian species to the fungal pathogen Batrachochytrium dendrobatidis (Bd) using laboratory experiments and field prevalence estimates from 15 410 individuals in 598 populations. In both the laboratory and field, we found that the greatest susceptibility of cold- and warm-adapted hosts occurred at relatively warm and cool temperatures, respectively, providing support for the thermal mismatch hypothesis. Our results suggest that as climate change shifts hosts away from their optimal temperatures, the probability of increased host susceptibility to infectious disease might increase, but the effect will depend on the host species and the direction of the climate shift. Our findings help explain the tremendous variation in species responses to Bd across climates and spatial, temporal and species-level variation in disease outbreaks associated with extreme weather events that are becoming more common with climate change. © 2017 John Wiley & Sons Ltd/CNRS.
Predation may counteract climatic change as a driving force for movements of mountain ungulates.
Ferretti, Francesco; Lovari, Sandro
2016-08-01
Temperature variations are expected to influence altitudinal movements of mountain herbivores and, in turn, those of their predators, but relevant information is scarce. We evaluated monthly relationships between temperature and altitude used by a large mountain-dwelling herbivore, the Himalayan tahr Hemitragus jemlahicus, and its main predator, the snow leopard Panthera uncia, in an area of central Himalaya for five consecutive years (2006-2010). In contrast to expectations, there was no significant direct relationship between altitude of tahr sightings and temperature. The mean altitude of tahr sightings decreased by c. 200m throughout our study. As expected, snow leopard movements tracked those of tahr, although the core area of the snow leopard did not move downwards. Tahr remained the staple of the snow leopard diet: we suggest that the former did not move upwards in reaction to higher temperature to avoid encounters with the latter. Avoidance of competition with the larger common leopard Panthera pardus at lower altitudes could explain why snow leopards did not shift their core area downwards. Apparently, interspecific interactions (predation; competition) influenced movements of Himalayan tahr and snow leopards more than climatic variations. Copyright © 2016 Elsevier B.V. All rights reserved.
In-Flight Calibration Methods for Temperature-Dependent Offsets in the MMS Fluxgate Magnetometers
NASA Technical Reports Server (NTRS)
Bromund, K. R.; Plaschke, F.; Strangeway, R. J.; Anderson, B. J.; Huang, B. G.; Magnes, W.; Fischer, D.; Nakamura, R.; Leinweber, H. K.; Russell, C. T.;
2016-01-01
During the first dayside season of the Magnetospheric Multiscale (MMS) mission, the in-flight calibration process for the Fluxgate magnetometers (FGM) implemented an algorithm that selected a constant offset (zero-level) for each sensor on each orbit. This method was generally able to reduce the amplitude of residual spin tone to less than 0.2 nT within the region of interest. However, there are times when the offsets do show significant short-term variations. These variations are most prominent in the nighttime season (phase 1X), when eclipses are accompanied by offset changes as large as 1 nT. Eclipses are followed by a recovery period as long as 12 hours where the offsets continue to change as temperatures stabilize. Understanding and compensating for these changes will become critical during Phase 2 of the mission in 2017, when the nightside will become the focus of MMS science. Although there is no direct correlation between offset and temperature, the offsets are seen for the period of any given week to be well-characterized as function of instrument temperature. Using this property, a new calibration method has been developed that has proven effective in compensating for temperature-dependent offsets during phase 1X of the MMS mission and also promises to further refine calibration quality during the dayside season.
Electrical properties, phase transitions and conduction mechanisms of the [(C2H5)NH3]2CdCl4 compound
NASA Astrophysics Data System (ADS)
Mohamed, C. Ben; Karoui, K.; Saidi, S.; Guidara, K.; Rhaiem, A. Ben
2014-10-01
The [(C2H5)NH3]2CdCl4 hybrid material was prepared and its calorimetric study and electric properties were investigated at low temperature. The X-ray powder diffractogram has shown that the compound is crystallized in the orthorhombic system with Abma space group, and the refined unit cell parameters are a=7.546 Å, b=7.443 Å, and c=21.831 Å. The calorimetric study has revealed two endothermic peaks at 216 K and 357 K, which are confirmed by the variation of fp and σdc as a function of temperature. The equivalent circuit based on the Z-View-software was proposed and the conduction mechanisms were determined. The obtained results have been discussed in terms of the correlated barrier hopping model (CBH) in phase I (low temperature (OLT)), non-overlapping small polaron tunneling model (NSPT) in phase II (room temperature (ORT)) and the overlapping large polaron tunneling model in phase III (high temperature (OHT)). The density of localized states NF(E) at the Fermi level and the binding energy Wm were calculated. The variation of the dielectric loss log(εʺ) with log(ω) was found to follow the empirical law, ε″=B ωm(T).
Mercado, Lina M; Medlyn, Belinda E; Huntingford, Chris; Oliver, Rebecca J; Clark, Douglas B; Sitch, Stephen; Zelazowski, Przemyslaw; Kattge, Jens; Harper, Anna B; Cox, Peter M
2018-06-01
Plant temperature responses vary geographically, reflecting thermally contrasting habitats and long-term species adaptations to their climate of origin. Plants also can acclimate to fast temporal changes in temperature regime to mitigate stress. Although plant photosynthetic responses are known to acclimate to temperature, many global models used to predict future vegetation and climate-carbon interactions do not include this process. We quantify the global and regional impacts of biogeographical variability and thermal acclimation of temperature response of photosynthetic capacity on the terrestrial carbon (C) cycle between 1860 and 2100 within a coupled climate-carbon cycle model, that emulates 22 global climate models. Results indicate that inclusion of biogeographical variation in photosynthetic temperature response is most important for present-day and future C uptake, with increasing importance of thermal acclimation under future warming. Accounting for both effects narrows the range of predictions of the simulated global land C storage in 2100 across climate projections (29% and 43% globally and in the tropics, respectively). Contrary to earlier studies, our results suggest that thermal acclimation of photosynthetic capacity makes tropical and temperate C less vulnerable to warming, but reduces the warming-induced C uptake in the boreal region under elevated CO 2 . © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.
[Dendrochronology of Chinese pine in Mulan-Weichang, Hebei Province: a primary study].
Cui, Ming-xing; He, Xing-yuan; Chen, Wei; Chen, Zhen-ju; Zhou, Chang-hong; Wu, Tao
2008-11-01
Dendroclimatic methods were used to investigate the relationships between the growth of Chinese pine (Pinus tabulaeformis Carr.) and the climatic parameters in Mulan-Weichang of Hebei Province. The results showed that Chinese pine presented high sensitivity to climatic changes, and its earlywood width showed the highest sensitivity. There was a significant negative correlation between the tree-ring width chronology of Chinese pine and the air temperature in May-June. The precipitation and relative humidity in June had strong positive effects on the growth of earlywood, the precipitation from September to next September had significant positive effects on Chinese pine growth, and the relative humidity in winter more strongly affected the growth of latewood than of earlywood. There was a definite correlation between the tree-ring width chronology of Chinese pine and the large scale climate fluctuation. From 1951 to 2006, the increase of air temperature in study area was significant, and the sensitivity of Chinese pine to the variations of local temperature and precipitation decreased, presenting an inverse transforming trend with increasing temperature. Greater differences were observed between the reconstructed and observed data of mean temperature in May - June in a century scale, suggesting that the tree-ring growth of Chinese pine in study area had a greater fluctuation of sensitivity to the variation of climatic factors.
NASA Astrophysics Data System (ADS)
Mishra, J. S.; Sakamoto, R.; Motojima, G.; Matsuyama, A.; Yamada, H.
2011-02-01
A low speed single barrel pellet injector, using a mechanical punch device has been developed for alternative injection in the large helical device. A pellet is injected by the combined operation of a mechanical punch and a pneumatic propellant system. The pellet shape is cylindrical, 3 mm in diameter and 3 mm in length. Using this technique the speed of the pellet can be controlled flexibly in the range of 100-450 m/s, and a higher speed can be feasible for a higher gas pressure. The injector is equipped with a guide tube selector to direct the pellet to different injection locations. Pellets are exposed to several curved parts with the curvature radii Rc = 0.8 and 0.3 m when they are transferred in guided tubes to the respective injection locations. Pellet speed variation with pressure at different pellet formation temperatures has been observed. Pellet intactness tests through these guide tubes show a variation in the intact speed limit over a range of pellet formation temperatures from 6.5 to 9.8 K. Pellet speed reduction of less than 6% has been observed after the pellet moves through the curved guide tubes.
Poly(vinyl alcohol) gels as photoacoustic breast phantoms revisited.
Xia, Wenfeng; Piras, Daniele; Heijblom, Michelle; Steenbergen, Wiendelt; van Leeuwen, Ton G; Manohar, Srirang
2011-07-01
A popular phantom in photoacoustic imaging is poly(vinyl alcohol) (PVA) hydrogel fabricated by freezing and thawing (F-T) aqueous solutions of PVA. The material possesses acoustic and optical properties similar to those of tissue. Earlier work characterized PVA gels in small test specimens where temperature distributions during F-T are relatively homogeneous. In this work, in breast-sized samples we observed substantial temperature differences between the shallow regions and the interior during the F-T procedure. We investigated whether spatial variations were also present in the acoustic and optical properties. The speed of sound, acoustic attenuation, and optical reduced scattering coefficients were measured on specimens sampled at various locations in a large phantom. In general, the properties matched values quoted for breast tissue. But while acoustic properties were relatively homogeneous, the reduced scattering was substantially different at the surface compared with the interior. We correlated these variations with gel microstructure inspected using scanning electron microscopy. Interestingly, the phantom's reduced scattering spatial distribution matches the optical properties of the standard two-layer breast model used in x ray dosimetry. We conclude that large PVA samples prepared using the standard recipe make excellent breast tissue phantoms.
Astronomical variation experiments with a Mars general circulation model
NASA Technical Reports Server (NTRS)
Pollack, J. B.; Haberle, R. M.; Murphy, J. R.; Schaeffer, J.; Lee, H.
1992-01-01
In time scales of a hundred thousand to a million years, the eccentricity of Mars orbit varies in a quasi-periodic manner between extremes as large as 0.14 and as small as 0 and the tilt of its axis of rotation with respect to the orbit normal also varies quasi-periodically between extremes as large as 35 deg and as small as 15 deg. In addition, the orientation of the axis precesses on comparable time scales. These astronomical variations are much more extreme than those experienced by the Earth. These variations are thought to have strongly modulated the seasonal cycles of dust, carbon dioxide, and water. One manifestation of the induced quasiperiodic climate changes may be the layered terrain of the polar regions, with individual layers perhaps recording variations in the absolute and/or relative deposition rates of dust and water in the polar regions, most likely in association with the winter time deposition of carbon dioxide ice. In an attempt to understand the manner in which atmospheric temperatures and winds respond to the astronomical forcings, we have initiated a series of numerical experiments with the NASA/Ames general circulation model of the Martian Atmosphere.
Temperature and snowfall trigger alpine vegetation green-up on the world's roof.
Chen, Xiaoqiu; An, Shuai; Inouye, David W; Schwartz, Mark D
2015-10-01
Rapid temperature increase and its impacts on alpine ecosystems in the Qinghai-Tibetan Plateau, the world's highest and largest plateau, are a matter of global concern. Satellite observations have revealed distinctly different trend changes and contradicting temperature responses of vegetation green-up dates, leading to broad debate about the Plateau's spring phenology and its climatic attribution. Large uncertainties in remote-sensing estimates of phenology significantly limit efforts to predict the impacts of climate change on vegetation growth and carbon balance in the Qinghai-Tibetan Plateau, which are further exacerbated by a lack of detailed ground observation calibration. Here, we revealed the spatiotemporal variations and climate drivers of ground-based herbaceous plant green-up dates using 72 green-up datasets for 22 herbaceous plant species at 23 phenological stations, and corresponding daily mean air temperature and daily precipitation data from 19 climate stations across eastern and southern parts of the Qinghai-Tibetan Plateau from 1981 to 2011. Results show that neither the continuously advancing trend from 1982 to 2011, nor a turning point in the mid to late 1990s as reported by remote-sensing studies can be verified by most of the green-up time series, and no robust evidence for a warmer winter-induced later green-up dates can be detected. Thus, chilling requirements may not be an important driver influencing green-up responses to spring warming. Moreover, temperature-only control of green-up dates appears mainly at stations with relatively scarce preseason snowfall and lower elevation, while coupled temperature and precipitation controls of green-up dates occur mostly at stations with relatively abundant preseason snowfall and higher elevation. The diversified interactions between snowfall and temperature during late winter to early spring likely determine the spatiotemporal variations of green-up dates. Therefore, prediction of vegetation growth and carbon balance responses to global climate change on the world's roof should integrate both temperature and snowfall variations. © 2015 John Wiley & Sons Ltd.
Rotational Raman-based temperature measurements in a high-velocity, turbulent jet
NASA Astrophysics Data System (ADS)
Locke, Randy J.; Wernet, Mark P.; Anderson, Robert C.
2018-01-01
Spontaneous rotational Raman scattering spectroscopy is used to acquire measurements of the mean and root mean square (rms) temperature fluctuations in turbulent, high-velocity heated jets. Raman spectra in air were obtained across a matrix of radial and axial locations downstream from a 50 mm diameter nozzle operating from subsonic to supersonic conditions over a wide range of temperatures and Mach numbers, in accordance with the Tanna matrix frequently used in jet noise studies. These data were acquired in the hostile, high noise (115 dB) environment of a large scale open air test facility at NASA Glenn Research Center (GRC). Temperature estimates were determined by performing non-linear least squares fitting of the single shot spectra to the theoretical rotational Stokes spectra of N2 and O2. The laser employed in this study was a high energy, long-pulsed, frequency doubled Nd:YAG laser. One thousand single-shot spectra were acquired at each spatial coordinate. Mean temperature and rms temperature variations were calculated at each measurement location. Excellent agreement between the averaged and single-shot temperatures was observed with an accuracy better than 2.5% for temperature, and rms variations in temperature between ±2.2% at 296 K and ±4.5% at 850 K. The mean and normalized rms temperatures measured here were then compared to NASA’s Consensus data set of PIV velocity and turbulence measurements in similar jet flows. The results of this and planned follow-on studies will support NASA GRC’s development of physics-based jet noise prediction, turbulence modeling and aeroacoustic source modeling codes.
Abundance and Temperature Variations in Titan's Atmosphere as Revealed by ALMA
NASA Astrophysics Data System (ADS)
Thelen, A. E.; Nixon, C. A.; Chanover, N.; Molter, E.; Cordiner, M. A.; Serigano, J., IV; Irwin, P. G.; Charnley, S. B.; Teanby, N. A.
2016-12-01
Photochemistry in Titan's atmosphere produces a wealth of organic molecular species through the dissociation of it's main constituents: N2 and CH4. Chemical species including hydrocarbons (CXHY) and nitriles (CXHY[CN]Z) exhibit latitudinal variations in abundance as observed by Cassini, attributed to atmospheric circulation and Titan's seasonal cycle. Flux calibration images of Titan taken by the Atacama Large Millimeter/Submillimeter Array (ALMA) with beam sizes smaller than Titan's angular diameter ( 0.7'') allow for measurements of rotational transition lines in spatially resolved regions of Titan's disk. We present nitrile abundance profiles and temperature measurements derived from CO lines obtained by ALMA in 2014, as Titan transitioned into northern summer. Vertical profiles in Titan's lower/middle atmosphere were retrieved by modeling high resolution ALMA spectra using the Non-linear Optimal Estimator for MultivariatE Spectral analySIS (NEMESIS) radiative transfer code. We present a comparison of the abundance variations of chemical species to measurements made using Cassini data. Temperature profiles derived from CO lines are compared to Cassini Composite Infrared Spectrometer temperature fields. The techniques presented here will allow us to determine temporal changes in Titan's atmospheric chemical composition after the end of the Cassini mission by utilizing high resolution ALMA data. Comparisons of chemical species with strong abundance enhancements over the poles will inform our knowledge of chemical lifetimes in Titan's atmosphere, and allow us to observe the important changes in production and circulation of numerous organic molecules which are attributed to Titan's seasons.
Sensitivity of cell-based biosensors to environmental variables.
Gilchrist, Kristin H; Giovangrandi, Laurent; Whittington, R Hollis; Kovacs, Gregory T A
2005-01-15
Electrically active living cells cultured on extracellular electrode arrays are utilized to detect biologically active agents. Because cells are highly sensitive to environmental conditions, environmental fluctuations can elicit cellular responses that contribute to the noise in a cell-based biosensor system. Therefore, the characterization and control of environmental factors such as temperature, pH, and osmolarity is critical in such a system. The cell-based biosensor platform described here utilizes the measurement of action potentials from cardiac cells cultured on electrode arrays. A recirculating fluid flow system is presented for use in dose-response experiments that regulates temperature within +/-0.2 degrees C, pH to within +/-0.05 units, and allows no significant change in osmolarity. Using this system, the relationship between the sensor output parameters and environmental variation was quantified. Under typical experimental conditions, beat rate varied approximately 10% per degree change in temperature or per 0.1 unit change in pH. Similar relationships were measured for action potential amplitude, duration, and conduction velocity. For the specific flow system used in this work, the measured environmental sensitivity resulted in an overall beat rate variation of +/-4.7% and an overall amplitude variation of +/-3.3%. The magnitude of the noise due to environmental sensitivity has a large impact on the detection capability of the cell-based system. The significant responses to temperature, pH, and osmolarity have important implications for the use of living cells in detection systems and should be considered in the design and evaluation of such systems.
Climate, soil and plant functional types as drivers of global fine-root trait variation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Freschet, Grégoire T.; Valverde-Barrantes, Oscar J.; Tucker, Caroline M.
Ecosystem functioning relies heavily on below-ground processes, which are largely regulated by plant fine-roots and their functional traits. However, our knowledge of fine-root trait distribution relies to date on local- and regional-scale studies with limited numbers of species, growth forms and environmental variation. We compiled a world-wide fine-root trait dataset, featuring 1115 species from contrasting climatic areas, phylogeny and growth forms to test a series of hypotheses pertaining to the influence of plant functional types, soil and climate variables, and the degree of manipulation of plant growing conditions on species fine-root trait variation. Most particularly, we tested the competing hypothesesmore » that fine-root traits typical of faster return on investment would be most strongly associated with conditions of limiting versus favourable soil resource availability. We accounted for both data source and species phylogenetic relatedness. We demonstrate that: (i) Climate conditions promoting soil fertility relate negatively to fine-root traits favouring fast soil resource acquisition, with a particularly strong positive effect of temperature on fine-root diameter and negative effect on specific root length (SRL), and a negative effect of rainfall on root nitrogen concentration; (ii) Soil bulk density strongly influences species fine-root morphology, by favouring thicker, denser fine-roots; (iii) Fine-roots from herbaceous species are on average finer and have higher SRL than those of woody species, and N 2-fixing capacity positively relates to root nitrogen; and (iv) Plants growing in pots have higher SRL than those grown in the field. Synthesis. This study reveals both the large variation in fine-root traits encountered globally and the relevance of several key plant functional types and soil and climate variables for explaining a substantial part of this variation. Climate, particularly temperature, and plant functional types were the two strongest predictors of fine-root trait variation. High trait variation occurred at local scales, suggesting that wide-ranging below-ground resource economics strategies are viable within most climatic areas and soil conditions.« less
Climate, soil and plant functional types as drivers of global fine-root trait variation
Freschet, Grégoire T.; Valverde-Barrantes, Oscar J.; Tucker, Caroline M.; ...
2017-03-08
Ecosystem functioning relies heavily on below-ground processes, which are largely regulated by plant fine-roots and their functional traits. However, our knowledge of fine-root trait distribution relies to date on local- and regional-scale studies with limited numbers of species, growth forms and environmental variation. We compiled a world-wide fine-root trait dataset, featuring 1115 species from contrasting climatic areas, phylogeny and growth forms to test a series of hypotheses pertaining to the influence of plant functional types, soil and climate variables, and the degree of manipulation of plant growing conditions on species fine-root trait variation. Most particularly, we tested the competing hypothesesmore » that fine-root traits typical of faster return on investment would be most strongly associated with conditions of limiting versus favourable soil resource availability. We accounted for both data source and species phylogenetic relatedness. We demonstrate that: (i) Climate conditions promoting soil fertility relate negatively to fine-root traits favouring fast soil resource acquisition, with a particularly strong positive effect of temperature on fine-root diameter and negative effect on specific root length (SRL), and a negative effect of rainfall on root nitrogen concentration; (ii) Soil bulk density strongly influences species fine-root morphology, by favouring thicker, denser fine-roots; (iii) Fine-roots from herbaceous species are on average finer and have higher SRL than those of woody species, and N 2-fixing capacity positively relates to root nitrogen; and (iv) Plants growing in pots have higher SRL than those grown in the field. Synthesis. This study reveals both the large variation in fine-root traits encountered globally and the relevance of several key plant functional types and soil and climate variables for explaining a substantial part of this variation. Climate, particularly temperature, and plant functional types were the two strongest predictors of fine-root trait variation. High trait variation occurred at local scales, suggesting that wide-ranging below-ground resource economics strategies are viable within most climatic areas and soil conditions.« less
Simultaneous wireless assessment of intra-oral pH and temperature.
Farella, M; Loke, C; Sander, S; Songini, A; Allen, M; Mei, L; Cannon, R D
2016-08-01
Intra-oral pH plays an important role in the pathogenesis of tooth erosion and decay, but there is limited information about its variation in real life settings. The aims of this research were to: 1) develop a wireless device, which can be used to continuously monitor intra-oral pH and temperature in real-time; 2) test and validate the device under controlled laboratory conditions; and 3) collect data in a natural environment in a sample of healthy volunteers. A wireless device for measuring pH and temperature simultaneously was developed, calibrated and validated against the gold standard glass electrode pH meter. A smart phone was used as data logger. The wireless device was embedded in an oral appliance and worn by eleven participants (mean age 31.1±6.9years) for 24h, while conducting standardised drinking tasks and regular daily activities. The wireless device could accurately measure pH and temperature both in vitro and in vivo. The recovery time following the swallow of a standard acidic drink varied markedly among individuals (mean=1.3±0.9min). The intra-oral pH and temperature recorded in the natural environment also showed a large inter- and intra-individual variability. The average intra-oral pH when asleep (6.7±0.5) was lower (p<0.001) than when awake (7.2±0.5). The average intra-oral temperature during sleep (35.6±0.5°C) was higher (p<0.001) than when awake (34.5±0.7°C). Intra-oral pH and temperature can be continuously and wirelessly assessed in real-life settings, and show individual-specific patterns with circadian variations. Intra-oral pH becomes slightly acidic during sleep while intra-oral temperature increases and fluctuates less. We propose a wireless device that is capable of measuring intra-oral pH over a 24-h period. We found marked inter-individual variation after acidic stimuli, and day to sleep time variation of both intra-oral temperature and pH. Our approach may provide new insight into the relationship between oral pH, tooth wear and decay. Copyright © 2016 Elsevier Ltd. All rights reserved.
Models of H II regions - Heavy element opacity, variation of temperature
NASA Technical Reports Server (NTRS)
Rubin, R. H.
1985-01-01
A detailed set of H II region models that use the same physics and self-consistent input have been computed and are used to examine where in parameter space the effects of heavy element opacity is important. The models are briefly described, and tabular data for the input parameters and resulting properties of the models are presented. It is found that the opacities of C, Ne, O, and to a lesser extent N play a vital role over a large region of parameter space, while S and Ar opacities are negligible. The variation of the average electron temperature T(e) of the models with metal abundance, density, and T(eff) is investigated. It is concluded that by far the most important determinator of T(e) is metal abundance; an almost 7000 K difference is expected over the factor of 10 change from up to down abundances.
Cosmological imprints of frozen-in light sterile neutrinos
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roland, Samuel B.; Shakya, Bibhushan, E-mail: rolandsa@umich.edu, E-mail: bshakya@umich.edu
We investigate observable cosmological aspects of sterile neutrino dark matter produced via the freeze-in mechanism. The study is performed in a framework that admits many cosmologically interesting variations: high temperature production via annihilation processes from higher dimensional operators or low temperature production from decays of a scalar, with the decaying scalar in or out of equilibrium with the thermal bath, in supersymmetric or non-supersymmetric setups, thus allowing us to both extract generic properties and highlight features unique to particular variations. We find that while such sterile neutrinos are generally compatible with all cosmological constraints, interesting scenarios can arise where darkmore » matter is cold, warm, or hot, has nontrivial momentum distributions, or provides contributions to the effective number of relativistic degrees of freedom N {sub eff} during Big Bang nucleosynthesis large enough to be probed by future measurements.« less
Early stages of transition in viscosity-stratified channel flow
NASA Astrophysics Data System (ADS)
Govindarajan, Rama; Jose, Sharath; Brandt, Luca
2013-11-01
In parallel shear flows, it is well known that transition to turbulence usually occurs through a subcritical process. In this work we consider a flow through a channel across which there is a linear temperature variation. The temperature gradient leads to a viscosity variation across the channel. A large body of work has been done in the linear regime for this problem, and it has been seen that viscosity stratification can lead to considerable changes in stability and transient growth characteristics. Moreover contradictory effects of introducing a non uniform viscosity in the system have been reported. We conduct a linear stability analysis and direct numerical simulations (DNS) for this system. We show that the optimal initial structures in the viscosity-stratified case, unlike in unstratified flow, do not span the width of the channel, but are focussed near one wall. The nonlinear consequences of the localisation of the structures will be discussed.
Real Time Diagnostics of Jet Engine Exhaust Plumes Using a Chirped QC Laser Spectrometer
NASA Astrophysics Data System (ADS)
Hay, K. G.; Duxbury, G.; Langford, N.
2010-06-01
Quantitative measurements of real-time variations of the chemical composition of a jet engine exhaust plume is demonstrated using a 4.86 μmn intra-pulse quantum cascade laser spectrometer. The measurements of the gas turbine exhaust were carried out in collaboration with John Black and Mark Johnson at Rolls Royce. The recording of five sets of averaged spectra a second has allowed us to follow the build up of the combustion products within the exhaust, and to demonstrate the large variation of the integrated absorption of these absorption lines with temperature. The absorption cross sections of the lines of both carbon monoxide and water increase with temperature, whereas those of the three main absorption lines of carbon dioxide decrease. At the steady state limit the absorption lines of carbon dioxide are barely visible, and the spectrum is dominated by absorption lines of carbon monoxide and water.
NASA Astrophysics Data System (ADS)
Schwartz, Rachel E.; Gershunov, Alexander; Iacobellis, Sam F.; Cayan, Daniel R.
2014-05-01
Six decades of observations at 20 coastal airports, from Alaska to southern California, reveal coherent interannual to interdecadal variation of coastal low cloudiness (CLC) from summer to summer over this broad region. The leading mode of CLC variability represents coherent variation, accounting for nearly 40% of the total CLC variance spanning 1950-2012. This leading mode and the majority of individual airports exhibit decreased low cloudiness from the earlier to the later part of the record. Exploring climatic controls on CLC, we identify North Pacific Sea Surface Temperature anomalies, largely in the form of the Pacific Decadal Oscillation (PDO) as well correlated with, and evidently helping to organize, the coherent patterns of summer coastal cloud variability. Links from the PDO to summer CLC appear a few months in advance of the summer. These associations hold up consistently in interannual and interdecadal frequencies.
Origin of spin reorientation transitions in antiferromagnetic MnPt-based alloys
NASA Astrophysics Data System (ADS)
Chang, P.-H.; Zhuravlev, I. A.; Belashchenko, K. D.
2018-04-01
Antiferromagnetic MnPt exhibits a spin reorientation transition (SRT) as a function of temperature, and off-stoichiometric Mn-Pt alloys also display SRTs as a function of concentration. The magnetocrystalline anisotropy in these alloys is studied using first-principles calculations based on the coherent potential approximation and the disordered local moment method. The anisotropy is fairly small and sensitive to the variations in composition and temperature due to the cancellation of large contributions from different parts of the Brillouin zone. Concentration and temperature-driven SRTs are found in reasonable agreement with experimental data. Contributions from specific band-structure features are identified and used to explain the origin of the SRTs.
Asynchronous emergence by loggerhead turtle (Caretta caretta) hatchlings
NASA Astrophysics Data System (ADS)
Houghton, J. D. R.; Hays, G. C.
2001-03-01
For many decades it has been accepted that marine turtle hatchlings from the same nest generally emerge from the sand together. However, for loggerhead turtles (Caretta caretta) nesting on the Greek Island of Kefalonia, a more asynchronous pattern of emergence has been documented. By placing temperature loggers at the top and bottom of nests laid on Kefalonia during 1998, we examined whether this asynchronous emergence was related to the thermal conditions within nests. Pronounced thermal variation existed not only between, but also within, individual nests. These within-nest temperature differences were related to the patterns of hatchling emergence, with hatchlings from nests displaying large thermal ranges emerging over a longer time-scale than those characterised by more uniform temperatures.
A Polymer Optical Fiber Temperature Sensor Based on Material Features.
Leal-Junior, Arnaldo; Frizera-Netoc, Anselmo; Marques, Carlos; Pontes, Maria José
2018-01-19
This paper presents a polymer optical fiber (POF)-based temperature sensor. The operation principle of the sensor is the variation in the POF mechanical properties with the temperature variation. Such mechanical property variation leads to a variation in the POF output power when a constant stress is applied to the fiber due to the stress-optical effect. The fiber mechanical properties are characterized through a dynamic mechanical analysis, and the output power variation with different temperatures is measured. The stress is applied to the fiber by means of a 180° curvature, and supports are positioned on the fiber to inhibit the variation in its curvature with the temperature variation. Results show that the sensor proposed has a sensitivity of 1.04 × 10 -3 °C -1 , a linearity of 0.994, and a root mean squared error of 1.48 °C, which indicates a relative error of below 2%, which is lower than the ones obtained for intensity-variation-based temperature sensors. Furthermore, the sensor is able to operate at temperatures up to 110 °C, which is higher than the ones obtained for similar POF sensors in the literature.
Thermoelastic vibration test techniques
NASA Technical Reports Server (NTRS)
Kehoe, Michael W.; Snyder, H. Todd
1991-01-01
The structural integrity of proposed high speed aircraft can be seriously affected by the extremely high surface temperatures and large temperature gradients throughout the vehicle's structure. Variations in the structure's elastic characteristics as a result of thermal effects can be observed by changes in vibration frequency, damping, and mode shape. Analysis codes that predict these changes must be correlated and verified with experimental data. The experimental modal test techniques and procedures used to conduct uniform, nonuniform, and transient thermoelastic vibration tests are presented. Experimental setup and elevated temperature instrumentation considerations are also discussed. Modal data for a 12 by 50 inch aluminum plate heated to a temperature of 475 F are presented. These data show the effect of heat on the plate's modal characteristics. The results indicated that frequency decreased, damping increased, and mode shape remained unchanged as the temperature of the plate was increased.
those that might be formed by temperature variations in real reactors. Under most conditions, temperature variations appear to have a much greater effect on MWD than residence time distributions and micromixing .
Nanometer scale thermometry in a living cell
Kucsko, G.; Maurer, P. C.; Yao, N. Y.; Kubo, M.; Noh, H. J.; Lo, P. K.; Park, H.; Lukin, M. D.
2014-01-01
Sensitive probing of temperature variations on nanometer scales represents an outstanding challenge in many areas of modern science and technology1. In particular, a thermometer capable of sub-degree temperature resolution over a large range of temperatures as well as integration within a living system could provide a powerful new tool for many areas of biological, physical and chemical research; possibilities range from the temperature-induced control of gene expression2–5 and tumor metabolism6 to the cell-selective treatment of disease7,8 and the study of heat dissipation in integrated circuits1. By combining local light-induced heat sources with sensitive nanoscale thermometry, it may also be possible to engineer biological processes at the sub-cellular level2–5. Here, we demonstrate a new approach to nanoscale thermometry that utilizes coherent manipulation of the electronic spin associated with nitrogen-vacancy (NV) color centers in diamond. We show the ability to detect temperature variations down to 1.8 mK (sensitivity of 9mK/Hz) in an ultra-pure bulk diamond sample. Using NV centers in diamond nanocrystals (nanodiamonds, NDs), we directly measure the local thermal environment at length scales down to 200 nm. Finally, by introducing both nanodiamonds and gold nanoparticles into a single human embryonic fibroblast, we demonstrate temperature-gradient control and mapping at the sub-cellular level, enabling unique potential applications in life sciences. PMID:23903748
Compensatory Water Effects Link Yearly Global Land CO2 Sink Changes to Temperature
NASA Technical Reports Server (NTRS)
Jung, Martin; Reichstein, Markus; Tramontana, Gianluca; Viovy, Nicolas; Schwalm, Christopher R.; Wang, Ying-Ping; Weber, Ulrich; Weber, Ulrich; Zaehle, Soenke; Zeng, Ning;
2017-01-01
Large interannual variations in the measured growth rate of atmospheric carbon dioxide (CO2) originate primarily from fluctuations in carbon uptake by land ecosystems13. It remains uncertain, however, to what extent temperature and water availability control the carbon balance of land ecosystems across spatial and temporal scales314. Here we use empirical models based on eddy covariance data15 and process-based models16,17 to investigate the effect of changes in temperature and water availability on gross primary productivity (GPP), terrestrial ecosystem respiration (TER) and net ecosystem exchange (NEE) at local and global scales. We find that water availability is the dominant driver of the local interannual variability in GPP and TER. To a lesser extent this is true also for NEE at the local scale, but when integrated globally, temporal NEE variability is mostly driven by temperature fluctuations. We suggest that this apparent paradox can be explained by two compensatory water effects. Temporal water-driven GPP and TER variations compensate locally, dampening water-driven NEE variability. Spatial water availability anomalies also compensate, leaving a dominant temperature signal in the year-to-year fluctuations of the land carbon sink. These findings help to reconcile seemingly contradictory reports regarding the importance of temperature and water in controlling the interannual variability of the terrestrial carbon balance36,9,11,12,14. Our study indicates that spatial climate covariation drives the global carbon cycle response.
NASA Astrophysics Data System (ADS)
Guan, Qingyu; Yang, Liqin; Guan, Wenqian; Wang, Feifei; Liu, Zeyu; Xu, Chuanqi
2018-03-01
Vegetation cover is a commonly used indicator for evaluating terrestrial environmental conditions, and for revealing environmental evolution and transitions. Spatiotemporal variations in the vegetation cover of the Hexi Corridor and surrounding areas from 2000 to 2010 were investigated using MODIS NDVI data, and the causes of vegetation cover changes were analyzed, considering both climatic variability and human activities. The vegetation cover of the study area increased during 2000-2010. The greenness of the vegetation showed a significant increase from the northwest to the southeast, which was similar to the spatial distribution of the annual precipitation. Variations in vegetation have a close relationship with those in precipitation within the Qilian Mountains region, but the NDVI is negatively correlated with precipitation in oasis areas. Increasing temperatures led to drought, inhibiting vegetation growth in summer; however, increasing temperatures may have also advanced and prolonged the growing periods in spring and autumn. The NDVI showed a slight degradation in March and July, primarily in the Qilian Mountains, and especially the Wushao Mountains. In March, due to low temperatures, the metabolism rate of vegetation was too slow to enable strong plant growth in high elevations of the Qilian Mountains. In July, increasing temperatures enhanced the intensity of transpiration and decreasing precipitation reduced the moisture available to plants, producing a slight degradation of vegetation in the Qilian Mountains. In May and August, the NDVI showed a significant improvement, primarily in the artificial oases and the Qilian Mountains. Abundant precipitation provided the necessary water for plant growth, and suitable temperatures increased the efficiency of photosynthesis, resulting in a significant improvement of vegetation in the Qilian Mountains. The improvement of production technologies, especially in irrigation, has been beneficial to the growth of vegetation in oasis areas. The implementation of large-scale vegetation management has led to several beneficial effects in the artificial oases and grasslands of the Qilian Mountains. [Figure not available: see fulltext.
Smith, Jennifer L; Sivasubramaniam, Selvaraj; Rabiu, Mansur M; Kyari, Fatima; Solomon, Anthony W; Gilbert, Clare
2015-01-01
The distribution of trachoma in Nigeria is spatially heterogeneous, with large-scale trends observed across the country and more local variation within areas. Relative contributions of individual and cluster-level risk factors to the geographic distribution of disease remain largely unknown. The primary aim of this analysis is to assess the relationship between climatic factors and trachomatous trichiasis (TT) and/or corneal opacity (CO) due to trachoma in Nigeria, while accounting for the effects of individual risk factors and spatial correlation. In addition, we explore the relative importance of variation in the risk of trichiasis and/or corneal opacity (TT/CO) at different levels. Data from the 2007 National Blindness and Visual Impairment Survey were used for this analysis, which included a nationally representative sample of adults aged 40 years and above. Complete data were available from 304 clusters selected using a multi-stage stratified cluster-random sampling strategy. All participants (13,543 individuals) were interviewed and examined by an ophthalmologist for the presence or absence of TT and CO. In addition to field-collected data, remotely sensed climatic data were extracted for each cluster and used to fit Bayesian hierarchical logistic models to disease outcome. The risk of TT/CO was associated with factors at both the individual and cluster levels, with approximately 14% of the total variation attributed to the cluster level. Beyond established individual risk factors (age, gender and occupation), there was strong evidence that environmental/climatic factors at the cluster-level (lower precipitation, higher land surface temperature, higher mean annual temperature and rural classification) were also associated with a greater risk of TT/CO. This study establishes the importance of large-scale risk factors in the geographical distribution of TT/CO in Nigeria, supporting anecdotal evidence that environmental conditions are associated with increased risk in this context and highlighting their potential use in improving estimates of disease burden at large scales.
Survival of rapidly fluctuating natural low winter temperatures by High Arctic soil invertebrates.
Convey, Peter; Abbandonato, Holly; Bergan, Frode; Beumer, Larissa Teresa; Biersma, Elisabeth Machteld; Bråthen, Vegard Sandøy; D'Imperio, Ludovica; Jensen, Christina Kjellerup; Nilsen, Solveig; Paquin, Karolina; Stenkewitz, Ute; Svoen, Mildrid Elvik; Winkler, Judith; Müller, Eike; Coulson, Stephen James
2015-12-01
The extreme polar environment creates challenges for its resident invertebrate communities and the stress tolerance of some of these animals has been examined over many years. However, although it is well appreciated that standard air temperature records often fail to describe accurately conditions experienced at microhabitat level, few studies have explicitly set out to link field conditions experienced by natural multispecies communities with the more detailed laboratory ecophysiological studies of a small number of 'representative' species. This is particularly the case during winter, when snow cover may insulate terrestrial habitats from extreme air temperature fluctuations. Further, climate projections suggest large changes in precipitation will occur in the polar regions, with the greatest changes expected during the winter period and, hence, implications for the insulation of overwintering microhabitats. To assess survival of natural High Arctic soil invertebrate communities contained in soil and vegetation cores to natural winter temperature variations, the overwintering temperatures they experienced were manipulated by deploying cores in locations with varying snow accumulation: No Snow, Shallow Snow (30 cm) and Deep Snow (120 cm). Air temperatures during the winter period fluctuated frequently between +3 and -24 °C, and the No Snow soil temperatures reflected this variation closely, with the extreme minimum being slightly lower. Under 30 cm of snow, soil temperatures varied less and did not decrease below -12 °C. Those under deep snow were even more stable and did not decline below -2 °C. Despite these striking differences in winter thermal regimes, there were no clear differences in survival of the invertebrate fauna between treatments, including oribatid, prostigmatid and mesostigmatid mites, Araneae, Collembola, Nematocera larvae or Coleoptera. This indicates widespread tolerance, previously undocumented for the Araneae, Nematocera or Coleoptera, of both direct exposure to at least -24 °C and the rapid and large temperature fluctuations. These results suggest that the studied polar soil invertebrate community may be robust to at least one important predicted consequence of projected climate change. Copyright © 2014 Elsevier Ltd. All rights reserved.
Sanabria, Eduardo Alfredo; Quiroga, Lorena Beatriz; Martino, Adolfo Ludovico
2012-03-01
We studied the variation of thermal parameters of Odontophrynus occidentalis between season (wet and dry) in the Monte desert (Argentina). We measured body temperatures, microhabitat temperatures, and operative temperatures; while in the laboratory, we measured the selected body temperatures. Our results show a change in the thermal parameters of O. occidentalis that is related to environmental constraints of their thermal niche. Environmental thermal constraints are present in both seasons (dry and wet), showing variations in thermal parameters studied. Apparently imposed environmental restrictions, the toads in nature always show body temperatures below the set point. Acclimatization is an advantage for toads because it allows them to bring more frequent body temperatures to the set point. The selected body temperature has seasonal intraindividual variability. These variations can be due to thermo-sensitivity of toads and life histories of individuals that limits their allocation and acquisition of resources. Possibly the range of variation found in selected body temperature is a consequence of the thermal environmental variation along the year. These variations of thermal parameters are commonly found in deserts and thermal bodies of nocturnal ectotherms. The plasticity of selected body temperature allows O. occidentales to have longer periods of activity for foraging and reproduction, while maintaining reasonable high performance at different temperatures. The plasticity in seasonal variation of the thermal parameters has been poorly studied, and is greatly advantageous to desert species during changes in both seasonal and daily temperature, as these environments are known for their high environmental variability. © 2012 WILEY PERIODICALS, INC.
Cloud and boundary layer structure over San Nicolas Island during FIRE
NASA Technical Reports Server (NTRS)
Albrecht, Bruce A.; Fairall, Christopher W.; Syrett, William J.; Schubert, Wayne H.; Snider, Jack B.
1990-01-01
The temporal evolution of the structure of the marine boundary layer and of the associated low-level clouds observed in the vicinity of the San Nicolas Island (SNI) is defined from data collected during the First ISCCP Regional Experiment (FIRE) Marine Stratocumulus Intense Field Observations (IFO) (July 1 to 19). Surface, radiosonde, and remote-sensing measurements are used for this analysis. Sounding from the Island and from the ship Point Sur, which was located approximately 100 km northwest of SNI, are used to define variations in the thermodynamic structure of the lower-troposphere on time scales of 12 hours and longer. Time-height sections of potential temperature and equivalent potential temperature clearly define large-scale variations in the height and the strength of the inversion and periods where the conditions for cloud-top entrainment instability (CTEI) are met. Well defined variations in the height and the strength of the inversion were associated with a Cataline Eddy that was present at various times during the experiment and with the passage of the remnants of a tropical cyclone on July 18. The large-scale variations in the mean thermodynamic structure at SNI correlate well with those observed from the Point Sur. Cloud characteristics are defined for 19 days of the experiment using data from a microwave radiometer, a cloud ceilometer, a sodar, and longwave and shortwave radiometers. The depth of the cloud layer is estimated by defining inversion heights from the sodar reflectivity and cloud-base heights from a laser ceilometer. The integrated liquid water obtained from NOAA's microwave radiometer is compared with the adiabatic liquid water content that is calculated by lifting a parcel adiabatically from cloud base. In addition, the cloud structure is characterized by the variability in cloud-base height and in the integrated liquid water.
Indian LSSC (Large Space Simulation Chamber) facility
NASA Technical Reports Server (NTRS)
Brar, A. S.; Prasadarao, V. S.; Gambhir, R. D.; Chandramouli, M.
1988-01-01
The Indian Space Agency has undertaken a major project to acquire in-house capability for thermal and vacuum testing of large satellites. This Large Space Simulation Chamber (LSSC) facility will be located in Bangalore and is to be operational in 1989. The facility is capable of providing 4 meter diameter solar simulation with provision to expand to 4.5 meter diameter at a later date. With such provisions as controlled variations of shroud temperatures and availability of infrared equipment as alternative sources of thermal radiation, this facility will be amongst the finest anywhere. The major design concept and major aspects of the LSSC facility are presented here.
An Inversion of Gravity and Topography for Mantle and Crustal Structure on Mars
NASA Technical Reports Server (NTRS)
Kiefer, Walter S.; Bills, Bruce G.; Nerem, R. Steven
1996-01-01
Analysis of the gravity and topography of Mars presently provides our primary quantitative constraints on the internal structure of Mars. We present an inversion of the long-wavelength (harmonic degree less than or equal to 10) gravity and topography of Mars for lateral variations of mantle temperature and crustal thickness. Our formulation incorporates both viscous mantle flow (which most prior studies have neglected) and isostatically compensated density anomalies in the crust and lithosphere. Our nominal model has a 150-km-thick high-viscosity surface layer over an isoviscous mantle, with a core radius of 1840 km. It predicts lateral temperature variations of up to a few hundred degrees Kelvin relative to the mean mantle temperature, with high temperature under Tharsis and to a lesser extent under Elysium and cool temperatures elsewhere. Surprisingly, the model predicts crustal thinning beneath Tharsis. If correct, this implies that thinning of the crust by mantle shear stresses dominates over thickening of the crust by volcanism. The major impact basins (Hellas, Argyre, Isidis, Chryse, and Utopia) are regions of crustal thinning, as expected. Utopia is also predicted to be a region of hot mantle, which is hard to reconcile with the surface geology. An alternative model for Utopia treats it as a mascon basin. The Utopia gravity anomaly is consistent with the presence of a 1.2 to 1.6 km thick layer of uncompensated basalt, in good agreement with geologic arguments about the amount of volcanic fill in this area. The mantle thermal structure is the dominant contributor to the observed geoid in our inversion. The mantle also dominates the topography at the longest wavelengths, but shorter wavelengths (harmonic degrees greater than or equal to 4) are dominated by the crustal structure. Because of the uncertainty about the appropriate numerical values for some of the model's input parameters, we have examined the sensitivity of the model results to the planetary structural model (core radius and core and mantle densities), the mantle's viscosity stratification, and the mean crustal thickness. The model results are insensitive to the specific thickness or viscosity contrast of the high-viscosity surface layer and to the mean crustal thickness in the range 25 to 100 km. Models with a large core radius or with an upper mantle low-viscosity zone require implausibly large lateral variations in mantle temperature.
Dibble, Kimberly L.; Yackulic, Charles B.; Kennedy, Theodore A.
2018-01-01
Dams throughout western North America have altered thermal regimes in rivers, creating cold, clear “tailwaters” in which trout populations thrive. Ongoing drought in the region has led to highly publicized reductions in reservoir storage and raised concerns about potential reductions in downstream flows. Large changes in riverine thermal regimes may also occur as reservoir water levels drop, yet this potential impact has received far less attention. We analyzed historic water temperature and fish population data to anticipate how trout may respond to future changes in the magnitude and seasonality of river temperatures. We found that summer temperatures were inversely related to reservoir water level, with warm temperatures associated with reduced storage and with dams operated as run-of-river units. Variation in rainbow trout (Oncorhynchus mykiss) recruitment was linked to water temperature variation, with a 5-fold increase in recruitment occurring at peak summer temperatures (18 °C vs. 7 °C) and a 2.5-fold increase in recruitment when peak temperatures occurred in summer rather than fall. Conversely, adult trout size was only moderately related to temperature. Rainbow and brown trout (Salmo trutta) size decreased by ~24 mm and 20 mm, respectively, as mean annual and peak summer temperatures increased. Further, rainbow trout size decreased by ~29 mm with an earlier onset of cold winter temperatures. While increased recruitment may be the more likely outcome of a warmer and drier climate, density-dependent growth constraints could exacerbate temperature-dependent growth reductions. As such, managers may consider implementing flows to reduce recruitment or altering infrastructure to maintain coldwater reservoir releases.
Large Eddy Simulations of a Bottom Boundary Layer Under a Shallow Geostrophic Front
NASA Astrophysics Data System (ADS)
Bateman, S. P.; Simeonov, J.; Calantoni, J.
2017-12-01
The unstratified surf zone and the stratified shelf waters are often separated by dynamic fronts that can strongly impact the character of the Ekman bottom boundary layer. Here, we use large eddy simulations to study the turbulent bottom boundary layer associated with a geostrophic current on a stratified shelf of uniform depth. The simulations are initialized with a spatially uniform vertical shear that is in geostrophic balance with a pressure gradient due to a linear horizontal temperature variation. Superposed on the temperature front is a stable vertical temperature gradient. As turbulence develops near the bottom, the turbulence-induced mixing gradually erodes the initial uniform temperature stratification and a well-mixed layer grows in height until the turbulence becomes fully developed. The simulations provide the spatial distribution of the turbulent dissipation and the Reynolds stresses in the fully developed boundary layer. We vary the initial linear stratification and investigate its effect on the height of the bottom boundary layer and the turbulence statistics. The results are compared to previous models and simulations of stratified bottom Ekman layers.
Modeling the curing process of thick-section autoclave cured composites
NASA Technical Reports Server (NTRS)
Loos, A. C.; Dara, P. H.
1985-01-01
Temperature gradients are significant during cure of large area, thick-section composites. Such temperature gradients result in nonuniformly cured parts with high void contents, poor ply compaction, and variations in the fiber/resin distribution. A model was developed to determine the temperature distribution in thick-section autoclave cured composites. Using the model, long with temperature measurements obtained from the thick-section composites, the effects of various processing parameters on the thermal response of the composites were examined. A one-dimensional heat transfer model was constructed for the composite-tool assembly. The governing differential equations and associated boundary conditions describing one-dimensional unsteady heat-conduction in the composite, tool plate, and pressure plate are given. Solution of the thermal model was obtained using an implicit finite difference technique.
Winter nighttime ion temperatures and energetic electrons from OGO 6 plasma measurements
NASA Technical Reports Server (NTRS)
Sanatani, S.; Breig, E. L.
1981-01-01
In the reported investigation, ion temperature and suprathermal electron flux data were acquired with the retarding potential analyzer on board the OGO 6 satellite when it was in solar eclipse. Attention is given to measurements in the 400- to 800-km height interval between midnight and predawn in the northern winter nonpolar ionosphere. Statistical analysis of data recorded during a 1 month time span permits a decoupling of horizontal and altitude effects. A distinct longitudinal variation is observed for ion temperature above 500 km, with a significant relative enhancement over the western North Atlantic. Altitude distributions of ion temperature are compatible with Millstone Hill profiles within the common region of this enhancement. Large fluxes of energetic electrons are observed and extend to much lower geomagnetic latitudes in the same longitude sector.
NASA Astrophysics Data System (ADS)
Rabi, R.; Oufni, L.
2017-10-01
Inhalation of radon (222Rn) and its decay products are a major source of natural radiation exposure. It is known from recent surveys in many countries that radon and its progeny contribute significantly to total inhalation dose and it is fairly established that radon when inhaled in large quantity causes lung disorder. Indoor air conditions and ventilation systems strongly influence the indoor radon concentration. This study focuses on investigating both numerically and experimentally the influence of environmental conditions on the indoor radon concentration and spatial distribution. The numerical results showed that ventilation rate, temperature and humidity have significant impacts on both radon content and distribution. The variations of radon concentration with the ventilation, temperature and relative humidity are discussed. The measurement results show the diurnal variations of the indoor radon concentration are found to exhibit a positive correlation with relative humidity and negatively correlate with the air temperature. The analytic solution is used to validate the numeric results. The comparison amongst analytical, numerical and measurement results shows close agreement.
Thermotaxis is a Robust Mechanism for Thermoregulation in C. elegans Nematodes
Ramot, Daniel; MacInnis, Bronwyn L.; Lee, Hau-Chen; Goodman, Miriam B.
2013-01-01
Many biochemical networks are robust to variations in network or stimulus parameters. Although robustness is considered an important design principle of such networks, it is not known whether this principle also applies to higher-level biological processes such as animal behavior. In thermal gradients, C. elegans uses thermotaxis to bias its movement along the direction of the gradient. Here we develop a detailed, quantitative map of C. elegans thermotaxis and use these data to derive a computational model of thermotaxis in the soil, a natural environment of C. elegans. This computational analysis indicates that thermotaxis enables animals to avoid temperatures at which they cannot reproduce, to limit excursions from their adapted temperature, and to remain relatively close to the surface of the soil, where oxygen is abundant. Furthermore, our analysis reveals that this mechanism is robust to large variations in the parameters governing both worm locomotion and temperature fluctuations in the soil. We suggest that, similar to biochemical networks, animals evolve behavioral strategies that are robust, rather than strategies that rely on fine-tuning of specific behavioral parameters. PMID:19020047
Abdoun, Khalid A; Samara, Emad M; Okab, Aly B; Al-Haidary, Ahmed A
2012-07-01
It was the aim of this study to investigate the regional variations in surface temperature and sweating rate and to visualize body thermal windows responsible for the dissipation of excess body heat in dromedary camels. This study was conducted on five dromedary camels with mean body weight of 450 ± 20.5 kg and 2 years of age. Sweating rate, skin and body surface temperature showed significant (P < 0.001) circadian variation together with the variation in ambient temperature. However, daily mean values of sweating rate, skin and body surface temperature measured on seven regions of the camel body did not significantly differ. The variation in body surface temperature compared to the variation in skin temperature was higher in the hump compared to the axillary and flank regions, indicating the significance of camel's fur in protecting the skin from daily variation in ambient temperature. Infrared thermography revealed that flank and axillary regions had lower thermal gradients at higher ambient temperature (T(a) ) and higher thermal gradients at lower T(a) , which might indicate the working of flank and axillary regions as thermal windows dissipating heat during the night. Sweating rate showed moderate correlation to skin and body surface temperatures, which might indicate their working as potential thermal drivers of sweating in camels. © 2012 The Authors. Animal Science Journal © 2012 Japanese Society of Animal Science.
Global exospheric temperatures and densities under active solar conditions. [measured by OGO-6
NASA Technical Reports Server (NTRS)
Wydra, B. J.
1975-01-01
Temperatures measured by the OGO-6 satellite using the 6300 A airglow spectrum are compared with temperatures derived from total densities and N2 densities. It is shown that while the variation of the total densities with latitude and magnetic activity agree well with values used for CIRA (1972), the temperature behavior is very different. While the temperatures derived from the N2 density were in much better agreement there were several important differences which radically affect the pressure gradients. The variation of temperature with magnetic activity indicated a seasonal and local time effect and also a latitude and delay time variation different from previous density derived temperatures. A new magnetic index is proposed that is better correlated with the observed temperatures. The temperature variations at high latitudes were examined for three levels of magnetic activity for both solstices and equinox conditions. A temperature maximum in the pre-midnight sector and a minimum in the noon sector were noted and seasonal and geomagnetic time and latitude effects discussed. Neutral temperature, density, pressure and boundary oxygen variations for the great storm of March 8, 1970 are presented.
The imprint of surface fluxes and transport on variations in total column carbon dioxide
NASA Astrophysics Data System (ADS)
Keppel-Aleks, G.; Wennberg, P. O.; Washenfelder, R. A.; Wunch, D.; Schneider, T.; Toon, G. C.; Andres, R. J.; Blavier, J.-F.; Connor, B.; Davis, K. J.; Desai, A. R.; Messerschmidt, J.; Notholt, J.; Roehl, C. M.; Sherlock, V.; Stephens, B. B.; Vay, S. A.; Wofsy, S. C.
2011-07-01
New observations of the vertically integrated CO2 mixing ratio, ⟨CO2⟩, from ground-based remote sensing show that variations in ⟨CO2⟩ are primarily determined by large-scale flux patterns. They therefore provide fundamentally different information than observations made within the boundary layer, which reflect the combined influence of large scale and local fluxes. Observations of both ⟨CO2⟩ and CO2 concentrations in the free troposphere show that large-scale spatial gradients induce synoptic-scale temporal variations in ⟨CO2⟩ in the Northern Hemisphere midlatitudes through horizontal advection. Rather than obscure the signature of surface fluxes on atmospheric CO2, these synoptic-scale variations provide useful information that can be used to reveal the meridional flux distribution. We estimate the meridional gradient in ⟨CO2⟩ from covariations in ⟨CO2⟩ and potential temperature, θ, a dynamical tracer, on synoptic timescales to evaluate surface flux estimates commonly used in carbon cycle models. We find that Carnegie Ames Stanford Approach (CASA) biospheric fluxes underestimate both the ⟨CO2⟩ seasonal cycle amplitude throughout the Northern Hemisphere midlatitudes as well as the meridional gradient during the growing season. Simulations using CASA net ecosystem exchange (NEE) with increased and phase-shifted boreal fluxes better reflect the observations. Our simulations suggest that boreal growing season NEE (between 45-65° N) is underestimated by ~40 % in CASA. We describe the implications for this large seasonal exchange on inference of the net Northern Hemisphere terrestrial carbon sink.
The imprint of surface fluxes and transport on variations in total column carbon dioxide
NASA Astrophysics Data System (ADS)
Keppel-Aleks, G.; Wennberg, P. O.; Washenfelder, R. A.; Wunch, D.; Schneider, T.; Toon, G. C.; Andres, R. J.; Blavier, J.-F.; Connor, B.; Davis, K. J.; Desai, A. R.; Messerschmidt, J.; Notholt, J.; Roehl, C. M.; Sherlock, V.; Stephens, B. B.; Vay, S. A.; Wofsy, S. C.
2012-03-01
New observations of the vertically integrated CO2 mixing ratio, ⟨CO2⟩, from ground-based remote sensing show that variations in CO2⟩ are primarily determined by large-scale flux patterns. They therefore provide fundamentally different information than observations made within the boundary layer, which reflect the combined influence of large-scale and local fluxes. Observations of both ⟨CO2⟩ and CO2 concentrations in the free troposphere show that large-scale spatial gradients induce synoptic-scale temporal variations in ⟨CO2⟩ in the Northern Hemisphere midlatitudes through horizontal advection. Rather than obscure the signature of surface fluxes on atmospheric CO2, these synoptic-scale variations provide useful information that can be used to reveal the meridional flux distribution. We estimate the meridional gradient in ⟨CO2⟩ from covariations in ⟨CO2⟩ and potential temperature, θ, a dynamical tracer, on synoptic timescales to evaluate surface flux estimates commonly used in carbon cycle models. We find that simulations using Carnegie Ames Stanford Approach (CASA) biospheric fluxes underestimate both the ⟨CO2⟩ seasonal cycle amplitude throughout the Northern Hemisphere midlatitudes and the meridional gradient during the growing season. Simulations using CASA net ecosystem exchange (NEE) with increased and phase-shifted boreal fluxes better fit the observations. Our simulations suggest that climatological mean CASA fluxes underestimate boreal growing season NEE (between 45-65° N) by ~40%. We describe the implications for this large seasonal exchange on inference of the net Northern Hemisphere terrestrial carbon sink.
Modulation of Bjerknes feedback on the decadal variations in ENSO predictability
NASA Astrophysics Data System (ADS)
Zheng, Fei; Fang, Xiang-Hui; Zhu, Jiang; Yu, Jin-Yi; Li, Xi-Chen
2016-12-01
Clear decadal variations exist in the predictability of the El Niño-Southern Oscillation (ENSO), with the most recent decade having the lowest ENSO predictability in the past six decades. The Bjerknes Feedback (BF) intensity, which dominates the development of ENSO, has been proposed to determine ENSO predictability. Here we demonstrate that decadal variations in BF intensity are largely a result of the sensitivity of the zonal winds to the zonal sea level pressure (SLP) gradient in the equatorial Pacific. Furthermore, the results show that during low-ENSO predictability decades, zonal wind anomalies over the equatorial Pacific are more linked to SLP variations in the off-equatorial Pacific, which can then transfer this information into surface temperature and precipitation fields through the BF, suggesting a weakening in the ocean-atmosphere coupling in the tropical Pacific. This result indicates that more attention should be paid to off-equatorial processes in the prediction of ENSO.
Xiao, Hong; Huang, Ru; Gao, Li-Dong; Huang, Cun-Rui; Lin, Xiao-Ling; Li, Na; Liu, Hai-Ning; Tong, Shi-Lu; Tian, Huai-Yu
2016-01-01
Infection rates of rodents have a significant influence on the transmission of hemorrhagic fever with renal syndrome (HFRS). In this study, four cities and two counties with high HFRS incidence in eastern Hunan Province in China were studied, and surveillance data of rodents, as well as HFRS cases and related environmental variables from 2007 to 2010, were collected. Results indicate that the distribution and infection rates of rodents are closely associated with environmental conditions. Hantavirus infections in rodents were positively correlated with temperature vegetation dryness index and negatively correlated with elevation. The predictive risk maps based on multivariate regression model revealed that the annual variation of infection risks is small, whereas monthly variation is large and corresponded well to the seasonal variation of human HFRS incidence. The identification of risk factors and risk prediction provides decision support for rodent surveillance and the prevention and control of HFRS. PMID:26711521
Mo, Young-Jun; Jeung, Ji-Ung; Shin, Woon-Chul; Kim, Ki-Young; Ye, Changrong; Redoña, Edilberto D.; Kim, Bo-Kyeong
2014-01-01
Influences of allelic variations in starch synthesis-related genes (SSRGs) on rice grain quality were examined. A total of 187 nonglutinous Korean rice varieties, consisting of 170 Japonica and 17 Tongil-type varieties, were grown in the field and in two greenhouse conditions. The percentages of head rice and chalky grains, amylose content, alkali digestion value, and rapid visco-analysis characteristics were evaluated in the three different environments. Among the 10 previously reported SSRG markers used in this study, seven were polymorphic, and four of those showed subspecies-specific allele distributions. Six out of the seven polymorphic SSRG markers were significantly associated with at least one grain quality trait (R2 > 0.1) across the three different environments. However, the association level and significance were markedly lower when the analysis was repeated using only the 170 Japonica varieties. Similarly, the significant associations between SSRG allelic variations and changes in grain quality traits under increased temperature were largely attributable to the biased allele frequency between the two subpopulations. Our results suggest that within Korean Japonica varieties, these 10 major SSRG loci have been highly fixed during breeding history and variations in grain quality traits might be influenced by other genetic factors. PMID:24987303
NASA Astrophysics Data System (ADS)
Thibault, N.; Harlou, R.; Schovsbo, N. H.; Stemmerik, L.; Surlyk, F.
2015-11-01
The last 8 Myr of the Cretaceous greenhouse interval were characterized by a progressive global cooling with superimposed cool/warm fluctuations. The mechanisms responsible for these climatic fluctuations remain a source of debate that can only be resolved through multi-disciplinary studies and better time constraints. For the first time, we present a record of very high-resolution (ca. 4.5 kyr) sea-surface temperature (SST) changes from the Boreal epicontinental Chalk Sea (Stevns-1 core, Denmark), tied to an astronomical time scale of the late Campanian-Maastrichtian (74 to 66 Myr). Well-preserved bulk stable isotope trends and calcareous nannofossil palaeoecological patterns from the fully cored Stevns-1 borehole show marked changes in SSTs. These variations correlate with deep-water records of climate change from the tropical South Atlantic and Pacific oceans but differ greatly from the climate variations of the North Atlantic. We demonstrate that the onset and end of the early Maastrichtian cooling and of the large negative Campanian-Maastrichtian boundary carbon isotope excursion are coincident in the Chalk Sea. The direct link between SSTs and δ13C variations in the Chalk Sea reassesses long-term glacio-eustasy as the potential driver of carbon isotope and climatic variations in the Maastrichtian.
NASA Astrophysics Data System (ADS)
Thibault, Nicolas; Harlou, Rikke; Schovsbo, Niels H.; Stemmerik, Lars; Surlyk, Finn
2016-02-01
The last 8 Myr of the Cretaceous greenhouse interval were characterized by a progressive global cooling with superimposed cool/warm fluctuations. The mechanisms responsible for these climatic fluctuations remain a source of debate that can only be resolved through multi-disciplinary studies and better time constraints. For the first time, we present a record of very high-resolution (ca. 4.5 kyr) sea-surface temperature (SST) changes from the Boreal epicontinental Chalk Sea (Stevns-1 core, Denmark), tied to an astronomical timescale of the late Campanian-Maastrichtian (74 to 66 Ma). Well-preserved bulk stable isotope trends and calcareous nannofossil palaeoecological patterns from the fully cored Stevns-1 borehole show marked changes in SSTs. These variations correlate with deep-water records of climate change from the tropical South Atlantic and Pacific oceans but differ greatly from the climate variations of the North Atlantic. We demonstrate that the onset and end of the early Maastrichtian cooling and of the large negative Campanian-Maastrichtian boundary carbon isotope excursion are coincident in the Chalk Sea. The direct link between SSTs and δ13C variations in the Chalk Sea reassesses long-term glacio-eustasy as the potential driver of carbon isotope and climatic variations in the Maastrichtian.
Rotational Raman-Based Temperature Measurements in a High-Velocity Turbulent Jet
NASA Technical Reports Server (NTRS)
Locke, Randy J.; Wernet, Mark P.; Anderson, Robert C.
2017-01-01
Spontaneous rotational Raman scattering spectroscopy is used to acquire the first ever high quality, spatially-resolved measurements of the mean and root mean square (rms) temperature fluctuations in turbulent, high-velocity heated jets. Raman spectra in air were obtained across a matrix of radial and axial locations downstream from a 50 mm diameter nozzle operating from subsonic to supersonic conditions over a wide range of temperatures and Mach numbers, in accordance with the Tanna matrix frequently used in jet noise studies. These data were acquired in the hostile, high noise (115 dB) environment of a large scale open air test facility at NASA Glenn Research Center (GRC). Temperature estimates were determined by performing nonlinear least squares fitting of the single shot spectra to the theoretical rotational Stokes spectra of N2 and O2, using a custom in-house code developed specifically for this investigation. The laser employed in this study was a high energy, long-pulsed, frequency doubled Nd:YAG laser. One thousand single-shot spectra were acquired at each spatial coordinate. Mean temperature and rms temperature variations were calculated at each measurement location. Excellent agreement between the averaged and single-shot temperatures was observed with an accuracy better than 2.5 percent for temperature, and rms variations in temperature between +/-2.2 percent at 296 K and +/-4.5 percent at 850 K. The results of this and planned follow-on studies will support NASA GRC's development of physics-based jet noise prediction, turbulence modeling and aeroacoustic source modeling codes.
Morphometric traits capture the climatically driven species turnover of 10 spruce taxa across China.
Li, He; Wang, GuoHong; Zhang, Yun; Zhang, WeiKang
2016-02-01
This study explored the relative roles of climate and phylogenetic background in driving morphometric trait variation in 10 spruce taxa in China. The study further addressed the hypothesis that these variations are consistent with species turnover on climatic gradients. Nine morphometric traits of leaves, seed cones, and seeds for the 10 studied spruce taxa were measured at 504 sites. These data were analyzed in combination with species DNA sequences from NCBI GenBank. We detected the effects of phylogeny and climate through trait-variation-based K statistics and phylogenetic eigenvector regression (PVR) analyses. Multivariate analyses were performed to detect trait variation along climatic gradients with species replacement. The estimated K-values for the nine studied morphometric traits ranged from 0.19 to 0.68, and the studied environmental variables explained 39-83% of the total trait variation. Trait variation tended to be determined largely by a temperature gradient varying from wet-cool climates to dry-warm summers and, additionally, by a moisture gradient. As the climate became wetter and cooler, spruce species tended to be replaced by other spruces with smaller needle leaves and seeds but larger cones and seed scales. A regression analysis showed that spruce species tended to be successively replaced by other species, along the gradient, although the trends observed within species were not necessarily consistent with the overall trend. The climatically driven replacement of the spruces in question could be well indicated by the between-species variation in morphometric traits that carry lower phylogenetic signal. Between-species variation in these traits is driven primarily by climatic factors. These species demonstrate a narrower ecological amplitude in temperature but wider ranges on the moisture gradient.
A Revised Thermosphere for the Mars Global Reference Atmospheric Model (Mars-GRAM Version 3.4)
NASA Technical Reports Server (NTRS)
Justus, C. G.; Johnson, D. L.; James, B. F.
1996-01-01
This report describes the newly-revised model thermosphere for the Mars Global Reference Atmospheric Model (Mars-GRAM, Version 3.4). It also provides descriptions of other changes made to the program since publication of the programmer's guide for Mars-GRAM Version 3.34. The original Mars-GRAM model thermosphere was based on the global-mean model of Stewart. The revised thermosphere is based largely on parameterizations derived from output data from the three-dimensional Mars Thermospheric Global Circulation Model (MTGCM). The new thermospheric model includes revised dependence on the 10.7 cm solar flux for the global means of exospheric temperature, temperature of the base of the thermosphere, and scale height for the thermospheric temperature variations, as well as revised dependence on orbital position for global mean height of the base of the thermosphere. Other features of the new thermospheric model are: (1) realistic variations of temperature and density with latitude and time of day, (2) more realistic wind magnitudes, based on improved estimates of horizontal pressure gradients, and (3) allowance for user-input adjustments to the model values for mean exospheric temperature and for height and temperature at the base of the thermosphere. Other new features of Mars-GRAM 3.4 include: (1) allowance for user-input values of climatic adjustment factors for temperature profiles from the surface to 75 km, and (2) a revised method for computing the sub-solar longitude position in the 'ORBIT' subroutine.
Relationships between weather and myocardial infarction: a biometeorological approach.
Morabito, Marco; Modesti, Pietro Amedeo; Cecchi, Lorenzo; Crisci, Alfonso; Orlandini, Simone; Maracchi, Giampiero; Gensini, Gian Franco
2005-12-07
To calculate threshold values of weather discomfort which increase the risk of hospital admissions for myocardial infarction in winter and summer. Notwithstanding heat waves were reported to acutely increase hospital admissions for cardiovascular diseases, large surveys failed to reveal any increase of event rates with increasing air temperature. However, the assessment of air temperature does not allow evaluation of the actual discomfort perception caused by the combination of different meteorological parameters. Hospital admissions for myocardial infarction for the period 1998-2002 in Florence, Italy, were considered. The percentages of variation of daily event rates according to daily mean air temperature variations were preliminary derived by using a regression analysis. An alternative biometeorological approach, considering the Apparent Temperature Index (ATI) in summer, and the New U.S./Canada Wind Chill Temperature Index (NWCTI) in winter, which combine air temperature, relative humidity and wind velocity, was then used. The traditional approach showed that daily event rates significantly increased with daily mean air temperature decrease (10 degrees C decrease were associated with 19% increase in daily event rates for people older than 65 years), but failed to show any negative effect caused by hot climatic conditions. Conversely the biometeorological approach allowed to show that at least 9 h per day of severe discomfort caused by hot conditions significantly increased the rate of admission (P<0.01). This approach might be useful for the development of an operative weather watch/warning system for population and for hospital professional care.
Solar wind velocity and temperature in the outer heliosphere
NASA Technical Reports Server (NTRS)
Gazis, P. R.; Barnes, A.; Mihalov, J. D.; Lazarus, A. J.
1994-01-01
At the end of 1992, the Pioneer 10, Pioneer 11, and Voyager 2 spacecraft were at heliocentric distances of 56.0, 37.3, and 39.0 AU and heliographic latitudes of 3.3 deg N, 17.4 deg N, and 8.6 deg S, respectively. Pioneer 11 and Voyager 2 are at similar celestial longitudes, while Pioneer 10 is on the opposite side of the Sun. All three spacecraft have working plasma analyzers, so intercomparison of data from these spacecraft provides important information about the global character of the solar wind in the outer heliosphere. The averaged solar wind speed continued to exhibit its well-known variation with solar cycle: Even at heliocentric distances greater than 50 AU, the average speed is highest during the declining phase of the solar cycle and lowest near solar minimum. There was a strong latitudinal gradient in solar wind speed between 3 deg and 17 deg N during the last solar minimum, but this gradient has since disappeared. The solar wind temperature declined with increasing heliocentric distance out to a heliocentric distance of at least 20 AU; this decline appeared to continue at larger heliocentric distances, but temperatures in the outer heliosphere were suprisingly high. While Pioneer 10 and Voyager 2 observed comparable solar wind temperatures, the temperature at Pioneer 11 was significantly higher, which suggests the existence of a large-scale variation of temperature with heliographic longitude. There was also some suggestion that solar wind temperatures were higher near solar minimum.
Major, John E; Barsi, Debby C; Mosseler, Alex; Campbell, Moira; Rajora, Om P
2003-07-01
Red spruce (Picea rubens Sarg.) and black spruce (Picea mariana (Mill.) B.S.P.) are genetically and morphologically similar but ecologically distinct species. We determined intraspecific seed-source and interspecific variation of red spruce and black spruce, from across the near-northern margins of their ranges, for several light-energy processing and freezing-tolerance adaptive traits. Before exposure to low temperature, red spruce had variable fluorescence (Fv) similar to black spruce, but higher photochemical efficiency (Fv/Fm), lower quantum yield, lower chlorophyll fluorescence (%), and higher thermal dissipation efficiency (qN), although the seed-source effect and the seed-source x species interaction were significant only for Fv/Fm. After low-temperature exposure (-40 degrees C), red spruce had significantly lower Fv/Fm, quantum yield and qN than black spruce, but higher chlorophyll fluorescence and relative fluorescence. Species, seed-source effect, and seed-source x species interaction were consistent with predictions based on genetic (e.g., geographic) origins. Multi-temperature exposures (5, -20 and -40 degrees C) often produced significant species and temperature effects, and species x temperature interactions as a result of species-specific responses to temperature exposures. The inherent physiological species-specific adaptations of red spruce and black spruce were largely consistent with a shade-tolerant, late-successional species and an early successional species, respectively. Species differences in physiological adaptations conform to a biological trade-off, probably as a result of natural selection pressure in response to light availability and prevailing temperature gradients.
Natural environment and thermal behaviour of Dimetrodon limbatus.
Florides; Kalogirou; Tassou; Wrobel
2001-02-01
This paper examines the body temperature variation of Dimetrodon during the different seasons of the year. The effect of the sail of Dimetrodon on its body temperature is also evaluated. It is shown that the sail of pelycosaurs provided an advantage to the reptile by warming it up quicker in the morning in cold environments. This would be a benefit, allowing Dimetrodon to prey on large reptiles, above 55kg, in the early morning while they were sluggish. From the results presented a climate similar to that of March for Cyprus could be representative of that of Permian period.
Salas-Morales, Silvia H; Meave, Jorge A; Trejo, Irma
2015-12-01
Globally, climate is a fundamental driver of plant species' geographical distributions, yet we still lack a good understanding of climatic variation on tropical mountains and its consequences for elevational floristic patterns. In a seasonally dry region of southern Mexico, we analysed meteorological patterns along a large elevational gradient (0-3670 m a.s.l.) and examined their relationship with changes in floristic richness. Meteorological patterns were characterised using two data sources. First, climatic information was extracted from cartography and records from a few existing meteorological stations. Additionally, air temperature and humidity were recorded hourly during 1 year with data loggers, at sites representing 200-m elevation increments. Floristic information was extracted from a database containing 10,124 records of plant collections, and organized in 200-m elevational belts. Climatic charts distinguished three climate types along the gradient, all with marked rainfall seasonality, but these bore little correspondence with the information obtained with the data loggers. Mean annual air temperature decreased with increasing elevation (lapse rate of 0.542 °C 100 m(-1)). Thermal oscillation was minimum around 1400 m and increased towards both extremes of the gradient. Relative humidity opposed this pattern, with maxima between 800 and 1800 m, decreasing towards the highest elevations. An analysis of temperature frequency distributions revealed meteorological features undetectable from the annual or monthly means of this variable; despite an overall gradual transition of the proportions of time recorded at different temperatures, some changes did not conform to this pattern. The first discontinuity occurred between 1000-1200 m, where dominant temperatures shifted abruptly; also noticeable was an abrupt increase of the proportion of time elapsed at 0.1-10 °C between 2400 and 2600 m. Air temperature appears to be the most influential climatic factor driving elevational variation of plant species richness in this region.
Sliney, David H
2002-01-01
The geographical variations in the incidence of age-related ocular changes such as presbyopia and cataracts and diseases such as pterygium and droplet keratopathies have led to theories pointing to sunlight, ultraviolet radiation (UVR) exposure and ambient temperature as potential etiological factors. Some epidemiological evidence also points to an association of age-related macular degeneration to sunlight exposure. The actual distribution of sunlight exposure and the determination of temperature variations of different tissues within the anterior segment of the eye are difficult to assess. Of greatest importance are the geometrical factors that influence selective UVR exposures to different segments of the lens, cornea and retina. Studies show that the temperature of the lens and cornea varies by several degrees depending upon climate, and that the incidence of nuclear cataract incidence is greater in areas of higher ambient temperature (i.e., in the tropics). Likewise, sunlight exposure to local areas of the cornea, lens and retina varies greatly in different environments. However, epidemiological studies of the influence of environmental UVR in the development of cataract, pterygium, droplet keratopathies and age-related macular degeneration have produced surprisingly inconsistent findings. The lack of consistent results is seen to be due largely to either incomplete or erroneous estimates of outdoor UV exposure dose. Geometrical factors dominate the determination of UVR exposure of the eye. The degree of lid opening limits ocular exposure to rays entering at angles near the horizon. Clouds redistribute overhead UVR to the horizon sky. Mountains, trees and building shield the eye from direct sky exposure. Most ground surfaces reflect little UVR. The result is that highest UVR exposure occurs during light overcast where the horizon is visible and ground surface reflection is high. By contrast, exposure in a high mountain valley (lower ambient temperature) with green foliage results in a much lower ocular dose. Other findings of these studies show that retinal exposure to light and UVR in daylight occurs largely in the superior retina.
The clear-sky greenhouse effect sensitivity to a sea surface temperature change
NASA Technical Reports Server (NTRS)
Duvel, J. PH.; Breon, F. M.
1991-01-01
The clear-sky greenhouse effect response to a sea surface temperature (SST or Ts) change is studied using outgoing clear-sky longwave radiation measurements from the Earth Radiation Budget Experiment. Considering geographical distributions for July 1987, the relation between the SST, the greenhouse effect (defined as the outgoing infrared flux trapped by atmospheric gases), and the precipitable water vapor content (W), estimated by the Special Sensor Microwave Imager, is analyzed first. A fairly linear relation between W and the normalized greenhouse effect g, is found. On the contrary, the SST dependence of both W and g exhibits nonlinearities with, especially, a large increase for SST above 25 C. This enhanced sensitivity of g and W can be interpreted in part by a corresponding large increase of atmospheric water vapor content related to the transition from subtropical dry regions to equatorial moist regions. Using two years of data (1985 and 1986), the normalized greenhouse effect sensitivity to the sea surface temperature is computed from the interannual variation of monthly mean values.
Prazeres, Martina; Roberts, T Edward; Pandolfi, John M
2017-03-23
Large benthic foraminifera (LBF) are crucial marine calcifiers in coral reefs, and sensitive to environmental changes. Yet, many species successfully colonise a wide range of habitats including highly fluctuating environments. We tested the combined effects of ocean warming, local impacts and different light levels on populations of the common LBF Amphistegina lobifera collected along a cross-shelf gradient of temperature and nutrients fluctuations. We analysed survivorship, bleaching frequency, chlorophyll a content and fecundity. Elevated temperature and nitrate significantly reduced survivorship and fecundity of A. lobifera across populations studied. This pattern was exacerbated when combined with below optimum light levels. Inshore populations showed a consistent resistance to increased temperature and nitrate levels, but all populations studied were significantly affected by light reduction. These findings demonstrated the capacity of some populations of LBF to acclimate to local conditions; nonetheless improvements in local water quality can ultimately ameliorate effects of climate change in local LBF populations.
Cecchetto, Nicolas Rodolfo; Naretto, Sergio
2015-10-01
Body temperature is a key factor in physiological processes, influencing lizard performances; and life history traits are expected to generate variability of thermal preferences in different individuals. Gender, body size and reproductive condition may impose specific requirements on preferred body temperatures. If these three factors have different physiological functions and thermal requirements, then the preferred temperature may represent a compromise that optimizes these physiological functions. Therefore, the body temperatures that lizards select in a controlled environment may reflect a temperature that maximizes their physiological needs. The tegu lizard Tupinambis merianae is one of the largest lizards in South America and has wide ontogenetic variation in body size and sexual dimorphism. In the present study we evaluate intraspecific variability of thermal preferences of T. merianae. We determined the selected body temperature and the rate at which males and females attain their selected temperature, in relation to body size and reproductive condition. We also compared the behavior in the thermal gradient between males and females and between reproductive condition of individuals. Our study show that T. merianae selected body temperature within a narrow range of temperatures variation in the laboratory thermal gradient, with 36.24±1.49°C being the preferred temperature. We observed no significant differences between sex, body size and reproductive condition in thermal preferences. Accordingly, we suggest that the evaluated categories of T. merianae have similar thermal requirements. Males showed higher rates to obtain heat than females and reproductive females, higher rates than non-reproductive ones females. Moreover, males and reproductive females showed a more dynamic behavior in the thermal gradient. Therefore, even though they achieve the same selected temperature, they do it differentially. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Tiao, G. C.
1992-01-01
Work performed during the project period July 1, 1990 to June 30, 1992 on the statistical analysis of stratospheric temperature data, rawinsonde temperature data, and ozone profile data for the detection of trends is described. Our principal topics of research are trend analysis of NOAA stratospheric temperature data over the period 1978-1989; trend analysis of rawinsonde temperature data for the period 1964-1988; trend analysis of Umkehr ozone profile data for the period 1977-1991; and comparison of observed ozone and temperature trends in the lower stratosphere. Analysis of NOAA stratospheric temperature data indicates the existence of large negative trends at 0.4 mb level, with magnitudes increasing with latitudes away from the equator. Trend analysis of rawinsonde temperature data over 184 stations shows significant positive trends about 0.2 C per decade at surface to 500 mb range, decreasing to negative trends about -0.3 C at 100 to 50 mb range, and increasing slightly at 30 mb level. There is little evidence of seasonal variation in trends. Analysis of Umkehr ozone data for 12 northern hemispheric stations shows significant negative trends about -.5 percent per year in Umkehr layers 7-9 and layer 3, but somewhat less negative trends in layers 4-6. There is no pronounced seasonal variation in trends, especially in layers 4-9. A comparison was made of empirical temperature trends from rawinsonde data in the lower stratosphere with temperature changes determined from a one-dimensional radiative transfer calculation that prescribed a given ozone change over the altitude region, surface to 50 km, obtained from trend analysis of ozonsonde and Umkehr profile data. The empirical and calculated temperature trends are found in substantive agreement in profile shape and magnitude.
Brand, Samuel P C; Keeling, Matt J
2017-03-01
It is a long recognized fact that climatic variations, especially temperature, affect the life history of biting insects. This is particularly important when considering vector-borne diseases, especially in temperate regions where climatic fluctuations are large. In general, it has been found that most biological processes occur at a faster rate at higher temperatures, although not all processes change in the same manner. This differential response to temperature, often considered as a trade-off between onward transmission and vector life expectancy, leads to the total transmission potential of an infected vector being maximized at intermediate temperatures. Here we go beyond the concept of a static optimal temperature, and mathematically model how realistic temperature variation impacts transmission dynamics. We use bluetongue virus (BTV), under UK temperatures and transmitted by Culicoides midges, as a well-studied example where temperature fluctuations play a major role. We first consider an optimal temperature profile that maximizes transmission, and show that this is characterized by a warm day to maximize biting followed by cooler weather to maximize vector life expectancy. This understanding can then be related to recorded representative temperature patterns for England, the UK region which has experienced BTV cases, allowing us to infer historical transmissibility of BTV, as well as using forecasts of climate change to predict future transmissibility. Our results show that when BTV first invaded northern Europe in 2006 the cumulative transmission intensity was higher than any point in the last 50 years, although with climate change such high risks are the expected norm by 2050. Such predictions would indicate that regular BTV epizootics should be expected in the UK in the future. © 2017 The Author(s).
Sierra, Carlos A; Loescher, Henry W; Harmon, Mark E; Richardson, Andrew D; Hollinger, David Y; Perakis, Steven S
2009-10-01
Interannual variation of carbon fluxes can be attributed to a number of biotic and abiotic controls that operate at different spatial and temporal scales. Type and frequency of disturbance, forest dynamics, and climate regimes are important sources of variability. Assessing the variability of carbon fluxes from these specific sources can enhance the interpretation of past and current observations. Being able to separate the variability caused by forest dynamics from that induced by climate will also give us the ability to determine if the current observed carbon fluxes are within an expected range or whether the ecosystem is undergoing unexpected change. Sources of interannual variation in ecosystem carbon fluxes from three evergreen ecosystems, a tropical, a temperate coniferous, and a boreal forest, were explored using the simulation model STANDCARB. We identified key processes that introduced variation in annual fluxes, but their relative importance differed among the ecosystems studied. In the tropical site, intrinsic forest dynamics contributed approximately 30% of the total variation in annual carbon fluxes. In the temperate and boreal sites, where many forest processes occur over longer temporal scales than those at the tropical site, climate controlled more of the variation among annual fluxes. These results suggest that climate-related variability affects the rates of carbon exchange differently among sites. Simulations in which temperature, precipitation, and radiation varied from year to year (based on historical records of climate variation) had less net carbon stores than simulations in which these variables were held constant (based on historical records of monthly average climate), a result caused by the functional relationship between temperature and respiration. This suggests that, under a more variable temperature regime, large respiratory pulses may become more frequent and high enough to cause a reduction in ecosystem carbon stores. Our results also show that the variation of annual carbon fluxes poses an important challenge in our ability to determine whether an ecosystem is a source, a sink, or is neutral in regard to CO2 at longer timescales. In simulations where climate change negatively affected ecosystem carbon stores, there was a 20% chance of committing Type II error, even with 20 years of sequential data.
Pramudya, Ragita C; Seo, Han-Seok
2018-03-01
Temperatures of most hot or cold meal items change over the period of consumption, possibly influencing sensory perception of those items. Unlike temporal variations in sensory attributes, product temperature-induced variations have not received much attention. Using a Check-All-That-Apply (CATA) method, this study aimed to characterize variations in sensory attributes over a wide range of temperatures at which hot or cold foods and beverages may be consumed. Cooked milled rice, typically consumed at temperatures between 70 and 30°C in many rice-eating countries, was used as a target sample in this study. Two brands of long-grain milled rice were cooked and randomly presented at 70, 60, 50, 40, and 30°C. Thirty-five CATA terms for cooked milled rice were generated. Eighty-eight untrained panelists were asked to quickly select all the CATA terms that they considered appropriate to characterize sensory attributes of cooked rice samples presented at each temperature. Proportions of selection by panelists for 13 attributes significantly differed among the five temperature conditions. "Product temperature-dependent sensory-attribute variations" differed with two brands of milled rice grains. Such variations in sensory attributes, resulted from both product temperature and rice brand, were more pronounced among panelists who more frequently consumed rice. In conclusion, the CATA method can be useful for characterizing "product temperature-dependent sensory attribute variations" in cooked milled-rice samples. Further study is needed to examine whether the CATA method is also effective in capturing "product temperature-dependent sensory-attribute variations" in other hot or cold foods and beverages. Published by Elsevier Ltd.
Large Deployable Reflector (LDR) thermal characteristics
NASA Technical Reports Server (NTRS)
Miyake, R. N.; Wu, Y. C.
1988-01-01
The thermal support group, which is part of the lightweight composite reflector panel program, developed thermal test and analysis evaluation tools necessary to support the integrated interdisciplinary analysis (IIDA) capability. A detailed thermal mathematical model and a simplified spacecraft thermal math model were written. These models determine the orbital temperature level and variation, and the thermally induced gradients through and across a panel, for inclusion in the IIDA.
Mixing to Monsoons: Air-Sea Interactions in the Bay of Bengal
NASA Astrophysics Data System (ADS)
Lucas, A. J.; Shroyer, E. L.; Wijesekera, H. W.; Fernando, H. J. S.; D'Asaro, E.; Ravichandran, M.; Jinadasa, S. U. P.; MacKinnon, J. A.; Nash, J. D.; Sharma, R.; Centurioni, L.; Farrar, J. T.; Weller, R.; Pinkel, R.; Mahadevan, A.; Sengupta, D.; Tandon, A.
2014-07-01
More than 1 billion people depend on rainfall from the South Asian monsoon for their livelihoods. Summertime monsoonal precipitation is highly variable on intraseasonal time scales, with alternating "active" and "break" periods. These intraseasonal oscillations in large-scale atmospheric convection and winds are closely tied to 1°C-2°C variations of sea surface temperature in the Bay of Bengal.
NASA Astrophysics Data System (ADS)
Gérard, Jean-Claude; Bougher, Stephen; Montmessin, Franck; Bertaux, Jean-Loup; Stiepen, A.
The thermal structure of the Mars upper atmosphere is the result of the thermal balance between heating by EUV solar radiation, infrared heating and cooling, conduction and dynamic influences such as gravity waves, planetary waves, and tides. It has been derived from observations performed from different spacecraft. These include in situ measurements of orbital drag whose strength depends on the local gas density. Atmospheric temperatures were determined from the altitude variation of the density measured in situ by the Viking landers and orbital drag measurements. Another method is based on remote sensing measurements of ultraviolet airglow limb profiles obtained over 40 years ago with spectrometers during the Mariner 6 and 7 flybys and from the Mariner 9 orbiter. Comparisons with model calculations indicate that they both reflect the CO_2 scale height from which atmospheric temperatures have been deduced. Upper atmospheric temperatures varying over the wide range 270-445 K, with a mean value of 325 K were deduced from the topside scale height of the airglow vertical profile. We present an analysis of limb profiles of the CO Cameron (a(3) Pi-X(1) Sigma(+) ) and CO_2(+) doublet (B(2) Sigma_u(+) - X(2) PiΠ_g) airglows observed with the SPICAM instrument on board Mars Express. We show that the temperature in the Mars thermosphere is very variable with a mean value of 270 K, but values ranging between 150 and 400 K have been observed. These values are compared to earlier determinations and model predictions. No clear dependence on solar zenith angle, latitude or season is apparent. Similarly, exospheric variations with F10.7 in the SPICAM airglow dataset are small over the solar minimum to moderate conditions sampled by Mars Express since 2005. We conclude that an unidentified process is the cause of the large observed temperature variability, which dominates the other sources of temperature variations.
Simões, Vasco G; Lyazrhi, Faouzi; Picard-Hagen, Nicole; Gayrard, Véronique; Martineau, Guy-Pierre; Waret-Szkuta, Agnès
2014-11-01
The prediction of ovulation time is one of the most important and yet difficult processes in pig production, and it has a considerable impact on the fertility of the herd and litter size. The objective of this study was to assess the vulvar skin temperature of sows during proestrus and estrus using infrared thermography and to establish a possible relationship between the variations in vulvar temperature and ovulation. The experimental group comprised 36 crossbred Large White × Landrace females, of which 6 were gilts and 30 were multiparous sows. Estrus was detected twice daily and the temperature was obtained every 6 hours from the vulvar area and from two control points in the gluteal area (Gluteal skin temperature [GST]). A third variable, vulvar-gluteal temperature (VGT) was obtained from the difference between the vulvar skin temperature and the GST values. The animals were divided into two subgroups: group A consisting of 11 animals with estrus detected at 6:00 AM, Day 4 postweaning, and group B comprising seven animals with estrus detected at 6:00 AM, Day 5 post-weaning. Both groups showed a similar trend in the VGT. The VGT increased during the proestrus, reaching a peak 24 hours before estrus in group A and 48 hours before estrus in group B. The VGT then decreased markedly reaching the lowest value in groups A and B, respectively, 12 and 6 hours after estrus. Although the time of ovulation was only estimated on the basis of a literature review, the matching between the temporal variations of the VGT values and the predicted time of the peak of estradiol secretion that ultimately leads to the ovulation processes suggests that the VGT values represent a potential predictive marker of the ovulatory events. Copyright © 2014 Elsevier Inc. All rights reserved.
Nordey, Thibault; Léchaudel, Mathieu; Saudreau, Marc; Joas, Jacques; Génard, Michel
2014-01-01
Fruit physiology is strongly affected by both fruit temperature and water losses through transpiration. Fruit temperature and its transpiration vary with environmental factors and fruit characteristics. In line with previous studies, measurements of physical and thermal fruit properties were found to significantly vary between fruit tissues and maturity stages. To study the impact of these variations on fruit temperature and transpiration, a modelling approach was used. A physical model was developed to predict the spatial and temporal variations of fruit temperature and transpiration according to the spatial and temporal variations of environmental factors and thermal and physical fruit properties. Model predictions compared well to temperature measurements on mango fruits, making it possible to accurately simulate the daily temperature variations of the sunny and shaded sides of fruits. Model simulations indicated that fruit development induced an increase in both the temperature gradient within the fruit and fruit water losses, mainly due to fruit expansion. However, the evolution of fruit characteristics has only a very slight impact on the average temperature and the transpiration per surface unit. The importance of temperature and transpiration gradients highlighted in this study made it necessary to take spatial and temporal variations of environmental factors and fruit characteristics into account to model fruit physiology.
NASA Astrophysics Data System (ADS)
Capron, E.; Landais, A.; Buiron, D.; Cauquoin, A.; Chappellaz, J. A.; Debret, M.; Jouzel, J.; Leuenberger, M.; Martinerie, P.; Masson-Delmotte, V.; Mulvaney, R.; Parrenin, F.; Prié, F.
2013-12-01
Correct estimation of the firn lock-in depth is essential for correctly linking gas and ice chronologies in ice core studies. Here, two approaches to constrain the firn depth evolution in Antarctica are presented over the last deglaciation: outputs of a firn densification model, and measurements of δ15N of N2 in air trapped in ice core, assuming that δ15N is only affected by gravitational fractionation in the firn column. Since the firn densification process is largely governed by surface temperature and accumulation rate, we have investigated four ice cores drilled in coastal (Berkner Island, BI, and James Ross Island, JRI) and semi-coastal (TALDICE and EPICA Dronning Maud Land, EDML) Antarctic regions. Combined with available ice core air- δ15N measurements from the EPICA Dome C (EDC) site, the studied regions encompass a large range of surface accumulation rates and temperature conditions. Our δ15N profiles reveal a heterogeneous response of the firn structure to glacial-interglacial climatic changes. While firn densification simulations correctly predict TALDICE δ15N variations, they systematically fail to capture the large millennial-scale δ15N variations measured at BI and the δ15N glacial levels measured at JRI and EDML - a mismatch previously reported for central East Antarctic ice cores. New constraints of the EDML gas-ice depth offset during the Laschamp event (41 ka) and the last deglaciation do not favour the hypothesis of a large convective zone within the firn as the explanation of the glacial firn model- δ15N data mismatch for this site. While we could not conduct an in-depth study of the influence of impurities in snow for firnification from the existing datasets, our detailed comparison between the δ15N profiles and firn model simulations under different temperature and accumulation rate scenarios suggests that the role of accumulation rate may have been underestimated in the current description of firnification models.
NASA Astrophysics Data System (ADS)
Capron, E.; Landais, A.; Buiron, D.; Cauquoin, A.; Chappellaz, J.; Debret, M.; Jouzel, J.; Leuenberger, M.; Martinerie, P.; Masson-Delmotte, V.; Mulvaney, R.; Parrenin, F.; Prié, F.
2013-05-01
Correct estimation of the firn lock-in depth is essential for correctly linking gas and ice chronologies in ice core studies. Here, two approaches to constrain the firn depth evolution in Antarctica are presented over the last deglaciation: outputs of a firn densification model, and measurements of δ15N of N2 in air trapped in ice core, assuming that δ15N is only affected by gravitational fractionation in the firn column. Since the firn densification process is largely governed by surface temperature and accumulation rate, we have investigated four ice cores drilled in coastal (Berkner Island, BI, and James Ross Island, JRI) and semi-coastal (TALDICE and EPICA Dronning Maud Land, EDML) Antarctic regions. Combined with available ice core air-δ15N measurements from the EPICA Dome C (EDC) site, the studied regions encompass a large range of surface accumulation rates and temperature conditions. Our δ15N profiles reveal a heterogeneous response of the firn structure to glacial-interglacial climatic changes. While firn densification simulations correctly predict TALDICE δ15N variations, they systematically fail to capture the large millennial-scale δ15N variations measured at BI and the δ15N glacial levels measured at JRI and EDML - a mismatch previously reported for central East Antarctic ice cores. New constraints of the EDML gas-ice depth offset during the Laschamp event (~41 ka) and the last deglaciation do not favour the hypothesis of a large convective zone within the firn as the explanation of the glacial firn model-δ15N data mismatch for this site. While we could not conduct an in-depth study of the influence of impurities in snow for firnification from the existing datasets, our detailed comparison between the δ15N profiles and firn model simulations under different temperature and accumulation rate scenarios suggests that the role of accumulation rate may have been underestimated in the current description of firnification models.
Place, Sean P.; Menge, Bruce A.; Hofmann, Gretchen E.
2011-01-01
Summary The marine intertidal zone is characterized by large variation in temperature, pH, dissolved oxygen and the supply of nutrients and food on seasonal and daily time scales. These oceanic fluctuations drive of ecological processes such as recruitment, competition and consumer-prey interactions largely via physiological mehcanisms. Thus, to understand coastal ecosystem dynamics and responses to climate change, it is crucial to understand these mechanisms. Here we utilize transcriptome analysis of the physiological response of the mussel Mytilus californianus at different spatial scales to gain insight into these mechanisms. We used mussels inhabiting different vertical locations within Strawberry Hill on Cape Perpetua, OR and Boiler Bay on Cape Foulweather, OR to study inter- and intra-site variation of gene expression. The results highlight two distinct gene expression signatures related to the cycling of metabolic activity and perturbations to cellular homeostasis. Intermediate spatial scales show a strong influence of oceanographic differences in food and stress environments between sites separated by ~65 km. Together, these new insights into environmental control of gene expression may allow understanding of important physiological drivers within and across populations. PMID:22563136
Scale-dependent temporal variations in stream water geochemistry.
Nagorski, Sonia A; Moore, Iohnnie N; McKinnon, Temple E; Smith, David B
2003-03-01
A year-long study of four western Montana streams (two impacted by mining and two "pristine") evaluated surface water geochemical dynamics on various time scales (monthly, daily, and bi-hourly). Monthly changes were dominated by snowmelt and precipitation dynamics. On the daily scale, post-rain surges in some solute and particulate concentrations were similar to those of early spring runoff flushing characteristics on the monthly scale. On the bi-hourly scale, we observed diel (diurnal-nocturnal) cycling for pH, dissolved oxygen, water temperature, dissolved inorganic carbon, total suspended sediment, and some total recoverable metals at some or all sites. A comparison of the cumulative geochemical variability within each of the temporal groups reveals that for many water quality parameters there were large overlaps of concentration ranges among groups. We found that short-term (daily and bi-hourly) variations of some geochemical parameters covered large proportions of the variations found on a much longer term (monthly) time scale. These results show the importance of nesting short-term studies within long-term geochemical study designs to separate signals of environmental change from natural variability.
Scale-dependent temporal variations in stream water geochemistry
Nagorski, S.A.; Moore, J.N.; McKinnon, Temple E.; Smith, D.B.
2003-01-01
A year-long study of four western Montana streams (two impacted by mining and two "pristine") evaluated surface water geochemical dynamics on various time scales (monthly, daily, and bi-hourly). Monthly changes were dominated by snowmelt and precipitation dynamics. On the daily scale, post-rain surges in some solute and particulate concentrations were similar to those of early spring runoff flushing characteristics on the monthly scale. On the bi-hourly scale, we observed diel (diurnal-nocturnal) cycling for pH, dissolved oxygen, water temperature, dissolved inorganic carbon, total suspended sediment, and some total recoverable metals at some or all sites. A comparison of the cumulative geochemical variability within each of the temporal groups reveals that for many water quality parameters there were large overlaps of concentration ranges among groups. We found that short-term (daily and bi-hourly) variations of some geochemical parameters covered large proportions of the variations found on a much longer term (monthly) time scale. These results show the importance of nesting short-term studies within long-term geochemical study designs to separate signals of environmental change from natural variability.
Multiyear predictability of tropical marine productivity
Séférian, Roland; Bopp, Laurent; Gehlen, Marion; Swingedouw, Didier; Mignot, Juliette; Guilyardi, Eric; Servonnat, Jérôme
2014-01-01
With the emergence of decadal predictability simulations, research toward forecasting variations of the climate system now covers a large range of timescales. However, assessment of the capacity to predict natural variations of relevant biogeochemical variables like carbon fluxes, pH, or marine primary productivity remains unexplored. Among these, the net primary productivity (NPP) is of particular relevance in a forecasting perspective. Indeed, in regions like the tropical Pacific (30°N–30°S), NPP exhibits natural fluctuations at interannual to decadal timescales that have large impacts on marine ecosystems and fisheries. Here, we investigate predictions of NPP variations over the last decades (i.e., from 1997 to 2011) with an Earth system model within the tropical Pacific. Results suggest a predictive skill for NPP of 3 y, which is higher than that of sea surface temperature (1 y). We attribute the higher predictability of NPP to the poleward advection of nutrient anomalies (nitrate and iron), which sustain fluctuations in phytoplankton productivity over several years. These results open previously unidentified perspectives to the development of science-based management approaches to marine resources relying on integrated physical-biogeochemical forecasting systems. PMID:25071174
NASA Technical Reports Server (NTRS)
Zhang, Y.-C.; Rossow, W. B.; Lacis, A. A.
1995-01-01
The largest uncertainty in upwelling shortwave (SW) fluxes (approximately equal 10-15 W/m(exp 2), regional daily mean) is caused by uncertainties in land surface albedo, whereas the largest uncertainty in downwelling SW at the surface (approximately equal 5-10 W/m(exp 2), regional daily mean) is related to cloud detection errors. The uncertainty of upwelling longwave (LW) fluxes (approximately 10-20 W/m(exp 2), regional daily mean) depends on the accuracy of the surface temperature for the surface LW fluxes and the atmospheric temperature for the top of atmosphere LW fluxes. The dominant source of uncertainty is downwelling LW fluxes at the surface (approximately equal 10-15 W/m(exp 2)) is uncertainty in atmospheric temperature and, secondarily, atmospheric humidity; clouds play little role except in the polar regions. The uncertainties of the individual flux components and the total net fluxes are largest over land (15-20 W/m(exp 2)) because of uncertainties in surface albedo (especially its spectral dependence) and surface temperature and emissivity (including its spectral dependence). Clouds are the most important modulator of the SW fluxes, but over land areas, uncertainties in net SW at the surface depend almost as much on uncertainties in surface albedo. Although atmospheric and surface temperature variations cause larger LW flux variations, the most notable feature of the net LW fluxes is the changing relative importance of clouds and water vapor with latitude. Uncertainty in individual flux values is dominated by sampling effects because of large natrual variations, but uncertainty in monthly mean fluxes is dominated by bias errors in the input quantities.
NASA Astrophysics Data System (ADS)
Chen, Chun-Chi; Lin, Shih-Hao; Lin, Yi
2014-06-01
This paper proposes a time-domain CMOS smart temperature sensor featuring on-chip curvature correction and one-point calibration support for thermal management systems. Time-domain inverter-based temperature sensors, which exhibit the advantages of low power and low cost, have been proposed for on-chip thermal monitoring. However, the curvature is large for the thermal transfer curve, which substantially affects the accuracy as the temperature range increases. Another problem is that the inverter is sensitive to process variations, resulting in difficulty for the sensors to achieve an acceptable accuracy for one-point calibration. To overcome these two problems, a temperature-dependent oscillator with curvature correction is proposed to increase the linearity of the oscillatory width, thereby resolving the drawback caused by a costly off-chip second-order master curve fitting. For one-point calibration support, an adjustable-gain time amplifier was adopted to eliminate the effect of process variations, with the assistance of a calibration circuit. The proposed circuit occupied a small area of 0.073 mm2 and was fabricated in a TSMC CMOS 0.35-μm 2P4M digital process. The linearization of the oscillator and the effect cancellation of process variations enabled the sensor, which featured a fixed resolution of 0.049 °C/LSB, to achieve an optimal inaccuracy of -0.8 °C to 1.2 °C after one-point calibration of 12 test chips from -40 °C to 120 °C. The power consumption was 35 μW at a sample rate of 10 samples/s.
Davidson, Thomas A; Audet, Joachim; Svenning, Jens-Christian; Lauridsen, Torben L; Søndergaard, Martin; Landkildehus, Frank; Larsen, Søren E; Jeppesen, Erik
2015-12-01
Fresh waters make a disproportionately large contribution to greenhouse gas (GHG) emissions, with shallow lakes being particular hot spots. Given their global prevalence, how GHG fluxes from shallow lakes are altered by climate change may have profound implications for the global carbon cycle. Empirical evidence for the temperature dependence of the processes controlling GHG production in natural systems is largely based on the correlation between seasonal temperature variation and seasonal change in GHG fluxes. However, ecosystem-level GHG fluxes could be influenced by factors, which while varying seasonally with temperature are actually either indirectly related (e.g. primary producer biomass) or largely unrelated to temperature, for instance nutrient loading. Here, we present results from the longest running shallow-lake mesocosm experiment which demonstrate that nutrient concentrations override temperature as a control of both the total and individual GHG flux. Furthermore, testing for temperature treatment effects at low and high nutrient levels separately showed only one, rather weak, positive effect of temperature (CH4 flux at high nutrients). In contrast, at low nutrients, the CO2 efflux was lower in the elevated temperature treatments, with no significant effect on CH4 or N2 O fluxes. Further analysis identified possible indirect effects of temperature treatment. For example, at low nutrient levels, increased macrophyte abundance was associated with significantly reduced fluxes of both CH4 and CO2 for both total annual flux and monthly observation data. As macrophyte abundance was positively related to temperature treatment, this suggests the possibility of indirect temperature effects, via macrophyte abundance, on CH4 and CO2 flux. These findings indicate that fluxes of GHGs from shallow lakes may be controlled more by factors indirectly related to temperature, in this case nutrient concentration and the abundance of primary producers. Thus, at ecosystem scale, response to climate change may not follow predictions based on the temperature dependence of metabolic processes. © 2015 John Wiley & Sons Ltd.
Jiang, Jiping; Sharma, Ashish; Sivakumar, Bellie; Wang, Peng
2014-01-15
To uncover climate-water quality relationships in large rivers on a global scale, the present study investigates the climate elasticity of river water quality (CEWQ) using long-term monthly records observed at 14 large rivers. Temperature and precipitation elasticities of 12 water quality parameters, highlighted by N- and P-nutrients, are assessed. General observations on elasticity values show the usefulness of this approach to describe the magnitude of stream water quality responses to climate change, which improves that of simple statistical correlation. Sensitivity type, intensity and variability rank of CEWQ are reported and specific characteristics and mechanism of elasticity of nutrient parameters are also revealed. Among them, the performance of ammonia, total phosphorus-air temperature models, and nitrite, orthophosphorus-precipitation models are the best. Spatial and temporal assessment shows that precipitation elasticity is more variable in space than temperature elasticity and that seasonal variation is more evident for precipitation elasticity than for temperature elasticity. Moreover, both anthropogenic activities and environmental factors are found to impact CEWQ for select variables. The major relationships that can be inferred include: (1) human population has a strong linear correlation with temperature elasticity of turbidity and total phosphorus; and (2) latitude has a strong linear correlation with precipitation elasticity of turbidity and N nutrients. As this work improves our understanding of the relation between climate factors and surface water quality, it is potentially helpful for investigating the effect of climate change on water quality in large rivers, such as on the long-term change of nutrient concentrations. © 2013.
A Temperature-Based Gain Calibration Technique for Precision Radiometry
NASA Astrophysics Data System (ADS)
Parashare, Chaitali Ravindra
Detecting extremely weak signals in radio astronomy demands high sensitivity and stability of the receivers. The gain of a typical radio astronomy receiver is extremely large, and therefore, even very small gain instabilities can dominate the received noise power and degrade the instrument sensitivity. Hence, receiver stabilization is of prime importance. Gain variations occur mainly due to ambient temperature fluctuations. We take a new approach to receiver stabilization, which makes use of active temperature monitoring and corrects for the gain fluctuations in post processing. This approach is purely passive and does not include noise injection or switching for calibration. This system is to be used for the Precision Array for Probing the Epoch of Reionization (PAPER), which is being developed to detect the extremely faint neutral hydrogen (HI) signature of the Epoch of Reionization (EoR). The epoch of reionization refers to the period in the history of the Universe when the first stars and galaxies started to form. When there are N antenna elements in the case of a large scale array, all elements may not be subjected to the same environmental conditions at a given time. Hence, we expect to mitigate the gain variations by monitoring the physical temperature of each element of the array. This stabilization approach will also benefit experiments like EDGES (Experiment to Detect the Global EoR Signature) and DARE (Dark Ages Radio Explorer), which involve a direct measurement of the global 21 cm signal using a single antenna element and hence, require an extremely stable system. This dissertation focuses on the development and evaluation of a calibration technique that compensates for the gain variations caused due to temperature fluctuations of the RF components. It carefully examines the temperature dependence of the components in the receiver chain. The results from the first-order field instrument, called a Gainometer (GoM), highlight the issue with the cable temperature which varies significantly with different climatic conditions. The model used to correct for gain variations is presented. We describe the measurements performed to verify the model. RFI is a major issue at low frequencies, which makes these kind of measurements extremely challenging. We discuss the careful measures required to mitigate the errors due to the unwanted interference. In the case of the laboratory measurements, the model follows closely with the measured power, and shows an improvement in the gain stability by a factor of ˜ 46, when the corrections are applied. The gain stability (rms to mean) improves from 1 part in 32 to 1 part in 1500. The field measurements suggest that correcting for cable temperature variations is challenging. The improvement in the gain stability is by a factor of ˜ 4.3, when the RF front end components are situated out in the field. The results are analyzed using the statistical methods such as the standard error of the mean, the run test, skewness, and kurtosis. These tests demonstrate the normal distribution of the process when the corrections are applied and confirm an effective gain bias removal. The results obtained from the sky observation using a single antenna element are compared before and after applying the corrections. Several days data verify that the power fluctuations are significantly reduced after the gain corrections are applied.
Electrodynamics of the middle atmosphere: Superpressure balloon program
NASA Technical Reports Server (NTRS)
Holzworth, Robert H.
1987-01-01
In this experiment a comprehensive set of electrical parameters were measured during eight long duration flights in the southern hemisphere stratosphere. These flight resulted in the largest data set ever collected from the stratosphere. The stratosphere has never been electrodynamically sampled in the systematic manner before. New discoveries include short term variability in the planetary scale electric current system, the unexpected observation of stratospheric conductivity variations over thunderstorms and the observation of direct stratospheric conductivity variations following a relatively small solar flare. Major statistical studies were conducted of the large scale current systems, the stratospheric conductivity and the neutral gravity waves (from pressure and temperature data) using the entire data set.
Equilibrium of fluid membranes endowed with orientational order
NASA Astrophysics Data System (ADS)
Kumar Alageshan, Jaya; Chakrabarti, Buddhapriya; Hatwalne, Yashodhan
2017-04-01
Minimization of the low-temperature elastic free-energy functional of orientationlly ordered membranes involves independent variation of the membrane-shape, while keeping the orientational order on it (its texture) fixed. We propose an operational, coordinate-independent method for implementing such a variation. Using the Nelson-Peliti formulation of elasticity that emphasizes the interplay between geometry, topology, and thermal fluctuations of orientationally ordered membranes, we minimize the elastic free energy to obtain equations governing their equilibrium shape, together with associated free boundary conditions. Our results are essential for understanding and predicting equilibrium shapes as well as textures of membranes and vesicles; particularly under conditions in which shape deformations are large.
Blue large-amplitude pulsators as a new class of variable stars
NASA Astrophysics Data System (ADS)
Pietrukowicz, Paweł; Dziembowski, Wojciech A.; Latour, Marilyn; Angeloni, Rodolfo; Poleski, Radosław; di Mille, Francesco; Soszyński, Igor; Udalski, Andrzej; Szymański, Michał K.; Wyrzykowski, Łukasz; Kozłowski, Szymon; Skowron, Jan; Skowron, Dorota; Mróz, Przemek; Pawlak, Michał; Ulaczyk, Krzysztof
2017-08-01
Regular intrinsic brightness variations observed in many stars are caused by pulsations. These pulsations provide information on the global and structural parameters of the star. The pulsation periods range from seconds to years, depending on the compactness of the star and properties of the matter that forms its outer layers. Here, we report the discovery of more than a dozen previously unknown short-period variable stars: blue large-amplitude pulsators. These objects show very regular brightness variations with periods in the range of 20-40 min and amplitudes of 0.2-0.4 mag in the optical passbands. The phased light curves have a characteristic sawtooth shape, similar to the shape of classical Cepheids and RR Lyrae-type stars pulsating in the fundamental mode. The objects are significantly bluer than main-sequence stars observed in the same fields, which indicates that all of them are hot stars. Follow-up spectroscopy confirms a high surface temperature of about 30,000 K. Temperature and colour changes over the cycle prove the pulsational nature of the variables. However, large-amplitude pulsations at such short periods are not observed in any known type of stars, including hot objects. Long-term photometric observations show that the variable stars are very stable over time. Derived rates of period change are of the order of 10-7 per year and, in most cases, they are positive. According to pulsation theory, such large-amplitude oscillations may occur in evolved low-mass stars that have inflated helium-enriched envelopes. The evolutionary path that could lead to such stellar configurations remains unknown.
Seasonal variations in modern speleothem calcite growth in Central Texas, U.S.A
Banner, J.L.; Guilfoyle, A.; James, E.W.; Stern, L.A.; Musgrove, M.
2007-01-01
Variations in growth rates of speleothem calcite have been hypothesized to reflect changes in a range of paleoenvironmental variables, including atmospheric temperature and precipitation, drip-water composition, and the rate of soil CO2 delivery to the subsurface. To test these hypotheses, we quantified growth rates of modern speleothem calcite on artificial substrates and monitored concurrent environmental conditions in three caves across the Edwards Plateau in central Texas. Within each of two caves, different drip sites exhibit similar annual cycles in calcite growth rates, even though there are large differences between the mean growth rates at the sites. The growth-rate cycles inversely correlate to seasonal changes in regional air temperature outside the caves, with near-zero growth rates during the warmest summer months, and peak growth rates in fall through spring. Drip sites from caves 130 km apart exhibit similar temporal patterns in calcite growth rate, indicating a controlling mechanism on at least this distance. The seasonal variations in calcite growth rate can be accounted for by a primary control by regional temperature effects on ventilation of cave-air CO2 concentrations and/or drip-water CO2 contents. In contrast, site-to-site differences in the magnitude of calcite growth rates within an individual cave appear to be controlled principally by differences in drip rate. A secondary control by drip rate on the growth rate temporal variations is suggested by interannual variations. No calcite growth was observed in the third cave, which has relatively high values of and small seasonal changes in cave-air CO2. These results indicate that growth-rate variations in ancient speleothems may serve as a paleoenvironmental proxy with seasonal resolution. By applying this approach of monitoring the modern system, speleothem growth rate and geochemical proxies for paleoenviromnental change may be evaluated and calibrated. Copyright ?? 2007, SEPM (Society for Sedimentary Geology).
NASA Astrophysics Data System (ADS)
Yoon, S.; Chang, K. I.; Kim, K. R.; Lobanov, V. B.
2016-02-01
The semi-enclosed East Sea (ES) is called a miniature ocean with its own thermohaline circulation characterized by the formation of deep and intermediate water masses in the Japan Basin, southward discharge of those subsurface water masses towards the Ulleung and Yamato basins, and northward heat transport by the Tsushima Warm Current in the upper layer. Reports have been given of rapid changes of physical and biogeochemical properties associated with its ventilation system. We present results on upper ocean heat content variations and changes in water mass structure and properties from the analysis of historical and most recent hydrographic data. The analysis of non-seasonal heat content (HCA) variations in the upper 500 m from 1976 to 2007 highlights the 2-year lagged in-phase decadal-scale HCA variations in the eastern and western ES until 1995 followed by uncorrelated variations between two regions thereafter with pronounced interannual variations. Long-term trend of HCA in the entire ES shows an increasing trend, but with a large increase in the eastern part and relatively weaker but statistically significant decrease in the western part. The thickness variation of water warmer than 10°C mainly contributes to the HCA variation. Analyses of upper circulation in conjunction with climate indices suggest the importance of the wind-stress curl pattern represented by the Western Pacific index in the western ES and the influence of the Siberian High in the eastern ES. The thickness and temperature variation of 1-5°C representing the East Sea Intermediate Water (ESIW) is relatively minor contributor to the HCA variation in the upper 500 m. However, the thickness (temperature) of the ESIW has been increased (decreased) in the entire ES since 1992, which implies that the formation of the ESIW has been activated in recent decades. To investigate water mass changes in deeper than 500 m, we use full-depth CTD data obtained from CREAMS expeditions from 1993 to 2015. Temperature deeper than 1000 m has been increased about 0.03°C during 20 years and the depth of deep salinity minimum depth which is the lower (upper) limit of the East Sea Central Water (Deep Water) has been deepened. Other characteristics of water mass structure and property changes will be presented.
Li, Jinchang; Zhao, Yanfang; Han, Liuyan; Zhang, Guoming; Liu, Rentao
2017-11-15
We inferred moisture variations from the early 1930s to the early 2010s in the southwestern Mu Us Desert of China using Rb/Sr ratio, chemical index of alteration (CIA), and organic matter (OM) content in a nebkha profile. Our results showed that the variations in moisture may have been the main factor that controlled vegetation recovery or degradation, and we believe that gradual vegetation recovery was notable throughout the study area during the past 80years, despite two notable degradation stages during the mid-1950s and the mid-1980s. The Rb/Sr ratio, CIA, and OM content revealed that moisture levels increased during the study period, though with large interannual variations. During the early stage of nebkha formation, the moisture variations were controlled by unusually low precipitation. Thereafter, the precipitation, pan evaporation and temperature determined together moisture variations, but the key factor determining moisture variations was different during different periods. The moisture variations trend revealed in this study may not be restricted to this region as it was similar with the adjacent Mongolian Plateau. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Webster, Clare; Rutter, Nick; Jonas, Tobias
2017-09-01
A comprehensive analysis of canopy surface temperatures was conducted around a small and large gap at a forested alpine site in the Swiss Alps during the 2015 and 2016 snowmelt seasons (March-April). Canopy surface temperatures within the small gap were within 2-3°C of measured reference air temperature. Vertical and horizontal variations in canopy surface temperatures were greatest around the large gap, varying up to 18°C above measured reference air temperature during clear-sky days. Nighttime canopy surface temperatures around the study site were up to 3°C cooler than reference air temperature. These measurements were used to develop a simple parameterization for correcting reference air temperature for elevated canopy surface temperatures during (1) nighttime conditions (subcanopy shortwave radiation is 0 W m-2) and (2) periods of increased subcanopy shortwave radiation >400 W m-2 representing penetration of shortwave radiation through the canopy. Subcanopy shortwave and longwave radiation collected at a single point in the subcanopy over a 24 h clear-sky period was used to calculate a nighttime bulk offset of 3°C for scenario 1 and develop a multiple linear regression model for scenario 2 using reference air temperature and subcanopy shortwave radiation to predict canopy surface temperature with a root-mean-square error (RMSE) of 0.7°C. Outside of these two scenarios, reference air temperature was used to predict subcanopy incoming longwave radiation. Modeling at 20 radiometer locations throughout two snowmelt seasons using these parameterizations reduced the mean bias and RMSE to below 10 W m s-2 at all locations.
GCM Simulation of the Large-scale North American Monsoon Including Water Vapor Tracer Diagnostics
NASA Technical Reports Server (NTRS)
Bosilovich, Michael G.; Walker, Gregory; Schubert, Siegfried D.; Sud, Yogesh; Atlas, Robert M. (Technical Monitor)
2001-01-01
The geographic sources of water for the large-scale North American monsoon in a GCM are diagnosed using passive constituent tracers of regional water'sources (Water Vapor Tracers, WVT). The NASA Data Assimilation Office Finite Volume (FV) GCM was used to produce a 10-year simulation (1984 through 1993) including observed sea surface temperature. Regional and global WVT sources were defined to delineate the surface origin of water for precipitation in and around the North American i'vionsoon. The evolution of the mean annual cycle and the interannual variations of the monsoonal circulation will be discussed. Of special concern are the relative contributions of the local source (precipitation recycling) and remote sources of water vapor to the annual cycle and the interannual variation of warm season precipitation. The relationships between soil water, surface evaporation, precipitation and precipitation recycling will be evaluated.
GCM Simulation of the Large-Scale North American Monsoon Including Water Vapor Tracer Diagnostics
NASA Technical Reports Server (NTRS)
Bosilovich, Michael G.; Walker, Gregory; Schubert, Siegfried D.; Sud, Yogesh; Atlas, Robert M. (Technical Monitor)
2002-01-01
The geographic sources of water for the large scale North American monsoon in a GCM (General Circulation Model) are diagnosed using passive constituent tracers of regional water sources (Water Vapor Tracers, WVT). The NASA Data Assimilation Office Finite Volume (FV) GCM was used to produce a 10-year simulation (1984 through 1993) including observed sea surface temperature. Regional and global WVT sources were defined to delineate the surface origin of water for precipitation in and around the North American Monsoon. The evolution of the mean annual cycle and the interannual variations of the monsoonal circulation will be discussed. Of special concern are the relative contributions of the local source (precipitation recycling) and remote sources of water vapor to the annual cycle and the interannual variation of monsoonal precipitation. The relationships between soil water, surface evaporation, precipitation and precipitation recycling will be evaluated.
NASA Astrophysics Data System (ADS)
Yoshida, Yukihiro; Yuse, Kaori; Guyomar, Daniel; Capsal, Jean-Fabien; Sebald, Gael
2016-06-01
The elastocaloric properties of poly (vinylidene fluoride-trifluoroethylene-chlorotrifluoroethylene) [P(VDF-TrFE-CTFE)] terpolymer were directly characterized using an infrared imaging camera. At a strain of 12%, a reversible adiabatic temperature variation of 2.15 °C was measured, corresponding to an isothermal entropy variation of 21.5 kJ m-3 K-1 or 11 J kg-1 K-1. In comparison with other elastocaloric materials, P(VDF-TrFE-CTFE) appears to represent a trade-off between the large required stresses in shape memory alloys and the large required strains in natural rubber. The internal energy of the P(VDF-TrFE-CTFE) polymer was found to be independent of the strain, resulting in complete conversion of the mechanical work into heat, as for pure elastomeric materials. The elastocaloric effect therefore originates from a pure entropic elasticity, which is likely to be related to the amorphous phase of the polymer only.
Large-scale controls of methanogenesis inferred from methane and gravity spaceborne data.
Bloom, A Anthony; Palmer, Paul I; Fraser, Annemarie; Reay, David S; Frankenberg, Christian
2010-01-15
Wetlands are the largest individual source of methane (CH4), but the magnitude and distribution of this source are poorly understood on continental scales. We isolated the wetland and rice paddy contributions to spaceborne CH4 measurements over 2003-2005 using satellite observations of gravity anomalies, a proxy for water-table depth Gamma, and surface temperature analyses TS. We find that tropical and higher-latitude CH4 variations are largely described by Gamma and TS variations, respectively. Our work suggests that tropical wetlands contribute 52 to 58% of global emissions, with the remainder coming from the extra-tropics, 2% of which is from Arctic latitudes. We estimate a 7% rise in wetland CH4 emissions over 2003-2007, due to warming of mid-latitude and Arctic wetland regions, which we find is consistent with recent changes in atmospheric CH4.
Large-Scale Controls of Methanogenesis Inferred from Methane and Gravity Spaceborne Data
NASA Astrophysics Data System (ADS)
Bloom, A. Anthony; Palmer, Paul I.; Fraser, Annemarie; Reay, David S.; Frankenberg, Christian
2010-01-01
Wetlands are the largest individual source of methane (CH4), but the magnitude and distribution of this source are poorly understood on continental scales. We isolated the wetland and rice paddy contributions to spaceborne CH4 measurements over 2003-2005 using satellite observations of gravity anomalies, a proxy for water-table depth Γ, and surface temperature analyses TS. We find that tropical and higher-latitude CH4 variations are largely described by Γ and TS variations, respectively. Our work suggests that tropical wetlands contribute 52 to 58% of global emissions, with the remainder coming from the extra-tropics, 2% of which is from Arctic latitudes. We estimate a 7% rise in wetland CH4 emissions over 2003-2007, due to warming of mid-latitude and Arctic wetland regions, which we find is consistent with recent changes in atmospheric CH4.
NASA Astrophysics Data System (ADS)
Thelen, Alexander E.; Nixon, C. A.; Chanover, N. J.; Molter, E. M.; Cordiner, M. A.; Achterberg, R. K.; Serigano, J.; Irwin, P. G. J.; Teanby, N.; Charnley, S. B.
2018-06-01
Submillimeter emission lines of carbon monoxide (CO) in Titan's atmosphere provide excellent probes of atmospheric temperature due to the molecule's long chemical lifetime and stable, well constrained volume mixing ratio. Here we present the analysis of 4 datasets obtained with the Atacama Large Millimeter/Submillimeter Array (ALMA) in 2012, 2013, 2014, and 2015 that contain strong CO rotational transitions. Utilizing ALMA's high spatial resolution in the 2012, 2014, and 2015 observations, we extract spectra from 3 separate regions on Titan's disk using datasets with beam sizes ranging from 0.35 × 0.28″ to 0.39 × 0.34″. Temperature profiles retrieved by the NEMESIS radiative transfer code are compared to Cassini Composite Infrared Spectrometer (CIRS) and radio occultation science results from similar latitude regions. Disk-averaged temperature profiles stay relatively constant from year to year, while small seasonal variations in atmospheric temperature are present from 2012 to 2015 in the stratosphere and mesosphere ( ∼ 100-500 km) of spatially resolved regions. We measure the stratopause (320 km) to increase in temperature by 5 K in northern latitudes from 2012 to 2015, while temperatures rise throughout the stratosphere at lower latitudes. We observe generally cooler temperatures in the lower stratosphere ( ∼ 100 km) than those obtained through Cassini radio occultation measurements, with the notable exception of warming in the northern latitudes and the absence of previous instabilities; both of these results are indicators that Titan's lower atmosphere responds to seasonal effects, particularly at higher latitudes. While retrieved temperature profiles cover a range of latitudes in these observations, deviations from CIRS nadir maps and radio occultation measurements convolved with the ALMA beam-footprint are not found to be statistically significant, and discrepancies are often found to be less than 5 K throughout the atmosphere. ALMA's excellent sensitivity in the lower stratosphere (60-300 km) provides a highly complementary dataset to contemporary CIRS and radio science observations, including altitude regions where both of those measurement sets contain large uncertainties. The demonstrated utility of CO emission lines in the submillimeter as a tracer of Titan's atmospheric temperature lays the groundwork for future studies of other molecular species - particularly those that exhibit strong polar abundance enhancements or are pressure-broadened in the lower atmosphere, as temperature profiles are found to consistently vary with latitude in all three years by up to 15 K.
NASA Astrophysics Data System (ADS)
Gruzdev, A. N.
2017-07-01
Using the data of the ERA-Interim reanalysis, we have obtained estimates of changes in temperature, the geopotential and its large-scale zonal harmonics, wind velocity, and potential vorticity in the troposphere and stratosphere of the Northern and Southern hemispheres during the 11-year solar cycle. The estimates have been obtained using the method of multiple linear regression. Specific features of response of the indicated atmospheric parameters to the solar cycle have been revealed in particular regions of the atmosphere for a whole year and depending on the season. The results of the analysis indicate the existence of a reliable statistical relationship of large-scale dynamic and thermodynamic processes in the troposphere and stratosphere with the 11-year solar cycle.
Nguyen, Jennifer L.; Dockery, Douglas W.
2015-01-01
The health consequences of heat and cold are usually evaluated based on associations with outdoor measurements at the nearest weather reporting station. However, people in the developed world spend little time outdoors, especially during extreme temperature events. We examined the association between indoor and outdoor temperature and humidity in a range of climates. We measured indoor temperature, apparent temperature, relative humidity, dew point, and specific humidity (a measure of moisture content in air) for one calendar year (2012) in a convenience sample of eight diverse locations ranging from the equatorial region (10°N) to the Arctic (64°N). We then compared the indoor conditions to outdoor values recorded at the nearest airport weather station. We found that the shape of the indoor-to-outdoor temperature and humidity relationships varied across seasons and locations. Indoor temperatures showed little variation across season and location. There was large variation in indoor relative humidity between seasons and between locations which was independent of outdoor, airport measurements. On the other hand, indoor specific humidity, and to a lesser extent dew point, tracked with outdoor, airport measurements both seasonally and between climates, across a wide range of outdoor temperatures. Our results suggest that, depending on the measure, season, and location, outdoor weather measurements can be reliably used to represent indoor exposures and that, in general, outdoor measures of actual moisture content in air better capture indoor exposure than temperature and relative humidity. Therefore, absolute measures of water vapor should be examined in conjunction with other measures (e.g. temperature, relative humidity) in studies of the effect of weather and climate on human health. PMID:26054827
Temperature and ice layer trends in the summer middle atmosphere
NASA Astrophysics Data System (ADS)
Lübken, F.-J.; Berger, U.
2012-04-01
We present results from our LIMA model (Leibniz Institute Middle Atmosphere Model) which nicely reproduces mean conditions of the summer mesopause region and also mean characteristics of ice layers known as noctilucent clouds. LIMA nudges to ECMWF data in the troposphere and lower stratosphere which influences the background conditions in the mesosphere. We study temperature trends in the mesosphere at middle and polar latitudes and compared with temperature trends from satellites, lidar, and phase height observations. For the first time large observed temperature trends in the summer mesosphere can be reproduced and explained by a model. As will be shown, stratospheric ozone has a major impact on temperature trends in the summer mesosphere. The temperature trend is not uniform in time: it is moderate from 1961 (the beginning of our record) until the beginning of the 1980s. Thereafter, temperatures decrease much stronger until the mid 1990s. Thereafter, temperatures are nearly constant or even increase with time. As will be shown, trends in ozone and carbon dioxide explain most of this behavior. Ice layers in the summer mesosphere are very sensitive to background conditions and are therefore considered to be appropriate tracers for long term variations in the middle atmosphere. We use LIMA background conditions to determine ice layer characteristics in the mesopause region. We compare our results with measurements, for example with albedos from the SBUV satellites, and show that we can nicely reproduce observed trends. It turns out that temperature trends are positive (negative) in the upper (lower) part of the ice layer regime. This complicates an interpretation of NLC long term variations in terms of temperature trends.
The uncertainty of crop yield projections is reduced by improved temperature response functions.
Wang, Enli; Martre, Pierre; Zhao, Zhigan; Ewert, Frank; Maiorano, Andrea; Rötter, Reimund P; Kimball, Bruce A; Ottman, Michael J; Wall, Gerard W; White, Jeffrey W; Reynolds, Matthew P; Alderman, Phillip D; Aggarwal, Pramod K; Anothai, Jakarat; Basso, Bruno; Biernath, Christian; Cammarano, Davide; Challinor, Andrew J; De Sanctis, Giacomo; Doltra, Jordi; Fereres, Elias; Garcia-Vila, Margarita; Gayler, Sebastian; Hoogenboom, Gerrit; Hunt, Leslie A; Izaurralde, Roberto C; Jabloun, Mohamed; Jones, Curtis D; Kersebaum, Kurt C; Koehler, Ann-Kristin; Liu, Leilei; Müller, Christoph; Naresh Kumar, Soora; Nendel, Claas; O'Leary, Garry; Olesen, Jørgen E; Palosuo, Taru; Priesack, Eckart; Eyshi Rezaei, Ehsan; Ripoche, Dominique; Ruane, Alex C; Semenov, Mikhail A; Shcherbak, Iurii; Stöckle, Claudio; Stratonovitch, Pierre; Streck, Thilo; Supit, Iwan; Tao, Fulu; Thorburn, Peter; Waha, Katharina; Wallach, Daniel; Wang, Zhimin; Wolf, Joost; Zhu, Yan; Asseng, Senthold
2017-07-17
Increasing the accuracy of crop productivity estimates is a key element in planning adaptation strategies to ensure global food security under climate change. Process-based crop models are effective means to project climate impact on crop yield, but have large uncertainty in yield simulations. Here, we show that variations in the mathematical functions currently used to simulate temperature responses of physiological processes in 29 wheat models account for >50% of uncertainty in simulated grain yields for mean growing season temperatures from 14 °C to 33 °C. We derived a set of new temperature response functions that when substituted in four wheat models reduced the error in grain yield simulations across seven global sites with different temperature regimes by 19% to 50% (42% average). We anticipate the improved temperature responses to be a key step to improve modelling of crops under rising temperature and climate change, leading to higher skill of crop yield projections.
The Uncertainty of Crop Yield Projections Is Reduced by Improved Temperature Response Functions
NASA Technical Reports Server (NTRS)
Wang, Enli; Martre, Pierre; Zhao, Zhigan; Ewert, Frank; Maiorano, Andrea; Rotter, Reimund P.; Kimball, Bruce A.; Ottman, Michael J.; White, Jeffrey W.; Reynolds, Matthew P.;
2017-01-01
Increasing the accuracy of crop productivity estimates is a key element in planning adaptation strategies to ensure global food security under climate change. Process-based crop models are effective means to project climate impact on crop yield, but have large uncertainty in yield simulations. Here, we show that variations in the mathematical functions currently used to simulate temperature responses of physiological processes in 29 wheat models account for is greater than 50% of uncertainty in simulated grain yields for mean growing season temperatures from 14 C to 33 C. We derived a set of new temperature response functions that when substituted in four wheat models reduced the error in grain yield simulations across seven global sites with different temperature regimes by 19% to 50% (42% average). We anticipate the improved temperature responses to be a key step to improve modelling of crops under rising temperature and climate change, leading to higher skill of crop yield projections.
Böer, Simone I; Hedtkamp, Stefanie I C; van Beusekom, Justus E E; Fuhrman, Jed A; Boetius, Antje; Ramette, Alban
2009-07-01
Bacterial community structure and microbial activity were determined together with a large number of contextual environmental parameters over 2 years in subtidal sands of the German Wadden Sea in order to identify the main factors shaping microbial community structure and activity in this habitat. Seasonal changes in temperature were directly reflected in bacterial activities and total community respiration, but could not explain variations in the community structure. Strong sediment depth-related patterns were observed for bacterial abundances, carbon production rates and extracellular enzymatic activities. Bacterial community structure also showed a clear vertical variation with higher operational taxonomic unit (OTU) numbers at 10-15 cm depth than in the top 10 cm, probably because of the decreasing disturbance by hydrodynamic forces with sediment depth. The depth-related variations in bacterial community structure could be attributed to vertical changes in bacterial abundances, chlorophyll a and NO(3)(-), indicating that spatial patterns of microbes are partially environmentally controlled. Time was the most important single factor affecting microbial community structure with an OTU replacement of up to 47% over 2 years and a contribution of 34% to the total variation. A large part of this variation was not related to any environmental parameters, suggesting that temporal variations in bacterial community structure are caused by yet unknown environmental drivers and/or by stochastic events in coastal sand habitats. Principal ecosystem functions such as benthic oxygen consumption and extracellular hydrolysis of organic matter were, however, at a high level at all times, indicating functional redundancy in the microbial communities.
Flash Diffusivity Technique Applied to Individual Fibers
NASA Technical Reports Server (NTRS)
Mayeaux, Brian; Yowell, Leonard; Wang, Hsin
2007-01-01
A variant of the flash diffusivity technique has been devised for determining the thermal diffusivities, and thus the thermal conductivities, of individual aligned fibers. The technique is intended especially for application to nanocomposite fibers, made from narrower fibers of polyphenylene benzobisthiazole (PBZT) and carbon nanotubes. These highly aligned nanocomposite fibers could exploit the high thermal conductivities of carbon nanotubes for thermal-management applications. In the flash diffusivity technique as practiced heretofore, one or more heat pulse(s) is (are) applied to the front face of a plate or disk material specimen and the resulting time-varying temperature on the rear face is measured. Usually, the heat pulse is generated by use of a xenon flash lamp, and the variation of temperature on the rear face is measured by use of an infrared detector. The flash energy is made large enough to produce a usefully high temperature rise on the rear face, but not so large as to significantly alter the specimen material. Once the measurement has been completed, the thermal diffusivity of the specimen is computed from the thickness of the specimen and the time dependence of the temperature variation on the rear face. Heretofore, the infrared detector used in the flash diffusivity technique has been a single-point detector, which responds to a spatial average of the thermal radiation from the rear specimen surface. Such a detector cannot distinguish among regions of differing diffusivity within the specimen. Moreover, two basic assumptions of the thermaldiffusivity technique as practiced heretofore are that the specimen is homogeneous and that heat flows one-dimensionally from the front to the rear face. These assumptions are not valid for an inhomogeneous (composite) material.
Coherent changes of wintertime surface air temperatures over North Asia and North America.
Yu, Bin; Lin, Hai
2018-03-29
The surface temperature variance and its potential change with global warming are most prominent in winter over Northern Hemisphere mid-high latitudes. Consistent wintertime surface temperature variability has been observed over large areas in Eurasia and North America on a broad range of time scales. However, it remains a challenge to quantify where and how the coherent change of temperature anomalies occur over the two continents. Here we demonstrate the coherent change of wintertime surface temperature anomalies over North Asia and the central-eastern parts of North America for the period from 1951 to 2015. This is supported by the results from the empirical orthogonal function analysis of surface temperature and temperature trend anomalies over the Northern Hemisphere extratropical lands and the timeseries analysis of the regional averaged temperature anomalies over North Asia and the Great Plains and Great Lakes. The Asian-Bering-North American (ABNA) teleconnection provides a pathway to connect the regional temperature anomalies over the two continents. The ABNA is also responsible for the decadal variation of the temperature relationship between North Asia and North America.
Heart rate reveals torpor at high body temperatures in lowland tropical free-tailed bats.
O'Mara, M Teague; Rikker, Sebastian; Wikelski, Martin; Ter Maat, Andries; Pollock, Henry S; Dechmann, Dina K N
2017-12-01
Reduction in metabolic rate and body temperature is a common strategy for small endotherms to save energy. The daily reduction in metabolic rate and heterothermy, or torpor, is particularly pronounced in regions with a large variation in daily ambient temperature. This applies most strongly in temperate bat species (order Chiroptera), but it is less clear how tropical bats save energy if ambient temperatures remain high. However, many subtropical and tropical species use some daily heterothermy on cool days. We recorded the heart rate and the body temperature of free-ranging Pallas' mastiff bats ( Molossus molossus ) in Gamboa, Panamá, and showed that these individuals have low field metabolic rates across a wide range of body temperatures that conform to high ambient temperature. Importantly, low metabolic rates in controlled respirometry trials were best predicted by heart rate, and not body temperature . Molossus molossus enter torpor-like states characterized by low metabolic rate and heart rates at body temperatures of 32°C, and thermoconform across a range of temperatures. Flexible metabolic strategies may be far more common in tropical endotherms than currently known.
Heart rate reveals torpor at high body temperatures in lowland tropical free-tailed bats
Rikker, Sebastian; Wikelski, Martin; Ter Maat, Andries
2017-01-01
Reduction in metabolic rate and body temperature is a common strategy for small endotherms to save energy. The daily reduction in metabolic rate and heterothermy, or torpor, is particularly pronounced in regions with a large variation in daily ambient temperature. This applies most strongly in temperate bat species (order Chiroptera), but it is less clear how tropical bats save energy if ambient temperatures remain high. However, many subtropical and tropical species use some daily heterothermy on cool days. We recorded the heart rate and the body temperature of free-ranging Pallas' mastiff bats (Molossus molossus) in Gamboa, Panamá, and showed that these individuals have low field metabolic rates across a wide range of body temperatures that conform to high ambient temperature. Importantly, low metabolic rates in controlled respirometry trials were best predicted by heart rate, and not body temperature. Molossus molossus enter torpor-like states characterized by low metabolic rate and heart rates at body temperatures of 32°C, and thermoconform across a range of temperatures. Flexible metabolic strategies may be far more common in tropical endotherms than currently known. PMID:29308259
Glacial greenhouse-gas fluctuations controlled by ocean circulation changes.
Schmittner, Andreas; Galbraith, Eric D
2008-11-20
Earth's climate and the concentrations of the atmospheric greenhouse gases carbon dioxide (CO(2)) and nitrous oxide (N(2)O) varied strongly on millennial timescales during past glacial periods. Large and rapid warming events in Greenland and the North Atlantic were followed by more gradual cooling, and are highly correlated with fluctuations of N(2)O as recorded in ice cores. Antarctic temperature variations, on the other hand, were smaller and more gradual, showed warming during the Greenland cold phase and cooling while the North Atlantic was warm, and were highly correlated with fluctuations in CO(2). Abrupt changes in the Atlantic meridional overturning circulation (AMOC) have often been invoked to explain the physical characteristics of these Dansgaard-Oeschger climate oscillations, but the mechanisms for the greenhouse-gas variations and their linkage to the AMOC have remained unclear. Here we present simulations with a coupled model of glacial climate and biogeochemical cycles, forced only with changes in the AMOC. The model simultaneously reproduces characteristic features of the Dansgaard-Oeschger temperature, as well as CO(2) and N(2)O fluctuations. Despite significant changes in the land carbon inventory, CO(2) variations on millennial timescales are dominated by slow changes in the deep ocean inventory of biologically sequestered carbon and are correlated with Antarctic temperature and Southern Ocean stratification. In contrast, N(2)O co-varies more rapidly with Greenland temperatures owing to fast adjustments of the thermocline oxygen budget. These results suggest that ocean circulation changes were the primary mechanism that drove glacial CO(2) and N(2)O fluctuations on millennial timescales.
A model of the spatial and temporal variation of the Uranus thermal structure
NASA Technical Reports Server (NTRS)
Bezard, B.; Gautier, D.
1986-01-01
Seasonal variability of the temperature structure of Uranus is modeled for all latitudes in the .0004 to 2 bar pressure range in anticipation of the Voyager encounter in January 1986. Atmospheric heating in the model results on the one hand from an internal heat source and, on the other hand, from absorption of solar energy by methane and by non-conservative aerosols located between the 0.5 and 2 bar levels. Various cases for the behavior of the internal heat flux are investigated, such as constant with latitude or constrained to yield a time-averaged thermal emission independent of latitude. Meridional transport of heat in the stably stratified atmosphere is not taken into account. The results indicate that the Voyager encounter time, very small north-south temperature asymmetry should be expected. Moreover, the northern hemisphere, although not illuminated, should emit as much energy (within one percent) as the southern hemisphere at this date. At a given latitude, extreme temperatures are reached at the equinoxes. At the poles, seasonal amplitudes of about 10 K in the upper stratosphere and 6 K at the 0.6 bar level are predicted, and the variation with time of the emission to space is found to be at most 20 percent. The atmosphere of Uranus appears to be characterized by very long radiative response times (mainly due to its cold temperature) which inhibit the large seasonal variations that one could otherwise expect in view of the high obliquity of the planet and its long orbital period.
Vedder, Oscar; Kürten, Nathalie; Bouwhuis, Sandra
Embryonic development time is thought to impact life histories through trade-offs against life-history traits later in life, yet the inference is based on interspecific comparative analyses only. It is largely unclear whether intraspecific variation in embryonic development time that is not caused by environmental differences occurs, which would be required to detect life-history trade-offs. Here we performed a classical common-garden experiment by incubating fresh eggs of free-living common terns (Sterna hirundo) in a controlled incubation environment at two different temperatures. Hatching success was high but was slightly lower at the lower temperature. While correcting for effects of year, incubation temperature, and laying order, we found significant variation in the incubation time embryos required until hatching and in their heart rate. Embryonic heart rate was significantly positively correlated within clutches, and a similar tendency was found for incubation time, suggesting that intrinsic differences in embryonic development rate between offspring of different parents exist. Incubation time and embryonic heart rate were strongly correlated: embryos with faster heart rates required shorter incubation time. However, after correction for heart rate, embryos still required more time for development at the lower incubation temperature. This suggests that processes other than development require a greater share of resources in a suboptimal environment and that relative resource allocation to development is, therefore, environment dependent. We conclude that there is opportunity to detect intraspecific life-history trade-offs with embryonic development time and that the resolution of trade-offs may differ between embryonic environments.
NASA Astrophysics Data System (ADS)
Tóth, Balázs
2018-03-01
Some new dual and mixed variational formulations based on a priori nonsymmetric stresses will be developed for linearly coupled irreversible thermoelastodynamic problems associated with second sound effect according to the Lord-Shulman theory. Having introduced the entropy flux vector instead of the entropy field and defining the dissipation and the relaxation potential as the function of the entropy flux, a seven-field dual and mixed variational formulation will be derived from the complementary Biot-Hamilton-type variational principle, using the Lagrange multiplier method. The momentum-, the displacement- and the infinitesimal rotation vector, and the a priori nonsymmetric stress tensor, the temperature change, the entropy field and its flux vector are considered as the independent field variables of this formulation. In order to handle appropriately the six different groups of temporal prescriptions in the relaxed- and/or the strong form, two variational integrals will be incorporated into the seven-field functional. Then, eliminating the entropy from this formulation through the strong fulfillment of the constitutive relation for the temperature change with the use of the Legendre transformation between the enthalpy and Gibbs potential, a six-field dual and mixed action functional is obtained. As a further development, the elimination of the momentum- and the velocity vector from the six-field principle through the a priori satisfaction of the kinematic equation and the constitutive relation for the momentum vector leads to a five-field variational formulation. These principles are suitable for the transient analyses of the structures exposed to a thermal shock of short temporal domain or a large heat flux.
Van Wyngaarden, Mallory; Snelgrove, Paul V R; DiBacco, Claudio; Hamilton, Lorraine C; Rodríguez-Ezpeleta, Naiara; Zhan, Luyao; Beiko, Robert G; Bradbury, Ian R
2018-03-01
Environmental factors can influence diversity and population structure in marine species and accurate understanding of this influence can both improve fisheries management and help predict responses to environmental change. We used 7163 SNPs derived from restriction site-associated DNA sequencing genotyped in 245 individuals of the economically important sea scallop, Placopecten magellanicus , to evaluate the correlations between oceanographic variation and a previously identified latitudinal genomic cline. Sea scallops span a broad latitudinal area (>10 degrees), and we hypothesized that climatic variation significantly drives clinal trends in allele frequency. Using a large environmental dataset, including temperature, salinity, chlorophyll a, and nutrient concentrations, we identified a suite of SNPs (285-621, depending on analysis and environmental dataset) potentially under selection through correlations with environmental variation. Principal components analysis of different outlier SNPs and environmental datasets revealed similar northern and southern clusters, with significant associations between the first axes of each ( R 2 adj = .66-.79). Multivariate redundancy analysis of outlier SNPs and the environmental principal components indicated that environmental factors explained more than 32% of the variance. Similarly, multiple linear regressions and random-forest analysis identified winter average and minimum ocean temperatures as significant parameters in the link between genetic and environmental variation. This work indicates that oceanographic variation is associated with the observed genomic cline in this species and that seasonal periods of extreme cold may restrict gene flow along a latitudinal gradient in this marine benthic bivalve. Incorporating this finding into management may improve accuracy of management strategies and future predictions.
Seasonal migrations, body temperature fluctuations, and infection dynamics in adult amphibians.
Daversa, David R; Monsalve-Carcaño, Camino; Carrascal, Luis M; Bosch, Jaime
2018-01-01
Risks of parasitism vary over time, with infection prevalence often fluctuating with seasonal changes in the annual cycle. Identifying the biological mechanisms underlying seasonality in infection can enable better prediction and prevention of future infection peaks. Obtaining longitudinal data on individual infections and traits across seasons throughout the annual cycle is perhaps the most effective means of achieving this aim, yet few studies have obtained such information for wildlife. Here, we tracked spiny common toads ( Bufo spinosus ) within and across annual cycles to assess seasonal variation in movement, body temperatures and infection from the fungal parasite, Batrachochytrium dendrobatidis (Bd) . Across annual cycles, toads did not consistently sustain infections but instead gained and lost infections from year to year. Radio-tracking showed that infected toads lose infections during post-breeding migrations, and no toads contracted infection following migration, which may be one explanation for the inter-annual variability in Bd infections. We also found pronounced seasonal variation in toad body temperatures. Body temperatures approached 0 °C during winter hibernation but remained largely within the thermal tolerance range of Bd . These findings provide direct documentation of migratory recovery (i.e., loss of infection during migration) and escape in a wild population. The body temperature reductions that we observed during hibernation warrant further consideration into the role that this period plays in seasonal Bd dynamics.
Seasonal migrations, body temperature fluctuations, and infection dynamics in adult amphibians
Daversa, David R.; Monsalve-Carcaño, Camino; Carrascal, Luis M.
2018-01-01
Risks of parasitism vary over time, with infection prevalence often fluctuating with seasonal changes in the annual cycle. Identifying the biological mechanisms underlying seasonality in infection can enable better prediction and prevention of future infection peaks. Obtaining longitudinal data on individual infections and traits across seasons throughout the annual cycle is perhaps the most effective means of achieving this aim, yet few studies have obtained such information for wildlife. Here, we tracked spiny common toads (Bufo spinosus) within and across annual cycles to assess seasonal variation in movement, body temperatures and infection from the fungal parasite, Batrachochytrium dendrobatidis (Bd). Across annual cycles, toads did not consistently sustain infections but instead gained and lost infections from year to year. Radio-tracking showed that infected toads lose infections during post-breeding migrations, and no toads contracted infection following migration, which may be one explanation for the inter-annual variability in Bd infections. We also found pronounced seasonal variation in toad body temperatures. Body temperatures approached 0 °C during winter hibernation but remained largely within the thermal tolerance range of Bd. These findings provide direct documentation of migratory recovery (i.e., loss of infection during migration) and escape in a wild population. The body temperature reductions that we observed during hibernation warrant further consideration into the role that this period plays in seasonal Bd dynamics. PMID:29761041
NASA Technical Reports Server (NTRS)
Wilson, R. J.; Kahre, M.
2017-01-01
Thermal tides are the atmospheric response to diurnally varying thermal forcing resulting from radiative and convective heat transfer from the surface and from aerosol and gaseous heating within the atmosphere. Tides include sun-synchronous (migrating) waves driven in response to solar heating and additional non-migrating waves resulting from longitudinal variations in the distributions of topography, dust aerosol and water ice clouds. The systematic spatial mapping of temperature over 5 Mars years by the Mars Climate Sounder (MCS) has yielded a well-defined climatology of seasonally-varying temperature structures in the lower atmosphere, from 5 to 80 km. Tide theory and Mars global circulation model (MGCM) simulations are a fruitful framework for relating temperature observations to thermal forcing by aerosol fields [1]. The analysis of density and temperature fields derived from MAVEN IUVS and NGIMS observations have revealed the presence of predominantly zonal wave 2 and 3 features at altitudes of 100-170 km that are almost certainly non-migrating tides propagating upward from the lower atmosphere [2,3]. In this presentation we will use the MCS climatology and MGCM simulations to relate the density variations seen by MAVEN with the seasonally varying tide activity in the lower atmosphere. Large amplitude perturbations in density are most sensitive to the tide components with the longest vertical wavelengths in temperature, which are well resolved in MCS observations.
In-Flight Calibration Methods for Temperature-Dependendent Offsets in the MMS Fluxgate Magnetometers
NASA Astrophysics Data System (ADS)
Bromund, K. R.; Plaschke, F.; Strangeway, R. J.; Anderson, B. J.; Huang, B. G.; Magnes, W.; Fischer, D.; Nakamura, R.; Leinweber, H. K.; Russell, C. T.; Baumjohann, W.; Chutter, M.; Torbert, R. B.; Le, G.; Slavin, J. A.; Kepko, L.
2016-12-01
During the first dayside season of the Magnetospheric Multiscale (MMS) mission, the in-flight calibration process for the Fluxgate magnetometers (FGM) implemented an algorithm that selected a constant offset (zero-level) for each sensor on each orbit. This method was generally able to reduce the amplitude of residual spin tone to less than 0.2 nT within the region of interest. However, there are times when the offsets do show significant short-term variations. These variations are most prominent in the nighttime season (phase 1X), when eclipses are accompanied by offset changes as large as 1 nT. Eclipses are followed by a recovery period as long as 12 hours where the offsets continue to change as temperatures stabilize. Understanding and compensating for these changes will become critical during Phase 2 of the mission in 2017, when the nightside will become the focus of MMS science. Although there is no direct correlation between offset and temperature, the offsets are seen — for the period of any given week — to be well-characterized as function of instrument temperature. Using this property, a new calibration method has been developed that has proven effective in compensating for temperature-dependent offsets during phase 1X of the MMS mission and also promises to further refine calibration quality during the dayside season.
Planetary boundary layer as an essential component of the earth's climate system
NASA Astrophysics Data System (ADS)
Davy, Richard; Esau, Igor
2015-04-01
Following the traditional engineering approach proposed by Prandtl, the turbulent planetary boundary layers (PBLs) are considered in the climate science as complex, non-linear, essential but nevertheless subordinated components of the earth's climate system. Correspondingly, the temperature variations, dT - a popular and practically important measure of the climate variability, are seen as the system's response to the external heat forcing, Q, e.g. in the energy balance model of the type dT=Q/C (1). The moderation of this response by non-linear feedbacks embedded in the effective heat capacity, C, are to a large degree overlooked. The effective heat capacity is globally determined by the depth of the ocean mixed layer (on multi-decadal and longer time scales) but regionally, over the continents, C is much smaller and determined (on decadal time scales) by the depth, h, of the PBL. The present understanding of the climatological features of turbulent boundary layers is set by the works of Frankignoul & Hasselmann (1976) and Manabe & Stauffer (1980). The former explained how large-scale climate anomalies could be generated in the case of a large C (in the sea surface temperature) by the delta-correlated stochastic forcing (white noise). The latter demonstrated that the climate response to a given forcing is moderated by the depth, h, so that in the shallow PBL the signal should be significantly amplified. At present there are more than 3000 publications (ISI Web of Knowledge) which detail this understanding but the physical mechanisms, which control the boundary layer depth, and statistical relationships between the turbulent and climatological measures remain either unexplored or incorrectly attributed. In order to identify the climatic role of the PBL, the relationships between the PBL depth, h, - as the integral measure of the turbulent processes and micro-circulations due to the surface heterogeneity - and the climatic variability (variations and trends) of temperature have to be established. These relationships are necessary to complete the model (1) where the relationships between temperature variability, dT, and heat forcing, Q, are intensively studied. We demonstrate that the statistical dependences between dT and h becomes the primary factor in controlling the climate features of the earth's climate system when h is shallow (less than about 500 m). Such conditions are found in the cold (with negative surface heat balance on average) and dry (with large-scale air subsidence) climates. To get those climates and their variations correct, the climate models must be able to reproduce the shallow stably-stratified PBL. We show that the present-day CMIP-5 models are systematically and strongly biased towards producing deeper PBLs (between 20-50% deeper than observed) in this part of the parameter space which leads to large errors (around 15 K) and a damped variability of the surface temperatures under these conditions. More generally, this bias indicates that the models represent the earth's cooling processes incorrectly, which may be a part of the puzzle of the observed "hiatus" (or pause) in global warming. Frankignoul, C. & K. Hasselmann, 1977: Stochastic climate models. Part 2, Application to sea-surface temperature anomalies and thermocline variability, Tellus, 29, 289-305. Manabe, S. & R. Stouffer, 1980: Sensitivity of a Global Climate Model to an increase of CO2 concentration in the atmosphere, Journal of Geophysical Research, 85(C10): 5529-5554.
Giggenbach, W.F.; Gonfiantini, R.; Jangi, B.L.; Truesdell, A.H.
1983-01-01
The isotopic compositions of the waters discharged from Parbati Valley geothermal areas indicate a higher altitude meteoric origin, with discharge temperatures reflecting variations in the depth of penetration of the waters to levels heated by the existence of a 'normal' geothermal gradient. On the basis of mixing models involving silica, tritium, discharge temperatures and chloride contents, deep equilibration temperatures of 120-140??C were obtained for Manikaran, possibly reaching 160??C at even greater depth. Geothermometers based on sulfate-water 18O exchange and gas reactions point to similar temperatures. Exceptionally high helium contents of the discharges correspond to apparent crustal residence times of the waters in the order of 10-100 Ma; relative nitrogen-argon contents support a largely meteoric origin of the waters with a possible fossil brine, but no detectable magmatic component. ?? 1983.
Nonlinear radiative peristaltic flow of hydromagnetic fluid through porous medium
NASA Astrophysics Data System (ADS)
Hussain, Q.; Latif, T.; Alvi, N.; Asghar, S.
2018-06-01
The radiative heat and mass transfer in wall induced flow of hydromagnetic fluid through porous medium in an asymmetric channel is analyzed. The fluid viscosity is considered temperature dependent. In the theory of peristalsis, the radiation effects are either ignored or taken as linear approximation of radiative heat flux. Such approximation is only possible when there is sufficiently small temperature differences in the flow field; however, nonlinear radiation effects are valid for large temperature differences as well (the new feature added in the present study). Mathematical modeling of the problems include the complicated system of highly nonlinear differential equations. Semi-analytical solutions are established in the wave reference frame. Results are displayed graphically and discussed in detail for the variation of various physical parameters with the special attention to viscosity, radiation, and temperature ratio parameters.
Dong, Jin-yang; Zhang, Gui-xin; Wang, Chang-quan
2012-01-01
As a kind of new electric light source, electrodeless discharge lamps are of long life, low mercury and non-stroboscopic light. The lighting effect of electrodeless discharge lamps depends on the radiation efficiency of 253.7 nm resonance spectra line to a large extent. The influence of cold temperature on 253.7 nm resonance spectra line has been studied experimentally by atomic emission spectral analysis. It was found that the radiation efficiency of 253.7 nm resonance spectra line is distributed in a nearly normal fashion with the variation of cold spot temperature, in other words, there is an optimum cold spot temperature for an electrodeless discharge lamp. At last, the results of experiments were analyzed through gas discharge theory, which offers guidance to the improvement of lighting effect for electrodeless discharge lamps.
Sharwood, Robert E; Ghannoum, Oula; Kapralov, Maxim V; Gunn, Laura H; Whitney, Spencer M
2016-11-28
Enhancing the catalytic properties of the CO 2 -fixing enzyme Rubisco is a target for improving agricultural crop productivity. Here, we reveal extensive diversity in the kinetic response between 10 and 37 °C by Rubisco from C 3 and C 4 species within the grass tribe Paniceae. The CO 2 fixation rate (kcatc) for Rubisco from the C 4 grasses with nicotinamide adenine dinucleotide (NAD) phosphate malic enzyme (NADP-ME) and phosphoenolpyruvate carboxykinase (PCK) photosynthetic pathways was twofold greater than the kcatc of Rubisco from NAD-ME species across all temperatures. The declining response of CO 2 /O 2 specificity with increasing temperature was less pronounced for PCK and NADP-ME Rubisco, which would be advantageous in warmer climates relative to the NAD-ME grasses. Modelled variation in the temperature kinetics of Paniceae C 3 Rubisco and PCK Rubisco differentially stimulated C 3 photosynthesis relative to tobacco above and below 25 °C under current and elevated CO 2 . Amino acid substitutions in the large subunit that could account for the catalytic variation among Paniceae Rubisco are identified; however, incompatibilities with Paniceae Rubisco biogenesis in tobacco hindered their mutagenic testing by chloroplast transformation. Circumventing these bioengineering limitations is critical to tailoring the properties of crop Rubisco to suit future climates.
Wubbels, Gene G; Danial, Hanan; Policarpio, Danielle
2010-11-19
Photosubstitution of the nitro group vs the methoxy group of triplet 4-nitroanisole by hydroxide ion in water leads to product yields of about 80% 4-methoxyphenol and 20% 4-nitrophenol. The ratio depends slightly on temperature from 3 to 73 °C. The slight temperature variation in the yield ratio is reproduced almost perfectly with a simple Arrhenius model for a mechanism involving bonding of hydroxide ion with the triplet state of 4-nitroanisole. The competing transition states have activation energies of 2.2 and 2.6 kcal/mol, respectively. Correct prediction of regioselectivity can be done for this case by quantum chemical calculation of the competing triplet transition-state energies, or those of the corresponding triplet σ-complexes. Other models for aromatic photosubstitution regioselectivity in mechanisms of the S(N)2Ar* type, such as those based on calculated electron densities, HOMO/LUMO coefficients, or energy gap sizes, are discussed and shown to be inferior to the relative activation energies model. The photoreaction in alcohol solvents, claimed by others to generate the same products as in water and to have an exceedingly large variation of the product ratio with temperature, may reflect chemical changes other than those reported.
Electrochemical performance of Fe3O4 micro flower as anode for lithium ion batteries
NASA Astrophysics Data System (ADS)
Noerochim, Lukman; Anggara, Dika; Susanti, Diah; Subhan, Achmad; Sudaryanto
2018-04-01
Graphite is generally employed in commercial lithium ion batteries which has a specific capacity of 372 mAh/g. In this study, graphite is replaced with carbon-coated magnetite (Fe3O4/C) which has large theoretical specific capacity of 926 mAh/g, environmental friendly, and low cost production. The synthesis of Fe3O4/C is carried out by hydrothermal method with reacting FeCl3 and hexamethylenetetramine (HMT) at temperature variation of 160, 170 and 180°C. The following process is heated by calcination at temperature variations 450, 500 and 550°C. XRD and SEM results show that the as-prepared Fe3O4/C powder has a single phase of Fe3O4 and morphology micro-flowers like with size between 700 nm - 3 µm. CV test results show redox reaction occurs in the voltage range between 0.21-0.85 V and 1.68-1.81 V. The highest specific discharge capacity is obtained 644 mAh/g for specimen with temperature hydrothermal of 170°C and temperature calcination of 550°C. This result shows that Fe3O4/C has a high potential as anode material for lithium ion battery.
Measuring the Distribution and Excitation of Cometary CH3OH Using ALMA
NASA Astrophysics Data System (ADS)
Cordiner, M. A.; Charnley, S. B.; Mumma, M. J.; Bockelée-Morvan, D.; Biver, N.; Villanueva, G.; Paganini, L.; Milam, S. N.; Remijan, A. J.; Lis, D. C.; Crovisier, J.; Boissier, J.; Kuan, Y.-J.; Coulson, I. M.
2016-10-01
The Atacama Large Millimeter/submillimeter Array (ALMA) was used to obtain measurements of spatially and spectrally resolved CH3OH emission from comet C/2012 K1 (PanSTARRS) on 28-29 June 2014. Detection of 12-14 emission lines of CH3OH on each day permitted the derivation of spatially-resolved rotational temperature profiles (averaged along the line of sight), for the innermost 5000 km of the coma. On each day, the CH3OH distribution was centrally peaked and approximately consistent with spherically symmetric, uniform outflow. The azimuthally-averaged CH3OH rotational temperature (T rot) as a function of sky-projected nucleocentric distance (ρ), fell by about 40 K between ρ= 0 and 2500 km on 28 June, whereas on 29 June, T rot fell by about 50 K between ρ =0 km and 1500 km. A remarkable (~50 K) rise in T rot at ρ = 1500-2500 km on 29 June was not present on 28 June. The observed variations in CH3OH rotational temperature are interpreted primarily as a result of variations in the coma kinetic temperature due to adiabatic cooling, and heating through Solar irradiation, but collisional and radiative non-LTE excitation processes also play a role.
NASA Astrophysics Data System (ADS)
Rifai, S. W.; Anderson, L. O.; Bohlman, S.
2015-12-01
Blowdowns, which are large tree mortality events caused by downbursts, create large pulses of carbon emissions in the short term and alter successional dynamics and species composition of forests, thus affecting long term biogeochemical cycling of tropical forests. Changing climate, especially increasing temperatures and frequency of extreme climate events, may cause changes in the frequency of blowdowns, but there has been little spatiotemporal analysis to associate the interannual variation in the frequency of blowdowns with annual climate parameters. We mapped blowdowns greater than 25 ha using a time series of Landsat images from 1984-2012 in the northwestern Amazon to estimate the annual size distribution of these blowdowns. The difference in forest area affected by blowdowns between the years with the highest and lowest blowdown activity were on the order of 10 - 30 times greater depending on location. Spatially, we found the probability of large blowdowns to be higher in regions with higher annual rainfall. Temporally, we found a positive correlation between the probability of large blowdown events and maximum dry season air temperature (R2 = 0.1-0.46). Mean and maximum blowdown size also increased with maximum dry season air temperature. The strength of these relationships varied between scene locations which may be related to cloud cover obscuring the land surface in the satellite images, or biophysical characteristics of the sites. Potentially, elevated dry season temperatures during the transition from the dry season to the wet season (October - December) may exacerbate atmospheric instabilities, which promote downburst occurrences. Most global circulation models predict dry season air temperatures to increase 2-5 ℃ in the northwestern Amazon by 2050. Should the blowdown disturbance regime continue increasing with elevated dry season temperatures, the northwestern Amazon is likely to experience more catastrophic tree mortality events which has direct consequences for both the carbon emissions and carbon storage capacity of the northwestern Amazon.
Estimation of surface temperature variations due to changes in sky and solar flux with elevation.
Hummer-Miller, S.
1981-01-01
Sky and solar radiance are of major importance in determining the ground temperature. Knowledge of their behavior is a fundamental part of surface temperature models. These 2 fluxes vary with elevation and this variation produces temperature changes. Therefore, when using thermal-property differences to discriminate geologic materials, these flux variations with elevation need to be considered. -from Author
Friedman, Jannice; Willis, John H
2013-07-01
Species with extensive ranges experience highly variable environments with respect to temperature, light and soil moisture. Synchronizing the transition from vegetative to floral growth is important to employ favorable conditions for reproduction. Optimal timing of this transition might be different for semelparous annual plants and iteroparous perennial plants. We studied variation in the critical photoperiod necessary for floral induction and the requirement for a period of cold-chilling (vernalization) in 46 populations of annuals and perennials in the Mimulus guttatus species complex. We then examined critical photoperiod and vernalization QTLs in growth chambers using F(2) progeny from annual and perennial parents that differed in their requirements for flowering. We identify extensive variation in critical photoperiod, with most annual populations requiring substantially shorter day lengths to initiate flowering than perennial populations. We discover a novel type of vernalization requirement in perennial populations that is contingent on plants experiencing short days first. QTL analyses identify two large-effect QTLs which influence critical photoperiod. In two separate vernalization experiments we discover each set of crosses contain different large-effect QTLs for vernalization. Mimulus guttatus harbors extensive variation in critical photoperiod and vernalization that may be a consequence of local adaptation. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.
NASA Astrophysics Data System (ADS)
Instanes, Geir; Pedersen, Audun; Toppe, Mads; Nagy, Peter B.
2009-03-01
This paper describes a novel ultrasonic guided wave inspection technique for the monitoring of internal corrosion and erosion in pipes, which exploits the fundamental flexural mode to measure the average wall thickness over the inspection path. The inspection frequency is chosen so that the group velocity of the fundamental flexural mode is essentially constant throughout the wall thickness range of interest, while the phase velocity is highly dispersive and changes in a systematic way with varying wall thickness in the pipe. Although this approach is somewhat less accurate than the often used transverse resonance methods, it smoothly integrates the wall thickness over the whole propagation length, therefore it is very robust and can tolerate large and uneven thickness variations from point to point. The constant group velocity (CGV) method is capable of monitoring the true average of the wall thickness over the inspection length with an accuracy of 1% even in the presence of one order of magnitude larger local variations. This method also eliminates spurious variations caused by changing temperature, which can cause fairly large velocity variations, but do not significantly influence the dispersion as measured by the true phase angle in the vicinity of the CGV point. The CGV guided wave CEM method was validated in both laboratory and field tests.
Long-term temporal changes in the occurrence of a high forest fire danger in Finland
NASA Astrophysics Data System (ADS)
Mäkelä, H. M.; Laapas, M.; Venäläinen, A.
2012-08-01
Climate variation and change influence several ecosystem components including forest fires. To examine long-term temporal variations of forest fire danger, a fire danger day (FDD) model was developed. Using mean temperature and total precipitation of the Finnish wildfire season (June-August), the model describes the climatological preconditions of fire occurrence and gives the number of fire danger days during the same time period. The performance of the model varied between different regions in Finland being best in south and west. In the study period 1908-2011, the year-to-year variation of FDD was large and no significant increasing or decreasing tendencies could be found. Negative slopes of linear regression lines for FDD could be explained by the simultaneous, mostly not significant increases in precipitation. Years with the largest wildfires did not stand out from the FDD time series. This indicates that intra-seasonal variations of FDD enable occurrence of large-scale fires, despite the whole season's fire danger is on an average level. Based on available monthly climate data, it is possible to estimate the general fire conditions of a summer. However, more detailed input data about weather conditions, land use, prevailing forestry conventions and socio-economical factors would be needed to gain more specific information about a season's fire risk.
Variations between Dust and Gas in the Diffuse Interstellar Medium. III. Changes in Dust Properties
NASA Astrophysics Data System (ADS)
Reach, William T.; Bernard, Jean-Philippe; Jarrett, Thomas H.; Heiles, Carl
2017-12-01
We study infrared emission of 17 isolated, diffuse clouds with masses of order {10}2 {M}ȯ to test the hypothesis that grain property variations cause the apparently low gas-to-dust ratios that have been measured in those clouds. Maps of the clouds were constructed from Wide-field Infrared Survey Explorer (WISE) data and directly compared with the maps of dust optical depth from Planck. The mid-infrared emission per unit dust optical depth has a significant trend toward lower values at higher optical depths. The trend can be quantitatively explained by the extinction of starlight within the clouds. The relative amounts of polycyclic aromatic hydrocarbon and very small grains traced by WISE, compared with large grains tracked by Planck, are consistent with being constant. The temperature of the large grains significantly decreases for clouds with larger dust optical depth; this trend is partially due to dust property variations, but is primarily due to extinction of starlight. We updated the prediction for molecular hydrogen column density, taking into account variations in dust properties, and find it can explain the observed dust optical depth per unit gas column density. Thus, the low gas-to-dust ratios in the clouds are most likely due to “dark gas” that is molecular hydrogen.
Increased temperature variation poses a greater risk to species than climate warming.
Vasseur, David A; DeLong, John P; Gilbert, Benjamin; Greig, Hamish S; Harley, Christopher D G; McCann, Kevin S; Savage, Van; Tunney, Tyler D; O'Connor, Mary I
2014-03-22
Increases in the frequency, severity and duration of temperature extremes are anticipated in the near future. Although recent work suggests that changes in temperature variation will have disproportionately greater effects on species than changes to the mean, much of climate change research in ecology has focused on the impacts of mean temperature change. Here, we couple fine-grained climate projections (2050-2059) to thermal performance data from 38 ectothermic invertebrate species and contrast projections with those of a simple model. We show that projections based on mean temperature change alone differ substantially from those incorporating changes to the variation, and to the mean and variation in concert. Although most species show increases in performance at greater mean temperatures, the effect of mean and variance change together yields a range of responses, with temperate species at greatest risk of performance declines. Our work highlights the importance of using fine-grained temporal data to incorporate the full extent of temperature variation when assessing and projecting performance.
Increased temperature variation poses a greater risk to species than climate warming
Vasseur, David A.; DeLong, John P.; Gilbert, Benjamin; Greig, Hamish S.; Harley, Christopher D. G.; McCann, Kevin S.; Savage, Van; Tunney, Tyler D.; O'Connor, Mary I.
2014-01-01
Increases in the frequency, severity and duration of temperature extremes are anticipated in the near future. Although recent work suggests that changes in temperature variation will have disproportionately greater effects on species than changes to the mean, much of climate change research in ecology has focused on the impacts of mean temperature change. Here, we couple fine-grained climate projections (2050–2059) to thermal performance data from 38 ectothermic invertebrate species and contrast projections with those of a simple model. We show that projections based on mean temperature change alone differ substantially from those incorporating changes to the variation, and to the mean and variation in concert. Although most species show increases in performance at greater mean temperatures, the effect of mean and variance change together yields a range of responses, with temperate species at greatest risk of performance declines. Our work highlights the importance of using fine-grained temporal data to incorporate the full extent of temperature variation when assessing and projecting performance. PMID:24478296
Air-sea interactions during strong winter extratropical storms
Nelson, Jill; He, Ruoying; Warner, John C.; Bane, John
2014-01-01
A high-resolution, regional coupled atmosphere–ocean model is used to investigate strong air–sea interactions during a rapidly developing extratropical cyclone (ETC) off the east coast of the USA. In this two-way coupled system, surface momentum and heat fluxes derived from the Weather Research and Forecasting model and sea surface temperature (SST) from the Regional Ocean Modeling System are exchanged via the Model Coupling Toolkit. Comparisons are made between the modeled and observed wind velocity, sea level pressure, 10 m air temperature, and sea surface temperature time series, as well as a comparison between the model and one glider transect. Vertical profiles of modeled air temperature and winds in the marine atmospheric boundary layer and temperature variations in the upper ocean during a 3-day storm period are examined at various cross-shelf transects along the eastern seaboard. It is found that the air–sea interactions near the Gulf Stream are important for generating and sustaining the ETC. In particular, locally enhanced winds over a warm sea (relative to the land temperature) induce large surface heat fluxes which cool the upper ocean by up to 2 °C, mainly during the cold air outbreak period after the storm passage. Detailed heat budget analyses show the ocean-to-atmosphere heat flux dominates the upper ocean heat content variations. Results clearly show that dynamic air–sea interactions affecting momentum and buoyancy flux exchanges in ETCs need to be resolved accurately in a coupled atmosphere–ocean modeling framework.
Drivers of surface moisture flux variations in northern terrestrial regions
NASA Astrophysics Data System (ADS)
Fischer, R.; Walsh, J. E.
2017-12-01
The wetness of the high-latitude land surface is strongly dependent on the difference between precipitation (P) and evapotranspiration (ET). Variations of ET over daily, seasonal and interannual timescales are poorly documented, as are their relationships to key drivers. A combination of regional climate model output and eddy covariance measurements from five flux tower sites in Alaska are used to test the hypothesis that temperature is the key driver of ET in tundra regions underlain by permafrost, while precipitation plays a greater role in boreal forest areas. At the tundra sites, both the flux tower data and the model simulations show that daily and warm-season totals of ET are largely temperature driven, although daily ET also shows a negative correlation with P. At the boreal forest sites, P is the main driver of year-to-year variations of the seasonally integrated net moisture flux, although ET does not correlate strongly with either P or T. A short period of negative P-ET typically occurs during the warm season in the flux tower data. The model depicts a stronger hydrologic cycle (larger P, larger ET) relative to the measurements at all the sites.
Compensation and climate: Latitudinal variation in ecototherm response to environmental change
DOE Office of Scientific and Technical Information (OSTI.GOV)
Curtin, C.G.
1995-06-01
Thermal preference measured in a laboratory thermal gradient, and field body temperatures in a field enclosure, contrast the fundamental and realized thermal niches of ornate box turtles (Terrapene ornata) from northern, central, and southern locations. The relatively warmer thermal preference of southern turtles appears to result in lower body temperatures and relatively shorter activity periods. Variation in thermal constraints are input into computer simulations of ectotherm response to climate to assess latitudinal variation in turtle response to microclimate cooling (4{degrees} C), current climate (1970-1990), and climatic warming (3-5{degrees} C). Climatic warming is calculated to lead to a northward shift inmore » turtle range and distribution with increases in northern and declines in southern populations. Microclimate cooling is estimated to result in declines in northern areas and in the core of the box turtle range. The local changes in microclimate, such as can result from shifts in land-use, can be greater than those resulting from large scale changes in climate. Suggesting that land managers and conservation biologists need to focus greater attention on the impact of changes in within patch structure of plant associations and its implications for alteration of microclimate and species life history.« less
Attribution of the Regional Patterns of North American Climate Trends
NASA Astrophysics Data System (ADS)
Hoerling, M.; Kumar, A.; Karoly, D.; Rind, D.; Hegerl, G.; Eischeid, J.
2007-12-01
North American trends in surface temperature and precipitation during 1951-2006 exhibit large spatial and seasonal variations. We seek to explain these by synthesizing new information based on existing model simulations of climate and its forcing, and based on modern reanalyses that describe past and current conditions within the free atmosphere. The presentation focuses on current capabilities to explain the spatial variations and seasonal differences in North American climate trends. It will address whether various heterogeneities in space and time can be accounted for by the climate system's sensitivity to time evolving anthropogenic forcing, and examines the influences of non-anthropogenic processes. New findings are presented that indicate anthropogenic forcing alone was unlikely the cause for key regional and seasonal patterns of change, including the absence of summertime warming over the Great Plains of the United States, and the absence of warming during both winter and summer over the southern United States. Key regional features are instead attributed to trends in the principal patterns of atmospheric flow that affect North American climate. It is demonstrated that observed variations in global sea surface temperatures have significantly influenced these patterns of atmospheric flow.
NASA Astrophysics Data System (ADS)
Ren, Diandong; Karoly, David J.
2008-03-01
Observations from seven Central Asian glaciers (35-55°N; 70-95°E) are used, together with regional temperature data, to infer uncertain parameters for a simple linear model of the glacier length variations. The glacier model is based on first order glacier dynamics and requires the knowledge of reference states of forcing and glacier perturbation magnitude. An adjoint-based variational method is used to optimally determine the glacier reference states in 1900 and the uncertain glacier model parameters. The simple glacier model is then used to estimate the glacier length variations until 2060 using regional temperature projections from an ensemble of climate model simulations for a future climate change scenario (SRES A2). For the period 2000-2060, all glaciers are projected to experience substantial further shrinkage, especially those with gentle slopes (e.g., Glacier Chogo Lungma retreats ˜4 km). Although nearly one-third of the year 2000 length will be reduced for some small glaciers, the existence of the glaciers studied here is not threatened by year 2060. The differences between the individual glacier responses are large. No straightforward relationship is found between glacier size and the projected fractional change of its length.
NASA Astrophysics Data System (ADS)
Kato, Kuranoshin; Hamaki, Tatsuya; Haga, Yuichi; Otani, Kazuo; Kato, Haruko
2016-04-01
There are many stages with rapid seasonal transitions in East Asia, greatly influenced by the considerable phase differences of seasonal cycle among the Asian monsoon subsystems, resulting in the variety of "seasonal feeling". The seasonal cycle has been an important background for generation of the many kinds of arts also in Europe around the western edge of the Eurasian Continent. Especially around Germany, there are so many music or literature works in which the "May" is treated as the special season. However, more detailed examination and its comparison with that in East Asia about the seasonal evolution from winter to spring including before May would be interesting. Deeper knowledge on the seasonal cycle would contribute greatly to the cultural understanding as mentioned above, as well as for considering the detailed response of the regional climate to the global-scale impacts such as the global warming. As such, the present study examined, based mainly on the NCEP/NCAR reanalysis data during 1971-2010, the synoptic climatological features on the seasonal transition from winter to spring in Europe also with attention to the day-to-day variability, by comparing with those in East Asia (detailed analyses were made mainly for 2000/01 - 2010/11 winters). Around the region from Germany to Turkey, the surface air temperature (TS) showed rather larger day-to-day variation (including the interannual or intraseasonal variation) throughout a year than in the Japan Islands area in East Asia. Especially from December to March (the minimum period of the climatological TS in the European side), the day-to-day variation was extremely great around Germany and its northern region (to the north of around 45N/10E). Thus, the extremely low temperature events sometimes appeared around Germany till the end of March, although the seasonal mean TS was not so considerably low. The day-to-day variation of sea level pressure (SLP) was also very large where such large amplitude of TS was found, although the extremely large day-to-day variation of SLP was found from the earlier season (October to March). It is interesting that the region where such large day-to-day amplitudes of TS and SLP were observed corresponded to the southeastern periphery zone of the Icelandic Low in the seasonal mean field. Besides, sub-monthly or about 30-day-period intraseasonal variation of the eastward intrusion of the Icelandic Low near the northwestern Europe was also clearly found in winter, as well as the short-period variation of the synoptic-scale disturbances to the southeast of the intraseasonal-scale Icelandic Low. In the seasonal mean field, relatively strong warm air advection in the lower layer was found to the southeast of the Icelandic Low due to combination of the strong westerly wind there and the cold air in the further eastern region. Such warm advection can be intermittently enhanced especially when the Icelandic Low intruded more closely to the northwestern Europe. These situations seem to result in the large day-to-day variation of TS around Germany and its northern region until the seasonal weakening of the Icelandic Low from March to April.
Effect of Dopant Activation on Device Characteristics of InGaN-based Light Emitting Diodes
NASA Astrophysics Data System (ADS)
Lacroce, Nicholas; Liu, Guangyu; Tan, Chee-Keong; Arif, Ronald A.; Lee, Soo Min; Tansu, Nelson
2015-03-01
Achieving high uniformity in growths and device characteristics of InGaN-based light-emitting diodes (LEDs) is important for large scale manufacturing. Dopant activation and maintaining control of variables affecting dopant activation are critical steps in the InGaN-based light emitting diodes (LEDs) fabrication process. In the epitaxy of large scale production LEDs, in-situ post-growth annealing is used for activating the Mg acceptor dopant in the p-AlGaN and p-GaN of the LEDs. However, the annealing temperature varies with respect to position in the reactor chamber, leading to severe uniform dopant activation issue across the devices. Thus, it is important to understand how the temperature gradient and the resulting variance in Mg acceptor activation will alter the device properties. In this work, we examine the effect of varying p-type doping levels in the p-GaN layers and AlGaN electron blocking layer of the GaN LEDs on the optoelectronic properties including the band profile, carrier concentration, current density, output power and quantum efficiency. By understanding the variations and its effect, the identification of the most critical p-type doping layer strategies to address this variation will be clarified.
Seasonal dynamics of bacterioplankton community in a large, shallow, highly dynamic freshwater lake.
Kong, Zhaoyu; Kou, Wenbo; Ma, Yantian; Yu, Haotian; Ge, Gang; Wu, Lan
2018-05-23
The spatio-temporal shifts of bacterioplankton community can mirror their transition of functional traits in aquatic ecosystem. However, our understanding of spatio-temporal variation of bacterioplankton community composition structure (BCCs) within large, shallow and highly dynamic freshwater lake is still elusive. Here we examined the seasonal and spatial variability of BCCs in the Poyang Lake by 16S rRNA gene amplicon sequencing to explore how hydrological changes affect the BCCs. Principal coordinate analysis showed that the BCCs varied significantly among four sampling seasons, but not spatially. The seasonal changes of BCCs were mainly attributed to the differences between autumn and spring/winter. Higher alpha diversity indices were observed in autumn. Redundancy analysis indicated that the BCCs co-variated with water level, pH, temperature, total phosphorus, ammoniacal nitrogen, electrical conductivity, total nitrogen, and turbidity. Among them, water level was the key determinant separating autumn BCCs from the BCCs in other seasons. A significant lower relative abundance of Burkholderiales (betI and betVII) and a higher relative abundance of Actinomycetales (acI, acTH1 and acTH2) were found in autumn than in other seasons. Overall, our results suggest that water level changes associated with pH, temperature and nutrient status shaped the seasonal patterns of BCCs in the Poyang Lake.
Spawning activity of the Australian lungfish Neoceratodus forsteri in an impoundment.
Roberts, D T; Mallett, S; Krück, N C; Loh, W; Tibbetts, I
2014-01-01
This study assessed the spawning activity of the threatened Australian lungfish Neoceratodus forsteri by measuring egg densities within the artificial habitat of a large impoundment (Lake Wivenhoe, Australia). Eggs were sampled (August to November 2009) from multiple locations across the impoundment, but occurred at highest densities in water shallower than 40 cm along shorelines with a dense cover of submerged terrestrial vegetation. The numbers of eggs declined over the study period and all samples were dominated by early developmental stages and high proportions of unviable eggs. The quality of the littoral spawning habitats declined over the study as flooded terrestrial grasses decomposed and filamentous algae coverage increased. Water temperatures at the spawning site exhibited extreme variations, ranging over 20·4° C in water shallower than 5 cm. Dissolved oxygen concentrations regularly declined to <1 mg l⁻¹ at 40 and 80 cm water depth. Spawning habitats utilised by N. forsteri within impoundments expose embryos to increased risk of desiccation or excessive submergence through water-level variations, and extremes in temperature and dissolved oxygen concentration that present numerous challenges for successful spawning and recruitment of N. forsteri in large impoundment environments. © 2014 The Fisheries Society of the British Isles.
Rubisco Catalytic Properties and Temperature Response in Crops1
2016-01-01
Rubisco catalytic traits and their thermal dependence are two major factors limiting the CO2 assimilation potential of plants. In this study, we present the profile of Rubisco kinetics for 20 crop species at three different temperatures. The results largely confirmed the existence of significant variation in the Rubisco kinetics among species. Although some of the species tended to present Rubisco with higher thermal sensitivity (e.g. Oryza sativa) than others (e.g. Lactuca sativa), interspecific differences depended on the kinetic parameter. Comparing the temperature response of the different kinetic parameters, the Rubisco Km for CO2 presented higher energy of activation than the maximum carboxylation rate and the CO2 compensation point in the absence of mitochondrial respiration. The analysis of the Rubisco large subunit sequence revealed the existence of some sites under adaptive evolution in branches with specific kinetic traits. Because Rubisco kinetics and their temperature dependency were species specific, they largely affected the assimilation potential of Rubisco from the different crops, especially under those conditions (i.e. low CO2 availability at the site of carboxylation and high temperature) inducing Rubisco-limited photosynthesis. As an example, at 25°C, Rubisco from Hordeum vulgare and Glycine max presented, respectively, the highest and lowest potential for CO2 assimilation at both high and low chloroplastic CO2 concentrations. In our opinion, this information is relevant to improve photosynthesis models and should be considered in future attempts to design more efficient Rubiscos. PMID:27329223
Rubisco Catalytic Properties and Temperature Response in Crops.
Hermida-Carrera, Carmen; Kapralov, Maxim V; Galmés, Jeroni
2016-08-01
Rubisco catalytic traits and their thermal dependence are two major factors limiting the CO2 assimilation potential of plants. In this study, we present the profile of Rubisco kinetics for 20 crop species at three different temperatures. The results largely confirmed the existence of significant variation in the Rubisco kinetics among species. Although some of the species tended to present Rubisco with higher thermal sensitivity (e.g. Oryza sativa) than others (e.g. Lactuca sativa), interspecific differences depended on the kinetic parameter. Comparing the temperature response of the different kinetic parameters, the Rubisco Km for CO2 presented higher energy of activation than the maximum carboxylation rate and the CO2 compensation point in the absence of mitochondrial respiration. The analysis of the Rubisco large subunit sequence revealed the existence of some sites under adaptive evolution in branches with specific kinetic traits. Because Rubisco kinetics and their temperature dependency were species specific, they largely affected the assimilation potential of Rubisco from the different crops, especially under those conditions (i.e. low CO2 availability at the site of carboxylation and high temperature) inducing Rubisco-limited photosynthesis. As an example, at 25°C, Rubisco from Hordeum vulgare and Glycine max presented, respectively, the highest and lowest potential for CO2 assimilation at both high and low chloroplastic CO2 concentrations. In our opinion, this information is relevant to improve photosynthesis models and should be considered in future attempts to design more efficient Rubiscos. © 2016 American Society of Plant Biologists. All Rights Reserved.
NASA Astrophysics Data System (ADS)
Romadanov, I.; Raitses, Y.; Diallo, A.; Hara, K.; Kaganovich, I. D.; Smolyakov, A.
2018-03-01
Hall thruster operation is characterized by strong breathing oscillations of the discharge current, the plasma density, the temperature, and the electric field. Probe- and laser-induced fluorescence (LIF) diagnostics were used to measure temporal variations of plasma parameters and the xenon ion velocity distribution function (IVDF) in the near-field plasma plume in regimes with moderate (<18%) external modulations of applied DC discharge voltage at the frequency of the breathing mode. It was shown that the LIF signal collapses while the ion density at the same location is finite. The proposed explanation for this surprising result is based on a strong dependence of the excitation cross-section of metastables on the electron temperature. For large amplitudes of oscillations, the electron temperature at the minimum enters the region of very low cross-section (for the excitation of the xenon ions); thus, significantly reducing the production of metastable ions. Because the residence time of ions in the channel is generally shorter than the time scale of breathing oscillations, the density of the excited ions outside the thruster is low and they cannot be detected. In the range of temperature of oscillations, the ionization cross-section of xenon atoms remains sufficiently large to sustain the discharge. This finding suggests that the commonly used LIF diagnostic of xenon IVDF can be subject to large uncertainties in the regimes with significant oscillations of the electron temperature, or other plasma parameters.
Ylla, Irene; Romaní, Anna M; Sabater, Sergi
2012-10-01
Microbial biofilms in rivers contribute to the decomposition of the available organic matter which typically shows changes in composition and bioavailability due to their origin, seasonality, and watershed characteristics. In the context of global warming, enhanced biofilm organic matter decomposition would be expected but this effect could be specific when either a labile or a recalcitrant organic matter source would be available. A laboratory experiment was performed to mimic the effect of the predicted increase in river water temperature (+4 °C above an ambient temperature) on the microbial biofilm under differential organic matter sources. The biofilm microbial community responded to higher water temperature by increasing bacterial cell number, respiratory activity (electron transport system) and microbial extracellular enzymes (extracellular enzyme activity). At higher temperature, the phenol oxidase enzyme explained a large fraction of respiratory activity variation suggesting an enhanced microbial use of degradation products from humic substances. The decomposition of hemicellulose (β-xylosidase activity) seemed to be also favored by warmer conditions. However, at ambient temperature, the enzymes highly responsible for respiration activity variation were β-glucosidase and leu-aminopeptidase, suggesting an enhanced microbial use of polysaccharides and peptides degradation products. The addition of labile dissolved organic carbon (DOC; dipeptide plus cellobiose) caused a further augmentation of heterotrophic biomass and respiratory activity. The changes in the fluorescence index and the ratio Abs(250)/total DOC indicated that higher temperature accelerated the rates of DOC degradation. The experiment showed that the more bioavailable organic matter was rapidly cycled irrespective of higher temperature while degradation of recalcitrant substances was enhanced by warming. Thus, pulses of carbon at higher water temperature might have consequences for DOC processing.
The Genetic Control of Reproductive Development under High Ambient Temperature.
Ejaz, Mahwish; von Korff, Maria
2017-01-01
Ambient temperature has a large impact on reproductive development and grain yield in temperate cereals. However, little is known about the genetic control of development under different ambient temperatures. Here, we demonstrate that in barley (Hordeum vulgare), high ambient temperatures accelerate or delay reproductive development depending on the photoperiod response gene PHOTOPERIOD1 (Ppd-H1) and its upstream regulator EARLY FLOWERING3 (HvELF3). A natural mutation in Ppd-H1 prevalent in spring barley delayed floral development and reduced the number of florets and seeds per spike, while the wild-type Ppd-H1 or a mutant Hvelf3 allele accelerated floral development and maintained the seed number under high ambient temperatures. High ambient temperature delayed the expression phase and reduced the amplitude of clock genes and repressed the floral integrator gene FLOWERING LOCUS T1 independently of the genotype. Ppd-H1-dependent variation in flowering time under different ambient temperatures correlated with relative expression levels of the BARLEY MADS-box genes VERNALIZATION1 (HvVRN1), HvBM3, and HvBM8 in the leaf. Finally, we show that Ppd-H1 interacts with regulatory variation at HvVRN1. Ppd-H1 only accelerated floral development in the background of a spring HvVRN1 allele with a deletion in the regulatory intron. The full-length winter Hvvrn1 allele was strongly down-regulated, and flowering was delayed by high temperatures irrespective of Ppd-H1 Our findings demonstrate that the photoperiodic and vernalization pathways interact to control flowering time and floret fertility in response to ambient temperature in barley. © 2017 American Society of Plant Biologists. All Rights Reserved.
The Genetic Control of Reproductive Development under High Ambient Temperature1[OPEN
2017-01-01
Ambient temperature has a large impact on reproductive development and grain yield in temperate cereals. However, little is known about the genetic control of development under different ambient temperatures. Here, we demonstrate that in barley (Hordeum vulgare), high ambient temperatures accelerate or delay reproductive development depending on the photoperiod response gene PHOTOPERIOD1 (Ppd-H1) and its upstream regulator EARLY FLOWERING3 (HvELF3). A natural mutation in Ppd-H1 prevalent in spring barley delayed floral development and reduced the number of florets and seeds per spike, while the wild-type Ppd-H1 or a mutant Hvelf3 allele accelerated floral development and maintained the seed number under high ambient temperatures. High ambient temperature delayed the expression phase and reduced the amplitude of clock genes and repressed the floral integrator gene FLOWERING LOCUS T1 independently of the genotype. Ppd-H1-dependent variation in flowering time under different ambient temperatures correlated with relative expression levels of the BARLEY MADS-box genes VERNALIZATION1 (HvVRN1), HvBM3, and HvBM8 in the leaf. Finally, we show that Ppd-H1 interacts with regulatory variation at HvVRN1. Ppd-H1 only accelerated floral development in the background of a spring HvVRN1 allele with a deletion in the regulatory intron. The full-length winter Hvvrn1 allele was strongly down-regulated, and flowering was delayed by high temperatures irrespective of Ppd-H1. Our findings demonstrate that the photoperiodic and vernalization pathways interact to control flowering time and floret fertility in response to ambient temperature in barley. PMID:28049855
Alterations in gill structure in tropical reef fishes as a result of elevated temperatures
Bowden, A.J.; Gardiner, N.M.; Couturier, C.S.; Stecyk, J.A.W.; Nilsson, G.E.; Munday, P.L.; Rummer, J.L.
2015-01-01
Tropical regions are expected to be some of the most affected by rising sea surface temperatures (SSTs) because seasonal temperature variations are minimal. As temperatures rise, less oxygen dissolves in water, but metabolic requirements of fish and thus, the demand for effective oxygen uptake, increases. Gill remodelling is an acclimation strategy well documented in freshwater cyprinids experiencing large seasonal variations in temperature and oxygen as well as an amphibious killifish upon air exposure. However, no study has investigated whether tropical reef fishes remodel their gills to allow for increased oxygen demands at elevated temperatures. We tested for gill remodelling in five coral reef species (Acanthochromis polyacanthus, Chromis atripectoralis, Pomacentrus moluccensis, Dascyllus melanurus and Cheilodipterus quinquelineatus) from populations in northern Papua New Guinea (2° 35.765′ S; 150° 46.193′ E). Fishes were acclimated for 12-14 days to 29 and 31 °C, encompassing their seasonal range (29-31 °C), and 33 and 34 °C to account for end-of-century predicted temperatures. We measured lamellar perimeter, cross-sectional area, base thickness, and length for five filaments on the 2nd gill arches and qualitatively assessed 3rd gill arches via scanning electron microscopy (SEM). All species exhibited significant differences in the quantitative measurements made on the lamellae, but no consistent trends with temperature were observed. SEM only revealed alterations in gill morphology in P. moluccensis. The overall lack of changes in gill morphology with increasing temperature suggests that these near-equatorial reef fishes may fail to maintain adequate O2 uptake under future climate scenarios unless other adaptive mechanisms are employed. PMID:24862962
Pardikes, Nicholas A; Shapiro, Arthur M; Dyer, Lee A; Forister, Matthew L
2015-11-01
Understanding the spatial and temporal scales at which environmental variation affects populations of plants and animals is an important goal for modern population biology, especially in the context of shifting climatic conditions. The El Niño Southern Oscillation (ENSO) generates climatic extremes of interannual variation, and has been shown to have significant effects on the diversity and abundance of a variety of terrestrial taxa. However, studies that have investigated the influence of such large-scale climate phenomena have often been limited in spatial and taxonomic scope. We used 23 years (1988-2010) of a long-term butterfly monitoring data set to explore associations between variation in population abundance of 28 butterfly species and variation in ENSO-derived sea surface temperature anomalies (SSTA) across 10 sites that encompass an elevational range of 2750 m in the Sierra Nevada mountain range of California. Our analysis detected a positive, regional effect of increased SSTA on butterfly abundance (wetter and warmer years predict more butterfly observations), yet the influence of SSTA on butterfly abundances varied along the elevational gradient, and also differed greatly among the 28 species. Migratory species had the strongest relationships with ENSO-derived SSTA, suggesting that large-scale climate indices are particularly valuable for understanding biotic-abiotic relationships of the most mobile species. In general, however, the ecological effects of large-scale climatic factors are context dependent between sites and species. Our results illustrate the power of long-term data sets for revealing pervasive yet subtle climatic effects, but also caution against expectations derived from exemplar species or single locations in the study of biotic-abiotic interactions.
The oxygen-18 isotope approach for measuring aquatic metabolism in high-productivity waters
Tobias, C.R.; Böhlke, J.K.; Harvey, J.W.
2007-01-01
We examined the utility of ??18O2 measurements in estimating gross primary production (P), community respiration (R), and net metabolism (P:R) through diel cycles in a productive agricultural stream located in the midwestern U.S.A. Large diel swings in O2 (??200 ??mol L-1) were accompanied by large diel variation in ??18O2 (??10???). Simultaneous gas transfer measurements and laboratory-derived isotopic fractionation factors for O2 during respiration (??r) were used in conjunction with the diel monitoring of O2 and ??18O2 to calculate P, R, and P:R using three independent isotope-based methods. These estimates were compared to each other and against the traditional "open-channel diel O2-change" technique that lacked ??18O2. A principal advantage of the ??18O2 measurements was quantification of diel variation in R, which increased by up to 30% during the day, and the diel pattern in R was variable and not necessarily predictable from assumed temperature effects on R. The P, R, and P:R estimates calculated using the isotope-based approaches showed high sensitivity to the assumed system fractionation factor (??r). The optimum modeled ??r values (0.986-0.989) were roughly consistent with the laboratory-derived values, but larger (i.e., less fractionation) than ??r values typically reported for enzyme-limited respiration in open water environments. Because of large diel variation in O2, P:R could not be estimated by directly applying the typical steady-state solution to the O2 and 18O-O2 mass balance equations in the absence of gas transfer data. Instead, our results indicate that a modified steady-state solution (the daily mean value approach) could be used with time-averaged O2 and ??18O2 measurements to calculate P:R independent of gas transfer. This approach was applicable under specifically defined, net heterotrophic conditions. The diel cycle of increasing daytime R and decreasing nighttime R was only partially explained by temperature variation, but could be consistent with the diel production/consumption of labile dissolved organic carbon from photosynthesis. ?? 2007, by the American Society of Limnology and Oceanography, Inc.