Assessment of tidal range energy resources based on flux conservation in Jiantiao Bay, China
NASA Astrophysics Data System (ADS)
Du, Min; Wu, He; Yu, Huaming; Lv, Ting; Li, Jiangyu; Yu, Yujun
2017-12-01
La Rance Tidal Range Power Station in France and Jiangxia Tidal Range Power Station in China have been both long-term successful commercialized operations as kind of role models for public at large for more than 40 years. The Sihwa Lake Tidal Range Power Station in South Korea has also developed to be the largest marine renewable power station with its installed capacity 254 MW since 2010. These practical applications prove that the tidal range energy as one kind of marine renewable energy exploitation and utilization technology is becoming more and more mature and it is used more and more widely. However, the assessment of the tidal range energy resources is not well developed nowadays. This paper summarizes the main problems in tidal range power resource assessment, gives a brief introduction to tidal potential energy theory, and then we present an analyzed and estimated method based on the tide numerical modeling. The technical characteristics and applicability of these two approaches are compared with each other. Furthermore, based on the theory of tidal range energy generation combined with flux conservation, this paper proposes a new assessment method that include a series of evaluation parameters and it can be easily operated to calculate the tidal range energy of the sea. Finally, this method is applied on assessment of the tidal range power energy of the Jiantiao Harbor in Zhejiang Province, China for demonstration and examination.
The dependence of estuarine turbidity on tidal intrusion length, tidal range and residence time
Uncles, R.J.; Stephens, J.A.; Smith, R.E.
2002-01-01
It is shown that there is a marked tendency for long, strongly tidal estuaries to have greater suspended particulate matter (SPM) concentrations within their high-turbidity regions than shorter estuaries with comparable tidal ranges at their mouths, or weakly tidal estuaries. Using consistently derived data from 44 estuaries in Europe and the Americas, contours of the logarithm of maximum estuarine SPM concentration are shown to be reasonably smooth when plotted against the logarithm of mean spring tidal range (at the estuary mouth) and the logarithm of estuarine tidal length. Predictions from the plot are compared with published observations made in the Delaware, Scheldt, Rio de la Plata, Gironde, Bay of Fundy, Changjiang (Yangtze), Amazon, Paros Lagoon and the Hawkesbury Estuary and it is shown that, qualitatively, there are no serious discrepancies. Short, weakly tidal estuaries are predicted to have very low 'intrinsic' SPM concentrations. High SPM concentrations in these estuaries would most likely be the result of either locally generated wave resuspension, high freshwater sediment loads due to freshets, or intruding seawater carrying suspended sediments derived from wave activity in the coastal zone. Application of a generic tidal model demonstrates that longer estuaries possess faster tidal currents for a given tidal range at their mouth and, in the presence of a supply of erodable fine sediment, therefore (by implication) produce greater concentrations of SPM that can be accumulated within a turbidity maximum. The same is true if the tidal range is increased for estuaries of a given length. These features are illustrated by comparing surveys of SPM data from two large estuaries possessing greatly different tidal ranges (the microtidal, medium turbidity Potomac and the macrotidal, highly turbid Humber-Ouse) and a third, much smaller but strongly tidal estuary (the low-turbidity Tweed). It is demonstrated that longer estuaries tend to have longer flushing times for solutes than shorter systems and that larger tides tend to reduce flushing times, although the tidal influence is secondary. Short, rapidly flushed estuaries quickly lose their erodable fine sediment to the coastal zone during freshets and during the ebbing currents of spring tides. Turbidity is therefore small during low runoff, low wave activity conditions. Very long, very slowly flushed estuaries are unlikely to lose a significant fraction of their resuspended sediments during freshets or individual ebb tides and are therefore able to accumulate large and increasing amounts of fine sediment in the long-term. Turbidity within them is therefore high during the fast currents of large spring tides. ?? 2002 Elsevier Science Ltd. All rights reserved.
The dependence of estuarine turbidity on tidal intrusion length, tidal range and residence time
Uncles, R.J.; Stephens, J.A.; Smith, R.E.
2002-01-01
It is shown that there is a marked tendency for long, strongly tidal estuaries to have greater suspended particulate matter (SPM) concentrations within their high-turbidity regions than shorter estuaries with comparable tidal ranges at their mouths, or weakly tidal estuaries. Using consistently derived data from 44 estuaries in Europe and the Americas, contours of the logarithm of maximum estuarine SPM concentration are shown to be reasonably smooth when plotted against the logarithm of mean spring tidal range (at the estuary mouth) and the logarithm of estuarine tidal length. Predictions from the plot are compared with published observations made in the Delaware, Scheldt, Rio de la Plata, Gironde, Bay of Fundy, Changjiang (Yangtze), Amazon, Patos Lagoon and the Hawkesbury Estuary and it is shown that, qualitatively, there are no serious discrepancies. Short, weakly tidal estuaries are predicted to have very low ‘intrinsic’ SPM concentrations. High SPM concentrations in these estuaries would most likely be the result of either locally generated wave resuspension, high freshwater sediment loads due to freshets, or intruding seawater carrying suspended sediments derived from wave activity in the coastal zone. Application of a generic tidal model demonstrates that longer estuaries possess faster tidal currents for a given tidal range at their mouth and, in the presence of a supply of erodable fine sediment, therefore (by implication) produce greater concentrations of SPM that can be accumulated within a turbidity maximum. The same is true if the tidal range is increased for estuaries of a given length. These features are illustrated by comparing surveys of SPM data from two large estuaries possessing greatly different tidal ranges (the microtidal, medium turbidity Potomac and the macrotidal, highly turbid Humber-Ouse) and a third, much smaller but strongly tidal estuary (the low-turbidity Tweed). It is demonstrated that longer estuaries tend to have longer flushing times for solutes than shorter systems and that larger tides tend to reduce flushing times, although the tidal influence is secondary. Short, rapidly flushed estuaries quickly lose their erodable fine sediment to the coastal zone during freshets and during the ebbing currents of spring tides. Turbidity is therefore small during low runoff, low wave activity conditions. Very long, very slowly flushed estuaries are unlikely to lose a significant fraction of their resuspended sediments during freshets or individual ebb tides and are therefore able to accumulate large and increasing amounts of fine sediment in the long-term. Turbidity within them is therefore high during the fast currents of large spring tides.
Near-bed turbulence and sediment flux measurements in tidal channels
Wright, S.A.; Whealdon-Haught, D.R.
2012-01-01
Understanding the hydrodynamics and sediment transport dynamics in tidal channels is important for studies of estuary geomorphology, sediment supply to tidal wetlands, aquatic ecology and fish habitat, and dredging and navigation. Hydrodynamic and sediment transport data are essential for calibration and testing of numerical models that may be used to address management questions related to these topics. Herein we report preliminary analyses of near-bed turbulence and sediment flux measurements in the Sacramento-San Joaquin Delta, a large network of tidal channels and wetlands located at the confluence of the Sacramento and San Joaquin Rivers, California, USA (Figure 1). Measurements were made in 6 channels spanning a wide range of size and tidal conditions, from small channels that are primarily fluvial to large channels that are tidally dominated. The results of these measurements are summarized herein and the hydrodynamic and sediment transport characteristics of the channels are compared across this range of size and conditions.
Storm surge and tidal range energy
NASA Astrophysics Data System (ADS)
Lewis, Matthew; Angeloudis, Athanasios; Robins, Peter; Evans, Paul; Neill, Simon
2017-04-01
The need to reduce carbon-based energy sources whilst increasing renewable energy forms has led to concerns of intermittency within a national electricity supply strategy. The regular rise and fall of the tide makes prediction almost entirely deterministic compared to other stochastic renewable energy forms; therefore, tidal range energy is often stated as a predictable and firm renewable energy source. Storm surge is the term used for the non-astronomical forcing of tidal elevation, and is synonymous with coastal flooding because positive storm surges can elevate water-levels above the height of coastal flood defences. We hypothesis storm surges will affect the reliability of the tidal range energy resource; with negative surge events reducing the tidal range, and conversely, positive surge events increasing the available resource. Moreover, tide-surge interaction, which results in positive storm surges more likely to occur on a flooding tide, will reduce the annual tidal range energy resource estimate. Water-level data (2000-2012) at nine UK tide gauges, where the mean tidal amplitude is above 2.5m and thus suitable for tidal-range energy development (e.g. Bristol Channel), were used to predict tidal range power with a 0D modelling approach. Storm surge affected the annual resource estimate by between -5% to +3%, due to inter-annual variability. Instantaneous power output were significantly affected (Normalised Root Mean Squared Error: 3%-8%, Scatter Index: 15%-41%) with spatial variability and variability due to operational strategy. We therefore find a storm surge affects the theoretical reliability of tidal range power, such that a prediction system may be required for any future electricity generation scenario that includes large amounts of tidal-range energy; however, annual resource estimation from astronomical tides alone appears sufficient for resource estimation. Future work should investigate water-level uncertainties on the reliability and predictability of tidal range energy with 2D hydrodynamic models.
NASA Astrophysics Data System (ADS)
Du, Jiabi; Shen, Jian; Zhang, Yinglong J.; Ye, Fei; Liu, Zhuo; Wang, Zhengui; Wang, Ya Ping; Yu, Xin; Sisson, Mac; Wang, Harry V.
2018-01-01
Tidal response to sea-level rise (SLR) varies in different coastal systems. To provide a generic pattern of tidal response to SLR, a systematic investigation was conducted using numerical techniques applied to idealized and realistic estuaries, with model results cross-checked by analytical solutions. Our results reveal that the response of tidal range to SLR is nonlinear, spatially heterogeneous, and highly affected by the length and bathymetry of an estuary and weakly affected by the estuary convergence with an exception of strong convergence. Contrary to the common assumption that SLR leads to a weakened bottom friction, resulting in increased tidal amplitude, we demonstrate that tidal range is likely to decrease in short estuaries and in estuaries with a narrow channel and large low-lying shallow areas.
Computer Simulations of Deltas with Varying Fluvial Input and Tidal Forcing
NASA Astrophysics Data System (ADS)
Sun, T.
2015-12-01
Deltas are important depositional systems because many large hydrocarbon reservoirs in the world today are found in delta deposits. Deltas form when water and sediments carried by fluvial channels are emptied to an open body of water, and form delta shaped deposits. Depending on the relative importance of the physical processes that controls the forming and the growth of deltas, deltas can often be classified into three different types, namely fluvial, tidal and wave dominated delta. Many previous works, using examples from modern systems, tank experiments, outcrops, and 2 and 3D seismic data sets, have studied the shape, morphology and stratigraphic architectures corresponding to each of the deltas' types. However, few studies have focused on the change of these properties as a function of the relative change of the key controls, and most of the studies are qualitative. Here, using computer simulations, the dynamics of delta evolutions under an increasing amount of tidal influences are studied. The computer model used is fully based on the physics of fluid flow and sediment transport. In the model, tidal influences are taken into account by setting proper boundary conditions that varies both temporally and spatially. The model is capable of capturing many important natural geomorphic and sedimentary processes in fluvial and tidal systems, such as channel initiation, formation of channel levees, growth of mouth bars, bifurcation of channels around channel mouth bars, and channel avulsion. By systematically varying tidal range and fluvial input, the following properties are investigated quantitatively: (1) the presence and the form of tidal beds as a function of tidal range, (2) change of stratigraphic architecture of distributary channel mouth bars or tidal bars as tidal range changes, (3) the transport and sorting of different grainsizes and the overall facie distributions in the delta with different tidal ranges, and (4) the conditions and locations of mud drapes with different magnitude of tidal forcing.
Survey on utility technology of a tidal and ocean current energy
NASA Astrophysics Data System (ADS)
Hirose, Manabu; Kadoyu, Masataka; Tanaka, Hiroyoshi
1987-06-01
A study is made to show the current technological levels in Japan and other nations regarding the conversion of tidal current or ocean current energy to electric power and to determine the latent energy quantities and energy-related characteristics of tidal and ocean currents. In Japan, relatively large-scale experiments made so far mostly used one of the following three types of devices: Savonius-wheel type, Darrieus-wheel type, and cross-flow-wheel type. Field experiments of tidal energy conversion have been performed at the Naruto and Kurushima Straits. The energy in the Kuroshio current is estimated at about 170 billion kWh per year. Ocean current energy does not undergo large seasonal variations. The total energy in major straits and channels in the Inland Sea and other sea areas to the west is estimated at about 124 billion kWh per year. Tidal current energy shows large seasonal variations, but it is possible to predict the changes. A survey is made to determine energy-related characteristics of a tidal current at Chichino-seto, Kagoshima Prefecture. At Chichino-seto, the flow velocity ranges from 0 to 2.2m/s, with a latent tidal current energy of about 70 kW, of which about 20 kW can actually be utilized.
Effect of Tide Elevation on Extratropical Storm Surge in Northwest Europe
NASA Astrophysics Data System (ADS)
Keshtpoor, M.; Carnacina, I.; Yablonsky, R. M.
2016-12-01
Extratropical cyclones (ETCs) are the major storm surge-generating meteorological events in northwest Europe. The total water level increase induced by these ETCs is significantly influenced by the local tidal range, which exceeds 8 meters along the southwestern UK coastline. In particular, a surge-generating ETC during high tide may put coastal assets and infrastructure in risk. Also, during low tide, the risk of surge induced by extreme ETC events is diminished. Here, the effect of tidal elevation on storm surge is investigated at 196 tide gauges in northwest Europe. A numerical, hydrodynamic model was developed using Delft3D-FM framework to simulate the coastal hydrodynamics during ETCs. Then, 1750 historical events were simulated to investigate the pattern of coastal inundation. Results suggest that in areas with a large tidal range ( 8 meters) and during the time period surrounding high or low tide, the pattern of coastal hydrodynamics is governed by tide and not storm surge. This result is most evident near the English Channel and Bristol Channel, where low frequency maximum water levels are observed when storm surge is combined with high tide. In contrast, near the tidal phase reversal, coastal hydrodynamics responds primarily to the storm surge, and low frequency maximum water elevation largely depends on the surge. In the areas with a small tidal range, ETC strength determines the pattern of coastal inundation.
NASA Astrophysics Data System (ADS)
De Dominicis, Michela; O'Hara Murray, Rory; Wolf, Judith
2017-04-01
A comprehensive assessment of the tidal energy resource realistically available for electricity generation and the study of the potential environmental impacts associated with its extraction in the Pentland Firth (Scottish Waters, UK) are presented. In order to examine both local (< 100 km) and region-wide (>100 km) spatial scales, the Scottish Shelf Model (SSM), an unstructured grid three-dimensional FVCOM (Finite Volume Community Ocean Model) model implementation has been used, since it covers the entire NW European Shelf, with a high resolution where the tidal stream energy is extracted. A large theoretical array of tidal stream turbines has been designed and implemented in the model using the momentum sink approach, in which a momentum sink term represents the loss of momentum due to tidal energy extraction. The estimate of the maximum available power for electricity generation from the Pentland Firth is 1.64 GW, which requires thousands of turbines to be deployed. This estimate takes into account the tidal stream energy extraction feedbacks on the flow and considers, for the first time, the realistic operation of a generic tidal stream turbine, which is limited to operate in a range of flow velocities due to technological constraints. The ocean response to the extraction of 1.64 GW of energy has been examined by comparing a typical annual cycle of the NW European Shelf hydrodynamics reproduced by the SSM with the same period perturbed by tidal stream energy extraction. The changes were analysed at the temporal scale of a spring-neap tidal cycle and, for the first time, on longer term seasonal timescales. Tidal elevation mainly increases in the vicinity of the tidal farm, while far-field effects show a decrease in the mean spring tidal range of the order of 2 cm along the whole east coast of the UK, possibly counteracting some part of the predicted sea level rise due to climate change. Marine currents, both tidal and residual flows, are also affected. They can slow down due to the turbines action or speed up due to flow diversion processes, on both a local and regional scale. The strongest signal in tidal velocities is an overall reduction, which can in turn decrease the energy of tidal mixing and perturb the seasonal stratification on the NW European Shelf. Although the strength of summer water stratification has been found to slightly increase, the extent of the stratified region does not greatly change, thus suggesting the enhanced biological and pelagic biodiversity hotspots, e.g. tidal mixing front locations, are not displaced. Such large scale tidal stream energy extraction is unlikely to occur in the near future, but such potential changes should be considered when planning future tidal energy exploitation. It is likely that large scale developments around the NW European shelf will interact and could, for example, intensify or weaken the changes predicted here, or even be used as mitigation measures (e.g. coastal defence) for other changes (e.g. climate change).
Spatial Shifts in Tidal-Fluvial Environments
NASA Astrophysics Data System (ADS)
Dykstra, S. L.; Dzwonkowski, B.
2017-12-01
Fresh water discharge damps tidal propagation and increases the phase lag, which has important impacts on system-wide sediment transport process and ecological structure. Here, the role of discharge on spatial variability in the dynamics of tidal rivers is investigated in Mobile Bay and Delta, a microtidal diurnal system where discharge ranges multiple orders of magnitude. Long-term observations at 7 velocity stations and 20 water level stations, ranging over 260km along the system, were analyzed. Observations of the tidal extinguishing point in both velocity and water level were highly variable with significant shifts in location covering a distance over 140km. The velocity stations also allowed for measuring the extent of flood (i.e. point where tidal flow is arrested by discharge) shifting 100km. With increased discharge, flow characteristics at station locations can transition from an estuary (i.e. bidirectional tidal flow) to a tidal river to a traditional fluvial environment. This revealed systematic discharge induced damping and an increase in phase lag. Interestingly, before damping occurs, the tide amplifies ( 15%) seaward of the extent of flood. Another consistent pattern is the higher sensitivity of the velocity signal to discharge than water level. This causes the velocity to lag more and create progressive tides. In a microtidal diurnal system, the signal propagates further inland than a semidiurnal tide due to its lower frequency but is easily damped due to the small amplitude, creating large shifts. Previous research has focused on environments dominated by semidiurnal tides with similar magnitudes to discharge using water level observations. For example, the well studied Columbia and the St. Lawrence rivers have small shifts in their tidal extinguishing point O(10km) (Jay 2016, Matte 2014). These shifts are not large enough to observe process like discharge-induced amplification and damping at the same site like in the Mobile system, but they may indicate a decoupling of the water level and velocity signal by discharge. Throughout the world, shifts in tidal rivers are created by seasonal discharge patterns, but large storms can quickly disrupt a system and move it over 140km in a few days.
Schoellhamer, D.H.
2002-01-01
Singular spectrum analysis for time series with missing data (SSAM) was used to reconstruct components of a 6-yr time series of suspended-sediment concentration (SSC) from San Francisco Bay. Data were collected every 15 min and the time series contained missing values that primarily were due to sensor fouling. SSAM was applied in a sequential manner to calculate reconstructed components with time scales of variability that ranged from tidal to annual. Physical processes that controlled SSC and their contribution to the total variance of SSC were (1) diurnal, semidiurnal, and other higher frequency tidal constituents (24%), (2) semimonthly tidal cycles (21%), (3) monthly tidal cycles (19%), (4) semiannual tidal cycles (12%), and (5) annual pulses of sediment caused by freshwater inflow, deposition, and subsequent wind-wave resuspension (13%). Of the total variance 89% was explained and subtidal variability (65%) was greater than tidal variability (24%). Processes at subtidal time scales accounted for more variance of SSC than processes at tidal time scales because sediment accumulated in the water column and the supply of easily erodible bed sediment increased during periods of increased subtidal energy. This large range of time scales that each contained significant variability of SSC and associated contaminants can confound design of sampling programs and interpretation of resulting data.
Savidge, William B; Brink, Jonathan; Blanton, Jackson O
2016-12-01
Oxygen concentrations and oxygen utilization rates were monitored continuously for 23 months on marsh platforms and in small tidal creeks at two sites in coastal Georgia, USA, that receive urban stormwater runoff via an extensive network of drainage canals. These data were compared to nearby control sites that receive no significant surface runoff. Overall, rainfall and runoff per se were not associated with differences in the oxygen dynamics among the different locations. Because of the large tidal range and long tidal excursions in coastal Georgia, localized inputs of stormwater runoff are rapidly mixed with large volumes of ambient water. Oxygen concentrations in tidal creeks and on flooded marsh platforms were driven primarily by balances of respiration and photosynthesis in the surrounding regional network of marshes and open estuarine waters. Local respiration, while measurable, was of relatively minor importance in determining oxygen concentrations in tidal floodwaters. Water residence time on the marshes could explain differences in oxygen concentration between the runoff-influenced and control sites.
NASA Astrophysics Data System (ADS)
Savidge, William B.; Brink, Jonathan; Blanton, Jackson O.
2016-12-01
Oxygen concentrations and oxygen utilization rates were monitored continuously for 23 months on marsh platforms and in small tidal creeks at two sites in coastal Georgia, USA, that receive urban stormwater runoff via an extensive network of drainage canals. These data were compared to nearby control sites that receive no significant surface runoff. Overall, rainfall and runoff per se were not associated with differences in the oxygen dynamics among the different locations. Because of the large tidal range and long tidal excursions in coastal Georgia, localized inputs of stormwater runoff are rapidly mixed with large volumes of ambient water. Oxygen concentrations in tidal creeks and on flooded marsh platforms were driven primarily by balances of respiration and photosynthesis in the surrounding regional network of marshes and open estuarine waters. Local respiration, while measurable, was of relatively minor importance in determining oxygen concentrations in tidal floodwaters. Water residence time on the marshes could explain differences in oxygen concentration between the runoff-influenced and control sites.
Influence of tidal range on the stability of coastal marshland
Kirwan, Matthew L.; Guntenspergen, Glenn R.
2010-01-01
Early comparisons between rates of vertical accretion and sea level rise across marshes in different tidal ranges inspired a paradigm that marshes in high tidal range environments are more resilient to sea level rise than marshes in low tidal range environments. We use field-based observations to propose a relationship between vegetation growth and tidal range and to adapt two numerical models of marsh evolution to explicitly consider the effect of tidal range on the response of the marsh platform channel network system to accelerating rates of sea level rise. We find that the stability of both the channel network and vegetated platform increases with increasing tidal range. Our results support earlier hypotheses that suggest enhanced stability can be directly attributable to a vegetation growth range that expands with tidal range. Accretion rates equilibrate to the rate of sea level rise in all experiments regardless of tidal range, suggesting that comparisons between accretion rate and tidal range will not likely produce a significant relationship. Therefore, our model results offer an explanation to widely inconsistent field-based attempts to quantify this relationship while still supporting the long-held paradigm that high tidal range marshes are indeed more stable.
Relevance of Tidal Heating on Large TNOs
NASA Technical Reports Server (NTRS)
Saxena, Prabal; Renaud, Joe P.; Henning, Wade G.; Jutzi, Martin; Hurford, Terry A.
2017-01-01
We examine the relevance of tidal heating for large Trans-Neptunian Objects, with a focus on its potential to melt and maintain layers of subsurface liquid water. Depending on their past orbital evolution, tidal heating may be an important part of the heat budget for a number of discovered and hypothetical TNO systems and may enable formation of, and increased access to, subsurface liquid water. Tidal heating induced by the process of despinning is found to be particularly able to compete with heating due to radionuclide decay in a number of different scenarios. In cases where radiogenic heating alone may establish subsurface conditions for liquid water, we focus on the extent by which tidal activity lifts the depth of such conditions closer to the surface. While it is common for strong tidal heating and long lived tides to be mutually exclusive, we find this is not always the case, and highlight when these two traits occur together. We find cases where TNO systems experience tidal heating that is a significant proportion of, or greater than radiogenic heating for periods ranging from100 s of millions to a billion years. For subsurface oceans that contain a small antifreeze component, tidal heating due to very high initial spin states may enable liquid water to be preserved right up to the present day. Of particular interest is the Eris-Dysnomia system, which in those cases may exhibit extant cryovolcanism.
Relevance of tidal heating on large TNOs
NASA Astrophysics Data System (ADS)
Saxena, Prabal; Renaud, Joe P.; Henning, Wade G.; Jutzi, Martin; Hurford, Terry
2018-03-01
We examine the relevance of tidal heating for large Trans-Neptunian Objects, with a focus on its potential to melt and maintain layers of subsurface liquid water. Depending on their past orbital evolution, tidal heating may be an important part of the heat budget for a number of discovered and hypothetical TNO systems and may enable formation of, and increased access to, subsurface liquid water. Tidal heating induced by the process of despinning is found to be particularly able to compete with heating due to radionuclide decay in a number of different scenarios. In cases where radiogenic heating alone may establish subsurface conditions for liquid water, we focus on the extent by which tidal activity lifts the depth of such conditions closer to the surface. While it is common for strong tidal heating and long lived tides to be mutually exclusive, we find this is not always the case, and highlight when these two traits occur together. We find cases where TNO systems experience tidal heating that is a significant proportion of, or greater than radiogenic heating for periods ranging from100‧s of millions to a billion years. For subsurface oceans that contain a small antifreeze component, tidal heating due to very high initial spin states may enable liquid water to be preserved right up to the present day. Of particular interest is the Eris-Dysnomia system, which in those cases may exhibit extant cryovolcanism.
Flocculation and sediment deposition in a hypertidal creek
NASA Astrophysics Data System (ADS)
O'Laughlin, C.; van Proosdij, D.; Milligan, T. G.
2014-07-01
In the hypertidal Bay of Fundy, environmental impacts in response to commercial-scale tidal power development remain to be fully understood. The extraction of tidal energy may impact sediment dynamics in far-field environments, such as the intertidal zone, through potential alterations to tidal amplitude in the Minas Basin. Tidal conditions (e.g. current velocity, turbulence, suspended sediment concentration) were monitored in a sheltered salt marsh creek over 18 tidal cycles in various stages of the spring-neap cycle. Samples of deposited and suspended sediments were collected and analyzed for grain size using a Beckman Coulter Multisizer III. Results suggest that the flocculated component of both deposited and suspended sediment is consistently high over a wide range of tidal conditions. A routinely high incoming concentration of highly-flocculated material results in large amounts of sediment deposition in tidal creeks in response to individual tidal cycles. Resuspension and removal of newly deposited material is shown to vary with over-marsh, bankfull and channel-restricted tides. Disruption of the tidal regime due to a reduction in Minas Basin tidal amplitude may lessen the cumulative export capacity of tidal channels over time, potentially leading to gradual infilling of tidal creeks. The long-term effects of tidal power development on intertidal areas are generally unknown.
Assessing Sustainable Developments in a Coastal Region: the Garolim Bay in the West Coast of Korea
NASA Astrophysics Data System (ADS)
Park, M. J.
2016-12-01
The Garolim Bay is a semi-enclosed bay located in the west coast of Korea and has a spring tidal range over 6 m. It is well known for vast tidal flats and healthy ecosystems that supports high productive and diverse marine lives. Due to its large tidal range it was considered favorable site for the construction of tidal power plant and went through controversies over decades. Local fishermen depending on their livelihood over generations strongly opposed the construction, so did the most environmental groups. They argued that construction of the tidal barrage at the entrance of the bay will reduce the tidal range resulting in increase of mud content of bottom sediments and disruption of marine lives. On the other hand, the power generation industry and some local residents supported the construction arguing that the tidal power is renewable energy and contributes to reduction of CO2 emission along with economic benefits from tourists' sightseeing of the tidal power plant. The application of the tidal power plant construction at the Garolim Bay was not approved by the Korean government due to the concerns of environmental impacts on the marine lives of the Garolim Bay region. This study briefly reviews developments associated with the tidal power plant construction in the Garolim Bay and considers how to approach the assessment of the sustainable development of the coastal region of the Garolim Bay in accordance with UN Sustainable Development Goals (SDG) 2030 with appropriate goals, targets and monitoring indicators. It will be of keen interests to policy makers of central and local governments as well as local residents to monitor and find out the benefits pursuing SDG in the Garolim Bay where conflicts of interests among stakeholders persisted, and may exemplify the case for other regions of similar situations.
Geist, Eric L.; Jakob, Matthias; Wieczoreck, Gerald F.; Dartnell, Peter
2003-01-01
A landslide block perched on the northern wall of Tidal Inlet, Glacier Bay National Park (Figure 1), has the potential to generate large waves in Tidal Inlet and the western arm of Glacier Bay if it were to fail catastrophically. Landslide-generated waves are a particular concern for cruise ships transiting through Glacier Bay on a daily basis during the summer months. The objective of this study is to estimate the range of wave amplitudes and periods in the western arm of Glacier Bay from a catastrophic landslide in Tidal Inlet. This study draws upon preliminary findings of a field survey by Wieczorek et al. (2003), and evaluates the effects of variations in landslide source parameters on the wave characteristics.
Bearman, J.A.; Friedrichs, Carl T.; Jaffe, B.E.; Foxgrover, A.C.
2010-01-01
Spatial trends in the shape of profiles of South San Francisco Bay (SSFB) tidal flats are examined using bathymetric and lidar data collected in 2004 and 2005. Eigenfunction analysis reveals a dominant mode of morphologic variability related to the degree of convexity or concavity in the cross-shore profileindicative of (i) depositional, tidally dominant or (ii) erosional, wave impacted conditions. Two contrasting areas of characteristic shapenorth or south of a constriction in estuary width located near the Dumbarton Bridgeare recognized. This pattern of increasing or decreasing convexity in the inner or outer estuary is correlated to spatial variability in external and internal environmental parameters, and observational results are found to be largely consistent with theoretical expectations. Tidal flat convexity in SSFB is observed to increase (in decreasing order of significance) in response to increased deposition, increased tidal range, decreased fetch length, decreased sediment grain size, and decreased tidal flat width. ?? 2010 Coastal Education and Research Foundation.
Combined impacts of tidal energy extraction and sea level rise in the Gulf of Maine
NASA Astrophysics Data System (ADS)
Hashemi, M. R.; Kresning, B.
2016-12-01
The objective of this study was to assess the combined effects of SLR and tidal energy extraction on the dynamics of tides in the Gulf of Maine in both US and Canadian waters. The dynamics of tides in the Gulf of Maine is dominated by tidal resonance, which generates one of the largest tidal ranges in the world. Further, sea level rise (SLR) is affecting tidal circulations globally, and in the Gulf of Maine. A large tidal energy resource is available in the Gulf of Maine, particularly in the Bay of Fundy, and is expected to be harvested in the future. Currently, more than 6 projects are operational or under development in this region (in both US and Canadian waters). Understanding the far-field impacts of tidal-stream arrays is important for future development of tidal energy extraction. The impacts include possible changes in water elevation, which can potentially increase flooding in coastal areas. Further, SLR can affect tidal energy resources and the impacts of tidal energy extraction during the project lifetime - which is usually more than 25 years. A tidal model of the Gulf of Maine was developed using Regional Ocean Model System (ROMS) at one arcminute scale. An array of turbines were simulated in the model. After validation of the model at NOAA tidal gauge stations and NERACOOS buoys, several scenarios; including SLR scenario, and tidal extraction scenario, were examined. In particular, the results of a recent research was used to assess the impacts of SLR on the boundary of the model domain, which was neglected in previous studies. The results of the impacts of the tidal energy extraction with and without the SLR were presented, and compared with those from literature. This includes the decrease of tidal range and M2 amplitude in Minas Basin due to the 2.5 GW extraction scenario, and possible changes in Massachusetts coastal area. The impacts were compared with the level of uncertainty in the model. It was shown that the impact of SLR on the dynamics of tides is more than those from energy extraction assuming 2.5 GW extraction in Minas Passage.
From Globular Clusters to Tidal Dwarfs: Structure Formation in the Tidal Tails of Merging Galaxies
NASA Astrophysics Data System (ADS)
Knierman, Karen A.; Gallagher, Sarah C.; Charlton, Jane C.; Hunsberger, Sally D.; Whitmore, Bradley; Kundu, Arunav; Hibbard, J. E.; Zaritsky, Dennis
2003-09-01
Using V and I images obtained with the Wide Field Planetary Camera 2 (WFPC2) of the Hubble Space Telescope, we investigate compact stellar structures within tidal tails. Six regions of tidal debris in the four classic ``Toomre sequence'' mergers: NGC 4038/39 (``Antennae''), NGC 3256, NGC 3921, and NGC 7252 (``Atoms for Peace'') have been studied in order to explore how the star formation depends on the local and global physical conditions. These mergers sample a range of stages in the evolutionary sequence and tails with and without embedded tidal dwarf galaxies. The six tails are found to contain a variety of stellar structures, with sizes ranging from those of globular clusters up to those of dwarf galaxies. From V and I WFPC2 images, we measure the luminosities and colors of the star clusters. NGC 3256 is found to have a large population of blue clusters (0.2<~V-I<~0.9), particularly in its western tail, similar to those found in the inner region of the merger. In contrast, NGC 4038/39 has no clusters in the observed region of the tail, only less luminous point sources likely to be individual stars. NGC 3921 and NGC 7252 have small populations of clusters along their tails. A significant cluster population is clearly associated with the prominent tidal dwarf candidates in the eastern and western tails of NGC 7252. The cluster-rich western tail of NGC 3256 is not distinguished from the others by its dynamical age or by its total H I mass. However, the mergers that have few clusters in the tail all have tidal dwarf galaxies, while NGC 3256 does not have prominent tidal dwarfs. We speculate that star formation in tidal tails may manifest itself either in small structures like clusters along the tail or in large structures such as dwarf galaxies, but not in both. Also, NGC 3256 has the highest star formation rate of the four mergers studied, which may contribute to the high number of star clusters in its tidal tails. Based in part on observations obtained with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy (AURA), Inc., under NASA contract NAS 5-26555.
Kotta, Jonne; Oganjan, Katarina; Lauringson, Velda; Pärnoja, Merli; Kaasik, Ants; Rohtla, Liisa; Kotta, Ilmar; Orav-Kotta, Helen
2015-01-01
Benthic suspension feeding mussels are an important functional guild in coastal and estuarine ecosystems. To date we lack information on how various environmental gradients and biotic interactions separately and interactively shape the distribution patterns of mussels in non-tidal environments. Opposing to tidal environments, mussels inhabit solely subtidal zone in non-tidal waterbodies and, thereby, driving factors for mussel populations are expected to differ from the tidal areas. In the present study, we used the boosted regression tree modelling (BRT), an ensemble method for statistical techniques and machine learning, in order to explain the distribution and biomass of the suspension feeding mussel Mytilus trossulus in the non-tidal Baltic Sea. BRT models suggested that (1) distribution patterns of M. trossulus are largely driven by separate effects of direct environmental gradients and partly by interactive effects of resource gradients with direct environmental gradients. (2) Within its suitable habitat range, however, resource gradients had an important role in shaping the biomass distribution of M. trossulus. (3) Contrary to tidal areas, mussels were not competitively superior over macrophytes with patterns indicating either facilitative interactions between mussels and macrophytes or co-variance due to common stressor. To conclude, direct environmental gradients seem to define the distribution pattern of M. trossulus, and within the favourable distribution range, resource gradients in interaction with direct environmental gradients are expected to set the biomass level of mussels.
Kotta, Jonne; Oganjan, Katarina; Lauringson, Velda; Pärnoja, Merli; Kaasik, Ants; Rohtla, Liisa; Kotta, Ilmar; Orav-Kotta, Helen
2015-01-01
Benthic suspension feeding mussels are an important functional guild in coastal and estuarine ecosystems. To date we lack information on how various environmental gradients and biotic interactions separately and interactively shape the distribution patterns of mussels in non-tidal environments. Opposing to tidal environments, mussels inhabit solely subtidal zone in non-tidal waterbodies and, thereby, driving factors for mussel populations are expected to differ from the tidal areas. In the present study, we used the boosted regression tree modelling (BRT), an ensemble method for statistical techniques and machine learning, in order to explain the distribution and biomass of the suspension feeding mussel Mytilus trossulus in the non-tidal Baltic Sea. BRT models suggested that (1) distribution patterns of M. trossulus are largely driven by separate effects of direct environmental gradients and partly by interactive effects of resource gradients with direct environmental gradients. (2) Within its suitable habitat range, however, resource gradients had an important role in shaping the biomass distribution of M. trossulus. (3) Contrary to tidal areas, mussels were not competitively superior over macrophytes with patterns indicating either facilitative interactions between mussels and macrophytes or co-variance due to common stressor. To conclude, direct environmental gradients seem to define the distribution pattern of M. trossulus, and within the favourable distribution range, resource gradients in interaction with direct environmental gradients are expected to set the biomass level of mussels. PMID:26317668
Short-term tidal asymmetry inversion in a macrotidal estuary (Beira, Mozambique)
NASA Astrophysics Data System (ADS)
Nzualo, Teodósio N. M.; Gallo, Marcos N.; Vinzon, Susana B.
2018-05-01
The distortion of the tide in estuaries, bays and coastal areas is the result of the generation of overtides due to the non-linear effects associated with friction, advection, and the finite effects of the tidal amplitude in shallow waters. The Beira estuary is classified as macrotidal, with a large ratio of S2/M2. Typical tides ranges from 6 m and 0.8 m, during springs and neaps tides, respectively. As a consequence of this large fortnightly tidal amplitude difference and the estuarine morphology, asymmetry inversions occur. Two types of tidal asymmetries were investigated in this paper, one considering tidal duration asymmetry (time difference between rising and falling tide) and the other, related to tidal velocity asymmetry (unequal magnitudes of flood and ebb peaks currents). In the Beira estuary when we examine the tidal duration asymmetry, flood dominance is observed during spring tide periods (negative time difference between rising and falling tide), while ebb dominance appears during neap tides (positive time difference between rising and falling tide). A 2DH hydrodynamic model was implemented to analyze this asymmetry inversion. The model was calibrated with water-level data measured at the Port of Beira and current data measured along the estuary. The model was run for different scenarios considering tidal constituents at the ocean boundary, river discharge and the morphology of the estuary. River discharge did not show significant effects on the tidal duration asymmetry. Through comparison of the scenarios, it was shown that the incoming ocean tide at the boundary has an ebb-dominant asymmetry, changing to flood-dominant only during spring tides due to the effect of shoaling and friction within the estuary. During neap tides, the propagation occurs mainly in the channels, and ebb dominance remains. The interplay between the estuary morphodynamics was thus identified and the relation between tidal duration asymmetry and tidal velocity asymmetry was observed. While fortnightly inversion in the tidal duration asymmetry is explained by the presence of channels and sandbanks, at the same time, the tidal velocity asymmetry acts as a positive feedback mechanism for bank formation and sediment retention.
NASA Technical Reports Server (NTRS)
Paden, Cynthia A.; Winant, Clinton D.; Abbott, Mark R.
1991-01-01
SST variability in the northern Gulf of California is examined on the basis of findings of two years of satellite infrared imagery (1984-1986). Empirical orthogonal functions of the temporal and spatial SST variance for 20 monthly mean images show that the dominant SST patterns are generated by spatially varying tidal mixing in the presence of seasonal heating and cooling. Atmospheric forcing of the northern gulf appears to occur over large spatial scales. Area-averaged SSTs for the Guaymas Basin, island region, and northern basin exhibit significant fluctuations which are highly correlated. These fluctuations in SST correspond to similar fluctuations in the air temperature which are related to synoptic weather events over the gulf. A regression analysis of the SST relative to the fortnightly tidal range shows that tidal mixing occurs over the sills in the island region as well as on the shallow northern shelf. Mixing over the sills occurs as a result of large breaking internal waves of internal hydraulic jumps which mix over water in the upper 300-500 m.
Earthquake potential revealed by tidal influence on earthquake size-frequency statistics
NASA Astrophysics Data System (ADS)
Ide, Satoshi; Yabe, Suguru; Tanaka, Yoshiyuki
2016-11-01
The possibility that tidal stress can trigger earthquakes is long debated. In particular, a clear causal relationship between small earthquakes and the phase of tidal stress is elusive. However, tectonic tremors deep within subduction zones are highly sensitive to tidal stress levels, with tremor rate increasing at an exponential rate with rising tidal stress. Thus, slow deformation and the possibility of earthquakes at subduction plate boundaries may be enhanced during periods of large tidal stress. Here we calculate the tidal stress history, and specifically the amplitude of tidal stress, on a fault plane in the two weeks before large earthquakes globally, based on data from the global, Japanese, and Californian earthquake catalogues. We find that very large earthquakes, including the 2004 Sumatran, 2010 Maule earthquake in Chile and the 2011 Tohoku-Oki earthquake in Japan, tend to occur near the time of maximum tidal stress amplitude. This tendency is not obvious for small earthquakes. However, we also find that the fraction of large earthquakes increases (the b-value of the Gutenberg-Richter relation decreases) as the amplitude of tidal shear stress increases. The relationship is also reasonable, considering the well-known relationship between stress and the b-value. This suggests that the probability of a tiny rock failure expanding to a gigantic rupture increases with increasing tidal stress levels. We conclude that large earthquakes are more probable during periods of high tidal stress.
The osmoregulatory effects of rearing Mozambique tilapia in a tidally changing salinity.
Moorman, Benjamin P; Inokuchi, Mayu; Yamaguchi, Yoko; Lerner, Darren T; Grau, E Gordon; Seale, Andre P
2014-10-01
The native distribution of Mozambique tilapia, Oreochromis mossambicus, is characterized by estuarine areas subject to salinity variations between fresh water (FW) and seawater (SW) with tidal frequency. Osmoregulation in the face of changing environmental salinity is largely mediated through the neuroendocrine system and involves the activation of ion uptake and extrusion mechanisms in osmoregulatory tissues. We compared plasma osmolality, plasma prolactin (PRL), pituitary PRL mRNA, and mRNA of branchial ion pumps, transporters, channels, and PRL receptors in tilapia reared in FW, SW, brackish water (BW) and in tidally-changing salinity, which varied between FW (TF) and SW (TS) every 6h. Plasma PRL was higher in FW tilapia than in SW, BW, TF, and TS tilapia. Unlike tilapia reared in FW or SW, fish in salinities that varied tidally showed no correlation between plasma osmolality and PRL. In FW fish, gene expression of PRL receptor 1 (PRLR1), Na(+)/Cl(-) cotransporter (NCC), aquaporin 3 (AQP3) and two isoforms of Na(+)/K(+)-ATPase (NKA α1a and NKA α1b) was higher than that of SW, BW or tidally-changing salinity fish. Gene expression of the Na(+)/K(+)/2Cl(-) cotransporter (NKCC1a), and the cystic fibrosis transmembrane conductance regulator (CFTR) were higher in fish in SW, BW or a tidally-changing salinity than in FW fish. Immunocytochemistry revealed that ionocytes of fish in tidally-changing salinities resemble ionocytes of SW fish. This study indicated that tilapia reared in a tidally-changing salinity can compensate for large changes in external osmolality while maintaining osmoregulatory parameters within a narrow range closer to that observed in SW-acclimated fish. Copyright © 2014 Elsevier Inc. All rights reserved.
Soft-sediment deformation produced by tides in a meizoseismic area, Turnagain Arm, Alaska
Greb, S.F.; Archer, A.W.
2007-01-01
Turnagain Arm is a semidiurnal hypertidal estuary in southeastern Alaska with a recorded tidal range of 9 m. Contorted bedding and flow rolls preserved in tidal sediments within the estuary have previously been interpreted as resulting from the Mw 9.2 Great Alaskan earthquake of 1964. Horizons of flow rolls between undeformed beds in sediments and rock strata have been used to infer ancient earthquakes in other areas. Although many types of soft-sediment deformation structures can be formed by earthquakes, observations of sedimentation on tidal flats in the inner parts of Turnagain Arm in the summers of 2003 and 2004 show that a wide range of soft-sediment deformation structures, similar to those inferred to have been formed by earthquakes, can form in macrotidal estuaries in the absence of seismic shock. During sedimentation rate measurements in 2004, soft-sediment deformation structures were recorded that formed during one day's tide, either in response to overpressurization of tidal flats during rapid tidal drawdown or by shear stress exerted on the bed by the passage of a 1.8 m tidal bore. Structures consisted of How rolls, dish structures, flames, and small dewatering pipes in a bed 17 cm thick. In the future, if the flow rolls in Turnagain Arm were found in isolated outcrops across an area 11 km in length, in an estuary known to have been influenced by large-magnitude earthquakes, would they be interpreted as seismites? These examples show that caution is needed when using horizons of flow rolls to infer paleoseismicity in estuarine deposits because many of the mechanisms (tidal flux, tidal bores, slumping, flooding) that can cause deformation in rapidly deposited, unconsolidated silts and sands, are orders of magnitude more common than great earthquakes. ?? 2007 The Geological Society of America.
Transitional Benthic Boundary Layers and their Influence on Nutrient Flux in Tidal Estuaries
NASA Astrophysics Data System (ADS)
Koetje, K. M.; Foster, D. L.; Lippmann, T. C.; Kalnejais, L. H.
2016-12-01
Quantifying the coupled physical and geochemical processes in the fluid-sediment interface is critical to managing coastal resources. This is of particular importance during times of enhanced hydrodynamic forcing where extreme tide or wind events can have a significant impact on water quality. A combination of field and laboratory experiments were used to examine the relationship between large-scale fluid shear stresses and geochemical fluxes at the fluid-sediment interface in the Great Bay Estuary, New Hampshire. Sediment geochemical measurements paired with flow field observations along estuary-wide transects over several tidal cycles provide nutrient load estimates that can be scaled to represent the whole Bay. Three-dimensional flow field measurements collected using a maneuverable personal watercraft were used to determine the spatial and temporal variability of the shear stress throughout the Bay. High-resolution bottom boundary layer dynamics were observed using a suite of acoustic Doppler current profilers (ADCP) in order to improve the accuracy of diffusive flux estimates by directly measuring the thickness of the benthic boundary layer. Over the 2.5 m tidal range and at water depths ranging from 0.3 m to 1.5 m at mean lower low water, peak mean flows ranged from 0.2 m/s to 1 m/s at the sampling sites. The dominant contribution of hydrodynamic forcing to the Bay is due to tidal flows, which are largely unidirectional during flood tide. Sediment grain size analysis characterized the bed at sampling sites as fine-grained sandy mud (d50 = 47 μm). Sampling during typical tidal flow conditions, a smooth turbulent flow field was observed and the threshold of motion was not exceeded. Along with sediment characterization, porosity profiles and erosion chamber experiments were used to characterize nutrient release. This host of data provides shear stress estimates that can constrain nutrient loads under variable hydrodynamic conditions.
NASA Astrophysics Data System (ADS)
Tyler, R.
2017-12-01
Resonant tidal excitation of an atmosphere will arrive in predictable situations where there is a match in form and frequency between tidal forces and the atmosphere's eigenmodes of oscillation. The resonant response is typically several orders of magnitude more energetic than in non-resonant configurations involving only slight differences in parameters, and the behavior can be quite different because different oscillation modes are favored in each. The work presented provides first a generic description of these resonant states by demonstrating the behavior of solutions within the very large parameter space of potential scenarios. This generic description of the range of atmospheric tidal response scenarios is further used to create a taxonomy for organizing and understanding various tidally driven dynamic regimes. The resonances are easily identified by associated peaks in the power. But because these peaks may be relatively narrow, millions of solutions can be required to complete the description of the solution's dependence over the range of parameter values. (Construction of these large solution spaces is performed using a fast, semi-analytical method that solves the forced, dissipative, Laplace Tidal Equations subject to the constraint of dynamical consistency (through a separation constant) with solutions describing the vertical structure.) Filling in the solution space in this way is used not only to locate the parameter coordinates of resonant scenarios but also to study allowed migration paths through this space. It is suggested that resonant scenarios do not arrive through happenstance but rather because secular variations in parameters make the configuration move into the resonant scenario, with associated feedbacks either accelerating or halting the configuration migration. These results are then used to show strong support for the hypothesis by R. Lindzen that the regular banding (belts/zones/jets) on Jupiter and Saturn are driven by tides. The results also provide important, though less specific, support for a second hypothesis that inflated atmospheres inferred for a number of giant extra-solar planets are due to thermal or gravitational tides.
NASA Astrophysics Data System (ADS)
Leon, Stéphane; Bergond, Gilles; Vallenari, Antonella
1999-04-01
We present the tidal tail distributions of a sample of candidate binary clusters located in the bar of the Large Magellanic Cloud (LMC). One isolated cluster, SL 268, is presented in order to study the effect of the LMC tidal field. All the candidate binary clusters show tidal tails, confirming that the pairs are formed by physically linked objects. The stellar mass in the tails covers a large range, from 1.8x 10(3) to 3x 10(4) \\msun. We derive a total mass estimate for SL 268 and SL 356. At large radii, the projected density profiles of SL 268 and SL 356 fall off as r(-gamma ) , with gamma = 2.27 and gamma =3.44, respectively. Out of 4 pairs or multiple systems, 2 are older than the theoretical survival time of binary clusters (going from a few 10(6) years to 10(8) years). A pair shows too large age difference between the components to be consistent with classical theoretical models of binary cluster formation (Fujimoto & Kumai \\cite{fujimoto97}). We refer to this as the ``overmerging'' problem. A different scenario is proposed: the formation proceeds in large molecular complexes giving birth to groups of clusters over a few 10(7) years. In these groups the expected cluster encounter rate is larger, and tidal capture has higher probability. Cluster pairs are not born together through the splitting of the parent cloud, but formed later by tidal capture. For 3 pairs, we tentatively identify the star cluster group (SCG) memberships. The SCG formation, through the recent cluster starburst triggered by the LMC-SMC encounter, in contrast with the quiescent open cluster formation in the Milky Way can be an explanation to the paucity of binary clusters observed in our Galaxy. Based on observations collected at the European Southern Observatory, La Silla, Chile}
Modern Estuarine Sedimentation in Suisun Bay, California
NASA Astrophysics Data System (ADS)
Chin, J. L.; Orzech, K.; Anima, R. J.; Jaffe, B.
2002-12-01
Suisun Bay is the northeasternmost part of San Francisco Bay (California), the largest estuary on the Pacific Coast of the United States. Suisun Bay's geographic and morphologic position are unique in that it occupies the head of the estuary and is subject to the maximum freshwater inflow and sediment input of the Sacramento-San Joaquin Rivers, whose drainage basin covers 40% of the land area of California. Suisun Bay consists of two smaller subembayments, Grizzly and Honker Bays. Gravity cores obtained in 1990-1991 and 1999 were analyzed to delineate depositional environments and sedimentation patterns in Suisun Bay. Major depositional environments include: tidal channel (subtidal), tidal channel banks (subtidal), tidal flat (intertidal to subtidal), and bay mouth (subtidal). The tidal channel environment includes both large and small channels in Suisun Bay as well as the tidal sloughs Suisun and Montezuma Sloughs. The coarsest sediment, usually sand or muddy sand, characterize this environment and water depths range from 2 to 11 m. Thin (1-2 mm) and discontinuous silt and clay laminae are common. Suisun and Montezuma Sloughs are the exception to this pattern in that they consist of massive, intensely bioturbated muds. Tidal channel banks (both "cut" and "accretionary" channel margins), particularly accretionary banks, are characterized by low-to-moderate bioturbation and sandy mud to muddy sand lithology. Typically alternating sand and mud beds (1-6 cm thick) are present; both types of beds consist of 1mm to 1cm thick subhorizontal to inclined laminae. Laminae composed of organic detritus are also present. Where this environment is transitional with the tidal flat environment water depths range from 2-8 m. Tidal flat environments include the "sand" shoals present on bathymetry charts, and are typically a bioturbated muddy sand to sandy mud. Sand and mud beds, 1-3 cm thick, are often characterized by very fine 1-2 mm thick silt and mud laminae. Water depths range from 2 to 4.5 m where these laminated tidal flat sediments occur. Bay mouth environments occur only in the distal portions of Grizzly and Honker Bays, subembayments of Suisun Bay proper. This environment is transitional with both tidal channel bank and tidal flat environments and shares characteristics with each. Massive to interbedded mud is the most common lithology, although sandy mud to muddy sand also occurs. Centimeters thick sand and mud beds typically alternate vertically. Bioturbation is low to moderate. Water depths over this environment range from 2 to 3 m. Depositional environments present in Suisun Bay are the result of a full range of tidal and fluvial processes as shown by the lithologies and alternating sediment stratigraphic patterns observed in cores. Very thin beds and intense bioturbation evidence intervals of very slow to negligible sedimentation. Rapid deposition and/or resuspension are evidenced by thick sediment intervals and by laminae that are continuous and apparently unbioturbated. Very fine scale sedimentation that may represent individual ebb and flood events as well as longer term seasonal sedimentation patterns are also present. An additional observation is that almost a quarter of the gravity cores reveal that modern estuarine deposits overlie an erosional surface that separate them from an organic-rich mud. This organic-rich mud, in one core to date, has been radiocarbon dated at roughly 4500 yrs. B.P. (J.Chin and K. Orzech, 2002, unpublished data). The organic-rich mud is interpreted as a tidal marsh deposit that pre-dates the present tidal marshes occurring in Suisun Bay.
A note on the comparative turbidity of some estuaries of the Americas
Uncles, R.J.; Smith, R.E.
2005-01-01
Field data from 27 estuaries of the Americas are used to show that, in broad terms, there is a large difference in turbidity between the analyzed east and west-coast estuaries and that tidal range and tidal length have an important influence on that turbidity. Generic, numerical sediment-transport modeling is used to illustrate this influence, which exists over a range of space scales from, e.g., the Rogue River Estuary (few km, few mg l-1) to the Bay of Fundy (hundreds of km, few g l-1). The difference in Pacific and Atlantic seaboard estuarine turbidity for the analyzed estuaries is ultimately related to the broad-scale geomorphology of the two continents.
Observational Progress in Identifying and Characterizing Tidal Disruption Flares
NASA Astrophysics Data System (ADS)
Cenko, S. Bradley
I present an overview of observational efforts across the electromagnetic spectrum to identify and study tidal disruption flares (TDFs), when a star wanders too close to a super-massive black hole and is torn apart by tidal forces. In particular I will focus on four unexpected surprises that challenge the most basic analytic picture of these events: 1) large inferred radii for the optical/UV-emitting material; 2) the ubiquity of outflows, detected at radio, X-ray, and UV wavelengths, ranging from speeds of 100 km/s to near the speed of light; 3) the peculiar atomic abundances observed in the UV and optical spectra of these objects; and, 4) the preference for these events to occur in post-starburst galaxies.
Guntenspergen, Glenn R.; Nordby, J. Cully
2006-01-01
Large areas of tidal marsh in the contiguous US and the Maritime Provinces of Canada are threatened by invasive plant species. Our understanding of the impact these invasions have on tidal-marsh vertebrates is sparse. In this paper, we focus on two successful invasive plant taxa that have spread outside their native range --common reed (Phragmites australis) and smooth cordgrass (Spartina a/terniflora). A cryptic haplotype of common reed has expanded its range in Atlantic Coast tidal marshes and smooth cordgrass, a native dominant plant of Atlantic Coast low-marsh habitat, has expanded its range and invaded intertidal-marsh habitats of the Pacific Coast. The invasions of common reed in Atlantic Coast tidal marshes and smooth cordgrass in Pacific Coast tidal marshes appear to have similar impacts. The structure and composition of these habitats has been altered and invasion and dominance by these two taxa can lead to profound changes in geomorphological processes, altering the vertical relief and potentially affecting invertebrate communities and the entire trophic structure of these systems. Few studies have documented impacts of invasive plant taxa on tidal-marsh vertebrate species in North America. However, habitat specialists that are already considered threatened or endangered are most likely to be affected. Extensive experimental studies are needed to examine the direct impact of invasive plant species on native vertebrate species. Careful monitoring of sites during the initial stages of plant invasion and tracking ecosystem changes through time are essential. Since tidal marshes are the foci for invasion by numerous species, we also need to understand the indirect impacts of invasion of these habitats on the vertebrate community. We also suggest the initiation of studies to determine if vertebrate species can compensate behaviorally for alterations in their habitat caused by invasive plant species, as well as the potential for adaptation via rapid evolution. Finally, we urge natural-resource managers to consider the impact various invasive plant control strategies will have on native vertebrate communities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Diefenderfer, Heida L.; Coleman, Andre M.; Borde, Amy B.
2008-01-01
The hydrologic reconnection of tidal channels, riverine floodplains, and main stem channels are among responses by ecological restoration practitioners to the increasing fragmentation and land conversion occurring in coastal and riparian zones. Design standards and monitoring of such ecological restoration depend upon the characterization of reference sites that vary within and among regions. Few locales, such as the 235 km tidal portion of the Columbia River on the West Coast U.S.A., remain in which the reference conditions and restoration responses of tidal freshwater forested wetlands on temperate zone large river floodplains can be compared. This study developed hydraulic geometry relationshipsmore » for Picea sitchensis (Sitka spruce) dominated tidal forests (swamps) in the vicinity of Grays Bay on the Columbia River some 37 km from the Pacific Coast using field surveys and Light Detection and Ranging (LiDAR) data. Scaling relationships between catchment area and the parameters of channel cross-sectional area at outlet and total channel length were comparable to tidally influenced systems of San Francisco Bay and the United Kingdom. Dike breaching, culvert replacement, and tide gate replacement all affected channel cross-sectional geometry through changes in the frequency of over-marsh flows. Radiocarbon dating of buried wood provided evidence of changes in sedimentation rates associated with diking, and restoration trajectories may be confounded by historical subsidence behind dikes rendering topographical relationships with water level incomparable to reference conditions. At the same time, buried wood is influencing the development of channel morphology toward characteristics resembling reference conditions. Ecological restoration goals and practices in tidal forested wetland regions of large river floodplains should reflect the interactions of these controlling factors.« less
NASA Astrophysics Data System (ADS)
Kleinhans, Maarten G.; van der Vegt, Maarten; Leuven, Jasper; Braat, Lisanne; Markies, Henk; Simmelink, Arjan; Roosendaal, Chris; van Eijk, Arjan; Vrijbergen, Paul; van Maarseveen, Marcel
2017-11-01
Analogue models or scale experiments of estuaries and short tidal basins are notoriously difficult to create in the laboratory because of the difficulty to obtain currents strong enough to transport sand. Our recently discovered method to drive tidal currents by periodically tilting the entire flume leads to intense sediment transport in both the ebb and flood phase, causing dynamic channel and shoal patterns. However, it remains unclear whether tilting produces periodic flows with characteristic tidal properties that are sufficiently similar to those in nature for the purpose of landscape experiments. Moreover, it is not well understood why the flows driven by periodic sea level fluctuation, as in nature, are not sufficient for morphodynamic experiments. Here we compare for the first time the tidal currents driven by sea level fluctuations and by tilting. Experiments were run in a 20 × 3 m straight flume, the Metronome, for a range of tilting periods and with one or two boundaries open at constant head with free inflow and outflow. Also, experiments were run with flow driven by periodic sea level fluctuations. We recorded surface flow velocity along the flume with particle imaging velocimetry and measured water levels along the flume. We compared the results to a one-dimensional model with shallow flow equations for a rough bed, which was tested on the experiments and applied to a range of length scales bridging small experiments and large estuaries. We found that the Reynolds method results in negligible flows along the flume except for the first few metres, whereas flume tilting results in nearly uniform reversing flow velocities along the entire flume that are strong enough to move sand. Furthermore, tidal excursion length relative to basin length and the dominance of friction over inertia is similar in tidal experiments and reality. The sediment mobility converges between the Reynolds method and tilting for flumes hundreds of metres long, which is impractical. Smaller flumes of a few metres in length, on the other hand, are much more dominated by friction than natural systems, meaning that sediment suspension would be impossible in the resulting laminar flow on tidal flats. Where the Reynolds method is limited by small sediment mobility and high tidal range relative to water depth, the tilting method allows for independent control over the variables flow depth, velocity, sediment mobility, tidal period and excursion length, and tidal asymmetry. A periodically tilting flume thus opens up the possibility of systematic biogeomorphological experimentation with self-formed estuaries.
Estuarine wetland evolution including sea-level rise and infrastructure effects.
NASA Astrophysics Data System (ADS)
Rodriguez, Jose Fernando; Trivisonno, Franco; Rojas, Steven Sandi; Riccardi, Gerardo; Stenta, Hernan; Saco, Patricia Mabel
2015-04-01
Estuarine wetlands are an extremely valuable resource in terms of biotic diversity, flood attenuation, storm surge protection, groundwater recharge, filtering of surface flows and carbon sequestration. On a large scale the survival of these systems depends on the slope of the land and a balance between the rates of accretion and sea-level rise, but local man-made flow disturbances can have comparable effects. Climate change predictions for most of Australia include an accelerated sea level rise, which may challenge the survival of estuarine wetlands. Furthermore, coastal infrastructure poses an additional constraint on the adaptive capacity of these ecosystems. Numerical models are increasingly being used to assess wetland dynamics and to help manage some of these situations. We present results of a wetland evolution model that is based on computed values of hydroperiod and tidal range that drive vegetation preference. Our first application simulates the long term evolution of an Australian wetland heavily constricted by infrastructure that is undergoing the effects of predicted accelerated sea level rise. The wetland presents a vegetation zonation sequence mudflats - mangrove - saltmarsh from the seaward margin and up the topographic gradient but is also affected by compartmentalization due to internal road embankments and culverts that effectively attenuates tidal input to the upstream compartments. For this reason, the evolution model includes a 2D hydrodynamic module which is able to handle man-made flow controls and spatially varying roughness. It continually simulates tidal inputs into the wetland and computes annual values of hydroperiod and tidal range to update vegetation distribution based on preference to hydrodynamic conditions of the different vegetation types. It also computes soil accretion rates and updates roughness coefficient values according to evolving vegetation types. In order to explore in more detail the magnitude of flow attenuation due to roughness and its effects on the computation of tidal range and hydroperiod, we performed numerical experiments simulating floodplain flow on the side of a tidal creek using different roughness values. Even though the values of roughness that produce appreciable changes in hydroperiod and tidal range are relatively high, they are within the range expected for some of the wetland vegetation. Both applications of the model show that flow attenuation can play a major role in wetland hydrodynamics and that its effects must be considered when predicting wetland evolution under climate change scenarios, particularly in situations where existing infrastructure affects the flow.
From Globular Clusters to Tidal Dwarfs: Structure Formation in Tidal Tails
NASA Astrophysics Data System (ADS)
Knierman, K.; Hunsberger, S.; Gallagher, S.; Charlton, J.; Whitmore, B.; Hibbard, J.; Kundu, A.; Zaritsky, D.
1999-12-01
Galaxy interactions trigger star formation in tidal debris. How does this star formation depend on the local and global physical conditions? Using WFPC2/HST images, we investigate the range of structure within tidal tails of four classic ``Toomre Sequence'' mergers: NGC 4038/9 (``Antennae''), NGC 7252 (``Atoms for Peace''), NGC 3921, and NGC 3256. These tails contain a variety of stellar associations with sizes from globular clusters up to dwarf Irregulars. We explore whether there is a continuum between the two extremes. Our eight fields sample seven tidal tails at a variety of stages in the evolutionary sequence. Some of these tails are rich in HI while others are HI poor. Large tidal dwarfs are embedded in three of the tails. Using V and I WFPC2 images, we measure luminosities and colors of substructures within the tidal tails. The properties of globular cluster candidates in the tails will be contrasted with those of the hundreds of young clusters in the central regions of these mergers. We address whether globular clusters form and survive in the tidal tails and whether tidal dwarfs are composed of only young stars. By comparing the properties of structures in the tails of the four mergers with different ages, we examine systematic evolution of structure along the evolutionary sequence and as a function of HI content. We acknowledge support from NASA through STScI, and from NSF for an REU supplement for Karen Knierman.
The effects of tidal range on saltmarsh morphology
NASA Astrophysics Data System (ADS)
Goodwin, Guillaume; Mudd, Simon
2017-04-01
Saltmarshes are highly productive coastal ecosystems that act simultaneously as flood barriers, carbon storage, pollutant filters and nurseries. As halophytic plants trap suspended sediment and decay in the settled strata, innervated platforms emerge from the neighbouring tidal flats, forming sub-vertical scarps on their eroding borders and sub-horizontal pioneer zones in areas of seasonal expansion. These evolutions are subject to two contrasting influences: stochastically generated waves erode scarps and scour tidal flats, whereas tidally-generated currents transport sediment to and from the marsh through the channel network. Hence, the relative power of waves and tidal currents strongly influences saltmarsh evolution, and regional variations in tidal range yield marshes of differing morphologies. We analyse several sheltered saltmarshes to determine how their morphology reflects variations in tidal forcing. Using tidal, topographic and spectral data, we implement an algorithm based on the open-source software LSDTopoTools to automatically identify features such as marsh platforms, tidal flats, erosion scarps, pioneer zones and tidal channels on local Digital Elevation Models. Normalised geometric properties are then computed and compared throughout the spectrum of tidal range, highlighting a notable effect on channel networks, platform geometry and wave exposure. We observe that micro-tidal marshes typically display jagged outlines and multiple islands along with wide, shallow channels. As tidal range increases, we note the progressive disappearance of marsh islands and linearization of scarps, both indicative of higher hydrodynamic stress, along with a structuration of channel networks and the increase of levee volume, suggesting higher sediment input on the platform. Future research will lead to observing and modelling the evolution of saltmarshes under various tidal forcing in order to assess their resilience to environmental change.
Analysis of tidal currents in the North Sea from shipboard acoustic Doppler current profiler data
NASA Astrophysics Data System (ADS)
Vindenes, Håvard; Orvik, Kjell Arild; Søiland, Henrik; Wehde, Henning
2018-06-01
North Sea tidal currents are determined by applying harmonic analysis to ship-borne acoustic Doppler current profiler data recorded from 1999 to 2016, covering large areas of the northern North Sea. Direct current measurement data sets of this magnitude are rare in the otherwise well investigated North Sea, and thus it is a valuable asset in studying and expanding our understanding of its tidal currents and circulation in general. The harmonic analysis is applied to a least squares fit of the current observations at a set of knot points. Results from the harmonic analysis compare favorably to tidal parameters estimated from observations from moored instruments. The analysis shows that the tides are characterized by strong semi-diurnal component, with amplitudes of the principal Lunar constituent ranging from 1.6 cm/s in the Skagerrak to 67 cm/s in the Fair Isle Channel. Diurnal tides are found to be approximately one fifth the strength of the predominant semi-diurnal constituent. Output from a regional barotropic tide model compares well to tidal current determined from the harmonic analysis of the Acoustic Doppler Current Profiler data.
NASA Astrophysics Data System (ADS)
Olofsson, Malin; Karlberg, Maria; Lage, Sandra; Ploug, Helle
2017-07-01
Maputo Bay is highly affected by large tidal changes and riverine freshwater input with a phytoplankton biomass peak during March each year. Microscopy analysis was used to describe how the phytoplankton community composition was affected by tidal changes, during four in situ incubation experiments. Using stable isotope tracers, new and total primary production, based on nitrate (15NO3-)- and carbon (13C-bicarbonate)-assimilation were estimated. The highest biovolume of phytoplankton (> 2 μm) and also the highest C- and NO3--assimilation rates (nM h-1) were found at spring-high tide. The C:N (mol:mol) ratio of particulate organic matter (POM) varied between 6.0 and 8.2. The proportion of diatoms in the phytoplankton community was higher at spring-high tide as compared to neap-low tide, whereas dinoflagellates were found in a reverse pattern. New production ranged between 6.3% and 10.4% of total primary production and was thus within the range previously reported for tropical regions. The largest proportion of NO3--based new production relative to total production was estimated during calm conditions and spring-high tide. Concordantly, a large fraction of the microplanktonic community covered their N-demand by other sources of N than NO3-.
Relative dispersion of clustered drifters in a small micro-tidal estuary
NASA Astrophysics Data System (ADS)
Suara, Kabir; Chanson, Hubert; Borgas, Michael; Brown, Richard J.
2017-07-01
Small tide-dominated estuaries are affected by large scale flow structures which combine with the underlying bed generated smaller scale turbulence to significantly increase the magnitude of horizontal diffusivity. Field estimates of horizontal diffusivity and its associated scales are however rare due to limitations in instrumentation. Data from multiple deployments of low and high resolution clusters of GPS-drifters are used to examine the dynamics of a surface flow in a small micro-tidal estuary through relative dispersion analyses. During the field study, cluster diffusivity, which combines both large- and small-scale processes ranged between, 0.01 and 3.01 m2/s for spreading clusters and, -0.06 and -4.2 m2/s for contracting clusters. Pair-particle dispersion, Dp2, was scale dependent and grew as Dp2 ∼ t1.83 in streamwise and Dp2 ∼ t0.8 in cross-stream directions. At small separation scale, pair-particle (d < 0.5 m) relative diffusivity followed the Richardson's 4/3 power law and became weaker as separation scale increases. Pair-particle diffusivity was described as Kp ∼ d1.01 and Kp ∼ d0.85 in the streamwise and cross-stream directions, respectively for separation scales ranging from 0.1 to 10 m. Two methods were used to identify the mechanism responsible for dispersion within the channel. The results clearly revealed the importance of strain fields (stretching and shearing) in the spreading of particles within a small micro-tidal channel. The work provided input for modelling dispersion of passive particle in shallow micro-tidal estuaries where these were not previously experimentally studied.
NASA Astrophysics Data System (ADS)
Forgan, Duncan; Rice, Ken
2013-07-01
Recently, the gravitational instability (GI) model of giant planet and brown dwarf formation has been revisited and recast into what is often referred to as the `tidal downsizing' hypothesis. The fragmentation of self-gravitating protostellar discs into gravitationally bound embryos - with masses of a few to tens of Jupiter masses, at semimajor axes above 30-40 au - is followed by a combination of grain sedimentation inside the embryo, radial migration towards the central star and tidal disruption of the embryo's upper layers. The properties of the resultant object depends sensitively on the time-scales upon which each process occurs. Therefore, GI followed by tidal downsizing can theoretically produce objects spanning a large mass range, from terrestrial planets to giant planets and brown dwarfs. Whether such objects can be formed in practice, and what proportions of the observed population they would represent, requires a more involved statistical analysis. We present a simple population synthesis model of star and planet formation via GI and tidal downsizing. We couple a semi-analytic model of protostellar disc evolution to analytic calculations of fragmentation, initial embryo mass, grain growth and sedimentation, embryo migration and tidal disruption. While there are key pieces of physics yet to be incorporated, it represents a first step towards a mature statistical model of GI and tidal downsizing as a mode of star and planet formation. We show results from four runs of the population synthesis model, varying the opacity law and the strength of migration, as well as investigating the effect of disc truncation during the fragmentation process. We find that a large fraction of disc fragments are completely destroyed by tidal disruption (typically 40 per cent of the initial population). The tidal downsizing process tends to prohibit low-mass embryos reaching small semimajor axis. The majority of surviving objects are brown dwarfs without solid cores of any kind. Around 40 per cent of surviving objects form solid cores of the order of 5-10 M⊕, and of this group a few do migrate to distances amenable to current exoplanet observations. Over a million disc fragments were simulated in this work, and only one resulted in the formation of a terrestrial planet (i.e. with a core mass of a few Earth masses and no gaseous envelope). These early results suggest that GI followed by tidal downsizing is not the principal mode of planet formation, but remains an excellent means of forming gas giant planets, brown dwarfs and low-mass stars at large semimajor axes.
Dynamics and fate of SOC in tidal marshes along a salinity gradient (Scheldt estuary, Belgium)
NASA Astrophysics Data System (ADS)
Van de Broek, Marijn; Temmermann, Stijn; Merckx, Roel; Wang, Zhengang; Govers, Gerard
2016-04-01
Coastal ecosystems have been attributed the potential to store large amounts of organic carbon (OC), often referred to as blue carbon, of which a considerable amount is stored in tidal marsh soils. Large uncertainties still exist with respect to the amount and controlling factors of soil organic carbon (SOC) stored in these ecosystems. Moreover, most research has focused on SOC dynamics of saltmarshes, while brackish and freshwater marshes are often even more productive and thus receive even larger organic carbon inputs. Therefore, in this study the OC dynamics of tidal marsh soils along an estuarine gradient are studied in order to contribute to our knowledge of 1) the stocks, 2) the controlling factors and 3) the fate of SOC in tidal marshes with different environmental characteristics. This research thus contributes to a better understanding of the potential of coastal environments to store organic carbon under future climatic changes. Soil and vegetation samples are collected in tidal salt-, brackish- and freshwater marshes in the Scheldt estuary (Belgium - The Netherlands). At each tidal marsh, three replicate soil cores up to 1.5m depth in 0.03m increments are collected at locations with both a low and a high elevation. These cores are analyzed for OC, stable C and N isotopes, bulk density and texture. Incubation experiments of topsoil samples were conducted and both aboveground and belowground biomass were collected. The results show that SOC stocks (range: 13,5 - 35,4 kg OC m-2), standing biomass (range: 2000 - 7930 g DW m-2) and potential soil respiration of CO2 (range: 0,03 - 0,12 % per unit OC per day) decrease with increasing salinity. This shows that both the amount of OC from local macrophytes and the quality of the organic matter are important factors controlling the SOC stocks. In addition, based on the analysis of stable C and N isotopes, it appears that when a significant fraction of SOC is derived from local macrophytes, higher SOC stocks are found, while a change in aboveground vegetation type can have large effects on SOC accumulation. Moreover, as these marsh soils have been dated before, the observed depth patterns in SOC can be linked to historical changes (e.g. changes in vegetation). A calibrated model simulating sediment deposition in these marshes is coupled to a two-pool OC model to study the effect of sediment deposition rate on the fate of SOC, with most input information being collected at the field sites. This allows us to calculate the residence time of OC in these tidal marsh soils, a measure that is very uncertain, also for other ecosystems. The part concerning modelling is however still under progress at the moment of writing. This study shows to which extent OC stocks and dynamics of tidal marsh soils along a temperate estuary are controlled by 1) the amount and quality of OC input and 2) the contribution from different sources of OC, and uses these finding to construct a 1D model to simulate these dynamics through time.
Steiner, A. W.; Gandolfi, S.; Fattoyev, F. J.; ...
2015-01-13
Here, we perform a systematic assessment of models for the equation of state (EOS) of dense matter in the context of recent neutron star mass and radius measurements to obtain a broad picture of the structure of neutron stars. We demonstrate that currently available neutron star mass and radius measurements provide strong constraints on moments of inertia, tidal deformabilities, and crust thicknesses. Moreover, a measurement of the moment of inertia of PSR J0737-3039A with a 10% error, without any other information from observations, will constrain the EOS over a range of densities to within 50% 60%. We find tidal deformabilitiesmore » between 0.6 and 6 1036 g cm 2 s 2 (to 95% confidence) for M = 1.4 M ⊙ , and any measurement which constrains this range will provide an important constraint on dense matter. The crustal fraction of the moment of inertia can be as large as 10% for M = 1.4 M ⊙ permitting crusts to have a large enough moment of inertia reservoir to explain glitches in the Vela pulsar even with a large amount of superfluid entrainment. Finally, due to the uncertainty in the equation of state, there is at least a 40% variation in the thickness of the crust for a fixed mass and radius, which implies that future simulations of the cooling of a neutron star crust which has been heated by accretion will need to take this variation into account.« less
Potential Polyunsaturated Aldehydes in the Strait of Gibraltar under Two Tidal Regimes
Morillo-García, Soledad; Valcárcel-Pérez, Nerea; Cózar, Andrés; Ortega, María J.; Macías, Diego; Ramírez-Romero, Eduardo; García, Carlos M.; Echevarría, Fidel; Bartual, Ana
2014-01-01
Diatoms, a major component of the large-sized phytoplankton, are able to produce and release polyunsaturated aldehydes after cell disruption (potential PUAs or pPUA). These organisms are dominant in the large phytoplankton fraction (>10 µm) in the Strait of Gibraltar, the only connection between the Mediterranean Sea and the Atlantic Ocean. In this area, the hydrodynamics exerts a strong control on the composition and physiological state of the phytoplankton. This environment offers a great opportunity to analyze and compare the little known distribution of larger sized PUA producers in nature and, moreover, to study how environmental variables could affect the ranges and potential distribution of these compounds. Our results showed that, at both tidal regimes studied (Spring and Neap tides), diatoms in the Strait of Gibraltar are able to produce three aldehydes: Heptadienal, Octadienal and Decadienal, with a significant dominance of Decadienal production. The PUA released by mechanical cell disruption of large-sized collected cells (pPUA) ranged from 0.01 to 12.3 pmol from cells in 1 L, and from 0.1 to 9.8 fmol cell−1. Tidal regime affected the abundance, distribution and the level of physiological stress of diatoms in the Strait. During Spring tides, diatoms were more abundant, usually grouped nearer the coastal basin and showed less physiological stress than during Neap tides. Our results suggest a significant general increase in the pPUA productivity with increasing physiological stress for the cell also significantly associated to low nitrate availability. PMID:24633248
An empirical approach to improving tidal predictions using recent real-time tide gauge data
NASA Astrophysics Data System (ADS)
Hibbert, Angela; Royston, Samantha; Horsburgh, Kevin J.; Leach, Harry
2014-05-01
Classical harmonic methods of tidal prediction are often problematic in estuarine environments due to the distortion of tidal fluctuations in shallow water, which results in a disparity between predicted and observed sea levels. This is of particular concern in the Bristol Channel, where the error associated with tidal predictions is potentially greater due to an unusually large tidal range of around 12m. As such predictions are fundamental to the short-term forecasting of High Water (HW) extremes, it is vital that alternative solutions are found. In a pilot study, using a year-long observational sea level record from the Port of Avonmouth in the Bristol Channel, the UK National Tidal and Sea Level Facility (NTSLF) tested the potential for reducing tidal prediction errors, using three alternatives to the Harmonic Method of tidal prediction. The three methods evaluated were (1) the use of Artificial Neural Network (ANN) models, (2) the Species Concordance technique and (3) a simple empirical procedure for correcting Harmonic Method High Water predictions based upon a few recent observations (referred to as the Empirical Correction Method). This latter method was then successfully applied to sea level records from an additional 42 of the 45 tide gauges that comprise the UK Tide Gauge Network. Consequently, it is to be incorporated into the operational systems of the UK Coastal Monitoring and Forecasting Partnership in order to improve short-term sea level predictions for the UK and in particular, the accurate estimation of HW extremes.
Vegetation community response to tidal marsh restoration of a large river estuary
Belleveau, Lisa J.; Takekawa, John Y.; Woo, Isa; Turner, Kelley L.; Barham, Jesse B.; Takekawa, Jean E.; Ellings, Christopher S.; Chin-Leo, Gerardo
2015-01-01
Estuaries are biologically productive and diverse ecosystems that provide ecosystem services including protection of inland areas from flooding, filtering freshwater outflows, and providing habitats for fish and wildlife. Alteration of historic habitats, including diking for agriculture, has decreased the function of many estuarine systems, and recent conservation efforts have been directed at restoring these degraded areas to reestablish their natural resource function. The Nisqually Delta in southern Puget Sound is an estuary that has been highly modified by restricting tidal flow, and recent restoration of the delta contributed to one of the largest tidal salt marsh restorations in the Pacific Northwest. We correlated the response of nine major tidal marsh species to salinities at different elevation zones. Our results indicated that wetland species richness was not related to soil pore-water salinity (R2 = 0.03), but were stratified into different elevation zones (R2 = 0.47). Thus, restoration that fosters a wide range of elevations will provide the most diverse plant habitat, and potentially, the greatest resilience to environmental change.
Guida, Vincent G; Valentine, Page C; Gallea, Leslie B
2013-01-01
Georges Bank is a large, shallow feature separating the Gulf of Maine from the Atlantic Ocean. Previous studies demonstrated a strong tidal-mixing front during the warm season on the northern bank margin between thermally stratified water in the Gulf of Maine and mixed water on the bank. Tides transport warm water off the bank during flood tide and cool gulf water onto the bank during ebb tide. During 10 days in August 2009, we mapped frontal temperatures in five study areas along ∼100 km of the bank margin. The seabed "frontal zone", where temperature changed with frontal movment, experienced semidiurnal temperature maxima and minima. The tidal excursion of the frontal boundary between stratified and mixed water ranged 6 to 10 km. This "frontal boundary zone" was narrower than the frontal zone. Along transects perpendicular to the bank margin, seabed temperature change at individual sites ranged from 7.0°C in the frontal zone to 0.0°C in mixed bank water. At time series in frontal zone stations, changes during tidal cycles ranged from 1.2 to 6.1°C. The greatest rate of change (-2.48°C hr(-1)) occurred at mid-ebb. Geographic plots of seabed temperature change allowed the mapping of up to 8 subareas in each study area. The magnitude of temperature change in a subarea depended on its location in the frontal zone. Frontal movement had the greatest effect on seabed temperature in the 40 to 80 m depth interval. Subareas experiencing maximum temperature change in the frontal zone were not in the frontal boundary zone, but rather several km gulfward (off-bank) of the frontal boundary zone. These results provide a new ecological framework for examining the effect of tidally-driven temperature variability on the distribution, food resources, and reproductive success of benthic invertebrate and demersal fish species living in tidal front habitats.
Guida, Vincent G.; Valentine, Page C.; Gallea, Leslie B.
2013-01-01
Georges Bank is a large, shallow feature separating the Gulf of Maine from the Atlantic Ocean. Previous studies demonstrated a strong tidal-mixing front during the warm season on the northern bank margin between thermally stratified water in the Gulf of Maine and mixed water on the bank. Tides transport warm water off the bank during flood tide and cool gulf water onto the bank during ebb tide. During 10 days in August 2009, we mapped frontal temperatures in five study areas along ∼100 km of the bank margin. The seabed “frontal zone”, where temperature changed with frontal movment, experienced semidiurnal temperature maxima and minima. The tidal excursion of the frontal boundary between stratified and mixed water ranged 6 to 10 km. This “frontal boundary zone” was narrower than the frontal zone. Along transects perpendicular to the bank margin, seabed temperature change at individual sites ranged from 7.0°C in the frontal zone to 0.0°C in mixed bank water. At time series in frontal zone stations, changes during tidal cycles ranged from 1.2 to 6.1°C. The greatest rate of change (-2.48°C hr-1) occurred at mid-ebb. Geographic plots of seabed temperature change allowed the mapping of up to 8 subareas in each study area. The magnitude of temperature change in a subarea depended on its location in the frontal zone. Frontal movement had the greatest effect on seabed temperature in the 40 to 80 m depth interval. Subareas experiencing maximum temperature change in the frontal zone were not in the frontal boundary zone, but rather several km gulfward (off-bank) of the frontal boundary zone. These results provide a new ecological framework for examining the effect of tidally-driven temperature variability on the distribution, food resources, and reproductive success of benthic invertebrate and demersal fish species living in tidal front habitats.
An open-loop controlled active lung simulator for preterm infants.
Cecchini, Stefano; Schena, Emiliano; Silvestri, Sergio
2011-01-01
We describe the underlying theory, design and experimental evaluation of an electromechanical analogue infant lung to simulate spontaneous breathing patterns of preterm infants. The aim of this work is to test the possibility to obtain breathing patterns of preterm infants by taking into consideration the air compressibility. Respiratory volume function represents the actuation pattern, and pulmonary pressure and flow-rate waveforms are mathematically obtained through the application of the perfect gas and adiabatic laws. The mathematical model reduces the simulation interval into a step shorter than 1 ms, allowing to consider an entire respiratory act as composed of a large number of almost instantaneous adiabatic transformations. The device consists of a spherical chamber where the air is compressed by four cylinder-pistons, moved by stepper motors, and flows through a fluid-dynamic resistance, which also works as flow-rate sensor. Specifically designed software generates the actuators motion, based on the desired ventilation parameters, without controlling the gas pneumatic parameters with a closed-loop. The system is able to simulate tidal volumes from 3 to 8 ml, breathing frequencies from 60 to 120 bpm and functional residual capacities from 25 to 80 ml. The simulated waveforms appear very close to the measured ones. Percentage differences on the tidal volume waveform vary from 7% for the tidal volume of 3 ml, down to 2.2-3.5% for tidal volumes in the range of 4-7 ml, and 1.3% for the tidal volume equal to 8 ml in the whole breathing frequency and functional residual capacity ranges. The open-loop electromechanical simulator shows that gas compressibility can be theoretically assessed in the typical pneumatic variable range of preterm infant respiratory mechanics. Copyright © 2010 IPEM. Published by Elsevier Ltd. All rights reserved.
Tidal river dynamics: Implications for deltas
NASA Astrophysics Data System (ADS)
Hoitink, A. J. F.; Jay, D. A.
2016-03-01
Tidal rivers are a vital and little studied nexus between physical oceanography and hydrology. It is only in the last few decades that substantial research efforts have been focused on the interactions of river discharge with tidal waves and storm surges into regions beyond the limit of salinity intrusion, a realm that can extend inland hundreds of kilometers. One key phenomenon resulting from this interaction is the emergence of large fortnightly tides, which are forced long waves with amplitudes that may increase beyond the point where astronomical tides have become extinct. These can be larger than the linear tide itself at more landward locations, and they greatly influence tidal river water levels and wetland inundation. Exploration of the spectral redistribution and attenuation of tidal energy in rivers has led to new appreciation of a wide range of consequences for fluvial and coastal sedimentology, delta evolution, wetland conservation, and salinity intrusion under the influence of sea level rise and delta subsidence. Modern research aims at unifying traditional harmonic tidal analysis, nonparametric regression techniques, and the existing understanding of tidal hydrodynamics to better predict and model tidal river dynamics both in single-thread channels and in branching channel networks. In this context, this review summarizes results from field observations and modeling studies set in tidal river environments as diverse as the Amazon in Brazil, the Columbia, Fraser and Saint Lawrence in North America, the Yangtze and Pearl in China, and the Berau and Mahakam in Indonesia. A description of state-of-the-art methods for a comprehensive analysis of water levels, wave propagation, discharges, and inundation extent in tidal rivers is provided. Implications for lowland river deltas are also discussed in terms of sedimentary deposits, channel bifurcation, avulsion, and salinity intrusion, addressing contemporary research challenges.
The lunar orbit as probe of relativistic gravity.
NASA Astrophysics Data System (ADS)
Nordtvedt, K.
The author has analytically determined in a unified treament all general relativistic corrections to the Moon's orbit observable by present-day laser ranging data. Because the solar tidal deformation of the lunar orbit plays such a central role in altering the amplitudes and frequencies of lunar motion, the post-Newtonian equations of motion are solved using procedures similar to those Hill introduced into classical lunar theory and which treat the orbit's tidal deformation in a partially non-perturbative manner. The amplitudes of all perturbations of monthly period are found to be significantly amplified by interaction with the orbit's tidal deformation. In particular, this enhances the sensitivity of the lunar orbit as an observational probe of the gravitational to inertial mass ratio of the Earth (and Moon). The "evection" amplitude is altered by general relativity at an observationally significant level. Relativistic corrections to the perigee precession rate are found to include not only the "de Sitter" term, but also corrections from the solar tidal force which are 10% as large. Lunar laser ranging presently provides the most precise measurements of not only general relativity's "space geometry" and non-linear coupling structures, but also the comparison of free fall rates of two different bodies (Earth and Moon) toward a third body (Sun).
NASA Astrophysics Data System (ADS)
Passeri, D. L.; Hagen, S. C.; Plant, N. G.; Bilskie, M. V.
2014-12-01
Sea level rise (SLR) threatens coastal environments with increased erosion, inundation of wetlands, and changes in hydrodynamic patterns. Planning for the effects of SLR requires understanding the coupled response of SLR, geomorphic and hydrodynamic processes; this will provide crucial information for managers to make informed decisions for human and natural communities. Evaluating changes in tidal hydrodynamics under future scenarios is a key aspect for understanding the effects of SLR on coastal systems; tidal hydrodynamics influence inundation, circulation patterns, sediment transport processes, shoreline erosion, and productivity of marshes and other species. This study evaluates the dynamic effects of SLR and morphologic change on tidal hydrodynamics along the Northern Gulf of Mexico (NGOM) coast from Mississippi to the Florida panhandle. A large-scale hydrodynamic model is used to simulate astronomic tides under present (circa 2005), and future conditions (circa 2050 and 2100). The model is modified with specific SLR scenarios, morphology, and shorelines that represent the conditions at each of the time periods. Future sea levels for the years 2050 and 2100 are determined using the Parris et al. (2012) projections. To make projections of future morphology, a Bayesian Network (BN) is implemented. The BN is used to define relationships between forcing mechanisms and coastal responses based on long-term relative SLR, mean wave height, long-term shoreline change rates, mean tidal range, geomorphic setting and coastal slope. Probabilistic predictions of future shoreline positions and dune heights are developed for each SLR scenario for the years 2050 and 2100. The Digital Elevation Model (DEM) is then updated to reflect the future morphologic changes. Comparison of present and future conditions illustrates the hydrodynamic response of the system to the changing landscape. Changes in variables such as harmonic tidal constituents, tidal range, tidal prism, tidal datums, circulation patterns and inundation areas are examined. This provides a better understanding of the physical processes of the current state of the NGOM and gives insight into how future SLR and coastal landscape changes may affect hydrodynamics within the NGOM estuary systems.
RELATIONSHIPS BETWEEN SEAGRASSES, BENTHIC MACROALGAE AND NUTRIENTS IN A PACIFIC NORTHWEST ESTUARY
Pacific Northwest estuaries are characterized by large tidal ranges (2-3 m) that routinely expose submerged aquatic vegetation (SAV) such as seagrass and benthic macroalgae. The dominant native seagrass in PNW estuaries is the eelgrass Zostera marina. However, in recent decades...
Between tide and wave marks: a unifying model of physical zonation on littoral shores
Bird, Christopher E.; Franklin, Erik C.; Smith, Celia M.
2013-01-01
The effects of tides on littoral marine habitats are so ubiquitous that shorelines are commonly described as ‘intertidal’, whereas waves are considered a secondary factor that simply modifies the intertidal habitat. However mean significant wave height exceeds tidal range at many locations worldwide. Here we construct a simple sinusoidal model of coastal water level based on both tidal range and wave height. From the patterns of emergence and submergence predicted by the model, we derive four vertical shoreline benchmarks which bracket up to three novel, spatially distinct, and physically defined zones. The (1) emergent tidal zone is characterized by tidally driven emergence in air; the (2) wave zone is characterized by constant (not periodic) wave wash; and the (3) submergent tidal zone is characterized by tidally driven submergence. The decoupling of tidally driven emergence and submergence made possible by wave action is a critical prediction of the model. On wave-dominated shores (wave height ≫ tidal range), all three zones are predicted to exist separately, but on tide-dominated shores (tidal range ≫ wave height) the wave zone is absent and the emergent and submergent tidal zones overlap substantially, forming the traditional “intertidal zone”. We conclude by incorporating time and space in the model to illustrate variability in the physical conditions and zonation on littoral shores. The wave:tide physical zonation model is a unifying framework that can facilitate our understanding of physical conditions on littoral shores whether tropical or temperate, marine or lentic. PMID:24109544
Are Wave and Tidal Energy Plants New Green Technologies?
Douziech, Mélanie; Hellweg, Stefanie; Verones, Francesca
2016-07-19
Wave and tidal energy plants are upcoming, potentially green technologies. This study aims at quantifying their various potential environmental impacts. Three tidal stream devices, one tidal range plant and one wave energy harnessing device are analyzed over their entire life cycles, using the ReCiPe 2008 methodology at midpoint level. The impacts of the tidal range plant were on average 1.6 times higher than the ones of hydro-power plants (without considering natural land transformation). A similar ratio was found when comparing the results of the three tidal stream devices to offshore wind power plants (without considering water depletion). The wave energy harnessing device had on average 3.5 times higher impacts than offshore wind power. On the contrary, the considered plants have on average 8 (wave energy) to 20 (tidal stream), or even 115 times (tidal range) lower impact than electricity generated from coal power. Further, testing the sensitivity of the results highlighted the advantage of long lifetimes and small material requirements. Overall, this study supports the potential of wave and tidal energy plants as alternative green technologies. However, potential unknown effects, such as the impact of turbulence or noise on marine ecosystems, should be further explored in future research.
NASA Astrophysics Data System (ADS)
Wilson, C.; Bain, R. L.; Goodbred, S. L., Jr.; Hale, R. P.
2017-12-01
Studies of tidal channel dynamics frequently emphasize "morphologically short" spatial scales (i.e., settings in which the cross-system tidal propagation time is negligible) or idealized single-channel planforms. In contrast, tides in the Ganges-Brahmaputra-Meghna Delta (GBMD) propagate more than 100 kilometers inland from the coast through a network of interconnected tidal estuaries, producing complex hydrodynamic behavior that remains poorly understood. Intense anthropogenic modification of the GBMD landscape further complicates tidally-driven, natural delta surface maintenance. Analyzing this system is particularly urgent given the current trend of rising sea level and its associated impacts on coastal communities.We present results from an ongoing field investigation of tidal waveform interaction and mass exchange between the Pussur and Shibsa Rivers, two large macrotidal estuaries in the southwestern GBMD. In the 1960s, construction of earthen embankments ("polders") eliminated regular tidal inundation for a vast region of the tidal platform, shrinking the Shibsa and Pussur basins by an estimated 1000 km2 and 700 km2, respectively. Conservation of mass predicts that a reduction in tidal basin area will decrease peak flow velocities and induce channel siltation; indeed, 100 km2 of secondary channels at the distal end of the tidal range have partly or fully closed in recent decades. The Pussur is likewise rapidly shoaling, restricting navigational access along a major shipping route. However, discharge and bathymetric datasets indicate that the adjacent Shibsa conveys three to four times more water than the Pussur and is actively scouring its bed, contrary to its predicted response to polder construction. Our field measurements are consistent with an ongoing channel capture event in which the Shibsa floods and drains a progressively greater portion of the former Pussur basin, allowing the Shibsa to widen and deepen despite the regional trend of channel abandonment. These observations suggest that natural or anthropogenic changes to a tidal basin can drive rapid morphological adjustment of these typically-stable tidal channel systems.
Tidal Love numbers of neutron and self-bound quark stars
DOE Office of Scientific and Technical Information (OSTI.GOV)
Postnikov, Sergey; Prakash, Madappa; Lattimer, James M.
Gravitational waves from the final stages of inspiraling binary neutron stars are expected to be one of the most important sources for ground-based gravitational wave detectors. The masses of the components are determinable from the orbital and chirp frequencies during the early part of the evolution, and large finite-size (tidal) effects are measurable toward the end of inspiral, but the gravitational wave signal is expected to be very complex at this time. Tidal effects during the early part of the evolution will form a very small correction, but during this phase the signal is relatively clean. The accumulated phase shiftmore » due to tidal corrections is characterized by a single quantity related to a star's tidal Love number. The Love number is sensitive, in particular, to the compactness parameter M/R and the star's internal structure, and its determination could provide an important constraint to the neutron star radius. We show that Love numbers of self-bound strange quark matter stars are qualitatively different from those of normal neutron stars. Observations of the tidal signature from coalescing compact binaries could therefore provide an important, and possibly unique, way to distinguish self-bound strange quark stars from normal neutron stars. Tidal signatures from self-bound strange quark stars with masses smaller than 1M{sub {center_dot}}are substantially smaller than those of normal stars owing to their smaller radii. Thus tidal signatures of stars less massive than 1M{sub {center_dot}}are probably not detectable with Advanced LIGO. For stars with masses in the range 1-2M{sub {center_dot},} the anticipated efficiency of the proposed Einstein telescope would be required for the detection of tidal signatures.« less
Non-linear tides in a homogeneous rotating planet or star: global modes and elliptical instability
NASA Astrophysics Data System (ADS)
Barker, Adrian J.; Braviner, Harry J.; Ogilvie, Gordon I.
2016-06-01
We revisit the global modes and instabilities of homogeneous rotating ellipsoidal fluid masses, which are the simplest global models of rotationally and tidally deformed gaseous planets or stars. The tidal flow in a short-period planet may be unstable to the elliptical instability, a hydrodynamic instability that can drive tidal evolution. We perform a global (and local WKB) analysis to study this instability using the elegant formalism of Lebovitz & Lifschitz. We survey the parameter space of global instabilities with harmonic orders ℓ ≤ 5, for planets with spins that are purely aligned (prograde) or anti-aligned (retrograde) with their orbits. In general, the instability has a much larger growth rate if the planetary spin and orbit are anti-aligned rather than aligned. We have identified a violent instability for anti-aligned spins outside of the usual frequency range for the elliptical instability (when n/Ω ≲ -1, where n and Ω are the orbital and spin angular frequencies, respectively) if the tidal amplitude is sufficiently large. We also explore the instability in a rigid ellipsoidal container, which is found to be quantitatively similar to that with a realistic free surface. Finally, we study the effect of rotation and tidal deformation on mode frequencies. We find that larger rotation rates and larger tidal deformations both decrease the frequencies of the prograde sectoral surface gravity modes. This increases the prospect of their tidal excitation, potentially enhancing the tidal response over expectations from linear theory. In a companion paper, we use our results to interpret global simulations of the elliptical instability.
Tidal controls on earthquake size-frequency statistics
NASA Astrophysics Data System (ADS)
Ide, S.; Yabe, S.; Tanaka, Y.
2016-12-01
The possibility that tidal stresses can trigger earthquakes is a long-standing issue in seismology. Except in some special cases, a causal relationship between seismicity and the phase of tidal stress has been rejected on the basis of studies using many small events. However, recently discovered deep tectonic tremors are highly sensitive to tidal stress levels, with the relationship being governed by a nonlinear law according to which the tremor rate increases exponentially with increasing stress; thus, slow deformation (and the probability of earthquakes) may be enhanced during periods of large tidal stress. Here, we show the influence of tidal stress on seismicity by calculating histories of tidal shear stress during the 2-week period before earthquakes. Very large earthquakes tend to occur near the time of maximum tidal stress, but this tendency is not obvious for small earthquakes. Rather, we found that tidal stress controls the earthquake size-frequency statistics; i.e., the fraction of large events increases (i.e. the b-value of the Gutenberg-Richter relation decreases) as the tidal shear stress increases. This correlation is apparent in data from the global catalog and in relatively homogeneous regional catalogues of earthquakes in Japan. The relationship is also reasonable, considering the well-known relationship between stress and the b-value. Our findings indicate that the probability of a tiny rock failure expanding to a gigantic rupture increases with increasing tidal stress levels. This finding has clear implications for probabilistic earthquake forecasting.
NASA Astrophysics Data System (ADS)
van der Molen, Johan
2015-04-01
Tidal power generation through submerged turbine-type devices is in an advanced stage of testing, and large-scale applications are being planned in areas with high tidal current speeds. The potential impact of such large-scale applications on the hydrography can be investigated using hydrodynamical models. In addition, aspects of the potential impact on the marine ecosystem can be studied using biogeochemical models. In this study, the coupled hydrodynamics-biogeochemistry model GETM-ERSEM is used in a shelf-wide application to investigate the potential impact of large-scale tidal power generation in the Pentland Firth. A scenario representing the currently licensed power extraction suggested i) an average reduction in M2 tidal current velocities of several cm/s within the Pentland Firth, ii) changes in the residual circulation of several mm/s in the vicinity of the Pentland Firth, iii) an increase in M2 tidal amplitude of up to 1 cm to the west of the Pentland Firth, and iv) a reduction of several mm in M2 tidal amplitude along the east coast of the UK. A second scenario representing 10 times the currently licensed power extraction resulted in changes that were approximately 10 times as large. Simulations including the biogeochemistry model for these scenarios are currently in preparation, and first results will be presented at the the conference, aiming at impacts on primary production and benthic production.
Walter, Donald A.; Masterson, John P.; Barlow, Paul M.
1996-01-01
A study of the hydrogeology and an analysis of the ground-water-flow system near Sagamore Marsh, southeastern Massachusetts, was undertaken to improve the understanding of the current (1994 95) hydrogeologic conditions near the marsh and how the ground-water system might respond to proposed changes in the tidal-stage regime of streams that flood and drain the marsh. Sagamore Marsh is in a coastal area that is bounded to the east by Cape Cod Bay and to the south by the Cape Cod Canal. The regional geology is characterized by deltaic and glaciolacustrine sediments. The sediments consist of gravel, sand, silt, and clay and are part of the Plymouth-Carver regional aquifer system. The glacial sediments are hounded laterally by marine sand, silt, and clay along the coast. The principal aquifer in the area consists of fine to coarse glacial sand and is locally confined by fine-grained glaciolacustrine deposits consisting of silt and sandy clay and fine-grained salt-marsh sediments consisting of peat and clay. The aquifer is underlain by finer grained glaciolacustrine sediments in upland areas and by marine clay along the coast.Shallow ground water discharges primarily along the edge of the marsh, whereas deeper ground water flows beneath the marsh and discharges to Cape Cod Bay. Tidal pulses originating from Cape Cod Bay and from tidal channels in the marsh are rapidly attenuated in the subsurface. Tidal ranges in Cape Cod Bay and in the tidal channels were on the order of 9 and 1.5 feet, respectively, whereas tidal ranges in the ground-water levels were less than 0.2 foot. Tidal pulses measured in the water table beneath a barrier beach between the marsh and Cape Cod Bay were more in phase with tidal pulses from Cape Cod Bay than with tidal pulses from the tidal channels in Sagamore Marsh, whereas tidal pulses in the regional aquifer were more in phase with tidal pulses from the tidal channels. A 5-day aquifer test at a public-supply well adjacent to the marsh gave a transmissivity of the regional aquifer of 9,300 to 10,900 feet squared per day and a hydraulic conductivity of 181 to 213 feet per day, assuming a saturated thickness of the aquifer of 51.3 feet. The regional aquifer became unconfined near the pumped well during the test. The ratio of tidal ranges in the tidal channel to the ranges in the underlying aquifer at two sites (the lower and upper marsh) indicated aquifer diffusivities for the marsh sediments of 380 and 170 feet squared per day; these values correspond to hydraulic conductivities of 2.5 x 10-3 and 1.7 x 10-3 feet per day, respectively. The maximum distances from the tidal channel at the lower and upper marsh sites where tidal ranges would exceed 0.01 foot, as calculated from aquifer diffusivities and current (1995) tidal ranges in the tidal channels, were 24.4 and 26.7 feet, respectively. The maximum distances from the tidal channel where tidal pulses in the ground water would exceed 0.01 foot, using potential increased tidal stages resulting from proposed tidal-stage modifications and predicted by the U.S. Army Corps of Engineers, were 37.1 and 42.0 feet, respectively. A numerical model of the marsh and surrounding aquifer system indicated that the contributing area for the supply well adjacent to the marsh, for current (1994) pumping conditions, extends toward Great Herring Pond, about 2 miles northwest (upgradient) of the well, and does not extend beneath the marsh. The model also indicates that the predicted increases in tidal stages in the marsh will have a negligible effect on local ground-water levels.
From Globular Clusters to Tidal Dwarfs: Structure Formation in the Tidal Tails of Merging Pairs
NASA Astrophysics Data System (ADS)
Knierman, K. A.; Gallagher, S. C.; Charlton, J. C.; Hunsberger, S. D.; Whitmore, B. C.; Kundu, A.; Hibbard, J. E.; Zaritsky, D. F.
2001-05-01
Using V and I images obtained with the Wide Field Planetary Camera 2 (WFPC2) of the Hubble Space Telescope, we investigate compact stellar structures within tidal tails. Six regions of tidal debris in the four classic ``Toomre Sequence'' mergers: NGC 4038/9 (``Antennae''), NGC 3256, NGC 3921, and NGC 7252 (``Atoms for Peace'') have been studied in order to explore how the star formation depends upon the local and global physical conditions. These mergers sample a range of stages in the evolutionary sequence, and include HI--rich and HI--poor environments. The six tails are found to contain a variety of stellar structures, with sizes ranging from those of globular clusters up to those of dwarf galaxies. From V and I WFPC2 images, we measure the luminosities and colors of the star clusters. NGC 3256 is found to have a large population of young clusters lying along both tails, similar to those found in the inner region of the merger. In contrast, NGC 4038/9 has no clusters in the observed region of the tail, only less luminous point sources likely to be individual stars. NGC 3921 and NGC 7252 have small populations of clusters that are concentrated in certain regions of the tail, and particularly in the prominent tidal dwarfs in the eastern and western tails of NGC 7252. The two cluster--rich tails of NGC 3256 are not distinguished from the others by their ages or by their total HI masses. We acknowledge support from NASA through STScI, and from NSF for an REU supplement for Karen Knierman.
Characterising the spatial variability of the tidal stream energy resource from floating turbines
NASA Astrophysics Data System (ADS)
Ward, Sophie; Neill, Simon; Robins, Peter
2017-04-01
The shelf seas, in particular the northwest European shelf seas surrounding the UK, contain significant tidal power potential. Tidal stream energy is both predictable and reliable providing that sites are well-selected based upon the hydrodynamic regime and the device specifics. In this high resolution three-dimensional tidal modelling study, we investigate how the tidal stream resource around the Welsh coast (UK) varies with water depth and location, with particular focus on the Pembrokeshire region. The potential extractable energy for a floating tidal stream energy converter is compared with that for a bottom-fixed device, highlighting the need to vary the resource characterisation criteria based on device specifics. We demonstrate how small variations in the tidal current speeds - with hub depth or due to tidal asymmetry - can lead to substantial variations in potential power output. Further, the results indicate that power generation from floating tidal energy converters will be more significantly influenced by tidal elevations in regions characterised by a lower tidal range (more progressive waves) than regions that experience a high tidal range (standing waves). As numerical modelling capacity improves and tidal stream energy converter technologies develop, ongoing improved quantification of the tidal resource is needed, as well as consideration of the possible feedbacks of the devices and energy extraction on the hydrodynamic regime and the surrounding area.
2013-09-30
Contrasting Mesotidal Flats Sediment Flux through the Mekong Tidal River, Delta and Mangrove Shoreline Instrumentation to Support Investigation of Large...scales), and thereby validate localized measurements and numerical models of sediment transport for diverse tidal systems (tidal flats , mangrove forests...deltaic distributaries). OBJECTIVES The specific objectives are to: a) document changes in bed elevation (deposition, erosion) on time
Significant Dissipation of Tidal Energy in the Deep Ocean Inferred from Satellite Altimeter Data
NASA Technical Reports Server (NTRS)
Egbert, G. D.; Ray, R. D.
2000-01-01
How and where the ocean tides dissipate their energy are longstanding questions that have consequences ranging from the history of the Moon to the mixing of the oceans. Historically, the principal sink of tidal energy has been thought to be bottom friction in shallow seas. There has long been suggestive however, that tidal dissipation also occurs in the open ocean through the scattering by ocean-bottom topography of surface tides into internal waves, but estimates of the magnitude of this possible sink have varied widely. Here we use satellite altimeter data from Topex/Poseidon to map empirically the tidal energy dissipation. We show that approximately 10(exp 12) watts-that is, 1 TW, representing 25-30% of the total dissipation-occurs in the deep ocean, generally near areas of rough topography. Of the estimated 2 TW of mixing energy required to maintain the large-scale thermohaline circulation of the ocean, one-half could therefore be provided by the tides, with the other half coming from action on the surface of the ocean.
New Algorithm Identifies Tidal Streams Oriented Along our Line-of-Sight
NASA Astrophysics Data System (ADS)
Lin, Ziyi; Newberg, Heidi; Amy, Paul; Martin, Charles Harold; Rockcliffe, Keighley E.
2018-01-01
The known dwarf galaxy tidal streams in the Milky Way are primarily oriented perpendicular to our line-of-sight. That is because they are concentrated into an observable higher-surface-brightness feature at a particular distance, or because they tightly cluster in line-of-sight velocity in a particular direction. Streams that are oriented along our line-of-sight are spread over a large range of distances and velocities. However, these distances and velocities are correlated in predicable ways. We used a set of randomly oriented Milky Way orbits to develop a technique that bins stars in combinations of distance and velocity that are likely for tidal streams. We applied this technique to identify previously unknown tidal streams in a set of blue horizontal branch stars in the first quadrant from Data Release 10 of the Sloan Digital Sky Survey (SDSS). This project was supported by NSF grant AST 16-15688, a Rensselaer Presidential Fellowship, the NASA/NY Space Grant fellowship, and contributions made by The Marvin Clan, Babette Josephs, Manit Limlamai, and the 2015 Crowd Funding Campaign to Support Milky Way Research.
Modeling In-stream Tidal Energy Extraction and Its Potential Environmental Impacts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Zhaoqing; Wang, Taiping; Copping, Andrea
In recent years, there has been growing interest in harnessing in-stream tidal energy in response to concerns of increasing energy demand and to mitigate climate change impacts. While many studies have been conducted to assess and map tidal energy resources, efforts for quantifying the associated potential environmental impacts have been limited. This paper presents the development of a tidal turbine module within a three-dimensional unstructured-grid coastal ocean model and its application for assessing the potential environmental impacts associated with tidal energy extraction. The model is used to investigate in-stream tidal energy extraction and associated impacts on estuarine hydrodynamic and biologicalmore » processes in a tidally dominant estuary. A series of numerical experiments with varying numbers and configurations of turbines installed in an idealized estuary were carried out to assess the changes in the hydrodynamics and biological processes due to tidal energy extraction. Model results indicated that a large number of turbines are required to extract the maximum tidal energy and cause significant reduction of the volume flux. Preliminary model results also indicate that extraction of tidal energy increases vertical mixing and decreases flushing rate in a stratified estuary. The tidal turbine model was applied to simulate tidal energy extraction in Puget Sound, a large fjord-like estuary in the Pacific Northwest coast.« less
KCTF evolution of trans-neptunian binaries: Connecting formation to observation
NASA Astrophysics Data System (ADS)
Porter, Simon B.; Grundy, William M.
2012-08-01
Recent observational surveys of trans-neptunian binary (TNB) systems have dramatically increased the number of known mutual orbits. Our Kozai Cycle Tidal Friction (KCTF) simulations of synthetic trans-neptunian binaries show that tidal dissipation in these systems can completely reshape their original orbits. Specifically, solar torques should have dramatically accelerated the semimajor axis decay and circularization timescales of primordial (or recently excited) TNBs. As a result, our initially random distribution of TNBs in our simulations evolved to have a large population of tight circular orbits. This tight circular population appears for a range of TNO physical properties, though a strong gravitational quadrupole can prevent some from fully circularizing. We introduce a stability parameter to predict the effectiveness of KCTF on a TNB orbit, and show that a number of known TNBs must have a large gravitational quadrupole to be stable.
Tidal bending of ice shelves as a mechanism for large-scale temporal variations in ice flow
NASA Astrophysics Data System (ADS)
Rosier, Sebastian H. R.; Hilmar Gudmundsson, G.
2018-05-01
GPS measurements reveal strong modulation of horizontal ice shelf and ice stream flow at a variety of tidal frequencies, most notably a fortnightly (Msf) frequency not present in the vertical tides themselves. Current theories largely fail to explain the strength and prevalence of this signal over floating ice shelves. We show how well-known non-linear aspects of ice rheology can give rise to widespread, long-periodic tidal modulation in ice shelf flow, generated within ice shelves themselves through tidal flexure acting at diurnal and semidiurnal frequencies. Using full-Stokes viscoelastic modelling, we show that inclusion of tidal bending within the model accounts for much of the observed tidal modulation of ice shelf flow. Furthermore, our model shows that, in the absence of vertical tidal forcing, the mean flow of the ice shelf is reduced by almost 30 % for the geometry that we consider.
Guida, Vincent G.; Valentine, Page C.; Gallea, Leslie B.
2013-01-01
Georges Bank is a large, shallow feature separating the Gulf of Maine from the Atlantic Ocean. Previous studies demonstrated a strong tidal-mixing front during the warm season on the northern bank margin between thermally stratified water in the Gulf of Maine and mixed water on the bank. Tides transport warm water off the bank during flood tide and cool gulf water onto the bank during ebb tide. During 10 days in August 2009, we mapped frontal temperatures in five study areas along ∼100 km of the bank margin. The seabed “frontal zone”, where temperature changed with frontal movment, experienced semidiurnal temperature maxima and minima. The tidal excursion of the frontal boundary between stratified and mixed water ranged 6 to 10 km. This “frontal boundary zone” was narrower than the frontal zone. Along transects perpendicular to the bank margin, seabed temperature change at individual sites ranged from 7.0°C in the frontal zone to 0.0°C in mixed bank water. At time series in frontal zone stations, changes during tidal cycles ranged from 1.2 to 6.1°C. The greatest rate of change (−2.48°C hr−1) occurred at mid-ebb. Geographic plots of seabed temperature change allowed the mapping of up to 8 subareas in each study area. The magnitude of temperature change in a subarea depended on its location in the frontal zone. Frontal movement had the greatest effect on seabed temperature in the 40 to 80 m depth interval. Subareas experiencing maximum temperature change in the frontal zone were not in the frontal boundary zone, but rather several km gulfward (off-bank) of the frontal boundary zone. These results provide a new ecological framework for examining the effect of tidally-driven temperature variability on the distribution, food resources, and reproductive success of benthic invertebrate and demersal fish species living in tidal front habitats. PMID:23405129
A numerical study of local variations in tidal regime of Tagus estuary, Portugal.
Dias, João Miguel; Valentim, Juliana Marques; Sousa, Magda Catarina
2013-01-01
Tidal dynamics of shallow estuaries and lagoons is a complex matter that has attracted the attention of a large number of researchers over the last few decades. The main purpose of the present work is to study the intricate tidal dynamics of the Tagus estuary, which states as the largest estuary of the Iberian Peninsula and one of the most important wetlands in Portugal and Europe. Tagus has large areas of low depth and a remarkable geomorphology, both determining the complex propagation of tidal waves along the estuary of unknown manner. A non-linear two-dimensional vertically integrated hydrodynamic model was considered to be adequate to simulate its hydrodynamics and an application developed from the SIMSYS2D model was applied to study the tidal propagation along the estuary. The implementation and calibration of this model revealed its accuracy to predict tidal properties along the entire system. Several model runs enabled the analysis of the local variations in tidal dynamics, through the interpretation of amplitude and phase patterns of the main tidal constituents, tidal asymmetry, tidal ellipses, form factor and tidal dissipation. Results show that Tagus estuary tidal dynamics is extremely dependent on an estuarine resonance mode for the semi-diurnal constituents that induce important tidal characteristics. Besides, the estuarine coastline features and topography determines the changes in tidal propagation along the estuary, which therefore result essentially from a balance between convergence/divergence and friction and advection effects, besides the resonance effects.
A Numerical Study of Local Variations in Tidal Regime of Tagus Estuary, Portugal
Dias, João Miguel; Valentim, Juliana Marques; Sousa, Magda Catarina
2013-01-01
Tidal dynamics of shallow estuaries and lagoons is a complex matter that has attracted the attention of a large number of researchers over the last few decades. The main purpose of the present work is to study the intricate tidal dynamics of the Tagus estuary, which states as the largest estuary of the Iberian Peninsula and one of the most important wetlands in Portugal and Europe. Tagus has large areas of low depth and a remarkable geomorphology, both determining the complex propagation of tidal waves along the estuary of unknown manner. A non-linear two-dimensional vertically integrated hydrodynamic model was considered to be adequate to simulate its hydrodynamics and an application developed from the SIMSYS2D model was applied to study the tidal propagation along the estuary. The implementation and calibration of this model revealed its accuracy to predict tidal properties along the entire system. Several model runs enabled the analysis of the local variations in tidal dynamics, through the interpretation of amplitude and phase patterns of the main tidal constituents, tidal asymmetry, tidal ellipses, form factor and tidal dissipation. Results show that Tagus estuary tidal dynamics is extremely dependent on an estuarine resonance mode for the semi-diurnal constituents that induce important tidal characteristics. Besides, the estuarine coastline features and topography determines the changes in tidal propagation along the estuary, which therefore result essentially from a balance between convergence/divergence and friction and advection effects, besides the resonance effects. PMID:24312474
NASA Astrophysics Data System (ADS)
Wei, Xiaojie; Steel, Ronald J.; Ravnås, Rodmar; Jiang, Zaixing; Olariu, Cornel; Li, Zhiyang
2016-04-01
Detailed observations on the Rannoch Formation in several deep Viking Graben wells indicate that the 'classical' wave-dominated Brent delta-front shows coupled storm-tide processes. The tidal signals are of three types: I): alternations of thick cross-laminated sandstone and thin mud-draped sandstone, whereby double mud drapes are prominent but discretely distributed, II): a few tidal bundles within bottomsets and foresets of up to 10 cm-thick sets cross-strata, and III): dm-thick heterolithic lamination showing multiple, well-organized sand-mud couplets. During progradation of the Brent Delta, the Rannoch shoreline system passed upward from 1) a succession dominated by clean-water, storm-event sets and cosets frequently and preferentially interbedded with type I tidal beds, and occasional types II and III tidal deposits, toward 2) very clean storm-event beds less frequently separated by types II and III tidal beds, and then into 3) a thin interval showing muddier storm-event beds mainly alternating with type II tidal beds. It is likely that those variations in preservation bias of storm and tidal beds in each facies succession result from combined effects of 1) the frequency and duration of storms; 2) river discharge; and 3) the absolute and relative strength of tides. Tidal deposits are interpreted as inter-storm, fair-weather deposits, occurred preferentially in longer intermittent fair-weather condition and periods of lower river discharge, and well-pronounced in the distal-reach of delta-front. The formation and preservation of tidal signals between storm beds, indicate that the studied Rannoch Formation was most likely a storm-dominated, tide-influenced delta front 1) near the mouth of a large Brent river, where a significant tidal prism and high tidal range might be expected, and 2) in a setting where there were relatively high sedimentation rates associated with high local subsidence rates, so that the storm waves did not completely rework the inter-storm deposits. The documentation of the unconventional Rannoch Formation contributes to our understanding of mixed-energy coastal systems.
NASA Astrophysics Data System (ADS)
Forgan, Duncan; Rice, Ken
2013-07-01
Recently, the gravitational instability (GI) model of giant planet and brown dwarf formation has been revisited and recast into what is often referred to as the "tidal downsizing" hypothesis. The fragmentation of self-gravitating protostellar discs into gravitationally bound embryos - with masses of a few to tens of Jupiter masses, at semi major axes above 30 - 40 AU - is followed by a combination of grain sedimentation inside the embryo, radial migration towards the central star and tidal disruption of the embryo's upper layers. The properties of the resultant object depends sensitively on the timescales upon which each process occurs. Therefore, GI followed by tidal downsizing can theoretically produce objects spanning a large mass range, from terrestrial planets to giant planets and brown dwarfs. Whether such objects can be formed in practice, and what proportions of the observed population they would represent, requires a more involved statistical analysis. We present a simple population synthesis model of star and planet formation via GI and tidal downsizing. We couple a semi-analytic model of protostellar disc evolution to analytic calculations of fragmentation, initial embryo mass, grain growth and sedimentation, embryo migration and tidal disruption. While there are key pieces of physics yet to be incorporated, it represents a first step towards a mature statistical model of GI and tidal downsizing as a mode of star and planet formation. We show results from four runs of the population synthesis model, varying the opacity law and the strength of migration, as well as investigating the effect of disc truncation during the fragmentation process.
NASA Astrophysics Data System (ADS)
Sawyer, A. H.; Barnes, R.; Wallace, C.; Knights, D.; Tight, D.; Bayer, M.
2017-12-01
Tides in coastal rivers can propagate tens to hundreds of kilometers inland and drive large daily changes in water and nitrogen exchange across the sediment-water interface. We use field observations and numerical models to illuminate hydrodynamic controls on nitrogen export from the riparian aquifer to a fresh, tidal reach of White Clay Creek (Delaware, USA). In the banks, an aerobic zone with high groundwater nitrate concentrations occurs near the fluctuating water table. Continuous depth-resolved measurements of redox potential suggest that this zone is relatively stable over tidal timescales but moves up or down in response to storms. The main source of dissolved oxygen is soil air that is imbibed in the zone of water table fluctuations, and the source of nitrate is likely nitrification of ammonium produced locally from the mineralization of organic matter in floodplain soils. Much of the nitrate is removed by denitrification along oscillating flow paths towards the channel. Within centimeters of the sediment-water interface, denitrification is limited by the mixing of groundwater with oxygen-rich river water. Our models predict that the benthic zones of tidal rivers play an important role in removing new nitrate inputs from discharging groundwater but may be less effective at removing nitrate from river water. Nitrate removal and production rates are expected to vary significantly along tidal rivers as permeability, organic matter content, tidal range vary. It is imperative that we understand nitrogen dynamics along tidal rivers and their role in nitrogen export to the coast.
California State Waters Map Series: Drakes Bay and vicinity, California
Watt, Janet T.; Dartnell, Peter; Golden, Nadine E.; Greene, H. Gary; Erdey, Mercedes D.; Cochrane, Guy R.; Johnson, Samuel Y.; Hartwell, Stephen R.; Kvitek, Rikk G.; Manson, Michael W.; Endris, Charles A.; Dieter, Bryan E.; Sliter, Ray W.; Krigsman, Lisa M.; Lowe, Erik N.; Chinn, John L.; Watt, Janet T.; Cochran, Susan A.
2015-01-01
Sediment transport in the map area largely is controlled by surface waves and tidal currents in the nearshore and, at depths greater than 20 to 30 m, by tidal and subtidal currents. In the map area, nearshore littoral drift of sand and coarse sediment is to the south, owing to the dominant west-northwest swell direction, and scour from large waves and tidal currents removes and redistributes sediment over large areas of the inner shelf. Tidal currents are particularly strong over the shelf in the map area, and they dominate the current regime in the nearshore. Further offshore, bottom currents generally flow to the northwest, distributing finer grained sediment accordingly.
The role of tidal marsh restoration in fish management in the San Francisco Estuary
Herbold, Bruce; Baltz, Donald; Brown, Larry R.; Grossinger, Robin; Kimmerer, Wim J.; Lehman, Peggy W.; Moyle, Peter B.; Nobriga, Matthew L.; Simenstad, Charles A.
2015-01-01
Tidal marsh restoration is an important management issue in the San Francisco Estuary (estuary). Restoration of large areas of tidal marsh is ongoing or planned in the lower estuary (up to 6,000 ha, Callaway et al. 2011). Large areas are proposed for restoration in the upper estuary under the Endangered Species Act biological opinions (3,237 ha) and the Bay Delta Conservation Plan (26,305 ha). In the lower estuary, tidal marsh has proven its value to a wide array of species that live within it (Palaima 2012). In the Sacramento–San Joaquin Delta (Delta), one important function ascribed to restoration of freshwater tidal marshes is that they make large contributions to the food web of fish in open waters (BDCP 2013). The Ecosystem Restoration Program ascribed a suite of ecological functions to tidal marsh restoration, including habitat and food web benefits to native fish (CDFW 2010). This background was the basis for a symposium, Tidal Marshes and Native Fishes in the Delta: Will Restoration Make a Difference? held at the University of California, Davis, on June 10, 2013. This paper summarizes conclusions the authors drew from the symposium.
Does mercury contamination reduce body condition of endangered California clapper rails?
Ackerman, Joshua T.; Overton, Cory T.; Casazza, Michael L.; Takekawa, John Y.; Eagles-Smith, Collin A.; Keister, Robin A.; Herzog, Mark P.
2012-01-01
We examined mercury exposure in 133 endangered California clapper rails (Rallus longirostris obsoletus) within tidal marsh habitats of San Francisco Bay, California from 2006 to 2010. Mean total mercury concentrations were 0.56 μg/g ww in blood (range: 0.15–1.43), 9.87 μg/g fw in head feathers (3.37–22.0), 9.04 μg/g fw in breast feathers (3.68–20.2), and 0.57 μg/g fww in abandoned eggs (0.15–2.70). We recaptured 21 clapper rails and most had low within-individual variation in mercury. Differences in mercury concentrations were largely attributed to tidal marsh site, with some evidence for year and quadratic date effects. Mercury concentrations in feathers were correlated with blood, and slopes differed between sexes (R2 = 0.58–0.76). Body condition was negatively related to mercury concentrations. Model averaged estimates indicated a potential decrease in body mass of 20–22 g (5–7%) over the observed range of mercury concentrations. Our results indicate the potential for detrimental effects of mercury contamination on endangered California clapper rails in tidal marsh habitats.
Brooke Czwartacki; Carl C. Trettin; Timothy J. Callahan
2016-01-01
The low-gradient coastal topography of the southeastern Atlantic Coastal Plain, coupled with large oceanic tidal amplitudes cause rivers that discharge to the coast to exhibit tidal influence of tides far inland. In those reaches, tidal-freshwater forested wetlands (TFFW) occupy floodplains which eventually transition to non-tidal, bottomland hardwood-forested ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Diefenderfer, Heida L.; Montgomery, David R.
2008-10-09
Tidal forested wetlands have sustained substantial areal losses, and restoration practitioners lack a description of many ecosystem structures associated with these late-successional systems in which surface water is a significant controlling factor on the flora and fauna. The roles of large woody debris in terrestrial and riverine ecosystems have been well described compared to functions in tidal areas. This study documents the role of large wood in forcing channel morphology in Picea-sitchensis (Sitka spruce) dominated freshwater tidal wetlands in the floodplain of the Columbia River, U.S.A. near the Pacific coast. The average pool spacing documented in channel surveys of threemore » freshwater tidal forested wetlands near Grays Bay were 2.2 ± 1.3, 2.3 ± 1.2, and 2.5 ± 1.5. There were significantly greater numbers of pools on tidal forested wetland channels than on a nearby restoration site. On the basis of pool spacing and the observed sequences of log jams and pools, the tidal forested wetland channels were classified consistent with a forced step-pool class. Tidal systems, with bidirectional flow, have not previously been classified in this way. The classification provides a useful basis for restoration project design and planning in historically forested tidal freshwater areas, particularly in regard to the use of large wood in restoration actions and the development of pool habitats for aquatic species. Significant modifications by beaver on these sites warrant further investigation to explore the interactions between these animals and restoration actions affecting hydraulics and channel structure in tidal areas.« less
Effects of mud supply on large-scale estuary morphology and development over centuries to millennia
NASA Astrophysics Data System (ADS)
Braat, Lisanne; van Kessel, Thijs; Leuven, Jasper R. F. W.; Kleinhans, Maarten G.
2017-10-01
Alluvial river estuaries consist largely of sand but are typically flanked by mudflats and salt marshes. The analogy with meandering rivers that are kept narrower than braided rivers by cohesive floodplain formation raises the question of how large-scale estuarine morphology and the late Holocene development of estuaries are affected by cohesive sediment. In this study we combine sand and mud transport processes and study their interaction effects on morphologically modelled estuaries on centennial to millennial timescales. The numerical modelling package Delft3D was applied in 2-DH starting from an idealised convergent estuary. The mixed sediment was modelled with an active layer and storage module with fluxes predicted by the Partheniades-Krone relations for mud and Engelund-Hansen for sand. The model was subjected to a range of idealised boundary conditions of tidal range, river discharge, waves and mud input. The model results show that mud is predominantly stored in mudflats on the side of the estuary. Marine mud supply only influences the mouth of the estuary, whereas fluvial mud is distributed along the whole estuary. Coastal waves stir up mud and remove the tendency to form muddy coastlines and the formation of mudflats in the downstream part of the estuary. Widening continues in estuaries with only sand, while mud supply leads to a narrower constant width and reduced channel and bar dynamics. This self-confinement eventually leads to a dynamic equilibrium in which lateral channel migration and mudflat expansion are balanced on average. However, for higher mud concentrations, higher discharge and low tidal amplitude, the estuary narrows and fills to become a tidal delta.
Rainey, R C T
2018-01-01
For tidal power barrages, a breast-shot water wheel, with a hydraulic transmission, has significant advantages over a conventional Kaplan turbine. It is better suited to combined operations with pumping that maintain the tidal range upstream of the barrage (important in reducing the environmental impact), and is much less harmful to fish. It also does not require tapered entry and exit ducts, making the barrage much smaller and lighter, so that it can conveniently be built in steel. For the case of the Severn Estuary, UK, it is shown that a barrage at Porlock would generate an annual average power of 4 GW (i.e. 35 TWh yr -1 ), maintain the existing tidal ranges upstream of it and reduce the tidal ranges downstream of it by only about 10%. The weight of steel required, in relation to the annual average power generated, compares very favourably with a recent offshore wind farm.
NASA Astrophysics Data System (ADS)
Rainey, R. C. T.
2018-01-01
For tidal power barrages, a breast-shot water wheel, with a hydraulic transmission, has significant advantages over a conventional Kaplan turbine. It is better suited to combined operations with pumping that maintain the tidal range upstream of the barrage (important in reducing the environmental impact), and is much less harmful to fish. It also does not require tapered entry and exit ducts, making the barrage much smaller and lighter, so that it can conveniently be built in steel. For the case of the Severn Estuary, UK, it is shown that a barrage at Porlock would generate an annual average power of 4 GW (i.e. 35 TWh yr-1), maintain the existing tidal ranges upstream of it and reduce the tidal ranges downstream of it by only about 10%. The weight of steel required, in relation to the annual average power generated, compares very favourably with a recent offshore wind farm.
Use of vertical temperature gradients for prediction of tidal flat sediment characteristics
Miselis, Jennifer L.; Holland, K. Todd; Reed, Allen H.; Abelev, Andrei
2012-01-01
Sediment characteristics largely govern tidal flat morphologic evolution; however, conventional methods of investigating spatial variability in lithology on tidal flats are difficult to employ in these highly dynamic regions. In response, a series of laboratory experiments was designed to investigate the use of temperature diffusion toward sediment characterization. A vertical thermistor array was used to quantify temperature gradients in simulated tidal flat sediments of varying compositions. Thermal conductivity estimates derived from these arrays were similar to measurements from a standard heated needle probe, which substantiates the thermistor methodology. While the thermal diffusivities of dry homogeneous sediments were similar, diffusivities for saturated homogeneous sediments ranged approximately one order of magnitude. The thermal diffusivity of saturated sand was five times the thermal diffusivity of saturated kaolin and more than eight times the thermal diffusivity of saturated bentonite. This suggests that vertical temperature gradients can be used for distinguishing homogeneous saturated sands from homogeneous saturated clays and perhaps even between homogeneous saturated clay types. However, experiments with more realistic tidal flat mixtures were less discriminating. Relationships between thermal diffusivity and percent fines for saturated mixtures varied depending upon clay composition, indicating that clay hydration and/or water content controls thermal gradients. Furthermore, existing models for the bulk conductivity of sediment mixtures were improved only through the use of calibrated estimates of homogeneous end-member conductivity and water content values. Our findings suggest that remotely sensed observations of water content and thermal diffusivity could only be used to qualitatively estimate tidal flat sediment characteristics.
Relationships between diatoms and tidal environments in Oregon and Washington, USA
Sawai, Yuki; Horton, Benjamin P.; Kemp, Andrew C.; Hawkes, Andrea D.; Nagumo, Tamostsu; Nelson, Alan R.
2016-01-01
A new regional dataset comprising 425 intertidal diatom taxa from 175 samples from 11 ecologically diverse Oregon and Washington estuaries illustrates the importance of compiling a large modern dataset from a range of sites. Cluster analyses and detrended correspondence analysis of the diatom assemblages identify distinct vertical zones within supratidal, intertidal and subtidal environments at six of the 11 study sites, but the abundance of some of the most common species varies widely among and within sites. Canonical correspondence analysis of the regional dataset shows relationships between diatom species and tidal exposure, salinity and substratum (grain size and organic content). Correspondence analyses of local datasets show higher values of explained variation than the analysis of the combined regional dataset. Our results emphasize that studies of the autecology of diatom species require many samples from a range of modern environments to adequately characterize species–environment relationships.
Remote sensing of wetland parameters related to carbon cycling
NASA Technical Reports Server (NTRS)
Bartlett, David S.; Johnson, Robert W.
1985-01-01
Measurement of the rates of important biogeochemical fluxes on regional or global scales is vital to understanding the geochemical and climatic consequences of natural biospheric processes and of human intervention in those processes. Remote data gathering and interpretation techniques were used to examine important cycling processes taking place in wetlands over large geographic expanses. Large area estimation of vegetative biomass and productivity depends upon accurate, consistent measurements of canopy spectral reflectance and upon wide applicability of algorithms relating reflectance to biometric parameters. Results of the use of airborne multispectral scanner data to map above-ground biomass in a Delaware salt marsh are shown. The mapping uses an effective algorithm linking biomass to measured spectral reflectance and a means to correct the scanner data for large variations in the angle of observation of the canopy. The consistency of radiometric biomass algorithms for marsh grass when they are applied over large latitudinal and tidal range gradients were also examined. Results of a 1 year study of methane emissions from tidal wetlands along a salinity gradient show marked effects of temperature, season, and pore-water chemistry in mediating flux to the atmosphere.
Tides and tidal stress: Applications to Europa
NASA Astrophysics Data System (ADS)
Hurford, Terry Anthony, Jr.
A review of analytical techniques and documentation of previously inaccessible mathematical formulations is applied to study of Jupiter's satellite Europa. Compared with numerical codes that are commonly used to model global tidal effects, analytical models of tidal deformation give deeper insight into the mechanics of tides, and can better reveal the nature of the dependence of observable effects on key parameters. I develop analytical models for tidal deformation of multi-layered bodies. Previous studies of Europa, based on numerical computation, only to show isolated examples from parameter space. My results show a systematic dependence of tidal response on the thicknesses and material parameters of Europa's core, rocky mantle, liquid water ocean, and outer layer of ice. As in the earlier work, I restrict these studies to incompressible materials. Any set of Love numbers h 2 and k 2 which describe a planet's tidal deformation, could be fit by a range of ice thickness values, by adjusting other parameters such as mantle rigidity or core size, an important result for mission planning. Inclusion of compression into multilayer models has been addressed analytically, uncovering several issues that are not explicit in the literature. Full evaluation with compression is here restricted to a uniform sphere. A set of singularities in the classical solution, which correspond to instabilities due to self-gravity has been identified and mapped in parameter space. The analytical models of tidal response yield the stresses anywhere within the body, including on its surface. Crack patterns (such as cycloids) on Europa are probably controlled by these stresses. However, in contrast to previous studies which used a thin shell approximation of the tidal stress, I consider how other tidal models compare with the observed tectonic features. In this way the relationship between Europa's surface tectonics and the global tidal distortion can be constrained. While large-scale tidal deformations probe internal structure deep within a body, small-scale deformations can probe internal structure at shallower depths. I have used photoclinometry to obtain topographic profiles across terrain adjacent to Europan ridges to detect the effects of loading on the lithosphere. Lithospheric thicknesses have been determined and correlated with types and ages of terrain.
NASA Astrophysics Data System (ADS)
Andreucci, Stefano; Pistis, Marco; Funedda, Antonio; Loi, Alfredo
2017-11-01
The Chattian-Aquitanian carbonate system of Isili sub-basin (SE Sardinia, Italy) were studied to better understand the hydrodynamic processes controlling the formation of landward-downlapping, rhodolith-rich, giant clinoforms. The studied flat-topped platform was attached to an island (semi-isolated) and migrated onshore (landward) over a shallow marine, protected embayment. The depositional profile is characterized by four, sea to land, zones: seaward slope, flat-topped platform (submerged flat), landward slope and mixed siliciclastic-carbonate embayment. In particular, these zones record different levels, from high to moderate, of hydrodynamic energy and persistency. The paleodepth of the studied succession, based on T/D test on Amphistegina specimens, red-algal genera and geometric reconstruction of the overall system, ranges from - 10 to - 30 m for the platform up to around - 40 m for the landward slope base. Thus, the flat-topped platform was permanently submerged and an extensive carbonate (sea grass, algal and bryozoan-algal) factory along with oyster framestones developed. The widespread presence in the barren zones of rhodolith-to-shell rich small to very small compound dunes (high-energy zone) suggests that the flat-topped platform was periodically swept by unidirectional, landward-directed currents. These currents allow the formation of large-scale, rhodolith-rich clinobeds along the landward slope (washover fan-like system). The presence of rodolith pavements developed along the flat-topped platform at or slightly below the fairweather wave base suggests that clinobeds were formed in a nearshore, shallow subtidal setting. Finally, the shallow marine, protected embayment (moderate-energy zone) represents the widening distal reaches of the currents flowing or along the clinoforms or from the coast basinward (river floods and/or ebb tidal currents). Despite few tidal-related sedimentary structures such as bi-directional ripples and small compound dunes separated by finer-grained ;drapes; or reactivation surfaces were observed, the prevailing processes acting over the platform are unidirectional, landward-directed currents possibly associated with longshore currents and/or wave actions. However, the resultant migration of the whole system onshore (landward) cannot be easily explained with storm or wind-related processes. Thus the studied flat-topped platform seems to be controlled by long term tidal regulation within a meso to macro tidal regime. In particular, such meso/macro tidal environments experience multiannual to multidecennial phases of stronger/weaker tidal range fluctuations resembling periods of relatively sea highs and lows with respect to the mean sea level (0 m). All the (wind, storm, wave and tidal) currents sweeping the flat-topped platform were maxima during phases of strong tidal fluctuations generating erosion and sediment transportation over the flat and accumulation on the landward slope (clinobeds). Conversely, during phases of weaker tidal range fluctuations overall currents were minima, clinoforms did not develop and factories widespread re-colonized the submerged flat. Therefore, the studied platform developed in a current-dominated and tidal modulated setting. Finally, the studied carbonates of Sardinia suggest that the Sardinian seaway and the incipient Provençal basin during the Chattian-Aquitanian were, locally, capable to generate meso to macro tidal conditions.
Tape, C.H.; Cowan, Clinton A.; Runkel, Anthony C.
2003-01-01
This study documents for the first time tidal bundling in a lower Paleozoic sheet sandstone from the cratonic interior of North America, providing insights into the hydrodynamics of ancient epicontinental seas. The Jordan Sandstone (Upper Cambrian) in the Upper Mississippi Valley contains large-scale planar tabular cross-sets with tidal-bundle sequences, which were analyzed in detail at an exceptional exposure. Tidal-bundle sequences (neap-spring-neap cycles) were delineated by foreset thickening-thinning patterns and composite shale drapes, the latter of which represent accumulations of mud during the neap tides of neap-spring-neap tidal cycles. Fourier analysis of the bundle thickness data from the 26 measurable bundle sequences revealed cycles ranging from 15 to 34 bundles per sequence, which suggests a semidiurnal or mixed tidal system along this part of the Late Cambrian shoreline. We extend the tidal interpretation to widespread occurrences of the same facies in outcrops of lesser quality, where the facies is recognizable but too few bundles are exposed for tidal cycles to be measured. By doing so, this study shows that tidally generated deposits have a significant geographic and temporal extent in Upper Cambrian strata of central mid-continent North America. The deposition and preservation of tidal facies was related to the intermittent development of shoreline embayments during transgressions. The tidally dominated deposits filled ravined topographies that were repeatedly developed on the updip parts of the shoreface. Resulting coastal geomorphologies, accompanied perhaps by larger-scale changes in basinal conditions and/or configuration, led to changes in depositional conditions from wave-dominated to tide-dominated. Outcrops of the Jordan Sandstone tidal facies in the Upper Mississippi Valley represent the farthest inboard recorded transmission of ocean-generated tides in the Laurentian epicontinental seas, demonstrating that tidal currents were significant agents in the transport of sand along the far cratonic interior shorelines of Cambrian North America. The results of this study improve the facies-level understanding of the genesis of sheet sandstones. Furthermore, tidalites documented here occur in a specific position within a sequence stratigraphic architecture for the Jordan Sandstone. This provides a framework to compare these ancient deposits and processes to younger (e.g., Carboniferous) epicontinental systems where stratal and sediment dynamics are better documented. ?? 2003, SEPM (Society for Sedimentary Geology).
Physical Environment of the Pacific Missile Range Facility, Kauai, Hawaii,
1984-03-01
Macdonald, Davis, and Cox (1960), the island of Kauai and the adjacent island of Niihau are lava domes located at the top of one large marine volcanic...tidal current. 35 z Hnalei B. ~ IV* KAUAI 220 NIIHAU MnaP N Koeno P OAHU V, 0 10 20 -3.0 Scale in Nautical Miles Approx. * LEGEND ~-FLOOD CURRENT
This study describes a hybrid technique of digitally classifying aerial photography used for mapping the intertidal habitat of eelgrass (Zostera marina L.) in Pacific Northwest USA estuaries. The large tidal range (2-3 m) in this region exposes most of this seagrass community at ...
[Critical tidal level for Kandelia candel forestation in strong tidal range area].
Qiu, Jian-biao; Huang, Li; Chen, Shao-bo; Chi, Wei; Ding, Wen-yong; Zhou, Chao-sheng; Zheng, Chun-fang; Wang, Wen-qing
2010-05-01
Taking Ximen island of Yueqing bay, the biggest tidal range area among the coasts of China, as study site, an investigation was made on the survival rate, growth characteristics, and attached barnacles of 1- and 3-year-old Kandelia candel seedlings at the elevations 1.96, 1.66, 1.35, and 1.03 m above the zero tidal level of Yellow Sea. Significant differences were observed in the survival rate and growth situation of the seedlings among the elevations. There were two barnacle species, Balanus albicostatus and Balanus amphitrite amphitrite, and B. albicostatus was the major species which attached K. candel most seriously at elevation 1.35 m. The critical tidal level for K. candel in the site was 1.66 m above the zero tidal level, i.e., at least 1.29 m higher than the local mean sea level, and the flooding time per tide cycle being less than 3.65 h. Barnacle, strong tide, and extreme weather event were the main reasons for the higher critical tidal level.
NASA Astrophysics Data System (ADS)
Wilson, C.; Goodbred, S. L., Jr.; Wallace Auerbach, L.; Ahmed, K. R.; Small, C.; Sams, S. E.
2014-12-01
Over the last century, land use changes in the Ganges-Brahmaputra tidal delta have transformed >5000 km2 of intertidal mangrove forest to densely inhabited, agricultural islands that have been embanked to protect against tides and storm surges (i.e., polders). More recently, the conversion of rice paddies to profitable shrimp aquaculture has become increasingly widespread. Recent field studies documented that poldering in southwest Bangladesh has resulted in an elevation deficit relative to that of the natural mangrove forests and mean high water (MHW). The offset is a function of lost sedimentation, enhanced compaction, and an effective rise in MHW from tidal amplification. The morphologic adjustment of the tidal channel network to these perturbations, however, has gone largely undocumented. One effect has been the shoaling of many channels due to decreases in fluvial discharge and tidal prism. We document a previously unrecognized anthropogenic component: the widespread closure of large conduit tidal channels for land reclamation and shrimp farming. GIS analysis of historical Landsat and Google Earth imagery within six 1000 km2 study areas reveals that the tidal network in the natural Sundarbans mangrove forest has remained relatively constant since the 1970s, while significant changes are observed in human-modified areas. Construction of the original embankments removed >1000 km of primary tidal creeks, and >80 km2 of land has been reclaimed outside of polders through the closure of formerly active tidal channels (decrease in mean channel width from 256±91 m to 25±10 m). Tidal restriction by large sluice gates is prevalent, favoring local channel siltation. Furthermore, severing the intertidal platform and large conduit channels from the tidal network has had serious repercussions, such as increased lateral migration and straightening of the remaining channels. Where banklines have eroded, the adjacent embankments appear to be more vulnerable to failure, as observed from the effects of Cyclone Aila in 2009: multiple embankments failed at sites of recent channel migration and impounded primary creeks. Although global climate change and sea-level rise is a major concern for this low-lying delta, this study highlights the need to understand the repercussions of anthropogenic modification as well.
Effects of Internal Waves on Sound Propagation in the Shallow Waters of the Continental Shelves
2016-09-01
experiment area were largely generated by tidal forcing. Compared to simulations without internal waves , simulations accounting for the effects of...internal waves in the experiment area were largely generated by tidal forcing. Compared to simulations without internal waves , simulations accounting for...IN THE SHALLOW WATERS OF THE CONTINENTAL SHELVES ..................................4 1. Internal Tides—Internal Waves Generated by Tidal Forcing
Sediment transport dynamics in response to large-scale human intervention
NASA Astrophysics Data System (ADS)
Eelkema, Menno; Wang, Zheng Bing
2010-05-01
SEDIMENT TRANSPORT DYNAMICS IN RESPONSE TO LARGE-SCALE HUMAN INTERVENTION M. Eelkema and Z.B. Wang The Eastern Scheldt basin in the southwestern part of the Netherlands is an elongated tidal basin of approximately 50 km in length with an average tidal range of roughly 3 meters at the inlet. Before 1969 A.D., this basin was also connected to two more tidal basins to the north through several narrow, yet deep channels. These connections were closed off with dams in the nineteen sixties in response to the catastrophic flooding in 1953. In the inlet of the Eastern Scheldt a storm-surge barrier was built in order to safeguard against flooding during storms while retaining a part of the tidal influence inside the basin during normal conditions. This barrier was finalized in 1986. The construction of the back-barrier dams in 1965 and 1969 had a significant impact on the tidal hydrodynamics and sediment transport (Van den Berg, 1986). The effects of these interventions were still ongoing when the hydrodynamic regime was altered again by the construction of the storm-surge barrier between 1983 and 1986. This research aims to describe the hydrodynamic and morphodynamic evolution of the Eastern Scheldt between 1953 and 1983, before construction of the storm-surge barrier had started. An analysis is made of the manner in which the back-barrier dams changed the tidal flow through the basin, and how these altered hydrodynamics influenced the sediment transport and morphology. This analysis consists first of all of a description of the observed hydrodynamical and bathymetrical changes. Second, these observations are used as input for a process-based hydrodynamic model (Delft3D), which is applied in order to gain more insight into the changes in sediment transport patterns. The model is used to simulate the situations before and after the closures of the connections between the Eastern Scheldt and the basins north of it In the decades before 1965, the Eastern Scheldt exported large quantities of sediment towards sea through its inlet. This export was estimated to be roughly 2 to 3 million m3 per year, and was observable as deepening channels inside the basin, and a growing ebb-tidal delta. The implementation of the dams caused a significant increase in tidal prism, while at the same time they stopped the residual flow of water from the Eastern Scheldt towards the northern basins. The increase in tidal prism was observable in the response of bathymetry; the rates of channel deepening and ebb-tidal delta growth both increased. Analysis of tidal flow measurements and model output show a persistent trend for sediment transport towards and out of the Eastern Scheldt's inlet. This export is caused by both the strong ebb-directed asymmetry in the tidal flow as well as higher sediment concentrations during ebb. The construction of the back-barrier dams only amplified this export by cutting off the residual import of flow and by causing the basin to be out of equilibrium even more than it apparently already was. References Van den Berg, J.H., 1986. Aspects of Sediment- and Morphodynamics of Subtidal Deposits of the Oosterschelde (the Netherlands). Rijkswaterstaat Communications, no. 43/1986, The Hague.
Staging of the Acoustic Response at Laboratory Modelling of Tidal Influence upon Seismicity
NASA Astrophysics Data System (ADS)
Saltykov, Vadim; Patonin, Andrey; Kugaenko, Yulia
2010-05-01
INTRODUCTION The seismic radiation is varied through the wide range of seismic energy from seismic emission (high-frequency seismic noise, HFSN) to earthquakes. Some features of external influence response on the different scales allow to consider the medium as a single whole seismoactive object. Earth tide is a bright example of external excited field. Tidal topic has long history in seismology. Results obtained by different scientists are contradictory and ambiguous often. We denoted instability of tidal effect manifestation as possible reason of this situation. In view of the aforesaid it is significant, that tidal effects in weak seismicity and HFSN prove more strongly in the stage of large earthquake preparation [Rykunov et al., 1998, Saltykov et al., 2004, 2007]. It is presumed that the metastable medium has more high tidal sensitivity. For example, sources of prepared earthquakes and extensive near-surface zones of micro-fissuring and dilatancy, which appear during source formation and stretch far enough. [Alekseev et all., 2001, Goldin, 2004, 2005]. Common features of observed effects allow to suggest existence of tidal modulation mechanism, which is similar (may be single) for different seismic scales. Modelling of these processes can improve our understanding of tidal effect nature. LABORATORY EXPERIMENT Results of rock sample destruction experiments under controlling are presented. Acoustic emission (AE) pulses act as analogue of seismic events. Tides are simulated by weak long-period variations added to quasi-stationary subcritical loading. The results of tidal modeling confirmed AE intensity synchronization with external periodic influence with large (5-10%) variations of loading are known [Lockner, Beeler, 1999, Ponomarev et al., 2007]. But real (in nature) tidal strain&stress variations are much less and equal to splits of percent. Therefore, investigation of weak modulation influence upon deformed rock is one of main proposed purposes. Used software-programmable electro-hydraulic system INOVA [Patonin, 2006], can provide various procedures of experiment, among them programmable modulatory action. Axial deformation with stable strain rate and additional action of meander with specified period and amplitude was chosen as mode of operation. The relation between background and periodic strains reaches three orders, which corresponds to real relation between maximal tectonic and tidal strains. RESULTS For detection of periodic loading modulation of AE we used procedure based on Rayleigh criteria of uniformity and considered uniformity of AE impulses distribution on time interval, multiple to period of loading. Moreover, the predominant phase of periodical loading, corresponding to maximal AE activity, was calculated in sliding time window. In all experiments we observed instability of modulation effects. So the following stages were distinguished: - synchronization of AE and periodic loading at the initial part of test; - absence of synchronization at the elastic stage; - resumption of synchronization during plastic deformation. Stability of phase corresponding to maximal AE activity was discovered within the initial part and plastic deformation stage. Absolute values of phase for initial loading and during plastic deformation are different. CONCLUSION Now we regard revealed staging of AE response to weak periodical loading as our main result of these experiments. Different stages of AE response are connected with different state of rock samples during loading and destruction. Observed effects of synchronization can be considered as analogue of tidal modulation of HFSN and appearance of "tidal" seismicity in source zone of prepared large earthquake. This investigation was supported by RFBR, grant 08-05-00692.
NASA Astrophysics Data System (ADS)
Jalón-Rojas, Isabel; Schmidt, Sabine; Sottolichio, Aldo
2017-11-01
The relative contribution of environmental forcing frequencies on turbidity variability is, for the first time, quantified at seasonal and multiannual time scales in tidal estuarine systems. With a decade of high-frequency, multi-site turbidity monitoring, the two nearby, macrotidal and highly-turbid Gironde and Loire estuaries (west France) are excellent natural laboratories for this purpose. Singular Spectrum Analyses, combined with Lomb-Scargle periodograms and Wavelet Transforms, were applied to the continuous multiannual turbidity time series. Frequencies of the main environmental factors affecting turbidity were identified: hydrological regime (high versus low river discharges), river flow variability, tidal range, tidal cycles, and turbulence. Their relative influences show similar patterns in both estuaries and depend on the estuarine region (lower or upper estuary) and the time scale (multiannual or seasonal). On the multiannual time scale, the relative contribution of tidal frequencies (tidal cycles and range) to turbidity variability decreases up-estuary from 68% to 47%, while the influence of river flow frequencies increases from 3% to 42%. On the seasonal time scale, the relative influence of forcings frequencies remains almost constant in the lower estuary, dominated by tidal frequencies (60% and 30% for tidal cycles and tidal range, respectively); in the upper reaches, it is variable depending on hydrological regime, even if tidal frequencies are responsible for up 50% of turbidity variance. These quantifications show the potential of combined spectral analyses to compare the behavior of suspended sediment in tidal estuaries throughout the world and to evaluate long-term changes in environmental forcings, especially in a context of global change. The relevance of this approach to compare nearby and overseas systems and to support management strategies is discussed (e.g., selection of effective operation frequencies/regions, prediction of the most affected regions by the implementation of operational management plans).
Tidal stripping as a test of satellite quenching in redMaPPer clusters
Fang, Yuedong; Clampitt, Joseph; Dalal, Neal; ...
2016-08-24
When dark matter haloes are accreted by massive host clusters, strong gravitational tidal forces begin stripping mass from the accreted subhaloes. This stripping eventually removes all mass beyond a subhalo's tidal radius, with unbound mass remaining in the vicinity of the satellite for at most a dynamical time tdyn. The N-body subhalo study of Chamberlain et al. verified this picture and pointed out a useful observational consequence: correlations between subhaloes beyond the tidal radius are sensitive to the infall time, tinfall, of the subhalo on to its host. We perform this correlation using ~160 000 red satellite galaxies in Sloanmore » Digital Sky Survey redMaPPer clusters and find evidence that subhalo correlations do persist well beyond the tidal radius, suggesting that many of the observed satellites fell into their current host less than a dynamical time ago, tinfall < tdyn. Combined with estimated dynamical times tdyn ~3–5 Gyr and SED fitting results for the time at which satellites stopped forming stars, tquench ~6 Gyr, we infer that for a significant fraction of the satellites, star formation quenched before those satellites entered their current hosts. Finally, the result holds for red satellites over a large range of cluster-centric distances 0.1–0.6 Mpc h –1. We discuss the implications of this result for models of galaxy formation.« less
Tidal stripping as a test of satellite quenching in redMaPPer clusters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fang, Yuedong; Clampitt, Joseph; Dalal, Neal
When dark matter haloes are accreted by massive host clusters, strong gravitational tidal forces begin stripping mass from the accreted subhaloes. This stripping eventually removes all mass beyond a subhalo's tidal radius, with unbound mass remaining in the vicinity of the satellite for at most a dynamical time tdyn. The N-body subhalo study of Chamberlain et al. verified this picture and pointed out a useful observational consequence: correlations between subhaloes beyond the tidal radius are sensitive to the infall time, tinfall, of the subhalo on to its host. We perform this correlation using ~160 000 red satellite galaxies in Sloanmore » Digital Sky Survey redMaPPer clusters and find evidence that subhalo correlations do persist well beyond the tidal radius, suggesting that many of the observed satellites fell into their current host less than a dynamical time ago, tinfall < tdyn. Combined with estimated dynamical times tdyn ~3–5 Gyr and SED fitting results for the time at which satellites stopped forming stars, tquench ~6 Gyr, we infer that for a significant fraction of the satellites, star formation quenched before those satellites entered their current hosts. Finally, the result holds for red satellites over a large range of cluster-centric distances 0.1–0.6 Mpc h –1. We discuss the implications of this result for models of galaxy formation.« less
Numerical studies of dispersion due to tidal flow through Moskstraumen, northern Norway
NASA Astrophysics Data System (ADS)
Lynge, Birgit Kjoss; Berntsen, Jarle; Gjevik, Bjørn
2010-08-01
The effect of horizontal grid resolution on the horizontal relative dispersion of particle pairs has been investigated on a short time scale, i.e. one tidal M 2 cycle. Of particular interest is the tidal effect on dispersion and transports in coastal waters where small-scale flow features are important. A three-dimensional ocean model has been applied to simulate the tidal flow through the Moskstraumen Maelstrom outside Lofoten in northern Norway, well known for its strong current and whirlpools (Gjevik et al., Nature 388(6645):837-838, 1997; Moe et al., Cont Shelf Res 22(3):485-504, 2002). Simulations with spatial resolution down to 50 m have been carried out. Lagrangian tracers were passively advected with the flow, and Lyapunov exponents and power law exponents have been calculated to analyse the separation statistics. It is found that the relative dispersion of particles on a short time scale (12-24 h) is very sensitive to the grid size and that the spatial variability is also very large, ranging from 0 to 100 km2 over a distance of 100 m. This means that models for prediction of transport and dispersion of oil spills, fish eggs, sea lice etc. using a single diffusion coefficient will be of limited value, unless the models actually resolves the small-scale eddies of the tidal current.
Field migration rates of tidal meanders recapitulate fluvial morphodynamics
NASA Astrophysics Data System (ADS)
Finotello, Alvise; Lanzoni, Stefano; Ghinassi, Massimiliano; Marani, Marco; Rinaldo, Andrea; D'Alpaos, Andrea
2018-02-01
The majority of tidal channels display marked meandering features. Despite their importance in oil-reservoir formation and tidal landscape morphology, questions remain on whether tidal-meander dynamics could be understood in terms of fluvial processes and theory. Key differences suggest otherwise, like the periodic reversal of landscape-forming tidal flows and the widely accepted empirical notion that tidal meanders are stable landscape features, in stark contrast with their migrating fluvial counterparts. On the contrary, here we show that, once properly normalized, observed migration rates of tidal and fluvial meanders are remarkably similar. Key to normalization is the role of tidal channel width that responds to the strong spatial gradients of landscape-forming flow rates and tidal prisms. We find that migration dynamics of tidal meanders agree with nonlinear theories for river meander evolution. Our results challenge the conventional view of tidal channels as stable landscape features and suggest that meandering tidal channels recapitulate many fluvial counterparts owing to large gradients of tidal prisms across meander wavelengths.
Monitoring Tidal Currents with a Towed ADCP System
2015-12-22
these make tidal stream energy a more reliable source than other forms of ma- rine energy, such as waves and offshore wind. The place of tidal stream...big tidal range (9 m), relatively strong (2 m/s) currents, and moderate wind waves (less than 3 m in the an- nual mean), it is considered to be a...Monitoring tidal currents with a towed ADCP system Alexei Sentchev1 & Max Yaremchuk2 Received: 22 September 2015 /Accepted: 10 December 2015
NASA Astrophysics Data System (ADS)
Bertin, Xavier; Chaumillon, Eric; Sottolichio, Aldo; Pedreros, Rodrigo
2005-06-01
Tidal inlet characteristics are controlled by wave energy, tidal range, tidal prism, sediment supply and direction and rates of sand delivered to the inlet. This paper deals with the relations between inlet and lagoon evolutions, linked by the tidal prism. Our study is focused on the Maumusson Inlet and the Marennes-Oléron Bay (first oyster farming area in Europe), located on the western coast of France. The tidal range (2-6 m) and wave climate (mean height: 1.5 m) place this tidal inlet system in the mixed energy (tide, waves), tide-dominated category. The availability of high-resolution bathymetric data since 1824 permits to characterise and quantify accurately morphological changes of both the inlet and the tidal bay. Since 1824, sediment filling of the tidal bay has led to a 20% decrease in its water volume, and a 35% reduction of the inlet throat section. Furthermore, the bay is subjected to a very high anthropic pressure, mainly related to oyster farming. Thus, both natural and human-related processes seem relevant to explain high sedimentation rates. Current measurements, hydrodynamic modelling and cross-sectional area of the inlet throat are used in order to quantify tidal prism changes since 1824. Both flood and ebb tidal prism decreased by 35%. Decrease in the Marennes-Oléron Bay water volume is inferred to be responsible for a part of tidal prism decrease at the inlet. Tidal prisms decrease may also be explained by an increase in frictional resistance to tidal wave propagation, due to a general shoaling and oyster farms in the bay. A conceptual model is proposed, taking into account natural and human-related sedimentation processes, and explaining tidal inlet response to tidal bay evolutions.
Krauss, Ken W.; Whitbeck, Julie L.
2012-01-01
Tidal freshwater forested wetlands (tidal swamps) are periodically affected by salinity intrusion at seaward transitions with marsh, which, along with altered hydrology, may affect the balance of gaseous carbon (C) and nitrogen (N) losses from soils. We measured greenhouse gas emissions (CO2, CH4, N2O) from healthy, moderately degraded, and degraded tidal swamp soils undergoing sea-level-rise-induced retreat along the lower Savannah River, Georgia, USA. Soil CO2 flux ranged from 90.2 to 179.1 mg CO2 m-2 h-1 among study sites, and was the dominant greenhouse gas emitted. CO2 flux differed among sites in some months, while CH4 and N2O fluxes were 0.18 mg CH4 m-2 h-1 and 1.23 μg N2O m-2 h-1, respectively, with no differences among sites. Hydrology, soil temperature, and air temperature, but not salinity, controlled the annual balance of soil CO2 emissions from tidal swamp soils. No clear drivers were found for CH4 or N2O emissions. On occasion, large ebbing or very low tides were even found to draw CO2 fluxes into the soil (dark CO2 uptake), along with CH4 and N2O. Overall, we hypothesized a much greater role for salinity and site condition in controlling the suite of greenhouse gases emitted from tidal swamps than we discovered, and found that CO2 emissions-not CH4 or N2O-contributed most to the global warming potential from these tidal swamp soils.
Krauss, Ken W.; Whitbeck, Julie L.
2012-01-01
Tidal freshwater forested wetlands (tidal swamps) are periodically affected by salinity intrusion at seaward transitions with marsh, which, along with altered hydrology, may affect the balance of gaseous carbon (C) and nitrogen (N) losses from soils. We measured greenhouse gas emissions (CO2, CH4, N2O) from healthy, moderately degraded, and degraded tidal swamp soils undergoing sea-level-rise-induced retreat along the lower Savannah River, Georgia, USA. Soil CO2 flux ranged from 90.2 to 179.1 mg CO2 m-2 h-1 among study sites, and was the dominant greenhouse gas emitted. CO2 flux differed among sites in some months, while CH4 and N2O fluxes were 0.18 mg CH4 m-2 h-1 and 1.23 μg N2O m-2 h-1, respectively, with no differences among sites. Hydrology, soil temperature, and air temperature, but not salinity, controlled the annual balance of soil CO2 emissions from tidal swamp soils. No clear drivers were found for CH4 or N2O emissions. On occasion, large ebbing or very low tides were even found to draw CO2 fluxes into the soil (dark CO2 uptake), along with CH4 and N2O. Overall, we hypothesized a much greater role for salinity and site condition in controlling the suite of greenhouse gases emitted from tidal swamps than we discovered, and found that CO2 emissions–not CH4 or N2O–contributed most to the global warming potential from these tidal swamp soils.
NASA Astrophysics Data System (ADS)
Lee, Yoon-Kyung; Choi, Jong-Kuk; Ryu, Joo-Hyung; Eom, Jinah
2014-05-01
Tidal flats are valuable ecosystem by a productive flora and fauna which support large populations of birds, form nursery and feeding areas for coastal fisheries, provide intrinsic values such as aesthetics and education (Costanza et al., 1997; Goodwin et al., 2001). The half of the world's coastal wetlands will submerge during this century in response to sea level rise although salt marsh has a capacity to adjust to sea level rise change. However, tidal flats have been changed because of several coastal construction projects that had not been considered sustainable over the last 30 years in Korean Peninsula. The total area of tidal flats decreased from approximately 2,800 km2 in 1990 to 2,393 km2 in 2005 due to the land reclamations and dredging in South Korea. Many researchers investigated topography, sedimentation changes and local hydrodynamics for this area in the early 1990s. However, they are limited to the temporal and spatial scale because field surveys in the tidal flats are restricted due to the difficulties in accessing. The aim of this study was to examine environmental change in tidal flat in a large scale for long-term based on the remotely sensed data as well as in situ measurements. This study focused on the tidal flat that not only had been affected by reclamations on a large scale such as Ganghwa and Saemangeum but also had been indirectly affected by reclamations such as Hwang-do and Gomso-bay. In this study, changes in morphology and sedimentary facies in tidal flats were estimated. Digital elevation models (DEMs) in early 2000 and 2010 were generated based on the Landsat TM/ETM+ images using a waterline method. Morphological change was estimated based on the differences of DEMs and sedimentary facies was investigated based on the calculation of image-derived PCA coefficient. Results of the morphological change in tidal flats interestingly showed that large amount of areas had been deposited whereas the other areas were eroded. Area with deposited tendency showed increase in fine sediments whereas area with eroded tendency showed increase in coarse sediments. This result was compared with the tidal current speed estimated from a hydrological model.
Buffington, Kevin J.; Dugger, Bruce D.; Thorne, Karen M.; Takekawa, John Y.
2016-01-01
Airborne light detection and ranging (lidar) is a valuable tool for collecting large amounts of elevation data across large areas; however, the limited ability to penetrate dense vegetation with lidar hinders its usefulness for measuring tidal marsh platforms. Methods to correct lidar elevation data are available, but a reliable method that requires limited field work and maintains spatial resolution is lacking. We present a novel method, the Lidar Elevation Adjustment with NDVI (LEAN), to correct lidar digital elevation models (DEMs) with vegetation indices from readily available multispectral airborne imagery (NAIP) and RTK-GPS surveys. Using 17 study sites along the Pacific coast of the U.S., we achieved an average root mean squared error (RMSE) of 0.072 m, with a 40–75% improvement in accuracy from the lidar bare earth DEM. Results from our method compared favorably with results from three other methods (minimum-bin gridding, mean error correction, and vegetation correction factors), and a power analysis applying our extensive RTK-GPS dataset showed that on average 118 points were necessary to calibrate a site-specific correction model for tidal marshes along the Pacific coast. By using available imagery and with minimal field surveys, we showed that lidar-derived DEMs can be adjusted for greater accuracy while maintaining high (1 m) resolution.
Tidal analysis of surface currents in the Porsanger fjord in northern Norway
NASA Astrophysics Data System (ADS)
Stramska, Malgorzata; Jankowski, Andrzej; Cieszyńska, Agata
2016-04-01
In this presentation we describe surface currents in the Porsanger fjord (Porsangerfjorden) located in the European Arctic in the vicinity of the Barents Sea. Our analysis is based on data collected in the summer of 2014 using High Frequency radar system. Our interest in this fjord comes from the fact that this is a region of high climatic sensitivity. One of our long-term goals is to develop an improved understanding of the undergoing changes and interactions between this fjord and the large-scale atmospheric and oceanic conditions. In order to derive a better understanding of the ongoing changes one must first improve the knowledge about the physical processes that create the environment of the fjord. The present study is the first step in this direction. Our main objective in this presentation is to evaluate the importance of tidal forcing. Tides in the Porsanger fjord are substantial, with tidal range on the order of about 3 meters. Tidal analysis attributes to tides about 99% of variance in sea level time series recorded in Honningsvåg. The most important tidal component based on sea level data is the M2 component (amplitude of ~90 cm). The S2 and N2 components (amplitude of ~ 20 cm) also play a significant role in the semidiurnal sea level oscillations. The most important diurnal component is K1 with amplitude of about 8 cm. Tidal analysis lead us to the conclusion that the most important tidal component in observed surface currents is also the M2 component. The second most important component is the S2 component. Our results indicate that in contrast to sea level, only about 10 - 20% of variance in surface currents can be attributed to tidal currents. This means that about 80-90% of variance can be credited to wind-induced and geostrophic currents. This work was funded by the Norway Grants (NCBR contract No. 201985, project NORDFLUX). Partial support for MS comes from the Institute of Oceanology (IO PAN).
2014-06-01
declination to the Earth (27.3 days) ( Disney and Overshiner 1925). Changes in the moon’s phase and distance from Earth cause changes in tidal current...strength that are approximately half of the changes in tidal range ( Disney and Overshiner, 1925). 5 3. Non-Tidal Currents Non-tidal constituents in...2014: Columbia River Estuary. [http://www.stccmop.org/news/2013/cmop_study_provide_insight_biogeochemic al_exchange_between_bays_estuary] Disney , L
Energy storage inherent in large tidal turbine farms
Vennell, Ross; Adcock, Thomas A. A.
2014-01-01
While wind farms have no inherent storage to supply power in calm conditions, this paper demonstrates that large tidal turbine farms in channels have short-term energy storage. This storage lies in the inertia of the oscillating flow and can be used to exceed the previously published upper limit for power production by currents in a tidal channel, while simultaneously maintaining stronger currents. Inertial storage exploits the ability of large farms to manipulate the phase of the oscillating currents by varying the farm's drag coefficient. This work shows that by optimizing how a large farm's drag coefficient varies during the tidal cycle it is possible to have some flexibility about when power is produced. This flexibility can be used in many ways, e.g. producing more power, or to better meet short predictable peaks in demand. This flexibility also allows trading total power production off against meeting peak demand, or mitigating the flow speed reduction owing to power extraction. The effectiveness of inertial storage is governed by the frictional time scale relative to either the duration of a half tidal cycle or the duration of a peak in power demand, thus has greater benefits in larger channels. PMID:24910516
Energy storage inherent in large tidal turbine farms.
Vennell, Ross; Adcock, Thomas A A
2014-06-08
While wind farms have no inherent storage to supply power in calm conditions, this paper demonstrates that large tidal turbine farms in channels have short-term energy storage. This storage lies in the inertia of the oscillating flow and can be used to exceed the previously published upper limit for power production by currents in a tidal channel, while simultaneously maintaining stronger currents. Inertial storage exploits the ability of large farms to manipulate the phase of the oscillating currents by varying the farm's drag coefficient. This work shows that by optimizing how a large farm's drag coefficient varies during the tidal cycle it is possible to have some flexibility about when power is produced. This flexibility can be used in many ways, e.g. producing more power, or to better meet short predictable peaks in demand. This flexibility also allows trading total power production off against meeting peak demand, or mitigating the flow speed reduction owing to power extraction. The effectiveness of inertial storage is governed by the frictional time scale relative to either the duration of a half tidal cycle or the duration of a peak in power demand, thus has greater benefits in larger channels.
NASA Astrophysics Data System (ADS)
Oreiro, F. A.; Wziontek, H.; Fiore, M. M. E.; D'Onofrio, E. E.; Brunini, C.
2018-05-01
The Argentinean-German Geodetic Observatory is located 13 km from the Río de la Plata, in an area that is frequently affected by storm surges that can vary the level of the river over ±3 m. Water-level information from seven tide gauge stations located in the Río de la Plata are used to calculate every hour an empirical model of water heights (tidal + non-tidal component) and an empirical model of storm surge (non-tidal component) for the period 01/2016-12/2016. Using the SPOTL software, the gravimetric response of the models and the tidal response are calculated, obtaining that for the observatory location, the range of the tidal component (3.6 nm/s2) is only 12% of the range of the non-tidal component (29.4 nm/s2). The gravimetric response of the storm surge model is subtracted from the superconducting gravimeter observations, after applying the traditional corrections, and a reduction of 7% of the RMS is obtained. The wavelet transform is applied to the same series, before and after the non-tidal correction, and a clear decrease in the spectral energy in the periods between 2 and 12 days is identify between the series. Using the same software East, North and Up displacements are calculated, and a range of 3, 2, and 11 mm is obtained, respectively. The residuals obtained after applying the non-tidal correction allow to clearly identify the influence of rain events in the superconducting gravimeter observations, indicating the need of the analysis of this, and others, hydrological and geophysical effects.
Raqeeb, Abdul; Solomon, Dennis; Paré, Peter D; Seow, Chun Y
2010-11-01
Airway smooth muscle (ASM) is able to generate maximal force under static conditions, and this isometric force can be maintained over a large length range due to length adaptation. The increased force at short muscle length could lead to excessive narrowing of the airways. Prolonged exposure of ASM to submaximal stimuli also increases the muscle's ability to generate force in a process called force adaptation. To date, the effects of length and force adaptation have only been demonstrated under static conditions. In the mechanically dynamic environment of the lung, ASM is constantly subjected to periodic stretches by the parenchyma due to tidal breathing and deep inspiration. It is not known whether force recovery due to muscle adaptation to a static environment could occur in a dynamic environment. In this study the effect of length oscillation mimicking tidal breathing and deep inspiration was examined. Force recovery after a length change was attenuated in the presence of length oscillation, except at very short lengths. Force adaptation was abolished by length oscillation. We conclude that in a healthy lung (with intact airway-parenchymal tethering) where airways are not allowed to narrow excessively, large stretches (associated with deep inspiration) may prevent the ability of the muscle to generate maximal force that would occur under static conditions irrespective of changes in mean length; mechanical perturbation on ASM due to tidal breathing and deep inspiration, therefore, is the first line of defense against excessive bronchoconstriction that may result from static length and force adaptation.
Kim, Hae-Cheol; Son, Seunghyun; Kim, Yong Hoon; Khim, Jong Seong; Nam, Jungho; Chang, Won Keun; Lee, Jung-Ho; Lee, Chang-Hee; Ryu, Jongseong
2017-08-15
The Yellow Sea is a shallow marginal sea with a large tidal range. In this study, ten areas located along the western coast of the Korean Peninsula are investigated with respect to remotely sensed water quality indicators derived from NASA MODIS aboard of the satellite Aqua. We found that there was a strong seasonal trend with spatial heterogeneity. In specific, a strong six-month phase-lag was found between chlorophyll-a and total suspended solid owing to their inversed seasonality, which could be explained by different dynamics and environmental settings. Chlorophyll-a concentration seemed to be dominantly influenced by temperature, while total suspended solid was largely governed by local tidal forcing and bottom topography. This study demonstrated the potential and applicability of satellite products in coastal management, and highlighted find that remote-sensing would be a promising tool in resolving orthogonality of large spatio-temporal scale variabilities when combining with proper time series analyses. Copyright © 2017 Elsevier Ltd. All rights reserved.
Tidal Power Exploitation in Korea
NASA Astrophysics Data System (ADS)
Choi, Byung Ho; Kim, Kyeong Ok; Choi, Jae Cheon
The highest tides in South Korea are found along the northwest coast between latitudes 36-38 degrees and the number of possible sites for tidal range power barrages to create tidal basins is great due to irregular coastlines with numerous bays. At present Lake Sihwa tidal power plant is completed. The plant is consisted of 10 bulb type turbines with 8 sluice gates. The installed capacity of turbines and generators is 254MW and annual energy output expected is about 552.7 GWh taking flood flow generation scheme. Three other TPP projects are being progressed at Garolim Bay (20 turbines with 25.4MW capacity), Kangwha (28 turbines with 25.4MW capacity), Incheon (44 or 48 turbines with 30 MW capacity) and project features will be outlined here. The introduction of tidal barrages into four major TPP projects along the Kyeonggi bay will render wide range of potential impacts. Preliminary attempts were performed to quantify these impacts using 2 D hydrodynamic model demonstrating the changes in tidal amplitude and phase under mean tidal condition, associated changes in residual circulation (indicator for SPM and pollutant dispersion), bottom stress (indicator for bedload movement), and tidal front (positional indicator for bio-productivity) in both shelf scale and local context. Tidal regime modeling system for ocean tides in the seas bordering the Korean Peninsula is designed to cover an area that is broad in scope and size, yet provide a high degree of resolution in strong tidal current region including off southwestern tip of the Peninsula (Uldolmok , Jangjuk, Wando-Hoenggan), Daebang Sudo (Channel) and Kyeonggi Bay. With this simulation system, real tidal time simulation of extended springneap cycles was performed to estimate spatial distribution of tidal current power potentials in terms of power density, energy density and then extrapolated annual energy density.
Changes of soil particle size distribution in tidal flats in the Yellow River Delta.
Lyu, Xiaofei; Yu, Junbao; Zhou, Mo; Ma, Bin; Wang, Guangmei; Zhan, Chao; Han, Guangxuan; Guan, Bo; Wu, Huifeng; Li, Yunzhao; Wang, De
2015-01-01
The tidal flat is one of the important components of coastal wetland systems in the Yellow River Delta (YRD). It can stabilize shorelines and protect coastal biodiversity. The erosion risk in tidal flats in coastal wetlands was seldom been studied. Characterizing changes of soil particle size distribution (PSD) is an important way to quantity soil erosion in tidal flats. Based on the fractal scale theory and network analysis, we determined the fractal characterizations (singular fractal dimension and multifractal dimension) soil PSD in a successional series of tidal flats in a coastal wetland in the YRD in eastern China. The results showed that the major soil texture was from silt loam to sandy loam. The values of fractal dimensions, ranging from 2.35 to 2.55, decreased from the low tidal flat to the high tidal flat. We also found that the percent of particles with size ranging between 0.4 and 126 μm was related with fractal dimensions. Tide played a great effort on soil PSD than vegetation by increasing soil organic matter (SOM) content and salinity in the coastal wetland in the YRD. Tidal flats in coastal wetlands in the YRD, especially low tidal flats, are facing the risk of soil erosion. This study will be essential to provide a firm basis for the coast erosion control and assessment, as well as wetland ecosystem restoration.
Tidal Venuses: triggering a climate catastrophe via tidal heating.
Barnes, Rory; Mullins, Kristina; Goldblatt, Colin; Meadows, Victoria S; Kasting, James F; Heller, René
2013-03-01
Traditionally, stellar radiation has been the only heat source considered capable of determining global climate on long timescales. Here, we show that terrestrial exoplanets orbiting low-mass stars may be tidally heated at high-enough levels to induce a runaway greenhouse for a long-enough duration for all the hydrogen to escape. Without hydrogen, the planet no longer has water and cannot support life. We call these planets "Tidal Venuses" and the phenomenon a "tidal greenhouse." Tidal effects also circularize the orbit, which decreases tidal heating. Hence, some planets may form with large eccentricity, with its accompanying large tidal heating, and lose their water, but eventually settle into nearly circular orbits (i.e., with negligible tidal heating) in the habitable zone (HZ). However, these planets are not habitable, as past tidal heating desiccated them, and hence should not be ranked highly for detailed follow-up observations aimed at detecting biosignatures. We simulated the evolution of hypothetical planetary systems in a quasi-continuous parameter distribution and found that we could constrain the history of the system by statistical arguments. Planets orbiting stars with masses<0.3 MSun may be in danger of desiccation via tidal heating. We have applied these concepts to Gl 667C c, a ∼4.5 MEarth planet orbiting a 0.3 MSun star at 0.12 AU. We found that it probably did not lose its water via tidal heating, as orbital stability is unlikely for the high eccentricities required for the tidal greenhouse. As the inner edge of the HZ is defined by the onset of a runaway or moist greenhouse powered by radiation, our results represent a fundamental revision to the HZ for noncircular orbits. In the appendices we review (a) the moist and runaway greenhouses, (b) hydrogen escape, (c) stellar mass-radius and mass-luminosity relations, (d) terrestrial planet mass-radius relations, and (e) linear tidal theories.
Alignments of Dark Matter Halos with Large-scale Tidal Fields: Mass and Redshift Dependence
NASA Astrophysics Data System (ADS)
Chen, Sijie; Wang, Huiyuan; Mo, H. J.; Shi, Jingjing
2016-07-01
Large-scale tidal fields estimated directly from the distribution of dark matter halos are used to investigate how halo shapes and spin vectors are aligned with the cosmic web. The major, intermediate, and minor axes of halos are aligned with the corresponding tidal axes, and halo spin axes tend to be parallel with the intermediate axes and perpendicular to the major axes of the tidal field. The strengths of these alignments generally increase with halo mass and redshift, but the dependence is only on the peak height, ν \\equiv {δ }{{c}}/σ ({M}{{h}},z). The scaling relations of the alignment strengths with the value of ν indicate that the alignment strengths remain roughly constant when the structures within which the halos reside are still in a quasi-linear regime, but decreases as nonlinear evolution becomes more important. We also calculate the alignments in projection so that our results can be compared directly with observations. Finally, we investigate the alignments of tidal tensors on large scales, and use the results to understand alignments of halo pairs separated at various distances. Our results suggest that the coherent structure of the tidal field is the underlying reason for the alignments of halos and galaxies seen in numerical simulations and in observations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steiner, A. W.; Gandolfi, S.; Fattoyev, F. J.
Here, we perform a systematic assessment of models for the equation of state (EOS) of dense matter in the context of recent neutron star mass and radius measurements to obtain a broad picture of the structure of neutron stars. We demonstrate that currently available neutron star mass and radius measurements provide strong constraints on moments of inertia, tidal deformabilities, and crust thicknesses. Moreover, a measurement of the moment of inertia of PSR J0737-3039A with a 10% error, without any other information from observations, will constrain the EOS over a range of densities to within 50% 60%. We find tidal deformabilitiesmore » between 0.6 and 6 1036 g cm 2 s 2 (to 95% confidence) for M = 1.4 M ⊙ , and any measurement which constrains this range will provide an important constraint on dense matter. The crustal fraction of the moment of inertia can be as large as 10% for M = 1.4 M ⊙ permitting crusts to have a large enough moment of inertia reservoir to explain glitches in the Vela pulsar even with a large amount of superfluid entrainment. Finally, due to the uncertainty in the equation of state, there is at least a 40% variation in the thickness of the crust for a fixed mass and radius, which implies that future simulations of the cooling of a neutron star crust which has been heated by accretion will need to take this variation into account.« less
Tidal capture of stars by a massive black hole
NASA Technical Reports Server (NTRS)
Novikov, I. D.; Pethick, C. J.; Polnarev, A. G.
1992-01-01
The processes leading to tidal capture of stars by a massive black hole and the consequences of these processes in a dense stellar cluster are discussed in detail. When the amplitude of a tide and the subsequent oscillations are sufficiently large, the energy deposited in a star after periastron passage and formation of a bound orbit cannot be estimated directly using the linear theory of oscillations of a spherical star, but rather numerical estimates must be used. The evolution of a star after tidal capture is discussed. The maximum ratio R of the cross-section for tidal capture to that for tidal disruption is about 3 for real systems. For the case of a stellar system with an empty capture loss cone, even in the case when the impact parameter for tidal capture only slightly exceeds the impact parameter for direct tidal disruption, tidal capture would be much more important than tidal disruption.
Resonant Capture and Tidal Evolution in Circumbinary Systems: Testing the Case of Kepler-38
NASA Astrophysics Data System (ADS)
Zoppetti, F. A.; Beaugé, C.; Leiva, A. M.
2018-04-01
Circumbinary planets are thought to form far from the central binary and migrate inwards by interactions with the circumbinary disk, ultimately stopping near their present location either by a planetary trap near the disk inner edge or by resonance capture. Here, we analyze the second possibility, presenting a detailed numerical study on the capture process, resonant dynamics and tidal evolution of circumbinary planets in high-order mean-motion resonances (MMRs). Planetary migration was modeled as an external acceleration in an N-body code, while tidal effects were incorporated with a weak-friction equilibrium tide model. As a working example we chose Kepler-38, a highly evolved system with a planet in the vicinity of the 5/1 MMR. Our simulations show that resonance capture is a high-probability event under a large range of system parameters, although several different resonant configuration are possible. We identified three possible outcomes: aligned librations, anti-aligned librations and chaotic solutions. All were found to be dynamically stable, even after the dissipation of the disk, for time-spans of the order of the system's age. We found that while tidal evolution decreases the binary's separation, the semimajor axis of the planet is driven outwards. Although the net effect is a secular increase in the mean-motion ratio, the system requires a planetary tidal parameter of the order of unity to reproduce the observed orbital configuration. The results presented here open an interesting outlook into the complex dynamics of high-order resonances in circumbinary systems.
Resonant capture and tidal evolution in circumbinary systems: testing the case of Kepler-38
NASA Astrophysics Data System (ADS)
Zoppetti, F. A.; Beaugé, C.; Leiva, A. M.
2018-07-01
Circumbinary planets are thought to form far from the central binary and migrate inwards by interactions with the circumbinary disc, ultimately stopping near their present location either by a planetary trap near the disc inner edge or by resonance capture. Here, we analyse the second possibility, presenting a detailed numerical study on the capture process, resonant dynamics, and tidal evolution of circumbinary planets in high-order mean-motion resonances (MMRs). Planetary migration was modelled as an external acceleration in an N-body code, while tidal effects were incorporated with a weak-friction equilibrium tide model. As a working example, we chose Kepler-38, a highly evolved system with a planet in the vicinity of the 5/1 MMR. Our simulations show that resonance capture is a high-probability event under a large range of system parameters, although several different resonant configuration are possible. We identified three possible outcomes: aligned librations, anti-aligned librations, and chaotic solutions. All were found to be dynamically stable, even after the dissipation of the disc, for time spans of the order of the system's age. We found that while tidal evolution decreases the binary's separation, the semimajor axis of the planet is driven outwards. Although the net effect is a secular increase in the mean-motion ratio, the system requires a planetary tidal parameter of the order of unity to reproduce the observed orbital configuration. The results presented here open an interesting outlook into the complex dynamics of high-order resonances in circumbinary systems.
NASA Astrophysics Data System (ADS)
Darbha, Siva; Coughlin, Eric R.; Kasen, Daniel; Quataert, Eliot
2018-04-01
Stars approaching supermassive black holes (SMBHs) in the centers of galaxies can be torn apart by strong tidal forces. We study the physics of tidal disruption by a circular, binary SMBH as a function of the binary mass ratio q = M2/M1 and separation a, exploring a large set of points in the parameter range q ∈ [0.01, 1] and a/rt1 ∈ [10, 1000]. We simulate encounters in which field stars approach the binary from the loss cone on parabolic, low angular momentum orbits. We present the rate of disruption and the orbital properties of the disrupted stars, and examine the fallback dynamics of the post-disruption debris in the "frozen-in" approximation. We conclude by calculating the time-dependent disruption rate over the lifetime of the binary. Throughout, we use a primary mass M1 = 106M⊙ as our central example. We find that the tidal disruption rate is a factor of ˜2 - 7 times larger than the rate for an isolated BH, and is independent of q for q ≳ 0.2. In the "frozen-in" model, disruptions from close, nearly equal mass binaries can produce intense tidal fallbacks: for binaries with q ≳ 0.2 and a/rt1 ˜ 100, roughly ˜18 - 40% of disruptions will have short rise times (trise ˜ 1 - 10 d) and highly super-Eddington peak return rates (\\dot{M}_{peak} / \\dot{M}_{Edd} ˜ 2 × 10^2 - 3 × 10^3).
NASA Astrophysics Data System (ADS)
Darbha, Siva; Coughlin, Eric R.; Kasen, Daniel; Quataert, Eliot
2018-07-01
Stars approaching supermassive black holes (SMBHs) in the centres of galaxies can be torn apart by strong tidal forces. We study the physics of tidal disruption by a circular, binary SMBH as a function of the binary mass ratio q = M2/M1 and separation a, exploring a large set of points in the parameter range q ∈ [0.01, 1] and a/rt1 ∈ [10, 1000]. We simulate encounters in which field stars approach the binary from the loss cone on parabolic, low angular momentum orbits. We present the rate of disruption and the orbital properties of the disrupted stars, and examine the fallback dynamics of the post-disruption debris in the `frozen-in' approximation. We conclude by calculating the time-dependent disruption rate over the lifetime of the binary. Throughout, we use a primary mass M1 = 106 M⊙ as our central example. We find that the tidal disruption rate is a factor of ˜2-7 times larger than the rate for an isolated BH, and is independent of q for q ≳ 0.2. In the `frozen-in' model, disruptions from close, nearly equal mass binaries can produce intense tidal fallbacks: for binaries with q ≳ 0.2 and a/rt1 ˜ 100, roughly {˜ } 18-40 per cent of disruptions will have short rise times (trise ˜ 1-10 d) and highly super-Eddington peak return rates (\\dot{M}_peak / \\dot{M}_Edd ˜ 2 × 10^2-3 × 10^3).
Coupled Orbital and Thermal Evolution of Ganymede
NASA Astrophysics Data System (ADS)
Showman, Adam P.; Stevenson, David J.; Malhotra, Renu
1997-10-01
We explore the hypothesis that passage through an eccentricity-pumping resonance could lead to the resurfacing of Ganymede. To do so, we couple R. Malhotra's (1991,Icarus94,399-412) orbital model for the tidal evolution of the Laplace resonance to an internal model of Ganymede. Our model explores the conditions under which Ganymede can undergo global thermal runaway, assuming that theQ/kof Ganymede is strongly dependent on internal temperature. (HereQis the tidal dissipation function andkis the second-degree Love number.) We allow the system to pass through the ω1/ω2≈ 2 or ω1/ω2≈ 1/2 resonance, where ω1≡ 2n2-n1, ω2≡ 2n3-n2, andn1,n2, andn3are the mean motions of Io, Europa, and Ganymede. If Ganymede's initial internal temperature is either “too hot” or “too cold,” no runaway occurs, while for intermediate temperatures (∼200 K in the upper mantle), conditions are “just right,” and runaway occurs. The range of mantle temperatures that allows runaway depends on the model for tidalQ; we use the Maxwell model, which tiesQto the creep viscosity of ice. Runaways can induce up to ∼50-100 K warming and formation of a large internal ocean; they occur over a 107to 108-year period. Assuming carbonaceous chondritic abundances of radionuclides in Ganymede's rocky portion, however, we find that the interior cannot cool to the initial temperatures needed to allow large runaways. If our model is correct, large runaways cannot occur, although small runaways are still possible. Different formulations of tidalQor convective cooling may allow large runaways. Large runaways are also possible if radionuclides are substantially depleted, although this is unlikely. We next consider the consequences of a large runaway, assuming it can occur. Ganymede can undergo 0.5% thermal expansion (by volume) during the largest thermal runaways. Melting of the ice mantle provides up to 2% expansion despite the fact that contraction produced by melting ice I offsets expansion produced by melting high-pressure ice phases. Solid-solid phase transitions cause negligible satellite expansion. Lithospheric stresses caused by expansion of 2% over 107to 108years are ∼102bars at the surface, and drop to a few bars at several kilometers depth. Such stresses could cause cracking to depths of several kilometers. The cracking and near-surface production of warm or partially molten ice make resurfacing a plausible outcome of a large thermal runaway. The tidal heating events proposed here may also be relevant for generation of Ganymede's modern-day magnetic field.
Tidal Residual Eddies and their Effect on Water Exchange in Puget Sound
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Zhaoqing; Wang, Taiping
Tidal residual eddies are one of the important hydrodynamic features in tidally dominant estuaries and coastal bays, and they could have significant effects on water exchange in a tidal system. This paper presents a modeling study of tides and tidal residual eddies in Puget Sound, a tidally dominant fjord-like estuary in the Pacific Northwest coast, using a three-dimensional finite-volume coastal ocean model. Mechanisms of vorticity generation and asymmetric distribution patterns around an island/headland were analyzed using the dynamic vorticity transfer approach and numerical experiments. Model results of Puget Sound show that a number of large twin tidal residual eddies existmore » in the Admiralty Inlet because of the presence of major headlands in the inlet. Simulated residual vorticities near the major headlands indicate that the clockwise tidal residual eddy (negative vorticity) is generally stronger than the anticlockwise eddy (positive vorticity) because of the effect of Coriolis force. The effect of tidal residual eddies on water exchange in Puget Sound and its sub-basins were evaluated by simulations of dye transport. It was found that the strong transverse variability of residual currents in the Admiralty Inlet results in a dominant seaward transport along the eastern shore and a dominant landward transport along the western shore of the Inlet. A similar transport pattern in Hood Canal is caused by the presence of tidal residual eddies near the entrance of the canal. Model results show that tidal residual currents in Whidbey Basin are small in comparison to other sub-basins. A large clockwise residual circulation is formed around Vashon Island near entrance of South Sound, which can potentially constrain the water exchange between the Central Basin and South Sound.« less
Plants Regulate Soil Organic Matter Decomposition in Response to Sea Level Rise
NASA Astrophysics Data System (ADS)
Megonigal, P.; Mueller, P.; Jensen, K.
2014-12-01
Tidal wetlands have a large capacity for producing and storing organic matter, making their role in the global carbon budget disproportionate to their land area. Most of the organic matter stored in these systems is in soils where it contributes 2-5 times more to surface accretion than an equal mass of minerals. Soil organic matter (SOM) sequestration is the primary process by which tidal wetlands become perched high in the tidal frame, decreasing their vulnerability to accelerated sea level rise. Plant growth responses to sea level rise are well understood and represented in century-scale forecast models of soil surface elevation change. We understand far less about the response of soil organic matter decomposition to rapid sea level rise. Here we quantified the effects of sea level on SOM decomposition rates by exposing planted and unplanted tidal marsh monoliths to experimentally manipulated flood duration. The study was performed in a field-based mesocosm facility at the Smithsonian's Global Change Research Wetland. SOM decomposition rate was quantified as CO2 efflux, with plant- and SOM-derived CO2 separated with a two end-member δ13C-CO2 model. Despite the dogma that decomposition rates are inversely related to flooding, SOM mineralization was not sensitive to flood duration over a 35 cm range in soil surface elevation. However, decomposition rates were strongly and positively related to aboveground biomass (R2≥0.59, p≤0.01). We conclude that soil carbon loss through decomposition is driven by plant responses to sea level in this intensively studied tidal marsh. If this result applies more generally to tidal wetlands, it has important implications for modeling soil organic matter and surface elevation change in response to accelerated sea level rise.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Zhaoqing; Wang, Taiping; Copping, Andrea E.
Understanding and providing proactive information on the potential for tidal energy projects to cause changes to the physical system and to key water quality constituents in tidal waters is a necessary and cost-effective means to avoid costly regulatory involvement and late stage surprises in the permitting process. This paper presents a modeling study for evaluating the tidal energy extraction and its potential impacts on the marine environment in a real world site - Tacoma Narrows of Puget Sound, Washington State, USA. An unstructured-grid coastal ocean model, fitted with a module that simulates tidal energy devices, was applied to simulate themore » tidal energy extracted by different turbine array configurations and the potential effects of the extraction at local and system-wide scales in Tacoma Narrows and South Puget Sound. Model results demonstrated the advantage of an unstructured-grid model for simulating the far-field effects of tidal energy extraction in a large model domain, as well as assessing the near-field effect using a fine grid resolution near the tidal turbines. The outcome shows that a realistic near-term deployment scenario extracts a very small fraction of the total tidal energy in the system and that system wide environmental effects are not likely; however, near-field effects on the flow field and bed shear stress in the area of tidal turbine farm are more likely. Model results also indicate that from a practical standpoint, hydrodynamic or water quality effects are not likely to be the limiting factor for development of large commercial-scale tidal farms. Results indicate that very high numbers of turbines are required to significantly alter the tidal system; limitations on marine space or other environmental concerns are likely to be reached before reaching these deployment levels. These findings show that important information obtained from numerical modeling can be used to inform regulatory and policy processes for tidal energy development.« less
Large eddy simulation of the tidal power plant deep green using the actuator line method
NASA Astrophysics Data System (ADS)
Fredriksson, S. T.; Broström, G.; Jansson, M.; Nilsson, H.; Bergqvist, B.
2017-12-01
Tidal energy has the potential to provide a substantial part of the sustainable electric power generation. The tidal power plant developed by Minesto, called Deep Green, is a novel technology using a ‘flying’ kite with an attached turbine, moving at a speed several times higher than the mean flow. Multiple Deep Green power plants will eventually form arrays, which require knowledge of both flow interactions between individual devices and how the array influences the surrounding environment. The present study uses large eddy simulations (LES) and an actuator line model (ALM) to analyze the oscillating turbulent boundary layer flow in tidal currents without and with a Deep Green power plant. We present the modeling technique and preliminary results so far.
TIDAL HEATING IN A MAGMA OCEAN WITHIN JUPITER’S MOON Io
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tyler, Robert H.; Henning, Wade G.; Hamilton, Christopher W., E-mail: robert.h.tyler@nasa.gov
Active volcanism observed on Io is thought to be driven by the temporally periodic, spatially differential projection of Jupiter's gravitational field over the moon. Previous theoretical estimates of the tidal heat have all treated Io as essentially a solid, with fluids addressed only through adjustment of rheological parameters rather than through appropriate extension of the dynamics. These previous estimates of the tidal response and associated heat generation on Io are therefore incomplete and possibly erroneous because dynamical aspects of the fluid behavior are not permitted in the modeling approach. Here we address this by modeling the partial-melt asthenosphere as amore » global layer of fluid governed by the Laplace Tidal Equations. Solutions for the tidal response are then compared with solutions obtained following the traditional solid-material approach. It is found that the tidal heat in the solid can match that of the average observed heat flux (nominally 2.25 W m{sup −2}), though only over a very restricted range of plausible parameters, and that the distribution of the solid tidal heat flux cannot readily explain a longitudinal shift in the observed (inferred) low-latitude heat fluxes. The tidal heat in the fluid reaches that observed over a wider range of plausible parameters, and can also readily provide the longitudinal offset. Finally, expected feedbacks and coupling between the solid/fluid tides are discussed. Most broadly, the results suggest that both solid and fluid tidal-response estimates must be considered in exoplanet studies, particularly where orbital migration under tidal dissipation is addressed.« less
Dispersion in tidally averaged transport equation
Cheng, R.T.; Casulli, V.
1992-01-01
A general governing inter-tidal transport equation for conservative solutes has been derived without invoking the weakly nonlinear approximation. The governing inter-tidal transport equation is a convection-dispersion equation in which the convective velocity is a mean Lagrangian residual current, and the inter-tidal dispersion coefficient is defined by a dispersion patch. When the weakly nonlinear condition is violated, the physical significance of the Stokes' drift, as used in tidal dynamics, becomes questionable. For nonlinear problems, analytical solutions for the mean Lagrangian residual current and for the inter-tidal dispersion coefficient do not exist, they must be determined numerically. A rectangular tidal inlet with a constriction is used in the first example. The solutions of the residual currents and the computed properties of the inter-tidal dispersion coefficient are used to illuminate the mechanisms of the inter-tidal transport processes. Then, the present formulation is tested in a geometrically complex tidal estuary – San Francisco Bay, California. The computed inter-tidal dispersion coefficients are in the range between 5×104 and 5×106 cm2/sec., which are consistent with the values reported in the literature
Inferring tidal wetland stability from channel sediment fluxes: observations and a conceptual model
Ganju, Neil K.; Nidzieko, Nicholas J.; Kirwan, Matthew L.
2013-01-01
Anthropogenic and climatic forces have modified the geomorphology of tidal wetlands over a range of timescales. Changes in land use, sediment supply, river flow, storminess, and sea level alter the layout of tidal channels, intertidal flats, and marsh plains; these elements define wetland complexes. Diagnostically, measurements of net sediment fluxes through tidal channels are high-temporal resolution, spatially integrated quantities that indicate (1) whether a complex is stable over seasonal timescales and (2) what mechanisms are leading to that state. We estimated sediment fluxes through tidal channels draining wetland complexes on the Blackwater and Transquaking Rivers, Maryland, USA. While the Blackwater complex has experienced decades of degradation and been largely converted to open water, the Transquaking complex has persisted as an expansive, vegetated marsh. The measured net export at the Blackwater complex (1.0 kg/s or 0.56 kg/m2/yr over the landward marsh area) was caused by northwesterly winds, which exported water and sediment on the subtidal timescale; tidally forced net fluxes were weak and precluded landward transport of suspended sediment from potential seaward sources. Though wind forcing also exported sediment at the Transquaking complex, strong tidal forcing and proximity to a turbidity maximum led to an import of sediment (0.031 kg/s or 0.70 kg/m2/yr). This resulted in a spatially averaged accretion of 3.9 mm/yr, equaling the regional relative sea level rise. Our results suggest that in areas where seaward sediment supply is dominant, seaward wetlands may be more capable of withstanding sea level rise over the short term than landward wetlands. We propose a conceptual model to determine a complex's tendency toward stability or instability based on sediment source, wetland channel location, and transport mechanisms. Wetlands with a reliable portfolio of sources and transport mechanisms appear better suited to offset natural and anthropogenic loss.
The effect of lagoons on Adriatic Sea tidal dynamics
NASA Astrophysics Data System (ADS)
Ferrarin, Christian; Maicu, Francesco; Umgiesser, Georg
2017-11-01
In this study the effects that lagoons exert on the barotropic tidal dynamics of a regional sea, the Adriatic Sea, were numerically explored. This semi-enclosed basin is one of the places with the highest tidal range in the Mediterranean Sea and is characterised by the presence of several lagoons in its northern part. The tidal dynamics of a system comprising the whole Adriatic Sea and the lagoons of Venice, Marano-Grado and Po Delta were investigated using an unstructured hydrodynamic model. Numerical experiments with and without lagoons reveal that even if the considered shallow water bodies represent only the 0.5 and 0.002% of the Adriatic Sea surface and volume, respectively, they significantly affect the entire Northern Adriatic Sea tidal dynamics by enhancing tidal range (by 5%) and currents (by 10%). The inclusion of lagoons in the computation improved the model performance by 25% in reproducing tidal constituents in the Adriatic Sea. The back-effect of the lagoons on the open-sea tide is due to the waves radiating from the co-oscillating lagoons into the adjacent sea. This is the first time these processes are shown to be relevant for the Adriatic Sea, thus enhancing the understanding of the tidal dynamics in this regional sea. These findings may also apply to other coastal seas with connections to lagoons, bays and estuaries.
Bending the law: tidal bending and its effects on ice viscosity and flow
NASA Astrophysics Data System (ADS)
Rosier, S.; Gudmundsson, G. H.
2017-12-01
Many ice shelves are subject to strong ocean tides and, in order to accommodate this vertical motion, the ice must bend within the grounding zone. This tidal bending generates large stresses within the ice, changing its effective viscosity. For a confined ice shelf, this is particularly relevant because the tidal bending stresses occur along the sidewalls, which play an important role in the overall flow regime of the ice shelf. Hence, tidal bending stresses will affect both the mean and time-varying components of ice shelf flow. GPS measurements reveal strong variations in horizontal ice shelf velocities at a variety of tidal frequencies. We show, using full-Stokes viscoelastic modelling, that inclusion of tidal bending within the model accounts for much of the observed tidal modulation of horizontal ice shelf flow. Furthermore, our model shows that in the absence of a vertical tidal forcing, the mean flow of the ice shelf is reduced considerably.
Kan, Kotaro; Sato, Masanori; Nagasawa, Kazuya
2016-02-01
Dietary items of the Japanese eel Anguilla japonica inhabiting estuaries were examined by analyses of the gut (stomach and intestine) contents in two areas in Kyushu, western Japan. In a small estuary in Kagoshima Bay, where seven eel guts were examined, almost all of the dietary organisms consisted of Hemigrapsus crabs and Hediste polychaetes, both of which commonly occurred on tidal flats of this site during our survey on the macrobenthic fauna. In another large estuary in the innermost part of the Ariake Sea, where 14 eel guts were examined, 11 macrobenthic species (nine crustaceans, a polychaete, and a gastropod) were found in the gut contents, mostly consisting of mudflat-specific species. The dietary items are almost completely different not only between the two estuaries, but also among three neighboring sites within the large estuary in the Ariake Sea. These results show that Japanese eels feed on various macrobenthic invertebrates inhabiting estuarine tidal flats at each site. The variety of the prey species occupying different habitats indicates that their foraging areas extend to a wide range of estuarine tidal flats from the upper to lower littoral zones. The physalopterid nematode Heliconema anguillae was found parasitic in eel stomachs in both estuaries. The prevalence of the nematode was higher in the estuary in Kagoshima Bay (100%) than that in the Ariake Sea (43%), although the intensity in the former (4-94 nematodes per infected stomach) was comparable to that of the latter (2-96). The relationship between the nematode infection and the dietary items of Japanese eels is discussed.
Wieczorek, Gerald F.; Jakob, Matthias; Motyka, Roman J.; Zirnheld, Sandra L.; Craw, Patricia
2003-01-01
A large potential rock avalanche above the northern shore of Tidal Inlet, Glacier Bay National Park, Alaska, was investigated to determine hazards and risks of landslide-induced waves to cruise ships and other park visitors. Field and photographic examination revealed that the 5 to 10 million cubic meter landslide moved between AD 1892 and 1919 after the retreat of Little Ice Age glaciers from Tidal Inlet by AD 1890. The timing of landslide movement and the glacial history suggest that glacial debuttressing caused weakening of the slope and that the landslide could have been triggered by large earthquakes of 1899-1900 in Yakutat Bay. Evidence of recent movement includes fresh scarps, back-rotated blocks, and smaller secondary landslide movements. However, until there is evidence of current movement, the mass is classified as a dormant rock slump. An earthquake on the nearby active Fairweather fault system could reactivate the landslide and trigger a massive rock slump and debris avalanche into Tidal Inlet. Preliminary analyses show that waves induced by such a landslide could travel at speeds of 45 to 50 m/s and reach heights up to 76 m with wave runups of 200 m on the opposite shore of Tidal Inlet. Such waves would not only threaten vessels in Tidal Inlet, but would also travel into the western arm of Glacier Bay endangering large cruise ships and their passengers.
Tidal Venuses: Triggering a Climate Catastrophe via Tidal Heating
Mullins, Kristina; Goldblatt, Colin; Meadows, Victoria S.; Kasting, James F.; Heller, René
2013-01-01
Abstract Traditionally, stellar radiation has been the only heat source considered capable of determining global climate on long timescales. Here, we show that terrestrial exoplanets orbiting low-mass stars may be tidally heated at high-enough levels to induce a runaway greenhouse for a long-enough duration for all the hydrogen to escape. Without hydrogen, the planet no longer has water and cannot support life. We call these planets “Tidal Venuses” and the phenomenon a “tidal greenhouse.” Tidal effects also circularize the orbit, which decreases tidal heating. Hence, some planets may form with large eccentricity, with its accompanying large tidal heating, and lose their water, but eventually settle into nearly circular orbits (i.e., with negligible tidal heating) in the habitable zone (HZ). However, these planets are not habitable, as past tidal heating desiccated them, and hence should not be ranked highly for detailed follow-up observations aimed at detecting biosignatures. We simulated the evolution of hypothetical planetary systems in a quasi-continuous parameter distribution and found that we could constrain the history of the system by statistical arguments. Planets orbiting stars with masses<0.3 MSun may be in danger of desiccation via tidal heating. We have applied these concepts to Gl 667C c, a ∼4.5 MEarth planet orbiting a 0.3 MSun star at 0.12 AU. We found that it probably did not lose its water via tidal heating, as orbital stability is unlikely for the high eccentricities required for the tidal greenhouse. As the inner edge of the HZ is defined by the onset of a runaway or moist greenhouse powered by radiation, our results represent a fundamental revision to the HZ for noncircular orbits. In the appendices we review (a) the moist and runaway greenhouses, (b) hydrogen escape, (c) stellar mass-radius and mass-luminosity relations, (d) terrestrial planet mass-radius relations, and (e) linear tidal theories. Key Words: Extrasolar terrestrial planets—Habitability—Habitable zone—Liquid water—Tides. Astrobiology 13, 225–250. PMID:23537135
Changes in surfzone morphodynamics driven by multi-decadel contraction of a large ebb-tidal delta
Hansen, Jeff E.; Elias, Edwin; Barnard, Patrick L.; Barnard, P.L.; Jaffee, B.E.; Schoellhamer, D.H.
2013-01-01
The impact of multi-decadal, large-scale deflation (76 million m3 of sediment loss) and contraction (~ 1 km) of a 150 km2 ebb-tidal delta on hydrodynamics and sediment transport at adjacent Ocean Beach in San Francisco, CA (USA), is examined using a coupled wave and circulation model. The model is forced with representative wave and tidal conditions using recent (2005) and historic (1956) ebb-tidal delta bathymetry data sets. Comparison of the simulations indicates that along north/south trending Ocean Beach the contraction and deflation of the ebb-tidal delta have resulted in significant differences in the flow and sediment dynamics. Between 1956 and 2005 the transverse bar (the shallow attachment point of the ebb-tidal delta to the shoreline) migrated northward ~ 1 km toward the inlet while a persistent alongshore flow and transport divergence point migrated south by ~ 500 m such that these features now overlap. A reduction in tidal prism and sediment supply over the last century has resulted in a net decrease in offshore tidal current-generated sediment transport at the mouth of San Francisco Bay, and a relative increase in onshore-directed wave-driven transport toward the inlet, accounting for the observed contraction of the ebb-tidal delta. Alongshore migration of the transverse bar and alongshore flow divergence have resulted in an increasing proportion of onshore migrating sediment from the ebb-tidal delta to be transported north along the beach in 2005 versus south in 1956. The northerly migrating sediment is then trapped by Pt. Lobos, a rocky headland at the northern extreme of the beach, consistent with the observed shoreline accretion in this area. Conversely, alongshore migration of the transverse bar and divergence point has decreased the sediment supply to southern Ocean Beach, consistent with the observed erosion of the shoreline in this area. This study illustrates the utility of applying a high-resolution coupled circulation-wave model for understanding coastal response to large-scale bathymetric changes over multi-decadal timescales, common to many coastal systems adjacent to urbanized estuaries and watersheds worldwide.
Jiang, Huan-Huan; Sun, Zhi-Gao; Wang, Ling-Ling; Mou, Xiao-Jie; Sun, Wan-Long; Song, Hong-Li; Sun, Wen-Guang
2012-02-01
The characteristics of methane (CH4) fluxes from tidal wetlands of the Yellow River estuary were observed in situ with static-chamber and GC methods in September and October 2009, and the key factors affecting CH4 fluxes were discussed. From the aspect of space, the CH4 flux ranges in high tidal wetland, middle tidal wetland, low tidal wetland, bare flat are - 0.206-1.264, -0.197-0.431, -0.125-0.659 and -0.742-1.767 mg x (m2 x h)(-1), the day average fluxes are 0.089, 0.038, 0.197 and 0.169 mg x (m2 x h)(-1), respectively, indicating that the tidal wetlands are the sources of CH4 and the source function of CH4 differed among the four study sites, in the order of low tidal wetland > bare flat > high tidal wetland > middle tidal wetland. From the aspect of time, the ranges of CH4 fluxes from the tidal wetland ecosystems are -0.444-1.767 and - 0.742- 1.264 mg x (m2 x h)(-1), and the day average fluxes are 0.218 and 0.028 mg x (m2 x h)(-1) in September and October, respectively. The CH4 fluxes in each tidal wetland in September are higher than those in October except that the high tidal wetland acts as weak sink in September. Further studies indicate that the changes of environmental factors in the Yellow River estuary are complicated, and the CH4 fluxes are affected by multiple factors. The differences of CH4 fluxes characteristics among different tidal wetlands in autumn are probably related to temperature (especially atmospheric temperature) and vegetation growth status, while the effects of water or salinity condition and tide status on the CH4 flux characteristics might not be ignored.
Tidal Response of Europa's Subsurface Ocean
NASA Astrophysics Data System (ADS)
Karatekin, O.; Comblen, R.; Deleersnijder, E.; Dehant, V. M.
2010-12-01
Time-variable tides in the subsurface oceans of icy satellites cause large periodic surface displacements and tidal dissipation can become a major energy source that can affect long-term orbital and internal evolution. In the present study, we investigate the response of the subsurface ocean of Europa to a time-varibale tidal potential. Two-dimensional nonlinear shallow water equations are solved on a sphere by means of a finite element code. The resulting ocean tidal flow velocities,dissipation and surface displacements will be presented.
Tidal interactions in the expanding universe - The formation of prolate systems
NASA Technical Reports Server (NTRS)
Binney, J.; Silk, J.
1979-01-01
The study estimates the magnitude of the anisotropy that can be tidally induced in neighboring initially spherical protostructures, be they protogalaxies, protoclusters, or even uncollapsed density enhancements in the large-scale structure of the universe. It is shown that the linear analysis of tidal interactions developed by Peebles (1969) predicts that the anisotropy energy of a perturbation grows to first order in a small dimensionless parameter, whereas the net angular momentum acquired is of second order. A simple model is presented for the growth of anisotropy by tidal interactions during the nonlinear stage of the development of perturbations. A possible observational test is described of the alignment predicted by the model between the orientations of large-scale perturbations and the positions of neighboring density enhancements.
Scratching the surface: A sentinel exploration of sea louse infestations in Cobscook Bay, Maine
USDA-ARS?s Scientific Manuscript database
Cobscook Bay is a tidally energetic system (tidal range ~5.7 m and tidal velocities >2 m s-1) comprised of cool waters (annual mean of 10') capable of supporting marine aquaculture. The bay has three active Atlantic salmon Salmo salar farms in close proximity to Passamaquoddy Bay and New Brunswick, ...
NASA Astrophysics Data System (ADS)
Mortillaro, J. M.; Schaal, G.; Grall, J.; Nerot, C.; Brind'Amour, A.; Marchais, V.; Perdriau, M.; Le Bris, H.
2014-01-01
In coastal estuarine embayments, retention of water masses due to coastal topography may result in an increased contribution of continental organic matter in food webs. However, in megatidal embayments, the effect of topography can be counterbalanced by the process of tidal mixing. Large amounts of continental organic matter are exported each year by rivers to the oceans. The fate of terrestrial organic matter in food webs of coastal areas and on neighboring coastal benthic communities was therefore evaluated, at multi-trophic levels, from primary producers to primary consumers and predators. Two coastal areas of the French Atlantic coast, differing in the contributions from their watershed, tidal range and aperture degree, were compared using carbon and nitrogen stable isotopes (δ13C and δ15N) during two contrasted periods. The Bay of Vilaine receives large inputs of freshwater from the Vilaine River, displaying 15N enriched and 13C depleted benthic communities, emphasizing the important role played by allochtonous inputs and anthropogenic impact on terrestrial organic matter in the food web. In contrast, the Bay of Brest which is largely affected by tidal mixing, showed a lack of agreement between isotopic gradients displayed by suspended particulate organic matter (SPOM) and suspension-feeders. Discrepancy between SPOM and suspension-feeders is not surprising due to differences in isotopes integration times. We suggest further that such a discrepancy may result from water replenishment due to coastal inputs, nutrient depletion by phytoplankton production, as well as efficient selection of highly nutritive phytoplanktonic particles by primary consumers.
Saltwater-freshwater mixing fluctuation in shallow beach aquifers
NASA Astrophysics Data System (ADS)
Han, Qiang; Chen, Daoyi; Guo, Yakun; Hu, Wulong
2018-07-01
Field measurements and numerical simulations demonstrate the existence of an upper saline plume in tidally dominated beaches. The effect of tides on the saltwater-freshwater mixing occurring at both the upper saline plume and lower salt wedge is well understood. However, it is poorly understood whether the tidal driven force acts equally on the mixing behaviours of above two regions and what factors control the mixing fluctuation features. In this study, variable-density, saturated-unsaturated, transient groundwater flow and solute transport numerical models are proposed and performed for saltwater-freshwater mixing subject to tidal forcing on a sloping beach. A range of tidal amplitude, fresh groundwater flux, hydraulic conductivity, beach slope and dispersivity anisotropy are simulated. Based on the time sequential salinity data, the gross mixing features are quantified by computing the spatial moments in three different aspects, namely, the centre point, length and width, and the volume (or area in a two-dimensional case). Simulated salinity distribution varies significantly at saltwater-freshwater interfaces. Mixing characteristics of the upper saline plume greatly differ from those in the salt wedge for both the transient and quasi-steady state. The mixing of the upper saline plume largely inherits the fluctuation characteristics of the sea tide in both the transverse and longitudinal directions when the quasi-steady state is reached. On the other hand, the mixing in the salt wedge is relatively steady and shows little fluctuation. The normalized mixing width and length, mixing volume and the fluctuation amplitude of the mass centre in the upper saline plume are, in general, one-magnitude-order larger than those in the salt wedge region. In the longitudinal direction, tidal amplitude, fresh groundwater flux, hydraulic conductivity and beach slope are significant control factors of fluctuation amplitude. In the transverse direction, tidal amplitude and beach slope are the main control parameters. Very small dispersivity anisotropy (e.g., αL /αT < 5) could greatly suppress mixing fluctuation in the longitudinal direction. This work underlines the close connection between the sea tides and the upper saline plume in the aspect of mixing, thereby enhancing understanding of the interplay between tidal oscillations and mixing mechanisms in tidally dominated sloping beach systems.
On the tidal effects in the motion of earth satellites and the love parameters of the earth
NASA Technical Reports Server (NTRS)
Musen, P.; Estes, R.
1972-01-01
The tidal effects in the motion of artificial satellites are studied to determine the elastic properties of the earth as they are observed from extraterrestrial space. Considering Love numbers, the disturbing potential is obtained as the analytical continuation of the tidal potential from the surface of the earth into-outer space, with parameters which characterize the earth's elastic response to tidal attraction by the moon and the sun. It is concluded that the tidal effects represent a superposition of a large number of periodic terms, and the rotation of the lunar orbital plane produces a term of 18 years period in tidal perturbations of the ascending node of the satellite's orbit.
SPIN ALIGNMENTS OF SPIRAL GALAXIES WITHIN THE LARGE-SCALE STRUCTURE FROM SDSS DR7
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Youcai; Yang, Xiaohu; Luo, Wentao
Using a sample of spiral galaxies selected from the Sloan Digital Sky Survey Data Release 7 and Galaxy Zoo 2, we investigate the alignment of spin axes of spiral galaxies with their surrounding large-scale structure, which is characterized by the large-scale tidal field reconstructed from the data using galaxy groups above a certain mass threshold. We find that the spin axes only have weak tendencies to be aligned with (or perpendicular to) the intermediate (or minor) axis of the local tidal tensor. The signal is the strongest in a cluster environment where all three eigenvalues of the local tidal tensor aremore » positive. Compared to the alignments between halo spins and the local tidal field obtained in N-body simulations, the above observational results are in best agreement with those for the spins of inner regions of halos, suggesting that the disk material traces the angular momentum of dark matter halos in the inner regions.« less
Regional scale impact of tidal forcing on groundwater flow in unconfined coastal aquifers
NASA Astrophysics Data System (ADS)
Pauw, P. S.; Oude Essink, G. H. P.; Leijnse, A.; Vandenbohede, A.; Groen, J.; van der Zee, S. E. A. T. M.
2014-09-01
This paper considers the impact of tidal forcing on regional groundwater flow in an unconfined coastal aquifer. Numerical models are used to quantify this impact for a wide range of hydrogeological conditions. Both a shallow and a deep aquifer are investigated with regard to three dimensionless parameter groups that determine the groundwater flow to a large extent. Analytical expressions are presented that allow for a quick estimate of the regional scale effect of tidal forcing under the same conditions as used in the numerical models. Quantitatively, the results in this paper are complementary to previous studies by taking into account variable density groundwater flow, dispersive salt transport and a seepage face in the intertidal area. Qualitatively, the results are in line with previous investigations. The time-averaged hydraulic head at the high tide mark increases upon a decrease of each of the three considered dimensionless parameter groups: R (including the ratio of the hydraulic conductivity and the precipitation excess), α (the slope of the intertidal area) and AL (the ratio of the width of the fresh water lens and the tidal amplitude). The relative change of the location and the hydraulic head of the groundwater divide, which together characterize regional groundwater flow, increase as α and AL decrease, but decrease as R decreases. The difference between the analytical solutions and numerical results is small. Therefore, the presented analytical solutions can be used to estimate the bias that is introduced in a numerical model if tidal forcing is neglected. The results should be used with caution in case of significant wave forcing, as this was not considered.
NASA Astrophysics Data System (ADS)
Wu, D.; Du, Y.; Su, F.; Huang, W.; Zhang, L.
2018-04-01
The topographic measurement of muddy tidal flat is restricted by the difficulty of access to the complex, wide-range and dynamic tidal conditions. Then the waterline detection method (WDM) has the potential to investigate the morph-dynamics quantitatively by utilizing large archives of satellite images. The study explores the potential for using WDM with BJ-1 small satellite images to construct a digital elevation model (DEM) of a wide and grading mudflat. Three major conclusions of the study are as follows: (1) A new intelligent correlating model of waterline detection considering different tidal stages and local geographic conditions was explored. With this correlative algorithm waterline detection model, a series of waterlines were extracted from multi-temporal remotely sensing images collected over the period of a year. The model proved to detect waterlines more efficiently and exactly. (2) The spatial structure of elevation superimposing on the points of waterlines was firstly constructed and a more accurate hydrodynamic ocean tide grid model was used. By the newly constructed abnormal hydrology evaluation model, a more reasonable and reliable set of waterline points was acquired to construct a smoother TIN and GRID DEM. (3) DEM maps of Bohai Bay, with a spatial resolution of about 30 m and height accuracy of about 0.35 m considering LiDAR and 0.19 m considering RTK surveying were constructed over an area of about 266 km2. Results show that remote sensing research in extremely turbid estuaries and tidal areas is possible and is an effective tool for monitoring the tidal flats.
Geodynamic Effects of Ocean Tides: Progress and Problems
NASA Technical Reports Server (NTRS)
Richard, Ray
1999-01-01
Satellite altimetry, particularly Topex/Poseidon, has markedly improved our knowledge of global tides, thereby allowing significant progress on some longstanding problems in geodynamics. This paper reviews some of that progress. Emphasis is given to global-scale problems, particularly those falling within the mandate of the new IERS Special Bureau for Tides: angular momentum, gravitational field, geocenter motion. For this discussion I use primarily the new ocean tide solutions GOT99.2, CSR4.0, and TPXO.4 (for which G. Egbert has computed inverse-theoretic error estimates), and I concentrate on new results in angular momentum and gravity and their solid-earth implications. One example is a new estimate of the effective tidal Q at the M_2 frequency, based on combining these ocean models with tidal estimates from satellite laser ranging. Three especially intractable problems are also addressed: (1) determining long-period tides in the Arctic [large unknown effect on the inertia tensor, particularly for Mf]; (2) determining the global psi_l tide [large unknown effect on interpretations of gravimetry for the near-diurnal free wobble]; and (3) determining radiational tides [large unknown temporal variations at important frequencies]. Problems (2) and (3) are related.
David, Aaron T.; Ellings, Christopher; Woo, Isa; Simenstad, Charles A.; Takekawa, John Y.; Turner, Kelley L.; Smith, Ashley L.; Takekawa, Jean E.
2014-01-01
We evaluated whether restoring tidal flow to previously diked estuarine wetlands also restores foraging and growth opportunities for juvenile Chinook Salmon Oncorhynchus tshawytscha. Several studies have assessed the value of restored tidal wetlands for juvenile Pacific salmon Oncorhynchus spp., but few have used integrative measures of salmon performance, such as habitat-specific growth potential, to evaluate restoration. Our study took place in the Nisqually River delta, Washington, where recent dike removals restored tidal flow to 364 ha of marsh—the largest tidal marsh restoration project in the northwestern contiguous United States. We sampled fish assemblages, water temperatures, and juvenile Chinook Salmon diet composition and consumption rates in two restored and two reference tidal channels during a 3-year period after restoration; these data were used as inputs to a bioenergetics model to compare Chinook Salmon foraging performance and growth potential between the restored and reference channels. We found that foraging performance and growth potential of juvenile Chinook Salmon were similar between restored and reference tidal channels. However, Chinook Salmon densities were significantly lower in the restored channels than in the reference channels, and growth potential was more variable in the restored channels due to their more variable and warmer (2°C) water temperatures. These results indicate that some—but not all—ecosystem attributes that are important for juvenile Pacific salmon can recover rapidly after large-scale tidal marsh restoration.
NASA Astrophysics Data System (ADS)
Cowles, G. W.; Hakim, A.; Churchill, J. H.
2016-02-01
Tidal in-stream energy conversion (TISEC) facilities provide a highly predictable and dependable source of energy. Given the economic and social incentives to migrate towards renewable energy sources there has been tremendous interest in the technology. Key challenges to the design process stem from the wide range of problem scales extending from device to array. In the present approach we apply a multi-model approach to bridge the scales of interest and select optimal device geometries to estimate the technical resource for several realistic sites in the coastal waters of Massachusetts, USA. The approach links two computational models. To establish flow conditions at site scales ( 10m), a barotropic setup of the unstructured grid ocean model FVCOM is employed. The model is validated using shipboard and fixed ADCP as well as pressure data. For device scale, the structured multiblock flow solver SUmb is selected. A large ensemble of simulations of 2D cross-flow tidal turbines is used to construct a surrogate design model. The surrogate model is then queried using velocity profiles extracted from the tidal model to determine the optimal geometry for the conditions at each site. After device selection, the annual technical yield of the array is evaluated with FVCOM using a linear momentum actuator disk approach to model the turbines. Results for several key Massachusetts sites including comparison with theoretical approaches will be presented.
NASA Astrophysics Data System (ADS)
Howes, N. C.; Georgiou, I. Y.; Hughes, Z. J.; Wolinsky, M. A.
2012-12-01
Channels in fluvio-deltaic and coastal plain settings undergo a progressive series of downstream transitions in hydrodynamics and sediment transport, which is consequently reflected in their morphology and stratigraphic architecture. Conditions progress from uniform fluvial flow to backwater conditions with non-uniform flow, and finally to bi-directional tidal flow or estuarine circulation at the ocean boundary. While significant attention has been given to geomorphic scaling relationships in purely fluvial settings, there have been far fewer studies on the backwater and tidal reaches, and no systematic comparisons. Our study addresses these gaps by analyzing geometric scaling relationships independently in each of the above hydrodynamic regimes and establishes a comparison. To accomplish this goal we have constructed a database of planform geometries including more than 150 channels. In terms of hydrodynamics studies, much of the work on backwater dynamics has concentrated on the Mississippi River, which has very limited tidal influence. We will extend this analysis to include systems with appreciable offshore tidal range, using a numerical hydrodynamic model to study the interaction between backwater dynamics and tides. The database is comprised of systems with a wide range of tectonic, climatic, and oceanic forcings. The scale of these systems, as measured by bankfull width, ranges over three orders of magnitude from the Amazon River in Brazil to the Palix River in Washington. Channel centerlines are extracted from processed imagery, enabling continuous planform measurements of bankfull width, meander wavelength, and sinuosity. Digital terrain and surface models are used to estimate floodplain slopes. Downstream tidal boundary conditions are obtained from the TOPEX 7.1 global tidal model, while upstream boundary conditions such as basin area, relief, and discharge are obtained by linking the databases of Milliman and Meade (2011) and Syvitski (2005). Backwater and tidal length-scales are computed from published data as well as from numerical simulations. An analysis of the database combined with numerical hydrodynamic simulations allows us to organize the results into a process-based classification of coastal rivers. The classification describes the scale, shape, and flow field transitions of coastal rivers as a function of discharge, floodplain slope, and offshore tidal range.
Localized tidal deformations and dissipation in Enceladus
NASA Astrophysics Data System (ADS)
Beuthe, M.
2017-12-01
The geologic activity at Enceladus's south pole remains unexplained, though tidal deformations are probably the ultimate cause. Recent gravity and libration data indicate that Enceladus's icy crust floats on a global ocean, is rather thin, and has a strongly non-uniform thickness. Tidal effects are enhanced by crustal thinning at the south pole, so that realistic models of tidal tectonics and dissipation should include lateral variations of shell structure. I solve this problem with a new theory of non-uniform viscoelastic thin shells, allowing for large lateral variations of crustal thickness as well as large 3D variations of crustal rheology. The coupling to tidal forcing takes into account self-gravity, density stratification below the shell, core viscoelasticity, and crustal compressibility. The resulting tidal thin shell equations are two partial differential equations defined on the spherical surface, which can be solved numerically much faster than 3D Finite Element Methods. The error on tidal displacements is less than 5% if the thickness is less than 10% of the radius while the error on the deviatoric stress varies between 0 and 10%. If Enceladus's shell is conductive with isostatic thickness variations, crustal thinning increases surface stresses by 60% at the north pole and by a factor of more than 3 at the south pole. Similarly, the surface flux resulting from crustal dissipation increases by a factor of 3 at the south pole. If dissipation is an order of magnitude higher than predicted by the Maxwell model (as suggested by recent experimental data), the power dissipated in the crust could reach 50% of the total power required to maintain the crust in thermal equilibrium, and most of the surface flux variation could be explained by latitudinal variations of crustal dissipation. In all cases, a large part of the heat budget must be generated below the crust.
Tidal interactions of inspiraling compact binaries
NASA Technical Reports Server (NTRS)
Bildsten, Lars; Cutler, Curt
1992-01-01
We discuss the tidal interaction in neutron star-neutron star and neutron star-black hole binaries and argue that they will not be tidally locked during the gravitational inspiral. More specifically, we show that, for inspiraling neutron stars of mass greater than about 1.2 solar mass, the shortest possible tidal synchronization time exceeds the gravitational decay time, so that the neutron star cannot be tidally locked prior to tidal disruption, regardless of its internal viscosity. For smaller mass neutron stars, an implausibly large kinematic viscosity - nearly the speed of light times the stellar radius - is required for tidal locking. We also argue that the mass transfer which occurs when the neutron star reaches the tidal radius will be unstable in neutron star-black hole binaries, and the instability will destroy the neutron star in a few orbital periods. The implications of our work for the detection of these sources by LIGO and other gravitational wave observatories and for the gamma-ray burst scenarios of Paczynski (1986, 1991) are discussed.
NASA Astrophysics Data System (ADS)
Sennett, Noah; Hinderer, Tanja; Steinhoff, Jan; Buonanno, Alessandra; Ossokine, Serguei
2017-07-01
Binary systems containing boson stars—self-gravitating configurations of a complex scalar field—can potentially mimic black holes or neutron stars as gravitational-wave sources. We investigate the extent to which tidal effects in the gravitational-wave signal can be used to discriminate between these standard sources and boson stars. We consider spherically symmetric boson stars within two classes of scalar self-interactions: an effective-field-theoretically motivated quartic potential and a solitonic potential constructed to produce very compact stars. We compute the tidal deformability parameter characterizing the dominant tidal imprint in the gravitational-wave signals for a large span of the parameter space of each boson star model, covering the entire space in the quartic case, and an extensive portion of interest in the solitonic case. We find that the tidal deformability for boson stars with a quartic self-interaction is bounded below by Λmin≈280 and for those with a solitonic interaction by Λmin≈1.3 . We summarize our results as ready-to-use fits for practical applications. Employing a Fisher matrix analysis, we estimate the precision with which Advanced LIGO and third-generation detectors can measure these tidal parameters using the inspiral portion of the signal. We discuss a novel strategy to improve the distinguishability between black holes/neutrons stars and boson stars by combining tidal deformability measurements of each compact object in a binary system, thereby eliminating the scaling ambiguities in each boson star model. Our analysis shows that current-generation detectors can potentially distinguish boson stars with quartic potentials from black holes, as well as from neutron-star binaries if they have either a large total mass or a large (asymmetric) mass ratio. Discriminating solitonic boson stars from black holes using only tidal effects during the inspiral will be difficult with Advanced LIGO, but third-generation detectors should be able to distinguish between binary black holes and these binary boson stars.
Responses of water environment to tidal flat reduction in Xiangshan Bay: Part I hydrodynamics
NASA Astrophysics Data System (ADS)
Li, Li; Guan, Weibing; Hu, Jianyu; Cheng, Peng; Wang, Xiao Hua
2018-06-01
Xiangshan Bay consists of a deep tidal channel and three shallow inlets. A large-scale tidal flat has been utilized through coastal construction. To ascertain the accumulate influences of these engineering projects upon the tidal dynamics of the channel-inlets system, this study uses FVCOM to investigate the tides and flow asymmetries of the bay, and numerically simulate the long-term variations of tidal dynamics caused by the loss of tidal flats. It was found that the reduction of tidal flat areas from 1963 to 2010 slightly dampened M2 tidal amplitudes (0.1 m, ∼6%) and advanced its phases by reducing shoaling effects, while amplified M4 tidal amplitudes (0.09 m, ∼27%) and advanced its phases by reducing bottom friction, in the inner bay. Consequently, the ebb dominance was dampened indicated by reduced absolute value of elevation skewness (∼20%) in the bay. The tides and tidal asymmetry were impacted by the locations, areas and slopes of the tidal flats through changing tidal prism, shoaling effect and bottom friction, and consequently impacted tidal duration asymmetry in the bay. Tides and tidal asymmetry were more sensitive to the tidal flat at the head of the bay than the side bank. Reduced/increased tidal flat slopes around the Tie inlet dampened the ebb dominance. Tidal flat had a role in dissipating the M4 tide rather than generating it, while the advection only play a secondary role in generating the M4 tide. The full-length tidal flats reclamation would trigger the reverse of ebb to flood dominance in the bay. This study would be applicable for similar narrow bays worldwide.
The Water Level and Transport Regimes of the Lower Columbia River
NASA Astrophysics Data System (ADS)
Jay, D. A.
2011-12-01
Tidal rivers are vital, spatially extensive conduits of material from land to sea. Yet the tidal-fluvial regime remains poorly understood relative to the bordering fluvial and estuarine/coastal regimes with which it interacts. The 235km-long Lower Columbia River (LCR) consists of five zones defined by topographic constrictions: a 5km-long ocean-entrance, the lower estuary (15km), an energy-minimum (67km), the tidal river (142km), and a landslide zone (5km). Buoyant plume lift-off occurs within the entrance zone, which is dominated by tidal and wave energy. The lower estuary is strongly tidally, amplifies the semidiurnal tide, and has highly variable salinity intrusion. Tidal and fluvial influences are balanced in the wide energy-minimum, into which salinity intrudes during low-flow periods. It has a turbidity maximum and a dissipation minimum at its lower end, but a water-level variance minimum at its landward end. The tidal river shows a large increase in the ratio of fluvial-to-tidal energy in the landward direction and strong seasonal variations in tidal properties. Because tidal monthly water level variations are large, low waters are higher on spring than neap tides. The steep landslide zone has only weak tides and is the site of the most seaward hydropower dam. Like many dammed systems, the LCR has pseudo-tides: daily and weakly hydropower peaking waves that propagate seaward. Tidal constituent ratios vary in the alongchannel direction due to frictional non-linearities, the changing balance of dissipation vs. propagation, and power peaking. Long-term changes to the system have occurred due to climate change and direct human manipulation. Flood control, hydropower regulation, and diversion have reduced peak flows, total load and sand transport by ~45, 50 and 80%, respectively, causing a blue-shift in the flow and water level power spectra. Overbank flows have been largely eliminated through a redundant combination of diking and flow regulation. Export of sand to the ocean now occurs mainly through dredging, though fine sediment export may be higher than natural levels. Reduced sediment input and navigational development have reduced water levels in the upper tidal river by ~0.4/1.5m during low/high flow periods, impacting both navigation and shallow-water habitat availability. Tidal amplitudes have increased due both to increased coastal tides and reduced friction. This exacerbates difficulties with low-waters during fall neap tides. Climate-induced changes have so far had much less influence on system properties than human modifications. At present, regional sea level (RSL) rise and tectonic change are in balance, yielding no net sea level rise.
Warner, J.C.; Schoellhamer, D.; Schladow, G.
2003-01-01
Residual circulation patterns in a channel network that is tidally driven from entrances on opposite sides are controlled by the temporal phasing and spatial asymmetry of the two forcing tides. The Napa/Sonoma Marsh Complex in San Francisco Bay, CA, is such a system. A sill on the west entrance to the system prevents a complete tidal range at spring tides that results in tidal truncation of water levels. Tidal truncation does not occur on the east side but asymmetries develop due to friction and off-channel wetland storage. The east and west asymmetric tides meet in the middle to produce a barotropic convergence zone that controls the transport of water and sediment. During spring tides, tidally averaged water-surface elevations are higher on the truncated west side. This creates tidally averaged fluxes of water and sediment to the east. During neap tides, the water levels are not truncated and the propagation speed of the tides controls residual circulation, creating a tidally averaged flux in the opposite direction. ?? 2003 Elsevier Science B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Lin, D. N. C.; Papaloizou, J.
1986-01-01
A method to analyze the full nonlinear response and physical processes associated with the tidal interaction between a binary system and a thin disk in the steady state is presented. Using this approach, density wave propagation, induced by tidal interaction, may be studied for a wide range of sound speeds and viscosities. The effect of self-gravity may also be incorporated. The results of several calculations relevant to the tidal interaction between a protoplanet and the primordial solar nebula are also presented.
On the tidal evolution and tails formation of disc galaxies
NASA Astrophysics Data System (ADS)
Alavi, M.; Razmi, H.
2015-11-01
In this paper, we want to study the tidal effect of an external perturber upon a disc galaxy based on the generalization of already used Keplerian potential. The generalization of the simple ideal Keplerian potential includes an orbital centripetal term and an overall finite range controlling correction. Considering the generalized form of the interaction potential, the velocity impulse expressions resulting from tidal forces are computed; then, using typical real values already known from modern observational data, the evolution of the disc including tidal tails formation is graphically investigated.
Modern sedimentary environments in a large tidal estuary, Delaware Bay
Knebel, H.J.
1989-01-01
Data from an extensive grid of sidescan-sonar records reveal the distribution of sedimentary environments in the large, tidally dominated Delaware Bay estuary. Bathymetric features of the estuary include large tidal channels under the relatively deep (> 10 m water depth) central part of the bay, linear sand shoals (2-8 m relief) that parallel the sides of the tidal channels, and broad, low-relief plains that form the shallow bay margins. The two sedimentary environments that were identified are characterized by either (1) bedload transport and/or erosion or (2) sediment reworking and/or deposition. Sand waves and sand ribbons, composed of medium to coarse sands, define sites of active bedload transport within the tidal channels and in gaps between the linear shoals. The sand waves have spacings that vary from 1 to 70 m, amplitudes of 2 m or less, and crestlines that are usually straight. The orientations of the sand waves and ribbons indicate that bottom sediment movement may be toward either the northwest or southeast along the trends of the tidal channels, although sand-wave asymmetry indicates that the net bottom transport is directed northwestward toward the head of the bay. Gravelly, coarse-grained sediments, which appear as strongly reflective patterns on the sonographs, are also present along the axes and flanks of the tidal channels. These coarse sediments are lag deposits that have developed primarily where older strata were eroded at the bay floor. Conversely, fine sands that compose the linear shoals and muddy sands that cover the shallow bay margins appear mainly on the sonographs either as smooth featureless beds that have uniform light to moderate shading or as mosaics of light and dark patches produced by variations in grain size. These acoustic and textural characteristics are the result of sediment deposition and reworking. Data from this study (1) support the hypothesis that bed configurations under deep tidal flows are functions of current velocity, sediment size, and depth; (2) suggest criteria that could be used to distinguish between open estuarine tidal deposits in the geologic record; and (3) provide a guide to future utilization of the bay floor. ?? 1989.
Stellar density distribution along the minor axis of the Large Magellanic Cloud
NASA Astrophysics Data System (ADS)
Piatti, Andrés E.
2018-02-01
We studied the spatial distribution of young and old stellar populations along the western half part of the minor axis of the Large Magellanic Cloud (LMC) using Washington MT1 photometry of selected fields, which span a deprojected distance range from the LMC bar centre out to ∼31.6 kpc. We found that both stellar populations share a mean LMC limiting radius of 8.9 ± 0.4 kpc; old populations are three times more dense than young populations at that LMC limit. When comparing this result with recent values for the LMC extension due to north, the old populations resulted significantly more elongated than the young ones. Bearing in mind previous claims that the elongation of the outermost LMC regions may be due to the tidal effects of the Milky Way (MW), our findings suggest that such a tidal interaction should not have taken place recently. The existence of young populations in the outermost western regions also supports previous results about ram pressure stripping effects of the LMC gaseous disc due to the motion of the LMC in the MW halo.
Redistribution of energy available for ocean mixing by long-range propagation of internal waves.
Alford, Matthew H
2003-05-08
Ocean mixing, which affects pollutant dispersal, marine productivity and global climate, largely results from the breaking of internal gravity waves--disturbances propagating along the ocean's internal stratification. A global map of internal-wave dissipation would be useful in improving climate models, but would require knowledge of the sources of internal gravity waves and their propagation. Towards this goal, I present here computations of horizontal internal-wave propagation from 60 historical moorings and relate them to the source terms of internal waves as computed previously. Analysis of the two most energetic frequency ranges--near-inertial frequencies and semidiurnal tidal frequencies--reveals that the fluxes in both frequency bands are of the order of 1 kW x m(-1) (that is, 15-50% of the energy input) and are directed away from their respective source regions. However, the energy flux due to near-inertial waves is stronger in winter, whereas the tidal fluxes are uniform throughout the year. Both varieties of internal waves can thus significantly affect the space-time distribution of energy available for global mixing.
Cadol, Daniel; Elmore, Andrew J.; Guinn, Steven M.; Engelhardt, Katharina A. M.; Sanders, Geoffrey
2016-01-01
Tidal habitats host a diversity of species and provide hydrological services such as shoreline protection and nutrient attenuation. Accretion of sediment and biomass enables tidal marshes and swamps to grow vertically, providing a degree of resilience to rising sea levels. Even if accelerating sea level rise overcomes this vertical resilience, tidal habitats have the potential to migrate inland as they continue to occupy land that falls within the new tide range elevations. The existence of developed land inland of tidal habitats, however, may prevent this migration as efforts are often made to dyke and protect developments. To test the importance of inland migration to maintaining tidal habitat abundance under a range of potential rates of sea level rise, we developed a spatially explicit elevation tracking and habitat switching model, dubbed the Marsh Accretion and Inundation Model (MAIM), which incorporates elevation-dependent net land surface elevation gain functions. We applied the model to the metropolitan Washington, DC region, finding that the abundance of small National Park Service units and other public open space along the tidal Potomac River system provides a refuge to which tidal habitats may retreat to maintain total habitat area even under moderate sea level rise scenarios (0.7 m and 1.1 m rise by 2100). Under a severe sea level rise scenario associated with ice sheet collapse (1.7 m by 2100) habitat area is maintained only if no development is protected from rising water. If all existing development is protected, then 5%, 10%, and 40% of the total tidal habitat area is lost by 2100 for the three sea level rise scenarios tested. PMID:27788209
Cadol, Daniel; Elmore, Andrew J; Guinn, Steven M; Engelhardt, Katharina A M; Sanders, Geoffrey
2016-01-01
Tidal habitats host a diversity of species and provide hydrological services such as shoreline protection and nutrient attenuation. Accretion of sediment and biomass enables tidal marshes and swamps to grow vertically, providing a degree of resilience to rising sea levels. Even if accelerating sea level rise overcomes this vertical resilience, tidal habitats have the potential to migrate inland as they continue to occupy land that falls within the new tide range elevations. The existence of developed land inland of tidal habitats, however, may prevent this migration as efforts are often made to dyke and protect developments. To test the importance of inland migration to maintaining tidal habitat abundance under a range of potential rates of sea level rise, we developed a spatially explicit elevation tracking and habitat switching model, dubbed the Marsh Accretion and Inundation Model (MAIM), which incorporates elevation-dependent net land surface elevation gain functions. We applied the model to the metropolitan Washington, DC region, finding that the abundance of small National Park Service units and other public open space along the tidal Potomac River system provides a refuge to which tidal habitats may retreat to maintain total habitat area even under moderate sea level rise scenarios (0.7 m and 1.1 m rise by 2100). Under a severe sea level rise scenario associated with ice sheet collapse (1.7 m by 2100) habitat area is maintained only if no development is protected from rising water. If all existing development is protected, then 5%, 10%, and 40% of the total tidal habitat area is lost by 2100 for the three sea level rise scenarios tested.
NASA Technical Reports Server (NTRS)
Malcuit, Robert J.; Winters, Ronald R.
1993-01-01
Regardless of one's favorite model for the origin of the Earth-Moon system (fission, coformation, tidal capture, giant-impact) the early history of lunar orbital evolution would produce significant thermal and earth and ocean tidal effects on the primitive earth. Three of the above lunar origin models (fission, coformation, giant-impact) feature a circular orbit which undergoes a progressive increase in orbital radius from the time of origin to the present time. In contrast, a tidal capture model places the moon in an elliptical orbit undergoing progressive circularization from the time of capture (for model purposes about 3.9 billion years ago) for at least a few 10(exp 8) years following the capture event. Once the orbit is circularized, the subsequent tidal history for a tidal capture scenario is similar to that for other models of lunar origin and features a progressive increase in orbital radius to the current state of the lunar orbit. This elliptical orbit phase, if it occurred, should have left a distinctive signature in the terrestrial and lunar rock records. Depositional events would be associated terrestrial shorelines characterized by abnormally high, but progressively decreasing, ocean tidal amplitudes and ranges associated with such an orbital evolution. Several rock units in the age range 3.6-2.5 billion years before present are reported to have a major tidal component. Examples are the Warrawoona, Fortescue, and Hamersley Groups of Western Australia and the Pangola and Witwatersand Supergroups of South Africa. Detailed study of the features of these tidal sequences may be helpful in deciphering the style of lunar orbital evolution during the Archean Eon.
Site Characterization at a Tidal Energy Site in the East River, NY (usa)
NASA Astrophysics Data System (ADS)
Gunawan, B.; Neary, V. S.; Colby, J.
2012-12-01
A comprehensive tidal energy site characterization is performed using ADV measurements of instantaneous horizontal current magnitude and direction at the planned hub centerline of a tidal turbine over a two month period, and contributes to the growing data base of tidal energy site hydrodynamic conditions. The temporal variation, mean current statistics, and turbulence of the key tidal hydrodynamic parameters are examined in detail, and compared to estimates from two tidal energy sites in Puget Sound. Tidal hydrodynamic conditions, including mean annual current (at hub height), the speed of extreme gusts (instantaneous horizontal currents acting normal to the rotor plane), and turbulence intensity (as proposed here, relative to a mean current of 2 m s-1) can vary greatly among tidal energy sites. Comparison of hydrodynamic conditions measured in the East River tidal straight in New York City with those reported for two tidal energy sites in Puget Sound indicate differences of mean annual current speeds, difference in the instantaneous current speeds of extreme gusts, and differences in turbulence intensities. Significant differences in these parameters among the tidal energy sites, and with the tidal resource assessment map, highlight the importance of conducting site resource characterization with ADV measurements at the machine scale. As with the wind industry, which adopted an International Electrotechnical Commission (IEC) wind class standard to aid in the selection of wind turbines for a particular site, it is recommended that the tidal energy industry adopt an appropriate standard for tidal current classes. Such a standard requires a comprehensive field campaign at multiple tidal energy sites that can identify the key hydrodynamic parameters for tidal current site classification, select a list of tidal energy sites that exhibit the range of hydrodynamic conditions that will be encountered, and adopt consistent measurement practices (standards) for site classification.
Elias, Edwin P.L.; Hansen, Jeff E.; Barnard, P.L.; Jaffee, B.E.; Schoellhamer, D.H.
2013-01-01
San Francisco Bay is one of the largest estuaries along the U.S. West Coast and is linked to the Pacific Ocean through the Golden Gate, a 100 m deep bedrock inlet. A coupled wave, flow and sediment transport model is used to quantify the sediment linkages between San Francisco Bay, the Golden Gate, and the adjacent open coast. Flow and sediment transport processes are investigated using an ensemble average of 24 climatologically derived wave cases and a 24.8 h representative tidal cycle. The model simulations show that within the inlet, flow and sediment transport is tidally dominated and driven by asymmetry of the ebb and flood tides. Peak ebb velocities exceed the peak flood velocities in the narrow Golden Gate channel as a result of flow convergence and acceleration. Persistent flow and sediment gyres at the headland tips are formed that limit sediment transfer from the ebb-tidal delta to the inlet and into the bay. The residual transport pattern in the inlet is dominated by a lateral segregation with a large ebb-dominant sediment transport (and flow) prevailing along the deeper north side of the Golden Gate channel, and smaller flood dominant transports along the shallow southern margin. The seaward edge of the ebb-tidal delta largely corresponds to the seaward extent of strong tidal flows. On the ebb-tidal delta, both waves and tidal forcing govern flow and sediment transport. Wave focusing by the ebb-tidal delta leads to strong patterns of sediment convergence and divergence along the adjacent Ocean Beach.
Enhanced submarine ground water discharge form mixing of pore water and estuarine water
Martin, Jonathan B.; Cable, Jaye E.; Swarzenski, Peter W.; Lindenberg, Mary K.
2004-01-01
Submarine ground water discharge is suggested to be an important pathway for contaminants from continents to coastal zones, but its significance depends on the volume of water and concentrations of contaminants that originate in continental aquifers. Ground water discharge to the Banana River Lagoon, Florida, was estimated by analyzing the temporal and spatial variations of Cl− concentration profiles in the upper 230 cm of pore waters and was measured directly by seepage meters. Total submarine ground water discharge consists of slow discharge at depths > ∼70 cm below seafloor (cmbsf) of largely marine water combined with rapid discharge of mixed pore water and estuarine water above ∼70 cmbsf. Cl− profiles indicate average linear velocities of ∼0.014 cm/d at depths > ∼70 cmbsf. In contrast, seepage meters indicate water discharges across the sediment-water interface at rates between 3.6 and 6.9 cm/d. The discrepancy appears to be caused by mixing in the shallow sediment, which may result from a combination of bioirrigation, wave and tidal pumping, and convection. Wave and tidal pumping and convection would be minor because the tidal range is small, the short fetch of the lagoon limits wave heights, and large density contacts are lacking between lagoon and pore water. Mixing occurs to ∼70 cmbsf, which represents depths greater than previously reported. Mixing of oxygenated water to these depths could be important for remineralization of organic matter.
Tidal evolution of the Moon from a high-obliquity, high-angular-momentum Earth.
Ćuk, Matija; Hamilton, Douglas P; Lock, Simon J; Stewart, Sarah T
2016-11-17
In the giant-impact hypothesis for lunar origin, the Moon accreted from an equatorial circum-terrestrial disk; however, the current lunar orbital inclination of five degrees requires a subsequent dynamical process that is still unclear. In addition, the giant-impact theory has been challenged by the Moon's unexpectedly Earth-like isotopic composition. Here we show that tidal dissipation due to lunar obliquity was an important effect during the Moon's tidal evolution, and the lunar inclination in the past must have been very large, defying theoretical explanations. We present a tidal evolution model starting with the Moon in an equatorial orbit around an initially fast-spinning, high-obliquity Earth, which is a probable outcome of giant impacts. Using numerical modelling, we show that the solar perturbations on the Moon's orbit naturally induce a large lunar inclination and remove angular momentum from the Earth-Moon system. Our tidal evolution model supports recent high-angular-momentum, giant-impact scenarios to explain the Moon's isotopic composition and provides a new pathway to reach Earth's climatically favourable low obliquity.
Shifting Gravel and the Acoustic Detection Range of Killer Whale Calls
NASA Astrophysics Data System (ADS)
Bassett, C.; Thomson, J. M.; Polagye, B. L.; Wood, J.
2012-12-01
In environments suitable for tidal energy development, strong currents result in large bed stresses that mobilize sediments, producing sediment-generated noise. Sediment-generated noise caused by mobilization events can exceed noise levels attributed to other ambient noise sources at frequencies related to the diameters of the mobilized grains. At a site in Admiralty Inlet, Puget Sound, Washington, one year of ambient noise data (0.02 - 30 kHz) and current velocity data are combined. Peak currents at the site exceed 3.5 m/s. During slack currents, vessel traffic is the dominant noise source. When currents exceed 0.85 m/s noise level increases between 2 kHz and 30 kHz are correlated with near-bed currents and bed stress estimates. Acoustic spectrum levels during strong currents exceed quiescent slack tide conditions by 20 dB or more between 2 and 30 kHz. These frequencies are consistent with sound generated by the mobilization of gravel and pebbles. To investigate the implications of sediment-generated noise for post-installation passive acoustic monitoring of a planned tidal energy project, ambient noise conditions during slack currents and strong currents are combined with the characteristics of Southern Resident killer whale (Orcinus orca) vocalizations and sound propagation modeling. The reduction in detection range is estimated for common vocalizations under different ambient noise conditions. The importance of sediment-generated noise for passive acoustic monitoring at tidal energy sites for different marine mammal functional hearing groups and other sediment compositions are considered.
NASA Astrophysics Data System (ADS)
Price, D.; French, J.; Burningham, H.
2013-12-01
Tidal saltmarshes in the UK, and especially in the estuaries of southeast England, have been subject to degradation and erosion over the last few decades, primarily caused by sea-level rise and coastal squeeze due to fixed coastal defences. This is of great concern to a range of coastal stakeholders due to the corresponding loss of functions and services associated with these systems. The coastal defence role that saltmarshes play is well established, and the importance of saltmarsh ecosystems as habitats for birds, fish, and other species is evidenced in the fact that a large proportion of saltmarsh in the southeast England is designated for its scientific and conservation significance. Sediment accumulation is critical for the maintenance of marsh elevation within the tidal frame and for delivery of the aforementioned functions and services. Although many studies have examined accumulation processes, key questions have yet to be fully tested through intensive field observations. One such question relates to the role of vegetation in mediating the retention of newly introduced sediment, as recent research has called into doubt the traditional view of halophytes significantly enhancing rates of sedimentation through wave dissipation. This study presents early results from a project designed to advance our understanding of the processes controlling sediment accumulation. The research focuses on the UK's first large-scale experimental managed flood defence realignment at Tollesbury, Blackwater estuary, Essex. The seawall protecting 21ha of reclaimed agricultural land was artificially breached in 1995 and saltmarsh has progressively developed as tidal exchange has introduced fine sediment into the site. Results from a 12 month monitoring campaign involving hierarchical two-week sediment trap deployments indicates that the role of vegetation in marsh development is less clear cut that previously thought. Gross sedimentation rates were generally higher in non-vegetated areas, even when other influences, such as elevation were removed. However, sediment retention at the vegetated sites was higher, at times double that in the bare areas. This implies that vegetation acts primarily to inhibit sediment resuspension by waves rather than by favouring deposition from tidal flows.
Deployment Effects of Marin Renewable Energy Technologies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brian Polagye; Mirko Previsic
2010-06-17
Given proper care in siting, design, deployment, operation and maintenance, marine and hydrokinetic technologies could become one of the more environmentally benign sources of electricity generation. In order to accelerate the adoption of these emerging hydrokinetic and marine energy technologies, navigational and environmental concerns must be identified and addressed. All developing hydrokinetic projects involve a wide variety of stakeholders. One of the key issues that site developers face as they engage with this range of stakeholders is that many of the possible conflicts (e.g., shipping and fishing) and environmental issues are not well-understood, due to a lack of technical certainty.more » In September 2008, re vision consulting, LLC was selected by the Department of Energy (DoE) to apply a scenario-based approach to the emerging wave and tidal technology sectors in order to evaluate the impact of these technologies on the marine environment and potentially conflicting uses. The project’s scope of work includes the establishment of baseline scenarios for wave and tidal power conversion at potential future deployment sites. The scenarios will capture variations in technical approaches and deployment scales to properly identify and characterize environmental impacts and navigational effects. The goal of the project is to provide all stakeholders with an improved understanding of the potential effects of these emerging technologies and focus all stakeholders onto the critical issues that need to be addressed. This groundwork will also help in streamlining siting and associated permitting processes, which are considered key hurdles for the industry’s development in the U.S. today. Re vision is coordinating its efforts with two other project teams funded by DoE which are focused on regulatory and navigational issues. The results of this study are structured into three reports: 1. Wave power scenario description 2. Tidal power scenario description 3. Framework for Identifying Key Environmental Concerns This is the second report in the sequence and describes the results of conceptual feasibility studies of tidal power plants deployed in Tacoma Narrows, Washington. The Narrows contain many of the same competing stakeholder interactions identified at other tidal power sites and serves as a representative case study. Tidal power remains at an early stage of development. As such, a wide range of different technologies are being pursued by different manufacturers. In order to properly characterize impacts, it is useful to characterize the range of technologies that could be deployed at the site of interest. An industry survey informs the process of selecting representative tidal power devices. The selection criteria is that such devices are at an advanced stage of development to reduce technical uncertainties and that enough data are available from the manufacturers to inform the conceptual design process of this study. Further, an attempt is made to cover the range of different technologies under development to capture variations in potential environmental effects. A number of other developers are also at an advanced stage of development including Verdant Power, which has demonstrated an array of turbines in the East River of New York, Clean Current, which has demonstrated a device off Race Rocks, BC, and OpenHydro, which has demonstrated a device at the European Marine Energy Test Center and is on the verge of deploying a larger device in the Bay of Fundy. MCT demonstrated their device both at Devon (UK) and Strangford Narrows (Northern Ireland). Furthermore OpenHydro, CleanCurrent, and MCT are the three devices being installed at the Minas Passage (Canada). Environmental effects will largely scale with the size of tidal power development. In many cases, the effects of a single device may not be measurable, while larger scale device arrays may have cumulative impacts that differ significantly from smaller scale deployments. In order to characterize these effects, scenarios are established at three deployment scales which nominally represent (1) a small pilot deployment, (2) an early, small commercial deployment, and (3) a large commercial scale plant. For the three technologies and scales at the selected site, this results in a total of nine deployment scenarios outlined in the report.« less
TIDAL DISSIPATION COMPARED TO SEISMIC DISSIPATION: IN SMALL BODIES, EARTHS, AND SUPER-EARTHS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Efroimsky, Michael, E-mail: michael.efroimsky@usno.navy.mil
2012-02-20
While the seismic quality factor and phase lag are defined solely by the bulk properties of the mantle, their tidal counterparts are determined by both the bulk properties and the size effect (self-gravitation of a body as a whole). For a qualitative estimate, we model the body with a homogeneous sphere, and express the tidal phase lag through the lag in a sample of material. Although simplistic, our model is sufficient to understand that the lags are not identical. The difference emerges because self-gravitation pulls the tidal bulge down. At low frequencies, this reduces strain and the damping rate, makingmore » tidal damping less efficient in larger objects. At higher frequencies, competition between self-gravitation and rheology becomes more complex, though for sufficiently large super-Earths the same rule applies: the larger the planet, the weaker the tidal dissipation in it. Being negligible for small terrestrial planets and moons, the difference between the seismic and tidal lagging (and likewise between the seismic and tidal damping) becomes very considerable for large exoplanets (super-Earths). In those, it is much lower than what one might expect from using a seismic quality factor. The tidal damping rate deviates from the seismic damping rate, especially in the zero-frequency limit, and this difference takes place for bodies of any size. So the equal in magnitude but opposite in sign tidal torques, exerted on one another by the primary and the secondary, have their orbital averages going smoothly through zero as the secondary crosses the synchronous orbit. We describe the mantle rheology with the Andrade model, allowing it to lean toward the Maxwell model at the lowest frequencies. To implement this additional flexibility, we reformulate the Andrade model by endowing it with a free parameter {zeta} which is the ratio of the anelastic timescale to the viscoelastic Maxwell time of the mantle. Some uncertainty in this parameter's frequency dependence does not influence our principal conclusions.« less
Brand, L. Arriana; Smith, Lacy M.; Takekawa, John Y.; Athearn, Nicole D.; Taylor, Karen; Shellenbarger, Gregory; Schoellhamer, David H.; Spenst, Renee
2012-01-01
Tidal marsh restoration projects that cover large areas are critical for maintaining target species, yet few large sites have been studied and their restoration trajectories remain uncertain. A tidal marsh restoration project in the northern San Francisco Bay consisting of three breached salt ponds (≥300 ha each; 1175 ha total) is one of the largest on the west coast of North America. These diked sites were subsided and required extensive sedimentation for vegetation colonization, yet it was unclear whether they would accrete sediment and vegetate within a reasonable timeframe. We conducted bathymetric surveys to map substrate elevations using digital elevation models and surveyed colonizing Pacific cordgrass (Spartina foliosa). The average elevation of Pond 3 was 0.96 ± 0.19 m (mean ± SD; meters NAVD88) in 2005. In 2008–2009, average pond elevations were 1.05 ± 0.25 m in Pond 3, 0.81 ± 0.26 m in Pond 4, and 0.84 ± 0.24 m in Pond 5 (means ± SD; meters NAVD88). The largest site (Pond 3; 508 ha) accreted 9.5 ± 0.2 cm (mean ± SD) over 4 years, but accretion varied spatially and ranged from sediment loss in borrow ditches and adjacent to an unplanned, early breach to sediment gains up to 33 cm in more sheltered regions. The mean elevation of colonizing S. foliosa varied by pond (F = 71.20, df = 84, P S. foliosa. Our results suggest that sedimentation to elevations that enable vegetation colonization is feasible in large sites with sufficient sediment loads although may occur more slowly compared with smaller sites.
Important influence of respiration on human R-R interval power spectra is largely ignored
NASA Technical Reports Server (NTRS)
Brown, T. E.; Beightol, L. A.; Koh, J.; Eckberg, D. L.
1993-01-01
Frequency-domain analyses of R-R intervals are used widely to estimate levels of autonomic neural traffic to the human heart. Because respiration modulates autonomic activity, we determined for nine healthy subjects the influence of breathing frequency and tidal volume on R-R interval power spectra (fast-Fourier transform method). We also surveyed published literature to determine current practices in this burgeoning field of scientific inquiry. Supine subjects breathed at rates of 6, 7.5, 10, 15, 17.1, 20, and 24 breaths/min and with nominal tidal volumes of 1,000 and 1,500 ml. R-R interval power at respiratory and low (0.06-0.14 Hz) frequencies declined significantly as breathing frequency increased. R-R interval power at respiratory frequencies was significantly greater at a tidal volume of 1,500 than 1,000 ml. Neither breathing frequency nor tidal volume influenced average R-R intervals significantly. Our review of studies reporting human R-R interval power spectra showed that 51% of the studies controlled respiratory rate, 11% controlled tidal volume, and 11% controlled both respiratory rate and tidal volume. The major implications of our analyses are that breathing parameters strongly influence low-frequency as well as respiratory frequency R-R interval power spectra and that this influence is largely ignored in published research.
Habitat Suitability Index Models: American black duck (wintering)
Lewis, James C.; Garrison, Russell L.
1984-01-01
INTRODUCTION The American black duck, commonly known as the black duck, is migratory and has a wide geographic range. American black ducks breed from Cape Hatteras, North Carolina, west to the Mississippi River and north through the eastern Canadian boreal forest (Bellrose 1976). The winter range extends from the Rio Grande River on the Texas coast, northeast to Lake Michigan, east to Nova Scotia, south to Florida, and west to Texas (Wright 1954). American black ducks arrive on their wintering habitats between September and early December and remain there until February to April (Bellrose 1976). Their preferred habitat varies considerably through the wintering range. Habitat use appears related to food availability, freedom from disturbance, weather, and often upon the presence of large bodies of open water. These interrelated elements are essential for meeting the energy demands and other nutritional requirements of black ducks in response to the rigors of cold weather and migration. In the Atlantic Flyway, winter populations of American black ducks concentrate in marine and estuarine wetlands (U.S. Fish and Wildlife Service 1979). They use salt marshes and small tidal bays for feeding and loafing areas. In wintering areas north of Chesapeake Bay, American black ducks frequently feed on tidal flats and rest in emergent wetlands or on ice-free bays, rivers, and coastal reservoirs. In the Chesapeake bay area, migrant and wintering American black ducks occupy a wide variety of habitats (Stewart 1962). They strongly favor brackish bays with extensive adjacent agricultural lands. Estuarine bays, coastal salt marshes, tidal fresh marshes, and adjacent impoundments receive high usage. American black ducks also concentrate in forested wetlands in and adjacent to estuaries in the South Atlantic Flyway, especially in Virginia and North Carolina.
Drew, Gary S.; Piatt, John F.; Hill, David J.
2013-01-01
Areas with high species richness have become focal points in the establishment of marine protected areas, but an understanding of the factors that support this diversity is still incomplete. In coastal areas, tidal currents—modulated by bathymetry and manifested in variable speeds—are a dominant physical feature of the environment. However, difficulties resolving tidally affected currents and depths at fine spatial-temporal scales have limited our ability to understand their influence the distribution of marine birds. We used a hydrographic model of the water mass in Glacier Bay, Alaska to link depths and current velocities with the locations of 15 common marine bird species observed during fine-scale boat-based surveys of the bay conducted during June of four consecutive years (2000-2003). Marine birds that forage on the bottom tended to occupy shallow habitats with slow-moving currents; mid-water foragers used habitats with intermediate depths and current speeds; and surface-foraging species tended to use habitats with fast-moving, deep waters. Within foraging groups there was variability among species in their use of habitats. While species obligated to foraging near bottom were constrained to use similar types of habitat, species in the mid-water foraging group were associated with a wider range of marine habitat characteristics. Species also showed varying levels of site use depending on tide stage. The dramatic variability in bottom topography—especially the presence of numerous sills, islands, headlands and channels—and large tidal ranges in Glacier Bay create a wide range of current-affected fine-scale foraging habitats that may contribute to the high diversity of marine bird species found there.
A tool to estimate bar patterns and flow conditions in estuaries when limited data is available
NASA Astrophysics Data System (ADS)
Leuven, J.; Verhoeve, S.; Bruijns, A. J.; Selakovic, S.; van Dijk, W. M.; Kleinhans, M. G.
2017-12-01
The effects of human interventions, natural evolution of estuaries and rising sea-level on food security and flood safety are largely unknown. In addition, ecologists require quantified habitat area to study future evolution of estuaries, but they lack predictive capability of bathymetry and hydrodynamics. For example, crucial input required for ecological models are values of intertidal area, inundation time, peak flow velocities and salinity. While numerical models can reproduce these spatial patterns, their computational times are long and for each case a new model must be developed. Therefore, we developed a comprehensive set of relations that accurately predict the hydrodynamics and the patterns of channels and bars, using a combination of the empirical relations derived from approximately 50 estuaries and theory for bars and estuaries. The first step is to predict local tidal prisms, which is the tidal prism that flows through a given cross-section. Second, the channel geometry is predicted from tidal prism and hydraulic geometry relations. Subsequently, typical flow velocities can be estimated from the channel geometry and tidal prism. Then, an ideal estuary shape is fitted to the measured planform: the deviation from the ideal shape, which is defined as the excess width, gives a measure of the locations where tidal bars form and their summed width (Leuven et al., 2017). From excess width, typical hypsometries can be predicted per cross-section. In the last step, flow velocities are calculated for the full range of occurring depths and salinity is calculated based on the estuary shape. Here, we will present a prototype tool that predicts equilibrium bar patterns and typical flow conditions. The tool is easy to use because the only input required is the estuary outline and tidal amplitude. Therefore it can be used by policy makers and researchers from multiple disciplines, such as ecologists, geologists and hydrologists, for example for paleogeographic reconstructions.
Intradaily variability of water quality in a shallow tidal lagoon: Mechanisms and implications
Lucas, L.V.; Sereno, D.M.; Burau, J.R.; Schraga, T.S.; Lopez, C.B.; Stacey, M.T.; Parchevsky, K.V.; Parchevsky, V.P.
2006-01-01
Although surface water quality and its underlying processes vary over time scales ranging from seconds to decades, they have historically been studied at the lower (weekly to interannual) frequencies. The aim of this study was to investigate intradaily variability of three water quality parameters in a small freshwater tidal lagoon (Mildred Island, California). High frequency time series of specific conductivity, water temperature, and chlorophyll a at two locations within the habitat were analyzed in conjunction with supporting hydrodynamic, meteorological, biological, and spatial mapping data. All three constituents exhibited large amplitude intradaily (e.g., semidiurnal tidal and diurnal) oscillations, and periodicity varied across constituents, space, and time. Like other tidal embayments, this habitat is influenced by several processes with distinct periodicities including physical controls, such as tides, solar radiation, and wind, and biological controls, such as photosynthesis, growth, and grazing. A scaling approach was developed to estimate individual process contributions to the observed variability. Scaling results were generally consistent with observations and together with detailed examination of time series and time derivatives, revealed specific mechanisms underlying the observed periodicities, including interactions between the tidal variability, heating, wind, and biology. The implications for monitoring were illustrated through subsampling of the data set. This exercise demonstrated how quantities needed by scientists and managers (e.g., mean or extreme concentrations) may be misrepresented by low frequency data and how short-duration high frequency measurements can aid in the design and interpretation of temporally coarser sampling programs. The dispersive export of chlorophyll a from the habitat exhibited a fortnightly variability corresponding to the modulation of semidiurnal tidal currents with the diurnal cycle of phytoplankton variability, demonstrating how high frequency interactions can govern long-term trends. Process identification, as through the scaling analysis here, can help us anticipate changes in system behavior and adapt our own interactions with the system. ?? 2006 Estuarine Research Federation.
Patterns of sediment accumulation in the tidal marshes of Maine
Wood, M.E.; Kelley, J.T.; Belknap, D.F.
1989-01-01
One year's measurements of surficial sedimentation rates (1986-1987) for 26 Maine marsh sites were made over marker horizons of brick dust. Observed sediment accumulation rates, from 0 to 13 mm yr-1, were compared with marsh morphology, local relative sea-level rise rate, mean tidal range, and ice rafting activity. Marshes with four different morphologies (back-barrier, fluvial, bluff-toe, and transitional) showed distinctly different sediment accumulation rates. In general, back-barrier marshes had the highest accumulation rates and blufftoe marshes had the lowest rates, with intermediate values for transitional and fluvial marshes. No causal relationship between modern marsh sediment accumulation rate and relative sea-level rise rate (from tide gauge records) was observed. Marsh accretionary balance (sediment accumulation rate minus relative sea-level rise rate) did not correlate with mean tidal range for this meso- to macro-tidal area. Estimates of ice-rafted debris on marsh sites ranged from 0% to >100% of measured surficial sedimentation rates, indicating that ice transport of sediment may make a significant contribution to surficial sedimentation on Maine salt marshes. ?? 1989 Estuarine Research Federation.
Bergamaschi, Brian A.; Fleck, Jacob A.; Downing, Bryan D.; Boss, Emmanuel; Pellerin, Brian A.; Ganju, Neil K.; Schoellhamer, David H.; Byington, Amy A.; Heim, Wesley A.; Stephenson, Mark; Fujii, Roger
2012-01-01
We used high-resolution in situ measurements of turbidity and fluorescent dissolved organic matter (FDOM) to quantitatively estimate the tidally driven exchange of mercury (Hg) between the waters of the San Francisco estuary and Browns Island, a tidal wetland. Turbidity and FDOM—representative of particle-associated and filter-passing Hg, respectively—together predicted 94 % of the observed variability in measured total mercury concentration in unfiltered water samples (UTHg) collected during a single tidal cycle in spring, fall, and winter, 2005–2006. Continuous in situ turbidity and FDOM data spanning at least a full spring-neap period were used to generate UTHg concentration time series using this relationship, and then combined with water discharge measurements to calculate Hg fluxes in each season. Wetlands are generally considered to be sinks for sediment and associated mercury. However, during the three periods of monitoring, Browns Island wetland did not appreciably accumulate Hg. Instead, gradual tidally driven export of UTHg from the wetland offset the large episodic on-island fluxes associated with high wind events. Exports were highest during large spring tides, when ebbing waters relatively enriched in FDOM, dissolved organic carbon (DOC), and filter-passing mercury drained from the marsh into the open waters of the estuary. On-island flux of UTHg, which was largely particle-associated, was highest during strong winds coincident with flood tides. Our results demonstrate that processes driving UTHg fluxes in tidal wetlands encompass both the dissolved and particulate phases and multiple timescales, necessitating longer term monitoring to adequately quantify fluxes.
Tidal influence on subtropical estuarine methane emissions
NASA Astrophysics Data System (ADS)
Sturm, Katrin; Grinham, Alistair; Werner, Ursula; Yuan, Zhiguo
2014-05-01
The relatively unstudied subtropical estuaries, particularly in the Southern Hemisphere, represent an important gap in our understanding of global greenhouse gas (GHG) emissions. These systems are likely to form an important component of GHG budgets as they occupy a relatively large surface area, over 38 000 km2 in Australia. Here, we present studies conducted in the Brisbane River estuary, a representative system within the subtropical region of Queensland, Australia. This is a highly modified system typical of 80% of Australia's estuaries. Generally, these systems have undergone channel deepening and straightening for safer shipping access and these modifications have resulted in large increases in tidal reach. The Brisbane River estuary's natural tidal reach was 16 km and this is now 85 km and tidal currents influence double the surface area (9 km2 to 18 km2) in this system. Field studies were undertaken to improve understanding of the driving factors behind methane water-air fluxes. Water-air fluxes in estuaries are usually calculated with the gas exchange coefficient (k) for currents and wind as well as the concentration difference across the water-air interface. Tidal studies in the lower and middle reaches of the estuary were performed to monitor the influence of the tidal stage (a proxy for kcurrent) on methane fluxes. Results for both investigated reaches showed significantly higher methane fluxes during the transition time of tides, the time of greatest tidal currents, than during slack tide periods. At these tidal transition times with highest methane chamber fluxes, lowest methane surface water concentrations were monitored. Modelled fluxes using only wind speed (kwind) were at least one order of magnitude lower than observed from floating chambers, demonstrating that current speed was likely the driving factor of water-air fluxes. An additional study was then conducted sampling the lower, middle and upper reaches during a tidal transition period. Although dissolved methane surface water concentrations were highest in the upper reaches of the estuary, experiencing the lowest tidal currents, fluxes measured using chambers were lower relative to middle and lower reaches. This supports the tidal study findings as higher tidal currents were experienced in the middle and lower reaches. The dominant driver behind estuarine methane water-air fluxes in this system was tidal current speed. Future studies need to take into account flux rates during both transition and slack tide periods to quantify total flux rates.
Evolution of the Parnaíba Delta (NE Brazil) during the late Holocene
NASA Astrophysics Data System (ADS)
Szczygielski, Agata; Stattegger, Karl; Schwarzer, Klaus; da Silva, André Giskard Aquino; Vital, Helenice; Koenig, Juliane
2015-04-01
Sedimentary processes and the evolution of the wave- and tide-dominated, asymmetric Parnaíba Delta during the late Holocene were investigated based on geochemical and sedimentological analyses of sediment cores collected in 2010, as well as satellite images and historical maps. This is a rare case of pristine deltas essentially unaffected by human activities worldwide. The lowermost part of the main Parnaíba River distributary exhibits several low-sinuosity bends and several anastomosing bifurcation patterns in the east, whereas three NW-SE-oriented tidal channels drain a large mangrove area in the west. Dating of various materials in sediment cores from the tidal flats, tidal channels and supratidal marshes revealed that the oldest sediment (4,853 to 4,228 cal. years BP) is paleo-mangrove soil from the main river distributary. Present-day mangroves and marshes up to 200 years old exhibit high sedimentation rates reaching 3.4 cm/year. The asymmetry of the delta is explained not only by the wind- and wave-induced westward-directed longshore drift but also by neotectonic processes, as revealed by satellite images. Faulting and eastward tilting may have triggered delta lobe switching from west to east. This would explain the erosional character and unusual updrift orientation of the main river-mouth channel. Consistent with existing knowledge on mangrove ecosystems worldwide, sediment carbon and nitrogen signatures lie in the range of freshwater or marine dissolved organic carbon and C3 terrestrial plants. In the western tidal channels, the low Corg/Ntot ratios (16-21) of young mangrove soil (deposited in the last 16 years) reflect a stronger influence of marine plants compared to older mangroves (1,390-1,525 cal. years BP; ratios of 20-37). Thus, there would have been a greater influence of the Parnaíba River on tidal-channel sedimentology 1,400 to 1,500 years ago, entailing a natural connection between the present-day tidal channels and the river in ancient times, which was abandoned later during delta lobe switching. This is substantiated by historical maps that indeed show this connection between the main distributary and the tidal-channel system.
Tidally influenced alongshore circulation at an inlet-adjacent shoreline
Hansen, Jeff E.; Elias, Edwin P.L.; List, Jeffrey H.; Erikson, Li H.; Barnard, Patrick L.
2013-01-01
The contribution of tidal forcing to alongshore circulation inside the surfzone is investigated at a 7 km long sandy beach adjacent to a large tidal inlet. Ocean Beach in San Francisco, CA (USA) is onshore of a ∼150 km2 ebb-tidal delta and directly south of the Golden Gate, the sole entrance to San Francisco Bay. Using a coupled flow-wave numerical model, we find that the tides modulate, and in some cases can reverse the direction of, surfzone alongshore flows through two separate mechanisms. First, tidal flow through the inlet results in a barotropic tidal pressure gradient that, when integrated across the surfzone, represents an important contribution to the surfzone alongshore force balance. Even during energetic wave conditions, the tidal pressure gradient can account for more than 30% of the total alongshore pressure gradient (wave and tidal components) and up to 55% during small waves. The wave driven component of the alongshore pressure gradient results from alongshore wave height and corresponding setup gradients induced by refraction over the ebb-tidal delta. Second, wave refraction patterns over the inner shelf are tidally modulated as a result of both tidal water depth changes and strong tidal flows (∼1 m/s), with the effect from currents being larger. These tidally induced changes in wave refraction result in corresponding variability of the alongshore radiation stress and pressure gradients within the surfzone. Our results indicate that tidal contributions to the surfzone force balance can be significant and important in determining the direction and magnitude of alongshore flow.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blazek, Jonathan; Vlah, Zvonimir; Seljak, Uroš
We develop an analytic model for galaxy intrinsic alignments (IA) based on the theory of tidal alignment. We calculate all relevant nonlinear corrections at one-loop order, including effects from nonlinear density evolution, galaxy biasing, and source density weighting. Contributions from density weighting are found to be particularly important and lead to bias dependence of the IA amplitude, even on large scales. This effect may be responsible for much of the luminosity dependence in IA observations. The increase in IA amplitude for more highly biased galaxies reflects their locations in regions with large tidal fields. We also consider the impact ofmore » smoothing the tidal field on halo scales. We compare the performance of this consistent nonlinear model in describing the observed alignment of luminous red galaxies with the linear model as well as the frequently used "nonlinear alignment model," finding a significant improvement on small and intermediate scales. We also show that the cross-correlation between density and IA (the "GI" term) can be effectively separated into source alignment and source clustering, and we accurately model the observed alignment down to the one-halo regime using the tidal field from the fully nonlinear halo-matter cross correlation. Inside the one-halo regime, the average alignment of galaxies with density tracers no longer follows the tidal alignment prediction, likely reflecting nonlinear processes that must be considered when modeling IA on these scales. Finally, we discuss tidal alignment in the context of cosmic shear measurements.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blazek, Jonathan; Vlah, Zvonimir; Seljak, Uroš, E-mail: blazek@berkeley.edu, E-mail: zvlah@stanford.edu, E-mail: useljak@berkeley.edu
We develop an analytic model for galaxy intrinsic alignments (IA) based on the theory of tidal alignment. We calculate all relevant nonlinear corrections at one-loop order, including effects from nonlinear density evolution, galaxy biasing, and source density weighting. Contributions from density weighting are found to be particularly important and lead to bias dependence of the IA amplitude, even on large scales. This effect may be responsible for much of the luminosity dependence in IA observations. The increase in IA amplitude for more highly biased galaxies reflects their locations in regions with large tidal fields. We also consider the impact ofmore » smoothing the tidal field on halo scales. We compare the performance of this consistent nonlinear model in describing the observed alignment of luminous red galaxies with the linear model as well as the frequently used 'nonlinear alignment model,' finding a significant improvement on small and intermediate scales. We also show that the cross-correlation between density and IA (the 'GI' term) can be effectively separated into source alignment and source clustering, and we accurately model the observed alignment down to the one-halo regime using the tidal field from the fully nonlinear halo-matter cross correlation. Inside the one-halo regime, the average alignment of galaxies with density tracers no longer follows the tidal alignment prediction, likely reflecting nonlinear processes that must be considered when modeling IA on these scales. Finally, we discuss tidal alignment in the context of cosmic shear measurements.« less
Linear Tidal Vestige Found in the WM Sheet
NASA Astrophysics Data System (ADS)
Lee, Jounghun; Kim, Suk; Rey, Soo-Chang
2018-06-01
We present a vestige of the linear tidal influence on the spin orientations of the constituent galaxies of the WM sheet discovered in the vicinity of the Virgo Cluster and the Local Void. The WM sheet is chosen as an optimal target since it has a rectangular parallelepiped-like shape whose three sides are in parallel with the supergalactic Cartesian axes. Determining three probability density functions of the absolute values of the supergalactic Cartesian components of the spin vectors of the WM sheet galaxies, we investigate their alignments with the principal directions of the surrounding large-scale tidal field. When the WM sheet galaxies located in the central region within the distance of 2 h ‑1 Mpc are excluded, the spin vectors of the remaining WM sheet galaxies are found to be weakly aligned, strongly aligned, and strongly anti-aligned with the minor, intermediate, and major principal directions of the surrounding large-scale tidal field, respectively. To examine whether or not the origin of the observed alignment tendency from the WM sheet is the linear tidal effect, we infer the eigenvalues of the linear tidal tensor from the axial ratios of the WM sheet with the help of the Zeldovich approximation and conduct a full analytic evaluation of the prediction of the linear tidal torque model for the three probability density functions. A detailed comparison between the analytical and the observational results reveals a good quantitative agreement not only in the behaviors but also in the amplitudes of the three probability density functions.
Observation and numerical modeling of tidal dune dynamics
NASA Astrophysics Data System (ADS)
Doré, Arnaud; Bonneton, Philippe; Marieu, Vincent; Garlan, Thierry
2018-05-01
Tidal sand dune dynamics is observed for two tidal cycles in the Arcachon tidal inlet, southwest France. An array of instruments is deployed to measure bathymetric and current variations along dune profiles. Based on the measurements, dune crest horizontal and vertical displacements are quantified and show important dynamics in phase with tidal currents. We observed superimposed ripples on the dune stoss side and front, migrating and changing polarity as tidal currents reverse. A 2D RANS numerical model is used to simulate the morphodynamic evolution of a flat non-cohesive sand bed submitted to a tidal current. The model reproduces the bed evolution until a field of sand bedforms is obtained that are comparable with observed superimposed ripples in terms of geometrical dimensions and dynamics. The model is then applied to simulate the dynamics of a field of large sand dunes of similar size as the dunes observed in situ. In both cases, simulation results compare well with measurements qualitatively and quantitatively. This research allows for a better understanding of tidal sand dune and superimposed ripple morphodynamics and opens new perspectives for the use of numerical models to predict their evolution.
Critical bifurcation of shallow microtidal landforms in tidal flats and salt marshes
Fagherazzi, Sergio; Carniello, Luca; D'Alpaos, Luigi; Defina, Andrea
2006-01-01
Shallow tidal basins are characterized by extensive tidal flats and salt marshes that lie within specific ranges of elevation, whereas intermediate elevations are less frequent in intertidal landscapes. Here we show that this bimodal distribution of elevations stems from the characteristics of wave-induced sediment resuspension and, in particular, from the reduction of maximum wave height caused by dissipative processes in shallow waters. The conceptual model presented herein is applied to the Venice Lagoon, Italy, and demonstrates that areas at intermediate elevations are inherently unstable and tend to become either tidal flats or salt marshes. PMID:16707583
A novel approach to flow estimation in tidal rivers
NASA Astrophysics Data System (ADS)
Moftakhari, H. R.; Jay, D. A.; Talke, S. A.; Kukulka, T.; Bromirski, P. D.
2013-08-01
Reliable estimation of river discharge to the ocean from large tidal rivers is vital for water resources management and climate analyses. Due to the difficulties inherent in measuring tidal-river discharge, flow records are often limited in length and/or quality and tidal records often predate discharge records. Tidal theory indicates that tides and river discharge interact through quadratic bed friction, which diminishes and distorts the tidal wave as discharge increases. We use this phenomenon to develop a method of estimating river discharge for time periods with tidal data but no flow record. Employing sequential 32 day harmonic analyses of tidal properties, we calibrate San Francisco (SF), CA tide data to the Sacramento River delta outflow index from 1930 to 1990, and use the resulting relationship to hindcast river flow from 1858 to 1929. The M2 admittance (a ratio of the observed M2 tidal constituent to its astronomical forcing) best reproduces high flows, while low-flow periods are better represented by amplitude ratios based on higher harmonics (e.g.,M4/M22). Results show that the annual inflow to SF Bay is now 30% less than before 1900 and confirm that the flood of January 1862 was the largest since 1858.
Systematic Analysis of Rocky Shore Morphology along 700km of Coastline Using LiDAR-derived DEMs
NASA Astrophysics Data System (ADS)
Matsumoto, H.; Dickson, M. E.; Masselink, G.
2016-12-01
Rock shore platforms occur along much of the world's coast and have a long history of study; however, uncertainty remains concerning the relative importance of various formative controls in different settings (e.g. wave erosion, weathering, tidal range, rock resistance, inheritance). Ambiguity is often attributed to intrinsic natural variability and the lack of preserved evidence on eroding rocky shores, but it could also be argued that previous studies are limited in scale, focusing on a small number of local sites, which restricts the potential for insights from broad, regional analyses. Here we describe a method, using LiDAR-derived digital elevation models (DEMs), for analysing shore platform morphology over an unprecedentedly wide area in which there are large variations in environmental conditions. The new method semi-automatically extracts shore platform profiles and systematically conducts morphometric analysis. We apply the method to 700 km of coast in the SW UK that is exposed to (i) highly energetic swell waves to local wind waves, (ii) macro to mega tidal ranges, and (iii) highly resistant igneous rocks to moderately hard sedimentary rocks. Computer programs are developed to estimate mean sea level, mean spring tidal range, wave height, and rock strength along the coastline. Filtering routines automatically select and remove profiles that are unsuitable for analysis. The large data-set of remaining profiles supports broad and systematic investigation of possible controls on platform morphology. Results, as expected, show wide scatter, because many formative controls are in play, but several trends exist that are generally consistent with relationships that have been inferred from local site studies. This paper will describe correlation analysis on platform morphology in relation to environmental conditions and also present a multi-variable empirical model derived from multi linear regression analysis. Interesting matches exist between platform gradients obtained from the field, and empirical model predictions, particularly when morphological variability found in LiDAR-based shore platform morphology analysis is considered. These findings frame a discussion on formative controls of rocky shore morphology.
Monitoring of the tidal dynamics of the Dutch Waddensea by SIR-B
NASA Technical Reports Server (NTRS)
Koopmans, B. N.; Vanderzee, D.; Verstappen, A. T.; Woldai, T.; Hoschititzky, H.
1984-01-01
The potential of LANDSAT data, covering the entire tidal flats at a certain, known, tidal situation, was assessed. It was discovered that the data cannot be used for systematic survey because of the long interval between subsequent passes, weather conditions often interfere with recording, and of the lack of correlation between passes and the tidal situation. The objective is to overcome the problems by using: (1) the synoptic view obtained by SIR-B, which has the potential of surveying large areas of the flats simultaneously; (2) the all-weather capability of the microwave system; (3) the recording during consecutive days, which results in a straightforeward correlation with the tidal cycle and the picturing of different tidal stages; and (4) the multiangle incidence of SIR-B to analyze the bottom configuration of submerged parts of the flats. The use of a weather independent monitoring device, such as radar, an improvement in the monitoring technique of tidal coastal areas.
Optimization of Gear Ratio in the Tidal Current Generation System based on Generated Energy
NASA Astrophysics Data System (ADS)
Naoi, Kazuhisa; Shiono, Mitsuhiro; Suzuki, Katsuyuki
It is possible to predict generating power of the tidal current generation, because of the tidal current's periodicity. Tidal current generation is more advantageous than other renewable energy sources, when the tidal current generation system is connected to the power system and operated. In this paper, we propose a method used to optimize the gear ratio and generator capacity, that is fundamental design items in the tidal current generation system which is composed of Darrieus type water turbine and squirrel-cage induction generator coupled with gear. The proposed method is applied to the tidal current generation system including the most large-sized turbine that we have developed and studied. This paper shows optimum gear ratio and generator capacity that make generated energy maximum, and verify effectiveness of the proposed method. The paper also proposes a method of selecting maximum generating current velocity in order to reduce the generator capacity, from the viewpoint of economics.
Derivation of Delaware Bay tidal parameters from Space Shuttle photography
NASA Technical Reports Server (NTRS)
Zheng, Quanan; Yan, Xiao-Hai; Klemas, Vic
1993-01-01
The tide-related parameters of the Delaware Bay are derived from Space Shuttle time-series photographs. The water areas in the bay are measured from interpretation maps of the photographs with a CALCOMP 9100 digitizer and ERDAS Image Processing System. The corresponding tidal levels are calculated using the exposure time annotated on the photographs. From these data, an approximate function relating the water area to the tidal level at a reference point is determined. Based on the function, the water areas of the Delaware Bay at mean high water (MHW) and mean low water (MLW), below 0 m, and for the tidal zone are inferred. With MHW and MLW areas and the mean tidal range, we calculate the tidal influx of the Delaware Bay, which is 2.76 x 10 exp 9 cu m. The velocity of flood tide at the bay mouth is determined using the tidal flux and an integral of the velocity distribution function at the cross section between Cape Henlopen and Cape May. The result is 132 cm/s, which compares well with the data on tidal current charts.
Tidal and tidally averaged circulation characteristics of Suisun Bay, California
Smith, Lawrence H.; Cheng, Ralph T.
1987-01-01
Availability of extensive field data permitted realistic calibration and validation of a hydrodynamic model of tidal circulation and salt transport for Suisun Bay, California. Suisun Bay is a partially mixed embayment of northern San Francisco Bay located just seaward of the Sacramento-San Joaquin Delta. The model employs a variant of an alternating direction implicit finite-difference method to solve the hydrodynamic equations and an Eulerian-Lagrangian method to solve the salt transport equation. An upwind formulation of the advective acceleration terms of the momentum equations was employed to avoid oscillations in the tidally averaged velocity field produced by central spatial differencing of these terms. Simulation results of tidal circulation and salt transport demonstrate that tides and the complex bathymetry determine the patterns of tidal velocities and that net changes in the salinity distribution over a few tidal cycles are small despite large changes during each tidal cycle. Computations of tidally averaged circulation suggest that baroclinic and wind effects are important influences on tidally averaged circulation during low freshwater-inflow conditions. Exclusion of baroclinic effects would lead to overestimation of freshwater inflow by several hundred m3/s for a fixed set of model boundary conditions. Likewise, exclusion of wind would cause an underestimation of flux rates between shoals and channels by 70–100%.
FAINT TIDAL FEATURES IN GALAXIES WITHIN THE CANADA-FRANCE-HAWAII TELESCOPE LEGACY SURVEY WIDE FIELDS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Atkinson, Adam M.; Abraham, Roberto G.; Ferguson, Annette M. N.
2013-03-01
We present an analysis of the detectability of faint tidal features in galaxies from the wide-field component of the Canada-France-Hawaii Telescope Legacy Survey. Our sample consists of 1781 luminous (M{sub r{sup '}}<-19.3 mag) galaxies in the magnitude range 15.5 mag < r' < 17 mag and in the redshift range 0.04 < z < 0.2. Although we have classified tidal features according to their morphology (e.g., streams, shells, and tails), we do not attempt to interpret them in terms of their physical origin (e.g., major versus minor merger debris). Instead, we provide a catalog that is intended to provide rawmore » material for future investigations which will probe the nature of low surface brightness substructure around galaxies. We find that around 12% of the galaxies in our sample show clear tidal features at the highest confidence level. This fraction rises to about 18% if we include systems with convincing, albeit weaker tidal features, and to 26% if we include systems with more marginal features that may or may not be tidal in origin. These proportions are a strong function of rest-frame color and of stellar mass. Linear features, shells, and fans are much more likely to occur in massive galaxies with stellar masses >10{sup 10.5} M {sub Sun }, and red galaxies are twice as likely to show tidal features than are blue galaxies.« less
Large-scale tidal effect on redshift-space power spectrum in a finite-volume survey
NASA Astrophysics Data System (ADS)
Akitsu, Kazuyuki; Takada, Masahiro; Li, Yin
2017-04-01
Long-wavelength matter inhomogeneities contain cleaner information on the nature of primordial perturbations as well as the physics of the early Universe. The large-scale coherent overdensity and tidal force, not directly observable for a finite-volume galaxy survey, are both related to the Hessian of large-scale gravitational potential and therefore are of equal importance. We show that the coherent tidal force causes a homogeneous anisotropic distortion of the observed distribution of galaxies in all three directions, perpendicular and parallel to the line-of-sight direction. This effect mimics the redshift-space distortion signal of galaxy peculiar velocities, as well as a distortion by the Alcock-Paczynski effect. We quantify its impact on the redshift-space power spectrum to the leading order, and discuss its importance for ongoing and upcoming galaxy surveys.
Solving the BM Camelopardalis puzzle
NASA Technical Reports Server (NTRS)
Teke, Mathias; Busby, Michael R.; Hall, Douglas S.
1989-01-01
BM Camelopardalis (=12 Cam) is a chromospherically active binary star with a relatively large orbital eccentricity. Systems with large eccentricities usually rotate pseudosynchronously. However, BM Cam has been a puzzle since its observed rotation rate is virtually equal to its orbital period indicating synchronization. All available photometry data for BM Cam have been collected and analyzed. Two models of modulated ellipticity effect are proposed, one based on equilibrium tidal deformation of the primary star and the other on a dynamical tidal effect. When the starspot variability is removed from the data, the dynamical tidal model was the better approximation to the real physical situation. The analysis indicates that BM Cam is not rotating pseudosynchronously but rotating in virtual synchronism after all.
Schmidt, Sabine; Bernard, Clément; Escalier, Jean-Michel; Etcheber, Henri; Lamouroux, Mélina
2017-02-01
The Gironde estuary (S-W France) is one of the largest European macrotidal estuaries. In the tidal Garonne River, its main tributary, episodes of low (<5 mg L -1 ) to hypoxic (<2 mg L -1 ) dissolved oxygen (DO) concentrations have been occasionally recorded close to Bordeaux, about 100 km from the mouth. Projected long-term environmental changes (increase in temperature and population, decrease in river discharge) suggest the establishment of summer chronic oxygen deficiency in the tidal Garonne River in the next decades. Assessing and managing the risk of hypoxia on such a large, hyper-turbid fluvio-estuarine system is complex, due to the different forcing factors (temperature, river discharge, turbidity, urban wastes) acting over a wide range of temporal and spatial scales. In this context, we show the interest of a real-time, high-frequency monitoring of the water quality, the MAGEST network, which continuously records since 2005 temperature, salinity, turbidity, and dissolved oxygen in surface waters in Bordeaux. Through the analysis of the 10-year DO records, we demonstrate the interest of a high-frequency, long-term database to better document DO variability and to define the controlling factors of DO concentrations. This real-time monitoring is also of great interest for the development of manager's oriented tools and the follow-up of DO objectives in the tidal Garonne River.
On the Formation of Ultra-Difuse Galaxies as Tidally-Stripped Systems
NASA Astrophysics Data System (ADS)
Carleton, Timothy; Cooper, Michael; Kaplinghat, Manoj; Errani, Raphael; Penarrubia, Jorge
2018-01-01
The recent identification of a large population of so-called 'Ultra-Diffuse' Galaxies (UDGs), with stellar masses ~108 M⊙, but half light radii over 1.5 kpc, has challenged our understanding of galaxy evolution. Motivated by the environmental dependence of UDG properties and abundance, I present a model for the formation of UDGs through tidal-stripping of dwarf galaxies in cored dark matter halos. To test this scenario, I utilize results from simulations of tidal stripping, which demonstrate that changes in the stellar profile of a tidally stripped galaxy can be written as a function of the amount of tidal stripping experienced by the halo (tidal tracks). These tracks, however, are different for cored and cuspy halos. Additional simulations show how the halo responds to tidal interactions given the halo orbit within a cluster.In particular, dwarf elliptical galaxies, born in 1010-10.5 M⊙ halos, expand significantly as a result of tidal stripping and produce UDGs. Applying these models to the population of halos in the Bolshoi simulation, I am able to follow the effects of tidal stripping on the dwarf galaxy population in clusters. Using tidal tracks for cuspy halos does not reproduce the observed properties of UDGs. However, using the tidal tracks for cored halos, I reproduce the distribution of sizes, stellar masses, and abundance of UDGs in clusters remarkably well.
Quantification of Saturn and Enceladus tidal dissipation by astrometry after Cassini
NASA Astrophysics Data System (ADS)
Lainey, V.
2017-12-01
Enceladus is the smallest moon known today harboring a global ocean under its crust. While the existence of liquid water in high quantity for such a small object is exciting from an exobiological perspective, the existence and maintenance of such an ocean over time has been very debated. The discovery of strong, largely unexpected, tidal dissipation inside Saturn has turned out to be a major actor for sustaining Enceladus ocean and geysers activity. In particular, interior evolution of Enceladus and Saturn appear closely related. In this talk we will present the way tidal mechanisms occurring inside Saturn are currently tested using astrometry. Since tidal friction may occur both inside the core and the atmosphere, looking at the frequency dependence of tidal parameters is required to assess the magnitude of both processes. Expected results using the whole Cassini data, including the possible global quantification of Enceladus tidal dissipation, will be discussed.
2012-09-30
understand how the delicate balance of ebb and flood sediment fluxes is maintained to create tidal flat and mangrove complexes, and distributary shoals and...and the subaqueous delta on the inner continental shelf, and sediment sinks within vegetated/ mangrove shoreline complexes. Our overall hypothesis...on Mangrove /Vegetated Intertidal Areas. Along the main stem tidal river and in the offshore banks may be shorelines lined with vegetation ( mangroves
ΔT and tidal acceleration values from three european medieval eclipses
NASA Astrophysics Data System (ADS)
Martinez, M. J.; Marco, F. J.
2011-10-01
There are many possible reasons for the fact that the rate of rotation of the Earth is slowly decreasing in time, being the most important the tidal friction. Since Universal Time (UT) is a time scale based on the rotation of the Earth and ΔT defined as the difference between the uniform time-scale (Dynamical Time), and the Universal Time, clearly that ΔT will vary with time. The problem is that this variation is not uniform, existing irregular fluctuations. In addition, it is not possible to predict exact values for ΔT, being the only possibility its deduction a posteriori from observations. ΔT is strongly related with occultations and eclipses, because it is used for the calculation of exact times of the event, and for determining the position of the central line or the zone of visibility. In this sense, a value ΔT =3600s is roughly equivalent to a shift of 15. in longitude. Past values of ΔT can be deduced from historical astronomical observations such as ancient eclipses which have been widely studied by F.R. Stephenson [3] and [4] who has even obtained an approximation fitted with cubic splines for ΔT from -500 to +1950. This approximation is nowadays widely used in astronomical calculations. The derived relative error from ΔT obtained from ancient eclipsed is quite large, mainly because of the large width of the totality zone and the inaccuracy in the definition of the observational place. A possibility to partially solve these former problems is the analysis of total eclipse records from multiple sites, which could provide a narrow parameter range. In addition, The conjunct analysis of these astronomical phenomena is useful for determining a range of ΔT in function of the tidal acceleration of the Moon. Further discussion about these eclipses in under review.
Temporal variation of velocity and turbulence characteristics at a tidal energy site
NASA Astrophysics Data System (ADS)
Gunawan, B.; Neary, V. S.; Colby, J.
2013-12-01
This study examines the temporal variability, frequency, direction and magnitude of the mean current, turbulence, hydrodynamic force and tidal power availability at a proposed tidal energy site in a tidal channel located in East River, NY, USA. The channel has a width of 190 m, a mean water level of 9.8 m and a mean tidal range of 1.3 m. A two-month velocity measurement was conducted at the design hub-height of a tidal turbine using an acoustic Doppler velocimeter (ADV). The site has semi-diurnal tidal characteristics with tidal current pattern resembles that of sinusoidal function. The five-minute mean currents at the site varied between 0 and 2.4 m s-1. Flood current magnitudes were typically higher that the ebb current magnitudes, which skewed the tidal energy production towards the flood period. The effect of small-scale turbulence on the computed velocity, hydrodynamic load and power densities timeseries were investigated. Excluding the small-scale turbulence may lead to a significant underestimation of the mean and the maximum values of the analyzed variable. Comparison of hydrodynamic conditions with other tidal energy sites indicates that the key parameters for tidal energy site development are likely to be site-specific, which highlight the need to develop a classification system for tidal energy sites. Such a classification system would enable a direct comparison of key parameters between potential project locations and ultimately help investors in the decision making process. Turbulence intensity vs. mean current magnitude
NASA Astrophysics Data System (ADS)
Windham-Myers, L.; Cai, W. J.
2017-12-01
The development of the 2nd State of the Carbon Cycle Report (SOCCR-2) has recognized a significant role of aquatic ecosystems, including coastal zones, in reconciling some of the gaps associated with the North American carbon (C) budget. Along with a large community of coauthors, we report major C stocks and fluxes for tidal wetlands and estuaries of Canada, Mexico and the United States. We find divergent patterns between these coupled ecosystems, with tidal wetlands largely serving as CO2 sinks (net autotrophic), and open-water estuaries largely serving as CO2 sources (net heterotrophic). We summarized measurements across 4 continental regions - East Coast, Gulf of Mexico, West Coast, and High Latitudes - to assess spatial variability and datagaps in our understanding of coastal C cycling. Subtracting estuarine outgassing of 10 ± 10 Tg C yr-1 from the tidal wetland uptake of 23 ± 10 Tg C yr-1 leaves a net uptake of the combined system of 13 ± 14 Tg C yr-1. High uncertainty for net atmospheric C exchange in this combined coastal system is further complicated by spatially and temporally dynamic boundaries, as well as terrestrial C sources. Tidal wetlands are among the most productive ecosystems on earth and are capable of continuously accumulating organic C in their sediments as a result of environmental conditions that inhibit organic matter decomposition. Estuaries have more interannual variability in C dynamics than those of tidal wetlands, reflecting the estuarine balance of exchanges with terrestrial watersheds, tidal wetlands, and the continental shelf. Whereas tidal, subtidal and estuarine maps are of limited accuracy at larger scales, North America likely represents less than 1/10 of global distributions of coastal wetland habitats. Coupled land-ocean C flux models are increasingly robust but lacking much of the data needed for parameterization and validation. Accurate boundary maps and synoptic monitoring data on air-water CO2 exchange may be developed through novel remote-sensing products. Improved mapping and monitoring data at local-regional scales remains a necessary improvement to reduce the uncertainty associated with coastal zone C cycling and to understand potential land management implications.
Stirring up a storm: convective climate variability on tidally locked exoplanets
NASA Astrophysics Data System (ADS)
Koll, D. D. B.; Cronin, T.
2017-12-01
Earth-sized exoplanets are extremely common in the galaxy and many of them are likely tidally locked, such that they have permanent day- and nightsides. Astronomers have started to probe the atmospheres of such planets, which raises the question: can tidally locked planets support habitable climates and life?Several studies have explored this question using global circulation models (GCMs). Not only did these studies find that tidally locked Earth analogs can indeed sustain habitable climates, their large day-night contrast should also create a distinct cloud structure that could help astronomers identify such planets. These studies, however, relied on GCMs which do not explicitly resolve convection, raising the question of how robust their results are.Here we consider the dynamics of clouds and convection on a tidally locked planet using the System for Atmospheric Modeling (SAM) cloud-resolving model. We simulate a 3d `channel', representing an equatorial strip that covers both day- and nightside of a tidally locked planet. We use interactive radiation and an interactive slab ocean surface and investigate the response to changes in the stellar constant. We find mean climates that are broadly comparable to those produced by a GCM. However, when the slab ocean is shallow, we also find internal variability that is far bigger than in a GCM. Convection in a tidally locked domain can self-organize in a dramatic fashion, with large outbursts of convection followed by periods of relative calm. We show that one of the timescales for this behavior is set by the time it takes for a dry gravity wave to travel between day- and nightside. The quasi-periodic self-organization of clouds can vary the planetary albedo by up to 50%. Changes this large are potentially detectable with future space telescopes, which raises the prospect of using convectively driven variability to identify high priority targets in the search for life around other stars.
NASA Astrophysics Data System (ADS)
Wosnik, M.; Bachant, P.; Nedyalkov, I.; Rowell, M.; Dufresne, N.; Lyon, V.
2013-12-01
We report on research related to MHK turbines at the Center for Ocean Renewable Energy (CORE) at the University of New Hampshire (UNH). The research projects span varies scales, levels of complexity and environments - from fundamental studies of hydrofoil sections in a high speed water tunnel, to moderate Reynolds number turbine tests with inflow and wake studies in a large cross-section tow tank, to deployments of highly instrumented process models at tidal energy test sites in New England. A concerted effort over the past few years has brought significant new research infrastructure for marine hydrokinetic energy conversion online at UNH-CORE. It includes: a high-speed cavitation tunnel with independent control of velocity and pressure; a highly accurate tow mechanism, turbine test bed and wake traversing system for the 3.7m x 2.4m cross-section UNH tow tank; a 10.7m x 3.0m tidal energy test platform which can accommodate turbines up to 1.5m in diameter, for deployments at the UNH-CORE Tidal Energy Test Site in Great Bay Estuary, NH, a sheltered 'nursery site' suitable for intermediate scale tidal energy conversion device testing with peak currents typically above 2 m/s during each tidal cycle. Further, a large boundary layer wind tunnel, the new UNH Flow Physics Facility (W6.0m x H2.7m xL72m) is being used for detailed turbine wake studies, producing data and insight also applicable to MHK turbines in low Froude number deployments. Bi-directional hydrofoils, which perform equally well in either flow direction and could avoid the use of complex and maintenance-intensive yaw or blade pitch mechanisms, are being investigated theoretically, numerically and experimentally. For selected candidate shapes lift, drag, wake, and cavitation inception/desinence are measured. When combined with a cavitation inception model for MHK turbines, this information can be used to prescribe turbine design/operational parameters. Experiments were performed with a 1m diameter and 1m tall three-bladed cross-flow axis turbine (UNH RVAT) in a tow tank. For cross-flow axis turbines hydrofoil performance remains Reynolds number dependent at intermediate scales due to the large range of angles of attack encountered during turbine rotation. The experiments, with turbine diameter Reynolds numbers ReD = 0.5 x105 to 2.0 x106, were aimed at providing detailed data for model comparison at significantly higher Reynolds numbers than previously available. Measurements include rotor power, thrust, tip speed ratio, and detailed maps of mean flow and turbulence components in the near-wake. Mechanical exergy efficiency was calculated from power and drag measurements using an actuator disk approach. The spatial and temporal resolutions of different flow measurement techniques (ADCP, ADV, PIV) were systematically characterized. Finally, Reynolds-averaged Navier-Stokes (RANS) simulations were performed to assess their ability to predict the experimental results. A scaled version of a mixer-ejector hydrokinetic turbine, with a specially designed shroud to promotes wake mixing to enable increased mass flow through the turbine rotor, was evaluated experimentally at the UNH Tidal Energy Test Site in Great Bay Estuary, NH and in Muskeget Channel, MA. State-of-the-art instrumentation was used to measure the tidal energy resource and turbine wake flow velocities, turbine power extraction, test platform loadings and platform motion induced by sea state.
2012-07-01
Matagorda Peninsula east of MCR where a thicker cover of sand with vegetated dunes can be observed. 2.8 Typical beach profile Beach profile shape is a...clay bluffs on the beach face o Small tidal range, defined in Chapter 2, tends to focus wave action on the bluff toe o Breaking waves propel shell...toward the bluff, abrading the bluff toe o Abrasion undercuts the bluff, causing large sections to fail Slope failure o Cyclical wave loading on
Modeling the Ocean Tide for Tidal Power Generation Applications
NASA Astrophysics Data System (ADS)
Kawase, M.; Gedney, M.
2014-12-01
Recent years have seen renewed interest in the ocean tide as a source of energy for electrical power generation. Unlike in the 1960s, when the tidal barrage was the predominant method of power extraction considered and implemented, the current methodology favors operation of a free-stream turbine or an array of them in strong tidal currents. As tidal power generation moves from pilot-scale projects to actual array implementations, numerical modeling of tidal currents is expected to play an increasing role in site selection, resource assessment, array design, and environmental impact assessment. In this presentation, a simple, coupled ocean/estuary model designed for research into fundamental aspects of tidal power generation is described. The model consists of a Pacific Ocean-size rectangular basin and a connected fjord-like embayment with dimensions similar to that of Puget Sound, Washington, one of the potential power generation sites in the United States. The model is forced by an idealized lunar tide-generating potential. The study focuses on the energetics of a tidal system including tidal power extraction at both global and regional scales. The hyperbolic nature of the governing shallow water equations means consequence of tidal power extraction cannot be limited to the local waters, but is global in extent. Modeling power extraction with a regional model with standard boundary conditions introduces uncertainties of 3 ~ 25% in the power extraction estimate depending on the level of extraction. Power extraction in the model has a well-defined maximum (~800 MW in a standard case) that is in agreement with previous theoretical studies. Natural energy dissipation and tidal power extraction strongly interact; for a turbine array of a given capacity, the higher the level of natural dissipation the lower the power the array can extract. Conversely, power extraction leads to a decrease in the level of natural dissipation (Figure) as well as the tidal range and the current speed. In the standard case considered, at the maximum power extraction the tidal range in the estuary is reduced by 37% and the natural dissipation by 78% from the unperturbed state. Thus, environmental consequences of power generation are likely to become the limiting factor on the scale of resource development before the physical maximum is reached.
Kregting, Louise; Elsaesser, Bjoern; Kennedy, Robert; Smyth, David; O'Carroll, Jack; Savidge, Graham
2016-01-01
Arrays of tidal energy converters have the potential to provide clean renewable energy for future generations. Benthic communities may, however, be affected by changes in current speeds resulting from arrays of tidal converters located in areas characterised by strong currents. Current speed, together with bottom type and depth, strongly influence benthic community distributions; however the interaction of these factors in controlling benthic dynamics in high energy environments is poorly understood. The Strangford Lough Narrows, the location of SeaGen, the world's first single full-scale, grid-compliant tidal energy extractor, is characterised by spatially heterogenous high current flows. A hydrodynamic model was used to select a range of benthic community study sites that had median flow velocities between 1.5-2.4 m/s in a depth range of 25-30 m. 25 sites were sampled for macrobenthic community structure using drop down video survey to test the sensitivity of the distribution of benthic communities to changes in the flow field. A diverse range of species were recorded which were consistent with those for high current flow environments and corresponding to very tide-swept faunal communities in the EUNIS classification. However, over the velocity range investigated, no changes in benthic communities were observed. This suggested that the high physical disturbance associated with the high current flows in the Strangford Narrows reflected the opportunistic nature of the benthic species present with individuals being continuously and randomly affected by turbulent forces and physical damage. It is concluded that during operation, the removal of energy by marine tidal energy arrays in the far-field is unlikely to have a significant effect on benthic communities in high flow environments. The results are of major significance to developers and regulators in the tidal energy industry when considering the environmental impacts for site licences.
Kregting, Louise; Elsaesser, Bjoern; Kennedy, Robert; Smyth, David; O’Carroll, Jack; Savidge, Graham
2016-01-01
Arrays of tidal energy converters have the potential to provide clean renewable energy for future generations. Benthic communities may, however, be affected by changes in current speeds resulting from arrays of tidal converters located in areas characterised by strong currents. Current speed, together with bottom type and depth, strongly influence benthic community distributions; however the interaction of these factors in controlling benthic dynamics in high energy environments is poorly understood. The Strangford Lough Narrows, the location of SeaGen, the world’s first single full-scale, grid-compliant tidal energy extractor, is characterised by spatially heterogenous high current flows. A hydrodynamic model was used to select a range of benthic community study sites that had median flow velocities between 1.5–2.4 m/s in a depth range of 25–30 m. 25 sites were sampled for macrobenthic community structure using drop down video survey to test the sensitivity of the distribution of benthic communities to changes in the flow field. A diverse range of species were recorded which were consistent with those for high current flow environments and corresponding to very tide-swept faunal communities in the EUNIS classification. However, over the velocity range investigated, no changes in benthic communities were observed. This suggested that the high physical disturbance associated with the high current flows in the Strangford Narrows reflected the opportunistic nature of the benthic species present with individuals being continuously and randomly affected by turbulent forces and physical damage. It is concluded that during operation, the removal of energy by marine tidal energy arrays in the far-field is unlikely to have a significant effect on benthic communities in high flow environments. The results are of major significance to developers and regulators in the tidal energy industry when considering the environmental impacts for site licences. PMID:27560657
NASA Astrophysics Data System (ADS)
van der Meer, Jaap; Beukema, Jan; Dekker, Rob
2002-12-01
The extent to which it pays settling larvae of marine benthic organisms to actively select the habitat where they will spend the rest of their life can only be fully appreciated if the fitness consequences of such habitat selection processes are known. We estimated the lifetime egg production of the tellinid bivalve Macoma balthica at 11 sites over a tidal gradient in the western Wadden Sea, using a 30-year data series. The difference in individual lifetime egg production between the best sites in the lower tidal zone and the poorest sites on the high tidal flats was about a factor 10. The differences in lifetime egg production were related to differences in growth and, more importantly, survival. We argue that the large observed differences in reproductive output do not necessarily imply a lack of active habitat selection. As most animals start their last migration before final settlement from the high tidal flats, the choice may be one between a long and risky migration with a low chance of reaching the good habitat versus a more certain but poor existence on the high tidal flats.
NASA Astrophysics Data System (ADS)
van der Meer, Jaap; Beukema, Jan J.; Dekker, Rob
2003-01-01
The extent to which it pays settling larvae of marine benthic organisms to actively select the habitat where they will spend the rest of their life can only be fully appreciated if the fitness consequences of such habitat selection processes are known. We estimated the lifetime egg production of the tellinid bivalve Macoma balthica at 11 sites over a tidal gradient in the western Wadden Sea, using a 30-year data series. The difference in individual lifetime egg production between the best sites in the lower tidal zone and the poorest sites on the high tidal flats was about a factor 10. The differences in lifetime egg production were related to differences in growth and, more importantly, survival. We argue that the large observed differences in reproductive output do not necessarily imply a lack of active habitat selection. As most animals start their last migration before final settlement from the high tidal flats, the choice may be one between a long and risky migration with a low chance of reaching the good habitat versus a more certain but poor existence on the high tidal flats.
NASA Astrophysics Data System (ADS)
van der Molen, Johan; Ruardij, Piet; Greenwood, Naomi
2016-04-01
Final results are presented of a model study to assess the potential wider area effects of large-scale tidal energy extraction in the Pentland Firth on the biogeochemistry. The coupled hydrodynamics-biogeochemistry model GETM-ERSEM-BFM was used in a shelf-wide application with a parameterisation of the effects of power extraction by tidal turbines on fluid momentum. Three secenario runs were carried out: a reference run without turbines, an 800 MW extraction run corresponding to current licenses, and an academic 8 GW extraction run. The changes simulated with the 800 MW extraction were negligible. The academic 8 GW extraction resulted in reductions in tidal elevations along the east coast of the UK that would be measurable (several cm.), and associated reductions in bed-shear stresses. These resulted in reductions in SPM concentrations, increased primary production, and increased biomass of zooplankton and benthic fauna. The effects were most pronounced in the shallow seas surrounding The Wash, with changes of up to 10%. These results indicate that, should tidal power generation substantially beyond the currently licensed amount be planned, either concentrated in one location or spread over multiple locations along the coast, further investigations are advisable.
NASA Astrophysics Data System (ADS)
Kumari, K.; Oberheide, J.
2017-12-01
Nonmigrating tidal diagnostics of SABER temperature observations in the ionospheric dynamo region reveal a large amount of variability on time-scales of a few days to weeks. In this paper, we discuss the physical reasons for the observed short-term tidal variability using a novel approach based on Information theory and Bayesian statistics. We diagnose short-term tidal variability as a function of season, QBO, ENSO, and solar cycle and other drivers using time dependent probability density functions, Shannon entropy and Kullback-Leibler divergence. The statistical significance of the approach and its predictive capability is exemplified using SABER tidal diagnostics with emphasis on the responses to the QBO and solar cycle. Implications for F-region plasma density will be discussed.
Geomorphic modeling of macro-tidal embayment with extensive tidal flats: Skagit Bay, Washington
2012-09-30
integrated Delft3D-MOR submodel. Measured river discharge, predicted tides, bathymetry, wind , and density-driven flow were incorporated into the model...supplied with sediment initially. Water temperature and salinity at the tidal boundary were adapted from (Moore et al., 2008). Wind forcing was...tide range varied from 2.4 m at Deception Pass to 3.5 m at Crescent Harbor. Because observations have indicated that wind -generated waves may be
Latent resonance in tidal rivers, with applications to River Elbe
NASA Astrophysics Data System (ADS)
Backhaus, Jan O.
2015-11-01
We describe a systematic investigation of resonance in tidal rivers, and of river oscillations influenced by resonance. That is, we explore the grey-zone between absent and fully developed resonance. Data from this study are the results of a one-dimensional numerical channel model applied to a four-dimensional parameter space comprising geometry, i.e. length and depths of rivers, and varying dissipation and forcing. Similarity of real rivers and channels from parameter space is obtained with the help of a 'run-time depth'. We present a model-channel, which reproduces tidal oscillations of River Elbe in Hamburg, Germany with accuracy of a few centimetres. The parameter space contains resonant regions and regions with 'latent resonance'. The latter defines tidal oscillations that are elevated yet not in full but juvenile resonance. Dissipation reduces amplitudes of resonance while creating latent resonance. That is, energy of resonance radiates into areas in parameter space where periods of Eigen-oscillations are well separated from the period of the forcing tide. Increased forcing enhances the re-distribution of resonance in parameter space. The River Elbe is diagnosed as being in a state of anthropogenic latent resonance as a consequence of ongoing deepening by dredging. Deepening the river, in conjunction with the expected sea level rise, will inevitably cause increasing tidal ranges. As a rule of thumb, we found that 1 m deepening would cause 0.5 m increase in tidal range.
NASA Astrophysics Data System (ADS)
Koetje, K. M.; Foster, D. L.; Lippmann, T. C.
2017-12-01
Observations of the vertical structure of tidal flows obtained in 2016 and 2017 in the Great Bay Estuary, NH show evidence of transitional tidal boundary layers at deployment locations on shallow mudflats. High-resolution bottom boundary layer currents, hydrography, turbidity, and bed characteristics were observed with an acoustic Doppler current profiler (ADCP), an acoustic Doppler velocimeter (ADV), conductivity-depth-temperature (CTD) sensors, optical backscatter sensors, multibeam bathymetric surveys, and sediment grab samples and cores. Over the 2.5 m tidal range and at water depths ranging from 0.3 m to 1.5 m at mean lower low water, peak flows ranged from 10 cm/s to 30 cm/s and were primarily driven by the tides. A downward-looking ADCP captured the velocity profile over the lowest 1 m of the water column. Results consistently show a dual-log layer system, with evidence of a lower layer within 15 cm of the bed, another layer above approximately 30 cm from the bed, and a transitional region where the flow field rotates between that the two layers that can be as much as 180 degrees out of phase. CTD casts collected over a complete tidal cycle suggest that the weak thermohaline stratification is not responsible for development of the two layers. On the other hand, acoustic and optical backscatter measurements show spatial and temporal variability in suspended sediments that are dependant on tidal phase. Current work includes an examination of the relationship between sediment concentrations in the water column and velocity profile characteristics, along with an effort to quantify the impact of rotation and dual-log layers on bed stress.
Estimation of river pollution index in a tidal stream using kriging analysis.
Chen, Yen-Chang; Yeh, Hui-Chung; Wei, Chiang
2012-08-29
Tidal streams are complex watercourses that represent a transitional zone between riverine and marine systems; they occur where fresh and marine waters converge. Because tidal circulation processes cause substantial turbulence in these highly dynamic zones, tidal streams are the most productive of water bodies. Their rich biological diversity, combined with the convenience of land and water transports, provide sites for concentrated populations that evolve into large cities. Domestic wastewater is generally discharged directly into tidal streams in Taiwan, necessitating regular evaluation of the water quality of these streams. Given the complex flow dynamics of tidal streams, only a few models can effectively evaluate and identify pollution levels. This study evaluates the river pollution index (RPI) in tidal streams by using kriging analysis. This is a geostatistical method for interpolating random spatial variation to estimate linear grid points in two or three dimensions. A kriging-based method is developed to evaluate RPI in tidal streams, which is typically considered as 1D in hydraulic engineering. The proposed method efficiently evaluates RPI in tidal streams with the minimum amount of water quality data. Data of the Tanshui River downstream reach available from an estuarine area validate the accuracy and reliability of the proposed method. Results of this study demonstrate that this simple yet reliable method can effectively estimate RPI in tidal streams.
NASA Astrophysics Data System (ADS)
Saito, Y.
2017-12-01
Large rivers in continents have a characteristic of slow rise and fall in water levels during floods or the wet season due to a wide drainage basin. A gentle river gradient and large water discharge have relatively large tidal ranges at the river mouth, resulting in large backwater effects further upstream. The result of the Mekong River survey (386 riverbed sediments, river topography, CTD, and biofacies) shows that the distributary channels of the Mekong River delta in Vietnam are divided into two parts: the landward river-dominated tract (RDT) and seaward tide-dominated tract (TDT). The RDT is characterized by a highly variable and deepening trend in water depth and coarse-grained sediments with a fining trend downstream. The TDT is characterized by a shallowing trend in water depth with river-widening, smooth riverbeds, a straight shape, and heterolithic f- to vf-sand and mud alternation (tidal thythmite). The boundary of both tracts is sharply identified by sediment facies and river morphology. Sediment facies indicates that the dominant sedimentary process of bottom sediments is "bedload" in the RDT and "suspension" in the TDT. Daily tidal changes are observed through the year, while water-level changes during the flood/wet season are limited in the TDT. Saltwater intrusion is limited within the seaward part of the TDT alone ( 50 km), close to final bifurcation points. However, brackish-water biofacies is observed in the TDT mainly due to diluted brackish water and/or tolerance to the freshwater environment. These characteristics are also found in the Yangtze; the distance of the TDT/RDT boundary from the river mouth is ca. 100 km in the Mekong, and 200 km in the Yangtze. The preservation potential of sediments in a TDT is low in a progradational system, and high in abandoned channels. The early Holocene transgressive estuary system in the incised valley of the Yangtze formed during the Last Glacial Maximum was composed of 20 m-thick fine-grained heterolithic sediments (inclusive of tidal thythmite), distributed over 200 km in the valley, inside of the paleo-shoreline. Similarly, such well-preserved sediments are formed in a TDT of a large-river transgressive estuarine system. An estuarine facies model for large-river systems is the need of the hour. cf. references Gugliotta et al., Process regime, salinity, morphological, and sedimentary trends along the fluvial to marine transition zone of the mixed-energy Mekong River delta, Vietnam. Continental Shelf Research. http://dx.doi.org/10.1016/j.csr.2017.03.001. Hori et al., 2001. Sedimentary facies of the tide-dominated paleo-Changjiang (Yangtze) estuary during the last transgression. Marine Geology, 177, 331-351.
The effect of ocean tides on the earth's rotation as predicted by the results of an ocean tide model
NASA Technical Reports Server (NTRS)
Gross, Richard S.
1993-01-01
The published ocean tidal angular momentum results of Seiler (1991) are used to predict the effects of the most important semidiurnal, diurnal, and long period ocean tides on the earth's rotation. The separate, as well as combined, effects of ocean tidal currents and sea level height changes on the length-of-day, UT1, and polar motion are computed. The predicted polar motion results reported here account for the presence of the free core nutation and are given in terms of the motion of the celestial ephemeris pole so that they can be compared directly to the results of observations. Outside the retrograde diurnal tidal band, the summed effect of the semidiurnal and diurnal ocean tides studied here predict peak-to-peak polar motion amplitudes as large as 2 mas. Within the retrograde diurnal tidal band, the resonant enhancement caused by the free core nutation leads to predicted polar motion amplitudes as large as 9 mas.
NASA Astrophysics Data System (ADS)
Vinod, Ashwin; Lawrence, Angela; Banerjee, Arindam
2016-11-01
The effects of elevated freestream turbulence (FST) on the performance of a tidal turbine blade is studied using laboratory experiments. Of interest for the current investigation is elevated levels of FST in the range of 6-24% that is prevalent in deployment sites of tidal turbines. A constant chord, no twist blade section (SG6043) is tested at an operating Reynolds number of 1.5x105 and at angles of attack ranging from -90o to +90o. The parameter space encompasses the entire operational range of a tidal turbine that includes flow reversal. Multiple levels of controlled FST are achieved using an active grid type turbulence generator placed at the entrance to the water tunnel test section. The hydrodynamic loads experienced by the blade section are measured using a 3-axis load cell; a Stereo-PIV technique is used to analyze the flow field around the blade. The results indicate that elevated levels of FST cause a delay in flow separation when compared to the case of a laminar freestream. Furthermore, the lift to drag ratio of the blade is considerably altered depending on the level of FST and angle of attack tested.
NASA Astrophysics Data System (ADS)
Ullman, D. J.; Schmittner, A.; Danabasoglu, G.; Norton, N. J.; Müller, M.
2016-02-01
Oscillations in the moon's orbit around the earth modulate regional tidal dissipation with a periodicity of 18.6 years. In regions where the diurnal tidal constituents dominate diapycnal mixing, this Lunar Nodal Cycle (LNC) may be significant enough to influence ocean circulation, sea surface temperature, and climate variability. Such periodicity in the LNC as an external forcing may provide a mechanistic source for Pacific decadal variability (i.e. Pacific Decadal Oscillation, PDO) where diurnal tidal constituents are strong. We have introduced three enhancements to the latest version of the Community Earth System Model (CESM) to better simulate tidal-forced mixing. First, we have produced a sub-grid scale bathymetry scheme that better resolves the vertical distribution of the barotropic energy flux in regions where the native CESM grid does not resolve high spatial-scale bathymetric features. Second, we test a number of alternative barotropic tidal constituent energy flux fields that are derived from various satellite altimeter observations and tidal models. Third, we introduce modulations of the individual diurnal and semi-diurnal tidal constituents, ranging from monthly to decadal periods, as derived from the full lunisolar tidal potential. Using both ocean-only and fully-coupled configurations, we test the influence of these enhancements, particularly the LNC modulations, on ocean mixing and bidecadal climate variability in CESM.
Evolution and Reduction of Scour around Offshore Wind Turbines
NASA Astrophysics Data System (ADS)
McGovern, David; Ilic, Suzana
2010-05-01
Evolution and Reduction of Scour around Offshore Wind Turbines In response to growing socio-economic and environmental demands, electricity generation through offshore wind turbine farms is a fast growing sector of the renewable energy market. Considerable numbers of offshore wind farms exist in the shallow continental shelf seas of the North-West Europe, with many more in the planning stages. Wind energy is harnessed by large rotating blades that drive an electricity generating turbine placed on top of a long cylindrical monopile that are driven into the sea-bed, well into the bed rock below the sediment. Offshore wind turbines are popular due to consistently higher wind speeds and lower visual impact than their onshore counter parts, but their construction and maintenance is not without its difficulties. The alteration of flow by the presence of the wind turbine monopile results in changes in sedimentary processes and morphology at its base. The increase in flow velocity and turbulence causes an amplification of bed shear stress and this can result in the creation of a large scour hole at the monopile base. Such a scour hole can adversely affect the structural integrity and hence longevity of the monopile. Changes to the sea bed caused by this may also locally affect the benthic habitat. We conducted an extensive series of rigid and mobile bed experiments to examine the process of scour under tidal currents. We also test the effectiveness of a flow-altering collared monopile in reducing scour. Firstly, we used Particle Image Velocimetry (PIV) and Acoustic Doppler Velocimetry (ADV) to visualise and analyse the flow and turbulence properties in the local flow around the monopile and collared monopile over a smooth rigid bed under tidal flow. The measured flow, turbulence and shear stress properties are related to mobile bed tests where a Seatek 5 MHz Ultrasonic Ranging system is used to identify the evolution of scour under reversing tidal currents. The tidal evolution of the scour hole around the monopile is compared with that under unidirectional currents and that around the collared monopile. Results show that the evolution of scour under tidal currents is quite different than that of a unidirectional current and that the scour hole shape is also more symmetrical than the scour hole under a unidirectional current, which is quite asymmetrical. Results also indicate that the collared monopile design is effective in reducing the depth of scour that occurs at its base. This data will also be used for a validation of the numerical model of scour processes around the pile. Key words: Monopile, Scour, Tidal Flow, Scour Reduction
Observed tidal braking in the earth/moon/sun system
NASA Technical Reports Server (NTRS)
Christodoulidis, D. C.; Smith, D. E.; Williamson, R. G.; Klosko, S. M.
1988-01-01
The low degree and order terms in the spherical harmonic model of the tidal potential were observed through the perturbations which are induced on near-earth satellite orbital motions. Evaluations of tracking observations from 17 satellites and a GEM-T1 geopotential model were used in the tidal recovery which was made in the presence of over 600 long-wavelength coefficients from 32 major and minor tides. Wahr's earth tidal model was used as a basis for the recovery of the ocean tidal terms. Using this tidal model, the secular change in the moon's mean motion due to tidal dissipation was found to be -25.27 + or - 0.61 arcsec/century-squared. The estimation of lunar acceleration agreed with that observed from lunar laser ranging techniques (-24.9 + or - 1.0 arcsec/century-squared), with the corresponding tidal braking of earth's rotation being -5.98 + or - 0.22 X 10 to the -22 rad/second-squared. If the nontidal braking of the earth due to the observed secular change in the earth's second zonal harmonic is considered, satellite techniques yield a total value of the secular change in the earth's rotation rate of -4.69 + or - 0.36 X 10 to the -22 rad/second-squared.
NASA Technical Reports Server (NTRS)
Ray, Richard D.; Chao, Benjamin F. (Technical Monitor)
2002-01-01
In modem high-precision geodesy, and especially in modem space geodesy, every measurement that one makes contains tidal signals. Generally these signals are considered noise and must somehow be eliminated. The stringent requirements of the latest space geodetic missions place severe demands on tidal models. On the other hand, these missions provide the strongest data for improving tidal models. In particular, TOPEX/POSEIDON altimetry and LAGEOS laser ranging have improved models to such an extent that new geophysical information about the ocean and the solid Earth are coming to light. Presumably GRACE intersatellite ranging data will also add to this information. This paper discusses several of these new geophysical results, with special emphasis given to the dissipation of tidal energy. Strong constraints have recently been placed on the partitioning of energy dissipation among the ocean, atmosphere, and solid earth and between the deep and shallow ocean. The dissipation in deep water is associated with internal tides and has potentially important implications for understanding the ocean's thermohaline circulation.
Krauss, K.W.; Doyle, T.W.; Howard, R.J.
2009-01-01
Plant populations may adapt to environmental conditions over time by developing genetically based morphological or physiological characteristics. For tidal freshwater forested wetlands, we hypothesized that the conditions under which trees developed led to ecotypic difference in response of progeny to hydroperiod. Specifically, we looked for evidence of ecotypic adaptation for tidal flooding at different salinity regimes using growth and ecophysiological characteristics of two tidal and two non-tidal source collections of baldcypress (Taxodium distichum (L.) L.C. Rich) from the southeastern United States. Saplings were subjected to treatments of hydrology (permanent versus tidal flooding) and salinity (0 versus ???2 g l-1) for two and a half growing seasons in a greenhouse environment. Saplings from tidal sources maintained 21-41% lower overall growth and biomass accumulation than saplings from non-tidal sources, while saplings from non-tidal sources maintained 14-19% lower overall rates of net photosynthetic assimilation, leaf transpiration, and stomatal conductance than saplings from tidal sources. However, we found no evidence for growth or physiological enhancement of saplings from tidal sources to tide, or of saplings from non-tidal sources to no tide. All saplings growing under permanent flooding exhibited reduced growth and leaf gas exchange regardless of source, with little evidence for consistent salinity effects across hydroperiods. While we reject our original hypothesis, we suggest that adaptations of coastal baldcypress to broad (rather than narrow) environmental conditions may promote ecophysiological and growth enhancements under a range of global-change-induced stressors, perhaps reflecting a natural resilience to environmental change while precluding adaptations for specific flood regimes.
Mainstream end-tidal carbon dioxide monitoring in the neonatal intensive care unit.
Rozycki, H J; Sysyn, G D; Marshall, M K; Malloy, R; Wiswell, T E
1998-04-01
Continuous noninvasive monitoring of arterial carbon dioxide (CO2) in neonatal intensive care unit (NICU) patients would help clinicians avoid complications of hypocarbia and hypercarbia. End-tidal CO2 monitoring has not been used in this population to date, but recent technical advances and the introduction of surfactant therapy, which improves ventilation-perfusion matching, might improve the clinical utility of end-tidal monitoring. To determine the accuracy and precision of end-tidal CO2 monitoring in NICU patients. Nonrandomized recording of simultaneous end-tidal and arterial CO2 pairs. Two university NICUs. Forty-five newborn infants receiving mechanical ventilation who had indwelling arterial access, and a predefined subsample of infants who were <1000 g birth weight, <8 days of age, and who received surfactant therapy (extremely low birth weight -ELBW- <8). The correlation coefficient, degree of bias, and 95% confidence interval were determined for both the overall population and the ELBW <8 subgroup. Those factors which significantly influenced the bias were identified. The ability of the end-tidal monitor to alert the clinician to instances of hypocarbia or hypercarbia was determined. There were 411 end-tidal/arterial pairs analyzed from 45 patients. The correlation coefficient was 0.833 and the bias was -6. 9 mm Hg (95% confidence interval, +/-11.5 mm Hg). The results did not differ markedly in the ELBW <8 infants. Measures of the degree of lung disease, the ventilation index and the oxygenation index, had small influences on the degree of bias. This type of capnometry identified 91% of the instances when the arterial CO2 pressure was between 34 and 54 mm Hg using an end-tidal range of 29 to 45 mm Hg. End-tidal values outside this range had a 63% accuracy in predicting hypocarbia or hypercarbia. End-tidal CO2 monitoring in NICU patients is as accurate as capillary or transcutaneous monitoring but less precise than the latter. It may be useful for trending or for screening patients for abnormal arterial CO2 values.
A New High Resolution Tidal Model in the Arctic Ocean
NASA Astrophysics Data System (ADS)
Cancet, M.; Andersen, O.; Lyard, F.; Schulz, A.; Cotton, D.; Benveniste, J.
2016-08-01
The Arctic Ocean is a challenging region for tidal modelling. The accuracy of the global tidal models decreases by several centimeters in the Polar Regions, which has a large impact on the quality of the satellite altimeter sea surface heights and the altimetry-derived products.NOVELTIS and DTU Space have developed a regional, high-resolution tidal atlas in the Arctic Ocean, in the framework of an extension of the CryoSat Plus for Ocean (CP4O) ESA STSE (Support to Science Element) project. In particular, this atlas benefits from the assimilation of the most complete satellite altimetry dataset ever used in this region, including Envisat data up to 82°N and CryoSat-2 data between 82°N and 88°N. The combination of these satellite altimetry missions gives the best possible coverage of altimetry-derived tidal constituents. The available tide gauge data were also used for data assimilation and validation.This paper presents the implementation methodology and the performance of this new regional tidal model in the Arctic Ocean, compared to the existing global tidal models.
NASA Astrophysics Data System (ADS)
Althausen, J. D.; Kjerfve, Björn
1992-11-01
A well-defined turbidity maximum zone (TMZ) exists 15-45 km upstream of the entrance to Charleston Harbor, South Carolina, on the Cooper River, where the salinity varies between 5-15 ppt. The TMZ is characterized by less than 60% light transmission over a 5 cm path-length near the bottom, as compared to 70-90% light transmission elsewhere. The TMZ oscillates along the Cooper River 3-13 km during a tidal cycle. The range of total suspended sediment (TSS) concentration is 40-100 mg l -1 in the TMZ, while 10-30 mg l -1 is the most common TSS concentration elsewhere in the estuarine portion of Charleston Harbor and the Cooper River. Transmissivity is well-correlated with TSS ( r2 = 0·77) throughout the estuary. TSS concentration depends largely on tidal stage and varies significantly from spring to neap tide. Spring tide TSS concentrations are 2-3 times greater than concentrations during neap tides. The net downstream transport of suspended sediment is primarily a function of fresh water discharge, but is particularly large when flood events coincide with spring tides as was evident during the sampling of the TMZ following Hurricane Hugo (22 September 1989).
Seasonal sedimentary processes of the macrotidal flat in Gomso Bay, west coast of Korea
NASA Astrophysics Data System (ADS)
Woo, H.; Kang, J.; Choi, J.
2012-12-01
The tidal flats on the west coast of Korea have broad zones with gentle slopes and a macrotidal setting with 4 to 10 meters of tidal ranges. They are directly influenced by monsoons and heavily affected by waves in winter and tidal currents in summer. As a result, most western tidal flats show the seasonal changes of sedimentary features comprising sedimentation and/or erosion of sediments. Gomso bay in the mid-west of Korea is a funnel-shaped embayment with a wide entrance to the west. Tides are semidiurnal and macrotidal, with a mean tidal range of 433.8 cm. Digital elevation model (DEM) showed that the landward inner bay had mainly high elevations and the seaward outer bay had relatively low elevations. In particular, there are considerable gradients in the outer bay from area of high-water line to area of low-water line. The sedimentary analysis and monitoring short-term sedimentation rates were investigated to understand seasonal sedimentary processes of tidal flats in Gomso bay. The surface sediments in the bay were classified into five sedimentary facies in spring 2011. Generally, sandy sediments were dominated in the outer bay, whereas sandy mud sediments were distributed on the inner bay. The middle bay mainly consisted of muddy sand sediments. The percentages of sand decreased from outer to inner bay. The short-term sedimentation rates were obtained from three lines by burying a plate at sub-bottom depth and periodically measuring the changing sediment depth from February 2011 to February 2012. In the tidal flat at inner bay (KB- Line), the annual sedimentation rates were ranged -8.87 to 74.69 mm/year with the net deposition rate of 40.90 mm/year. The deposition occurred on KB-Line in spring, autumn and winter. The erosion was dominated on the tidal flats at middle (KH-Line) and outer bay (KM-Line) during autumn and winter with an annual erosion rate of -29.86 mm/year and -9.92 mm/year, respectively. The seasonal variations of sedimentation on these tidal flats showed that the deposition occurred with an inflow of muddy sediments in summer, whereas the erosion was dominated in autumn and winter. In August 2011, the distribution patterns of rare earth elements (REEs) relative to the upper continental crust (UCC) showed the enrichment of light REEs (LREEs: La-Nd), together with an apparent depletion of Eu in the KH- and KM-Lines. This pattern was more pronounced in the middle bay sediments (KH-Line) due to influence of muddy sediment transport from Jujin Stream during the rainy period (July and August). On the other hand, the outer bay sediments in the KM-Line were reflected more inflow of second sediment source, the Geum River. The major control factors for seasonal variations of sediments on the tidal flat could be heavy rainfall and tidal currents during summer and strong waves during winter. The net sedimentation showed that the deposition occurred in the inner tidal flat and erosion occurred in the middle and outer tidal flat of the bay.
NASA Astrophysics Data System (ADS)
Nguyen, Hoang Hai; Tran, Hien; Sunwoo, Wooyeon; Yi, Jong-hyuk; Kim, Dongkyun; Choi, Minha
2017-04-01
A series of multispectral high-resolution Korean Multi-Purpose Satellite (KOMPSAT) images was used to detect the geographical changes in four different tidal flats between the Yellow Sea and the west coast of South Korea. The method of unsupervised classification was used to generate a series of land use/land cover (LULC) maps from satellite images, which were then used as input for temporal trajectory analysis to detect the temporal change of coastal wetlands and its association with natural and anthropogenic activities. The accurately classified LULC maps of KOMPSAT images, with overall accuracy ranging from 83.34% to 95.43%, indicate that these multispectral high-resolution satellite data are highly applicable to the generation of high-quality thematic maps for extracting wetlands. The result of the trajectory analysis showed that, while the variation of the tidal flats in the Gyeonggi and Jeollabuk provinces was well correlated with the regular tidal regimes, the reductive trajectory of the wetland areas belonging to the Saemangeum province was caused by a high degree of human-induced activities including large reclamation and urbanization. The conservation of the Jeungdo Wetland Protected Area in the Jeollanam province revealed that effective social and environmental policies could help in protecting coastal wetlands from degradation.
NASA Astrophysics Data System (ADS)
Garel, E.; Pacheco, A.; Ferreira, Ó.
2009-04-01
The present study documents the poorly-described hydro-sediment dynamics of narrow bedrock-controlled estuaries during periods of low-river discharge. The results also contribute to assess the geomorphological evolution of these systems, when affected by drastic flow regulation. The Guadiana Estuary is a narrow rock-bound mesotidal estuary, 80 km in length, located at the southern border between Spain and Portugal. Until recently, the river inputs to the estuary displayed high (annual and seasonal) variability, characterized by periods of droughts, and episodic flood events with (monthly-averaged) fluvial discharge as high as 5,000 m3s-1 (160 m3s-1 in average, for the period 1947/2001). This pattern has ceased in February 2002, with the impoundment of the main river by the large Alqueva dam, 60 km upstream from the estuary head. At present, the daily-averaged river discharge is generally kept low throughout the year (< 50 m3s-1). In the absence of significant flood events to expel massively sediment out of the estuary, concerns have been raised about sand infilling at the mouth and increased erosion at the adjacent coastline. For the assessment of the sediment balance of the estuary under present hydrodynamic conditions, this study examines the tidal currents and bedload transport at the entrance of the estuarine channel. Current measurement transects were performed across the 600 m-wide channel entrance using a ship borne Acoustic Doppler Profiler (ADP, operating at 1.5 MHz frequency) during 2 entire tidal cycles, at spring (17 September 2008, 3.0 m tidal range) and at neap tide (21 October 2008, 1.6 m tidal range). Surficial sediment samples were also collected across the channel during the spring tidal cycle. The bed sediment consists of well-sorted medium sand with mean grain size ranging from 0.5 to 0.3 mm (with coarser material at the deepest part of the channel cross-section). Tidal currents were analysed along 6 sub-sections to take into account these grain size variations. The friction velocity and bed shear stress were computed based on the mean depth-averaged velocities of each sub-sections and considering a power law vertical velocity profile. The transport rate of sand was then estimated using Nielsen (1992) formula for bedload transport. The transport of sand in suspension was not considered in the study, as the skin friction velocities were lesser than the estimated settling velocities of the grains. Maximum velocity values (about 1.2 and 0.8 m.s-1 at spring and neap, respectively) were observed near the surface of the deepest sub-section of the channel. The tidal prism was about 1.5 times larger at spring (39x106 m3) than at neap (25x106m3), whereas the fresh water inputs during both tidal cycles were comparatively negligible. Maximum depth-averaged, bed and surface current velocities were ebb-directed at both neap and spring tides, for each of the 6 channel sub-sections. No significant lateral variation of the tidal flow was observed, in relation with the narrowness of the channel. Vertical residual velocity profiles were also directed downstream at both neap and spring tide. At neap, however, the (ebb-directed) residual velocities were slower near the bed and faster near the surface, when compared to the spring tide. These differences were induced by the reinforcement of the estuarine circulation, in relation with enhanced stratified conditions during neap periods (weak currents and reduced mixing). The net bedload transport of sand was also directed downstream for all channel sub-sections. The transport rates of the entire channel were estimated to be of about 30 and 10 m3 for the spring and neap tidal cycles, respectively. Extrapolation of these extreme (i.e. neap and spring) rates yielded a potential seaward export of sand of approximately 15,000 m3yr-1. This study suggests that the Guadiana estuary departs from typical estuaries where landward net transport of sediment is generally described. The outputs of the study are important with respect to the long-term (decades) geomorphological evolution and sustainable management of the estuary mouth and adjacent coastline.
Adaptive management of perennial pepperweed for endangered specias and tidal marsh recovery
USDA-ARS?s Scientific Manuscript database
Perennial pepperweed has invaded a wide range of habitat types in the far west. In the San Francisco Estuary, dense infestations have impacted sensitive tidal wetlands and compromised endangered species recovery efforts. An adaptive management effort to reduce perennial pepperweed was initiated by...
M2 tidal effects in greater cook strait, New Zealand
NASA Astrophysics Data System (ADS)
Kibblewhite, Alick C.; Ash, David E.
1980-05-01
The application of a M2 nonlinear numerical tidal model to the shelf seas of central New Zealand (~38.500 km2 area) is described. It has provided a preliminary assessment of tidal and residual currents, bottom stress, energy dissipation, and the stratification index. The existence of a permanent, tidally driven mesoscale eddy (~75 km diameter) is predicted nort of D'Urville Island. Large spatial gradients in bottom stress qualitatively agree with many features of the surficial sediment distribution. A comparison of all available bulk stratification data with the h/u3 stratification index clearly demonstrates the dominance of tidal versus wind mixing over the control of summer stratification. A potential application of the model to fisheries science is suggested through a comparison of the stratification index contour map and some observations of squid fishing vessel locations.
M 2 tidal effects in greater Cook Strait, New Zealand
NASA Astrophysics Data System (ADS)
Bowman, Malcolm J.; Kibblewhite, Alick C.; Ash, David E.
1980-05-01
The application of an M2 nonlinear numerical tidal model to the shelf seas of central New Zealand (˜38,500 km2 area) is described. It has provided a preliminary assessment of tidal and residual currents, bottom stress, energy dissipation, and the stratification index. The existence of a permanent, tidally driven mesoscale eddy (˜75 km diameter) is predicted north of D'Urville Island. Large spatial gradients in bottom stress qualitatively agree with many features of the surficial sediment distribution. A comparison of all available bulk stratification data with the h/u3 stratification index clearly demonstrates the dominance of tidal versus wind mixing over the control of summer stratification. A potential application of the model to fisheries science is suggested through a comparison of the stratification index contour map and some observations of squid fishing vessel locations.
An empirical model of the tidal currents in the Gulf of the Farallones
Steger, J.M.; Collins, C.A.; Schwing, F.B.; Noble, M.; Garfield, N.; Steiner, M.T.
1998-01-01
Candela et al. (1990, 1992) showed that tides in an open ocean region can be resolved using velocity data from a ship-mounted ADCP. We use their method to build a spatially varying model of the tidal currents in the Gulf of the Farallones, an area of complicated bathymetry where the tidal velocities in some parts of the region are weak compared to the mean currents. We describe the tidal fields for the M2, S2, K1, and O1 constituents and show that this method is sensitive to the model parameters and the quantity of input data. In areas with complex bathymetry and tidal structures, a large amount of spatial data is needed to resolve the tides. A method of estimating the associated errors inherent in the model is described.
Davies, Mark W; Dunster, Kimble R
2002-05-01
To compare measured tidal volumes with and without perfluorocarbon (perfluorooctyl bromide) vapor, by using tidal volumes in the range suitable for neonates ventilated with partial liquid ventilation. We also aimed to determine the correction factor needed to calculate tidal volumes measured in the presence of perfluorooctyl bromide vapor. Prospective, experimental study. Neonatal research laboratory. Reproducible tidal volumes from 5 to 30 mL were produced with a rodent ventilator and drawn from humidifier chambers immersed in a water bath at 37 degrees C. Control tidal volumes were drawn from a chamber containing oxygen and water vapor, and the perfluorocarbon tidal volumes were drawn from a chamber containing oxygen, water vapor, and perfluorooctyl bromide vapor. Tidal volumes were measured by a VenTrak respiratory mechanics monitor with a neonatal flow sensor and a Dräger pneumotachometer attached to a Dräger neonatal ventilator. All tidal volumes measured with perfluorooctyl bromide vapor were increased compared with control. The VenTrak-measured tidal volumes increased by 1.8% to 3.5% (an overall increase of 2.2%). The increase was greater with the Dräger hot-wire anemometer: from 2.4% to 6.1% (an overall increase of 5.9%). Regression equations for mean control tidal volumes (response, Y) vs. mean perfluorooctyl bromide tidal volumes (predictor, X) are as follows: for the VenTrak, Y = -0.026 + (0.978 x X), r =.9999, p <.0001; and for the Dräger, Y = 0.251 + (0.944 x X), r =.9996, p <.0001. The presence of perfluorooctyl bromide vapor in the gas flowing through pneumotachometers gives falsely high tidal volume measurements. An estimate of the true tidal volume allowing for the presence of perfluorooctyl bromide vapor can be made from regression equations. Any calculation of lung mechanics must take into account the effect of perfluorooctyl bromide vapor on the measurement of tidal volume.
Hanes, Daniel M.; Barnard, Patrick L.; Dallas, Kate; Elias, Edwin; Erikson, Li H.; Eshleman, Jodi; Hansen, Jeff; Hsu, Tian Jian; Shi, Fengyan
2011-01-01
Recent research in the San Francisco, California, U.S.A., coastal region has identified the importance of the ebb tidal delta to coastal processes. A process-based numerical model is found to qualitatively reproduce the equilibrium size and shape of the delta. The ebb tidal delta itself has been contracting over the past century, and the numerical model is applied to investigate the sensitivity of the delta to changes in forcing conditions. The large ebb tidal delta has a strong influence upon regional coastal processes. The prominent bathymetry of the ebb tidal delta protects some of the coast from extreme storm waves, but the delta also focuses wave energy toward the central and southern portions of Ocean Beach. Wave focusing likely contributes to a chronic erosion problem at the southern end of Ocean Beach. The ebb tidal delta in combination with non-linear waves provides a potential cross-shore sediment transport pathway that probably supplies sediment to Ocean Beach.
Biologically-controlled multiple equilibria of tidal landforms and the fate of the Venice lagoon
NASA Astrophysics Data System (ADS)
Marani, Marco; D'Alpaos, Andrea; Lanzoni, Stefano; Carniello, Luca; Rinaldo, Andrea
2007-06-01
Looking across a tidal landscape, can one foresee the signs of impending shifts among different geomorphological structures? This is a question of paramount importance considering the ecological, cultural and socio-economic relevance of tidal environments and their worldwide decline. In this Letter we argue affirmatively by introducing a model of the coupled tidal physical and biological processes. Multiple equilibria, and transitions among them, appear in the evolutionary dynamics of tidal landforms. Vegetation type, disturbances of the benthic biofilm, sediment availability and marine transgressions or regressions drive the bio-geomorphic evolution of the system. Our approach provides general quantitative routes to model the fate of tidal landforms, which we illustrate in the case of the Venice lagoon (Italy), for which a large body of empirical observations exists spanning at least five centuries. Such observations are reproduced by the model, which also predicts that salt marshes in the Venice lagoon may not survive climatic changes in the next century if IPCC's scenarios of high relative sea level rise occur.
1984-07-01
I;.... • ° o- - .- .-.. .. ’f + .. , .+.: -.- 3XT "T v"ummy Jetty Island separates Port Gardner (an arm of Puget Sound ). Washington, from the lover...eelgrass habitats throughout Puget Sound . Dovever, the species diversity of benthic invertebrates was relatively low. The unvegetated mudflat areas...Tidal conditions are very similar to other areas of Puget Sound . Mean tidal range for fverett harbor is 7.4 feet, and the extreme range is estimated to
Duberstein, Jamie A.; Conner, William H.; Krauss, Ken W.
2014-01-01
Descriptions of most tidal freshwater swamps in the southeastern US fit within the communities described in this study. Because studies that make inferences between environmental drivers (e.g. salinity, hydroperiod, hurricanes) and specific community types are best applied to the same communities (but perhaps different river systems), this work provides a framework by which tidal freshwater forested wetlands can be accurately compared based on their tree communities. We suggest that, within the broad range of our inventories, the four communities described identify the primary associations that should be tracked within most tidal freshwater swamps of the US. However, we identify some river basins in the US that do not fit this construct. Diversity of major tree communities in tidal freshwater swamps outside the US is generally much lower (with the notable exception of Amazonian hardwood tidal várzea), as are basal area values.
Explicitly modelled deep-time tidal dissipation and its implication for Lunar history
NASA Astrophysics Data System (ADS)
Green, J. A. M.; Huber, M.; Waltham, D.; Buzan, J.; Wells, M.
2017-03-01
Dissipation of tidal energy causes the Moon to recede from the Earth. The currently measured rate of recession implies that the age of the Lunar orbit is 1500 My old, but the Moon is known to be 4500 My old. Consequently, it has been proposed that tidal energy dissipation was weaker in the Earth's past, but explicit numerical calculations are missing for such long time intervals. Here, for the first time, numerical tidal model simulations linked to climate model output are conducted for a range of paleogeographic configurations over the last 252 My. We find that the present is a poor guide to the past in terms of tidal dissipation: the total dissipation rates for most of the past 252 My were far below present levels. This allows us to quantify the reduced tidal dissipation rates over the most resent fraction of lunar history, and the lower dissipation allows refinement of orbitally-derived age models by inserting a complete additional precession cycle.
Tidal triggering of earthquakes in the Ning'er area of Yunnan Province, China
NASA Astrophysics Data System (ADS)
Xie, Chaodi; Lei, Xinglin; Zhao, Xiaoyan; Ma, Qingbo; Yang, Simeng; Wang, Yingnan
2017-05-01
To investigate the potential effect of tidal modulation on the seismicity in the Ning'er area, a seismically and geothermally active zone in Yunnan Province, China, we studied the correlation between Earth tides and the occurrence of M ≥ 6.0 earthquakes dating back to 1970, as well as their aftershock sequences, using theoretically calculated tidal stresses and a statistical test. The results show a significant correlation between Earth tides and the occurrence of earthquakes. Six of seven main events occurred when the Earth tide increased the Coulomb failure stress on the source fault. Four main events occurred in a narrow range of phase angle corresponding to the maximum loading rate of tidal stress. Furthermore, the histories of the aftershock sequence as a function of the tidal phases demonstrate clear tidal modulation with a high significance. Thus, we conclude that Earth tides have a clear role in triggering (or modulating) the rupture of the fault systems in the Ning'er area.
Tidal analysis of Met rocket wind data
NASA Technical Reports Server (NTRS)
Bedinger, J. F.; Constantinides, E.
1976-01-01
A method of analyzing Met Rocket wind data is described. Modern tidal theory and specialized analytical techniques were used to resolve specific tidal modes and prevailing components in observed wind data. A representation of the wind which is continuous in both space and time was formulated. Such a representation allows direct comparison with theory, allows the derivation of other quantities such as temperature and pressure which in turn may be compared with observed values, and allows the formation of a wind model which extends over a broader range of space and time. Significant diurnal tidal modes with wavelengths of 10 and 7 km were present in the data and were resolved by the analytical technique.
Arctic Ocean Tides from GRACE Satellite Accelerations
NASA Astrophysics Data System (ADS)
Killett, B.; Wahr, J. M.; Desai, S. D.; Yuan, D.; Watkins, M. M.
2010-12-01
Because missions such as TOPEX/POSEIDON don't extend to high latitudes, Arctic ocean tidal solutions aren't constrained by altimetry data. The resulting errors in tidal models alias into monthly GRACE gravity field solutions at all latitudes. Fortunately, GRACE inter-satellite ranging data can be used to solve for these tides directly. Seven years of GRACE inter-satellite acceleration data are inverted using a mascon approach to solve for residual amplitudes and phases of major solar and lunar tides in the Arctic ocean relative to FES 2004. Simulations are performed to test the inversion algorithm's performance, and uncertainty estimates are derived from the tidal signal over land. Truncation error magnitudes and patterns are compared to the residual tidal signals.
Shi, F.; Hanes, D.M.; Kirby, J.T.; Erikson, L.; Barnard, P.; Eshleman, J.
2011-01-01
The nearshore circulation induced by a focused pattern of surface gravity waves is studied at a beach adjacent to a major inlet with a large ebb tidal shoal. Using a coupled wave and wave-averaged nearshore circulation model, it is found that the nearshore circulation is significantly affected by the heterogeneous wave patterns caused by wave refraction over the ebb tidal shoal. The model is used to predict waves and currents during field experiments conducted near the mouth of San Francisco Bay and nearby Ocean Beach. The field measurements indicate strong spatial variations in current magnitude and direction and in wave height and direction along Ocean Beach and across the ebb tidal shoal. Numerical simulations suggest that wave refraction over the ebb tidal shoal causes wave focusing toward a narrow region at Ocean Beach. Due to the resulting spatial variation in nearshore wave height, wave-induced setup exhibits a strong alongshore nonuniformity, resulting in a dramatic change in the pressure field compared to a simulation with only tidal forcing. The analysis of momentum balances inside the surf zone shows that, under wave conditions with intensive wave focusing, the alongshore pressure gradient associated with alongshore nonuniform wave setup can be a dominant force driving circulation, inducing heterogeneous alongshore currents. Pressure-gradient- forced alongshore currents can exhibit flow reversals and flow convergence or divergence, in contrast to the uniform alongshore currents typically caused by tides or homogeneous waves.
High-resolution modeling assessment of tidal stream resource in Western Passage of Maine, USA
NASA Astrophysics Data System (ADS)
Yang, Zhaoqing; Wang, Taiping; Feng, Xi; Xue, Huijie; Kilcher, Levi
2017-04-01
Although significant efforts have been taken to assess the maximum potential of tidal stream energy at system-wide scale, accurate assessment of tidal stream energy resource at project design scale requires detailed hydrodynamic simulations using high-resolution three-dimensional (3-D) numerical models. Extended model validation against high quality measured data is essential to minimize the uncertainties of the resource assessment. Western Passage in the State of Maine in U.S. has been identified as one of the top ranking sites for tidal stream energy development in U.S. coastal waters, based on a number of criteria including tidal power density, market value and transmission distance. This study presents an on-going modeling effort for simulating the tidal hydrodynamics in Western Passage using the 3-D unstructured-grid Finite Volume Community Ocean Model (FVCOM). The model domain covers a large region including the entire the Bay of Fundy with grid resolution varies from 20 m in the Western Passage to approximately 1000 m along the open boundary near the mouth of Bay of Fundy. Preliminary model validation was conducted using existing NOAA measurements within the model domain. Spatial distributions of tidal power density were calculated and extractable tidal energy was estimated using a tidal turbine module embedded in FVCOM under different tidal farm scenarios. Additional field measurements to characterize resource and support model validation were discussed. This study provides an example of high resolution resource assessment based on the guidance recommended by the International Electrotechnical Commission Technical Specification.
Takekawa, John Y.; Warnock, Nils; Martinelli, G.M.; Miles, A. Keith; Tsao, Danika C.
2002-01-01
The San Francisco Bay estuary is a migration and wintering area for more than 1.5 million waterbirds on the west coast of North America. Because the estuary is located in a metropolitan area, development and diking of baylands (the region between the edge of the bay and the historical high tide line) have greatly altered the wetland landscape. Recently, conservation interests have promoted restoration of diked baylands to tidal salt marshes for the benefit of endangered native species. However, effects of tidal marsh conversion on the existing community of waterbirds in the baylands are largely unknown, especially in muted tidal marshes with restricted inflows and in artificial salt evaporation ponds where high waterbird densities are found. The first radio-marking study of the Long-billed Dowitcher (Limnodromus scolopaceus) was conducted in November-December 2000 to examine their use of baylands. We captured 32 birds by rocket netting in a muted tidal marsh on the North Bay and radio-marked them with 1.2 g transmitters affixed with glue. Individuals were tracked for an average of 20.3 d (±8.5 SD) and obtained 217 high tide and 195 low tide locations. Movements between tides (x̄ = 1.29±1.48 SD km) and home range sizes (x̄ = 17.7±16.0 SD km2) were highly variable. Long-billed Dowitchers preferred open habitats such as muted tidal marshes during the high tide, but the majority (78.5%) also remained in these wetlands during low tide rather than feeding at nearby mud flats. Their avoidance of mud flats contrasted sharply with Western Sandpipers (Calidris mauri) but was similar to Black-necked Stilts (Himantopus mexicanus). Seven Long-billed Dowitchers flew 110 km inland to Central Valley wetlands in mid-December, a regional movement documented earlier for Dunlin (Calidris alpina) wintering on the coast. However, unlike Dunlin, their movements were not in response to rainfall but may have been in response to a low pressure front or possibly predictable flooding of fields in the Central Valley. Although the estuary is a major wintering area supporting large numbers of waterbirds, some birds such as Long-billed Dowitchers move inland to freshwater wetlands in the Central Valley.
NASA Astrophysics Data System (ADS)
Hunt, Stephen; Bryan, Karin R.; Mullarney, Julia C.
2017-03-01
Higher-energy episodic wind-waves can substantially modify estuarine morphology over short timescales which are superimposed on lower-energy but long-term tidal asymmetry effects. Theoretically, wind waves and tidal currents change the morphology through their combined influence on the asymmetry between bed shear stress, τmax, on the flood and ebb tide, although the relative contribution of such wind-wave events in shaping the long-term morphological evolution in real estuaries is not well known. If the rising tide reaches sufficiently high water depths, τmax decreases as water depth increases because of the depth attenuation of wave orbital velocities. However, this effect is opposed by the increase in τmax associated with the longer fetch occurring at high tide, which allows the generation of larger waves. Additionally, these effects are superimposed on the spring-neap variations in current associated with changes to tidal range. By comparing two mesotidal basins in the same dendritic estuary, one with a large fetch aligned with the prevailing wind direction and one with only a small fetch, we show that for a sufficiently large fetch even the small and frequently occurring wind events are able to create waves that are capable of changing the morphology ('morphologically significant'). Conversely, in the basin with reduced fetch, these waves are generated less frequently and therefore are of reduced morphological significance. Here, we find that although tidal current should be stronger during spring tides and alter morphology more, on average the reduced fetch and increased water depth during spring tides mean that the basin-averaged intertidal τmax is similar during both spring and neap tides. Moreover, in the presence of wind waves, the duration of slack water is reduced during neap tides relative to spring tides, resulting in a reduced chance for accretion during neap tides. Finally, τmax is lower in the subtidal channels during neaps than springs but of a similar magnitude over the intertidal areas, and so sediment is more likely to be advected from the intertidal regions during neap tides rather than springs. This spring-neap cycle in sediment transport potential is in sharp contrast to that found previously in microtidal wave-dominated environments, where spring tides are expected to enhance erosion.
The Contribution of Io-Raised Tides to Europa's Diurnally-Varying Surface Stresses
NASA Technical Reports Server (NTRS)
Rhoden, Alyssa Rose; Hurford, Terry A,; Manga, Michael
2011-01-01
Europa's icy surface records a rich history of geologic activity, Several features appear to be tectonic in origin and may have formed in response to Europa's daily-varying tidal stress [I]. Strike-slip faults and arcuate features called cycloids have both been linked to the patterns of stress change caused by eccentricity and obliquity [2J[3]. In fact, as Europa's obliquity has not been directly measured, observed tectonic patterns arc currently the best indicators of a theoretically supported [4] non-negligible obliquity. The diurnal tidal stress due to eccentricity is calculated by subtracting the average (or static) tidal shape of Europa generated by Jupiter's gravitational field from the instantaneous shape, which varies as Europa moves through its eccentric orbit [5]. In other words, it is the change of shape away from average that generates tidal stress. One might expect tidal contributions from the other large moons of Jupiter to be negligible given their size and the height of the tides they raise on Europa versus Jupiter's mass and the height of the tide it raises on Europa, However, what matters for tidally-induced stress is not how large the lo-raised bulge is compared to the Jupiter-raised bulge but rather the differences bet\\Veen the instantaneous and static bulges in each case. For example, when Europa is at apocenter, Jupiter raises a tide 30m lower than its static tide. At the same time, 10 raises a tide about 0.5m higher than its static tide. Hence, the change in Io's tidal distortion is about 2% of the change in the Jovian distortion when Europa is at apocenter
Land Use in Korean Tidal Wetlands: Impacts and Management Strategies
NASA Astrophysics Data System (ADS)
Hong, Sun-Kee; Koh, Chul-Hwan; Harris, Richard R.; Kim, Jae-Eun; Lee, Jeom-Sook; Ihm, Byung-Sun
2010-05-01
The coastal landscapes in southwestern Korea include a diverse array of tidal wetlands and salt marshes. These coastal zones link the ecological functions of marine tidal wetlands and freshwater ecosystems with terrestrial ecosystems. They are rich in biological diversity and play important roles in sustaining ecological health and processing environmental pollutants. Korean tidal wetlands are particularly important as nurseries for economically important fishes and habitats for migratory birds. Diking, draining, tourism, and conversion to agricultural and urban uses have adversely affected Korean tidal wetlands. Recent large development projects have contributed to further losses. Environmental impact assessments conducted for projects affecting tidal wetlands and their surrounding landscapes should be customized for application to these special settings. Adequate environmental impact assessments will include classification of hydrogeomorphic units and consideration of their responses to biological and environmental stressors. As is true worldwide, Korean laws and regulations are changing to be more favorable to the conservation and protection of tidal wetlands. More public education needs to be done at the local level to build support for tidal wetland conservation. Some key public education points include the role of tidal wetlands in maintaining healthy fish populations and reducing impacts of nonpoint source pollution. There is also a need to develop procedures for integrating economic and environmental objectives within the overall context of sustainable management and land uses.
Land use in Korean tidal wetlands: impacts and management strategies.
Hong, Sun-Kee; Koh, Chul-Hwan; Harris, Richard R; Kim, Jae-Eun; Lee, Jeom-Sook; Ihm, Byung-Sun
2010-05-01
The coastal landscapes in southwestern Korea include a diverse array of tidal wetlands and salt marshes. These coastal zones link the ecological functions of marine tidal wetlands and freshwater ecosystems with terrestrial ecosystems. They are rich in biological diversity and play important roles in sustaining ecological health and processing environmental pollutants. Korean tidal wetlands are particularly important as nurseries for economically important fishes and habitats for migratory birds. Diking, draining, tourism, and conversion to agricultural and urban uses have adversely affected Korean tidal wetlands. Recent large development projects have contributed to further losses. Environmental impact assessments conducted for projects affecting tidal wetlands and their surrounding landscapes should be customized for application to these special settings. Adequate environmental impact assessments will include classification of hydrogeomorphic units and consideration of their responses to biological and environmental stressors. As is true worldwide, Korean laws and regulations are changing to be more favorable to the conservation and protection of tidal wetlands. More public education needs to be done at the local level to build support for tidal wetland conservation. Some key public education points include the role of tidal wetlands in maintaining healthy fish populations and reducing impacts of nonpoint source pollution. There is also a need to develop procedures for integrating economic and environmental objectives within the overall context of sustainable management and land uses.
Tidal downscaling from the open ocean to the coast: a new approach applied to the Bay of Biscay
NASA Astrophysics Data System (ADS)
Toublanc, F.; Ayoub, N. K.; Lyard, F.; Marsaleix, P.; Allain, D. J.
2018-04-01
Downscaling physical processes from a large scale to a regional scale 3D model is a recurrent issue in coastal processes studies. The choice of boundary conditions will often greatly influence the solution within the 3D circulation model. In some regions, tides play a key role in coastal dynamics and must be accurately represented. The Bay of Biscay is one of these regions, with highly energetic tides influencing coastal circulation and river plume dynamics. In this study, three strategies are tested to force with barotropic tides a 3D circulation model with a variable horizontal resolution. The tidal forcings, as well as the tidal elevations and currents resulting from the 3D simulations, are compared to tidal harmonics extracted from satellite altimetry and tidal gauges, and tidal currents harmonics obtained from ADCP data. The results show a strong improvement of the M2 solution within the 3D model with a "tailored" tidal forcing generated on the same grid and bathymetry as the 3D configuration, compared to a global tidal atlas forcing. Tidal harmonics obtained from satellite altimetry data are particularly valuable to assess the performance of each simulation. Comparisons between sea surface height time series, a sea surface salinity database, and daily averaged 2D currents also show a better agreement with this tailored forcing.
Do distributaries in a delta plain resemble an ideal estuary? Results from theKapuas Delta,Indonesia
NASA Astrophysics Data System (ADS)
Hoitink, T.; Kastner, K.; Vermeulen, B.; Geertsema, T.; Nining, S. N.
2017-12-01
Coastal lowland plains under mixed fluvial-tidal influence can form complex channel networks, where distributaries blend the characteristics of mouth bar channels, avulsion channels and tidal creeks. These networks are shaped by the interplay of river flow and tides. Our goal is to increase the general understanding of physical processes in the fluvial-tidal transition. Here we present first results of an extensive field survey of the Kapuas river and give insight into the along channel trends of cross section geometry and bed material grain size. main distributary and slightly increases in downstream direction (Fig. 2c).The Kapuas river is a large tropical river in West Kalimantan, Indonesia. Discharge ranges between 10^3 m^3/s in the wet and 10^4 m^3/s in the dry season. The Kapuas consists of one main distributary from which three smaller distributaries branch off along the alluvial plain (Fig. 1a). Tides are mainly diurnal, with an average spring range of 1.5m at the mouth.Figure 1: Map of the Kapuas river delta plain Between 2013 and 2015 we surveyed the Kapuas from the sea to upstream km 300. Bankfull river width was extracted from Landsat images. Bathymetry was surveyed with a single beam each sounder. Bed material was sampled with a van Veen grabber. The geometry of the Kapuas river deviates from that of an idealized estuary, as it does not converge to an equilibirum width and depth. Such a break in scaling was previously found in the Mahakam Delta by Sassi et al. 2012, which suggests this may be a general characteristic in the fluvial to tidal transition. There is no simple relation between bed material grain size and channel geometry. The particular geometry of the Kapuas also leads to particular hydrodynamics in the fluvial-tidal transition. Thus the draw-down curve during high flow and backwater curve at flow are much less pronounced in the Kapuas, and tides propagate far up the river. At the moment we investigate the consequences for river discharge-tide interaction. In particular we focus on propagation of the tide depending on the river discharge as well as consequences for delta morphology.
Tidal controls on riverbed denitrification along a tidal freshwater zone
NASA Astrophysics Data System (ADS)
Knights, Deon; Sawyer, Audrey H.; Barnes, Rebecca T.; Musial, Cole T.; Bray, Samuel
2017-01-01
In coastal rivers, tidal pumping enhances the exchange of oxygen-rich river water across the sediment-water interface, controlling nitrogen cycling in riverbed sediment. We developed a one-dimensional, fluid flow and solute transport model that quantifies the influence of tidal pumping on nitrate removal and applied it to the tidal freshwater zone (TFZ) of White Clay Creek (Delaware, USA). In field observations and models, both oxygenated river water and anoxic groundwater deliver nitrate to carbon-rich riverbed sediment. A zone of nitrate removal forms beneath the aerobic interval, which expands and contracts over daily timescales due to tidal pumping. At high tide when oxygen-rich river water infiltrates into the bed, denitrification rates decrease by 25% relative to low tide. In the absence of tidal pumping, our model predicts that the aerobic zone would be thinner, and denitrification rates would increase by 10%. As tidal amplitude increases toward the coast, nitrate removal rates should decrease due to enhanced oxygen exchange across the sediment-water interface, based on sensitivity analysis. Denitrification hot spots in TFZs are more likely to occur in less permeable sediment under lower tidal ranges and higher rates of ambient groundwater discharge. Our models suggest that tidal pumping is not efficient at removing surface water nitrate but can remove up to 81% of nitrate from discharging groundwater in the TFZ of White Clay Creek. Given the high population densities of coastal watersheds, the reactive riverbeds of TFZs play a critical role in mitigating new nitrogen loads to coasts.
Catalog of worldwide tidal bore occurrences and characteristics
Bartsch-Winkler, S.; Lynch, David K.
1988-01-01
Documentation of tidal bore phenomena occurring throughout the world aids in defining the typical geographical setting of tidal bores and enables prediction of their occurrence in remote areas. Tidal bores are naturally occurring, tidally generated, solitary, moving water waves up to 6 meters in height that form upstream in estuaries with semidiurnal or nearly semidiurnal tide ranges exceeding 4 meters. Estuarine settings that have tidal bores typically include meandering fluvial systems with shallow gradients. Bores are well defined, having amplitudes greater than wind- or turbulence-caused waves, and may be undular or breaking. Formation of a bore is dependent on depth and velocity of the incoming tide and river outflow. Bores may occur in series (in several channels) or in succession (marking each tidal pulse). Tidal bores propagate up tidal estuaries a greater distance than the width of the estuary and most occur within 100 kilometers upstream of the estuary mouth. Because they are dynamic, bores cause difficulties in some shipping ports and are targets for eradication. Tidal bores are known to occur, or to have occurred in the recent past, in at least 67 localities in 16 countries at all latitudes, including every continent except Antarctica. Parts of Argentina, Canada, Central America, China, Mozambique, Madagascar, Northern Europe, North and South Korea, the United Kingdom, and the U.S.S.R. probably have additional undiscovered or unreported tidal bores. In Turnagain Arm estuary in Alaska, bores cause an abrupt increase in salinity, suspended sediment, surface character, and bottom pressure, a decrease in illumination of the water column, and a change in water temperature. Tidal bores occurring in Turnagain Arm, Alaska, have the
Improving an Assessment of Tidal Stream Energy Resource for Anchorage, Alaska
NASA Astrophysics Data System (ADS)
Xu, T.; Haas, K. A.
2016-12-01
Increasing global energy demand is driving the pursuit of new and innovative energy sources leading to the need for assessing and utilizing alternative, productive and reliable energy resources. Tidal currents, characterized by periodicity and predictability, have long been explored and studied as a potential energy source, focusing on many different locations with significant tidal ranges. However, a proper resource assessment cannot be accomplished without accurate knowledge of the spatial-temporal distribution and availability of tidal currents. Known for possessing one of the top tidal energy sources along the U.S. coastline, Cook Inlet, Alaska is the area of interest for this project. A previous regional scaled resource assessment has been completed, however, the present study is to focus the assessment on the available power specifically near Anchorage while significantly improving the accuracy of the assessment following IEC guidelines. The Coupled-Ocean-Atmosphere-Wave-Sediment Transport (COAWST) modeling system is configured to simulate the tidal flows with grid refinement techniques for a minimum of 32 days, encompassing an entire lunar cycle. Simulation results are validated by extracting tidal constituents with harmonic analysis and comparing tidal components with National Oceanic and Atmospheric Administration (NOAA) observations and predictions. Model calibration includes adjustments to bottom friction coefficients and the usage of different tidal database. Differences between NOAA observations and COAWST simulations after applying grid refinement decrease, compared with results from a former study without grid refinement. Also, energy extraction is simulated at potential sites to study the impact on the tidal resources. This study demonstrates the enhancement of the resource assessment using grid refinement to evaluate tidal energy near Anchorage within Cook Inlet, Alaska, the productivity that energy extraction can achieve and the change in tidal currents caused by energy extraction.
Morgan, Steven G.; Anastasia, Jean R.
2008-01-01
The ability of microscopic larvae to control their fate and replenish populations in dynamic marine environments has been a long-running topic of debate of central importance to understanding the ecology and evolution of life in the sea and managing resources in a changing global environment. After decades of research documenting behaviors that keep larvae close to natal populations, it is becoming apparent that larval behaviors in a broader spectrum of species promote long-distance migrations to offshore nursery grounds. Larvae must exert considerable control over their movements. We now show that larval emigration from estuaries is favored even over minimizing visibility to predators. An endogenous tidal vertical migration that would expedite seaward migration of Uca pugilator larvae was maintained experimentally across two tidal regimes. The periodicity of the rhythm doubled to match the local tidal regime, but larvae ascended to the surface during the daytime rather than at night. This process would conserve larval emigration but increase the visibility to predators across part of the species range. The periodicity of tidal vertical migration by Sesarma cinereum larvae failed to double and was inappropriately timed relative to both environmental cycles in the absence of a diel cycle. The timing system regulating tidally timed behaviors in these two species of crabs evidently differed. Phenotypic plasticity can conserve larval transport of both species when tidal and diel cycles are present. It may be widespread in the sea where diverse habitats are encountered across extensive species ranges. PMID:18172217
Morgan, Steven G; Anastasia, Jean R
2008-01-08
The ability of microscopic larvae to control their fate and replenish populations in dynamic marine environments has been a long-running topic of debate of central importance to understanding the ecology and evolution of life in the sea and managing resources in a changing global environment. After decades of research documenting behaviors that keep larvae close to natal populations, it is becoming apparent that larval behaviors in a broader spectrum of species promote long-distance migrations to offshore nursery grounds. Larvae must exert considerable control over their movements. We now show that larval emigration from estuaries is favored even over minimizing visibility to predators. An endogenous tidal vertical migration that would expedite seaward migration of Uca pugilator larvae was maintained experimentally across two tidal regimes. The periodicity of the rhythm doubled to match the local tidal regime, but larvae ascended to the surface during the daytime rather than at night. This process would conserve larval emigration but increase the visibility to predators across part of the species range. The periodicity of tidal vertical migration by Sesarma cinereum larvae failed to double and was inappropriately timed relative to both environmental cycles in the absence of a diel cycle. The timing system regulating tidally timed behaviors in these two species of crabs evidently differed. Phenotypic plasticity can conserve larval transport of both species when tidal and diel cycles are present. It may be widespread in the sea where diverse habitats are encountered across extensive species ranges.
Bench performance of ventilators during simulated paediatric ventilation.
Park, M A J; Freebairn, R C; Gomersall, C D
2013-05-01
This study compares the accuracy and capabilities of various ventilators using a paediatric acute respiratory distress syndrome lung model. Various compliance settings and respiratory rate settings were used. The study was done in three parts: tidal volume and FiO2 accuracy; pressure control accuracy and positive end-expiratory pressure (PEEP) accuracy. The parameters set on the ventilator were compared with either or both of the measured parameters by the test lung and the ventilator. The results revealed that none of the ventilators could consistently deliver tidal volumes within 1 ml/kg of the set tidal volume, and the discrepancy between the delivered volume and the volume measured by the ventilator varied greatly. The target tidal volume was 8 ml/kg, but delivered tidal volumes ranged from 3.6-11.4 ml/kg and the volumes measured by the ventilator ranged from 4.1-20.6 ml/kg. All the ventilators maintained pressure within 20% of the set pressure, except one ventilator which delivered pressures of up to 27% higher than the set pressure. Two ventilators maintained PEEP within 10% of the prescribed PEEP. The majority of the readings were also within 10%. However, three ventilators delivered, at times, PEEPs over 20% higher. In conclusion, as lung compliance decreases, especially in paediatric patients, some ventilators perform better than others. This study highlights situations where ventilators may not be able to deliver, nor adequately measure, set tidal volumes, pressure, PEEP or FiO2.
Strong ocean tidal flow and heating on moons of the outer planets.
Tyler, Robert H
2008-12-11
Data from recent space missions have added strong support for the idea that there are liquid oceans on several moons of the outer planets, with Jupiter's moon Europa having received the most attention. But given the extremely cold surface temperatures and meagre radiogenic heat sources of these moons, it is still unclear how these oceans remain liquid. The prevailing conjecture is that these oceans are heated by tidal forces that flex the solid moon (rock plus ice) during its eccentric orbit, and that this heat entering the ocean does not rapidly escape because of the insulating layer of ice over the ocean surface. Here, however, I describe strong tidal dissipation (and heating) in the liquid oceans; I show that a subdominant and previously unconsidered tidal force due to obliquity (axial tilt of the moon with respect to its orbital plane) has the right form and frequency to resonantly excite large-amplitude Rossby waves in these oceans. In the specific case of Europa, the minimum kinetic energy of the flow associated with this resonance (7.3 x 10(18) J) is two thousand times larger than that of the flow excited by the dominant tidal forces, and dissipation of this energy seems large enough to be a primary ocean heat source.
Divett, T; Vennell, R; Stevens, C
2013-02-28
At tidal energy sites, large arrays of hundreds of turbines will be required to generate economically significant amounts of energy. Owing to wake effects within the array, the placement of turbines within will be vital to capturing the maximum energy from the resource. This study presents preliminary results using Gerris, an adaptive mesh flow solver, to investigate the flow through four different arrays of 15 turbines each. The goal is to optimize the position of turbines within an array in an idealized channel. The turbines are represented as areas of increased bottom friction in an adaptive mesh model so that the flow and power capture in tidally reversing flow through large arrays can be studied. The effect of oscillating tides is studied, with interesting dynamics generated as the tidal current reverses direction, forcing turbulent flow through the array. The energy removed from the flow by each of the four arrays is compared over a tidal cycle. A staggered array is found to extract 54 per cent more energy than a non-staggered array. Furthermore, an array positioned to one side of the channel is found to remove a similar amount of energy compared with an array in the centre of the channel.
Semidiurnal thermal tides in asynchronously rotating hot Jupiters
NASA Astrophysics Data System (ADS)
Auclair-Desrotour, P.; Leconte, J.
2018-05-01
Context. Thermal tides can torque the atmosphere of hot Jupiters into asynchronous rotation, while these planets are usually assumed to be locked into spin-orbit synchronization with their host star. Aims: In this work, our goal is to characterize the tidal response of a rotating hot Jupiter to the tidal semidiurnal thermal forcing of its host star by identifying the structure of tidal waves responsible for variation of mass distribution, their dependence on the tidal frequency, and their ability to generate strong zonal flows. Methods: We develop an ab initio global modelling that generalizes the early approach of Arras & Socrates (2010, ApJ, 714, 1) to rotating and non-adiabatic planets. We analytically derive the torque exerted on the body and the associated timescales of evolution, as well as the equilibrium tidal response of the atmosphere in the zero-frequency limit. Finally, we numerically integrate the equations of thermal tides for three cases, including dissipation and rotation step by step. Results: The resonances associated with tidally generated gravito-inertial waves significantly amplify the resulting tidal torque in the range 1-30 days. This torque can globally drive the atmosphere into asynchronous rotation, as its sign depends on the tidal frequency. The resonant behaviour of the tidal response is enhanced by rotation, which couples the forcing to several Hough modes in the general case, while the radiative cooling tends to regularize it and diminish its amplitude.
Tidal Dissipation Compared To Seismic Dissipation: In Small Bodies, Earths, And Super-Earths
2012-02-20
The Astrophysical Journal, 746:150 (20pp), 2012 February 20 doi:10.1088/0004-637X/746/2/150 C© 2012. The American Astronomical Society. All rights...becomes more complex, though for sufficiently large super-Earths the same rule applies: the larger the planet, the weaker the tidal dissipation in it...damping) becomes very considerable for large exoplanets (super-Earths). In those, it is much lower than what one might expect from using a seismic
Hydrodynamics and inundation of a tidal saltmarsh in Kent County, Delaware
NASA Astrophysics Data System (ADS)
Pieterse, A.; Puleo, J. A.; McKenna, T. E.
2013-12-01
A 2-week field experiment was conducted in March and April 2013 in a tidal wetland in Kent County, Delaware. The study area was a tidal flat fed by a secondary channel of a small tributary of Delaware Bay. The goal of the field study was to investigate spatio-temporal variability in the hydrodynamics of the saltmarsh and tidal flat, over the period of one spring-neap tidal cycle. The experiment combined remotely-sensed imagery with high-frequency in-situ measurements. A tower with imagers (RGB, NIR, TIR) was deployed to quantify the spatial variations of inundation of the channels, flat and marsh. In-situ sensors that measured flow velocity, sediment concentration and water depth were deployed on the tidal flat and in the channels. At three locations, a Nortek Vectrino II - profiling velocimeter was deployed that measured a 30 mm velocity profile at 1 mm vertical increments at 100 Hz. These velocity profiles are used to compute turbulent kinetic energy, energy dissipation and stress profiles close to the bed. Preliminary results of the experiment show that peak velocities occur at the beginning of the rising and end of ebbing tide, when the water levels are low. At these instances, peaks in turbulence and bed stress also occur, which coincides with the largest sediment concentrations that were observed. During both rising and falling tide, flow velocities up to 0.4 m/s were observed in the main channel leading to the tidal flat. After these initial large flow velocities, the flat inundated very quickly, and flow velocities decreased. Furthermore, due to the large flow velocities, bed erosion often took place in the channel at the beginning of each high tide, while deposition occurred during ebbing tide, resulting in small net changes over the tidal cycle. The velocities in the channel relative to those on the adjacent flat were investigated. Furthermore, the relationship between near-bed turbulence and suspended sediment concentration and an analysis of the near-bed turbulence budget will be discussed.
Dynamical Studies of N-Body Gravity and Tidal Dissipation in the TRAPPIST-1 Star System
NASA Astrophysics Data System (ADS)
Nayak, Michael; Kuettel, Donald H.; Stebler, Shane T.; Udrea, Bogdan
2018-01-01
To date, we have discovered a total of 2,729 planetary systems that contain more than 3,639 known exoplanets [1]. A majority of these are defined as compact systems, containing multiple exoplanets within 0.25 AU of the central star. It has been shown that tightly packed exoplanets avoid colliding due to long-term resonance-induced orbit stability [2]. However, due to extreme proximity, these planets experience intense gravitational forces from each other that are unprecedented within our own solar system, which makes the existence of exomoons doubtful. We present the results of an initial study evaluating dynamical stability of potential exomoons within such highly compact systems.This work is baselined around TRAPPIST-1, an ultra-cool dwarf star that hosts seven temperate terrestrial planets, three of which are in the habitable zone, orbiting within 0.06 AU [3]. N-body simulations place a grid of test particles varying semi-major axis, eccentricity, and inclination around the three habitable zone planets. We find that most exomoons with semi-major axes less than half the Hill sphere of their respective planet are stable over 10 kyrs, with several stable over 300 kyrs.However, in compact systems, tidal influences from other planets can compete with tidal effects from the primary planet, resulting in possible instabilities and massive amounts of tidal dissipation. We investigate these effects with a large grid search that incorporates exomoon radius, tidal quality factor and a range of planet rigidities. Results of simulations that combine n-body gravity effects with both planetary and satellite tides are presented and contrasted with n-body results. Finally, we examine long-term stability (> 1Myrs) of the stable subset of test particles from the n-body simulation with the addition of tidal dissipation, to determine if exomoons can survive around planets e, f, and g in the TRAPPIST-1 system.[1] Schneider (2017). The Extrasolar Planets Encyclopedia. http://exoplanet.eu/catalog/.[2] Tamayo et al (2017). Convergent Migration Renders TRAPPIST-1 Long-lived. ApJL, 840(2), L19.[3] Gillon et al (2016). Temperate Earth-sized planets transiting a nearby ultracool dwarf star. Nature, 533 (7602), 221-224.
The variability of SE2 tide extracted from TIMED/SABER observations
NASA Astrophysics Data System (ADS)
Li, Xing; Wan, Weixing; Ren, Zhipeng; Yu, You
2017-04-01
Based on the temperature observations of the SABER/TIMED, the variability of the non-migrating tide SE2 with high resolution (one-day) is analyzed, using the method from Li et al., [2015]. From the temperature observation data measured in the mesosphere and lower atmosphere region (MLT, 70-110 km altitudes) and at the low- and mid -latitudes (45S - 45N) from2002 to 2012), we obtained the non-migrating tide SE2 and further studied it in detail. It is found that the climatological features (large time scale variability and spatial distribution) of the SE2 tidal component are similar with the results from the previous researches, which are picked up from the interpolated data with 60-day resolution. The climatological features are that the SE2 tidal component manifests mainly at the low-mid latitudes around 30. The northern hemisphere tidal amplitudes below 110 km are larger than the southern hemisphere tide, at the same time, its peaks below 110 km mainly present between 100 and 110 km altitude; the tidal amplitudes below 110 km occur a north-south asymmetry about the equator in the annual variation: in the southern hemisphere, SE2 occurs with an obvious annual variation with a maximum of tidal amplitudes in December; while, in the northern one, the semi-annual variations with maximum at the equinoxes are stronger than that in the southern one. Herein, owing to the high-resolution tidal data (one day), we could research the short term (day-to-day) variations of the SE2 tide. We found that: (1) the day-to-day variations manifests mainly at the altitudes range between 100 and 110 km; (2) it increases gradually with latitudes and it is stronger at the low-mid latitudes; (3) it is relatively slightly stronger around solstices than equinoxes; (4) it does not present a remarkably inter-annual variation. Finally, the SE2 day-to-day variations may be composed by the absolute amplitudes' variance and the impact of the wave phases. In addition, the variations of variance are more important.
New Model for Europa's Tidal Response Based after Laboratory Measurements
NASA Astrophysics Data System (ADS)
Castillo, J. C.; McCarthy, C.; Choukroun, M.; Rambaux, N.
2009-12-01
We explore the application of the Andrade model to the modeling of Europa’s tidal response at the orbital period and for different librations. Previous models have generally assumed that the satellite behaves as a Maxwell body. However, at the frequencies exciting Europa’s tides and librations, material anelasticity tends to dominate the satellite’s response for a wide range of temperatures, a feature that is not accounted for by the Maxwell model. Many experimental studies on the anelasticity of rocks, ice, and hydrates, suggest that the Andrade model usually provides a good fit to the dissipation spectra obtained for a wide range of frequencies, encompassing the tidal frequencies of most icy satellites. These data indicate that, at Europa’s orbital frequency, the Maxwell model overestimates water ice attenuation at temperature warmer than ~240 K, while it tends to significantly underestimate it at lower temperatures. Based on the available data we suggest an educated extrapolation of available data to Europa’s conditions. We compute the tidal response of a model of Europa differentiated in a rocky core and a water-rich shell. We assume various degrees of stratification of the core involving hydrated and anhydrous silicates, as well as an iron core. The water-rich shell of Europa is assumed to be fully frozen, or to have preserved a deep liquid layer. In both cases we consider a range of thermal structures, based on existing models. These structures take into account the presence of non-ice materials, especially hydrated salts. This new approach yields a greater tidal response (amplitude and phase lag) than previously expected. This is due to the fact that a greater volume of material dissipates tidal energy in comparison to models assuming a Maxwell body. Another feature of interest is that the tidal stress expected in Europa is at about the threshold between a linear and non-linear mechanical response of water ice as a function of stress. Increased stress at a time when Europa’s eccentricity was greater than its current value is likely to have resulted in significant dissipation increase. We will assess how this new approach affects our understanding of Europa, and we will quantify the tidal response of this satellite and the amount of tidal heating available to its evolution. Acknowledgements: Part of this work has been conducted at the Jet Propulsion Laboratory, California Institute of Technology, under contract with NASA. Government sponsorship acknowledged. Part of the experimental work was conducted at Brown University, funded by NASA. MC is supported by a NASA Postdoctoral Fellowship, administered by Oak Ridge Associated Universities.
Observed tidal braking in the earth/moon/sun system
NASA Technical Reports Server (NTRS)
Christodoulidis, D. C.; Smith, D. E.; Williamson, R. G.; Klosko, S. M.
1987-01-01
The low degree and order terms in the spherical harmonic model of the tidal potential were observed through the perturbations which are induced on near-earth satellite orbital motions. Evaluations of tracking observations from 17 satellites and a GEM-T1 geopotential model were used in the tidal recovery which was made in the presence of over 600 long-wavelength coefficients from 32 major and minor tides. Wahr's earth tidal model was used as a basis for the recovery of the ocean tidal terms. Using this tidal model, the secular change in the moon's mean motion due to tidal dissipation was found to be -25.27 + or - 0.61 arcsec/century squared. The estimation of lunar acceleration agreed with that observed from lunar laser ranging techniques (-24.9 + or - 1.0 arcsec/century squared), with the corresponding tidal braking of earth's rotation being -5.98 + or - 0.22 x 10 to the minus 22 rad/second squared. If the nontidal braking of the earth due to the observed secular change in the earth's second zonal harmonic is considered, satellite techniques yield a total value of the secular change of the earth's rotation rate of -4.69 + or - 0.36 x 10 to the minus 22 rad/second squared.
The impact of future sea-level rise on the global tides
NASA Astrophysics Data System (ADS)
Pickering, M. D.; Horsburgh, K. J.; Blundell, J. R.; Hirschi, J. J.-M.; Nicholls, R. J.; Verlaan, M.; Wells, N. C.
2017-06-01
Tides are a key component in coastal extreme water levels. Possible changes in the tides caused by mean sea-level rise (SLR) are therefore of importance in the analysis of coastal flooding, as well as many other applications. We investigate the effect of future SLR on the tides globally using a fully global forward tidal model: OTISmpi. Statistical comparisons of the modelled and observed tidal solutions demonstrate the skill of the refined model setup with no reliance on data assimilation. We simulate the response of the four primary tidal constituents to various SLR scenarios. Particular attention is paid to future changes at the largest 136 coastal cities, where changes in water level would have the greatest impact. Spatially uniform SLR scenarios ranging from 0.5 to 10 m with fixed coastlines show that the tidal amplitudes in shelf seas globally respond strongly to SLR with spatially coherent areas of increase and decrease. Changes in the M2 and S2 constituents occur globally in most shelf seas, whereas changes in K1 and O1 are confined to Asian shelves. With higher SLR tidal changes are often not proportional to the SLR imposed and larger portions of mean high water (MHW) changes are above proportional. Changes in MHW exceed ±10% of the SLR at 10% of coastal cities. SLR scenarios allowing for coastal recession tend increasingly to result in a reduction in tidal range. The fact that the fixed and recession shoreline scenarios result mainly in changes of opposing sign is explained by the effect of the perturbations on the natural period of oscillation of the basin. Our results suggest that coastal management strategies could influence the sign of the tidal amplitude change. The effect of a spatially varying SLR, in this case fingerprints of the initial elastic response to ice mass loss, modestly alters the tidal response with the largest differences at high latitudes.
Evidence of tidal processes from the lower part of the Witwatersrand Supergroup, South Africa
NASA Astrophysics Data System (ADS)
Eriksson, Kenneth A.; Turner, Brian R.; Vos, Richard G.
1981-08-01
A 1600-m succession of quartz arenites and associated shaley deposits comprising the Hospital Hill Subgroup at the base of the Witwatersrand Supergroup is considered to have been deposited largely under the influence of tidal processes. Facies analysis indicates that deposition occurred in the following environments: (1) marine shalf; (2) shallow subtidal to intertidal; (3) intertidal flat; and (4) tidal inlet. The presence of strong tidal currents implies that the Witwatersrand Basin was open to an ocean basin, at least during the early stages of its evolution. Palaeocurrent trends and isopach data suggest that this probably lay to the southwest, an area now occupied by the high grade Natal—Namaqua metamorphic belt. The contrast between the supermature quartz arenites of the Hospital Hill Subgroup and the overlying gold-bearing immature subgreywackes, feldspathic quartzites and conglomerates of fluvial origin is believed to be a function of tidal reworking of sediments.
NASA Astrophysics Data System (ADS)
Furgerot, Lucille; Mouazé, Dominique; Tessier, Bernadette; Perez, Laurent; Haquin, Sylvain; Weill, Pierre; Crave, Alain
2016-07-01
Tidal bores are believed to induce significant sediment transport in macrotidal estuaries. However, due to high turbulence and very large suspended sediment concentration (SSC), the measurement of sediment transport induced by a tidal bore is actually a technical challenge. Consequently, very few quantitative data have been published so far. This paper presents SSC measurements performed in the Sée River estuary (Mont-Saint-Michel Bay, northwestern France) during the tidal bore passage with direct and indirect (optical) methods. Both methods are calibrated in laboratory in order to verify the consistency of measurements, to calculate the uncertainties, and to correct the raw data. The SSC measurements coupled with ADCP velocity data are used to calculate the instantaneous sediment transport (qs) associated with the tidal bore passage (up to 40 kg/m2/s).
Topographic mapping on large-scale tidal flats with an iterative approach on the waterline method
NASA Astrophysics Data System (ADS)
Kang, Yanyan; Ding, Xianrong; Xu, Fan; Zhang, Changkuan; Ge, Xiaoping
2017-05-01
Tidal flats, which are both a natural ecosystem and a type of landscape, are of significant importance to ecosystem function and land resource potential. Morphologic monitoring of tidal flats has become increasingly important with respect to achieving sustainable development targets. Remote sensing is an established technique for the measurement of topography over tidal flats; of the available methods, the waterline method is particularly effective for constructing a digital elevation model (DEM) of intertidal areas. However, application of the waterline method is more limited in large-scale, shifting tidal flats areas, where the tides are not synchronized and the waterline is not a quasi-contour line. For this study, a topographical map of the intertidal regions within the Radial Sand Ridges (RSR) along the Jiangsu Coast, China, was generated using an iterative approach on the waterline method. A series of 21 multi-temporal satellite images (18 HJ-1A/B CCD and three Landsat TM/OLI) of the RSR area collected at different water levels within a five month period (31 December 2013-28 May 2014) was used to extract waterlines based on feature extraction techniques and artificial further modification. These 'remotely-sensed waterlines' were combined with the corresponding water levels from the 'model waterlines' simulated by a hydrodynamic model with an initial generalized DEM of exposed tidal flats. Based on the 21 heighted 'remotely-sensed waterlines', a DEM was constructed using the ANUDEM interpolation method. Using this new DEM as the input data, it was re-entered into the hydrodynamic model, and a new round of water level assignment of waterlines was performed. A third and final output DEM was generated covering an area of approximately 1900 km2 of tidal flats in the RSR. The water level simulation accuracy of the hydrodynamic model was within 0.15 m based on five real-time tide stations, and the height accuracy (root mean square error) of the final DEM was 0.182 m based on six transects of measured data. This study aimed at construction of an accurate DEM for a large-scale, high-variable zone within a short timespan based on an iterative way of the waterline method.
Wavelet analysis of lunar semidiurnal tidal influence on selected inland rivers across the globe.
Briciu, Andrei-Emil
2014-02-26
The lunar semidiurnal influence is already known for tidal rivers. The moon also influences inland rivers at a monthly scale through precipitation. We show that, for some non-tidal rivers, with special geological conditions, the lunar semidiurnal tidal oscillation can be detected. The moon has semidiurnal tidal influence on groundwater, which will then export it to streamflow. Long time series with high frequency measurements were analysed by using standard wavelet analysis techniques. The lunar semidiurnal signal explains the daily double-peaked river level evolution of inland gauges. It is stronger where springs with high discharge occur, especially in the area of Edwards-Trinity and Great Artesian Basin aquifers and in areas with dolomite/limestone strata. The average maximum semidiurnal peaks range between 0.002 and 0.1 m. This secondary effect of the earth tides has important implications in predicting high resolution hydrographs, in the water cycle of wetlands and in water management.
NASA Astrophysics Data System (ADS)
Guimond, J. A.; Seyfferth, A.; Michael, H. A.
2017-12-01
Salt marshes are biogeochemical hotspots where large quantities of carbon are processed and stored. High primary productivity and deposition of carbon-laden sediment enable salt marsh soils to accumulate and store organic carbon. Conversely, salt marshes can laterally export carbon from the marsh platform to the tidal channel and eventually the ocean via tidal pumping. However, carbon export studies largely focus on tidal channels, missing key physical and biogeochemical mechanisms driving the mobilization of dissolved organic carbon (DOC) within the marsh platform and limiting our understanding of and ability to predict coastal carbon dynamics. We hypothesize that iron redox dynamics mediate the mobilization/immobilization of DOC in the top 30 cm of salt marsh sediment near tidal channels. The mobilized DOC can then diffuse into the flooded surface water or be advected to tidal channels. To elucidate DOC dynamics driven by iron redox cycles, we measured porewater DOC, Fe(II), total iron, total sulfate, pH, redox potential, and electrical conductivity (EC) beside the creek, at the marsh levee, and in the marsh interior in a mid-latitude tidal salt marsh in Dover, Delaware. Samples were collected at multiple tide stages during a spring and neap tide at depths of 5-75cm. Samples were also collected from the tidal channel. Continuous Eh measurements were made using in-situ electrodes. A prior study shows that DOC and Fe(II) concentrations vary spatially across the marsh. Redox conditions near the creek are affected by tidal oscillations. High tides saturate the soil and decrease redox potential, whereas at low tide, oxygen enters the sediment and increases the Eh. This pattern is always seen in the top 7-10cm of sediment, with more constant low Eh at depth. However, during neap tides, this signal penetrates deeper. Thus, between the creek and marsh levee, hydrology mediates redox conditions. Based on porewater chemistry, if DOC mobilization can be linked to redox cycles, then hydrologic oscillations can be tied to DOC dynamics and predicted with hydrologic models. By elucidating the mechanisms driving the mobilization of DOC, we can begin to better understand, quantify, and forecast coastal carbon dynamics.
Design and test of 1/5th scale horizontal axis tidal current turbine
NASA Astrophysics Data System (ADS)
Liu, Hong-wei; Zhou, Hong-bin; Lin, Yong-gang; Li, Wei; Gu, Hai-gang
2016-06-01
Tidal current energy is prominent and renewable. Great progress has been made in the exploitation technology of tidal current energy all over the world in recent years, and the large scale device has become the trend of tidal current turbine (TCT) for its economies. Instead of the similarity to the wind turbine, the tidal turbine has the characteristics of high hydrodynamic efficiency, big thrust, reliable sealing system, tight power transmission structure, etc. In this paper, a 1/5th scale horizontal axis tidal current turbine has been designed, manufactured and tested before the full scale device design. Firstly, the three-blade horizontal axis rotor was designed based on traditional blade element momentum theory and its hydrodynamic performance was predicted in numerical model. Then the power train system and stand-alone electrical control unit of tidal current turbine, whose performances were accessed through the bench test carried out in workshop, were designed and presented. Finally, offshore tests were carried out and the power performance of the rotor was obtained and compared with the published literatures, and the results showed that the power coefficient was satisfactory, which agrees with the theoretical predictions.
Focal mechanisms and tidal modulation for tectonic tremors in Taiwan
NASA Astrophysics Data System (ADS)
Ide, S.; Yabe, S.; Tai, H. J.; Chen, K. H.
2015-12-01
Tectonic tremors in Taiwan have been discovered beneath the southern Central Range, but their hosting structure has been unknown. Here we constrain the focal mechanism of underground deformation related to tremors, using moment tensor inversion in the very low frequency band and tidal stress analysis. Three types of seismic data are used for two analysis steps: detection of tremors and the moment tensor inversion. Short-period seismograms from CWBSN are used for tremor detection. Broadband seismograms from BATS and the TAIGER project are used for both steps. About 1000 tremors were detected using an envelope correlation method in the high frequency band (2-8 Hz). Broadband seismograms are stacked relative to the tremor timing, and inverted for a moment tensor in the low frequency band (0.02-0.05 Hz). The best solution was obtained at 32 km depth, as a double-couple consistent with a low-angle thrust fault dipping to the east-southeast, or a high-angle thrust with a south-southwest strike. Almost all tremors occur when tidal shear stress is positive and normal stress is negative (clamping). Since the clamping stress is high for a high-angle thrust fault, the low-angle thrust fault is more likely to be the fault plane. Tremor rate increases non-linearly with increasing shear stress, suggesting a velocity strengthening friction law. The high tidal sensitivity is inconsistent with horizontal slip motion suggested by previous studies, and normal faults that dominates regional shallow earthquakes. Our results favor thrust slip on a low-angle fault dipping to the east-southeast, consistent with the subduction of the Eurasian plate. The tremor region is characterized by a deep thermal anomaly with decrease normal stress. This region has also experienced enough subduction to produce metamorphic fluids. A large amount of fluid and low vertical stress may explain the high tidal sensitivity.
Value and limitations of transpulmonary pressure calculations during intra-abdominal hypertension.
Cortes-Puentes, Gustavo A; Gard, Kenneth E; Adams, Alexander B; Faltesek, Katherine A; Anderson, Christopher P; Dries, David J; Marini, John J
2013-08-01
To clarify the effect of progressively increasing intra-abdominal pressure on esophageal pressure, transpulmonary pressure, and functional residual capacity. Controlled application of increased intra-abdominal pressure at two positive end-expiratory pressure levels (1 and 10 cm H2O) in an anesthetized porcine model of controlled ventilation. Large animal laboratory of a university-affiliated hospital. Eleven deeply anesthetized swine (weight 46.2 ± 6.2 kg). Air-regulated intra-abdominal hypertension (0-25 mm Hg). Esophageal pressure, tidal compliance, bladder pressure, and end-expiratory lung aeration by gas dilution. Functional residual capacity was significantly reduced by increasing intra-abdominal pressure at both positive end-expiratory pressure levels (p ≤ 0.0001) without corresponding changes of end-expiratory esophageal pressure. Above intra-abdominal pressure 5 mm Hg, plateau airway pressure increased linearly by ~ 50% of the applied intra-abdominal pressure value, associated with commensurate changes of esophageal pressure. With tidal volume held constant, negligible changes occurred in transpulmonary pressure due to intra-abdominal pressure. Driving pressures calculated from airway pressures alone (plateau airway pressure--positive end-expiratory pressure) did not equate to those computed from transpulmonary pressure (tidal changes in transpulmonary pressure). Increasing positive end-expiratory pressure shifted the predominantly negative end-expiratory transpulmonary pressure at positive end-expiratory pressure 1 cm H2O (mean -3.5 ± 0.4 cm H2O) into the positive range at positive end-expiratory pressure 10 cm H2O (mean 0.58 ± 1.2 cm H2O). Despite its insensitivity to changes in functional residual capacity, measuring transpulmonary pressure may be helpful in explaining how different levels of positive end-expiratory pressure influence recruitment and collapse during tidal ventilation in the presence of increased intra-abdominal pressure and in calculating true transpulmonary driving pressure (tidal changes of transpulmonary pressure). Traditional interpretations of respiratory mechanics based on unmodified airway pressure were misleading regarding lung behavior in this setting.
Broadband Acoustic Environment at a Tidal Energy Site in Puget Sound
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Jinshan; Deng, Zhiqun; Martinez, Jayson J.
2012-04-04
Admiralty Inlet has been selected as a potential tidal energy site. It is located near shipping lanes, is a highly variable acoustic environment, and is frequented by the endangered southern resident killer whale (SRKW). Resolving environmental impacts is the first step to receiving approval to deploy tidal turbines. Several monitoring technologies are being considered to determine the presence of SRKW near the turbines. Broadband noise level measurements are critical for determining design and operational specifications of these technologies. Acoustic environment data at the proposed site was acquired at different depths using a cabled vertical line array from three different cruisesmore » during high tidal period in February, May, and June 2011. The ambient noise level decreases approximately 25 dB re 1 μPa per octave from frequency ranges of 1 kHz to 70 kHz, and increases approximately 20 dB re 1 μPa per octave for the frequency from 70 kHz to 200 kHz. The difference of noise pressure levels in different months varies from 10 to 30 dB re 1 μPa for the frequency range below 70 kHz. Commercial shipping and ferry vessel traffic were found to be the most significant contributors to sound pressure levels for the frequency range from 100 Hz to 70 kHz, and the variation could be as high as 30 dB re 1 μPa. These noise level measurements provide the basic information for designing and evaluating both active and passive monitoring systems proposed for deploying and operating for tidal power generation alert system.« less
NASA Astrophysics Data System (ADS)
Stark, J.; Smolders, S.; Meire, P.; Temmerman, S.
2017-11-01
Marsh restoration projects are nowadays being implemented as ecosystem-based strategies to reduce flood risks and to restore intertidal habitat along estuaries. Changes in estuarine tidal hydrodynamics are expected along with such intertidal area changes. A validated hydrodynamic model of the Scheldt Estuary is used to gain fundamental insights in the role of intertidal area characteristics on tidal hydrodynamics and tidal asymmetry in particular through several geomorphological scenarios in which intertidal area elevation and location along the estuary is varied. Model results indicate that the location of intertidal areas and their storage volume relative to the local tidal prism determine the intensity and reach along the estuary over which tidal hydrodynamics are affected. Our model results also suggest that intertidal storage areas that are located within the main estuarine channel system, and hence are part of the flow-carrying part of the estuary, may affect tidal hydrodynamics differently than intertidal areas that are side-basins of the main estuarine channel, and hence only contribute little to the flow-carrying cross-section of the estuary. If tidal flats contribute to the channel cross-section and exert frictional effects on the tidal propagation, the elevation of intertidal flats influences the magnitude and direction of tidal asymmetry along estuarine channels. Ebb-dominance is most strongly enhanced if tidal flats are around mean sea level or slightly above. Conversely, flood-dominance is enhanced if the tidal flats are situated low in the tidal frame. For intertidal storage areas at specific locations besides the main channel, flood-dominance in the estuary channel peaks in the vicinity of those areas and generally reduces upstream and downstream compared to a reference scenario. Finally, the model results indicate an along-estuary varying impact on the tidal prism as a result of adding intertidal storage at a specific location. In addition to known effects of tidal prism decrease upstream and tidal prism increase downstream of additional storage areas, our model results indicate a reduction in tidal prism far downstream of intertidal storage areas as a result of a decreasing tidal range. This study may assist estuarine managers in assessing the impact of marsh restoration and managed shoreline realignment projects, as well as with the morphological management of estuaries through dredging and disposal of sediment on intertidal areas.
Life on the Tidal Mudflats: Elkhorn Slough.
ERIC Educational Resources Information Center
Andresen, Ruth
Life in an estuarine environment is studied in this set of audio-visual materials prepared for grades 6-12. A 71-frame colored filmstrip, cassette tape narration, and teacher's guide focus upon Elkhorn Slough, a tidal mudflat in the Monterey Bay area, California. Topics examined range from river drainage and the effects of pollution on living…
Late proterozoic and paleozoic tides, retreat of the moon, and rotation of the earth
Sonett, C.P.; Kvale, E.P.; Zakharian, A.; Chan, M.A.; Demko, T.M.
1996-01-01
The tidal rhythmites in the Proterozoic Big Cottonwood Formation (Utah, United States), the Neoproterozoic Elatina Formation of the Flinders Range (southern Australia), and the Lower Pennsylvanian Pottsville Formation (Alabama, United States) and Mansfield Formation (Indiana, United States) indicate that the rate of retreat of the lunar orbit is d??/dt k2 sin(2??) (where ?? is the Earth-moon radius vector, k2 is the tidal Love number, and ?? is the tidal lag angle) and that this rate has been approximately constant since the late Precambrian. When the contribution to tidal friction from the sun is taken into account, these data imply that the length of the terrestrial day 900 million years ago was -18 hours.
Mobile Lid Convection Beneath Enceladus' South Polar Terrain
NASA Technical Reports Server (NTRS)
Barr, Amy C.
2008-01-01
Enceladus' south polar region has a large heat flux, 55-110 milliwatts per square meter (or higher), that is spatially associated with cryovolcanic and tectonic activity. Tidal dissipation and vigorous convection in the underlying ice shell are possible sources of heat; however, prior predictions of the heat flux carried by stagnant lid convection range from F(sub conv) 15 to 30 milliwatts per square meter, too low to explain the observed heat flux. The high heat flux and increased cryovolcanic and tectonic activity suggest that near-surface ice in the region has become rheologically and mechanically weakened enough to permit convective plumes to reach close to the surface. If the yield strength of Enceladus' lithosphere is less than 1-10 kPa, convection may instead occur in the mobile lid" regime, which is characterized by large heat fluxes and large horizontal velocities in the near-surface ice. I show that model ice shells with effective surface viscosities between 10(exp 16) and 10(exp 17) Pa s and basal viscosities between 10(exp 13) and 10(exp 15) Pa s have convective heat fluxes comparable to that observed by the Cassini Composite Infrared Spectrometer. If this style of convection is occurring, the south polar terrain should be spreading horizontally with v1-10 millimeter per year and should be resurfaced in 0.1-10 Ma. On the basis of Cassini imaging data, the south polar terrain is 0.5 Ma old, consistent with the mobile lid hypothesis. Maxwell viscoelastic tidal dissipation in such ice shells is not capable of generating enough heat to balance convective heat transport. However, tidal heat may also be generated in the near-surface along faults as suggested by Nimmo et al. and/or viscous dissipation within the ice shell may occur by other processes not accounted for by the canonical Maxwell dissipation model.
Bouchet, Sylvain; Tessier, Emmanuel; Monperrus, Mathilde; Bridou, Romain; Clavier, Jacques; Thouzeau, Gerard; Amouroux, David
2011-05-01
The elemental mercury evasion from non-impacted natural areas is of significant importance in the global Hg cycle due to their large spatial coverage. Intertidal areas represent a dynamic environment promoting the transformations of Hg species and their subsequent redistribution. A major challenge remains in providing reliable data on Hg species variability and fluxes under typical transient tidal conditions found in such environment. Field experiments were thus carried out to allow the assessment and comparison of the magnitude of the gaseous Hg fluxes at the three interfaces, sediment-water, sediment-atmosphere and water-atmosphere of a mesotidal temperate lagoon (Arcachon Bay, Aquitaine, France) over three distinct seasonal conditions. The fluxes between the sediment-water and the sediment-atmosphere interfaces were directly evaluated with field flux chambers, respectively static or dynamic. Water-atmosphere fluxes were evaluated from ambient concentrations using a gas exchange model. The fluxes at the sediment-water interface ranged from -5.0 to 5.1 ng m(-2) h(-1) and appeared mainly controlled by diffusion. The occurrence of macrophytic covers (i.e.Zostera noltii sp.) enhanced the fluxes under light radiations. The first direct measurements of sediment-atmosphere fluxes are reported here. The exchanges were more intense and variable than the two other interfaces, ranging between -78 and 40 ng m(-2) h(-1) and were mostly driven by the overlying atmospheric Hg concentrations and superficial sediment temperature. The exchanges between the water column and the atmosphere, computed as a function of wind speed and gaseous mercury saturation ranged from 0.4 to 14.5 ng m(-2) h(-1). The flux intensities recorded over the intertidal sediments periodically exposed to the atmosphere were roughly 2 to 3 times higher than the fluxes of the other interfaces. The evasion of elemental mercury from emerged intertidal sediments is probably a significant pathway for Hg evasion in such tidal environments exhibiting background contamination level.
NASA Astrophysics Data System (ADS)
Antwi-Danso, Jacqueline; Barger, Kathleen; Haffner, L. Matthew
2016-01-01
Tidal interactions between two dwarf galaxies near the Milky Way, the Large and Small Magellanic Clouds, have caused large quantities of gas to be flung into the halo of the Milky Way. Much of this tidal debris, known as the Magellanic System, is currently headed towards the disk of the Milky Way, spearheaded by the Leading Arm, with the Bridge connecting the two dwarf galaxies, and the trailing Magellanic Stream at the end. Estimates for the amount of gas that the Magellanic System contains are in the range of (2 - 4) × 109 M⊙ and this could supply our Galaxy with (3.7 - 6.7) M⊙ yr-1 (Fox et al. 2014). Although this is higher than the present star-formation rate of the Galaxy, the position of the tidal debris predisposes it to ionizing radiation from the extragalactic background and Galactic disk, as well as ram-pressure stripping from the halo, hindering gas accretion. Some parts of the Leading Arm, however, appear to have already survived the trip to the disk as their morphology is indicative of interaction with the interstellar medium of the Galaxy. The exact amount of gas that this structure contains is uncertain because of weak constrains in its distance. In this study, we made seven pointed Hα observations using the Wisconsin Hα Mapper Telescope and then compared the Hα intensity we obtained to models of the anticipated ionizing flux from the Milky Way and extragalactic background. From this, we calculated the distance from the Sun to the Leading Arm of the Magellanic System at the locations of our observations.
NASA Astrophysics Data System (ADS)
Venier, C.; Figueiredo da Silva, J.; McLelland, S. J.; Duck, R. W.; Lanzoni, S.
2012-10-01
This study aims to quantify the impact of macroalgal mats of Ulva intestinalis on flow dynamics and sediment stability. Such mats are becoming increasingly common in many coastal and estuarine intertidal habitats, thus it is important to determine whether they increase flow resistance, promote bed stability and therefore reduce the risk of erosion leading to tidal flooding or to degradation of coastal lagoons. The study has been carried out through a systematic series of experiments conducted in the large open-channel flume of the Total Environment Simulator (TES) facility, University of Hull, UK. The experimental facility was set up with a bed of fine sand, partially covered by strands of U. intestinalis; living individuals attached to large clasts were collected from Budle Bay, in the Lindisfarne National Nature Reserve, UK, and transplanted to the flume. The TES was equipped with acoustic doppler velocimetry (ADV) and acoustic backscatter (ABS) sensors, which measured current velocity, water level, bed level, and suspended sediment concentration. The experiments consisted of several unidirectional flow runs, firstly with a mobile sediment bed covered with U. intestinalis, then with a bare sediment surface, conducted at three different water depths. Under the investigated experimental range of velocities, typical of tidal environments, the macroalgal filaments were bent parallel to the sediment bed. The resulting velocity profile departed from the classical logarithmic trend, implying an increase of the overall roughness. This result reflects the different vertical Reynolds shear stress profiles and energy spectra features of the turbulent flow with respect to a bare sandy bed configuration. Macroalgae are also found to affect the morphological configuration of bedforms. The overall result is significant bio-stabilization, with increased flow resistance and reduced sediment transport.
Global properties of M31's stellar halo from the splash survey. II. Metallicity profile
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gilbert, Karoline M.; Kalirai, Jason S.; Guhathakurta, Puragra
2014-12-01
We present the metallicity distribution of red giant branch (RGB) stars in M31's stellar halo, derived from photometric metallicity estimates for over 1500 spectroscopically confirmed RGB halo stars. The stellar sample comes from 38 halo fields observed with the Keck/DEIMOS spectrograph, ranging from 9 to 175 kpc in projected distance from M31's center, and includes 52 confirmed M31 halo stars beyond 100 kpc. While a wide range of metallicities is seen throughout the halo, the metal-rich peak of the metallicity distribution function becomes significantly less prominent with increasing radius. The metallicity profile of M31's stellar halo shows a continuous gradientmore » from 9 to ∼100 kpc, with a magnitude of ∼ – 0.01 dex kpc{sup –1}. The stellar velocity distributions in each field are used to identify stars that are likely associated with tidal debris features. The removal of tidal debris features does not significantly alter the metallicity gradient in M31's halo: a gradient is maintained in fields spanning 10-90 kpc. We analyze the halo metallicity profile, as well as the relative metallicities of stars associated with tidal debris features and the underlying halo population, in the context of current simulations of stellar halo formation. We argue that the large-scale gradient in M31's halo implies M31 accreted at least one relatively massive progenitor in the past, while the field to field variation seen in the metallicity profile indicates that multiple smaller progenitors are likely to have contributed substantially to M31's outer halo.« less
NASA Astrophysics Data System (ADS)
Solak, Cemile; Taslı, Kemal; Koç, Hayati
2016-10-01
The study area comprises southern non-metamorphic part of the Bolkar Mountains which are situated in southern Turkey, eastern part of the Central Taurides. The studied five outcrops form geologically parts of the tectonostratigraphic units called as allochthonous Aladag Unit and autochthonous Geyikdagi Unit. The aim of this study is to describe microfacies and depositional environments of the Bolkar Mountains Early Cretaceous shallow- water platform carbonates. The Lower Cretaceous is represented by continuous thick- bedded to massive dolomite sequence ranging from 100 to 150 meters thick, which only contains locally laminated limestone intercalations in the Yüğlük section and thick to very thick-bedded uniform limestones ranging from approximately 50 to 120 meters, consist of mainly laminated- fenestral mudstone, peloidal-intraclastic grainstone-packstone, bioclastic packstone- wackestone, benthic foraminiferal-intraclastic grainstone-packstone, ostracod-fenestral wackestone-mudstone, dasycladacean algal packstone-wackestone and ooidal grainstone microfacies. Based on a combination sedimantological data, facies/microfacies and micropaleontological (predominantly dasycladacean algae and diverse benthic foraminifera) analysis, it is concluded that Early Cretaceous platform carbonates of the Bolkar Mountains reflect a tidally affected tidal-flat and restricted lagoon settings. During the Berriasian- Valanginian unfavourable facies for benthic foraminifera and dolomitization were predominate. In the Hauterivian-early Aptian, the effect of dolomitization largely disappeared and inner platform conditions still prevailed showing alternations of peritidal and lagoon facies, going from peritidal plains (representing various sub-environments including supratidal, intertidal area, tidal-intertidal ponds and ooid bars) dominated by ostracod and miliolids, to dasycladacean algae-rich restricted lagoons-subtidal. These environments show a transition in the vertical and lateral directions in all studied stratigraphic sections.
Tidal Energy Available for Deep Ocean Mixing: Bounds from Altimetry Data
NASA Technical Reports Server (NTRS)
Egbert, Gary D.; Ray, Richard D.
1999-01-01
Maintenance of the large-scale thermohaline circulation has long presented a problem to oceanographers. Observed mixing rates in the pelagic ocean are an order of magnitude too small to balance the rate at which dense bottom water is created at high latitudes. Recent observational and theoretical work suggests that much of this mixing may occur in hot spots near areas of rough topography (e.g., mid-ocean ridges and island arcs). Barotropic tidal currents provide a very plausible source of energy to maintain these mixing processes. Topex/Poseidon (T/P) satellite altimetry data have made precise mapping of open ocean tidal elevations possible for the first time. We can thus obtain empirical, spatially localized, estimates of barotropic tidal dissipation. These provide an upper bound on the amount of tidal energy that is dissipated in the deep ocean, and hence is available for deep mixing. We will present and compare maps of open ocean tidal energy flux divergence, and estimates of tidal energy flux into shallow seas, derived from T/P altimetry data using both formal data assimilation methods and empirical approaches. With the data assimilation methods we can place formal error bars on the fluxes. Our results show that 20-25% of tidal energy dissipation occurs outside of the shallow seas, the traditional sink for tidal energy. This suggests that up to 1 TW of energy may be available from the tides (lunar and solar) for mixing the deep ocean. The dissipation indeed appears to be concentrated over areas of rough topography.
Tidal Energy Available for Deep Ocean Mixing: Bounds From Altimetry Data
NASA Technical Reports Server (NTRS)
Egbert, Gary D.; Ray, Richard D.
1999-01-01
Maintenance of the large-scale thermohaline circulation has long presented a problem to oceanographers. Observed mixing rates in the pelagic ocean are an order of magnitude too small to balance the rate at which dense bottom water is created at high latitudes. Recent observational and theoretical work suggests that much of this mixing may occur in hot spots near areas of rough topography (e.g., mid-ocean ridges and island arcs). Barotropic tidal currents provide a very plausible source of energy to maintain these mixing processes. Topex/Poseidon satellite altimetry data have made precise mapping of open ocean tidal elevations possible for the first time. We can thus obtain empirical, spatially localized, estimates of barotropic tidal dissipation. These provide an upper bound on the amount of tidal energy that is dissipated in the deep ocean, and hence is available for deep mixing. We will present and compare maps of open ocean tidal energy flux divergence, and estimates of tidal energy flux into shallow seas, derived from T/P altimetry data using both formal data assimilation methods and empirical approaches. With the data assimilation methods we can place formal error bars on the fluxes. Our results show that 20-25% of tidal energy dissipation occurs outside of the shallow seas, the traditional sink for tidal energy. This suggests that up to 1 TW of energy may be available from the tides (lunar and solar) for mixing the deep ocean. The dissipation indeed appears to be concentrated over areas of rough topography.
Tidal Energy Available for Deep Ocean Mixing: Bounds from Altimetry Data
NASA Technical Reports Server (NTRS)
Ray, Richard D.; Egbert, Gary D.
1999-01-01
Maintenance of the large-scale thermohaline circulation has long presented an interesting problem. Observed mixing rates in the pelagic ocean are an order of magnitude too small to balance the rate at which dense bottom water is created at high latitudes. Recent observational and theoretical work suggests that much of this mixing may occur in hot spots near areas of rough topography (e.g., mid-ocean ridges and island arcs). Barotropic tidal currents provide a very plausible source of energy to maintain these mixing processes. Topex/Poseidon satellite altimetry data have made precise mapping of open ocean tidal elevations possible for the first time. We can thus obtain empirical, spatially localized, estimates of barotropic tidal dissipation. These provide an upper bound on the amount of tidal energy that is dissipated in the deep ocean, and hence is available for deep mixing. We will present and compare maps of open ocean tidal energy flux divergence, and estimates of tidal energy flux into shallow seas, derived from T/P altimetry data using both formal data assimilation methods and empirical approaches. With the data assimilation methods we can place formal error bars on the fluxes. Our results show that 20-25% of tidal energy dissipation occurs outside of the shallow seas, the traditional sink for tidal energy. This suggests that up to 1 TW of energy may be available from the tides (lunar and solar) for mixing the deep ocean. The dissipation indeed appears to be concentrated over areas of rough topography.
NASA Astrophysics Data System (ADS)
Stark, J.; Meire, P.; Temmerman, S.
2017-03-01
The eco-geomorphological development of tidal marshes, from initially low-elevated bare tidal flats up to a high-elevated marsh and its typical network of channels and creeks, induces long-term changes in tidal hydrodynamics in a marsh, which will have feedback effects on the marsh development. We use a two-dimensional hydrodynamic model of the Saeftinghe marsh (Netherlands) to study tidal hydrodynamics, and tidal asymmetry in particular, for model scenarios with different input bathymetries and vegetation coverages that represent different stages of eco-geomorphological marsh development, from a low elevation stage with low vegetation coverage to a high and fully vegetated marsh platform. Tidal asymmetry is quantified along a 4 km marsh channel by (1) the difference in peak flood and peak ebb velocities, (2) the ratio between duration of the rising tide and the falling tide and (3) the time-integrated dimensionless bed shear stress during flood and ebb. Although spatial variations in tidal asymmetry are large and the different indicators for tidal asymmetry do not always respond similarly to eco-geomorphological changes, some general trends can be obtained. Flood-dominance prevails during the initial bare stage of a low-lying tidal flat. Vegetation establishment and platform expansion lead to marsh-scale flow concentration to the bare channels, causing an increase in tidal prism in the channels along with a less flood-dominant asymmetry of the horizontal tide. The decrease in flood-dominance continues as the platform grows vertically and the sediment-demand of the platform decreases. However, when the platform elevation gets sufficiently high in the tidal frame and part of the spring-neap cycle is confined to the channels, the discharge in the channels decreases and tidal asymmetry becomes more flood-dominant again, indicating an infilling of the marsh channels. Furthermore, model results suggest that hydro-morphodynamic feedbacks based on tidal prism to channel cross-sectional area relationships keep the marsh channels from filling in completely by enhancing ebb-dominance as long as the tidal volume and flow velocities remain sufficiently high. Overall, this study increases insight into the hydro-morphodynamic interactions between tidal flow and marsh geomorphology during various stages of eco-geomorphological development of marshes and marsh channels in particular.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koch, Andreas; Burkert, Andreas; Rich, R. Michael
We report on the discovery of strong tidal features around a dwarf spheroidal galaxy in the Hydra I galaxy cluster, indicating its ongoing tidal disruption. This very low surface brightness object, HCC-087, was originally classified as an early-type dwarf in the Hydra Cluster Catalogue (HCC), but our re-analysis of the ESO-VLT/FORS images of the HCC unearthed a clear indication of an S-shaped morphology and a large spatial extent. Its shape, luminosity (M{sub V} = -11.6 mag), and physical size (at a half-light radius of 3.1 kpc and a full length of {approx}5.9 kpc) are comparable to the recently discovered NGCmore » 4449B and the Sagittarius dwarf spheroidal, all of which are undergoing clear tidal disruption. Aided by N-body simulations we argue that HCC-087 is currently at its first apocenter, at 150 kpc, around the cluster center and that it is being tidally disrupted by the galaxy cluster's potential itself. An interaction with the nearby (50 kpc) S0 cluster galaxy HCC-005, at M{sub *} {approx} 3 Multiplication-Sign 10{sup 10} M{sub Sun} is rather unlikely, as this constellation requires a significant amount of dynamical friction and thus low relative velocities. The S-shaped morphology and large spatial extent of the satellite would, however, also appear if HCC-087 would orbit the cluster center. These features appear to be characteristic properties of satellites that are seen in the process of being tidally disrupted, independent of the environment of the destruction. An important finding of our simulations is an orientation of the tidal tails perpendicular to the orbit.« less
Comparative oceanography of coastal lagoons
NASA Technical Reports Server (NTRS)
Kjerfve, Bjorn
1986-01-01
The hypothesis that physical lagoon characteristics and variability depend on the channel connecting the lagoon to the adjacent coastal ocean is evaluated. The geographical, hydrological, and oceanographic characteristics of 10 lagoon systems are described and analyzed; these oceanographic features are utilized to classify the lagoon systems. Choked lagoons (Laguna Joyuda, Coorong, Lake St.Lucia, Gippsland Lakes, Lake Songkla/Thale Luang/Thale Noi, and Lagoa dos Patos) are prevalent on coasts with high wave energy and low tidal range; restricted lagoons (Lake Pontchartrain and Laguna de Terminos) are located on low/medium wave energy coasts with a low tidal range; and leaky lagoons (Mississippi Sound and Belize Lagoon/Chetumal Bay) are connected to the ocean by wide tidal passes that transmit oceanic effects into the lagoon with a minimum of resistance. The data support the hypothesis that the nature of the connecting channel controls system functions.
THE INFLUENCE OF ORBITAL ECCENTRICITY ON TIDAL RADII OF STAR CLUSTERS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Webb, Jeremy J.; Harris, William E.; Sills, Alison
2013-02-20
We have performed N-body simulations of star clusters orbiting in a spherically symmetric smooth galactic potential. The model clusters cover a range of initial half-mass radii and orbital eccentricities in order to test the historical assumption that the tidal radius of a cluster is imposed at perigalacticon. The traditional assumption for globular clusters is that since the internal relaxation time is larger than its orbital period, the cluster is tidally stripped at perigalacticon. Instead, our simulations show that a cluster with an eccentric orbit does not need to fully relax in order to expand. After a perigalactic pass, a clustermore » recaptures previously unbound stars, and the tidal shock at perigalacticon has the effect of energizing inner region stars to larger orbits. Therefore, instead of the limiting radius being imposed at perigalacticon, it more nearly traces the instantaneous tidal radius of the cluster at any point in the orbit. We present a numerical correction factor to theoretical tidal radii calculated at perigalacticon which takes into consideration both the orbital eccentricity and current orbital phase of the cluster.« less
Peculiarities in velocity dispersion and surface density profiles of star clusters
NASA Astrophysics Data System (ADS)
Küpper, Andreas H. W.; Kroupa, Pavel; Baumgardt, Holger; Heggie, Douglas C.
2010-10-01
Based on our recent work on tidal tails of star clusters we investigate star clusters of a few 104Msolar by means of velocity dispersion profiles and surface density profiles. We use a comprehensive set of N-body computations of star clusters on various orbits within a realistic tidal field to study the evolution of these profiles with time, and ongoing cluster dissolution. From the velocity dispersion profiles we find that the population of potential escapers, i.e. energetically unbound stars inside the Jacobi radius, dominates clusters at radii above about 50 per cent of the Jacobi radius. Beyond 70 per cent of the Jacobi radius nearly all stars are energetically unbound. The velocity dispersion therefore significantly deviates from the predictions of simple equilibrium models in this regime. We furthermore argue that for this reason this part of a cluster cannot be used to detect a dark matter halo or deviations from the Newtonian gravity. By fitting templates to about 104 computed surface density profiles we estimate the accuracy which can be achieved in reconstructing the Jacobi radius of a cluster in this way. We find that the template of King works well for extended clusters on nearly circular orbits, but shows significant flaws in the case of eccentric cluster orbits. This we fix by extending this template with three more free parameters. Our template can reconstruct the tidal radius over all fitted ranges with an accuracy of about 10 per cent, and is especially useful in the case of cluster data with a wide radial coverage and for clusters showing significant extra-tidal stellar populations. No other template that we have tried can yield comparable results over this range of cluster conditions. All templates fail to reconstruct tidal parameters of concentrated clusters, however. Moreover, we find that the bulk of a cluster adjusts to the mean tidal field which it experiences and not to the tidal field at perigalacticon as has often been assumed in other investigations, i.e. a fitted tidal radius is a cluster's time average mean tidal radius and not its perigalactic one. Furthermore, we study the tidal debris in the vicinity of the clusters and find it to be well represented by a power law with a slope of -4 to -5. This steep slope we ascribe to the epicyclic motion of escaped stars in the tidal tails. Star clusters close to apogalacticon show a significantly shallower slope of up to -1, however. We suggest that clusters at apogalacticon can be identified by measuring this slope.
Uncertainties in tidal theory: Implications for bloated hot Jupiters
NASA Astrophysics Data System (ADS)
Leconte, Jérémy; Chabrier, Gilles; Baraffe, Isabelle
2011-11-01
Thanks to the combination of transit photometry and radial velocity doppler measurements, we are now able to constrain theoretical models of the structure and evolution of objects in the whole mass range between icy giants and stars, including the giant planet/brown dwarf overlapping mass regime (Leconte et al. 2009). In the giant planet mass range, the significant fraction of planets showing a larger radius than predicted by the models suggests that a missing physical mechanism which is either injecting energy in the deep convective zone or reducing the net outward thermal flux is taking place in these objects. Several possibilities have been suggested for such a mechanism:•downward transport of kinetic energy originating from strong winds generated at the planet's surface (Showman & Guillot 2002),•enhanced opacity sources in hot-Jupiter atmospheres (Burrows et al. 2007),•ohmic dissipation in the ionized atmosphere (Batygin & Stevenson 2010),•(inefficient) layered or oscillatory convection in the planet's interior (Chabrier & Baraffe 2007),•Tidal heating due to circularization of the orbit, as originally suggested by Bodenheimer, Lin & Mardling (2001).Here we first review the differences between current models of tidal evolution and their uncertainties. We then revisit the viability of the tidal heating hypothesis using a tidal model which treats properly the highly eccentric and misaligned orbits commonly encountered in exoplanetary systems. We stress again that the low order expansions in eccentricity often used in constant phase lag tidal models (i.e. constant Q) necessarily yields incorrect results as soon as the (present or initial) eccentricity exceeds ~ 0.2, as can be rigorously demonstrated from Kepler's equations.
Diurnal, semidiurnal, and fortnightly tidal components in orthotidal proglacial rivers.
Briciu, Andrei-Emil
2018-02-22
The orthotidal rivers are a new concept referring to inland rivers influenced by gravitational tides through the groundwater tides. "Orthotidal signals" is intended to describe tidal signals found in inland streamwaters (with no oceanic input); these tidal signals were locally generated and then exported into streamwaters. Here, we show that orthotidal signals can be found in proglacial rivers due to the gravitational tides affecting the glaciers and their surrounding areas. The gravitational tides act on glacier through earth and atmospheric tides, while the subglacial water is affected in a manner similar to the groundwater tides. We used the wavelet analysis in order to find tidally affected streamwaters. T_TIDE analyses were performed for discovering the tidal constituents. Tidal components with 0.95 confidence level are as follows: O1, PI1, P1, S1, K1, PSI1, M2, T2, S2, K2, and MSf. The amplitude of the diurnal tidal constituents is strongly influenced by the daily thermal cycle. The average amplitude of the semidiurnal tidal constituents is less altered and ranges from 0.0007 to 0.0969 m. The lunisolar synodic fortnightly oscillation, found in the time series of the studied river gauges, is a useful signal for detecting orthotidal rivers when using noisier data. The knowledge of the orthotidal oscillations is useful for modeling fine resolution changes in rivers.
Diana Stralberg; Nils Warnock; Nadav Nur; Hildie Spautz; Gary W. Page
2005-01-01
More than 80 percent of San Francisco Bay's original tidal wetlands have been altered or displaced, reducing available habitat for a range of tidal marsh-dependent species, including the Federally listed California Clapper Rail (Rallus longirostris obsoletus) and three endemic Song Sparrow (Melospiza melodia) subspecies. In...
Sumo Puff: Tidal debris or disturbed ultra-diffuse galaxy?
NASA Astrophysics Data System (ADS)
Greco, Johnny P.; Greene, Jenny E.; Price-Whelan, Adrian M.; Leauthaud, Alexie; Huang, Song; Goulding, Andy D.; Strauss, Michael A.; Komiyama, Yutaka; Lupton, Robert H.; Miyazaki, Satoshi; Takada, Masahiro; Tanaka, Masayuki; Usuda, Tomonori
2018-01-01
We report the discovery of a diffuse stellar cloud with an angular extent ≳30″, which we term "Sumo Puff", in data from the Hyper Suprime-Cam Subaru Strategic Program (HSC-SSP). While we do not have a redshift for this object, it is in close angular proximity to a post-merger galaxy at redshift z = 0.0431 and is projected within a few virial radii (assuming similar redshifts) of two other ˜L⋆ galaxies, which we use to bracket a potential redshift range of 0.0055 < z < 0.0431. The object's light distribution is flat, as characterized by a low Sérsic index (n ˜ 0.3). It has a low central g-band surface brightness of ˜26.4 mag arcsec-2, large effective radius of ˜13″ (˜11 kpc at z = 0.0431 and ˜1.5 kpc at z = 0.0055), and an elongated morphology (b/a ˜ 0.4). Its red color (g - i ˜ 1) is consistent with a passively evolving stellar population and similar to the nearby post-merger galaxy, and we may see tidal material connecting Sumo Puff with this galaxy. We offer two possible interpretations for the nature of this object: (1) it is an extreme, galaxy-sized tidal feature associated with a recent merger event, or (2) it is a foreground dwarf galaxy with properties consistent with a quenched, disturbed, ultra-diffuse galaxy. We present a qualitative comparison with simulations that demonstrates the feasibility of forming a structure similar to this object in a merger event. Follow-up spectroscopy and/or deeper imaging to confirm the presence of the bridge of tidal material will be necessary to reveal the true nature of this object.
NASA Technical Reports Server (NTRS)
Egbert, Gary D.
2001-01-01
A numerical ocean tide model has been developed and tested using highly accurate TOPEX/Poseidon (T/P) tidal solutions. The hydrodynamic model is based on time stepping a finite difference approximation to the non-linear shallow water equations. Two novel features of our implementation are a rigorous treatment of self attraction and loading (SAL), and a physically based parameterization for internal tide (IT) radiation drag. The model was run for a range of grid resolutions, and with variations in model parameters and bathymetry. For a rational treatment of SAL and IT drag, the model run at high resolution (1/12 degree) fits the T/P solutions to within 5 cm RMS in the open ocean. Both the rigorous SAL treatment and the IT drag parameterization are required to obtain solutions of this quality. The sensitivity of the solution to perturbations in bathymetry suggest that the fit to T/P is probably now limited by errors in this critical input. Since the model is not constrained by any data, we can test the effect of dropping sea-level to match estimated bathymetry from the last glacial maximum (LGM). Our results suggest that the 100 m drop in sea-level in the LGM would have significantly increased tidal amplitudes in the North Atlantic, and increased overall tidal dissipation by about 40%. However, details in tidal solutions for the past 20 ka are sensitive to the assumed stratification. IT drag accounts for a significant fraction of dissipation, especially in the LGM when large areas of present day shallow sea were exposed, and this parameter is poorly constrained at present.
Castle, J.W.; Byrnes, A.P.
2005-01-01
Petrophysical properties were determined for six facies in Lower Silurian sandstones of the Appalachian basin: fluvial, estuarine, upper shoreface, lower shoreface, tidal channel, and tidal flat. Fluvial sandstones have the highest permeability for a given porosity and exhibit a wide range of porosity (2-18%) and permeability (0.002-450 md). With a transition-zone thickness of only 1-6 m (3-20 ft), fluvial sandstones with permeability greater than 5 md have irreducible water saturation (Siw) less than 20%, typical of many gas reservoirs. Upper shoreface sandstones exhibit good reservoir properties with high porosity (10-21%), high permeability (3-250 md), and low S iw (<20%). Lower shoreface sandstones, which are finer grained, have lower porosity (4-12%), lower permeability (0.0007-4 md), thicker transition zones (6-180 m [20-600 ft]), and higher S iw. In the tidal-channel, tidal-flat, and estuarine facies, low porosity (average < 6%), low permeability (average < 0.02 md), and small pore throats result in large transition zones (30-200 m; 100-650 ft) and high water saturations. The most favorable reservoir petrophysical properties and the best estimated production from the Lower Silurian sandstones are associated with fluvial and upper shoreface facies of incised-valley fills, which we interpret to have formed predominantly in areas of structural recesses that evolved from promontories along a collisional margin during the Taconic orogeny. Although the total thickness of the sandstone may not be as great in these areas, reservoir quality is better than in adjacent structural salients, which is attributed to higher energy depositional processes and shallower maximum burial depth in the recesses than in the salients. Copyright ??2005. The American Association of Petroleum Geologists. All rights reserved.
NASA Astrophysics Data System (ADS)
Davis, Earl E.; Heesemann, Martin; Lambert, Anthony; He, Jianheng
2017-04-01
Mass-balancing voltages from four buried broadband seismometers connected to the NEPTUNE Canada seafloor cable are being recorded at 24-bit resolution. Sites are located on the Vancouver Island continental shelf, the nearby Cascadia accretionary prism, the eastern flank of the Juan de Fuca Ridge, and the western flank close to the Juan de Fuca Ridge axis. Tidal variations are present throughout the records. Variations in vertical acceleration at three of the sites match predicted gravitational attraction variations very well; those at the fourth site show a small residual that is probably caused by sensitivity to tilt resulting from sensor inclination. Horizontal accelerations, which at tidal periods are sensitive primarily to tilt, are anomalously large relative to standard-earth model results. After removal of predicted tidal body and ocean attraction and loading terms, the residuals are seen to follow ocean pressure variations. Responses range from 0.4 μrad dbar-1 (0.04 μrad kPa-1) at 10° true (down under positive load) at the continental shelf site, to 0.6 μrad dbar-1 at 243° at the Cascadia prism, 0.4 μrad dbar-1 at 90° at the eastern Juan de Fuca Ridge flank, and 0.2 μrad dbar-1 at 116° true on the western ridge flank. Except at the continental shelf site, tilts are roughly perpendicular to structural strike. The tilt observations can be explained by loading-induced deformation in the presence of local lithologic gradients or by the influence of faults or structurally controlled anisotropic elastic properties. The observations highlight the utility of using mass position data from force-feedback broad-band seismometers for geodynamic studies.
Diatom assemblages from a turbid coastal plain estuary: Río de la Plata (South America)
NASA Astrophysics Data System (ADS)
Licursi, Magdalena; Sierra, María Victoria; Gómez, Nora
2006-08-01
The Río de la Plata is located on the East coast of South America and is a shallow, large-scale, turbid coastal plain estuary that covers an approximate area of 35,000 km 2. Despite the socio-economic importance of the Río de la Plata, studies related to the biological aspects of this ecosystem are scarce, particularly in the freshwater tidal zone. The objective of this study was to explore the diatom composition and distribution of density, biomass and empty frustules along the fluvial-mixohaline axis. Furthermore it was to analyze the spatial succession of diatom assemblages and the environmental variables during an extensive sampling carried out during spring 2001. Two replicate sub-surface water samples were collected at 29 sites for quantitative analysis of phytoplankton. The greatest number of species, mainly pennate taxa, were observed in the freshwater tidal zone. The average density of the diatoms was 59 cells ml - 1 . Chains or filaments of centric diatoms were frequent and dominant in the samples along the fluvial-mixohaline axis. The carbon content of the diatoms increased downstream, with an average value of 2.5 μg C l - 1 in the freshwater tidal zone and 4.4 μg C l - 1 in the mixohaline zone. Diatoms supplied 65% of the total phytoplankton carbon content in the freshwater tidal zone and reached 17% in the mixohaline zone. Canonical Correspondence Analysis (CCA) allowed us to identify two species assemblages in the Río de la Plata differentiated mainly by salinity, pH and silicate gradients. In our study species exclusive to brackish waters were not identified, but some freshwater and marine taxa with wide ranges of salinity tolerance were observed.
Bergamaschi, B.A.; Krabbenhoft, D.P.; Aiken, G.R.; Patino, E.; Rumbold, D.G.; Orem, W.H.
2012-01-01
The flux of dissolved organic carbon (DOC) from mangrove swamps accounts for 10% of the global terrestrial flux of DOC to coastal oceans. Recent findings of high concentrations of mercury (Hg) and methylmercury (MeHg) in mangroves, in conjunction with the common co-occurrence of DOC and Hg species, have raised concerns that mercury fluxes may also be large. We used a novel approach to estimate export of DOC, Hg, and MeHg to coastal waters from a mangrove-dominated estuary in Everglades National Park (Florida, USA). Using in situ measurements of fluorescent dissolved organic matter as a proxy for DOC, filtered total Hg, and filtered MeHg, we estimated the DOC yield to be 180 (??12.6) g C m -2 yr -1, which is in the range of previously reported values. Although Hg and MeHg yields from tidal mangrove swamps have not been previously measured, our estimated yields of Hg species (28 ?? 4.5 ??g total Hg m -2 yr -1 and 3.1 ?? 0.4 ??g methyl Hg m -2 yr -1) were five times greater than is typically reported for terrestrial wetlands. These results indicate that in addition to the well documented contributions of DOC, tidally driven export from mangroves represents a significant potential source of Hg and MeHg to nearby coastal waters. ?? 2011 American Chemical Society.
NASA Astrophysics Data System (ADS)
Wiberg, Patricia L.; Law, Brent A.; Wheatcroft, Robert A.; Milligan, Timothy G.; Hill, Paul S.
2013-06-01
Measurements of erodibility, porosity and sediment size were made three times over the course of a year at sites within a muddy, mesotidal flat-channel complex in southern Willapa Bay, WA, to examine spatial and seasonal variations in sediment properties and transport potential. Average critical shear stress profiles, the metric we used for erodibility, were quantified using a power-law fit to cumulative eroded mass vs. shear stress for the flats and channel. Laboratory erosion measurements of deposits made from slurries of flat and channel sediment were used to quantify erodibility over consolidation time scales ranging from 6 to 96h. Erodibility of the tidal flats was consistently low, with spatial variability comparable to seasonal variability despite seasonal changes in biological activity. In contrast, channel-bed erodibility underwent large seasonal variations, with mobile sediment present in the channel thalweg during winter that was absent in the spring and summer, when channel-bed erodibility was low and comparable to that of the tidal flats. Sediment on the northern (left) channel flank was mobile in summer and winter, whereas sediment on the southern flank was not. Seasonal changes in channel-bed erodibility are sufficient to produce order-of-magnitude changes in suspended sediment concentrations during peak tidal flows. Porosity just below the sediment surface was the best predictor of erodibility in our study area.
NASA Astrophysics Data System (ADS)
Lee, Han Soo; Shimoyama, Tomohisa; Popinet, Stéphane
2015-10-01
The impacts of tides on extreme tsunami propagation due to potential Nankai Trough earthquakes in the Seto Inland Sea (SIS), Japan, are investigated through numerical experiments. Tsunami experiments are conducted based on five scenarios that consider tides at four different phases, such as flood, high, ebb, and low tides. The probes that were selected arbitrarily in the Bungo and Kii Channels show less significant effects of tides on tsunami heights and the arrival times of the first waves than those that experience large tidal ranges in inner basins and bays of the SIS. For instance, the maximum tsunami height and the arrival time at Toyomaesi differ by more than 0.5 m and nearly 1 h, respectively, depending on the tidal phase. The uncertainties defined in terms of calculated maximum tsunami heights due to tides illustrate that the calculated maximum tsunami heights in the inner SIS with standing tides have much larger uncertainties than those of two channels with propagating tides. Particularly in Harima Nada, the uncertainties due to the impacts of tides are greater than 50% of the tsunami heights without tidal interaction. The results recommend simulate tsunamis together with tides in shallow water environments to reduce the uncertainties involved with tsunami modeling and predictions for tsunami hazards preparedness. This article was corrected on 26 OCT 2015. See the end of the full text for details.
2011-01-01
The flux of dissolved organic carbon (DOC) from mangrove swamps accounts for 10% of the global terrestrial flux of DOC to coastal oceans. Recent findings of high concentrations of mercury (Hg) and methylmercury (MeHg) in mangroves, in conjunction with the common co-occurrence of DOC and Hg species, have raised concerns that mercury fluxes may also be large. We used a novel approach to estimate export of DOC, Hg, and MeHg to coastal waters from a mangrove-dominated estuary in Everglades National Park (Florida, USA). Using in situ measurements of fluorescent dissolved organic matter as a proxy for DOC, filtered total Hg, and filtered MeHg, we estimated the DOC yield to be 180 (±12.6) g C m–2 yr–1, which is in the range of previously reported values. Although Hg and MeHg yields from tidal mangrove swamps have not been previously measured, our estimated yields of Hg species (28 ± 4.5 μg total Hg m–2 yr–1 and 3.1 ± 0.4 μg methyl Hg m–2 yr–1) were five times greater than is typically reported for terrestrial wetlands. These results indicate that in addition to the well documented contributions of DOC, tidally driven export from mangroves represents a significant potential source of Hg and MeHg to nearby coastal waters. PMID:22206226
Tillmann, Bourke W; Klingel, Michelle L; Iansavichene, Alla E; Ball, Ian M; Nagpal, A Dave
2017-10-01
To evaluate the hospital survival in patients with severe ARDS managed with ECMO and low tidal volume ventilation as compared to patients managed with low tidal volume ventilation alone. Electronic databases were searched for studies of at least 10 adult patients with severe ARDS comparing the use of ECMO with low tidal volume ventilation to mechanical ventilation with a low tidal volume alone. Only studies reporting hospital or ICU survival were included. All identified studies were assessed independently by two reviewers. Of 1782 citations, 27 studies (n=1674) met inclusion criteria. Hospital survival for ECMO patients ranged from 33.3 to 86%, while survival with conventional therapy ranged from 36.3 to 71.2%. Five studies were identified with appropriate control groups allowing comparison, but due to the high degree of variability between studies (I 2 =63%), their results could not be pooled. Two of these studies demonstrated a significant difference, both favouring ECMO over conventional therapy. Given the lack of studies with appropriate control groups, our confidence in a difference in outcome between the two therapies remains weak. Future studies on the use of ECMO for severe ARDS are needed to clarify the role of ECMO in this disease. Copyright © 2017 Elsevier Inc. All rights reserved.
Suspended sediment transport trough a large fluvial-tidal channel network
Wright, Scott A.; Morgan-King, Tara L.
2015-01-01
The confluence of the Sacramento and San Joaquin Rivers, CA, forms a large network of interconnected channels, referred to as the Sacramento-San Joaquin Delta (the Delta). The Delta comprises the transition zone from the fluvial influences of the upstream rivers and tidal influences of San Francisco Bay downstream. Formerly an extensive tidal marsh, the hydrodynamics and geomorphology of Delta have been substantially modified by humans to support agriculture, navigation, and water supply. These modifications, including construction of new channels, diking and draining of tidal wetlands, dredging of navigation channels, and the operation of large pumping facilities for distribution of freshwater from the Delta to other parts of the state, have had a dramatic impact on the physical and ecological processes within the Delta. To better understand the current physical processes, and their linkages to ecological processes, the USGS maintains an extensive network of flow, sediment, and water quality gages in the Delta. Flow gaging is accomplished through use of the index-velocity method, and sediment monitoring uses turbidity as a surrogate for suspended-sediment concentration. Herein, we present analyses of the transport and dispersal of suspended sediment through the complex network of channels in the Delta. The primary source of sediment to the Delta is the Sacramento River, which delivers pulses of sediment primarily during winter and spring runoff events. Upon reaching the Delta, the sediment pulses move through the fluvial-tidal transition while also encountering numerous channel junctions as the Sacramento River branches into several distributary channels. The monitoring network allows us to track these pulses through the network and document the dominant transport pathways for suspended sediment. Further, the flow gaging allows for an assessment of the relative effects of advection (the fluvial signal) and dispersion (from the tides) on the sediment pulses as they move through the system. Herein, we present analyses of the “first flush” sediment pulse that occurred on the Sacramento River in December 2012, documenting the transport pathways as well as the effects of advection and dispersion on the sediment as it moved through the fluvial-tidal transition in the Delta. The analyses identified an important transport pathway through the interior of the Delta toward the large pumping facilities in the south Delta, which has important implications for native fish (because their movements are triggered by sediment/turbidity). The results also reveal the dramatic transition from fluvial-dominated transport (advection) to tidal-dominated transport (dispersion) as the sediment pulse approaches the estuary.
NASA Astrophysics Data System (ADS)
Wilson, C.; Goodbred, S. L., Jr.; Sams, S.; Small, C.
2015-12-01
The tidal channel network in southwest Bangladesh has been undergoing major adjustment in response to anthropogenic modification over the past few decades. Densely inhabited, agricultural islands that have been embanked to protect against inundation by tides, river flooding, and storm surges (i.e., polders) preclude tidal exchange and sedimentation. Studies reveal this results in elevation deficits relative to mean high water, endangering local communities when embankment failures occur (e.g., during storms, lateral channel erosion). In addition, many studies suggest that the decrease in tidal prism and associated change in hydrodynamics from poldering causes shoaling in remaining tidal channels, which can cause a disruption in transportation. The widespread closure and conversion of tidal channel areas to profitable shrimp aquaculture is also prevalent in this region. In this study, we quantify the direct closure of tidal channels due to poldering and shrimp aquaculture using historical Landsat and Google Earth imagery, and analyze the morphologic adjustment of the tidal channel network due to these perturbations. In the natural Sundarbans mangrove forest, the tidal channel network has remained relatively constant since the 1970s. In contrast, construction of polders removed >1000 km of primary tidal creeks and >90 km2 has been reclaimed outside of polders through infilling and closure of formerly-active, higher order conduit channels now used for shrimp aquaculture. Field validation confirm tidal restriction by large sluice gates is prevalent, favoring local channel siltation at rates up to 20cm/yr. With the impoundment of primary creeks and closure of 30-60% of conduit channels in the study area, an estimated 1,400 x 106 m3 of water has been removed from the tidal prism and potentially redirected within remaining channels. This has significant implications for tidal amplification in this region. Further, we estimate that 12.3 x 106 MT of sediment annually infills remaining channels, which amounts to ~12% of the total annual sediment load supplied to the tidal deltaplain. This suggests that significant sediment is available in the system for elevation remediation of polders, however the hydrodynamic feasibility of reopening clogged channels and effective sediment dispersal is questionable
Three-dimensional circulation dynamics of along-channel flow in stratified estuaries
NASA Astrophysics Data System (ADS)
Musiak, Jeffery Daniel
Estuaries are vital because they are the major interface between humans and the oceans and provide valuable habitat for a wide range of organisms. Therefore it is important to model estuarine circulation to gain a better comprehension of the mechanics involved and how people effect estuaries. To this end, this dissertation combines analysis of data collected in the Columbia River estuary (CRE) with novel data processing and modeling techniques to further the understanding of estuaries that are strongly forced by riverflow and tides. The primary hypothesis tested in this work is that the three- dimensional (3-D) variability in along-channel currents in a strongly forced estuary can be largely accounted for by including the lateral variations in density and bathymetry but neglecting the secondary, or lateral, flow. Of course, the forcing must also include riverflow and oceanic tides. Incorporating this simplification and the modeling ideas put forth by others with new modeling techniques and new ideas on estuarine circulation will allow me to create a semi-analytical quasi 3-D profile model. This approach was chosen because it is of intermediate complexity to purely analytical models, that, if tractable, are too simple to be useful, and 3-D numerical models which can have excellent resolution but require large amounts of time, computer memory and computing power. Validation of the model will be accomplished using velocity and density data collected in the Columbia River Estuary and by comparison to analytical solutions. Components of the modeling developed here include: (1) development of a 1-D barotropic model for tidal wave propagation in frictionally dominated systems with strong topography. This model can have multiple tidal constituents and multiply connected channels. (2) Development and verification of a new quasi 3-D semi-analytical velocity profile model applicable to estuarine systems which are strongly forced by both oceanic tides and riverflow. This model includes diurnal and semi-diurnal tidal and non- linearly generated overtide circulation and residual circulation driven by riverflow, baroclinic forcing, surface wind stress and non-linear tidal forcing. (3) Demonstration that much of the lateral variation in along-channel currents is caused by variations in along- channel density forcing and bathymetry.
Feher, Laura C.; Osland, Michael J.; Griffith, Kereen T.; Grace, James B.; Howard, Rebecca J.; Stagg, Camille L.; Enwright, Nicholas M.; Krauss, Ken W.; Gabler, Christopher A.; Day, Richard H.; Rogers, Kerrylee
2017-01-01
Climate greatly influences the structure and functioning of tidal saline wetland ecosystems. However, there is a need to better quantify the effects of climatic drivers on ecosystem properties, particularly near climate-sensitive ecological transition zones. Here, we used climate- and literature-derived ecological data from tidal saline wetlands to test hypotheses regarding the influence of climatic drivers (i.e., temperature and precipitation regimes) on the following six ecosystem properties: canopy height, biomass, productivity, decomposition, soil carbon density, and soil carbon accumulation. Our analyses quantify and elucidate linear and nonlinear effects of climatic drivers. We quantified positive linear relationships between temperature and above-ground productivity and strong positive nonlinear (sigmoidal) relationships between (1) temperature and above-ground biomass and canopy height and (2) precipitation and canopy height. Near temperature-controlled mangrove range limits, small changes in temperature are expected to trigger comparatively large changes in biomass and canopy height, as mangrove forests grow, expand, and, in some cases, replace salt marshes. However, within these same transition zones, temperature-induced changes in productivity are expected to be comparatively small. Interestingly, despite the significant above-ground height, biomass, and productivity relationships across the tropical–temperate mangrove–marsh transition zone, the relationships between temperature and soil carbon density or soil carbon accumulation were not significant. Our literature review identifies several ecosystem properties and many regions of the world for which there are insufficient data to fully evaluate the influence of climatic drivers, and the identified data gaps can be used by scientists to guide future research. Our analyses indicate that near precipitation-controlled transition zones, small changes in precipitation are expected to trigger comparatively large changes in canopy height. However, there are scant data to evaluate the influence of precipitation on other ecosystem properties. There is a need for more decomposition data across climatic gradients, and to advance understanding of the influence of changes in precipitation and freshwater availability, additional ecological data are needed from tidal saline wetlands in arid climates. Collectively, our results can help scientists and managers better anticipate the linear and nonlinear ecological consequences of climate change for coastal wetlands.
NASA Astrophysics Data System (ADS)
Kwiatkowski, Lester; Caldeira, Ken
2015-04-01
Anthropogenic emissions of CO2 and invasion of part of this CO2 into the oceans results in a decrease in seawater pH and a lowering of the calcium carbonate saturation state. The historic and projected decrease of the calcium carbonate saturation state of seawater has the potential to compromise the ability of many marine calcifying organisms to form their calcium carbonate shells or skeletons and is likely to have significant ocean ecosystem impacts over the 21st Century. In laboratory manipulations temperate calcifying organisms have been shown to exhibit reduced calcification as a result of CO2 addition. However, very few experiments have observed how calcification in temperate systems responds to natural variations in seawater carbonate chemistry. We assess the community level sensitivity of Californian tidal pool calcification rates to variability in the calcium carbonate saturation state. Our tidal pool study sites at Bodega Bay in Northern California experience extreme variation in low tide carbonate saturation state due to photosynthetic activity and the time at which the pools are isolated from the open ocean. During our study period, we observed aragonite saturation levels ranging from 0.5 to 9. Photosynthetic activity is largely dependent on temperature and photosynthetic active radiation which vary on a diurnal timescale whereas the time at which pools are isolated from open seawater, and thus the amount by which tide pool carbonate chemistry differs from that of open ocean waters, is largely a consequence of tidal period which varies on a lunar cycle. Because there are substantial uncorrelated components of light, temperature, and seawater carbonate chemistry in our data, one can separate the influence of carbonate saturation state on calcification from the influence of temperature and PAR. This provides an opportunity to characterise the short-timescale sensitivity of tidal pool calcification rates to changes in carbonate saturation state. We show that on such timescales community level rates of daytime calcification are not strongly influenced by variability in carbonate saturation state. This suggests that these intertidal communities may be more resilient to projected ocean acidification than previously thought, although extending this work to consider longer timescales would be required to more firmly support this hypothesis.
Conditions for tidal bore formation in convergent alluvial estuaries
NASA Astrophysics Data System (ADS)
Bonneton, Philippe; Filippini, Andrea Gilberto; Arpaia, Luca; Bonneton, Natalie; Ricchiuto, Mario
2016-04-01
Over the last decade there has been an increasing interest in tidal bore dynamics. However most studies have been focused on small-scale bore processes. The present paper describes the first quantitative study, at the estuary scale, of the conditions for tidal bore formation in convergent alluvial estuaries. When freshwater discharge and large-scale spatial variations of the estuary water depth can be neglected, tide propagation in such estuaries is controlled by three main dimensionless parameters: the nonlinearity parameter ε0 , the convergence ratio δ0 and the friction parameter ϕ0. In this paper we explore this dimensionless parameter space, in terms of tidal bore occurrence, from a database of 21 estuaries (8 tidal-bore estuaries and 13 non tidal-bore estuaries). The field data point out that tidal bores occur for convergence ratios close to the critical convergence δc. A new proposed definition of the friction parameter highlights a clear separation on the parameter plane (ϕ0,ε0) between tidal-bore estuaries and non tidal-bore estuaries. More specifically, we have established that tidal bores occur in convergent estuaries when the nonlinearity parameter is greater than a critical value, εc , which is an increasing function of the friction parameter ϕ0. This result has been confirmed by numerical simulations of the two-dimensional Saint Venant equations. The real-estuary observations and the numerical simulations also show that, contrary to what is generally assumed, tide amplification is not a necessary condition for tidal bore formation. The effect of freshwater discharge on tidal bore occurrence has been analyzed from the database acquired during three long-term campaigns carried out on the Gironde/Garonne estuary. We have shown that in the upper estuary the tidal bore intensity is mainly governed by the local dimensionless tide amplitude ε. The bore intensity is an increasing function of ε and this relationship does not depend on freshwater discharge. However, freshwater discharge damps the tidal wave during its propagation and thus reduces ε and consequently limits the tidal bore development in the estuary. To take into account this process in the tidal-bore scaling analysis, it is necessary to introduce a fourth external parameter, the dimensionless river discharge Q0 .
The Wadden Sea in transition - consequences of sea level rise
NASA Astrophysics Data System (ADS)
Becherer, Johannes; Hofstede, Jacobus; Gräwe, Ulf; Purkiani, Kaveh; Schulz, Elisabeth; Burchard, Hans
2018-01-01
The impact of sea level rise (SLR) on the future morphological development of the Wadden Sea (North Sea) is investigated by means of extensive process-resolving numerical simulations. A new sediment and morphodynamic module was implemented in the well-established 3D circulation model GETM. A number of different validations are presented, ranging from an idealized 1D channel over a semi-idealized 2D Wadden Sea basin to a fully coupled realistic 40-year hindcast without morphological amplification of the Sylt-Rømøbight, a semi-enclosed subsystem of the Wadden Sea. Based on the results of the hindcast, four distinct future scenarios covering the period 2010-2100 are simulated. While these scenarios differ in the strength of SLR and wind forcing, they also account for an expected increase of tidal range over the coming century. The results of the future projections indicate a transition from a tidal-flat-dominated system toward a lagoon-like system, in which large fractions of the Sylt-Rømøbight will remain permanently covered by water. This has potentially dramatic implications for the unique ecosystem of the Wadden Sea. Although the simulations also predict an increased accumulation of sediment in the back-barrier basin, this accumulation is far too weak to compensate for the rise in mean sea level.
The Impact of the Degree of Aquifer Confinement and Anisotropy on Tidal Pulse Propagation.
Shuai, Pin; Knappett, Peter S K; Hossain, Saddam; Hosain, Alamgir; Rhodes, Kimberly; Ahmed, Kazi Matin; Cardenas, M Bayani
2017-07-01
Oceanic tidal fluctuations which propagate long distances up coastal rivers can be exploited to constrain hydraulic properties of riverbank aquifers. These estimates, however, may be sensitive to degree of aquifer confinement and aquifer anisotropy. We analyzed the hydraulic properties of a tidally influenced aquifer along the Meghna River in Bangladesh using: (1) slug tests combined with drilling logs and surface resistivity to estimate Transmissivity (T); (2) a pumping test to estimate T and Storativity (S) and thus Aquifer Diffusivity (D PT ); and (3) the observed reduction in the amplitude and velocity of a tidal pulse to calculate D using the Jacob-Ferris analytical solution. Average Hydraulic Conductivity (K) and T estimated with slug tests and borehole lithology were 27.3 m/d and 564 m 2 /d, respectively. Values of T and S determined from the pumping test ranged from 400 to 500 m 2 /d and 1 to 5 × 10 -4 , respectively with D PT ranging from 9 to 40 × 10 5 m 2 /d. In contrast, D estimated from the Jacob-Ferris model ranged from 0.5 to 9 × 10 4 m 2 /d. We hypothesized this error resulted from deviations of the real aquifer conditions from those assumed by the Jacob-Ferris model. Using a 2D numerical model tidal pulses were simulated across a range of conditions and D was calculated with the Jacob-Ferris model. Moderately confined (K top /K aquifer < 0.01) or anisotropic aquifers (K x /K z > 10) yield D within a factor of 2 of the actual value. The order of magnitude difference in D between pumping test and Jacob-Ferris model at our site argues for little confinement or anisotropy. © 2017, National Ground Water Association.
NASA Astrophysics Data System (ADS)
Sakaizawa, Ryosuke; Kawai, Takaya; Sato, Toru; Oyama, Hiroyuki; Tsumune, Daisuke; Tsubono, Takaki; Goto, Koichi
2018-03-01
The target seas of tidal-current models are usually semi-closed bays, minimally affected by ocean currents. For these models, tidal currents are simulated in computational domains with a spatial scale of a couple hundred kilometers or less, by setting tidal elevations at their open boundaries. However, when ocean currents cannot be ignored in the sea areas of interest, such as in open seas near coastlines, it is necessary to include ocean-current effects in these tidal-current models. In this study, we developed a numerical method to analyze tidal currents near coasts by incorporating pre-calculated ocean-current velocities. First, a large regional-scale simulation with a spatial scale of several thousand kilometers was conducted and temporal changes in the ocean-current velocity at each grid point were stored. Next, the spatially and temporally interpolated ocean-current velocity was incorporated as forcing into the cross terms of the convection term of a tidal-current model having computational domains with spatial scales of hundreds of kilometers or less. Then, we applied this method to the diffusion of dissolved CO2 in a sea area off Tomakomai, Japan, and compared the numerical results and measurements to validate the proposed method.
Interactions of Estuarine Shoreline Infrastructure With Multiscale Sea Level Variability
NASA Astrophysics Data System (ADS)
Wang, Ruo-Qian; Herdman, Liv M.; Erikson, Li; Barnard, Patrick; Hummel, Michelle; Stacey, Mark T.
2017-12-01
Sea level rise increases the risk of storms and other short-term water-rise events, because it sets a higher water level such that coastal surges become more likely to overtop protections and cause floods. To protect coastal communities, it is necessary to understand the interaction among multiday and tidal sea level variabilities, coastal infrastructure, and sea level rise. We performed a series of numerical simulations for San Francisco Bay to examine two shoreline scenarios and a series of short-term and long-term sea level variations. The two shoreline configurations include the existing topography and a coherent full-bay containment that follows the existing land boundary with an impermeable wall. The sea level variability consists of a half-meter perturbation, with duration ranging from 2 days to permanent (i.e., sea level rise). The extent of coastal flooding was found to increase with the duration of the high-water-level event. The nonlinear interaction between these intermediate scale events and astronomical tidal forcing only contributes ˜1% of the tidal heights; at the same time, the tides are found to be a dominant factor in establishing the evolution and diffusion of multiday high water events. Establishing containment at existing shorelines can change the tidal height spectrum up to 5%, and the impact of this shoreline structure appears stronger in the low-frequency range. To interpret the spatial and temporal variability at a wide range of frequencies, Optimal Dynamic Mode Decomposition is introduced to analyze the coastal processes and an inverse method is applied to determine the coefficients of a 1-D diffusion wave model that quantify the impact of bottom roughness, tidal basin geometry, and shoreline configuration on the high water events.
NASA Astrophysics Data System (ADS)
Lei, Zhenxin; Zhao, Gang; Zeng, Aihua; Shen, Lihua; Lan, Zhongjian; Jiang, Dengkai; Han, Zhanwen
2016-12-01
Employing tidally enhanced stellar wind, we studied in binaries the effects of metallicity, mass ratio of primary to secondary, tidal enhancement efficiency and helium abundance on the formation of blue hook (BHk) stars in globular clusters (GCs). A total of 28 sets of binary models combined with different input parameters are studied. For each set of binary model, we presented a range of initial orbital periods that is needed to produce BHk stars in binaries. All the binary models could produce BHk stars within different range of initial orbital periods. We also compared our results with the observation in the Teff-logg diagram of GC NGC 2808 and ω Cen. Most of the BHk stars in these two GCs locate well in the region predicted by our theoretical models, especially when C/N-enhanced model atmospheres are considered. We found that mass ratio of primary to secondary and tidal enhancement efficiency have little effects on the formation of BHk stars in binaries, while metallicity and helium abundance would play important roles, especially for helium abundance. Specifically, with helium abundance increasing in binary models, the space range of initial orbital periods needed to produce BHk stars becomes obviously wider, regardless of other input parameters adopted. Our results were discussed with recent observations and other theoretical models.
Organic geochemistry in Pennsylvanian tidally influenced sediments from SW Indiana
Mastalerz, Maria; Kvale, E.P.; Stankiewicz, B.A.; Portle, K.
1999-01-01
Tidal rhythmites are vertically stacked small-scale sedimentary structures that record daily variations in tidal current energy and are known to overlie some low-sulfur coals in the Illinois Basin. Tidal rhythmites from the Pennsylvanian Brazil Formation in Indiana have been analyzed sedimentologically, petrographically, and geochemically in order to understand the character and distribution of organic matter (OM) preserved in an environment of daily interactions between marine and fresh waters. The concentration of organic matter (TOC) ranges from traces to 6.9% and sulfur rarely exceeds 0.1% in individual laminae. Angular vitrinite is the major organic matter type, accounting for 50-90% of total OM. The C/S ratio decreases as the verfical distance from the underlying coal increases. A decreasing C/S ratio coupled with decreases in Pr/Ph, Pr/n-C17, Ph/n-C18 ratios and a shift of carbon isotopic composition towards less negative values suggest an increase in salinity from freshwater in the mudflat tidal rhythmite facies close to the coal to brackish/marine in the sandflat tidal rhythmite facies further above from the coal. Within an interval spanning one year of deposition, TOC and S values show monthly variability. On a daily scale, TOC and S oscillations are still detectable but they are of lower magnitude than on a monthly scale. These small-scale variations are believed to reflect oscillations in water salinity related to tidal cycles.Tidal rhythmites are vertically stacked small-scale sedimentary structures that record daily variations in tidal current energy and are known to overlie some low-sulfur coals in the Illinois Basin. Tidal rhythmites from the Pennsylvanian Brazil Formation in Indiana have been analyzed sedimentologically, petrographically, and geochemically in order to understand the character and distribution of organic matter (OM) preserved in an environment of daily interactions between marine and fresh waters. The concentration of organic matter (TOC) ranges from traces to 6.9% and sulfur rarely exceeds 0.1% in individual laminae. Angular vitrinite is the major organic matter type, accounting for 50-90% of total OM. The C/S ratio decreases as the vertical distance from the underlying coal increases. A decreasing C/S ratio coupled with decreases in Pr/Ph, Pr/n-C17, Ph/n-C18 ratios and a shift of carbon isotopic composition towards less negative values suggest an increase in salinity from freshwater in the mudflat tidal rhythmite facies close to the coal to brackish/marine in the sandflat tidal rhythmite facies further above from the coal. Within an interval spanning one year of deposition, TOC and S values show monthly variability. On a daily scale, TOC and S oscillations are still detectable but they are of lower magnitude than on a monthly scale. These small-scale variations are believed to reflect oscillations in water salinity related to tidal cycles.
Nested high resolution models for the coastal areas of the North Indian Ocean
NASA Astrophysics Data System (ADS)
Wobus, Fred; Shapiro, Georgy
2017-04-01
Oceanographic processes at coastal scales require much higher horizontal resolution from both ocean models and observations as compared to deep water oceanography. Aside from a few exceptions such as land-locked seas, the hydrodynamics of coastal shallow waters is strongly influenced by the tides, which in turn control the mixing, formation of temperature fronts and other phenomena. The numerical modelling of the coastal domains requires good knowledge of the lateral boundary conditions. The application of lateral boundary conditions to ocean models is a notoriously tricky task, but can only be avoided with global ocean models. Smaller scale regional ocean models are typically nested within global models, and even smaller-scale coastal models may be nested within regional models, creating a nesting chain. However a direct nesting of a very high resolution coastal model into a coarse resolution global model results in degrading of the accuracy of the outputs due to the large difference between the model resolutions. This is why a nesting chain has to be applied, so that every increase in resolution is kept within a reasonable minimum (typically by a factor of 3 to 5 at each step). Global models are traditionally non-tidal, so at some stage of the nesting chain the tides need to be introduced. This is typically done by calculating the tidal constituents from a dedicated tidal model (e.g. TPXO) for all boundary points of a nested model. The tidal elevation at each boundary location can then be calculated from the harmonics at every model time step and the added to the parent model non-tidal SSH. This combination of harmonics-derived tidal SSH and non-tidal parent model SSH is typically applied to the nested domain using the Flather condition, together with the baroclinic velocities from the parent model. The harmonics-derived SSH cannot be added to an SSH signal that is already tidal, so the parent model SSH has to be either detided or taken from a non-tidal model. Due to the lack of effective detiding methods and the prevailing view that harmonics-derived SSH provide a cleaner tidal signal over the SSH taken from a tidal parent model it has traditionally only been the last model in a nesting chain that is tidal. But to our knowledge these assumptions haven't been sufficiently tested and need to be re-visited. Furthermore, the lack of tides in the larger-scale regional models limits their capability and we would like to push for a nesting chain where all regional models (including the intermediate ones) are tidal. In this study we have conducted a number of numerical experiments where we have tested whether a tidal regional model can effectively force a tidal nested model without resorting to detiding techniques and the use of a dedicated tidal model such as TPXO. We have tested whether it's possible to use a tidal parent model and use the total SSH (combined geostrophic SSH and tidal component) to force the child model at the boundary. We call this strategy "tidal nesting" as opposed to TPXO tidal forcing which is used in "traditional nesting". For our experiments we have developed 2 models based on the same NEMO 3.6 codebase. The medium resolution AS20 model covers the Arabian Sea at 1/20 ̊ with 50 layers using a hybrid s-on-top-of-z vertical discretisation scheme (Shapiro et al., 2013); and the high resolution AG60 model covers the Arabian/Persian Gulf at 1/60 ̊ with 50 layers. The AS20 model is "traditionally" nested within the UK Met Office non-tidal large-scale Indian Ocean model at 1/12 ̊ resolution and tidal constituents at the boundary are taken from the TPXO7.2 Global Tidal Solution. Our "tidal nesting" experiments use different forcing frequencies at which the tidal SSH is fed from the larger-scale AS20 into the smaller-scale AG60 model. These strategies are compared with "traditional nesting" where the inner AG60 uses boundary conditions from a non-tidal AS20 parent model and tides are computed from TPXO harmonics. The results reveal an optimal tidal nesting strategy which forces tidal SSH from the parent model at 1-hourly intervals whilst non-tidal parameters are forced at 24-hourly intervals. The analysis includes comparisons with tidal gauges in the Gulf of Oman and inside the Arabian Gulf. The accuracy of tides inside the Gulf is inhibited by the narrow Straits of Hormuz, and tidal nesting doesn't achieve the same level of agreement with observation as traditional nesting. We also found that a further increase in the SSH forcing frequency to 30 minutes does not further improve the results. The forcing at intervals of 1h/24h for tidal/non-tidal parameters shows that a 2-step tidal nesting chain is viable and thus tides can be represented in more than just the last model of a nesting chain. References: Shapiro, G., Luneva, M., Pickering, J., and Storkey, D.: The effect of various vertical discretization schemes and horizontal diffusion parameterization on the performance of a 3-D ocean model: the Black Sea case study, Ocean Sci., 9, 377-390, doi:10.5194/os-9-377-2013, 2013.
Bottom sediments and nutrients in the tidal Potomac system, Maryland and Virginia
Glenn, Jerry L.
1988-01-01
The characteristics and distributions of near-surface bottom sediments and of nutrients in the sediments provide information on modern sediment and nutrient sources, sedimentation environments, and geochemical reactions in the tidal Potomac system, Maryland and Virginia. This information is fundamental to an improved understanding of sedimentation and eutrophication problems in the tidal Potomac system. The tidal Potomac system consists of 1,230 square kilometers of intertidal to subtidal Potomac mainstem and tributary streambed from the heads-of-tides to Chesapeake Bay. Tidal Potomac sediments are dominantly silt and clay except in local areas. An average sediment sample is about two-thirds silt and clay (fine) particles and one-third sand (coarse) particles. The mean of the median size of all samples is 6.60 phi, or 0.010 millimeters. Sorting generally is poor and the average sediment is skewed toward the fine tail of the size-distribution curve. Mean particle-size measures have large standard deviations. Among geomorphic units, two distinctly different size populations are found; fine (median phi about 9), and poorly sorted (sorting about 3) sediments in the channel and the smooth flat, and coarse (median phi about 2), and well sorted (sorting about 1) sediments in the shoreline flat and the irregular slope. Among mainstem hydrologic divisions, an average sediment from the river and the estuary division is coarser and more variable than an average sediment from the transition division. Substantial concentrations of total carbon, total nitrogen, and total phosphorus, and limited amounts of inorganic carbon, ammonia nitrogen and nitrite plus nitrate nitrogen occur in tidal Potomac sediments. An average tidal Potomac sediment sample weighing 1 kilogram contains about 21,000 milligrams of total carbon, 2,400 milligrams of total nitrogen, 1,200 milligrams of total phosphorus, 600 milligrams of inorganic carbon, 170 milligrams of ammonia nitrogen, and 2 milligrams of nitrite plus nitrate nitrogen. Total carbon, nitrogen, and phosphorus have an average ratio by weight of 18:2:1 and an average ratio by atoms of 94:8:1. Nutrient concentrations and nutrient ratios have large ranges and standard deviations. Nutrient concentrations usually are closely related to particle size; large concentrations are characteristic of fine sediments in the channel and the smooth flat, and small concentrations are typical of coarse sediments in the shoreline flat and the irregular slope. Concentrations typically decrease from the river division to the estuary division. Mainstem and tributaries show no statistically significant difference in mean particle-size measures or mean nutrient concentrations. Tributaries do not contribute large quantities of sediment with diverse texture or nutrient content to the Potomac mainstem. Particle-size measures and nutrient concentrations in the mainstem are significantly related to hydrologic divisions and geomorphic units; that is, particle size and nutrients vary significantly along and across the Potomac mainstem. Lateral variations in particle size and nutrient content are more pronounced and contribute more to significant relations than longitudinal variations contribute. The mean values for the median particle size and for the percentage of sand indicate significant variations among hydrologic divisions for samples from a geomorphic unit, and among geomorphic units, for samples from a hydrologic division. Sediments of channels and smooth flats in the river division commonly are coarser than sediments of channels and smooth flats in the transition and the estuary divisions. Shoreline flats in the estuary division are coarser than shoreline flats in the river division. Shoreline flats and irregular slopes in each hydrologic division generally are significantly coarser than channels and smooth flats. Relations between particle-size measures and geomorphic units show progressively larger cor
NASA Astrophysics Data System (ADS)
Hopkins, Julia; Elgar, Steve; Raubenheimer, Britt
2017-04-01
Accurately characterizing the interaction of waves and currents can improve predictions of wave propagation and subsequent sediment transport in the nearshore. Along the southern shoreline of Martha's Vineyard, MA, waves propagate across strong tidal currents as they shoal, providing an ideal environment for investigating wave-current interaction. Wave directions and mean currents observed for two 1-month-long periods in 7- and 2-m water depths along 11 km of the Martha's Vineyard shoreline have strong tidal modulations. Wave directions shift by as much as 70 degrees over a tidal cycle in 7 m depth, and by as much as 25 degrees in 2 m depth. The magnitude of the tidal modulations in the wave field decreases alongshore to the west, consistent with the observed decrease in tidal currents from 2.1 to 0.2 m/s. The observations are reproduced accurately by a numerical model (SWAN and Deflt3D-FLOW) that simulates waves and currents over the observed bathymetry. Model simulations with and without wave-current interaction and tidal depth changes demonstrate that the observed tidal modulations of the wave field primarily are caused by wave-current interaction and not by tidal changes to water depths over the nearby complex shoals. Sediment transport estimates from simulated wave conditions using a range of tidal currents and offshore wave fields indicate that the modulation of the wave field at Martha's Vineyard can impact the direction of wave-induced alongshore sediment transport, sometimes driving transport opposing the direction of the offshore incident wave field. As such, the observations and model simulations suggest the importance of wave-current interaction to tidally averaged transport in mixed-energy wave-and-current nearshore environments. Supported by ASD(R&E), NSF, NOAA (Sea Grant), and ONR.
Predicting the vertical structure of tidal current and salinity in San Francisco Bay, California
Ford, Michael; Wang, Jia; Cheng, Ralph T.
1990-01-01
A two-dimensional laterally averaged numerical estuarine model is developed to study the vertical variations of tidal hydrodynamic properties in the central/north part of San Francisco Bay, California. Tidal stage data, current meter measurements, and conductivity, temperature, and depth profiling data in San Francisco Bay are used for comparison with model predictions. An extensive review of the literature is conducted to assess the success and failure of previous similar investigations and to establish a strategy for development of the present model. A σ plane transformation is used in the vertical dimension to alleviate problems associated with fixed grid model applications in the bay, where the tidal range can be as much as 20–25% of the total water depth. Model predictions of tidal stage and velocity compare favorably with the available field data, and prototype salinity stratification is qualitatively reproduced. Conclusions from this study as well as future model applications and research needs are discussed.
Wu, Yunna; Xu, Chuanbo; Ke, Yiming; Chen, Kaifeng; Xu, Hu
2017-12-15
For tidal range power plants to be sustainable, the environmental impacts caused by the implement of various tidal barrage schemes must be assessed before construction. However, several problems exist in the current researches: firstly, evaluation criteria of the tidal barrage schemes environmental impact assessment (EIA) are not adequate; secondly, uncertainty of criteria information fails to be processed properly; thirdly, correlation among criteria is unreasonably measured. Hence the contributions of this paper are as follows: firstly, an evaluation criteria system is established from three dimensions of hydrodynamic, biological and morphological aspects. Secondly, cloud model is applied to describe the uncertainty of criteria information. Thirdly, Choquet integral with respect to λ-fuzzy measure is introduced to measure the correlation among criteria. On the above bases, a multi-criteria decision-making decision framework for tidal barrage scheme EIA is established to select the optimal scheme. Finally, a case study demonstrates the effectiveness of the proposed framework. Copyright © 2017 Elsevier Ltd. All rights reserved.
Wavelet analysis of lunar semidiurnal tidal influence on selected inland rivers across the globe
Briciu, Andrei-Emil
2014-01-01
The lunar semidiurnal influence is already known for tidal rivers. The moon also influences inland rivers at a monthly scale through precipitation. We show that, for some non-tidal rivers, with special geological conditions, the lunar semidiurnal tidal oscillation can be detected. The moon has semidiurnal tidal influence on groundwater, which will then export it to streamflow. Long time series with high frequency measurements were analysed by using standard wavelet analysis techniques. The lunar semidiurnal signal explains the daily double-peaked river level evolution of inland gauges. It is stronger where springs with high discharge occur, especially in the area of Edwards-Trinity and Great Artesian Basin aquifers and in areas with dolomite/limestone strata. The average maximum semidiurnal peaks range between 0.002 and 0.1 m. This secondary effect of the earth tides has important implications in predicting high resolution hydrographs, in the water cycle of wetlands and in water management. PMID:24569793
Lunar Science from Lunar Laser Ranging
NASA Technical Reports Server (NTRS)
Williams, J. G.; Boggs, D. H.; Ratcliff, J. T.
2013-01-01
Variations in rotation and orientation of the Moon are sensitive to solid-body tidal dissipation, dissipation due to relative motion at the fluid-core/solid-mantle boundary, tidal Love number k2, and moment of inertia differences. There is weaker sensitivity to flattening of the core/mantle boundary (CMB) and fluid core moment of inertia. Accurate Lunar Laser Ranging (LLR) measurements of the distance from observatories on the Earth to four retroreflector arrays on the Moon are sensitive to variations in lunar rotation, orientation and tidal displacements. Past solutions using the LLR data have given results for Love numbers plus dissipation due to solid-body tides and fluid core. Detection of the fluid core polar minus equatorial moment of inertia difference due to CMB flattening is weakly significant. This strengthens the case for a fluid lunar core. Future approaches are considered to detect a solid inner core.
Kimbro, David L
2012-02-01
Prey perception of predators can dictate how prey behaviorally balance the need to avoid being eaten with the need to consume resources, and this perception and consequent behavior can be strongly influenced by physical processes. Physical factors, however, can also alter the density and diversity of predators that pursue prey. Thus, it remains uncertain to what extent variable risk perception and antipredator behavior vs. variation in predator consumption of prey underlie prey-resource dynamics and give rise to large-scale patterns in natural systems. In an experimental food web where tidal inundation of marsh controls which predators access prey, crab and conch (predators) influenced the survivorship and antipredator behavior of snails (prey) irrespective of whether tidal inundation occurred on a diurnal or mixed semidiurnal schedule. Specifically, cues of either predator caused snails to ascend marsh leaves; snail survivorship was reduced more by unrestrained crabs than by unrestrained conchs; and snail survivorship was lowest with multiple predators than with any single predator despite interference. In contrast to these tidally consistent direct consumptive and nonconsumptive effects, indirect predator effects differed with tidal regime: snail grazing of marsh leaves in the presence of predators increased in the diurnal tide but decreased in the mixed semidiurnal tidal schedule, overwhelming the differences in snail density that resulted from direct predation. In addition, results suggest that snails may increase their foraging to compensate for stress-induced metabolic demand in the presence of predator cues. Patterns from natural marshes spanning a tidal inundation gradient (from diurnal to mixed semidiurnal tides) across 400 km of coastline were consistent with experimental results: despite minimal spatial variation in densities of predators, snails, abiotic stressors, and marsh productivity, snail grazing on marsh plants increased and plant biomass decreased on shorelines exposed to a diurnal tide. Because both the field and experimental results can be explained by tidal-induced variation in risk perception and snail behavior rather than by changes in snail density, this study reinforces the importance of nonconsumptive predator effects in complex natural systems and at large spatial scales.
Homogeneous wave turbulence driven by tidal flows
NASA Astrophysics Data System (ADS)
Favier, B.; Le Reun, T.; Barker, A.; Le Bars, M.
2017-12-01
When a moon orbits around a planet, the rotation of the induced tidal bulge drives a homogeneous, periodic, large-scale flow. The combination of such an excitation with the rotating motion of the planet has been shown to drive parametric resonance of a pair of inertial waves in a mechanism called the elliptical instability. Geophysical fluid layers can also be stratified: this is the case for instance of the Earth's oceans and, as suggested by several studies, of the upper part of the Earth's liquid Outer Core. We thus investigate the stability of a rotating and stratified layer undergoing tidal distortion in the limit where either rotation or stratification is dominant. We show that the periodic tidal flow drives a parametric subharmonic resonance of inertial (resp. internal) waves in the rotating (resp. stratified) case. The instability saturates into a wave turbulence pervading the whole fluid layer. In such a state, the instability mechanism conveys the tidal energy from the large scale tidal flow to the resonant modes, which then feed a succession of triadic resonances also generating small spatial scales. In the rotating case, we observe a kinetic energy spectrum with a k-2 slope for which the Coriolis force is dominant at all spatial scales. In the stratified case, where the timescale separation is increased between the tidal excitation and the Brunt-Väisälä frequencies, the temporal spectrum decays with a ω-2 power law up to the cut-off frequency beyond which waves do not exist. This result is reminiscent of the Garrett and Munk spectrum measured in the oceans and theoretically described as a manifestation of internal wave turbulence. In addition to revealing an instability driving homogeneous turbulence in geophysical fluid layers, our approach is also an efficient numerical tool to investigate the possibly universal properties of wave turbulence in a geophysical context.
Long-Period Tidal Variations in the Length of Day
NASA Technical Reports Server (NTRS)
Ray, Richard D.; Erofeeva, Svetlana Y.
2014-01-01
A new model of long-period tidal variations in length of day is developed. The model comprises 80 spectral lines with periods between 18.6 years and 4.7 days, and it consistently includes effects of mantle anelasticity and dynamic ocean tides for all lines. The anelastic properties followWahr and Bergen; experimental confirmation for their results now exists at the fortnightly period, but there remains uncertainty when extrapolating to the longest periods. The ocean modeling builds on recent work with the fortnightly constituent, which suggests that oceanic tidal angular momentum can be reliably predicted at these periods without data assimilation. This is a critical property when modeling most long-period tides, for which little observational data exist. Dynamic ocean effects are quite pronounced at shortest periods as out-of-phase rotation components become nearly as large as in-phase components. The model is tested against a 20 year time series of space geodetic measurements of length of day. The current international standard model is shown to leave significant residual tidal energy, and the new model is found to mostly eliminate that energy, with especially large variance reduction for constituents Sa, Ssa, Mf, and Mt.
Tidal energetics: Studies with a barotropic model
NASA Astrophysics Data System (ADS)
Stewart, James Scott
The tidal energy from luni-solar gravitational forcing is dissipated principally through the dissipation of oceanic tides. Recent estimates using disparate methods, including analysis of satellite orbits and the timing of ancient eclipses, now indicate that this dissipation totals approximately 3.5 terawatts. However, the mechanisms and spatial distribution of this dissipation is not yet fully understood. In this work, three different aspects of tidal energetics are investigated with a variable resolution barotropic tidal model. The distribution of tidal energy, dissipation and energy flux are examined using high resolution models of several marginal seas: the European shelf, the Sea of Okhotsk, the Yellow and East China Seas, the South China Sea and the Bering Sea. Most modern tide models dissipate tidal energy with a quadratic friction parameterization of bottom friction. Since such dissipation depends nonlinearly on the velocity of the tidal current, these models dissipate primarily in shallow seas where current magnitudes are high. Without assimilating observational data, such tidal models have unreasonably high levels of tidal-period averaged kinetic and potential energies. I have added a linear friction parameterization to the traditional quadratic formulation and am able to obtain realistic tidal energy levels with an unassimilated model. The resulting model is used to investigate the tidal energetics of the recent geological past when sea level was 50 meters higher and 120 meters lower than at the present time. Long-period tides are of small enough amplitude that their energetics are an almost negligible part of the total tidal energy budget. However, the behavior of these tides yields insights into the response of the ocean to large scale forcing. We have modeled the lunar fortnightly (M f) and lunar monthly (Mm) tidal components and determined that the ratio of the Mf potential-to-kinetic energy ratio to that of Mm is about 3.9, consistent with values expected for long Rossby wave dynamics. Also, we obtain quality (Q) values for the Mf and Mm tides of 5.9 and 6.2 respectively which is consistent with recent inferences of basin circulation responses of Q of about 5.5 for 5-day synoptic forcing.
Accuracy Assessment of Recent Global Ocean Tide Models around Antarctica
NASA Astrophysics Data System (ADS)
Lei, J.; Li, F.; Zhang, S.; Ke, H.; Zhang, Q.; Li, W.
2017-09-01
Due to the coverage limitation of T/P-series altimeters, the lack of bathymetric data under large ice shelves, and the inaccurate definitions of coastlines and grounding lines, the accuracy of ocean tide models around Antarctica is poorer than those in deep oceans. Using tidal measurements from tide gauges, gravimetric data and GPS records, the accuracy of seven state-of-the-art global ocean tide models (DTU10, EOT11a, GOT4.8, FES2012, FES2014, HAMTIDE12, TPXO8) is assessed, as well as the most widely-used conventional model FES2004. Four regions (Antarctic Peninsula region, Amery ice shelf region, Filchner-Ronne ice shelf region and Ross ice shelf region) are separately reported. The standard deviations of eight main constituents between the selected models are large in polar regions, especially under the big ice shelves, suggesting that the uncertainty in these regions remain large. Comparisons with in situ tidal measurements show that the most accurate model is TPXO8, and all models show worst performance in Weddell sea and Filchner-Ronne ice shelf regions. The accuracy of tidal predictions around Antarctica is gradually improving.
NASA Astrophysics Data System (ADS)
Olariu, Cornel; Steel, Ronald J.; Dalrymple, Robert W.; Gingras, Murray K.
2012-11-01
The Lower Eocene Baronia Formation in the Ager Basin is interpreted as a series of stacked compound dunes confined within a tectonically generated embayment or tidal seaway. This differs from the previous interpretation of lower Baronia sand bodies as tidal bars in the front of a delta. The key architectural building block of the succession, the deposit of a single compound dune, forms a 1-3 m-thick, upward coarsening succession that begins with highly bioturbated, muddy, very fine to fine grained sandstone that contains an open-marine Cruziana ichnofacies. This is overlain gradationally by ripple-laminated sandstone that is commonly bioturbated and contains mud drapes. The succession is capped by fine- to coarse-grained sandstones that contain both planar and trough cross-strata with unidirectional or bi-directional paleocurrent directions and occasional thin mud drapes on the foresets. The base of a compound dune is gradational where it migrated over muddy sandstone deposited between adjacent dunes, but is sharp and erosional where it migrated over the stoss side of a previous compound dune. The cross strata that formed by simple superimposed dunes dip in the same direction as the inclined master bedding planes within the compound dune, forming a forward-accretion architecture. This configuration is the fundamental reason why these sandbodies are interpreted as compound tidal dunes rather than as tidal bars, which, in contrast, generate lateral-accretion architecture. In the Baronia, fields of compound dunes generated tabular sandbodies 100s to 1000s of meters in extent parallel to the paleocurrent direction and up to 6 m thick that alternate vertically with highly bioturbated muddy sandstones (up to 10 m thick) that represent the low-energy fringes of the dune fields or periods of high sea level when current speeds decreased. Each cross-stratified sandstone sheet (compound-dune complexes) contains overlapping lenticular "shingles" formed by individual compound dunes, separated by 10-30 cm of bioturbated muddy sandstone, which migrated over each other in an offlapping, progradational fashion. Each compound-dune complex (the best reservoir rock) thins as it downlaps, at average rates of 3-4 m/km in a dip direction. These reservoir units can be comprised of discrete compartments, each formed by a single compound dune, that extend for 500-1000 m in the direction of the current, and are at least 350-600 m wide in a flow-transverse direction. Distinguishing between tidal bars and tidal dunes in an ancient tidal succession can be difficult because both can contain similar cross-bedded facies and have overlapping thicknesses; however, the internal architecture and sandbody orientations are different. Tidal bars have their long axis almost parallel both to the tidal current direction and to the strike of the lateral-accretion master surfaces. In inshore areas, they are bounded by channels and fine upward. Large compound tidal dunes, in contrast, have their crest oriented approximately normal to the tidal currents and contain a forward-accretion architecture. Coeval channels are uncommon within large, sub-tidal dune fields. The above distinctions are very important to reservoir description and modeling, because the long axis of the intra-reservoir compartments in the two cases will be 90° apart.
Effect of the tidal-seismic resonance
NASA Astrophysics Data System (ADS)
Tian, Y.; Zheng, Y.
2017-12-01
For a moon spiraling inward to its planet, the tidal force frequency of a moon is increasing. When the distance of the moon to the planet is close enough, the tidal force frequency can intrude into the frequency range of planet normal modes. Usually the football mode, also known as 0S2, has the lowest frequency. This mode is most likely to be excited and coupled first. When the tidal force has the same frequency with the normal modes, the resonance can happen. The existence of the topography or internal heterogeneities of the planet can have mode coupling. So the energy of gravity force with higher spatial frequencies can be transferred to the low spatial 0S2 mode. The resonant mode 0S2 can exert a negative torque to the rotating moon so its orbit decays. With our 3D numerical boundary element method which takes into account planet surface topography (i.e., Mars as example), we found that the closer the moon is to the planet, the greater falling rate of the moon would be. We applied our method to a planet with equal size of Mars and elastic constants in possible range. The vibration amplitude on the planet surface can reach to the scale of meters when as the moon drop down to about 1.04 radius of the planet to achieve resonance with the 0S2 mode. Our modeling showed that the influence of tidal force caused resonance could not be neglected in the process of moon falling. On the other hand, the resonance may also be able to speed up the accretion of the early forming planet by absorbing the dust of small asteroid nearby by the tidal-seismic resonance.
Conrads, Paul; Roehl, Edwin A.
2007-01-01
Six reservoirs in North Carolina discharge into the Pee Dee River, which flows 160 miles through South Carolina to the coastal communities near Myrtle Beach, South Carolina. During the Southeast's record-breaking drought from 1998 to 2003, salinity intrusions inundated a coastal municipal freshwater intake, limiting water supplies. To evaluate the effects of regulated flows of the Pee Dee River on salinity intrusion in the Waccamaw River and Atlantic Intracoastal Waterway, the South Carolina Department of Natural Resources and a consortium of stakeholders entered into a cooperative agreement with the U.S. Geological Survey to apply data-mining techniques to the long-term time series to analyze and simulate salinity dynamics near the freshwater intakes along the Grand Strand of South Carolina. Salinity intrusion in tidal rivers results from the interaction of three principal forces?streamflow, mean tidal water levels, and tidal range. To analyze, model, and simulate hydrodynamic behaviors at critical coastal gages, data-mining techniques were applied to over 20 years of hourly streamflow, coastal water-quality, and water-level data. Artificial neural network models were trained to learn the variable interactions that cause salinity intrusions. Streamflow data from the 18,300-square-mile basin were input to the model as time-delayed variables and accumulated tributary inflows. Tidal inputs to the models were obtained by decomposing tidal water-level data into a 'periodic' signal of tidal range and a 'chaotic' signal of mean water levels. The artificial neural network models were able to convincingly reproduce historical behaviors and generate alternative scenarios of interest. To make the models directly available to all stakeholders along the Pee Dee and Waccamaw Rivers and Atlantic Intracoastal Waterway, an easy-to-use decision support system (DSS) was developed as a spreadsheet application that integrates the historical database, artificial neural network models, model controls, streaming graphics, and model output. An additional feature is a built-in optimizer that dynamically calculates the amount of flow needed to suppress salinity intrusions as tidal ranges and water levels vary over days and months. This DSS greatly reduced the number of long-term simulations needed for stakeholders to determine the minimum flow required to adequately protect the freshwater intakes.
Earth Observations taken by Expedition 26 crewmember
2010-11-27
ISS026-E-005121 (27 Nov. 2010) --- Tidal flats and channels on Long Island, Bahamas are featured in this image photographed by an Expedition 26 crew member on the International Space Station. The islands of the Bahamas in the Caribbean Sea are situated on large depositional platforms (the Great and Little Bahama Banks) composed mainly of carbonate sediments ringed by fringing reefs – the islands themselves are only the parts of the platform currently exposed above sea level. The sediments are formed mostly from the skeletal remains of organisms settling to the sea floor; over geologic time, these sediments will consolidate to form carbonate sedimentary rocks such as limestone. This detailed photograph provides a view of tidal flats and tidal channels near Sandy Cay on the western side of Long Island, located along the eastern margin of the Great Bahama Bank. The continually exposed parts of the island have a brown coloration in the image, a result of soil formation and vegetation growth (left). To the north of Sandy Cay an off-white tidal flat composed of carbonate sediments is visible; light blue-green regions indicate shallow water on the tidal flat. Tidal flow of seawater is concentrated through gaps in the anchored land surface, leading to formation of relatively deep tidal channels that cut into the sediments of the tidal flat. The channels, and areas to the south of the island, have a vivid blue coloration that provides a clear indication of deeper water (center).
Tidal variability in methane and nitrous oxide emissions along a subtropical estuarine gradient
NASA Astrophysics Data System (ADS)
Sturm, Katrin; Werner, Ursula; Grinham, Alistair; Yuan, Zhiguo
2017-06-01
This study investigates the tidal variability in methane (CH4) and nitrous oxide (N2O) emissions along a gradient of the subtropical Brisbane River estuary. Sampling was conducted at the upper, middle and lower reaches over two tidal cycles in 2013 and 2014. Methane and N2O emissions varied significantly over tidal cycles at all sites. Methane and N2O emissions measured at all locations and in both campaigns varied substantially in time, with the maximum to minimum flux ratio in a cycle varying between 2.5 - 9 and 1.7-4.7 times, respectively. Methane emissions peaked just before or at slack tides. In comparison, no clear patterns were observed between the N2O emissions and the tidal cycle despite there being large variations in N2O emissions in some cases. Methane concentrations were elevated during low tides whereas N2O concentrations showed no clear pattern over the tidal cycle. Surface water concentrations and tidal currents played important roles in CH4 and N2O emissions, but wind did not. Our findings show that measurements at a single point in time and site would result in significant errors in CH4 and N2O emission estimates. An adequate and careful sampling scheme is required to capture spatial and temporal variations of CH4 and N2O emissions and surface water concentrations which should cover at least one tidal cycle in different estuarine sections.
Topography-coupled resonance between Mars normal-modes and the tidal force of the Phobos
NASA Astrophysics Data System (ADS)
Tian, Y.; Zheng, Y.
2016-12-01
Phobos is the largest moon of Mars. The gravity attraction of Phobos to Mars is a periodic force, which may excite seismic waves inside Mars. Since Phobos is below the synchronous orbit, its orbit is continuously decreasing due to the tidal effect. This will result in a monotonic increase in its orbital frequency, which may eventually intrude into the seismic normal-mode frequency range to cause resonance. The objective of this research is to investigate whether such a resonance phenomenon can occur and what the consequence is. As we know, resonance happens when the periodic tidal force has a similar frequency as that of martian normal modes. It can be shown that such a resonance will not occur if Mars is perfectly spherical because the tidal force can only excite modes of the same angular order. For the same angular order, the tidal force frequencies are always smaller than those of the normal modes. However, when we consider the effect of topography of Mars, the resonance can occur because of coupling of normal modes. We use numerical method to calculate when the resonance will occur. We firstly solve for the normal modes of Mars by idealizing it as a solid elastic sphere. At the second step, we calculate the excitation effect of gravitational force from Phobos on each individual normal mode. For example, the gravity tidal force F at L=5, m=5 F55 can excite a normal mode 0S5 which can be coupled to 0T2. The third step is to calculate the frequency that the resonance will happen. For example, when the rotation frequency of Phobos increase to 0.8 mRad/s, the tidal force at L=5, m=5 can reach 4mRad/s which is the eigen-frequency of 0T2. Since we have calculated the coupling factors between each individual mode, the amplitude coefficients can be solved by a linear equation. We can observe a 100 times of amplitude increase of mode 0T2, which convince us the resonance will happen. The resonance may cause large amplitude of ground vibration of Mars. From our calculation, when the resonance happen, the energy dissipation rate will be greatly increased, which will make Phobos falling much faster. Eventually, Phobos will hit Mars in a very short time. Our research may give us a new prospective on early formation of planets.
The San Juan Delta, Colombia: tides, circulations, and salt dispersion
NASA Astrophysics Data System (ADS)
Restrepo, Juan D.; Kjerfve, Björn
2002-05-01
The San Juan River delta (Colombia) with an area of 800 km 2 is the largest delta environment on the Pacific coast of South America. It consists of active distributaries maintained by an average discharge of 2500 m 3 s -1, is tide dominated, and has relatively narrow estuarine mixing zones <17 km wide and typically ˜7 km wide. Water level and current time series in two distributary mouths indicate that the tide is semidiurnal with a form number 0.1-0.2 and a mean range of 3 m. Processes at tidal frequencies explain 75-95% of the water level variability with the remaining low-frequency variability attributed to meteorological forcing and river processes. The tidal phase for the main diurnal and semidiurnal constituents progress from north to south along the coast. Only the southernmost distributary experiences significant tidal asymmetry as a result of strong river discharge and shallow depths. In the northernmost distributary, shallow water constituents are insignificant. Tidal currents were more semidiurnal than the water level, with form number 0.09-0.13. Tidal ellipses indicated that currents were aligned with the channels and mean amplitudes <1 m s -1. In the delta distributaries, circulation modes varied from seaward flow at all depths during intermediate runoff conditions to gravitational circulation during rising and high discharge periods. In San Juan and Chavica distributaries, the currents were ebb-directed, while in Charambirá they were flood-directed. The circulation appears to be controlled by the morphology of the distributaries, which were weakly stratified and only sometimes moderately stratified. The net salt transport was directed seaward in San Juan and Charambirá, and landward at Chavica, indicating an imbalance in the salt budget, and signifying non-steady state behavior. The net longitudinal salt flux in the San Juan delta is largely a balance between ebb-directed advective flux, and flood-directed tidal sloshing. Along the distributary channels, fringing vegetation is controlled by freshwater discharge, longitudinal distribution of salinity, and morphology. In the most active distributaries, Chavica and San Juan, the vegetation setting is strongly shaped by the short estuarine zone, and mangroves only occur 5 km upstream of any distributary mouth, whereas in the tide-dominated distributaries, Charambirá and Cacahual, dense mangroves intrude 14 and 17 km upstream, respectively. Also, salt dispersion, tidal intrusion, salinity distribution, and mangrove extent in the San Juan delta agree qualitatively with the productive coastal fishery at the tide-dominated distributaries.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Piro, Anthony L., E-mail: piro@caltech.edu
The recently discovered system J0651 is the tightest known detached white dwarf (WD) binary. Since it has not yet initiated Roche-lobe overflow, it provides a relatively clean environment for testing our understanding of tidal interactions. I investigate the tidal heating of each WD, parameterized in terms of its tidal Q parameter. Assuming that the heating can be radiated efficiently, the current luminosities are consistent with Q {sub 1} {approx} 7 x 10{sup 10} and Q {sub 2} {approx} 2 x 10{sup 7}, for the He and C/O WDs, respectively. Conversely, if the observed luminosities are merely from the cooling ofmore » the WDs, these estimated values of Q represent the upper limits. A large Q {sub 1} for the He WD means its spin velocity will be slower than that expected if it was tidally locked, which, since the binary is eclipsing, may be measurable via the Rossiter-McLaughlin effect. After one year, gravitational wave emission shifts the time of eclipses by 5.5 s, but tidal interactions cause the orbit to shrink more rapidly, changing the time by up to an additional 0.3 s after a year. Future eclipse timing measurements may therefore infer the degree of tidal locking.« less
Simonds, F. William; Swarzenski, Peter W.; Rosenberry, Donald O.; Reich, Christopher D.; Paulson, Anthony J.
2008-01-01
Low dissolved oxygen concentrations in the waters of Hood Canal threaten marine life in late summer and early autumn. Oxygen depletion in the deep layers and landward reaches of the canal is caused by decomposition of excess phytoplankton biomass, which feeds on nutrients (primarily nitrogen compounds) that enter the canal from various sources, along with stratification of the water column that prevents mixing and replenishment of oxygen. Although seawater entering the canal is the largest source of nitrogen, ground-water discharge to the canal also contributes significant quantities, particularly during summer months when phytoplankton growth is most sensitive to nutrient availability. Quantifying ground-water derived nutrient loads entering an ecologically sensitive system such as Hood Canal is a critical component of constraining the total nutrient budget and ultimately implementing effective management strategies to reduce impacts of eutrophication. The amount of nutrients entering Hood Canal from ground water was estimated using traditional and indirect measurements of ground-water discharge, and analysis of nutrient concentrations. Ground-water discharge to Hood Canal is variable in space and time because of local geology, variable hydraulic gradients in the ground-water system adjacent to the shoreline, and a large tidal range of 3 to 5 meters. Intensive studies of ground-water seepage and hydraulic-head gradients in the shallow, nearshore areas were used to quantify the freshwater component of submarine ground-water discharge (SGD), whereas indirect methods using radon and radium geochemical tracers helped quantify total SGD and recirculated seawater. In areas with confirmed ground-water discharge, shore-perpendicular electrical resistivity profiles, continuous electromagnetic seepage-meter measurements, and continuous radon measurements were used to visualize temporal variations in ground-water discharge over several tidal cycles. The results of these field investigations show that ground-water discharge into the Lynch Cove area of Hood Canal is highly dynamic and strongly affected by the large tidal range. In areas with a steep shoreline and steep hydraulic gradient, ground-water discharge is spatially concentrated in or near the intertidal zone, with increased discharge during low tide. Topographically flat areas with weak hydraulic gradients had more spatial variability, including larger areas of seawater recirculation and more widely dispersed discharge. Measured total-dissolved-nitrogen concentrations in ground water ranged from below detection limits to 2.29 milligrams per liter and the total load entering Lynch Cove was estimated to be approximately 98 ? 10.3 metric tons per year (MT/yr). This estimate is based on net freshwater seepage rates from Lee-type seepage meter measurements and can be compared to estimates derived from geochemical tracer mass balance estimates (radon and radium) of 231 to 749 MT/yr, and previous water-mass-balance estimates (14 to 47 MT/ yr). Uncertainty in these loading estimates is introduced by complex biogeochemical cycles of relevant nutrient species, the representativeness of measurement sites, and by energetic dynamics at the coastal aquifer-seawater interface caused by tidal forcing.
Frequency-Dependent Tidal Triggering of Low Frequency Earthquakes Near Parkfield, California
NASA Astrophysics Data System (ADS)
Xue, L.; Burgmann, R.; Shelly, D. R.
2017-12-01
The effect of small periodic stress perturbations on earthquake generation is not clear, however, the rate of low-frequency earthquakes (LFEs) near Parkfield, California has been found to be strongly correlated with solid earth tides. Laboratory experiments and theoretical analyses show that the period of imposed forcing and source properties affect the sensitivity to triggering and the phase relation of the peak seismicity rate and the periodic stress, but frequency-dependent triggering has not been quantitatively explored in the field. Tidal forcing acts over a wide range of frequencies, therefore the sensitivity to tidal triggering of LFEs provides a good probe to the physical mechanisms affecting earthquake generation. In this study, we consider the tidal triggering of LFEs near Parkfield, California since 2001. We find the LFEs rate is correlated with tidal shear stress, normal stress rate and shear stress rate. The occurrence of LFEs can also be independently modulated by groups of tidal constituents at semi-diurnal, diurnal and fortnightly frequencies. The strength of the response of LFEs to the different tidal constituents varies between LFE families. Each LFE family has an optimal triggering frequency, which does not appear to be depth dependent or systematically related to other known properties. This suggests the period of the applied forcing plays an important role in the triggering process, and the interaction of periods of loading history and source region properties, such as friction, effective normal stress and pore fluid pressure, produces the observed frequency-dependent tidal triggering of LFEs.
The implications of tides on the Mimas ocean hypothesis
NASA Astrophysics Data System (ADS)
Rhoden, Alyssa Rose; Henning, Wade; Hurford, Terry A.; Patthoff, D. Alex; Tajeddine, Radwan
2017-02-01
We investigate whether a present-day global ocean within Mimas is compatible with the lack of tectonic activity on its surface by computing tidal stresses for ocean-bearing interior structure models derived from observed librations. We find that, for the suite of compatible rheological models, peak surface tidal stresses caused by Mimas' high eccentricity would range from a factor of 2 smaller to an order of magnitude larger than those on tidally active Europa. Thermal stresses from a freezing ocean, or a past higher eccentricity, would enhance present-day tidal stresses, exceeding the magnitudes associated with Europa's ubiquitous tidally driven fractures and, in some cases, the failure strength of ice in laboratory studies. Therefore, in order for Mimas to have an ocean, its ice shell cannot fail at the stress values implied for Europa. Furthermore, if Mimas' ocean is freezing out, the ice shell must also be able to withstand thermal stresses that could be an order of magnitude higher than the failure strength of laboratory ice samples. In light of these challenges, we consider an ocean-free Mimas to be the most straightforward model, best supported by our tidal stress analysis.
Global tidal phasing potential
NASA Astrophysics Data System (ADS)
Neill, S. P.; Cooper, M. M.; Lewis, M. J.
2016-02-01
Tidal energy is characterised by intermittency over a range of timescales, from semi-diurnal and lunar periods through to annual and decadal. Therefore, the electricity that can be generated by the tides will be characterised by similar scales of intermittency. However, with knowledge of the phase relationship between sites, it may be possible to reduce intermittency, particularly at the semi-diurnal timescale, by aggregating the electricity generated by discrete regions suitable for the conversion of tidal energy into electricity. In this study, we make use of a global tidal atlas (FES2012) to make a preliminary assessment of regions of the globe where it could be possible to combine the electricity generated at a number of discrete sites to provide firmer power to regional electricity networks. In contrast to the northwest European shelf, where the high tidal stream sites tend to either be in phase or 180 out-of-phase with one-another, we find numerous regions around the globe with potential for regional tidal phasing. However, development of higher resolution regional models, or the examination of field data, are required to fully characterise the phasing potential of these regions. In addition, technical and economical constraints on the resource should be considered such as water depth and distance to shore.
The Implications of Tides on the Mimas Ocean Hypothesis
NASA Technical Reports Server (NTRS)
Rhoden, Alyssa Rose; Henning, Wade; Hurford, Terry A.; Patthoff, D. Alex; Tajeddine, Radwan
2017-01-01
We investigate whether a present-day global ocean within Mimas is compatible with the lack of tectonic activity on its surface by computing tidal stresses for ocean-bearing interior structure models derived from observed librations. We find that, for the suite of compatible rheological models, peak surface tidal stresses caused by Mimas' high eccentricity would range from a factor of 2 smaller to an order of magnitude larger than those on tidally active Europa. Thermal stresses from a freezing ocean, or a past higher eccentricity, would enhance present-day tidal stresses, exceeding the magnitudes associated with Europa's ubiquitous tidally driven fractures and, in some cases, the failure strength of ice in laboratory studies. Therefore, in order for Mimas to have an ocean, its ice shell cannot fail at the stress values implied for Europa. Furthermore, if Mimas' ocean is freezing out, the ice shell must also be able to withstand thermal stresses that could be an order of magnitude higher than the failure strength of laboratory ice samples. In light of these challenges, we consider an ocean-free Mimas to be the most straightforward model, best supported by our tidal stress analysis.
JIRICKOVA, A; SULC, J; POHUNEK, P; KITTNAR, O; DOHNALOVA, A; KOFRANEK, J
2009-01-01
Negative expiratory pressure (NEP) applied at the mouth during tidal expiration provides a non-invasive method for detecting expiratory flow limitation. Forty-two children were studied, i.e. 25 children with different respiratory symptoms (R) and 17 without any respiratory symptoms (NR). Children were examined without any sedation. A preset NEP of -5 cm H(2)O was applied; its duration did not exceed duration of tidal expiration. A significance of FL was judged by determining of a flow-limited range (in % of tidal volume). FL was found in 48 % children of R group. No patient of the NR group elicited FL (P<0.001 R vs. NR). The frequency of upper airway collapses was higher in R group (12 children) than in NR group (5 children). In conclusion, a high frequency of tidal FL in the R group was found, while it was not present in NR group. A relatively high frequency of expiratory upper airway collapses was found in both groups, but it did not differ significantly. NEP method represents a reasonable approach for tidal flow limitation testing in non-sedated preschool children.
Can barrier islands survive sea level rise? Tidal inlets versus storm overwash
NASA Astrophysics Data System (ADS)
Nienhuis, J.; Lorenzo-Trueba, J.
2017-12-01
Barrier island response to sea level rise depends on their ability to transgress and move sediment to the back barrier, either through flood-tidal delta deposition or via storm overwash. Our understanding of these processes over decadal to centennial timescales, however, is limited and poorly constrained. We have developed a new barrier inlet environment (BRIE) model to better understand the interplay between tidal dynamics, overwash fluxes, and sea-level rise on barrier evolution. The BRIE model combines existing overwash and shoreface formulations [Lorenzo-Trueba and Ashton, 2014] with alongshore sediment transport, inlet stability [Escoffier, 1940], inlet migration and flood-tidal delta deposition [Nienhuis and Ashton, 2016]. Within BRIE, inlets can open, close, migrate, merge with other inlets, and build flood-tidal delta deposits. The model accounts for feedbacks between overwash and inlets through their mutual dependence on barrier geometry. Model results suggest that when flood-tidal delta deposition is sufficiently large, barriers require less storm overwash to transgress and aggrade during sea level rise. In particular in micro-tidal environments with asymmetric wave climates and high alongshore sediment transport, tidal inlets are effective in depositing flood-tidal deltas and constitute the majority of the transgressive sediment flux. Additionally, we show that artificial inlet stabilization (via jetty construction or maintenance dredging) can make barrier islands more vulnerable to sea level rise. Escoffier, F. F. (1940), The Stability of Tidal Inlets, Shore and Beach, 8(4), 114-115. Lorenzo-Trueba, J., and A. D. Ashton (2014), Rollover, drowning, and discontinuous retreat: Distinct modes of barrier response to sea-level rise arising from a simple morphodynamic model, J. Geophys. Res. Earth Surf., 119(4), 779-801, doi:10.1002/2013JF002941. Nienhuis, J. H., and A. D. Ashton (2016), Mechanics and rates of tidal inlet migration: Modeling and application to natural examples, J. Geophys. Res. Earth Surf., 121(11), 2118-2139, doi:10.1002/2016JF004035.
Probing failure susceptibilities of earthquake faults using small-quake tidal correlations.
Brinkman, Braden A W; LeBlanc, Michael; Ben-Zion, Yehuda; Uhl, Jonathan T; Dahmen, Karin A
2015-01-27
Mitigating the devastating economic and humanitarian impact of large earthquakes requires signals for forecasting seismic events. Daily tide stresses were previously thought to be insufficient for use as such a signal. Recently, however, they have been found to correlate significantly with small earthquakes, just before large earthquakes occur. Here we present a simple earthquake model to investigate whether correlations between daily tidal stresses and small earthquakes provide information about the likelihood of impending large earthquakes. The model predicts that intervals of significant correlations between small earthquakes and ongoing low-amplitude periodic stresses indicate increased fault susceptibility to large earthquake generation. The results agree with the recent observations of large earthquakes preceded by time periods of significant correlations between smaller events and daily tide stresses. We anticipate that incorporating experimentally determined parameters and fault-specific details into the model may provide new tools for extracting improved probabilities of impending large earthquakes.
NASA Astrophysics Data System (ADS)
Ernstsen, Verner B.; Winter, Christian; Becker, Marius; Bartholdy, Jesper
2010-05-01
Tidal inlets are a common feature along much of the world's coastlines. They interrupt the alongshore continuity of shoreline processes, and by being exposed to both wave and current forcing, tidal inlets belong to the morphologically most dynamic and complex coastal systems on Earth. The tidal channels in these inlets are characterized by high flow velocities and, accordingly, the channel beds are typically sandy and covered with bedforms. The bedform fields in nature are often complex systems with larger primary-bedforms superimposed by smaller secondary-bedforms (cf. Bartholdy et al., 2002). There is a considerable amount of detailed field investigations on the dynamics of primary-bedforms at various temporal scales, ranging from short- to long-term tide-related cycles to flood hydrographs to seasonality. However, Julien et al. (2002) stated that a composite analysis of primary- and secondary-bedforms is recommended for future studies on resistance to flow. Such knowledge on the behaviour of compound bedforms is still deficient. In this study, we combine the findings on the dynamics of primary- and secondary-bedform height from detailed field investigations carried out in two high-energy tidal channels during 2007 and 2008: the Knudedyb tidal inlet channel in the Danish Wadden Sea and the Innenjade tidal channel in the Jade Bay, German Bight (both survey areas being ebb-dominated). We provide process-based explanations of the bedform behaviour and present a conceptual model of compound bedform dynamics. The conducted field investigations comprised repetitive, simultaneous measurements of high-resolution swath bathymetry (using a multibeam echosounder system) and flow velocity (using an acoustic Doppler current profiler) in combination with detailed spatial mapping of bed material characteristics (from grab sampling of bed material). For an objective and discrete analysis of primary- and secondary-bedforms a modified version of the bedform tracking tool originally developed by van der Mark and Blom (2007) was applied (cf. Ernstsen et al., 2010). In both tidal channels primary-bedform height generally decreased during ebb tide and increased during flood tide. This was due to erosion and deposition of the crest, as the trough remained practically constant. The erosion of the crest occurred at high energy stages during ebb tide, while the overall deposition on the crest occurred during flood tide. The low erosion in the trough is due to a combination of low flow velocity and the development of an armour layer of shell lag-deposits. Regarding secondary-bedform height, both tidal channels displayed a general increase with increasing mean flow velocity and a general decrease with decreasing mean flow velocity (cf. Ernstsen et al., 2010). References Bartholdy, J., Bartholomae, A., Flemming, B.W. 2002. Grain-size control of large compound flow-transverse bedforms in a tidal inlet of the Danish Wadden Sea. Mar Geol 188: 391-413. Ernstsen, V.B., Winter, C., Becker, M. and Bartholdy, J. 2010. Tide-controlled variations of primary- and secondary-bedform height: Innenjade tidal channel (Jade Bay, German Bight). In: Vionnet, C., G. Perillo, E. Latrubesse and M. Garcia (editors) River, Coastal and Estuarine Morphodynamics: RCEM 2009. Taylor & Francis Group, London, pp. 779-786. Julien, P.Y., Klaassen, G.J., ten Brinke, W.B.M. & Wilbers, A.W.E. 2002. Case study: Bed resistance of Rhine River during 1998 flood. J Hydraul Eng-ASCE 128(12): 1042-1050. van der Mark, C.F. & Blom, A. 2007. A new and widely applicable tool for determining the geometric properties of bedforms. Technical report, University of Twente, Enschede, The Netherlands, pp. 57.
Fresh-water discharge salinity relations in the tidal Delaware River
Keighton, Walter B.
1966-01-01
Sustained flows of fresh water greater than 3,500, 4,400, and 5,300 cubic feet per second into the Delaware River estuary at Trenton, NJ assure low salinity at League Island, Eddystone, and Marcus Hook, respectively. When the discharge at Trenton is less than these critical values, salinity is very sensitive to change in discharge, so that a relatively small decrease in fresh-water discharge results in a relatively great increase in salinity. Comparison of the discharge-salinity relations observed for the 14-year period August 1949-December 1963 with relations proposed by other workers but based on other time periods indicate that such relations change with time and that salinity is affected not only by discharge but also by dredging; construction of breakwater, dikes, and tidal barriers; changing sea level; tidal elevation; tidal range; and wind intensity and direction.
Site Selection Appraisal for Tidal Turbine Development in the River Mersey
NASA Astrophysics Data System (ADS)
Kelly, C. L.; Blanco-Davis, E.; Michailides, C.; Davies, P. A.; Wang, J.
2018-03-01
This paper used a specialist software package to produce a detailed model of the River Mersey estuary, which can be subjected to a range of simulated tidal conditions. The aim of this research was to use the validated model to identify the optimal location for the positioning of a tidal turbine. Progress was made identifying a new optimal site for power generation using velocity data produced from simulations conducted using the MIKE 3 software. This process resulted in the identification of site 8, which sits mid-river between the Morpeth Dock and the Albert Dock, being identified as the favoured location for tidal power generation in the River Mersey. Further analysis of the site found that a 17.2-m diameter single rota multidirectional turbine with a 428-kW-rated capacity could produce 1.12 GWh annually.
3D hydrodynamic simulations of tidal disruption of terrestrial planets around white dwarfs
NASA Astrophysics Data System (ADS)
Liu, Shangfei; Zhang, Jinsu; Lin, Douglas N. C.
2018-01-01
Recent K2 mission spotted striking variability due to a group of minor bodies transiting white dwarf WD 1145+017 with periods ranging from 4.5 hours to 4.9 hours. One of the formation scenarios is that those transiting objects are the debris of a tidally disrupted minor planet. This scenario is consistent with fact that the white dwarf also hosts a dusty disk and displays strong metal atmospheric pollution. In this work, we perform state-of-the-art three-dimensional hydrodynamic simulations to study the consequences of tidal disruption of planets with various differentiated compositions by a white dwarf. We study the general outcomes of tidal disruption including partially disruption and total disruption. We also apply our results to the WD 1145+017 system to infer the physical and orbital properties of the progenitor.
NASA Astrophysics Data System (ADS)
Hennig, Hanna; Mallast, Ulf; Merz, Ralf
2015-04-01
Submarine groundwater discharge (SGD) sites act as important pathways for nutrients and contaminants that deteriorate marine ecosystems. In the Mediterranean it is estimated that 75% of freshwater input is contributed from karst aquifers. Thermal remote sensing can be used for a pre-screening of potential SGD sites in order to optimize field surveys. Although different platforms (ground-, air- and spaceborne) may serve for thermal remote sensing, the most cost-effective are spaceborne platforms (satellites) that likewise cover the largest spatial scale (>100 km per image). Therefore an automatized and objective approach that uses thermal satellite images from Landsat 7 and Landsat 8 was used to localize potential SGD sites on a large spatial scale. The method using descriptive statistic parameter specially range and standard deviation by (Mallast et al., 2014) was adapted to the Mediterranean Sea. Since the method was developed for the Dead Sea were satellite images with cloud cover are rare and no sea level change occurs through tidal cycles it was essential to adapt the method to a region where tidal cycles occur and cloud cover is more frequent . These adaptations include: (1) an automatic and adaptive coastline detection (2) include and process cloud covered scenes to enlarge the data basis, (3) implement tidal data in order to analyze low tide images as SGD is enhanced during these phases and (4) test the applicability for Landsat 8 images that will provide data in the future once Landsat 7 stops working. As previously shown, the range method shows more accurate results compared to the standard deviation. However, the result exclusively depends on two scenes (minimum and maximum) and is largely influenced by outliers. Counteracting on this drawback we developed a new approach. Since it is assumed that sea surface temperature (SST) is stabilized by groundwater at SGD sites, the slope of a bootstrapped linear model fitted to sorted SST per pixel would be less steep than the slope of the surrounding area, resulting in less influence through outliers and an equal weighting of all integrated scenes. Both methods could be used to detect SGD sites in the Mediterranean regardless to the discharge characteristics (diffuse and focused) exceptions are sites with deep emergences. Better results could be shown in bays compared to more exposed sites. Since the range of the SST is mostly influenced by maximum and minimum of the scenes, the slope approach can be seen as a more representative method using all scenes. References: Mallast, U., Gloaguen, R., Friesen, J., Rödiger, T., Geyer, S., Merz, R., Siebert, C., 2014. How to identify groundwater-caused thermal anomalies in lakes based on multi-temporal satellite data in semi-arid regions. Hydrol. Earth Syst. Sci. 18 (7), 2773-2787.
NASA Astrophysics Data System (ADS)
Tanikawa, Ataru
2018-05-01
We demonstrate tidal detonation during a tidal disruption event (TDE) of a helium (He) white dwarf (WD) with 0.45 M ⊙ by an intermediate mass black hole using extremely high-resolution simulations. Tanikawa et al. have shown tidal detonation in results of previous studies from unphysical heating due to low-resolution simulations, and such unphysical heating occurs in three-dimensional (3D) smoothed particle hydrodynamics (SPH) simulations even with 10 million SPH particles. In order to avoid such unphysical heating, we perform 3D SPH simulations up to 300 million SPH particles, and 1D mesh simulations using flow structure in the 3D SPH simulations for 1D initial conditions. The 1D mesh simulations have higher resolutions than the 3D SPH simulations. We show that tidal detonation occurs and confirm that this result is perfectly converged with different space resolution in both 3D SPH and 1D mesh simulations. We find that detonation waves independently arise in leading parts of the WD, and yield large amounts of 56Ni. Although detonation waves are not generated in trailing parts of the WD, the trailing parts would receive detonation waves generated in the leading parts and would leave large amounts of Si group elements. Eventually, this He WD TDE would synthesize 56Ni of 0.30 M ⊙ and Si group elements of 0.08 M ⊙, and could be observed as a luminous thermonuclear transient comparable to SNe Ia.
Recent Evolution of the Mont Saint-Michel Bay as seen by ALOS AVNIR-2 Data (ADEN AO 3643)
NASA Astrophysics Data System (ADS)
Deroin, Jean-Paul; Bilaudeau, Clelia; Deffontaines, Benoit
2008-11-01
The ALOS AVNIR-2 scene acquired on October 24, 2007 has been used for drawing a new map of the Mont Saint-Michel Bay. This area is characterised by a large dry-fallen tidal flat, one of the largest in the world. The tidal records indicate that the ALOS datatake was acquired in favorable conditions, the elevation of the sea at 2.56 m being very close to the theoretical minimum value (about 2.30 m). In these conditions, the largest tidal flat observed by a sun-synchronous satellite on the Mont Saint-Michel Bay is exposed.
A metabolic simulator for unmanned testing of breathing apparatuses in hyperbaric conditions.
Frånberg, Oskar; Loncar, Mario; Larsson, Åke; Ornhagen, Hans; Gennser, Mikael
2014-11-01
A major part of testing of rebreather apparatuses for underwater diving focuses on the oxygen dosage system. A metabolic simulator for testing breathing apparatuses was built and evaluated. Oxygen consumption was achieved through catalytic combustion of propene. With an admixture of carbon dioxide in the propene fuel, the system allowed the respiratory exchange ratio to be set freely within human variability and also made it possible to increase test pressures above the condensation pressure of propene. The system was tested by breathing ambient air in a pressure chamber with oxygen uptake (Vo₂) ranging from 1-4 L · min(-1), tidal volume (VT) from 1-3 L, breathing frequency (f) of 20 and 25 breaths/min, and chamber pressures from 100 to 670 kPa. The measured end-tidal oxygen concentration (Fo₂) was compared to calculated end-tidal Fo₂. The largest average difference in end-tidal Fo₂during atmospheric pressure conditions was 0.63%-points with a 0.28%-point average difference during the whole test. During hyperbaric conditions with pressures ranging from 100 to 670 kPa, the largest average difference in Fo₂was 1.68%-points seen during compression from 100 kPa to 400 kPa and the average difference in Fo₂during the whole test was 0.29%-points. In combination with a breathing simulator simulating tidal breathing, the system can be used for dynamic continuous testing of breathing equipment with changes in VT, f, Vo2, and pressure.
U.S. Pacific coastal wetland resilience and vulnerability to sea-level rise
Thorne, Karen M.; MacDonald, Glen M.; Guntenspergen, Glenn R.; Ambrose, Richard F.; Buffington, Kevin J.; Dugger, Bruce D.; Freeman, Chase; Janousek, Christopher; Brown, Lauren N.; Rosencranz, Jordan A.; Homquist, James; Smol, John P.; Hargan, Kathryn; Takekawa, John Y.
2018-01-01
We used a first-of-its-kind comprehensive scenario approach to evaluate both the vertical and horizontal response of tidal wetlands to projected changes in the rate of sea-level rise (SLR) across 14 estuaries along the Pacific coast of the continental United States. Throughout the U.S. Pacific region, we found that tidal wetlands are highly vulnerable to end-of-century submergence, with resulting extensive loss of habitat. Using higher-range SLR scenarios, all high and middle marsh habitats were lost, with 83% of current tidal wetlands transitioning to unvegetated habitats by 2110. The wetland area lost was greater in California and Oregon (100%) but still severe in Washington, with 68% submerged by the end of the century. The only wetland habitat remaining at the end of the century was low marsh under higher-range SLR rates. Tidal wetland loss was also likely under more conservative SLR scenarios, including loss of 95% of high marsh and 60% of middle marsh habitats by the end of the century. Horizontal migration of most wetlands was constrained by coastal development or steep topography, with just two wetland sites having sufficient upland space for migration and the possibility for nearly 1:1 replacement, making SLR threats particularly high in this region and generally undocumented. With low vertical accretion rates and little upland migration space, Pacific coast tidal wetlands are at imminent risk of submergence with projected rates of rapid SLR.
U.S. Pacific coastal wetland resilience and vulnerability to sea-level rise
Thorne, Karen; MacDonald, Glen; Guntenspergen, Glenn; Ambrose, Richard; Buffington, Kevin; Dugger, Bruce; Freeman, Chase; Janousek, Christopher; Brown, Lauren; Rosencranz, Jordan; Holmquist, James; Smol, John; Hargan, Kathryn; Takekawa, John
2018-01-01
We used a first-of-its-kind comprehensive scenario approach to evaluate both the vertical and horizontal response of tidal wetlands to projected changes in the rate of sea-level rise (SLR) across 14 estuaries along the Pacific coast of the continental United States. Throughout the U.S. Pacific region, we found that tidal wetlands are highly vulnerable to end-of-century submergence, with resulting extensive loss of habitat. Using higher-range SLR scenarios, all high and middle marsh habitats were lost, with 83% of current tidal wetlands transitioning to unvegetated habitats by 2110. The wetland area lost was greater in California and Oregon (100%) but still severe in Washington, with 68% submerged by the end of the century. The only wetland habitat remaining at the end of the century was low marsh under higher-range SLR rates. Tidal wetland loss was also likely under more conservative SLR scenarios, including loss of 95% of high marsh and 60% of middle marsh habitats by the end of the century. Horizontal migration of most wetlands was constrained by coastal development or steep topography, with just two wetland sites having sufficient upland space for migration and the possibility for nearly 1:1 replacement, making SLR threats particularly high in this region and generally undocumented. With low vertical accretion rates and little upland migration space, Pacific coast tidal wetlands are at imminent risk of submergence with projected rates of rapid SLR. PMID:29507876
Observations of Seafloor Roughness in a Tidally Modulated Inlet
NASA Astrophysics Data System (ADS)
Lippmann, T. C.; Hunt, J.
2014-12-01
The vertical structure of shallow water flows are influenced by the presence of a bottom boundary layer, which spans the water column for long period waves or mean flows. The nature of the boundary is determined in part by the roughness elements that make up the seafloor, and includes sometimes complex undulations associated with regular and irregular shaped bedforms whose scales range several orders of magnitude from orbital wave ripples (10-1 m) to mega-ripples (100 m) and even larger features (101-103) such as sand waves, bars, and dunes. Modeling efforts often parameterize the effects of roughness elements on flow fields, depending on the complexity of the boundary layer formulations. The problem is exacerbated by the transient nature of bedforms and their large spatial extent and variability. This is particularly important in high flow areas with large sediment transport, such as tidally dominated sandy inlets like New River Inlet, NC. Quantification of small scale seafloor variability over large spatial areas requires the use of mobile platforms that can measure with fine scale (order cm) accuracy in wide swaths. The problem is difficult in shallow water where waves and currents are large, and water clarity is often limited. In this work, we present results from bathymetric surveys obtained with the Coastal Bathymetry Survey System, a personal watercraft equipped with a Imagenex multibeam acoustic echosounder and Applanix POS-MV 320 GPS-aided inertial measurement unit. This system is able to measure shallow water seafloor bathymetry and backscatter intensity with very fine scale (10-1 m) resolution and over relatively large scales (103 m) in the presence of high waves and currents. Wavenumber spectra show that the noise floor of the resolved multibeam bathymetry is on the order of 2.5 - 5 cm in amplitude, depending on water depths ranging 2 - 6 m, and about 30 cm in wavelength. Seafloor roughness elements are estimated from wavenumber spectra across the inlet from bathymetric maps of the seafloor obtained with 10-25 cm horizontal resolution. Implications of the effects of the bottom variability on the vertical structure of the currents will be discussed. This work was supported by ONR and NOAA.
Effects of Long Period Ocean Tides on the Earth's Rotation
NASA Technical Reports Server (NTRS)
Gross, Richard S.; Chao, Ben F.; Desai, Shailen D.
1996-01-01
The spectra of polar motion excitation functions exhibit enhanced power in the fortnightly tidal band. This enhanced power is attributed to ocean tidal excitation. Ocean tide models predict polar motion excitation effects that differ with each other, and with observations, by factors as large as 2-3. There is a need for inproved models for the effect of long-period ocean tides on Earth's rotation.
Tidal Dynamics and Mixing Over Steep Topography
1994-06-01
California continental shelf have been observed at several locations (Huthnance, 1989). Shea and Broenkow (1982) observed large 33 tidally related...enhanced transport inside the canyon (Huthnance, 1989). This type of pressure gradient supports the conceptual model proposed by Shea and Broenkow (1982...predicted an enhanced internal tide up-canyon and near the bottom, verified by observations of strong internal tides by Shea and Broenkow (1982) at
NASA Astrophysics Data System (ADS)
Peng, Y.; Rubin, A. M.
2016-12-01
Significant complexities of episodic slip and tremor (ETS) have been revealed by short tremor bursts lasting minutes to hours, many of which show clear migration patterns. In Cascadia, large-scale rapid tremor reversals (RTRs) extend tens of km along strike, repeatedly occupying the same general source area during an ETS episode [e.g. Thomas et al, 2013; Peng and Rubin, 2016]. We also observe repetitive tremor bursts occurring well behind the main front in Guerrero, Mexico. In contrast to RTRs, these bursts do not originate from the main front, and generally propagate along the slip direction, similar to those reported from Shikoku, Japan [Shelly et al., 2007]. Both types of bursts occur intermittently, with recurrence intervals gradually increasing to tidal periods. However, even the tidally-modulated bursts are unlikely to be driven solely by tidal forcing. Since the stress must decrease during each burst, while the local maxima of the tidal stress remain nearly constant, each tidal peak stress cannot supply the stress drop for the next repetition. Here we explore the possibility that these repetitive bursts are driven by surrounding tremor-less slow slip. We develop a numerical model governed by a rate-and-state friction law that transitions from velocity-weakening to velocity-strengthening with increasing slip speed. A region with a larger transitional velocity than the background is used to represent the tremor zone. For this zone to slip intermittently, its stiffness needs to be sufficiently large that the slip during each burst is less than the total slip of the background during an episode, but smaller than its own critical stiffness. This critical stiffness decreases as the ratio of the background loading rate to the transitional cutoff velocity increases; from elasticity this ratio decreases as the main front moves across the model tremor zone. With these considerations, we successfully reproduce the burst-like behavior with increasingly large recurrence intervals in the model tremor zone during a single slow slip event. Future work will include investigating the propagation velocities of these bursts, which in Guerrero decrease systematically with increasing time since the previous migration through the same region, and tidal modulation of their recurrence intervals.
NASA Astrophysics Data System (ADS)
Davis, P. M.; Stacey, F. D.
2009-12-01
Melt breccia samples returned from the Apollo mission have dates that suggest that the impacts that formed major basins on the Moon occurred between 3.8 and 4.0 Ga i.e., about 0.6 G years after Lunar formation. Three models have been proposed to explain the LHB. Heliocentric models including (1) The period marked the end of large-scale impacts associated with planetary formation and (2) It corresponded to a spike in impacts associated with major reorientation of the solar system (the ‘Nice model’), when the orbits Jupiter and Saturn became resonant, causing the orbits of Uranus and Neptune to become unstable and grow, scattering cometary and asteroidal fragments into Earth-Moon crossing orbits, and a geocentric model (3) It was due to collision with the last of a series of moonlets formed during Earth accretion which were swept up by tidal regression of a large Moon that had been formed near the Earth by a giant impact. While there is no smoking gun for any of these scenarios we will discuss a possible scenario for (3). Numerical calculations show that tidal regression of a large inner Moon sequentially traps exterior smaller moonlets into 2:1 resonance. Resonant trapping rapidly increases the eccentricity of their orbits causing them to become Moon-crossing. If the orbital radii of the moonlets had a resonance or Bode's law-type distribution, for the last collision to take place at 0.6 Gy, the Moon would have been at ~40 RE when it took place. One of the implications is that the associated LHB impacts would have significantly less relative velocity than those derived from asteroidal or cometary distances associated with (1) or (2). This may explain the low content of vapor condensate in the Lunar breccias. The tidal evolution from ~40 RE at 0.6 Gy requires a lower tidal friction than at present, but this has been evident for many years from tidal rhythmite data.
On the extended stellar structure around NGC 288
NASA Astrophysics Data System (ADS)
Piatti, Andrés E.
2018-01-01
We report on observational evidence of an extra-tidal clumpy structure around NGC 288 from homogeneous coverage of a large area with the Panoramic Survey Telescope and Rapid Response System (Pan-STARRS) PS1 data base. The extra-tidal star population has been disentangled from that of the Milky Way (MW) field by using a cleaning technique that successfully reproduces the stellar density, luminosity function and colour distributions of MW field stars. We have produced the cluster stellar density radial profile and a stellar density map from independent approaches, and we found the results to be in excellent agreement - the feature extends up to 3.5 times further than the cluster tidal radius. Previous works based on shallower photometric data sets have speculated on the existence of several long tidal tails, similar to that found in Pal 5. The present outcome shows that NGC 288 could hardly have such tails, but it favours the notion that the use of interactions with the MW tidal field has been a relatively inefficient process for stripping stars off the cluster. These results point to the need for a renewed overall study of the external regions of Galactic globular clusters (GGCs) in order to reliably characterize them. It will then be possible to investigate whether there is any connection between detected tidal tails, extra-tidal stellar populations and extended diffuse halo-like structures, and the dynamical histories of GGCs in the Galaxy.
Morphology and Sediment Dynamics of the East Friesian Tidal Inlets, West Germany.
1982-01-01
by three major environmental factors: (1) the tide range, (2) the nearshore wave energy, and (3) the geometry of the hack -barrier hav. Both...ASg .147 Ebb a A~ ps4 . 0.1 Fig. 15(a) and (b). For legend see opposite. 18 t7 7d 7’AI 3LI EBBTIALDELA ARI- HNE Juy1 .17 EBBW TIDAL DELTA MARINCHNL j
High Resolution Tidal Modelling in the Arctic Ocean: Needs and Upcoming Developments
NASA Astrophysics Data System (ADS)
Cancet, M.; Andersen, O.; Stenseng, L.; Lyard, F.; Cotton, D.; Benveniste, J.; Schulz, A.
2015-12-01
The Arctic Ocean is a challenging region for tidal modelling, because of its complex and not well-documented bathymetry, together combined with the intermittent presence of sea ice and the fact that the in situ tidal observations are rather scarce at such high latitudes. As a consequence, the accuracy of the global tidal models decreases by several centimetres in the Polar Regions. In particular, it has a large impact on the quality of the satellite altimeter sea surface heights in these regions (ERS1/2, Envisat, CryoSat-2, SARAL/AltiKa and the future Sentinel-3 mission). Better knowledge of the tides would improve the quality of the high latitudes altimeter sea surface heights and of all derived products, such as the altimetry-derived geostrophic currents, the mean sea surface and the mean dynamic topography. In addition, accurate tidal models are highly strategic information for ever-growing maritime and industrial activities in this region. NOVELTIS and DTU Space are currently working on the development of a regional, high-resolution tidal atlas in the Arctic Ocean. In particular, this atlas will benefit from the assimilation of the most complete satellite altimetry dataset ever used in this region, including Envisat data up to 82°N and the CryoSat-2 reprocessed data between 82°N and 88°N. The combination of all these satellites will give the best possible coverage of altimetry-derived tidal constituents. The available tide gauge data will also be used either for assimilation or validation. This paper presents the performances of the available global tidal models in the Arctic Ocean and the on-going development of an improved regional tidal atlas in this region.
A new high resolution tidal model in the Arctic Ocean
NASA Astrophysics Data System (ADS)
Cancet, Mathilde; Andersen, Ole; Lyard, Florent; Cotton, David; Benveniste, Jérôme
2016-04-01
The Arctic Ocean is a challenging region for tidal modeling, because of its complex and not well-documented bathymetry, together combined with the intermittent presence of sea ice and the fact that the in situ tidal observations are scarce at such high latitudes. As a consequence, the accuracy of the global tidal models decreases by several centimeters in the Polar Regions. It has a large impact on the quality of the satellite altimeter sea surface heights in these regions (ERS1/2, Envisat, CryoSat-2, SARAL/AltiKa and the future Sentinel-3 mission), but also on the end-users' applications that need accurate tidal information. Better knowledge of the tides will improve the quality of the high latitudes altimeter sea surface heights and of all derived products, such as the altimetry-derived geostrophic currents, the mean sea surface and the mean dynamic topography. In addition, accurate tidal models are highly strategic information for ever-growing maritime and industrial activities in this region. NOVELTIS and DTU Space have recently developed a regional, high-resolution tidal atlas in the Arctic Ocean, in the framework of an extension of the CryoSat Plus for Oceans (CP4O) project funded by ESA (STSE program). In particular, this atlas benefits from the assimilation of the most complete satellite altimetry dataset ever used in this region, including the Envisat data up to 82°N and the CryoSat-2 reprocessed data between 82°N and 88°N. The combination of all these satellites gives the best possible coverage of altimetry-derived tidal constituents. Tide gauge data have also been used either for assimilation or validation. This paper presents the methodology followed to develop the model and the performances of this new regional tidal model in the Arctic Ocean.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Ye; Karri, Naveen K.; Wang, Qi
Tidal power as a large-scale renewable source of energy has been receiving significant attention recently because of its advantages over the wind and other renewal energy sources. The technology used to harvest energy from tidal current is called a tidal current turbine. Though some of the principles of wind turbine design are applicable to tidal current turbines, the design of latter ones need additional considerations like cavitation damage, corrosion etc. for the long-term reliability of such turbines. Depending up on the orientation of axis, tidal current turbines can be classified as vertical axis turbines or horizontal axis turbines. Existing studiesmore » on the vertical axis tidal current turbine focus more on the hydrodynamic aspects of the turbine rather than the structural aspects. This paper summarizes our recent efforts to study the integrated hydrodynamic and structural aspects of the vertical axis tidal current turbines. After reviewing existing methods in modeling tidal current turbines, we developed a hybrid approach that combines discrete vortex method -finite element method that can simulate the integrated hydrodynamic and structural response of a vertical axis turbine. This hybrid method was initially employed to analyze a typical three-blade vertical axis turbine. The power coefficient was used to evaluate the hydrodynamic performance, and critical deflection was considered to evaluate the structural reliability. A sensitivity analysis was also conducted with various turbine height-to-radius ratios. The results indicate that both the power output and failure probability increase with the turbine height, suggesting a necessity for optimal design. An attempt to optimize a 3-blade vertical axis turbine design with hybrid method yielded a ratio of turbine height to radius (H/R) about 3.0 for reliable maximum power output.« less
Relative value of managed wetlands and tidal marshlands for wintering northern pintails
Coates, Peter S.; Casazza, Michael L.; Halstead, Brian J.; Fleskes, Joseph P.
2012-01-01
Northern pintail Anas acuta (hereafter, pintail) populations have declined substantially throughout the western US since the 1970s, largely as a result of converting wetlands to cropland. Managed wetlands have been developed throughout the San Francisco Bay estuaries to provide wildlife habitat, particularly for waterfowl. Many of these areas were historically tidal baylands and plans are underway to remove dikes and restore tidal action. The relationship between tidal baylands and waterfowl populations is poorly understood. Our objective was to provide information on selection and avoidance of managed and tidal marshland by pintails. During 1991–1993 and 1998–2000, we radio-marked and relocated 330 female pintails (relocations, n =11,574) at Suisun Marsh, the largest brackish water estuary within San Francisco Bay, to estimate resource selection functions during the nonbreeding months (winter). Using a distance-based modeling approach, we calculated selection functions for different ecological communities (e.g., tidal baylands) and investigated variation explained by time of day (day or night hours) to account for differences in pintail behavior (i.e., foraging vs. roosting). We found strong evidence for selection of managed wetlands. Pintails also avoided tidal marshes and bays and channels. We did not detect differences in selection function between day and night hours for managed wetlands but the degree of avoidance of other habitats varied by time of day. We also found that areas subjected to tidal action did not influence the selection of immediately adjacent managed wetlands. If current management goals include providing habitat for wintering waterfowl populations, particularly pintail, then we recommend wildlife managers focus tidal restoration on areas that are not currently managed wetland and/or improve conditions in areas of managed wetlands to increase local carrying capacities
Marasco, Ramona; Mapelli, Francesca; Rolli, Eleonora; Mosqueira, Maria J; Fusi, Marco; Bariselli, Paola; Reddy, Muppala; Cherif, Ameur; Tsiamis, George; Borin, Sara; Daffonchio, Daniele
2016-01-01
Halophytes classified under the common name of salicornia colonize salty and coastal environments across tidal inundation gradients. To unravel the role of tide-related regimes on the structure and functionality of root associated bacteria, the rhizospheric soil of Salicornia strobilacea (synonym of Halocnemum strobilaceum) plants was studied in a tidal zone of the coastline of Southern Tunisia. Although total counts of cultivable bacteria did not change in the rhizosphere of plants grown along a tidal gradient, significant differences were observed in the diversity of both the cultivable and uncultivable bacterial communities. This observation indicates that the tidal regime is contributing to the bacterial species selection in the rhizosphere. Despite the observed diversity in the bacterial community structure, the plant growth promoting (PGP) potential of cultivable rhizospheric bacteria, assessed through in vitro and in vivo tests, was equally distributed along the tidal gradient. Root colonization tests with selected strains proved that halophyte rhizospheric bacteria (i) stably colonize S. strobilacea rhizoplane and the plant shoot suggesting that they move from the root to the shoot and (ii) are capable of improving plant growth. The versatility in the root colonization, the overall PGP traits and the in vivo plant growth promotion under saline condition suggest that such beneficial activities likely take place naturally under a range of tidal regimes.
Airborne microwave radar measurements of surface velocity in a tidally-driven inlet
NASA Astrophysics Data System (ADS)
Farquharson, G.; Thomson, J. M.
2012-12-01
A miniaturized dual-beam along-track interferometric (ATI) synthetic aperture radar (SAR), capable of measuring two components of surface velocity at high resolution, was operated during the 2012 Rivers and Inlets Experiment (RIVET) at the New River Inlet in North Carolina. The inlet is predominantly tidally-driven, with little upstream river discharge. Surface velocities in the inlet and nearshore region were measured during ebb and flood tides during a variety of wind and offshore wave conditions. The radar-derived surface velocities range from around ±2~m~s1 during times of maximum flow. We compare these radar-derived surface velocities with surface velocities measured with drifters. The accuracy of the radar-derived velocities is investigated, especially in areas of large velocity gradients where along-track interferometric SAR can show significant differences with surface velocity. The goal of this research is to characterize errors in along-track interferometric SAR velocity so that ATI SAR measurements can be coupled with data assimilative modeling with the goal of developing the capability to adequately constrain nearshore models using remote sensing measurements.
The Diverse Surface Compositions of the Galilean Satellites
NASA Technical Reports Server (NTRS)
Carlson, R. W.
2002-01-01
The galilean satellites represent a diverse collection, ranging from the volcanic moon Io, with a surface that is changing yearly, to Callisto, with a dark, ancient surface overlying ice. The composition of these surfaces are also quite different due to a variety of processes and influences, including tidal heating, radiolysis, gardening, a magnetic field (Ganymede), and meteoritic infall. Io's surface contains large quantities of sulfur dioxide (SO2) and colorful sulfur allotropes, both originating in plumes and flows from the tidally driven volcanoes. A broad, 1-micron band is found at high latitudes and may be due to absorption by long-chain sulfur polymers produced by SO2 radiolysis, although iron and iron sulfide compounds are candidates. An unidentified 3.15 micron absorber is equatorially distributed while a 4.62 micron band, perhaps due to a sulfate compound, exhibits a non-uniform distribution. Hot spots are generally dark, and some exhibit negative reflectance slopes (i.e., blue). The composition of these lavas has not been established spectroscopically, but the high temperatures of some volcanoes suggest ultramafic silicates or perhaps more refractory material such as oxides.
Design of Bi-Directional Hydrofoils for Tidal Current Turbines
NASA Astrophysics Data System (ADS)
Nedyalkov, Ivaylo; Wosnik, Martin
2015-11-01
Tidal Current Turbines operate in flows which reverse direction. Bi-directional hydrofoils have rotational symmetry and allow such turbines to operate without the need for pitch or yaw control, decreasing the initial and maintenance costs. A numerical test-bed was developed to automate the simulations of hydrofoils in OpenFOAM and was utilized to simulate the flow over eleven classes of hydrofoils comprising a total of 700 foil shapes at different angles of attack. For promising candidate foil shapes physical models of 75 mm chord and 150 mm span were fabricated and tested in the University of New Hampshire High-Speed Cavitation Tunnel (HiCaT). The experimental results were compared to the simulations for model validation. The numerical test-bed successfully generated simulations for a wide range of foil shapes, although, as expected, the k - ω - SST turbulence model employed here was not adequate for some of the foils and for large angles of attack at which separation occurred. An optimization algorithm is currently being coupled with the numerical test-bed and additional turbulence models will be implemented in the future.
Light, Helen M.; Darst, Melanie R.; Lewis, Lori J.; Howell, David A.
2002-01-01
A study relating hydrologic conditions, soils, and vegetation of floodplain forests to river flow was conducted in the lower Suwannee River, Florida, from 1996 to 2000. The study was done by the U.S. Geological Survey in cooperation with the Suwannee River Water Management District to help determine the minimum flows and levels required for wetlands protection. The study area included forests within the 10-year floodplain of the Suwannee River from its confluence with the Santa Fe River to the tree line (lower limit of forests) near the Gulf of Mexico, and covered 18,600 hectares (ha) of forests, 75 percent of which were wetlands and 25 percent uplands. The floodplain was divided into three reaches, riverine, upper tidal, and lower tidal, based on changes in hydrology, vegetation, and soils with proximity to the coast. The Suwannee River is the second largest river in Florida in terms of average discharge. Median flow at the confluence of the Suwannee and Santa Fe Rivers is approximately 181 cubic meters per second (m3/s) or 6,480 cubic feet per second (ft3/s) (1933-99). At the upper end of the riverine reach, river stages are unaffected by tides and have a typical annual range of 4.1 meters (m). Tides affect river stages at low and medium flows in the upper tidal reach, and at all flows in the lower tidal reach. Median tidal range at the mouth of the Suwannee River is about 1 m. Salinity of river water in the lower tidal reach increases with decreasing flow and proximity to the Gulf of Mexico. Vertically averaged salinity in the river near the tree line is typically about 5 parts per thousand at medium flow. Land-surface elevation and topographic relief in the floodplain decrease with proximity to the coast. Elevations range from 4.1 to 7.3 m above sea level at the most upstream riverine transect and from 0.3 to 1.3 m above sea level on lower tidal transects. Surface soils in the riverine reach are predominantly mineral and dry soon after floods recede except in swamps. Surface soils in upper and lower tidal reaches are predominantly organic, saturated mucks. In the downstream part of the lower tidal reach, conductivities of surface soils are high enough (greater than 4 milli-mhos per centimeter) to exclude many tree species that are intolerant of salinity. Species richness of canopy and subcanopy plants in wetland forests in the lower Suwannee River is high compared to other river floodplains in North America. A total of 77 tree, shrub, and woody vine species were identified in the canopy and subcanopy of floodplain wetland forests (n = 8,376). Fourteen specific forest types were mapped using digitized aerial photographs, defined from vegetative sampling, and described in terms of plant species composition. For discussion purposes, some specific wetland types were combined, resulting in three general wetland forest types for each reach. Riverine high bottomland hardwoods have higher canopy species richness than all other forest types (40-42 species), with Quercus virginiana the most important canopy tree by basal area. The canopy composition of riverine low bottomland hardwoods is dominated by five species with Quercus laurifolia the most important by basal area. Riverine swamps occur in the lowest and wettest areas with Taxodium distichum the most important canopy species by basal area. Upper tidal bottomland hardwoods are differentiated from riverine forests by the presence of Sabal palmetto in the canopy. Upper tidal mixed forests and swamps are differentiated from riverine forests, in part, by the presence of Fraxinus profunda in the canopy. Nyssa aquatica, the most important canopy species by basal area in upper tidal swamps, is absent from most forests in the lower tidal reach where its distribution is probably restricted by salinity. Hydric hammocks, a wetland type that is rare outside of Florida, are found in the lower tidal reach and are flooded every 1-2 years by either storm surge or river floods. Lowe
Aliased tidal errors in TOPEX/POSEIDON sea surface height data
NASA Technical Reports Server (NTRS)
Schlax, Michael G.; Chelton, Dudley B.
1994-01-01
Alias periods and wavelengths for the M(sub 2, S(sub 2), N(sub 2), K(sub 1), O(sub 1), and P(sub 1) tidal constituents are calculated for TOPEX/POSEIDON. Alias wavelenghts calculated in previous studies are shown to be in error, and a correct method is presented. With the exception of the K(sub 1) constituent, all of these tidal aliases for TOPEX/POSEIDON have periods shorter than 90 days and are likely to be confounded with long-period sea surface height signals associated with real ocean processes. In particular, the correspondence between the periods and wavelengths of the M(sub 2) alias and annual baroclinic Rossby waves that plagued Geosat sea surface height data is avoided. The potential for aliasing residual tidal errors in smoothed estimates of sea surface height is calculated for the six tidal constituents. The potential for aliasing the lunar tidal constituents M(sub 2), N(sub 2) and O(sub 1) fluctuates with latitude and is different for estimates made at the crossovers of ascending and descending ground tracks than for estimates at points midway between crossovers. The potential for aliasing the solar tidal constituents S(sub 2), K(sub 1) and P(sub 1) varies smoothly with latitude. S(sub 2) is strongly aliased for latitudes within 50 degress of the equator, while K(sub 1) and P(sub 1) are only weakly aliased in that range. A weighted least squares method for estimating and removing residual tidal errors from TOPEX/POSEIDON sea surface height data is presented. A clear understanding of the nature of aliased tidal error in TOPEX/POSEIDON data aids the unambiguous identification of real propagating sea surface height signals. Unequivocal evidence of annual period, westward propagating waves in the North Atlantic is presented.
NASA Astrophysics Data System (ADS)
Sánchez-Úbeda, Juan Pedro; Calvache, María Luisa; Duque, Carlos; López-Chicano, Manuel
2016-11-01
A new methodology has been developed to obtain tidal-filtered time series of groundwater levels in coastal aquifers. Two methods used for oceanography processing and forecasting of sea level data were adapted for this purpose and compared: HA (Harmonic Analysis) and CWT (Continuous Wavelet Transform). The filtering process is generally comprised of two main steps: the detection and fitting of the major tide constituents through the decomposition of the original signal and the subsequent extraction of the complete tidal oscillations. The abilities of the optional HA and CWT methods to decompose and extract the tidal oscillations were assessed by applying them to the data from two piezometers at different depths close to the shoreline of a Mediterranean coastal aquifer (Motril-Salobreña, SE Spain). These methods were applied to three time series of different lengths (one month, one year, and 3.7 years of hourly data) to determine the range of detected frequencies. The different lengths of time series were also used to determine the fit accuracies of the tidal constituents for both the sea level and groundwater heads measurements. The detected tidal constituents were better resolved with increasing depth in the aquifer. The application of these methods yielded a detailed resolution of the tidal components, which enabled the extraction of the major tidal constituents of the sea level measurements from the groundwater heads (e.g., semi-diurnal, diurnal, fortnightly, monthly, semi-annual and annual). In the two wells studied, the CWT method was shown to be a more effective method than HA for extracting the tidal constituents of highest and lowest frequencies from groundwater head measurements.
Morgenroth, S; Thomas, J; Cannizzaro, V; Weiss, M; Schmidt, A R
2018-03-01
Spirometric monitoring provides precise measurement and delivery of tidal volumes within a narrow range, which is essential for lung-protective strategies that aim to reduce morbidity and mortality in mechanically-ventilated patients. Conventional anaesthesia ventilators include inbuilt spirometry to monitor inspiratory and expiratory tidal volumes. The GE Aisys CS 2 anaesthesia ventilator allows additional near-patient spirometry via a sensor interposed between the proximal end of the tracheal tube and the respiratory tubing. Near-patient and inbuilt spirometry of two different GE Aisys CS 2 anaesthesia ventilators were compared in an in-vitro study. Assessments were made of accuracy and variability in inspiratory and expiratory tidal volume measurements during ventilation of six simulated paediatric lung models using the ASL 5000 test lung. A total of 9240 breaths were recorded and analysed. Differences between inspiratory tidal volumes measured with near-patient and inbuilt spirometry were most significant in the newborn setting (p < 0.001), and became less significant with increasing age and weight. During expiration, tidal volume measurements with near-patient spirometry were consistently more accurate than with inbuilt spirometry for all lung models (p < 0.001). Overall, the variability in measured tidal volumes decreased with increasing tidal volumes, and was smaller with near-patient than with inbuilt spirometry. The variability in measured tidal volumes was higher during expiration, especially with inbuilt spirometry. In conclusion, the present in-vitro study shows that measurements with near-patient spirometry are more accurate and less variable than with inbuilt spirometry. Differences between measurement methods were most significant in the smallest patients. We therefore recommend near-patient spirometry, especially for neonatal and paediatric patients. © 2018 The Association of Anaesthetists of Great Britain and Ireland.
NASA Astrophysics Data System (ADS)
Haught, D. R.; Stumpner, P.
2012-12-01
Processes that determine deposition and resuspension of sediment in fluvial and tidal systems are complicated and difficult to predict because of turbulence-sediment interaction. In fluvial systems net sediment deposition rates near the bed are determined by shear stresses that occur when turbulence interacts with the bed and the entrained sediment above. In tidal systems, processes are driven primarily by the confounding factors of slack water and reversing flow. In this study we investigate near-bed sediment fluxes, settling velocities and sediment size distributions during a change from a fluvial signal to a tidal signal. In order to examine these processes a high resolution, high frequency ADCP, ADV, water quality sonde and LISST data were collocated at the fluvial-tidal transition in the Sacramento River at Freeport, CA. Data were collected at 15-30 minute increments for a month`. Data were dissevered into fluvial and tidal components. Acoustic backscatterence was used as a surrogate to sediment concentration and sediment flux (
NASA Astrophysics Data System (ADS)
Passeri, Davina L.; Hagen, Scott C.; Medeiros, Stephen C.; Bilskie, Matthew V.
2015-12-01
This study evaluates the geophysical influence of the combined effects of historic sea level rise (SLR) and morphology on tidal hydrodynamics in the Grand Bay estuary, located in the Mississippi Sound. Since 1848, the landscape of the Mississippi Sound has been significantly altered as a result of natural and anthropogenic factors including the migration of the offshore Mississippi-Alabama (MSAL) barrier islands and the construction of navigational channels. As a result, the Grand Bay estuary has undergone extensive erosion resulting in the submergence of its protective barrier island, Grand Batture. A large-domain hydrodynamic model was used to simulate present (circa 2005) and past conditions (circa 1848, 1917, and 1960) with unique sea levels, bathymetry, topography and shorelines representative of each time period. Additionally, a hypothetical scenario was performed in which Grand Batture Island exists under 2005 conditions in order to observe the influence of the island on tidal hydrodynamics within the Grand Bay estuary. Changes in tidal amplitudes from the historic conditions varied. Within the Sound, tidal amplitudes were unaltered due to the open exposed shoreline; however, in semi-enclosed embayments outside of the Sound, tidal amplitudes increased. In addition, harmonic constituent phases were slower historically. The position of the MSAL barrier island inlets influenced tidal currents within the Sound; the westward migration of Petit Bois Island allowed stronger tidal velocities to be centered on the Grand Batture Island. Maximum tidal velocities within the Grand Bay estuary were 5 cm/s faster historically, and reversed from being flood dominant in 1848 to ebb dominant in 2005. If the Grand Batture Island was reconstructed under 2005 conditions, tidal amplitudes and phases would not be altered, indicating that the offshore MSAL barrier islands and SLR have a greater influence on these tidal parameters within the estuary. However, maximum tidal velocities would increase by as much as 5 cm/s (63%) and currents would become more ebb dominant. Results of this study illustrate the hydrodynamic response of the system to SLR and the changing landscape, and provide insight into potential future changes under SLR and barrier island evolution.
Hydrodynamic effects of kinetic power extraction by in-stream tidal turbines
NASA Astrophysics Data System (ADS)
Polagye, Brian L.
The hydrodynamic effects of extracting kinetic power from tidal streams presents unique challenges to the development of in-stream tidal power. In-stream tidal turbines superficially resemble wind turbines and extract kinetic power from the ebb and flood of strong tidal currents. Extraction increases the resistance to flow, leading to changes in tidal range, transport, mixing, and the kinetic resource itself. These far-field changes have environmental, social, and economic implications that must be understood to develop the in-stream resource. This dissertation describes the development of a one-dimensional numerical channel model and its application to the study of these effects. The model is applied to determine the roles played by site geometry, network topology, tidal regime, and device dynamics. A comparison is also made between theoretical and modeled predictions for the maximum amount of power which could be extracted from a tidal energy site. The model is extended to a simulation of kinetic power extraction from Puget Sound, Washington. In general, extracting tidal energy will have a number of far-field effects, in proportion to the level of power extraction. At the theoretical limit, these effects can be very significant (e.g., 50% reduction in transport), but are predicted to be immeasurably small for pilot-scale projects. Depending on the specifics of the site, far-field effects may either augment or reduce the existing tidal regime. Changes to the tide, in particular, have significant spatial variability. Since tidal streams are generally subcritical, effects are felt throughout the estuary, not just at the site of extraction. The one dimensional numerical modeling is supported by a robust theory for predicting the performance characteristics of in-stream devices. The far-field effects of tidal power depend on the total power dissipated by turbines, rather than the power extracted. When the low-speed wake downstream of a turbine mixes with the free-stream, power is lost, such that the total power dissipated by the turbine is significantly greater than the power extracted. This dissertation concludes with a framework for three-dimensional numerical modeling of near-field extraction effects.
Hinson, Audra L; Feagin, Rusty A; Eriksson, Marian; Najjar, Raymond G; Herrmann, Maria; Bianchi, Thomas S; Kemp, Michael; Hutchings, Jack A; Crooks, Steve; Boutton, Thomas
2017-12-01
Tidal wetlands contain large reservoirs of carbon in their soils and can sequester carbon dioxide (CO 2 ) at a greater rate per unit area than nearly any other ecosystem. The spatial distribution of this carbon influences climate and wetland policy. To assist with international accords such as the Paris Climate Agreement, national-level assessments such as the United States (U.S.) National Greenhouse Gas Inventory, and regional, state, local, and project-level evaluation of CO 2 sequestration credits, we developed a geodatabase (CoBluCarb) and high-resolution maps of soil organic carbon (SOC) distribution by linking National Wetlands Inventory data with the U.S. Soil Survey Geographic Database. For over 600,000 wetlands, the total carbon stock and organic carbon density was calculated at 5-cm vertical resolution from 0 to 300 cm of depth. Across the continental United States, there are 1,153-1,359 Tg of SOC in the upper 0-100 cm of soils across a total of 24 945.9 km 2 of tidal wetland area, twice as much carbon as the most recent national estimate. Approximately 75% of this carbon was found in estuarine emergent wetlands with freshwater tidal wetlands holding about 19%. The greatest pool of SOC was found within the Atchafalaya/Vermilion Bay complex in Louisiana, containing about 10% of the U.S. total. The average density across all tidal wetlands was 0.071 g cm -3 across 0-15 cm, 0.055 g cm -3 across 0-100 cm, and 0.040 g cm -3 at the 100 cm depth. There is inherent variability between and within individual wetlands; however, we conclude that it is possible to use standardized values at a range of 0-100 cm of the soil profile, to provide first-order quantification and to evaluate future changes in carbon stocks in response to environmental perturbations. This Tier 2-oriented carbon stock assessment provides a scientific method that can be copied by other nations in support of international requirements. © 2017 John Wiley & Sons Ltd.
Recurring Occultations of RW Aurigae by Coagulated Dust in the Tidally Disrupted Circumstellar Disk
NASA Astrophysics Data System (ADS)
Rodriguez, Joseph E.; Reed, Phillip A.; Siverd, Robert J.; Pepper, Joshua; Stassun, Keivan G.; Gaudi, B. Scott; Weintraub, David A.; Beatty, Thomas G.; Lund, Michael B.; Stevens, Daniel J.
2016-02-01
We present photometric observations of RW Aurigae, a Classical T Tauri system, that reveal two remarkable dimming events. These events are similar to that which we observed in 2010-2011, which was the first such deep dimming observed in RW Aur in a century’s worth of photometric monitoring. We suggested the 2010-2011 dimming was the result of an occultation of the star by its tidally disrupted circumstellar disk. In 2012-2013, the RW Aur system dimmed by ˜0.7 mag for ˜40 days and in 2014/2015 the system dimmed by ˜2 mag for >250 days. The ingress/egress duration measurements of the more recent events agree well with those from the 2010-2011 event, providing strong evidence that the new dimmings are kinematically associated with the same occulting source as the 2010-2011 event. Therefore, we suggest that both the 2012-2013 and 2014-2015 dimming events, measured using data from the Kilodegree Extremely Little Telescope and the Kutztown University Observatory, are also occultations of RW Aur A by the tidally disrupted circumstellar material. Recent hydrodynamical simulations of the eccentric fly-by of RW Aur B suggest the occulting body to be a bridge of material connecting RW Aur A and B. These simulations also suggest the possibility of additional occultations which are supported by the observations presented in this work. The color evolution of the dimmings suggest that the tidally stripped disk material includes dust grains ranging in size from small grains at the leading edge, typical of star-forming regions, to large grains, ices or pebbles producing gray or nearly gray extinction deeper within the occulting material. It is not known whether this material represents arrested planet building prior to the tidal disruption event, or perhaps accelerated planet building as a result of the disruption event, but in any case the evidence suggests the presence of advanced planet building material in the space between the two stars of the RW Aur system.
Characterizing ocean gyres formation within a bay using vorticity and HF radar measurements
NASA Astrophysics Data System (ADS)
Ragnoli, E.; Donncha, F. O.; Hartnett, M.
2012-04-01
In situations in which wind forcing plays a dominant role in surface currents it becomes important to understand its correlation with parameters that can be used to characterise circulation patterns within a bay. These datasets can then be used in the detection and characterisation of ocean gyres. A network of high frequency radars (NUIG CODAR) is deployed within Galway Bay, on the West Coast of Ireland as a backbone system within an integrated coastal ocean observation system. This system provides real-time synoptic measurements of both ocean surface currents and surface waves across the entire bay. In this work, vorticity is identified as a defining quantity for the characterisation of circulating flow patterns (in particular for the detection of ocean gyres) and it is directly calculated from the measured velocity vectors of NUIG CODAR. A correlation study with wind and tide measurements is then undertaken in order to investigate the dependencies between vorticity and those parameters. A comprehensive NUIG CODAR, weather station and tide gauge monitoring program was conducted over a 30 days period and the data collected analysed for the correlation with the computed vorticity. Tidal information from the FES2004 Global tidal atlas defined surface elevations at the open sea boundaries in the west and in the south. Data from a tide gauge deployed within the bay, which provided real-time tidal data at 6 minute intervals, was used to fine-tune model elevations. A weather station located at National University of Ireland, Galway provided measured wind data for the model. The NUIG CODAR coastal observation system detects strong, non-persistent, gyre formation within Galway Bay. During periods of relatively large tidal ranges (order 4m) and light wind conditions well defined, cyclonic circulation is developed within the bay. The correlation analysis shows that the gyres tend to form soon after high tide and last until the next low water; the gyre structure is transported about the bay with the bulk advection of tidal motion. This is the first time this feature has been observed and the significance of its consequences on water circulation will be the subject of future research.
Byrne, Michael J.; Patino, Eduardo
2004-01-01
A hydrologic analysis was made at three canal sites and four tidal sites along the St. Lucie River Estuary in southeastern Florida from 1998 to 2001. The data included for analysis are stage, 15-minute flow, salinity, water temperature, turbidity, and suspended-solids concentration. During the period of record, the estuary experienced a drought, major storm events, and high-water discharge from Lake Okeechobee. Flow mainly occurred through the South Fork of the St. Lucie River; however, when flow increased through control structures along the C-23 and C-24 Canals, the North Fork was a larger than usual contributor of total freshwater inflow to the estuary. At one tidal site (Steele Point), the majority of flow was southward toward the St. Lucie Inlet; at a second tidal site (Indian River Bridge), the majority of flow was northward into the Indian River Lagoon. Large-volume stormwater discharge events greatly affected the St. Lucie River Estuary. Increased discharge typically was accompanied by salinity decreases that resulted in water becoming and remaining fresh throughout the estuary until the discharge events ended. Salinity in the estuary usually returned to prestorm levels within a few days after the events. Turbidity decreased and salinity began to increase almost immediately when the gates at the control structures closed. Salinity ranged from less than 1 to greater than 35 parts per thousand during the period of record (1998-2001), and typically varied by several parts per thousand during a tidal cycle. Suspended-solids concentrations were observed at one canal site (S-80) and two tidal sites (Speedy Point and Steele Point) during a discharge event in April and May 2000. Results suggest that most deposition of suspended-solids concentration occurs between S-80 and Speedy Point. The turbidity data collected also support this interpretation. The ratio of inorganic to organic suspended-solids concentration observed at S-80, Speedy Point, and Steele Point during the discharge event indicates that most flocculation of suspended-solids concentration occurs between Speedy Point and Steele Point.
Beach Cusps: Spatial distribution and time evolution at Massaguaçú beach (SP), Brazil
NASA Astrophysics Data System (ADS)
dos Santos, H. H.; Siegle, E.; Sousa, P. H.
2013-05-01
Beach cusps are crescentic morphological structures observed on the foreshore of beaches characterized by steep seaward protruding extensions, called cusp horns, and gently sloped landward extensions, called cusp embayments. Their formation depends on the grain size, beach slope, tidal range and incoming waves. Cusps are best developed on gravel or shingle beaches, small tidal range with a large slope for incoming waves generate a well-developed swash excursion. These structures are quickly responding to wave climate and tidal range, changing the position of the rhythmic features on the beach face. Beach cusps are favored by normal incoming waves, while oblique waves tend to wash these features out. This study aims to analyze the spatial distribution and temporal evolution of rhythmic features such as beach cusps in Massaguaçú embayment (Caraguatatuba, northern coast of São Paulo, Brazil). This embayment has an extension of 7.5 km with reflective beaches cusped mainly in its more exposed central portion. The data set for this study consists of a series of video images (Argus system), covering a stretch of the beach. Visible beach cusps were digitalized from these rectified images. Results obtained from the images were related to the wave climate, water level and the storm surges. Results show that the cusps on the upper portion of the foreshore were more regular and present than the cusps on the lower portion of the foreshore due to the tidal modulation of wave action. The cusp spacing on the upper portion of the foreshore is of about 38 m and the lower portion of the foreshore is of about 28 m and their presence was correlated with the wave direction and water elevation. As expected, waves approaching with shore-normal angles (southeast direction) were favorable to the formation of beach cusps while the waves from the southwest, south, east and northeast generated a longshore current that reduced or destroyed any rhythmic feature. Other important forcing was the influence of the water level. Waves acting at higher water levels are able to produce the less dynamic upper layer of cusps. During 31 consecutive days from 8 July 2011 to 8 August of the same year these features show four periods with the presence of cusps on the upper and lower portion of the foreshore with three periods with cups only on the upper portion of the foreshore. The analyzed dataset shows the highly dynamic behavior of cusps, with rapid generation and destruction, related directly to its forcing hydrodynamic conditions.
Is There a Tectonically Driven Supertidal Cycle?
NASA Astrophysics Data System (ADS)
Green, J. A. M.; Molloy, J. L.; Davies, H. S.; Duarte, J. C.
2018-04-01
Earth is 180 Myr into the current supercontinent cycle, and the next supercontinent is predicted to form in 250 Myr. The continuous changes in continental configuration can move the ocean between resonant states, and the semidiurnal tides are currently large compared to the past 252 Myr due to tidal resonance in the Atlantic. This leads to the hypothesis that there is a "supertidal" cycle linked to the supercontinent cycle. Here this is tested using new tectonic predictions for the next 250 Myr as bathymetry in a numerical tidal model. The simulations support the following hypothesis: a new tidal resonance will appear 150 Myr from now, followed by a decreasing tide as the supercontinent forms 100 Myr later. This affects the dissipation of tidal energy in the oceans, with consequences for the evolution of the Earth-Moon system, ocean circulation and climate, and implications for the ocean's capacity of hosting and evolving life.
Tidal disruption of inviscid protoplanets
NASA Technical Reports Server (NTRS)
Boss, Alan P.; Cameron, A. G. W.; Benz, W.
1991-01-01
Roche showed that equilibrium is impossible for a small fluid body synchronously orbiting a primary within a critical radius now termed the Roche limit. Tidal disruption of orbitally unbound bodies is a potentially important process for planetary formation through collisional accumulation, because the area of the Roche limit is considerably larger then the physical cross section of a protoplanet. Several previous studies were made of dynamical tidal disruption and different models of disruption were proposed. Because of the limitation of these analytical models, we have used a smoothed particle hydrodynamics (SPH) code to model the tidal disruption process. The code is basically the same as the one used to model giant impacts; we simply choose impact parameters large enough to avoid collisions. The primary and secondary both have iron cores and silicate mantles, and are initially isothermal at a molten temperature. The conclusions based on the analytical and numerical models are summarized.
Wieczorek, G.F.; Geist, E.L.; Motyka, R.J.; Jakob, M.
2007-01-01
An unstable rock slump, estimated at 5 to 10????????10 6 m3, lies perched above the northern shore of Tidal Inlet in Glacier Bay National Park, Alaska. This landslide mass has the potential to rapidly move into Tidal Inlet and generate large, long-period-impulse tsunami waves. Field and photographic examination revealed that the landslide moved between 1892 and 1919 after the retreat of the Little Ice Age glaciers from Tidal Inlet in 1890. Global positioning system measurements over a 2-year period show that the perched mass is presently moving at 3-4 cm annually indicating the landslide remains unstable. Numerical simulations of landslide-generated waves suggest that in the western arm of Glacier Bay, wave amplitudes would be greatest near the mouth of Tidal Inlet and slightly decrease with water depth according to Green's law. As a function of time, wave amplitude would be greatest within approximately 40 min of the landslide entering water, with significant wave activity continuing for potentially several hours. ?? 2007 Springer-Verlag.
Sating a Voracious Appetite: The Tidal Interaction of Close-in Planets with their Host Stars
NASA Astrophysics Data System (ADS)
Matsakos, Titos; Königl, Arieh
2015-12-01
Transit observations of the apparent angle between the stellar spin and the vector normal to the planetary orbital plane suggest that cool stars are preferably aligned systems even as hot stars exhibit a large range of obliquities. In addition, as was demonstrated recently by Mazeh et al., the distribution of planet periods as a function of mass exhibits a dearth of sub-Jupiter--mass planets at < 4 days periods, with the boundary of the sparsely populated region in phase space having a roughly conical shape. We suggest that both of these seemingly disparate features are manifestations of the tidal interaction between close-in planets and their host stars. We attribute the dichotomy in the obliquity properties to the effect of an early population of hot Jupiters that got stranded near the inner edge of a primordially misaligned protoplanetary disk and subsequently (on a timescale < 1 Gyr) ingested by the host star. The relative magnitudes of the stellar spin and planetary orbital angular momenta at the time of ingestion determined whether the hot Jupiter could realign the host; this did not happen in the case of hot stars because of inefficient magnetic braking and a comparatively high moment of inertia. We interpret the dearth of intermediate-mass planets at short periods by considering the tidal evolution of planets that arrive on highly eccentric orbits at later (> 1 Gyr) times and become circularized at radii of a few times the Roche limit.
Estimating the k2 Tidal Gravity Love Number of Mars
NASA Technical Reports Server (NTRS)
Smith, David E.; Zuber, Maria; Torrence, Mark; Dunn, Peter
2003-01-01
Analysis of the orbits of spacecraft can be used to infer global tidal parameters. For Mars, the Mars Global Surveyor (MGS) spacecraft has been used to estimate the second degree Love number, k2 from the tracking DSN tracking Doppler and range data by several authors. Unfortunately, neither of the spacecraft presently in orbit are ideally suited to tidal recovery because they are in sun-synchronous orbits that vary only slightly in local time; and, further, the sub-solar location only varies by about 25 degrees in latitude. Never-the less respectable estimates of the k2 tide have been made by several authors. We present an updated solution of the degree 2 zonal Love number, compare with previous dues, and analyze the sensitivity of the solution to orbital parameters, spacecraft maneuvers, and solution methodology. Estimating the k2 Tidal Gravity Love Number of Mars.
One-dimensional Analytical Modelling of Floating Seed Dispersal in Tidal Channels
NASA Astrophysics Data System (ADS)
Shi, W.; Purnama, A.; Shao, D.; Cui, B.; Gao, W.
2017-12-01
Seed dispersal is a primary factor influencing plant community development, and thus plays a critical role in maintaining wetland ecosystem functioning. However, compared with fluvial seed dispersal of riparian plants, dispersal of saltmarsh plant seeds in tidal channels is much less studied due to its complex behavior, and relevant mathematical modelling is particularly lacking. In this study, we developed a one-dimensional advection-dispersion model to explore the patterns of tidal seed dispersal. Oscillatory tidal current and water depth were assumed to represent the tidal effects. An exponential decay coefficient λ was introduced to account for seed deposition and retention. Analytical solution in integral form was derived using Green's function and further evaluated using numerical integration. The developed model was applied to simulate Spartina densiflora seed dispersal in a tidal channel located at the Mad River Slough in North Humboldt Bay, California, USA, to demonstrate its practical applicability. Model predictions agree satisfactorily with field observation and simulation results from Delft3D numerical model. Sensitivity analyses were also conducted to evaluate the effects of varying calibrated parameters on model predictions. The range of the seed dispersion as well as the distribution of the seed concentration were further analyzed through statistical parameters such as centroid displacement and variance of the seed cloud together with seed concentration contours. Implications of the modelling results on tidal marsh restoration and protection, e.g., revegetation through seed addition, were also discussed through scenario analysis. The developed analytical model provides a useful tool for ecological management of tidal marshes.
Using tidal streams to investigate the rotation of the Milky Way's dark matter halo
NASA Astrophysics Data System (ADS)
Valluri, Monica; Snyder, Sarah Jean; Price-Whelan, Adrian M.
2017-06-01
The dark matter halos surrounding Milky Way-like galaxies that are formed in cosmological simulations are triaxial. These simulated triaxial halos are expected to be slowly rotating with log-normal distribution of pattern speeds centered on ~0.148h km/s/kpc (Bailin & Steinmetz 2004, ApJ., 616, 27). Stellar streams arising from a satellite experiencing tidal disruption inside such a slowly rotating triaxial halo are expected to be subject to additional forces (e.g. Coriolis forces) that affect the structure of the tidal streams. Using the Python Galaxy dynamics package Gala (Price-Whelan, http://gala.adrian.pw) we have generated simulations of tidal streams in a range of triaxial potentials to explore how the structure of Milky Way's tidal streams, especially the structure of stream bifurcations and the stream orbital plane, are altered by a slow figure rotation of the triaxial dark matter halo. We investigate what can be inferred about halo rotation from current and future data including upcoming data from Gaia. This work is supported by NASA-ATP award NNX15AK79G to the University of Michigan.
Water level effects on breaking wave setup for Pacific Island fringing reefs
NASA Astrophysics Data System (ADS)
Becker, J. M.; Merrifield, M. A.; Ford, M.
2014-02-01
The effects of water level variations on breaking wave setup over fringing reefs are assessed using field measurements obtained at three study sites in the Republic of the Marshall Islands and the Mariana Islands in the western tropical Pacific Ocean. At each site, reef flat setup varies over the tidal range with weaker setup at high tide and stronger setup at low tide for a given incident wave height. The observed water level dependence is interpreted in the context of radiation stress gradients specified by an idealized point break model generalized for nonnormally incident waves. The tidally varying setup is due in part to depth-limited wave heights on the reef flat, as anticipated from previous reef studies, but also to tidally dependent breaking on the reef face. The tidal dependence of the breaking is interpreted in the context of the point break model in terms of a tidally varying wave height to water depth ratio at breaking. Implications for predictions of wave-driven setup at reef-fringed island shorelines are discussed.
The Moon's orbit history and inferences on its origin
NASA Technical Reports Server (NTRS)
Conway, B. A.
1984-01-01
A frequency dependent model of tidal friction was used to determine the evolution of the Earth-Moon system. The analysis considers the lunar orbit eccentricity and inclination, the solar tide on the Earth, Earth oblateness, and higher order terms in the tidal potential. A solution of the equations governing the precession of the Earth's rotational angular momentum and the lunar ascending node is found. The history is consistent with a capture origin for the Moon. It rules out the origin of the Moon by fission. Results are shown for a range of assumed values for the lunar tidal dissipation. Tidal dissipation within the Moon, during what would be the immediate postcapture period, is shown to be capable of significantly heating the Moon. The immediate postcapture orbit has a periapsis within the Earth's Roche limit. Capture into resonance with the Earth's gravitational field as this orbit tidally evolves is suggested to be a mechanism to prevent so close, an approach. It is shown that the probability of such capture is negligibly small and alternative hypotheses for the survival of the Roche limit passage is offered.
Tide-surge interaction along the east coast of the Leizhou Peninsula, South China Sea
NASA Astrophysics Data System (ADS)
Zhang, Heng; Cheng, Weicong; Qiu, Xixi; Feng, Xiangbo; Gong, Wenping
2017-06-01
A triply-nested two-dimensional (2D) ocean circulation model along with observed sea level records are used to study tide-surge interaction along the east coast of the Leizhou Peninsula (LP) which is characterized by extensive mudflats, large tidal ranges and a complex coastline. The dependency of surge maxima on the water level and the phase of tide are respectively investigated using two statistical approaches. Results show that tide-surge interaction along the east coast of the LP is significant, where surges peak 3-6 h before or after the nearest high water. The triply-nested 2D ocean circulation model is used to quantify tide-surge interaction in this region and to investigate its physical cause. The largest amplitudes of tide-surge interaction are found in the shallow water region of the Leizhou Bay, with values up to 1 m during typhoon events. Numerical experiments reveal that nonlinear bottom friction is the main contributor to tide-surge interaction, while the contribution of the nonlinear advective effect can be neglected. The shallow water effect enhances the role of nonlinear bottom friction in determining tide-surge modulation, leaving the surge peaks usually occur on the rising or falling tide. It is also found that the relative contribution of local wind and remote wind is different depending on the storm track and storm intensity, which would finally affect the temporal and spatial distribution of tide-surge interaction during typhoon events. These findings confirm the importance of coupling storm surges and tides for the prediction of storm surge events in regions which are characterized by shallow water depths and large tidal ranges.
NASA Astrophysics Data System (ADS)
van der Molen, Johan; Ruardij, Piet; Greenwood, Naomi
2016-05-01
A model study was carried out of the potential large-scale (> 100 km) effects of marine renewable tidal energy generation in the Pentland Firth, using the 3-D hydrodynamics-biogeochemistry model GETM-ERSEM-BFM. A realistic 800 MW scenario and a high-impact scenario with massive expansion of tidal energy extraction to 8 GW scenario were considered. The realistic 800 MW scenario suggested minor effects on the tides, and undetectable effects on the biogeochemistry. The massive-expansion 8 GW scenario suggested effects would be observed over hundreds of kilometres away with changes of up to 10 % in tidal and ecosystem variables, in particular in a broad area in the vicinity of the Wash. There, waters became less turbid, and primary production increased with associated increases in faunal ecosystem variables. Moreover, a one-off increase in carbon storage in the sea bed was detected. Although these first results suggest positive environmental effects, further investigation is recommended of (i) the residual circulation in the vicinity of the Pentland Firth and effects on larval dispersal using a higher-resolution model and (ii) ecosystem effects with (future) state-of-the-art models if energy extraction substantially beyond 1 GW is planned.
Exomoon habitability constrained by illumination and tidal heating.
Heller, René; Barnes, Rory
2013-01-01
The detection of moons orbiting extrasolar planets ("exomoons") has now become feasible. Once they are discovered in the circumstellar habitable zone, questions about their habitability will emerge. Exomoons are likely to be tidally locked to their planet and hence experience days much shorter than their orbital period around the star and have seasons, all of which works in favor of habitability. These satellites can receive more illumination per area than their host planets, as the planet reflects stellar light and emits thermal photons. On the contrary, eclipses can significantly alter local climates on exomoons by reducing stellar illumination. In addition to radiative heating, tidal heating can be very large on exomoons, possibly even large enough for sterilization. We identify combinations of physical and orbital parameters for which radiative and tidal heating are strong enough to trigger a runaway greenhouse. By analogy with the circumstellar habitable zone, these constraints define a circumplanetary "habitable edge." We apply our model to hypothetical moons around the recently discovered exoplanet Kepler-22b and the giant planet candidate KOI211.01 and describe, for the first time, the orbits of habitable exomoons. If either planet hosted a satellite at a distance greater than 10 planetary radii, then this could indicate the presence of a habitable moon.
Changes in ecosystem service values in Zhoushan Island using remote sensing time series data
NASA Astrophysics Data System (ADS)
Zhang, Xiaoping; Qin, Yanpei; Lv, Ying; Zhen, Guangwei; Gong, Fang; Li, Chaokui
2017-10-01
The largest inhabited island, Zhoushan Island, is the center of economy, culture, shipping, and fishing in the Zhoushan Archipelago New Area. Its coastal wetland and tidal flats offer significant ecological services including floodwater storage, wildlife habitat, and buffers against tidal surges. Yet, large-scale land reclamation and new land development may dramatically change ecosystem services. In this research, we assess changes in ecosystem service values in Zhoushan Island during 1990-2000-2011. Three LANDSAT TM and/or ETM data sets were used to determine the spatial pattern of land use, and previously published value coefficients were used to calculate the ecosystem service values delivered by each land category. The results show that total value of ecosystem services in Zhoushan Island declined by 11% from 2920.07 billion Yuan to 2609.77 billion Yuan per year between 1990 and 2011. This decrease is largely attributable to the 51% loss of tidal flats. The combined ecosystem service values of woodland, paddy land and tidal flats were over 90% of the total values. The result indicates that future land-use policy should pay attention to the conservation of these ecosystems over uncontrolled reclamation and coastal industrial development, and that further coastal reclamation should be on rigorous environmental impact analyses.
Tidal Distortion and Disruption of Earth-Crossing Asteroids
NASA Astrophysics Data System (ADS)
Richardson, D. C.; Bottke, W. F.
1996-09-01
There is mounting evidence that most km-sized objects in the solar system are ``rubble-piles'', fragile objects composed of loose collections of smaller components all held together by self-gravity rather than tensile strength. The evidence includes: (a) the paucity of fast rotating km-sized asteroids (Harris, 1996, LPSC 27, 977); (b) the tidal disruption of Comet Shoemaker-Levy 9 (SL9) and observations of crater chains on the Moon and Galilean satellites (Schenk et al., 1996, Icarus 121, 149); (c) observations of extremely large craters on Phobos, Gaspra, and Ida; and (d) hydrocode models that realistically treat asteroid impacts (Love and Ahrens, 1996, Icarus, in press). Accordingly, we predict that Earth's tidal forces play a major role in the evolution of rubble-pile Earth-crossing objects (ECOs). By modeling close encounters between the Earth and our rubble-piles (for details, see Bottke et al., this issue), we found that Earth's tidal forces can make the progenitors undergo: (a) ``SL9-type'' disruption (formation of clumps of roughly equal size along the fragment train; this outcome may explain specific crater chains seen on the Moon); (b) mass shedding (over half of the primary remains intact; in many cases, the shed fragments go into orbit around the progenitor, producing binary asteroids, which could explain the population of doublet craters seen on the terrestrial planets (Bottke and Melosh, 1996, Nature 381, 51)); (c) reshaping accompanied by spin-up or spin-down (this mechanism could explain the large aspect ratio (2.76), unusual shape, and short rotation period (5.2 hours) of 1620 Geographos as well as the short rotation periods of many other ECOs). Mass shedding events for ECOs occur more frequently at low velocities relative to Earth than at high velocities, corresponding to low (e, i) values. Thus, Earth's tidal forces should be most effective at disrupting large ECOs (and producing small bodies) in this region. This localized disruption mechanism may explain observations by Rabinowitz et al. (1993, Nature 363, 704), who claim to see an ``excess'' number of small ECOs (D < 50 m) at low (e, i) relative to their expectation based on the number of large ECOs seen elsewhere.
Patterns and drivers of daily bed-level dynamics on two tidal flats with contrasting wave exposure.
Hu, Zhan; Yao, Peng; van der Wal, Daphne; Bouma, Tjeerd J
2017-08-02
Short-term bed-level dynamics has been identified as one of the main factors affecting biota establishment or retreat on tidal flats. However, due to a lack of proper instruments and intensive labour involved, the pattern and drivers of daily bed-level dynamics are largely unexplored in a spatiotemporal context. In this study, 12 newly-developed automatic bed-level sensors were deployed for nearly 15 months on two tidal flats with contrasting wave exposure, proving an unique dataset of daily bed-level changes and hydrodynamic forcing. By analysing the data, we show that (1) a general steepening trend exists on both tidal flats, even with contrasting wave exposure and different bed sediment grain size; (2) daily morphodynamics level increases towards the sea; (3) tidal forcing sets the general morphological evolution pattern at both sites; (4) wave forcing induces short-term bed-level fluctuations at the wave-exposed site, but similar effect is not seen at the sheltered site with smaller waves; (5) storms provoke aggravated erosion, but the impact is conditioned by tidal levels. This study provides insights in the pattern and drivers of daily intertidal bed-level dynamics, thereby setting a template for future high-resolution field monitoring programmes and inviting in-depth morphodynamic modelling for improved understanding and predictive capability.
NASA Technical Reports Server (NTRS)
Fabbiano, G.
1998-01-01
We present optical and archival X-ray data on the disturbed morphology radio elliptical NGC 1316 (Fornax A) that displays numerous low surface brightness shells, loops and tails. An extended (81x27 min or 9x3 kpc) emission line region (EELR) at a projected distance of 35 kpc from the nucleus has been discovered in a approximately 9Ox35 kpc, approximately 3.Ox1O(solar luminosity(B)) tidal tail. The position and extreme size of the EELR suggest it is related to the merger process. We suggest that the ionization mechanism of the EELR is shock excitation, and the gas is remnant from the merger progenitor. X-ray emission is detected near two tidal tails. Hot, approximately 5 x 10(exp 6)K gas is probably the predominant gas component in the tidal tail ISM. However based on the current tidal tail (cold + warm + hot) gas mass, a large fraction of the tidal tail progenitor gas may already reside in the nucleus of NGC 1316. The numerous and varied tidal tail system suggests that a disk-disk or disk-E merger could have taken place greater than or equal to 1 Gyr ago, whilst a low mass, gas rich galaxy started to merge approximately 0.5 Gyr ago.
National Guidebook for Application of Hydrogeomorphic Assessment to Tidal Fringe Wetlands
1998-12-01
Wrighton Road Lothian, MD 20711 Ron Thorn Battele Marine Science Laboratory 1529 West Sequim Bay Road Sequim , WA 98382 Rena Weichenburg U.S. Army...This region includes the Delaware and Chesapeake Bay estuaries and, except for the exclusion of the microtidal Albemarle and Pamlico Sounds...Gulf (Pearl River, Mississippi, to Galveston Bay , Texas). Small tidal range (< 1 m), meteorologically dominated diurnal tides. Freshwater input
NASA Astrophysics Data System (ADS)
Cannizzo, John K.
2017-01-01
We utilize the time dependent accretion disk model described by Ichikawa & Osaki (1992) to explore two basic ideas for the outbursts in the SU UMa systems, Osaki's Thermal-Tidal Model, and the basic accretion disk limit cycle model. We explore a range in possible input parameters and model assumptions to delineate under what conditions each model may be preferred.
Lunar Rotation and the Lunar Interior
NASA Technical Reports Server (NTRS)
Williams, J. G.; Boggs, D. H.; Ratcliff, J. T.; Dickey, J. O.
2003-01-01
Variations in rotation and orientation of the Moon are sensitive to solid-body tidal dissipation, dissipation due to relative motion at the fluid-core/ solid-mantle boundary, and tidal Love number k2. There is weaker sensitivity to flattening of the core-mantle boundary (CMB) and fluid core moment of inertia. Accurate Lunar Laser Ranging (LLR) measurements of the distance from observatories on the Earth to four retroreflector arrays on the Moon are sensitive to lunar rotation and orientation variations and tidal displacements. Past solutions using the LLR data have given results for dissipation due to solid-body tides and fluid core plus Love number. Past detection of CMB flattening has been marginal but is improving, while direct detection of the core moment has not yet been achieved. Three decades of Lunar Laser Ranging (LLR) data are analyzed using a weighted least-squares approach. The lunar solution parameters include dissipation at the fluid-core/solid-mantle boundary, tidal dissipation, dissipation-related coefficients for rotation and orientation terms, potential Love number k2, a correction to the constant term in the tilt of the equator to the ecliptic which is meant to approximate the influence of core-mantle boundary flattening, and displacement Love numbers h2 and l2. Several solutions, with different combinations of solution parameters and constraints, are considered.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Glenn, J.L.; Martin, E.A.; Rice, C.A.
1986-01-01
Sixty-two cores ranging in length from 33 to 1,002 cm were collected from the tidal Potomac system and from selected tributaries downstream from the local head-of-tides between June 1978 and July 1981. Segments from selected depths below the sediment surface have been analyzed for a variety of constituents, including lead-210, trace metals, nutrients, and particle size. The core sites were positioned throughout the hydrologic divisions and geomorphic units of the tidal Potomac system and in water depths ranging from 1 to 30 cm. Alpha counting methods were used to determine the polonium-210 radioactivity and secular equilibrium was assumed between lead-210more » and polonium-210. The alpha decay of polonium-210 provides a measure of the lead-210 radioactivity of the lead-210 produced by in-situ decay of radium-226 in the sediment column and the lead-210 from external sources. Only the unsupported lead-210 was used in computations of the deposition rate. The background level of lead-210 in tidal Potomac system sediment cores usually is based on in-situ measurements of total lead-210 at depths below which no unsupported lead-210 is believed to be present, and the lead-210 concentrations are relatively constant. 6 refs., 3 figs., 1 tab.« less
Ichnological evidence of Megalosaurid Dinosaurs Crossing Middle Jurassic Tidal Flats
NASA Astrophysics Data System (ADS)
Razzolini, Novella L.; Oms, Oriol; Castanera, Diego; Vila, Bernat; Santos, Vanda Faria Dos; Galobart, Àngel
2016-08-01
A new dinosaur tracksite in the Vale de Meios quarry (Serra de Aire Formation, Bathonian, Portugal)preserves more than 700 theropod tracks. They are organized in at least 80 unidirectional trackways arranged in a bimodal orientation pattern (W/NW and E/SE). Quantitative and qualitative comparisons reveal that the large tridactyl, elongated and asymmetric tracks resemble the typical Late Jurassic-Early Cretaceous Megalosauripus ichnogenus in all morphometric parameters. Few of the numerous tracks are preserved as elite tracks while the rest are preserved as different gradients of modified true tracks according to water content, erosive factors, radial fractures and internal overtrack formations. Taphonomical determinations are consistent with paleoenvironmental observations that indicate an inter-tidal flat located at the margin of a coastal barrier. The Megalosauripus tracks represent the oldest occurrence of this ichnotaxon and are attributed to large megalosaurid dinosaurs. Their occurrence in Vale de Meios tidal flat represents the unique paleoethological evidence of megalosaurids moving towards the lagoon, most likley during the low tide periods with feeding purposes.
Ichnological evidence of Megalosaurid Dinosaurs Crossing Middle Jurassic Tidal Flats.
Razzolini, Novella L; Oms, Oriol; Castanera, Diego; Vila, Bernat; Santos, Vanda Faria Dos; Galobart, Àngel
2016-08-19
A new dinosaur tracksite in the Vale de Meios quarry (Serra de Aire Formation, Bathonian, Portugal)preserves more than 700 theropod tracks. They are organized in at least 80 unidirectional trackways arranged in a bimodal orientation pattern (W/NW and E/SE). Quantitative and qualitative comparisons reveal that the large tridactyl, elongated and asymmetric tracks resemble the typical Late Jurassic-Early Cretaceous Megalosauripus ichnogenus in all morphometric parameters. Few of the numerous tracks are preserved as elite tracks while the rest are preserved as different gradients of modified true tracks according to water content, erosive factors, radial fractures and internal overtrack formations. Taphonomical determinations are consistent with paleoenvironmental observations that indicate an inter-tidal flat located at the margin of a coastal barrier. The Megalosauripus tracks represent the oldest occurrence of this ichnotaxon and are attributed to large megalosaurid dinosaurs. Their occurrence in Vale de Meios tidal flat represents the unique paleoethological evidence of megalosaurids moving towards the lagoon, most likley during the low tide periods with feeding purposes.
Erikson, Li H.; Wright, Scott A.; Elias, Edwin; Hanes, Daniel M.; Schoellhamer, David H.; Largier, John; Barnard, P.L.; Jaffee, B.E.; Schoellhamer, D.H.
2013-01-01
Sediment exchange at large energetic inlets is often difficult to quantify due complex flows, massive amounts of water and sediment exchange, and environmental conditions limiting long-term data collection. In an effort to better quantify such exchange this study investigated the use of suspended sediment concentrations (SSC) measured at an offsite location as a surrogate for sediment exchange at the tidally dominated Golden Gate inlet in San Francisco, CA. A numerical model was calibrated and validated against water and suspended sediment flux measured during a spring–neap tide cycle across the Golden Gate. The model was then run for five months and net exchange was calculated on a tidal time-scale and compared to SSC measurements at the Alcatraz monitoring site located in Central San Francisco Bay ~ 5 km from the Golden Gate. Numerically modeled tide averaged flux across the Golden Gate compared well (r2 = 0.86, p-value
Russell, G.M.; Goodwin, C.R.
1987-01-01
Results of a two-dimensional, vertically averaged, computer simulation model of the Loxahatchee River estuary show that under typical low freshwater inflow and vertically well mixed conditions, water circulation is dominated by freshwater inflow rather than by tidal influence. The model can simulate tidal flow and circulation in the Loxahatchee River estuary under typical low freshwater inflow and vertically well mixed conditions, but is limited, however, to low-flow and well mixed conditions. Computed patterns of residual water transport show a consistent seaward flow from the northwest fork through the central embayment and out Jupiter Inlet to the Atlantic Ocean. A large residual seaward flow was computed from the North Intracoastal Waterway to the inlet channel. Although the tide produces large flood and ebb flows in the estuary, tide-induced residual transport rates are low in comparison with freshwater-induced residual transport. Model investigations of partly mixed or stratified conditions in the estuary need to await development of systems capable of simulating three-dimensional flow patterns. (Author 's abstract)
Ribeiro, J P N; Matsumoto, R S; Takao, L K; Lima, M I S
2015-08-01
Estuaries present an environmental gradient that ranges from almost fresh water conditions to almost marine conditions. Salinity and flooding are the main abiotic drivers for plants. Therefore, plant zonation in estuaries is closely related to the tidal cycles. It is expected that the competitive abilities of plants would be inversely related to the tolerance toward environmental stress (tradeoff). Thus, in estuaries, plant zonation tends to be controlled by the environment near the sandbar and by competition away from it. This zonation pattern has been proposed for regular non-tropical estuaries. For tropical estuaries, the relative importance of rain is higher, and it is not clear to what extent this model can be extrapolated. We measured the tidal influence along the environmental gradient of a tropical irregular estuary and quantified the relative importance of the environment and the co-occurrence degree. Contrary to the narrow occurrence zone that would be expected for regular estuaries, plants presented large occurrence zones. However, the relative importance of the environment and competition followed the same patterns proposed for regular estuaries. The environmental conditions allow plants to occur in larger zones, but these zones arise from smaller and infrequent patches distributed across a larger area, and most species populations are concentrated in relatively narrow zones. Thus, we concluded that the zonation pattern in the Massaguaçu River estuary agrees with the tradeoff model.
Carbon sequestration by Australian tidal marshes.
Macreadie, Peter I; Ollivier, Q R; Kelleway, J J; Serrano, O; Carnell, P E; Ewers Lewis, C J; Atwood, T B; Sanderman, J; Baldock, J; Connolly, R M; Duarte, C M; Lavery, P S; Steven, A; Lovelock, C E
2017-03-10
Australia's tidal marshes have suffered significant losses but their recently recognised importance in CO 2 sequestration is creating opportunities for their protection and restoration. We compiled all available data on soil organic carbon (OC) storage in Australia's tidal marshes (323 cores). OC stocks in the surface 1 m averaged 165.41 (SE 6.96) Mg OC ha -1 (range 14-963 Mg OC ha -1 ). The mean OC accumulation rate was 0.55 ± 0.02 Mg OC ha -1 yr -1 . Geomorphology was the most important predictor of OC stocks, with fluvial sites having twice the stock of OC as seaward sites. Australia's 1.4 million hectares of tidal marshes contain an estimated 212 million tonnes of OC in the surface 1 m, with a potential CO 2 -equivalent value of $USD7.19 billion. Annual sequestration is 0.75 Tg OC yr -1 , with a CO 2 -equivalent value of $USD28.02 million per annum. This study provides the most comprehensive estimates of tidal marsh blue carbon in Australia, and illustrates their importance in climate change mitigation and adaptation, acting as CO 2 sinks and buffering the impacts of rising sea level. We outline potential further development of carbon offset schemes to restore the sequestration capacity and other ecosystem services provided by Australia tidal marshes.
An in-Situ Chemical Analyzer for the Determination of Trace Ammonia in Natural Waters
NASA Astrophysics Data System (ADS)
Amornthammarong, N.; Ortner, P. B.; Hendee, J. C.
2014-12-01
In recent decades chemists have devoted a considerable effort to automating classical wet chemistry. The instruments manufactured for analysis of a large number of samples can be categorized into two main groups—batch and continuous flow analyzers. Our technique, autonomous batch analyzer (ABA), takes advantages of previously described batch analysis and continuous flow analysis. With its simpler design, ABA is robust, flexible, inexpensive, and requires minimal maintenance. ABA achieves complete mixing of sample with reagents using a syringe and a simple mixing chamber. The system can autonomously produce a calibration curve by auto-diluting a single stock standard solution. In addition it incorporates a pre-filtering subsystem enabling measurements in turbid, sediment-laden waters. Over the typical range for ammonia in marine waters (0-10 µM), the response is linear (r2 = 0.9930) with a limit of detection (S/N ratio > 3) of 10 nM. The working range for marine waters is 0.05-10 µM. Repeatability is 0.3% (n = 10) at an ammonia level of 2 μM. Results from automated operation in 15 min cycles over 16 days had good overall precision (RSD = 3%, n = 660). The system was field tested at three shallow South Florida sites, a tidal pond and the Indian River Lagoon, FL. Diurnal cycles and possibly a tidal influence were expressed in the concentration variability observed.
Understanding the Flushing Capability of Bellingham Bay and Its Implication on Bottom Water Hypoxia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Taiping; Yang, Zhaoqing
2015-05-05
In this study, an unstructured-grid finite-volume coastal ocean model (FVCOM) was used to simulate hydrodynamic circulation and assess the flushing capability in Bellingham Bay, Washington, USA. The model was reasonably calibrated against field observations for water level, velocity and salinity, and was further used to calculate residence time distributions in the study site. The model results suggest that, despite the large tidal ranges (~4 m during spring tide), tidal currents are relatively weak in Bellingham Bay with surface currents generally below 0.5 m/s. The local residence time in Bellingham Bay varies from to near zero to as long as 15more » days, depending on the location and river flow condition. In general, Bellingham Bay is a well-flushed coastal embayment affected by freshwater discharge, tides, wind, and density-driven circulation. The basin-wide global residence time ranges from 5-7 days. The model results also provide useful information on possible causes of the emerging summertime hypoxia problem in the north central region of Bellingham Bay. It was concluded that the formation of the bottom hypoxic water should result from the increased consumption rate of oxygen in the bottom oceanic inflow with low dissolved oxygen by organic matters accumulated at the regions characterized with relatively long residence time in summer months.« less
Dietary mercury exposure to endangered California Clapper Rails in San Francisco Bay.
Casazza, Michael L; Ricca, Mark A; Overton, Cory T; Takekawa, John Y; Merritt, Angela M; Ackerman, Joshua T
2014-09-15
California Clapper Rails (Rallus longirostris obsoletus) are an endangered waterbird that forage in tidal-marsh habitats that pose risks from mercury exposure. We analyzed total mercury (Hg) in six macro-invertebrate and one fish species representing Clapper Rail diets from four tidal-marshes in San Francisco Bay, California. Mercury concentrations among individual taxa ranged from lowest at Colma Creek (mean range: 0.09-0.2 μg/g dw) to highest at Cogswell (0.2-0.7), Laumeister (0.2-0.9) and Arrowhead Marshes (0.3-1.9). These spatial patterns for Hg matched patterns reported previously in Clapper Rail blood from the same four marshes. Over 25% of eastern mudsnails (Ilyanassa obsolete) and staghorn sculpin (Leptocottus armatus) exceeded dietary Hg concentrations (ww) often associated with avian reproductive impairment. Our results indicate that Hg concentrations vary considerably among tidal-marshes and diet taxa, and Hg concentrations of prey may provide an appropriate proxy for relative exposure risk for Clapper Rails. Copyright © 2014. Published by Elsevier Ltd.
Dietary mercury exposure to endangered California Clapper Rails in San Francisco Bay
Casazza, Michael L.; Ricca, Mark A.; Overton, Cory T.; Takekawa, John Y.; Merritt, Angela M.; Ackerman, Joshua T.
2015-01-01
California Clapper Rails (Rallus longirostris obsoletus) are an endangered waterbird that forage in tidal-marsh habitats that pose risks from mercury exposure. We analyzed total mercury (Hg) in six macro-invertebrate and one fish species representing Clapper Rail diets from four tidal-marshes in San Francisco Bay, California. Mercury concentrations among individual taxa ranged from lowest at Colma Creek (mean range: 0.09–0.2 μg/g dw) to highest at Cogswell (0.2–0.7), Laumeister (0.2–0.9) and Arrowhead Marshes (0.3–1.9). These spatial patterns for Hg matched patterns reported previously in Clapper Rail blood from the same four marshes. Over 25% of eastern mudsnails (Ilyanassa obsolete) and staghorn sculpin (Leptocottus armatus) exceeded dietary Hg concentrations (ww) often associated with avian reproductive impairment. Our results indicate that Hg concentrations vary considerably among tidal-marshes and diet taxa, and Hg concentrations of prey may provide an appropriate proxy for relative exposure risk for Clapper Rails.
FitzGerald, D.M.; Kulp, M.; Penland, S.; Flocks, J.; Kindinger, J.
2004-01-01
The Barataria barrier coast formed between two major distributaries of the Mississippi River delta: the Plaquemines deltaic headland to the east and the Lafourche deltaic headland to the west. Rapid relative sea-level rise (1??03 cm year-1) and other erosional processes within Barataria Bay have led to substantial increases in the area of open water (> 775 km2 since 1956) and the attendant bay tidal prism. Historically, the increase in tidal discharge at inlets has produced larger channel cross-sections and prograding ebb-tidal deltas. For example, the ebb delta at Barataria Pass has built seaward > 2??2 km since the 1880s. Shoreline erosion and an increasing bay tidal prism also facilitated the formation of new inlets. Four major lithofacies characterize the Barataria coast ebb-tidal deltas and associated sedimentary environments. These include a proximal delta facies composed of massive to laminated, fine grey-brown to pale yellow sand and a distal delta facies consisting of thinly laminated, grey to pale yellow sand and silty sand with mud layers. The higher energy proximal delta deposits contain a greater percentage of sand (75-100%) compared with the distal delta sediments (60-80%). Associated sedimentary units include a nearshore facies consisting of horizontally laminated, fine to very fine grey sand with mud layers and an offshore facies that is composed of grey to dark grey, laminated sandy silt to silty clay. All facies coarsen upwards except the offshore facies, which fines upwards. An evolutionary model is presented for the stratigraphic development of the ebb-tidal deltas in a regime of increasing tidal energy resulting from coastal land loss and tidal prism growth. Ebb-tidal delta facies prograde over nearshore sediments, which interfinger with offshore facies. The seaward decrease in tidal current velocity of the ebb discharge produces a gradational contact between proximal and distal tidal delta facies. As the tidal discharge increases and the inlet grows in dimensions, the proximal and distal tidal delta facies prograde seawards. Owing to the relatively low gradient of the inner continental shelf, the ebb-tidal delta lithosome is presently no more than 5 m thick and is generally only 2-3 m in thickness. The ebb delta sediment is sourced from deepening of the inlet and the associated channels and from the longshore sediment transport system. The final stage in the model envisages erosion and segmentation of the barrier chain, leading to a decrease in tidal discharge through the former major inlets. This process ultimately results in fine-grained sedimentation seaward of the inlets and the encasement of the ebb-tidal delta lithosome in mud. The ebb-tidal deltas along the Barataria coast are distinguished from most other ebb deltas along sand-rich coasts by their muddy content and lack of large-scale stratification produced by channel cut-and-fills and bar migration. ?? 2004 International Association of Sedimentologists.
NASA Astrophysics Data System (ADS)
Chen, C. C.; Choi, Y. D.; Y Yoon, H.
2013-12-01
Most tidal current turbine design are focused on middle and large scale for deep sea, less attention was paid in low water level channel, such as the region around the islands, coastal seas and rivers. This study aims to develop a horizontal axis tidal current turbine rotor blade which is applicable to low water level island region in southwest of Korea. The blade design is made by using BEMT(blade element momentum theory). The section airfoil profile of NACA63-415 is used, which shows good performance of lift coefficient and drag coefficient. Power coefficient, pressure and velocity distributions are investigated according to TSR by CFD analysis.
Tidally generated sea-floor lineations in Bristol Bay, Alaska, USA
Marlow, M. S.; Stevenson, A.J.; Chezar, H.; McConnaughey, R.A.
1999-01-01
Highly reflective linear features occur in water depths of 20-30 m in northern Bristol Bay (Alaska, USA) and are, in places, over 600 m in length. Their length-to-width ratio is over 100:1. The lineations are usually characterized by large transverse ripples with wavelengths of 1-2 m. The lineations trend about N60??E, and are spaced between 20 and 350 m. Main tidal directions near the lineations are N60??E (flood) and S45??W (ebb), which are parallel to subparallel to the lineations. They suggest that the lineations may be tidally generated. The lineations may be bright sonar reflections from a winnowed lag concentrate of coarse sand.
Modelling Ocean Dissipation in Icy Satellites: A Comparison of Linear and Quadratic Friction
NASA Astrophysics Data System (ADS)
Hay, H.; Matsuyama, I.
2015-12-01
Although subsurface oceans are confirmed in Europa, Ganymede, Callisto, and strongly suspected in Enceladus and Titan, the exact mechanism required to heat and maintain these liquid reservoirs over Solar System history remains a mystery. Radiogenic heating can supply enough energy for large satellites whereas tidal dissipation provides the best explanation for the presence of oceans in small icy satellites. The amount of thermal energy actually contributed to the interiors of these icy satellites through oceanic tidal dissipation is largely unquantified. Presented here is a numerical model that builds upon previous work for quantifying tidally dissipated energy in the subsurface oceans of the icy satellites. Recent semi-analytical models (Tyler, 2008 and Matsuyama, 2014) have solved the Laplace Tidal Equations to estimate the time averaged energy flux over an orbital period in icy satellite oceans, neglecting the presence of a solid icy shell. These models are only able to consider linear Rayleigh friction. The numerical model presented here is compared to one of these semi-analytical models, finding excellent agreement between velocity and displacement solutions for all three terms to the tidal potential. Time averaged energy flux is within 2-6% of the analytical values. Quadratic (bottom) friction is then incorporated into the model, replacing linear friction. This approach is commonly applied to terrestrial ocean dissipation studies where dissipation scales nonlinearly with velocity. A suite of simulations are also run for the quadratic friction case which are then compared to and analysed against recent scaling laws developed by Chen and Nimmo (2013).
First documentation of tidal-channel sponge biostromes (upper Pleistocene, southeastern Florida)
Cunningham, K.J.; Rigby, J.K.; Wacker, M.A.; Curran, H.A.
2007-01-01
Sponges are not a common principal component of Cenozoic reefs and are more typically dominant in deep-water and/or cold-water localities. Here we report the discovery of extensive upper Pleistocene shallow-marine, tropical sponge biostromes from the Mami Limestone of southeastern Florida built by a new ceractinomorph demosponge. These upright, barrel- to vase-shaped sponges occur in monospecific aggregations constructed within the tidal channels of an oolitic tidal-bar belt similar to modern examples on the Great Bahama Bank. The biostromes appear to have a ribbon-like geometry, with densely spaced sponges populating a paleochannel along a 3.5 km extent in the most lengthy biostrome. These are very large (as high as 2 m and 1.8 m in diameter), particularly well-preserved calcified sponges with walls as hard as concrete. Quartz grains are the most common particles agglutinated in the structure of the sponge walls. Where exposed, sediment fill between the sponges is commonly a highly burrowed or cross-bedded ooid-bearing grainstone and, locally, quartz sand. It is postulated that the dense, localized distribution of these particular sponges was due to a slight edge over competitors for food or energy supply and space in a stressed environment of tidal-influenced salinity and nutrient changes, strong currents, and frequently shifting submarine sand dunes. To our knowledge, this represents the first documentation of sponge biostromes composed of very large upright sponges within high-energy tidal channels between ooid shoals. The remarkably well-preserved accumulations provide an alternative example of sponge reefs for comparative paleoenvironmental studies. ?? 2007 The Geological Society of America.
The Effects of the Impedance of the Flow Source on the Design of Tidal Stream Generators
NASA Astrophysics Data System (ADS)
Salter, S.
2011-12-01
The maximum performance of a wind turbine is set by the well-known Betz limit. If the designer of a wind turbine uses too fast a rotation, too large a blade chord or too high an angle of blade pitch, the air flow can take an easier path over or around the rotor. Most estimates of the tidal stream resource use equations borrowed from wind and would be reasonably accurate for a single unit. But water cannot flow through the seabed or over rotors which reach to the surface. If contra-rotating, vertical-axis turbines with a rectangular flow-window are placed close to one another and reach from the surface close to the seabed, the leakage path is blocked and they become more like turbines in a closed duct. Instead of an equation with area times velocity-cubed we should use the first power of volume flow rate though the rotor times the pressure difference across it. A long channel with a rough bed will already be losing lots of energy and will behave more like a high impedance flow. Attempts to block it with closely-packed turbines will increase the head across the turbines with only a small effect on flow rate. The same thing will occur if a close-packed line of turbines is built out to sea from a headland. It is necessary to understand the impedance of the flow source all the way out to mid-ocean. In deep seas where the current velocities at the seabed are too slow to disturb the ooze the friction coefficients will be similar to those of gloss paint, perhaps 0.0025. But the higher velocities in shallow water will remove ooze and quite large sediments leaving rough, bare rock and leading to higher friction-coefficients. Energy dissipation will be set by the higher friction coefficients and the cube of the higher velocities. The presence of turbines will reduce seabed losses and about one third of the present loss can be converted to electricity. The velocity reduction would be about 10%. In many sites the energy output will be far higher than the wind turbine equations would predict. It may be possible to measure friction coefficients by looking at the slope of the water across a likely tidal stream site as indicated by the pressure-sensing instruments built in to acoustic Doppler current profilers. If this reasoning is correct it would lead to large changes in turbine design for tidal streams particularly with regard to the very large forces which have to be passed into the seabed. The spacing of three rotor diameters, often recommended for tidal stream turbines becomes the equivalent of leaking pipes in conventional hydro-electric plant. These design changes will be discussed. Reference Salter SH. Correcting the Under-estimate of the Tidal-Stream Resource of the Pentland Firth. 8th European Wave and Tidal Energy Conference, Uppsala 2009 From www.see.ed.ac.uk/~shs then browse to /Tidal stream.
Tidal Heating in Multilayered Terrestrial Exoplanets
NASA Technical Reports Server (NTRS)
Henning, Wade G.; Hurford, Terry
2014-01-01
The internal pattern and overall magnitude of tidal heating for spin-synchronous terrestrial exoplanets from 1 to 2.5 R(sub E) is investigated using a propagator matrix method for a variety of layer structures. Particular attention is paid to ice-silicate hybrid super-Earths, where a significant ice mantle is modeled to rest atop an iron-silicate core, and may or may not contain a liquid water ocean. We find multilayer modeling often increases tidal dissipation relative to a homogeneous model, across multiple orbital periods, due to the ability to include smaller volume low viscosity regions, and the added flexure allowed by liquid layers. Gradations in parameters with depth are explored, such as allowed by the Preliminary Earth Reference Model. For ice-silicate hybrid worlds, dramatically greater dissipation is possible beyond the case of a silicate mantle only, allowing non-negligible tidal activity to extend to greater orbital periods than previously predicted. Surface patterns of tidal heating are found to potentially be useful for distinguishing internal structure. The influence of ice mantle depth and water ocean size and position are shown for a range of forcing frequencies. Rates of orbital circularization are found to be 10-100 times faster than standard predictions for Earth-analog planets when interiors are moderately warmer than the modern Earth, as well as for a diverse range of ice-silicate hybrid super-Earths. Circularization rates are shown to be significantly longer for planets with layers equivalent to an ocean-free modern Earth, as well as for planets with high fractions of either ice or silicate melting.
Tidal dissipation in the Earth and Moon from lunar laser ranging
NASA Technical Reports Server (NTRS)
Yoder, C. F.; Williams, J. G.; Dickey, J. O.; Newhall, X. X.
1984-01-01
The evolution of the Moon's orbit which is governed by tidal dissipation in the Earth while the evolution of its spin is controlled by its own internal dissipation is discussed. Lunar laser ranging data from August 1969 through May 1982 yields the values of both of these parameters. It is suggested that if the Moon was orbited the Earth since its formation, this must be an anomalously high value presumably due to changes in dissipation in the oceans due to continental drift. The explanation that the dissipation occurs at the interface between the mantle and a liquid core of shell is preferred.
Dissipation in a tidally perturbed body librating in longitude
NASA Astrophysics Data System (ADS)
Efroimsky, Michael
2018-05-01
Internal dissipation in a tidally perturbed librating body differs in several respects from the tidal dissipation in a steadily spinning rotator. First, libration changes the spectral distribution of tidal damping across the tidal modes, as compared to the case of steady spin. This changes both the tidal heating rate and the tidal torque. Second, while a non-librating rotator experiences alternating deformation only due to the potential force exerted on it by the perturber, a librating body is also subject to a toroidal force proportional to the angular acceleration. Third, while the centrifugal force in a steadily spinning body renders only a permanent deformation (which defines the oblateness when the body cools down), in a librating body this force contains two alternating components-one purely radial, another a degree-2 potential force. Both contribute to heating, as well as to the tidal torque and potential (and, thereby, to the orbital evolution). We develop a formalism needed to describe dissipation in a homogeneous terrestrial body performing small-amplitude libration in longitude. This formalism incorporates as its part a linear rheological law defining the response of the rotator's material to forcing. While the developed formalism can work with an arbitrary linear rheology, we consider a simple example of a Maxwell material. We demonstrate that, independent of the rheology, forced libration in longitude can provide a considerable and even leading-and sometimes overwhelming-input in the tidal heating. Based on the observed parameters, this input amounts to 52% in Phobos, 33% in Mimas, 23% in Enceladus, and 96% in Epimetheus. This supports the hypothesis by Makarov and Efroimsky (2014) that the additional tidal damping due to forced libration may have participated in the early heating up of some of the large moons. As one possibility, such a moon could have been chipped by collisions-whereby it acquired a higher permanent triaxiality and, therefore, a higher forced-libration magnitude and, consequently, a higher heating rate. After the moon warms up, its permanent triaxiality decreases, and so does the tidal heating rate.
NASA Astrophysics Data System (ADS)
Siddiqui, T. A.; Yamazaki, Y.; Stolle, C.; Lühr, H.; Matzka, J.
2017-12-01
A number of studies in recent years have reported about the lunar tidal enhancements in the equatorial electrojet (EEJ) from ground- and space-based magnetometer measurements during stratospheric sudden warming (SSW) events. In this study, we make use of the ground magnetometer recordings at Huancayo observatory in Peru for the years 1978 - 2013 to derive a relationship between the lunar tidal enhancements in the EEJ and tropospheric eddy heat fluxes at 100 hPa during the SSW events. Tropospheric eddy heat fluxes are used to quantify the amount of wave activity entering the stratosphere. Anomalously large upward wave activity is known to precede the polar vortex breakdown during SSWs. We make use of the superposed epoch analysis method to determine the temporal relations between lunar tidal enhancements and eddy heat flux anomalies during SSWs, in order to demonstrate the causal relationship between these two phenomena. We also compare the lunar tidal enhancements and eddy heat flux anomalies for vortex split and for vortex displaced SSWs. It is found that larger lunar tidal enhancements are recorded for vortex split events, as compared to vortex displaced events. This confirms earlier observation; larger heat flux anomalies are recorded during vortex split SSW events than the heat flux anomalies during vortex displaced SSW events. Further, the temporal relations of lunar tidal enhancements in the EEJ have been compared separately for both the QBO phases and with the phases of the moon with respect to the central epoch of SSWs by means of the superposed epoch analysis approach. The EEJ lunar tidal enhancements in the east phase of QBO are found to be larger than the lunar tidal enhancements in the west phase of QBO. The phase of moon relative to the central SSW epoch also affects the lunar tidal enhancement in the EEJ. It is found that the lunar tidal enhancements are significantly larger when the day of new or full moon lies near the central SSW epoch, as compared to cases when new or full moon occur further away from the central SSW epoch.
Habitat and hydrology: assessing biological resources of the Suwannee River Estuarine System
Raabe, Ellen A.; Edwards, Randy E.; McIvor, Carole C.; Grubbs, Jack W.; Dennis, George D.
2007-01-01
The U.S. Geological Survey conducted a pilot integrated-science study during 2002 and 2003 to map, describe, and evaluate benthic and emergent habitats in the Suwannee River Estuary on the Gulf Coast of Florida. Categories of aquatic, emergent, and terrestrial habitats were determined from hyperspectral imagery and integrated with hydrologic data to identify estuarine fish habitats. Maps of intertidal and benthic habitat were derived from 12-band, 4-m resolution hyperspectral imagery acquired in September 2002. Hydrologic data were collected from tidal creeks during the winter of 2002-03 and the summer-fall of 2003. Fish were sampled from tidal creeks during March 2003 using rivulet nets, throw traps, and seine nets. Habitat characteristics, hydrologic data, and fish assemblages were compared for tidal creeks north and south of the Suwannee River. Tidal creeks north of the river had more shoreline edge and shallow habitat than creeks to the south. Tidal creeks south of the river were generally of lower salinity (fresher) and supported more freshwater marsh and submerged aquatic vegetation. The southern creeks tended to be deeper but less sinuous than the northern creeks. Water quality and inundation were evaluated with hydrologic monitoring in the creeks. In-situ gauges, recording pressure and temperature, documented a net discharge of brackish to saline groundwater into the tidal creeks with pronounced flow during low tide. Groundwater flow into the creeks was most prominent north of the river. Combined fish-sampling results showed an overall greater abundance of organisms and greater species richness in the southern creeks, nominally attributed a greater range in water quality. Fish samples were dominated by juvenile spot, grass shrimp, bay anchovy, and silverside. The short time frame for hydrologic monitoring and the one-time fish-sampling effort were insufficient for forming definitive conclusions. However, the combination of hyperspectral imagery and hydrologic data identified a range of habitat characteristics and differences in tidal-creek morphology. This endeavor related nearshore benthic habitat and hydrologic conditions with habitat suitability and fish assemblages and provides a template for similar applications in shallow and nearshore estuarine environments.
Hydrodynamic modeling and feasibility study of harnessing tidal power at the Bay of Fundy
NASA Astrophysics Data System (ADS)
Chang, Jen
Due to rising fuel costs and environmental concerns, energy generation from alternative power source has become one of the most important issues in energy policy. Tidal power is one of the alternative energy sources. The tidal range at the Bay of Fundy is the largest in the world (approximately 16 meters). It represents a prime location for harnessing tidal power using the daily rising and ebbing tide. In this study, a two dimensional finite element model has been developed and applied to simulate the tidal responses, including water level and flow velocity, in the Bay of Fundy region. The simulation results are used to choose the suitable location for energy development and to predict possible energy generated from different types of generation methods. Fluid motion is assumed to be governed by the shallow water equation since the wave length associated with tide is much longer than the water depth in the Bay of Fundy. By using a real time series of water elevation at the entrance of the bay, the computer model finds tidal response for each node in the study area, which is then verified by the observation record from several tidal gauge stations inside the bay. This study shows that the at-site cost of the energy for barrage type tidal power plants is around 0.065 to 0.097 per kWh at the recommended Shepody Bay, Cumberland Basin, and Cobequid Bay. The cost of energy for the current turbine type tidal power plants is 0.13/kWh to 0.24/kWh at the area with highest current velocity. Compared with the recent bill of the local power company, the at-site unit cost of energy from the barrage type of tidal power plant is feasible, but the environmental concerns of channel blocking by barrage present a formidable constraint. For the current turbine type of tidal power plant, even the most suitable sites are not financially feasible under current technology, but this type of power generation may become feasible as oil prices continue to increase and more efficient turbines become available.
NASA Technical Reports Server (NTRS)
2002-01-01
The moon's gravity imparts tremendous energy to the Earth, raising tides throughout the global oceans. What happens to all this energy? This question has been pondered by scientists for over 200 years, and has consequences ranging from the history of the moon to the mixing of the oceans. Richard Ray at NASA's Goddard Space Flight Center, Greenbelt, Md. and Gary Egbert of the College of Oceanic and Atmospheric Sciences, Oregon State University, Corvallis, Ore. studied six years of altimeter data from the TOPEX/Poseidon satellite to address this question. According to their report in the June 15 issue of Nature, about 1 terawatt, or 25 to 30 percent of the total tidal energy dissipation, occurs in the deep ocean. The remainder occurs in shallow seas, such as on the Patagonian Shelf. 'By measuring sea level with the TOPEX/Poseidon satellite altimeter, our knowledge of the tides in the global ocean has been remarkably improved,' said Richard Ray, a geophysicist at Goddard. The accuracies are now so high that this data can be used to map empirically the tidal energy dissipation. (Red areas, above) The deep-water tidal dissipation occurs generally near rugged bottom topography (seamounts and mid-ocean ridges). 'The observed pattern of deep-ocean dissipation is consistent with topographic scattering of tidal energy into internal motions within the water column, resulting in localized turbulence and mixing', said Gary Egbert an associate professor at OSU. One important implication of this finding concerns the possible energy sources needed to maintain the ocean's large-scale 'conveyor-belt' circulation and to mix upper ocean heat into the abyssal depths. It is thought that 2 terawatts are required for this process. The winds supply about 1 terawatt, and there has been speculation that the tides, by pumping energy into vertical water motions, supply the remainder. However, all current general circulation models of the oceans ignore the tides. 'It is possible that properly accounting for tidally induced ocean mixing may have important implications for long-term climate modeling', Egbert said. In the past, most geophysical theories held that the only significant tidal energy sink was bottom friction in shallow seas. Egbert and Ray find that this sink is indeed dominant, but it is not the whole story. There had always been suggestive evidence that tidal energy is also dissipated in the open ocean to create internal waves, but published estimates of this effect varied widely and had met with no general consensus before TOPEX/Poseidon. TOPEX/Poseidon mission, a joint U.S.-French mission, is managed by the Jet Propulsion Laboratory for NASA's Office of Earth Science, Washington, DC. The satellite was launched in August 1992, and it continues to produce sea level measurements of the highest quality. For supporting images: http://svs.gsfc.nasa.gov/search/Instrumentsdatasets/TOPEX-POSEIDON.html Image by Richard Ray, NASA GSFC
Effect of tidal fields on star clusters
NASA Technical Reports Server (NTRS)
Chernoff, David; Weinberg, Martin
1991-01-01
We follow the dynamical evolution of a star cluster in a galactic tidal field using a restricted N-body code. We find large asymmetric distortions in the outer profile of the cluster in the first 10 or so crossing times as material is lost. Prograde stars escape preferentially and establish a potentially observable retrograde rotation in the halo. We present the rate of particle loss and compare with the prescription proposed by Lee and Ostriker (1987).
NASA Astrophysics Data System (ADS)
Rogers, K. G.; Brondizio, E.; Roy, K.; Syvitski, J. P.
2016-12-01
Because of their low-lying elevations and large number of inhabitants and infrastructure, river deltas are ground zero for climate change impacts, particularly from sea-level rise and storm surges. The increased vulnerability of downstream delta communities to coastal flooding as a result of upstream engineering has been acknowledged for decades. What has received less attention is the sensitivity of deltas to the interactions of these processes and increasing intensity of cultivation and irrigation in their coastal regions. Beyond basin-scale damming, regional infrastructure affects the movement of sediment and water on deltas, and combined with upstream modifications may exacerbate the risk of expanded tidal flooding, erosion of arable land, and salinization of soils and groundwater associated with sea level rise. To examine the social-biophysical feedbacks associated with regional-scale infrastructure, smallholder water management practices and coastal dynamics, a nested framework was applied to two districts of the coastal southwest region of Bangladesh. The two districts vary in tidal range, salinity, freshwater availability and socioeconomic structures, and are spatially varied in farmer's adaptations. Both districts contain numerous large embankment systems initially designed to protect cropland from tidal flooding, but that have been poorly maintained since their construction in the 1960's. The framework was co-produced using local-level stakeholder input collected during group interviews with rural farmers in 8 villages within the two districts, and explicitly accounts for engineered and natural biophysical variables as well as governance and institutional structures at 3 levels of analysis. Household survey results indicate that the presence or absence of embankments as a result of poor management and dynamic coastal processes is the primary control on freshwater availability and thus influences farming strategies, socioeconomic conditions and social positions in both districts. Local-scale interactions with the embankments are spatially heterogeneous, but geospatial analyses show the potential for these to collectively impact physical and social stability across a region already vulnerable to coastal flooding.
Modeling Tidal Stresses on Planetary Bodies Using an Enhanced SatStress GUI
NASA Astrophysics Data System (ADS)
Patthoff, D. A.; Pappalardo, R. T.; Tang, L.; Kay, J.; Kattenhorn, S. A.
2014-12-01
Icy and rocky satellites of our solar system display a wide range of structural deformation on their surfaces. Some surfaces are old and heavily cratered showing little evidence for recent tectonism while other surfaces are sparsely cratered and young, with some moons showing geologically very recent or present-day activity. The young deformation can take the form of small cracks in the surface, large double ridges that can extend for thousands of km, and mountain ranges that can reach heights of several kilometers. Many of the potential sources of stress that can deform the surfaces are likely tied to the diurnal tidal deformation of the moons as they orbit their parent planets. Other secular sources of global-scale stress include: volume change induced by the melting or freezing of a subsurface liquid layer, change in the orbital parameters of the moon, or rotation of the outer shell of the satellite relative to the rest of the body (nonsynchronous rotation or true polar wander). We turn to computer modeling to correlate observed structural features to the possible stresses that created them. A variety of modeling programs exist and generally assume a thin ice shell and/or a multi-layered viscoelastic satellite. The program SatStress, which was developed by Zane Crawford and documented by Wahr et al. (2009), computes tidal and nonsynchronous rotation stresses on a satellite. It was later modified into a more user-friendly version with a graphical user interface (SatStress GUI) by Kay and Kattenhorn (2010). This implementation assumes a 4-layer viscoelastic body and is able to calculate stresses resulting from diurnal tides, nonsynchronous rotation, and ice shell thickening. Here we illustrate our recent enhancements to SatStress GUI and compare modeled stresses to example features observed on the surfaces of Ganymede, Europa, and Enceladus. Kay and Kattenhorn (2010) 41st LPSC, abs # 2046. Wahr et al. (2009) Icarus, 200, 188-206.
NASA Astrophysics Data System (ADS)
Lowe, A. T.; Roberts, E. A.; Galloway, A. W. E.
2016-02-01
Coastal regions around the world are changing rapidly, generating many physiological stressors for marine organisms. Food availability, a major factor determining physiological condition of marine organisms, in these systems reflects the influence of biological and environmental factors, and will likely respond dramatically to long-term changes. Using observations of phytoplankton, detritus, and their corresponding fatty acids and stable isotopes of carbon, nitrogen and sulfur, we identified environmental drivers of pelagic food availability and quality along a salinity gradient in a large tidally influenced estuary (San Juan Archipelago, Salish Sea, USA). Variation in chlorophyll a (Chl a), biomarkers and environmental conditions exhibited a similar range at both tidal and seasonal scales, highlighting a tide-related mechanism controlling productivity that is important to consider for long-term monitoring. Multiple parameters of food availability were inversely and non-linearly correlated to salinity, such that availability of high-quality (based on abundance, essential fatty acid concentration and C:N) seston increased below a salinity threshold of 30. The increased marine productivity was associated with increased pH and dissolved oxygen (DO) at lower salinity. Based on this observation we predicted that a decrease of salinity to below the threshold would result in higher Chl a, temperature, DO and pH across a range of temporal and spatial scales, and tested the prediction with a meta-analysis of available data. At all scales, these variables showed significant and consistent increases related to the salinity threshold. This finding provides important context to the increased frequency of below-threshold salinity over the last 71 years in this region, suggesting greater food availability with positive feedbacks on DO and pH. Together, these findings indicate that many of the environmental factors predicted to increase physiological stress to benthic suspension feeders (e.g. decreased salinity) may simultaneously and paradoxically improve conditions for benthic organisms.
Component-specific dynamics of riverine mangrove CO2 efflux in the Florida coastal Everglades
Troxler, Tiffany G.; Barr, Jordan G.; Fuentes, Jose D.; Engel, Victor C.; Anderson, Gordon H.; Sanchez, Christopher; Lagomosino, David; Price, Rene; Davis, Stephen E.
2015-01-01
Carbon cycling in mangrove forests represents a significant portion of the coastal wetland carbon (C) budget across the latitudes of the tropics and subtropics. Previous research suggests fluctuations in tidal inundation, temperature and salinity can influence forest metabolism and C cycling. Carbon dioxide (CO2) from respiration that occurs from below the canopy is contributed from different components. In this study, we investigated variation in CO2 flux among different below-canopy components (soil, leaf litter, course woody debris, soil including pneumatophores, prop roots, and surface water) in a riverine mangrove forest of Shark River Slough estuary, Everglades National Park (Florida, USA). The range in CO2 flux from different components exceeded that measured among sites along the oligohaline-saline gradient. Black mangrove (Avicennia germinans) pneumatophores contributed the largest average CO2 flux. Over a narrow range of estuarine salinity (25–35 practical salinity units (PSU)), increased salinity resulted in lower CO2 flux to the atmosphere. Tidal inundation reduced soil CO2 flux overall but increased the partial pressure of CO2 (pCO2) observed in the overlying surface water upon flooding. Higher pCO2 in surface water is then subject to tidally driven export, largely as HCO3. Integration and scaling of CO2 flux rates to forest scale allowed for improved understanding of the relative contribution of different below-canopy components to mangrove forest ecosystem respiration (ER). Summing component CO2fluxes suggests a more significant contribution of below-canopy respiration to ER than previously considered. An understanding of below-canopy CO2 component fluxes and their contributions to ER can help to elucidate how C cycling will change with discrete disturbance events (e.g., hurricanes) and long-term change, including sea-level rise, and potential impact mangrove forests. As such, key controls on below-canopy ER must be taken into consideration when developing and modeling mangrove forest C budgets.
NASA Astrophysics Data System (ADS)
Sanford, L. P.; Porter, E.; Porter, F. S.; Mason, R. P.
2016-02-01
Shear TUrbulence Resuspension Mesocosm (STURM) tanks, with high instantaneous bottom shear stress and realistic water column mixing in a single system, allow more realistic benthic-pelagic coupling studies that include sediment resuspension. The 1 m3 tanks can be programmed to produce tidal or episodic sediment resuspension over extended time periods (e.g. 4 weeks), over muddy sediments with or without infaunal organisms. The STURM tanks use a resuspension paddle that produces uniform bottom shear stress across the sediment surface while gently mixing a 1 m deep overlying water column. The STURM tanks can be programmed to different magnitudes, frequencies, and durations of bottom shear stress (and thus resuspension) with proportional water column turbulence levels over a wide range of mixing settings for benthic-pelagic coupling experiments. Over eight STURM calibration settings, turbulence intensity ranged from 0.55 to 4.52 cm s-1, energy dissipation rate from 0.0032 to 2.65 cm2 s-3, the average bottom shear stress from 0.0068 to 0.19 Pa, and the instantaneous bottom shear stress from 0.07 to 2.0 Pa. Mixing settings can be chosen as desired and/or varied over the experiment, based on the scientific question at hand. We have used the STURM tanks for four 4-week benthic-pelagic coupling ecosystem experiments with tidal resuspension with or without infaunal bivalves, for stepwise erosion experiments with and without infaunal bivalves, for experiments on oyster biodeposit resuspension, to mimic storms overlain on tidal resuspension, and for experiments on the effects of varying frequency and duration of resuspension on the release of sedimentary contaminants. The large size of the tanks allows water quality and particle measurements using standard oceanographic instrumentation. The realistic scale and complexity of the contained ecosystems has revealed indirect feedbacks and responses that are not observable in smaller, less complex experimental systems.
Importance of Geosat orbit and tidal errors in the estimation of large-scale Indian Ocean variations
NASA Technical Reports Server (NTRS)
Perigaud, Claire; Zlotnicki, Victor
1992-01-01
To improve the estimate accuracy of large-scale meridional sea-level variations, Geosat ERM data on the Indian Ocean for a 26-month period were processed using two different techniques of orbit error reduction. The first technique removes an along-track polynomial of degree 1 over about 5000 km and the second technique removes an along-track once-per-revolution sine wave about 40,000 km. Results obtained show that the polynomial technique produces stronger attenuation of both the tidal error and the large-scale oceanic signal. After filtering, the residual difference between the two methods represents 44 percent of the total variance and 23 percent of the annual variance. The sine-wave method yields a larger estimate of annual and interannual meridional variations.
The impacts of land reclamation on suspended-sediment dynamics in Jiaozhou Bay, Qingdao, China
NASA Astrophysics Data System (ADS)
Gao, Guan Dong; Wang, Xiao Hua; Bao, Xian Wen; Song, Dehai; Lin, Xiao Pei; Qiao, Lu Lu
2018-06-01
A three-dimensional, high-resolution tidal model coupled with the UNSW sediment model (UNSW-Sed) based on Finite Volume Coastal Ocean Model (FVCOM) was set up to study the suspended-sediment dynamics and its change in Jiaozhou Bay (JZB) due to land reclamation over the period 1935 to 2008. During the past decades, a large amount of tidal flats were lost due to land reclamation. Other than modulating the tides, the tidal flats are a primary source for sediment resuspensions, leading to turbidity maxima nearshore. The tidal dynamics are dominant in controlling the suspended-sediment dynamics in JZB and have experienced significant changes with the loss of tidal flats due to the land reclamation. The sediment model coupled with the tide model was used to investigate the changes in suspended-sediment dynamics due to the land reclamation from 1935 to 2008, including suspended-sediment concentrations (SSC) and the horizontal suspended-sediment fluxes. This model can predict the general patterns of the spatial and temporal variation of SSC. The model was applied to investigate how the net transport of suspended sediments between JZB and its adjacent sea areas changed with land reclamation: in 1935 the net movement of suspended sediments was from JZB to the adjacent sea (erosion for JZB), primarily caused by horizontal advection associated with a horizontal gradient in the SSC; This seaward transport (erosion for JZB) had gradually declined from 1935 to 2008. If land reclamation on a large scale is continued in future, the net transport between JZB and the adjacent sea would turn landward and JZB would switch from erosion to siltation due to the impact of land reclamation on the horizontal advection of suspended sediments. We also evaluate the primary physical mechanisms including advection of suspended sediments, settling lag and tidal asymmetry, which control the suspended-sediment dynamics with the process of land reclamation.
Dispersion mechanisms of a tidal river junction in the Sacramento–San Joaquin Delta, California
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gleichauf, Karla T.; Wolfram, Philip J.; Monsen, Nancy E.
In branching channel networks, such as in the Sacramento–San Joaquin River Delta, junction flow dynamics contribute to dispersion of ecologically important entities such as fish, pollutants, nutrients, salt, sediment, and phytoplankton. Flow transport through a junction largely arises from velocity phasing in the form of divergent flow between junction channels for a portion of the tidal cycle. Field observations in the Georgiana Slough junction, which is composed of the North and South Mokelumne rivers, Georgiana Slough, and the Mokelumne River, show that flow phasing differences between these rivers arise from operational, riverine, and tidal forcing. A combination of Acoustic Dopplermore » Current Profile (ADCP) boat transecting and moored ADCPs over a spring–neap tidal cycle (May to June 2012) monitored the variability of spatial and temporal velocity, respectively. Two complementary drifter studies enabled assessment of local transport through the junction to identify small-scale intrajunction dynamics. We supplemented field results with numerical simulations using the SUNTANS model to demonstrate the importance of phasing offsets for junction transport and dispersion. Different phasing of inflows to the junction resulted in scalar patchiness that is characteristic of MacVean and Stacey’s (2011) advective tidal trapping. Furthermore, we observed small-scale junction flow features including a recirculation zone and shear layer, which play an important role in intra-junction mixing over time scales shorter than the tidal cycle (i.e., super-tidal time scales). Thus, the study period spanned open- and closed-gate operations at the Delta Cross Channel. Synthesis of field observations and modeling efforts suggest that management operations related to the Delta Cross Channel can strongly affect transport in the Delta by modifying the relative contributions of tidal and riverine flows, thereby changing the junction flow phasing.« less
Dispersion mechanisms of a tidal river junction in the Sacramento–San Joaquin Delta, California
Gleichauf, Karla T.; Wolfram, Philip J.; Monsen, Nancy E.; ...
2014-12-17
In branching channel networks, such as in the Sacramento–San Joaquin River Delta, junction flow dynamics contribute to dispersion of ecologically important entities such as fish, pollutants, nutrients, salt, sediment, and phytoplankton. Flow transport through a junction largely arises from velocity phasing in the form of divergent flow between junction channels for a portion of the tidal cycle. Field observations in the Georgiana Slough junction, which is composed of the North and South Mokelumne rivers, Georgiana Slough, and the Mokelumne River, show that flow phasing differences between these rivers arise from operational, riverine, and tidal forcing. A combination of Acoustic Dopplermore » Current Profile (ADCP) boat transecting and moored ADCPs over a spring–neap tidal cycle (May to June 2012) monitored the variability of spatial and temporal velocity, respectively. Two complementary drifter studies enabled assessment of local transport through the junction to identify small-scale intrajunction dynamics. We supplemented field results with numerical simulations using the SUNTANS model to demonstrate the importance of phasing offsets for junction transport and dispersion. Different phasing of inflows to the junction resulted in scalar patchiness that is characteristic of MacVean and Stacey’s (2011) advective tidal trapping. Furthermore, we observed small-scale junction flow features including a recirculation zone and shear layer, which play an important role in intra-junction mixing over time scales shorter than the tidal cycle (i.e., super-tidal time scales). Thus, the study period spanned open- and closed-gate operations at the Delta Cross Channel. Synthesis of field observations and modeling efforts suggest that management operations related to the Delta Cross Channel can strongly affect transport in the Delta by modifying the relative contributions of tidal and riverine flows, thereby changing the junction flow phasing.« less
Tabak, Nava M.; Laba, Magdeline; Spector, Sacha
2016-01-01
Sea Level Rise (SLR) caused by climate change is impacting coastal wetlands around the globe. Due to their distinctive biophysical characteristics and unique plant communities, freshwater tidal wetlands are expected to exhibit a different response to SLR as compared with the better studied salt marshes. In this study we employed the Sea Level Affecting Marshes Model (SLAMM), which simulates regional- or local-scale changes in tidal wetland habitats in response to SLR, and adapted it for application in a freshwater-dominated tidal river system, the Hudson River Estuary. Using regionally-specific estimated ranges of SLR and accretion rates, we produced simulations for a spectrum of possible future wetland distributions and quantified the projected wetland resilience, migration or loss in the HRE through the end of the 21st century. Projections of total wetland extent and migration were more strongly determined by the rate of SLR than the rate of accretion. Surprisingly, an increase in net tidal wetland area was projected under all scenarios, with newly-formed tidal wetlands expected to comprise at least 33% of the HRE’s wetland area by year 2100. Model simulations with high rates of SLR and/or low rates of accretion resulted in broad shifts in wetland composition with widespread conversion of high marsh habitat to low marsh, tidal flat or permanent inundation. Wetland expansion and resilience were not equally distributed through the estuary, with just three of 48 primary wetland areas encompassing >50% of projected new wetland by the year 2100. Our results open an avenue for improving predictive models of the response of freshwater tidal wetlands to sea level rise, and broadly inform the planning of conservation measures of this critical resource in the Hudson River Estuary. PMID:27043136
Tabak, Nava M; Laba, Magdeline; Spector, Sacha
2016-01-01
Sea Level Rise (SLR) caused by climate change is impacting coastal wetlands around the globe. Due to their distinctive biophysical characteristics and unique plant communities, freshwater tidal wetlands are expected to exhibit a different response to SLR as compared with the better studied salt marshes. In this study we employed the Sea Level Affecting Marshes Model (SLAMM), which simulates regional- or local-scale changes in tidal wetland habitats in response to SLR, and adapted it for application in a freshwater-dominated tidal river system, the Hudson River Estuary. Using regionally-specific estimated ranges of SLR and accretion rates, we produced simulations for a spectrum of possible future wetland distributions and quantified the projected wetland resilience, migration or loss in the HRE through the end of the 21st century. Projections of total wetland extent and migration were more strongly determined by the rate of SLR than the rate of accretion. Surprisingly, an increase in net tidal wetland area was projected under all scenarios, with newly-formed tidal wetlands expected to comprise at least 33% of the HRE's wetland area by year 2100. Model simulations with high rates of SLR and/or low rates of accretion resulted in broad shifts in wetland composition with widespread conversion of high marsh habitat to low marsh, tidal flat or permanent inundation. Wetland expansion and resilience were not equally distributed through the estuary, with just three of 48 primary wetland areas encompassing >50% of projected new wetland by the year 2100. Our results open an avenue for improving predictive models of the response of freshwater tidal wetlands to sea level rise, and broadly inform the planning of conservation measures of this critical resource in the Hudson River Estuary.
Suspended-sediment trapping in the tidal reach of an estuarine tributary channel
Downing-Kunz, Maureen; Schoellhamer, David H.
2015-01-01
Evidence of decreasing sediment supply to estuaries and coastal oceans worldwide illustrates the need for accurate and updated estimates. In the San Francisco Estuary (Estuary), recent research suggests a decrease in supply from its largest tributaries, implying the increasing role of smaller, local tributaries in sediment supply to this estuary. Common techniques for estimating supply from tributaries are based on gages located above head of tide, which do not account for trapping processes within the tidal reach. We investigated the effect of a tidal reach on suspended-sediment discharge for Corte Madera Creek, a small tributary of the Estuary. Discharge of water (Q) and suspended-sediment (SSD) were observed for 3 years at two locations along the creek: upstream of tidal influence and at the mouth. Comparison of upstream and mouth gages showed nearly 50 % trapping of upstream SSD input within the tidal reach over this period. At the storm time scale, suspended-sediment trapping efficiency varied greatly (range −31 to 93 %); storms were classified as low- or high-yield based on upstream SSD. As upstream peak Q increased, high-yield storms exhibited significantly decreased trapping. Tidal conditions at the mouth—ebb duration and peak ebb velocity—during storms had a minor effect on sediment trapping, suggesting fluvial processes dominate. Comparison of characteristic fluvial and tidal discharges at the storm time scale demonstrated longitudinal differences in the regulating process for SSD. These results suggest that SSD from gages situated above head of tide overestimate sediment supply to the open waters beyond tributary mouths and thus trapping processes within the tidal reach should be considered.
A modeling approach to establish environmental flow threshold in ungauged semidiurnal tidal river
NASA Astrophysics Data System (ADS)
Akter, A.; Tanim, A. H.
2018-03-01
Due to shortage of flow monitoring data in ungauged semidiurnal river, 'environmental flow' (EF) determination based on its key component 'minimum low flow' is always difficult. For EF assessment this study selected a reach immediately after the Halda-Karnafuli confluence, a unique breeding ground for Indian Carp fishes of Bangladesh. As part of an ungauged tidal river, EF threshold establishment faces challenges in changing ecological paradigms with periodic change of tides and hydrologic alterations. This study describes a novel approach through modeling framework comprising hydrological, hydrodynamic and habitat simulation model. The EF establishment was conceptualized according to the hydrologic process of an ungauged semi-diurnal tidal regime in four steps. Initially, a hydrologic model coupled with a hydrodynamic model to simulate flow considering land use changes effect on streamflow, seepage loss of channel, friction dominated tidal decay as well as lack of long term flow characteristics. Secondly, to define hydraulic habitat feature, a statistical analysis on derived flow data was performed to identify 'habitat suitability'. Thirdly, to observe the ecological habitat behavior based on the identified hydrologic alteration, hydraulic habitat features were investigated. Finally, based on the combined habitat suitability index flow alteration and ecological response relationship was established. Then, the obtained EF provides a set of low flow indices of desired regime and thus the obtained discharge against maximum Weighted Usable Area (WUA) was defined as EF threshold for the selected reach. A suitable EF regime condition was obtained within flow range 25-30.1 m3/s i.e., around 10-12% of the mean annual runoff of 245 m3/s and these findings are within researchers' recommendation of minimum flow requirement. Additionally it was observed that tidal characteristics are dominant process in semi-diurnal regime. However, during the study period (2010-2015) the validated model with those reported observations can provide guidance for the decision support system (DSS) to maintain EF range in an ungauged tidal river.
Erwin, R.M.; Sanders, G.M.; Prosser, D.J.
2004-01-01
Five lagoonal salt marsh areas, ranging from 220 ha to 3,670 ha, were selected from Cape Cod, Massachusetts to the southern DelMarVa peninsula, Virginia, USA to examine the degree to which Spartina marsh area and microhabitats had changed from the early or mid- 1900s to recent periods. We chose areas based on their importance to migratory bird populations, agency concerns about marsh loss and sea-level rise, and availability of historic imagery. We georeferenced and processed aerial photographs from a variety of sources ranging from 1932 to 1994. Of particular interest were changes in total salt marsh area, tidal creeks, tidal flats, tidal and non-tidal ponds, and open water habitats. Nauset Marsh, within Cape Cod National Seashore, experienced an annual marsh loss of 0.40% (19% from 1947 to 1994) with most loss attributed to sand overwash and conversion to open water. At Forsythe National Wildlife Refuge in southern New Jersey, annual loss was 0.27% (17% from 1932 to 1995), with nearly equal attribution of loss to open water and tidal pond expansion. At Curlew Bay, Virginia, annual loss was 0.20% (9% from 1949 to 1994) and almost entirely due to perimeter erosion to open water. At Gull Marsh, Virginia, a site chosen because of known erosional losses, we recorded the highest annual loss rate, 0.67% per annum, again almost entirely due to erosional, perimeter loss. In contrast, at the southernmost site, Mockhorn Island Wildlife Management Area, Virginia, there was a net gain of 0.09% per annum (4% from 1949 to 1994), with tidal flats becoming increasingly vegetated. Habitat. implications for waterbirds are considerable; salt marsh specialists such as laughing gulls (Larus atricilla), Forster's terns (Sterna forsteri), black rail, (Laterallus jamaicensis), seaside sparrow (Ammodramus maritimus), and saltmarsh sharp-tailed sparrow (Ammodramus caudacutus) are particularly at risk if these trends continue, and all but the laughing gull are species of concern to state and federal managers.
Remotely sensed evidence of the rapid loss of tidal flats in the Yellow Sea
NASA Astrophysics Data System (ADS)
Murray, N. J.; Phinn, S. R.; Clemens, R. S.; Possingham, H.; Fuller, R. A.
2013-12-01
In East Asia's Yellow Sea, intertidal wetlands are the frontline ecosystem protecting a coastal population of more than 150 million people from storms and sea-level rise. Despite widespread coastal change and severe modification of the region's major river systems, the magnitude and distribution of coastal wetland loss remains unquantified. We developed a novel remote sensing method to solve the difficult problem of mapping intertidal wetlands over large areas and mapped the extent of tidal flats, the region's primary coastal ecosystem, over 4000kms of coastline at two time periods: the 1980s and late 2000s. We used a regionally validated tide model to identify Landsat images acquired at high and low tides, allowing the area between the high and low tide waterlines to be mapped by differencing classified land-water images between the two tidal stages. Our analysis of the change in areal extent of tidal flats in the Yellow Sea indicates that of the 545,000 ha present in the 1980s, only 389,000 ha remained three decades later, equating to a net loss of 28% at a mean rate of 1.2 % yr-1. ). Comparing the three countries in our analysis, China lost more tidal flat and at a faster rate (39.8%, 1.8% yr-1) than South Korea (32.2%, 1.6% yr-1), and in North Korea minor gains of tidal flat were recorded at (8.5%, 0.3 yr-1). For the same mapped area, historical maps suggest that tidal flats occupied up to 1.14 million ha in the mid-1950s, equating to a potential net loss of up to 65% over ~50 years. Coastal land reclamation for agriculture, aquaculture and urban development is a major driver of tidal flat loss, particularly in China and South Korea, although region-wide declines in sediment replenishment from rivers is also occurring. To conserve the ecosystem services provided by tidal flats and ensure protection of the region's coastal biodiversity, conservation actions should target protection of tidal flats and encourage collaborative and properly planned development strategies. Tidal flat conversion to agricultural land in Chungcheongnam-do Province, South Korea (1982, 2010). The Landsat MSS and TM images show widespread conversion of tidal flats (left) to agricultural land (right) over two decades.
NASA Astrophysics Data System (ADS)
Wilson, C.; Goodbred, S. L., Jr.; Hale, R. P.; Bain, R. L.
2016-12-01
The lower Ganges-Brahmaputra (G-B) delta can be divided into the fluvial-tidal river mouth and distributaries under active construction by the G-B rivers, and the distal tidally maintained deltaplain. In the active river-mouth, distributaries have constructed 5,000 km2 of large, coalescing islands that define the prograding coastline and subaerial-delta front. Although seasonal riverbank erosion is common, the area as a whole has gained land, primarily via horizontal and vertical accretion of intertidal mudflats and seaward progradation of emergent, tidally-elongated sandy channel-mouth bars. An analysis of historical imagery within the active river mouth shows larger and higher order channels form as merging bars and shoal-islands constrict distributary channels, while lower order creeks emerge secondarily, presumably as flow on shoaling intertidal mudflats becomes channelized and mangrove vegetation takes hold. With waning fluvial input (occurring from major distributary migration or avulsion), tidal and marine processes exhibit a stronger control on sediment transport and distribution, as is happening in the downdrift areas of the G-B tidal delta plain. The relatively pristine Sundarbans mangrove forest covers 4,100 km2 along the coast, while 11,200 km2 of the lower tidal delta plain is densely inhabited (population density up to 1,000/km2) and embanked for agricultural purposes. Although considered moribund or abandoned from direct fluvial sediment input, distal portions of the tidal delta are connected to the sediment transport system by its dense network of tidal channels. The subaerial landscape that was initially constructed by the point-sourced input of coarser-grained fluvial sediment from the mainstem rivers is thereafter maintained predominantly by onshore tidal sediment transport of finer-grained silt, and we observe accretion rates as high as 2-4 cm/y supported on the mangrove platform during the monsoon season. The tidal channels show evidence of some migration since the mid-1800s (Allison, 1998); however, there appears to be little evidence of net infilling or widening in coastal areas (<50 km from the Bay of Bengal). In contrast, we show interior areas have chronic siltation over the past 50 years due to anthropogenically modified changes in the tidal prism from poldering.
Properties and evolution of NEO families created by tidal disruption at Earth
NASA Astrophysics Data System (ADS)
Schunová, Eva; Jedicke, Robert; Walsh, Kevin J.; Granvik, Mikael; Wainscoat, Richard J.; Haghighipour, Nader
2014-08-01
We have calculated the coherence and detectable lifetimes of synthetic near-Earth object (NEO) families created by catastrophic disruption of a progenitor as it suffers a very close Earth approach. The closest or slowest approaches yield the most violent ‘s-class’ disruption events where the largest remaining fragment after disruption and reaccumulation retains less than 50% of the parent’s mass. The resulting fragments have a ‘string of pearls’ configuration after their reaccummulation into gravitationally bound components (Richardson, D.C., Bottke, W.F., Love, S.G. [1998]. Icarus 134, 47-76). We found that the average absolute magnitude (H) difference between the parent body and the largest fragment is ΔH∼1.0. The average slope of the absolute magnitude (H) distribution, N(H)∝10, for the fragments in the s-class families is steeper than the slope of the NEO population (Mainzer, A., et al. [2011]. Astrophys. J. 743, 156) in the same size range. The es remain coherent as statistically significant clusters of orbits within the NEO population for an average of τbarc=(14.7±0.6)×103 yr after disruption. The detectable lifetimes of tidally disrupted families are extremely short compared to the multi-Myr and -Gyr lifetimes of main belt families due to the chaotic dynamical environment in NEO space-they are detectable with the techniques developed by Fu et al. and Schunová et al. (Fu, H., Jedicke, R., Durda, D.D., Fevig, R., Binzel, R.P. [2005]. Icarus 178(2), 434-449 and Schunová, E., Granvik, M., Jedicke, R., Gronchi, G., Wainscoat, R., Abe, S. [2012]. Icarus 220, 1050-1063) for an average duration (τbardet) ranging from about 2000 to about 12,000 years for progenitors in the absolute magnitude (Hp) range from 20 to 13 corresponding to diameters in the range from about 0.5 to 10 km respectively. The maximum absolute magnitude of a progenitor capable of producing an observable NEO family (i.e. detectable by our family finding technique) is Hp,max=20 (about 350 m diameter). The short detectability lifetime explains why zero NEO families have been discovered to-date. Nonetheless, every tidal disruption event of a progenitor with diameter greater than 0.5 km is capable of producing several million fragments in the 1-10 m diameter range that can contribute to temporary local density enhancements of small NEOs in Earth’s vicinity. We expect that there are about 1200 objects in the steady state NEO population in this size range due to tidal disruption assuming that one 1 km diameter NEO tidally disrupts at Earth every 2500 years. These objects may be suitable targets for asteroid retrieval missions due to their Earth-like orbits with corresponding low v∞ which permits low-cost missions. The fragments from the tidal disruptions evolve into orbits that bring them into collision with terrestrial planets or the Sun or they may be ejected from the Solar System on hyperbolic orbits due to deep planetary encounters. The end-state for the fragments from a tidal disruption at Earth have ∼5× the collision probability with Earth compared to the background NEO population.
Soras in tidal marsh: Banding and telemetry studies on the Patuxent River, Maryland
Haramis, G.M.; Kearns, G.D.; Erwin, R. Michael; Watts, Bryan D.; Haramis, G.Michael; Perry, Matthew C.; Hobson, Keith A.
2007-01-01
From 1993 to 1999, we conducted banding and telemetry studies of fall migrant Soras (Porzana carolina) in the historic rail hunting and exceptional stopover habitat of the Wild Rice (Zizania aquatica) marshes of the tidal Patuxent River. Drift traps equipped with audio lures produced 3,897 Sora and 417 Virginia Rail (Rallus limicola) captures during the seven-year study. Sora captures were characterized by a high proportion (70% to 90%) of young-of-the year and a paucity of between-year recaptures (N = 12). Radio-telemetry studies depicted Soras as long distance migrants with high stopover survivaI and a critical dependence on tidal freshwater marshes for migratory fattening. Here, the high productivity of Wild Rice, Smartweeds (Polygonum spp.) and other seed-bearing annual plants seem intrinsically linked to Sora migratory fitness. A stopover period of >40 days and mean mass gain of +0.6g/d suggests Soras are accumulating large fat reserves for long-distance flight. Radio tracking confirmed Soras as strong flyers with a demonstrated overnight (ten h) flight range of 700-900+ km. Given the potential size of fat reserves and the ability to use tail winds, it is conceivable for Soras to make nonstop flights from the Patuxent River to Florida, the Bahamas, or even the Caribbean. Once a widely hunted species, a single sport-hunting recovery from our 3,900 bandings attests to the decline in popularity of the Sora as a game bird in the Atlantic Flyway. We suggest the few between-year recaptures observed in our bandings results from three possible factors: 1) the strong influence of wind drift on migration, 2) different migration chronology or flight path of AHY versus HY birds, and/or 3) high mortality of especially HY birds during Atlantic coastal and Gulf crossings. The critical dependence of Soras and other seed-dependent, fall-migrant waterbirds on highly productive yet limited tidal freshwater marsh habitats make conservation of such areas a priority mission within the Chesapeake Bay.
The Velocity Dispersion Profile of the Remote Dwarf Spheroidal Galaxy Leo I: A Tidal Hit and Run?
NASA Astrophysics Data System (ADS)
Mateo, Mario; Olszewski, Edward W.; Walker, Matthew G.
2008-03-01
We present new kinematic results for 387 stars near the Milky Way satellite dwarf spheroidal galaxy Leo I. Spectra were obtained with the Hectochelle multiobject echelle spectrograph on the MMT, centered in the optical near 5200 Å. From 297 repeat measurements of 108 stars, we estimate the mean velocity error (1 σ) of our sample to be 2.4 km s-1, with a systematic precision of <=1 km s-1. The final sample of 328 Leo I members gives a mean heliocentric velocity of 282.9 +/- 0.5 km s-1 and a dispersion of 9.2 +/- 0.4 km s-1. The dispersion profile of Leo I is flat to beyond its classical "tidal" radius. We fit the profile to various equilibrium dynamical models. We strongly rule out all models where mass follows light. Anisotropic Sérsic+NFW models fit the dispersion profile well, but isotropic models are ruled out at a 95% confidence level. Inside a projected radius of ~1040 pc, the mass and V-band mass-to-light ratio of Leo I from equilibrium models are in the ranges (5-7) × 107 M⊙ and 9-14 (solar units), respectively. Leo I members outside a "break radius" of Rb ~ 400'' (500 pc) exhibit significant velocity anisotropy, whereas stars interior to this radius are consistent with an isotropic velocity distribution. We interpret the break radius as the tidal radius of Leo I at perigalacticon some 1-2 Gyr ago. This interpretation accounts for the complex star formation history of Leo I, population segregation within the galaxy, and Leo I's large outward galactocentric velocity. The lack of evident tidal arms in Leo I suggests that the galaxy may have been injected into its present highly elliptical orbit by a third body a few Gyr before its last perigalacticon. This scenario is plausible within current hierarchical structure formation models.
Estimating salinity intrusion effects due to climate change on the Lower Savannah River Estuary
Conrads, Paul; Roehl, Edwin A.; Daamen, Ruby C.; Cook, John B.; Sexton, Charles T.; Tufford, Daniel L.; Carbone, Gregory J.; Dow, Kristin
2010-01-01
The ability of water-resource managers to adapt to future climatic change is especially challenging in coastal regions of the world. The East Coast of the United States falls into this category given the high number of people living along the Atlantic seaboard and the added strain on resources as populations continue to increase, particularly in the Southeast. Increased temperatures, changes in regional precipitation regimes, and potential increased sea level may have a great impact on existing hydrological systems in the region. The Savannah River originates at the confluence of the Seneca and Tugaloo Rivers, near Hartwell, Ga., and forms the state boundary between South Carolina and Georgia. The J. Strom Thurmond Dam and Lake, located 238 miles upstream from the Atlantic Ocean, is responsible for most of the flow regulation that affects the Savannah River from Augusta, Ga., to the coast. The Savannah Harbor experiences semi-diurnal tides of two low and two high tides in a 24.8-hour period with pronounced differences in tidal range between neap and spring tides occurring on a 14-day and 28-day lunar cycle. Salinity intrusion results from the interaction of three principal forces - streamflow, mean tidal water levels, and tidal range. To analyze, model, and simulate hydrodynamic behaviors at critical coastal streamgages in the Lower Savannah River Estuary, data-mining techniques were applied to over 15 years of hourly streamflow, coastal water-quality, and water-level data. Artificial neural network (ANN) models were trained to learn the variable interactions that cause salinity intrusions. Streamflow data from the 9,850 square-mile Savannah River Basin were input into the model as time-delayed variables. Tidal inputs to the models were obtained by decomposing tidal water-level data into a “periodic” signal of tidal range and a “chaotic” signal of mean water levels. The ANN models were able to convincingly reproduce historical behaviors and generate alternative scenarios of interest. Important freshwater resources are located proximal to the freshwater-saltwater interface of the estuary. The Savannah National Wildlife Refuge is located in the upper portion of the Savannah River Estuary. The tidal freshwater marsh is an essential part of the 28,000-acre refuge and is home to a diverse variety of wildlife and plant communities. Two municipal freshwater intakes are located upstream from the refuge. To evaluate the impact of climate change on salinity intrusion on these resources, inputs of streamflows and mean tidal water levels were modified to incorporate estimated changes in precipitation patterns and sea-level rise appropriate for the Southeastern United States. Changes in mean tidal water levels were changed parametrically for various sea-level rise conditions. Preliminary model results at the U.S. Geological Survey (USGS) Interstate-95 streamgage (station 02198840) for a 7½-year simulation show that historical daily salinity concentrations never exceeded 0.5 practical salinity units (psu). A 1-foot sea-level rise (ft, 30.5 centimeters [cm]) would increase the number of days of salinity concentrations greater than 0.5 psu to 47 days. A 2-ft (61 cm) sea-level rise would increase the number of days to 248.
NASA Astrophysics Data System (ADS)
Ding, Yang; Bao, Xianwen; Yu, Huaming; Kuang, Liang
2012-04-01
The tides and tidal energetics in the Indonesian seas are simulated using a three-dimensional finite volume coastal ocean model. The high-resolution coastline-fitted model is configured to better resolve the hydrodynamic processes around the numerous barrier islands. A large model domain is adopted to minimize the uncertainty adjacent to open boundaries. The model results with elevation assimilation based on a simple nudge scheme faithfully reproduced the general features of the barotropic tides in the Indonesian Seas. The mean root-mean-square errors between the observed and simulated tidal constants are 2.3, 1.1, 2.4, and 1.5 cm for M2, S2, K1, and O1, respectively. Analysis of the model solutions indicates that the semidiurnal tides in the Indonesian Seas are primarily dominated by the Indian Ocean, whereas the diurnal tides in this region are mainly influenced by the Pacific Ocean, which is consistent with previous studies. Examinations of tidal energy transport reveal that the tidal energy for both of the simulated tidal constituents are transported from the Indian Ocean into the IS mainly through the Lombok Strait and the Timor Sea, whereas only M2 energy enters the Banda Sea and continues northward. The tidal energy dissipates the most in the passages on both sides of Timor Island, with the maximum M2 and K1 tidal energy transport reaching about 750 and 650 kW m-1, respectively. The total energy losses of the four dominant constituents in the IS are nearly 338 GW, with the M2 constituent dissipating 240.8 GW. It is also shown that the bottom dissipation rate for the M2 tide is about 1-2 order of magnitudes larger than that of the other three tidal components in the Indonesian seas.
An optimal tuning strategy for tidal turbines
2016-01-01
Tuning wind and tidal turbines is critical to maximizing their power output. Adopting a wind turbine tuning strategy of maximizing the output at any given time is shown to be an extremely poor strategy for large arrays of tidal turbines in channels. This ‘impatient-tuning strategy’ results in far lower power output, much higher structural loads and greater environmental impacts due to flow reduction than an existing ‘patient-tuning strategy’ which maximizes the power output averaged over the tidal cycle. This paper presents a ‘smart patient tuning strategy’, which can increase array output by up to 35% over the existing strategy. This smart strategy forgoes some power generation early in the half tidal cycle in order to allow stronger flows to develop later in the cycle. It extracts enough power from these stronger flows to produce more power from the cycle as a whole than the existing strategy. Surprisingly, the smart strategy can often extract more power without increasing maximum structural loads on the turbines, while also maintaining stronger flows along the channel. This paper also shows that, counterintuitively, for some tuning strategies imposing a cap on turbine power output to limit loads can increase a turbine’s average power output. PMID:27956870
An optimal tuning strategy for tidal turbines
NASA Astrophysics Data System (ADS)
Vennell, Ross
2016-11-01
Tuning wind and tidal turbines is critical to maximizing their power output. Adopting a wind turbine tuning strategy of maximizing the output at any given time is shown to be an extremely poor strategy for large arrays of tidal turbines in channels. This `impatient-tuning strategy' results in far lower power output, much higher structural loads and greater environmental impacts due to flow reduction than an existing `patient-tuning strategy' which maximizes the power output averaged over the tidal cycle. This paper presents a `smart patient tuning strategy', which can increase array output by up to 35% over the existing strategy. This smart strategy forgoes some power generation early in the half tidal cycle in order to allow stronger flows to develop later in the cycle. It extracts enough power from these stronger flows to produce more power from the cycle as a whole than the existing strategy. Surprisingly, the smart strategy can often extract more power without increasing maximum structural loads on the turbines, while also maintaining stronger flows along the channel. This paper also shows that, counterintuitively, for some tuning strategies imposing a cap on turbine power output to limit loads can increase a turbine's average power output.
An optimal tuning strategy for tidal turbines.
Vennell, Ross
2016-11-01
Tuning wind and tidal turbines is critical to maximizing their power output. Adopting a wind turbine tuning strategy of maximizing the output at any given time is shown to be an extremely poor strategy for large arrays of tidal turbines in channels. This 'impatient-tuning strategy' results in far lower power output, much higher structural loads and greater environmental impacts due to flow reduction than an existing 'patient-tuning strategy' which maximizes the power output averaged over the tidal cycle. This paper presents a 'smart patient tuning strategy', which can increase array output by up to 35% over the existing strategy. This smart strategy forgoes some power generation early in the half tidal cycle in order to allow stronger flows to develop later in the cycle. It extracts enough power from these stronger flows to produce more power from the cycle as a whole than the existing strategy. Surprisingly, the smart strategy can often extract more power without increasing maximum structural loads on the turbines, while also maintaining stronger flows along the channel. This paper also shows that, counterintuitively, for some tuning strategies imposing a cap on turbine power output to limit loads can increase a turbine's average power output.
NASA Astrophysics Data System (ADS)
Braviner, Harry J.; Ogilvie, Gordon I.
2015-02-01
We model a tidally forced star or giant planet as a Maclaurin spheroid, decomposing the motion into the normal modes found by Bryan. We first describe the general prescription for this decomposition and the computation of the tidal power. Although this formalism is very general, forcing due to a companion on a misaligned, circular orbit is used to illustrate the theory. The tidal power is plotted for a variety of orbital radii, misalignment angles, and spheroid rotation rates. Our calculations are carried out including all modes of degree l ≤ 4, and the same degree of gravitational forcing. Remarkably, we find that for close orbits (a/R* ≈ 3) and rotational deformations that are typical of giant planets (e ≈ 0.4) the l = 4 component of the gravitational potential may significantly enhance the dissipation through resonance with surface gravity modes. There are also a large number of resonances with inertial modes, with the tidal power being locally enhanced by up to three orders of magnitude. For very close orbits (a/R* ≈ 3), the contribution to the power from the l = 4 modes is roughly the same magnitude as that due to the l = 3 modes.
Greb, S.F.; Archer, A.W.; Deboer, D.G.
2011-01-01
Turnagain Arm is a macrotidal fjord-style estuary. Glacier Creek is a small, glacially fed stream which enters the estuary tangentially near Girdwood, Alaska. Trenches and daily sedimentation measurements were made in a mudflat along the fluvio-estuarine transition of Glacier Creek during several summers since 2003. Each year, the flats appear to erode during the winter and then accrete vertically in the spring and summer. In each of the years studied, tidal laminae in vertically thickening and thinning laminae bundles were deposited by twice daily tides in neap-spring tidal cycles. In 2004, bundles of thickening and thinning laminae couplets were noted in trenches cut into the flats. Five laminae bundles alternated between thicker and thinner bundles, corresponding to the perigean (high spring) and apogean (low spring) tides. Well-preserved apogean-perigean cycles have rarely been documented in modern tidal flat sediments. At this location, vertical accretion of tidal rhythmites with well-developed neap-spring cyclicity is possible because of the near-complete removal of the flat from the previous year, which creates accommodation space for vertical accretion without significant reworking. Macrotidal conditions, no reworking by infaunal invertebrates, protection from the main tidal channel by a gravel bar and protection from storm waves and fluvial erosion by a recess in the sedge marsh that surrounds the flats all aid in preservation of rhythmites during aggradation. The position of the flats relative to tidal range allows for accumulation of complete spring cycles and incomplete neap cycles. In the summer of 2004, apogee and perigee were closely aligned with the new and full moons, resulting in successive strong perigee and apogee tides which probably aided in the accumulation of successive thick-thin spring cycles encoding the apogean and perigean tidal cycle. The apogean-perigean signal was not observed in subsequent years. ?? 2011 The Authors.
Tidal Forces as Drivers of Collisional Evolution
NASA Technical Reports Server (NTRS)
Asphaug, E.; Agnor, C.; Williams, Q.
2005-01-01
Planetary collisions are usually understood as shock-related phenomena, analogous to impact cratering. But at large scales, where the impact timescale is comparable to the gravitational timescale, collisions can be dominated by gravitational torques and disruptive tides. Shock physics fares poorly, in many respects, in explaining asteroid and meteorite genesis. Melts, melt residues, welded agglomerates and hydrous and gasrich phases among meteorites lead to an array of diverse puzzles whose solution might be explained, in part, by the thermomechanics of tidal unloading. Comet Shoemaker-Levy 9 disrupted in a process that is common in the present and ancestral solar system, so here we consider specific effects tidal disruption had on the evolution of asteroids, comets and meteorites the unaccreted residues of planet formation.
Core rotational dynamics and geological events
Greff-Lefftz; Legros
1999-11-26
A study of Earth's fluid core oscillations induced by lunar-solar tidal forces, together with tidal secular deceleration of Earth's axial rotation, shows that the rotational eigenfrequency of the fluid core and some solar tidal waves were in resonance around 3.0 x 10(9), 1.8 x 10(9), and 3 x 10(8) years ago. The associated viscomagnetic frictional power at the core boundaries may be converted into heat and would destabilize the D" thermal layer, leading to the generation of deep-mantle plumes, and would also increase the temperature at the fluid core boundaries, perturbing the core dynamo process. Such phenomena could account for large-scale episodes of continental crust formation, the generation of flood basalts, and abrupt changes in geomagnetic reversal frequency.
NASA Astrophysics Data System (ADS)
Wren, A.; Xu, K.; Ma, Y.; Sanger, D.; Van Dolah, R.
2014-12-01
Bottom-mounted instrumentation was deployed at two sites on an ebb tidal delta to measure hydrodynamics, sediment transport, and seabed elevation. One site ('borrow site') was 2 km offshore and used as a dredging site for beach nourishment of nearby Hilton Head Island in South Carolina, and the other site ('reference site') was 10 km offshore and not directly impacted by the dredging. In-situ time-series data were collected during two periods after the dredging: March 15 - June 12, 2012('spring') and August 18 - November 18, 2012 ('fall'). At the reference site directional wave spectra and upper water column current velocities were measured, as well as high-resolution current velocity profiles and suspended sediment concentration profiles in the Bottom Boundary Layer (BBL). Seabed elevation and small-scale seabed changes were also measured. At the borrow site seabed elevation and near-bed wave and current velocities were collected using an Acoustic Doppler Velocimeter. Throughout both deployments bottom wave orbital velocities ranged from 0 - 110 m/s at the reference site. Wave orbital velocities were much lower at the borrow site ranging from 10-20 cm/s, as wave energy was dissipated on the extensive and rough sand banks before reaching the borrow site. Suspended sediment concentrations increased throughout the BBL when orbital velocities increased to approximately 20 cm/s. Sediment grain size and critical shear stresses were similar at both sites, therefore, re-suspension due to waves was less frequent at the borrow site. However, sediment concentrations were highly correlated with the tidal cycle at both sites. Semidiurnal tidal currents were similar at the two sites, typically ranging from 0 - 50 cm/s in the BBL. Maximum currents exceeded the critical shear stress and measured suspended sediment concentrations increased during the first hours of the tidal cycle when the tide switched to flood tide. Results indicate waves contributed more to sediment mobility at the reference site, while tidal forcing was the dominant factor at the borrow site. The seabed elevation data corraborates these results as active migrating ripples of 10 cm were measured at the reference site, while changes in seabed elevation at the borrow site were more gradual with approximately 30 cm of net accretion throughout the study.
Evolution of sediment metal concentrations in a tidal marsh restoration project.
Teuchies, Johannes; Beauchard, Olivier; Jacobs, Sander; Meire, Patrick
2012-03-01
The combination of flood prevention and tidal marsh restoration will be implemented on a large scale in the Schelde estuary (Belgium). Densely populated and industrialized, this estuary was found to be severely contaminated with trace metals. In this study we evaluated the effect of tidal restoration on sediment trace metal concentrations. To asses historical contamination of embanked-, a restored- and natural tidal areas, deep sediment cores were sampled while the evolution of metal concentrations was determined by means of superficial samples taken during 10 sampling campaigns spread over the first 3 years of the restoration project. Metal concentrations in the natural tidal marsh reflected the estuaries' contamination history. Fertilization by irrigation caused high metal concentrations in superficial soil layers of some embanked areas. However, reintroduction of the tide resulted in deposition of a new sediment layer with lower metal concentrations, comparable to the natural tidal marsh. Despite diagenetic mobility of manganese no diagenetic movements of the trace metals were observed during these first three years. Removal of metals from the estuary and burial of contaminated sediments in the restored site emphasize the potential of these restoration projects to decrease metal contamination risks. However, more research under field conditions on the effects of changes in land use and inundation related changes in metal bioavailability is needed to draw clear conclusions on the environmental consequences. Copyright © 2012 Elsevier B.V. All rights reserved.
Strong-field tidal distortions of rotating black holes. III. Embeddings in hyperbolic three-space
NASA Astrophysics Data System (ADS)
Penna, Robert F.; Hughes, Scott A.; O'Sullivan, Stephen
2017-09-01
In previous work, we developed tools for quantifying the tidal distortion of a black hole's event horizon due to an orbiting companion. These tools use techniques which require large mass ratios (companion mass μ much smaller than black hole mass M ), but can be used for arbitrary bound orbits and for any black hole spin. We also showed how to visualize these distorted black holes by embedding their horizons in a global Euclidean three-space, E3. Such visualizations illustrate interesting and important information about horizon dynamics. Unfortunately, we could not visualize black holes with spin parameter a*>√{3 }/2 ≈0.866 : such holes cannot be globally embedded into E3. In this paper, we overcome this difficulty by showing how to embed the horizons of tidally distorted Kerr black holes in a hyperbolic three-space, H3. We use black hole perturbation theory to compute the Gaussian curvatures of tidally distorted event horizons, from which we build a two-dimensional metric of their distorted horizons. We develop a numerical method for embedding the tidally distorted horizons in H3. As an application, we give a sequence of embeddings into H3 of a tidally interacting black hole with spin a*=0.9999 . A small-amplitude, high-frequency oscillation seen in previous work shows up particularly clearly in these embeddings.
The Algorithm Theoretical Basis Document for Tidal Corrections
NASA Technical Reports Server (NTRS)
Fricker, Helen A.; Ridgway, Jeff R.; Minster, Jean-Bernard; Yi, Donghui; Bentley, Charles R.`
2012-01-01
This Algorithm Theoretical Basis Document deals with the tidal corrections that need to be applied to range measurements made by the Geoscience Laser Altimeter System (GLAS). These corrections result from the action of ocean tides and Earth tides which lead to deviations from an equilibrium surface. Since the effect of tides is dependent of the time of measurement, it is necessary to remove the instantaneous tide components when processing altimeter data, so that all measurements are made to the equilibrium surface. The three main tide components to consider are the ocean tide, the solid-earth tide and the ocean loading tide. There are also long period ocean tides and the pole tide. The approximate magnitudes of these components are illustrated in Table 1, together with estimates of their uncertainties (i.e. the residual error after correction). All of these components are important for GLAS measurements over the ice sheets since centimeter-level accuracy for surface elevation change detection is required. The effect of each tidal component is to be removed by approximating their magnitude using tidal prediction models. Conversely, assimilation of GLAS measurements into tidal models will help to improve them, especially at high latitudes.
Tidal dwarf galaxies in cosmological simulations
NASA Astrophysics Data System (ADS)
Ploeckinger, Sylvia; Sharma, Kuldeep; Schaye, Joop; Crain, Robert A.; Schaller, Matthieu; Barber, Christopher
2018-02-01
The formation and evolution of gravitationally bound, star forming substructures in tidal tails of interacting galaxies, called tidal dwarf galaxies (TDG), has been studied, until now, only in idealized simulations of individual pairs of interacting galaxies for pre-determined orbits, mass ratios and gas fractions. Here, we present the first identification of TDG candidates in fully cosmological simulations, specifically the high-resolution simulations of the EAGLE suite. The finite resolution of the simulation limits their ability to predict the exact formation rate and survival time-scale of TDGs, but we show that gravitationally bound baryonic structures in tidal arms already form in current state-of-the-art cosmological simulations. In this case, the orbital parameter, disc orientations as well as stellar and gas masses and the specific angular momentum of the TDG forming galaxies are a direct consequence of cosmic structure formation. We identify TDG candidates in a wide range of environments, such as multiple galaxy mergers, clumpy high-redshift (up to z = 2) galaxies, high-speed encounters and tidal interactions with gas-poor galaxies. We present selection methods, the properties of the identified TDG candidates and a road map for more quantitative analyses using future high-resolution simulations.
A Global Ocean Tide Model From TOPEX/POSEIDON Altimetry: GOT99.2
NASA Technical Reports Server (NTRS)
Ray, Richard D.
1999-01-01
Goddard Ocean Tide model GOT99.2 is a new solution for the amplitudes and phases of the global oceanic tides, based on over six years of sea-surface height measurements by the TOPEX/POSEIDON satellite altimeter. Comparison with deep-ocean tide-gauge measurements show that this new tidal solution is an improvement over previous global models, with accuracies for the main semidiurnal lunar constituent M2 now below 1.5 cm (deep water only). The new solution benefits from use of prior hydrodynamic models, several in shallow and inland seas as well as the global finite-element model FES94.1. This report describes some of the data processing details involved in handling the altimetry, and it provides a comprehensive set of global cotidal charts of the resulting solutions. Various derived tidal charts are also provided, including tidal loading deformation charts, tidal gravimetric charts, and tidal current velocity (or transport) charts. Finally, low-degree spherical harmonic coefficients are computed by numerical quadrature and are tabulated for the major short-period tides; these are useful for a variety of geodetic and geophysical purposes, especially in combination with similar estimates from satellite laser ranging.
Integration of Tidal Prism Model and HSPF for simulating indicator bacteria in coastal watersheds
NASA Astrophysics Data System (ADS)
Sobel, Rose S.; Rifai, Hanadi S.; Petersen, Christina M.
2017-09-01
Coastal water quality is strongly influenced by tidal fluctuations and water chemistry. There is a need for rigorous models that are not computationally or economically prohibitive, but still allow simulation of the hydrodynamics and bacteria sources for coastal, tidally influenced streams and bayous. This paper presents a modeling approach that links a Tidal Prism Model (TPM) implemented in an Excel-based modeling environment with a watershed runoff model (Hydrologic Simulation Program FORTRAN, HSPF) for such watersheds. The TPM is a one-dimensional mass balance approach that accounts for loading from tidal exchange, runoff, point sources and bacteria die-off at an hourly time step resolution. The novel use of equal high-resolution time steps in this study allowed seamless integration of the TPM and HSPF. The linked model was calibrated to flow and E. Coli data (for HSPF), and salinity and enterococci data (for the TPM) for a coastal stream in Texas. Sensitivity analyses showed the TPM to be most influenced by changes in net decay rates followed by tidal and runoff loads, respectively. Management scenarios were evaluated with the developed linked models to assess the impact of runoff load reductions and improved wastewater treatment plant quality and to determine the areas of critical need for such reductions. Achieving water quality standards for bacteria required load reductions that ranged from zero to 90% for the modeled coastal stream.
Carbon sequestration by Australian tidal marshes
Macreadie, Peter I.; Ollivier, Q. R.; Kelleway, J. J.; Serrano, O.; Carnell, P. E.; Ewers Lewis, C. J.; Atwood, T. B.; Sanderman, J.; Baldock, J.; Connolly, R. M.; Duarte, C. M.; Lavery, P. S.; Steven, A.; Lovelock, C. E.
2017-01-01
Australia’s tidal marshes have suffered significant losses but their recently recognised importance in CO2 sequestration is creating opportunities for their protection and restoration. We compiled all available data on soil organic carbon (OC) storage in Australia’s tidal marshes (323 cores). OC stocks in the surface 1 m averaged 165.41 (SE 6.96) Mg OC ha−1 (range 14–963 Mg OC ha−1). The mean OC accumulation rate was 0.55 ± 0.02 Mg OC ha−1 yr−1. Geomorphology was the most important predictor of OC stocks, with fluvial sites having twice the stock of OC as seaward sites. Australia’s 1.4 million hectares of tidal marshes contain an estimated 212 million tonnes of OC in the surface 1 m, with a potential CO2-equivalent value of $USD7.19 billion. Annual sequestration is 0.75 Tg OC yr−1, with a CO2-equivalent value of $USD28.02 million per annum. This study provides the most comprehensive estimates of tidal marsh blue carbon in Australia, and illustrates their importance in climate change mitigation and adaptation, acting as CO2 sinks and buffering the impacts of rising sea level. We outline potential further development of carbon offset schemes to restore the sequestration capacity and other ecosystem services provided by Australia tidal marshes. PMID:28281574
Evaluating Tidal Energy Resource Assessment Guidelines
NASA Astrophysics Data System (ADS)
Haas, K. A.
2016-02-01
All tidal energy projects require resource assessments for determining the feasibility of a particular site, performing the project layout design and providing the projected annual energy production (AEP). The methods for the different resource assessments depend on both the assessment scope as well as the project scale. To assist with the development of the hydrokinetic industry as a whole, much work over the past decade has been completed to develop international technical standards that can be used by the full range of stakeholders in the hydrokinetic industry. In particular, a new International Electrotechnical Commission (IEC) Technical Specification (TS) has recently been published outlining a standardized methodology for performing tidal energy resource assessments. This presentation will cover the various methods for performing the different types of tidal resource assessments (national reconnaissance, regional feasibility and layout design). Illustrations through case studies will be presented for each type of resource assessment. In particular, the ability of a grid refinement technique which satisfies the TS grid resolution requirements for the assessment of tidal current energy while maintaining low computational expenses will be evaluated. Example applications will be described for mapping the tidal resources near two facilities (Portsmouth Naval Shipyard in Maine and Key West Naval Station in Florida) for possible future deployments of Marine Hydro-Kinetic (MHK) technologies. These assessments will include and demonstrate the importance of the effect of energy extraction as required by the TS.
Drexler, Judith Z.; Krauss, Ken W.; Sasser, M. Craig; Fuller, Christopher C.; Swarzenski, Christopher M.; Powell, Amber; Swanson, Kathleen M.; Orlando, James L.
2013-01-01
Carbon storage was compared between impounded and naturally tidal freshwater marshes along the Lower Waccamaw River in South Carolina, USA. Soil cores were collected in (1) naturally tidal, (2) moist soil (impounded, seasonally drained since ~1970), and (3) deeply flooded “treatments” (impounded, flooded to ~90 cm since ~2002). Cores were analyzed for % organic carbon, % total carbon, bulk density, and 210Pb and 137Cs for dating purposes. Carbon sequestration rates ranged from 25 to 200 g C m−2 yr−1 (moist soil), 80–435 g C m−2 yr−1 (naturally tidal), and 100–250 g C m−2 yr−1 (deeply flooded). The moist soil and naturally tidal treatments were compared over a period of 40 years. The naturally tidal treatment had significantly higher carbon storage (mean = 219 g C m−2 yr−1 vs. mean = 91 g C m−2 yr−1) and four times the vertical accretion rate (mean = 0.84 cm yr−1 vs. mean = 0.21 cm yr−1) of the moist soil treatment. The results strongly suggest that the long drainage period in moist soil management limits carbon storage over time. Managers across the National Wildlife Refuge system have an opportunity to increase carbon storage by minimizing drainage in impoundments as much as practicable.
A Measurement of Long Term Tilt in Colorado and Wyoming
1981-09-01
SUPPLEMENTARY NOTES III, KEY WORDS (Continue on reverse aide If necesesry and Identify by block number) Borehole tiltmeters Earth tides Secular tilt Tidal...operating for long periods of time at tidal sensitivity, and we have deployed six of these tiltmeters at two sites near Boulder, Colorado. The data...fr’om the tiltmeters are recorded using a data acquisition and control system capable of recording the data from a large number of widely spaced
Characteristics of depositional environments in the Nakdong River Estuary, South Korea
NASA Astrophysics Data System (ADS)
Woo, Han Jun; Lee, Jun-Ho; Kang, Jeongwon; Choi, Jae Ung
2017-04-01
Most of the major Korean estuaries, under high pressure from development, have dams with environmental problems, including restricted water circulation, low water quality, decreased biodiversity and wetland destruction. The Nakdong estuary on the southeastern coast of Korean Peninsula is an enclosed type with two large estuarine dams that were constructed in 1934 and between 1983 and 1987. The construction of dams has led to geomorphologic evolution of the barrier islands within Nakdong estuary. The estuary has been characterized as barrier-lagoon system with various subenvironments and microtidal with a 1.5 m tidal range. The sedimentary analyses and monitoring short-term sedimentation rates were investigated to understand characteristics of depositional environments in barrier-lagoon system of the Nakdong River Estuary. The surface sediments in the system were classified into three sedimentary facies in summer 2015. Generally, sand sediment was dominated in the seaward side of barrier islands and muddy sand sediment was dominated on the lagoon. Sandy mud and mud sediments were distributed in the tidal flat near Noksan industrial district and channels near dams. Fourteen a priori subenvironments were distinguished based on differences in landscape characterization (sediment texture, salinity, total organic carbon, pH and C/N ratios). The dendrogram resulting from cluster analysis of environmental variables from 14 a priori subenvironments could be clustered into 4 groups that were characterized by different sediment texture and hydrodynamic energy. The short-term sedimentation rates were obtained seasonally from three lines by burying a plate at sub-bottom depth from May 2015 to May 2016. The deposition was dominated on the tidal flat between mainland and Jinudo (JW- Line) and Sinjado (SJ-Line) with the net deposition rate of 10.09 mm/year and 12.38 mm/year, respectively. The erosion was dominated on the tidal flats at Eulsukdo (ES-Line) on the east side of the system with an annual erosion rate of -13.15 mm/year. Two 12.5-hours anchoring surveys at inlets were revealed that net suspended sediments were transported to the open sea during a tidal cycle in summer 2015 and 2016. The sedimentary processes of the anthropogenically altered barrier-lagoon system in Nakdong estuary showed that sediments transported into the lagoon through inlets during flood condition and moved to westward and deposited sediments on the tidal flat and channels near dams in low energy environments. In the east side of the system, sediments flowed out the sea with discharge from Nakdong Dam during ebb condition. These data will provide an important baseline for future assessments of environmental quality on dam open.
Modulation of Gravity Waves by Tides as Seen in CRISTA Temperatures
NASA Technical Reports Server (NTRS)
Preusse, P.; Eckermann, S. D.; Oberheide, J.; Hagan, M. E.; Offermann, D.
2001-01-01
During shuttle missions STS-66 (November, 1994) and STS-85 (August, 1997) the Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere (CRISTA) acquired temperature data with very high spatial resolution. These are analyzed for gravity waves (GW). The altitude range spans the whole middle atmosphere from the tropopause up to the mesopause. In the upper mesosphere tidal amplitudes exceed values of 10 K. Modulation of GW activity by the tides is observed and analyzed using CRISTA temperatures and tidal predictions of the Global Scale Wave Model (GSWM). The modulation process is identified as a tidally-induced change of the background buoyancy frequency. The findings agree well with the expectations for saturated GW and are the first global scale observations of this process.
Exomoon Habitability Constrained by Illumination and Tidal Heating
2013-01-01
Abstract The detection of moons orbiting extrasolar planets (“exomoons”) has now become feasible. Once they are discovered in the circumstellar habitable zone, questions about their habitability will emerge. Exomoons are likely to be tidally locked to their planet and hence experience days much shorter than their orbital period around the star and have seasons, all of which works in favor of habitability. These satellites can receive more illumination per area than their host planets, as the planet reflects stellar light and emits thermal photons. On the contrary, eclipses can significantly alter local climates on exomoons by reducing stellar illumination. In addition to radiative heating, tidal heating can be very large on exomoons, possibly even large enough for sterilization. We identify combinations of physical and orbital parameters for which radiative and tidal heating are strong enough to trigger a runaway greenhouse. By analogy with the circumstellar habitable zone, these constraints define a circumplanetary “habitable edge.” We apply our model to hypothetical moons around the recently discovered exoplanet Kepler-22b and the giant planet candidate KOI211.01 and describe, for the first time, the orbits of habitable exomoons. If either planet hosted a satellite at a distance greater than 10 planetary radii, then this could indicate the presence of a habitable moon. Key Words: Astrobiology—Extrasolar planets—Habitability—Habitable zone—Tides. Astrobiology 13, 18–46. PMID:23305357
Sedimentation rate and lateral migration of tidal channels in the Lagoon of Venice (Northern Italy)
NASA Astrophysics Data System (ADS)
Donnici, Sandra; Madricardo, Fantina; Serandrei-Barbero, Rossana
2017-11-01
Tidal channels are crucial for the functioning of highly valuable coastal environments, such as estuaries and lagoons. Their properties, however, are currently less understood than those of river systems. To elucidate their past behaviour, an extensive geophysical investigation was performed to reconstruct the evolution of channels and tidal surfaces in the central part of the Lagoon of Venice (Italy) over the past 5000 years. Comparing high-spatial-resolution acoustic data and sedimentary facies analyses of 41 cores, 29 of which were radiocarbon dated, revealed the sedimentation rates in different lagoonal environments and allowed the migration of two large meanders to be reconstructed. The average sedimentation rate of the study succession in the different sedimentary environments was 1.27 mm yr-1. The lateral migration rates were 13-23 m/century. This estimate is consistent with the lateral migration rates determined by comparing aerial photographs of recent channels. Comparing the buried channels with historical and current maps showed that, in general, the number of active channels is now reduced. Their morphology was sometimes simplified by artificial interventions. An understanding of the impact of the artificial interventions over time is useful for the management and conservation of tidal environments, particularly for the Lagoon of Venice, where management authorities are currently debating the possible deepening and rectification of large navigation channels.
Ward, Shan L; Quinn, Carson M; Valentine, Stacey L; Sapru, Anil; Curley, Martha A Q; Willson, Douglas F; Liu, Kathleen D; Matthay, Michael A; Flori, Heidi R
2016-10-01
To determine the frequency of low-tidal volume ventilation in pediatric acute respiratory distress syndrome and assess if any demographic or clinical factors improve low-tidal volume ventilation adherence. Descriptive post hoc analysis of four multicenter pediatric acute respiratory distress syndrome studies. Twenty-six academic PICU. Three hundred fifteen pediatric acute respiratory distress syndrome patients. All patients who received conventional mechanical ventilation at hours 0 and 24 of pediatric acute respiratory distress syndrome who had data to calculate ideal body weight were included. Two cutoff points for low-tidal volume ventilation were assessed: less than or equal to 6.5 mL/kg of ideal body weight and less than or equal to 8 mL/kg of ideal body weight. Of 555 patients, we excluded 240 for other respiratory support modes or missing data. The remaining 315 patients had a median PaO2-to-FIO2 ratio of 140 (interquartile range, 90-201), and there were no differences in demographics between those who did and did not receive low-tidal volume ventilation. With tidal volume cutoff of less than or equal to 6.5 mL/kg of ideal body weight, the adherence rate was 32% at hour 0 and 33% at hour 24. A low-tidal volume ventilation cutoff of tidal volume less than or equal to 8 mL/kg of ideal body weight resulted in an adherence rate of 58% at hour 0 and 60% at hour 24. Low-tidal volume ventilation use was no different by severity of pediatric acute respiratory distress syndrome nor did adherence improve over time. At hour 0, overweight children were less likely to receive low-tidal volume ventilation less than or equal to 6.5 mL/kg ideal body weight (11% overweight vs 38% nonoverweight; p = 0.02); no difference was noted by hour 24. Furthermore, in the overweight group, using admission weight instead of ideal body weight resulted in misclassification of up to 14% of patients as receiving low-tidal volume ventilation when they actually were not. Low-tidal volume ventilation is underused in the first 24 hours of pediatric acute respiratory distress syndrome. Age, Pediatric Risk of Mortality-III, and pediatric acute respiratory distress syndrome severity were not associated with improved low-tidal volume ventilation adherence nor did adherence improve over time. Overweight children were less likely to receive low-tidal volume ventilation strategies in the first day of illness.
NASA Astrophysics Data System (ADS)
Thiébaut, Maxime; Sentchev, Alexei
2015-04-01
We use the current velocity time series recorded by High Frequency Radars (HFR) to study circulation in highly energetic tidal basin - the Iroise sea. We focus on the analysis of tidal current pattern around the Ushant Island which is a promising site of tidal energy. The analysis reveals surface current speeds reaching 4 m/s in the North of Ushant Island and in the Fromveur Strait. In these regions 1 m/s is exceeded 60% of time and up to 70% of time in center of Fromveur. This velocity value is particularly interesting because it represents the cut-in-speed of the most of marine turbine devices. Tidal current asymmetry is not always considered in tidal energy site selection. However, this quantity plays an important role in the quantification of hydrokinetic resources. Current velocity times series recorded by HFR highlights the existence of a pronounced asymmetry in current magnitude between the flood and ebb tide ranging from -0.5 to more 2.5. Power output of free-stream devices depends to velocity cubed. Thus a small current asymmetry can generate a significant power output asymmetry. Spatial distribution of asymmetry coefficient shows persistent pattern and fine scale structure which were quantified with high degree of accuracy. The particular asymmetry evolution on both side of Fromveur strait is related to the spatial distribution of the phase lag of the principal semi-diurnal tidal constituent M2 and its higher order harmonics. In Fromveur, the asymmetry is reinforced due to the high velocity magnitude of the sixth-diurnal tidal harmonics. HF radar provides surface velocity speed, however the quantification of hydrokinetic resources has to take into account the decreasing of velocity with depth. In order to highlight this phenomenon, we plot several velocity profiles given by an ADCP which was installed in the HFR study area during the same period. The mean velocity in the water column calculated by using the ADCP data show that it is about 80% of the surface current speed. We consider this value in our calculation of power to make the power estimation of marine turbine devices more realistic. Finally, we demonstrate that in the region of opposing flood-versus ebb-dominated asymmetry occurring over limited spatial scale, it is possible to aggregated free-stream devices to provide balanced power generation over the tidal cycle. Keywords : Tidal circulation, current asymmetry, tidal energy, HF radar, Iroise Sea.
Tidal Interaction among Red Giants Close Binary Systems in APOGEE Database
NASA Astrophysics Data System (ADS)
Sun, Meng; Arras, Phil; Majewski, Steven R.; Troup, Nicholas William; Weinberg, Nevin N.
2017-01-01
Motivated by the newly discovered close binary systems in the Apache Point Observatory Galactic Evolution Experiment (APOGEE-1), the tidal evolution of binaries containing a red giant branch (RGB) star with a stellar or substellar companion was investigated. The tide raised by the companion in the RGB star leads to exchange of angular momentum between the orbit and the stellar spin, causing the orbit to contract. The tidal dissipation rate is computed using turbulent viscosity acting on the equilibrium tidal flow, where careful attention is paid to the effects of reduced viscosity for close-in companions. Evolutionary models for the RGB stars, from the zero-age main sequence to the present, were acquired from the MESA code. "Standard" turbulent viscosity gives rise to such a large orbital decay that many observed systems have decay times much shorter than the RGB evolution time. Several theories for "reduced" turbulent viscosity are investigated, and reduce the number of systems with uncomfortably short decay times.
Measurements of Turbulence at Two Tidal Energy Sites in Puget Sound, WA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomson, Jim; Polagye, Brian; Durgesh, Vibhav
2012-06-05
Field measurements of turbulence are pre- sented from two sites in Puget Sound, WA (USA) that are proposed for electrical power generation using tidal current turbines. Rapidly sampled data from multiple acoustic Doppler instruments are analyzed to obtain statistical mea- sures of fluctuations in both the magnitude and direction of the tidal currents. The resulting turbulence intensities (i.e., the turbulent velocity fluctuations normalized by the harmonic tidal currents) are typically 10% at the hub- heights (i.e., the relevant depth bin) of the proposed turbines. Length and time scales of the turbulence are also analyzed. Large-scale, anisotropic eddies dominate the energymore » spectra, which may be the result of proximity to headlands at each site. At small scales, an isotropic turbulent cascade is observed and used to estimate the dissipation rate of turbulent kinetic energy. Data quality and sampling parameters are discussed, with an emphasis on the removal of Doppler noise from turbulence statistics.« less
The orbital thermal evolution and global expansion of Ganymede
NASA Astrophysics Data System (ADS)
Bland, Michael T.; Showman, Adam P.; Tobie, Gabriel
2009-03-01
The tectonically and cryovolcanically resurfaced terrains of Ganymede attest to the satellite's turbulent geologic history. Yet, the ultimate cause of its geologic violence remains unknown. One plausible scenario suggests that the Galilean satellites passed through one or more Laplace-like resonances before evolving into the current Laplace resonance. Passage through such a resonance can excite Ganymede's eccentricity, leading to tidal dissipation within the ice shell. To evaluate the effects of resonance passage on Ganymede's thermal history we model the coupled orbital-thermal evolution of Ganymede both with and without passage through a Laplace-like resonance. In the absence of tidal dissipation, radiogenic heating alone is capable of creating large internal oceans within Ganymede if the ice grain size is 1 mm or greater. For larger grain sizes, oceans will exist into the present epoch. The inclusion of tidal dissipation significantly alters Ganymede's thermal history, and for some parameters (e.g. ice grain size, tidal Q of Jupiter) a thin ice shell (5 to 20 km) can be maintained throughout the period of resonance passage. The pulse of tidal heating that accompanies Laplace-like resonance capture can cause up to 2.5% volumetric expansion of the satellite and contemporaneous formation of near surface partial melt. The presence of a thin ice shell and high satellite orbital eccentricity would generate moderate diurnal tidal stresses in Ganymede's ice shell. Larger stresses result if the ice shell rotates non-synchronously. The combined effects of satellite expansion, its associated tensile stress, rapid formation of near surface partial melt, and tidal stress due to an eccentric orbit may be responsible for creating Ganymede's unique surface features.
The role of bank collapse on tidal creek ontogeny: A novel process-based model for bank retreat
NASA Astrophysics Data System (ADS)
Gong, Zheng; Zhao, Kun; Zhang, Changkuan; Dai, Weiqi; Coco, Giovanni; Zhou, Zeng
2018-06-01
Bank retreat in coastal tidal flats plays a primary role on the planimetric shape of tidal creeks and is commonly driven by both flow-induced bank erosion and gravity-induced bank collapse. However, existing modelling studies largely focus on bank erosion and overlook bank collapse. We build a bank retreat model coupling hydrodynamics, bank erosion and bank collapse. To simulate the process of bank collapse, a stress-deformation model is utilized to calculate the stress variation of bank soil after bank erosion, and the Mohr-Coulomb failure criterion is then applied to evaluate the stability of the tidal creek bank. Results show that the bank failure process can be categorized into three stages, i.e., shear failure at the bank toe (stage I), tensile failure on the bank top (stage II), and sectional cracking from the bank top to the toe (stage III). With only bank erosion, the planimetric shapes of tidal creeks are funneled due to the gradually seaward increasing discharge. In contrast to bank erosion, bank collapse is discontinuous, and the contribution of bank collapse to bank retreat can reach 85%, highlighting that the expansion of tidal creeks can be dominated by bank collapse process. The planimetric shapes of tidal creeks are funneled with a much faster expansion rate when bank collapse is considered. Overall, this study makes a further step toward more physical and realistic simulation of bank retreat in estuarine and coastal settings and the developed bank collapse module can be readily included in other morphodynamic models.
Modeling the Structure and Dynamics of Dwarf Spheroidal Galaxies with Dark Matter and Tides
NASA Astrophysics Data System (ADS)
Muñoz, Ricardo R.; Majewski, Steven R.; Johnston, Kathryn V.
2008-05-01
We report the results of N-body simulations of disrupting satellites aimed at exploring whether the observed features of dSphs can be accounted for with simple, mass-follows-light (MFL) models including tidal disruption. As a test case, we focus on the Carina dwarf spheroidal (dSph), which presently is the dSph system with the most extensive data at large radius. We find that previous N-body, MFL simulations of dSphs did not sufficiently explore the parameter space of satellite mass, density, and orbital shape to find adequate matches to Galactic dSph systems, whereas with a systematic survey of parameter space we are able to find tidally disrupting, MFL satellite models that rather faithfully reproduce Carina's velocity profile, velocity dispersion profile, and projected density distribution over its entire sampled radius. The successful MFL model satellites have very eccentric orbits, currently favored by CDM models, and central velocity dispersions that still yield an accurate representation of the bound mass and observed central M/L ~ 40 of Carina, despite inflation of the velocity dispersion outside the dSph core by unbound debris. Our survey of parameter space also allows us to address a number of commonly held misperceptions of tidal disruption and its observable effects on dSph structure and dynamics. The simulations suggest that even modest tidal disruption can have a profound effect on the observed dynamics of dSph stars at large radii. Satellites that are well described by tidally disrupting MFL models could still be fully compatible with ΛCDM if, for example, they represent a later stage in the evolution of luminous subhalos.
Reproductive cycles in tropical intertidal gastropods are timed around tidal amplitude cycles.
Collin, Rachel; Kerr, Kecia; Contolini, Gina; Ochoa, Isis
2017-08-01
Reproduction in iteroparous marine organisms is often timed with abiotic cycles and may follow lunar, tidal amplitude, or daily cycles. Among intertidal marine invertebrates, decapods are well known to time larval release to coincide with large amplitude nighttime tides, which minimizes the risk of predation. Such bimonthly cycles have been reported for few other intertidal invertebrates. We documented the reproduction of 6 gastropod species from Panama to determine whether they demonstrate reproductive cycles, whether these cycles follow a 2-week cycle, and whether cycles are timed so that larval release occurs during large amplitude tides. Two of the species ( Crepidula cf. marginalis and Nerita scabricosta ) showed nonuniform reproduction, but without clear peaks in timing relative to tidal or lunar cycles. The other 4 species show clear peaks in reproduction occurring every 2 weeks. In 3 of these species ( Cerithideopsis carlifornica var. valida, Littoraria variegata , and Natica chemnitzi ), hatching occurred within 4 days of the maximum amplitude tides. Siphonaria palmata exhibit strong cycles, but reproduction occurred during the neap tides. Strong differences in the intensity of reproduction of Cerithideopsis carlifornica , and in particular, Littoraria variegata , between the larger and smaller spring tides of a lunar month indicate that these species time reproduction with the tidal amplitude cycle rather than the lunar cycle. For those species that reproduce during both the wet and dry seasons, we found that reproductive timing did not differ between seasons despite strong differences in temperature and precipitation. Overall, we found that most (4/6) species have strong reproductive cycles synchronized with the tidal amplitude cycle and that seasonal differences in abiotic factors do not alter these cycles.
Tidal fluxes of mercury and methylmercury for Mendall Marsh, Penobscot River estuary, Maine.
Turner, R R; Mitchell, C P J; Kopec, A D; Bodaly, R A
2018-05-08
Tidal marshes are both important sites of in situ methylmercury production and can be landscape sources of methylmercury to adjacent estuarine systems. As part of a regional investigation of the Hg-contaminated Penobscot River and Bay system, the tidal fluxes of total suspended solids, total mercury and methylmercury into and out of a regionally important mesohaline fluvial marsh complex, Mendall Marsh, were intensively measured over several tidal cycles and at two spatial scales to assess the source-sink function of the marsh with respect to the Penobscot River. Over four tidal cycles on the South Marsh River, the main channel through which water enters and exits Mendall Marsh, the marsh was a consistent sink over typical 12-h tidal cycles for total suspended solids (8.2 to 41 g m -2 ), total Hg (9.2 to 47 μg m -2 ), total filter-passing Hg (0.4 to 1.1 μg m -2 ), and total methylmercury (0.2 to 1.4 μg m -2 ). The marsh's source-sink function was variable for filter-passing methylmercury, acting as a net source during a large spring tide that inundated much of the marsh area and that is likely to occur during approximately 17% of tidal cycles. Additional measurements on a small tidal channel draining approximately 1% of the larger marsh area supported findings at the larger scale, but differences in the flux magnitude of filter-passing fractions suggest a highly non-conservative transport of these fractions through the tidal channels. Overall the results of this investigation demonstrate that Mendall Marsh is not a significant source of mercury or methylmercury to the receiving aquatic systems (Penobscot River and Bay). While there is evidence of a small net export of filter-passing (<0.4 μm pore size) methylmercury under some tidal conditions, the mass involved represents <3% of the mass of filter-passing methylmercury carried by the Penobscot River. Copyright © 2018. Published by Elsevier B.V.
North American tidal power prospects
NASA Astrophysics Data System (ADS)
Wayne, W. W., Jr.
1981-07-01
Prospects for North American tidal power electrical generation are reviewed. Studies by the US Army Corps of Engineers of 90 possible generation schemes in Cobscook Bay, ME, indicated that maximum power generation rather than dependable capacity was the most economic method. Construction cost estimates for 15 MW bulb units in a single effect mode from basin to the sea are provided; five projects were considered ranging from 110-160 MW. Additional tidal power installations are examined for: Half-Moon Cove, ME (12 MW, 18 ft tide); Cook Inlet, AK, which is shown to pose severe environmental and engineering problems due to fish migration, earthquake hazards, and 300 ft deep silt deposits; and the Bay of Fundy, Canada. This last has a 17.8 MW plant under construction in a 29 ft maximum tide area. Other tidal projects of the Maritime Provinces are reviewed, and it is noted that previous economic evaluations based on an oil price of $16/barrel are in need of revision.
Formation of massive black holes in galactic nuclei: runaway tidal encounters
NASA Astrophysics Data System (ADS)
Stone, Nicholas C.; Küpper, Andreas H. W.; Ostriker, Jeremiah P.
2017-06-01
Nuclear star clusters (NSCs) and supermassive black holes (SMBHs) both inhabit galactic nuclei, coexisting in a range of bulge masses, but excluding each other in the largest or smallest galaxies. We propose that the transformation of NSCs into SMBHs occurs via runaway tidal captures, once NSCs exceed a certain critical central density and velocity dispersion. The bottleneck in this process is growing the first e-fold in black hole mass. The growth of a stellar mass black hole past this bottleneck occurs as tidally captured stars are consumed in repeated episodes of mass transfer at pericentre. Tidal captures may deactivate as a growth channel once the black hole mass ≳102-3 M⊙, but tidal disruption events will continue and can grow the seed SMBH to larger sizes. The runaway slows (becomes subexponential) once the seed SMBH consumes the core of its host NSC. While most of the cosmic mass density in SMBHs is ultimately produced by episodic gaseous accretion in very massive galaxies, the smallest SMBHs have probably grown from strong tidal encounters with NSC stars. SMBH seeds that grow for a time t entirely through this channel will follow simple power-law relations with the velocity dispersion, σ, of their host galaxy. In the simplest regime, it is M_\\bullet ˜ σ ^{3/2}√{M_\\star t / G} ˜ 106 M_{⊙} (σ / 50 {km s}^{-1})^{3/2}(t/10^{10} yr)^{1/2}, but the exponents and pre-factor can differ slightly depending on the details of loss cone refilling. Current tidal disruption event rates predicted from this mechanism are consistent with observations.
Sankoda, Kenshi; Nomiyama, Kei; Yonehara, Takayuki; Kuribayashi, Tomonori; Shinohara, Ryota
2012-07-01
This study investigated environmental distributions and production mechanisms of chlorinated polycyclic aromatic hydrocarbons (Cl-PAHs) in the sediments from some tidal flats located in Asia. Cl-PAHs were found in sediments taken from Arao tidal flat, Kikuchigawa River and Shirakawa River. The range of ∑Cl-PAHs was from 25.5 to 483 pg g(-1) for Kikuchigawa River and Arao tidal flat, respectively. Concentrations of PAHs and Cl-PAHs showed no significant correlations (r=0.134). This result suggests that the origins of these compounds differ. In the identified Cl-PAH isomers, the most abundant Cl-PAH isomer was 9,10-dichloroanthracene (9,10-di-Cl-ANT) in the three sites. In general, concentrations of Cl-ANTs in the coastal environment are about 3-5 orders of magnitude lower than those of anthracene (ANT). However, concentration ratios between Cl-ANTs and ANT (Cl-ANTs/ANT) in the sediments ranged from 4.1% to 24.6%. This result indicated that Cl-PAHs were not generated under industrial processes but the high concentration ratios have resulted from the contribution of photochemical production of Cl-ANTs in the sediments because ANT is known to have high photochemical reactivity. For examining this phenomenon, ANT adsorbed onto glass beads was irradiated with UV under the mimicked field conditions of tidal flats. As a result, it was noticed that, while chlorinated derivatives were negligible in a light-controlled group, production of 2-Cl-ANT, 9-Cl-ANT and 9,10-diCl-ANT on the irradiated surface were found in this study. These results suggest that photochemical reaction of PAHs can be a potential source of the occurrence of Cl-PAHs in the coastal environment. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Le Pichon, C.; Coustillas, J.; Zahm, A.; Bunel, M.; Gazeau-Nadin, C.; Rochard, E.
2017-09-01
Acoustic telemetry and GIS-based spatial analysis were used to investigate the summer habitat use and movement patterns of three fish species in the tidal freshwaters of the Seine estuary (France). Experimental displacement of tagged individuals of thin-lipped grey mullet (Liza ramada), European eel (Anguilla anguilla), and common bream (Abramis brama) were conducted to test for their spatial fidelity and home range establishment. Most tagged individuals (95%) successfully returned to their previously occupied capture site, showing spatial homing abilities. The studied upstream tidal freshwater segment of the Seine estuary was regularly used by grey mullet as a part of its larger summer home range, while European eel and common bream were resident in this segment. The fidelity of eel to small nocturnal refuges and the regular use of intertidal waterbodies at high tide by grey mullet and bream suggested that they possess a capacity of acquiring spatial memory of habitats in a fluctuating environment. Importantly, the scale of movements travelled by each species was positively related to tidal phase. Grey mullet and bream, both visual feeders, exhibited short-term tidal movements to known habitats, providing food resources and contiguous resting habitat suggesting that they have shown behavioural strategies adaptive to fluctuating environments. Eel, in contrast, was found to have a different strategy strongly related to diel dynamics: it stayed in subtidal habitats rich in refuges that remained available at low tide. The results of this study emphasize the importance of restoring intertidal waterbodies and the relevance of considering the availability of adjacent subtidal habitats providing refuge at low tides.
NASA Astrophysics Data System (ADS)
Verma, A. K.; Margot, J. L.
2015-12-01
We are conducting an independent analysis of two-way Doppler and two-way range radio tracking data from the MESSENGER spacecraft in orbit around Mercury from 2011 to 2015. Our goals are to estimate Mercury's gravity field and to obtain independent estimates of the tidal Love number k2 and spin axis orientation. Our gravity field solution reproduces existing values with high fidelity, and prospects for recovery of the other quantities are excellent. The tidal Love number k2 provides powerful constraints on interior models of Mercury, including the mechanical properties of the mantle and the possibility of a solid FeS layer at the top of the core. Current gravity analyses cannot rule out a wide range of values (k2=43-0.50) and a variety of plausible interior models. We are seeking an independent estimate of tidal Love number k2 with improved errors to further constrain these models. Existing gravity-based solutions for Mercury's spin axis orientation differ from those of Earth-based radar and topography-based solutions. This difference may indicate an error in one of the determinations, or a real difference between the orientations about which the gravity field and the crust rotate, which can exist in a variety of plausible configuration. Securing an independent estimate of the spin axis orientation is vital because this quantity has a profound impact on the determination of the moment of inertia and interior models. We have derived a spherical harmonic solution of the gravity field to degree and order 40 as well as estimates of the tidal Love number k2 and spin axis orientation.
NASA Astrophysics Data System (ADS)
Verma, Ashok Kumar; Margot, Jean-Luc
2015-11-01
We are conducting an independent analysis of two-way Doppler and two-way range radio tracking data from the MESSENGER spacecraft in orbit around Mercury from 2011 to 2015. Our goals are to estimate Mercury’s gravity field and to obtain independent estimates of the tidal Love number k2 and spin axis orientation. Our gravity field solution reproduces existing values with high fidelity, and prospects for recovery of the other quantities are excellent.The tidal Love number k2 provides powerful constraints on interior models of Mercury, including the mechanical properties of the mantle and the possibility of a solid FeS layer at the top of the core. Current gravity analyses cannot rule out a wide range of values (k2=43-0.50) and a variety of plausible interior models. We are seeking an independent estimate of tidal Love number k2 with improved errors to further constrain these models.Existing gravity-based solutions for Mercury's spin axis orientation differ from those of Earth-based radar and topography-based solutions. This difference may indicate an error in one of the determinations, or a real difference between the orientations about which the gravity field and the crust rotate, which can exist in a variety of plausible configuration. Securing an independent estimate of the spin axis orientation is vital because this quantity has a profound impact on the determination of the moment of inertia and interior models.We have derived a spherical harmonic solution of the gravity field to degree and order 40 as well as estimates of the tidal Love number k2 and spin axis orientation
Sea, soil, sky - Testing solar's limits
NASA Astrophysics Data System (ADS)
Hopkinson, J.
1981-12-01
The potentials and actualities of large scale biomass, ocean thermal, and satellite solar power systems are discussed. Biomass is an energy already on-line in installations ranging from home-sized wood-burning stoves to utility sized generators fueled by sawdust and forest residue. Uses of wheat straw, fast-growing trees such as eucalyptus and alder, and euphorbia as biofuels are examined, noting restrictions imposed by land use limitations and the necessity for genetic engineering for more suitable plants. Pyrolysis and thermochemical gasification of biomass to form gaseous, solid, and liquid fuels are explored, and mention is made of utility refuse and sewage incineration for power generation. OTEC, satellite solar power systems, and tidal generator plants are considered as promising for further investigation and perhaps useful in limited applications, while solar pond power plants require extremely large areas to be effective.
NASA Astrophysics Data System (ADS)
Morley, M. G.; Mihaly, S. F.; Dewey, R. K.; Jeffries, M. A.
2015-12-01
Ocean Networks Canada (ONC) operates the NEPTUNE and VENUS cabled ocean observatories to collect data on physical, chemical, biological, and geological ocean conditions over multi-year time periods. Researchers can download real-time and historical data from a large variety of instruments to study complex earth and ocean processes from their home laboratories. Ensuring that the users are receiving the most accurate data is a high priority at ONC, requiring quality assurance and quality control (QAQC) procedures to be developed for all data types. While some data types have relatively straightforward QAQC tests, such as scalar data range limits that are based on expected observed values or measurement limits of the instrument, for other data types the QAQC tests are more comprehensive. Long time series of ocean currents from Acoustic Doppler Current Profilers (ADCP), stitched together from multiple deployments over many years is one such data type where systematic data biases are more difficult to identify and correct. Data specialists at ONC are working to quantify systematic compass heading uncertainty in long-term ADCP records at each of the major study sites using the internal compass, remotely operated vehicle bearings, and more analytical tools such as principal component analysis (PCA) to estimate the optimal instrument alignments. In addition to using PCA, some work has been done to estimate the main components of the current at each site using tidal harmonic analysis. This paper describes the key challenges and presents preliminary PCA and tidal analysis approaches used by ONC to improve long-term observatory current measurements.
Modern sedimentary environments in Boston Harbor, Massachusetts
Knebel, H.J.; Rendigs, R. R.; Bothner, Michael H.
1991-01-01
Analyses of sidescan-sonar records supplemented by available bathymetric, sedimentary, subbottom, and bottom-current data reveal the distributions of the following three categories of sedimentary environments within the glaciated, topographically complex Boston Harbor estuary in Massachusetts. 1) Environments of erosion appear on the sonographs either as patterns with isolated strong reflections or as uniform patterns of strong reflectivity. These patterns define outcrops of bedrock or till and coarse lag deposits that are being scoured and winnowed by tidal- and wave-induced currents. Erosional areas are located primarily along mainland and insular shores, within large channels that have strong tidal currents, atop submerged ridges and knolls, and across much of the harbor entrance. 2) Environments of deposition are depicted on the sidescan-sonar records as smooth, featureless surfaces that have low to moderate reflectivity. Depositional environments are found predominantly over shallow subtidal flats and in broad bathymetric lows where tidal currents are weak. Sediments within depositional areas are organic-rich sandy and clayey silts that are accumulating at rates ranging from 0.01 to 0.11 g/cm 2 /yr or 4000 to 46,100 metric tons/yr. The cumulative mass of modern mud in harbor depocenters is 24.3 million metric tons. 3) Environments of sediment reworking constitute areas affected by a combination of erosional and depositional processes. They are characterized on the sonographs by mosaics of light and dark patches produced by relatively subtle and gradational changes in reflectivity. Reworked sediments have diverse grain sizes that overlap and are transitional between those of the other two sedimentary environments, and they are indicative of highly variable bottom currents.
NASA Astrophysics Data System (ADS)
Garner, A. J.; Mann, M. E.; Emanuel, K.; Kopp, R. E.; Lin, N.; Alley, R. B.; Horton, B.; Deconto, R. M.; Donnelly, J. P.; Pollard, D.
2017-12-01
The flood hazard in New York City depends on both storm surges and rising sea levels. We combine modeled storm surges with probabilistic sea-level rise projections to assess future coastal inundation in New York City from the pre-industrial through 2300 CE. The storm surges are derived from large sets of synthetic tropical cyclones, downscaled from RCP 8.5 runs of three CMIP5 models. The sea-level rise projections include the collapse of the Antarctic ice sheet to assess future coastal inundation. CMIP5 models indicate that there will be minimal change in storm-surge heights from 2010 to 2100 or 2300, because the predicted strengthening of the strongest storms will be compensated by storm tracks moving offshore at the latitude of New York City. However, projected sea-level rise causes overall flood heights associated with tropical cyclones in New York City in coming centuries to increase greatly compared to pre-industrial or modern flood heights. We find that the 1-in-500-year flood event increases from 3.4 m above mean tidal level during 1970-2005 to 3.9 - 4.8 m above mean tidal level by 2080-2100, and ranges from 2.8 - 13.0 m above mean tidal level by 2280-2300. Further, we find that the return period of a 2.25 m flood has decreased from 500 years prior to 1800 to 25 years during 1970-2005, and further decreases to 5 years by 2030 - 2045 in 95% of our simulations.
Frontal dynamics at the edge of the Columbia River plume
NASA Astrophysics Data System (ADS)
Akan, Çiğdem; McWilliams, James C.; Moghimi, Saeed; Özkan-Haller, H. Tuba
2018-02-01
In the tidal ebb-cycle at the Mouth of the Columbia River, strong density and velocity fronts sometimes form perpendicular to the coast at the edges of the freshwater plume. They are distinct from previously analyzed fronts at the offshore western edge of the plume that evolve as a gravity-wave bore. We present simulation results to demonstrate their occurrence and investigate the mechanisms behind their frontogenesis and evolution. Tidal velocities on average ranged between 1.5 m s-1 in flood and 2.5 m s-1 in ebb during the brief hindcast period. The tidal fronts exhibit strong horizontal velocity and buoyancy gradients on a scale ∼ 100 m in width with normalized relative vorticity (ζz/f) values reaching up to 50. We specifically focus on the front on the northern edge of the plume and examine the evolution in plume characteristics such as its water mass gradients, horizontal and vertical velocity structure, vertical velocity, turbulent vertical mixing, horizontal propagation, cross-front momentum balance, and Lagrangian frontogenetic tendencies in both buoyancy and velocity gradients. Advective frontogenesis leads to a very sharp front where lateral mixing near the grid-resolution limit arrests its further contraction. The negative vorticity within the front is initiated by the positive bottom drag curl on the north side of the Columbia estuary and against the north jetty. Because of the large negative vorticity and horizontal vorticity gradient, centrifugal and lateral shear instability begins to develop along the front, but frontal fragmentation and decay set in only after the turn of the tide because of the briefness of the ebb interval.