Sample records for large time delay

  1. CAN LARGE TIME DELAYS OBSERVED IN LIGHT CURVES OF CORONAL LOOPS BE EXPLAINED IN IMPULSIVE HEATING?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lionello, Roberto; Linker, Jon A.; Mikić, Zoran

    The light curves of solar coronal loops often peak first in channels associated with higher temperatures and then in those associated with lower temperatures. The delay times between the different narrowband EUV channels have been measured for many individual loops and recently for every pixel of an active region observation. The time delays between channels for an active region exhibit a wide range of values. The maximum time delay in each channel pair can be quite large, i.e., >5000 s. These large time delays make-up 3%–26% (depending on the channel pair) of the pixels where a trustworthy, positive time delaymore » is measured. It has been suggested that these time delays can be explained by simple impulsive heating, i.e., a short burst of energy that heats the plasma to a high temperature, after which the plasma is allowed to cool through radiation and conduction back to its original state. In this paper, we investigate whether the largest observed time delays can be explained by this hypothesis by simulating a series of coronal loops with different heating rates, loop lengths, abundances, and geometries to determine the range of expected time delays between a set of four EUV channels. We find that impulsive heating cannot address the largest time delays observed in two of the channel pairs and that the majority of the large time delays can only be explained by long, expanding loops with photospheric abundances. Additional observations may rule out these simulations as an explanation for the long time delays. We suggest that either the time delays found in this manner may not be representative of real loop evolution, or that the impulsive heating and cooling scenario may be too simple to explain the observations, and other potential heating scenarios must be explored.« less

  2. Synchronization in a chaotic neural network with time delay depending on the spatial distance between neurons

    NASA Astrophysics Data System (ADS)

    Tang, Guoning; Xu, Kesheng; Jiang, Luoluo

    2011-10-01

    The synchronization is investigated in a two-dimensional Hindmarsh-Rose neuronal network by introducing a global coupling scheme with time delay, where the length of time delay is proportional to the spatial distance between neurons. We find that the time delay always disturbs synchronization of the neuronal network. When both the coupling strength and length of time delay per unit distance (i.e., enlargement factor) are large enough, the time delay induces the abnormal membrane potential oscillations in neurons. Specifically, the abnormal membrane potential oscillations for the symmetrically placed neurons form an antiphase, so that the large coupling strength and enlargement factor lead to the desynchronization of the neuronal network. The complete and intermittently complete synchronization of the neuronal network are observed for the right choice of parameters. The physical mechanism underlying these phenomena is analyzed.

  3. Wigner time-delay distribution in chaotic cavities and freezing transition.

    PubMed

    Texier, Christophe; Majumdar, Satya N

    2013-06-21

    Using the joint distribution for proper time delays of a chaotic cavity derived by Brouwer, Frahm, and Beenakker [Phys. Rev. Lett. 78, 4737 (1997)], we obtain, in the limit of the large number of channels N, the large deviation function for the distribution of the Wigner time delay (the sum of proper times) by a Coulomb gas method. We show that the existence of a power law tail originates from narrow resonance contributions, related to a (second order) freezing transition in the Coulomb gas.

  4. Delay effects in the human sensory system during balancing.

    PubMed

    Stepan, Gabor

    2009-03-28

    Mechanical models of human self-balancing often use the Newtonian equations of inverted pendula. While these mathematical models are precise enough on the mechanical side, the ways humans balance themselves are still quite unexplored on the control side. Time delays in the sensory and motoric neural pathways give essential limitations to the stabilization of the human body as a multiple inverted pendulum. The sensory systems supporting each other provide the necessary signals for these control tasks; but the more complicated the system is, the larger delay is introduced. Human ageing as well as our actual physical and mental state affects the time delays in the neural system, and the mechanical structure of the human body also changes in a large range during our lives. The human balancing organ, the labyrinth, and the vision system essentially adapted to these relatively large time delays and parameter regions occurring during balancing. The analytical study of the simplified large-scale time-delayed models of balancing provides a Newtonian insight into the functioning of these organs that may also serve as a basis to support theories and hypotheses on balancing and vision.

  5. Experiments with arbitrary networks in time-multiplexed delay systems

    NASA Astrophysics Data System (ADS)

    Hart, Joseph D.; Schmadel, Don C.; Murphy, Thomas E.; Roy, Rajarshi

    2017-12-01

    We report a new experimental approach using an optoelectronic feedback loop to investigate the dynamics of oscillators coupled on large complex networks with arbitrary topology. Our implementation is based on a single optoelectronic feedback loop with time delays. We use the space-time interpretation of systems with time delay to create large networks of coupled maps. Others have performed similar experiments using high-pass filters to implement the coupling; this restricts the network topology to the coupling of only a few nearest neighbors. In our experiment, the time delays and coupling are implemented on a field-programmable gate array, allowing the creation of networks with arbitrary coupling topology. This system has many advantages: the network nodes are truly identical, the network is easily reconfigurable, and the network dynamics occur at high speeds. We use this system to study cluster synchronization and chimera states in both small and large networks of different topologies.

  6. Crash testing difference-smoothing algorithm on a large sample of simulated light curves from TDC1

    NASA Astrophysics Data System (ADS)

    Rathna Kumar, S.

    2017-09-01

    In this work, we propose refinements to the difference-smoothing algorithm for the measurement of time delay from the light curves of the images of a gravitationally lensed quasar. The refinements mainly consist of a more pragmatic approach to choose the smoothing time-scale free parameter, generation of more realistic synthetic light curves for the estimation of time delay uncertainty and using a plot of normalized χ2 computed over a wide range of trial time delay values to assess the reliability of a measured time delay and also for identifying instances of catastrophic failure. We rigorously tested the difference-smoothing algorithm on a large sample of more than thousand pairs of simulated light curves having known true time delays between them from the two most difficult 'rungs' - rung3 and rung4 - of the first edition of Strong Lens Time Delay Challenge (TDC1) and found an inherent tendency of the algorithm to measure the magnitude of time delay to be higher than the true value of time delay. However, we find that this systematic bias is eliminated by applying a correction to each measured time delay according to the magnitude and sign of the systematic error inferred by applying the time delay estimator on synthetic light curves simulating the measured time delay. Following these refinements, the TDC performance metrics for the difference-smoothing algorithm are found to be competitive with those of the best performing submissions of TDC1 for both the tested 'rungs'. The MATLAB codes used in this work and the detailed results are made publicly available.

  7. Time delay in Swiss cheese gravitational lensing

    NASA Astrophysics Data System (ADS)

    Chen, B.; Kantowski, R.; Dai, X.

    2010-08-01

    We compute time delays for gravitational lensing in a flat Λ dominated cold dark matter Swiss cheese universe. We assume a primary and secondary pair of light rays are deflected by a single point mass condensation described by a Kottler metric (Schwarzschild with Λ) embedded in an otherwise homogeneous cosmology. We find that the cosmological constant’s effect on the difference in arrival times is nonlinear and at most around 0.002% for a large cluster lens; however, we find differences from time delays predicted by conventional linear lensing theory that can reach ˜4% for these large lenses. The differences in predicted delay times are due to the failure of conventional lensing to incorporate the lensing mass into the mean mass density of the universe.

  8. Effect of metrology time delay on overlay APC

    NASA Astrophysics Data System (ADS)

    Carlson, Alan; DiBiase, Debra

    2002-07-01

    The run-to-run control strategy of lithography APC is primarily composed of a feedback loop as shown in the diagram below. It is known that the insertion of a time delay in a feedback loop can cause degradation in control performance and could even cause a stable system to become unstable, if the time delay becomes sufficiently large. Many proponents of integrated metrology methods have cited the damage caused by metrology time delays as the primary justification for moving from a stand-alone to integrated metrology. While there is little dispute over the qualitative form of this argument, there has been very light published about the quantitative effects under real fab conditions - precisely how much control is lost due to these time delays. Another issue regarding time delays is that the length of these delays is not typically fixed - they vary from lot to lot and in some cases this variance can be large - from one hour on the short side to over 32 hours on the long side. Concern has been expressed that the variability in metrology time delays can cause undesirable dynamics in feedback loops that make it difficult to optimize feedback filters and gains and at worst could drive a system unstable. By using data from numerous fabs, spanning many sizes and styles of operation, we have conducted a quantitative study of the time delay effect on overlay run- to-run control. Our analysis resulted in the following conclusions: (1) There is a significant and material relationship between metrology time delay and overlay control under a variety of real world production conditions. (2) The run-to-run controller can be configured to minimize sensitivity to time delay variations. (3) The value of moving to integrated metrology can be quantified.

  9. Analyzing Double Delays at Newark Liberty International Airport

    NASA Technical Reports Server (NTRS)

    Evans, Antony D.; Lee, Paul

    2016-01-01

    When weather or congestion impacts the National Airspace System, multiple different Traffic Management Initiatives can be implemented, sometimes with unintended consequences. One particular inefficiency that is commonly identified is in the interaction between Ground Delay Programs (GDPs) and time based metering of internal departures, or TMA scheduling. Internal departures under TMA scheduling can take large GDP delays, followed by large TMA scheduling delays, because they cannot be easily fitted into the overhead stream. In this paper we examine the causes of these double delays through an analysis of arrival operations at Newark Liberty International Airport (EWR) from June to August 2010. Depending on how the double delay is defined between 0.3 percent and 0.8 percent of arrivals at EWR experienced double delays in this period. However, this represents between 21 percent and 62 percent of all internal departures in GDP and TMA scheduling. A deep dive into the data reveals that two causes of high internal departure scheduling delays are upstream flights making up time between their estimated departure clearance times (EDCTs) and entry into time based metering, which undermines the sequencing and spacing underlying the flight EDCTs, and high demand on TMA, when TMA airborne metering delays are high. Data mining methods (currently) including logistic regression, support vector machines and K-nearest neighbors are used to predict the occurrence of double delays and high internal departure scheduling delays with accuracies up to 0.68. So far, key indicators of double delay and high internal departure scheduling delay are TMA virtual runway queue size, and the degree to which estimated runway demand based on TMA estimated times of arrival has changed relative to the estimated runway demand based on EDCTs. However, more analysis is needed to confirm this.

  10. Market-based control strategy for long-span structures considering the multi-time delay issue

    NASA Astrophysics Data System (ADS)

    Li, Hongnan; Song, Jianzhu; Li, Gang

    2017-01-01

    To solve the different time delays that exist in the control device installed on spatial structures, in this study, discrete analysis using a 2 N precise algorithm was selected to solve the multi-time-delay issue for long-span structures based on the market-based control (MBC) method. The concept of interval mixed energy was introduced from computational structural mechanics and optimal control research areas, and it translates the design of the MBC multi-time-delay controller into a solution for the segment matrix. This approach transforms the serial algorithm in time to parallel computing in space, greatly improving the solving efficiency and numerical stability. The designed controller is able to consider the issue of time delay with a linear controlling force combination and is especially effective for large time-delay conditions. A numerical example of a long-span structure was selected to demonstrate the effectiveness of the presented controller, and the time delay was found to have a significant impact on the results.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, B.; Kantowski, R.; Dai, X.

    We compute time delays for gravitational lensing in a flat {Lambda} dominated cold dark matter Swiss cheese universe. We assume a primary and secondary pair of light rays are deflected by a single point mass condensation described by a Kottler metric (Schwarzschild with {Lambda}) embedded in an otherwise homogeneous cosmology. We find that the cosmological constant's effect on the difference in arrival times is nonlinear and at most around 0.002% for a large cluster lens; however, we find differences from time delays predicted by conventional linear lensing theory that can reach {approx}4% for these large lenses. The differences in predictedmore » delay times are due to the failure of conventional lensing to incorporate the lensing mass into the mean mass density of the universe.« less

  12. Note: Large active area solid state photon counter with 20 ps timing resolution and 60 fs detection delay stability

    NASA Astrophysics Data System (ADS)

    Prochazka, Ivan; Kodet, Jan; Eckl, Johann; Blazej, Josef

    2017-10-01

    We are reporting on the design, construction, and performance of a photon counting detector system, which is based on single photon avalanche diode detector technology. This photon counting device has been optimized for very high timing resolution and stability of its detection delay. The foreseen application of this detector is laser ranging of space objects, laser time transfer ground to space and fundamental metrology. The single photon avalanche diode structure, manufactured on silicon using K14 technology, is used as a sensor. The active area of the sensor is circular with 200 μm diameter. Its photon detection probability exceeds 40% in the wavelength range spanning from 500 to 800 nm. The sensor is operated in active quenching and gating mode. A new control circuit was optimized to maintain high timing resolution and detection delay stability. In connection to this circuit, timing resolution of the detector is reaching 20 ps FWHM. In addition, the temperature change of the detection delay is as low as 70 fs/K. As a result, the detection delay stability of the device is exceptional: expressed in the form of time deviation, detection delay stability of better than 60 fs has been achieved. Considering the large active area aperture of the detector, this is, to our knowledge, the best timing performance reported for a solid state photon counting detector so far.

  13. Time delay and long-range connection induced synchronization transitions in Newman-Watts small-world neuronal networks.

    PubMed

    Qian, Yu

    2014-01-01

    The synchronization transitions in Newman-Watts small-world neuronal networks (SWNNs) induced by time delay τ and long-range connection (LRC) probability P have been investigated by synchronization parameter and space-time plots. Four distinct parameter regions, that is, asynchronous region, transition region, synchronous region, and oscillatory region have been discovered at certain LRC probability P = 1.0 as time delay is increased. Interestingly, desynchronization is observed in oscillatory region. More importantly, we consider the spatiotemporal patterns obtained in delayed Newman-Watts SWNNs are the competition results between long-range drivings (LRDs) and neighboring interactions. In addition, for moderate time delay, the synchronization of neuronal network can be enhanced remarkably by increasing LRC probability. Furthermore, lag synchronization has been found between weak synchronization and complete synchronization as LRC probability P is a little less than 1.0. Finally, the two necessary conditions, moderate time delay and large numbers of LRCs, are exposed explicitly for synchronization in delayed Newman-Watts SWNNs.

  14. Time Delay and Long-Range Connection Induced Synchronization Transitions in Newman-Watts Small-World Neuronal Networks

    PubMed Central

    Qian, Yu

    2014-01-01

    The synchronization transitions in Newman-Watts small-world neuronal networks (SWNNs) induced by time delay and long-range connection (LRC) probability have been investigated by synchronization parameter and space-time plots. Four distinct parameter regions, that is, asynchronous region, transition region, synchronous region, and oscillatory region have been discovered at certain LRC probability as time delay is increased. Interestingly, desynchronization is observed in oscillatory region. More importantly, we consider the spatiotemporal patterns obtained in delayed Newman-Watts SWNNs are the competition results between long-range drivings (LRDs) and neighboring interactions. In addition, for moderate time delay, the synchronization of neuronal network can be enhanced remarkably by increasing LRC probability. Furthermore, lag synchronization has been found between weak synchronization and complete synchronization as LRC probability is a little less than 1.0. Finally, the two necessary conditions, moderate time delay and large numbers of LRCs, are exposed explicitly for synchronization in delayed Newman-Watts SWNNs. PMID:24810595

  15. Impact of Partial Time Delay on Temporal Dynamics of Watts-Strogatz Small-World Neuronal Networks

    NASA Astrophysics Data System (ADS)

    Yan, Hao; Sun, Xiaojuan

    2017-06-01

    In this paper, we mainly discuss effects of partial time delay on temporal dynamics of Watts-Strogatz (WS) small-world neuronal networks by controlling two parameters. One is the time delay τ and the other is the probability of partial time delay pdelay. Temporal dynamics of WS small-world neuronal networks are discussed with the aid of temporal coherence and mean firing rate. With the obtained simulation results, it is revealed that for small time delay τ, the probability pdelay could weaken temporal coherence and increase mean firing rate of neuronal networks, which indicates that it could improve neuronal firings of the neuronal networks while destroying firing regularity. For large time delay τ, temporal coherence and mean firing rate do not have great changes with respect to pdelay. Time delay τ always has great influence on both temporal coherence and mean firing rate no matter what is the value of pdelay. Moreover, with the analysis of spike trains and histograms of interspike intervals of neurons inside neuronal networks, it is found that the effects of partial time delays on temporal coherence and mean firing rate could be the result of locking between the period of neuronal firing activities and the value of time delay τ. In brief, partial time delay could have great influence on temporal dynamics of the neuronal networks.

  16. Piloted simulator study of allowable time delay in pitch flight control system of a transport airplane with negative static stability

    NASA Technical Reports Server (NTRS)

    Grantham, William D.; Smith, Paul M.; Person, Lee H., Jr.; Meyer, Robert T.; Tingas, Stephen A.

    1987-01-01

    A piloted simulation study was conducted to determine the permissible time delay in the flight control system of a 10-percent statically unstable transport airplane during cruise flight conditions. The math model used for the simulation was a derivative Lockheed L-1011 wide-body jet transport. Data were collected and analyzed from a total of 137 cruising flights in both calm- and turbulent-air conditions. Results of this piloted simulation study verify previous findings that show present military specifications for allowable control-system time delay may be too stringent when applied to transport-size airplanes. Also, the degree of handling-qualities degradation due to time delay is shown to be strongly dependent on the source of the time delay in an advanced flight control system. Maximum allowable time delay for each source of time delay in the control system, in addition to a less stringent overall maximum level of time delay, should be considered for large aircraft. Preliminary results also suggest that adverse effects of control-system time delay may be at least partially offset by variations in control gearing. It is recommended that the data base include different airplane baselines, control systems, and piloting tasks with many pilots participating, so that a reasonable set of limits for control-system time delay can be established to replace the military specification limits currently being used.

  17. Stochastic parameter estimation in nonlinear time-delayed vibratory systems with distributed delay

    NASA Astrophysics Data System (ADS)

    Torkamani, Shahab; Butcher, Eric A.

    2013-07-01

    The stochastic estimation of parameters and states in linear and nonlinear time-delayed vibratory systems with distributed delay is explored. The approach consists of first employing a continuous time approximation to approximate the delayed integro-differential system with a large set of ordinary differential equations having stochastic excitations. Then the problem of state and parameter estimation in the resulting stochastic ordinary differential system is represented as an optimal filtering problem using a state augmentation technique. By adapting the extended Kalman-Bucy filter to the augmented filtering problem, the unknown parameters of the time-delayed system are estimated from noise-corrupted, possibly incomplete measurements of the states. Similarly, the upper bound of the distributed delay can also be estimated by the proposed technique. As an illustrative example to a practical problem in vibrations, the parameter, delay upper bound, and state estimation from noise-corrupted measurements in a distributed force model widely used for modeling machine tool vibrations in the turning operation is investigated.

  18. RXTE Observation of Cygnus X-1: III. Implications for Compton Corona and ADAF Models. Report 3; Implications for Compton Corona and ADAF Models

    NASA Technical Reports Server (NTRS)

    Nowak, Michael A.; Wilms, Joern; Vaughan, Brian A.; Dove, James B.; Begelman, Mitchell C.

    1999-01-01

    We have recently shown that a 'sphere + disk' geometry Compton corona model provides a good description of Rossi X-ray Timing Explorer (RXTE) observations of the hard/low state of Cygnus X-1. Separately, we have analyzed the temporal data provided by RXTE. In this paper we consider the implications of this timing analysis for our best-fit 'sphere + disk' Comptonization models. We focus our attention on the observed Fourier frequency-dependent time delays between hard and soft photons. We consider whether the observed time delays are: created in the disk but are merely reprocessed by the corona; created by differences between the hard and soft photon diffusion times in coronae with extremely large radii; or are due to 'propagation' of disturbances through the corona. We find that the time delays are most likely created directly within the corona; however, it is currently uncertain which specific model is the most likely explanation. Models that posit a large coronal radius [or equivalently, a large Advection Dominated Accretion Flow (ADAF) region] do not fully address all the details of the observed spectrum. The Compton corona models that do address the full spectrum do not contain dynamical information. We show, however, that simple phenomenological propagation models for the observed time delays for these latter models imply extremely slow characteristic propagation speeds within the coronal region.

  19. Time delayed Ensemble Nudging Method

    NASA Astrophysics Data System (ADS)

    An, Zhe; Abarbanel, Henry

    Optimal nudging method based on time delayed embedding theory has shows potentials on analyzing and data assimilation in previous literatures. To extend the application and promote the practical implementation, new nudging assimilation method based on the time delayed embedding space is presented and the connection with other standard assimilation methods are studied. Results shows the incorporating information from the time series of data can reduce the sufficient observation needed to preserve the quality of numerical prediction, making it a potential alternative in the field of data assimilation of large geophysical models.

  20. Effects of stochastic time-delayed feedback on a dynamical system modeling a chemical oscillator.

    PubMed

    González Ochoa, Héctor O; Perales, Gualberto Solís; Epstein, Irving R; Femat, Ricardo

    2018-05-01

    We examine how stochastic time-delayed negative feedback affects the dynamical behavior of a model oscillatory reaction. We apply constant and stochastic time-delayed negative feedbacks to a point Field-Körös-Noyes photosensitive oscillator and compare their effects. Negative feedback is applied in the form of simulated inhibitory electromagnetic radiation with an intensity proportional to the concentration of oxidized light-sensitive catalyst in the oscillator. We first characterize the system under nondelayed inhibitory feedback; then we explore and compare the effects of constant (deterministic) versus stochastic time-delayed feedback. We find that the oscillatory amplitude, frequency, and waveform are essentially preserved when low-dispersion stochastic delayed feedback is used, whereas small but measurable changes appear when a large dispersion is applied.

  1. Effects of stochastic time-delayed feedback on a dynamical system modeling a chemical oscillator

    NASA Astrophysics Data System (ADS)

    González Ochoa, Héctor O.; Perales, Gualberto Solís; Epstein, Irving R.; Femat, Ricardo

    2018-05-01

    We examine how stochastic time-delayed negative feedback affects the dynamical behavior of a model oscillatory reaction. We apply constant and stochastic time-delayed negative feedbacks to a point Field-Körös-Noyes photosensitive oscillator and compare their effects. Negative feedback is applied in the form of simulated inhibitory electromagnetic radiation with an intensity proportional to the concentration of oxidized light-sensitive catalyst in the oscillator. We first characterize the system under nondelayed inhibitory feedback; then we explore and compare the effects of constant (deterministic) versus stochastic time-delayed feedback. We find that the oscillatory amplitude, frequency, and waveform are essentially preserved when low-dispersion stochastic delayed feedback is used, whereas small but measurable changes appear when a large dispersion is applied.

  2. RF beam transmission of x-band PAA system utilizing large-area, polymer-based true-time-delay module developed using imprinting and inkjet printing

    NASA Astrophysics Data System (ADS)

    Pan, Zeyu; Subbaraman, Harish; Zhang, Cheng; Li, Qiaochu; Xu, Xiaochuan; Chen, Xiangning; Zhang, Xingyu; Zou, Yi; Panday, Ashwin; Guo, L. Jay; Chen, Ray T.

    2016-02-01

    Phased-array antenna (PAA) technology plays a significant role in modern day radar and communication networks. Truetime- delay (TTD) enabled beam steering networks provide several advantages over their electronic counterparts, including squint-free beam steering, low RF loss, immunity to electromagnetic interference (EMI), and large bandwidth control of PAAs. Chip-scale and integrated TTD modules promise a miniaturized, light-weight system; however, the modules are still rigid and they require complex packaging solutions. Moreover, the total achievable time delay is still restricted by the wafer size. In this work, we propose a light-weight and large-area, true-time-delay beamforming network that can be fabricated on light-weight and flexible/rigid surfaces utilizing low-cost "printing" techniques. In order to prove the feasibility of the approach, a 2-bit thermo-optic polymer TTD network is developed using a combination of imprinting and ink-jet printing. RF beam steering of a 1×4 X-band PAA up to 60° is demonstrated. The development of such active components on large area, light-weight, and low-cost substrates promises significant improvement in size, weight, and power (SWaP) requirements over the state-of-the-art.

  3. Measurements and interpretation of shock tube ignition delay times in highly CO 2 diluted mixtures using multiple diagnostics

    DOE PAGES

    Vasu, Subith S.; Pryor, Owen; Barak, Samuel; ...

    2017-03-12

    Common definitions for ignition delay time are often hard to determine due to the issue of bifurcation and other non-idealities that result from high levels of CO 2 addition. Using high-speed camera imagery in comparison with more standard methods (e.g., pressure, emission, and laser absorption spectroscopy) to measure the ignition delay time, the effect of bifurcation has been examined in this study. Experiments were performed at pressures between 0.6 and 1.2 atm for temperatures between 1650 and 2040 K. The equivalence ratio for all experiments was kept at a constant value of 1 with methane as the fuel. The COmore » 2 mole fraction was varied between a value of X CO2 = 0.00 to 0.895. The ignition delay time was determined from three different measurements at the sidewall: broadband chemiluminescent emission captured via a photodetector, CH 4 concentrations determined using a distributed feedback interband cascade laser centered at 3403.4 nm, and pressure recorded via a dynamic Kistler type transducer. All methods for the ignition delay time were compared to high-speed camera images taken of the axial cross-section during combustion. Methane time-histories and the methane decay times were also measured using the laser. It was determined that the flame could be correlated to the ignition delay time measured at the side wall but that the flame as captured by the camera was not homogeneous as assumed in typical shock tube experiments. The bifurcation of the shock wave resulted in smaller flames with large boundary layers and that the flame could be as small as 30% of the cross-sectional area of the shock tube at the highest levels of CO 2 dilution. Here, comparisons between the camera images and the different ignition delay time methods show that care must be taken in interpreting traditional ignition delay data for experiments with large bifurcation effects as different methods in measuring the ignition delay time could result in different interpretations of kinetic mechanisms and impede the development of future mechanisms.« less

  4. Measurements and interpretation of shock tube ignition delay times in highly CO 2 diluted mixtures using multiple diagnostics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vasu, Subith S.; Pryor, Owen; Barak, Samuel

    Common definitions for ignition delay time are often hard to determine due to the issue of bifurcation and other non-idealities that result from high levels of CO 2 addition. Using high-speed camera imagery in comparison with more standard methods (e.g., pressure, emission, and laser absorption spectroscopy) to measure the ignition delay time, the effect of bifurcation has been examined in this study. Experiments were performed at pressures between 0.6 and 1.2 atm for temperatures between 1650 and 2040 K. The equivalence ratio for all experiments was kept at a constant value of 1 with methane as the fuel. The COmore » 2 mole fraction was varied between a value of X CO2 = 0.00 to 0.895. The ignition delay time was determined from three different measurements at the sidewall: broadband chemiluminescent emission captured via a photodetector, CH 4 concentrations determined using a distributed feedback interband cascade laser centered at 3403.4 nm, and pressure recorded via a dynamic Kistler type transducer. All methods for the ignition delay time were compared to high-speed camera images taken of the axial cross-section during combustion. Methane time-histories and the methane decay times were also measured using the laser. It was determined that the flame could be correlated to the ignition delay time measured at the side wall but that the flame as captured by the camera was not homogeneous as assumed in typical shock tube experiments. The bifurcation of the shock wave resulted in smaller flames with large boundary layers and that the flame could be as small as 30% of the cross-sectional area of the shock tube at the highest levels of CO 2 dilution. Here, comparisons between the camera images and the different ignition delay time methods show that care must be taken in interpreting traditional ignition delay data for experiments with large bifurcation effects as different methods in measuring the ignition delay time could result in different interpretations of kinetic mechanisms and impede the development of future mechanisms.« less

  5. Efficiency analysis of numerical integrations for finite element substructure in real-time hybrid simulation

    NASA Astrophysics Data System (ADS)

    Wang, Jinting; Lu, Liqiao; Zhu, Fei

    2018-01-01

    Finite element (FE) is a powerful tool and has been applied by investigators to real-time hybrid simulations (RTHSs). This study focuses on the computational efficiency, including the computational time and accuracy, of numerical integrations in solving FE numerical substructure in RTHSs. First, sparse matrix storage schemes are adopted to decrease the computational time of FE numerical substructure. In this way, the task execution time (TET) decreases such that the scale of the numerical substructure model increases. Subsequently, several commonly used explicit numerical integration algorithms, including the central difference method (CDM), the Newmark explicit method, the Chang method and the Gui-λ method, are comprehensively compared to evaluate their computational time in solving FE numerical substructure. CDM is better than the other explicit integration algorithms when the damping matrix is diagonal, while the Gui-λ (λ = 4) method is advantageous when the damping matrix is non-diagonal. Finally, the effect of time delay on the computational accuracy of RTHSs is investigated by simulating structure-foundation systems. Simulation results show that the influences of time delay on the displacement response become obvious with the mass ratio increasing, and delay compensation methods may reduce the relative error of the displacement peak value to less than 5% even under the large time-step and large time delay.

  6. Estimation of time-delayed mutual information and bias for irregularly and sparsely sampled time-series

    PubMed Central

    Albers, D. J.; Hripcsak, George

    2012-01-01

    A method to estimate the time-dependent correlation via an empirical bias estimate of the time-delayed mutual information for a time-series is proposed. In particular, the bias of the time-delayed mutual information is shown to often be equivalent to the mutual information between two distributions of points from the same system separated by infinite time. Thus intuitively, estimation of the bias is reduced to estimation of the mutual information between distributions of data points separated by large time intervals. The proposed bias estimation techniques are shown to work for Lorenz equations data and glucose time series data of three patients from the Columbia University Medical Center database. PMID:22536009

  7. Stability and delay sensitivity of neutral fractional-delay systems.

    PubMed

    Xu, Qi; Shi, Min; Wang, Zaihua

    2016-08-01

    This paper generalizes the stability test method via integral estimation for integer-order neutral time-delay systems to neutral fractional-delay systems. The key step in stability test is the calculation of the number of unstable characteristic roots that is described by a definite integral over an interval from zero to a sufficient large upper limit. Algorithms for correctly estimating the upper limits of the integral are given in two concise ways, parameter dependent or independent. A special feature of the proposed method is that it judges the stability of fractional-delay systems simply by using rough integral estimation. Meanwhile, the paper shows that for some neutral fractional-delay systems, the stability is extremely sensitive to the change of time delays. Examples are given for demonstrating the proposed method as well as the delay sensitivity.

  8. Radar wideband digital beamforming based on time delay and phase compensation

    NASA Astrophysics Data System (ADS)

    Fu, Wei; Jiang, Defu

    2018-07-01

    In conventional phased array radars, analogue time delay devices and phase shifters have been used for wideband beamforming. These methods suffer from insertion losses, gain mismatches and delay variations, and they occupy a large chip area. To solve these problems, a compact architecture of digital array antennas based on subarrays was considered. In this study, the receiving beam patterns of wideband linear frequency modulation (LFM) signals were constructed by applying analogue stretch processing via mixing with delayed reference signals at the subarray level. Subsequently, narrowband digital time delaying and phase compensation of the tone signals were implemented with reduced arithmetic complexity. Due to the differences in amplitudes, phases and time delays between channels, severe performance degradation of the beam patterns occurred without corrections. To achieve good beamforming performance, array calibration was performed in each channel to adjust the amplitude, frequency and phase of the tone signal. Using a field-programmable gate array, wideband LFM signals and finite impulse response filters with continuously adjustable time delays were implemented in a polyphase structure. Simulations and experiments verified the feasibility and effectiveness of the proposed digital beamformer.

  9. Time for pulse traversal through slabs of dispersive and negative ({epsilon}, {mu}) materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nanda, Lipsa; Ramakrishna, S. Anantha

    2007-12-15

    The traversal times for an electromagnetic pulse traversing a slab of dispersive and dissipative material with negative dielectric permittivity ({epsilon}) and magnetic permeability ({mu}) have been calculated by using the average flow of electromagnetic energy in the medium. The effects of bandwidth of the pulse and dissipation in the medium have been investigated. While both large bandwidth and large dissipation have similar effects in smoothening out the resonant features that appear due to Fabry-Perot resonances, large dissipation can result in very small or even negative traversal times near the resonant frequencies. We have also investigated the traversal times and Wignermore » delay times for obliquely incident pulses and evanescent pulses. The coupling to slab plasmon-polariton modes in frequency ranges with negative {epsilon} or {mu} is shown to result in large traversal times at the resonant conditions. We also find that the group velocity mainly contributes to the delay times for pulses propagating across a slab with n=-1. We have checked that the traversal times are positive and subluminal for pulses with sufficiently large bandwidths.« less

  10. Attosecond delay in the molecular photoionization of asymmetric molecules.

    PubMed

    Chacón, Alexis; Ruiz, Camilo

    2018-02-19

    We report theoretical calculations of the delay in photoemission from CO with particular emphasis on the role of the ultrafast electronic bound dynamics. We study the delays in photoionization in the HOMO and HOMO-1 orbitals of the CO molecule by looking into the stereo Wigner time delay technique. That compares the delay in photoemission from electrons emitted to the left and right to extract structural and dynamical information of the ionization process. For this we apply two techniques: The attosecond streak camera and the time of flight technique. Although they should provide the same results we have found large discrepancies of up to 36 in the case of HOMO, while for the HOMO-1 we obtain the same results with the two techniques. We have found that the large time delays observed in the HOMO orbital with the streaking technique are a consequence of the resonant transition triggered by the streaking field. This resonant transition produces a bound electron wavepacket that modifies the measurements of delay in photoionization. As a result of this observation, our technique allows us to reconstruct the bound wavepacket dynamics induced by the streaking field. By measuring the expected value of the electron momentum along the polarization direction after the streaking field has finished, we can recover the relative phase between the complex amplitudes of the HOMO and LUMO orbitals. These theoretical calculations pave the way for the measurement of ultrafast bound-bound electron transitionsand its crucial role for the delay in photoemission observation.

  11. Stability of Nonlinear Systems with Unknown Time-varying Feedback Delay

    NASA Astrophysics Data System (ADS)

    Chunodkar, Apurva A.; Akella, Maruthi R.

    2013-12-01

    This paper considers the problem of stabilizing a class of nonlinear systems with unknown bounded delayed feedback wherein the time-varying delay is 1) piecewise constant 2) continuous with a bounded rate. We also consider application of these results to the stabilization of rigid-body attitude dynamics. In the first case, the time-delay in feedback is modeled specifically as a switch among an arbitrarily large set of unknown constant values with a known strict upper bound. The feedback is a linear function of the delayed states. In the case of linear systems with switched delay feedback, a new sufficiency condition for average dwell time result is presented using a complete type Lyapunov-Krasovskii (L-K) functional approach. Further, the corresponding switched system with nonlinear perturbations is proven to be exponentially stable inside a well characterized region of attraction for an appropriately chosen average dwell time. In the second case, the concept of the complete type L-K functional is extended to a class of nonlinear time-delay systems with unknown time-varying time-delay. This extension ensures stability robustness to time-delay in the control design for all values of time-delay less than the known upper bound. Model-transformation is used in order to partition the nonlinear system into a nominal linear part that is exponentially stable with a bounded perturbation. We obtain sufficient conditions which ensure exponential stability inside a region of attraction estimate. A constructive method to evaluate the sufficient conditions is presented together with comparison with the corresponding constant and piecewise constant delay. Numerical simulations are performed to illustrate the theoretical results of this paper.

  12. A Route to Chaos after Bifurcation in a Two-section Semiconductor Laser Using Opto-electronic Delayed Feedback at Each In-current

    NASA Astrophysics Data System (ADS)

    Yan, Sen-lin

    2014-12-01

    We study dynamics in an opto-electronic delayed feedback two-section semiconductor laser. We predict theoretically that the system can result in bistability and bifurcation. We analyze numerically the route to chaos from stability to bifurcation by varying the delayed time, feedback strength and two in-currents. The system displays the four distinct types or modes of stable, periodic pulsed or self-pulsing, undamped oscillating or beating, and chaos. The frequency and intensity varying with the delayed time in the self-pulsation regions are discussed detailedly to find that the pulsing frequency is reduced with the long delayed time while the pulsing intensity is added. And the chaotic pulsing frequency is increased with the large in-current Ja. The laser relaxation oscillation frequency is decreased with the large in-current Jb. One in-current characterize dynamics in the laser to conduce to stable, periodic pulsed, beating and chaotic states by altering its values. The other in-current characterize dynamics in the chaotic laser to be controlled to a stable state after a road to quasi-period by adding the values.

  13. High-speed switching of biphoton delays through electro-optic pump frequency modulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Odele, Ogaga D.; Lukens, Joseph M.; Jaramillo-Villegas, Jose A.

    The realization of high-speed tunable delay control has received significant attention in the scene of classical photonics. In quantum optics, however, such rapid delay control systems for entangled photons have remained undeveloped. Here for the first time, we demonstrate rapid (2.5 MHz) modulation of signal-idler arrival times through electro-optic pump frequency modulation. Our technique applies the quantum phenomenon of nonlocal dispersion cancellation along with pump frequency tuning to control the relative delay between photon pairs. Chirped fiber Bragg gratings are employed to provide large amounts of dispersion which result in biphoton delays exceeding 30 ns. This rapid delay modulation schememore » could be useful for on-demand single-photon distribution in addition to quantum versions of pulse position modulation.« less

  14. High-speed switching of biphoton delays through electro-optic pump frequency modulation

    DOE PAGES

    Odele, Ogaga D.; Lukens, Joseph M.; Jaramillo-Villegas, Jose A.; ...

    2016-12-08

    The realization of high-speed tunable delay control has received significant attention in the scene of classical photonics. In quantum optics, however, such rapid delay control systems for entangled photons have remained undeveloped. Here for the first time, we demonstrate rapid (2.5 MHz) modulation of signal-idler arrival times through electro-optic pump frequency modulation. Our technique applies the quantum phenomenon of nonlocal dispersion cancellation along with pump frequency tuning to control the relative delay between photon pairs. Chirped fiber Bragg gratings are employed to provide large amounts of dispersion which result in biphoton delays exceeding 30 ns. This rapid delay modulation schememore » could be useful for on-demand single-photon distribution in addition to quantum versions of pulse position modulation.« less

  15. Transformation from a pure time delay to a mixed time and phase delay representation in the auditory forebrain pathway.

    PubMed

    Vonderschen, Katrin; Wagner, Hermann

    2012-04-25

    Birds and mammals exploit interaural time differences (ITDs) for sound localization. Subsequent to ITD detection by brainstem neurons, ITD processing continues in parallel midbrain and forebrain pathways. In the barn owl, both ITD detection and processing in the midbrain are specialized to extract ITDs independent of frequency, which amounts to a pure time delay representation. Recent results have elucidated different mechanisms of ITD detection in mammals, which lead to a representation of small ITDs in high-frequency channels and large ITDs in low-frequency channels, resembling a phase delay representation. However, the detection mechanism does not prevent a change in ITD representation at higher processing stages. Here we analyze ITD tuning across frequency channels with pure tone and noise stimuli in neurons of the barn owl's auditory arcopallium, a nucleus at the endpoint of the forebrain pathway. To extend the analysis of ITD representation across frequency bands to a large neural population, we employed Fourier analysis for the spectral decomposition of ITD curves recorded with noise stimuli. This method was validated using physiological as well as model data. We found that low frequencies convey sensitivity to large ITDs, whereas high frequencies convey sensitivity to small ITDs. Moreover, different linear phase frequency regimes in the high-frequency and low-frequency ranges suggested an independent convergence of inputs from these frequency channels. Our results are consistent with ITD being remodeled toward a phase delay representation along the forebrain pathway. This indicates that sensory representations may undergo substantial reorganization, presumably in relation to specific behavioral output.

  16. The rates and time-delay distribution of multiply imaged supernovae behind lensing clusters

    NASA Astrophysics Data System (ADS)

    Li, Xue; Hjorth, Jens; Richard, Johan

    2012-11-01

    Time delays of gravitationally lensed sources can be used to constrain the mass model of a deflector and determine cosmological parameters. We here present an analysis of the time-delay distribution of multiply imaged sources behind 17 strong lensing galaxy clusters with well-calibrated mass models. We find that for time delays less than 1000 days, at z = 3.0, their logarithmic probability distribution functions are well represented by P(log Δt) = 5.3 × 10-4Δttilde beta/M2502tilde beta, with tilde beta = 0.77, where M250 is the projected cluster mass inside 250 kpc (in 1014M⊙), and tilde beta is the power-law slope of the distribution. The resultant probability distribution function enables us to estimate the time-delay distribution in a lensing cluster of known mass. For a cluster with M250 = 2 × 1014M⊙, the fraction of time delays less than 1000 days is approximately 3%. Taking Abell 1689 as an example, its dark halo and brightest galaxies, with central velocity dispersions σ>=500kms-1, mainly produce large time delays, while galaxy-scale mass clumps are responsible for generating smaller time delays. We estimate the probability of observing multiple images of a supernova in the known images of Abell 1689. A two-component model of estimating the supernova rate is applied in this work. For a magnitude threshold of mAB = 26.5, the yearly rate of Type Ia (core-collapse) supernovae with time delays less than 1000 days is 0.004±0.002 (0.029±0.001). If the magnitude threshold is lowered to mAB ~ 27.0, the rate of core-collapse supernovae suitable for time delay observation is 0.044±0.015 per year.

  17. Stability Switches, Hopf Bifurcations, and Spatio-temporal Patterns in a Delayed Neural Model with Bidirectional Coupling

    NASA Astrophysics Data System (ADS)

    Song, Yongli; Zhang, Tonghua; Tadé, Moses O.

    2009-12-01

    The dynamical behavior of a delayed neural network with bi-directional coupling is investigated by taking the delay as the bifurcating parameter. Some parameter regions are given for conditional/absolute stability and Hopf bifurcations by using the theory of functional differential equations. As the propagation time delay in the coupling varies, stability switches for the trivial solution are found. Conditions ensuring the stability and direction of the Hopf bifurcation are determined by applying the normal form theory and the center manifold theorem. We also discuss the spatio-temporal patterns of bifurcating periodic oscillations by using the symmetric bifurcation theory of delay differential equations combined with representation theory of Lie groups. In particular, we obtain that the spatio-temporal patterns of bifurcating periodic oscillations will alternate according to the change of the propagation time delay in the coupling, i.e., different ranges of delays correspond to different patterns of neural activities. Numerical simulations are given to illustrate the obtained results and show the existence of bursts in some interval of the time for large enough delay.

  18. Slow-light, band-edge waveguides for tunable time delays.

    PubMed

    Povinelli, M; Johnson, Steven; Joannopoulos, J

    2005-09-05

    We propose the use of slow-light, band-edge waveguides for compact, integrated, tunable optical time delays. We show that slow group velocities at the photonic band edge give rise to large changes in time delay for small changes in refractive index, thereby shrinking device size. Figures of merit are introduced to quantify the sensitivity, as well as the accompanying signal degradation due to dispersion. It is shown that exact calculations of the figures of merit for a realistic, three-dimensional grating structure are well predicted by a simple quadratic-band model, simplifying device design. We present adiabatic taper designs that attain <0.1% reflection in short lengths of 10 to 20 times the grating period. We show further that cascading two gratings compensates for signal dispersion and gives rise to a constant tunable time delay across bandwidths greater than 100GHz. Given typical loss values for silicon-on-insulator waveguides, we estimate that gratings can be designed to exhibit tunable delays in the picosecond range using current fabrication technology.

  19. Analysis of a Data Communication Network’s Performance under Varying Retransmission Disciplines

    DTIC Science & Technology

    1990-09-01

    The routing table is updated using delay information transmitted via congestion/routing up- date packets ( CRUP ) or through delay measurement...previous delay, plus or minus a threshold value, a CRUP is generated and flooded over the network. Upon receipt of a CRUP the ROUTING function up- dates...DDN topology is very large, accounting for the time delay for the full network to be updated, whereas adjacent PSN’s receive CRUP packets virtually

  20. Introduction to Focus Issue: Time-delay dynamics

    NASA Astrophysics Data System (ADS)

    Erneux, Thomas; Javaloyes, Julien; Wolfrum, Matthias; Yanchuk, Serhiy

    2017-11-01

    The field of dynamical systems with time delay is an active research area that connects practically all scientific disciplines including mathematics, physics, engineering, biology, neuroscience, physiology, economics, and many others. This Focus Issue brings together contributions from both experimental and theoretical groups and emphasizes a large variety of applications. In particular, lasers and optoelectronic oscillators subject to time-delayed feedbacks have been explored by several authors for their specific dynamical output, but also because they are ideal test-beds for experimental studies of delay induced phenomena. Topics include the control of cavity solitons, as light spots in spatially extended systems, new devices for chaos communication or random number generation, higher order locking phenomena between delay and laser oscillation period, and systematic bifurcation studies of mode-locked laser systems. Moreover, two original theoretical approaches are explored for the so-called Low Frequency Fluctuations, a particular chaotical regime in laser output which has attracted a lot of interest for more than 30 years. Current hot problems such as the synchronization properties of networks of delay-coupled units, novel stabilization techniques, and the large delay limit of a delay differential equation are also addressed in this special issue. In addition, analytical and numerical tools for bifurcation problems with or without noise and two reviews on concrete questions are proposed. The first review deals with the rich dynamics of simple delay climate models for El Nino Southern Oscillations, and the second review concentrates on neuromorphic photonic circuits where optical elements are used to emulate spiking neurons. Finally, two interesting biological problems are considered in this Focus Issue, namely, multi-strain epidemic models and the interaction of glucose and insulin for more effective treatment.

  1. Impact of time delays on oscillatory dynamics of interlinked positive and negative feedback loops

    NASA Astrophysics Data System (ADS)

    Huang, Bo; Tian, Xinyu; Liu, Feng; Wang, Wei

    2016-11-01

    Interlinking a positive feedback loop (PFL) with a negative feedback loop (NFL) constitutes a typical motif in genetic networks, performing various functions in cell signaling. How time delay in feedback regulation affects the dynamics of such systems still remains unclear. Here, we investigate three systems of interlinked PFL and NFL with time delays: a synthetic genetic oscillator, a three-node circuit, and a simplified single-node model. The stability of steady states and the routes to oscillation in the single-node model are analyzed in detail. The amplitude and period of oscillations vary with a pointwise periodicity over a range of time delay. Larger-amplitude oscillations can be induced when the PFL has an appropriately long delay, in comparison with the PFL with no delay or short delay; this conclusion holds true for all the three systems. We unravel the underlying mechanism for the above effects via analytical derivation under a limiting condition. We also develop a stochastic algorithm for simulating a single reaction with two delays and show that robust oscillations can be maintained by the PFL with a properly long delay in the single-node system. This work presents an effective method for constructing robust large-amplitude oscillators and interprets why similar circuit architectures are engaged in timekeeping systems such as circadian clocks.

  2. EMBEDDED LENSING TIME DELAYS, THE FERMAT POTENTIAL, AND THE INTEGRATED SACHS–WOLFE EFFECT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Bin; Kantowski, Ronald; Dai, Xinyu, E-mail: bchen3@fsu.edu

    2015-05-01

    We derive the Fermat potential for a spherically symmetric lens embedded in a Friedman–Lemaître–Robertson–Walker cosmology and use it to investigate the late-time integrated Sachs–Wolfe (ISW) effect, i.e., secondary temperature fluctuations in the cosmic microwave background (CMB) caused by individual large-scale clusters and voids. We present a simple analytical expression for the temperature fluctuation in the CMB across such a lens as a derivative of the lens’ Fermat potential. This formalism is applicable to both linear and nonlinear density evolution scenarios, to arbitrarily large density contrasts, and to all open and closed background cosmologies. It is much simpler to use andmore » makes the same predictions as conventional approaches. In this approach the total temperature fluctuation can be split into a time-delay part and an evolutionary part. Both parts must be included for cosmic structures that evolve and both can be equally important. We present very simple ISW models for cosmic voids and galaxy clusters to illustrate the ease of use of our formalism. We use the Fermat potentials of simple cosmic void models to compare predicted ISW effects with those recently extracted from WMAP and Planck data by stacking large cosmic voids using the aperture photometry method. If voids in the local universe with large density contrasts are no longer evolving we find that the time delay contribution alone predicts values consistent with the measurements. However, we find that for voids still evolving linearly, the evolutionary contribution cancels a significant part of the time delay contribution and results in predicted signals that are much smaller than recently observed.« less

  3. A comparison of cosmological models using time delay lenses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei, Jun-Jie; Wu, Xue-Feng; Melia, Fulvio, E-mail: jjwei@pmo.ac.cn, E-mail: xfwu@pmo.ac.cn, E-mail: fmelia@email.arizona.edu

    2014-06-20

    The use of time-delay gravitational lenses to examine the cosmological expansion introduces a new standard ruler with which to test theoretical models. The sample suitable for this kind of work now includes 12 lens systems, which have thus far been used solely for optimizing the parameters of ΛCDM. In this paper, we broaden the base of support for this new, important cosmic probe by using these observations to carry out a one-on-one comparison between competing models. The currently available sample indicates a likelihood of ∼70%-80% that the R {sub h} = ct universe is the correct cosmology versus ∼20%-30% formore » the standard model. This possibly interesting result reinforces the need to greatly expand the sample of time-delay lenses, e.g., with the successful implementation of the Dark Energy Survey, the VST ATLAS survey, and the Large Synoptic Survey Telescope. In anticipation of a greatly expanded catalog of time-delay lenses identified with these surveys, we have produced synthetic samples to estimate how large they would have to be in order to rule out either model at a ∼99.7% confidence level. We find that if the real cosmology is ΛCDM, a sample of ∼150 time-delay lenses would be sufficient to rule out R {sub h} = ct at this level of accuracy, while ∼1000 time-delay lenses would be required to rule out ΛCDM if the real universe is instead R {sub h} = ct. This difference in required sample size reflects the greater number of free parameters available to fit the data with ΛCDM.« less

  4. Dopaminergic lesions of the dorsolateral striatum in rats increase delay discounting in an impulsive choice task.

    PubMed

    Tedford, Stephanie E; Persons, Amanda L; Napier, T Celeste

    2015-01-01

    Dysregulated dopamine transmission in striatal circuitry is associated with impulsivity. The current study evaluated the influence of dopaminergic inputs to the dorsolateral striatum on impulsive choice, one aspect of impulsive behavior. We implemented an operant task that measures impulsive choice in rats via delay discounting wherein intracranial self-stimulation (ICSS) was used as the positive reinforcer. To do so, rats were anesthetized to allow implanting of a stimulating electrode within the lateral hypothalamus of one hemisphere and bilateral dorsal striatal injections of the dopaminergic toxin, 6-OHDA (lesioned) or its vehicle (sham). Following recovery, rats were trained in a delay discounting task wherein they selected between a small ICSS current presented immediately after lever pressing, and a large ICSS current presented following a 0 to 15 s delay upon pressing the alternate lever. Task acquisition and reinforcer discrimination were similar for lesioned and sham rats. All rats exhibited an initial preference for the large reinforcer, and as the delay was increased, preference for the large reinforcer was decreased indicating that the subjective value of the large reinforcer was discounted as a function of delay time. However, this discounting effect was significantly enhanced in lesioned rats for the longer delays. These data reveal a contribution of dopaminergic inputs to the dorsolateral striatum on impulsive choice behavior, and provide new insights into neural substrates underlying discounting behaviors.

  5. Dopaminergic Lesions of the Dorsolateral Striatum in Rats Increase Delay Discounting in an Impulsive Choice Task

    PubMed Central

    Tedford, Stephanie E.; Persons, Amanda L.; Napier, T. Celeste

    2015-01-01

    Dysregulated dopamine transmission in striatal circuitry is associated with impulsivity. The current study evaluated the influence of dopaminergic inputs to the dorsolateral striatum on impulsive choice, one aspect of impulsive behavior. We implemented an operant task that measures impulsive choice in rats via delay discounting wherein intracranial self-stimulation (ICSS) was used as the positive reinforcer. To do so, rats were anesthetized to allow implanting of a stimulating electrode within the lateral hypothalamus of one hemisphere and bilateral dorsal striatal injections of the dopaminergic toxin, 6-OHDA (lesioned) or its vehicle (sham). Following recovery, rats were trained in a delay discounting task wherein they selected between a small ICSS current presented immediately after lever pressing, and a large ICSS current presented following a 0 to 15s delay upon pressing the alternate lever. Task acquisition and reinforcer discrimination were similar for lesioned and sham rats. All rats exhibited an initial preference for the large reinforcer, and as the delay was increased, preference for the large reinforcer was decreased indicating that the subjective value of the large reinforcer was discounted as a function of delay time. However, this discounting effect was significantly enhanced in lesioned rats for the longer delays. These data reveal a contribution of dopaminergic inputs to the dorsolateral striatum on impulsive choice behavior, and provide new insights into neural substrates underlying discounting behaviors. PMID:25927685

  6. Reduced order modelling in searches for continuous gravitational waves - I. Barycentring time delays

    NASA Astrophysics Data System (ADS)

    Pitkin, M.; Doolan, S.; McMenamin, L.; Wette, K.

    2018-06-01

    The frequencies and phases of emission from extra-solar sources measured by Earth-bound observers are modulated by the motions of the observer with respect to the source, and through relativistic effects. These modulations depend critically on the source's sky-location. Precise knowledge of the modulations are required to coherently track the source's phase over long observations, for example, in pulsar timing, or searches for continuous gravitational waves. The modulations can be modelled as sky-location and time-dependent time delays that convert arrival times at the observer to the inertial frame of the source, which can often be the Solar system barycentre. We study the use of reduced order modelling for speeding up the calculation of this time delay for any sky-location. We find that the time delay model can be decomposed into just four basis vectors, and with these the delay for any sky-location can be reconstructed to sub-nanosecond accuracy. When compared to standard routines for time delay calculation in gravitational wave searches, using the reduced basis can lead to speed-ups of 30 times. We have also studied components of time delays for sources in binary systems. Assuming eccentricities <0.25, we can reconstruct the delays to within 100 s of nanoseconds, with best case speed-ups of a factor of 10, or factors of two when interpolating the basis for different orbital periods or time stamps. In long-duration phase-coherent searches for sources with sky-position uncertainties, or binary parameter uncertainties, these speed-ups could allow enhancements in their scopes without large additional computational burdens.

  7. Coherent Pattern Prediction in Swarms of Delay-Coupled Agents

    NASA Astrophysics Data System (ADS)

    Mier-Y-Teran-Romero, Luis; Forgoston, Eric; Scwartz, Ira

    2013-03-01

    We consider a general swarm model of self-propelling particles interacting through a pairwise potential in the presence of a fixed communication time delay. Previous work has shown that swarms with communication time delays and noise may display pattern transitions that depend on the size of the coupling amplitude. We extend these results by completely unfolding the bifurcation structure of the mean field approximation. Our analysis reveals a direct correspondence between the different dynamical behaviors found in different regions of the coupling-time delay plane with the different classes of simulated coherent swarm patterns. We derive the spatio-temporal scales of the swarm structures, and also demonstrate how the complicated interplay of coupling strength, time delay, noise intensity, and choice of initial conditions can affect the swarm. In addition, when adding noise to the system, we find that for sufficiently large values of the coupling strength and/or the time delay, there is a noise intensity threshold that forces a transition of the swarm from a misaligned state into an aligned state. We show that this alignment transition exhibits hysteresis when the noise intensity is taken to be time dependent. Office of Naval Research, NIH (LMR and IBS) and NRL (EF)

  8. Decentralized adaptive neural control for high-order interconnected stochastic nonlinear time-delay systems with unknown system dynamics.

    PubMed

    Si, Wenjie; Dong, Xunde; Yang, Feifei

    2018-03-01

    This paper is concerned with the problem of decentralized adaptive backstepping state-feedback control for uncertain high-order large-scale stochastic nonlinear time-delay systems. For the control design of high-order large-scale nonlinear systems, only one adaptive parameter is constructed to overcome the over-parameterization, and neural networks are employed to cope with the difficulties raised by completely unknown system dynamics and stochastic disturbances. And then, the appropriate Lyapunov-Krasovskii functional and the property of hyperbolic tangent functions are used to deal with the unknown unmatched time-delay interactions of high-order large-scale systems for the first time. At last, on the basis of Lyapunov stability theory, the decentralized adaptive neural controller was developed, and it decreases the number of learning parameters. The actual controller can be designed so as to ensure that all the signals in the closed-loop system are semi-globally uniformly ultimately bounded (SGUUB) and the tracking error converges in the small neighborhood of zero. The simulation example is used to further show the validity of the design method. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Statistics of time delay and scattering correlation functions in chaotic systems. I. Random matrix theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Novaes, Marcel

    2015-06-15

    We consider the statistics of time delay in a chaotic cavity having M open channels, in the absence of time-reversal invariance. In the random matrix theory approach, we compute the average value of polynomial functions of the time delay matrix Q = − iħS{sup †}dS/dE, where S is the scattering matrix. Our results do not assume M to be large. In a companion paper, we develop a semiclassical approximation to S-matrix correlation functions, from which the statistics of Q can also be derived. Together, these papers contribute to establishing the conjectured equivalence between the random matrix and the semiclassical approaches.

  10. Piloted simulator study of allowable time delays in large-airplane response

    NASA Technical Reports Server (NTRS)

    Grantham, William D.; Bert T.?aetingas, Stephen A.dings with ran; Bert T.?aetingas, Stephen A.dings with ran

    1987-01-01

    A piloted simulation was performed to determine the permissible time delay and phase shift in the flight control system of a specific large transport-type airplane. The study was conducted with a six degree of freedom ground-based simulator and a math model similar to an advanced wide-body jet transport. Time delays in discrete and lagged form were incorporated into the longitudinal, lateral, and directional control systems of the airplane. Three experienced pilots flew simulated approaches and landings with random localizer and glide slope offsets during instrument tracking as their principal evaluation task. Results of the present study suggest a level 1 (satisfactory) handling qualities limit for the effective time delay of 0.15 sec in both the pitch and roll axes, as opposed to a 0.10-sec limit of the present specification (MIL-F-8785C) for both axes. Also, the present results suggest a level 2 (acceptable but unsatisfactory) handling qualities limit for an effective time delay of 0.82 sec and 0.57 sec for the pitch and roll axes, respectively, as opposed to 0.20 sec of the present specifications for both axes. In the area of phase shift between cockpit input and control surface deflection,the results of this study, flown in turbulent air, suggest less severe phase shift limitations for the approach and landing task-approximately 50 deg. in pitch and 40 deg. in roll - as opposed to 15 deg. of the present specifications for both axes.

  11. Delayed fission and multifragmentation in sub-keV C60 - Au(0 0 1) collisions via molecular dynamics simulations: Mass distributions and activated statistical decay

    NASA Astrophysics Data System (ADS)

    Bernstein, V.; Kolodney, E.

    2017-10-01

    We have recently observed, both experimentally and computationally, the phenomenon of postcollision multifragmentation in sub-keV surface collisions of a C60 projectile. Namely, delayed multiparticle breakup of a strongly impact deformed and vibrationally excited large cluster collider into several large fragments, after leaving the surface. Molecular dynamics simulations with extensive statistics revealed a nearly simultaneous event, within a sub-psec time window. Here we study, computationally, additional essential aspects of this new delayed collisional fragmentation which were not addressed before. Specifically, we study here the delayed (binary) fission channel for different impact energies both by calculating mass distributions over all fission events and by calculating and analyzing lifetime distributions of the scattered projectile. We observe an asymmetric fission resulting in a most probable fission channel and we find an activated exponential (statistical) decay. Finally, we also calculate and discuss the fragment mass distribution in (triple) multifragmentation over different time windows, in terms of most abundant fragments.

  12. Enhancement of the NMSU Channel Error Simulator to Provide User-Selectable Link Delays

    NASA Technical Reports Server (NTRS)

    Horan, Stephen; Wang, Ru-Hai

    2000-01-01

    This is the third in a continuing series of reports describing the development of the Space-to-Ground Link Simulator (SGLS) to be used for testing data transfers under simulated space channel conditions. The SGLS is based upon Virtual Instrument (VI) software techniques for managing the error generation, link data rate configuration, and, now, selection of the link delay value. In this report we detail the changes that needed to be made to the SGLS VI configuration to permit link delays to be added to the basic error generation and link data rate control capabilities. This was accomplished by modifying the rate-splitting VIs to include a buffer the hold the incoming data for the duration selected by the user to emulate the channel link delay. In sample tests of this configuration, the TCP/IP(sub ftp) service and the SCPS(sub fp) service were used to transmit 10-KB data files using both symmetric (both forward and return links set to 115200 bps) and unsymmetric (forward link set at 2400 bps and a return link set at 115200 bps) link configurations. Transmission times were recorded at bit error rates of 0 through 10(exp -5) to give an indication of the link performance. In these tests. we noted separate timings for the protocol setup time to initiate the file transfer and the variation in the actual file transfer time caused by channel errors. Both protocols showed similar performance to that seen earlier for the symmetric and unsymmetric channels. This time, the delays in establishing the file protocol also showed that these delays could double the transmission time and need to be accounted for in mission planning. Both protocols also showed a difficulty in transmitting large data files over large link delays. In these tests, there was no clear favorite between the TCP/IP(sub ftp) and the SCPS(sub fp). Based upon these tests, further testing is recommended to extend the results to different file transfer configurations.

  13. Micromachined silicon acoustic delay line with improved structural stability and acoustic directivity for real-time photoacoustic tomography

    NASA Astrophysics Data System (ADS)

    Cho, Young; Kumar, Akhil; Xu, Song; Zou, Jun

    2017-03-01

    Recent studies have shown that micromachined silicon acoustic delay lines can provide a promising solution to achieve real-time photoacoustic tomography without the need for complex transducer arrays and data acquisition electronics. However, as its length increases to provide longer delay time, the delay line becomes more vulnerable to structural instability due to reduced mechanical stiffness. In addition, the small cross-section area of the delay line results in a large acoustic acceptance angle and therefore poor directivity. To address these two issues, this paper reports the design, fabrication, and testing of a new silicon acoustic delay line enhanced with 3D printed polymer micro linker structures. First, mechanical deformation of the silicon acoustic delay line (with and without linker structures) under gravity was simulated by using finite element method. Second, the acoustic crosstalk and acoustic attenuation caused by the polymer micro linker structures were evaluated with both numerical simulation and ultrasound transmission testing. The result shows that the use of the polymer micro linker structures significantly improves the structural stability of the silicon acoustic delay lines without creating additional acoustic attenuation and crosstalk. In addition, a new tapered design for the input terminal of the delay line was also investigate to improve its acoustic directivity by reducing the acoustic acceptance angle. These two improvements are expected to provide an effective solution to eliminate current limitations on the achievable acoustic delay time and out-of-plane imaging resolution of micromachined silicon acoustic delay line arrays.

  14. The impact of precipitation on land interfacility transport times.

    PubMed

    Giang, Wayne C W; Donmez, Birsen; Ahghari, Mahvareh; MacDonald, Russell D

    2014-12-01

    Timely transfer of patients among facilities within a regionalized critical-care system remains a large obstacle to effective patient care. For medical transport systems where dispatchers are responsible for planning these interfacility transfers, accurate estimates of interfacility transfer times play a large role in planning and resource-allocation decisions. However, the impact of adverse weather conditions on transfer times is not well understood. Precipitation negatively impacts driving conditions and can decrease free-flow speeds and increase travel times. The objective of this research was to quantify and model the effects of different precipitation types on land travel times for interfacility patient transfers. It was hypothesized that the effects of precipitation would accumulate as the distance of the transfer increased, and they would differ based on the type of precipitation. Urgent and emergent interfacility transfers carried out by the medical transport system in Ontario from 2005 through 2011 were linked to Environment Canada's (Gatineau, Quebec, Canada) climate data. Two linear models were built to estimate travel times based on precipitation type and driving distance: one for transfers between cities (intercity) and another for transfers within a city (intracity). Precipitation affected both transfer types. For intercity transfers, the magnitude of the delays increased as driving distance increased. For median-distance intercity transfers (48 km), snow produced delays of approximately 9.1% (3.1 minutes), while rain produced delays of 8.4% (2.9 minutes). For intracity transfers, the magnitude of delays attributed to precipitation did not depend on distance driven. Transfers in rain were 8.6% longer (1.7 minutes) compared to no precipitation, whereas only statistically marginal effects were observed for snow. Precipitation increases the duration of interfacility land ambulance travel times by eight percent to ten percent. For transfers between cities, snow is associated with the longest delays (versus rain), but for transfers within a single city, rain is associated with the longest delays.

  15. Hard X-ray time profiles and acceleration processes in large solar flares

    NASA Technical Reports Server (NTRS)

    Bai, T.; Ramaty, R.

    1979-01-01

    The hard X-ray time profiles of the (1972) August 4 and 7 flares are investigated, taking into account a comparison of the time profiles of different energy channels. It is shown that for these flares the temporal features of the intensity profiles of higher energy channels are delayed with respect to those of channel 1. The delay time gradually increases to approximately 5 sec as the channel number increases from 1 to 5, and it jumps to approximately 15 sec for channels 6 and 7. A description is presented of a model in which the delay and other characteristics of the observed time profiles in channels 1-5 are self-consistently explained by the increase of the electron energy loss time with electron energy.

  16. Delayed elastic effects in Zerodur at room temperature.

    PubMed

    Pepi, J W

    1992-01-01

    Continuous testing at room temperature of large optics made of Zerodur has revealed a delayed elastic effect under low stress levels during both load and recovery after removal. Using a high-performance mechanical profilometer, a delayed strain of the order of 1% is realized over a period of a few weeks. The time-dependent phenomenon is elastic and reversible, but must be accounted for in various applications of optical design.

  17. Effect of the scattering delay on time-dependent photon migration in turbid media.

    PubMed

    Yaroslavsky, I V; Yaroslavsky, A N; Tuchin, V V; Schwarzmaier, H J

    1997-09-01

    We modified the diffusion approximation of the time-dependent radiative transfer equation to account for a finite scattering delay time. Under the usual assumptions of the diffusion approximation, the effect of the scattering delay leads to a simple renormalization of the light velocity that appears in the diffusion equation. Accuracy of the model was evaluated by comparison with Monte Carlo simulations in the frequency domain for a semi-infinite geometry. A good agreement is demonstrated for both matched and mismatched boundary conditions when the distance from the source is sufficiently large. The modified diffusion model predicts that the neglect of the scattering delay when the optical properties of the turbid material are derived from normalized frequency- or time-domain measurements should result in an underestimation of the absorption coefficient and an overestimation of the transport coefficient. These observations are consistent with the published experimental data.

  18. Continuously tunable optical buffer with a dual silicon waveguide design.

    PubMed

    Horak, Peter; Stewart, Will; Loh, Wei H

    2011-06-20

    We propose a design for an optical buffer that comprises two coupled silicon waveguides, which is capable of generating a large continuously tunable change in the propagation delay time. The optical delay can be varied by more than 100% through varying the spacing between the waveguides.

  19. Shared control on lunar spacecraft teleoperation rendezvous operations with large time delay

    NASA Astrophysics Data System (ADS)

    Ya-kun, Zhang; Hai-yang, Li; Rui-xue, Huang; Jiang-hui, Liu

    2017-08-01

    Teleoperation could be used in space on-orbit serving missions, such as object deorbits, spacecraft approaches, and automatic rendezvous and docking back-up systems. Teleoperation rendezvous and docking in lunar orbit may encounter bottlenecks for the inherent time delay in the communication link and the limited measurement accuracy of sensors. Moreover, human intervention is unsuitable in view of the partial communication coverage problem. To solve these problems, a shared control strategy for teleoperation rendezvous and docking is detailed. The control authority in lunar orbital maneuvers that involves two spacecraft as rendezvous and docking in the final phase was discussed in this paper. The predictive display model based on the relative dynamic equations is established to overcome the influence of the large time delay in communication link. We discuss and attempt to prove via consistent, ground-based simulations the relative merits of fully autonomous control mode (i.e., onboard computer-based), fully manual control (i.e., human-driven at the ground station) and shared control mode. The simulation experiments were conducted on the nine-degrees-of-freedom teleoperation rendezvous and docking simulation platform. Simulation results indicated that the shared control methods can overcome the influence of time delay effects. In addition, the docking success probability of shared control method was enhanced compared with automatic and manual modes.

  20. Numerical bifurcation analysis of immunological models with time delays

    NASA Astrophysics Data System (ADS)

    Luzyanina, Tatyana; Roose, Dirk; Bocharov, Gennady

    2005-12-01

    In recent years, a large number of mathematical models that are described by delay differential equations (DDEs) have appeared in the life sciences. To analyze the models' dynamics, numerical methods are necessary, since analytical studies can only give limited results. In turn, the availability of efficient numerical methods and software packages encourages the use of time delays in mathematical modelling, which may lead to more realistic models. We outline recently developed numerical methods for bifurcation analysis of DDEs and illustrate the use of these methods in the analysis of a mathematical model of human hepatitis B virus infection.

  1. A Distributed Algorithm for Economic Dispatch Over Time-Varying Directed Networks With Delays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Tao; Lu, Jie; Wu, Di

    In power system operation, economic dispatch problem (EDP) is designed to minimize the total generation cost while meeting the demand and satisfying generator capacity limits. This paper proposes an algorithm based on the gradient-push method to solve the EDP in a distributed manner over communication networks potentially with time-varying topologies and communication delays. It has been shown that the proposed method is guaranteed to solve the EDP if the time-varying directed communication network is uniformly jointly strongly connected. Moreover, the proposed algorithm is also able to handle arbitrarily large but bounded time delays on communication links. Numerical simulations are usedmore » to illustrate and validate the proposed algorithm.« less

  2. Evaluation of dispersive Bragg gratings (BG) structures for the processing of RF signals with large time delays and bandwidths

    NASA Astrophysics Data System (ADS)

    Kaba, M.; Zhou, F. C.; Lim, A.; Decoster, D.; Huignard, J.-P.; Tonda, S.; Dolfi, D.; Chazelas, J.

    2007-11-01

    The applications of microwave optoelectronics are extremely large since they extend from the Radio-over-Fibre to the Homeland security and defence systems. Then, the improved maturity of the optoelectronic components operating up to 40GHz permit to consider new optical processing functions (filtering, beamforming, ...) which can operate over very wideband microwave analogue signals. Specific performances are required which imply optical delay lines able to exhibit large Time-Bandwidth product values. It is proposed to evaluate slow light approach through highly dispersive structures based on either uniform or chirped Bragg Gratings. Therefore, we highlight the impact of the major parameters of such structures: index modulation depth, grating length, grating period, chirp coefficient and demonstrate the high potentiality of Bragg Grating for Large RF signals bandwidth processing under slow-light propagation.

  3. Parasitic lasing suppression in large-aperture Ti:sapphire amplifiers by optimizing the seed-pump time delay

    NASA Astrophysics Data System (ADS)

    Chu, Y. X.; Liang, X. Y.; Yu, L. H.; Xu, L.; Lu, X. M.; Liu, Y. Q.; Leng, Y. X.; Li, R. X.; Xu, Z. Z.

    2013-05-01

    Theoretical and experimental investigations are carried out to determine the influence of the time delay between the input seed pulse and pump pulses on transverse parasitic lasing in a Ti:sapphire amplifier with a diameter of 80 mm, which is clad by a refractive index-matched liquid doped with an absorber. When the time delay is optimized, a maximum output energy of 50.8 J is achieved at a pump energy of 105 J, which corresponds to a conversion efficiency of 47.5%. Based on the existing compressor, the laser system achieves a peak power of 1.26 PW with a 29.0 fs pulse duration.

  4. Delay-induced patterns in a two-dimensional lattice of coupled oscillators

    PubMed Central

    Kantner, Markus; Schöll, Eckehard; Yanchuk, Serhiy

    2015-01-01

    We show how a variety of stable spatio-temporal periodic patterns can be created in 2D-lattices of coupled oscillators with non-homogeneous coupling delays. The results are illustrated using the FitzHugh-Nagumo coupled neurons as well as coupled limit cycle (Stuart-Landau) oscillators. A “hybrid dispersion relation” is introduced, which describes the stability of the patterns in spatially extended systems with large time-delay. PMID:25687789

  5. Precise Time Delays from Strongly Gravitationally Lensed Type Ia Supernovae with Chromatically Microlensed Images

    NASA Astrophysics Data System (ADS)

    Goldstein, Daniel A.; Nugent, Peter E.; Kasen, Daniel N.; Collett, Thomas E.

    2018-03-01

    Time delays between the multiple images of strongly gravitationally lensed Type Ia supernovae (glSNe Ia) have the potential to deliver precise cosmological constraints, but the effects of microlensing on time delay extraction have not been studied in detail. Here we quantify the effect of microlensing on the glSN Ia yield of the Large Synoptic Survey Telescope (LSST) and the effect of microlensing on the precision and accuracy of time delays that can be extracted from LSST glSNe Ia. Microlensing has a negligible effect on the LSST glSN Ia yield, but it can be increased by a factor of ∼2 over previous predictions to 930 systems using a novel photometric identification technique based on spectral template fitting. Crucially, the microlensing of glSNe Ia is achromatic until three rest-frame weeks after the explosion, making the early-time color curves microlensing-insensitive time delay indicators. By fitting simulated flux and color observations of microlensed glSNe Ia with their underlying, unlensed spectral templates, we forecast the distribution of absolute time delay error due to microlensing for LSST, which is unbiased at the sub-percent level and peaked at 1% for color curve observations in the achromatic phase, while for light-curve observations it is comparable to state-of-the-art mass modeling uncertainties (4%). About 70% of LSST glSN Ia images should be discovered during the achromatic phase, indicating that microlensing time delay uncertainties can be minimized if prompt multicolor follow-up observations are obtained. Accounting for microlensing, the 1–2 day time delay on the recently discovered glSN Ia iPTF16geu can be measured to 40% precision, limiting its cosmological utility.

  6. Precise Time Delays from Strongly Gravitationally Lensed Type Ia Supernovae with Chromatically Microlensed Images

    DOE PAGES

    Goldstein, Daniel A.; Nugent, Peter E.; Kasen, Daniel N.; ...

    2018-03-01

    Time delays between the multiple images of strongly gravitationally lensed Type Ia supernovae (glSNe Ia) have the potential to deliver precise cosmological constraints, but the effects of microlensing on time delay extraction have not been studied in detail. Here we quantify the effect of microlensing on the glSN Ia yield of the Large Synoptic Survey Telescope (LSST) and the effect of microlensing on the precision and accuracy of time delays that can be extracted from LSST glSNe Ia. Microlensing has a negligible effect on the LSST glSN Ia yield, but it can be increased by a factor of ~2 overmore » previous predictions to 930 systems using a novel photometric identification technique based on spectral template fitting. Crucially, the microlensing of glSNe Ia is achromatic until three rest-frame weeks after the explosion, making the early-time color curves microlensing-insensitive time delay indicators. By fitting simulated flux and color observations of microlensed glSNe Ia with their underlying, unlensed spectral templates, we forecast the distribution of absolute time delay error due to microlensing for LSST, which is unbiased at the sub-percent level and peaked at 1% for color curve observations in the achromatic phase, while for light-curve observations it is comparable to state-of-the-art mass modeling uncertainties (4%). About 70% of LSST glSN Ia images should be discovered during the achromatic phase, indicating that microlensing time delay uncertainties can be minimized if prompt multicolor follow-up observations are obtained. Lastly, accounting for microlensing, the 1-2 day time delay on the recently discovered glSN Ia iPTF16geu can be measured to 40% precision, limiting its cosmological utility.« less

  7. Precise Time Delays from Strongly Gravitationally Lensed Type Ia Supernovae with Chromatically Microlensed Images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goldstein, Daniel A.; Nugent, Peter E.; Kasen, Daniel N.

    Time delays between the multiple images of strongly gravitationally lensed Type Ia supernovae (glSNe Ia) have the potential to deliver precise cosmological constraints, but the effects of microlensing on time delay extraction have not been studied in detail. Here we quantify the effect of microlensing on the glSN Ia yield of the Large Synoptic Survey Telescope (LSST) and the effect of microlensing on the precision and accuracy of time delays that can be extracted from LSST glSNe Ia. Microlensing has a negligible effect on the LSST glSN Ia yield, but it can be increased by a factor of ~2 overmore » previous predictions to 930 systems using a novel photometric identification technique based on spectral template fitting. Crucially, the microlensing of glSNe Ia is achromatic until three rest-frame weeks after the explosion, making the early-time color curves microlensing-insensitive time delay indicators. By fitting simulated flux and color observations of microlensed glSNe Ia with their underlying, unlensed spectral templates, we forecast the distribution of absolute time delay error due to microlensing for LSST, which is unbiased at the sub-percent level and peaked at 1% for color curve observations in the achromatic phase, while for light-curve observations it is comparable to state-of-the-art mass modeling uncertainties (4%). About 70% of LSST glSN Ia images should be discovered during the achromatic phase, indicating that microlensing time delay uncertainties can be minimized if prompt multicolor follow-up observations are obtained. Lastly, accounting for microlensing, the 1-2 day time delay on the recently discovered glSN Ia iPTF16geu can be measured to 40% precision, limiting its cosmological utility.« less

  8. Preliminary Results of P & S-wave Teleseismic Tomography of the Superior Region

    NASA Astrophysics Data System (ADS)

    Bollmann, T. A.; van der Lee, S.; Frederiksen, A. W.

    2013-12-01

    In continental North America, the Midcontinent Rift System (MRS) is the most prominent feature in gravity and magnetic anomaly maps. These anomalies are associated with large amount of igneous material deposited there around 1.1 Ga. Preliminary evidence from ambient seismic noise analysis of the area has found that the MRS crustal structure has a low velocity along its axis. A major question remains as to whether any structural evidence for the MRS' rifting episodes or its failure were retained in the lithospheric mantle beneath it. To this end we measured teleseismic P and S travel times at Earthscope seismic stations from the Flexible Array SPREE, the Transportable Array, and several US ANSS Backbone stations. These measurements constitute a major resource for upgrading an existing teleseismic, pre-SPREE tomography model for the region, (Frederiksen et al., 2013) as well as longer wavelength regional models, such as NA07 (Bedle and Van der Lee, 2007). We measured the delay times of about 25 thousand teleseismic P arrivals from over a hundred events with magnitudes of 5.5 and greater, and about half as many for S arrivals. Nearly half of these teleseismic events are to the NNW (Alaska-Japan) and about one third are from Central and South America to the SSE. We inverted the P delays for common station-side delays and common event-side delays. Station-side P delays vary by about 1.5 s over the region, with the Archean Superior Craton recording earlier arrivals than Proterozoic terrains in Wisconsin. SPREE stations show later arrivals closer to the rift axis compare to earlier onesfurther away from the rift, but a correlation with the large rift-related gravity anomaly is not obvious. To examine whether the mantle has any rift-related structures, for example from meltdepletion, we are measuring delay times from additional events recorded and recovered during the spring SPREE service run, applying corrections to the delay times for topography and crustal structure, and will invert the corrected delay times for 3D mantle structure. The average P-wave delay time from all events for each station fit to a surface. An interpolated surface of these values is shown in the background. The gray lines are accretionary provinces from Whitmeyer & Karlstrom (2007).

  9. Reducing process delays for real-time earthquake parameter estimation - An application of KD tree to large databases for Earthquake Early Warning

    NASA Astrophysics Data System (ADS)

    Yin, Lucy; Andrews, Jennifer; Heaton, Thomas

    2018-05-01

    Earthquake parameter estimations using nearest neighbor searching among a large database of observations can lead to reliable prediction results. However, in the real-time application of Earthquake Early Warning (EEW) systems, the accurate prediction using a large database is penalized by a significant delay in the processing time. We propose to use a multidimensional binary search tree (KD tree) data structure to organize large seismic databases to reduce the processing time in nearest neighbor search for predictions. We evaluated the performance of KD tree on the Gutenberg Algorithm, a database-searching algorithm for EEW. We constructed an offline test to predict peak ground motions using a database with feature sets of waveform filter-bank characteristics, and compare the results with the observed seismic parameters. We concluded that large database provides more accurate predictions of the ground motion information, such as peak ground acceleration, velocity, and displacement (PGA, PGV, PGD), than source parameters, such as hypocenter distance. Application of the KD tree search to organize the database reduced the average searching process by 85% time cost of the exhaustive method, allowing the method to be feasible for real-time implementation. The algorithm is straightforward and the results will reduce the overall time of warning delivery for EEW.

  10. Teleoperation with large time delay using a prevision system

    NASA Astrophysics Data System (ADS)

    Bergamasco, Massimo; De Paolis, Lucio; Ciancio, Stefano; Pinna, Sebastiano

    1997-12-01

    In teleoperation technology various techniques have been proposed in order to alleviate the effects of time delayed communication and to avoid the instability of the system. This paper describes a different approach to robotic teleoperation with large-time delay and a teleoperation system, based on teleprogramming paradigm, has been developed with the intent to improve the slave autonomy and to decrease the amount of information exchanged between master and slave system. The goal concept, specific of AI, has been used. In order to minimize the total task completion time has been introduced a prevision system, called Merlino, able to know in advance the slave's choices taking into account both the operator's actions and the information about the remote environment. The prevision system allows, in case of environment changes, to understand if the slave can solve the goal. Otherwise, Merlino is able to signal a 'fail situation.' Some experiments have been carried out by means of an advanced human-machine interface with force feedback, designed at PERCRO Laboratory of Scuola Superiore S. Anna, which gives a better sensation of presence in the remote environment.

  11. The big brown bat's perceptual dimension of target range

    NASA Astrophysics Data System (ADS)

    Simmons, James A.

    2005-09-01

    Big brown bats determine the distance to targets from echo delay, but information actually is entered onto the bat's psychological delay scale from two sources. The first is the target-ranging system itself, from the time that elapses between single-spike neural responses evoked by the broadcast and similar responses evoked by echoes at different delays. These responses register the FM sweeps of broadcasts or echoes, and the associated system of neural delay lines and coincidence detectors cross correlates the spectrograms along the time axis. The second source is the echo spectrum, which relates to shape expressed as range profile. The target-ranging system extracts this by fanning out to encompass parallel representations of many possible notch frequencies and notch widths in echoes. Bats perceive delay separations of 5-30 μs and have a resolution limit of about 2 μs, but interference amplifies small delay separations by transposing them into large changes in notch frequency, so only perception of intervals smaller than 5 μs is surprising. Experiments with phase-shifted echoes show that the psychological time scale can represent two different delays originating entirely in the time domain when they are at least as close together as 10 μs. [Work supported by NIH and ONR.

  12. Time delay in the Kuramoto model of coupled-phase oscillators

    NASA Astrophysics Data System (ADS)

    Yeung, Man Kit Stephen

    1999-10-01

    The Kuramoto model is a mean-field model of coupled phase oscillators with distributed natural frequencies. It was proposed to study collective synchronization in large systems of nonlinear oscillators. Here we generalize this model to allow time-delayed interactions. Despite the delay, synchronization is still possible. We derive exact stability conditions for the incoherent state, and for synchronized states and clustering states in the special case of noiseless identical oscillators. We also study the bifurcations of these states. We find that the incoherent state loses stability in a Hopf bifurcation. In the absence of noise, this leads to partial synchrony, where some oscillators are entrained to a common frequency. New phenomena caused by the delay include multistability among synchronization, incoherence, and clustering; and unsteady solutions with time-dependent order parameters. The experimental implications of the model are discussed for populations of chirping crickets, where the finite speed of sound causes communication delays, and for physical systems such as coupled phase- locked loops, lasers, and communication satellites.

  13. Preschool Children with and without Developmental Delay: Risk, Parenting, and Child Demandingness

    ERIC Educational Resources Information Center

    Brown, Mallory A.; McIntyre, Laura Lee; Crnic, Keith A.; Baker, Bruce L.; Blacher, Jan

    2011-01-01

    Although past literature has established relations between early child risk factors, negative parenting, and problematic child behavior, the nature of these interrelations and pathways of influence over time remains largely unknown, especially in children with developmental delays or disabilities. In the current study, data were drawn from the…

  14. Sex-Specific Associations between Umbilical Cord Blood Testosterone Levels and Language Delay in Early Childhood

    ERIC Educational Resources Information Center

    Whitehouse, Andrew J. O.; Mattes, Eugen; Maybery, Murray T.; Sawyer, Michael G.; Jacoby, Peter; Keelan, Jeffrey A.; Hickey, Martha

    2012-01-01

    Background: Preliminary evidence suggests that prenatal testosterone exposure may be associated with language delay. However, no study has examined a large sample of children at multiple time-points. Methods: Umbilical cord blood samples were obtained at 861 births and analysed for bioavailable testosterone (BioT) concentrations. When…

  15. Adaptive Control of Synchronization in Delay-Coupled Heterogeneous Networks of FitzHugh-Nagumo Nodes

    NASA Astrophysics Data System (ADS)

    Plotnikov, S. A.; Lehnert, J.; Fradkov, A. L.; Schöll, E.

    We study synchronization in delay-coupled neural networks of heterogeneous nodes. It is well known that heterogeneities in the nodes hinder synchronization when becoming too large. We show that an adaptive tuning of the overall coupling strength can be used to counteract the effect of the heterogeneity. Our adaptive controller is demonstrated on ring networks of FitzHugh-Nagumo systems which are paradigmatic for excitable dynamics but can also — depending on the system parameters — exhibit self-sustained periodic firing. We show that the adaptively tuned time-delayed coupling enables synchronization even if parameter heterogeneities are so large that excitable nodes coexist with oscillatory ones.

  16. Just-in-time connectivity for large spiking networks.

    PubMed

    Lytton, William W; Omurtag, Ahmet; Neymotin, Samuel A; Hines, Michael L

    2008-11-01

    The scale of large neuronal network simulations is memory limited due to the need to store connectivity information: connectivity storage grows as the square of neuron number up to anatomically relevant limits. Using the NEURON simulator as a discrete-event simulator (no integration), we explored the consequences of avoiding the space costs of connectivity through regenerating connectivity parameters when needed: just in time after a presynaptic cell fires. We explored various strategies for automated generation of one or more of the basic static connectivity parameters: delays, postsynaptic cell identities, and weights, as well as run-time connectivity state: the event queue. Comparison of the JitCon implementation to NEURON's standard NetCon connectivity method showed substantial space savings, with associated run-time penalty. Although JitCon saved space by eliminating connectivity parameters, larger simulations were still memory limited due to growth of the synaptic event queue. We therefore designed a JitEvent algorithm that added items to the queue only when required: instead of alerting multiple postsynaptic cells, a spiking presynaptic cell posted a callback event at the shortest synaptic delay time. At the time of the callback, this same presynaptic cell directly notified the first postsynaptic cell and generated another self-callback for the next delay time. The JitEvent implementation yielded substantial additional time and space savings. We conclude that just-in-time strategies are necessary for very large network simulations but that a variety of alternative strategies should be considered whose optimality will depend on the characteristics of the simulation to be run.

  17. Just in time connectivity for large spiking networks

    PubMed Central

    Lytton, William W.; Omurtag, Ahmet; Neymotin, Samuel A; Hines, Michael L

    2008-01-01

    The scale of large neuronal network simulations is memory-limited due to the need to store connectivity information: connectivity storage grows as the square of neuron number up to anatomically-relevant limits. Using the NEURON simulator as a discrete-event simulator (no integration), we explored the consequences of avoiding the space costs of connectivity through regenerating connectivity parameters when needed – just-in-time after a presynaptic cell fires. We explored various strategies for automated generation of one or more of the basic static connectivity parameters: delays, postsynaptic cell identities and weights, as well as run-time connectivity state: the event queue. Comparison of the JitCon implementation to NEURON’s standard NetCon connectivity method showed substantial space savings, with associated run-time penalty. Although JitCon saved space by eliminating connectivity parameters, larger simulations were still memory-limited due to growth of the synaptic event queue. We therefore designed a JitEvent algorithm that only added items to the queue when required: instead of alerting multiple postsynaptic cells, a spiking presynaptic cell posted a callback event at the shortest synaptic delay time. At the time of the callback, this same presynaptic cell directly notified the first postsynaptic cell and generated another self-callback for the next delay time. The JitEvent implementation yielded substantial additional time and space savings. We conclude that just-in-time strategies are necessary for very large network simulations but that a variety of alternative strategies should be considered whose optimality will depend on the characteristics of the simulation to be run. PMID:18533821

  18. Characteristics of lightning flashes generating sprites above thunderstorms

    NASA Astrophysics Data System (ADS)

    Soula, S.; Van Der Velde, O. A.; Montanya, J.; Fullekrug, M.; Mlynarczyk, J.

    2016-12-01

    Sprites are Transient Luminous Events (TLEs) consisting of streamer discharges, in response to a strong transient electrostatic field that exceeds the threshold for dielectric breakdown in the mesosphere. A large panel of sprite observations have been made with several low-light video cameras located in southern France, especially at Pic du Midi (2877 m) in the Pyrénées mountain range. The optical detection of these luminous events allow to determine some of their characteristics as the timing, the duration, the location, the size, the shape, the luminosity. Other parameters describing the storm and the lightning activity provided by different instruments are associated to the sprite observations to a better understanding of their conditions of production and their characteristic settings: (i) the sprites are essentially produced above the stratiform region of the Mesoscale Convective Systems during positive cloud-to-ground lightning flashes that produce large Charge Moment Change (CMC) and with a delay of as much shorter than the current is large. (ii) The long time delayed sprites are associated with continuing current and large CMC. (iii) The sprite elements can be shifted from the stroke location when their delay is long. (iv) Very luminous sprites can produce large current signatures visible in ELF radiation a few milliseconds (< 5 ms) after the positive strokes that generate them, but sometimes imbedded in that of the stroke pulse. (v) Several cases of "dancing sprites" show the successive light emissions reflect the timing and the location of the strokes of the lightning flashes that generate them.

  19. Global stability results for a generalized Lotka-Volterra system with distributed delays. Applications to predator-prey and to epidemic systems.

    PubMed

    Beretta, E; Capasso, V; Rinaldi, F

    1988-01-01

    The paper contains an extension of the general ODE system proposed in previous papers by the same authors, to include distributed time delays in the interaction terms. The new system describes a large class of Lotka-Volterra like population models and epidemic models with continuous time delays. Sufficient conditions for the boundedness of solutions and for the global asymptotic stability of nontrivial equilibrium solutions are given. A detailed analysis of the epidemic system is given with respect to the conditions for global stability. For a relevant subclass of these systems an existence criterion for steady states is also given.

  20. Effects of intrinsic stochasticity on delayed reaction-diffusion patterning systems.

    PubMed

    Woolley, Thomas E; Baker, Ruth E; Gaffney, Eamonn A; Maini, Philip K; Seirin-Lee, Sungrim

    2012-05-01

    Cellular gene expression is a complex process involving many steps, including the transcription of DNA and translation of mRNA; hence the synthesis of proteins requires a considerable amount of time, from ten minutes to several hours. Since diffusion-driven instability has been observed to be sensitive to perturbations in kinetic delays, the application of Turing patterning mechanisms to the problem of producing spatially heterogeneous differential gene expression has been questioned. In deterministic systems a small delay in the reactions can cause a large increase in the time it takes a system to pattern. Recently, it has been observed that in undelayed systems intrinsic stochasticity can cause pattern initiation to occur earlier than in the analogous deterministic simulations. Here we are interested in adding both stochasticity and delays to Turing systems in order to assess whether stochasticity can reduce the patterning time scale in delayed Turing systems. As analytical insights to this problem are difficult to attain and often limited in their use, we focus on stochastically simulating delayed systems. We consider four different Turing systems and two different forms of delay. Our results are mixed and lead to the conclusion that, although the sensitivity to delays in the Turing mechanism is not completely removed by the addition of intrinsic noise, the effects of the delays are clearly ameliorated in certain specific cases.

  1. Scaling beta-delayed neutron measurements to large detector areas

    NASA Astrophysics Data System (ADS)

    Sutanto, F.; Nattress, J.; Jovanovic, I.

    2017-08-01

    We explore the performance of a cargo screening system that consists of two large-sized composite scintillation detectors and a high-energy neutron interrogation source by modeling and simulation. The goal of the system is to measure β-delayed neutron emission from an illicit special nuclear material by use of active interrogation. This task is challenging because the β-delayed neutron yield is small in comparison with the yield of the prompt fission secondary products, β-delayed neutrons are emitted with relatively low energies, and high neutron and gamma backgrounds are typically present. Detectors used to measure delayed neutron emission must exhibit high intrinsic efficiency and cover a large solid angle, which also makes them sensitive to background neutron radiation. We present a case study where we attempt to detect the presence of 5 kg-scale quantities of 235U in a standard air-filled cargo container using 14 MeV neutrons as a probe. We find that by using a total measurement time of ˜11.6 s and a dose equivalent of ˜1.7 mrem, the presence of 235U can be detected with false positive and false negative probabilities that are both no larger than 0.1%.

  2. Age-related delay in visual and auditory evoked responses is mediated by white- and grey-matter differences.

    PubMed

    Price, D; Tyler, L K; Neto Henriques, R; Campbell, K L; Williams, N; Treder, M S; Taylor, J R; Henson, R N A

    2017-06-09

    Slowing is a common feature of ageing, yet a direct relationship between neural slowing and brain atrophy is yet to be established in healthy humans. We combine magnetoencephalographic (MEG) measures of neural processing speed with magnetic resonance imaging (MRI) measures of white and grey matter in a large population-derived cohort to investigate the relationship between age-related structural differences and visual evoked field (VEF) and auditory evoked field (AEF) delay across two different tasks. Here we use a novel technique to show that VEFs exhibit a constant delay, whereas AEFs exhibit delay that accumulates over time. White-matter (WM) microstructure in the optic radiation partially mediates visual delay, suggesting increased transmission time, whereas grey matter (GM) in auditory cortex partially mediates auditory delay, suggesting less efficient local processing. Our results demonstrate that age has dissociable effects on neural processing speed, and that these effects relate to different types of brain atrophy.

  3. Age-related delay in visual and auditory evoked responses is mediated by white- and grey-matter differences

    PubMed Central

    Price, D.; Tyler, L. K.; Neto Henriques, R.; Campbell, K. L.; Williams, N.; Treder, M.S.; Taylor, J. R.; Brayne, Carol; Bullmore, Edward T.; Calder, Andrew C.; Cusack, Rhodri; Dalgleish, Tim; Duncan, John; Matthews, Fiona E.; Marslen-Wilson, William D.; Rowe, James B.; Shafto, Meredith A.; Cheung, Teresa; Davis, Simon; Geerligs, Linda; Kievit, Rogier; McCarrey, Anna; Mustafa, Abdur; Samu, David; Tsvetanov, Kamen A.; van Belle, Janna; Bates, Lauren; Emery, Tina; Erzinglioglu, Sharon; Gadie, Andrew; Gerbase, Sofia; Georgieva, Stanimira; Hanley, Claire; Parkin, Beth; Troy, David; Auer, Tibor; Correia, Marta; Gao, Lu; Green, Emma; Allen, Jodie; Amery, Gillian; Amunts, Liana; Barcroft, Anne; Castle, Amanda; Dias, Cheryl; Dowrick, Jonathan; Fair, Melissa; Fisher, Hayley; Goulding, Anna; Grewal, Adarsh; Hale, Geoff; Hilton, Andrew; Johnson, Frances; Johnston, Patricia; Kavanagh-Williamson, Thea; Kwasniewska, Magdalena; McMinn, Alison; Norman, Kim; Penrose, Jessica; Roby, Fiona; Rowland, Diane; Sargeant, John; Squire, Maggie; Stevens, Beth; Stoddart, Aldabra; Stone, Cheryl; Thompson, Tracy; Yazlik, Ozlem; Barnes, Dan; Dixon, Marie; Hillman, Jaya; Mitchell, Joanne; Villis, Laura; Henson, R. N. A.

    2017-01-01

    Slowing is a common feature of ageing, yet a direct relationship between neural slowing and brain atrophy is yet to be established in healthy humans. We combine magnetoencephalographic (MEG) measures of neural processing speed with magnetic resonance imaging (MRI) measures of white and grey matter in a large population-derived cohort to investigate the relationship between age-related structural differences and visual evoked field (VEF) and auditory evoked field (AEF) delay across two different tasks. Here we use a novel technique to show that VEFs exhibit a constant delay, whereas AEFs exhibit delay that accumulates over time. White-matter (WM) microstructure in the optic radiation partially mediates visual delay, suggesting increased transmission time, whereas grey matter (GM) in auditory cortex partially mediates auditory delay, suggesting less efficient local processing. Our results demonstrate that age has dissociable effects on neural processing speed, and that these effects relate to different types of brain atrophy. PMID:28598417

  4. Internet Teleoperation of a Robot with Streaming Buffer System under Varying Time Delays

    NASA Astrophysics Data System (ADS)

    Park, Jahng-Hyon; Shin, Wanjae

    It is known that existence of irregular transmission time delay is a major bottleneck for application of advanced robot control schemes to internet telerobotic systems. In the internet teleoperation system, the irregular transmission time delay causes a critical problem, which includes instability and inaccuracy. This paper suggests a practical internet teleoperation system with streaming buffer system, which consists of a buffer, a buffer manager, and a control timer. The proposed system converts the irregular transmission time delay to a constant. So, the system effectively transmits the control input to a remote site to operate a robot stably and accurately. This feature enables short control input intervals. That means the entire system has a large control bandwidth. The validity of the proposed method is demonstrated by experiments of teleoperation from USC (University of Southern California in U. S.A.) to HYU (Hanyang Univ. in Korea) through the Internet. The proposed method is also demonstrated by experiments of teleoperation through the wireless internet.

  5. The Strong Lensing Time Delay Challenge (2014)

    NASA Astrophysics Data System (ADS)

    Liao, Kai; Dobler, G.; Fassnacht, C. D.; Treu, T.; Marshall, P. J.; Rumbaugh, N.; Linder, E.; Hojjati, A.

    2014-01-01

    Time delays between multiple images in strong lensing systems are a powerful probe of cosmology. At the moment the application of this technique is limited by the number of lensed quasars with measured time delays. However, the number of such systems is expected to increase dramatically in the next few years. Hundred such systems are expected within this decade, while the Large Synoptic Survey Telescope (LSST) is expected to deliver of order 1000 time delays in the 2020 decade. In order to exploit this bounty of lenses we needed to make sure the time delay determination algorithms have sufficiently high precision and accuracy. As a first step to test current algorithms and identify potential areas for improvement we have started a "Time Delay Challenge" (TDC). An "evil" team has created realistic simulated light curves, to be analyzed blindly by "good" teams. The challenge is open to all interested parties. The initial challenge consists of two steps (TDC0 and TDC1). TDC0 consists of a small number of datasets to be used as a training template. The non-mandatory deadline is December 1 2013. The "good" teams that complete TDC0 will be given access to TDC1. TDC1 consists of thousands of lightcurves, a number sufficient to test precision and accuracy at the subpercent level, necessary for time-delay cosmography. The deadline for responding to TDC1 is July 1 2014. Submissions will be analyzed and compared in terms of predefined metrics to establish the goodness-of-fit, efficiency, precision and accuracy of current algorithms. This poster describes the challenge in detail and gives instructions for participation.

  6. Cardiopulmonary adaptation in large for gestational age infants of diabetic and nondiabetic mothers.

    PubMed

    Vela-Huerta, M; Aguilera-López, A; Alarcón-Santos, S; Amador, N; Aldana-Valenzuela, C; Heredia, A

    2007-09-01

    To compare cardiopulmonary adaptation in large for gestational age infants of diabetic and nondiabetic mothers. Color Doppler echocardiography was performed in 113 (22 large for gestational age infants of diabetic mothers, 21 of nondiabetic mothers and 70 adequate for gestational age newborns) full-term infants. Pulmonary arterial pressure was significantly higher in infants of diabetic mothers than in those of nondiabetic mothers and normal infants at 24 h (38.5 vs. 32.5, and 35.5 mmHg, respectively). However, slow fall in this parameter was shown in all large for gestational age infants. Open ductus arteriosus was frequent in all large for gestational age infants, but its closure was significantly delayed in infants of diabetic mothers. Septal hypertrophy was higher in infants of diabetic mothers than in large for gestational age infants of nondiabetic mothers. Large for gestational age infants born from nondiabetic mothers showed delayed fall in pulmonary arterial pressure similar to those born from diabetic mothers but showed lower proportion of septal hypertrophy. Patent ductus arteriosus persisted for longer period of time in all large for gestational age infants than in normal infants, but its closure was significantly delayed in infants of diabetic mothers.

  7. Determination of differential arrival times by cross-correlating worldwide seismological data

    NASA Astrophysics Data System (ADS)

    Godano, M.; Nolet, G.; Zaroli, C.

    2012-12-01

    Cross-correlation delays are the preferred body wave observables in global tomography. Heterogeneity is the main factor influencing delay times found by cross-correlation. Not only the waveform, but also the arrival time itself is affected by differences in seismic velocity encountered along the way. An accurate method for estimating differential times of seismic arrivals across a regional array by cross-correlation was developed by VanDecar and Crosson [1990]. For the estimation of global travel time delays in different frequency bands, Sigloch and Nolet [2006] developed a method for the estimation of body wave delays using a matched filter, which requires the separate estimation of the source time function. Sigloch et al. [2008] found that waveforms often cluster in and opposite the direction of rupture propagation on the fault, confirming that the directivity effect is a major factor in shaping the waveform of large events. We propose a generalization of the VanDecar-Crosson method to which we add a correction for the directivity effect in the seismological data. The new method allows large events to be treated without the need to estimate the source time function for the computation of a matched synthetic waveform. The procedure consists in (1) the detection of the directivity effect in the data and the determination of a rupture model (unilateral or bilateral) explaining the differences in pulse duration among the stations, (2) the determination of an apparent fault rupture length explaining the pulse durations, (3) the removal of the delay due to the directivity effect in the pulse duration , by stretching or contracting the seismograms for directive and anti-directive stations respectively and (4) the application of a generalized VanDecar and Crosson method using only delays between pairs of stations that have an acceptable correlation coefficient. We validate our method by performing tests on synthetic data. Results show that the error between theoretical and measured differential arrival time are significantly reduced for the corrected data. We illustrate our method on data from several real earthquakes.

  8. Real-time kinematic PPP GPS for structure monitoring applied on the Severn Suspension Bridge, UK

    NASA Astrophysics Data System (ADS)

    Tang, Xu; Roberts, Gethin Wyn; Li, Xingxing; Hancock, Craig Matthew

    2017-09-01

    GPS is widely used for monitoring large civil engineering structures in real time or near real time. In this paper the use of PPP GPS for monitoring large structures is investigated. The bridge deformation results estimated using double differenced measurements is used as the truth against which the performance of kinematic PPP in a real-time scenario for bridge monitoring is assessed. The towers' datasets with millimetre level movement and suspension cable dataset with centimetre/decimetre level movement were processed by both PPP and DD data processing methods. The consistency of tower PPP time series indicated that the wet tropospheric delay is the major obstacle for small deflection extraction. The results of suspension cable survey points indicate that an ionospheric-free linear measurement is competent for bridge deformation by PPP kinematic model, the frequency domain analysis yields very similar results using either PPP or DD. This gives evidence that PPP can be used as an alternative method to DD for large structure monitoring when DD is difficult or impossible because of large baseline lengths, power outages or natural disasters. The PPP residual tropospheric wet delays can be applied to improve the capacity of small movement extraction.

  9. Bifurcation to large period oscillations in physical systems controlled by delay

    NASA Astrophysics Data System (ADS)

    Erneux, Thomas; Walther, Hans-Otto

    2005-12-01

    An unusual bifurcation to time-periodic oscillations of a class of delay differential equations is investigated. As we approach the bifurcation point, both the amplitude and the frequency of the oscillations go to zero. The class of delay differential equations is a nonlinear extension of a nonevasive control method and is motivated by a recent study of the foreign exchange rate oscillations. By using asymptotic methods, we determine the bifurcation scaling laws for the amplitude and the period of the oscillations.

  10. Aging transition in systems of oscillators with global distributed-delay coupling.

    PubMed

    Rahman, B; Blyuss, K B; Kyrychko, Y N

    2017-09-01

    We consider a globally coupled network of active (oscillatory) and inactive (nonoscillatory) oscillators with distributed-delay coupling. Conditions for aging transition, associated with suppression of oscillations, are derived for uniform and gamma delay distributions in terms of coupling parameters and the proportion of inactive oscillators. The results suggest that for the uniform distribution increasing the width of distribution for the same mean delay allows aging transition to happen for a smaller coupling strength and a smaller proportion of inactive elements. For gamma distribution with sufficiently large mean time delay, it may be possible to achieve aging transition for an arbitrary proportion of inactive oscillators, as long as the coupling strength lies in a certain range.

  11. Longitudinal Handling Qualities of the Tu-144LL Airplane and Comparisons With Other Large, Supersonic Aircraft

    NASA Technical Reports Server (NTRS)

    Cox, Timothy H.; Marshall, Alisa

    2000-01-01

    Four flights have been conducted using the Tu-144LL supersonic transport aircraft with the dedicated objective of collecting quantitative data and qualitative pilot comments. These data are compared with the following longitudinal flying qualities criteria: Neal-Smith, short-period damping, time delay, control anticipation parameter, phase delay (omega(sp)*T(theta(2))), pitch bandwidth as a function of time delay, and flight path as a function of pitch bandwidth. Determining the applicability of these criteria and gaining insight into the flying qualities of a large, supersonic aircraft are attempted. Where appropriate, YF-12, XB-70, and SR-71 pilot ratings are compared with the Tu-144LL results to aid in the interpretation of the Tu-144LL data and to gain insight into the application of criteria. The data show that approach and landing requirements appear to be applicable to the precision flightpath control required for up-and-away flight of large, supersonic aircraft. The Neal-Smith, control anticipation parameter, and pitch-bandwidth criteria tend to correlate with the pilot comments better than the phase delay criterion, omega(sp)*T(theta(2)). The data indicate that the detrimental flying qualities implication of decoupled pitch-attitude and flightpath responses occurring for high-speed flight may be mitigated by requiring the pilot to close the loop on flightpath or vertical speed.

  12. Projective-anticipating, projective, and projective-lag synchronization of time-delayed chaotic systems on random networks.

    PubMed

    Feng, Cun-Fang; Xu, Xin-Jian; Wang, Sheng-Jun; Wang, Ying-Hai

    2008-06-01

    We study projective-anticipating, projective, and projective-lag synchronization of time-delayed chaotic systems on random networks. We relax some limitations of previous work, where projective-anticipating and projective-lag synchronization can be achieved only on two coupled chaotic systems. In this paper, we realize projective-anticipating and projective-lag synchronization on complex dynamical networks composed of a large number of interconnected components. At the same time, although previous work studied projective synchronization on complex dynamical networks, the dynamics of the nodes are coupled partially linear chaotic systems. In this paper, the dynamics of the nodes of the complex networks are time-delayed chaotic systems without the limitation of the partial linearity. Based on the Lyapunov stability theory, we suggest a generic method to achieve the projective-anticipating, projective, and projective-lag synchronization of time-delayed chaotic systems on random dynamical networks, and we find both its existence and sufficient stability conditions. The validity of the proposed method is demonstrated and verified by examining specific examples using Ikeda and Mackey-Glass systems on Erdos-Renyi networks.

  13. Improved disturbance rejection for predictor-based control of MIMO linear systems with input delay

    NASA Astrophysics Data System (ADS)

    Shi, Shang; Liu, Wenhui; Lu, Junwei; Chu, Yuming

    2018-02-01

    In this paper, we are concerned with the predictor-based control of multi-input multi-output (MIMO) linear systems with input delay and disturbances. By taking the future values of disturbances into consideration, a new improved predictive scheme is proposed. Compared with the existing predictive schemes, our proposed predictive scheme can achieve a finite-time exact state prediction for some smooth disturbances including the constant disturbances, and a better disturbance attenuation can also be achieved for a large class of other time-varying disturbances. The attenuation of mismatched disturbances for second-order linear systems with input delay is also investigated by using our proposed predictor-based controller.

  14. Lectures on algebraic system theory: Linear systems over rings

    NASA Technical Reports Server (NTRS)

    Kamen, E. W.

    1978-01-01

    The presentation centers on four classes of systems that can be treated as linear systems over a ring. These are: (1) discrete-time systems over a ring of scalars such as the integers; (2) continuous-time systems containing time delays; (3) large-scale discrete-time systems; and (4) time-varying discrete-time systems.

  15. Time delay and magnification centroid due to gravitational lensing by black holes and naked singularities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Virbhadra, K. S.; Keeton, C. R.; Department of Physics and Astronomy, Rutgers University, 136 Frelinghuysen Road, Piscataway, NJ 08854

    We model the massive dark object at the center of the Galaxy as a Schwarzschild black hole as well as Janis-Newman-Winicour naked singularities, characterized by the mass and scalar charge parameters, and study gravitational lensing (particularly time delay, magnification centroid, and total magnification) by them. We find that the lensing features are qualitatively similar (though quantitatively different) for Schwarzschild black holes, weakly naked, and marginally strongly naked singularities. However, the lensing characteristics of strongly naked singularities are qualitatively very different from those due to Schwarzschild black holes. The images produced by Schwarzschild black hole lenses and weakly naked and marginallymore » strongly naked singularity lenses always have positive time delays. On the other hand, strongly naked singularity lenses can give rise to images with positive, zero, or negative time delays. In particular, for a large angular source position the direct image (the outermost image on the same side as the source) due to strongly naked singularity lensing always has a negative time delay. We also found that the scalar field decreases the time delay and increases the total magnification of images; this result could have important implications for cosmology. As the Janis-Newman-Winicour metric also describes the exterior gravitational field of a scalar star, naked singularities as well as scalar star lenses, if these exist in nature, will serve as more efficient cosmic telescopes than regular gravitational lenses.« less

  16. Time and frequency transfer by the Master-Slave Returnable Timing System technique - Application to solar power transmission

    NASA Technical Reports Server (NTRS)

    Lindsey, W. C.; Kantak, A. V.

    1979-01-01

    The concept of the Master Slave Returnable Timing System (MSRTS) is presented which combines the advantages of the master slave (MS) and the Returnable Timing System (RTS) for time and frequency transfer. The basic idea of MSRTS is to send the time-frequency signal received at a particular node back to the sending node. The delay accumulated by this return signal is used to advance the phase of the master (sending) node thereby canceling the effect of the delay introduced by the path. The method can be used in highly accurate clock distribution systems required in avionics, computer communications, and large retrodirective phased arrays such as the Solar Power Satellite.

  17. On the convergence of ionospheric constrained precise point positioning (IC-PPP) based on undifferential uncombined raw GNSS observations.

    PubMed

    Zhang, Hongping; Gao, Zhouzheng; Ge, Maorong; Niu, Xiaoji; Huang, Ling; Tu, Rui; Li, Xingxing

    2013-11-18

    Precise Point Positioning (PPP) has become a very hot topic in GNSS research and applications. However, it usually takes about several tens of minutes in order to obtain positions with better than 10 cm accuracy. This prevents PPP from being widely used in real-time kinematic positioning services, therefore, a large effort has been made to tackle the convergence problem. One of the recent approaches is the ionospheric delay constrained precise point positioning (IC-PPP) that uses the spatial and temporal characteristics of ionospheric delays and also delays from an a priori model. In this paper, the impact of the quality of ionospheric models on the convergence of IC-PPP is evaluated using the IGS global ionospheric map (GIM) updated every two hours and a regional satellite-specific correction model. Furthermore, the effect of the receiver differential code bias (DCB) is investigated by comparing the convergence time for IC-PPP with and without estimation of the DCB parameter. From the result of processing a large amount of data, on the one hand, the quality of the a priori ionosphere delays plays a very important role in IC-PPP convergence. Generally, regional dense GNSS networks can provide more precise ionosphere delays than GIM and can consequently reduce the convergence time. On the other hand, ignoring the receiver DCB may considerably extend its convergence, and the larger the DCB, the longer the convergence time. Estimating receiver DCB in IC-PPP is a proper way to overcome this problem. Therefore, current IC-PPP should be enhanced by estimating receiver DCB and employing regional satellite-specific ionospheric correction models in order to speed up its convergence for more practical applications.

  18. On the Convergence of Ionospheric Constrained Precise Point Positioning (IC-PPP) Based on Undifferential Uncombined Raw GNSS Observations

    PubMed Central

    Zhang, Hongping; Gao, Zhouzheng; Ge, Maorong; Niu, Xiaoji; Huang, Ling; Tu, Rui; Li, Xingxing

    2013-01-01

    Precise Point Positioning (PPP) has become a very hot topic in GNSS research and applications. However, it usually takes about several tens of minutes in order to obtain positions with better than 10 cm accuracy. This prevents PPP from being widely used in real-time kinematic positioning services, therefore, a large effort has been made to tackle the convergence problem. One of the recent approaches is the ionospheric delay constrained precise point positioning (IC-PPP) that uses the spatial and temporal characteristics of ionospheric delays and also delays from an a priori model. In this paper, the impact of the quality of ionospheric models on the convergence of IC-PPP is evaluated using the IGS global ionospheric map (GIM) updated every two hours and a regional satellite-specific correction model. Furthermore, the effect of the receiver differential code bias (DCB) is investigated by comparing the convergence time for IC-PPP with and without estimation of the DCB parameter. From the result of processing a large amount of data, on the one hand, the quality of the a priori ionosphere delays plays a very important role in IC-PPP convergence. Generally, regional dense GNSS networks can provide more precise ionosphere delays than GIM and can consequently reduce the convergence time. On the other hand, ignoring the receiver DCB may considerably extend its convergence, and the larger the DCB, the longer the convergence time. Estimating receiver DCB in IC-PPP is a proper way to overcome this problem. Therefore, current IC-PPP should be enhanced by estimating receiver DCB and employing regional satellite-specific ionospheric correction models in order to speed up its convergence for more practical applications. PMID:24253190

  19. A position- and time-sensitive photon-counting detector with delay- line read-out

    NASA Astrophysics Data System (ADS)

    Jagutzki, Ottmar; Dangendorf, Volker; Lauck, Ronald; Czasch, Achim; Milnes, James

    2007-05-01

    We have developed image intensifier tubes with delay-anode read-out for time- and position-sensitive photon counting. The timing precision is better than 1 ns with 1000x1000 pixels position resolution and up to one megacounts/s processing rate. Large format detectors of 40 and 75 mm active diameter with internal helical-wire delay-line anodes have been produced and specified. A different type of 40 and 25 mm tubes with semi-conducting screen for image charge read-out allow for an economic and robust tube design and for placing the read-out anodes outside the sealed housing. Two types of external delay-line anodes, i.e. pick-up electrodes for the image charge, have been tested. We present tests of the detector and anode performance. Due to the low background this technique is well suited for applications with very low light intensity and especially if a precise time tagging for each photon is required. As an example we present the application of scintillator read-out in time-of-flight (TOF) neutron radiography. Further applications so far are Fluorescence Life-time Microscopy (FLIM) and Astronomy.

  20. Slow-onset and fast-onset symptom presentations in acute coronary syndrome (ACS): new perspectives on prehospital delay in patients with ACS.

    PubMed

    O'Donnell, Sharon; McKee, Gabrielle; Mooney, Mary; O'Brien, Frances; Moser, Debra K

    2014-04-01

    Patient decision delay is the main reason why many patients fail to receive timely medical intervention for symptoms of acute coronary syndrome (ACS). This study examines the validity of slow-onset and fast-onset ACS presentations and their influence on ACS prehospital delay times. A fast-onset ACS presentation is characterized by sudden, continuous, and severe chest pain, and slow-onset ACS pertains to all other ACS presentations. Baseline data pertaining to medical profiles, prehospital delay times, and ACS symptoms were recorded for all ACS patients who participated in a large multisite randomized control trial (RCT) in Dublin, Ireland. Patients were interviewed 2-4 days after their ACS event, and data were gathered using the ACS Response to Symptom Index. Only baseline data from the RCT, N = 893 patients, were analyzed. A total of 65% (n = 577) of patients experienced slow-onset ACS presentation, whereas 35% (n = 316) experienced fast-onset ACS. Patients who experienced slow-onset ACS were significantly more likely to have longer prehospital delays than patients with fast-onset ACS (3.5 h vs. 2.0 h, respectively, t = -5.63, df 890, p < 0.001). A multivariate analysis of delay revealed that, in the presence of other known delay factors, the only independent predictors of delay were slow-onset and fast-onset ACS (β = -.096, p < 0.002) and other factors associated with patient behavior. Slow-onset ACS and fast-onset ACS presentations are associated with distinct behavioral patterns that significantly influence prehospital time frames. As such, slow-onset ACS and fast-onset ACS are legitimate ACS presentation phenomena that should be seriously considered when examining the factors associated with prehospital delay. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Microcontroller based system for electrical breakdown time delay measurement in gas-filled devices.

    PubMed

    Pejović, Milić M; Denić, Dragan B; Pejović, Momčilo M; Nešić, Nikola T; Vasović, Nikola

    2010-10-01

    This paper presents realization of a digital embedded system for measuring electrical breakdown time delay. The proposed system consists of three major parts: dc voltage supply, analog subsystem, and a digital subsystem. Any dc power source with the range from 100 to 1000 V can be used in this application. The analog subsystem should provide fast and accurate voltage switching on the testing device as well as transform the signals that represent the voltage pulse on the device and the device breakdown into the form suitable for detection by a digital subsystem. The insulated gate bipolar transistor IRG4PH40KD driven by TC429 MOSFET driver is used for high voltage switching on the device. The aim of a digital subsystem is to detect the signals from the analog subsystem and to measure the elapsed time between their occurrences. Moreover, the digital subsystem controls various parameters that influence time delay and provides fast data storage for a large number of measured data. For this propose, we used the PIC18F4550 microcontroller with a full-speed compatible universal serial bus (USB) engine. Operation of this system is verified on different commercial and custom made gas devices with different structure and breakdown mechanisms. The electrical breakdown time delay measurements have been carried out as a function of several parameters, which dominantly influence electrical breakdown time delay. The obtained results have been verified using statistical methods, and they show good agreement with the theory. The proposed system shows good repeatability, sensitivity, and stability for measuring the electrical breakdown time delay.

  2. Microcontroller based system for electrical breakdown time delay measurement in gas-filled devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pejovic, Milic M.; Denic, Dragan B.; Pejovic, Momcilo M.

    2010-10-15

    This paper presents realization of a digital embedded system for measuring electrical breakdown time delay. The proposed system consists of three major parts: dc voltage supply, analog subsystem, and a digital subsystem. Any dc power source with the range from 100 to 1000 V can be used in this application. The analog subsystem should provide fast and accurate voltage switching on the testing device as well as transform the signals that represent the voltage pulse on the device and the device breakdown into the form suitable for detection by a digital subsystem. The insulated gate bipolar transistor IRG4PH40KD driven bymore » TC429 MOSFET driver is used for high voltage switching on the device. The aim of a digital subsystem is to detect the signals from the analog subsystem and to measure the elapsed time between their occurrences. Moreover, the digital subsystem controls various parameters that influence time delay and provides fast data storage for a large number of measured data. For this propose, we used the PIC18F4550 microcontroller with a full-speed compatible universal serial bus (USB) engine. Operation of this system is verified on different commercial and custom made gas devices with different structure and breakdown mechanisms. The electrical breakdown time delay measurements have been carried out as a function of several parameters, which dominantly influence electrical breakdown time delay. The obtained results have been verified using statistical methods, and they show good agreement with the theory. The proposed system shows good repeatability, sensitivity, and stability for measuring the electrical breakdown time delay.« less

  3. Complex dynamics in the Leslie-Gower type of the food chain system with multiple delays

    NASA Astrophysics Data System (ADS)

    Guo, Lei; Song, Zi-Gen; Xu, Jian

    2014-08-01

    In this paper, we present a Leslie-Gower type of food chain system composed of three species, which are resource, consumer, and predator, respectively. The digestion time delays corresponding to consumer-eat-resource and predator-eat-consumer are introduced for more realistic consideration. It is called the resource digestion delay (RDD) and consumer digestion delay (CDD) for simplicity. Analyzing the corresponding characteristic equation, the stabilities of the boundary and interior equilibrium points are studied. The food chain system exhibits the species coexistence for the small values of digestion delays. Large RDD/CDD may destabilize the species coexistence and induce the system dynamic into recurrent bloom or system collapse. Further, the present of multiple delays can control species population into the stable coexistence. To investigate the effect of time delays on the recurrent bloom of species population, the Hopf bifurcation and periodic solution are investigated in detail in terms of the central manifold reduction and normal form method. Finally, numerical simulations are performed to display some complex dynamics, which include multiple periodic solution and chaos motion for the different values of system parameters. The system dynamic behavior evolves into the chaos motion by employing the period-doubling bifurcation.

  4. The character of pulse delays during radio bursts in the pulsar B0943+10

    NASA Astrophysics Data System (ADS)

    Suleymanova, S. A.; Pugachev, V. D.

    2017-05-01

    Results of a new series of observations of the anomalous pulsar B0943+10 carried out on the Large Scanning Antenna and DKR-1000 radio telescope of the Pushchino Radio Astronomy Observatory at 112 and 62 MHz, respectively, are presented. Several hundred pulse-arrival times (PATs) obtained on various days in 2013-2016 that correspond to the burst (B) mode emission are analyzed. A method for establishing the many-hour pulse shift in the emission window from 3.5-minute fragments is proposed. The delay of the mean pulse relative to the pre-calculated value follows an exponential law with a relaxation time of about 47 minutes. The pulse delay grows by 6 ms during the five hours following the onset of a burst. The random scatter of the residual PAT deviations is comparable to the amplitude of the systematic variations in these times over the lifetime of the B mode. These observations show that the character of the pulse delay as a function of time is the same at 112 and 62 MHz.

  5. Real-time correction of beamforming time delay errors in abdominal ultrasound imaging

    NASA Astrophysics Data System (ADS)

    Rigby, K. W.

    2000-04-01

    The speed of sound varies with tissue type, yet commercial ultrasound imagers assume a constant sound speed. Sound speed variation in abdominal fat and muscle layers is widely believed to be largely responsible for poor contrast and resolution in some patients. The simplest model of the abdominal wall assumes that it adds a spatially varying time delay to the ultrasound wavefront. The adequacy of this model is controversial. We describe an adaptive imaging system consisting of a GE LOGIQ 700 imager connected to a multi- processor computer. Arrival time errors for each beamforming channel, estimated by correlating each channel signal with the beamsummed signal, are used to correct the imager's beamforming time delays at the acoustic frame rate. A multi- row transducer provides two-dimensional sampling of arrival time errors. We observe significant improvement in abdominal images of healthy male volunteers: increased contrast of blood vessels, increased visibility of the renal capsule, and increased brightness of the liver.

  6. An FPGA Implementation of a Polychronous Spiking Neural Network with Delay Adaptation.

    PubMed

    Wang, Runchun; Cohen, Gregory; Stiefel, Klaus M; Hamilton, Tara Julia; Tapson, Jonathan; van Schaik, André

    2013-01-01

    We present an FPGA implementation of a re-configurable, polychronous spiking neural network with a large capacity for spatial-temporal patterns. The proposed neural network generates delay paths de novo, so that only connections that actually appear in the training patterns will be created. This allows the proposed network to use all the axons (variables) to store information. Spike Timing Dependent Delay Plasticity is used to fine-tune and add dynamics to the network. We use a time multiplexing approach allowing us to achieve 4096 (4k) neurons and up to 1.15 million programmable delay axons on a Virtex 6 FPGA. Test results show that the proposed neural network is capable of successfully recalling more than 95% of all spikes for 96% of the stored patterns. The tests also show that the neural network is robust to noise from random input spikes.

  7. Radiative transfer theory for a random distribution of low velocity spheres as resonant isotropic scatterers

    NASA Astrophysics Data System (ADS)

    Sato, Haruo; Hayakawa, Toshihiko

    2014-10-01

    Short-period seismograms of earthquakes are complex especially beneath volcanoes, where the S wave mean free path is short and low velocity bodies composed of melt or fluid are expected in addition to random velocity inhomogeneities as scattering sources. Resonant scattering inherent in a low velocity body shows trap and release of waves with a delay time. Focusing of the delay time phenomenon, we have to consider seriously multiple resonant scattering processes. Since wave phases are complex in such a scattering medium, the radiative transfer theory has been often used to synthesize the variation of mean square (MS) amplitude of waves; however, resonant scattering has not been well adopted in the conventional radiative transfer theory. Here, as a simple mathematical model, we study the sequence of isotropic resonant scattering of a scalar wavelet by low velocity spheres at low frequencies, where the inside velocity is supposed to be low enough. We first derive the total scattering cross-section per time for each order of scattering as the convolution kernel representing the decaying scattering response. Then, for a random and uniform distribution of such identical resonant isotropic scatterers, we build the propagator of the MS amplitude by using causality, a geometrical spreading factor and the scattering loss. Using those propagators and convolution kernels, we formulate the radiative transfer equation for a spherically impulsive radiation from a point source. The synthesized MS amplitude time trace shows a dip just after the direct arrival and a delayed swelling, and then a decaying tail at large lapse times. The delayed swelling is a prominent effect of resonant scattering. The space distribution of synthesized MS amplitude shows a swelling near the source region in space, and it becomes a bell shape like a diffusion solution at large lapse times.

  8. Anisotropy modulations of femtosecond laser pulse induced periodic surface structures on silicon by adjusting double pulse delay.

    PubMed

    Han, Weina; Jiang, Lan; Li, Xiaowei; Wang, Qingsong; Li, Hao; Lu, YongFeng

    2014-06-30

    We demonstrate that the polarization-dependent anisotropy of the laser-induced periodic surface structure (LIPSS) on silicon can be adjusted by designing a femtosecond laser pulse train (800 nm, 50 fs, 1 kHz). By varying the pulse delay from 100 to 1600 fs within a double pulse train to reduce the deposited pulse energy, which weakens the directional surface plasmon polarition (SPP)-laser energy coupling based on the initial formed ripple structure, the polarization-dependent geometrical morphology of the LIPSS evolves from a nearly isotropic circular shape to a somewhat elongated elliptical shape. Meanwhile, the controllable anisotropy of the two-dimensional scanned-line widths with different directions is achieved based on a certain pulse delay combined with the scanning speed. This can effectively realize better control over large-area uniform LIPSS formation. As an example, we further show that the large-area LIPSS can be formed with different scanning times under different pulse delays.

  9. Long-term monitoring of Ark 120 with Swift

    NASA Astrophysics Data System (ADS)

    Gliozzi, M.; Papadakis, I. E.; Grupe, D.; Brinkmann, W. P.; Räth, C.

    2017-02-01

    We report the results of a six-month Swift monitoring campaign of Ark 120, a prototypical `bare' Seyfert 1 galaxy. The lack of intrinsic absorption combined with the nearly contemporaneous coverage of the ultraviolet (UV) and X-ray bands makes it possible to investigate the link between the accretion disc and the putative Comptonization corona. Our observations confirm the presence of substantial temporal variability, with the X-ray characterized by large-amplitude flux changes on time-scales of few days, while the variations in the UV bands are smoother and occur on time-scales of several weeks. The source also shows spectral variability with the X-ray spectrum steepening when the source is brighter. We do not detect any correlation between the UV flux and the X-ray spectral slope. A cross-correlation analysis suggests positive delays between X-rays and the UV emission, favouring a scenario of disc reprocessing. Although the strength of the correlation is moderate with a delay which is not well constrained (7.5 ± 7 d), it is nevertheless indicative of a very large disc reprocessing region, with a separation between the X-ray and the UV-emitting regions, which could be as large as 1000 rG. The Ark 120 correlation results are in agreement with those obtained in similar multiwavelength monitoring studies of active galactic nuclei (AGN). When combined together, the observations so far can be well described by a linear relation between the X-ray/UV delays and the mass of the central black hole. Within the context of the simplest scenario, where these delays correspond to light-travel times, the implied distance between the X-ray source and the optical/UV disc reprocessing region in these AGN should be of the order of many hundreds of gravitational radii.

  10. Long-Delayed Aftershocks in New Zealand and the 2016 M7.8 Kaikoura Earthquake

    NASA Astrophysics Data System (ADS)

    Shebalin, P.; Baranov, S.

    2017-10-01

    We study aftershock sequences of six major earthquakes in New Zealand, including the 2016 M7.8 Kaikaoura and 2016 M7.1 North Island earthquakes. For Kaikaoura earthquake, we assess the expected number of long-delayed large aftershocks of M5+ and M5.5+ in two periods, 0.5 and 3 years after the main shocks, using 75 days of available data. We compare results with obtained for other sequences using same 75-days period. We estimate the errors by considering a set of magnitude thresholds and corresponding periods of data completeness and consistency. To avoid overestimation of the expected rates of large aftershocks, we presume a break of slope of the magnitude-frequency relation in the aftershock sequences, and compare two models, with and without the break of slope. Comparing estimations to the actual number of long-delayed large aftershocks, we observe, in general, a significant underestimation of their expected number. We can suppose that the long-delayed aftershocks may reflect larger-scale processes, including interaction of faults, that complement an isolated relaxation process. In the spirit of this hypothesis, we search for symptoms of the capacity of the aftershock zone to generate large events months after the major earthquake. We adapt an algorithm EAST, studying statistics of early aftershocks, to the case of secondary aftershocks within aftershock sequences of major earthquakes. In retrospective application to the considered cases, the algorithm demonstrates an ability to detect in advance long-delayed aftershocks both in time and space domains. Application of the EAST algorithm to the 2016 M7.8 Kaikoura earthquake zone indicates that the most likely area for a delayed aftershock of M5.5+ or M6+ is at the northern end of the zone in Cook Strait.

  11. Previous Cocaine Exposure Makes Rats Hypersensitive to Both Delay and Reward Magnitude

    PubMed Central

    Roesch, Matthew R.; Takahashi, Yuji; Gugsa, Nishan; Bissonette, Gregory B.; Schoenbaum, Geoffrey

    2008-01-01

    Animals prefer an immediate over a delayed reward, just as they prefer a large over a small reward. Exposure to psychostimulants causes long-lasting changes in structures critical for this behavior and might disrupt normal time-discounting performance. To test this hypothesis, we exposed rats to cocaine daily for 2 weeks (30 mg/kg, i.p.). Approximately 6 weeks later, we tested them on a variant of a time-discounting task, in which the rats responded to one of two locations to obtain reward while we independently manipulated the delay to reward and reward magnitude. Performance did not differ between cocaine-treated and saline-treated (control) rats when delay lengths and reward magnitudes were equal at the two locations. However, cocaine-treated rats were significantly more likely to shift their responding when we increased the delay or reward size asymmetrically. Furthermore, they were slower to respond and made more errors when forced to the side associated with the lower value. We conclude that previous exposure to cocaine makes choice behavior hypersensitive to differences in the time to and size of available rewards, consistent with a general effect of cocaine exposure on reward valuation mechanisms. PMID:17202492

  12. Previous cocaine exposure makes rats hypersensitive to both delay and reward magnitude.

    PubMed

    Roesch, Matthew R; Takahashi, Yuji; Gugsa, Nishan; Bissonette, Gregory B; Schoenbaum, Geoffrey

    2007-01-03

    Animals prefer an immediate over a delayed reward, just as they prefer a large over a small reward. Exposure to psychostimulants causes long-lasting changes in structures critical for this behavior and might disrupt normal time-discounting performance. To test this hypothesis, we exposed rats to cocaine daily for 2 weeks (30 mg/kg, i.p.). Approximately 6 weeks later, we tested them on a variant of a time-discounting task, in which the rats responded to one of two locations to obtain reward while we independently manipulated the delay to reward and reward magnitude. Performance did not differ between cocaine-treated and saline-treated (control) rats when delay lengths and reward magnitudes were equal at the two locations. However, cocaine-treated rats were significantly more likely to shift their responding when we increased the delay or reward size asymmetrically. Furthermore, they were slower to respond and made more errors when forced to the side associated with the lower value. We conclude that previous exposure to cocaine makes choice behavior hypersensitive to differences in the time to and size of available rewards, consistent with a general effect of cocaine exposure on reward valuation mechanisms.

  13. The dynamics and control of large flexible space structures X, part 1

    NASA Technical Reports Server (NTRS)

    Bainum, Peter M.; Reddy, A. S. S. R.; Li, Feiyue; Diarra, Cheick M.

    1987-01-01

    The effect of delay in the control system input on the stability of a continuously acting controller which is designed without considering the delay is studied. The stability analysis of a second order plant is studied analytically and verified numerically. For this example it is found that the system becomes unstable for a delay which is equivalent to only 16 percent of its natural period of motion. It is also observed that even a small amount of natural damping in the system can increase the amount of delay that can be tolerated before the onset of instability. The delay problem is formulated in the discrete time domain and an analysis procedure suggested. The maximum principle from optimal control theory is applied to minimize the time required for the slewing of a general rigid spacecraft. The slewing motion need not be restricted to a single axis maneuver. The minimum slewing time is calculated based on a quasi-linearization algorithm for the resulting two point boundary value problem. Numerical examples based on the rigidized in-orbit model of the SCOLE also include the more general reflector line-of-sight slewing maneuvers.

  14. Streamlining Workflow for Endovascular Mechanical Thrombectomy: Lessons Learned from a Comprehensive Stroke Center.

    PubMed

    Wang, Hongjin; Thevathasan, Arthur; Dowling, Richard; Bush, Steven; Mitchell, Peter; Yan, Bernard

    2017-08-01

    Recently, 5 randomized controlled trials confirmed the superiority of endovascular mechanical thrombectomy (EMT) to intravenous thrombolysis in acute ischemic stroke with large-vessel occlusion. The implication is that our health systems would witness an increasing number of patients treated with EMT. However, in-hospital delays, leading to increased time to reperfusion, are associated with poor clinical outcomes. This review outlines the in-hospital workflow of the treatment of acute ischemic stroke at a comprehensive stroke center and the lessons learned in reduction of in-hospital delays. The in-hospital workflow for acute ischemic stroke was described from prehospital notification to femoral arterial puncture in preparation for EMT. Systematic review of literature was also performed with PubMed. The implementation of workflow streamlining could result in reduction of in-hospital time delays for patients who were eligible for EMT. In particular, time-critical measures, including prehospital notification, the transfer of patients from door to computed tomography (CT) room, initiation of intravenous thrombolysis in the CT room, and the mobilization of neurointervention team in parallel with thrombolysis, all contributed to reduction in time delays. We have identified issues resulting in in-hospital time delays and have reported possible solutions to improve workflow efficiencies. We believe that these measures may help stroke centers initiate an EMT service for eligible patients. Copyright © 2017 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  15. High-Speed Interrogation for Large-Scale Fiber Bragg Grating Sensing

    PubMed Central

    Hu, Chenyuan; Bai, Wei

    2018-01-01

    A high-speed interrogation scheme for large-scale fiber Bragg grating (FBG) sensing arrays is presented. This technique employs parallel computing and pipeline control to modulate incident light and demodulate the reflected sensing signal. One Electro-optic modulator (EOM) and one semiconductor optical amplifier (SOA) were used to generate a phase delay to filter reflected spectrum form multiple candidate FBGs with the same optical path difference (OPD). Experimental results showed that the fastest interrogation delay time for the proposed method was only about 27.2 us for a single FBG interrogation, and the system scanning period was only limited by the optical transmission delay in the sensing fiber owing to the multiple simultaneous central wavelength calculations. Furthermore, the proposed FPGA-based technique had a verified FBG wavelength demodulation stability of ±1 pm without average processing. PMID:29495263

  16. High-Speed Interrogation for Large-Scale Fiber Bragg Grating Sensing.

    PubMed

    Hu, Chenyuan; Bai, Wei

    2018-02-24

    A high-speed interrogation scheme for large-scale fiber Bragg grating (FBG) sensing arrays is presented. This technique employs parallel computing and pipeline control to modulate incident light and demodulate the reflected sensing signal. One Electro-optic modulator (EOM) and one semiconductor optical amplifier (SOA) were used to generate a phase delay to filter reflected spectrum form multiple candidate FBGs with the same optical path difference (OPD). Experimental results showed that the fastest interrogation delay time for the proposed method was only about 27.2 us for a single FBG interrogation, and the system scanning period was only limited by the optical transmission delay in the sensing fiber owing to the multiple simultaneous central wavelength calculations. Furthermore, the proposed FPGA-based technique had a verified FBG wavelength demodulation stability of ±1 pm without average processing.

  17. Data Assimilation by delay-coordinate nudging

    NASA Astrophysics Data System (ADS)

    Pazo, Diego; Lopez, Juan Manuel; Carrassi, Alberto

    2016-04-01

    A new nudging method for data assimilation, delay-coordinate nudging, is presented. Delay-coordinate nudging makes explicit use of present and past observations in the formulation of the forcing driving the model evolution at each time-step. Numerical experiments with a low order chaotic system show that the new method systematically outperforms standard nudging in different model and observational scenarios, also when using an un-optimized formulation of the delay-nudging coefficients. A connection between the optimal delay and the dominant Lyapunov exponent of the dynamics is found based on heuristic arguments and is confirmed by the numerical results, providing a guideline for the practical implementation of the algorithm. Delay-coordinate nudging preserves the easiness of implementation, the intuitive functioning and the reduced computational cost of the standard nudging, making it a potential alternative especially in the field of seasonal-to-decadal predictions with large Earth system models that limit the use of more sophisticated data assimilation procedures.

  18. Delay Times From Clustered Multi-Channel Cross Correlation and Simulated Annealing

    NASA Astrophysics Data System (ADS)

    Creager, K. C.; Sambridge, M. S.

    2004-12-01

    Several techniques exist to estimate relative delay times of seismic phases based on the assumption that the waveforms observed at several stations can be expressed as a common waveform that has been time shifted and distorted by random uncorrelated noise. We explore the more general problem of estimating the relative delay times for regional or even global distributions of seismometers in cases where waveforms vary systematically across the array. The estimation of relative delay times is formulated as a global optimization of the weighted sum of squares of cross correlations of each seismogram pair evaluated at the corresponding difference in their relative delay times. As there are many local minima in this penalty function, a simulated annealing algorithm is used to obtain a solution. The weights depend strongly on the separation distance among seismogram pairs as well as a measure of the similarity of waveforms. Thus, seismograph pairs that are physically close to each other and have similar waveforms are expected to be well aligned while those with dissimilar waveforms or large separation distances are severely down-weighted and thus need not be well aligned. As a result noisy seismograms, which are not similar to other seismograms, are down-weighted so they do not adversely effect the relative delay times of other seismograms. Finally, natural clusters of seismograms are determined from the weight matrix. Examples of aligning a few hundred P and PKP waveforms from a broadband global array and from a mixed broadband and short-period continental-scale array will be shown. While this method has applications in many situations, it may be especially useful for arrays such as the EarthScope Bigfoot Array.

  19. Management of hidradenitis suppurativa wounds with an internal vacuum-assisted closure device.

    PubMed

    Chen, Y Erin; Gerstle, Theodore; Verma, Kapil; Treiser, Matthew D; Kimball, Alexandra B; Orgill, Dennis P

    2014-03-01

    Hidradenitis suppurativa is a chronic, debilitating disease that is difficult to treat. Once medical management fails, wide local excision offers the best chance for cure. However, the resultant wound often proves too large or contaminated for immediate closure. The authors performed a retrospective chart review of hidradenitis cases managed surgically between 2005 and 2010. Data collected included patient characteristics, management method, and outcomes. Approximately half of the patients received internal vacuum-assisted closure therapy using the vacuum-assisted closure system and delayed closure and half of the patients received immediate primary closure at the time of their excision. Delayed closure consisted of closing the majority of the wound in a linear fashion following internal vacuum-assisted closure while accepting healing by means of secondary intention for small wound areas. Patients managed with internal vacuum-assisted closure had wounds on average four times larger in area than patients managed without internal vacuum-assisted closure. In both groups, all wounds were eventually closed primarily. Healing times averaged 2.2 months with internal vacuum-assisted closure and 2.7 months without. At an average follow-up time of 2.3 months, all patients with internal vacuum-assisted closure had no recurrence of their local disease. Severe hidradenitis presents a treatment challenge, as surgical excisions are often complicated by difficult closures and unsatisfactory recurrence rates. This study demonstrates that wide local excision with reasonable outcomes can be achieved using accelerated delayed primary closure. This method uses internal vacuum-assisted closure as a bridge between excision and delayed primary closure, facilitating closure without recurrence in large, heavily contaminated wounds. Therapeutic, III.

  20. Delayed elasticity in Zerodur® at room temperature

    NASA Astrophysics Data System (ADS)

    Pepi, John W.; Golini, Donald

    1991-12-01

    Much has been written about structural relaxation, viscous flow, delayed elasticity, hysteresis, and other dimensional stability phenomena of glass and ceramics at elevated temperatures. Less has been documented about similar effects at room temperature. The time dependent phenomenon of delayed elasticity exhibited by Zerodur has been studied at room temperature and is presented here. Using a high-performance mechanical profilometer, a delayed strain on the order of 1 percent is realized over a period of a few weeks, under low stress levels. An independent test using optical interferometry validates the results. A comparison of Corning ULE silica glass is also made. The effect is believed to be related to the alkali oxide content of the glass ceramic and rearrangement of the ion groups within the structure during stress. The effect, apparent under externally applied load, is elastic and repeatable, that is, no hysteresis of permanent set, as measured at elevated temperature, is evidenced within measurement capabilities. Nonetheless, it must be accounted for in determining the magnitude of distortion under load (delayed elastic creep) and upon load removal (delayed elastic recovery). This is particularly important for large lightweight optics which might undergo large strain during fabrication and environmental loading, such as experienced in gravity release or in dynamic control of active optics.

  1. Influence of cue word perceptual information on metamemory accuracy in judgement of learning.

    PubMed

    Hu, Xiao; Liu, Zhaomin; Li, Tongtong; Luo, Liang

    2016-01-01

    Previous studies have suggested that perceptual information regarding to-be-remembered words in the study phase affects the accuracy of judgement of learning (JOL). However, few have investigated whether the perceptual information in the JOL phase influences JOL accuracy. This study examined the influence of cue word perceptual information in the JOL phase on immediate and delayed JOL accuracy through changes in cue word font size. In Experiment 1, large-cue word pairs had significantly higher mean JOL magnitude than small-cue word pairs in immediate JOLs and higher relative accuracy than small-cue pairs in delayed JOLs, but font size had no influence on recall performance. Experiment 2 increased the JOL time, and mean JOL magnitude did not reliably differ for large-cue compared with small-cue pairs in immediate JOLs. However, the influence on relative accuracy still existed in delayed JOLs. Experiment 3 increased the familiarity of small-cue words in the delayed JOL phase by adding a lexical decision task. The results indicated that cue word font size no longer affected relative accuracy in delayed JOLs. The three experiments in our study indicated that the perceptual information regarding cue words in the JOL phase affects immediate and delayed JOLs in different ways.

  2. Advanced Control Algorithms for Compensating the Phase Distortion Due to Transport Delay in Human-Machine Systems

    NASA Technical Reports Server (NTRS)

    Guo, Liwen; Cardullo, Frank M.; Kelly, Lon C.

    2007-01-01

    The desire to create more complex visual scenes in modern flight simulators outpaces recent increases in processor speed. As a result, simulation transport delay remains a problem. New approaches for compensating the transport delay in a flight simulator have been developed and are presented in this report. The lead/lag filter, the McFarland compensator and the Sobiski/Cardullo state space filter are three prominent compensators. The lead/lag filter provides some phase lead, while introducing significant gain distortion in the same frequency interval. The McFarland predictor can compensate for much longer delay and cause smaller gain error in low frequencies than the lead/lag filter, but the gain distortion beyond the design frequency interval is still significant, and it also causes large spikes in prediction. Though, theoretically, the Sobiski/Cardullo predictor, a state space filter, can compensate the longest delay with the least gain distortion among the three, it has remained in laboratory use due to several limitations. The first novel compensator is an adaptive predictor that makes use of the Kalman filter algorithm in a unique manner. In this manner the predictor can accurately provide the desired amount of prediction, while significantly reducing the large spikes caused by the McFarland predictor. Among several simplified online adaptive predictors, this report illustrates mathematically why the stochastic approximation algorithm achieves the best compensation results. A second novel approach employed a reference aircraft dynamics model to implement a state space predictor on a flight simulator. The practical implementation formed the filter state vector from the operator s control input and the aircraft states. The relationship between the reference model and the compensator performance was investigated in great detail, and the best performing reference model was selected for implementation in the final tests. Theoretical analyses of data from offline simulations with time delay compensation show that both novel predictors effectively suppress the large spikes caused by the McFarland compensator. The phase errors of the three predictors are not significant. The adaptive predictor yields greater gain errors than the McFarland predictor for short delays (96 and 138 ms), but shows smaller errors for long delays (186 and 282 ms). The advantage of the adaptive predictor becomes more obvious for a longer time delay. Conversely, the state space predictor results in substantially smaller gain error than the other two predictors for all four delay cases.

  3. Stochastic resonance enhancement of small-world neural networks by hybrid synapses and time delay

    NASA Astrophysics Data System (ADS)

    Yu, Haitao; Guo, Xinmeng; Wang, Jiang

    2017-01-01

    The synergistic effect of hybrid electrical-chemical synapses and information transmission delay on the stochastic response behavior in small-world neuronal networks is investigated. Numerical results show that, the stochastic response behavior can be regulated by moderate noise intensity to track the rhythm of subthreshold pacemaker, indicating the occurrence of stochastic resonance (SR) in the considered neural system. Inheriting the characteristics of two types of synapses-electrical and chemical ones, neural networks with hybrid electrical-chemical synapses are of great improvement in neuron communication. Particularly, chemical synapses are conducive to increase the network detectability by lowering the resonance noise intensity, while the information is better transmitted through the networks via electrical coupling. Moreover, time delay is able to enhance or destroy the periodic stochastic response behavior intermittently. In the time-delayed small-world neuronal networks, the introduction of electrical synapses can significantly improve the signal detection capability by widening the range of optimal noise intensity for the subthreshold signal, and the efficiency of SR is largely amplified in the case of pure chemical couplings. In addition, the stochastic response behavior is also profoundly influenced by the network topology. Increasing the rewiring probability in pure chemically coupled networks can always enhance the effect of SR, which is slightly influenced by information transmission delay. On the other hand, the capacity of information communication is robust to the network topology within the time-delayed neuronal systems including electrical couplings.

  4. Data-Gathering Scheme Using AUVs in Large-Scale Underwater Sensor Networks: A Multihop Approach

    PubMed Central

    Khan, Jawaad Ullah; Cho, Ho-Shin

    2016-01-01

    In this paper, we propose a data-gathering scheme for hierarchical underwater sensor networks, where multiple Autonomous Underwater Vehicles (AUVs) are deployed over large-scale coverage areas. The deployed AUVs constitute an intermittently connected multihop network through inter-AUV synchronization (in this paper, synchronization means an interconnection between nodes for communication) for forwarding data to the designated sink. In such a scenario, the performance of the multihop communication depends upon the synchronization among the vehicles. The mobility parameters of the vehicles vary continuously because of the constantly changing underwater currents. The variations in the AUV mobility parameters reduce the inter-AUV synchronization frequency contributing to delays in the multihop communication. The proposed scheme improves the AUV synchronization frequency by permitting neighboring AUVs to share their status information via a pre-selected node called an agent-node at the static layer of the network. We evaluate the proposed scheme in terms of the AUV synchronization frequency, vertical delay (node→AUV), horizontal delay (AUV→AUV), end-to-end delay, and the packet loss ratio. Simulation results show that the proposed scheme significantly reduces the aforementioned delays without the synchronization time-out process employed in conventional works. PMID:27706042

  5. Data-Gathering Scheme Using AUVs in Large-Scale Underwater Sensor Networks: A Multihop Approach.

    PubMed

    Khan, Jawaad Ullah; Cho, Ho-Shin

    2016-09-30

    In this paper, we propose a data-gathering scheme for hierarchical underwater sensor networks, where multiple Autonomous Underwater Vehicles (AUVs) are deployed over large-scale coverage areas. The deployed AUVs constitute an intermittently connected multihop network through inter-AUV synchronization (in this paper, synchronization means an interconnection between nodes for communication) for forwarding data to the designated sink. In such a scenario, the performance of the multihop communication depends upon the synchronization among the vehicles. The mobility parameters of the vehicles vary continuously because of the constantly changing underwater currents. The variations in the AUV mobility parameters reduce the inter-AUV synchronization frequency contributing to delays in the multihop communication. The proposed scheme improves the AUV synchronization frequency by permitting neighboring AUVs to share their status information via a pre-selected node called an agent-node at the static layer of the network. We evaluate the proposed scheme in terms of the AUV synchronization frequency, vertical delay (node→AUV), horizontal delay (AUV→AUV), end-to-end delay, and the packet loss ratio. Simulation results show that the proposed scheme significantly reduces the aforementioned delays without the synchronization time-out process employed in conventional works.

  6. Identifying Anomalies in Gravitational Lens Time Delays

    NASA Astrophysics Data System (ADS)

    Congdon, Arthur B.; Keeton, C. R.; Nordgren, C. E.

    2009-05-01

    Gravitational lensing has become a powerful probe of cold dark matter substructure. Earlier work using anomalous flux ratios in four-image quasar lenses has shown that lensing is sensitive to substructure which raises the exciting prospect of constraining the mass function and spatial distribution of dark matter satellites in galaxies. We examine the ability of gravitational lens time delays to reveal complex structure in lens potentials. We use Monte Carlo simulations to determine the range of time delays that can be produced by realistic smooth lens models consisting of isothermal ellipsoid galaxies with tidal shear. We can then identify outliers as "time-delay anomalies." We find evidence for anomalies in close image pairs in the cusp lenses RX J1131-1231 and B1422+231. The anomalies in RX J1131-1231 provide strong evidence for substructure in the lens potential, while at this point the apparent anomalies in B1422+231 mainly indicate that the time delay measurements need to be improved. We also find evidence for time-delay anomalies in larger-separation image pairs in four additional lenses. We suggest that these anomalies are caused by some combination of substructure and a complex lens environment. Our work argues for a large sample of strong lenses with precisely-measured time delays. The first of these objectives will be readily achievable as the next generation of optical and radio telescopes come online, while the second will require a dedicated one-meter class space-based observatory. Meeting these goals will make it possible to examine the properties of dark matter on sub-galactic scales, which is essential for distinguishing among the various dark matter candidates from particle physics. Part of this work was funded by NSF grant AST-0747311. ABC is currently supported by an appointment to the NASA Postdoctoral Program at the Jet Propulsion Laboratory, administered by Oak Ridge Associated Universities through a contract with NASA.

  7. Temperature anomalies in the plumes of the August, 18 and August, 29, 2000 eruptions of Miyake Jima volcano (Japan) inferred from delays of GPS waves crossing them.

    NASA Astrophysics Data System (ADS)

    Houlié, N.; Nercessian, A.; Briole, P.; Murakami, M.

    2003-12-01

    Using the GAMIT software we processed seventy days of GPS data (30s sampling rate) collected by the GSI at four sites on Miyake Jima volcanic island (Japan) between June 27, 2000 and September 5, 2000. This period includes a large seismic swarm (June 27, 2000 - July 8, 2000) followed by several major paroxysms at the volcano crater (July 9, 10, 14, 15, August 29) producing a 1 km wide caldera. The medium term velocity of the stations coordinates, already published elsewhere, is maximum during the seismic swarm and corresponds to a large dyke intrusion mostly offshore west of the volcano. No anomalies are observed in the time series of the daily GPS coordinates for the days of the paroxysms. An epoch by epoch processing of those days, using a kinematic software shows that there is no deformation during the paroxysms themselves. We then examined epoch by epoch the path delay residuals of the GPS phases at each GPS station during the events. Those delays exceed 200 mm in some cases. As they cannot be explained by a temporal change of the stations coordinates, we conclude that the cause of these delays is the presence of the hot volcanic plume not modeled by the GPS data processing which assumes a homogenous troposphere. We used a classical seismic tomography algorithm (modified to handle 3D + time) to map the path delay anomaly in the plume as a function of time. We interpret the anomalous delays as temperature anomalies in the plume, assuming a normal pressure and a plume saturated in humidity. The maximum average temperature anomaly is 20° , a low value compared to what is currently proposed in the literature. Higher temperature should exist in the inner part of the plume, but the horizontal extension of this hot zone cannot be more than 50-100 m, otherwise the GPS data would detect it.

  8. Numerical simulation of time delay interferometry for a LISA-like mission with the simplification of having only one interferometer

    NASA Astrophysics Data System (ADS)

    Dhurandhar, S. V.; Ni, W.-T.; Wang, G.

    2013-01-01

    In order to attain the requisite sensitivity for LISA, laser frequency noise must be suppressed below the secondary noises such as the optical path noise, acceleration noise etc. In a previous paper (Dhurandhar, S.V., Nayak, K.R., Vinet, J.-Y. Time delay interferometry for LISA with one arm dysfunctional. Class. Quantum Grav. 27, 135013, 2010), we have found a large family of second-generation analytic solutions of time delay interferometry with one arm dysfunctional, and we also estimated the laser noise due to residual time-delay semi-analytically from orbit perturbations due to Earth. Since other planets and solar-system bodies also perturb the orbits of LISA spacecraft and affect the time delay interferometry (TDI), we simulate the time delay numerically in this paper for all solutions with the generation number n ⩽ 3. We have worked out a set of 3-year optimized mission orbits of LISA spacecraft starting at January 1, 2021 using the CGC2.7 ephemeris framework. We then use this numerical solution to calculate the residual optical path differences in the second-generation solutions of our previous paper, and compare with the semi-analytic error estimate. The accuracy of this calculation is better than 1 cm (or 30 ps). The maximum path length difference, for all configuration calculated, is below 1 m (3 ns). This is well below the limit under which the laser frequency noise is required to be suppressed. The numerical simulation in this paper can be applied to other space-borne interferometers for gravitational wave detection with the simplification of having only one interferometer.

  9. Single generation cycles and delayed feedback cycles are not separate phenomena.

    PubMed

    Pfaff, T; Brechtel, A; Drossel, B; Guill, C

    2014-12-01

    We study a simple model for generation cycles, which are oscillations with a period of one or a few generation times of the species. The model is formulated in terms of a single delay-differential equation for the population density of an adult stage, with recruitment to the adult stage depending on the intensity of competition during the juvenile phase. This model is a simplified version of a group of models proposed by Gurney and Nisbet, who were the first to distinguish between single-generation cycles and delayed-feedback cycles. According to these authors, the two oscillation types are caused by different mechanisms and have periods in different intervals, which are one to two generation times for single-generation cycles and two to four generation times for delayed-feedback cycles. By abolishing the strict coupling between the maturation time and the time delay between competition and its effect on the population dynamics, we find that single-generation cycles and delayed-feedback cycles occur in the same model version, with a gradual transition between the two as the model parameters are varied over a sufficiently large range. Furthermore, cycle periods are not bounded to lie within single octaves. This implies that a clear distinction between different types of generation cycles is not possible. Cycles of all periods and even chaos can be generated by varying the parameters that determine the time during which individuals from different cohorts compete with each other. This suggests that life-cycle features in the juvenile stage and during the transition to the adult stage are important determinants of the dynamics of density limited populations. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Distributed Load Shedding over Directed Communication Networks with Time Delays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Tao; Wu, Di

    When generation is insufficient to support all loads under emergencies, effective and efficient load shedding needs to be deployed in order to maintain the supply-demand balance. This paper presents a distributed load shedding algorithm, which makes efficient decision based on the discovered global information. In the global information discovery process, each load only communicates with its neighboring load via directed communication links possibly with arbitrarily large but bounded time varying communication delays. We propose a novel distributed information discovery algorithm based on ratio consensus. Simulation results are used to validate the proposed method.

  11. The Telecommunications and Data Acquisition Report

    NASA Technical Reports Server (NTRS)

    Posner, E. C. (Editor)

    1989-01-01

    Deep Space Network advanced systems, very large scale integration architecture for decoders, radar interface and control units, microwave time delays, microwave antenna holography, and a radio frequency interference survey are among the topics discussed.

  12. Wiener-Hopf optimal control of a hydraulic canal prototype with fractional order dynamics.

    PubMed

    Feliu-Batlle, Vicente; Feliu-Talegón, Daniel; San-Millan, Andres; Rivas-Pérez, Raúl

    2017-06-26

    This article addresses the control of a laboratory hydraulic canal prototype that has fractional order dynamics and a time delay. Controlling this prototype is relevant since its dynamics closely resembles the dynamics of real main irrigation canals. Moreover, the dynamics of hydraulic canals vary largely when the operation regime changes since they are strongly nonlinear systems. All this makes difficult to design adequate controllers. The controller proposed in this article looks for a good time response to step commands. The design criterium for this controller is minimizing the integral performance index ISE. Then a new methodology to control fractional order processes with a time delay, based on the Wiener-Hopf control and the Padé approximation of the time delay, is developed. Moreover, in order to improve the robustness of the control system, a gain scheduling fractional order controller is proposed. Experiments show the adequate performance of the proposed controller. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  13. The VLBI time delay function for synchronous orbits

    NASA Technical Reports Server (NTRS)

    Rosenbaum, B.

    1972-01-01

    The VLBI is a satellite tracking technique that to date was applied largely to the tracking of synchronous orbits. These orbits are favorable for VLBI in that the remote satellite range allows continuous viewing from widely separated stations. The primary observable, geometric time delay is the time difference for signal propagation between satellite and baseline terminals. Extraordinary accuracy in angular position data on the satellite can be obtained by observation from baselines of continental dimensions. In satellite tracking though the common objective is to derive orbital elements. A question arises as to how the baseline vector bears on the accuracy of determining the elements. Our approach to this question is to derive an analytic expression for the time delay function in terms of Kepler elements and station coordinates. The analysis, which is for simplicity based on elliptic motion, shows that the resolution for the inclination of the orbital plane depends on the magnitude of the baseline polar component and the resolution for in-plane elements depends on the magnitude of a projected equatorial baseline component.

  14. Discovery of time-delayed gene regulatory networks based on temporal gene expression profiling

    PubMed Central

    Li, Xia; Rao, Shaoqi; Jiang, Wei; Li, Chuanxing; Xiao, Yun; Guo, Zheng; Zhang, Qingpu; Wang, Lihong; Du, Lei; Li, Jing; Li, Li; Zhang, Tianwen; Wang, Qing K

    2006-01-01

    Background It is one of the ultimate goals for modern biological research to fully elucidate the intricate interplays and the regulations of the molecular determinants that propel and characterize the progression of versatile life phenomena, to name a few, cell cycling, developmental biology, aging, and the progressive and recurrent pathogenesis of complex diseases. The vast amount of large-scale and genome-wide time-resolved data is becoming increasing available, which provides the golden opportunity to unravel the challenging reverse-engineering problem of time-delayed gene regulatory networks. Results In particular, this methodological paper aims to reconstruct regulatory networks from temporal gene expression data by using delayed correlations between genes, i.e., pairwise overlaps of expression levels shifted in time relative each other. We have thus developed a novel model-free computational toolbox termed TdGRN (Time-delayed Gene Regulatory Network) to address the underlying regulations of genes that can span any unit(s) of time intervals. This bioinformatics toolbox has provided a unified approach to uncovering time trends of gene regulations through decision analysis of the newly designed time-delayed gene expression matrix. We have applied the proposed method to yeast cell cycling and human HeLa cell cycling and have discovered most of the underlying time-delayed regulations that are supported by multiple lines of experimental evidence and that are remarkably consistent with the current knowledge on phase characteristics for the cell cyclings. Conclusion We established a usable and powerful model-free approach to dissecting high-order dynamic trends of gene-gene interactions. We have carefully validated the proposed algorithm by applying it to two publicly available cell cycling datasets. In addition to uncovering the time trends of gene regulations for cell cycling, this unified approach can also be used to study the complex gene regulations related to the development, aging and progressive pathogenesis of a complex disease where potential dependences between different experiment units might occurs. PMID:16420705

  15. Spacecraft stability and control using new techniques for periodic and time-delayed systems

    NASA Astrophysics Data System (ADS)

    NAzari, Morad

    This dissertation addresses various problems in spacecraft stability and control using specialized theoretical and numerical techniques for time-periodic and time-delayed systems. First, the effects of energy dissipation are considered in the dual-spin spacecraft, where the damper masses in the platform (?) and the rotor (?) cause energy loss in the system. Floquet theory is employed to obtain stability charts for different relative spin rates of the subsystem [special characters omitted] with respect to the subsystem [special characters omitted]. Further, the stability and bifurcation of delayed feedback spin stabilization of a rigid spacecraft is investigated. The spin is stabilized about the principal axis of the intermediate moment of inertia using a simple delayed feedback control law. In particular, linear stability is analyzed via the exponential-polynomial characteristic equations and then the method of multiple scales is used to obtain the normal form of the Hopf bifurcation. Next, the dynamics of a rigid spacecraft with nonlinear delayed multi-actuator feedback control are studied, where a nonlinear feedback controller using an inverse dynamics approach is sought for the controlled system to have the desired linear delayed closed-loop dynamics (CLD). Later, three linear state feedback control strategies based on Chebyshev spectral collocation and the Lyapunov Floquet transformation (LFT) are explored for regulation control of linear periodic time delayed systems. First , a delayed feedback control law with discrete delay is implemented and the stability of the closed-loop response is investigated in the parameter space of available control gains using infinite-dimensional Floquet theory. Second, the delay differential equation (DDE) is discretized into a large set of ordinary differential equations (ODEs) using the Chebyshev spectral continuous time approximation (CSCTA) and delayed feedback with distributed delay is applied. The third strategy involves use of both CSCTA and the reduced Lyapunov Floquet transformation (RLFT) in order to design a non-delayed feedback control law. The delayed Mathieu equation is used as an illustrative example in which the closed-loop response and control effort are compared for all three control strategies. Finally, three example applications of control of time-periodic astrodynamic systems, i.e. formation flying control for an elliptic Keplerian chief orbit, body-fixed hovering control over a tumbling asteroid, and stationkeeping in Earth-Moon L1 halo orbits, are shown using versions of the control strategies introduced above. These applications employ a mixture of feedforward and non-delayed periodic-gain state feedback for tracking control of natural and non-natural motions in these systems. A major conclusion is that control effort is minimized by employing periodic-gain (rather than constant-gain) feedback control in such systems.

  16. Measurement of Thunderstorm Cloud-Top Parameters Using High-Frequency Satellite Imagery

    DTIC Science & Technology

    1978-01-01

    short wave was present well to the south of this system approximately 2000 ka west of Baja California. Two distinct flow patterns were present, one...view can be observed in near real time whereas radar observations, although excellent for local purposes, involve substantial errors when composited...on a large scale. The time delay in such large scale compositing is critical when attempting to monitor convective cloud systems for a potential

  17. Medical and nonmedical factors influencing utilization of delayed pushing in the second stage.

    PubMed

    Frey, Heather A; Tuuli, Methodius G; Cortez, Sarah; Odibo, Anthony O; Roehl, Kimberly A; Shanks, Anthony L; Macones, George A; Cahill, Alison G

    2013-08-01

    To evaluate factors impacting selection to delayed pushing in the second stage of labor. This case-control study was a secondary analysis of a large retrospective cohort study. Cases included women who delayed pushing for 60 minutes or more in the second stage of labor. Controls began pushing prior to 60 minutes from the time of diagnosis of complete dilation. Demographic, labor, and nonmedical factors were compared among cases and controls. Logistic regression modeling was used to identify factors independently associated with delayed pushing. We identified 471 women who delayed pushing and 4819 controls. Nulliparity, maternal body mass index > 25, high fetal station at complete dilation, regional anesthesia use, and start of second stage during staffing shift change were independent factors associated with increased use of delayed pushing. On the other hand, black race and second-stage management during night shift were associated with lower odds of employing delayed pushing. Delayed pushing was more commonly employed in nulliparous women, but 38.9% of multiparous women also delayed pushing. We identified multiple factors associated with use of delayed pushing. This study helps to define current patterns of second-stage labor management. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  18. Medical and Non-Medical Factors Influencing Utilization of Delayed Pushing in the Second Stage

    PubMed Central

    FREY, Heather A.; TUULI, Methodius G.; CORTEZ, Sarah; ODIBO, Anthony O.; ROEHL, Kimberly A.; SHANKS, Anthony L.; MACONES, George A.; CAHILL, Alison G.

    2014-01-01

    Objective To evaluate factors impacting selection to delayed pushing in the second stage of labor. Study design This case-control study was a secondary analysis of a large retrospective cohort study. Cases included women who delayed pushing for 60 minutes or more in the second stage of labor. Controls began pushing prior to 60 minutes from the time of diagnosis of complete dilation. Demographic, labor, and nonmedical factors were compared among cases and controls. Logistic regression modelling was used to identify factors independently associated with delayed pushing. Results We identified 471 women who delayed pushing and 4,819 controls. Nulliparity, maternal body mass index > 25, high fetal station at complete dilation, regional anesthesia use, and start of second stage during staffing shift change were independent factors associated with increased use of delayed pushing. On the other hand, black race and second stage management during night shift were associated with lower odds of employing delayed pushing. Delayed pushing was more commonly employed in nulliparous women, but 38.9% of multiparous women also delayed pushing. Conclusion We identified multiple factors associated with use of delayed pushing. This study helps to define current patterns of second stage labor management. PMID:23208765

  19. Global cluster synchronization in nonlinearly coupled community networks with heterogeneous coupling delays.

    PubMed

    Tseng, Jui-Pin

    2017-02-01

    This investigation establishes the global cluster synchronization of complex networks with a community structure based on an iterative approach. The units comprising the network are described by differential equations, and can be non-autonomous and involve time delays. In addition, units in the different communities can be governed by different equations. The coupling configuration of the network is rather general. The coupling terms can be non-diffusive, nonlinear, asymmetric, and with heterogeneous coupling delays. Based on this approach, both delay-dependent and delay-independent criteria for global cluster synchronization are derived. We implement the present approach for a nonlinearly coupled neural network with heterogeneous coupling delays. Two numerical examples are given to show that neural networks can behave in a variety of new collective ways under the synchronization criteria. These examples also demonstrate that neural networks remain synchronized in spite of coupling delays between neurons across different communities; however, they may lose synchrony if the coupling delays between the neurons within the same community are too large, such that the synchronization criteria are violated. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Effect of Unsaturated Flow on Delayed Response of Unconfined Aquifiers to Pumping

    NASA Astrophysics Data System (ADS)

    Tartakovsky, G.; Neuman, S. P.

    2005-12-01

    A new analytical solution is presented for the delayed response process characterizing flow to a partially penetrating well in an unconfined aquifer. The new solution generalizes that of Neuman [1972, 1974] by accounting for unsaturated flow above the water table. Axially symmetric three-dimensional flow in the unsaturated zone is described by a linearized version of Richards' equation in which hydraulic conductivity and water content vary exponentially with incremental capillary pressure head relative to its air entry value (defining the interface between the saturated and unsaturated zones). Unsaturated soil properties are characterized by an exponent κ having the dimension of inverse length and a dimensionless exponent κD = κb where b is initial saturated thickness. Our treatment of the unsaturated zone is similar to that of Kroszynski and Dagan [1975] who however have ignored internal (artesian) aquifer storage. It has been suggested by Boulton [1954, 1963, 1970] and Neuman [1972, 1974], and is confirmed by our solution, that internal storage is required to reproduce the early increase in drawdown characterizing delayed response to pumping in typical aquifers. According to our new solution such aquifers are characterized by relatively large κ_ D values, typically 10 or larger; in the limit as κD tends to infinity (the soil unsaturated water retention capacity becomes insignificant and/or aquifer thickness become large), unsaturated flow becomes unimportant and our solution reduces to that of Neuman. In typical cases corresponding to κD larger than or equal to 10, unsaturated flow is found to have little impact on early and late dimensionless time behaviors of drawdown measured wholly or in part at some distance below the water table; unsaturated flow causes drawdown to increase slightly at intermediate dimensionless time values that represent transition from an early artesian dominated to a late water-table dominated flow regime. The increase in drawdown during this transition period is caused by delayed drainage from the unsaturated zone, whose relatively small effect is superimposed on the more pronounced phenomenon of delay in water table decline relative to artesian head drops below it. Delayed drainage from the unsaturated zone becomes less and less important as κD increases; as it approaches infinity, this effect dies out completely and drawdown is controlled entirely by delayed decline in the water table. The unsaturated zone has major impact on drawdown at intermediate time, and significant impact at early and late times, in the atypical case of small κD values (1 or less), becoming the dominant factor as κD approaches zero (the soil water retention capacity becomes very large and/or saturated thickness becomes insignificant).

  1. Setting Adolescents up for Success: Promoting a Policy to Delay High School Start Times

    ERIC Educational Resources Information Center

    Barnes, Margaux; Davis, Krista; Mancini, Mackenzie; Ruffin, Jasmine; Simpson, Tina; Casazza, Krista

    2016-01-01

    Background: A unique biological shift in sleep cycles occurs during adolescence causing later sleep and wake times. This shift is not matched by a concurrent modification in school start times, resulting in sleep curtailment for a large majority of adolescents. Chronic inadequate sleep is associated with poor academic performance including…

  2. OTACT: ONU Turning with Adaptive Cycle Times in Long-Reach PONs

    NASA Astrophysics Data System (ADS)

    Zare, Sajjad; Ghaffarpour Rahbar, Akbar

    2015-01-01

    With the expansion of PON networks as Long-Reach PON (LR-PON) networks, the problem of degrading the efficiency of centralized bandwidth allocation algorithms threatens this network due to high propagation delay. This is because these algorithms are based on bandwidth negotiation messages frequently exchanged between the optical line terminal (OLT) in the Central Office and optical network units (ONUs) near the users, which become seriously delayed when the network is extended. To solve this problem, some decentralized algorithms are proposed based on bandwidth negotiation messages frequently exchanged between the Remote Node (RN)/Local Exchange (LX) and ONUs near the users. The network has a relatively high delay since there are relatively large distances between RN/LX and ONUs, and therefore, control messages should travel twice between ONUs and RN/LX in order to go from one ONU to another ONU. In this paper, we propose a novel framework, called ONU Turning with Adaptive Cycle Times (OTACT), that uses Power Line Communication (PLC) to connect two adjacent ONUs. Since there is a large population density in urban areas, ONUs are closer to each other. Thus, the efficiency of the proposed method is high. We investigate the performance of the proposed scheme in contrast with other decentralized schemes under the worst case conditions. Simulation results show that the average upstream packet delay can be decreased under the proposed scheme.

  3. Effects of Acute and Chronic Flunitrazepam on Delay Discounting in Pigeons

    PubMed Central

    Eppolito, Amy K; France, Charles P; Gerak, Lisa R

    2011-01-01

    Delay to delivery of a reinforcer can decrease responding for that reinforcer and increase responding for smaller reinforcers that are available concurrently and delivered without delay; acute administration of drugs can alter responding for large, delayed reinforcers, although the impact of chronic treatment on delay discounting is not well understood. In this experiment, the effects of repeated administration of the benzodiazepine flunitrazepam were studied in 6 pigeons responding on one key to receive food that was delivered immediately and on a second key to receive a larger amount of food that was delivered following delays which increased across a single session. Pigeons responded predominantly for the large reinforcer when there were no delays and when delays were short; however, as delays increased, responding for the large reinforcer decreased. Acutely, flunitrazepam (0.32, 1.0 and 3.2 mg/kg) dose-dependently increased responding for the large reinforcer, shifting the discounting curve rightward and upward. Repeated administration of flunitrazepam (0.32, 1.0 and 3.2 mg/kg, each for six sessions, separated by one session during which vehicle was administered) did not markedly alter its effects on responding for the large reinforcer, indicating that the development of tolerance to this effect of flunitrazepam is modest under these conditions. PMID:21541119

  4. Hospital variation in time to defibrillation after in-hospital cardiac arrest.

    PubMed

    Chan, Paul S; Nichol, Graham; Krumholz, Harlan M; Spertus, John A; Nallamothu, Brahmajee K

    2009-07-27

    Delays to defibrillation are associated with worse survival after in-hospital cardiac arrest, but the degree to which hospitals vary in defibrillation response times and hospital predictors of delays remain unknown. Using hierarchical models, we evaluated hospital variation in rates of delayed defibrillation (>2 minutes) and its impact on survival among 7479 adult inpatients with cardiac arrests at 200 hospitals within the National Registry of Cardiopulmonary Resuscitation. Adjusted rates of delayed defibrillation varied substantially among hospitals (range, 2.4%-50.9%), with hospital-level effects accounting for a significant amount of the total variation in defibrillation delays after adjusting for patient factors. We found a 46% greater odds of patients with identical covariates getting delayed defibrillation at one randomly selected hospital compared with another. Among traditional hospital factors evaluated, however, only bed volume (reference category: <200 beds; 200-499 beds: odds ratio [OR], 0.62 [95% confidence interval {CI}, 0.48-0.80]; >or=500 beds: OR, 0.74 [95% CI, 0.53-1.04]) and arrest location (reference category: intensive care unit; telemetry unit: OR, 1.92 [95% CI, 1.65-2.22]; nonmonitored unit: OR, 1.90 [95% CI, 1.61-2.24]) were associated with differences in rates of delayed defibrillation. Wide variation also existed in adjusted hospital rates of survival to discharge (range, 5.3%-49.6%), with higher survival among hospitals in the top-performing quartile for defibrillation time (compared with the bottom quartile: OR for top quartile, 1.41 [95% CI, 1.11-1.77]). Rates of delayed defibrillation vary widely among hospitals but are largely unexplained by traditional hospital factors. Given its association with improved survival, future research is needed to better understand best practices in the delivery of defibrillation at top-performing hospitals.

  5. Imprints of the quasar structure in time-delay light curves: Microlensing-aided reverberation mapping

    NASA Astrophysics Data System (ADS)

    Sluse, D.; Tewes, M.

    2014-11-01

    The advent of large area photometric surveys has raised a great deal of interest in the possibility of using broadband photometric data, instead of spectra, to measure the size of the broad line region of active galactic nuclei. We describe here a new method that uses time-delay lensed quasars where one or several images are affected by microlensing due to stars in the lensing galaxy. Because microlensing decreases (or increases) the flux of the continuum compared to the broad line region, it changes the contrast between these two emission components. We show that this effect can be used to effectively disentangle the intrinsic variability of those two regions, offering the opportunity to perform reverberation mapping based on single-band photometric data. Based on simulated light curves generated using a damped random walk model of quasar variability, we show that measurement of the size of the broad line region can be achieved using this method, provided one spectrum has been obtained independently during the monitoring. This method is complementary to photometric reverberation mapping and could also be extended to multi-band data. Because the effect described above produces a variability pattern in difference light curves between pairs of lensed images that is correlated with the time-lagged continuum variability, it can potentially produce systematic errors in measurement of time delays between pairs of lensed images. Simple simulations indicate that time-delay measurement techniques that use a sufficiently flexible model for the extrinsic variability are not affected by this effect and produce accurate time delays.

  6. Performance analysis of a large-grain dataflow scheduling paradigm

    NASA Technical Reports Server (NTRS)

    Young, Steven D.; Wills, Robert W.

    1993-01-01

    A paradigm for scheduling computations on a network of multiprocessors using large-grain data flow scheduling at run time is described and analyzed. The computations to be scheduled must follow a static flow graph, while the schedule itself will be dynamic (i.e., determined at run time). Many applications characterized by static flow exist, and they include real-time control and digital signal processing. With the advent of computer-aided software engineering (CASE) tools for capturing software designs in dataflow-like structures, macro-dataflow scheduling becomes increasingly attractive, if not necessary. For parallel implementations, using the macro-dataflow method allows the scheduling to be insulated from the application designer and enables the maximum utilization of available resources. Further, by allowing multitasking, processor utilizations can approach 100 percent while they maintain maximum speedup. Extensive simulation studies are performed on 4-, 8-, and 16-processor architectures that reflect the effects of communication delays, scheduling delays, algorithm class, and multitasking on performance and speedup gains.

  7. Sampled-data chain-observer design for a class of delayed nonlinear systems

    NASA Astrophysics Data System (ADS)

    Kahelras, M.; Ahmed-Ali, T.; Giri, F.; Lamnabhi-Lagarrigue, F.

    2018-05-01

    The problem of observer design is addressed for a class of triangular nonlinear systems with not-necessarily small delay and sampled output measurements. One more difficulty is that the system state matrix is dependent on the un-delayed output signal which is not accessible to measurement, making existing observers inapplicable. A new chain observer, composed of m elementary observers in series, is designed to compensate for output sampling and arbitrary large delays. The larger the time-delay the larger the number m. Each elementary observer includes an output predictor that is conceived to compensate for the effects of output sampling and a fractional delay. The predictors are defined by first-order ordinary differential equations (ODEs) much simpler than those of existing predictors which involve both output and state predictors. Using a small gain type analysis, sufficient conditions for the observer to be exponentially convergent are established in terms of the minimal number m of elementary observers and the maximum sampling interval.

  8. Adaptive Information Dissemination Control to Provide Diffdelay for the Internet of Things.

    PubMed

    Liu, Xiao; Liu, Anfeng; Huang, Changqin

    2017-01-12

    Applications running on the Internet of Things, such as the Wireless Sensor and Actuator Networks (WSANs) platform, generally have different quality of service (QoS) requirements. For urgent events, it is crucial that information be reported to the actuator quickly, and the communication cost is the second factor. However, for interesting events, communication costs, network lifetime and time all become important factors. In most situations, these different requirements cannot be satisfied simultaneously. In this paper, an adaptive communication control based on a differentiated delay (ACCDS) scheme is proposed to resolve this conflict. In an ACCDS, source nodes of events adaptively send various searching actuators routings (SARs) based on the degree of sensitivity to delay while maintaining the network lifetime. For a delay-sensitive event, the source node sends a large number of SARs to actuators to identify and inform the actuators in an extremely short time; thus, action can be taken quickly but at higher communication costs. For delay-insensitive events, the source node sends fewer SARs to reduce communication costs and improve network lifetime. Therefore, an ACCDS can meet the QoS requirements of different events using a differentiated delay framework. Theoretical analysis simulation results indicate that an ACCDS provides delay and communication costs and differentiated services; an ACCDS scheme can reduce the network delay by 11.111%-53.684% for a delay-sensitive event and reduce the communication costs by 5%-22.308% for interesting events, and reduce the network lifetime by about 28.713%.

  9. Adaptive Information Dissemination Control to Provide Diffdelay for the Internet of Things

    PubMed Central

    Liu, Xiao; Liu, Anfeng; Huang, Changqin

    2017-01-01

    Applications running on the Internet of Things, such as the Wireless Sensor and Actuator Networks (WSANs) platform, generally have different quality of service (QoS) requirements. For urgent events, it is crucial that information be reported to the actuator quickly, and the communication cost is the second factor. However, for interesting events, communication costs, network lifetime and time all become important factors. In most situations, these different requirements cannot be satisfied simultaneously. In this paper, an adaptive communication control based on a differentiated delay (ACCDS) scheme is proposed to resolve this conflict. In an ACCDS, source nodes of events adaptively send various searching actuators routings (SARs) based on the degree of sensitivity to delay while maintaining the network lifetime. For a delay-sensitive event, the source node sends a large number of SARs to actuators to identify and inform the actuators in an extremely short time; thus, action can be taken quickly but at higher communication costs. For delay-insensitive events, the source node sends fewer SARs to reduce communication costs and improve network lifetime. Therefore, an ACCDS can meet the QoS requirements of different events using a differentiated delay framework. Theoretical analysis simulation results indicate that an ACCDS provides delay and communication costs and differentiated services; an ACCDS scheme can reduce the network delay by 11.111%–53.684% for a delay-sensitive event and reduce the communication costs by 5%–22.308% for interesting events, and reduce the network lifetime by about 28.713%. PMID:28085097

  10. In-flight investigation of the effects of pilot location and control system design on airplane flying qualities for approach and landing

    NASA Technical Reports Server (NTRS)

    Weingarten, N. C.; Chalk, C. R.

    1982-01-01

    The handling qualities of large airplanes in the approach and landing flight phase were studied. The primary variables were relative pilot position with respect to center of rotation, command path time delays and phase shifts, augmentation schemes and levels of augmentation. It is indicated that the approach and landing task with large airplanes is a low bandwidth task. Low equivalent short period frequencies and relatively long time delays are tolerated only when the pilot is located at considerable distance forward of the center of rotation. The control problem experienced by the pilots, when seated behind the center of rotation, tended to occur at low altitude when they were using visual cues of rate of sink and altitude. A direct lift controller improved final flight path control of the shuttle like configurations.

  11. High Storage Efficiency and Large Fractional Delay of EIT-Based Memory

    NASA Astrophysics Data System (ADS)

    Chen, Yi-Hsin; Lee, Meng-Jung; Wang, I.-Chung; Du, Shengwang; Chen, Yong-Fan; Chen, Ying-Cheng; Yu, Ite

    2013-05-01

    In long-distance quantum communication and optical quantum computation, an efficient and long-lived quantum memory is an important component. We first experimentally demonstrated that a time-space-reversing method plus the optimum pulse shape can improve the storage efficiency (SE) of light pulses to 78% in cold media based on the effect of electromagnetically induced transparency (EIT). We obtain a large fractional delay of 74 at 50% SE, which is the best record so far. The measured classical fidelity of the recalled pulse is higher than 90% and nearly independent of the storage time, implying that the optical memory maintains excellent phase coherence. Our results suggest the current result may be readily applied to single-photon quantum states due to quantum nature of the EIT light-matter inference. This study advances the EIT-based quantum memory in practical quantum information applications.

  12. Generalization of Turbulent Pair Dispersion to Large Initial Separations

    NASA Astrophysics Data System (ADS)

    Shnapp, Ron; Liberzon, Alex; International Collaboration for Turbulence Research

    2018-06-01

    We present a generalization of turbulent pair dispersion to large initial separations (η

  13. The Consequences of Delayed Enrollment in Developmental Mathematics

    ERIC Educational Resources Information Center

    Fike, David S.; Fike, Renea

    2012-01-01

    Though a large percentage of U.S. students enter higher education with mathematics deficiencies, many institutions allow these students to decide the timing of their enrollment in developmental mathematics courses. This study of 3476 first-time-in-college students entailed the review of student outcomes (Fall GPA, Fall-to-Spring retention,…

  14. Analysis of delay reducing and fuel saving sequencing and spacing algorithms for arrival traffic

    NASA Technical Reports Server (NTRS)

    Neuman, Frank; Erzberger, Heinz

    1991-01-01

    The air traffic control subsystem that performs sequencing and spacing is discussed. The function of the sequencing and spacing algorithms is to automatically plan the most efficient landing order and to assign optimally spaced landing times to all arrivals. Several algorithms are described and their statistical performance is examined. Sequencing brings order to an arrival sequence for aircraft. First-come-first-served sequencing (FCFS) establishes a fair order, based on estimated times of arrival, and determines proper separations. Because of the randomness of the arriving traffic, gaps will remain in the sequence of aircraft. Delays are reduced by time-advancing the leading aircraft of each group while still preserving the FCFS order. Tightly spaced groups of aircraft remain with a mix of heavy and large aircraft. Spacing requirements differ for different types of aircraft trailing each other. Traffic is reordered slightly to take advantage of this spacing criterion, thus shortening the groups and reducing average delays. For heavy traffic, delays for different traffic samples vary widely, even when the same set of statistical parameters is used to produce each sample. This report supersedes NASA TM-102795 on the same subject. It includes a new method of time-advance as well as an efficient method of sequencing and spacing for two dependent runways.

  15. Efficiency of performing pulmonary procedures in a shared endoscopy unit: procedure time, turnaround time, delays, and procedure waiting time.

    PubMed

    Verma, Akash; Lee, Mui Yok; Wang, Chunhong; Hussein, Nurmalah B M; Selvi, Kalai; Tee, Augustine

    2014-04-01

    The purpose of this study was to assess the efficiency of performing pulmonary procedures in the endoscopy unit in a large teaching hospital. A prospective study from May 20 to July 19, 2013, was designed. The main outcome measures were procedure delays and their reasons, duration of procedural steps starting from patient's arrival to endoscopy unit, turnaround time, total case durations, and procedure wait time. A total of 65 procedures were observed. The most common procedure was BAL (61%) followed by TBLB (31%). Overall procedures for 35 (53.8%) of 65 patients were delayed by ≥ 30 minutes, 21/35 (60%) because of "spillover" of the gastrointestinal and surgical cases into the time block of pulmonary procedure. Time elapsed between end of pulmonary procedure and start of the next procedure was ≥ 30 minutes in 8/51 (16%) of cases. In 18/51 (35%) patients there was no next case in the room after completion of the pulmonary procedure. The average idle time of the room after the end of pulmonary procedure and start of next case or end of shift at 5:00 PM if no next case was 58 ± 53 minutes. In 17/51 (33%) patients the room's idle time was >60 minutes. A total of 52.3% of patients had the wait time >2 days and 11% had it ≥ 6 days, reason in 15/21 (71%) being unavailability of the slot. Most pulmonary procedures were delayed due to spillover of the gastrointestinal and surgical cases into the block time allocated to pulmonary procedures. The most common reason for difficulty encountered in scheduling the pulmonary procedure was slot unavailability. This caused increased procedure waiting time. The strategies to reduce procedure delays and turnaround times, along with improved scheduling methods, may have a favorable impact on the volume of procedures performed in the unit thereby optimizing the existing resources.

  16. The date-delay framing effect in temporal discounting depends on substance abuse.

    PubMed

    Klapproth, Florian

    2012-07-01

    In the present study, individuals with substance use disorders (n=30) and non-addicted controls (n=30) were presented with a delay-discounting task with time being described either as dates or as temporal intervals. Three main results were obtained. First, in both groups reward size had a large impact on discounting future rewards, with discount rates becoming larger with smaller reward sizes. Second, participants discounted future rewards less strongly when their time of delivery was presented as a date instead of a temporal distance. Third, whereas discount rates of individuals with substance use disorders varied substantially with regard to the presentation of time in the task, the controls changed their choices depending on time presentation only slightly. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Delaying Middle School and High School Start Times Promotes Student Health and Performance: An American Academy of Sleep Medicine Position Statement.

    PubMed

    Watson, Nathaniel F; Martin, Jennifer L; Wise, Merrill S; Carden, Kelly A; Kirsch, Douglas B; Kristo, David A; Malhotra, Raman K; Olson, Eric J; Ramar, Kannan; Rosen, Ilene M; Rowley, James A; Weaver, Terri E; Chervin, Ronald D

    2017-04-15

    During adolescence, internal circadian rhythms and biological sleep drive change to result in later sleep and wake times. As a result of these changes, early middle school and high school start times curtail sleep, hamper a student's preparedness to learn, negatively impact physical and mental health, and impair driving safety. Furthermore, a growing body of evidence shows that delaying school start times positively impacts student achievement, health, and safety. Public awareness of the hazards of early school start times and the benefits of later start times are largely unappreciated. As a result, the American Academy of Sleep Medicine is calling on communities, school boards, and educational institutions to implement start times of 8:30 AM or later for middle schools and high schools to ensure that every student arrives at school healthy, awake, alert, and ready to learn. © 2017 American Academy of Sleep Medicine

  18. Theory of nonlinear optical response of ensembles of double quantum dots

    NASA Astrophysics Data System (ADS)

    Sitek, Anna; Machnikowski, Paweł

    2009-09-01

    We study theoretically the time-resolved four-wave mixing (FWM) response of an ensemble of pairs of quantum dots undergoing radiative recombination. At short (picosecond) delay times, the response signal shows beats that may be dominated by the subensemble of resonant pairs, which gives access to the information on the interdot coupling. At longer delay times, the decay of the FWM signal is governed by two rates which result from the collective interaction between the two dots and the radiation modes. The two rates correspond to the subradiant and super-radiant components in the radiative decay. Coupling between the dots enhances the collective effects and makes them observable even when the average energy mismatch between the dots is relatively large.

  19. Optical delay encoding for fast timing and detector signal multiplexing in PET

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grant, Alexander M.; Levin, Craig S., E-mail: cslevin@stanford.edu; Molecular Imaging Program at Stanford

    2015-08-15

    Purpose: The large number of detector channels in modern positron emission tomography (PET) scanners poses a challenge in terms of readout electronics complexity. Multiplexing schemes are typically implemented to reduce the number of physical readout channels, but often result in performance degradation. Novel methods of multiplexing in PET must be developed to avoid this data degradation. The preservation of fast timing information is especially important for time-of-flight PET. Methods: A new multiplexing scheme based on encoding detector interaction events with a series of extremely fast overlapping optical pulses with precise delays is demonstrated in this work. Encoding events in thismore » way potentially allows many detector channels to be simultaneously encoded onto a single optical fiber that is then read out by a single digitizer. A two channel silicon photomultiplier-based prototype utilizing this optical delay encoding technique along with dual threshold time-over-threshold is demonstrated. Results: The optical encoding and multiplexing prototype achieves a coincidence time resolution of 160 ps full width at half maximum (FWHM) and an energy resolution of 13.1% FWHM at 511 keV with 3 × 3 × 5 mm{sup 3} LYSO crystals. All interaction information for both detectors, including timing, energy, and channel identification, is encoded onto a single optical fiber with little degradation. Conclusions: Optical delay encoding and multiplexing technology could lead to time-of-flight PET scanners with fewer readout channels and simplified data acquisition systems.« less

  20. Strong Lens Time Delay Challenge. I. Experimental Design

    NASA Astrophysics Data System (ADS)

    Dobler, Gregory; Fassnacht, Christopher D.; Treu, Tommaso; Marshall, Phil; Liao, Kai; Hojjati, Alireza; Linder, Eric; Rumbaugh, Nicholas

    2015-02-01

    The time delays between point-like images in gravitational lens systems can be used to measure cosmological parameters. The number of lenses with measured time delays is growing rapidly; the upcoming Large Synoptic Survey Telescope (LSST) will monitor ~103 strongly lensed quasars. In an effort to assess the present capabilities of the community, to accurately measure the time delays, and to provide input to dedicated monitoring campaigns and future LSST cosmology feasibility studies, we have invited the community to take part in a "Time Delay Challenge" (TDC). The challenge is organized as a set of "ladders," each containing a group of simulated data sets to be analyzed blindly by participating teams. Each rung on a ladder consists of a set of realistic mock observed lensed quasar light curves, with the rungs' data sets increasing in complexity and realism. The initial challenge described here has two ladders, TDC0 and TDC1. TDC0 has a small number of data sets, and is designed to be used as a practice set by the participating teams. The (non-mandatory) deadline for completion of TDC0 was the TDC1 launch date, 2013 December 1. The TDC1 deadline was 2014 July 1. Here we give an overview of the challenge, we introduce a set of metrics that will be used to quantify the goodness of fit, efficiency, precision, and accuracy of the algorithms, and we present the results of TDC0. Thirteen teams participated in TDC0 using 47 different methods. Seven of those teams qualified for TDC1, which is described in the companion paper.

  1. Dancing sprites: Detailed analysis of two case studies

    NASA Astrophysics Data System (ADS)

    Soula, Serge; Mlynarczyk, Janusz; Füllekrug, Martin; Pineda, Nicolau; Georgis, Jean-François; van der Velde, Oscar; Montanyà, Joan; Fabró, Ferran

    2017-03-01

    On 29-30 October 2013, a low-light video camera installed at Pic du Midi (2877 m), recorded transient luminous events above a very active storm over the Mediterranean Sea. The minimum cloud top temperature reached -73°C, while its cloud to ground (CG) flash rate exceeded 30 fl min-1. Some sprite events have long duration and resemble to dancing sprites. We analyze in detail the temporal evolution and estimated location of two series of sprite sequences, as well as the cloud structure, the lightning activity, the electric field radiated in a broad range of low frequencies, and the current moment waveform of the lightning strokes. (i) In each series, successive sprite sequences reflect time and location of corresponding positive lightning strokes across the stratiform region. (ii) The longer time-delayed (>20 ms) sprite elements correspond to the lower impulsive charge moment changes (iCMC) of the parent strokes (<200 C km), and they are shifted few tens of kilometers from their SP + CG stroke. However, both short and long time-delayed sprite elements also occur after strokes that produce a large iCMC and that are followed by a continuing current. (iii) The long time-delayed sprite elements during the continuing current correspond to surges in the current moment waveform. They occur sometimes at an altitude apparently lower than the previous short time-delayed sprite elements, possibly because of changes in the local conductivity. (iv) The largest and brightest sprite elements produce significant current signatures, visible when their delay is not too short ( 3-5 ms).

  2. Space Fed Subarray Synthesis Using Displaced Feed Location

    NASA Astrophysics Data System (ADS)

    Mailloux, Robert J.

    2002-01-01

    Wideband space-fed subarray systems are often proposed for large airborne or spaceborne scanning array applications. These systems allow the introduction of time delay devices at the subarray input terminals while using phase shifters in the array face. This can sometimes reduce the number of time delayed controls by an order of magnitude or more. The implementation of this technology has been slowed because the feed network, usually a Rotman Lens or Butler Matrix, is bulky, heavy and often has significant RF loss. In addition, the large lens aperture is necessarily filled with phase shifters, and so it introduces further loss, weight, and perhaps unacceptable phase shifter control power. These systems are currently viewed with increased interest because combination of low loss, low power MEMS phase shifters in the main aperture and solid state T/R modules in the feed might lead to large scanning arrays with much higher efficiency then previously realizable. Unfortunately, the conventional system design imposes an extremely large dynamic range requirement when used in the transmit mode, and requires very high output power from the T/R modules. This paper presents one possible solution to this problem using a modified feed geometry.

  3. Extreme fluctuations in stochastic network coordination with time delays

    NASA Astrophysics Data System (ADS)

    Hunt, D.; Molnár, F.; Szymanski, B. K.; Korniss, G.

    2015-12-01

    We study the effects of uniform time delays on the extreme fluctuations in stochastic synchronization and coordination problems with linear couplings in complex networks. We obtain the average size of the fluctuations at the nodes from the behavior of the underlying modes of the network. We then obtain the scaling behavior of the extreme fluctuations with system size, as well as the distribution of the extremes on complex networks, and compare them to those on regular one-dimensional lattices. For large complex networks, when the delay is not too close to the critical one, fluctuations at the nodes effectively decouple, and the limit distributions converge to the Fisher-Tippett-Gumbel density. In contrast, fluctuations in low-dimensional spatial graphs are strongly correlated, and the limit distribution of the extremes is the Airy density. Finally, we also explore the effects of nonlinear couplings on the stability and on the extremes of the synchronization landscapes.

  4. Airport Flight Departure Delay Model on Improved BN Structure Learning

    NASA Astrophysics Data System (ADS)

    Cao, Weidong; Fang, Xiangnong

    An high score prior genetic simulated annealing Bayesian network structure learning algorithm (HSPGSA) by combining genetic algorithm(GA) with simulated annealing algorithm(SAA) is developed. The new algorithm provides not only with strong global search capability of GA, but also with strong local hill climb search capability of SAA. The structure with the highest score is prior selected. In the mean time, structures with lower score are also could be choice. It can avoid efficiently prematurity problem by higher score individual wrong direct growing population. Algorithm is applied to flight departure delays analysis in a large hub airport. Based on the flight data a BN model is created. Experiments show that parameters learning can reflect departure delay.

  5. Preventing Delays in First-Case Starts on the Neurosurgery Service: A Resident-Led Initiative at an Academic Institution.

    PubMed

    Han, Seunggu J; Rolston, John D; Zygourakis, Corinna C; Sun, Matthew Z; McDermott, Michael W; Lau, Catherine Y; Aghi, Manish K

    2016-01-01

    On-time starts for the first case of the day are critical to maintaining efficiency in operating rooms (ORs). We studied whether a resident-led initiative to ensure on-time site marking and documentation of surgical consent could lead to improved first-case start time. In a resident-led initiative at a large 600-bed academic hospital with 25 ORs, we aimed to complete site marking and surgical consents half an hour before the scheduled start time for all first-case neurosurgical patients. We monitored the occurrence of delayed first starts and the length of delay during our initiative, and compared these cases to neurosurgical cases 3 months before the implementation of the initiative and to first-start nonneurosurgical cases. In the year of the initiative, both site marking and surgical consents were completed 30 minutes before the case start in 97% of neurosurgical cases. The average delay across all first-case starts was reduced to 7.17 minutes (N = 1271), compared with 9.67 minutes before the intervention (N = 345). During the study period, non-neurosurgical cases were delayed on average 10.3 minutes (N = 3592). There was a significant difference in latencies between the study period and the period before the initiative (p < 0.001), and also between neurosurgical cases and nonneurosurgical cases (p < 0.001). There was no reduction in delay times seen on the non-neurosurgical services in the study period when compared to the case 3 months before. Considering its effect across 1271 cases, this initiative over 1 year resulted in a total reduction of 52 hours and 57 minutes in delays. Through a resident-led quality improvement program, neurosurgical trainees successfully reduced delays in first-case starts on a surgical service. Engaging physician trainees in quality improvement and enhancing OR efficiency can be successfully achieved and can have a significant clinical and financial effect. Copyright © 2015 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.

  6. Impaired flexibility in decision making in rats after administration of the pharmacological stressor yohimbine.

    PubMed

    Schwager, Andrea L; Haack, Andrew K; Taha, Sharif A

    2014-10-01

    Stress-induced disruption of decision making has been hypothesized to contribute to drug-seeking behaviors and addiction. Noradrenergic signaling plays a central role in mediating stress responses. However, the effects of acute stress on decision making, and the role of noradrenergic signaling in regulating these effects, have not been well characterized. To characterize changes in decision making caused by acute pharmacological stress, the effects of yohimbine (an α2-adrenergic antagonist) were examined in a delay discounting task. Noradrenergic contributions to decision making were further characterized by examining the effects of propranolol (a β antagonist), prazosin (an α1 antagonist), and guanfacine (an α2 agonist). Sprague-Dawley rats were administered drugs prior to performance on a delay discounting task, in which the delay preceding the large reward increased within each session (ascending delays). To dissociate drug-induced changes in delay sensitivity from behavioral inflexibility, drug effects were subsequently tested in a modified version of the discounting task, in which the delay preceding the large reward decreased within each session (descending delays). Yohimbine increased choice of the large reward when tested with ascending delays but decreased choice of the same large reward when tested with descending delays, suggesting that drug effects could be attributed to perseverative choice of the lever preferred at the beginning of the session. Propranolol increased choice of the large reward when tested with ascending delays. Prazosin and guanfacine had no effect on reward choice. The stress-like effects of yohimbine administration may impair decision making by causing inflexible, perseverative behavior.

  7. The Effects of Very Light Jet Air Taxi Operations on Commercial Air Traffic

    NASA Technical Reports Server (NTRS)

    Smith, Jeremy C.; Dollyhigh, Samuel M.

    2006-01-01

    This study investigates the potential effects of Very Light Jet (VLJ) air taxi operations adding to delays experienced by commercial passenger air transportation in the year 2025. The affordable cost relative to existing business jets and ability to use many of the existing small, minimally equipped, but conveniently located airports is projected to stimulate a large demand for the aircraft. The resulting increase in air traffic operations will mainly be at smaller airports, but this study indicates that VLJs have the potential to increase further the pressure of demand at some medium and large airports, some of which are already operating at or near capacity at peak times. The additional delays to commercial passenger air transportation due to VLJ air taxi operations are obtained from simulation results using the Airspace Concepts Evaluation System (ACES) simulator. The direct increase in operating cost due to additional delays is estimated. VLJs will also cause an increase in traffic density, and this study shows increased potential for conflicts due to VLJ operations.

  8. Exploring a QoS Driven Scheduling Approach for Peer-to-Peer Live Streaming Systems with Network Coding

    PubMed Central

    Cui, Laizhong; Lu, Nan; Chen, Fu

    2014-01-01

    Most large-scale peer-to-peer (P2P) live streaming systems use mesh to organize peers and leverage pull scheduling to transmit packets for providing robustness in dynamic environment. The pull scheduling brings large packet delay. Network coding makes the push scheduling feasible in mesh P2P live streaming and improves the efficiency. However, it may also introduce some extra delays and coding computational overhead. To improve the packet delay, streaming quality, and coding overhead, in this paper are as follows. we propose a QoS driven push scheduling approach. The main contributions of this paper are: (i) We introduce a new network coding method to increase the content diversity and reduce the complexity of scheduling; (ii) we formulate the push scheduling as an optimization problem and transform it to a min-cost flow problem for solving it in polynomial time; (iii) we propose a push scheduling algorithm to reduce the coding overhead and do extensive experiments to validate the effectiveness of our approach. Compared with previous approaches, the simulation results demonstrate that packet delay, continuity index, and coding ratio of our system can be significantly improved, especially in dynamic environments. PMID:25114968

  9. Adults with Dyslexia Exhibit Large Effects of Crowding, Increased Dependence on Cues, and Detrimental Effects of Distractors in Visual Search Tasks

    ERIC Educational Resources Information Center

    Moores, Elisabeth; Cassim, Rizan; Talcott, Joel B.

    2011-01-01

    Difficulties in visual attention are increasingly being linked to dyslexia. To date, the majority of studies have inferred functionality of attention from response times to stimuli presented for an indefinite duration. However, in paradigms that use reaction times to investigate the ability to orient attention, a delayed reaction time could also…

  10. A COMPARISON OF THE EFFECTS OF BRIEF RULES, A TIMER, AND PREFERRED TOYS ON SELF-CONTROL

    PubMed Central

    Newquist, Matthew H; Dozier, Claudia L; Neidert, Pamela L

    2012-01-01

    Some children make impulsive choices (i.e., choose a small but immediate reinforcer over a large but delayed reinforcer). Previous research has shown that delay fading, providing an alternative activity during the delay, teaching participants to repeat a rule during the delay, combining delay fading with an alternative activity, and combining delay fading with a countdown timer are effective for increasing self-control (i.e., choosing the large but delayed reinforcer over the small but immediate reinforcer). The purpose of the current study was to compare the effects of various interventions in the absence of delay fading (i.e., providing brief rules, providing a countdown timer during the delay, or providing preferred toys during the delay) on self-control. Results suggested that providing brief rules or a countdown timer during the delay was ineffective for enhancing self-control. However, providing preferred toys during the delay effectively enhanced self-control. PMID:23060664

  11. A comparison of the effects of brief rules, a timer, and preferred toys on self-control.

    PubMed

    Newquist, Matthew H; Dozier, Claudia L; Neidert, Pamela L

    2012-01-01

    Some children make impulsive choices (i.e., choose a small but immediate reinforcer over a large but delayed reinforcer). Previous research has shown that delay fading, providing an alternative activity during the delay, teaching participants to repeat a rule during the delay, combining delay fading with an alternative activity, and combining delay fading with a countdown timer are effective for increasing self-control (i.e., choosing the large but delayed reinforcer over the small but immediate reinforcer). The purpose of the current study was to compare the effects of various interventions in the absence of delay fading (i.e., providing brief rules, providing a countdown timer during the delay, or providing preferred toys during the delay) on self-control. Results suggested that providing brief rules or a countdown timer during the delay was ineffective for enhancing self-control. However, providing preferred toys during the delay effectively enhanced self-control.

  12. Delaying Middle School and High School Start Times Promotes Student Health and Performance: An American Academy of Sleep Medicine Position Statement

    PubMed Central

    Watson, Nathaniel F.; Martin, Jennifer L.; Wise, Merrill S.; Carden, Kelly A.; Kirsch, Douglas B.; Kristo, David A.; Malhotra, Raman K.; Olson, Eric J.; Ramar, Kannan; Rosen, Ilene M.; Rowley, James A.; Weaver, Terri E.; Chervin, Ronald D.

    2017-01-01

    During adolescence, internal circadian rhythms and biological sleep drive change to result in later sleep and wake times. As a result of these changes, early middle school and high school start times curtail sleep, hamper a student's preparedness to learn, negatively impact physical and mental health, and impair driving safety. Furthermore, a growing body of evidence shows that delaying school start times positively impacts student achievement, health, and safety. Public awareness of the hazards of early school start times and the benefits of later start times are largely unappreciated. As a result, the American Academy of Sleep Medicine is calling on communities, school boards, and educational institutions to implement start times of 8:30 AM or later for middle schools and high schools to ensure that every student arrives at school healthy, awake, alert, and ready to learn. Citation: Watson NF, Martin JL, Wise MS, Carden KA, Kirsch DB, Kristo DA, Malhotra RK, Olson EJ, Ramar K, Rosen IM, Rowley JA, Weaver TE, Chervin RD. Delaying middle school and high school start times promotes student health and performance: an American Academy of Sleep Medicine position statement. J Clin Sleep Med. 2017;13(4):623–625. PMID:28416043

  13. Stabilizing embedology: Geometry-preserving delay-coordinate maps

    NASA Astrophysics Data System (ADS)

    Eftekhari, Armin; Yap, Han Lun; Wakin, Michael B.; Rozell, Christopher J.

    2018-02-01

    Delay-coordinate mapping is an effective and widely used technique for reconstructing and analyzing the dynamics of a nonlinear system based on time-series outputs. The efficacy of delay-coordinate mapping has long been supported by Takens' embedding theorem, which guarantees that delay-coordinate maps use the time-series output to provide a reconstruction of the hidden state space that is a one-to-one embedding of the system's attractor. While this topological guarantee ensures that distinct points in the reconstruction correspond to distinct points in the original state space, it does not characterize the quality of this embedding or illuminate how the specific parameters affect the reconstruction. In this paper, we extend Takens' result by establishing conditions under which delay-coordinate mapping is guaranteed to provide a stable embedding of a system's attractor. Beyond only preserving the attractor topology, a stable embedding preserves the attractor geometry by ensuring that distances between points in the state space are approximately preserved. In particular, we find that delay-coordinate mapping stably embeds an attractor of a dynamical system if the stable rank of the system is large enough to be proportional to the dimension of the attractor. The stable rank reflects the relation between the sampling interval and the number of delays in delay-coordinate mapping. Our theoretical findings give guidance to choosing system parameters, echoing the tradeoff between irrelevancy and redundancy that has been heuristically investigated in the literature. Our initial result is stated for attractors that are smooth submanifolds of Euclidean space, with extensions provided for the case of strange attractors.

  14. Stabilizing embedology: Geometry-preserving delay-coordinate maps.

    PubMed

    Eftekhari, Armin; Yap, Han Lun; Wakin, Michael B; Rozell, Christopher J

    2018-02-01

    Delay-coordinate mapping is an effective and widely used technique for reconstructing and analyzing the dynamics of a nonlinear system based on time-series outputs. The efficacy of delay-coordinate mapping has long been supported by Takens' embedding theorem, which guarantees that delay-coordinate maps use the time-series output to provide a reconstruction of the hidden state space that is a one-to-one embedding of the system's attractor. While this topological guarantee ensures that distinct points in the reconstruction correspond to distinct points in the original state space, it does not characterize the quality of this embedding or illuminate how the specific parameters affect the reconstruction. In this paper, we extend Takens' result by establishing conditions under which delay-coordinate mapping is guaranteed to provide a stable embedding of a system's attractor. Beyond only preserving the attractor topology, a stable embedding preserves the attractor geometry by ensuring that distances between points in the state space are approximately preserved. In particular, we find that delay-coordinate mapping stably embeds an attractor of a dynamical system if the stable rank of the system is large enough to be proportional to the dimension of the attractor. The stable rank reflects the relation between the sampling interval and the number of delays in delay-coordinate mapping. Our theoretical findings give guidance to choosing system parameters, echoing the tradeoff between irrelevancy and redundancy that has been heuristically investigated in the literature. Our initial result is stated for attractors that are smooth submanifolds of Euclidean space, with extensions provided for the case of strange attractors.

  15. Incidence and root causes of delays in emergency orthopaedic procedures: a single-centre experience of 36,017 consecutive cases over seven years.

    PubMed

    Caesar, Ulla; Karlsson, Jon; Hansson, Elisabeth

    2018-01-01

    Emergency surgery is unplanned by definition and patients are scheduled for surgery with minimal preparation. Some patients who have sustained emergency orthopaedic trauma or other conditions must be operated on immediately or within a few hours, while others can wait until the hospital's resources permit and/or the patients' health status has been optimised as needed. This may affect the prioritisation procedures for both emergency and elective surgery and might result in waiting lists, not only for planned procedures but also for emergencies. The main purpose of this retrospective, observational, single-centre study was to evaluate and describe for the number and reasons of delays, as well as waiting times in emergency orthopaedic surgery using data derived from the hospital's records and registers. All the emergency patients scheduled for emergency surgery whose procedures were rescheduled and delayed between 1 January 2007 and 31 December 2013 were studied. We found that 24% (8474) of the 36,017 patients scheduled for emergency surgeries were delayed and rescheduled at least once, some several times. Eighty per cent of these delays were due to organisational causes. Twenty-one per cent of all the delayed patients had surgery within 24 h, whilst 41% waited for more than 24 h, up to 3 days. A large number of the clinic's emergency orthopaedic procedures were rescheduled and delayed and the majority of the delays were related to organisational reasons. The results can be interpreted in two ways; first, organisational reasons are avoidable and the potential for improvement is great and, secondly and most importantly, the delays might negatively affect patient outcomes.

  16. Stroke Thrombolysis in a Centralized and a Decentralized System (Helsinki and Telemedical Project for Integrative Stroke Care Network).

    PubMed

    Hubert, Gordian J; Meretoja, Atte; Audebert, Heinrich J; Tatlisumak, Turgut; Zeman, Florian; Boy, Sandra; Haberl, Roman L; Kaste, Markku; Müller-Barna, Peter

    2016-12-01

    Intravenous thrombolysis with tissue-type plasminogen activator (tPA) for acute ischemic stroke is more effective when delivered early. Timely delivery is challenging particularly in rural areas with long distances. We compared delays and treatment rates of a large, decentralized telemedicine-based system and a well-organized, large, centralized single-hospital system. We analyzed the centralized system of the Helsinki University Central Hospital (Helsinki and Province of Uusimaa, Finland, 1.56 million inhabitants, 9096 km 2 ) and the decentralized TeleStroke Unit network in a predominantly rural area (Telemedical Project for Integrative Stroke Care [TEMPiS], South-East Bavaria, Germany, 1.94 million inhabitants, 14 992 km 2 ). All consecutive tPA treatments were prospectively registered. We compared tPA rates per total ischemic stroke admissions in the Helsinki and TEMPiS catchment areas. For delay comparisons, we excluded patients with basilar artery occlusions, in-hospital strokes, and those being treated after 270 minutes. From January 1, 2011, to December 31, 2013, 912 patients received tPA in Helsinki University Central Hospital and 1779 in TEMPiS hospitals. Area-based tPA rates were equal (13.0% of 7017 ischemic strokes in the Helsinki University Central Hospital area versus 13.3% of 14 637 ischemic strokes in the TEMPiS area; P=0.078). Median prehospital delays were longer (88; interquartile range, 60-135 versus 65; 48-101 minutes; P<0.001) but in-hospital delays were shorter (18; interquartile range, 13-30 versus 39; 26-56 minutes; P<0.001) in Helsinki University Central Hospital compared with TEMPiS with no difference in overall delays (117; interquartile range, 81-168 versus 115; 87-155 minutes; P=0.45). A decentralized telestroke thrombolysis service can achieve similar treatment rates and time delays for a rural population as a centralized system can achieve for an urban population. © 2016 American Heart Association, Inc.

  17. Cardiovascular transition at birth: a physiological sequence.

    PubMed

    Hooper, Stuart B; Te Pas, Arjan B; Lang, Justin; van Vonderen, Jeroen J; Roehr, Charles Christoph; Kluckow, Martin; Gill, Andrew W; Wallace, Euan M; Polglase, Graeme R

    2015-05-01

    The transition to newborn life at birth involves major cardiovascular changes that are triggered by lung aeration. These include a large increase in pulmonary blood flow (PBF), which is required for pulmonary gas exchange and to replace umbilical venous return as the source of preload for the left heart. Clamping the umbilical cord before PBF increases reduces venous return and preload for the left heart and thereby reduces cardiac output. Thus, if ventilation onset is delayed following cord clamping, the infant is at risk of superimposing an ischemic insult, due to low cardiac output, on top of an asphyxic insult. Much debate has centered on the timing of cord clamping at birth, focusing mainly on the potential for a time-dependent placental to infant blood transfusion. This has prompted recommendations for delayed cord clamping for a set time after birth in infants not requiring resuscitation. However, recent evidence indicates that ventilation onset before cord clamping mitigates the adverse cardiovascular consequences caused by immediate cord clamping. This indicates that the timing of cord clamping should be based on the infant's physiology rather than an arbitrary period of time and that delayed cord clamping may be of greatest benefit to apneic infants.

  18. Time delay in the Einstein ring PKS 1830-211

    NASA Technical Reports Server (NTRS)

    Van Ommen, T. D.; Jones, D. L.; Preston, R. A.; Jauncey, D. L.

    1995-01-01

    We present radio observations of the gravitational lens PKS 1830-211 at 8.4 and 15 GHz acquired using the Very Large Array. The observations were made over a 13 month period. Significant flux density changes over this period provide strong constraints on the time delay between the two lensed images and suffest a value of 44 +/- 9 days. This offers new direct evidence that this source is indeed a gravitational lens. The lens distance is dependent upon the model chosen, but reasonable limits on the mass of the lensing galaxy suggest that it is unlikely to be at a redshift less than a few tenths, and may well be significantly more distant.

  19. Direct numerical simulations of premixed autoignition in compressible uniformly-sheared turbulence

    NASA Astrophysics Data System (ADS)

    Towery, Colin; Darragh, Ryan; Poludnenko, Alexei; Hamlington, Peter

    2017-11-01

    High-speed combustion systems, such as scramjet engines, operate at high temperatures and pressures, extremely short combustor residence times, very high rates of shear stress, and intense turbulent mixing. As a result, the reacting flow can be premixed and have highly-compressible turbulence fluctuations. We investigate the effects of compressible turbulence on the ignition delay time, heat-release-rate (HRR) intermittency, and mode of autoignition of premixed Hydrogen-air fuel in uniformly-sheared turbulence using new three-dimensional direct numerical simulations with a multi-step chemistry mechanism. We analyze autoignition in both the Eulerian and Lagrangian reference frames at eight different turbulence Mach numbers, Mat , spanning the quasi-isentropic, linear thermodynamic, and nonlinear compressibility regimes, with eddy shocklets appearing in the nonlinear regime. Results are compared to our previous study of premixed autoignition in isotropic turbulence at the same Mat and with a single-step reaction mechanism. This previous study found large decreases in delay times and large increases in HRR intermittency between the linear and nonlinear compressibility regimes and that detonation waves could form in both regimes.

  20. Shear Wave Splitting Inversion in a Complex Crust

    NASA Astrophysics Data System (ADS)

    Lucas, A.

    2015-12-01

    Shear wave splitting (SWS) inversion presents a method whereby the upper crust can be interrogated for fracture density. It is caused when a shear wave traverses an area of anisotropy, splits in two, with each wave experiencing a different velocity resulting in an observable separation in arrival times. A SWS observation consists of the first arrival polarization direction and the time delay. Given the large amount of data common in SWS studies, manual inspection for polarization and time delay is considered prohibitively time intensive. All automated techniques used can produce high amounts of observations falsely interpreted as SWS. Thus introducing error into the interpretation. The technique often used for removing these false observations is to manually inspect all SWS observations defined as high quality by the automated routine, and remove false identifications. We investigate the nature of events falsely identified compared to those correctly identified. Once this identification is complete we conduct a inversion for crack density from SWS time delay. The current body of work on linear SWS inversion utilizes an equation that defines the time delay between arriving shear waves with respect to fracture density. This equation makes the assumption that no fluid flow occurs as a result of the passing shear wave, a situation called squirt flow. We show that the assumption is not applicable in all geological situations. When it is not true, its use in an inversion produces a result which is negatively affected by the assumptions. This is shown to be the case at the test case of 6894 SWS observations gathered in a small area at Puna geothermal field, Hawaii. To rectify this situation, a series of new time delay formulae, applicable to linear inversion, are derived from velocity equations presented in literature. The new formula use a 'fluid influence parameter' which indicates the degree to which squirt flow is influencing the SWS. It is found that accounting for squirt flow better fits the data and is more applicable. The fluid influence factor that best describes the data can be identified prior to solving the inversion. Implementing this formula in a linear inversion has a significantly improved fit to the time delay observations than that of the current methods.

  1. Stability analysis of gyroscopic systems with delay via decomposition

    NASA Astrophysics Data System (ADS)

    Aleksandrov, A. Yu.; Zhabko, A. P.; Chen, Y.

    2018-05-01

    A mechanical system describing by the second order linear differential equations with a positive parameter at the velocity forces and with time delay in the positional forces is studied. Using the decomposition method and Lyapunov-Krasovskii functionals, conditions are obtained under which from the asymptotic stability of two auxiliary first order subsystems it follows that, for sufficiently large values of the parameter, the original system is also asymptotically stable. Moreover, it is shown that the proposed approach can be applied to the stability investigation of linear gyroscopic systems with switched positional forces.

  2. STRONG LENS TIME DELAY CHALLENGE. I. EXPERIMENTAL DESIGN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dobler, Gregory; Fassnacht, Christopher D.; Rumbaugh, Nicholas

    2015-02-01

    The time delays between point-like images in gravitational lens systems can be used to measure cosmological parameters. The number of lenses with measured time delays is growing rapidly; the upcoming Large Synoptic Survey Telescope (LSST) will monitor ∼10{sup 3} strongly lensed quasars. In an effort to assess the present capabilities of the community, to accurately measure the time delays, and to provide input to dedicated monitoring campaigns and future LSST cosmology feasibility studies, we have invited the community to take part in a ''Time Delay Challenge'' (TDC). The challenge is organized as a set of ''ladders'', each containing a groupmore » of simulated data sets to be analyzed blindly by participating teams. Each rung on a ladder consists of a set of realistic mock observed lensed quasar light curves, with the rungs' data sets increasing in complexity and realism. The initial challenge described here has two ladders, TDC0 and TDC1. TDC0 has a small number of data sets, and is designed to be used as a practice set by the participating teams. The (non-mandatory) deadline for completion of TDC0 was the TDC1 launch date, 2013 December 1. The TDC1 deadline was 2014 July 1. Here we give an overview of the challenge, we introduce a set of metrics that will be used to quantify the goodness of fit, efficiency, precision, and accuracy of the algorithms, and we present the results of TDC0. Thirteen teams participated in TDC0 using 47 different methods. Seven of those teams qualified for TDC1, which is described in the companion paper.« less

  3. Characteristics of lightning flashes generating dancing sprites above thunderstorms

    NASA Astrophysics Data System (ADS)

    Soula, Serge; Mlynarczyk, Janusz; Füllekrug, Martin; Pineda, Nicolau; Georgis, Jean-François; van der Velde, Oscar; Montanyà, Joan; Fabro, Ferran

    2017-04-01

    During the night of October 29-30, 2013, a low-light video camera at Pic du Midi (2877 m) in the French Pyrénées, recorded TLEs above a very active storm over the Mediterranean Sea. The minimum cloud top temperature reached -73˚ C at ˜1600 UTC while its cloud to ground (CG) flash rate reached ˜30 fl min-1. Some sprite events with long duration are classified as dancing sprites. We analyze in detail the temporal evolution and estimated location of sprite elements for two cases of these events. They consist in series of sprite sequences with a duration that exceeds 1 second. By associating the cloud structure, the lightning activity, the electric field radiated in a broad range of low frequencies and the current moment waveform of the lightning strokes, some findings are highlighted: (i) In each series, successive sprite sequences reflect the occurrence time and location of individual positive lightning strokes across the stratiform region. (ii) The longer time-delayed (> 20 ms) sprite elements correspond to the lower impulsive charge moment changes (iCMC) of the parent stroke (< 200 C km) and they are shifted few tens of kilometres from their SP+CG stroke. However, both short and long time-delayed sprite elements also occur after strokes that produce a large iCMC and that are followed by a continuing current. (iii) The long time-delayed sprite elements produced during the continuing current correspond to surges in the current moment waveform. They occur sometimes at an altitude apparently lower than the previous short time-delayed sprite elements, possibly because of the lowered altitude of the ionosphere potential. (iv) The largest and brightest sprite elements produce significant current signatures, visible when their delay is not too short (˜3-5 ms).

  4. Microcomb-Based True-Time-Delay Network for Microwave Beamforming With Arbitrary Beam Pattern Control

    NASA Astrophysics Data System (ADS)

    Xue, Xiaoxiao; Xuan, Yi; Bao, Chengying; Li, Shangyuan; Zheng, Xiaoping; Zhou, Bingkun; Qi, Minghao; Weiner, Andrew M.

    2018-06-01

    Microwave phased array antennas (PAAs) are very attractive to defense applications and high-speed wireless communications for their abilities of fast beam scanning and complex beam pattern control. However, traditional PAAs based on phase shifters suffer from the beam-squint problem and have limited bandwidths. True-time-delay (TTD) beamforming based on low-loss photonic delay lines can solve this problem. But it is still quite challenging to build large-scale photonic TTD beamformers due to their high hardware complexity. In this paper, we demonstrate a photonic TTD beamforming network based on a miniature microresonator frequency comb (microcomb) source and dispersive time delay. A method incorporating optical phase modulation and programmable spectral shaping is proposed for positive and negative apodization weighting to achieve arbitrary microwave beam pattern control. The experimentally demonstrated TTD beamforming network can support a PAA with 21 elements. The microwave frequency range is $\\mathbf{8\\sim20\\ {GHz}}$, and the beam scanning range is $\\mathbf{\\pm 60.2^\\circ}$. Detailed measurements of the microwave amplitudes and phases are performed. The beamforming performances of Gaussian, rectangular beams and beam notch steering are evaluated through simulations by assuming a uniform radiating antenna array. The scheme can potentially support larger PAAs with hundreds of elements by increasing the number of comb lines with broadband microcomb generation.

  5. Local Stability of AIDS Epidemic Model Through Treatment and Vertical Transmission with Time Delay

    NASA Astrophysics Data System (ADS)

    Novi W, Cascarilla; Lestari, Dwi

    2016-02-01

    This study aims to explain stability of the spread of AIDS through treatment and vertical transmission model. Human with HIV need a time to positively suffer AIDS. The existence of a time, human with HIV until positively suffer AIDS can be delayed for a time so that the model acquired is the model with time delay. The model form is a nonlinear differential equation with time delay, SIPTA (susceptible-infected-pre AIDS-treatment-AIDS). Based on SIPTA model analysis results the disease free equilibrium point and the endemic equilibrium point. The disease free equilibrium point with and without time delay are local asymptotically stable if the basic reproduction number is less than one. The endemic equilibrium point will be local asymptotically stable if the time delay is less than the critical value of delay, unstable if the time delay is more than the critical value of delay, and bifurcation occurs if the time delay is equal to the critical value of delay.

  6. Incorporating Active Runway Crossings in Airport Departure Scheduling

    NASA Technical Reports Server (NTRS)

    Gupta, Gautam; Malik, Waqar; Jung, Yoon C.

    2010-01-01

    A mixed integer linear program is presented for deterministically scheduling departure and ar rival aircraft at airport runways. This method addresses different schemes of managing the departure queuing area by treating it as first-in-first-out queues or as a simple par king area where any available aircraft can take-off ir respective of its relative sequence with others. In addition, this method explicitly considers separation criteria between successive aircraft and also incorporates an optional prioritization scheme using time windows. Multiple objectives pertaining to throughput and system delay are used independently. Results indicate improvement over a basic first-come-first-serve rule in both system delay and throughput. Minimizing system delay results in small deviations from optimal throughput, whereas minimizing throughput results in large deviations in system delay. Enhancements for computational efficiency are also presented in the form of reformulating certain constraints and defining additional inequalities for better bounds.

  7. THz field engineering in two-color femtosecond filaments using chirped and delayed laser pulses

    NASA Astrophysics Data System (ADS)

    Nguyen, A.; González de Alaiza Martínez, P.; Thiele, I.; Skupin, S.; Bergé, L.

    2018-03-01

    We numerically study the influence of chirping and delaying several ionizing two-color light pulses in order to engineer terahertz (THz) wave generation in air. By means of comprehensive 3D simulations, it is shown that two chirped pulses can increase the THz yield when they are separated by a suitable time delay for the same laser energy in focused propagation geometry. To interpret these results, the local current theory is revisited and we propose an easy, accessible all-optical criterion that predicts the laser-to-THz conversion efficiencies given any input laser spectrum. In the filamentation regime, numerical simulations display evidence that a chirped pulse is able to produce more THz radiation due to propagation effects, which maintain the two colors of the laser field more efficiently coupled over long distances. A large delay between two pulses promotes multi-peaked THz spectra as well as conversion efficiencies above 10‑4.

  8. Emergence of amplitude death scenario in a network of oscillators under repulsive delay interaction

    NASA Astrophysics Data System (ADS)

    Bera, Bidesh K.; Hens, Chittaranjan; Ghosh, Dibakar

    2016-07-01

    We report the existence of amplitude death in a network of identical oscillators under repulsive mean coupling. Amplitude death appears in a globally coupled network of identical oscillators with instantaneous repulsive mean coupling only when the number of oscillators is more than two. We further investigate that, amplitude death may emerge even in two coupled oscillators as well as network of oscillators if we introduce delay time in the repulsive mean coupling. We have analytically derived the region of amplitude death island and find out how strength of delay controls the death regime in two coupled or a large network of coupled oscillators. We have verified our results on network of delayed Mackey-Glass systems where parameters are set in hyperchaotic regime. We have also tested our coupling approach in two paradigmatic limit cycle oscillators: Stuart-Landau and Van der Pol oscillators.

  9. The effects of the framing of time on delay discounting.

    PubMed

    DeHart, William Brady; Odum, Amy L

    2015-01-01

    We examined the effects of the framing of time on delay discounting. Delay discounting is the process by which delayed outcomes are devalued as a function of time. Time in a titrating delay discounting task is often framed in calendar units (e.g., as 1 week, 1 month, etc.). When time is framed as a specific date, delayed outcomes are discounted less compared to the calendar format. Other forms of framing time; however, have not been explored. All participants completed a titrating calendar unit delay-discounting task for money. Participants were also assigned to one of two delay discounting tasks: time as dates (e.g., June 1st, 2015) or time in units of days (e.g., 5000 days), using the same delay distribution as the calendar delay-discounting task. Time framed as dates resulted in less discounting compared to the calendar method, whereas time framed as days resulted in greater discounting compared to the calendar method. The hyperboloid model fit best compared to the hyperbola and exponential models. How time is framed may alter how participants attend to the delays as well as how the delayed outcome is valued. Altering how time is framed may serve to improve adherence to goals with delayed outcomes. © Society for the Experimental Analysis of Behavior.

  10. Ultrafast detection in particle physics and positron emission tomography using SiPMs

    NASA Astrophysics Data System (ADS)

    Dolenec, R.; Korpar, S.; Križan, P.; Pestotnik, R.

    2017-12-01

    Silicon photomultiplier (SiPM) photodetectors perform well in many particle and medical physics applications, especially where good efficiency, insensitivity to magnetic field and precise timing are required. In Cherenkov time-of-flight positron emission tomography the requirements for photodetector performance are especially high. On average only a couple of photons are available for detection and the best possible timing resolution is needed. Using SiPMs as photodetectors enables good detection efficiency, but the large sensitive area devices needed have somewhat limited time resolution for single photons. We have observed an additional degradation of the timing at very low light intensities due to delayed events in distribution of signals resulting from multiple fired micro cells. In this work we present the timing properties of AdvanSiD ASD-NUV3S-P-40 SiPM at single photon level picosecond laser illumination and a simple modification of the time-walk correction algorithm, that resulted in reduced degradation of timing resolution due to the delayed events.

  11. Fermat's least-time principle and the embedded transparent lens

    NASA Astrophysics Data System (ADS)

    Kantowski, R.; Chen, B.; Dai, X.

    2013-10-01

    We present a simplified version of the lowest-order embedded point mass gravitational lens theory and then make the extension of this theory to any embedded transparent lens. Embedding a lens effectively reduces the gravitational potential’s range, i.e., partially shields the lensing potential because the lens mass is made a contributor to the mean mass density of the Universe and not simply superimposed upon it. We give the time-delay function for the embedded point mass lens from which we can derive the simplified lens equation by applying Fermat’s least-time principle. Even though rigorous derivations are only made for the point mass in a flat background, the generalization of the lens equation to lowest order for any distributed lens in any homogeneous background is obvious. We find from this simplified theory that embedding can introduce corrections above the few percent level in weak lensing shears caused by large clusters but only at large impacts. The potential part of the time delay is also affected in strong lensing at the few percent level. Additionally we again confirm that the presence of a cosmological constant alters the gravitational deflection of passing photons.

  12. Suppression of the vacuolar invertase gene delays senescent sweetening in chipping potatoes

    USDA-ARS?s Scientific Manuscript database

    Background: Potato chip processors require potato tubers that meet quality specifications for fried chip color, and color depends largely upon tuber sugar contents. At later times in storage, potatoes accumulate sucrose, glucose and fructose. This developmental process, senescent sweetening, manifes...

  13. Decision-making in state lotteries: half now or all of it later?

    PubMed

    Baker, Forest; Johnson, Matthew W; Bickel, Warren K

    2003-12-01

    Many state lotteries offer players a choice between receiving roughly half of the jackpot immediately and receiving the entire jackpot over 25 annual payments. This requires players to make a decision that involves uncertainty, delay, and large amounts of real money. Archival data on lottery players' jackpot payment decisions were collected from seven state and three multistate lotteries. Players' jackpot payment preferences were assessed at the time of ticket purchase and after winning a jackpot. Preference for the annuity payment option significantly decreased as jackpot size increased, both at the time of ticket purchase and after winning. Furthermore, a significant proportion of winners who selected the annuity payment option at ticket purchase switched to the cash payment option after winning, whereas no winners switched from the cash to the annuity option after winning. These findings suggest that real-world choices involving large sums of money may be subject to diminishing marginal utility and probability and delay discounting.

  14. Differences in delay discounting between smokers and nonsmokers remain when both rewards are delayed

    PubMed Central

    Mitchell, Suzanne H.; Wilson, Vanessa B.

    2013-01-01

    Rationale When offered a choice between a small monetary reward available immediately (SmallNow) versus a larger reward available after a delay (LargeLater), smokers select the SmallNow alternative more than nonsmokers. That is, smokers discount the value of the LargeLater reward more than nonsmokers. Objectives To investigate whether this group difference was due to smokers overweighing the value of rewards available immediately compared with nonsmokers, we examined whether the group difference was also seen when both alternatives were delayed, i.e., when choosing between a SmallSoon reward and a LargeLater reward. Methods In Experiment 1, smokers and nonsmokers completed a task including SmallNow versus LargeLater choices and SmallSoon versus LargeLater choices. In Experiment 2, smokers and nonsmokers completed the same task but with hypothetical choices. Results Analyses using hyperbolic and double exponential (β-δ) models replicate prior findings that smokers discount the LargeLater reward more than nonsmokers when the smaller reward is available immediately. The smoker-nonsmoker difference was also seen when the smaller reward was slightly delayed, though this effect was primarily driven by heightened discounting in male smokers. However, for potentially real rewards only, this smoker-nonsmoker difference was significantly reduced when the smaller reward was delayed. Conclusions The smoker-nonsmoker difference in discounting is not confined to situations involving immediate rewards. Differences associated with potentially real vs. hypothetical rewards and gender underscore the complexity of the smoking-delay discounting relationship. PMID:21983917

  15. Corrections of stratified tropospheric delays in SAR interferometry: Validation with global atmospheric models

    NASA Astrophysics Data System (ADS)

    Doin, Marie-Pierre; Lasserre, Cécile; Peltzer, Gilles; Cavalié, Olivier; Doubre, Cécile

    2010-05-01

    The main limiting factor on the accuracy of Interferometric SAR measurements (InSAR) comes from phase propagation delays through the troposphere. The delay can be divided into a stratified component, which correlates with the topography and often dominates the tropospheric signal, and a turbulent component. We use Global Atmospheric Models (GAM) to estimate the stratified phase delay and delay-elevation ratio at epochs of SAR acquisitions, and compare them to observed phase delay derived from SAR interferograms. Three test areas are selected with different geographic and climatic environments and with large SAR archive available. The Lake Mead, Nevada, USA is covered by 79 ERS1/2 and ENVISAT acquisitions, the Haiyuan Fault area, Gansu, China, by 24 ERS1/2 acquisitions, and the Afar region, Republic of Djibouti, by 91 Radarsat acquisitions. The hydrostatic and wet stratified delays are computed from GAM as a function of atmospheric pressure P, temperature T, and water vapor partial pressure e vertical profiles. The hydrostatic delay, which depends on ratio P/T, varies significantly at low elevation and cannot be neglected. The wet component of the delay depends mostly on the near surface specific humidity. GAM predicted delay-elevation ratios are in good agreement with the ratios derived from InSAR data away from deforming zones. Both estimations of the delay-elevation ratio can thus be used to perform a first order correction of the observed interferometric phase to retrieve a ground motion signal of low amplitude. We also demonstrate that aliasing of daily and seasonal variations in the stratified delay due to uneven sampling of SAR data significantly bias InSAR data stacks or time series produced after temporal smoothing. In all three test cases, the InSAR data stacks or smoothed time series present a residual stratified delay of the order of the expected deformation signal. In all cases, correcting interferograms from the stratified delay removes all these biases. We quantify the standard error associated with the correction of the stratified atmospheric delay. It varies from one site to another depending on the prevailing atmospheric conditions, but remains bounded by the standard deviation of the daily fluctuations of the stratified delay around the seasonal average. Finally we suggest that the phase delay correction can potentially be improved by introducing a non-linear dependence to the elevation derived from GAM.

  16. Corrections of stratified tropospheric delays in SAR interferometry: Validation with global atmospheric models

    NASA Astrophysics Data System (ADS)

    Doin, M.-P.; Lasserre, C.; Peltzer, G.; Cavalié, O.; Doubre, C.

    2009-09-01

    The main limiting factor on the accuracy of Interferometric SAR measurements (InSAR) comes from phase propagation delays through the troposphere. The delay can be divided into a stratified component, which correlates with the topography and often dominates the tropospheric signal, and a turbulent component. We use Global Atmospheric Models (GAM) to estimate the stratified phase delay and delay-elevation ratio at epochs of SAR acquisitions, and compare them to observed phase delay derived from SAR interferograms. Three test areas are selected with different geographic and climatic environments and with large SAR archive available. The Lake Mead, Nevada, USA is covered by 79 ERS1/2 and ENVISAT acquisitions, the Haiyuan Fault area, Gansu, China, by 24 ERS1/2 acquisitions, and the Afar region, Republic of Djibouti, by 91 Radarsat acquisitions. The hydrostatic and wet stratified delays are computed from GAM as a function of atmospheric pressure P, temperature T, and water vapor partial pressure e vertical profiles. The hydrostatic delay, which depends on ratio P/ T, varies significantly at low elevation and cannot be neglected. The wet component of the delay depends mostly on the near surface specific humidity. GAM predicted delay-elevation ratios are in good agreement with the ratios derived from InSAR data away from deforming zones. Both estimations of the delay-elevation ratio can thus be used to perform a first order correction of the observed interferometric phase to retrieve a ground motion signal of low amplitude. We also demonstrate that aliasing of daily and seasonal variations in the stratified delay due to uneven sampling of SAR data significantly bias InSAR data stacks or time series produced after temporal smoothing. In all three test cases, the InSAR data stacks or smoothed time series present a residual stratified delay of the order of the expected deformation signal. In all cases, correcting interferograms from the stratified delay removes all these biases. We quantify the standard error associated with the correction of the stratified atmospheric delay. It varies from one site to another depending on the prevailing atmospheric conditions, but remains bounded by the standard deviation of the daily fluctuations of the stratified delay around the seasonal average. Finally we suggest that the phase delay correction can potentially be improved by introducing a non-linear dependence to the elevation derived from GAM.

  17. A Low Power Linear Phase Programmable Long Delay Circuit.

    PubMed

    Rodriguez-Villegas, Esther; Logesparan, Lojini; Casson, Alexander J

    2014-06-01

    A novel linear phase programmable delay is being proposed and implemented in a 0.35 μm CMOS process. The delay line consists of N cascaded cells, each of which delays the input signal by Td/N, where Td is the total line delay. The delay generated by each cell is programmable by changing a clock frequency and is also fully independent of the frequency of the input signal. The total delay hence depends only on the chosen clock frequency and the total number of cascaded cells. The minimum clock frequency is limited by the maximum time a voltage signal can effectively be held by an individual cell. The maximum number of cascaded cells will be limited by the effects of accumulated offset due to transistor mismatch, which eventually will affect the operating mode of the individual transistors in a cell. This latter limitation has however been dealt with in the topology by having an offset compensation mechanism that makes possible having a large number of cascaded cells and hence a long resulting delay. The delay line has been designed for scalp-based neural activity analysis that is predominantly in the sub-100 Hz frequency range. For these signals, the delay generated by a 31-cell cascade has been demonstrated to be programmable from 30 ms to 3 s. Measurement results demonstrate a 31 stage, 50 Hz bandwidth, 0.3 s delay that operates from a 1.1 V supply with power consumption of 270 nW.

  18. An Energy Scaled and Expanded Vector-Based Forwarding Scheme for Industrial Underwater Acoustic Sensor Networks with Sink Mobility.

    PubMed

    Wadud, Zahid; Hussain, Sajjad; Javaid, Nadeem; Bouk, Safdar Hussain; Alrajeh, Nabil; Alabed, Mohamad Souheil; Guizani, Nadra

    2017-09-30

    Industrial Underwater Acoustic Sensor Networks (IUASNs) come with intrinsic challenges like long propagation delay, small bandwidth, large energy consumption, three-dimensional deployment, and high deployment and battery replacement cost. Any routing strategy proposed for IUASN must take into account these constraints. The vector based forwarding schemes in literature forward data packets to sink using holding time and location information of the sender, forwarder, and sink nodes. Holding time suppresses data broadcasts; however, it fails to keep energy and delay fairness in the network. To achieve this, we propose an Energy Scaled and Expanded Vector-Based Forwarding (ESEVBF) scheme. ESEVBF uses the residual energy of the node to scale and vector pipeline distance ratio to expand the holding time. Resulting scaled and expanded holding time of all forwarding nodes has a significant difference to avoid multiple forwarding, which reduces energy consumption and energy balancing in the network. If a node has a minimum holding time among its neighbors, it shrinks the holding time and quickly forwards the data packets upstream. The performance of ESEVBF is analyzed through in network scenario with and without node mobility to ensure its effectiveness. Simulation results show that ESEVBF has low energy consumption, reduces forwarded data copies, and less end-to-end delay.

  19. The Operational Impacts of the Global Network Enterprise Construct

    DTIC Science & Technology

    2010-05-14

    Board Task Force on Achieving Interoperability in a Net-Centric Environment, xiv. 60 Lolita Baldor, “Military Asserts Right to Return Cyber-Attacks...the commander is aware that applications such video teleconferencing and large file transfers are often not possible with subordinate units...data packets, but if there is latency along the path, services such as video or large file transfers will fail. Latency is the time delay inherent in

  20. Delayed bleeding and hemorrhage of mucosal defects after gastric endoscopic submucosal dissection on second-look endoscopy.

    PubMed

    Ono, Shoko; Ono, Masayoshi; Nakagawa, Manabu; Shimizu, Yuichi; Kato, Mototsugu; Sakamoto, Naoya

    2016-04-01

    Although second-look endoscopy is performed within several days after gastric endoscopic submucosal dissection (ESD), there has been no evidence supporting the usefulness of the intervention. We investigated the relationship between delayed bleeding and hemorrhage of mucosal defects after ESD on second-look endoscopy and analyzed risk factors of active bleeding on second-look endoscopy. A total of 441 consecutive ESD cases with gastric cancer or adenoma were retrospectively analyzed. Second-look endoscopy was performed in the morning after the day of ESD. Bleeding of mucosal defects on second-look endoscopy was classified according to the Forrest classification, and active bleeding was defined as Forrest Ia or Ib. Delayed bleeding was defined as hematemesis or melena after second-look endoscopy. A total of 406 second-look endoscopies were performed, and delayed bleeding occurred in 11 patients. The incidence rate of delayed bleeding after second-look endoscopy in patients with Forrest Ia or Ib was significantly higher than that in patients with Forrest IIa, IIb or III (7.69 vs. 2.02 %, p < 0.05). Complication of a histological ulcer, large size of the resected specimen and long ESD procedure time were shown to be risk factors for hemorrhage of mucosal defects after ESD on second-look endoscopy by univariate analysis. Multivariate analysis indicated that only large size of the resected specimen was a risk factor. In a specimen size of >35 mm, the odds ratio of active bleeding on second-look endoscopy was 1.9. Active bleeding of mucosal defects on second-look endoscopy is a risk factor for delayed bleeding.

  1. Dynamics of scroll waves with time-delay propagation in excitable media

    NASA Astrophysics Data System (ADS)

    Chen, Jiang-Xing; Xiao, Jie; Qiao, Li-Yan; Xu, Jiang-Rong

    2018-06-01

    Information transmission delay can be widely observed in various systems. Here, we study the dynamics of scroll waves with time-delay propagation among slices in excitable media. Weak time delay induces scroll waves to meander. Through increasing the time delay, we find a series of dynamical transitions. Firstly, the straight filament of a scroll wave becomes twisted. Then, the scroll wave breaks and forms interesting patterns. With long time delay, loosed scroll waves are maintained while their period are greatly decreased. Also, cylinder waves appears. The influences of diffusively coupling strength on the time-delay-induced scroll waves are studied. It is found that the critical time delay characterizing those transitions decreases as the coupling strength is increased. A phase diagram in the diffusive coupling-time delay plane is presented.

  2. 49 CFR 236.563 - Delay time.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Delay time. 236.563 Section 236.563 Transportation... Cab Signal Systems Rules and Instructions; Locomotives § 236.563 Delay time. Delay time of automatic... requirements of § 236.24 shall take into consideration the delay time. ...

  3. 49 CFR 236.563 - Delay time.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Delay time. 236.563 Section 236.563 Transportation... Cab Signal Systems Rules and Instructions; Locomotives § 236.563 Delay time. Delay time of automatic... requirements of § 236.24 shall take into consideration the delay time. ...

  4. A Near-Optimal Distributed QoS Constrained Routing Algorithm for Multichannel Wireless Sensor Networks

    PubMed Central

    Lin, Frank Yeong-Sung; Hsiao, Chiu-Han; Yen, Hong-Hsu; Hsieh, Yu-Jen

    2013-01-01

    One of the important applications in Wireless Sensor Networks (WSNs) is video surveillance that includes the tasks of video data processing and transmission. Processing and transmission of image and video data in WSNs has attracted a lot of attention in recent years. This is known as Wireless Visual Sensor Networks (WVSNs). WVSNs are distributed intelligent systems for collecting image or video data with unique performance, complexity, and quality of service challenges. WVSNs consist of a large number of battery-powered and resource constrained camera nodes. End-to-end delay is a very important Quality of Service (QoS) metric for video surveillance application in WVSNs. How to meet the stringent delay QoS in resource constrained WVSNs is a challenging issue that requires novel distributed and collaborative routing strategies. This paper proposes a Near-Optimal Distributed QoS Constrained (NODQC) routing algorithm to achieve an end-to-end route with lower delay and higher throughput. A Lagrangian Relaxation (LR)-based routing metric that considers the “system perspective” and “user perspective” is proposed to determine the near-optimal routing paths that satisfy end-to-end delay constraints with high system throughput. The empirical results show that the NODQC routing algorithm outperforms others in terms of higher system throughput with lower average end-to-end delay and delay jitter. In this paper, for the first time, the algorithm shows how to meet the delay QoS and at the same time how to achieve higher system throughput in stringently resource constrained WVSNs.

  5. A Deadline-Aware Scheduling and Forwarding Scheme in Wireless Sensor Networks.

    PubMed

    Dao, Thi-Nga; Yoon, Seokhoon; Kim, Jangyoung

    2016-01-05

    Many applications in wireless sensor networks (WSNs) require energy consumption to be minimized and the data delivered to the sink within a specific delay. A usual solution for reducing energy consumption is duty cycling, in which nodes periodically switch between sleep and active states. By increasing the duty cycle interval, consumed energy can be reduced more. However, a large duty cycle interval causes a long end-to-end (E2E) packet delay. As a result, the requirement of a specific delay bound for packet delivery may not be satisfied. In this paper, we aim at maximizing the duty cycle while still guaranteeing that the packets arrive at the sink with the required probability, i.e., the required delay-constrained success ratio (DCSR) is achieved. In order to meet this objective, we propose a novel scheduling and forwarding scheme, namely the deadline-aware scheduling and forwarding (DASF) algorithm. In DASF, the E2E delay distribution with the given network model and parameters is estimated in order to determine the maximum duty cycle interval, with which the required DCSR is satisfied. Each node independently selects a wake-up time using the selected interval, and packets are forwarded to a node in the potential forwarding set, which is determined based on the distance between nodes and the sink. DASF does not require time synchronization between nodes, and a node does not need to maintain neighboring node information in advance. Simulation results show that the proposed scheme can satisfy a required delay-constrained success ratio and outperforms existing algorithms in terms of E2E delay and DCSR.

  6. A Deadline-Aware Scheduling and Forwarding Scheme in Wireless Sensor Networks

    PubMed Central

    Dao, Thi-Nga; Yoon, Seokhoon; Kim, Jangyoung

    2016-01-01

    Many applications in wireless sensor networks (WSNs) require energy consumption to be minimized and the data delivered to the sink within a specific delay. A usual solution for reducing energy consumption is duty cycling, in which nodes periodically switch between sleep and active states. By increasing the duty cycle interval, consumed energy can be reduced more. However, a large duty cycle interval causes a long end-to-end (E2E) packet delay. As a result, the requirement of a specific delay bound for packet delivery may not be satisfied. In this paper, we aim at maximizing the duty cycle while still guaranteeing that the packets arrive at the sink with the required probability, i.e., the required delay-constrained success ratio (DCSR) is achieved. In order to meet this objective, we propose a novel scheduling and forwarding scheme, namely the deadline-aware scheduling and forwarding (DASF) algorithm. In DASF, the E2E delay distribution with the given network model and parameters is estimated in order to determine the maximum duty cycle interval, with which the required DCSR is satisfied. Each node independently selects a wake-up time using the selected interval, and packets are forwarded to a node in the potential forwarding set, which is determined based on the distance between nodes and the sink. DASF does not require time synchronization between nodes, and a node does not need to maintain neighboring node information in advance. Simulation results show that the proposed scheme can satisfy a required delay-constrained success ratio and outperforms existing algorithms in terms of E2E delay and DCSR. PMID:26742046

  7. Effect of processing time delay on the dose response of Kodak EDR2 film.

    PubMed

    Childress, Nathan L; Rosen, Isaac I

    2004-08-01

    Kodak EDR2 film is a widely used two-dimensional dosimeter for intensity modulated radiotherapy (IMRT) measurements. Our clinical use of EDR2 film for IMRT verifications revealed variations and uncertainties in dose response that were larger than expected, given that we perform film calibrations for every experimental measurement. We found that the length of time between film exposure and processing can affect the absolute dose response of EDR2 film by as much as 4%-6%. EDR2 films were exposed to 300 cGy using 6 and 18 MV 10 x 10 cm2 fields and then processed after time delays ranging from 2 min to 24 h. An ion chamber measured the relative dose for these film exposures. The ratio of optical density (OD) to dose stabilized after 3 h. Compared to its stable value, the film response was 4%-6% lower at 2 min and 1% lower at 1 h. The results of the 4 min and 1 h processing time delays were verified with a total of four different EDR2 film batches. The OD/dose response for XV2 films was consistent for time periods of 4 min and 1 h between exposure and processing. To investigate possible interactions of the processing time delay effect with dose, single EDR2 films were irradiated to eight different dose levels between 45 and 330 cGy using smaller 3 x 3 cm2 areas. These films were processed after time delays of 1, 3, and 6 h, using 6 and 18 MV photon qualities. The results at all dose levels were consistent, indicating that there is no change in the processing time delay effect for different doses. The difference in the time delay effect between the 6 and 18 MV measurements was negligible for all experiments. To rule out bias in selecting film regions for OD measurement, we compared the use of a specialized algorithm that systematically determines regions of interest inside the 10 x 10 cm2 exposure areas to manually selected regions of interest. There was a maximum difference of only 0.07% between the manually and automatically selected regions, indicating that the use of a systematic algorithm to determine regions of interest in large and fairly uniform areas is not necessary. Based on these results, we recommend a minimum time of 1 h between exposure and processing for all EDR2 film measurements.

  8. Good things come to those who wait: attenuated discounting of delayed rewards in aged Fischer 344 rats

    PubMed Central

    Simon, Nicholas W.; LaSarge, Candi L.; Montgomery, Karienn S.; Williams, Matthew T.; Mendez, Ian A.; Setlow, Barry; Bizon, Jennifer

    2010-01-01

    The ability to make advantageous choices among outcomes that differ in magnitude, probability, and delay until their arrival is critical for optimal survival and well-being across the lifespan. Aged individuals are often characterized as less impulsive in their choices than their young adult counterparts, demonstrating an increased ability to forgo immediate in favor of delayed (and often more beneficial) rewards. Such “wisdom” is usually characterized as a consequence of learning and life experience. However, aging is also associated with prefrontal cortical dysfunction and concomitant impairments in advantageous choice behavior. Animal models afford the opportunity to isolate the effects of biological aging on decision making from experiential factors. To model one critical component of decision making, young adult and aged Fischer 344 rats were trained on a two-choice delay discounting task in which one choice provided immediate delivery of a small reward and the other provided a large reward delivered after a variable delay period. Whereas young adult rats showed a characteristic pattern of choice behavior (choosing the large reward at short delays and shifting preference to the small reward as delays increased), aged rats maintained a preference for the large reward at all delays (i.e. – attenuated “discounting” of delayed rewards). This increased preference for the large reward in aged rats was not due to perceptual, motor, or motivational factors. The data strongly suggest that, independent of life experience, there are underlying neurobiological factors that contribute to age-related changes in decision making, and particularly the ability to delay gratification. PMID:18657883

  9. AWARE@HOME: PROFITABLY INTEGRATING CONSERVATION INTO THE AMERICAN HOME

    EPA Science Inventory

    While American households are the most resource consuming in the world, they are unlikely to become more efficient users of public utilities because of: 1) large time delays between utility use and the receipt of utility bills; 2) the inconvenience of personally checking and ...

  10. Nonphotic phase shifting in female Syrian hamsters: interactions with the estrous cycle.

    PubMed

    Young Janik, L; Janik, Daniel

    2003-08-01

    Nonphotic phase shifting of circadian rhythms was examined in female Syrian hamsters. Animals were stimulated at zeitgeber time 4.5 by either placing them in a novel running wheel or by transferring them to a clean home cage. Placement in a clean home cage was more effective than novel wheel treatment in stimulating large (> 1.5 h) phase shifts. Peak phase shifts (ca. 3.5 h) and the percentage of females showing large phase shifts were comparable to those found in male hamsters stimulated with novel wheels. The amount of activity induced by nonphotic stimulation and the amount of phase shifting varied slightly with respect to the 4-day estrous cycle. Animals tended to run less and shift less on the day of estrus. Nonphotic stimulation on proestrus often resulted in a 1-day delay of the estrous cycle reflected in animals' postovulatory vaginal discharge and the expression of sexual receptivity (lordosis). This delay of the estrous cycle was associated with large phase advances and high activity. These results extend the generality of nonphotic phase shifting to females for the first time and raise the possibility that resetting of circadian rhythms can induce changes in the estrous cycle.

  11. Prospects for UT1 Measurements from VLBI Intensive Sessions

    NASA Technical Reports Server (NTRS)

    Boehm, Johannes; Nilsson, Tobias; Schuh, Harald

    2010-01-01

    Very Long Baseline Interferometry (VLBI) Intensives are one-hour single baseline sessions to provide Universal Time (UT1) in near real-time up to a delay of three days if a site is not e-transferring the observational data. Due to the importance of UT1 estimates for the prediction of Earth orientation parameters, as well as any kind of navigation on Earth or in space, there is not only the need to improve the timeliness of the results but also their accuracy. We identify the asymmetry of the tropospheric delays as the major error source, and we provide two strategies to improve the results, in particular of those Intensives which include the station Tsukuba in Japan with its large tropospheric variation. We find an improvement when (1) using ray-traced delays from a numerical weather model, and (2) when estimating tropospheric gradients within the analysis of Intensive sessions. The improvement is shown in terms of reduction of rms of length-of-day estimates w.r.t. those derived from Global Positioning System observations

  12. A framework to preserve the privacy of electronic health data streams.

    PubMed

    Kim, Soohyung; Sung, Min Kyoung; Chung, Yon Dohn

    2014-08-01

    The anonymization of health data streams is important to protect these data against potential privacy breaches. A large number of research studies aiming at offering privacy in the context of data streams has been recently conducted. However, the techniques that have been proposed in these studies generate a significant delay during the anonymization process, since they concentrate on applying existing privacy models (e.g., k-anonymity and l-diversity) to batches of data extracted from data streams in a period of time. In this paper, we present delay-free anonymization, a framework for preserving the privacy of electronic health data streams. Unlike existing works, our method does not generate an accumulation delay, since input streams are anonymized immediately with counterfeit values. We further devise late validation for increasing the data utility of the anonymization results and managing the counterfeit values. Through experiments, we show the efficiency and effectiveness of the proposed method for the real-time release of data streams. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Diagnostic Delay Is Associated with a Greater Risk of Early Surgery in a French Cohort of Crohn's Disease Patients.

    PubMed

    Nahon, Stéphane; Lahmek, Pierre; Paupard, Thierry; Lesgourgues, Bruno; Chaussade, Stanislas; Peyrin-Biroulet, Laurent; Abitbol, Vered

    2016-11-01

    To investigate whether a diagnostic delay is associated with a poor outcome in Crohn's disease (CD). Medical and socioeconomic characteristics as well as medications and need for surgery of consecutive CD adults patients followed in three referral centers were prospectively recorded using an electronic database (Focus_MICI ® ). A long diagnostic delay was defined by the upper quartile. We compared patients with long diagnostic delay to those with earlier diagnosis regarding the time to: (1) first intestinal surgery, (2) first use of immunosuppressants (IMSs), and (3) first use of anti-tumor necrosis factor (anti-TNF) therapy using the Kaplan-Meier test and the log-rank test. A total of 497 patients with CD (53.6 % women) were analyzed. Median diagnostic delay was 5 months (IQR 25-75 %: 2-13 months). Median follow-up was 9 years (IQR 4-16.2), and 148 (29.8 %) patients had major surgery. There were no significant differences between patients with late and early diagnosis regarding age at diagnosis, disease phenotype, need for IMS therapy, and need for anti-TNF therapy. Time to first major surgery was shorter in patients with late diagnosis (p = 0.05). In this large multicenter prospective cohort of French CD patients, a long diagnostic delay (>13 months) increased the risk of early surgery. No associated factors could be identified in this study.

  14. Wigner time delay in photodetachment of Tm-and in photoionization of Yb: A comparative study

    NASA Astrophysics Data System (ADS)

    Saha, Soumyajit; Jose, Jobin; Deshmukh, Pranawa; Dolmatov, Valeriy; Kheifets, Anatoli; Manson, Steven

    2017-04-01

    Preliminary studies of Wigner time delay in photodetachment spectra of negative ions have been reported. Photodetachment time delay for some dipole channels of Tm- and of Cl- were calculated using relativistic random phase approximation (RRPA). Comparisons between photodetachment time delay of Cl- and photoionization time delay of Ar were made. We investigate the photodetachment time delay for all three relativistically split nd -> ɛ f channels of Tm- and for nd -> ɛ f channels of Yb (isoelectronic to Tm-) using RRPA. We study the effect of the shape resonance, brought about by the centrifugal barrier potential, on photodetachment time delay. A negative ion is a good laboratory for studying the effects of shape resonances on time delay since the phase is unaffected by the Coulomb component. Wigner time delay in photodetachment of Tm- and in photoionization of Yb: A comparative study.

  15. A neuromorphic implementation of multiple spike-timing synaptic plasticity rules for large-scale neural networks

    PubMed Central

    Wang, Runchun M.; Hamilton, Tara J.; Tapson, Jonathan C.; van Schaik, André

    2015-01-01

    We present a neuromorphic implementation of multiple synaptic plasticity learning rules, which include both Spike Timing Dependent Plasticity (STDP) and Spike Timing Dependent Delay Plasticity (STDDP). We present a fully digital implementation as well as a mixed-signal implementation, both of which use a novel dynamic-assignment time-multiplexing approach and support up to 226 (64M) synaptic plasticity elements. Rather than implementing dedicated synapses for particular types of synaptic plasticity, we implemented a more generic synaptic plasticity adaptor array that is separate from the neurons in the neural network. Each adaptor performs synaptic plasticity according to the arrival times of the pre- and post-synaptic spikes assigned to it, and sends out a weighted or delayed pre-synaptic spike to the post-synaptic neuron in the neural network. This strategy provides great flexibility for building complex large-scale neural networks, as a neural network can be configured for multiple synaptic plasticity rules without changing its structure. We validate the proposed neuromorphic implementations with measurement results and illustrate that the circuits are capable of performing both STDP and STDDP. We argue that it is practical to scale the work presented here up to 236 (64G) synaptic adaptors on a current high-end FPGA platform. PMID:26041985

  16. Low Latency MAC Protocol in Wireless Sensor Networks Using Timing Offset

    NASA Astrophysics Data System (ADS)

    Choi, Seung Sik

    This paper proposes a low latency MAC protocol that can be used in sensor networks. To extend the lifetime of sensor nodes, the conventional solution is to synchronize active/sleep periods of all sensor nodes. However, due to these synchronized sensor nodes, packets in the intermediate nodes must wait until the next node wakes up before it can forward a packet. This induces a large delay in sensor nodes. To solve this latency problem, a clustered sensor network which uses two types of sensor nodes and layered architecture is considered. Clustered heads in each cluster are synchronized with different timing offsets to reduce the sleep delay. Using this concept, the latency problem can be solved and more efficient power usage can be obtained.

  17. Proceedings of the Annual Precise Time and Time Interval (PTTI) Planning Meeting (6th). Held at U.S. Naval Research Laboratory, December 3-5, 1974

    DTIC Science & Technology

    1974-01-01

    General agreement seems to be developing that the geophysical system should be defined in terms of a large number of points...34A Laser-Interferometer System for the Absolute Determination of the Acceleration due to Gravity," In Proc. Int. Conf. on Precision Measurement...MO %. The ratio of the plasmaspheric to the total time-delays due to free

  18. Effects of partial time delays on phase synchronization in Watts-Strogatz small-world neuronal networks.

    PubMed

    Sun, Xiaojuan; Perc, Matjaž; Kurths, Jürgen

    2017-05-01

    In this paper, we study effects of partial time delays on phase synchronization in Watts-Strogatz small-world neuronal networks. Our focus is on the impact of two parameters, namely the time delay τ and the probability of partial time delay p delay , whereby the latter determines the probability with which a connection between two neurons is delayed. Our research reveals that partial time delays significantly affect phase synchronization in this system. In particular, partial time delays can either enhance or decrease phase synchronization and induce synchronization transitions with changes in the mean firing rate of neurons, as well as induce switching between synchronized neurons with period-1 firing to synchronized neurons with period-2 firing. Moreover, in comparison to a neuronal network where all connections are delayed, we show that small partial time delay probabilities have especially different influences on phase synchronization of neuronal networks.

  19. Understanding light scattering by a coated sphere part 2: time domain analysis.

    PubMed

    Laven, Philip; Lock, James A

    2012-08-01

    Numerical computations were made of scattering of an incident electromagnetic pulse by a coated sphere that is large compared to the dominant wavelength of the incident light. The scattered intensity was plotted as a function of the scattering angle and delay time of the scattered pulse. For fixed core and coating radii, the Debye series terms that most strongly contribute to the scattered intensity in different regions of scattering angle-delay time space were identified and analyzed. For a fixed overall radius and an increasing core radius, the first-order rainbow was observed to evolve into three separate components. The original component faded away, while the two new components eventually merged together. The behavior of surface waves generated by grazing incidence at the core/coating and coating/exterior interfaces was also examined and discussed.

  20. Delay-range-dependent chaos synchronization approach under varying time-lags and delayed nonlinear coupling.

    PubMed

    Zaheer, Muhammad Hamad; Rehan, Muhammad; Mustafa, Ghulam; Ashraf, Muhammad

    2014-11-01

    This paper proposes a novel state feedback delay-range-dependent control approach for chaos synchronization in coupled nonlinear time-delay systems. The coupling between two systems is esteemed to be nonlinear subject to time-lags. Time-varying nature of both the intrinsic and the coupling delays is incorporated to broad scope of the present study for a better-quality synchronization controller synthesis. Lyapunov-Krasovskii (LK) functional is employed to derive delay-range-dependent conditions that can be solved by means of the conventional linear matrix inequality (LMI)-tools. The resultant control approach for chaos synchronization of the master-slave time-delay systems considers non-zero lower bound of the intrinsic as well as the coupling time-delays. Further, the delay-dependent synchronization condition has been established as a special case of the proposed LK functional treatment. Furthermore, a delay-range-dependent condition, independent of the delay-rate, has been provided to address the situation when upper bound of the delay-derivative is unknown. A robust state feedback control methodology is formulated for synchronization of the time-delay chaotic networks against the L2 norm bounded perturbations by minimizing the L2 gain from the disturbance to the synchronization error. Numerical simulation results are provided for the time-delay chaotic networks to show effectiveness of the proposed delay-range-dependent chaos synchronization methodologies. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  1. Downhole delay assembly for blasting with series delay

    DOEpatents

    Ricketts, Thomas E.

    1982-01-01

    A downhole delay assembly is provided which can be placed into a blasthole for initiation of explosive in the blasthole. The downhole delay assembly includes at least two detonating time delay devices in series in order to effect a time delay of longer than about 200 milliseconds in a round of explosions. The downhole delay assembly provides a protective housing to prevent detonation of explosive in the blasthole in response to the detonation of the first detonating time delay device. There is further provided a connection between the first and second time delay devices. The connection is responsive to the detonation of the first detonating time delay device and initiates the second detonating time delay device. A plurality of such downhole delay assemblies are placed downhole in unfragmented formation and are initiated simultaneously for providing a round of explosive expansions. The explosive expansions can be used to form an in situ oil shale retort containing a fragmented permeable mass of formation particles.

  2. Parenting Predictors of Delay Inhibition in Socioeconomically Disadvantaged Preschoolers

    PubMed Central

    Merz, Emily C.; Landry, Susan H.; Zucker, Tricia A.; Barnes, Marcia A.; Assel, Michael; Taylor, Heather B.; Lonigan, Christopher J.; Phillips, Beth M.; Clancy-Menchetti, Jeanine; Eisenberg, Nancy; Spinrad, Tracy L.; Valiente, Carlos; de Villiers, Jill; Consortium, the School Readiness Research

    2016-01-01

    This study examined longitudinal associations between specific parenting factors and delay inhibition in socioeconomically disadvantaged preschoolers. At Time 1, parents and 2- to 4-year-old children (mean age = 3.21 years; N = 247) participated in a videotaped parent-child free play session, and children completed delay inhibition tasks (gift delay-wrap, gift delay-bow, and snack delay tasks). Three months later, at Time 2, children completed the same set of tasks. Parental responsiveness was coded from the parent-child free play sessions, and parental directive language was coded from transcripts of a subset of 127 of these sessions. Structural equation modeling was used, and covariates included age, gender, language skills, parental education, and Time 1 delay inhibition. Results indicated that in separate models, Time 1 parental directive language was significantly negatively associated with Time 2 delay inhibition, and Time 1 parental responsiveness was significantly positively associated with Time 2 delay inhibition. When these parenting factors were entered simultaneously, Time 1 parental directive language significantly predicted Time 2 delay inhibition whereas Time 1 parental responsiveness was no longer significant. Findings suggest that parental language that modulates the amount of autonomy allotted the child may be an important predictor of early delay inhibition skills. PMID:27833461

  3. ADHD and Delay Aversion: The Influence of Non-Temporal Stimulation on Choice for Delayed Rewards

    ERIC Educational Resources Information Center

    Antrop, Inge; Stock, Pieter; Verte, Sylvie; Wiersema, Jan Roelt; Baeyens, Dieter; Roeyers, Herbert

    2006-01-01

    Background: Delay aversion, the motivation to escape or avoid delay, results in preference for small immediate over large delayed rewards. Delay aversion has been proposed as one distinctive psychological process that may underlie the behavioural symptoms and cognitive deficits of attention deficit/hyperactivity disorder (ADHD). Furthermore, the…

  4. Fly-ear inspired acoustic sensors for gunshot localization

    NASA Astrophysics Data System (ADS)

    Liu, Haijun; Currano, Luke; Gee, Danny; Yang, Benjamin; Yu, Miao

    2009-05-01

    The supersensitive ears of the parasitoid fly Ormia ochracea have inspired researchers to develop bio-inspired directional microphone for sound localization. Although the fly ear is optimized for localizing the narrow-band calling song of crickets at 5 kHz, experiments and simulation have shown that it can amplify directional cues for a wide frequency range. In this article, a theoretical investigation is presented to study the use of fly-ear inspired directional microphones for gunshot localization. Using an equivalent 2-DOF model of the fly ear, the time responses of the fly ear structure to a typical shock wave are obtained and the associated time delay is estimated by using cross-correlation. Both near-field and far-field scenarios are considered. The simulation shows that the fly ear can greatly amplify the time delay by ~20 times, which indicates that with an interaural distance of only 1.2 mm the fly ear is able to generate a time delay comparable to that obtained by a conventional microphone pair with a separation as large as 24 mm. Since the parameters of the fly ear structure can also be tuned for muzzle blast and other impulse stimulus, fly-ear inspired acoustic sensors offers great potential for developing portable gunshot localization systems.

  5. Reversing the Signaled Magnitude Effect in Delayed Matching to Sample: Delay-Specific Remembering?

    ERIC Educational Resources Information Center

    White, K. Geoffrey; Brown, Glenn S.

    2011-01-01

    Pigeons performed a delayed matching-to-sample task in which large or small reinforcers for correct remembering were signaled during the retention interval. Accuracy was low when small reinforcers were signaled, and high when large reinforcers were signaled (the signaled magnitude effect). When the reinforcer-size cue was switched from small to…

  6. Vehicle Density Based Forwarding Protocol for Safety Message Broadcast in VANET

    PubMed Central

    Huang, Jiawei; Wang, Jianxin

    2014-01-01

    In vehicular ad hoc networks (VANETs), the medium access control (MAC) protocol is of great importance to provide time-critical safety applications. Contemporary multihop broadcast protocols in VANETs usually choose the farthest node in broadcast range as the forwarder to reduce the number of forwarding hops. However, in this paper, we demonstrate that the farthest forwarder may experience large contention delay in case of high vehicle density. We propose an IEEE 802.11-based multihop broadcast protocol VDF to address the issue of emergency message dissemination. To achieve the tradeoff between contention delay and forwarding hops, VDF adaptably chooses the forwarder according to the vehicle density. Simulation results show that, due to its ability to decrease the transmission collisions, the proposed protocol can provide significantly lower broadcast delay. PMID:25121125

  7. Propagation of light through small clouds of cold interacting atoms

    NASA Astrophysics Data System (ADS)

    Jennewein, S.; Sortais, Y. R. P.; Greffet, J.-J.; Browaeys, A.

    2016-11-01

    We demonstrate experimentally that a dense cloud of cold atoms with a size comparable to the wavelength of light can induce large group delays on a laser pulse when the laser is tightly focused on it and is close to an atomic resonance. Delays as large as -10 ns are observed, corresponding to "superluminal" propagation with negative group velocities as low as -300 m /s . Strikingly, this large delay is associated with a moderate extinction owing to the very small size of the dense cloud. It implies that a large phase shift is imprinted on the continuous laser beam. Our system may thus be useful for applications to quantum technologies, such as variable delay line for individual photons or phase imprint between two beams at the single-photon level.

  8. Multiplexing technique for computer communications via satellite channels

    NASA Technical Reports Server (NTRS)

    Binder, R.

    1975-01-01

    Multiplexing scheme combines technique of dynamic allocation with conventional time-division multiplexing. Scheme is designed to expedite short-duration interactive or priority traffic and to delay large data transfers; as result, each node has effective capacity of almost total channel capacity when other nodes have light traffic loads.

  9. 17 CFR 43.2 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... obligations under such swap, with respect to a remaining party, to a transferee. Trimmed data set means a data set that has had extraordinarily large notional transactions removed by transforming the data into a... appropriate time delay requirements set forth in § 43.5 of this part. Business day means the twenty-four hour...

  10. Interhospital Transfer Before Thrombectomy Is Associated With Delayed Treatment and Worse Outcome in the STRATIS Registry (Systematic Evaluation of Patients Treated With Neurothrombectomy Devices for Acute Ischemic Stroke)

    PubMed Central

    Saver, Jeffrey L.; Zaidat, Osama O.; Jahan, Reza; Aziz-Sultan, Mohammad Ali; Klucznik, Richard P.; Haussen, Diogo C.; Hellinger, Frank R.; Yavagal, Dileep R.; Yao, Tom L.; Liebeskind, David S.; Jadhav, Ashutosh P.; Gupta, Rishi; Hassan, Ameer E.; Martin, Coleman O.; Bozorgchami, Hormozd; Kaushal, Ritesh; Nogueira, Raul G.; Gandhi, Ravi H.; Peterson, Eric C.; Dashti, Shervin R.; Given, Curtis A.; Mehta, Brijesh P.; Deshmukh, Vivek; Starkman, Sidney; Linfante, Italo; McPherson, Scott H.; Kvamme, Peter; Grobelny, Thomas J.; Hussain, Muhammad S.; Thacker, Ike; Vora, Nirav; Chen, Peng Roc; Monteith, Stephen J.; Ecker, Robert D.; Schirmer, Clemens M.; Sauvageau, Eric; Abou-Chebl, Alex; Derdeyn, Colin P.; Maidan, Lucian; Badruddin, Aamir; Siddiqui, Adnan H.; Dumont, Travis M.; Alhajeri, Abdulnasser; Taqi, M. Asif; Asi, Khaled; Carpenter, Jeffrey; Boulos, Alan; Jindal, Gaurav; Puri, Ajit S.; Chitale, Rohan; Deshaies, Eric M.; Robinson, David H.; Kallmes, David F.; Baxter, Blaise W.; Jumaa, Mouhammad A.; Sunenshine, Peter; Majjhoo, Aniel; English, Joey D.; Suzuki, Shuichi; Fessler, Richard D.; Delgado Almandoz, Josser E.; Martin, Jerry C.; Mueller-Kronast, Nils H.

    2017-01-01

    Background: Endovascular treatment with mechanical thrombectomy (MT) is beneficial for patients with acute stroke suffering a large-vessel occlusion, although treatment efficacy is highly time-dependent. We hypothesized that interhospital transfer to endovascular-capable centers would result in treatment delays and worse clinical outcomes compared with direct presentation. Methods: STRATIS (Systematic Evaluation of Patients Treated With Neurothrombectomy Devices for Acute Ischemic Stroke) was a prospective, multicenter, observational, single-arm study of real-world MT for acute stroke because of anterior-circulation large-vessel occlusion performed at 55 sites over 2 years, including 1000 patients with severe stroke and treated within 8 hours. Patients underwent MT with or without intravenous tissue plasminogen activator and were admitted to endovascular-capable centers via either interhospital transfer or direct presentation. The primary clinical outcome was functional independence (modified Rankin Score 0–2) at 90 days. We assessed (1) real-world time metrics of stroke care delivery, (2) outcome differences between direct and transfer patients undergoing MT, and (3) the potential impact of local hospital bypass. Results: A total of 984 patients were analyzed. Median onset-to-revascularization time was 202.0 minutes for direct versus 311.5 minutes for transfer patients (P<0.001). Clinical outcomes were better in the direct group, with 60.0% (299/498) achieving functional independence compared with 52.2% (213/408) in the transfer group (odds ratio, 1.38; 95% confidence interval, 1.06–1.79; P=0.02). Likewise, excellent outcome (modified Rankin Score 0–1) was achieved in 47.4% (236/498) of direct patients versus 38.0% (155/408) of transfer patients (odds ratio, 1.47; 95% confidence interval, 1.13–1.92; P=0.005). Mortality did not differ between the 2 groups (15.1% for direct, 13.7% for transfer; P=0.55). Intravenous tissue plasminogen activator did not impact outcomes. Hypothetical bypass modeling for all transferred patients suggested that intravenous tissue plasminogen activator would be delayed by 12 minutes, but MT would be performed 91 minutes sooner if patients were routed directly to endovascular-capable centers. If bypass is limited to a 20-mile radius from onset, then intravenous tissue plasminogen activator would be delayed by 7 minutes and MT performed 94 minutes earlier. Conclusions: In this large, real-world study, interhospital transfer was associated with significant treatment delays and lower chance of good outcome. Strategies to facilitate more rapid identification of large-vessel occlusion and direct routing to endovascular-capable centers for patients with severe stroke may improve outcomes. Clinical Trial Registration: URL: https://www.clinicaltrials.gov. Unique identifier: NCT02239640. PMID:28943516

  11. Interhospital Transfer Before Thrombectomy Is Associated With Delayed Treatment and Worse Outcome in the STRATIS Registry (Systematic Evaluation of Patients Treated With Neurothrombectomy Devices for Acute Ischemic Stroke).

    PubMed

    Froehler, Michael T; Saver, Jeffrey L; Zaidat, Osama O; Jahan, Reza; Aziz-Sultan, Mohammad Ali; Klucznik, Richard P; Haussen, Diogo C; Hellinger, Frank R; Yavagal, Dileep R; Yao, Tom L; Liebeskind, David S; Jadhav, Ashutosh P; Gupta, Rishi; Hassan, Ameer E; Martin, Coleman O; Bozorgchami, Hormozd; Kaushal, Ritesh; Nogueira, Raul G; Gandhi, Ravi H; Peterson, Eric C; Dashti, Shervin R; Given, Curtis A; Mehta, Brijesh P; Deshmukh, Vivek; Starkman, Sidney; Linfante, Italo; McPherson, Scott H; Kvamme, Peter; Grobelny, Thomas J; Hussain, Muhammad S; Thacker, Ike; Vora, Nirav; Chen, Peng Roc; Monteith, Stephen J; Ecker, Robert D; Schirmer, Clemens M; Sauvageau, Eric; Abou-Chebl, Alex; Derdeyn, Colin P; Maidan, Lucian; Badruddin, Aamir; Siddiqui, Adnan H; Dumont, Travis M; Alhajeri, Abdulnasser; Taqi, M Asif; Asi, Khaled; Carpenter, Jeffrey; Boulos, Alan; Jindal, Gaurav; Puri, Ajit S; Chitale, Rohan; Deshaies, Eric M; Robinson, David H; Kallmes, David F; Baxter, Blaise W; Jumaa, Mouhammad A; Sunenshine, Peter; Majjhoo, Aniel; English, Joey D; Suzuki, Shuichi; Fessler, Richard D; Delgado Almandoz, Josser E; Martin, Jerry C; Mueller-Kronast, Nils H

    2017-12-12

    Endovascular treatment with mechanical thrombectomy (MT) is beneficial for patients with acute stroke suffering a large-vessel occlusion, although treatment efficacy is highly time-dependent. We hypothesized that interhospital transfer to endovascular-capable centers would result in treatment delays and worse clinical outcomes compared with direct presentation. STRATIS (Systematic Evaluation of Patients Treated With Neurothrombectomy Devices for Acute Ischemic Stroke) was a prospective, multicenter, observational, single-arm study of real-world MT for acute stroke because of anterior-circulation large-vessel occlusion performed at 55 sites over 2 years, including 1000 patients with severe stroke and treated within 8 hours. Patients underwent MT with or without intravenous tissue plasminogen activator and were admitted to endovascular-capable centers via either interhospital transfer or direct presentation. The primary clinical outcome was functional independence (modified Rankin Score 0-2) at 90 days. We assessed (1) real-world time metrics of stroke care delivery, (2) outcome differences between direct and transfer patients undergoing MT, and (3) the potential impact of local hospital bypass. A total of 984 patients were analyzed. Median onset-to-revascularization time was 202.0 minutes for direct versus 311.5 minutes for transfer patients ( P <0.001). Clinical outcomes were better in the direct group, with 60.0% (299/498) achieving functional independence compared with 52.2% (213/408) in the transfer group (odds ratio, 1.38; 95% confidence interval, 1.06-1.79; P =0.02). Likewise, excellent outcome (modified Rankin Score 0-1) was achieved in 47.4% (236/498) of direct patients versus 38.0% (155/408) of transfer patients (odds ratio, 1.47; 95% confidence interval, 1.13-1.92; P =0.005). Mortality did not differ between the 2 groups (15.1% for direct, 13.7% for transfer; P =0.55). Intravenous tissue plasminogen activator did not impact outcomes. Hypothetical bypass modeling for all transferred patients suggested that intravenous tissue plasminogen activator would be delayed by 12 minutes, but MT would be performed 91 minutes sooner if patients were routed directly to endovascular-capable centers. If bypass is limited to a 20-mile radius from onset, then intravenous tissue plasminogen activator would be delayed by 7 minutes and MT performed 94 minutes earlier. In this large, real-world study, interhospital transfer was associated with significant treatment delays and lower chance of good outcome. Strategies to facilitate more rapid identification of large-vessel occlusion and direct routing to endovascular-capable centers for patients with severe stroke may improve outcomes. URL: https://www.clinicaltrials.gov. Unique identifier: NCT02239640. © 2017 The Authors.

  12. Energy dependence of SEP electron and proton onset times

    NASA Astrophysics Data System (ADS)

    Xie, H.; Mäkelä, P.; Gopalswamy, N.; St. Cyr, O. C.

    2016-07-01

    We study the large solar energetic particle (SEP) events that were detected by GOES in the >10 MeV energy channel during December 2006 to March 2014. We derive and compare solar particle release (SPR) times for the 0.25-10.4 MeV electrons and 10-100 MeV protons for the 28 SEP events. In the study, the electron SPR times are derived with the time-shifting analysis (TSA) and the proton SPR times are derived using both the TSA and the velocity dispersion analysis (VDA). Electron anisotropies are computed to evaluate the amount of scattering for the events under study. Our main results include (1) near-relativistic electrons and high-energy protons are released at the same time within 8 min for most (16 of 23) SEP events. (2)There exists a good correlation between electron and proton acceleration, peak intensity, and intensity time profiles. (3) The TSA SPR times for 90.5 MeV and 57.4 MeV protons have maximum errors of 6 min and 10 min compared to the proton VDA release times, respectively, while the maximum error for 15.4 MeV protons can reach to 32 min. (4) For 7 low-intensity events of the 23, large delays occurred for 6.5 MeV electrons and 90.5 MeV protons relative to 0.5 MeV electrons. Whether these delays are due to times needed for the evolving shock to be strengthened or due to particle transport effects remains unsolved.

  13. BPTAP: A New Approach to IP over DTN

    NASA Technical Reports Server (NTRS)

    Tsao, Philip; Nguyen, Sam

    2012-01-01

    Traditional Internet protocols have been widely deployed for a variety of applications. However such protocols generally perform poorly in situations in which, round trip delays are very large (interplanetary distances) or . persistent connectivity is not always available (widely dispersed MANET). Delay/Disruption Tolerant Network (DTN) technology was invented to address these issues: (1) . Relay nodes "take custody" of blocks of network traffic on a hop-by -hop basis and retransmit them in cases of expected or unexpected link outage (2) Bundle lifetime may be configured for long round trip light times. BPTAP is novel by encapsulating Ethernet frames in BP

  14. UCTM2: An updated User friendly Configurable Trigger, scaler and delay Module for nuclear and particle physics

    NASA Astrophysics Data System (ADS)

    Bourrion, O.; Boyer, B.; Derome, L.; Pignol, G.

    2016-06-01

    We developed a highly integrated and versatile electronic module to equip small nuclear physics experiments and lab teaching classes: the User friendly Configurable Trigger, scaler and delay Module for nuclear and particle physics (UCTM). It is configurable through a Graphical User Interface (GUI) and provides a large number of possible trigger conditions without any Hardware Description Language (HDL) required knowledge. This new version significantly enhances the previous capabilities by providing two additional features: signal digitization and time measurements. The design, performances and a typical application are presented.

  15. Time-delayed feedback control of diffusion in random walkers.

    PubMed

    Ando, Hiroyasu; Takehara, Kohta; Kobayashi, Miki U

    2017-07-01

    Time delay in general leads to instability in some systems, while specific feedback with delay can control fluctuated motion in nonlinear deterministic systems to a stable state. In this paper, we consider a stochastic process, i.e., a random walk, and observe its diffusion phenomenon with time-delayed feedback. As a result, the diffusion coefficient decreases with increasing delay time. We analytically illustrate this suppression of diffusion by using stochastic delay differential equations and justify the feasibility of this suppression by applying time-delayed feedback to a molecular dynamics model.

  16. Durations and Delays in Care Seeking, Diagnosis and Treatment Initiation in Uncomplicated Pulmonary Tuberculosis Patients in Mumbai, India.

    PubMed

    Mistry, Nerges; Rangan, Sheela; Dholakia, Yatin; Lobo, Eunice; Shah, Shimoni; Patil, Akshaya

    2016-01-01

    Timely diagnosis and treatment initiation are critical to reduce the chain of transmission of Tuberculosis (TB) in places like Mumbai, where almost 60% of the inhabitants reside in overcrowded slums. This study documents the pathway from the onset of symptoms suggestive of TB to initiation of TB treatment and examines factors responsible for delay among uncomplicated pulmonary TB patients in Mumbai. A population-based retrospective survey was conducted in the slums of 15 high TB burden administrative wards to identify 153 self-reported TB patients. Subsequently in-depth interviews of 76 consenting patients that fit the inclusion criteria were undertaken using an open-ended interview schedule. Mean total, first care seeking, diagnosis and treatment initiation duration and delays were computed for new and retreatment patients. Patients showing defined delays were divided into outliers and non-outliers for all three delays using the median values. The mean duration for the total pathway was 65 days with 29% of patients being outliers. Importantly the mean duration of first care seeking was similar in new (24 days) and retreatment patients (25 days). Diagnostic duration contributed to 55% of the total pathway largely in new patients. Treatment initiation was noted to be the least among the three durations with mean duration in retreatment patients twice that of new patients. Significantly more female patients experienced diagnostic delay. Major shift of patients from the private to public sector and non-allopaths to allopaths was observed, particularly for treatment initiation. Achieving positive behavioural changes in providers (especially non-allopaths) and patients needs to be considered in TB control strategies. Specific attention is required in counselling of TB patients so that timely care seeking is effected at the time of relapse. Prioritizing improvement of environmental health in vulnerable locations and provision of point of care diagnostics would be singularly effective in curbing pathway delays.

  17. Durations and Delays in Care Seeking, Diagnosis and Treatment Initiation in Uncomplicated Pulmonary Tuberculosis Patients in Mumbai, India

    PubMed Central

    Mistry, Nerges; Rangan, Sheela; Dholakia, Yatin; Lobo, Eunice; Shah, Shimoni; Patil, Akshaya

    2016-01-01

    Background Timely diagnosis and treatment initiation are critical to reduce the chain of transmission of Tuberculosis (TB) in places like Mumbai, where almost 60% of the inhabitants reside in overcrowded slums. This study documents the pathway from the onset of symptoms suggestive of TB to initiation of TB treatment and examines factors responsible for delay among uncomplicated pulmonary TB patients in Mumbai. Methods A population-based retrospective survey was conducted in the slums of 15 high TB burden administrative wards to identify 153 self-reported TB patients. Subsequently in-depth interviews of 76 consenting patients that fit the inclusion criteria were undertaken using an open-ended interview schedule. Mean total, first care seeking, diagnosis and treatment initiation duration and delays were computed for new and retreatment patients. Patients showing defined delays were divided into outliers and non-outliers for all three delays using the median values. Results The mean duration for the total pathway was 65 days with 29% of patients being outliers. Importantly the mean duration of first care seeking was similar in new (24 days) and retreatment patients (25 days). Diagnostic duration contributed to 55% of the total pathway largely in new patients. Treatment initiation was noted to be the least among the three durations with mean duration in retreatment patients twice that of new patients. Significantly more female patients experienced diagnostic delay. Major shift of patients from the private to public sector and non-allopaths to allopaths was observed, particularly for treatment initiation. Conclusion Achieving positive behavioural changes in providers (especially non-allopaths) and patients needs to be considered in TB control strategies. Specific attention is required in counselling of TB patients so that timely care seeking is effected at the time of relapse. Prioritizing improvement of environmental health in vulnerable locations and provision of point of care diagnostics would be singularly effective in curbing pathway delays. PMID:27018589

  18. Delays in the diagnosis of oesophagogastric cancer: a consecutive case series.

    PubMed Central

    Martin, I. G.; Young, S.; Sue-Ling, H.; Johnston, D.

    1997-01-01

    OBJECTIVES: To examine the time taken to diagnose oesophageal or gastric cancer, identify the source of delay, and assess its clinical importance. DESIGN: Study of all new patients presenting to one surgical unit with carcinoma of the oesophagus or stomach. SETTING: University department of surgery in a large teaching hospital. SUBJECTS: 115 consecutive patients (70 men, mean age 66 years) with carcinoma of the oesophagus (27) or stomach (88). MAIN OUTCOME MEASURES: Interval from the onset of symptoms to histological diagnosis, final pathological stage of the tumour, and whether potentially curative resection was possible. RESULTS: The median delay from first symptoms to histological diagnosis was 17 weeks (range 1 to 168 weeks). 25% (29/115) of patients had a delay of over 28 weeks (median 39 weeks). Total delay was made up of the following components: delay in consulting a doctor (29%), delay in referral (23%), delay in being seen at hospital (16%), and delay in establishing the diagnosis at the hospital (32%). No relation was found between delay in diagnosis and tumour stage in patients with gastric cancer, but for oesophageal cancer those with stage I and II disease were diagnosed within 7 weeks compared with 21 weeks (P < 0.02) for those with stage III and IV disease. CONCLUSIONS: Long delays still occur in the diagnosis of patients with cancer of the stomach or oesophagus. Streamlined referral and investigation pathways are needed if patients with gastric and oesophageal carcinomas are to be diagnosed early in the course of the disease. PMID:9056794

  19. Effects of partial time delays on phase synchronization in Watts-Strogatz small-world neuronal networks

    NASA Astrophysics Data System (ADS)

    Sun, Xiaojuan; Perc, Matjaž; Kurths, Jürgen

    2017-05-01

    In this paper, we study effects of partial time delays on phase synchronization in Watts-Strogatz small-world neuronal networks. Our focus is on the impact of two parameters, namely the time delay τ and the probability of partial time delay pdelay, whereby the latter determines the probability with which a connection between two neurons is delayed. Our research reveals that partial time delays significantly affect phase synchronization in this system. In particular, partial time delays can either enhance or decrease phase synchronization and induce synchronization transitions with changes in the mean firing rate of neurons, as well as induce switching between synchronized neurons with period-1 firing to synchronized neurons with period-2 firing. Moreover, in comparison to a neuronal network where all connections are delayed, we show that small partial time delay probabilities have especially different influences on phase synchronization of neuronal networks.

  20. Effect of time delay on surgical performance during telesurgical manipulation.

    PubMed

    Fabrizio, M D; Lee, B R; Chan, D Y; Stoianovici, D; Jarrett, T W; Yang, C; Kavoussi, L R

    2000-03-01

    Telementoring allows a less experienced surgeon to benefit from an expert surgical consultation, reducing cost, travel, and the learning curve associated with new procedures. However, there are several technical limitations that affect practical applications. One potentially serious problem is the time delay that occurs any time data are transferred across long distances. To date, the effect of time delay on surgical performance has not been studied. A two-phase trial was designed to examine the effect of time delay on surgical performance. In the first phase, a series of tasks was performed, and the numbers of robotic movements required for completion was counted. Programmed incremental time delays were made in audiovisual acquisition and robotic controls. The number of errors made while performing each task at various time delay intervals was noted. In the second phase, a remote surgeon in Baltimore performed the tasks 9000 miles away in Singapore. The number of errors made was recorded. As the time delay increased, the number of operator errors increased. The accuracy needed to perform remote robotic procedures was diminished as the time delay increased. A learning curve did exist for each task, but as the time delay interval increased, it took longer to complete the task. Time delay does affect surgical performance. There is an acceptable delay of <700 msec in which surgeons can compensate for this phenomenon. Clinical studies will be needed to evaluate the true impact of time delay.

  1. Finite time synchronization of memristor-based Cohen-Grossberg neural networks with mixed delays.

    PubMed

    Chen, Chuan; Li, Lixiang; Peng, Haipeng; Yang, Yixian

    2017-01-01

    Finite time synchronization, which means synchronization can be achieved in a settling time, is desirable in some practical applications. However, most of the published results on finite time synchronization don't include delays or only include discrete delays. In view of the fact that distributed delays inevitably exist in neural networks, this paper aims to investigate the finite time synchronization of memristor-based Cohen-Grossberg neural networks (MCGNNs) with both discrete delay and distributed delay (mixed delays). By means of a simple feedback controller and novel finite time synchronization analysis methods, several new criteria are derived to ensure the finite time synchronization of MCGNNs with mixed delays. The obtained criteria are very concise and easy to verify. Numerical simulations are presented to demonstrate the effectiveness of our theoretical results.

  2. Time-delayed chameleon: Analysis, synchronization and FPGA implementation

    NASA Astrophysics Data System (ADS)

    Rajagopal, Karthikeyan; Jafari, Sajad; Laarem, Guessas

    2017-12-01

    In this paper we report a time-delayed chameleon-like chaotic system which can belong to different families of chaotic attractors depending on the choices of parameters. Such a characteristic of self-excited and hidden chaotic flows in a simple 3D system with time delay has not been reported earlier. Dynamic analysis of the proposed time-delayed systems are analysed in time-delay space and parameter space. A novel adaptive modified functional projective lag synchronization algorithm is derived for synchronizing identical time-delayed chameleon systems with uncertain parameters. The proposed time-delayed systems and the synchronization algorithm with controllers and parameter estimates are then implemented in FPGA using hardware-software co-simulation and the results are presented.

  3. Stable functional networks exhibit consistent timing in the human brain.

    PubMed

    Chapeton, Julio I; Inati, Sara K; Zaghloul, Kareem A

    2017-03-01

    Despite many advances in the study of large-scale human functional networks, the question of timing, stability, and direction of communication between cortical regions has not been fully addressed. At the cellular level, neuronal communication occurs through axons and dendrites, and the time required for such communication is well defined and preserved. At larger spatial scales, however, the relationship between timing, direction, and communication between brain regions is less clear. Here, we use a measure of effective connectivity to identify connections between brain regions that exhibit communication with consistent timing. We hypothesized that if two brain regions are communicating, then knowledge of the activity in one region should allow an external observer to better predict activity in the other region, and that such communication involves a consistent time delay. We examine this question using intracranial electroencephalography captured from nine human participants with medically refractory epilepsy. We use a coupling measure based on time-lagged mutual information to identify effective connections between brain regions that exhibit a statistically significant increase in average mutual information at a consistent time delay. These identified connections result in sparse, directed functional networks that are stable over minutes, hours, and days. Notably, the time delays associated with these connections are also highly preserved over multiple time scales. We characterize the anatomic locations of these connections, and find that the propagation of activity exhibits a preferred posterior to anterior temporal lobe direction, consistent across participants. Moreover, networks constructed from connections that reliably exhibit consistent timing between anatomic regions demonstrate features of a small-world architecture, with many reliable connections between anatomically neighbouring regions and few long range connections. Together, our results demonstrate that cortical regions exhibit functional relationships with well-defined and consistent timing, and the stability of these relationships over multiple time scales suggests that these stable pathways may be reliably and repeatedly used for large-scale cortical communication. Published by Oxford University Press on behalf of the Guarantors of Brain 2017. This work is written by US Government employees and is in the public domain in the United States.

  4. Singular Hopf bifurcation in a differential equation with large state-dependent delay

    PubMed Central

    Kozyreff, G.; Erneux, T.

    2014-01-01

    We study the onset of sustained oscillations in a classical state-dependent delay (SDD) differential equation inspired by control theory. Owing to the large delays considered, the Hopf bifurcation is singular and the oscillations rapidly acquire a sawtooth profile past the instability threshold. Using asymptotic techniques, we explicitly capture the gradual change from nearly sinusoidal to sawtooth oscillations. The dependence of the delay on the solution can be either linear or nonlinear, with at least quadratic dependence. In the former case, an asymptotic connection is made with the Rayleigh oscillator. In the latter, van der Pol’s equation is derived for the small-amplitude oscillations. SDD differential equations are currently the subject of intense research in order to establish or amend general theorems valid for constant-delay differential equation, but explicit analytical construction of solutions are rare. This paper illustrates the use of singular perturbation techniques and the unusual way in which solvability conditions can arise for SDD problems with large delays. PMID:24511255

  5. Singular Hopf bifurcation in a differential equation with large state-dependent delay.

    PubMed

    Kozyreff, G; Erneux, T

    2014-02-08

    We study the onset of sustained oscillations in a classical state-dependent delay (SDD) differential equation inspired by control theory. Owing to the large delays considered, the Hopf bifurcation is singular and the oscillations rapidly acquire a sawtooth profile past the instability threshold. Using asymptotic techniques, we explicitly capture the gradual change from nearly sinusoidal to sawtooth oscillations. The dependence of the delay on the solution can be either linear or nonlinear, with at least quadratic dependence. In the former case, an asymptotic connection is made with the Rayleigh oscillator. In the latter, van der Pol's equation is derived for the small-amplitude oscillations. SDD differential equations are currently the subject of intense research in order to establish or amend general theorems valid for constant-delay differential equation, but explicit analytical construction of solutions are rare. This paper illustrates the use of singular perturbation techniques and the unusual way in which solvability conditions can arise for SDD problems with large delays.

  6. Coordinated Path-Following in the Presence of Communication Losses and Time Delays

    DTIC Science & Technology

    2009-01-01

    of Type I or Type II. The results are quite general in that they apply to a large class of PF control systems satisfying a certain input-to-state...Maggiore, State agreement for continuous- time coupled nonlinear systems , SIAM J. Control Optim., 46 (2007), pp. 288–307. [39] M. Mesbahi and F...40] L. Moreau, Stability of continuous- time distributed consensus algorithm, in Proceedings of the 43rd IEEE Conference on Decision and Control

  7. Assessment of Systematic Measurement Errors for Acoustic Travel-Time Tomography of the Atmosphere

    DTIC Science & Technology

    2013-01-01

    measurements include assess- ment of the time delays in electronic circuits and mechanical hardware (e.g., drivers and microphones) of a tomography array ...hardware and electronic circuits of the tomography array and errors in synchronization of the transmitted and recorded signals. For example, if...coordinates can be as large as 30 cm. These errors are equivalent to the systematic errors in the travel times of 0.9 ms. Third, loudspeakers which are used

  8. Dynamical analysis of rumor spreading model with impulse vaccination and time delay

    NASA Astrophysics Data System (ADS)

    Huo, Liang'an; Ma, Chenyang

    2017-04-01

    Rumor cause unnecessary conflicts and confusion by misleading the cognition of the public, its spreading has largely influence on human affairs. All kinds of rumors and people's suspicion are often caused by the lack of official information. Hence, the official should take a variety of channels to deny the rumors. The promotion of scientific knowledge is implemented to improve the quality of the whole nation, reduce the harm caused by rumor spreading. In this paper, regarding the process of the science education that official deny the rumor many times as periodic impulse, we propose a XWYZ rumor spreading model with impulse vaccination and time delay, and analyze the global dynamics behaviors of the model. By using the discrete dynamical system determined by the comparison theory and Floquet theorem, we show that there exists a rumor-free periodic solution. Further, we show that the rumor-free periodic solution is globally attractive under appropriate conditions. We also obtain a sufficient condition for the permanence of model. Finally, with the numerical simulation, our results indicate that large vaccination rate, short impulse period or long latent period is sufficient condition for the extinction of the rumors.

  9. True-time-delay photonic beamformer for an L-band phased array radar

    NASA Astrophysics Data System (ADS)

    Zmuda, Henry; Toughlian, Edward N.; Payson, Paul M.; Malowicki, John E.

    1995-10-01

    The problem of obtaining a true-time-delay photonic beamformer has recently been a topic of great interest. Many interesting and novel approaches to this problem have been studied. This paper examines the design, construction, and testing of a dynamic optical processor for the control of a 20-element phased array antenna operating at L-band (1.2-1.4 GHz). The approach taken here has several distinct advantages. The actual optical control is accomplished with a class of spatial light modulator known as a segmented mirror device (SMD). This allows for the possibility of controlling an extremely large number (tens of thousands) of antenna elements using integrated circuit technology. The SMD technology is driven by the HDTV and laser printer markets so ultimate cost reduction as well as technological improvements are expected. Optical splitting is efficiently accomplished using a diffractive optical element. This again has the potential for use in antenna array systems with a large number of radiating elements. The actual time delay is achieved using a single acousto-optic device for all the array elements. Acousto-optic device technologies offer sufficient delay as needed for a time steered array. The topological configuration is an optical heterodyne system, hence high, potentially millimeter wave center frequencies are possible by mixing two lasers of slightly differing frequencies. Finally, the entire system is spatially integrated into a 3D glass substrate. The integrated system provides the ruggedness needed in most applications and essentially eliminates the drift problems associated with free space optical systems. Though the system is presently being configured as a beamformer, it has the ability to operate as a general photonic signal processing element in an adaptive (reconfigurable) transversal frequency filter configuration. Such systems are widely applicable in jammer/noise canceling systems, broadband ISDN, and for spread spectrum secure communications. This paper also serves as an update of work-in-progress at the Rome Laboratory Photonics Center Optical Beamforming Lab. The multi-faceted aspects of the design and construction of this state-of-the-art beamforming project will be discussed. Experimental results which demonstrate the performance of the system to-date with regard to both maximum delay and resolution over a broad bandwidth are presented.

  10. Retrieval practice improves memory in survivors of severe traumatic brain injury.

    PubMed

    Sumowski, James F; Coyne, Julia; Cohen, Amanda; Deluca, John

    2014-02-01

    To investigate whether retrieval practice (RP) improves delayed recall after short and long delays in survivors of severe traumatic brain injury (TBI) relative to massed restudy (MR) and spaced restudy (SR). 3(learning condition: MR, SR, RP)×2(delayed recall: 30min, 1wk) within-subject experiment. Nonprofit medical rehabilitation research center. Memory-impaired (<5th percentile) survivors of severe TBI (N=10). During RP, patients are quizzed on to-be-learned information shortly after it is presented, such that patients practice retrieval. MR consists of repeated restudy (ie, cramming). SR consists of restudy trials separated in time (ie, distributed learning). Forty-eight verbal paired associates (VPAs) were equally divided across 3 learning conditions (16 per condition). Delayed recall for one half of the VPAs was assessed after 30 minutes (8 per condition) and for the other half after 1 week (8 per condition). There was a large effect of learning condition after the short delay (P<.001, η(2)=.72), with much better recall of VPAs studied through RP (46.3%) relative to MR (12.5%) and SR (15.0%). This large effect of learning condition remained after the long delay (P=.001, η(2)=.56), as patients recalled 11.3% of the VPAs studied through RP, but nothing through MR (0.0%) and only 1.3% through SR. That is, RP was essentially the only learning condition to result in successful recall after 1 week, with most patients recalling at least 1 VPA. The robust effect of RP among TBI survivors with severe memory impairment engenders confidence that this strategy would work outside the laboratory to improve memory in real-life settings. Future randomized controlled trials of RP training are needed. Copyright © 2014 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  11. Asymmetric dual-loop feedback to suppress spurious tones and reduce timing jitter in self-mode-locked quantum-dash lasers emitting at 155 μm

    NASA Astrophysics Data System (ADS)

    Asghar, Haroon; McInerney, John G.

    2017-09-01

    We demonstrate an asymmetric dual-loop feedback scheme to suppress external cavity side-modes induced in self-mode-locked quantum-dash lasers with conventional single and dual-loop feedback. In this letter, we achieved optimal suppression of spurious tones by optimizing the length of second delay time. We observed that asymmetric dual-loop feedback, with large (~8x) disparity in cavity lengths, eliminates all external-cavity side-modes and produces flat RF spectra close to the main peak with low timing jitter compared to single-loop feedback. Significant reduction in RF linewidth and reduced timing jitter was also observed as a function of increased second feedback delay time. The experimental results based on this feedback configuration validate predictions of recently published numerical simulations. This interesting asymmetric dual-loop feedback scheme provides simplest, efficient and cost effective stabilization of side-band free optoelectronic oscillators based on mode-locked lasers.

  12. The time delay in strong gravitational lensing with Gauss-Bonnet correction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Man, Jingyun; Cheng, Hongbo, E-mail: jingyunman@mail.ecust.edu.cn, E-mail: hbcheng@ecust.edu.cn

    2014-11-01

    The time delay between two relativistic images in the strong gravitational lensing governed by Gauss-Bonnet gravity is studied. We make a complete analytical derivation of the expression of time delay in presence of Gauss-Bonnet coupling. With respect to Schwarzschild, the time delay decreases as a consequence of the shrinking of the photon sphere. As the coupling increases, the second term in the time delay expansion becomes more relevant. Thus time delay in strong limit encodes some new information about geometry in five-dimensional spacetime with Gauss-Bonnet correction.

  13. Effect of daily morphine administration and its discontinuation on delay discounting of food in rhesus monkeys

    PubMed Central

    Maguire, David R; Gerak, Lisa R; France, Charles P

    2015-01-01

    Opioid abusers discount delayed reinforcers more rapidly than non-users; however, it is unclear whether chronic drug administration or its discontinuation impact discounting. This study examined daily morphine administration and its discontinuation on delay discounting of food in rhesus monkeys. Responding on one lever delivered 1 food pellet immediately; responding on another lever delivered 2 food pellets either immediately or after a delay (30–120 sec) that increased within the session. Monkeys (n=3) responded for the large reinforcer when both reinforcers were delivered immediately and more for the smaller, immediately available reinforcer as delay to delivery of the large reinforcer increased. When administered acutely, morphine (0.032–5.6 mg/kg) increased trial omissions and had variable effects on choice, with small doses decreasing and large doses increasing choice of the large delayed reinforcer. Chronic morphine administration (0.1 mg/kg/day to 3.2 mg/kg twice daily) reduced choice of the large delayed reinforcer in two monkeys while increasing choice in a third monkey. Despite the development of tolerance to some effects (i.e., rightward shifts in dose-effect curves for the number of trials omitted) and evidence of mild opioid dependence (e.g., decrease in the number of trials completed as well as body weight), discontinuation of treatment did not appear to systematically impact discounting. Overall, these results suggest that repeated opioid administration causes persistent effects on choice under a delay discounting procedure; however, differences in the direction of effect among individuals suggest factors other than, or in addition to, changes in discounting might play a role. PMID:26397762

  14. The role of a low Earth orbiter in intercontinental time synchronization via GPS satellites

    NASA Technical Reports Server (NTRS)

    Wu, S. C.; Ondrasik, V. J.

    1985-01-01

    Time synchronization between two sites using differential GPS has been investigated by a number of researchers. When the two sites are widely separated, the common view period of any GPS satellite becomes shorter; low elevation observations are inevitable. This increase the corrupting effects of the atmospheric delay and, at the same time, narrows the window for such time synchronization. This difficulty can be alleviated by synchronization. This difficulty can be alleviated by using a transit site located midway between the two main sites. The main sites can now look at different GPS satellites which are also in view at the transit site. However, a ground transit site may not always be conveniently available, especially across the Pacific Ocean; also, the inclusion of a ground transit site introduce additional errors due to its location error and local atmospheric delay. An alternative is to use a low Earth orbiter (LEO) as the transit site. A LEO is superior to a ground transit site in three ways: (1) It covers a large part of the Earth in a short period of time and, hence, a single LEO provides worldwide transit services; (2) it is above the troposphere and thus its inclusion does not introduce additional tropospheric delay error; and (3) it provides strong dynamics needed to improve GPS satellite positions which are of importance to ultraprecise time synchronization.

  15. Free-decay time-domain modal identification for large space structures

    NASA Technical Reports Server (NTRS)

    Kim, Hyoung M.; Vanhorn, David A.; Doiron, Harold H.

    1992-01-01

    Concept definition studies for the Modal Identification Experiment (MIE), a proposed space flight experiment for the Space Station Freedom (SSF), have demonstrated advantages and compatibility of free-decay time-domain modal identification techniques with the on-orbit operational constraints of large space structures. Since practical experience with modal identification using actual free-decay responses of large space structures is very limited, several numerical and test data reduction studies were conducted. Major issues and solutions were addressed, including closely-spaced modes, wide frequency range of interest, data acquisition errors, sampling delay, excitation limitations, nonlinearities, and unknown disturbances during free-decay data acquisition. The data processing strategies developed in these studies were applied to numerical simulations of the MIE, test data from a deployable truss, and launch vehicle flight data. Results of these studies indicate free-decay time-domain modal identification methods can provide accurate modal parameters necessary to characterize the structural dynamics of large space structures.

  16. Pastoralism and delay in diagnosis of TB in Ethiopia

    PubMed Central

    Gele, Abdi A; Bjune, Gunnar; Abebe, Fekadu

    2009-01-01

    Background Tuberculosis (TB) is a major public health problem in the Horn of Africa with Ethiopia being the most affected where TB cases increase at the rate of 2.6% each year. One of the main contributing factors for this rise is increasing transmission due to large number of untreated patients, serving as reservoirs of the infection within the communities. Reduction of the time between onset of TB symptoms to diagnosis is therefore a prerequisite to bring the TB epidemic under control. The aim of this study was to measure duration of delay among pastoralist TB patients at TB management units in Somali Regional State (SRS) of Ethiopia. Methods A cross sectional study of 226 TB patients with pastoralist identity was conducted in SRS of Ethiopia from June to September 2007. Patients were interviewed using questionnaire based interview. Time between onset of TB symptoms and first visit to a professional health care provider (patient delay), and the time between first visits to the professional health care provider to the date of diagnosis (medical provider's delay) were analyzed. Both pulmonary and extrapulmonary TB patients were included in the study. Result A total of 226 pastoralist TB patients were included in this study; 93 (41.2%) were nomadic pastoralists and 133 (58.8%) were agro-pastoralists. Median patient delay was found to be 60 days with range of 10–1800 days (83 days for nomadic pastoralists and 57 days for agro-pastoralists). Median health care provider's delay was 6 days and median total delay was 70 days in this study. Patient delay constituted 86% of the total delay. In multivariate logistic regression analysis, nomadic pastoralism (aOR. 2.69, CI 1.47–4.91) and having low biomedical knowledge on TB (aOR. 2.02, CI 1.02–3.98) were significantly associated with prolonged patient delay. However, the only observed risk factor for very long patient delay >120 days was distance to health facility (aOR.4.23, CI 1.32–13.54). Extra-pulmonary TB was the only observed predictor for health care providers' delay (aOR. 3.39, CI 1.68–6.83). Conclusion Patient delay observed among pastoralist TB patients in SRS is one of the highest reported so far from developing countries, exceeding two years in some patients. This long patient delay appears to be associated with patient's inadequate knowledge of the disease and distance to health care facility with nomadic pastoralists being the most affected. Regional TB control programmes need to consider the exceptional circumstances of pastoralists, to maximise their access to TB services. PMID:19128498

  17. Delayed initiation of radiotherapy for glioblastoma: how important is it to push to the front (or the back) of the line?

    PubMed

    Lawrence, Yaacov Richard; Blumenthal, Deborah T; Matceyevsky, Diana; Kanner, Andrew A; Bokstein, Felix; Corn, Benjamin W

    2011-10-01

    Glioblastoma is a malignant tumor characterized by a rapid proliferation rate. Contemporary multi-modality treatment consists of maximal surgical resection followed by radiation therapy (RT) combined with cytotoxic chemotherapy. The optimal timing of these different steps is not known. Four studies from the pre-temozolomide era, encompassing a total of 4,584 subjects, have examined the consequences of a delay between resection and starting RT. Whereas the two small single-institution studies found this delay to be detrimental, two large multi-institutional studies found delay to be either slightly beneficial or at least not harmful. Here, we critically compare the methodologies and results presented in these studies, and include a novel analysis of the combined datasets. We conclude that moderate wait periods (up to 4-6 weeks post-operatively) are safe and may be modestly beneficial. Conversely, there is no evidence to justify waiting longer than 6 weeks. Underlying radiobiological principles are discussed.

  18. Improved mass resolution and mass accuracy in TOF-SIMS spectra and images using argon gas cluster ion beams.

    PubMed

    Shon, Hyun Kyong; Yoon, Sohee; Moon, Jeong Hee; Lee, Tae Geol

    2016-06-09

    The popularity of argon gas cluster ion beams (Ar-GCIB) as primary ion beams in time-of-flight secondary ion mass spectrometry (TOF-SIMS) has increased because the molecular ions of large organic- and biomolecules can be detected with less damage to the sample surfaces. However, Ar-GCIB is limited by poor mass resolution as well as poor mass accuracy. The inferior quality of the mass resolution in a TOF-SIMS spectrum obtained by using Ar-GCIB compared to the one obtained by a bismuth liquid metal cluster ion beam and others makes it difficult to identify unknown peaks because of the mass interference from the neighboring peaks. However, in this study, the authors demonstrate improved mass resolution in TOF-SIMS using Ar-GCIB through the delayed extraction of secondary ions, a method typically used in TOF mass spectrometry to increase mass resolution. As for poor mass accuracy, although mass calibration using internal peaks with low mass such as hydrogen and carbon is a common approach in TOF-SIMS, it is unsuited to the present study because of the disappearance of the low-mass peaks in the delayed extraction mode. To resolve this issue, external mass calibration, another regularly used method in TOF-MS, was adapted to enhance mass accuracy in the spectrum and image generated by TOF-SIMS using Ar-GCIB in the delayed extraction mode. By producing spectra analyses of a peptide mixture and bovine serum albumin protein digested with trypsin, along with image analyses of rat brain samples, the authors demonstrate for the first time the enhancement of mass resolution and mass accuracy for the purpose of analyzing large biomolecules in TOF-SIMS using Ar-GCIB through the use of delayed extraction and external mass calibration.

  19. Transient-Switch-Signal Suppressor

    NASA Technical Reports Server (NTRS)

    Bozeman, Richard J., Jr.

    1995-01-01

    Circuit delays transmission of switch-opening or switch-closing signal until after preset suppression time. Used to prevent transmission of undesired momentary switch signal. Basic mode of operation simple. Beginning of switch signal initiates timing sequence. If switch signal persists after preset suppression time, circuit transmits switch signal to external circuitry. If switch signal no longer present after suppression time, switch signal deemed transient, and circuit does not pass signal on to external circuitry, as though no transient switch signal. Suppression time preset at value large enough to allow for damping of underlying pressure wave or other mechanical transient.

  20. Efficiently and easily integrating differential equations with JiTCODE, JiTCDDE, and JiTCSDE

    NASA Astrophysics Data System (ADS)

    Ansmann, Gerrit

    2018-04-01

    We present a family of Python modules for the numerical integration of ordinary, delay, or stochastic differential equations. The key features are that the user enters the derivative symbolically and it is just-in-time-compiled, allowing the user to efficiently integrate differential equations from a higher-level interpreted language. The presented modules are particularly suited for large systems of differential equations such as those used to describe dynamics on complex networks. Through the selected method of input, the presented modules also allow almost complete automatization of the process of estimating regular as well as transversal Lyapunov exponents for ordinary and delay differential equations. We conceptually discuss the modules' design, analyze their performance, and demonstrate their capabilities by application to timely problems.

  1. SAR imaging - Seeing the unseen

    NASA Technical Reports Server (NTRS)

    Kobrick, M.

    1982-01-01

    The functional abilities and operations of synthetic aperture radar (SAR) are described. SAR employs long wavelength radio waves in bursts, imaging a target by 'listening' to the small frequency changes that result from the Doppler shift due to the relative motion of the imaging craft and the motions of the target. The time delay of the signal return allows a determination of the location of the target, leading to the build up of a two-dimensional image. The uses of both Doppler shifts and time delay enable detailed imagery which is independent of distance. The synthetic aperture part of the name of SAR derives from the beaming of multiple pulses, which result in a picture that is effectively the same as using a large antenna. Mechanisms contributing to the fineness of SAR images are outlined.

  2. Time-delay test of general relativity and Earth-Mars ephemeris improvement from analysis of Mariner 9 tracking data

    NASA Technical Reports Server (NTRS)

    Shapiro, I. I.; Reasenberg, R. D.

    1973-01-01

    Because of the large systematic errors that accompany the conversion of spacecraft ranging data to equivalent Earth-Mars time delays, the corresponding determination of gamma does not now allow the predictions of general relativity to be distinguished from those of the Brans-Dicke scalar-tensor theory with the fraction s of scalar field admixture being 0.06. The uncertainty in the determination of (1 plus gamma)/2 at the present stage of the Mariner 9 data analysis is at about the 10% level. The ephemeris of Mars suffers from the same problem: Only with the elimination of a major fraction of the systematic errors affecting the Mariner 9 pseudo observables will a truly substantial improvement be possible in the determination of the orbit.

  3. Superconducting current injection transistor with very high critical-current-density edge-junctions

    NASA Astrophysics Data System (ADS)

    van Zeghbroeck, B. J.

    1985-03-01

    A Superconducting Current Injection Transistor (Super-CIT) was fabricated with very high critical current-density edge-junctions. The junctions have a niobium base electrode and a lead-alloy counter electrode. The length of the junctions is 30 microns and the critical-current density is 190KA/sq cm. The Super-CIT has a current gain of 2, a large signal transresistance of 100 mV/A, and the turn-on delay, inferred from the junction resonance, is 7ps. The power dissipation is 3.5 microwatts and the power-delay product is 24.5aJ. Gap reduction due to heating was observed, limiting the maximum power dissipation per unit length to 1.1 microwatt/micron. Compared to lead-alloy Super-CITs, the device is five times smaller, three times faster, and has a three times larger output voltage. The damping resistor and the contact junction could also be eliminated.

  4. Overcoming phase 1 delays: the critical component of obstetric fistula prevention programs in resource-poor countries

    PubMed Central

    2012-01-01

    Background An obstetric fistula is a traumatic childbirth injury that occurs when labor is obstructed and delivery is delayed. Prolonged obstructed labor leads to the destruction of the tissues that normally separate the bladder from the vagina and creates a passageway (fistula) through which urine leaks continuously. Women with a fistula become social outcasts. Universal high-quality maternity care has eliminated the obstetric fistula in wealthy countries, but millions of women in resource-poor nations still experience prolonged labor and tens of thousands of new fistula sufferers are added to the millions of pre-existing cases each year. This article discusses fistula prevention in developing countries, focusing on the factors which delay treatment of prolonged labor. Discussion Obstetric fistulas can be prevented through contraception, avoiding obstructed labor, or improving outcomes for women who develop obstructed labor. Contraception is of little use to women who are already pregnant and there is no reliable screening test to predict obstruction in advance of labor. Improving the outcome of obstructed labor depends on prompt diagnosis and timely intervention (usually by cesarean section). Because obstetric fistulas are caused by tissue compression, the time interval from obstruction to delivery is critical. This time interval is often extended by delays in deciding to seek care, delays in arriving at a hospital, and delays in accessing treatment after arrival. Communities can reasonably demand that governments and healthcare institutions improve the second (transportation) and third (treatment) phases of delay. Initial delays in seeking hospital care are caused by failure to recognize that labor is prolonged, confusion concerning what should be done (often the result of competing therapeutic pathways), lack of women’s agency, unfamiliarity with and fear of hospitals and the treatments they offer (especially surgery), and economic constraints on access to care. Summary Women in resource-poor countries will use institutional obstetric care when the services provided are valued more than the competing choices offered by a pluralistic medical system. The key to obstetric fistula prevention is competent obstetrical care delivered respectfully, promptly, and at affordable cost. The utilization of these services is driven largely by trust. PMID:22809234

  5. The actin cytoskeleton of chemotactic amoebae operates close to the onset of oscillations

    NASA Astrophysics Data System (ADS)

    Westendorf, Christian; Negrete, Jose, Jr.; Bae, Albert; Sandmann, Rabea; Bodenschatz, Eberhard; Beta, Carsten

    2013-03-01

    We report evidence that the actin machinery of chemotactic Dictyostelium cells operates close to an oscillatory instability. The averaged F-actin response of many cells to a short-time pulse of cAMP is reminiscent of a damped oscillation. At the single-cell level, however, the response dynamics ranged from short, strongly damped responses to slowly decaying, weakly damped oscillations. Furthermore, in a small subpopulation, we observed self-sustained oscillations in the cortical F-actin concentration. We systematically exposed a large number of cells to periodic pulse trains. The results indicate a resonance peak at periodic inputs of around 20 s. We propose a delayed feedback model that explains our experimental findings based on a time-delay in the actin regulatory network. To quantitatively test the model, we performed stimulation experiments with cells that express GFP-tagged fusion proteins of Coronin and Aip1. These served as markers of the F-actin disassembly process and thus allow us to estimate the delay time. Based on this independent estimate, our model predicts an intrinsic period of 20 s, which agrees with the resonance observed experimentally. Financial support by the Max-Planck Society and the DFG (SFB 937).

  6. Recovery of Large Angular Scale CMB Polarization for Instruments Employing Variable-Delay Polarization Modulators

    NASA Technical Reports Server (NTRS)

    Miller, N. J.; Chuss, D. T.; Marriage, T. A.; Wollack, E. J.; Appel, J. W.; Bennett, C. L.; Eimer, J.; Essinger-Hileman, T.; Fixsen, D. J.; Harrington, K.; hide

    2016-01-01

    Variable-delay Polarization Modulators (VPMs) are currently being implemented in experiments designed to measure the polarization of the cosmic microwave background on large angular scales because of their capability for providing rapid, front-end polarization modulation and control over systematic errors. Despite the advantages provided by the VPM, it is important to identify and mitigate any time-varying effects that leak into the synchronously modulated component of the signal. In this paper, the effect of emission from a 300 K VPM on the system performance is considered and addressed. Though instrument design can greatly reduce the influence of modulated VPM emission, some residual modulated signal is expected. VPM emission is treated in the presence of rotational misalignments and temperature variation. Simulations of time-ordered data are used to evaluate the effect of these residual errors on the power spectrum. The analysis and modeling in this paper guides experimentalists on the critical aspects of observations using VPMs as front-end modulators. By implementing the characterizations and controls as described, front-end VPM modulation can be very powerful for mitigating 1/ f noise in large angular scale polarimetric surveys. None of the systematic errors studied fundamentally limit the detection and characterization of B-modes on large scales for a tensor-to-scalar ratio of r= 0.01. Indeed, r less than 0.01 is achievable with commensurately improved characterizations and controls.

  7. Consequences of Feeder Delays for the Success of A380 Operations

    NASA Technical Reports Server (NTRS)

    Ruehle, Jens; Goetsch, Bjoern; Koch, Benjamin

    2006-01-01

    Due to existing slot and infrastructure constraints at international hub-and-spoke airports, an increase in feeder traffic seems only possible if larger feeder aircraft are used. Using a case study of Lufthansa German Airlines at Frankfurt International Airport, three possible A380 routes (Beijing, Tokyo-Narita, Los Angeles) were examined to assess the extent to which delays of feeder traffic may impact the economic performance of very large aircraft. On the basis of today s delays and anticipated traffic growth in the future, we found that between 9.5% and 13.5% of connecting passengers are unable to transfer to their respective intercontinental flights. In addition, the results demonstrate that a further increase in delays can be detrimental to the profitable operation of very large aircraft, as demonstrated by two out of three simulated routes. We suggest options for airlines operating very large aircraft to counteract the negative impacts of feeder delays.

  8. Generalized binomial τ-leap method for biochemical kinetics incorporating both delay and intrinsic noise

    NASA Astrophysics Data System (ADS)

    Leier, André; Marquez-Lago, Tatiana T.; Burrage, Kevin

    2008-05-01

    The delay stochastic simulation algorithm (DSSA) by Barrio et al. [Plos Comput. Biol. 2, 117(E) (2006)] was developed to simulate delayed processes in cell biology in the presence of intrinsic noise, that is, when there are small-to-moderate numbers of certain key molecules present in a chemical reaction system. These delayed processes can faithfully represent complex interactions and mechanisms that imply a number of spatiotemporal processes often not explicitly modeled such as transcription and translation, basic in the modeling of cell signaling pathways. However, for systems with widely varying reaction rate constants or large numbers of molecules, the simulation time steps of both the stochastic simulation algorithm (SSA) and the DSSA can become very small causing considerable computational overheads. In order to overcome the limit of small step sizes, various τ-leap strategies have been suggested for improving computational performance of the SSA. In this paper, we present a binomial τ-DSSA method that extends the τ-leap idea to the delay setting and avoids drawing insufficient numbers of reactions, a common shortcoming of existing binomial τ-leap methods that becomes evident when dealing with complex chemical interactions. The resulting inaccuracies are most evident in the delayed case, even when considering reaction products as potential reactants within the same time step in which they are produced. Moreover, we extend the framework to account for multicellular systems with different degrees of intercellular communication. We apply these ideas to two important genetic regulatory models, namely, the hes1 gene, implicated as a molecular clock, and a Her1/Her 7 model for coupled oscillating cells.

  9. Transition to complete synchronization and global intermittent synchronization in an array of time-delay systems.

    PubMed

    Suresh, R; Senthilkumar, D V; Lakshmanan, M; Kurths, J

    2012-07-01

    We report the nature of transitions from the nonsynchronous to a complete synchronization (CS) state in arrays of time-delay systems, where the systems are coupled with instantaneous diffusive coupling. We demonstrate that the transition to CS occurs distinctly for different coupling configurations. In particular, for unidirectional coupling, locally (microscopically) synchronization transition occurs in a very narrow range of coupling strength but for a global one (macroscopically) it occurs sequentially in a broad range of coupling strength preceded by an intermittent synchronization. On the other hand, in the case of mutual coupling, a very large value of coupling strength is required for local synchronization and, consequently, all the local subsystems synchronize immediately for the same value of the coupling strength and, hence, globally, synchronization also occurs in a narrow range of the coupling strength. In the transition regime, we observe a type of synchronization transition where long intervals of high-quality synchronization which are interrupted at irregular times by intermittent chaotic bursts simultaneously in all the systems and which we designate as global intermittent synchronization. We also relate our synchronization transition results to the above specific types using unstable periodic orbit theory. The above studies are carried out in a well-known piecewise linear time-delay system.

  10. Multiple Deficits in ADHD: Executive Dysfunction, Delay Aversion, Reaction Time Variability, and Emotional Deficits

    ERIC Educational Resources Information Center

    Sjowall, Douglas; Roth, Linda; Lindqvist, Sofia; Thorell, Lisa B.

    2013-01-01

    Background: The notion that ADHD constitutes a heterogeneous disorder is well accepted. However, this study contributes with new important knowledge by examining independent effects of a large range of neuropsychological deficits. In addition, the study investigated whether deficits in emotional functioning constitute a dissociable component of…

  11. A Study of Students' Reasoning about Probabilistic Causality: Implications for Understanding Complex Systems and for Instructional Design

    ERIC Educational Resources Information Center

    Grotzer, Tina A.; Solis, S. Lynneth; Tutwiler, M. Shane; Cuzzolino, Megan Powell

    2017-01-01

    Understanding complex systems requires reasoning about causal relationships that behave or appear to behave probabilistically. Features such as distributed agency, large spatial scales, and time delays obscure co-variation relationships and complex interactions can result in non-deterministic relationships between causes and effects that are best…

  12. Uncovering Neuronal Networks Defined by Consistent Between-Neuron Spike Timing from Neuronal Spike Recordings

    PubMed Central

    2018-01-01

    Abstract It is widely assumed that distributed neuronal networks are fundamental to the functioning of the brain. Consistent spike timing between neurons is thought to be one of the key principles for the formation of these networks. This can involve synchronous spiking or spiking with time delays, forming spike sequences when the order of spiking is consistent. Finding networks defined by their sequence of time-shifted spikes, denoted here as spike timing networks, is a tremendous challenge. As neurons can participate in multiple spike sequences at multiple between-spike time delays, the possible complexity of networks is prohibitively large. We present a novel approach that is capable of (1) extracting spike timing networks regardless of their sequence complexity, and (2) that describes their spiking sequences with high temporal precision. We achieve this by decomposing frequency-transformed neuronal spiking into separate networks, characterizing each network’s spike sequence by a time delay per neuron, forming a spike sequence timeline. These networks provide a detailed template for an investigation of the experimental relevance of their spike sequences. Using simulated spike timing networks, we show network extraction is robust to spiking noise, spike timing jitter, and partial occurrences of the involved spike sequences. Using rat multineuron recordings, we demonstrate the approach is capable of revealing real spike timing networks with sub-millisecond temporal precision. By uncovering spike timing networks, the prevalence, structure, and function of complex spike sequences can be investigated in greater detail, allowing us to gain a better understanding of their role in neuronal functioning. PMID:29789811

  13. Electron transfer statistics and thermal fluctuations in molecular junctions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goswami, Himangshu Prabal; Harbola, Upendra

    2015-02-28

    We derive analytical expressions for probability distribution function (PDF) for electron transport in a simple model of quantum junction in presence of thermal fluctuations. Our approach is based on the large deviation theory combined with the generating function method. For large number of electrons transferred, the PDF is found to decay exponentially in the tails with different rates due to applied bias. This asymmetry in the PDF is related to the fluctuation theorem. Statistics of fluctuations are analyzed in terms of the Fano factor. Thermal fluctuations play a quantitative role in determining the statistics of electron transfer; they tend tomore » suppress the average current while enhancing the fluctuations in particle transfer. This gives rise to both bunching and antibunching phenomena as determined by the Fano factor. The thermal fluctuations and shot noise compete with each other and determine the net (effective) statistics of particle transfer. Exact analytical expression is obtained for delay time distribution. The optimal values of the delay time between successive electron transfers can be lowered below the corresponding shot noise values by tuning the thermal effects.« less

  14. Adaptive neural network decentralized backstepping output-feedback control for nonlinear large-scale systems with time delays.

    PubMed

    Tong, Shao Cheng; Li, Yong Ming; Zhang, Hua-Guang

    2011-07-01

    In this paper, two adaptive neural network (NN) decentralized output feedback control approaches are proposed for a class of uncertain nonlinear large-scale systems with immeasurable states and unknown time delays. Using NNs to approximate the unknown nonlinear functions, an NN state observer is designed to estimate the immeasurable states. By combining the adaptive backstepping technique with decentralized control design principle, an adaptive NN decentralized output feedback control approach is developed. In order to overcome the problem of "explosion of complexity" inherent in the proposed control approach, the dynamic surface control (DSC) technique is introduced into the first adaptive NN decentralized control scheme, and a simplified adaptive NN decentralized output feedback DSC approach is developed. It is proved that the two proposed control approaches can guarantee that all the signals of the closed-loop system are semi-globally uniformly ultimately bounded, and the observer errors and the tracking errors converge to a small neighborhood of the origin. Simulation results are provided to show the effectiveness of the proposed approaches.

  15. Improvement of SLR accuracy, a possible new step

    NASA Technical Reports Server (NTRS)

    Kasser, Michel

    1993-01-01

    The satellite laser ranging (SLR) technology experienced a large number of technical improvements since the early 1970's, leading now to a millimetric instrumental accuracy. Presently, it appears as useless to increase these instrumental performances as long as the atmospheric propagation delay suffers its actual imprecision. It has been proposed for many years to work in multiwavelength mode, but up to now the considerable technological difficulties of subpicosecond timing have seriously delayed such an approach. Then a new possibility is proposed, using a device which is not optimized now for SLR but has already given good results in the lower troposphere for wind measurement: the association of a radar and a sodar. While waiting for the 2-lambda methodology, this one could provide an atmospheric propagation delay at the millimeter level during a few years with only little technological investment.

  16. Prompt-delayed $$\\gamma$$-ray spectroscopy with AGATA, EXOGAM and VAMOS++

    DOE PAGES

    Kim, Y. H.; Lemasson, A.; Rejmund, M.; ...

    2017-08-10

    Here, a new experimental setup to measure prompt-delayed γ-ray coincidences from isotopically identified fission fragments, over a wide time range of 100ns-200μ s, is presented. The fission fragments were isotopically identified, on an event-by-event basis, using the VAMOS++ large acceptance spectrometer. The prompt γ rays emitted at the target position and corresponding delayed γ rays emitted at the focal plane of the spectrometer were detected using, respectively, thirty two crystals of the AGATA γ-ray tracking array and seven EXOGAM HPGe Clover detectors. Finally, fission fragments produced in fusion and transfer-induced fission reactions, using a 238U beam at an energy ofmore » 6.2 MeV/u impinging on a 9Be target, were used to characterize and qualify the performance of the detection system.« less

  17. Connected cruise control: modelling, delay effects, and nonlinear behaviour

    NASA Astrophysics Data System (ADS)

    Orosz, Gábor

    2016-08-01

    Connected vehicle systems (CVS) are considered in this paper where vehicles exchange information using wireless vehicle-to-vehicle (V2V) communication. The concept of connected cruise control (CCC) is established that allows control design at the level of individual vehicles while exploiting V2V connectivity. Due to its high level of modularity the proposed design can be applied to large heterogeneous traffic systems. The dynamics of a simple CVS is analysed in detail while taking into account nonlinearities in the vehicle dynamics as well as in the controller. Time delays that arise due to intermittencies and packet drops in the communication channels are also incorporated. The results are summarised using stability charts which allow one to select control gains to maintain stability and ensure disturbance attenuation when the delay is below a critical value.

  18. Effect of Time Delay on Recognition Memory for Pictures: The Modulatory Role of Emotion

    PubMed Central

    Wang, Bo

    2014-01-01

    This study investigated the modulatory role of emotion in the effect of time delay on recognition memory for pictures. Participants viewed neutral, positive and negative pictures, and took a recognition memory test 5 minutes, 24 hours, or 1 week after learning. The findings are: 1) For neutral, positive and negative pictures, overall recognition accuracy in the 5-min delay did not significantly differ from that in the 24-h delay. For neutral and positive pictures, overall recognition accuracy in the 1-week delay was lower than in the 24-h delay; for negative pictures, overall recognition in the 24-h and 1-week delay did not significantly differ. Therefore negative emotion modulates the effect of time delay on recognition memory, maintaining retention of overall recognition accuracy only within a certain frame of time. 2) For the three types of pictures, recollection and familiarity in the 5-min delay did not significantly differ from that in the 24-h and the 1-week delay. Thus emotion does not appear to modulate the effect of time delay on recollection and familiarity. However, recollection in the 24-h delay was higher than in the 1-week delay, whereas familiarity in the 24-h delay was lower than in the 1-week delay. PMID:24971457

  19. A robust and high-performance queue management controller for large round trip time networks

    NASA Astrophysics Data System (ADS)

    Khoshnevisan, Ladan; Salmasi, Farzad R.

    2016-05-01

    Congestion management for transmission control protocol is of utmost importance to prevent packet loss within a network. This necessitates strategies for active queue management. The most applied active queue management strategies have their inherent disadvantages which lead to suboptimal performance and even instability in the case of large round trip time and/or external disturbance. This paper presents an internal model control robust queue management scheme with two degrees of freedom in order to restrict the undesired effects of large and small round trip time and parameter variations in the queue management. Conventional approaches such as proportional integral and random early detection procedures lead to unstable behaviour due to large delay. Moreover, internal model control-Smith scheme suffers from large oscillations due to the large round trip time. On the other hand, other schemes such as internal model control-proportional integral and derivative show excessive sluggish performance for small round trip time values. To overcome these shortcomings, we introduce a system entailing two individual controllers for queue management and disturbance rejection, simultaneously. Simulation results based on Matlab/Simulink and also Network Simulator 2 (NS2) demonstrate the effectiveness of the procedure and verify the analytical approach.

  20. Angular dependence of EWS time delay for photoionization of @Xe

    NASA Astrophysics Data System (ADS)

    Mandal, Ankur; Deshmukh, Pranawa; Kheifets, Anatoli; Dolmatov, Valeriy; Manson, Steven

    2017-04-01

    Interference between photoionization channels leads to angular dependence in photoionization time delay. Angular dependence is found to be a common effect for two-photon absorption experiments very recently. The effect of confinement on the time delay where each partial wave contributions to the ionization are studied. In this work we report angular dependence and confinement effects on Eisenbud-Wigner-Smith (EWS) time delay in atomic photoionization. Using and we computed the EWS time delay for free and confined Xe atom for photoionization from inner 4d3/2 and 4d5/2 and outer 5p1/2 and 5p3/2 subshells at various angles. The calculated EWS time delay is few tens to few hundreds of attoseconds (10-18 second). The photoionization time delay for @Xe follows that in the free Xe atom on which the confinement oscillations are built. The present work reveals the effect of confinement on the photoionization time delay at different angles between photoelectron ejection and the photon polarization.

  1. A Simulation Study of Paced TCP

    NASA Technical Reports Server (NTRS)

    Kulik, Joanna; Coulter, Robert; Rockwell, Dennis; Partridge, Craig

    2000-01-01

    In this paper, we study the performance of paced TCP, a modified version of TCP designed especially for high delay- bandwidth networks. In typical networks, TCP optimizes its send-rate by transmitting increasingly large bursts, or windows, of packets, one burst per round-trip time, until it reaches a maximum window-size, which corresponds to the full capacity of the network. In a network with a high delay-bandwidth product, however, Transmission Control Protocol's (TCPs) maximum window-size may be larger than the queue size of the intermediate routers, and routers will begin to drop packets as soon as the windows become too large for the router queues. The TCP sender then concludes that the bottleneck capacity of the network has been reached, and it limits its send-rate accordingly. Partridge proposed paced TCP as a means of solving the problem of queueing bottlenecks. A sender using paced TCP would release packets in multiple, small bursts during a round-trip time in which ordinary TCP would release a single, large burst of packets. This approach allows the sender to increase its send-rate to the maximum window size without encountering queueing bottlenecks. This paper describes the performance of paced TCP in a simulated network and discusses implementation details that can affect the performance of paced TCP.

  2. A Comparison of the Effects of Brief Rules, a Timer, and Preferred Toys on Self-Control

    ERIC Educational Resources Information Center

    Newquist, Matthew H.; Dozier, Claudia L.; Neidert, Pamela L.

    2012-01-01

    Some children make impulsive choices (i.e., choose a small but immediate reinforcer over a large but delayed reinforcer). Previous research has shown that delay fading, providing an alternative activity during the delay, teaching participants to repeat a rule during the delay, combining delay fading with an alternative activity, and combining…

  3. Estimating crustal heterogeneity from double-difference tomography

    USGS Publications Warehouse

    Got, J.-L.; Monteiller, V.; Virieux, J.; Okubo, P.

    2006-01-01

    Seismic velocity parameters in limited, but heterogeneous volumes can be inferred using a double-difference tomographic algorithm, but to obtain meaningful results accuracy must be maintained at every step of the computation. MONTEILLER et al. (2005) have devised a double-difference tomographic algorithm that takes full advantage of the accuracy of cross-spectral time-delays of large correlated event sets. This algorithm performs an accurate computation of theoretical travel-time delays in heterogeneous media and applies a suitable inversion scheme based on optimization theory. When applied to Kilauea Volcano, in Hawaii, the double-difference tomography approach shows significant and coherent changes to the velocity model in the well-resolved volumes beneath the Kilauea caldera and the upper east rift. In this paper, we first compare the results obtained using MONTEILLER et al.'s algorithm with those obtained using the classic travel-time tomographic approach. Then, we evaluated the effect of using data series of different accuracies, such as handpicked arrival-time differences ("picking differences"), on the results produced by double-difference tomographic algorithms. We show that picking differences have a non-Gaussian probability density function (pdf). Using a hyperbolic secant pdf instead of a Gaussian pdf allows improvement of the double-difference tomographic result when using picking difference data. We completed our study by investigating the use of spatially discontinuous time-delay data. ?? Birkha??user Verlag, Basel, 2006.

  4. Timeliness and completeness of measles vaccination among children in rural areas of Guangxi, China: A stratified three-stage cluster survey.

    PubMed

    Tang, Xianyan; Geater, Alan; McNeil, Edward; Zhou, Hongxia; Deng, Qiuyun; Dong, Aihu

    2017-07-01

    Large-scale outbreaks of measles occurred in 2013 and 2014 in rural Guangxi, a region in Southwest China with high coverage for measles-containing vaccine (MCV). This study aimed to estimate the timely vaccination coverage, the timely-and-complete vaccination coverage, and the median delay period for MCV among children aged 18-54 months in rural Guangxi. Based on quartiles of measles incidence during 2011-2013, a stratified three-stage cluster survey was conducted from June through August 2015. Using weighted estimation and finite population correction, vaccination coverage and 95% confidence intervals (CIs) were calculated. Weighted Kaplan-Meier analyses were used to estimate the median delay periods for the first (MCV1) and second (MCV2) doses of the vaccine. A total of 1216 children were surveyed. The timely vaccination coverage rate was 58.4% (95% CI, 54.9%-62.0%) for MCV1, and 76.9% (95% CI, 73.6%-80.0%) for MCV2. The timely-and-complete vaccination coverage rate was 47.4% (95% CI, 44.0%-51.0%). The median delay period was 32 (95% CI, 27-38) days for MCV1, and 159 (95% CI, 118-195) days for MCV2. The timeliness and completeness of measles vaccination was low, and the median delay period was long among children in rural Guangxi. Incorporating the timeliness and completeness into official routine vaccination coverage statistics may help appraise the coverage of vaccination in China. Copyright © 2017 The Authors. Production and hosting by Elsevier B.V. All rights reserved.

  5. Slow-light transmission with high group index and large normalized delay bandwidth product through successive defect rods on intrinsic photonic crystal waveguide

    NASA Astrophysics Data System (ADS)

    Elshahat, Sayed; Khan, Karim; Yadav, Ashish; Bibbò, Luigi; Ouyang, Zhengbiao

    2018-07-01

    We proposed a strategy with successive cavities as energy reservoirs of electromagnetic energy and light-speed reducers introduced in the first and second rows of rods on the walls of an intrinsic photonic crystal waveguide (PCW) for slow-light transmission in the PCW concerning applications for optical communication, optical computation and optical signal processing. Subsequently, plane-wave expansion method (PWE) is used for studying slow-light properties and finite-difference time-domain (FDTD) method to demonstrate the slow-light propagating property of our proposed structure. We obtained group index as exceedingly large as 6123 with normalized delay bandwidth product (NDBP) as high as 0.48. We designed a facile but more generalized structure that may provide a vital theoretical basis for further enhancing the storage capacity properties of slow light with wideband and high NDBP.

  6. Feedback control of flow vorticity at low Reynolds numbers.

    PubMed

    Zeitz, Maria; Gurevich, Pavel; Stark, Holger

    2015-03-01

    Our aim is to explore strategies of feedback control to design and stabilize novel dynamic flow patterns in model systems of complex fluids. To introduce the control strategies, we investigate the simple Newtonian fluid at low Reynolds number in a circular geometry. Then, the fluid vorticity satisfies a diffusion equation. We determine the mean vorticity in the sensing area and use two control strategies to feed it back into the system by controlling the angular velocity of the circular boundary. Hysteretic feedback control generates self-regulated stable oscillations in time, the frequency of which can be adjusted over several orders of magnitude by tuning the relevant feedback parameters. Time-delayed feedback control initiates unstable vorticity modes for sufficiently large feedback strength. For increasing delay time, we first observe oscillations with beats and then regular trains of narrow pulses. Close to the transition line between the resting fluid and the unstable modes, these patterns are relatively stable over long times.

  7. Prevalence and correlates of delayed sleep phase in high school students.

    PubMed

    Saxvig, Ingvild W; Pallesen, Ståle; Wilhelmsen-Langeland, Ane; Molde, Helge; Bjorvatn, Bjørn

    2012-02-01

    To investigate prevalence and correlates of delayed sleep phase, characterized by problems falling asleep in the evening and rising at adequate times in the morning, in a large sample of Norwegian high school students. A randomized sample of 1285 high school students (aged 16-19 years) participated in an internet based study answering questions about sleep habits, height, weight, smoking, alcohol use, school grades, and anxiety and depression symptoms. Delayed sleep phase was operationalized as difficulties falling asleep before 2 a.m. at least three nights per week together with much or very much difficulty waking up in the morning. The results show a prevalence of delayed sleep phase of 8.4%. In all, 68% of these students (5.7% of the total sample) also reported problems advancing their sleep period as well as one daytime consequence (oversleeping at least two days a week or experiencing much/very much sleepiness at school). Delayed sleep phase was associated with lower average school grades, smoking, alcohol usage, and elevated anxiety and depression scores. Delayed sleep phase appears to be common amongst Norwegian adolescents and is associated with negative outcomes such as lower average school grades, smoking, alcohol usage, and elevated anxiety and depression scores. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Fermi-LAT Detection of Gravitational Lens Delayed Gamma-Ray Flares from Blazar B0218+357

    NASA Technical Reports Server (NTRS)

    Cheung, C. C.; Larsson, S.; Scargle, J. D.; Amin, M. A.; Blandford, R. D.; Bulmash, D.; Chiang, J.; Ciprini, S.; Corbet, R. D. H.; Falco, E. E.; hide

    2014-01-01

    Using data from the Fermi Large Area Telescope (LAT), we report the first clear gamma-ray measurement of a delay between flares from the gravitationally lensed images of a blazar. The delay was detected in B0218+357, a known double-image lensed system, during a period of enhanced gamma-ray activity with peak fluxes consistently observed to reach greater than 20-50 times its previous average flux. An auto-correlation function analysis identified a delay in the gamma-ray data of 11.46 plus or minus 0.16 days (1 sigma) that is approximately 1 day greater than previous radio measurements. Considering that it is beyond the capabilities of the LAT to spatially resolve the two images, we nevertheless decomposed individual sequences of superposing gamma-ray flares/delayed emissions. In three such approximately 8-10 day-long sequences within an approximately 4-month span, considering confusion due to overlapping flaring emission and flux measurement uncertainties, we found flux ratios consistent with approximately 1, thus systematically smaller than those from radio observations. During the first, best-defined flare, the delayed emission was detailed with a Fermi pointing, and we observed flux doubling timescales of approximately 3-6 hours implying as well extremely compact gamma-ray emitting regions.

  9. Comparison of delay enhancement mechanisms for SBS-based slow light systems.

    PubMed

    Schneider, Thomas; Henker, Ronny; Lauterbach, Kai-Uwe; Junker, Markus

    2007-07-23

    We compare two simple mechanisms for the enhancement of the time delay in slow light systems. Both are based on the superposition of the Brillouin gain with additional loss. As we will show in theory and experiment if two losses are placed at the wings of a SBS gain, contrary to other methods, the loss power increases the time delay. This leads to higher delay times at lower optical powers and to an increase of the zero gain delay of more than 50%. With this method we achieved a time delay of more than 120ns for pulses with a temporal width of 30ns. To the best of our knowledge, this is the highest time delay in just one fiber spool. Beside the enhancement of the time delay the method could have the potential to decrease the pulse distortions for high bit rate signals.

  10. A comparison between coherent and noncoherent mobile systems in large Doppler shift, delay spread, and C/I environment

    NASA Technical Reports Server (NTRS)

    Feher, Kamilo

    1993-01-01

    The performance and implementation complexity of coherent and of noncoherent QPSK and GMSK modulation/demodulation techniques in a complex mobile satellite systems environment, including large Doppler shift, delay spread, and low C/I, are compared. We demonstrate that for large f(sub d)T(sub b) products, where f(sub d) is the Doppler shift and T(sub b) is the bit duration, noncoherent (discriminator detector or differential demodulation) systems have a lower BER floor than their coherent counterparts. For significant delay spreads, e.g., tau(sub rms) greater than 0.4 T(sub b), and low C/I, coherent systems outperform noncoherent systems. However, the synchronization time of coherent systems is longer than that of noncoherent systems. Spectral efficiency, overall capacity, and related hardware complexity issues of these systems are also analyzed. We demonstrate that coherent systems have a simpler overall architecture (IF filter implementation-cost versus carrier recovery) and are more robust in an RF frequency drift environment. Additionally, the prediction tools, computer simulations, and analysis of coherent systems is simpler. The threshold or capture effect in low C/I interference environment is critical for noncoherent discriminator based systems. We conclude with a comparison of hardware architectures of coherent and of noncoherent systems, including recent trends in commercial VLSI technology and direct baseband to RF transmit, RF to baseband (0-IF) receiver implementation strategies.

  11. A comparison between coherent and noncoherent mobile systems in large Doppler shift, delay spread, and C/I environment

    NASA Astrophysics Data System (ADS)

    Feher, Kamilo

    The performance and implementation complexity of coherent and of noncoherent QPSK and GMSK modulation/demodulation techniques in a complex mobile satellite systems environment, including large Doppler shift, delay spread, and low C/I, are compared. We demonstrate that for large f(sub d)T(sub b) products, where f(sub d) is the Doppler shift and T(sub b) is the bit duration, noncoherent (discriminator detector or differential demodulation) systems have a lower BER floor than their coherent counterparts. For significant delay spreads, e.g., tau(sub rms) greater than 0.4 T(sub b), and low C/I, coherent systems outperform noncoherent systems. However, the synchronization time of coherent systems is longer than that of noncoherent systems. Spectral efficiency, overall capacity, and related hardware complexity issues of these systems are also analyzed. We demonstrate that coherent systems have a simpler overall architecture (IF filter implementation-cost versus carrier recovery) and are more robust in an RF frequency drift environment. Additionally, the prediction tools, computer simulations, and analysis of coherent systems is simpler. The threshold or capture effect in low C/I interference environment is critical for noncoherent discriminator based systems. We conclude with a comparison of hardware architectures of coherent and of noncoherent systems, including recent trends in commercial VLSI technology and direct baseband to RF transmit, RF to baseband (0-IF) receiver implementation strategies.

  12. Comparison of Different Control Schemes for Strategic Departure Metering

    NASA Technical Reports Server (NTRS)

    Idris, Husni; Shen, Ni; Saraf, Aditya; Bertino, Jason; Zelinski, Shannon

    2016-01-01

    Airports and their terminal airspaces are key choke points in the air transportation system causing major delays and adding to pollution. A solution aimed at mitigating these chokepoints integrates the scheduling of runway operations, flight release from the gates and ramp into the airport movement area, and merging with other traffic competing for downstream airspace points. Within this integrated concept, we present a simulation-based analysis of the departure metering process, which delays the release of flights into the airport movement area while balancing two competing objectives: (1) maintaining large enough queues at the airport resources to maximize throughput and (2) absorbing excess delays at the gates or in ramp areas to save on fuel consumption, emissions, noise, and passenger discomfort. Three metering strategies are compared which respectively attempt to control the number of flights that (1) left the gate but did not take off, (2) left the ramp but did not take off, and (3) spent their unimpeded transit time to the runway but did not take off. It was observed that under deterministic and demand uncertainty conditions, the first strategy performed better than the other two strategies in terms of maintaining the runway throughput while transferring a significant average delay of two minutes to the gate. On the other hand, under uncertainties of flight transit time and runway service rate, all the strategies struggled to delay flights at the gate without a significant impact on the runway throughput.

  13. Guided self-help for the treatment of pediatric obesity.

    PubMed

    Boutelle, Kerri N; Norman, Gregory J; Rock, Cheryl L; Rhee, Kyung E; Crow, Scott J

    2013-05-01

    Clinic-based programs for childhood obesity are not available to a large proportion of the population. The purpose of this study was to evaluate the efficacy of a guided self-help treatment of pediatric obesity (GSH-PO) compared with a delayed treatment control and to evaluate the impact of GSH-PO 6-months posttreatment. Fifty overweight or obese 8- to 12-year-old children and their parents were randomly assigned to immediate treatment or to delayed treatment. The GSH-PO includes 12 visits over 5 months and addresses key components included in more intensive clinic-based programs. Children and parents in the immediate treatment arm were assessed at time 1 (T1), participated in GSH-PO between T1 and T2, and completed their 6-month posttreatment assessment at T3. Children and parents in the delayed treatment arm were assessed at T1, participated in GSH-PO between T2 and T3, and completed their 6-month posttreatment assessment at T4. The main outcome measures were BMI, BMI z score, and percentage overweight (%OW). Children in the immediate treatment GSH-PO arm decreased their BMI significantly more than did the delayed treatment arm (BMI group × time = -1.39; P < .001). Similar results were found for BMI z score and %OW. At the 6-month posttreatment assessment, changes resulting from GSH-PO were maintained for BMI z score and %OW but not BMI (BMI time effect = -0.06, not significant; BMI z score time effect = -0.10, P < .001; %OW time effect = -4.86, P < .05). The GSH-PO showed initial efficacy in decreasing BMI for children in this study. Additional efficacy and translational studies are needed to additionally evaluate GSH-PO.

  14. Probing the properties of the pulsar wind via studying the dispersive effects in the pulses from the pulsar companion in a double neutron-star binary system

    NASA Astrophysics Data System (ADS)

    Yi, Shu-Xu; Cheng, K.-S.

    2017-12-01

    The velocity and density distribution of e± in the pulsar wind are crucial distinction among magnetosphere models, and contain key parameters determining the high-energy emission of pulsar binaries. In this work, a direct method is proposed, which might probe the properties of the wind from one pulsar in a double-pulsar binary. When the radio signals from the first-formed pulsar travel through the relativistic e± flow in the pulsar wind from the younger companion, the components of different radio frequencies will be dispersed. It will introduce an additional frequency-dependent time-of-arrival delay of pulses, which is function of the orbital phase. In this paper, we formulate the above-mentioned dispersive delay with the properties of the pulsar wind. As examples, we apply the formula to the double-pulsar system PSR J0737-3039A/B and the pulsar-neutron star binary PSR B1913+16. For PSR J0737-3039A/B, the time delay in 300 MHz is ≲ 10 μ s-1 near the superior conjunction, under the optimal pulsar wind parameters, which is approximately half of the current timing accuracy. For PSR B1913+16, with the assumption that the neutron-star companion has a typical spin-down luminosity of 1033 erg s-1, the time delay is as large as 10 - 20 μ s-1 in 300 MHz. The best timing precision of this pulsar is ∼ 5 μ s-1 in 1400 MHz. Therefore, it is possible that we can find this signal in archival data. Otherwise, we can set an upper limit on the spin-down luminosity. Similar analysis can be applied to other 11 known pulsar-neutron star binaries.

  15. Delayed Slater determinant update algorithms for high efficiency quantum Monte Carlo

    DOE PAGES

    McDaniel, Tyler; D’Azevedo, Ed F.; Li, Ying Wai; ...

    2017-11-07

    Within ab initio Quantum Monte Carlo simulations, the leading numerical cost for large systems is the computation of the values of the Slater determinants in the trial wavefunction. Each Monte Carlo step requires finding the determinant of a dense matrix. This is most commonly iteratively evaluated using a rank-1 Sherman-Morrison updating scheme to avoid repeated explicit calculation of the inverse. The overall computational cost is therefore formally cubic in the number of electrons or matrix size. To improve the numerical efficiency of this procedure, we propose a novel multiple rank delayed update scheme. This strategy enables probability evaluation with applicationmore » of accepted moves to the matrices delayed until after a predetermined number of moves, K. The accepted events are then applied to the matrices en bloc with enhanced arithmetic intensity and computational efficiency via matrix-matrix operations instead of matrix-vector operations. Here this procedure does not change the underlying Monte Carlo sampling or its statistical efficiency. For calculations on large systems and algorithms such as diffusion Monte Carlo where the acceptance ratio is high, order of magnitude improvements in the update time can be obtained on both multi- core CPUs and GPUs.« less

  16. Delayed Slater determinant update algorithms for high efficiency quantum Monte Carlo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McDaniel, Tyler; D’Azevedo, Ed F.; Li, Ying Wai

    Within ab initio Quantum Monte Carlo simulations, the leading numerical cost for large systems is the computation of the values of the Slater determinants in the trial wavefunction. Each Monte Carlo step requires finding the determinant of a dense matrix. This is most commonly iteratively evaluated using a rank-1 Sherman-Morrison updating scheme to avoid repeated explicit calculation of the inverse. The overall computational cost is therefore formally cubic in the number of electrons or matrix size. To improve the numerical efficiency of this procedure, we propose a novel multiple rank delayed update scheme. This strategy enables probability evaluation with applicationmore » of accepted moves to the matrices delayed until after a predetermined number of moves, K. The accepted events are then applied to the matrices en bloc with enhanced arithmetic intensity and computational efficiency via matrix-matrix operations instead of matrix-vector operations. Here this procedure does not change the underlying Monte Carlo sampling or its statistical efficiency. For calculations on large systems and algorithms such as diffusion Monte Carlo where the acceptance ratio is high, order of magnitude improvements in the update time can be obtained on both multi- core CPUs and GPUs.« less

  17. Delayed Slater determinant update algorithms for high efficiency quantum Monte Carlo.

    PubMed

    McDaniel, T; D'Azevedo, E F; Li, Y W; Wong, K; Kent, P R C

    2017-11-07

    Within ab initio Quantum Monte Carlo simulations, the leading numerical cost for large systems is the computation of the values of the Slater determinants in the trial wavefunction. Each Monte Carlo step requires finding the determinant of a dense matrix. This is most commonly iteratively evaluated using a rank-1 Sherman-Morrison updating scheme to avoid repeated explicit calculation of the inverse. The overall computational cost is, therefore, formally cubic in the number of electrons or matrix size. To improve the numerical efficiency of this procedure, we propose a novel multiple rank delayed update scheme. This strategy enables probability evaluation with an application of accepted moves to the matrices delayed until after a predetermined number of moves, K. The accepted events are then applied to the matrices en bloc with enhanced arithmetic intensity and computational efficiency via matrix-matrix operations instead of matrix-vector operations. This procedure does not change the underlying Monte Carlo sampling or its statistical efficiency. For calculations on large systems and algorithms such as diffusion Monte Carlo, where the acceptance ratio is high, order of magnitude improvements in the update time can be obtained on both multi-core central processing units and graphical processing units.

  18. Delayed Slater determinant update algorithms for high efficiency quantum Monte Carlo

    NASA Astrophysics Data System (ADS)

    McDaniel, T.; D'Azevedo, E. F.; Li, Y. W.; Wong, K.; Kent, P. R. C.

    2017-11-01

    Within ab initio Quantum Monte Carlo simulations, the leading numerical cost for large systems is the computation of the values of the Slater determinants in the trial wavefunction. Each Monte Carlo step requires finding the determinant of a dense matrix. This is most commonly iteratively evaluated using a rank-1 Sherman-Morrison updating scheme to avoid repeated explicit calculation of the inverse. The overall computational cost is, therefore, formally cubic in the number of electrons or matrix size. To improve the numerical efficiency of this procedure, we propose a novel multiple rank delayed update scheme. This strategy enables probability evaluation with an application of accepted moves to the matrices delayed until after a predetermined number of moves, K. The accepted events are then applied to the matrices en bloc with enhanced arithmetic intensity and computational efficiency via matrix-matrix operations instead of matrix-vector operations. This procedure does not change the underlying Monte Carlo sampling or its statistical efficiency. For calculations on large systems and algorithms such as diffusion Monte Carlo, where the acceptance ratio is high, order of magnitude improvements in the update time can be obtained on both multi-core central processing units and graphical processing units.

  19. 76 FR 68734 - Taking and Importing Marine Mammals: Taking Marine Mammals Incidental to Navy Training Exercises...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-07

    ... marine mammal is likely to travel during the time associated with the TDFD's time delay, and that... Navy provided the approximate distance that an animal would typically travel within a given time-delay... Speed and Length of Time-Delay Potential distance Species group Swim speed Time-delay traveled Delphinid...

  20. Longest delayed hemothorax reported after blunt chest injury.

    PubMed

    Yap, Darren; Ng, Miane; Chaudhury, Madhu; Mbakada, Nik

    2018-01-01

    Blunt chest injury is a common presentation to the emergency department. However, a delayed hemothorax after blunt trauma is rare; current literature reports a delay of up to 30days. We present a case of 44-day delay in hemothorax which has not been previously reported in current literature. A 52-year-old Caucasian male first presented to the emergency department complaining of persistent right sided chest pain 2weeks after having slipped on a wet surface at home. His initial chest X-ray showed fractures of the right 7th and 8th ribs without a hemothorax or pneumothorax. He returned 30days after the initial consultation (44days post-trauma) having increasing shortness of breath. A chest X-ray this time revealed a large right hemothorax and 1850ml of blood drained from his chest. There was a complete resolution of the hemothorax within 48h and the patient was discharged after a 6-week follow-up with the chest physicians. Delayed hemothorax after blunt trauma is a rare clinical occurrence but associated with significant morbidity and mortality. The management of delayed hemothorax includes draining the hemothorax and controlling the bleeding. WHY SHOULD AN EMERGENCY PHYSICIAN BE AWARE OF THIS?: Emergency physicians should be vigilant and weary that hemothorax could be a possibility after a chest injury despite a delay in presentation. A knowledge of delayed hemothorax will prompt physicians in providing important advice, warning signs and information to patients after a chest injury to avoid a delay in seeking medical attention. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Probability of Loss of Assured Safety in Systems with Multiple Time-Dependent Failure Modes: Incorporation of Delayed Link Failure in the Presence of Aleatory Uncertainty.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Helton, Jon C.; Brooks, Dusty Marie; Sallaberry, Cedric Jean-Marie.

    Probability of loss of assured safety (PLOAS) is modeled for weak link (WL)/strong link (SL) systems in which one or more WLs or SLs could potentially degrade into a precursor condition to link failure that will be followed by an actual failure after some amount of elapsed time. The following topics are considered: (i) Definition of precursor occurrence time cumulative distribution functions (CDFs) for individual WLs and SLs, (ii) Formal representation of PLOAS with constant delay times, (iii) Approximation and illustration of PLOAS with constant delay times, (iv) Formal representation of PLOAS with aleatory uncertainty in delay times, (v) Approximationmore » and illustration of PLOAS with aleatory uncertainty in delay times, (vi) Formal representation of PLOAS with delay times defined by functions of link properties at occurrence times for failure precursors, (vii) Approximation and illustration of PLOAS with delay times defined by functions of link properties at occurrence times for failure precursors, and (viii) Procedures for the verification of PLOAS calculations for the three indicated definitions of delayed link failure.« less

  2. Time delay can facilitate coherence in self-driven interacting-particle systems

    NASA Astrophysics Data System (ADS)

    Sun, Yongzheng; Lin, Wei; Erban, Radek

    2014-12-01

    Directional switching in a self-propelled particle model with delayed interactions is investigated. It is shown that the average switching time is an increasing function of time delay. The presented results are applied to studying collective animal behavior. It is argued that self-propelled particle models with time delays can explain the state-dependent diffusion coefficient measured in experiments with locust groups. The theory is further generalized to heterogeneous groups where each individual can respond to its environment with a different time delay.

  3. The sensitivity of Turing self-organization to biological feedback delays: 2D models of fish pigmentation.

    PubMed

    Gaffney, E A; Lee, S Seirin

    2015-03-01

    Turing morphogen models have been extensively explored in the context of large-scale self-organization in multicellular biological systems. However, reconciling the detailed biology of morphogen dynamics, while accounting for time delays associated with gene expression, reveals aberrant behaviours that are not consistent with early developmental self-organization, especially the requirement for exquisite temporal control. Attempts to reconcile the interpretation of Turing's ideas with an increasing understanding of the mechanisms driving zebrafish pigmentation suggests that one should reconsider Turing's model in terms of pigment cells rather than morphogens (Nakamasu et al., 2009, PNAS, 106: , 8429-8434; Yamaguchi et al., 2007, PNAS, 104: , 4790-4793). Here the dynamics of pigment cells is subject to response delays implicit in the cell cycle and apoptosis. Hence we explore simulations of fish skin patterning, focussing on the dynamical influence of gene expression delays in morphogen-based Turing models and response delays for cell-based Turing models. We find that reconciling the mechanisms driving the behaviour of Turing systems with observations of fish skin patterning remains a fundamental challenge. © The Authors 2013. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.

  4. Delaying the international spread of pandemic influenza.

    PubMed

    Cooper, Ben S; Pitman, Richard J; Edmunds, W John; Gay, Nigel J

    2006-06-01

    The recent emergence of hypervirulent subtypes of avian influenza has underlined the potentially devastating effects of pandemic influenza. Were such a virus to acquire the ability to spread efficiently between humans, control would almost certainly be hampered by limited vaccine supplies unless global spread could be substantially delayed. Moreover, the large increases that have occurred in international air travel might be expected to lead to more rapid global dissemination than in previous pandemics. To evaluate the potential of local control measures and travel restrictions to impede global dissemination, we developed stochastic models of the international spread of influenza based on extensions of coupled epidemic transmission models. These models have been shown to be capable of accurately forecasting local and global spread of epidemic and pandemic influenza. We show that under most scenarios restrictions on air travel are likely to be of surprisingly little value in delaying epidemics, unless almost all travel ceases very soon after epidemics are detected. Interventions to reduce local transmission of influenza are likely to be more effective at reducing the rate of global spread and less vulnerable to implementation delays than air travel restrictions. Nevertheless, under the most plausible scenarios, achievable delays are small compared with the time needed to accumulate substantial vaccine stocks.

  5. Delay banking for air traffic management

    NASA Technical Reports Server (NTRS)

    Green, Steven M. (Inventor)

    2007-01-01

    A method and associated system for time delay banking for aircraft arrival time, aircraft departure time and/or en route flight position. The delay credit value for a given flight may decrease with passage of time and may be transferred to or traded with other flights having the same or a different user (airline owner or operator). The delay credit value for a given aircraft flight depends upon an initial delay credit value, which is determined by a central system and depends upon one or more other flight characteristics. Optionally, the delay credit value decreases with passage of time. Optionally, a transaction cost is assessed against a delay credit value that is used on behalf of another flight with the same user or is traded with a different user.

  6. General relation between the group delay and dwell time in multicomponent electron systems

    NASA Astrophysics Data System (ADS)

    Zhai, Feng; Lu, Junqiang

    2016-10-01

    For multicomponent electron scattering states, we derive a general relation between the Wigner group delay and the Bohmian dwell time. It is found that the definition of group delay should account for the phase of the spinor wave functions of propagating modes. The difference between the group delay and dwell time comes from both the interference delay and the decaying modes. For barrier tunneling of helical electrons on a surface of topological insulators, our calculations including the trigonal-warping term show that the decaying modes can contribute greatly to the group delay. The derived relation between the group delay and the dwell time is helpful to unify the two definitions of tunneling time in a quite general situation.

  7. Extending Transfer Entropy Improves Identification of Effective Connectivity in a Spiking Cortical Network Model

    PubMed Central

    Ito, Shinya; Hansen, Michael E.; Heiland, Randy; Lumsdaine, Andrew; Litke, Alan M.; Beggs, John M.

    2011-01-01

    Transfer entropy (TE) is an information-theoretic measure which has received recent attention in neuroscience for its potential to identify effective connectivity between neurons. Calculating TE for large ensembles of spiking neurons is computationally intensive, and has caused most investigators to probe neural interactions at only a single time delay and at a message length of only a single time bin. This is problematic, as synaptic delays between cortical neurons, for example, range from one to tens of milliseconds. In addition, neurons produce bursts of spikes spanning multiple time bins. To address these issues, here we introduce a free software package that allows TE to be measured at multiple delays and message lengths. To assess performance, we applied these extensions of TE to a spiking cortical network model (Izhikevich, 2006) with known connectivity and a range of synaptic delays. For comparison, we also investigated single-delay TE, at a message length of one bin (D1TE), and cross-correlation (CC) methods. We found that D1TE could identify 36% of true connections when evaluated at a false positive rate of 1%. For extended versions of TE, this dramatically improved to 73% of true connections. In addition, the connections correctly identified by extended versions of TE accounted for 85% of the total synaptic weight in the network. Cross correlation methods generally performed more poorly than extended TE, but were useful when data length was short. A computational performance analysis demonstrated that the algorithm for extended TE, when used on currently available desktop computers, could extract effective connectivity from 1 hr recordings containing 200 neurons in ∼5 min. We conclude that extending TE to multiple delays and message lengths improves its ability to assess effective connectivity between spiking neurons. These extensions to TE soon could become practical tools for experimentalists who record hundreds of spiking neurons. PMID:22102894

  8. Cognitive person variables in the delay of gratification of older children at risk.

    PubMed

    Rodriguez, M L; Mischel, W; Shoda, Y

    1989-08-01

    The components of self-regulation were analyzed, extending the self-imposed delay of gratification paradigm to older children with social adjustment problems. Delay behavior was related to a network of conceptually relevant cognitive person variables, consisting of attention deployment strategies during delay, knowledge of delay rules, and intelligence. A positive relationship was demonstrated between concurrent indexes of intelligence, attention deployment, and actual delay time. Moreover, attention deployment, measured as an individual differences variable during the delay process, had a direct, positive effect on delay behavior. Specifically, as the duration of delay and the frustration of the situation increased, children who spent a higher proportion of the time distracting themselves from the tempting elements of the delay situation were able to delay longer. The effect of attention deployment on delay behavior was significant even when age, intelligence, and delay rule knowledge were controlled. Likewise, delay rule knowledge significantly predicted delay time, even when age, attention deployment, and intelligence were controlled.

  9. Firing patterns transition and desynchronization induced by time delay in neural networks

    NASA Astrophysics Data System (ADS)

    Huang, Shoufang; Zhang, Jiqian; Wang, Maosheng; Hu, Chin-Kun

    2018-06-01

    We used the Hindmarsh-Rose (HR) model (Hindmarsh and Rose, 1984) to study the effect of time delay on the transition of firing behaviors and desynchronization in neural networks. As time delay is increased, neural networks exhibit diversity of firing behaviors, including regular spiking or bursting and firing patterns transitions (FPTs). Meanwhile, the desynchronization of firing and unstable bursting with decreasing amplitude in neural system, are also increasingly enhanced with the increase of time delay. Furthermore, we also studied the effect of coupling strength and network randomness on these phenomena. Our results imply that time delays can induce transition and desynchronization of firing behaviors in neural networks. These findings provide new insight into the role of time delay in the firing activities of neural networks, and can help to better understand the firing phenomena in complex systems of neural networks. A possible mechanism in brain that can cause the increase of time delay is discussed.

  10. Computer Programs for Library Operations; Results of a Survey Conducted Between Fall 1971 and Spring 1972.

    ERIC Educational Resources Information Center

    Liberman, Eva; And Others

    Many library operations involving large data banks lend themselves readily to computer operation. In setting up library computer programs, in changing or expanding programs, cost in programming and time delays could be substantially reduced if the programmers had access to library computer programs being used by other libraries, providing similar…

  11. Greenhouse gas emissions during composting of dairy manure: Delaying pile mixing does not reduce overall emissions

    USDA-ARS?s Scientific Manuscript database

    The effect of the timing of pile mixing on greenhouse gas (GHG) emissions during dairy manure composting was determined using large flux chambers designed to completely cover replicate pilot-scale compost piles. GHG emissions from compost piles that were mixed at 2, 3, 4, or 5 weeks after initial c...

  12. Silvicultural aspects intermediate cuttings

    Treesearch

    Kenneth L. Carvell

    1971-01-01

    Correct timing of the first thinning in mixed oak stands depends largely on the composition and condition of the stands and on available markets for small wood products. Delaying first thinnings in high-quality seedling-origin stands until a long, straight, clear bole has developed is of primary importance in assuring high quality of the final crop trees. However, many...

  13. Delay time in a single barrier for a movable quantum shutter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hernandez, Alberto

    2010-05-15

    The transient solution and delay time for a {delta} potential scatterer with a movable quantum shutter is calculated by solving analytically the time-dependent Schroedinger equation. The delay time is analyzed as a function of the distance between the shutter and the potential barrier and also as a function of the distance between the potential barrier and the detector. In both cases, it is found that the delay time exhibits a dynamical behavior and that it tends to a saturation value {Delta}t{sub sat} in the limit of very short distances, which represents the maximum delay produced by the potential barrier nearmore » the interaction region. The phase time {tau}{sub {theta},} on the other hand, is not an appropriate time scale for measuring the time delay near the interaction region, except if the shutter is moved far away from the potential. The role played by the antibound state of the system on the behavior of the delay time is also discussed.« less

  14. LiDAR-IMU Time Delay Calibration Based on Iterative Closest Point and Iterated Sigma Point Kalman Filter.

    PubMed

    Liu, Wanli

    2017-03-08

    The time delay calibration between Light Detection and Ranging (LiDAR) and Inertial Measurement Units (IMUs) is an essential prerequisite for its applications. However, the correspondences between LiDAR and IMU measurements are usually unknown, and thus cannot be computed directly for the time delay calibration. In order to solve the problem of LiDAR-IMU time delay calibration, this paper presents a fusion method based on iterative closest point (ICP) and iterated sigma point Kalman filter (ISPKF), which combines the advantages of ICP and ISPKF. The ICP algorithm can precisely determine the unknown transformation between LiDAR-IMU; and the ISPKF algorithm can optimally estimate the time delay calibration parameters. First of all, the coordinate transformation from the LiDAR frame to the IMU frame is realized. Second, the measurement model and time delay error model of LiDAR and IMU are established. Third, the methodology of the ICP and ISPKF procedure is presented for LiDAR-IMU time delay calibration. Experimental results are presented that validate the proposed method and demonstrate the time delay error can be accurately calibrated.

  15. Physical mechanisms of timing jitter in photon detection by current-carrying superconducting nanowires

    NASA Astrophysics Data System (ADS)

    Sidorova, Mariia; Semenov, Alexej; Hübers, Heinz-Wilhelm; Charaev, Ilya; Kuzmin, Artem; Doerner, Steffen; Siegel, Michael

    2017-11-01

    We studied timing jitter in the appearance of photon counts in meandering nanowires with different fractional amount of bends. Intrinsic timing jitter, which is the probability density function of the random time delay between photon absorption in current-carrying superconducting nanowire and appearance of the normal domain, reveals two different underlying physical mechanisms. In the deterministic regime, which is realized at large photon energies and large currents, jitter is controlled by position-dependent detection threshold in straight parts of meanders. It decreases with the increase in the current. At small photon energies, jitter increases and its current dependence disappears. In this probabilistic regime jitter is controlled by Poisson process in that magnetic vortices jump randomly across the wire in areas adjacent to the bends.

  16. On Time Delay Margin Estimation for Adaptive Control and Optimal Control Modification

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan T.

    2011-01-01

    This paper presents methods for estimating time delay margin for adaptive control of input delay systems with almost linear structured uncertainty. The bounded linear stability analysis method seeks to represent an adaptive law by a locally bounded linear approximation within a small time window. The time delay margin of this input delay system represents a local stability measure and is computed analytically by three methods: Pade approximation, Lyapunov-Krasovskii method, and the matrix measure method. These methods are applied to the standard model-reference adaptive control, s-modification adaptive law, and optimal control modification adaptive law. The windowing analysis results in non-unique estimates of the time delay margin since it is dependent on the length of a time window and parameters which vary from one time window to the next. The optimal control modification adaptive law overcomes this limitation in that, as the adaptive gain tends to infinity and if the matched uncertainty is linear, then the closed-loop input delay system tends to a LTI system. A lower bound of the time delay margin of this system can then be estimated uniquely without the need for the windowing analysis. Simulation results demonstrates the feasibility of the bounded linear stability method for time delay margin estimation.

  17. Unsteady aerodynamic force mechanisms of a hoverfly hovering with a short stroke-amplitude

    NASA Astrophysics Data System (ADS)

    Zhu, Hao Jie; Sun, Mao

    2017-08-01

    Hovering insects require a rather large lift coefficient. Many insects hover with a large stroke amplitude (120°-170°), and it has been found that the high lift is mainly produced by the delayed-stall mechanism. However, some insects hover with a small stroke amplitude (e.g., 65°). The delayed-stall mechanism might not work for these insects because the wings travel only a very short distance in a stroke, and other aerodynamic mechanisms must be operating. Here we explore the aerodynamic mechanisms of a hoverfly hovering with an inclined stroke plane and a small stroke amplitude (65.6°). The Navier-Stokes equations are numerically solved to give the flows and forces and the theory of vorticity dynamics used to reveal the aerodynamic mechanisms. The majority of the weight-supporting vertical force is produced in the mid portion of the downstroke, a short period (about 26% of the stroke cycle) in which the vertical force coefficient is larger than 4. The force is produced using a new mechanism, the "paddling mechanism." During the short period, the wing moves rapidly downward and forward at a large angle of attack (about 48°), and strong counter clockwise vorticity is produced continuously at the trailing edge and clockwise vorticity at the leading edge, resulting in a large time rate of change in the first moment of vorticity, hence the large aerodynamic force. It is interesting to note that with the well known delayed stall mechanism, the force is produced by the relative motion of two vortices of opposite sign, while in the "paddling mechanism," it is produced by generating new vortices of opposite sign at different locations.

  18. Leveraging delay discounting for health: Can time delays influence food choice?

    PubMed

    Appelhans, Bradley M; French, Simone A; Olinger, Tamara; Bogucki, Michael; Janssen, Imke; Avery-Mamer, Elizabeth F; Powell, Lisa M

    2018-07-01

    Delay discounting, the tendency to choose smaller immediate rewards over larger delayed rewards, is theorized to promote consumption of immediately rewarding but unhealthy foods at the expense of long-term weight maintenance and nutritional health. An untested implication of delay discounting models of decision-making is that selectively delaying access to less healthy foods may promote selection of healthier (immediately available) alternatives, even if they may be less desirable. The current study tested this hypothesis by measuring healthy versus regular vending machine snack purchasing before and during the implementation of a 25-s time delay on the delivery of regular snacks. Purchasing was also examined under a $0.25 discount on healthy snacks, a $0.25 tax on regular snacks, and the combination of both pricing interventions with the 25-s time delay. Across 32,019 vending sales from three separate vending locations, the 25-s time delay increased healthy snack purchasing from 40.1% to 42.5%, which was comparable to the impact of a $0.25 discount (43.0%). Combining the delay and the discount had a roughly additive effect (46.0%). However, the strongest effects were seen under the $0.25 tax on regular snacks (53.7%) and the combination of the delay and the tax (50.2%). Intervention effects varied substantially between vending locations. Importantly, time delays did not harm overall vending sales or revenue, which is relevant to the real-world feasibility of this intervention. More investigation is needed to better understand how the impact of time delays on food choice varies across populations, evaluate the effects of time delays on beverage vending choices, and extend this approach to food choices in contexts other than vending machines. ClinicalTrials.gov, NCT02359916. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Effect of time delay on flying qualities: An update

    NASA Technical Reports Server (NTRS)

    Smith, R. E.; Sarrafian, S. K.

    1986-01-01

    Flying qualities problems of modern, full-authority electronic flight control systems are most often related to the introduction of additional time delay in aircraft response to a pilot input. These delays can have a significant effect on the flying qualities of the aircraft. Time delay effects are reexamined in light of recent flight test experience with aircraft incorporating new technology. Data from the X-29A forward-swept-wing demonstrator, a related preliminary in-flight experiment, and other flight observations are presented. These data suggest that the present MIL-F-8785C allowable-control system time delay specifications are inadequate or, at least, incomplete. Allowable time delay appears to be a function of the shape of the aircraft response following the initial delay. The cockpit feel system is discussed as a dynamic element in the flight control system. Data presented indicate that the time delay associated with a significant low-frequency feel system does not result in the predicted degradation in aircraft flying qualities. The impact of the feel system is discussed from two viewpoints: as a filter in the control system which can alter the initial response shape and, therefore, the allowable time delay, and as a unique dynamic element whose delay contribution can potentially be discounted by special pilot loop closures.

  20. Describing-function analysis of a ripple regulator with slew-rate limits and time delays

    NASA Technical Reports Server (NTRS)

    Wester, Gene W.

    1990-01-01

    The effects of time delays and slew-rate limits on the steady-state operating points and performance of a free-running ripple regulator are evaluated using describing-function analysis. The describing function of an ideal comparator (no time delays or slew rate limits) has no phase shift and is independent of frequency. It is found that turn-on delay and turn-off delay have different effects on gain and phase and cannot be combined. Comparator hysteresis affects both gain and phase; likewise, time delays generally affect both gain and phase. It is found that the effective time delay around the feedback loop is one half the sum of turn-on and turn-off delays, regardless of whether the delays are caused by storage time or slew rate limits. Expressions are formulated for the switching frequency, switch duty ratio, dc output, and output ripple. For the case of no hysteresis, a simple, graphical solution for the switching frequency is possible, and the resulting switching frequency is independent of first-order variations of input or load.

  1. Understanding Housing Delays and Relocations Within the Housing First Model.

    PubMed

    Zerger, Suzanne; Pridham, Katherine Francombe; Jeyaratnam, Jeyagobi; Hwang, Stephen W; O'Campo, Patricia; Kohli, Jaipreet; Stergiopoulos, Vicky

    2016-01-01

    This study explores factors contributing to delays and relocations during the implementation of the Housing First model in Toronto, Ontario. While interruptions in housing tenure are expected en route to recovery and housing stability, consumer and service provider views on finding and keeping housing remain largely unknown. In-person interviews and focus groups were conducted with 48 study participants, including 23 case managers or housing workers and 25 consumers. The following three factors contributed to housing delays and transfers: (1) the effectiveness of communication and collaboration among consumers and service providers, (2) consumer-driven preferences and ambivalence, and (3) provider prioritization of consumer choice over immediate housing access. Two strategies--targeted communications and consumer engagement in housing searches--supported the housing process. Several factors affect the timing and stability of housing. Communication between and among providers and consumers, and a shared understanding of consumer choice, can further support choice and recovery.

  2. Effect of delayed diagnosis on disease course and management of Churg-Strauss syndrome: a retrospective study.

    PubMed

    Sokołowska, Barbara; Szczeklik, Wojciech; Mastalerz, Lucyna; Kuczia, Paweł; Wodkowski, Michał; Stodółkiewicz, Edyta; Macioł, Karolina; Musiał, Jacek

    2013-03-01

    Delayed diagnosis in patients with Churg-Strauss syndrome (CSS) is largely attributed to the variable and nonspecific presentation of the disease's initial symptoms. The aim of the study was to evaluate the effect of delayed diagnosis on the course of CSS. We conducted a retrospective study of 30 CSS patients followed up in our department. In each patient, we assessed the delay in CSS diagnosis (the time when patients already fulfilled four out of six of the American College of Rheumatology criteria and the diagnosis was not yet established), the disease activity at the time of diagnosis, and organ involvement during CSS course. A median value of 2 weeks was chosen as the cutoff point after which the diagnosis was considered as delayed. Sixteen patients were diagnosed before (group 1) and 14 patients after this cutoff point (group 2). In group 2, we found a higher Birmingham Vasculitis Activity Score at the moment of diagnosis (20.4 vs 25.1, p < 0.05) and a more severe disease course, resulting in more frequent hospitalization rates (0.64 vs 2.26/year, p < 0.00001), higher corticosteroids dose requirements (5.87 vs 11.57 mg/day converted to methylprednisolone, p < 0.0001), and additional immunosuppressive therapy administration (56.2 vs 92.8 %, p < 0.05) to maintain disease remission. All six perinuclear pattern of antineutrophil cytoplasmic antibobodies (pANCA)-positive patients (20 %) were found in group 1. Concluding, the delay in diagnosis of CSS of more than 2 weeks was found to be associated with a disease course that was more severe. The presence of the pANCA antibodies may occasionally facilitate establishment of the diagnosis.

  3. Explosive change in crater properties during high power nanosecond laser ablation of silicon

    NASA Astrophysics Data System (ADS)

    Yoo, J. H.; Jeong, S. H.; Greif, R.; Russo, R. E.

    2000-08-01

    Mass removed from single crystal silicon samples by high irradiance (1×109 to 1×1011W/cm2) single pulse laser ablation was studied by measuring the resulting crater morphology with a white light interferometric microscope. The craters show a strong nonlinear change in both the volume and depth when the laser irradiance is less than or greater than ≈2.2×1010W/cm2. Time-resolved shadowgraph images of the ablated silicon plume were obtained over this irradiance range. The images show that the increase in crater volume and depth at the threshold of 2.2×1010W/cm2 is accompanied by large size droplets leaving the silicon surface, with a time delay ˜300 ns. A numerical model was used to estimate the thickness of the layer heated to approximately the critical temperature. The model includes transformation of liquid metal into liquid dielectric near the critical state (i.e., induced transparency). In this case, the estimated thickness of the superheated layer at a delay time of 200-300 ns shows a close agreement with measured crater depths. Induced transparency is demonstrated to play an important role in the formation of a deep superheated liquid layer, with subsequent explosive boiling responsible for large-particulate ejection.

  4. The temporal program of chromosome replication: genomewide replication in clb5{Delta} Saccharomyces cerevisiae.

    PubMed

    McCune, Heather J; Danielson, Laura S; Alvino, Gina M; Collingwood, David; Delrow, Jeffrey J; Fangman, Walton L; Brewer, Bonita J; Raghuraman, M K

    2008-12-01

    Temporal regulation of origin activation is widely thought to explain the pattern of early- and late-replicating domains in the Saccharomyces cerevisiae genome. Recently, single-molecule analysis of replication suggested that stochastic processes acting on origins with different probabilities of activation could generate the observed kinetics of replication without requiring an underlying temporal order. To distinguish between these possibilities, we examined a clb5Delta strain, where origin firing is largely limited to the first half of S phase, to ask whether all origins nonspecifically show decreased firing (as expected for disordered firing) or if only some origins ("late" origins) are affected. Approximately half the origins in the mutant genome show delayed replication while the remainder replicate largely on time. The delayed regions can encompass hundreds of kilobases and generally correspond to regions that replicate late in wild-type cells. Kinetic analysis of replication in wild-type cells reveals broad windows of origin firing for both early and late origins. Our results are consistent with a temporal model in which origins can show some heterogeneity in both time and probability of origin firing, but clustering of temporally like origins nevertheless yields a genome that is organized into blocks showing different replication times.

  5. Delay time and Hartman effect in strain engineered graphene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Xi, E-mail: xchen@shu.edu.cn; Deng, Zhi-Yong; Ban, Yue, E-mail: yban@shu.edu.cn

    2014-05-07

    Tunneling times, including group delay and dwell time, are studied for massless Dirac electrons transmitting through a one-dimensional barrier in strain-engineered graphene. The Hartman effect, the independence of group delay on barrier length, is induced by the strain effect, and associated with the transmission gap and the evanescent mode. The influence of barrier height/length and strain modulus/direction on the group delay is also discussed, which provides the flexibility to control the group delay with applications in graphene-based devices. The relationship between group delay and dwell time is finally derived to clarify the nature of the Hartman effect.

  6. Reconstructions of parameters of radiophysical chaotic generator with delayed feedback from short time series

    NASA Astrophysics Data System (ADS)

    Ishbulatov, Yu. M.; Karavaev, A. S.; Kiselev, A. R.; Semyachkina-Glushkovskaya, O. V.; Postnov, D. E.; Bezruchko, B. P.

    2018-04-01

    A method for the reconstruction of time-delayed feedback system is investigated, which is based on the detection of synchronous response of a slave time-delay system with respect to the driving from the master system under study. The structure of the driven system is similar to the structure of the studied time-delay system, but the feedback circuit is broken in the driven system. The method efficiency is tested using short and noisy data gained from an electronic chaotic oscillator with time-delayed feedback.

  7. Observing the Cosmic Microwave Background Polarization with Variable-delay Polarization Modulators for the Cosmology Large Angular Scale Surveyor

    NASA Astrophysics Data System (ADS)

    Harrington, Kathleen; CLASS Collaboration

    2018-01-01

    The search for inflationary primordial gravitational waves and the optical depth to reionization, both through their imprint on the large angular scale correlations in the polarization of the cosmic microwave background (CMB), has created the need for high sensitivity measurements of polarization across large fractions of the sky at millimeter wavelengths. These measurements are subjected to instrumental and atmospheric 1/f noise, which has motivated the development of polarization modulators to facilitate the rejection of these large systematic effects.Variable-delay polarization modulators (VPMs) are used in the Cosmology Large Angular Scale Surveyor (CLASS) telescopes as the first element in the optical chain to rapidly modulate the incoming polarization. VPMs consist of a linearly polarizing wire grid in front of a moveable flat mirror; varying the distance between the grid and the mirror produces a changing phase shift between polarization states parallel and perpendicular to the grid which modulates Stokes U (linear polarization at 45°) and Stokes V (circular polarization). The reflective and scalable nature of the VPM enables its placement as the first optical element in a reflecting telescope. This simultaneously allows a lock-in style polarization measurement and the separation of sky polarization from any instrumental polarization farther along in the optical chain.The Q-Band CLASS VPM was the first VPM to begin observing the CMB full time in 2016. I will be presenting its design and characterization as well as demonstrating how modulating polarization significantly rejects atmospheric and instrumental long time scale noise.

  8. Reconstruction of ensembles of coupled time-delay systems from time series.

    PubMed

    Sysoev, I V; Prokhorov, M D; Ponomarenko, V I; Bezruchko, B P

    2014-06-01

    We propose a method to recover from time series the parameters of coupled time-delay systems and the architecture of couplings between them. The method is based on a reconstruction of model delay-differential equations and estimation of statistical significance of couplings. It can be applied to networks composed of nonidentical nodes with an arbitrary number of unidirectional and bidirectional couplings. We test our method on chaotic and periodic time series produced by model equations of ensembles of diffusively coupled time-delay systems in the presence of noise, and apply it to experimental time series obtained from electronic oscillators with delayed feedback coupled by resistors.

  9. Digital time delay

    DOEpatents

    Martin, A.D.

    1986-05-09

    Method and apparatus are provided for generating an output pulse following a trigger pulse at a time delay interval preset with a resolution which is high relative to a low resolution available from supplied clock pulses. A first lumped constant delay provides a first output signal at predetermined interpolation intervals corresponding to the desired high resolution time interval. Latching circuits latch the high resolution data to form a first synchronizing data set. A selected time interval has been preset to internal counters and corrected for circuit propagation delay times having the same order of magnitude as the desired high resolution. Internal system clock pulses count down the counters to generate an internal pulse delayed by an internal which is functionally related to the preset time interval. A second LCD corrects the internal signal with the high resolution time delay. A second internal pulse is then applied to a third LCD to generate a second set of synchronizing data which is complementary with the first set of synchronizing data for presentation to logic circuits. The logic circuits further delay the internal output signal with the internal pulses. The final delayed output signal thereafter enables the output pulse generator to produce the desired output pulse at the preset time delay interval following input of the trigger pulse.

  10. RECOVERY OF LARGE ANGULAR SCALE CMB POLARIZATION FOR INSTRUMENTS EMPLOYING VARIABLE-DELAY POLARIZATION MODULATORS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, N. J.; Marriage, T. A.; Appel, J. W.

    2016-02-20

    Variable-delay Polarization Modulators (VPMs) are currently being implemented in experiments designed to measure the polarization of the cosmic microwave background on large angular scales because of their capability for providing rapid, front-end polarization modulation and control over systematic errors. Despite the advantages provided by the VPM, it is important to identify and mitigate any time-varying effects that leak into the synchronously modulated component of the signal. In this paper, the effect of emission from a 300 K VPM on the system performance is considered and addressed. Though instrument design can greatly reduce the influence of modulated VPM emission, some residualmore » modulated signal is expected. VPM emission is treated in the presence of rotational misalignments and temperature variation. Simulations of time-ordered data are used to evaluate the effect of these residual errors on the power spectrum. The analysis and modeling in this paper guides experimentalists on the critical aspects of observations using VPMs as front-end modulators. By implementing the characterizations and controls as described, front-end VPM modulation can be very powerful for mitigating 1/f noise in large angular scale polarimetric surveys. None of the systematic errors studied fundamentally limit the detection and characterization of B-modes on large scales for a tensor-to-scalar ratio of r = 0.01. Indeed, r < 0.01 is achievable with commensurately improved characterizations and controls.« less

  11. Real-time frequency-to-time mapping based on spectrally-discrete chromatic dispersion.

    PubMed

    Dai, Yitang; Li, Jilong; Zhang, Ziping; Yin, Feifei; Li, Wangzhe; Xu, Kun

    2017-07-10

    Traditional photonics-assisted real-time Fourier transform (RTFT) usually suffers from limited chromatic dispersion, huge volume, or large time delay and attendant loss. In this paper we propose frequency-to-time mapping (FTM) by spectrally-discrete dispersion to increase frequency sensitivity greatly. The novel media has periodic ON/OFF intensity frequency response while quadratic phase distribution along disconnected channels, which de-chirps matched optical input to repeated Fourier-transform-limited output. Real-time FTM is then obtained within each period. Since only discrete phase retardation rather than continuously-changed true time delay is required, huge equivalent dispersion is then available by compact device. Such FTM is theoretically analyzed, and implementation by cascaded optical ring resonators is proposed. After a numerical example, our theory is demonstrated by a proof-of-concept experiment, where a single loop containing 0.5-meters-long fiber is used. FTM under 400-MHz unambiguous bandwidth and 25-MHz resolution is reported. Highly-sensitive and linear mapping is achieved with 6.25 ps/MHz, equivalent to ~4.6 × 10 4 -km standard single mode fiber. Extended instantaneous bandwidth is expected by ring cascading. Our proposal may provide a promising method for real-time, low-latency Fourier transform.

  12. Traversal of electromagnetic pulses through dispersive media with negative refractive index

    NASA Astrophysics Data System (ADS)

    Nanda, L.; Ramakrishna, S. A.

    2017-05-01

    We investigate the traversal of electromagnetic pulses through dispersive media with negative refractive index in such a way that no resonant effects come into play. It has been verified that for evanescent waves, the definitions of the group delay and the reshaping delay times get interchanged in comparison to the propagating waves. We show that for a negative refractive index medium (NRM) with ɛ(ω)=μ(ω), the reshaping delay time identically vanishes for propagating waves. The total delay time in NRM is otherwise contributed by both the group and the reshaping delay times, whereas for the case of broadband pulses in NRM the total delay time is always subluminal.

  13. Simulation analysis of the effect of initial delay on flight delay diffusion

    NASA Astrophysics Data System (ADS)

    Que, Zufu; Yao, Hongguang; Yue, Wei

    2018-01-01

    The initial delay of the flight is an important factor affecting the spread of flight delays, so clarifying their relationship conduces to control flight delays in the aeronautical network. Through establishing a model of the chain aviation network and making simulation analysis of the effects of initial delay on the delay longitudinal diffusion, it’s found that the number of delayed airports in the air network, the total delay time and the average delay time of the delayed airport are generally positively correlated with the initial delay. This indicates that the occurrence of the initial delay should be avoided or reduced as much as possible to improve the punctuality of the flight.

  14. Superconducting flux flow digital circuits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martens, J.S.; Zipperian, T.E.; Hietala, V.M.

    1993-03-01

    The authors have developed a family of digital logic circuits based on superconducting flux flow transistors that show high speed, reasonable signal levels, large fan-out, and large noise margins. The circuits are made from high-temperature superconductors (HTS) and have been shown to operate at over 90 K. NOR gates have been demonstrated with fan-outs of more than 5 and fully loaded switching times less than a fixture-limited 50 ps. Ring-oscillator data suggest inverter delay times of about 40ps when using a 3-[mu]m linewidths. Simple flip-flops have also been demonstrated showing large noise margins, response times of less than 30 ps,more » and static power dissipation on the order of 30 nW. Among other uses, this logic family is appropriate as an interface between logic families such as single flux quantum and conventional semiconductor logic.« less

  15. A distributed approach for optimizing cascaded classifier topologies in real-time stream mining systems.

    PubMed

    Foo, Brian; van der Schaar, Mihaela

    2010-11-01

    In this paper, we discuss distributed optimization techniques for configuring classifiers in a real-time, informationally-distributed stream mining system. Due to the large volume of streaming data, stream mining systems must often cope with overload, which can lead to poor performance and intolerable processing delay for real-time applications. Furthermore, optimizing over an entire system of classifiers is a difficult task since changing the filtering process at one classifier can impact both the feature values of data arriving at classifiers further downstream and thus, the classification performance achieved by an ensemble of classifiers, as well as the end-to-end processing delay. To address this problem, this paper makes three main contributions: 1) Based on classification and queuing theoretic models, we propose a utility metric that captures both the performance and the delay of a binary filtering classifier system. 2) We introduce a low-complexity framework for estimating the system utility by observing, estimating, and/or exchanging parameters between the inter-related classifiers deployed across the system. 3) We provide distributed algorithms to reconfigure the system, and analyze the algorithms based on their convergence properties, optimality, information exchange overhead, and rate of adaptation to non-stationary data sources. We provide results using different video classifier systems.

  16. Timing of cord clamping in very preterm infants: more evidence is needed.

    PubMed

    Tarnow-Mordi, William O; Duley, Lelia; Field, David; Marlow, Neil; Morris, Jonathan; Newnham, John; Paneth, Nigel; Soll, Roger F; Sweet, David

    2014-08-01

    In December 2012, the American College of Obstetricians and Gynecologists published a Committee Opinion entitled "Timing of umbilical cord clamping after birth." It stated that "evidence exists to support delayed cord clamping in preterm infants, when feasible. The single most important benefit for preterm infants is the possibility for a nearly 50% reduction in IVH." However, the Committee Opinion added that the ideal timing of umbilical cord clamping has yet to be determined and recommended that large clinical trials be conducted in the most preterm infants. Published randomized controlled trials include <200 infants of <30 weeks' gestation, with assessments of neurodevelopmental outcome in less than one-half of the children. This is a major gap in the evidence. Without reliable data from randomized controlled trials that optimally include childhood follow-up evaluations, we will not know whether delayed cord clamping may do more overall harm than good. Ongoing trials of delayed cord clamping plan to report childhood outcomes in >2000 additional very preterm infants. Current recommendations may need to change when these results become available. Greater international collaboration could accelerate resolution of whether this promising intervention will improve disability-free survival in about 1 million infants who will be born very preterm globally each year. Copyright © 2014 Mosby, Inc. All rights reserved.

  17. A Nonlinear Model for Transient Responses from Light-Adapted Wolf Spider Eyes

    PubMed Central

    DeVoe, Robert D.

    1967-01-01

    A quantitative model is proposed to test the hypothesis that the dynamics of nonlinearities in retinal action potentials from light-adapted wolf spider eyes may be due to delayed asymmetries in responses of the visual cells. For purposes of calculation, these delayed asymmetries are generated in an analogue by a time-variant resistance. It is first shown that for small incremental stimuli, the linear behavior of such a resistance describes peaking and low frequency phase lead in frequency responses of the eye to sinusoidal modulations of background illumination. It also describes the overshoots in linear step responses. It is next shown that the analogue accounts for nonlinear transient and short term DC responses to large positive and negative step stimuli and for the variations in these responses with changes in degree of light adaptation. Finally, a physiological model is proposed in which the delayed asymmetries in response are attributed to delayed rectification by the visual cell membrane. In this model, cascaded chemical reactions may serve to transduce visual stimuli into membrane resistance changes. PMID:6056011

  18. Delayed Triplet-State Formation through Hybrid Charge Transfer Exciton at Copper Phthalocyanine/GaAs Heterojunction.

    PubMed

    Lim, Heeseon; Kwon, Hyuksang; Kim, Sang Kyu; Kim, Jeong Won

    2017-10-05

    Light absorption in organic molecules on an inorganic substrate and subsequent electron transfer to the substrate create so-called hybrid charge transfer exciton (HCTE). The relaxation process of the HCTE states largely determines charge separation efficiency or optoelectronic device performance. Here, the study on energy and time-dispersive behavior of photoelectrons at the hybrid interface of copper phthalocyanine (CuPc)/p-GaAs(001) upon light excitation of GaAs reveals a clear pathway for HCTE relaxation and delayed triplet-state formation. According to the ground-state energy level alignment at the interface, CuPc/p-GaAs(001) shows initially fast hole injection from GaAs to CuPc. Thus, the electrons in GaAs and holes in CuPc form an unusual HCTE state manifold. Subsequent electron transfer from GaAs to CuPc generates the formation of the triplet state in CuPc with a few picoseconds delay. Such two-step charge transfer causes delayed triplet-state formation without singlet excitation and subsequent intersystem crossing within the CuPc molecules.

  19. δ 13C evidence that high primary productivity delayed recovery from end-Permian mass extinction

    NASA Astrophysics Data System (ADS)

    Meyer, K. M.; Yu, M.; Jost, A. B.; Kelley, B. M.; Payne, J. L.

    2011-02-01

    Euxinia was widespread during and after the end-Permian mass extinction and is commonly cited as an explanation for delayed biotic recovery during Early Triassic time. This anoxic, sulfidic episode has been ascribed to both low- and high-productivity states in the marine water column, leaving the causes of euxinia and the mechanisms underlying delayed recovery poorly understood. Here we use isotopic analysis to examine the changing chemical structure of the water column through the recovery interval and thereby better constrain paleoproductivity. The δ 13C of limestones from 5 stratigraphic sections in south China displays a negative gradient of approximately 4‰ from shallow-to-deep water facies within the Lower Triassic. This intense gradient declines within Spathian and lowermost Middle Triassic strata, coincident with accelerated biotic recovery and carbon cycle stabilization. Model simulations show that high nutrient levels and a vigorous biological pump are required to sustain such a large gradient in δ 13C, indicating that Early Triassic ocean anoxia and delayed recovery of benthic animal ecosystems resulted from too much productivity rather than too little.

  20. Electronic Detection of Delayed Test Result Follow-Up in Patients with Hypothyroidism.

    PubMed

    Meyer, Ashley N D; Murphy, Daniel R; Al-Mutairi, Aymer; Sittig, Dean F; Wei, Li; Russo, Elise; Singh, Hardeep

    2017-07-01

    Delays in following up abnormal test results are a common problem in outpatient settings. Surveillance systems that use trigger tools to identify delayed follow-up can help reduce missed opportunities in care. To develop and test an electronic health record (EHR)-based trigger algorithm to identify instances of delayed follow-up of abnormal thyroid-stimulating hormone (TSH) results in patients being treated for hypothyroidism. We developed an algorithm using structured EHR data to identify patients with hypothyroidism who had delayed follow-up (>60 days) after an abnormal TSH. We then retrospectively applied the algorithm to a large EHR data warehouse within the Department of Veterans Affairs (VA), on patient records from two large VA networks for the period from January 1, 2011, to December 31, 2011. Identified records were reviewed to confirm the presence of delays in follow-up. During the study period, 645,555 patients were seen in the outpatient setting within the two networks. Of 293,554 patients with at least one TSH test result, the trigger identified 1250 patients on treatment for hypothyroidism with elevated TSH. Of these patients, 271 were flagged as potentially having delayed follow-up of their test result. Chart reviews confirmed delays in 163 of the 271 flagged patients (PPV = 60.1%). An automated trigger algorithm applied to records in a large EHR data warehouse identified patients with hypothyroidism with potential delays in thyroid function test results follow-up. Future prospective application of the TSH trigger algorithm can be used by clinical teams as a surveillance and quality improvement technique to monitor and improve follow-up.

  1. Estimation of coupling between time-delay systems from time series

    NASA Astrophysics Data System (ADS)

    Prokhorov, M. D.; Ponomarenko, V. I.

    2005-07-01

    We propose a method for estimation of coupling between the systems governed by scalar time-delay differential equations of the Mackey-Glass type from the observed time series data. The method allows one to detect the presence of certain types of linear coupling between two time-delay systems, to define the type, strength, and direction of coupling, and to recover the model equations of coupled time-delay systems from chaotic time series corrupted by noise. We verify our method using both numerical and experimental data.

  2. LiDAR-IMU Time Delay Calibration Based on Iterative Closest Point and Iterated Sigma Point Kalman Filter

    PubMed Central

    Liu, Wanli

    2017-01-01

    The time delay calibration between Light Detection and Ranging (LiDAR) and Inertial Measurement Units (IMUs) is an essential prerequisite for its applications. However, the correspondences between LiDAR and IMU measurements are usually unknown, and thus cannot be computed directly for the time delay calibration. In order to solve the problem of LiDAR-IMU time delay calibration, this paper presents a fusion method based on iterative closest point (ICP) and iterated sigma point Kalman filter (ISPKF), which combines the advantages of ICP and ISPKF. The ICP algorithm can precisely determine the unknown transformation between LiDAR-IMU; and the ISPKF algorithm can optimally estimate the time delay calibration parameters. First of all, the coordinate transformation from the LiDAR frame to the IMU frame is realized. Second, the measurement model and time delay error model of LiDAR and IMU are established. Third, the methodology of the ICP and ISPKF procedure is presented for LiDAR-IMU time delay calibration. Experimental results are presented that validate the proposed method and demonstrate the time delay error can be accurately calibrated. PMID:28282897

  3. [Time perception in depressed and manic patients].

    PubMed

    Zhao, Qi-yuan; Ji, Yi-fu; Wang, Kai; Zhang, Lei; Liu, Ping; Jiang, Yu-bao

    2010-02-02

    To investigate the time perception in affective disorders by using neuropsychological tests and to try to elucidate its neurobiochemical mechanism. Using a time reproduction task, a comparative study was conducted for 28 depressive patients, 22 manic patients, and 26 age and education level matched healthy persons as healthy controls. Both depressive patients and manic patients are abnormal (P < 0.001), depressive patients over-reproduced the time interval than healthy controls (600 ms/delay 1 s: 1.6 +/- 0.6, P < 0.001; 600 ms/delay 5 s: 1.7 +/- 0.6, P < 0.001; 3 s/delay 1 s: 3.9 +/- 0.9, P < 0.001; 3 s/delay 5 s: 3.9 +/- 0.7, P < 0.001; 5 s/delay 1 s: 5.9 +/- 1.3, P < 0.001; 5 s/delay 5 s: 6.1 +/- 1.3, P < 0.001), yet manic patients under-reproduced the time interval (600 ms/delay 1 s: 0.7 +/- 0.2, P < 0.01; 600 ms/delay 5 s: 0.6 +/- 0.3, P < 0.001; 3 s/delay 1 s: 1.7 +/- 0.5, P < 0.001; 3 s/delay 5 s: 1.8 +/- 0.6, P < 0.001; 5 s/delay 1 s: 2.9 +/- 0.7, P < 0.001; 5 s/delay 5 s: 3.0 +/- 0.8, P < 0.001). The results of time reproduction task in patients were not related to age, education, duration of illness, number of admission (P > 0.05), but had some relation to severity of illness.And the results were positively correlated with the score of HAMD in depressive patients (six times: r = 0.44, 0.46, 0.73, 0.61, 0.55, 0.50, P < 0.05), but negatively with the score of BRMS in manic patients (six times: r = -0.57, -0.54, -0.71, -0.69, -0.80, -0.71, P < 0.05). Emotion will affect one's time perception. And the neurotransmitter in brain may participate in the processes of time perception.

  4. Bounded Linear Stability Analysis - A Time Delay Margin Estimation Approach for Adaptive Control

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan T.; Ishihara, Abraham K.; Krishnakumar, Kalmanje Srinlvas; Bakhtiari-Nejad, Maryam

    2009-01-01

    This paper presents a method for estimating time delay margin for model-reference adaptive control of systems with almost linear structured uncertainty. The bounded linear stability analysis method seeks to represent the conventional model-reference adaptive law by a locally bounded linear approximation within a small time window using the comparison lemma. The locally bounded linear approximation of the combined adaptive system is cast in a form of an input-time-delay differential equation over a small time window. The time delay margin of this system represents a local stability measure and is computed analytically by a matrix measure method, which provides a simple analytical technique for estimating an upper bound of time delay margin. Based on simulation results for a scalar model-reference adaptive control system, both the bounded linear stability method and the matrix measure method are seen to provide a reasonably accurate and yet not too conservative time delay margin estimation.

  5. Broadband true time delay for microwave signal processing, using slow light based on stimulated Brillouin scattering in optical fibers.

    PubMed

    Chin, Sanghoon; Thévenaz, Luc; Sancho, Juan; Sales, Salvador; Capmany, José; Berger, Perrine; Bourderionnet, Jérôme; Dolfi, Daniel

    2010-10-11

    We experimentally demonstrate a novel technique to process broadband microwave signals, using all-optically tunable true time delay in optical fibers. The configuration to achieve true time delay basically consists of two main stages: photonic RF phase shifter and slow light, based on stimulated Brillouin scattering in fibers. Dispersion properties of fibers are controlled, separately at optical carrier frequency and in the vicinity of microwave signal bandwidth. This way time delay induced within the signal bandwidth can be manipulated to correctly act as true time delay with a proper phase compensation introduced to the optical carrier. We completely analyzed the generated true time delay as a promising solution to feed phased array antenna for radar systems and to develop dynamically reconfigurable microwave photonic filters.

  6. Staggered overdose pattern and delay to hospital presentation are associated with adverse outcomes following paracetamol-induced hepatotoxicity

    PubMed Central

    Craig, Darren G N; Bates, Caroline M; Davidson, Janice S; Martin, Kirsty G; Hayes, Peter C; Simpson, Kenneth J

    2012-01-01

    AIMS Paracetamol (acetaminophen) poisoning remains the major cause of severe acute hepatotoxicity in the UK. In this large single centre cohort study we examined the clinical impact of staggered overdoses and delayed presentation following paracetamol overdose. RESULTS Between 1992 and 2008, 663 patients were admitted with paracetamol-induced severe liver injury, of whom 161 (24.3%) had taken a staggered overdose. Staggered overdose patients were significantly older and more likely to abuse alcohol than single time point overdose patients. Relief of pain (58.2%) was the commonest rationale for repeated supratherapeutic ingestion. Despite lower total ingested paracetamol doses and lower admission serum alanine aminotransferase concentrations, staggered overdose patients were more likely to be encephalopathic on admission, require renal replacement therapy or mechanical ventilation and had higher mortality rates compared with single time point overdoses (37.3% vs. 27.8%, P = 0.025), although this overdose pattern did not independently predict death. The King's College poor prognostic criteria had reduced sensitivity (77.6, 95% CI 70.8, 81.5) for this pattern of overdose. Of the 396/450 (88.0%) single time point overdoses in whom accurate timings could be obtained, 178 (44.9%) presented to medical services >24 h following overdose. Delayed presentation beyond 24 h post overdose was independently associated with death/liver transplantation (OR 2.25, 95% CI 1.23, 4.12, P = 0.009). CONCLUSIONS Both delayed presentation and staggered overdose pattern are associated with adverse outcomes following paracetamol overdose. These patients are at increased risk of developing multi-organ failure and should be considered for early transfer to specialist liver centres. PMID:22106945

  7. Inducible defense against pathogens and parasites: optimal choice among multiple options.

    PubMed

    Shudo, E; Iwasa, Y

    2001-03-21

    Defense against pathogen, parasites and herbivores is often enhanced after their invasion into the host's body. Sometimes different options are adopted depending on the identity and the quantity of the pathogen, exemplified by the switch between Th1 and Th2 systems in mammalian immunity. In this paper, we study the optimal defense of the host when two alternative responses are available, which differ in the effectiveness of suppressing the growth of pathogen (parasite, or herbivore), the damage to the host caused by the defense response, and the magnitude of time delay before the defense response becomes fully effective. The optimal defense is the one that minimizes the sum of the damages caused by the pathogen and the cost due to defense activities. The damage by pathogens increases in proportion to the time integral of the pathogen abundance, and the cost is proportional to the defense activity. We can prove that a single globally optimal combination of defense options always exists and there is no other local optimum. Depending on the parameters, the optimal is to adopt only the early response, only the late response, or both responses. The defense response with a shorter time delay is more heavily used when the pathogen grows fast, the initial pathogen abundance is large, and the difference in time delay is long. We also study the host's optimal choice between constitutive and inducible defenses. In the constitutive defense, the response to pathogen attack works without delay, but it causes the cost even when the pathogen attack does not occur. We discuss mammalian immunity and the plant chemical defense from the model's viewpoint. Copyright 2001 Academic Press.

  8. Comparing Real-time Versus Delayed Video Assessments for Evaluating ACGME Sub-competency Milestones in Simulated Patient Care Environments

    PubMed Central

    Stiegler, Marjorie; Hobbs, Gene; Martinelli, Susan M; Zvara, David; Arora, Harendra; Chen, Fei

    2018-01-01

    Background Simulation is an effective method for creating objective summative assessments of resident trainees. Real-time assessment (RTA) in simulated patient care environments is logistically challenging, especially when evaluating a large group of residents in multiple simulation scenarios. To date, there is very little data comparing RTA with delayed (hours, days, or weeks later) video-based assessment (DA) for simulation-based assessments of Accreditation Council for Graduate Medical Education (ACGME) sub-competency milestones. We hypothesized that sub-competency milestone evaluation scores obtained from DA, via audio-video recordings, are equivalent to the scores obtained from RTA. Methods Forty-one anesthesiology residents were evaluated in three separate simulated scenarios, representing different ACGME sub-competency milestones. All scenarios had one faculty member perform RTA and two additional faculty members perform DA. Subsequently, the scores generated by RTA were compared with the average scores generated by DA. Variance component analysis was conducted to assess the amount of variation in scores attributable to residents and raters. Results Paired t-tests showed no significant difference in scores between RTA and averaged DA for all cases. Cases 1, 2, and 3 showed an intraclass correlation coefficient (ICC) of 0.67, 0.85, and 0.50 for agreement between RTA scores and averaged DA scores, respectively. Analysis of variance of the scores assigned by the three raters showed a small proportion of variance attributable to raters (4% to 15%). Conclusions The results demonstrate that video-based delayed assessment is as reliable as real-time assessment, as both assessment methods yielded comparable scores. Based on a department’s needs or logistical constraints, our findings support the use of either real-time or delayed video evaluation for assessing milestones in a simulated patient care environment. PMID:29736352

  9. H0LiCOW - I. H0 Lenses in COSMOGRAIL's Wellspring: program overview

    NASA Astrophysics Data System (ADS)

    Suyu, S. H.; Bonvin, V.; Courbin, F.; Fassnacht, C. D.; Rusu, C. E.; Sluse, D.; Treu, T.; Wong, K. C.; Auger, M. W.; Ding, X.; Hilbert, S.; Marshall, P. J.; Rumbaugh, N.; Sonnenfeld, A.; Tewes, M.; Tihhonova, O.; Agnello, A.; Blandford, R. D.; Chen, G. C.-F.; Collett, T.; Koopmans, L. V. E.; Liao, K.; Meylan, G.; Spiniello, C.

    2017-07-01

    Strong gravitational lens systems with time delays between the multiple images allow measurements of time-delay distances, which are primarily sensitive to the Hubble constant that is key to probing dark energy, neutrino physics and the spatial curvature of the Universe, as well as discovering new physics. We present H0LiCOW (H0 Lenses in COSMOGRAIL's Wellspring), a program that aims to measure H0 with <3.5 per cent uncertainty from five lens systems (B1608+656, RXJ1131-1231, HE 0435-1223, WFI2033-4723 and HE 1104-1805). We have been acquiring (1) time delays through COSMOGRAIL and Very Large Array monitoring, (2) high-resolution Hubble Space Telescope imaging for the lens mass modelling, (3) wide-field imaging and spectroscopy to characterize the lens environment and (4) moderate-resolution spectroscopy to obtain the stellar velocity dispersion of the lenses for mass modelling. In cosmological models with one-parameter extension to flat Λ cold dark matter, we expect to measure H0 to <3.5 per cent in most models, spatial curvature Ωk to 0.004, w to 0.14 and the effective number of neutrino species to 0.2 (1σ uncertainties) when combined with current cosmic microwave background (CMB) experiments. These are, respectively, a factor of ˜15, ˜2 and ˜1.5 tighter than CMB alone. Our data set will further enable us to study the stellar initial mass function of the lens galaxies, and the co-evolution of supermassive black holes and their host galaxies. This program will provide a foundation for extracting cosmological distances from the hundreds of time-delay lenses that are expected to be discovered in current and future surveys.

  10. The Sloan Digital Sky Survey Reverberation Mapping Project: Hα and Hβ Reverberation Measurements from First-year Spectroscopy and Photometry

    NASA Astrophysics Data System (ADS)

    Grier, C. J.; Trump, J. R.; Shen, Yue; Horne, Keith; Kinemuchi, Karen; McGreer, Ian D.; Starkey, D. A.; Brandt, W. N.; Hall, P. B.; Kochanek, C. S.; Chen, Yuguang; Denney, K. D.; Greene, Jenny E.; Ho, L. C.; Homayouni, Y.; I-Hsiu Li, Jennifer; Pei, Liuyi; Peterson, B. M.; Petitjean, P.; Schneider, D. P.; Sun, Mouyuan; AlSayyad, Yusura; Bizyaev, Dmitry; Brinkmann, Jonathan; Brownstein, Joel R.; Bundy, Kevin; Dawson, K. S.; Eftekharzadeh, Sarah; Fernandez-Trincado, J. G.; Gao, Yang; Hutchinson, Timothy A.; Jia, Siyao; Jiang, Linhua; Oravetz, Daniel; Pan, Kaike; Paris, Isabelle; Ponder, Kara A.; Peters, Christina; Rogerson, Jesse; Simmons, Audrey; Smith, Robyn; Wang, Ran

    2017-12-01

    We present reverberation mapping results from the first year of combined spectroscopic and photometric observations of the Sloan Digital Sky Survey Reverberation Mapping Project. We successfully recover reverberation time delays between the g+i band emission and the broad Hβ emission line for a total of 44 quasars, and for the broad Hα emission line in 18 quasars. Time delays are computed using the JAVELIN and CREAM software and the traditional interpolated cross-correlation function (ICCF): using well-defined criteria, we report measurements of 32 Hβ and 13 Hα lags with JAVELIN, 42 Hβ and 17 Hα lags with CREAM, and 16 Hβ and eight Hα lags with the ICCF. Lag values are generally consistent among the three methods, though we typically measure smaller uncertainties with JAVELIN and CREAM than with the ICCF, given the more physically motivated light curve interpolation and more robust statistical modeling of the former two methods. The median redshift of our Hβ-detected sample of quasars is 0.53, significantly higher than that of the previous reverberation mapping sample. We find that in most objects, the time delay of the Hα emission is consistent with or slightly longer than that of Hβ. We measure black hole masses using our measured time delays and line widths for these quasars. These black hole mass measurements are mostly consistent with expectations based on the local {M}{BH}-{σ }* relationship, and are also consistent with single-epoch black hole mass measurements. This work increases the current sample size of reverberation-mapped active galaxies by about two-thirds and represents the first large sample of reverberation mapping observations beyond the local universe (z < 0.3).

  11. Extended local similarity analysis (eLSA) of microbial community and other time series data with replicates.

    PubMed

    Xia, Li C; Steele, Joshua A; Cram, Jacob A; Cardon, Zoe G; Simmons, Sheri L; Vallino, Joseph J; Fuhrman, Jed A; Sun, Fengzhu

    2011-01-01

    The increasing availability of time series microbial community data from metagenomics and other molecular biological studies has enabled the analysis of large-scale microbial co-occurrence and association networks. Among the many analytical techniques available, the Local Similarity Analysis (LSA) method is unique in that it captures local and potentially time-delayed co-occurrence and association patterns in time series data that cannot otherwise be identified by ordinary correlation analysis. However LSA, as originally developed, does not consider time series data with replicates, which hinders the full exploitation of available information. With replicates, it is possible to understand the variability of local similarity (LS) score and to obtain its confidence interval. We extended our LSA technique to time series data with replicates and termed it extended LSA, or eLSA. Simulations showed the capability of eLSA to capture subinterval and time-delayed associations. We implemented the eLSA technique into an easy-to-use analytic software package. The software pipeline integrates data normalization, statistical correlation calculation, statistical significance evaluation, and association network construction steps. We applied the eLSA technique to microbial community and gene expression datasets, where unique time-dependent associations were identified. The extended LSA analysis technique was demonstrated to reveal statistically significant local and potentially time-delayed association patterns in replicated time series data beyond that of ordinary correlation analysis. These statistically significant associations can provide insights to the real dynamics of biological systems. The newly designed eLSA software efficiently streamlines the analysis and is freely available from the eLSA homepage, which can be accessed at http://meta.usc.edu/softs/lsa.

  12. Extended local similarity analysis (eLSA) of microbial community and other time series data with replicates

    PubMed Central

    2011-01-01

    Background The increasing availability of time series microbial community data from metagenomics and other molecular biological studies has enabled the analysis of large-scale microbial co-occurrence and association networks. Among the many analytical techniques available, the Local Similarity Analysis (LSA) method is unique in that it captures local and potentially time-delayed co-occurrence and association patterns in time series data that cannot otherwise be identified by ordinary correlation analysis. However LSA, as originally developed, does not consider time series data with replicates, which hinders the full exploitation of available information. With replicates, it is possible to understand the variability of local similarity (LS) score and to obtain its confidence interval. Results We extended our LSA technique to time series data with replicates and termed it extended LSA, or eLSA. Simulations showed the capability of eLSA to capture subinterval and time-delayed associations. We implemented the eLSA technique into an easy-to-use analytic software package. The software pipeline integrates data normalization, statistical correlation calculation, statistical significance evaluation, and association network construction steps. We applied the eLSA technique to microbial community and gene expression datasets, where unique time-dependent associations were identified. Conclusions The extended LSA analysis technique was demonstrated to reveal statistically significant local and potentially time-delayed association patterns in replicated time series data beyond that of ordinary correlation analysis. These statistically significant associations can provide insights to the real dynamics of biological systems. The newly designed eLSA software efficiently streamlines the analysis and is freely available from the eLSA homepage, which can be accessed at http://meta.usc.edu/softs/lsa. PMID:22784572

  13. Finite-Time Stabilization and Adaptive Control of Memristor-Based Delayed Neural Networks.

    PubMed

    Wang, Leimin; Shen, Yi; Zhang, Guodong

    Finite-time stability problem has been a hot topic in control and system engineering. This paper deals with the finite-time stabilization issue of memristor-based delayed neural networks (MDNNs) via two control approaches. First, in order to realize the stabilization of MDNNs in finite time, a delayed state feedback controller is proposed. Then, a novel adaptive strategy is applied to the delayed controller, and finite-time stabilization of MDNNs can also be achieved by using the adaptive control law. Some easily verified algebraic criteria are derived to ensure the stabilization of MDNNs in finite time, and the estimation of the settling time functional is given. Moreover, several finite-time stability results as our special cases for both memristor-based neural networks (MNNs) without delays and neural networks are given. Finally, three examples are provided for the illustration of the theoretical results.Finite-time stability problem has been a hot topic in control and system engineering. This paper deals with the finite-time stabilization issue of memristor-based delayed neural networks (MDNNs) via two control approaches. First, in order to realize the stabilization of MDNNs in finite time, a delayed state feedback controller is proposed. Then, a novel adaptive strategy is applied to the delayed controller, and finite-time stabilization of MDNNs can also be achieved by using the adaptive control law. Some easily verified algebraic criteria are derived to ensure the stabilization of MDNNs in finite time, and the estimation of the settling time functional is given. Moreover, several finite-time stability results as our special cases for both memristor-based neural networks (MNNs) without delays and neural networks are given. Finally, three examples are provided for the illustration of the theoretical results.

  14. The effect of visual-motion time delays on pilot performance in a pursuit tracking task

    NASA Technical Reports Server (NTRS)

    Miller, G. K., Jr.; Riley, D. R.

    1976-01-01

    A study has been made to determine the effect of visual-motion time delays on pilot performance of a simulated pursuit tracking task. Three interrelated major effects have been identified: task difficulty, motion cues, and time delays. As task difficulty, as determined by airplane handling qualities or target frequency, increases, the amount of acceptable time delay decreases. However, when relatively complete motion cues are included in the simulation, the pilot can maintain his performance for considerably longer time delays. In addition, the number of degrees of freedom of motion employed is a significant factor.

  15. Reasons for delay in decision making and reaching health facility among obstetric fistula and pelvic organ prolapse patients in Gondar University hospital, Northwest Ethiopia.

    PubMed

    Adefris, Mulat; Abebe, Solomon Mekonnen; Terefe, Kiros; Gelagay, Abebaw Addis; Adigo, Azmeraw; Amare, Selamawit; Lazaro, Dorothy; Berhe, Aster; Baye, Chernet

    2017-08-22

    Obstetric fistula and pelvic organ prolapse remain highly prevalent in sub-Saharan Africa, where women have poor access to modern health care. Women having these problems tend to stay at home for years before getting treatment. However, information regarding the reasons contributing to late presentation to treatment is scarce, especially at the study area. The objective of this study was to assess the reasons whywomen with obstetric fistula and pelvic organ prolapse at Gondar University Hospital delay treatment. A hospital based cross-sectional study was conducted among 384 women. Delay was evaluated by calculating symptom onset and time of arrival to get treatment at Gondar University Hospital. Regression analysis was conducted to elicit predictors of delay for treatment. Of the total 384 participants, 311 (80.9%) had pelvic organ prolapse and 73(19.1%) obstetric fistula. The proportion of women who delayed treatment of pelvic organ prolapse was 82.9% and that of obstetric fistula 60.9%. Fear of disclosing illness due to social stigma (AOR = 2; 1.03, 3.9) and lack of money (AOR = 1.97; 1.01, 3.86) were associated with the delay of treatment for pelvic organ prolapse,while increasing age (AOR =1.12; 1.01, 1.24) and divorce (AOR = 16.9; 1.75, 165.5) were were responsible for delaying treatment forobstetric fistula. A large numberof women with pelvic organ prolapse and obstetric fistula delayed treatment. Fear of disclosure due to social stigma and lack of moneywere the major factors that contributed to thedelay to seek treatment for pelvic organ prolapse,while increasing age and divorce were the predictors for delaying treatment for obstetric fistula.

  16. Anomalous time delays and quantum weak measurements in optical micro-resonators

    PubMed Central

    Asano, M.; Bliokh, K. Y.; Bliokh, Y. P.; Kofman, A. G.; Ikuta, R.; Yamamoto, T.; Kivshar, Y. S.; Yang, L.; Imoto, N.; Özdemir, Ş.K.; Nori, F.

    2016-01-01

    Quantum weak measurements, wavepacket shifts and optical vortices are universal wave phenomena, which originate from fine interference of multiple plane waves. These effects have attracted considerable attention in both classical and quantum wave systems. Here we report on a phenomenon that brings together all the above topics in a simple one-dimensional scalar wave system. We consider inelastic scattering of Gaussian wave packets with parameters close to a zero of the complex scattering coefficient. We demonstrate that the scattered wave packets experience anomalously large time and frequency shifts in such near-zero scattering. These shifts reveal close analogies with the Goos–Hänchen beam shifts and quantum weak measurements of the momentum in a vortex wavefunction. We verify our general theory by an optical experiment using the near-zero transmission (near-critical coupling) of Gaussian pulses propagating through a nano-fibre with a side-coupled toroidal micro-resonator. Measurements demonstrate the amplification of the time delays from the typical inverse-resonator-linewidth scale to the pulse-duration scale. PMID:27841269

  17. Phantom for assessment of fat suppression in large field-of-view diffusion-weighted magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Winfield, J. M.; Douglas, N. H. M.; deSouza, N. M.; Collins, D. J.

    2014-05-01

    We present the development and application of a phantom for assessment and optimization of fat suppression over a large field-of-view in diffusion-weighted magnetic resonance imaging at 1.5 T and 3 T. A Perspex cylinder (inner diameter 185 mm, height 300 mm) which contains a second cylinder (inner diameter 140 mm) was constructed. The inner cylinder was filled with water doped with copper sulphate and sodium chloride and the annulus was filled with corn oil, which closely matches the spectrum and longitudinal relaxation times of subcutaneous abdominal fat. Placement of the phantom on the couch at 45° to the z-axis presented an elliptical cross-section, which was of a similar size and shape to axial abdominal images. The use of a phantom for optimization of fat suppression allowed quantitative comparison between studies without the differences introduced by variability between human subjects. We have demonstrated that the phantom is suitable for selection of inversion delay times, spectral adiabatic inversion recovery delays and assessment of combinatorial methods of fat suppression. The phantom is valuable in protocol development and the assessment of new techniques, particularly in multi-centre trials.

  18. Robust stability bounds for multi-delay networked control systems

    NASA Astrophysics Data System (ADS)

    Seitz, Timothy; Yedavalli, Rama K.; Behbahani, Alireza

    2018-04-01

    In this paper, the robust stability of a perturbed linear continuous-time system is examined when controlled using a sampled-data networked control system (NCS) framework. Three new robust stability bounds on the time-invariant perturbations to the original continuous-time plant matrix are presented guaranteeing stability for the corresponding discrete closed-loop augmented delay-free system (ADFS) with multiple time-varying sensor and actuator delays. The bounds are differentiated from previous work by accounting for the sampled-data nature of the NCS and for separate communication delays for each sensor and actuator, not a single delay. Therefore, this paper expands the knowledge base in multiple inputs multiple outputs (MIMO) sampled-data time delay systems. Bounds are presented for unstructured, semi-structured, and structured perturbations.

  19. Discrete-time BAM neural networks with variable delays

    NASA Astrophysics Data System (ADS)

    Liu, Xin-Ge; Tang, Mei-Lan; Martin, Ralph; Liu, Xin-Bi

    2007-07-01

    This Letter deals with the global exponential stability of discrete-time bidirectional associative memory (BAM) neural networks with variable delays. Using a Lyapunov functional, and linear matrix inequality techniques (LMI), we derive a new delay-dependent exponential stability criterion for BAM neural networks with variable delays. As this criterion has no extra constraints on the variable delay functions, it can be applied to quite general BAM neural networks with a broad range of time delay functions. It is also easy to use in practice. An example is provided to illustrate the theoretical development.

  20. Local Bifurcations and Optimal Theory in a Delayed Predator-Prey Model with Threshold Prey Harvesting

    NASA Astrophysics Data System (ADS)

    Tankam, Israel; Tchinda Mouofo, Plaire; Mendy, Abdoulaye; Lam, Mountaga; Tewa, Jean Jules; Bowong, Samuel

    2015-06-01

    We investigate the effects of time delay and piecewise-linear threshold policy harvesting for a delayed predator-prey model. It is the first time that Holling response function of type III and the present threshold policy harvesting are associated with time delay. The trajectories of our delayed system are bounded; the stability of each equilibrium is analyzed with and without delay; there are local bifurcations as saddle-node bifurcation and Hopf bifurcation; optimal harvesting is also investigated. Numerical simulations are provided in order to illustrate each result.

  1. Time Variations in Forecasts and Occurrences of Large Solar Energetic Particle Events

    NASA Astrophysics Data System (ADS)

    Kahler, S. W.

    2015-12-01

    The onsets and development of large solar energetic (E > 10 MeV) particle (SEP) events have been characterized in many studies. The statistics of SEP event onset delay times from associated solar flares and coronal mass ejections (CMEs), which depend on solar source longitudes, can be used to provide better predictions of whether a SEP event will occur following a large flare or fast CME. In addition, size distributions of peak SEP event intensities provide a means for a probabilistic forecast of peak intensities attained in observed SEP increases. SEP event peak intensities have been compared with their rise and decay times for insight into the acceleration and transport processes. These two time scales are generally treated as independent parameters describing the development of a SEP event, but we can invoke an alternative two-parameter description based on the assumption that decay times exceed rise times for all events. These two parameters, from the well known Weibull distribution, provide an event description in terms of its basic shape and duration. We apply this distribution to several large SEP events and ask what the characteristic parameters and their dependence on source longitudes can tell us about the origins of these important events.

  2. Hydrogen-fueled diesel engine without timed ignition

    NASA Technical Reports Server (NTRS)

    Homan, H. S.; De Boer, P. C. T.; Mclean, W. J.; Reynolds, R. K.

    1979-01-01

    Experiments were carried out to investigate the feasibility of converting a diesel engine to hydrogen-fueled operation without providing a timed ignition system. Use was made of a glow plug and a multiple-strike spark plug. The glow plug was found to provide reliable ignition and smooth engine operation. It caused the hydrogen to ignite almost immediately upon the start of injection. Indicated mean effective pressures were on the order of 1.3 MPa for equivalence ratios between 0.1 and 0.4 at a compression ratio of 18. This is significantly higher than the corresponding result obtained with diesel oil (about 0.6 MPa for equivalence ratios between 0.3 and 0.9). Indicated thermal efficiencies were on the order of 0.4 for hydrogen and 0.20-0.25 for diesel oil. Operation with the multiple-strike spark system yielded similar values for IMEP and efficiency, but gave rise to large cycle-to-cycle variations in the delay between the beginning of injection and ignition. Large ignition delays were associated with large amplitude pressure waves in the combustion chamber. The measured NO(x) concentrations in the exhaust gas were of the order of 50-100 ppm. This is significantly higher than the corresponding results obtained with premixed hydrogen and air at low equivalence ratios. Compression ignition could not be achieved even at a compression ratio of 29.

  3. A Strain-Sonde Technique for the Measurement of Mechanical Time-Delay Fuze Function Times and Performance

    DTIC Science & Technology

    1983-09-01

    AD IV) MEMORANDUM REPORT ARBRL-MR-03309 N(Supersedes IMR No. 760) A STRAIN -SONDE TECHNIQUE FOR THE MEASUREMENT OF MECHANICAL TIME- DELAY FUZE...and BkuWel) S. TYPE OF REPORT & PERIOD COVERED A STRAIN -SONDE TECHNIQUE FOR THE MEASUREMENT OF Final MECHANICAL TIME-DELAY FUZE FUNCTION TIMES AND S...nmber) M577 Mechanical Time-Delay Fuze F"/FM Telemeter Interlock Pin Release Semiconductor Strain Gage Rotor Signal Condition Amplifier Firing Pin In

  4. Robust optimization for nonlinear time-delay dynamical system of dha regulon with cost sensitivity constraint in batch culture

    NASA Astrophysics Data System (ADS)

    Yuan, Jinlong; Zhang, Xu; Liu, Chongyang; Chang, Liang; Xie, Jun; Feng, Enmin; Yin, Hongchao; Xiu, Zhilong

    2016-09-01

    Time-delay dynamical systems, which depend on both the current state of the system and the state at delayed times, have been an active area of research in many real-world applications. In this paper, we consider a nonlinear time-delay dynamical system of dha-regulonwith unknown time-delays in batch culture of glycerol bioconversion to 1,3-propanediol induced by Klebsiella pneumonia. Some important properties and strong positive invariance are discussed. Because of the difficulty in accurately measuring the concentrations of intracellular substances and the absence of equilibrium points for the time-delay system, a quantitative biological robustness for the concentrations of intracellular substances is defined by penalizing a weighted sum of the expectation and variance of the relative deviation between system outputs before and after the time-delays are perturbed. Our goal is to determine optimal values of the time-delays. To this end, we formulate an optimization problem in which the time delays are decision variables and the cost function is to minimize the biological robustness. This optimization problem is subject to the time-delay system, parameter constraints, continuous state inequality constraints for ensuring that the concentrations of extracellular and intracellular substances lie within specified limits, a quality constraint to reflect operational requirements and a cost sensitivity constraint for ensuring that an acceptable level of the system performance is achieved. It is approximated as a sequence of nonlinear programming sub-problems through the application of constraint transcription and local smoothing approximation techniques. Due to the highly complex nature of this optimization problem, the computational cost is high. Thus, a parallel algorithm is proposed to solve these nonlinear programming sub-problems based on the filled function method. Finally, it is observed that the obtained optimal estimates for the time-delays are highly satisfactory via numerical simulations.

  5. Measurement of spin-lattice relaxation times and concentrations in systems with chemical exchange using the one-pulse sequence: breakdown of the Ernst model for partial saturation in nuclear magnetic resonance spectroscopy.

    PubMed

    Spencer, R G; Fishbein, K W

    2000-01-01

    A fundamental problem in Fourier transform NMR spectroscopy is the calculation of observed resonance amplitudes for a repetitively pulsed sample, as first analyzed by Ernst and Anderson in 1966. Applications include determination of spin-lattice relaxation times (T(1)'s) by progressive saturation and correction for partial saturation in order to determine the concentrations of the chemical constituents of a spectrum. Accordingly, the Ernst and Anderson formalism has been used in innumerable studies of chemical and, more recently, physiological systems. However, that formalism implicitly assumes that no chemical exchange occurs. Here, we present an analysis of N sites in an arbitrary chemical exchange network, explicitly focusing on the intermediate exchange rate regime in which the spin-lattice relaxation rates and the chemical exchange rates are comparable in magnitude. As a special case of particular importance, detailed results are provided for a system with three sites undergoing mutual exchange. Specific properties of the N-site network are then detailed. We find that (i) the Ernst and Anderson analysis describing the response of a system to repetitive pulsing is inapplicable to systems with chemical exchange and can result in large errors in T(1) and concentration measurements; (ii) T(1)'s for systems with arbitrary exchange networks may still be correctly determined from a one-pulse experiment using the Ernst formula, provided that a short interpulse delay time and a large flip angle are used; (iii) chemical concentrations for exchanging systems may be correctly determined from a one-pulse experiment either by using a short interpulse delay time with a large flip angle, as for measuring T(1)'s, and correcting for partial saturation by use of the Ernst formula, or directly by using a long interpulse delay time to avoid saturation; (iv) there is a significant signal-to-noise penalty for performing one-pulse experiments under conditions which permit accurate measurements of T(1)'s and chemical concentrations. The present results are analogous to but are much more general than those that we have previously derived for systems with two exchanging sites. These considerations have implications for the design and interpretation of one-pulse experiments for all systems exhibiting chemical exchange in the intermediate exchange regime, including virtually all physiologic samples.

  6. Time delay and noise explaining the behaviour of the cell growth in fermentation process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ayuobi, Tawfiqullah; Rosli, Norhayati; Bahar, Arifah

    2015-02-03

    This paper proposes to investigate the interplay between time delay and external noise in explaining the behaviour of the microbial growth in batch fermentation process. Time delay and noise are modelled jointly via stochastic delay differential equations (SDDEs). The typical behaviour of cell concentration in batch fermentation process under this model is investigated. Milstein scheme is applied for solving this model numerically. Simulation results illustrate the effects of time delay and external noise in explaining the lag and stationary phases, respectively for the cell growth of fermentation process.

  7. Time delay and noise explaining the behaviour of the cell growth in fermentation process

    NASA Astrophysics Data System (ADS)

    Ayuobi, Tawfiqullah; Rosli, Norhayati; Bahar, Arifah; Salleh, Madihah Md

    2015-02-01

    This paper proposes to investigate the interplay between time delay and external noise in explaining the behaviour of the microbial growth in batch fermentation process. Time delay and noise are modelled jointly via stochastic delay differential equations (SDDEs). The typical behaviour of cell concentration in batch fermentation process under this model is investigated. Milstein scheme is applied for solving this model numerically. Simulation results illustrate the effects of time delay and external noise in explaining the lag and stationary phases, respectively for the cell growth of fermentation process.

  8. The Effects of Financial Education on Impulsive Decision Making

    PubMed Central

    DeHart, William B.; Friedel, Jonathan E.; Lown, Jean M.; Odum, Amy L.

    2016-01-01

    Delay discounting, as a behavioral measure of impulsive choice, is strongly related to substance abuse and other risky behaviors. Therefore, effective techniques that alter delay discounting are of great interest. We explored the ability of a semester long financial education course to change delay discounting. Participants were recruited from a financial education course (n = 237) and an abnormal psychology course (n = 80). Both groups completed a delay-discounting task for $100 during the first two weeks (Time 1) of the semester as well as during the last two weeks (Time 2) of the semester. Participants also completed a personality inventory and financial risk tolerance scale both times and a delay-discounting task for $1,000 during Time 2. Delay discounting decreased in the financial education group at the end of the semester whereas there was no change in delay discounting in the abnormal psychology group. Financial education may be an effective method for reducing delay discounting. PMID:27442237

  9. The Effects of Financial Education on Impulsive Decision Making.

    PubMed

    DeHart, William B; Friedel, Jonathan E; Lown, Jean M; Odum, Amy L

    2016-01-01

    Delay discounting, as a behavioral measure of impulsive choice, is strongly related to substance abuse and other risky behaviors. Therefore, effective techniques that alter delay discounting are of great interest. We explored the ability of a semester long financial education course to change delay discounting. Participants were recruited from a financial education course (n = 237) and an abnormal psychology course (n = 80). Both groups completed a delay-discounting task for $100 during the first two weeks (Time 1) of the semester as well as during the last two weeks (Time 2) of the semester. Participants also completed a personality inventory and financial risk tolerance scale both times and a delay-discounting task for $1,000 during Time 2. Delay discounting decreased in the financial education group at the end of the semester whereas there was no change in delay discounting in the abnormal psychology group. Financial education may be an effective method for reducing delay discounting.

  10. Delay-induced stochastic bifurcations in a bistable system under white noise

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Zhongkui, E-mail: sunzk@nwpu.edu.cn; Fu, Jin; Xu, Wei

    2015-08-15

    In this paper, the effects of noise and time delay on stochastic bifurcations are investigated theoretically and numerically in a time-delayed Duffing-Van der Pol oscillator subjected to white noise. Due to the time delay, the random response is not Markovian. Thereby, approximate methods have been adopted to obtain the Fokker-Planck-Kolmogorov equation and the stationary probability density function for amplitude of the response. Based on the knowledge that stochastic bifurcation is characterized by the qualitative properties of the steady-state probability distribution, it is found that time delay and feedback intensity as well as noise intensity will induce the appearance of stochasticmore » P-bifurcation. Besides, results demonstrated that the effects of the strength of the delayed displacement feedback on stochastic bifurcation are accompanied by the sensitive dependence on time delay. Furthermore, the results from numerical simulations best confirm the effectiveness of the theoretical analyses.« less

  11. True time-delay photonic beamforming with fine steerability and frequency-agility for spaceborne phased-arrays: a proof-of-concept demonstration

    NASA Astrophysics Data System (ADS)

    Paul, Dilip K.; Razdan, Rajender; Goldman, Alfred M.

    1996-10-01

    Feasibility of photonics in beam forming and steering of large phased-array antennas onboard communications satellite/avionics systems is addressed in this paper. Specifically, a proof-of-concept demonstration of phased- array antenna feed network using fiber optic true time-delay (TTD) elements is reported for SATCOM phased-array antennas operating at C-band. Results of the photonic hardware design and performance analysis, including the measured radiation patterns of the antenna array fed by the photonic BFN, are presented. An excellent agreement between the analysis and measured data has been observed. In addition to being light- weight and compact, several unique characteristics such as rf carrier frequency agility and continuous steerability of the radiated beam achieved by the fiber optic TTD architecture are clear evidences of its superiority over other competing photonic architectures.

  12. Distributed Synchronization Technique for OFDMA-Based Wireless Mesh Networks Using a Bio-Inspired Algorithm

    PubMed Central

    Kim, Mi Jeong; Maeng, Sung Joon; Cho, Yong Soo

    2015-01-01

    In this paper, a distributed synchronization technique based on a bio-inspired algorithm is proposed for an orthogonal frequency division multiple access (OFDMA)-based wireless mesh network (WMN) with a time difference of arrival. The proposed time- and frequency-synchronization technique uses only the signals received from the neighbor nodes, by considering the effect of the propagation delay between the nodes. It achieves a fast synchronization with a relatively low computational complexity because it is operated in a distributed manner, not requiring any feedback channel for the compensation of the propagation delays. In addition, a self-organization scheme that can be effectively used to construct 1-hop neighbor nodes is proposed for an OFDMA-based WMN with a large number of nodes. The performance of the proposed technique is evaluated with regard to the convergence property and synchronization success probability using a computer simulation. PMID:26225974

  13. Distributed Synchronization Technique for OFDMA-Based Wireless Mesh Networks Using a Bio-Inspired Algorithm.

    PubMed

    Kim, Mi Jeong; Maeng, Sung Joon; Cho, Yong Soo

    2015-07-28

    In this paper, a distributed synchronization technique based on a bio-inspired algorithm is proposed for an orthogonal frequency division multiple access (OFDMA)-based wireless mesh network (WMN) with a time difference of arrival. The proposed time- and frequency-synchronization technique uses only the signals received from the neighbor nodes, by considering the effect of the propagation delay between the nodes. It achieves a fast synchronization with a relatively low computational complexity because it is operated in a distributed manner, not requiring any feedback channel for the compensation of the propagation delays. In addition, a self-organization scheme that can be effectively used to construct 1-hop neighbor nodes is proposed for an OFDMA-based WMN with a large number of nodes. The performance of the proposed technique is evaluated with regard to the convergence property and synchronization success probability using a computer simulation.

  14. Collisions and Trapping of Time Delayed Solitons in Optical Waveguides with Orthogonally Polarized Modes

    NASA Astrophysics Data System (ADS)

    Zhou, Huan; Li, Jin-Hua; Chow, Kwok-Wing; Xiao, Shao-Rong; Sun, Ting-Ting

    2017-04-01

    The interactions and collisions of time delayed solitons in optical waveguides with orthogonally polarized modes are studied. Direct numerical simulations of the coherently coupled nonlinear Schrödinger equations are performed, and neither the high birefringence nor the low birefringence approximations are invoked. Trapping of solitary pulses occurs when the birefringence parameter is small or the four-wave mixing parameter is large. The distance before the first collision depends strongly on the initial separation of the two solitary pulses. Variational techniques are employed to calculate this distance, and results agree with those from the full simulations very well. Supported by the National Natural Science Foundation of China under Grant Nos. 11605090 and 11447113, Natural Science Foundation of Jiangsu Provincial Universities under Grant No. 14KJB140009 and the startup Foundation for Introducing Talent of Nanjing University of Information Science and Technology under Grant No. 2241131301064

  15. Elapsed Time Between the First Symptoms of Breast Cancer and Medical Help-Seeking Behavior and the Affecting Factors.

    PubMed

    Gözüm, Sebahat; Tuzcu, Ayla

    Many studies have determined that the time between women's realization of first symptoms and seeking help from a healthcare professional is more than 1 month. The situation is defined as delay in medical help-seeking behavior (MHSB). The purpose of this study was to determine the time elapsed between the first symptoms of breast cancer and MHSB, as well as the factors contributing to the delay. In this descriptive study, the data were collected from 132 patients who received a diagnosis of breast cancer and are receiving treatment in the Oncology Clinic of Akdeniz University Hospital. The questionnaire used in the study was structured in 3 parts: sociodemographic characteristics, breast cancer history/screening behaviors, and psychological factors affecting MHSB. The elapsed time between patients' first symptoms and MHSB was classified into "normal" when it was less than 1 month, "delay" when it was between 1 and 3 months, "long-term delay" when it was more than 3 months, and "very serious delay" when it was more than 6 months. A total of 59.8% were classified as normal, 16.7% as delayed, 5.3% as a long-term delay, and 18.2% as a very serious delay after first symptoms. The delay in MHSB time was affected 18.55 times by "not caring/minding," 10.73 times by "fear," 7.13 times by "having more important problems," and 4.23 times by "realization of first symptoms" by themselves. Psychological factors were the most important determinants in delay. The MHSB time was less if those first realizing the symptoms were healthcare professionals. Healthcare professionals should direct women to screenings and train them to interpret symptoms correctly.

  16. Impulsive effects of phase-locked pulse pairs on nuclear motion in the electronic ground state

    NASA Astrophysics Data System (ADS)

    Cina, J. A.; Smith, T. J.

    1993-06-01

    The nonlinear effects of ultrashort phase-locked electronically resonant pulse pairs on the ground state nuclear motion are investigated theoretically. The pulse-pair propagator, momentum impulse, and displacement are determined in the weak field limit for pulse pairs separated by a time delay short on a nuclear time scale. Possible application to large amplitude vibrational excitation of the 104 cm-1 mode of α-perylene is considered and comparisons are made to other Raman excitation methods.

  17. Multiplicity counting from fission detector signals with time delay effects

    NASA Astrophysics Data System (ADS)

    Nagy, L.; Pázsit, I.; Pál, L.

    2018-03-01

    In recent work, we have developed the theory of using the first three auto- and joint central moments of the currents of up to three fission chambers to extract the singles, doubles and triples count rates of traditional multiplicity counting (Pázsit and Pál, 2016; Pázsit et al., 2016). The objective is to elaborate a method for determining the fissile mass, neutron multiplication, and (α, n) neutron emission rate of an unknown assembly of fissile material from the statistics of the fission chamber signals, analogous to the traditional multiplicity counting methods with detectors in the pulse mode. Such a method would be an alternative to He-3 detector systems, which would be free from the dead time problems that would be encountered in high counting rate applications, for example the assay of spent nuclear fuel. A significant restriction of our previous work was that all neutrons born in a source event (spontaneous fission) were assumed to be detected simultaneously, which is not fulfilled in reality. In the present work, this restriction is eliminated, by assuming an independent, identically distributed random time delay for all neutrons arising from one source event. Expressions are derived for the same auto- and joint central moments of the detector current(s) as in the previous case, expressed with the singles, doubles, and triples (S, D and T) count rates. It is shown that if the time-dispersion of neutron detections is of the same order of magnitude as the detector pulse width, as they typically are in measurements of fast neutrons, the multiplicity rates can still be extracted from the moments of the detector current, although with more involved calibration factors. The presented formulae, and hence also the performance of the proposed method, are tested by both analytical models of the time delay as well as with numerical simulations. Methods are suggested also for the modification of the method for large time delay effects (for thermalised neutrons).

  18. Effects of computing time delay on real-time control systems

    NASA Technical Reports Server (NTRS)

    Shin, Kang G.; Cui, Xianzhong

    1988-01-01

    The reliability of a real-time digital control system depends not only on the reliability of the hardware and software used, but also on the speed in executing control algorithms. The latter is due to the negative effects of computing time delay on control system performance. For a given sampling interval, the effects of computing time delay are classified into the delay problem and the loss problem. Analysis of these two problems is presented as a means of evaluating real-time control systems. As an example, both the self-tuning predicted (STP) control and Proportional-Integral-Derivative (PID) control are applied to the problem of tracking robot trajectories, and their respective effects of computing time delay on control performance are comparatively evaluated. For this example, the STP (PID) controller is shown to outperform the PID (STP) controller in coping with the delay (loss) problem.

  19. The influences of delay time on the stability of a market model with stochastic volatility

    NASA Astrophysics Data System (ADS)

    Li, Jiang-Cheng; Mei, Dong-Cheng

    2013-02-01

    The effects of the delay time on the stability of a market model are investigated, by using a modified Heston model with a cubic nonlinearity and cross-correlated noise sources. These results indicate that: (i) There is an optimal delay time τo which maximally enhances the stability of the stock price under strong demand elasticity of stock price, and maximally reduces the stability of the stock price under weak demand elasticity of stock price; (ii) The cross correlation coefficient of noises and the delay time play an opposite role on the stability for the case of the delay time <τo and the same role for the case of the delay time >τo. Moreover, the probability density function of the escape time of stock price returns, the probability density function of the returns and the correlation function of the returns are compared with other literatures.

  20. Breaking the limitation of mode building time in an optoelectronic oscillator.

    PubMed

    Hao, Tengfei; Cen, Qizhuang; Dai, Yitang; Tang, Jian; Li, Wei; Yao, Jianping; Zhu, Ninghua; Li, Ming

    2018-05-09

    An optoelectronic oscillator (OEO) is a microwave photonic system with a positive feedback loop used to create microwave oscillation with ultra-low phase noise thanks to the employment of a high-quality-factor energy storage element, such as a fiber delay line. For many applications, a frequency-tunable microwave signal or waveform, such as a linearly chirped microwave waveform (LCMW), is also needed. Due to the long characteristic time constant required for building up stable oscillation at an oscillation mode, it is impossible to generate an LCMW with a large chirp rate using a conventional frequency-tunable OEO. In this study, we propose and demonstrate a new scheme to generate a large chirp-rate LCMW based on Fourier domain mode locking technique to break the limitation of mode building time in an OEO. An LCMW with a high chirp rate of 0.34 GHz/μs and a large time-bandwidth product of 166,650 is demonstrated.

  1. The double quasar 0957+561: examination of the gravitational lens hypothesis using the very large array.

    PubMed

    Greenfield, P E; Roberts, D H; Burke, B F

    1980-05-02

    A full 12-hour synthesis at 6-centimeter wavelength with the Very Large Array confirms the major features previously reported for the double quasar 0957+561. In addition, the existence of radio jets apparently associated with both quasars is demonstrated. Gravitational lens models are now favored on the basis of recent optical observations, and the radio jets place severe constraints on such models. Further radio observations of the double quasar are needed to establish the expected relative time delay in variations between the images.

  2. [Analysis of characteristics and influence factors of diagnostic delay of endometriosis].

    PubMed

    Han, X T; Guo, H Y; Kong, D L; Han, J S; Zhang, L F

    2018-02-25

    Objective: To access the influence factors of diagnostic delay of endometriosis. Methods: We designed a questionnaire of diagnostic delay of endometriosis. From February 2014 to February 2016, 400 patients who had dysmenorrhea and diagnosed with endometriosis by surgery in Peking University Third Hospital were surveyed retrospectively. Time and risk factors of diagnostic delay were analyzed. Results: The diagnostic delay of 400 patients was 13.0 years (0.2-43.0 years), 78.5%(314/400) patients thought pain was a normal phenomenon and didn't see the doctor. Patients who suffered dysmenorrhea at menarche experienced longer diagnostic delay than those who had dysmenorrhea after menarche (18.0 vs 4.5 years; Z= 191.800, P< 0.01) . Patients who suffered aggravating dysmenorrhea experienced shorter delay time than those who suffered stable or relieving dysmenorrhea (11.0 vs 12.5 vs 18.0 years; Z= 8.270, P< 0.05) , with the difference statistically significant, single factor analysis shows. Severe dysmenorrhea, deep infiltration endometriosis (DIE) , family history of dysmenorrhea or endometriosis, previous surgical history of endometriosis, high stage, with infertility, adenomyoma or other symptoms, could help to shorten diagnostic delay with no significant difference ( P> 0.05) . By multiple logistic regression analysis, the results shown that whether have dysmenorrhea at menarche and clinical diagnosis time were the independent factors affecting delayed diagnosis ( P< 0.01) . Conclusions: Diagnostic delay of endometriosis is common and the mean delay time is 13.0 years mainly due to the unawareness of dysmenorrhea. Dysmenorrhea at menarche, clinical diagnosis time and dysmenorrhea intensity are the factors affecting time of diagnostic delay.

  3. LMI designmethod for networked-based PID control

    NASA Astrophysics Data System (ADS)

    Souza, Fernando de Oliveira; Mozelli, Leonardo Amaral; de Oliveira, Maurício Carvalho; Palhares, Reinaldo Martinez

    2016-10-01

    In this paper, we propose a methodology for the design of networked PID controllers for second-order delayed processes using linear matrix inequalities. The proposed procedure takes into account time-varying delay on the plant, time-varying delays induced by the network and packed dropouts. The design is carried on entirely using a continuous-time model of the closed-loop system where time-varying delays are used to represent sampling and holding occurring in a discrete-time digital PID controller.

  4. Chromosome damage evolution after low and high LET irradiation

    NASA Astrophysics Data System (ADS)

    Andreev, Sergey; Eidelman, Yuri

    Ionizing radiation induces DNA and chromatin lesions which are converted to chromosome lesions detected in the first post-irradiation mitosis by classic cytogenetic techniques as chromosomal aberrations (CAs). These techniques allow to monitor also delayed aberrations observed after many cell generations post-irradiation - the manifestation of chromosomal instability phenotype (CIN). The problem discussed is how to predict time evolution from initial to delayed DNA/chromosome damage. To address this question, in the present work a mechanistic model of CIN is elaborated which integrates pathways of (*) DNA damage induction and its conversion to chromosome lesions (aberrations), (**) lesion transmission and generation through cell cycles. Delayed aberrations in subsequent cycles are formed in the model owing to two pathways, DNA damage generation de novo as well as CA transmission from previous cycles. DNA damage generation rate is assumed to consist of bystander and non-bystander components. Bystander signals impact all cells roughly equally, whereas non-bystander DSB generation rate differs for the descendants of unirradiated and irradiated cells. Monte Carlo simulation of processes underlying CIN allows to predict the time evolution of initial radiation-induced damage - kinetics curve for delayed unstable aberrations (dicentrics) together with dose response and RBE as a function of time after high vs low LET irradiation. The experimental data for radiation-induced CIN in TK6 lymphoblastoid cells and human lymphocytes irradiated with low (gamma) and high (Fe, C) LET radiation are analyzed on the basis of the proposed model. One of the conclusions is that without bystander signaling, just taking into account the initial DNA damage and non-bystander DSB generation, it is impossible to describe the available experimental data for high-LET-induced CIN. The exact contribution of bystander effects for high vs low LET remains unknown, but the relative contribution may be assessed at large times after initial acute irradiation. RBE for delayed aberrations depends on LET, time and cell line, which probably reflects a genetic background for bystander component. The proposed modeling approach creates a basis for integration of complex network of bystander/inflammatory signaling in systems-level platform for quantification of radiation induced CIN.

  5. Advanced Photon Counting Imaging Detectors with 100ps Timing for Astronomical and Space Sensing Applications

    NASA Astrophysics Data System (ADS)

    Siegmund, O.; Vallerga, J.; Welsh, B.; Rabin, M.; Bloch, J.

    In recent years EAG has implemented a variety of high-resolution, large format, photon-counting MCP detectors in space instrumentation for satellite FUSE, GALEX, IMAGE, SOHO, HST-COS, rocket, and shuttle payloads. Our scheme of choice has been delay line readouts encoding photon event position centroids, by determination of the difference in arrival time of the event charge at the two ends of a distributed resistive-capacitive (RC) delay line. Our most commonly used delay line configuration is the cross delay line (XDL). In its simplest form the delay-line encoding electronics consists of a fast amplifier for each end of the delay line, followed by time-to-digital converters (TDC's). We have achieved resolutions of < 25 μm in tests over 65 mm x 65 mm (3k x3k resolution elements) with excellent linearity. Using high speed TDC's, we have been able to encode event positions for random photon rates of ~1 MHz, while time tagging events using the MCP output signal to better than 100 ps. The unique ability to record photon X,Y,T high fidelity information has advantages over "frame driven" recording devices for some important applications. For example we have built open face and sealed tube cross delay line detectors used for biological fluorescence lifetime imaging, observation of flare stars, orbital satellites and space debris with the GALEX satellite, and time resolved imaging of the Crab Pulsar with a telescope as small as 1m. Although microchannel plate delay line detectors meet many of the imaging and timing demands of various applications, they have limitations. The relatively high gain (107) reduces lifetime and local counting rate, and the fixed delay (10's of ns) makes multiple simultaneous event recording problematic. To overcome these limitations we have begun development of cross strip readout anodes for microchannel plate detectors. The cross strip (XS) anode is a coarse (~0.5 mm) multi-layer metal and ceramic pattern of crossed fingers on an alumina substrate. The charge cloud is matched to the anode period so that it is collected on several neighboring fingers to ensure an accurate event charge centroid can be determined. Each finger of the anode is connected to a low noise charge sensitive amplifier and followed by subsequent A/D conversion of individual strip charge values and a hardware centroid determination of better than 1/100 of a strip are possible. Recently we have commissioned a full 32 x 32 mm XS open face laboratory detector and demonstrated excellent resolution (<6 μm FWHM, ~5k x 5k resolution) using low MCP gain (<5 x 105) thus increasing the MCP local counting rate capacity and overall lifetime of the detector system. In collaboration with Los Alamos National Laboratory, NASA and NSF we are developing high rate (>107 Hz) XS encoding electronics that will encode temporally simultaneous events (non spatially overlapping). Sealed tube XS detectors with GaAs and other photocathodes are also under development to increase detection efficiency and extend the sensitivity range. This type of sensor could be a significant enabling technology for several important applications, including airborne and space situational awareness, high-speed adaptive optics (by increasing the SNR and speed in the control loop), astronomy of transient and time-variable sources, optical metrology, and secure quantum communication (as a receiver of cryptographic keys for three-dimensional imaging), single-molecule fluorescence lifetime microscopy (simultaneously tracking and measuring ~1000 molecules), optical/NIR LIDAR, hybrid mass spectrometry and optical night-time/reconnaissance (LANL-ASPIRE).

  6. Accurate time delay technology in simulated test for high precision laser range finder

    NASA Astrophysics Data System (ADS)

    Chen, Zhibin; Xiao, Wenjian; Wang, Weiming; Xue, Mingxi

    2015-10-01

    With the continuous development of technology, the ranging accuracy of pulsed laser range finder (LRF) is higher and higher, so the maintenance demand of LRF is also rising. According to the dominant ideology of "time analog spatial distance" in simulated test for pulsed range finder, the key of distance simulation precision lies in the adjustable time delay. By analyzing and comparing the advantages and disadvantages of fiber and circuit delay, a method was proposed to improve the accuracy of the circuit delay without increasing the count frequency of the circuit. A high precision controllable delay circuit was designed by combining the internal delay circuit and external delay circuit which could compensate the delay error in real time. And then the circuit delay accuracy could be increased. The accuracy of the novel circuit delay methods proposed in this paper was actually measured by a high sampling rate oscilloscope actual measurement. The measurement result shows that the accuracy of the distance simulated by the circuit delay is increased from +/- 0.75m up to +/- 0.15m. The accuracy of the simulated distance is greatly improved in simulated test for high precision pulsed range finder.

  7. Kalman filters for fractional discrete-time stochastic systems along with time-delay in the observation signal

    NASA Astrophysics Data System (ADS)

    Torabi, H.; Pariz, N.; Karimpour, A.

    2016-02-01

    This paper investigates fractional Kalman filters when time-delay is entered in the observation signal in the discrete-time stochastic fractional order state-space representation. After investigating the common fractional Kalman filter, we try to derive a fractional Kalman filter for time-delay fractional systems. A detailed derivation is given. Fractional Kalman filters will be used to estimate recursively the states of fractional order state-space systems based on minimizing the cost function when there is a constant time delay (d) in the observation signal. The problem will be solved by converting the filtering problem to a usual d-step prediction problem for delay-free fractional systems.

  8. Time Delay of CGM Sensors

    PubMed Central

    Schmelzeisen-Redeker, Günther; Schoemaker, Michael; Kirchsteiger, Harald; Freckmann, Guido; Heinemann, Lutz; del Re, Luigi

    2015-01-01

    Background: Continuous glucose monitoring (CGM) is a powerful tool to support the optimization of glucose control of patients with diabetes. However, CGM systems measure glucose in interstitial fluid but not in blood. Rapid changes in one compartment are not accompanied by similar changes in the other, but follow with some delay. Such time delays hamper detection of, for example, hypoglycemic events. Our aim is to discuss the causes and extent of time delays and approaches to compensate for these. Methods: CGM data were obtained in a clinical study with 37 patients with a prototype glucose sensor. The study was divided into 5 phases over 2 years. In all, 8 patients participated in 2 phases separated by 8 months. A total number of 108 CGM data sets including raw signals were used for data analysis and were processed by statistical methods to obtain estimates of the time delay. Results: Overall mean (SD) time delay of the raw signals with respect to blood glucose was 9.5 (3.7) min, median was 9 min (interquartile range 4 min). Analysis of time delays observed in the same patients separated by 8 months suggests a patient dependent delay. No significant correlation was observed between delay and anamnestic or anthropometric data. The use of a prediction algorithm reduced the delay by 4 minutes on average. Conclusions: Prediction algorithms should be used to provide real-time CGM readings more consistent with simultaneous measurements by SMBG. Patient specificity may play an important role in improving prediction quality. PMID:26243773

  9. A comparison of control modes for time-delayed remote manipulation

    NASA Technical Reports Server (NTRS)

    Starr, G. P.

    1982-01-01

    Transmission time delay in the communication channel of a manual control system is investigated. A time delay can exist in remote manipulation systems, caused by long communication distances or bandwidth limitations. Ferrell 1 conducted the first research in time-delayed manipulation using a two degree-of-freedom manipulator. His subjects, working at time delays of 1.0, 2.1, and 3.2 s, could accomplish tasks even requiring great accuracy. The subjects spontaneously adopted a pattern of moving cautiously, then waiting to see the results of their actions. In experiments with a six degree-of-freedom master-slave manipulator system and time delays of 1.0 to 6 s, Black 2 saw that subjects tried to use the move-and-wait strategy; but there were often difficulties. The subjects seemed to have a problem in holding the master arm stationary while waiting for feedback. Any undesired drifting of the master arm introduced a discrepancy between the positions of the master and slave. This discrepancy was not perceived because of the time delay. The subject would then begin his next move with an inherent error. The difficulty of effectively using the move-and-wait strategy with a master-slave manipulator suggested that rate control might be a more effective control mode with time delay.

  10. TIMEDELN: A programme for the detection and parametrization of overlapping resonances using the time-delay method

    NASA Astrophysics Data System (ADS)

    Little, Duncan A.; Tennyson, Jonathan; Plummer, Martin; Noble, Clifford J.; Sunderland, Andrew G.

    2017-06-01

    TIMEDELN implements the time-delay method of determining resonance parameters from the characteristic Lorentzian form displayed by the largest eigenvalues of the time-delay matrix. TIMEDELN constructs the time-delay matrix from input K-matrices and analyses its eigenvalues. This new version implements multi-resonance fitting and may be run serially or as a high performance parallel code with three levels of parallelism. TIMEDELN takes K-matrices from a scattering calculation, either read from a file or calculated on a dynamically adjusted grid, and calculates the time-delay matrix. This is then diagonalized, with the largest eigenvalue representing the longest time-delay experienced by the scattering particle. A resonance shows up as a characteristic Lorentzian form in the time-delay: the programme searches the time-delay eigenvalues for maxima and traces resonances when they pass through different eigenvalues, separating overlapping resonances. It also performs the fitting of the calculated data to the Lorentzian form and outputs resonance positions and widths. Any remaining overlapping resonances can be fitted jointly. The branching ratios of decay into the open channels can also be found. The programme may be run serially or in parallel with three levels of parallelism. The parallel code modules are abstracted from the main physics code and can be used independently.

  11. Self-organized synchronization of digital phase-locked loops with delayed coupling in theory and experiment

    PubMed Central

    Wetzel, Lucas; Jörg, David J.; Pollakis, Alexandros; Rave, Wolfgang; Fettweis, Gerhard; Jülicher, Frank

    2017-01-01

    Self-organized synchronization occurs in a variety of natural and technical systems but has so far only attracted limited attention as an engineering principle. In distributed electronic systems, such as antenna arrays and multi-core processors, a common time reference is key to coordinate signal transmission and processing. Here we show how the self-organized synchronization of mutually coupled digital phase-locked loops (DPLLs) can provide robust clocking in large-scale systems. We develop a nonlinear phase description of individual and coupled DPLLs that takes into account filter impulse responses and delayed signal transmission. Our phase model permits analytical expressions for the collective frequencies of synchronized states, the analysis of stability properties and the time scale of synchronization. In particular, we find that signal filtering introduces stability transitions that are not found in systems without filtering. To test our theoretical predictions, we designed and carried out experiments using networks of off-the-shelf DPLL integrated circuitry. We show that the phase model can quantitatively predict the existence, frequency, and stability of synchronized states. Our results demonstrate that mutually delay-coupled DPLLs can provide robust and self-organized synchronous clocking in electronic systems. PMID:28207779

  12. Ultrasonic inspection of studs (bolts) using dynamic predictive deconvolution and wave shaping.

    PubMed

    Suh, D M; Kim, W W; Chung, J G

    1999-01-01

    Bolt degradation has become a major issue in the nuclear industry since the 1980's. If small cracks in stud bolts are not detected early enough, they grow rapidly and cause catastrophic disasters. Their detection, despite its importance, is known to be a very difficult problem due to the complicated structures of the stud bolts. This paper presents a method of detecting and sizing a small crack in the root between two adjacent crests in threads. The key idea is from the fact that the mode-converted Rayleigh wave travels slowly down the face of the crack and turns from the intersection of the crack and the root of thread to the transducer. Thus, when a crack exists, a small delayed pulse due to the Rayleigh wave is detected between large regularly spaced pulses from the thread. The delay time is the same as the propagation delay time of the slow Rayleigh wave and is proportional to the site of the crack. To efficiently detect the slow Rayleigh wave, three methods based on digital signal processing are proposed: wave shaping, dynamic predictive deconvolution, and dynamic predictive deconvolution combined with wave shaping.

  13. Residual delay maps unveil global patterns of atmospheric nonlinearity and produce improved local forecasts

    PubMed Central

    Sugihara, George; Casdagli, Martin; Habjan, Edward; Hess, Dale; Dixon, Paul; Holland, Greg

    1999-01-01

    We use residual-delay maps of observational field data for barometric pressure to demonstrate the structure of latitudinal gradients in nonlinearity in the atmosphere. Nonlinearity is weak and largely lacking in tropical and subtropical sites and increases rapidly into the temperate regions where the time series also appear to be much noisier. The degree of nonlinearity closely follows the meridional variation of midlatitude storm track frequency. We extract the specific functional form of this nonlinearity, a V shape in the lagged residuals that appears to be a basic feature of midlatitude synoptic weather systems associated with frontal passages. We present evidence that this form arises from the relative time scales of high-pressure versus low-pressure events. Finally, we show that this nonlinear feature is weaker in a well regarded numerical forecast model (European Centre for Medium-Range Forecasts) because small-scale temporal and spatial variation is smoothed out in the grided inputs. This is significant, in that it allows us to demonstrate how application of statistical corrections based on the residual-delay map may provide marked increases in local forecast accuracy, especially for severe weather systems. PMID:10588685

  14. CT scanning in stroke patients: meeting the challenge in the remote and rural district general hospital.

    PubMed

    Todd, A W; Anderson, E M

    2009-05-01

    National audit data allow crude comparison between centres and indicate that most Scottish hospitals fail to meet current guidelines for CT scanning of the brain in stroke patients. This study identifies some of the reasons for delay in performing CT scans in a largely rural population. This audit study assesses the delays from onset of symptoms, time of admission and request received to CT scan in stroke patients for three different in-patient groups as well as those managed in the community. The reasons for delay in CT scanning varied between different patient groups but for one group of in-patients, changes in booking procedure and introduction of a second CT scanner increased the proportion scanned within 48 hours of request from 65% to 96%. Further developments including the introduction of Saturday and Sunday routine CT scanning, radiologist reporting from home and additional CT scanners placed in remote hospitals may be expected to improve these figures further. Target times of three hours from onset of symptoms to scan to allow thrombolysis may however be impossible to meet for all stroke patients in rural areas.

  15. 14 CFR 417.221 - Time delay analysis.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... OF TRANSPORTATION LICENSING LAUNCH SAFETY Flight Safety Analysis § 417.221 Time delay analysis. (a) General. A flight safety analysis must include a time delay analysis that establishes the mean elapsed time between the violation of a flight termination rule and the time when the flight safety system is...

  16. 14 CFR 417.221 - Time delay analysis.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... OF TRANSPORTATION LICENSING LAUNCH SAFETY Flight Safety Analysis § 417.221 Time delay analysis. (a) General. A flight safety analysis must include a time delay analysis that establishes the mean elapsed time between the violation of a flight termination rule and the time when the flight safety system is...

  17. A Simple Non-equilibrium Model of Star Formation and Scatter in the Kennicutt-Schmidt Relation and Star Formation Efficiencies in Galaxies

    NASA Astrophysics Data System (ADS)

    Orr, Matthew; Hopkins, Philip F.

    2018-06-01

    I will present a simple model of non-equilibrium star formation and its relation to the scatter in the Kennicutt-Schmidt relation and large-scale star formation efficiencies in galaxies. I will highlight the importance of a hierarchy of timescales, between the galaxy dynamical time, local free-fall time, the delay time of stellar feedback, and temporal overlap in observables, in setting the scatter of the observed star formation rates for a given gas mass. Further, I will talk about how these timescales (and their associated duty-cycles of star formation) influence interpretations of the large-scale star formation efficiency in reasonably star-forming galaxies. Lastly, the connection with galactic centers and out-of-equilibrium feedback conditions will be mentioned.

  18. 49 CFR 236.831 - Time, delay.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Time, delay. 236.831 Section 236.831 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... Time, delay. As applied to an automatic train stop or train control system, the time which elapses...

  19. Lesions Responsible for Delayed Oral Transit Time in Post-stroke Dysphagia.

    PubMed

    Moon, Hyun Im; Yoon, Seo Yeon; Yi, Tae Im; Jeong, Yoon Jeong; Cho, Tae Hwan

    2018-06-01

    Some stroke patients show oral phase dysphagia, characterized by a markedly prolonged oral transit time that hinders oral feeding. The aim of this study was to clarify the clinical characteristics and lesions responsible for delayed swallowing. We reviewed 90 patients with stroke. The oral processing time plus the postfaucial aggregation time required to swallow semisolid food was assessed. The patients were divided into two groups according to oral transit time, and we analyzed the differences in characteristics such as demographic factors, lesion factors, and cognitive function. Logistic regression analyses were performed to examine the predictors of delayed oral transit time. Lesion location and volume were measured on brain magnetic resonance images. We generated statistic maps of lesions related to delayed oral phase in swallowing using voxel-based lesion symptom mapping (VLSM). The group of patients who showed delayed oral transit time had significantly low cognitive function. Also, in a regression model, delayed oral phase was predicted with low K-MMSE (Korean version of the Mini Mental Status Exam). Using VLSM, we found the lesion location to be associated with delayed oral phase after adjusting for K-MMSE score. Although these results did not reach statistical significance, they showed the lesion pattern with predominant distribution in the left frontal lobe. Delayed oral phase in post-stroke patients was not negligible clinically. Patients' cognitive impairments affect the oral transit time. When adjusting it, we found a trend that the lesion responsible for delayed oral phase was located in the left frontal lobe, though the association did not reach significance. The delay might be related to praxis function.

  20. Delaying the International Spread of Pandemic Influenza

    PubMed Central

    Cooper, Ben S; Pitman, Richard J; Edmunds, W. John; Gay, Nigel J

    2006-01-01

    Background The recent emergence of hypervirulent subtypes of avian influenza has underlined the potentially devastating effects of pandemic influenza. Were such a virus to acquire the ability to spread efficiently between humans, control would almost certainly be hampered by limited vaccine supplies unless global spread could be substantially delayed. Moreover, the large increases that have occurred in international air travel might be expected to lead to more rapid global dissemination than in previous pandemics. Methods and Findings To evaluate the potential of local control measures and travel restrictions to impede global dissemination, we developed stochastic models of the international spread of influenza based on extensions of coupled epidemic transmission models. These models have been shown to be capable of accurately forecasting local and global spread of epidemic and pandemic influenza. We show that under most scenarios restrictions on air travel are likely to be of surprisingly little value in delaying epidemics, unless almost all travel ceases very soon after epidemics are detected. Conclusions Interventions to reduce local transmission of influenza are likely to be more effective at reducing the rate of global spread and less vulnerable to implementation delays than air travel restrictions. Nevertheless, under the most plausible scenarios, achievable delays are small compared with the time needed to accumulate substantial vaccine stocks. PMID:16640458

  1. The effect of visual-motion time-delays on pilot performance in a simulated pursuit tracking task

    NASA Technical Reports Server (NTRS)

    Miller, G. K., Jr.; Riley, D. R.

    1977-01-01

    An experimental study was made to determine the effect on pilot performance of time delays in the visual and motion feedback loops of a simulated pursuit tracking task. Three major interrelated factors were identified: task difficulty either in the form of airplane handling qualities or target frequency, the amount and type of motion cues, and time delay itself. In general, the greater the task difficulty, the smaller the time delay that could exist without degrading pilot performance. Conversely, the greater the motion fidelity, the greater the time delay that could be tolerated. The effect of motion was, however, pilot dependent.

  2. Optimal estimation of parameters and states in stochastic time-varying systems with time delay

    NASA Astrophysics Data System (ADS)

    Torkamani, Shahab; Butcher, Eric A.

    2013-08-01

    In this study estimation of parameters and states in stochastic linear and nonlinear delay differential systems with time-varying coefficients and constant delay is explored. The approach consists of first employing a continuous time approximation to approximate the stochastic delay differential equation with a set of stochastic ordinary differential equations. Then the problem of parameter estimation in the resulting stochastic differential system is represented as an optimal filtering problem using a state augmentation technique. By adapting the extended Kalman-Bucy filter to the resulting system, the unknown parameters of the time-delayed system are estimated from noise-corrupted, possibly incomplete measurements of the states.

  3. Opto-VLSI-based photonic true-time delay architecture for broadband adaptive nulling in phased array antennas.

    PubMed

    Juswardy, Budi; Xiao, Feng; Alameh, Kamal

    2009-03-16

    This paper proposes a novel Opto-VLSI-based tunable true-time delay generation unit for adaptively steering the nulls of microwave phased array antennas. Arbitrary single or multiple true-time delays can simultaneously be synthesized for each antenna element by slicing an RF-modulated broadband optical source and routing specific sliced wavebands through an Opto-VLSI processor to a high-dispersion fiber. Experimental results are presented, which demonstrate the principle of the true-time delay unit through the generation of 5 arbitrary true-time delays of up to 2.5 ns each. (c) 2009 Optical Society of America

  4. Development of Fractal Ultra-Hydrophobic Coating Films to Prevent Water Vapor Dewing and to Delay Frosting

    NASA Astrophysics Data System (ADS)

    Quan, Yun-Yun; Jiang, Pei-Guo; Zhang, Li-Zhi

    2014-09-01

    Superhydrophobic films fabricated on copper and aluminum surfaces have potential applications to solve water condensation and frosting problems on chilled ceiling system. The rough surfaces of copper foils obtained by solution immersion method exhibit the existence of fractal structures. The hydrophobicity of copper surfaces is enhanced with fractal structures. The relationship between contact angles (CAs) and the fractal dimensions (FDs) for surface roughness of Cu samples with different etching time is investigated. Moisture condensation and frosting experiments on the two kinds of surfaces are conducted in natural environment under different chilling temperatures. During condensation, micro water condensate droplets drift down the surface like dust floating in the air. Several larger condensate droplets about 1-2 mm appear on the substrates after 3 h condensation. This continuous jumping motion of the condensate will be beneficial in delaying frosting. The results demonstrate that dense nanostructures on copper surfaces are superior to loose lattice-like microstructures on aluminum surfaces for preventing the formation of large droplets condensate and in delaying the icing. The large water droplets of 2-3 mm in diameter that would form on a common metal foil are sharply decreased to dozens of microns and small droplets are formed on a modified surface, which will then drift down like a fog.

  5. Extreme phenophase delays and their relationship with natural forcings in Beijing over the past 260 years.

    PubMed

    Liu, Yang; Zhang, Mingqing; Fang, Xiuqi

    2018-03-20

    By merging reconstructed phenological series from published articles and observations of China Phenology Observation Network (CPON), the first blooming date of Amygdalus davidiana (FBA) in Beijing between 1741 and 2000 is reconstructed. The Butterworth method is used to remove the multi-year variations for generating the phenological series of annual variations in the first blooming date of A. davidiana. The extreme delay years in the phenological series are identified using the percentage threshold method. The characteristics of the extreme delays and the correspondence of these events with natural forcings are analysed. The main results are as follows. In annual phenological series, the extreme delays appeared in single year as main feature, only A.D.1800-1801, 1816-1817 and 1983-1984 were the events of two consecutively extreme years. Approximately 85% of the extreme delays occurred during 1-2 years after the large volcanic eruptions (VEI ≥ 4) in the eastern rim or the western rim of the Pacific Ocean, as the same proportion of the extreme delays followed El Niño events. About 73% years of the extreme delays fall in the valleys of sunspot cycles or the Dalton minimum period in the year or the previous year. According to the certainty factor (CF), the large eruptions have the greatest influence to the extreme delays; sunspot activity is the second, and ENSO is the last one. The extreme phenological delayed year is most likely to occur after a large eruption, which particularly occurs during El Niño year and its previous several years were in the descending portion or valley of sunspot phase.

  6. Extreme phenophase delays and their relationship with natural forcings in Beijing over the past 260 years

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Zhang, Mingqing; Fang, Xiuqi

    2018-03-01

    By merging reconstructed phenological series from published articles and observations of China Phenology Observation Network (CPON), the first blooming date of Amygdalus davidiana (FBA) in Beijing between 1741 and 2000 is reconstructed. The Butterworth method is used to remove the multi-year variations for generating the phenological series of annual variations in the first blooming date of A. davidiana. The extreme delay years in the phenological series are identified using the percentage threshold method. The characteristics of the extreme delays and the correspondence of these events with natural forcings are analysed. The main results are as follows. In annual phenological series, the extreme delays appeared in single year as main feature, only A.D.1800-1801, 1816-1817 and 1983-1984 were the events of two consecutively extreme years. Approximately 85% of the extreme delays occurred during 1-2 years after the large volcanic eruptions (VEI ≥ 4) in the eastern rim or the western rim of the Pacific Ocean, as the same proportion of the extreme delays followed El Niño events. About 73% years of the extreme delays fall in the valleys of sunspot cycles or the Dalton minimum period in the year or the previous year. According to the certainty factor (CF), the large eruptions have the greatest influence to the extreme delays; sunspot activity is the second, and ENSO is the last one. The extreme phenological delayed year is most likely to occur after a large eruption, which particularly occurs during El Niño year and its previous several years were in the descending portion or valley of sunspot phase.

  7. Large tunable optical delays via self-phase modulation and dispersion

    NASA Astrophysics Data System (ADS)

    Okawachi, Yoshitomo; Sharping, Jay E.; Xu, Chris; Gaeta, Alexander L.

    2006-12-01

    We demonstrate all-optically tunable delays in optical fiber via a dispersive stage and two stages of nonlinear spectral broadening and filtering. With this scheme, we achieve continuously tunable delays of 3.5- ps pulses and advancements over a total range of more than 1200 pulsewidths. Our technique is applicable to a wide range of pulse durations and delays.

  8. Minority and Public Insurance Status: Is There a Delay to Alveolar Bone Grafting Surgery?

    PubMed

    Silvestre, Jason; Basta, Marten N; Fischer, John P; Lowe, Kristen M; Mayro, Rosario; Jackson, Oksana

    2017-01-01

      This study sought to determine the timing of alveolar bone grafting (ABG) surgery among children with cleft lip with or without cleft palate (CL±P) with regard to race and insurance status.   A retrospective chart review of consecutive patients receiving ABG surgery was conducted. A multivariate regression model was constructed using predetermined clinical and demographic variables.   A large, urban cleft referral center.   Nonsyndromic patients with CL±P were eligible for study inclusion.   ABG surgery using autogenous bone harvested from the anterior iliac crest.   The primary outcome of interest was age at ABG surgery.   A total of 233 patients underwent ABG surgery at 8.1 ± 2.3 years of age. African American and Hispanic patients received delayed ABG surgery compared with Caucasian patients by approximately 1 year (P < .05). There was no difference in ABG surgery timing by insurance status (P > .05).   The timing of ABG surgery varied by race but not by insurance status. Greater resources may be needed to ensure timely delivery of cleft care to African American and Hispanic children.

  9. Impact of Morphometry, Myelinization and Synaptic Current Strength on Spike Conduction in Human and Cat Spiral Ganglion Neurons

    PubMed Central

    Rattay, Frank; Potrusil, Thomas; Wenger, Cornelia; Wise, Andrew K.; Glueckert, Rudolf; Schrott-Fischer, Anneliese

    2013-01-01

    Background Our knowledge about the neural code in the auditory nerve is based to a large extent on experiments on cats. Several anatomical differences between auditory neurons in human and cat are expected to lead to functional differences in speed and safety of spike conduction. Methodology/Principal Findings Confocal microscopy was used to systematically evaluate peripheral and central process diameters, commonness of myelination and morphology of spiral ganglion neurons (SGNs) along the cochlea of three human and three cats. Based on these morphometric data, model analysis reveales that spike conduction in SGNs is characterized by four phases: a postsynaptic delay, constant velocity in the peripheral process, a presomatic delay and constant velocity in the central process. The majority of SGNs are type I, connecting the inner hair cells with the brainstem. In contrast to those of humans, type I neurons of the cat are entirely myelinated. Biophysical model evaluation showed delayed and weak spikes in the human soma region as a consequence of a lack of myelin. The simulated spike conduction times are in accordance with normal interwave latencies from auditory brainstem response recordings from man and cat. Simulated 400 pA postsynaptic currents from inner hair cell ribbon synapses were 15 times above threshold. They enforced quick and synchronous spiking. Both of these properties were not present in type II cells as they receive fewer and much weaker (∼26 pA) synaptic stimuli. Conclusions/Significance Wasting synaptic energy boosts spike initiation, which guarantees the rapid transmission of temporal fine structure of auditory signals. However, a lack of myelin in the soma regions of human type I neurons causes a large delay in spike conduction in comparison with cat neurons. The absent myelin, in combination with a longer peripheral process, causes quantitative differences of temporal parameters in the electrically stimulated human cochlea compared to the cat cochlea. PMID:24260179

  10. Solar oscillation time delay measurement assisted celestial navigation method

    NASA Astrophysics Data System (ADS)

    Ning, Xiaolin; Gui, Mingzhen; Zhang, Jie; Fang, Jiancheng; Liu, Gang

    2017-05-01

    Solar oscillation, which causes the sunlight intensity and spectrum frequency change, has been studied in great detail, both observationally and theoretically. In this paper, owing to the existence of solar oscillation, the time delay between the sunlight coming from the Sun directly and the sunlight reflected by the other celestial body such as the satellite of planet or asteroid can be obtained with two optical power meters. Because the solar oscillation time delay is determined by the relative positions of the spacecraft, reflective celestial body and the Sun, it can be adopted as the navigation measurement to estimate the spacecraft's position. The navigation accuracy of single solar oscillation time delay navigation system depends on the time delay measurement accuracy, and is influenced by the distance between spacecraft and reflective celestial body. In this paper, we combine it with the star angle measurement and propose a solar oscillation time delay measurement assisted celestial navigation method for deep space exploration. Since the measurement model of time delay is an implicit function, the Implicit Unscented Kalman Filter (IUKF) is applied. Simulations demonstrate the effectiveness and superiority of this method.

  11. System for sensing droplet formation time delay in a flow cytometer

    DOEpatents

    Van den Engh, Ger; Esposito, Richard J.

    1997-01-01

    A droplet flow cytometer system which includes a system to optimize the droplet formation time delay based on conditions actually experienced includes an automatic droplet sampler which rapidly moves a plurality of containers stepwise through the droplet stream while simultaneously adjusting the droplet time delay. Through the system sampling of an actual substance to be processed can be used to minimize the effect of the substances variations or the determination of which time delay is optimal. Analysis such as cell counting and the like may be conducted manually or automatically and input to a time delay adjustment which may then act with analysis equipment to revise the time delay estimate actually applied during processing. The automatic sampler can be controlled through a microprocessor and appropriate programming to bracket an initial droplet formation time delay estimate. When maximization counts through volume, weight, or other types of analysis exists in the containers, the increment may then be reduced for a more accurate ultimate setting. This may be accomplished while actually processing the sample without interruption.

  12. A Nonlinearity Minimization-Oriented Resource-Saving Time-to-Digital Converter Implemented in a 28 nm Xilinx FPGA

    NASA Astrophysics Data System (ADS)

    Wang, Yonggang; Liu, Chong

    2015-10-01

    Because large nonlinearity errors exist in the current tapped-delay line (TDL) style field programmable gate array (FPGA)-based time-to-digital converters (TDC), bin-by-bin calibration techniques have to be resorted for gaining a high measurement resolution. If the TDL in selected FPGAs is significantly affected by changes in ambient temperature, the bin-by-bin calibration table has to be updated as frequently as possible. The on-line calibration and calibration table updating increase the TDC design complexity and limit the system performance to some extent. This paper proposes a method to minimize the nonlinearity errors of TDC bins, so that the bin-by-bin calibration may not be needed while maintaining a reasonably high time resolution. The method is a two pass approach: By a bin realignment, the large number of wasted zero-width bins in the original TDL is reused and the granularity of the bins is improved; by a bin decimation, the bin size and its uniformity is traded-off, and the time interpolation by the delay line turns more precise so that the bin-by-bin calibration is not necessary. Using Xilinx 28 nm FPGAs, in which the TDL property is not very sensitive to ambient temperature, the proposed TDC achieves approximately 15 ps root-mean-square (RMS) time resolution by dual-channel measurements of time-intervals over the range of operating temperature. Because of removing the calibration and less logic resources required for the data post-processing, the method has bigger multi-channel capability.

  13. Factors influencing women's decisions about timing of motherhood.

    PubMed

    Benzies, Karen; Tough, Suzanne; Tofflemire, Karen; Frick, Corine; Faber, Alexandra; Newburn-Cook, Christine

    2006-01-01

    To examine the factors that influence women's decisions about the timing of motherhood from a life span perspective. Qualitative. Large Western Canadian city with a high rate of infants born to women aged 35 years and older. 45 Canadian women aged 20 to 48 years. Independence, a stable relationship, and declining fertility influenced women's decisions about the timing of motherhood. Women integrated child developmental transitions into a projected life plan as they considered the timing of motherhood. Partner readiness and family of origin influences played a lesser role. Delayed childbearing has become more socially acceptable, with subsequent negative connotations associated with younger motherhood. Parental benefits have limited influence on the timing of motherhood. Recognition by nurses of the various and complex factors that influence women's decisions about the timing of motherhood may flag the importance of pregnancy-related counseling for woman across the fertility life span. Policy decision makers must be cognizant of the need for additional high-risk obstetric and neonatal health services when societal norms encourage women to delay childbearing in favor of completing education and establishing a career. (c) 2006, AWHONN, the Association of Women's Health, Obstetric and Neonatal Nurses

  14. Time-dependent wave front propagation simulation of a hard x-ray split-and-delay unit: Towards a measurement of the temporal coherence properties of x-ray free electron lasers

    DOE PAGES

    Roling, S.; Zacharias, H.; Samoylova, L.; ...

    2014-11-18

    For the European x-ray free electron laser (XFEL) a split-and-delay unit based on geometrical wavefront beam splitting and multilayer mirrors is built which covers the range of photon energies from 5 keV up to 20 keV. Maximum delays between Δτ = ±2.5 ps at hν=20 keV and up to Δτ = ±23 ps at hν = 5 keV will be possible. Time-dependent wave-optics simulations have been performed by means of Synchrotron Radiation Workshop software for XFEL pulses at hν = 5 keV. The XFEL radiation was simulated using results of time-dependent simulations applying the self-amplified spontaneous emission code FAST. Mainmore » features of the optical layout, including diffraction on the beam splitter edge and optics imperfections measured with a nanometer optic component measuring machine slope measuring profiler, were taken into account. The impact of these effects on the characterization of the temporal properties of XFEL pulses is analyzed. An approach based on fast Fourier transformation allows for the evaluation of the temporal coherence despite large wavefront distortions caused by the optics imperfections. In this manner, the fringes resulting from time-dependent two-beam interference can be filtered and evaluated yielding a coherence time of τ c = 0.187 fs (HWHM) for real, nonperfect mirrors, while for ideal mirrors a coherence time of τ c = 0.191 fs (HWHM) is expected.« less

  15. Clinical Characteristics and Lesions Responsible for Swallowing Hesitation After Acute Cerebral Infarction.

    PubMed

    Saito, Tsukasa; Hayashi, Keisuke; Nakazawa, Hajime; Ota, Tetsuo

    2016-08-01

    Some stroke patients with a unilateral lesion demonstrate acute dysphagia characterized by a markedly prolonged swallowing time, making us think they are reluctant to swallow. In order to clarify the clinical characteristics and causative lesions of delayed swallowing, we conducted a retrospective analysis of 20 right-handed patients without a history of swallowing dysfunction who underwent videofluorography on suspicion of dysphagia after a first ischemic stroke. The oral processing time plus the postfaucial aggregation time required to swallow jelly for patients classified as having delayed swallowing was over 10 s. The time required for swallowing jelly was significantly longer than that without the hesitation (median value, 24.1 vs. 8.9 s, P < 0.001). The oral processing time plus the postfaucial aggregation time required for patients with delayed swallowing to swallow thickened water was largely over 5 s and significantly longer than that of patients without swallowing hesitation (median value, 10.2 vs. 3.3 s, P < 0.001). Swallowing hesitation caused by acute unilateral infarction could be separated into two different patterns. Because four of the five patients with a rippling tongue movement in the swallowing hesitation pattern had a lesion in the left primary motor cortex, which induces some kinds of apraxia, swallowing hesitation with a rippling tongue movement seems to be a representative characteristic of apraxia. The patients with swallowing hesitation with a temporary stasis of the tongue in this study tended to have broad lesions in the frontal lobe, especially in the middle frontal gyrus, which is thought to be involved in higher cognition.

  16. Tunable delay time and Hartman effect in graphene magnetic barriers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ban, Yue; Wang, Lin-Jun; Chen, Xi, E-mail: xchen@shu.edu.cn

    2015-04-28

    Tunable group delay and Hartman effect have been investigated for massless Dirac electrons in graphene magnetic barriers. In the presence of magnetic field, dwell time is found to be equal to net group delay plus the group delay contributing from the lateral shifts. The group delay times are discussed in both cases of normal and oblique incidence, to clarify the nature of Hartman effect. In addition, the group delay in transmission can be modulated from subluminality to superluminality by adjusting the magnetic field, which may also lead to potential applications in graphene-based microelectronics.

  17. Causes of delay in door-to-balloon time in south-east Asian patients undergoing primary percutaneous coronary intervention.

    PubMed

    Sim, Wen Jun; Ang, An Shing; Tan, Mae Chyi; Xiang, Wen Wei; Foo, David; Loh, Kwok Kong; Jafary, Fahim Haider; Watson, Timothy James; Ong, Paul Jau Lueng; Ho, Hee Hwa

    2017-01-01

    To evaluate causes and impact of delay in the door-to-balloon (D2B) time for patients undergoing primary percutaneous coronary intervention (PPCI). From January 2009 to December 2012, 1268 patients (86% male, mean age of 58 ± 12 years) presented to our hospital for ST-elevation myocardial infarction (STEMI) and underwent PPCI. They were divided into two groups: Non-delay defined as D2B time ≤ 90 mins and delay group defined as D2B time > 90 mins. Data were collected retrospectively on baseline clinical characteristics, mode of presentation, angiographic findings, therapeutic modality and inhospital outcome. 202 patients had delay in D2B time. There were more female patients in the delay group. They were older and tend to self-present to hospital. They were less likely to be smokers and have a higher prevalence of prior MI. The incidence of posterior MI was higher in the delay group. They also had a higher incidence of triple vessel disease. The 3 most common reasons for D2B delay was delay in the emergency department (39%), atypical clinical presentation (37.6%) and unstable medical condition requiring stabilisation/computed tomographic imaging (26.7%). The inhospital mortality was numerically higher in the delay group (7.4% versus 4.8%, p = 0.12). Delay in D2B occurred in 16% of our patients undergoing PPCI. Several key factors for delay were identified and warrant further intervention.

  18. Delay-correlation landscape reveals characteristic time delays of brain rhythms and heart interactions

    PubMed Central

    Lin, Aijing; Liu, Kang K. L.; Bartsch, Ronny P.; Ivanov, Plamen Ch.

    2016-01-01

    Within the framework of ‘Network Physiology’, we ask a fundamental question of how modulations in cardiac dynamics emerge from networked brain–heart interactions. We propose a generalized time-delay approach to identify and quantify dynamical interactions between physiologically relevant brain rhythms and the heart rate. We perform empirical analysis of synchronized continuous EEG and ECG recordings from 34 healthy subjects during night-time sleep. For each pair of brain rhythm and heart interaction, we construct a delay-correlation landscape (DCL) that characterizes how individual brain rhythms are coupled to the heart rate, and how modulations in brain and cardiac dynamics are coordinated in time. We uncover characteristic time delays and an ensemble of specific profiles for the probability distribution of time delays that underly brain–heart interactions. These profiles are consistently observed in all subjects, indicating a universal pattern. Tracking the evolution of DCL across different sleep stages, we find that the ensemble of time-delay profiles changes from one physiologic state to another, indicating a strong association with physiologic state and function. The reported observations provide new insights on neurophysiological regulation of cardiac dynamics, with potential for broad clinical applications. The presented approach allows one to simultaneously capture key elements of dynamic interactions, including characteristic time delays and their time evolution, and can be applied to a range of coupled dynamical systems. PMID:27044991

  19. Delay-correlation landscape reveals characteristic time delays of brain rhythms and heart interactions

    NASA Astrophysics Data System (ADS)

    Lin, Aijing; Liu, Kang K. L.; Bartsch, Ronny P.; Ivanov, Plamen Ch.

    2016-05-01

    Within the framework of `Network Physiology', we ask a fundamental question of how modulations in cardiac dynamics emerge from networked brain-heart interactions. We propose a generalized time-delay approach to identify and quantify dynamical interactions between physiologically relevant brain rhythms and the heart rate. We perform empirical analysis of synchronized continuous EEG and ECG recordings from 34 healthy subjects during night-time sleep. For each pair of brain rhythm and heart interaction, we construct a delay-correlation landscape (DCL) that characterizes how individual brain rhythms are coupled to the heart rate, and how modulations in brain and cardiac dynamics are coordinated in time. We uncover characteristic time delays and an ensemble of specific profiles for the probability distribution of time delays that underly brain-heart interactions. These profiles are consistently observed in all subjects, indicating a universal pattern. Tracking the evolution of DCL across different sleep stages, we find that the ensemble of time-delay profiles changes from one physiologic state to another, indicating a strong association with physiologic state and function. The reported observations provide new insights on neurophysiological regulation of cardiac dynamics, with potential for broad clinical applications. The presented approach allows one to simultaneously capture key elements of dynamic interactions, including characteristic time delays and their time evolution, and can be applied to a range of coupled dynamical systems.

  20. Control of amplitude chimeras by time delay in oscillator networks

    NASA Astrophysics Data System (ADS)

    Gjurchinovski, Aleksandar; Schöll, Eckehard; Zakharova, Anna

    2017-04-01

    We investigate the influence of time-delayed coupling in a ring network of nonlocally coupled Stuart-Landau oscillators upon chimera states, i.e., space-time patterns with coexisting partially coherent and partially incoherent domains. We focus on amplitude chimeras, which exhibit incoherent behavior with respect to the amplitude rather than the phase and are transient patterns, and we show that their lifetime can be significantly enhanced by coupling delay. To characterize their transition to phase-lag synchronization (coherent traveling waves) and other coherent structures, we generalize the Kuramoto order parameter. Contrasting the results for instantaneous coupling with those for constant coupling delay, for time-varying delay, and for distributed-delay coupling, we demonstrate that the lifetime of amplitude chimera states and related partially incoherent states can be controlled, i.e., deliberately reduced or increased, depending upon the type of coupling delay.

  1. Time domain passivity controller for 4-channel time-delay bilateral teleoperation.

    PubMed

    Rebelo, Joao; Schiele, Andre

    2015-01-01

    This paper presents an extension of the time-domain passivity control approach to a four-channel bilateral controller under the effects of time delays. Time-domain passivity control has been used successfully to stabilize teleoperation systems with position-force and position-position controllers; however, the performance with such control architectures is sub-optimal both with and without time delays. This work extends the network representation of the time-domain passivity controller to the four-channel architecture, which provides perfect transparency to the user without time delay. The proposed architecture is based on modelling the controllers as dependent voltage sources and using only series passivity controllers. The obtained results are shown on a one degree-of-freedom setup and illustrate the stabilization behaviour of the proposed controller when time delay is present in the communication channel.

  2. Typical teleoperator time delay profiles, phase 2. [remotely controlled manipulator arms

    NASA Technical Reports Server (NTRS)

    Wetherington, R. D.; Walsh, J. R.

    1974-01-01

    The results of the second phase of a study on time delays in communications systems applicable to the teleoperator program are presented. Estimates of the maximum time delays that will be encountered and presents time delay profiles are given for (1) ground control to teleoperator in low earth orbit, (2) ground control to teleoperator in geosynchronous orbit, and (3) low earth orbit control to teleoperator in low earth orbit.

  3. VARIABLE TIME DELAY MEANS

    DOEpatents

    Clemensen, R.E.

    1959-11-01

    An electrically variable time delay line is described which may be readily controlled simuitaneously with variable impedance matching means coupied thereto such that reflections are prevented. Broadly, the delay line includes a signal winding about a magnetic core whose permeability is electrically variable. Inasmuch as the inductance of the line varies directly with the permeability, the time delay and characteristic impedance of the line both vary as the square root of the permeability. Consequently, impedance matching means may be varied similariy and simultaneously w:th the electrically variable permeability to match the line impedance over the entire range of time delay whereby reflections are prevented.

  4. Simulator study of the effect of visual-motion time delays on pilot tracking performance with an audio side task

    NASA Technical Reports Server (NTRS)

    Riley, D. R.; Miller, G. K., Jr.

    1978-01-01

    The effect of time delay was determined in the visual and motion cues in a flight simulator on pilot performance in tracking a target aircraft that was oscillating sinusoidally in altitude only. An audio side task was used to assure the subject was fully occupied at all times. The results indicate that, within the test grid employed, about the same acceptable time delay (250 msec) was obtained for a single aircraft (fighter type) by each of two subjects for both fixed-base and motion-base conditions. Acceptable time delay is defined as the largest amount of delay that can be inserted simultaneously into the visual and motion cues before performance degradation occurs. A statistical analysis of the data was made to establish this value of time delay. Audio side task provided quantitative data that documented the subject's work level.

  5. Wigner time delay and spin-orbit activated confinement resonances

    NASA Astrophysics Data System (ADS)

    Keating, D. A.; Deshmukh, P. C.; Manson, S. T.

    2017-09-01

    A study of the photoionization of spin-orbit split subshells of high-Z atoms confined in C60 has been performed using the relativistic-random-phase approximation. Specifically, Hg@C60 5p, Rn@C60 6p and Ra@C60 5d were investigated and the near-threshold confinement resonances in the j = l - 1/2 channels were found to engender structures in the j = l + 1/2 cross sections via correlation in the form of interchannel coupling. These structures are termed spin-orbit induced confinement resonances and they are found to profoundly influence the Wigner time delay spectrum resulting in time delays of tens or hundreds of attoseconds along with dramatic swings in time delay over small energy intervals. Pronounced relativistic effects in time delay are also found. These structures, including their manifestation in time delay spectra, are expected to be general phenomena in the photoionization of spin-orbit doublets in confined high-Z atoms.

  6. Dissipativity and stability analysis of fractional-order complex-valued neural networks with time delay.

    PubMed

    Velmurugan, G; Rakkiyappan, R; Vembarasan, V; Cao, Jinde; Alsaedi, Ahmed

    2017-02-01

    As we know, the notion of dissipativity is an important dynamical property of neural networks. Thus, the analysis of dissipativity of neural networks with time delay is becoming more and more important in the research field. In this paper, the authors establish a class of fractional-order complex-valued neural networks (FCVNNs) with time delay, and intensively study the problem of dissipativity, as well as global asymptotic stability of the considered FCVNNs with time delay. Based on the fractional Halanay inequality and suitable Lyapunov functions, some new sufficient conditions are obtained that guarantee the dissipativity of FCVNNs with time delay. Moreover, some sufficient conditions are derived in order to ensure the global asymptotic stability of the addressed FCVNNs with time delay. Finally, two numerical simulations are posed to ensure that the attention of our main results are valuable. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Delayed Orgasm and Anorgasmia

    PubMed Central

    Jenkins, Lawrence C.; Mulhall, John P.

    2016-01-01

    Delayed orgasm/anorgasmia defined as the persistent or recurrent difficulty, delay in, or absence of attaining orgasm after sufficient sexual stimulation, which causes personal distress. Delayed orgasm and anorgasmia are associated with significant sexual dissatisfaction. A focused medical history can shed light on the potential etiologies; which include: medications, penile sensation loss, endocrinopathies, penile hyperstimulation and psychological etiologies, amongst others. Unfortunately, there are no excellent pharmacotherapies for delayed orgasm/anorgasmia, and treatment revolves largely around addressing potential causative factors and psychotherapy. PMID:26439762

  8. Changes in reperfusion strategy over time for ST segment elevation myocardial infarction in the Greater Paris Area: results from the e-MUST Registry.

    PubMed

    Karam, Nicole; Lambert, Yves; Tafflet, Muriel; Bataille, Sophie; Benamer, Hakim; Caussin, Christophe; Garot, Philippe; Escolano, Sylvie; Boutot, Françoise; Greffet, Agnès; Letarnec, Jean-Yves; Capitani, Georges-Antoine; Templier, François; Lapandry, Claude; Auger, Arnold; Dupas, François; Dubourdieu, Stéphane; Juliard, Jean-Michel; Spaulding, Christian; Jouven, Xavier

    2013-10-15

    ESC guidelines recommend a shorter (90 min) delay for the use of primary percutaneous intervention (pPCI) in patients presenting within the first 2h of pain onset. Using registry data on STEMI patients in the Greater Paris Area, we assessed changes between 2003 and 2008 in the rates of pPCI, pre-hospital fibrinolytic therapy (PHF) and time delays in patients presenting within 2h of STEMI pain onset. The Greater Paris Area was divided in 3 regions: Paris, the small and large rings. Patients were divided in three groups according to their reperfusion strategy: a) PHF, b) timely pPCI (FMC to balloon inflation time < 90 min), and c) late pPCI (FMC to balloon inflation time > 90 min). Among the 5592 patients included, 1695 (39%) had PHF, 1266 (29%) had timely pPCI, and 1415 (32%) had late pPCI. Over the 6 years, there was a sharp increase in timely pPCI in all regions, balanced by a decrease in PHF. The rate of late pPCI remained globally stable, with a decrease in Paris, stabilization in the small ring, and an increase in the large ring, where the density of catheterization laboratories was the lowest. By multivariate analysis, using on-time pPCI as a reference group, mortality was higher in the PHF and late pPCI groups. In areas with a low density of pPCI centers, efforts should be made to improve the timeliness of pPCI. Otherwise, PHF followed by an immediate transfer to a pPCI capable hospital may be considered. © 2013.

  9. Determining delayed admission to intensive care unit for mechanically ventilated patients in the emergency department.

    PubMed

    Hung, Shih-Chiang; Kung, Chia-Te; Hung, Chih-Wei; Liu, Ber-Ming; Liu, Jien-Wei; Chew, Ghee; Chuang, Hung-Yi; Lee, Wen-Huei; Lee, Tzu-Chi

    2014-08-23

    The adverse effects of delayed admission to the intensive care unit (ICU) have been recognized in previous studies. However, the definitions of delayed admission varies across studies. This study proposed a model to define "delayed admission", and explored the effect of ICU-waiting time on patients' outcome. This retrospective cohort study included non-traumatic adult patients on mechanical ventilation in the emergency department (ED), from July 2009 to June 2010. The primary outcomes measures were 21-ventilator-day mortality and prolonged hospital stays (over 30 days). Models of Cox regression and logistic regression were used for multivariate analysis. The non-delayed ICU-waiting was defined as a period in which the time effect on mortality was not statistically significant in a Cox regression model. To identify a suitable cut-off point between "delayed" and "non-delayed", subsets from the overall data were made based on ICU-waiting time and the hazard ratio of ICU-waiting hour in each subset was iteratively calculated. The cut-off time was then used to evaluate the impact of delayed ICU admission on mortality and prolonged length of hospital stay. The final analysis included 1,242 patients. The time effect on mortality emerged after 4 hours, thus we deduced ICU-waiting time in ED > 4 hours as delayed. By logistic regression analysis, delayed ICU admission affected the outcomes of 21 ventilator-days mortality and prolonged hospital stay, with odds ratio of 1.41 (95% confidence interval, 1.05 to 1.89) and 1.56 (95% confidence interval, 1.07 to 2.27) respectively. For patients on mechanical ventilation at the ED, delayed ICU admission is associated with higher probability of mortality and additional resource expenditure. A benchmark waiting time of no more than 4 hours for ICU admission is recommended.

  10. Microlensing makes lensed quasar time delays significantly time variable

    NASA Astrophysics Data System (ADS)

    Tie, S. S.; Kochanek, C. S.

    2018-01-01

    The time delays of gravitationally lensed quasars are generally believed to be unique numbers whose measurement is limited only by the quality of the light curves and the models for the contaminating contribution of gravitational microlensing to the light curves. This belief is incorrect - gravitational microlensing also produces changes in the actual time delays on the ∼day(s) light-crossing time-scale of the emission region. This is due to a combination of the inclination of the disc relative to the line of sight and the differential magnification of the temperature fluctuations producing the variability. We demonstrate this both mathematically and with direct calculations using microlensing magnification patterns. Measuring these delay fluctuations can provide a physical scale for microlensing observations, removing the need for priors on either the microlens masses or the component velocities. That time delays in lensed quasars are themselves time variable likely explains why repeated delay measurements of individual lensed quasars appear to vary by more than their estimated uncertainties. This effect is also a new important systematic problem for attempts to use time delays in lensed quasars for cosmology or to detect substructures (satellites) in lens galaxies.

  11. Ongoing Progress in Spacecraft Controls

    NASA Technical Reports Server (NTRS)

    Ghosh, Dave (Editor)

    1992-01-01

    This publication is a collection of papers presented at the Mars Mission Research Center workshop on Ongoing Progress in Spacecraft Controls. The technical program addressed additional Mars mission control problems that currently exist in robotic missions in addition to human missions. Topics include control systems design in the presence of large time delays, fuel-optimal propulsive control, and adaptive control to handle a variety of unknown conditions.

  12. Intergovernmental Unity of Effort in Support of Biological Threat Prevention

    DTIC Science & Technology

    2013-09-01

    jurisdictional barriers (such as time delays in developing decisions and implementing large scale action) are tangible. Connecting the “dots” of awareness...groups are developing the capability and the intention to deliver biological weapons of mass destruction. Four coalitions of governments were studied...Intelligence sources from around the globe report that terrorist groups are developing the capability and the intention to deliver biological weapons

  13. Long-time behavior for suspension bridge equations with time delay

    NASA Astrophysics Data System (ADS)

    Park, Sun-Hye

    2018-04-01

    In this paper, we consider suspension bridge equations with time delay of the form u_{tt}(x,t) + Δ ^2 u (x,t) + k u^+ (x,t) + a_0 u_t (x,t) + a_1 u_t (x, t- τ ) + f(u(x,t)) = g(x). Many researchers have studied well-posedness, decay rates of energy, and existence of attractors for suspension bridge equations without delay effects. But, as far as we know, there is no work about suspension equations with time delay. In addition, there are not many studies on attractors for other delayed systems. Thus we first provide well-posedness for suspension equations with time delay. And then show the existence of global attractors and the finite dimensionality of the attractors by establishing energy functionals which are related to the norm of the phase space to our problem.

  14. Robust outer synchronization between two nonlinear complex networks with parametric disturbances and mixed time-varying delays

    NASA Astrophysics Data System (ADS)

    Zhang, Chuan; Wang, Xingyuan; Luo, Chao; Li, Junqiu; Wang, Chunpeng

    2018-03-01

    In this paper, we focus on the robust outer synchronization problem between two nonlinear complex networks with parametric disturbances and mixed time-varying delays. Firstly, a general complex network model is proposed. Besides the nonlinear couplings, the network model in this paper can possess parametric disturbances, internal time-varying delay, discrete time-varying delay and distributed time-varying delay. Then, according to the robust control strategy, linear matrix inequality and Lyapunov stability theory, several outer synchronization protocols are strictly derived. Simple linear matrix controllers are designed to driver the response network synchronize to the drive network. Additionally, our results can be applied on the complex networks without parametric disturbances. Finally, by utilizing the delayed Lorenz chaotic system as the dynamics of all nodes, simulation examples are given to demonstrate the effectiveness of our theoretical results.

  15. Fixed-base simulator study of the effect of time delays in visual cues on pilot tracking performance

    NASA Technical Reports Server (NTRS)

    Queijo, M. J.; Riley, D. R.

    1975-01-01

    Factors were examined which determine the amount of time delay acceptable in the visual feedback loop in flight simulators. Acceptable time delays are defined as delays which significantly affect neither the results nor the manner in which the subject 'flies' the simulator. The subject tracked a target aircraft as it oscillated sinusoidally in a vertical plane only. The pursuing aircraft was permitted five degrees of freedom. Time delays of from 0.047 to 0.297 second were inserted in the visual feedback loop. A side task was employed to maintain the workload constant and to insure that the pilot was fully occupied during the experiment. Tracking results were obtained for 17 aircraft configurations having different longitudinal short-period characteristics. Results show a positive correlation between improved handling qualities and a longer acceptable time delay.

  16. A comprehensive review of prehospital and in-hospital delay times in acute stroke care.

    PubMed

    Evenson, K R; Foraker, R E; Morris, D L; Rosamond, W D

    2009-06-01

    The purpose of this study was to systematically review and summarize prehospital and in-hospital stroke evaluation and treatment delay times. We identified 123 unique peer-reviewed studies published from 1981 to 2007 of prehospital and in-hospital delay time for evaluation and treatment of patients with stroke, transient ischemic attack, or stroke-like symptoms. Based on studies of 65 different population groups, the weighted Poisson regression indicated a 6.0% annual decline (P<0.001) in hours/year for prehospital delay, defined from symptom onset to emergency department arrival. For in-hospital delay, the weighted Poisson regression models indicated no meaningful changes in delay time from emergency department arrival to emergency department evaluation (3.1%, P=0.49 based on 12 population groups). There was a 10.2% annual decline in hours/year from emergency department arrival to neurology evaluation or notification (P=0.23 based on 16 population groups) and a 10.7% annual decline in hours/year for delay time from emergency department arrival to initiation of computed tomography (P=0.11 based on 23 population groups). Only one study reported on times from arrival to computed tomography scan interpretation, two studies on arrival to drug administration, and no studies on arrival to transfer to an in-patient setting, precluding generalizations. Prehospital delay continues to contribute the largest proportion of delay time. The next decade provides opportunities to establish more effective community-based interventions worldwide. It will be crucial to have effective stroke surveillance systems in place to better understand and improve both prehospital and in-hospital delays for acute stroke care.

  17. Effects of time delay and pitch control sensitivity in the flared landing

    NASA Technical Reports Server (NTRS)

    Berthe, C. J.; Chalk, C. R.; Wingarten, N. C.; Grantham, W.

    1986-01-01

    Between December 1985 and January 1986, a flared landing program was conducted, using the USAF Total In-Flight simulator airplane, to examine time delay effects in a formal manner. Results show that as pitch sensitivity is increased, tolerance to time delay decreases. With the proper selection of pitch sensitivity, Level I performance was maintained with time delays ranging from 150 milliseconds to greater than 300 milliseconds. With higher sensitivity, configurations with Level I performance at 150 milliseconds degraded to level 2 at 200 milliseconds. When metrics of time delay and pitch sensitivity effects are applied to enhance previously developed predictive criteria, the result is an improved prediction technique which accounts for significant closed loop items.

  18. Exact synchronization bound for coupled time-delay systems.

    PubMed

    Senthilkumar, D V; Pesquera, Luis; Banerjee, Santo; Ortín, Silvia; Kurths, J

    2013-04-01

    We obtain an exact bound for synchronization in coupled time-delay systems using the generalized Halanay inequality for the general case of time-dependent delay, coupling, and coefficients. Furthermore, we show that the same analysis is applicable to both uni- and bidirectionally coupled time-delay systems with an appropriate evolution equation for their synchronization manifold, which can also be defined for different types of synchronization. The exact synchronization bound assures an exponential stabilization of the synchronization manifold which is crucial for applications. The analytical synchronization bound is independent of the nature of the modulation and can be applied to any time-delay system satisfying a Lipschitz condition. The analytical results are corroborated numerically using the Ikeda system.

  19. Time delay induced different synchronization patterns in repulsively coupled chaotic oscillators

    NASA Astrophysics Data System (ADS)

    Yao, Chenggui; Yi, Ming; Shuai, Jianwei

    2013-09-01

    Time delayed coupling plays a crucial role in determining the system's dynamics. We here report that the time delay induces transition from the asynchronous state to the complete synchronization (CS) state in the repulsively coupled chaotic oscillators. In particular, by changing the coupling strength or time delay, various types of synchronous patterns, including CS, antiphase CS, antiphase synchronization (ANS), and phase synchronization, can be generated. In the transition regions between different synchronous patterns, bistable synchronous oscillators can be observed. Furthermore, we show that the time-delay-induced phase flip bifurcation is of key importance for the emergence of CS. All these findings may light on our understanding of neuronal synchronization and information processing in the brain.

  20. Stability analysis of fractional-order Hopfield neural networks with time delays.

    PubMed

    Wang, Hu; Yu, Yongguang; Wen, Guoguang

    2014-07-01

    This paper investigates the stability for fractional-order Hopfield neural networks with time delays. Firstly, the fractional-order Hopfield neural networks with hub structure and time delays are studied. Some sufficient conditions for stability of the systems are obtained. Next, two fractional-order Hopfield neural networks with different ring structures and time delays are developed. By studying the developed neural networks, the corresponding sufficient conditions for stability of the systems are also derived. It is shown that the stability conditions are independent of time delays. Finally, numerical simulations are given to illustrate the effectiveness of the theoretical results obtained in this paper. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Influence of coal particles on ignition delay times of methane-air mixture

    NASA Astrophysics Data System (ADS)

    Fedorov, A. V.; Tropin, D. A.

    2018-03-01

    The results of numerical investigation of the ignition of a stoichiometric methane-air mixture in the presence of carbon particles with diameters of 20-52 μm in the temperature range 950-1150 K and pressures of 1.5-2.0 MPa are presented. The calculated data of the ignition delay times of coal particles in the coal particles/air mixture and of the ignition delay times of methane and coal particles in the methane/coal particles /air mixture are compared with the experimental ones. A satisfactory agreement of the data on the coal particles ignition delay times and methane ignition delay times in all the mixtures considered is shown.

  2. Optical resonators for true-time-delay beam steering

    NASA Astrophysics Data System (ADS)

    Gesell, Leslie H.; Evanko, Stephen M.

    1996-06-01

    Conventional true time delay beamforming and steering devices rely on switching between various lengths of delay line. Therefore only discrete delays are possible. Proposed is a new photonics concept for true time delay beamforming which provides a finely controlled continuum of delays with switching speeds on the order of 10's of nanoseconds or faster. The architecture uses an array of waveguide cavities with different resonate frequencies to channelize the signal. Each spectral component of the signal is phase shifted by an amount proportional to the frequency of that component and the desired time delay. These phase shifted spectral components are then summed to obtain the delayed signal. This paper provides an overview of the results of a Phase I SBIR contract where this concept has been refined and analyzed. The parameters for an operational system are determined and indication of the feasibility of this approach is given. Among the issues addressed are the requirements of the resonators and the methods necessary to implement fiber optic Bragg gratings as these resonators.

  3. Stability analysis for discrete-time stochastic memristive neural networks with both leakage and probabilistic delays.

    PubMed

    Liu, Hongjian; Wang, Zidong; Shen, Bo; Huang, Tingwen; Alsaadi, Fuad E

    2018-06-01

    This paper is concerned with the globally exponential stability problem for a class of discrete-time stochastic memristive neural networks (DSMNNs) with both leakage delays as well as probabilistic time-varying delays. For the probabilistic delays, a sequence of Bernoulli distributed random variables is utilized to determine within which intervals the time-varying delays fall at certain time instant. The sector-bounded activation function is considered in the addressed DSMNN. By taking into account the state-dependent characteristics of the network parameters and choosing an appropriate Lyapunov-Krasovskii functional, some sufficient conditions are established under which the underlying DSMNN is globally exponentially stable in the mean square. The derived conditions are made dependent on both the leakage and the probabilistic delays, and are therefore less conservative than the traditional delay-independent criteria. A simulation example is given to show the effectiveness of the proposed stability criterion. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Influence of gender on delays and early mortality in ST-segment elevation myocardial infarction: Insight from the first French Metaregistry, 2005-2012 patient-level pooled analysis.

    PubMed

    Manzo-Silberman, Stéphane; Couturaud, Francis; Charpentier, Sandrine; Auffret, Vincent; El Khoury, Carlos; Le Breton, Hervé; Belle, Loïc; Marlière, Stéphanie; Zeller, Marianne; Cottin, Yves; Danchin, Nicolas; Simon, Tabassome; Schiele, François; Gilard, Martine

    2018-07-01

    Women show greater mortality after acute myocardial infarction. We decided to investigate whether gender affects delays and impacts in-hospital mortality in a large population. We performed a patient-level analysis of 7 French MI registries from different regions from January 2005 to December 2012. All patients with acute STEMI were included within 12 h from symptom onset and a first medical contact with a mobile intensive care unit an emergency department of a hospital with percutaneous coronary intervention facility. Primary study outcomes were STEMI, patient and system, delays. Secondary outcome was in-hospital mortality. 16,733 patients were included with 4021 females (24%). Women were significantly older (mean age 70.6 vs 60.6), with higher diabetes (19.6% vs 15.4%) and hypertension rates (58.7% vs 38.8%). Patient delay was longer in women with adjusted mean difference of 14.4 min (p < 0.001); system delay did not differ. In-hospital death occurred 3 times more in women. This disadvantage persisted strongly adjusting for age, therapeutic strategy and delay with a 1.85 (1.32-2.61) adjusted hazard ratio. This overview of 16,733 real-life consecutive STEMI patients in prospective registries over an extensive period strongly indicates gender-related discrepancies, highlighting clinically relevant delays in seeking medical attention. However, higher in-hospital mortality was not totally explained by clinical characteristics or delays. Dedicated studies of specific mechanisms underlying this female disadvantage are mandatory to reduce this gender gap. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. 14 CFR 417.221 - Time delay analysis.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... occurs; (2) A flight safety official's decision and reaction time, including variation in human response... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false Time delay analysis. 417.221 Section 417... OF TRANSPORTATION LICENSING LAUNCH SAFETY Flight Safety Analysis § 417.221 Time delay analysis. (a...

  6. 14 CFR 417.221 - Time delay analysis.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... occurs; (2) A flight safety official's decision and reaction time, including variation in human response... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Time delay analysis. 417.221 Section 417... OF TRANSPORTATION LICENSING LAUNCH SAFETY Flight Safety Analysis § 417.221 Time delay analysis. (a...

  7. 14 CFR 417.221 - Time delay analysis.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... occurs; (2) A flight safety official's decision and reaction time, including variation in human response... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Time delay analysis. 417.221 Section 417... OF TRANSPORTATION LICENSING LAUNCH SAFETY Flight Safety Analysis § 417.221 Time delay analysis. (a...

  8. Symmetry, Hopf bifurcation, and the emergence of cluster solutions in time delayed neural networks.

    PubMed

    Wang, Zhen; Campbell, Sue Ann

    2017-11-01

    We consider the networks of N identical oscillators with time delayed, global circulant coupling, modeled by a system of delay differential equations with Z N symmetry. We first study the existence of Hopf bifurcations induced by the coupling time delay and then use symmetric Hopf bifurcation theory to determine how these bifurcations lead to different patterns of symmetric cluster oscillations. We apply our results to a case study: a network of FitzHugh-Nagumo neurons with diffusive coupling. For this model, we derive the asymptotic stability, global asymptotic stability, absolute instability, and stability switches of the equilibrium point in the plane of coupling time delay (τ) and excitability parameter (a). We investigate the patterns of cluster oscillations induced by the time delay and determine the direction and stability of the bifurcating periodic orbits by employing the multiple timescales method and normal form theory. We find that in the region where stability switching occurs, the dynamics of the system can be switched from the equilibrium point to any symmetric cluster oscillation, and back to equilibrium point as the time delay is increased.

  9. Predictors of Functional Dependence Despite Successful Revascularization in Large-Vessel Occlusion Strokes

    PubMed Central

    Shi, Zhong-Song; Liebeskind, David S.; Xiang, Bin; Ge, Sijian Grace; Feng, Lei; Albers, Gregory W.; Budzik, Ronald; Devlin, Thomas; Gupta, Rishi; Jansen, Olav; Jovin, Tudor G.; Killer-Oberpfalzer, Monika; Lutsep, Helmi L.; Macho, Juan; Nogueira, Raul G.; Rymer, Marilyn; Smith, Wade S.; Wahlgren, Nils; Duckwiler, Gary R.

    2014-01-01

    Background and Purpose High revascularization rates in large-vessel occlusion strokes treated by mechanical thrombectomy are not always associated with good clinical outcomes. We evaluated predictors of functional dependence despite successful revascularization among patients with acute ischemic stroke treated with thrombectomy. Methods We analyzed the pooled data from the Multi Mechanical Embolus Removal in Cerebral Ischemia (MERCI), Thrombectomy Revascularization of Large Vessel Occlusions in Acute Ischemic Stroke (TREVO), and TREVO 2 trials. Successful revascularization was defined as thrombolysis in cerebral infarction score 2b or 3. Functional dependence was defined as a score of 3 to 6 on the modified Rankin Scale at 3 months. We assessed relationship of demographic, clinical, angiographic characteristics, and hemorrhage with functional dependence despite successful revascularization. Results Two hundred and twenty-eight patients with successful revascularization had clinical outcome follow-up. The rates of functional dependence with endovascular success were 48.6% for Trevo thrombectomy and 58.0% for Merci thrombectomy. Age (odds ratio, 1.04; 95% confidence interval, 1.02–1.06 per 1-year increase), National Institutes of Health Stroke Scale score (odds ratio, 1.08; 95% confidence interval, 1.02–1.15 per 1-point increase), and symptom onset to endovascular treatment time (odds ratio, 1.11; 95% confidence interval, 1.01–1.22 per 30-minute delay) were predictors of functional dependence despite successful revascularization. Symptom onset to reperfusion time beyond 5 hours was associated with functional dependence. All subjects with symptomatic intracranial hemorrhage had functional dependence. Conclusions One half of patients with successful mechanical thrombectomy do not have good outcomes. Age, severe neurological deficits, and delayed endovascular treatment were associated with functional dependence despite successful revascularization. Our data support efforts to minimize delays to endovascular therapy in patients with acute ischemic stroke to improve outcomes. PMID:24876082

  10. Test of the FLRW Metric and Curvature with Strong Lens Time Delays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liao, Kai; Li, Zhengxiang; Wang, Guo-Jian

    We present a new model-independent strategy for testing the Friedmann–Lemaître–Robertson–Walker (FLRW) metric and constraining cosmic curvature, based on future time-delay measurements of strongly lensed quasar-elliptical galaxy systems from the Large Synoptic Survey Telescope and supernova observations from the Dark Energy Survey. The test only relies on geometric optics. It is independent of the energy contents of the universe and the validity of the Einstein equation on cosmological scales. The study comprises two levels: testing the FLRW metric through the distance sum rule (DSR) and determining/constraining cosmic curvature. We propose an effective and efficient (redshift) evolution model for performing the formermore » test, which allows us to concretely specify the violation criterion for the FLRW DSR. If the FLRW metric is consistent with the observations, then on the second level the cosmic curvature parameter will be constrained to ∼0.057 or ∼0.041 (1 σ ), depending on the availability of high-redshift supernovae, which is much more stringent than current model-independent techniques. We also show that the bias in the time-delay method might be well controlled, leading to robust results. The proposed method is a new independent tool for both testing the fundamental assumptions of homogeneity and isotropy in cosmology and for determining cosmic curvature. It is complementary to cosmic microwave background plus baryon acoustic oscillation analyses, which normally assume a cosmological model with dark energy domination in the late-time universe.« less

  11. Pooled Open Blocks Shorten Wait Times for Nonelective Surgical Cases.

    PubMed

    Zenteno, Ana C; Carnes, Tim; Levi, Retsef; Daily, Bethany J; Price, Devon; Moss, Susan C; Dunn, Peter F

    2015-07-01

    Assess the impact of the implementation of a data-driven scheduling strategy that aimed to improve the access to care of nonelective surgical patients at Massachusetts General Hospital (MGH). Between July 2009 and June 2010, MGH experienced increasing throughput challenges in its perioperative environment: approximately 30% of the nonelective patients were waiting more than the prescribed amount of time to get to surgery, hampering access to care and aggravating the lack of inpatient beds. This work describes the design and implementation of an "open block" strategy: operating room (OR) blocks were reserved for nonelective patients during regular working hours (prime time) and their management centralized. Discrete event simulation showed that 5 rooms would decrease the percentage of delayed patients from 30% to 2%, assuming that OR availability was the only reason for preoperative delay. Implementation began in January 2012. We compare metrics for June through December of 2012 against the same months of 2011. The average preoperative wait time of all nonelective surgical patients decreased by 25.5% (P < 0.001), even with a volume increase of 9%. The number of bed-days occupied by nonurgent patients before surgery declined by 13.3% whereas the volume increased by 4.5%. The large-scale application of an open-block strategy significantly improved the flow of nonelective patients at MGH when OR availability was a major reason for delay. Rigorous metrics were developed to evaluate its performance. Strong managerial leadership was crucial to enact the new practices and turn them into organizational change.

  12. Improving traffic flow at a 2-to-1 lane reduction with wirelessly connected, adaptive cruise control vehicles

    NASA Astrophysics Data System (ADS)

    Davis, L. C.

    2016-06-01

    Wirelessly connected vehicles that exchange information about traffic conditions can reduce delays caused by congestion. At a 2-to-1 lane reduction, the improvement in flow past a bottleneck due to traffic with a random mixture of 40% connected vehicles is found to be 52%. Control is based on connected-vehicle-reported velocities near the bottleneck. In response to indications of congestion the connected vehicles, which are also adaptive cruise control vehicles, reduce their speed in slowdown regions. Early lane changes of manually driven vehicles from the terminated lane to the continuous lane are induced by the slowing connected vehicles. Self-organized congestion at the bottleneck is thus delayed or eliminated, depending upon the incoming flow magnitude. For the large majority of vehicles, travel times past the bottleneck are substantially reduced. Control is responsible for delaying the onset of congestion as the incoming flow increases. Adaptive cruise control increases the flow out of the congested state at the bottleneck. The nature of the congested state, when it occurs, appears to be similar under a variety of conditions. Typically 80-100 vehicles are approximately equally distributed between the lanes in the 500 m region prior to the end of the terminated lane. Without the adaptive cruise control capability, connected vehicles can delay the onset of congestion but do not increase the asymptotic flow past the bottleneck. Calculations are done using the Kerner-Klenov three-phase theory, stochastic discrete-time model for manual vehicles. The dynamics of the connected vehicles is given by a conventional adaptive cruise control algorithm plus commanded deceleration. Because time in the model for manual vehicles is discrete (one-second intervals), it is assumed that the acceleration of any vehicle immediately in front of a connected vehicle is constant during the time interval, thereby preserving the computational simplicity and speed of a discrete-time model.

  13. The prolonged gastrointestinal syndrome in rhesus macaques: the relationship between gastrointestinal, hematopoietic, and delayed multi-organ sequelae following acute, potentially lethal, partial-body irradiation.

    PubMed

    MacVittie, Thomas J; Bennett, Alexander; Booth, Catherine; Garofalo, Michael; Tudor, Gregory; Ward, Amanda; Shea-Donohue, Terez; Gelfond, Daniel; McFarland, Emylee; Jackson, William; Lu, Wei; Farese, Ann M

    2012-10-01

    The dose response relationship for the acute gastrointestinal syndrome following total-body irradiation prevents analysis of the full recovery and damage to the gastrointestinal system, since all animals succumb to the subsequent 100% lethal hematopoietic syndrome. A partial-body irradiation model with 5% bone marrow sparing was established to investigate the prolonged effects of high-dose radiation on the gastrointestinal system, as well as the concomitant hematopoietic syndrome and other multi-organ injury including the lung. Herein, cellular and clinical parameters link acute and delayed coincident sequelae to radiation dose and time course post-exposure. Male rhesus Macaca mulatta were exposed to partial-body irradiation with 5% bone marrow (tibiae, ankles, feet) sparing using 6 MV linear accelerator photons at a dose rate of 0.80 Gy min(-1) to midline tissue (thorax) doses in the exposure range of 9.0 to 12.5 Gy. Following irradiation, all animals were monitored for multiple organ-specific parameters for 180 d. Animals were administered medical management including administration of intravenous fluids, antiemetics, prophylactic antibiotics, blood transfusions, antidiarrheals, supplemental nutrition, and analgesics. The primary endpoint was survival at 15, 60, or 180 d post-exposure. Secondary endpoints included evaluation of dehydration, diarrhea, hematologic parameters, respiratory distress, histology of small and large intestine, lung radiographs, and mean survival time of decedents. Dose- and time-dependent mortality defined several organ-specific sequelae, with LD50/15 of 11.95 Gy, LD50/60 of 11.01 Gy, and LD50/180 of 9.73 Gy for respective acute gastrointestinal, combined hematopoietic and gastrointestinal, and multi-organ delayed injury to include the lung. This model allows analysis of concomitant multi-organ sequelae, thus providing a link between acute and delayed radiation effects. Specific and multi-organ medical countermeasures can be assessed for efficacy and interaction during the concomitant evolution of acute and delayed key organ-specific subsyndromes.

  14. Observation of β-delayed two-proton emission in the decay of 22Si

    DOE PAGES

    Xu, X. X.; Lin, C. J.; Sun, L. J.; ...

    2017-01-19

    The decay of the lightest nucleus with Tz=-3, 22Si, was studied by a silicon array. A charged-particle group at 5600 (70) keV in the decay-energy spectrum was identified experimentally as β-delayed two-proton emission from the isobaric analog state (IAS) of 22Al. Experimental results of the IAS fed by a superallowed Fermi transition were compared with our large-scale shell-model calculations. The ground-state mass of 22Si was obtained indirectly in the experiment for the first time. Two-proton separation energy for 22Si is deduced to be -108 (125) keV, which indicates that it is a very marginal candidate for two-proton ground-state emission.

  15. Observation of β-delayed two-proton emission in the decay of 22Si

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, X. X.; Lin, C. J.; Sun, L. J.

    The decay of the lightest nucleus with Tz=-3, 22Si, was studied by a silicon array. A charged-particle group at 5600 (70) keV in the decay-energy spectrum was identified experimentally as β-delayed two-proton emission from the isobaric analog state (IAS) of 22Al. Experimental results of the IAS fed by a superallowed Fermi transition were compared with our large-scale shell-model calculations. The ground-state mass of 22Si was obtained indirectly in the experiment for the first time. Two-proton separation energy for 22Si is deduced to be -108 (125) keV, which indicates that it is a very marginal candidate for two-proton ground-state emission.

  16. Information processing using a single dynamical node as complex system

    PubMed Central

    Appeltant, L.; Soriano, M.C.; Van der Sande, G.; Danckaert, J.; Massar, S.; Dambre, J.; Schrauwen, B.; Mirasso, C.R.; Fischer, I.

    2011-01-01

    Novel methods for information processing are highly desired in our information-driven society. Inspired by the brain's ability to process information, the recently introduced paradigm known as 'reservoir computing' shows that complex networks can efficiently perform computation. Here we introduce a novel architecture that reduces the usually required large number of elements to a single nonlinear node with delayed feedback. Through an electronic implementation, we experimentally and numerically demonstrate excellent performance in a speech recognition benchmark. Complementary numerical studies also show excellent performance for a time series prediction benchmark. These results prove that delay-dynamical systems, even in their simplest manifestation, can perform efficient information processing. This finding paves the way to feasible and resource-efficient technological implementations of reservoir computing. PMID:21915110

  17. 75 FR 41920 - Agency Information Collection; Activity Under OMB Review; Airline Service Quality Performance...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-19

    ... and analyze air traffic delays. Wheels-up and wheels-down times are used in conjunction with departure and arrival times to show the extent of ground delays. Actual elapsed flight time, wheels-down minus wheels- up time, is compared to scheduled elapsed flight time to identify airborne delays. The reporting...

  18. Dissociation of immediate and delayed effects of emotional arousal on episodic memory.

    PubMed

    Schümann, Dirk; Bayer, Janine; Talmi, Deborah; Sommer, Tobias

    2018-02-01

    Emotionally arousing events are usually better remembered than neutral ones. This phenomenon is in humans mostly studied by presenting mixed lists of neutral and emotional items. An emotional enhancement of memory is observed in these studies often already immediately after encoding and increases with longer delays and consolidation. A large body of animal research showed that the more efficient consolidation of emotionally arousing events is based on an activation of the central noradrenergic system and the amygdala (Modulation Hypothesis; Roozendaal & McGaugh, 2011). The immediately superior recognition of emotional items is attributed primarily to their attraction of attention during encoding which is also thought to be based on the amygdala and the central noradrenergic system. To investigate whether the amygdala and noradrenergic system support memory encoding and consolidation via shared neural substrates and processes a large sample of participants (n = 690) encoded neutral and arousing pictures. Their memory was tested immediately and after a consolidation delay. In addition, they were genotyped in two relevant polymorphisms (α 2B -adrenergic receptor and serotonin transporter). Memory for negative and positive emotional pictures was enhanced at both time points where these enhancements were correlated (immediate r = 0.60 and delayed test r = 0.46). Critically, the effects of emotional arousal on encoding and consolidation correlated only very low (negative r = 0.14 and positive r = 0.03 pictures) suggesting partly distinct underlying processes consistent with a functional heterogeneity of the central noradrenergic system. No effect of genotype on either effect was observed. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. High resolution digital delay timer

    DOEpatents

    Martin, Albert D.

    1988-01-01

    Method and apparatus are provided for generating an output pulse following a trigger pulse at a time delay interval preset with a resolution which is high relative to a low resolution available from supplied clock pulses. A first lumped constant delay (20) provides a first output signal (24) at predetermined interpolation intervals corresponding to the desired high resolution time interval. Latching circuits (26, 28) latch the high resolution data (24) to form a first synchronizing data set (60). A selected time interval has been preset to internal counters (142, 146, 154) and corrected for circuit propagation delay times having the same order of magnitude as the desired high resolution. Internal system clock pulses (32, 34) count down the counters to generate an internal pulse delayed by an interval which is functionally related to the preset time interval. A second LCD (184) corrects the internal signal with the high resolution time delay. A second internal pulse is then applied to a third LCD (74) to generate a second set of synchronizing data (76) which is complementary with the first set of synchronizing data (60) for presentation to logic circuits (64). The logic circuits (64) further delay the internal output signal (72) to obtain a proper phase relationship of an output signal (80) with the internal pulses (32, 34). The final delayed output signal (80) thereafter enables the output pulse generator (82) to produce the desired output pulse (84) at the preset time delay interval following input of the trigger pulse (10, 12).

  20. Role of local network oscillations in resting-state functional connectivity.

    PubMed

    Cabral, Joana; Hugues, Etienne; Sporns, Olaf; Deco, Gustavo

    2011-07-01

    Spatio-temporally organized low-frequency fluctuations (<0.1 Hz), observed in BOLD fMRI signal during rest, suggest the existence of underlying network dynamics that emerge spontaneously from intrinsic brain processes. Furthermore, significant correlations between distinct anatomical regions-or functional connectivity (FC)-have led to the identification of several widely distributed resting-state networks (RSNs). This slow dynamics seems to be highly structured by anatomical connectivity but the mechanism behind it and its relationship with neural activity, particularly in the gamma frequency range, remains largely unknown. Indeed, direct measurements of neuronal activity have revealed similar large-scale correlations, particularly in slow power fluctuations of local field potential gamma frequency range oscillations. To address these questions, we investigated neural dynamics in a large-scale model of the human brain's neural activity. A key ingredient of the model was a structural brain network defined by empirically derived long-range brain connectivity together with the corresponding conduction delays. A neural population, assumed to spontaneously oscillate in the gamma frequency range, was placed at each network node. When these oscillatory units are integrated in the network, they behave as weakly coupled oscillators. The time-delayed interaction between nodes is described by the Kuramoto model of phase oscillators, a biologically-based model of coupled oscillatory systems. For a realistic setting of axonal conduction speed, we show that time-delayed network interaction leads to the emergence of slow neural activity fluctuations, whose patterns correlate significantly with the empirically measured FC. The best agreement of the simulated FC with the empirically measured FC is found for a set of parameters where subsets of nodes tend to synchronize although the network is not globally synchronized. Inside such clusters, the simulated BOLD signal between nodes is found to be correlated, instantiating the empirically observed RSNs. Between clusters, patterns of positive and negative correlations are observed, as described in experimental studies. These results are found to be robust with respect to a biologically plausible range of model parameters. In conclusion, our model suggests how resting-state neural activity can originate from the interplay between the local neural dynamics and the large-scale structure of the brain. Copyright © 2011 Elsevier Inc. All rights reserved.

  1. Determination of Relevant Neuron–Neuron Connections for Neural Prosthetics Using Time-Delayed Mutual Information: Tutorial and Preliminary Results

    PubMed Central

    Taghva, Alexander; Song, Dong; Hampson, Robert E.; Deadwyler, Sam A.; Berger, Theodore W.

    2013-01-01

    BACKGROUND Identification of functional dependence among neurons is a necessary component in both the rational design of neural prostheses as well as in the characterization of network physiology. The objective of this article is to provide a tutorial for neurosurgeons regarding information theory, specifically time-delayed mutual information, and to compare time-delayed mutual information, an information theoretic quantity based on statistical dependence, with cross-correlation, a commonly used metric for this task in a preliminary analysis of rat hippocampal neurons. METHODS Spike trains were recorded from rats performing delayed nonmatch-to-sample task using an array of electrodes surgically implanted into the hippocampus of each hemisphere of the brain. In addition, spike train simulations of positively correlated neurons, negatively correlated neurons, and neurons correlated by nonlinear functions were generated. These were evaluated by time-delayed mutual information (MI) and cross-correlation. RESULTS Application of time-delayed MI to experimental data indicated the optimal bin size for information capture in the CA3-CA1 system was 40 ms, which may provide some insight into the spatiotemporal nature of encoding in the rat hippocampus. On simulated data, time-delayed MI showed peak values at appropriate time lags in positively correlated, negatively correlated, and complexly correlated data. Cross-correlation showed peak and troughs with positively correlated and negatively correlated data, but failed to capture some higher order correlations. CONCLUSIONS Comparison of time-delayed MI to cross-correlation in identification of functionally dependent neurons indicates that the methods are not equivalent. Time-delayed MI appeared to capture some interactions between CA3-CA1 neurons at physiologically plausible time delays missed by cross-correlation. It should be considered as a method for identification of functional dependence between neurons and may be useful in the development of neural prosthetics. PMID:22120279

  2. Determination of relevant neuron-neuron connections for neural prosthetics using time-delayed mutual information: tutorial and preliminary results.

    PubMed

    Taghva, Alexander; Song, Dong; Hampson, Robert E; Deadwyler, Sam A; Berger, Theodore W

    2012-12-01

    Identification of functional dependence among neurons is a necessary component in both the rational design of neural prostheses as well as in the characterization of network physiology. The objective of this article is to provide a tutorial for neurosurgeons regarding information theory, specifically time-delayed mutual information, and to compare time-delayed mutual information, an information theoretic quantity based on statistical dependence, with cross-correlation, a commonly used metric for this task in a preliminary analysis of rat hippocampal neurons. Spike trains were recorded from rats performing delayed nonmatch-to-sample task using an array of electrodes surgically implanted into the hippocampus of each hemisphere of the brain. In addition, spike train simulations of positively correlated neurons, negatively correlated neurons, and neurons correlated by nonlinear functions were generated. These were evaluated by time-delayed mutual information (MI) and cross-correlation. Application of time-delayed MI to experimental data indicated the optimal bin size for information capture in the CA3-CA1 system was 40 ms, which may provide some insight into the spatiotemporal nature of encoding in the rat hippocampus. On simulated data, time-delayed MI showed peak values at appropriate time lags in positively correlated, negatively correlated, and complexly correlated data. Cross-correlation showed peak and troughs with positively correlated and negatively correlated data, but failed to capture some higher order correlations. Comparison of time-delayed MI to cross-correlation in identification of functionally dependent neurons indicates that the methods are not equivalent. Time-delayed MI appeared to capture some interactions between CA3-CA1 neurons at physiologically plausible time delays missed by cross-correlation. It should be considered as a method for identification of functional dependence between neurons and may be useful in the development of neural prosthetics. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. Switchgrass Biomass Quality as Affected by Nitrogen Rate, Harvest Time, and Storage

    DOE PAGES

    Ibrahim, Mostafa; Hong, Chang Oh.; Singh, Shikha; ...

    2017-01-25

    The purpose of this study was to assess the changes in switchgrass (Panicum virgatum L.) biomass quality as affected by N rate, harvest time, and storage. This research was conducted near Bristol, SD, in 2010 and 2011. Treatments included three N rates (0, 56, and 112 kg N ha –1) applied annually and each N rate replicated four times. After a killing frost, all of the plots were harvested and baled in large round bales in October 2010 and November 2011. An area of about 30 m 2 from each plot was left unharvested to represent storage of standing switchgrassmore » over the winter and to determine dry matter yields. Switchgrass was analyzed for hemicellulose, cellulose, lignin, mineral elements, N, and C. In the first season, storage of the fall harvested switchgrass bales numerically increased the concentrations of hemicellulose, lignin, and N. In the second season, they increased significantly. Mineral elements significantly increased in both sampling seasons. Delaying harvest until spring decreased lignin, N, and mineral elements concentration, and increased cellulose and hemicellulose concentrations, but also reduced biomass yield. Results from this study suggest that delaying the switchgrass harvest until spring increased the overall feedstock quality for ethanol production, but yield reductions must be considered to determine the overall economic impact of a delayed harvest.« less

  4. Switchgrass Biomass Quality as Affected by Nitrogen Rate, Harvest Time, and Storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ibrahim, Mostafa; Hong, Chang Oh.; Singh, Shikha

    The purpose of this study was to assess the changes in switchgrass (Panicum virgatum L.) biomass quality as affected by N rate, harvest time, and storage. This research was conducted near Bristol, SD, in 2010 and 2011. Treatments included three N rates (0, 56, and 112 kg N ha –1) applied annually and each N rate replicated four times. After a killing frost, all of the plots were harvested and baled in large round bales in October 2010 and November 2011. An area of about 30 m 2 from each plot was left unharvested to represent storage of standing switchgrassmore » over the winter and to determine dry matter yields. Switchgrass was analyzed for hemicellulose, cellulose, lignin, mineral elements, N, and C. In the first season, storage of the fall harvested switchgrass bales numerically increased the concentrations of hemicellulose, lignin, and N. In the second season, they increased significantly. Mineral elements significantly increased in both sampling seasons. Delaying harvest until spring decreased lignin, N, and mineral elements concentration, and increased cellulose and hemicellulose concentrations, but also reduced biomass yield. Results from this study suggest that delaying the switchgrass harvest until spring increased the overall feedstock quality for ethanol production, but yield reductions must be considered to determine the overall economic impact of a delayed harvest.« less

  5. Self-report surveys of student sleep and well-being: a review of use in the context of school start times.

    PubMed

    Ziporyn, Terra D; Malow, Beth A; Oakes, Kari; Wahlstrom, Kyla L

    2017-12-01

    A large body of literature supports the need to delay high school starting times to improve student health and well-being by allowing students an opportunity to get sufficient and appropriately timed sleep. However, a dearth of uniform and standardized tools has hampered efforts to collect data on adolescent sleep and related health behaviors that might be used to establish a need for, or to evaluate outcomes of, bell time delays. To assess validated tools available to schools and contrast them with tools that schools have actually used, we identified and reviewed published, validated self-report surveys of adolescent sleep and well-being, as well as unpublished surveys, used to assess student sleep and related health measures in US high schools considering later high school start times. Only three of the surveys reviewed had adequate psychometric properties and covered an appropriately wide range of health and academic questions to allow for discernment of outcomes in pre-post educational settings. The surveys exhibited marked variability in numerous areas, including focus, terminology, calculation of sleep duration, mode of administration, context of administration, and follow-up procedures. Our findings provide sleep researchers and school administrators with an overview of surveys that school districts have used, along with a deeper understanding of the challenges of choosing, designing, and administering self-report surveys in the context of changing school schedules. They also highlight the opportunities presented by these instruments to assess outcomes of delaying bell times, compare communities meaningfully, and establish the need for later school start times in individual school districts. Copyright © 2017 National Sleep Foundation. Published by Elsevier Inc. All rights reserved.

  6. The Effect of Cognitive Restructuring on Delay of Gratification.

    ERIC Educational Resources Information Center

    Nisan, Mordecai; Koriat, Asher

    1984-01-01

    Two experiments evaluated predictions derived from a cognitive-developmental approach to delay of gratification. In the first, kindergarten children were asked to make a choice between a small immediate and a large delayed reward. In the second, children were presented with either an objective-rational or a subjective-emotional argument…

  7. Delaying Developmental Mathematics: The Characteristics and Costs

    ERIC Educational Resources Information Center

    Johnson, Marianne; Kuennen, Eric

    2004-01-01

    This paper investigates which students delay taking a required developmental mathematics course and the impact of delay on student performance in introductory microeconomics. Analysis of a sample of 1462 students at a large Midwestern university revealed that, although developmental-level mathematics students did not reach the same level of…

  8. Statistical significance approximation in local trend analysis of high-throughput time-series data using the theory of Markov chains.

    PubMed

    Xia, Li C; Ai, Dongmei; Cram, Jacob A; Liang, Xiaoyi; Fuhrman, Jed A; Sun, Fengzhu

    2015-09-21

    Local trend (i.e. shape) analysis of time series data reveals co-changing patterns in dynamics of biological systems. However, slow permutation procedures to evaluate the statistical significance of local trend scores have limited its applications to high-throughput time series data analysis, e.g., data from the next generation sequencing technology based studies. By extending the theories for the tail probability of the range of sum of Markovian random variables, we propose formulae for approximating the statistical significance of local trend scores. Using simulations and real data, we show that the approximate p-value is close to that obtained using a large number of permutations (starting at time points >20 with no delay and >30 with delay of at most three time steps) in that the non-zero decimals of the p-values obtained by the approximation and the permutations are mostly the same when the approximate p-value is less than 0.05. In addition, the approximate p-value is slightly larger than that based on permutations making hypothesis testing based on the approximate p-value conservative. The approximation enables efficient calculation of p-values for pairwise local trend analysis, making large scale all-versus-all comparisons possible. We also propose a hybrid approach by integrating the approximation and permutations to obtain accurate p-values for significantly associated pairs. We further demonstrate its use with the analysis of the Polymouth Marine Laboratory (PML) microbial community time series from high-throughput sequencing data and found interesting organism co-occurrence dynamic patterns. The software tool is integrated into the eLSA software package that now provides accelerated local trend and similarity analysis pipelines for time series data. The package is freely available from the eLSA website: http://bitbucket.org/charade/elsa.

  9. Maternal Near-Miss Due to Unsafe Abortion and Associated Short-Term Health and Socio-Economic Consequences in Nigeria

    PubMed Central

    Prada, Elena; Bankole, Akinrinola; Oladapo, Olufemi T.; Awolude, Olutosin A.; Adewole, Isaac F.; Onda, Tsuyoshi

    2016-01-01

    Little is known about maternal near-miss (MNM) due to unsafe abortion in Nigeria. We used the WHO criteria to identify near-miss events and the proportion due to unsafe abortion among women of childbearing age in eight large secondary and tertiary hospitals across the six geo-political zones. We also explored the characteristics of women with these events, delays in seeking care and the short-term socioeconomic and health impacts on women and their families. Between July 2011 and January 2012, 137 MNM cases were identified of which 13 or 9.5% were due to unsafe abortions. Severe bleeding, pain and fever were the most common immediate abortion complications. On average, treatment of MNM due to abortion costs six times more than induced abortion procedures. Unsafe abortion and delays in care seeking are important contributors to MNM. Programs to prevent unsafe abortion and delays in seeking postabortion care are urgently needed to reduce abortion related MNM in Nigeria. PMID:26506658

  10. Classifying epileptic EEG signals with delay permutation entropy and Multi-Scale K-means.

    PubMed

    Zhu, Guohun; Li, Yan; Wen, Peng Paul; Wang, Shuaifang

    2015-01-01

    Most epileptic EEG classification algorithms are supervised and require large training datasets, that hinder their use in real time applications. This chapter proposes an unsupervised Multi-Scale K-means (MSK-means) MSK-means algorithm to distinguish epileptic EEG signals and identify epileptic zones. The random initialization of the K-means algorithm can lead to wrong clusters. Based on the characteristics of EEGs, the MSK-means MSK-means algorithm initializes the coarse-scale centroid of a cluster with a suitable scale factor. In this chapter, the MSK-means algorithm is proved theoretically superior to the K-means algorithm on efficiency. In addition, three classifiers: the K-means, MSK-means MSK-means and support vector machine (SVM), are used to identify seizure and localize epileptogenic zone using delay permutation entropy features. The experimental results demonstrate that identifying seizure with the MSK-means algorithm and delay permutation entropy achieves 4. 7 % higher accuracy than that of K-means, and 0. 7 % higher accuracy than that of the SVM.

  11. Maternal Near-Miss Due to Unsafe Abortion and Associated Short-Term Health and Socio-Economic Consequences in Nigeria.

    PubMed

    Prada, Elena; Bankole, Akinrinola; Oladapo, Olufemi T; Awolude, Olutosin A; Adewole, Isaac F; Onda, Tsuyoshi

    2015-06-01

    Little is known about maternal near-miss (MNM) due to unsafe abortion in Nigeria. We used the WHO criteria to identify near-miss events and the proportion due to unsafe abortion among women of childbearing age in eight large secondary and tertiary hospitals across the six geo-political zones. We also explored the characteristics of women with these events, delays in seeking care and the short-term socioeconomic and health impacts on women and their families. Between July 2011 and January 2012, 137 MNM cases were identified of which 13 or 9.5% were due to unsafe abortions. Severe bleeding, pain and fever were the most common immediate abortion complications. On average, treatment of MNM due to abortion costs six times more than induced abortion procedures. Unsafe abortion and delays in care seeking are important contributors to MNM. Programs to prevent unsafe abortion and delays in seeking postabortion care are urgently needed to reduce abortion related MNM in Nigeria.

  12. Young children's understanding of briefly versus extremely delayed images of the self: emergence of the autobiographical stance.

    PubMed

    Povinelli, D J; Simon, B B

    1998-01-01

    Eighty-eight young 3-, 4-, and 5-year-olds were scheduled for 2 testing sessions. On Visit 1, the children were videotaped playing a game while an experimenter covertly placed a large sticker on their head and covertly removed it after the game. One week later, the children were videotaped playing a different game. A sticker was again covertly placed on their heads. Half the children in each age group then observed the video from the previous week, whereas the other half observed the tape from 3 min earlier. Less than half of the 3-year-olds in both conditions reached up for the sticker. In contrast, the majority of 4- and 5-year-olds in the briefly delayed condition reached for the sticker, but few in the extremely delayed condition did so. By 4 years of age, children may have developed a causal understanding of the self's endurance through time.

  13. Longitudinal Outcomes of Start Time Delay on Sleep, Behavior, and Achievement in High School

    PubMed Central

    Thacher, Pamela V.; Onyper, Serge V.

    2016-01-01

    Study Objectives: To establish whether sleep, health, mood, behavior, and academics improved after a 45-minute delay in high school start time, and whether changes persisted longitudinally. Methods: We collected data from school records and student self-report across a number of domains at baseline (May 2012) and at two follow-up time points (November 2012 and May 2013), at a public high school in upstate New York. Students enrolled during academic years (AY) 2011–2012 and 2012–2013 completed the Pittsburgh Sleep Quality Index; the DASS-21; the “Owl-Lark” Scale; the Daytime Sleepiness Index; and a brief self-report of health. Reports from school records regarding attendance, tardiness, disciplinary violations, and academic performance were collected for AY 2010–2011 through 2013–2014. Results: Students delayed but did not extend their sleep period; we found lasting improvements in tardiness and disciplinary violations after the start-time delay, but no changes to other variables. At the first follow-up, students reported 20 minutes longer sleep, driven by later rise times and stable bed times. At the second follow-up, students maintained later rise times but delayed bedtimes, returning total sleep to baseline levels. A delay in rise time, paralleling the delay in the start time that occurred, resulted in less tardiness and decreased disciplinary incidents, but larger improvements to sleep patterns may be necessary to affect health, attendance, sleepiness, and academic performance. Conclusions: Later start times improved tardiness and disciplinary issues at this school district. A delay in start time may be a necessary but not sufficient means to increase sleep time and may depend on preexisting individual differences. Commentary: A commentary on this article appears in this issue on page 267. Citation: Thacher PV, Onyper SV. Longitudinal outcomes of start time delay on sleep, behavior, and achievement in high school. SLEEP 2016;39(2):271–281. PMID:26446106

  14. Stability and Bifurcation Analysis in a Maglev System with Multiple Delays

    NASA Astrophysics Data System (ADS)

    Zhang, Lingling; Huang, Jianhua; Huang, Lihong; Zhang, Zhizhou

    This paper considers the time-delayed feedback control for Maglev system with two discrete time delays. We determine constraints on the feedback time delays which ensure the stability of the Maglev system. An algorithm is developed for drawing a two-parametric bifurcation diagram with respect to two delays τ1 and τ2. Direction and stability of periodic solutions are also determined using the normal form method and center manifold theory by Hassard. The complex dynamical behavior of the Maglev system near the domain of stability is confirmed by exhaustive numerical simulation.

  15. PRECISION TIME-DELAY CIRCUIT

    DOEpatents

    Creveling, R.

    1959-03-17

    A tine-delay circuit which produces a delay time in d. The circuit a capacitor, an te back resistance, connected serially with the anode of the diode going to ground. At the start of the time delay a negative stepfunction is applied to the series circuit and initiates a half-cycle transient oscillatory voltage terminated by a transient oscillatory voltage of substantially higher frequency. The output of the delay circuit is taken at the junction of the inductor and diode where a sudden voltage rise appears after the initiation of the higher frequency transient oscillations.

  16. Improving Operating Room Efficiency: First Case On-Time Start Project.

    PubMed

    Phieffer, Laura; Hefner, Jennifer L; Rahmanian, Armin; Swartz, Jason; Ellison, Christopher E; Harter, Ronald; Lumbley, Joshua; Moffatt-Bruce, Susan D

    Operating rooms (ORs) are costly to run, and multiple factors influence efficiency. The first case on-time start (FCOS) of an OR is viewed as a harbinger of efficiency for the daily schedule. Across 26 ORs of a large, academic medical center, only 49% of cases started on time in October 2011. The Perioperative Services Department engaged an interdisciplinary Operating Room Committee to apply Six Sigma tools to this problem. The steps of this project included (1) problem mapping, (2) process improvements to preoperative readiness, (3) informatics support improvements, and (4) continuous measurement and feedback. By June 2013, there was a peak of 92% first case on-time starts across service lines, decreasing to 78% through 2014, still significantly above the preintervention level of 49% (p = .000). Delay minutes also significantly decreased through the study period (p = .000). Across 2013, the most common delay owners were the patient, the surgeon, the facility, and the anesthesia department. Continuous and sustained improvement of first case on-time starts is attributed to tracking the FCOS metric, establishing embedded process improvement resources and creating transparency of data. This article highlights success factors and barriers to program success and sustainability.

  17. Benefit Assessment of the Precision Departure Release Capability Concept

    NASA Technical Reports Server (NTRS)

    Palopo, Kee; Chatterji, Gano B.; Lee, Hak-Tae

    2011-01-01

    A Precision Departure Release Capability concept is being evaluated by both the National Aeronautics and Space Administration and the Federal Aviation Administration as part of a larger goal of improving throughput, efficiency and capacity in integrated departure, arrival and surface operations. The concept is believed to have the potential of increasing flight efficiency and throughput by avoiding missing assigned slots and minimizing speed increase or path stretch to recover the slot. The main thrust of the paper is determining the impact of early and late departures from the departure runway when an aircraft has a slot assigned either at a meter fix or at the arrival airport. Results reported in the paper are for two scenarios. The first scenario considers flights out of Dallas/Fort Worth destined for Hartsfield-Jackson International Airport in Atlanta flying through the Meridian meter-fix in the Memphis Center with miles-in-trail constraints. The second scenario considers flights destined to George Bush Intercontinental/Houston Airport with specified airport arrival rate constraint. Results show that delay reduction can be achieved by allowing reasonable speed changes in scheduling. It was determined that the traffic volume between Dallas/Fort Worth and Atlanta via the Meridian fix is low and the departures times are spread enough that large departure schedule uncertainty can be tolerated. Flights can depart early or late within 90 minutes without accruing much more delay due to miles-in-trail constraint at the Meridian fix. In the Houston scenario, 808 arrivals from 174 airports were considered. Results show that delay experienced by the 16 Dallas/Fort Worth departures is higher if initial schedules of the remaining 792 flights are kept unaltered while they are rescheduled. Analysis shows that the probability of getting the initially assigned slot back after perturbation and rescheduling decreases with increasing standard deviation of the departure delay distributions. Results show that most Houston arrivals can be expected to be on time based on the assumed zero-mean Normal departure delay distributions achievable by Precision Departure Release Capability. In the current system, airport-departure delay, which is the sum of gate-departure delay and taxi-out delay, is observed at the airports. This delay acts as a bias, which can be reduced by Precision Departure Release Capability.

  18. Academic delay of gratification, self-efficacy, and time management among academically unprepared college students.

    PubMed

    Bembenutty, Héfer

    2009-04-01

    This study examined the associations between academic delay of gratification, self-efficacy beliefs, and time management among academically unprepared college students participating in a summer-immersion program. This study also examined whether the relation of self-efficacy with time management is mediated by academic delay of gratification. Analysis indicated that self-efficacy was directly associated with time management, as delay of gratification served to mediate this effect partially. Self-efficacy emerged as the strongest positive predictor of academic achievement.

  19. Time delay in atomic photoionization with circularly polarized light

    NASA Astrophysics Data System (ADS)

    Ivanov, I. A.; Kheifets, A. S.

    2013-03-01

    We study time delay in atomic photoionization by circularly polarized light. By considering the Li atom in an excited 2p state, we demonstrate a strong time-delay asymmetry between the photoemission of the target electrons that are co- and counter-rotating with the electromagnetic field in the polarization plane. In addition, we observe the time-delay sensitivity to the polar angle of the photoelectron emission in the polarization plane. This modulation depends on the shape and duration of the electromagnetic pulse.

  20. Generating chaos for discrete time-delayed systems via impulsive control.

    PubMed

    Guan, Zhi-Hong; Liu, Na

    2010-03-01

    Generating chaos for a class of discrete time-delayed systems via impulsive control is investigated in this paper. With the augmented matrix method, the time-delay impulsive systems can be transformed into a new class of linear discrete impulsive systems. Based on the largest Lyapunov exponent and the boundedness of the systems, some theoretical results about the chaotification for the discrete impulsive systems with time delay are derived and an example is given to visualize the satisfactory control performance.

  1. Climate models with delay differential equations

    NASA Astrophysics Data System (ADS)

    Keane, Andrew; Krauskopf, Bernd; Postlethwaite, Claire M.

    2017-11-01

    A fundamental challenge in mathematical modelling is to find a model that embodies the essential underlying physics of a system, while at the same time being simple enough to allow for mathematical analysis. Delay differential equations (DDEs) can often assist in this goal because, in some cases, only the delayed effects of complex processes need to be described and not the processes themselves. This is true for some climate systems, whose dynamics are driven in part by delayed feedback loops associated with transport times of mass or energy from one location of the globe to another. The infinite-dimensional nature of DDEs allows them to be sufficiently complex to reproduce realistic dynamics accurately with a small number of variables and parameters. In this paper, we review how DDEs have been used to model climate systems at a conceptual level. Most studies of DDE climate models have focused on gaining insights into either the global energy balance or the fundamental workings of the El Niño Southern Oscillation (ENSO) system. For example, studies of DDEs have led to proposed mechanisms for the interannual oscillations in sea-surface temperature that is characteristic of ENSO, the irregular behaviour that makes ENSO difficult to forecast and the tendency of El Niño events to occur near Christmas. We also discuss the tools used to analyse such DDE models. In particular, the recent development of continuation software for DDEs makes it possible to explore large regions of parameter space in an efficient manner in order to provide a "global picture" of the possible dynamics. We also point out some directions for future research, including the incorporation of non-constant delays, which we believe could improve the descriptive power of DDE climate models.

  2. Delay in micro-discharges appearance during PEO of Al: Evidence of a mechanism of charge accumulation at the electrolyte/oxide interface

    NASA Astrophysics Data System (ADS)

    Martin, J.; Nominé, A.; Brochard, F.; Briançon, J.-L.; Noël, C.; Belmonte, T.; Czerwiec, T.; Henrion, G.

    2017-07-01

    PEO was conducted on Al by applying a pulsed bipolar current. The role of the cathodic polarization on the appearance of micro-discharges (MDs) and on the subsequent formation of the PEO oxide layers is investigated. Various ratios of the charge quantity RCQ = Qp/Qn (defined as the anodic Qp to cathodic Qn charge quantity ratio over one current pulse period) in the range [0.5; 6.0] were selected by changing the waveform parameters of the cathodic current while keeping the waveform of the anodic current unchanged. Results show that the appearance of MDs is delayed with respect to the rising edge of the anodic current; this delay strongly depends on both the processing time and the applied cathodic charge quantity. It is also evidenced that shorter delays promoted by high RCQ values (RCQ > 1) are associated with stronger MDs (large size and long life) that have detrimental effects on the formed PEO oxide layers. Thicker and the more compact oxide layer morphology is achieved with the intermediate RCQ value (RCQ = 0.9) for which the delay of the MDs appearance is high and the MDs softer. Low RCQ (RCQ < 0.9) results in an earlier extinction of the MDs as the process goes on, which leads to poorly oxidized metal. A mechanism of charge accumulation taking place at the oxide/electrolyte interface and arising before the occurrence of dielectric breakdown is proposed to explain the ignition of MDs during pulsed bipolar PEO of aluminium. A close examination of the voltage-time response which can be adequately simulated with an equivalent RC circuit evidences the capacitive behaviour of the oxide layer and therefore confirms this proposed mechanism of charge accumulation.

  3. Climate models with delay differential equations.

    PubMed

    Keane, Andrew; Krauskopf, Bernd; Postlethwaite, Claire M

    2017-11-01

    A fundamental challenge in mathematical modelling is to find a model that embodies the essential underlying physics of a system, while at the same time being simple enough to allow for mathematical analysis. Delay differential equations (DDEs) can often assist in this goal because, in some cases, only the delayed effects of complex processes need to be described and not the processes themselves. This is true for some climate systems, whose dynamics are driven in part by delayed feedback loops associated with transport times of mass or energy from one location of the globe to another. The infinite-dimensional nature of DDEs allows them to be sufficiently complex to reproduce realistic dynamics accurately with a small number of variables and parameters. In this paper, we review how DDEs have been used to model climate systems at a conceptual level. Most studies of DDE climate models have focused on gaining insights into either the global energy balance or the fundamental workings of the El Niño Southern Oscillation (ENSO) system. For example, studies of DDEs have led to proposed mechanisms for the interannual oscillations in sea-surface temperature that is characteristic of ENSO, the irregular behaviour that makes ENSO difficult to forecast and the tendency of El Niño events to occur near Christmas. We also discuss the tools used to analyse such DDE models. In particular, the recent development of continuation software for DDEs makes it possible to explore large regions of parameter space in an efficient manner in order to provide a "global picture" of the possible dynamics. We also point out some directions for future research, including the incorporation of non-constant delays, which we believe could improve the descriptive power of DDE climate models.

  4. Delay correction model for estimating bus emissions at signalized intersections based on vehicle specific power distributions.

    PubMed

    Song, Guohua; Zhou, Xixi; Yu, Lei

    2015-05-01

    The intersection is one of the biggest emission points for buses and also the high exposure site for people. Several traffic performance indexes have been developed and widely used for intersection evaluations. However, few studies have focused on the relationship between these indexes and emissions at intersections. This paper intends to propose a model that relates emissions to the two commonly used measures of effectiveness (i.e. delay time and number of stops) by using bus activity data and emission data at intersections. First, with a large number of field instantaneous emission data and corresponding activity data collected by the Portable Emission Measurement System (PEMS), emission rates are derived for different vehicle specific power (VSP) bins. Then, 2002 sets of trajectory data, an equivalent of about 140,000 sets of second-by-second activity data, are obtained from Global Position Systems (GPSs)-equipped diesel buses in Beijing. The delay and the emission factors of each trajectory are estimated. Then, by using baseline emission factors for two types of intersections, e.g. the Arterial @ Arterial Intersection and the Arterial @ Collector, delay correction factors are calculated for the two types of intersections at different congestion levels. Finally, delay correction models are established for adjusting emission factors for each type of intersections and different numbers of stops. A comparative analysis between estimated and field emission factors demonstrates that the delay correction model is reliable. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Sensorimotor responsiveness and resolution in the giraffe.

    PubMed

    More, Heather L; O'Connor, Shawn M; Brøndum, Emil; Wang, Tobias; Bertelsen, Mads F; Grøndahl, Carsten; Kastberg, Karin; Hørlyck, Arne; Funder, Jonas; Donelan, J Maxwell

    2013-03-15

    The ability of an animal to detect and respond to changes in the environment is crucial to its survival. However, two elements of sensorimotor control - the time required to respond to a stimulus (responsiveness) and the precision of stimulus detection and response production (resolution) - are inherently limited by a competition for space in peripheral nerves and muscles. These limitations only become more acute as animal size increases. In this paper, we investigated whether the physiology of giraffes has found unique solutions for maintaining sensorimotor performance in order to compensate for their extreme size. To examine responsiveness, we quantified three major sources of delay: nerve conduction delay, muscle electromechanical delay and force generation delay. To examine resolution, we quantified the number and size distribution of nerve fibers in the sciatic nerve. Rather than possessing a particularly unique sensorimotor system, we found that our measurements in giraffes were broadly comparable to size-dependent trends seen across other terrestrial mammals. Consequently, both giraffes and other large animals must contend with greater sensorimotor delays and lower innervation density in comparison to smaller animals. Because of their unconventional leg length, giraffes may experience even longer delays compared with other animals of the same mass when sensing distal stimuli. While there are certainly advantages to being tall, there appear to be challenges as well - our results suggest that giraffes are less able to precisely and accurately sense and respond to stimuli using feedback alone, particularly when moving quickly.

  6. Insensitivity of synchronization to network structure in chaotic pendulum systems with time-delay coupling.

    PubMed

    Yao, Chenggui; Zhan, Meng; Shuai, Jianwei; Ma, Jun; Kurths, Jürgen

    2017-12-01

    It has been generally believed that both time delay and network structure could play a crucial role in determining collective dynamical behaviors in complex systems. In this work, we study the influence of coupling strength, time delay, and network topology on synchronization behavior in delay-coupled networks of chaotic pendulums. Interestingly, we find that the threshold value of the coupling strength for complete synchronization in such networks strongly depends on the time delay in the coupling, but appears to be insensitive to the network structure. This lack of sensitivity was numerically tested in several typical regular networks, such as different locally and globally coupled ones as well as in several complex networks, such as small-world and scale-free networks. Furthermore, we find that the emergence of a synchronous periodic state induced by time delay is of key importance for the complete synchronization.

  7. Determining collective barrier operation skew in a parallel computer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faraj, Daniel A.

    2015-11-24

    Determining collective barrier operation skew in a parallel computer that includes a number of compute nodes organized into an operational group includes: for each of the nodes until each node has been selected as a delayed node: selecting one of the nodes as a delayed node; entering, by each node other than the delayed node, a collective barrier operation; entering, after a delay by the delayed node, the collective barrier operation; receiving an exit signal from a root of the collective barrier operation; and measuring, for the delayed node, a barrier completion time. The barrier operation skew is calculated by:more » identifying, from the compute nodes' barrier completion times, a maximum barrier completion time and a minimum barrier completion time and calculating the barrier operation skew as the difference of the maximum and the minimum barrier completion time.« less

  8. Effects of time delays on stability and Hopf bifurcation in a fractional ring-structured network with arbitrary neurons

    NASA Astrophysics Data System (ADS)

    Huang, Chengdai; Cao, Jinde; Xiao, Min; Alsaedi, Ahmed; Hayat, Tasawar

    2018-04-01

    This paper is comprehensively concerned with the dynamics of a class of high-dimension fractional ring-structured neural networks with multiple time delays. Based on the associated characteristic equation, the sum of time delays is regarded as the bifurcation parameter, and some explicit conditions for describing delay-dependent stability and emergence of Hopf bifurcation of such networks are derived. It reveals that the stability and bifurcation heavily relies on the sum of time delays for the proposed networks, and the stability performance of such networks can be markedly improved by selecting carefully the sum of time delays. Moreover, it is further displayed that both the order and the number of neurons can extremely influence the stability and bifurcation of such networks. The obtained criteria enormously generalize and improve the existing work. Finally, numerical examples are presented to verify the efficiency of the theoretical results.

  9. Determining collective barrier operation skew in a parallel computer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faraj, Daniel A.

    Determining collective barrier operation skew in a parallel computer that includes a number of compute nodes organized into an operational group includes: for each of the nodes until each node has been selected as a delayed node: selecting one of the nodes as a delayed node; entering, by each node other than the delayed node, a collective barrier operation; entering, after a delay by the delayed node, the collective barrier operation; receiving an exit signal from a root of the collective barrier operation; and measuring, for the delayed node, a barrier completion time. The barrier operation skew is calculated by:more » identifying, from the compute nodes' barrier completion times, a maximum barrier completion time and a minimum barrier completion time and calculating the barrier operation skew as the difference of the maximum and the minimum barrier completion time.« less

  10. Antimatched Electromagnetic Metasurfaces for Broadband Arbitrary Phase Manipulation in Reflection

    DOE PAGES

    Tsilipakos, Odysseas; Koschny, Thomas; Soukoulis, Costas M.

    2018-03-21

    Metasurfaces impart phase discontinuities on impinging electromagnetic waves that are typically limited to 0-2π. Here, we demonstrate that multiresonant metasurfaces can break free from this limitation and supply arbitrarily large, tunable time delays over ultrawide bandwidths. As such, ultrathin metasurfaces can act as the equivalent of thick bulk structures by emulating the multiple geometric resonances of three-dimensional systems that originate from phase accumulation with effective material resonances implemented on the surface itself via suitable subwavelength meta-atoms. We describe a constructive procedure for defining the required sheet admittivities of such metasurfaces. Importantly, the proposed approach provides an exactly linear phase responsemore » so that broadband pulses can experience the desired group delay without any distortion of the pulse shape. We focus on operation in reflection by exploiting an antimatching condition, satisfied by interleaved electric and magnetic Lorentzian resonances in the surface admittivities, which completely zeroes out transmission through the metasurface. As a result, the proposed metasurfaces can perfectly reflect a broadband pulse imparting a prescribed group delay. The group delay can be tuned by modifying the implemented resonances, thus opening up diverse possibilities in the temporal applications of metasurfaces.« less

  11. Lithium, but not Valproate, Reduces Impulsive Choice in the Delay-Discounting Task in Mice

    PubMed Central

    Halcomb, Meredith E; Gould, Todd D; Grahame, Nicholas J

    2013-01-01

    Both lithium and valproate are well-established treatments for bipolar disorder. Studies have also found that lithium is effective at reducing suicidal behaviors in patients with mood disorders. Impulsivity is a validated endophenotype of both bipolar disorder and suicidal behavior. We assessed effects of treatment with lithium or valproate on cognitive impulsivity in selectively bred mice previously shown to manifest relatively high levels of cognitive impulsivity. Mice were trained in the delay-discounting paradigm, a measure of cognitive impulsivity reflecting a behavioral bias towards immediacy, and then treated with lithium, valproate, or control chow. After 3 weeks of drug treatment, mice were tested at various delays to a large, delayed reward. Drug treatment continued during this time. Lithium reduced impulsivity, whereas valproate had no effect on choice behavior. Both drugs increased the number of choice trials and reinforcer intake, but effects on choice behavior did not depend on these motivational changes. To our knowledge, this is the first study demonstrating lithium's effects to reduce cognitive impulsivity. Future studies may focus on the ability of putative pharmacotherapies for patients at risk for bipolar disorder or suicide to modify the impulsive choice dimension of this diseases. PMID:23584261

  12. Effect of Departure Delays on Manned Mars Mission Selection

    NASA Technical Reports Server (NTRS)

    Desai, Prasun N.; Tartabini, Paul V.

    1995-01-01

    This study determines the effect on the initial mass in low Earth orbit (IMLEO) of delaying departure from Mars and Earth by 5, 15, and 30 days, once a nominal mission to Mars has been selected. Additionally, the use of a deep-space maneuver (DSM) is considered in order to alleviate the IMLEO penalties. Three different classes of missions are analyzed, using chemical and nuclear thermal propulsion systems in the 2000-2025 time frame: opposition, conjunction, and fast-transfer conjunction. The results indicate that Mars and Earth delays can lead to large IMLEO penalties. Opposition and fast-transfer conjunction-class missions have the highest IMLEO penalties, upwards of 432.4 and 1977.3 metric tons (mt), respectively. Conjunction-class missions, on the other hand, tend to be insensitive to Mars and Earth delays, having IMLEO penalties under 103.5 mt. As expected, nuclear thermal propulsion had significantly lower IMLEO penalties than chemical propulsion. The use of a DSM does not significantly reduce the penalties. The results of this study can enable mission designers to incorporate the influence of off-nominal departure conditions of the interplanetary trajectory in the overall conceptual design of a Mars transfer vehicle.

  13. Reconciling Estimates of the Value to Firms of Reduced Regulatory Delay in the Marketing of Their New Drugs.

    PubMed

    Wilmoth, Daniel R

    2015-12-01

    The prescription drug user fee program provides additional resources to the U.S. Food and Drug Administration at the expense of regulated firms. Those resources accelerate the review of new drugs. Faster approvals allow firms to realize profits sooner, and the program is supported politically by industry. However, published estimates of the value to firms of reduced regulatory delay vary dramatically. It is shown here that this variation is driven largely by differences in methods that correspond to differences in implicit assumptions about the effects of reduced delay. Theoretical modeling is used to derive an equation describing the relationship between estimates generated using different methods. The method likely to yield the most accurate results is identified. A reconciliation of published estimates yields a value to a firm for a one-year reduction in regulatory delay at the time of approval of about $60 million for a typical drug. Published 2015. This article is a U.S. Government work and is in the public domain in the U.S.A. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.

  14. Antimatched Electromagnetic Metasurfaces for Broadband Arbitrary Phase Manipulation in Reflection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsilipakos, Odysseas; Koschny, Thomas; Soukoulis, Costas M.

    Metasurfaces impart phase discontinuities on impinging electromagnetic waves that are typically limited to 0-2π. Here, we demonstrate that multiresonant metasurfaces can break free from this limitation and supply arbitrarily large, tunable time delays over ultrawide bandwidths. As such, ultrathin metasurfaces can act as the equivalent of thick bulk structures by emulating the multiple geometric resonances of three-dimensional systems that originate from phase accumulation with effective material resonances implemented on the surface itself via suitable subwavelength meta-atoms. We describe a constructive procedure for defining the required sheet admittivities of such metasurfaces. Importantly, the proposed approach provides an exactly linear phase responsemore » so that broadband pulses can experience the desired group delay without any distortion of the pulse shape. We focus on operation in reflection by exploiting an antimatching condition, satisfied by interleaved electric and magnetic Lorentzian resonances in the surface admittivities, which completely zeroes out transmission through the metasurface. As a result, the proposed metasurfaces can perfectly reflect a broadband pulse imparting a prescribed group delay. The group delay can be tuned by modifying the implemented resonances, thus opening up diverse possibilities in the temporal applications of metasurfaces.« less

  15. Delay-dependent coupling for a multi-agent LTI consensus system with inter-agent delays

    NASA Astrophysics Data System (ADS)

    Qiao, Wei; Sipahi, Rifat

    2014-01-01

    Delay-dependent coupling (DDC) is considered in this paper in a broadly studied linear time-invariant multi-agent consensus system in which agents communicate with each other under homogeneous delays, while attempting to reach consensus. The coupling among the agents is designed here as an explicit parameter of this delay, allowing couplings to autonomously adapt based on the delay value, and in order to guarantee stability and a certain degree of robustness in the network despite the destabilizing effect of delay. Design procedures, analysis of convergence speed of consensus, comprehensive numerical studies for the case of time-varying delay, and limitations are presented.

  16. Delay correlation analysis and representation for vital complaint VHDL models

    DOEpatents

    Rich, Marvin J.; Misra, Ashutosh

    2004-11-09

    A method and system unbind a rise/fall tuple of a VHDL generic variable and create rise time and fall time generics of each generic variable that are independent of each other. Then, according to a predetermined correlation policy, the method and system collect delay values in a VHDL standard delay file, sort the delay values, remove duplicate delay values, group the delay values into correlation sets, and output an analysis file. The correlation policy may include collecting all generic variables in a VHDL standard delay file, selecting each generic variable, and performing reductions on the set of delay values associated with each selected generic variable.

  17. Pneumatic shutoff and time-delay valve operates at controlled rate

    NASA Technical Reports Server (NTRS)

    Horning, J. L.; Tomlinson, L. E.

    1966-01-01

    Shutoff and time delay valve, which incorporates a metering spool that moves at constant velocity under pneumatic pressure and spring compression, increases fluid-flow area at a uniform rate. Diaphragm areas, control cavity volume, and bleed-orifice size may be varied to give any desired combination of time delay and spool travel time.

  18. The phantom robot - Predictive displays for teleoperation with time delay

    NASA Technical Reports Server (NTRS)

    Bejczy, Antal K.; Kim, Won S.; Venema, Steven C.

    1990-01-01

    An enhanced teleoperation technique for time-delayed bilateral teleoperator control is discussed. The control technique selected for time delay is based on the use of a high-fidelity graphics phantom robot that is being controlled in real time (without time delay) against the static task image. Thus, the motion of the phantom robot image on the monitor predicts the motion of the real robot. The real robot's motion will follow the phantom robot's motion on the monitor with the communication time delay implied in the task. Real-time high-fidelity graphics simulation of a PUMA arm is generated and overlaid on the actual camera view of the arm. A simple camera calibration technique is used for calibrated graphics overlay. A preliminary experiment is performed with the predictive display by using a very simple tapping task. The results with this simple task indicate that predictive display enhances the human operator's telemanipulation task performance significantly during free motion when there is a long time delay. It appears, however, that either two-view or stereoscopic predictive displays are necessary for general three-dimensional tasks.

  19. Detection and characterization of Budd-Chiari syndrome with inferior vena cava obstruction: Comparison of fixed and flexible delayed scan time of computed tomography venography.

    PubMed

    Zhou, Peng-Li; Wu, Gang; Han, Xin-Wei; Bi, Yong-Hua; Zhang, Wen-Guang; Wu, Zheng-Yang

    2017-06-01

    To compare the results of computed tomography venography (CTV) with a fixed and a flexible delayed scan time for Budd-Chiari syndrome (BCS) with inferior vena cava (IVC) obstruction. A total of 209 consecutive BCS patients with IVC obstruction underwent either a CTV with a fixed delayed scan time of 180s (n=87) or a flexible delayed scan time for good image quality according to IVC blood flow in color Doppler ultrasonography (n=122). The IVC blood flow velocity was measured using a color Doppler ultrasound prior to CT scan. Image quality was classified as either good, moderate, or poor. Image quality, surrounding structures and the morphology of the IVC obstruction were compared between the two groups using a χ 2 -test or paired or unpaired t-tests as appropriate. Inter-observer agreement was assessed using Kappa statistics. There was no significant difference in IVC blood flow velocity between the two groups. Overall image quality, surrounding structures and IVC obstruction morphology delineation on the flexible delayed scan time of CTV images were rated better relative to those obtained by fixed delayed scan time of CTV images (p<0.001). Evaluation of CTV data sets was significantly facilitated with flexible delayed scan time of CTV. There were no significant differences in Kappa statistics between Group A and Group B. The flexible delayed scan time of CTV was associated with better detection and more reliable characterization of BCS with IVC obstruction compared to a fixed delayed scan time. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Improved Phase Corrections for Transoceanic Tsunami Data in Spatial and Temporal Source Estimation: Application to the 2011 Tohoku Earthquake

    NASA Astrophysics Data System (ADS)

    Ho, Tung-Cheng; Satake, Kenji; Watada, Shingo

    2017-12-01

    Systemic travel time delays of up to 15 min relative to the linear long waves for transoceanic tsunamis have been reported. A phase correction method, which converts the linear long waves into dispersive waves, was previously proposed to consider seawater compressibility, the elasticity of the Earth, and gravitational potential change associated with tsunami motion. In the present study, we improved this method by incorporating the effects of ocean density stratification, actual tsunami raypath, and actual bathymetry. The previously considered effects amounted to approximately 74% for correction of the travel time delay, while the ocean density stratification, actual raypath, and actual bathymetry, contributed to approximately 13%, 4%, and 9% on average, respectively. The improved phase correction method accounted for almost all the travel time delay at far-field stations. We performed single and multiple time window inversions for the 2011 Tohoku tsunami using the far-field data (>3 h travel time) to investigate the initial sea surface displacement. The inversion result from only far-field data was similar to but smoother than that from near-field data and all stations, including a large sea surface rise increasing toward the trench followed by a migration northward along the trench. For the forward simulation, our results showed good agreement between the observed and computed waveforms at both near-field and far-field tsunami gauges, as well as with satellite altimeter data. The present study demonstrates that the improved method provides a more accurate estimate for the waveform inversion and forward prediction of far-field data.

Top