Generalization of Turbulent Pair Dispersion to Large Initial Separations
NASA Astrophysics Data System (ADS)
Shnapp, Ron; Liberzon, Alex; International Collaboration for Turbulence Research
2018-06-01
We present a generalization of turbulent pair dispersion to large initial separations (η
NASA Technical Reports Server (NTRS)
Duvall, Thomas L., Jr.; Hanasoge, S. M.
2012-01-01
As large-distance rays (say, 10 - 24deg) approach the solar surface approximately vertically, travel times measured from surface pairs for these large separations are mostly sensitive to vertical flows, at least for shallow flows within a few Mm of the solar surface. All previous analyses of supergranulation have used smaller separations and have been hampered by the difficulty of separating the horizontal and vertical flow components. We find that the large-separation travel times associated with supergranulation cannot be studied using the standard phase-speed filters of time-distance helioseismology. These filters, whose use is based upon a refractive model of the perturbations, reduce the resultant travel time signal by at least an order of magnitude at some distances. More effective filters are derived. Modeling suggests that the center-annulus travel-time difference [outward-going time minus inward-going time] in the separation range delta= 10 - 24deg is insensitive to the horizontally diverging flow from the centers of the supergranules and should lead to a constant signal from the vertical flow. Our measurement of this quantity, 5.1+/-0.1 seconds, is constant over the distance range. This magnitude of the signal cannot be caused by the level of upflow at cell centers seen at the photosphere of 10 ms(exp-1) extended in depth. It requires the vertical flow to increase with depth. A simple Gaussian model of the increase with depth implies a peak upward flow of 240 ms(exp-1) at a depth of 2.3 Mm and a peak horizontal flow of 700 ms(exp-1) at a depth of 1.6 Mm.
NASA Technical Reports Server (NTRS)
Duvall, T. L., Jr.; Hanasoge, S. M.
2012-01-01
As large-distance rays (say, 10-24 deg) approach the solar surface approximately vertically, travel times measured from surface pairs for these large separations are mostly sensitive to vertical flows, at least for shallow flows within a few Mm of the solar surface. All previous analyses of supergranulation have used smaller separations and have been hampered by the difficulty of separating the horizontal and vertical flow components. We find that the large separation travel times associated with upergranulation cannot be studied using the standard phase-speed filters of time-distance helioseismology. These filters, whose use is based upon a refractive model of the perturbations,reduce the resultant travel time signal by at least an order of magnitude at some distances. More effective filters are derived. Modeling suggests that the center-annulus travel time difference in the separation range 10-24 deg is insensitive to the horizontally diverging flow from the centers of the supergranules and should lead to a constant signal from the vertical flow. Our measurement of this quantity for the average supergranule, 5.1 s, is constant over the distance range. This magnitude of signal cannot be caused by the level of upflow at cell centers seen at the photosphere of 10 m/s extended in depth. It requires the vertical flow to increase with depth. A simple Gaussian model of the increase with depth implies a peak upward flow of 240 m/s at a depth of 2.3 Mm and a peak horizontal flow of 700 m/s at a depth of 1.6 Mm.
NASA Astrophysics Data System (ADS)
Liebert, Adam; Sawosz, Piotr; Milej, Daniel; Kacprzak, Michał; Weigl, Wojciech; Botwicz, Marcin; MaCzewska, Joanna; Fronczewska, Katarzyna; Mayzner-Zawadzka, Ewa; Królicki, Leszek; Maniewski, Roman
2011-04-01
Recently, it was shown in measurements carried out on humans that time-resolved near-infrared reflectometry and fluorescence spectroscopy may allow for discrimination of information originating directly from the brain avoiding influence of contaminating signals related to the perfusion of extracerebral tissues. We report on continuation of these studies, showing that the near-infrared light can be detected noninvasively on the surface of the tissue at large interoptode distance. A multichannel time-resolved optical monitoring system was constructed for measurements of diffuse reflectance in optically turbid medium at very large source-detector separation up to 9 cm. The instrument was applied during intravenous injection of indocyanine green and the distributions of times of flight of photons were successfully acquired showing inflow and washout of the dye in the tissue. Time courses of the statistical moments of distributions of times of flight of photons are presented and compared to the results obtained simultaneously at shorter source-detector separations (3, 4, and 5 cm). We show in a series of experiments carried out on physical phantom and healthy volunteers that the time-resolved data acquisition in combination with very large source-detector separation may allow one to improve depth selectivity of perfusion assessment in the brain.
TILT ANGLE AND FOOTPOINT SEPARATION OF SMALL AND LARGE BIPOLAR SUNSPOT REGIONS OBSERVED WITH HMI
DOE Office of Scientific and Technical Information (OSTI.GOV)
McClintock, B. H.; Norton, A. A., E-mail: u1049686@umail.usq.edu.au, E-mail: aanorton@stanford.edu
2016-02-10
We investigate bipolar sunspot regions and how tilt angle and footpoint separation vary during emergence and decay. The Helioseismic and Magnetic Imager on board the Solar Dynamic Observatory collects data at a higher cadence than historical records and allows for a detailed analysis of regions over their lifetimes. We sample the umbral tilt angle, footpoint separation, and umbral area of 235 bipolar sunspot regions in Helioseismic and Magnetic Imager—Debrecen Data with an hourly cadence. We use the time when the umbral area peaks as time zero to distinguish between the emergence and decay periods of each region and we limitmore » our analysis of tilt and separation behavior over time to within ±96 hr of time zero. Tilt angle evolution is distinctly different for regions with small (≈30 MSH), midsize (≈50 MSH), and large (≈110 MSH) maximum umbral areas, with 45 and 90 MSH being useful divisions for separating the groups. At the peak umbral area, we determine median tilt angles for small (7.°6), midsize (5.°9), and large (9.°3) regions. Within ±48 hr of the time of peak umbral area, large regions steadily increase in tilt angle, midsize regions are nearly constant, and small regions show evidence of negative tilt during emergence. A period of growth in footpoint separation occurs over a 72-hr period for all of the regions from roughly 40 to 70 Mm. The smallest bipoles (<9 MSH) are outliers in that they do not obey Joy's law and have a much smaller footpoint separation. We confirm the Muñoz-Jaramillo et al. results that the sunspots appear to be two distinct populations.« less
Methods for separation/purification utilizing rapidly cycled thermal swing sorption
Tonkovich, Anna Lee Y.; Monzyk, Bruce F.; Wang, Yong; VanderWiel, David P.; Perry, Steven T.; Fitzgerald, Sean P.; Simmons, Wayne W.; McDaniel, Jeffrey S.; Weller, Jr., Albert E.
2004-11-09
The present invention provides apparatus and methods for separating fluid components. In preferred embodiments, the apparatus and methods utilize microchannel devices with small distances for heat and mass transfer to achieve rapid cycle times and surprisingly large volumes of fluid components separated in short times using relatively compact hardware.
Stick slip, charge separation and decay
Lockner, D.A.; Byerlee, J.D.; Kuksenko, V.S.; Ponomarev, A.V.
1986-01-01
Measurements of charge separation in rock during stable and unstable deformation give unexpectedly large decay times of 50 sec. Time-domain induced polarization experiments on wet and dry rocks give similar decay times and suggest that the same decay mechanisms operate in the induced polarization response as in the relaxation of charge generated by mechanical deformation. These large decay times are attributed to electrochemical processes in the rocks, and they require low-frequency relative permittivity to be very large, in excess of 105. One consequence of large permittivity, and therefore long decay times, is that a significant portion of any electrical charge generated during an earthquake can persist for tens or hundreds of seconds. As a result, electrical disturbances associated with earthquakes should be observable for these lengths of time rather than for the milliseconds previously suggested. ?? 1986 Birka??user Verlag.
Chromatographic hydrogen isotope separation
Aldridge, Frederick T.
1981-01-01
Intermetallic compounds with the CaCu.sub.5 type of crystal structure, particularly LaNiCo.sub.4 and CaNi.sub.5, exhibit high separation factors and fast equilibrium times and therefore are useful for packing a chromatographic hydrogen isotope separation colum. The addition of an inert metal to dilute the hydride improves performance of the column. A large scale mutli-stage chromatographic separation process run as a secondary process off a hydrogen feedstream from an industrial plant which uses large volumes of hydrogen can produce large quantities of heavy water at an effective cost for use in heavy water reactors.
Chromatographic hydrogen isotope separation
Aldridge, F.T.
Intermetallic compounds with the CaCu/sub 5/ type of crystal structure, particularly LaNiCo/sub 4/ and CaNi/sub 5/, exhibit high separation factors and fast equilibrium times and therefore are useful for packing a chromatographic hydrogen isotope separation column. The addition of an inert metal to dilute the hydride improves performance of the column. A large scale multi-stage chromatographic separation process run as a secondary process off a hydrogen feedstream from an industrial plant which uses large volumes of hydrogen cn produce large quantities of heavy water at an effective cost for use in heavy water reactors.
Sigehuzi, Tomoo; Tanaka, Hajime
2004-11-01
We study phase-separation behavior of an off-symmetric fluid mixture induced by a "double temperature quench." We first quench a system into the unstable region. After a large phase-separated structure is formed, we again quench the system more deeply and follow the pattern-evolution process. The second quench makes the domains formed by the first quench unstable and leads to double phase separation; that is, small droplets are formed inside the large domains created by the first quench. The complex coarsening behavior of this hierarchic structure having two characteristic length scales is studied in detail by using the digital image analysis. We find three distinct time regimes in the time evolution of the structure factor of the system. In the first regime, small droplets coarsen with time inside large domains. There a large domain containing small droplets in it can be regarded as an isolated system. Later, however, the coarsening of small droplets stops when they start to interact via diffusion with the large domain containing them. Finally, small droplets disappear due to the Lifshitz-Slyozov mechanism. Thus the observed behavior can be explained by the crossover of the nature of a large domain from the isolated to the open system; this is a direct consequence of the existence of the two characteristic length scales.
Determination of fundamental asteroseismic parameters using the Hilbert transform
NASA Astrophysics Data System (ADS)
Kiefer, René; Schad, Ariane; Herzberg, Wiebke; Roth, Markus
2015-06-01
Context. Solar-like oscillations exhibit a regular pattern of frequencies. This pattern is dominated by the small and large frequency separations between modes. The accurate determination of these parameters is of great interest, because they give information about e.g. the evolutionary state and the mass of a star. Aims: We want to develop a robust method to determine the large and small frequency separations for time series with low signal-to-noise ratio. For this purpose, we analyse a time series of the Sun from the GOLF instrument aboard SOHO and a time series of the star KIC 5184732 from the NASA Kepler satellite by employing a combination of Fourier and Hilbert transform. Methods: We use the analytic signal of filtered stellar oscillation time series to compute the signal envelope. Spectral analysis of the signal envelope then reveals frequency differences of dominant modes in the periodogram of the stellar time series. Results: With the described method the large frequency separation Δν can be extracted from the envelope spectrum even for data of poor signal-to-noise ratio. A modification of the method allows for an overview of the regularities in the periodogram of the time series.
Zhang, Yun; Okubo, Ryuhi; Hirano, Mayumi; Eto, Yujiro; Hirano, Takuya
2015-01-01
Spatially separated entanglement is demonstrated by interfering two high-repetition squeezed pulse trains. The entanglement correlation of the quadrature amplitudes between individual pulses is interrogated. It is characterized in terms of the sufficient inseparability criterion with an optimum result of in the frequency domain and in the time domain. The quantum correlation is also observed when the two measurement stations are separated by a physical distance of 4.5 m, which is sufficiently large to demonstrate the space-like separation, after accounting for the measurement time. PMID:26278478
Aspects regarding at 13C isotope separation column control using Petri nets system
NASA Astrophysics Data System (ADS)
Boca, M. L.; Ciortea, M. E.
2015-11-01
This paper is intended to show that Petri nets can be also applicable in the chemical industry. It used linear programming, modeling underlying Petri nets, especially discrete event systems for isotopic separation, the purpose of considering and control events in real-time through graphical representations. In this paper it is simulate the control of 13C Isotope Separation column using Petri nets. The major problem with 13C comes from the difficulty of obtaining it and raising its natural fraction. Carbon isotopes can be obtained using many methods, one of them being the cryogenic distillation of carbon monoxide. Some few aspects regarding operating conditions and the construction of such cryogenic plants are known today, and even less information are available as far as the separation process modeling and control are concerned. In fact, the efficient control of the carbon monoxide distillation process represents a necessity for large-scale 13C production. Referring to a classic distillation process, some models for carbon isotope separation have been proposed, some based on mass, component and energy balance equations, some on the nonlinear wave theory or the Cohen equations. For modeling the system it was used Petri nets because in this case it is deal with discrete event systems. In use of the non-timed and with auxiliary times Petri model, the transport stream was divided into sections and these sections will be analyzed successively. Because of the complexity of the system and the large amount of calculations required it was not possible to analyze the system as a unitary whole. A first attempt to model the system as a unitary whole led to the blocking of the model during simulation, because of the large processing times.
Real-time modulated nanoparticle separation with an ultra-large dynamic range.
Zeming, Kerwin Kwek; Thakor, Nitish V; Zhang, Yong; Chen, Chia-Hung
2016-01-07
Nanoparticles exhibit size-dependent properties which make size-selective purification of proteins, DNA or synthetic nanoparticles essential for bio-analytics, clinical medicine, nano-plasmonics and nano-material sciences. Current purification methods of centrifugation, column chromatography and continuous-flow techniques suffer from particle aggregation, multi-stage process, complex setups and necessary nanofabrication. These increase process costs and time, reduce efficiency and limit dynamic range. Here, we achieve an unprecedented real-time nanoparticle separation (51-1500 nm) using a large-pore (2 μm) deterministic lateral displacement (DLD) device. No external force fields or nanofabrication are required. Instead, we investigated innate long-range electrostatic influences on nanoparticles within a fluid medium at different NaCl ionic concentrations. In this study we account for the electrostatic forces beyond Debye length and showed that they cannot be assumed as negligible especially for precise nanoparticle separation methods such as DLD. Our findings have enabled us to develop a model to simultaneously quantify and modulate the electrostatic force interactions between nanoparticle and micropore. By simply controlling buffer solutions, we achieve dynamic nanoparticle size separation on a single device with a rapid response time (<20 s) and an enlarged dynamic range (>1200%), outperforming standard benchtop centrifuge systems. This novel method and model combines device simplicity, isolation precision and dynamic flexibility, opening opportunities for high-throughput applications in nano-separation for industrial and biological applications.
1993-07-01
distributed system. Second, to support the development of scaleable end-use applications that implement the mission critical control policies of the...implementation. These and other cogent reasons suggest two important rules for designing large, distributed, realtime systems: i) separate policies required...system design rules. 0 The separation of system coordination and management policies and mechanisms allows for the "objectification" of the underlying
Neal, R.B.
1957-12-17
An improved triggered spark gap switch is described, capable of precisely controllable firing time while switching very large amounts of power. The invention in general comprises three electrodes adjustably spaced and adapted to have a large potential impressed between the outer electrodes. The central electrode includes two separate elements electrically connected togetaer and spaced apart to define a pair of spark gaps between the end electrodes. Means are provided to cause the gas flow in the switch to pass towards the central electrode, through a passage in each separate element, and out an exit disposed between the two separate central electrode elements in order to withdraw ions from the spark gap.
Megalla, S E
1983-12-01
A good correlation of four components of aflatoxins was accomplished by using the dry column chromatography method. The decolorization process of interfering substances, by 0.01 N KOH and defatting the extract with petroleum ether yields a clean residue for DCC separation. It is clear that the dry column chromatography is a very simple and time-saving procedure for separation of aflatoxins. DCC columns are more economical than precoated 'thick layer' preparative plates and, in DCC, no large developing tanks need to be used. Hazards associated with the use of large volumes of flammable solvents are greatly reduced.
Gaseous isotope separation using solar wind phenomena.
Wang, C G
1980-12-01
A large evacuated drum-like chamber fitted with supersonic nozzles in the center, with the chamber and the nozzles corotating, can separate gaseous fluids according to their molecular weights. The principle of separation is essentially the same as that of the solar wind propagation, in which components of the plasma fluid are separated due to their difference in the time-of-flight. The process can inherently be very efficient, serving as a pump as well as a separator, and producing well over 10(5) separative work units (kg/year) for the hydrogen/deuterium mixture at high-velocity flows.
Nanoparticle separation with a miniaturized asymmetrical flow field-flow fractionation cartridge
Müller, David; Cattaneo, Stefano; Meier, Florian; Welz, Roland; de Mello, Andrew J.
2015-01-01
Asymmetrical Flow Field-Flow Fractionation (AF4) is a separation technique applicable to particles over a wide size range. Despite the many advantages of AF4, its adoption in routine particle analysis is somewhat limited by the large footprint of currently available separation cartridges, extended analysis times and significant solvent consumption. To address these issues, we describe the fabrication and characterization of miniaturized AF4 cartridges. Key features of the down-scaled platform include simplified cartridge and reagent handling, reduced analysis costs and higher throughput capacities. The separation performance of the miniaturized cartridge is assessed using certified gold and silver nanoparticle standards. Analysis of gold nanoparticle populations indicates shorter analysis times and increased sensitivity compared to conventional AF4 separation schemes. Moreover, nanoparticulate titanium dioxide populations exhibiting broad size distributions are analyzed in a rapid and efficient manner. Finally, the repeatability and reproducibility of the miniaturized platform are investigated with respect to analysis time and separation efficiency. PMID:26258119
Nanoparticle separation with a miniaturized asymmetrical flow field-flow fractionation cartridge
NASA Astrophysics Data System (ADS)
Müller, David; Cattaneo, Stefano; Meier, Florian; Welz, Roland; deMello, Andrew
2015-07-01
Asymmetrical Flow Field-Flow Fractionation (AF4) is a separation technique applicable to particles over a wide size range. Despite the many advantages of AF4, its adoption in routine particle analysis is somewhat limited by the large footprint of currently available separation cartridges, extended analysis times and significant solvent consumption. To address these issues, we describe the fabrication and characterization of miniaturized AF4 cartridges. Key features of the scale-down platform include simplified cartridge and reagent handling, reduced analysis costs and higher throughput capacities. The separation performance of the miniaturized cartridge is assessed using certified gold and silver nanoparticle standards. Analysis of gold nanoparticle populations indicates shorter analysis times and increased sensitivity compared to conventional AF4 separation schemes. Moreover, nanoparticulate titanium dioxide populations exhibiting broad size distributions are analyzed in a rapid and efficient manner. Finally, the repeatability and reproducibility of the miniaturized platform are investigated with respect to analysis time and separation efficiency.
NASA Technical Reports Server (NTRS)
Duvall, Thomas L.; Hanasoge, Shravan M.
2012-01-01
With large separations (10-24 deg heliocentric), it has proven possible to cleanly separate the horizontal and vertical components of supergranular flow with time-distance helioseismology. These measurements require very broad filters in the k-$\\omega$ power spectrum as apparently supergranulation scatters waves over a large area of the power spectrum. By picking locations of supergranulation as peaks in the horizontal divergence signal derived from f-mode waves, it is possible to simultaneously obtain average properties of supergranules and a high signal/noise ratio by averaging over many cells. By comparing ray-theory forward modeling with HMI measurements, an average supergranule model with a peak upflow of 240 m/s at cell center at a depth of 2.3 Mm and a peak horizontal outflow of 700 m/s at a depth of 1.6 Mm. This upflow is a factor of 20 larger than the measured photospheric upflow. These results may not be consistent with earlier measurements using much shorter separations (<5 deg heliocentric). With a 30 Mm horizontal extent and a few Mm in depth, the cells might be characterized as thick pancakes.
Study of the Unsteady Flow Features on a Stalled Wing
NASA Technical Reports Server (NTRS)
Yon, Steven A.; Katz, Joseph
1997-01-01
The occurrence of large scale structures in the post stall flow over a rectangular wing at high angles of attack was investigated in a small-scale subsonic wind tunnel. Mean and time dependent measurements within the separated flow field suggest the existence of two distinct angle of attack regimes beyond wing stall. The shallow stall regime occurs over a narrow range of incidence angles (2-3 deg.) immediately following the inception of leading edge separation. In this regime, the principal mean flow structures, termed stall cells, are manifested as a distinct spanwise periodicity in the chordwise extent of the separated region on the model surface with possible lateral mobility not previously reported. Within the stall cells and on the wing surface, large amplitude pressure fluctuations occur with a frequency much lower than anticipated for bluff body shedding, and with minimum effect in the far wake. In the deep stall regime, stall cells are not observed and the separated region near the model is relatively free of large amplitude pressure disturbances.
Albers, D. J.; Hripcsak, George
2012-01-01
A method to estimate the time-dependent correlation via an empirical bias estimate of the time-delayed mutual information for a time-series is proposed. In particular, the bias of the time-delayed mutual information is shown to often be equivalent to the mutual information between two distributions of points from the same system separated by infinite time. Thus intuitively, estimation of the bias is reduced to estimation of the mutual information between distributions of data points separated by large time intervals. The proposed bias estimation techniques are shown to work for Lorenz equations data and glucose time series data of three patients from the Columbia University Medical Center database. PMID:22536009
Bidault, Xavier; Chaussedent, Stéphane; Blanc, Wilfried
2015-10-21
A simple transferable adaptive model is developed and it allows for the first time to simulate by molecular dynamics the separation of large phases in the MgO-SiO2 binary system, as experimentally observed and as predicted by the phase diagram, meaning that separated phases have various compositions. This is a real improvement over fixed-charge models, which are often limited to an interpretation involving the formation of pure clusters, or involving the modified random network model. Our adaptive model, efficient to reproduce known crystalline and glassy structures, allows us to track the formation of large amorphous Mg-rich Si-poor nanoparticles in an Mg-poor Si-rich matrix from a 0.1MgO-0.9SiO2 melt.
Optimal Control Modification Adaptive Law for Time-Scale Separated Systems
NASA Technical Reports Server (NTRS)
Nguyen, Nhan T.
2010-01-01
Recently a new optimal control modification has been introduced that can achieve robust adaptation with a large adaptive gain without incurring high-frequency oscillations as with the standard model-reference adaptive control. This modification is based on an optimal control formulation to minimize the L2 norm of the tracking error. The optimal control modification adaptive law results in a stable adaptation in the presence of a large adaptive gain. This study examines the optimal control modification adaptive law in the context of a system with a time scale separation resulting from a fast plant with a slow actuator. A singular perturbation analysis is performed to derive a modification to the adaptive law by transforming the original system into a reduced-order system in slow time. A model matching conditions in the transformed time coordinate results in an increase in the actuator command that effectively compensate for the slow actuator dynamics. Simulations demonstrate effectiveness of the method.
Optimal Control Modification for Time-Scale Separated Systems
NASA Technical Reports Server (NTRS)
Nguyen, Nhan T.
2012-01-01
Recently a new optimal control modification has been introduced that can achieve robust adaptation with a large adaptive gain without incurring high-frequency oscillations as with the standard model-reference adaptive control. This modification is based on an optimal control formulation to minimize the L2 norm of the tracking error. The optimal control modification adaptive law results in a stable adaptation in the presence of a large adaptive gain. This study examines the optimal control modification adaptive law in the context of a system with a time scale separation resulting from a fast plant with a slow actuator. A singular perturbation analysis is performed to derive a modification to the adaptive law by transforming the original system into a reduced-order system in slow time. A model matching conditions in the transformed time coordinate results in an increase in the actuator command that effectively compensate for the slow actuator dynamics. Simulations demonstrate effectiveness of the method.
Large-scale dialysis of sample lipids
Meadows, Jill; Tillitt, Donald E.; Huckins, James; Schroeder, D.
1993-01-01
The use of a semipermeable membrane device (SPMD) for dialysis in an organic solvent phase is an efficient alternative approach to separation of contaminants from large amounts of lipid (up to 50 grams or more) prior to organic chemical analysis. Passive separation of contaminants can be accomplished with a minimum of equipment and a comparatively small volume of solvent. This study examines the effects of factors such as dialytic solvent, lipid type, dialytic solvent:lipid volume ratio, dialysis time, and temperature on the performance of polyethylene SPMDs during lipid-contaminant separations. The experimental conditions for maximal recoveries of organochlorine pesticides and polychlorinated biphenyls with minimal lipid carryover are determined for the examined variables. When the dialytic procedure is optimized, very satisfactory and highly reproducible analyte recoveries can be obtained in a few days while separating > 90% of the lipid material in a single operation.
Optimal control of orientation and entanglement for two dipole-dipole coupled quantum planar rotors.
Yu, Hongling; Ho, Tak-San; Rabitz, Herschel
2018-05-09
Optimal control simulations are performed for orientation and entanglement of two dipole-dipole coupled identical quantum rotors. The rotors at various fixed separations lie on a model non-interacting plane with an applied control field. It is shown that optimal control of orientation or entanglement represents two contrasting control scenarios. In particular, the maximally oriented state (MOS) of the two rotors has a zero entanglement entropy and is readily attainable at all rotor separations. Whereas, the contrasting maximally entangled state (MES) has a zero orientation expectation value and is most conveniently attainable at small separations where the dipole-dipole coupling is strong. It is demonstrated that the peak orientation expectation value attained by the MOS at large separations exhibits a long time revival pattern due to the small energy splittings arising form the extremely weak dipole-dipole coupling between the degenerate product states of the two free rotors. Moreover, it is found that the peak entanglement entropy value attained by the MES remains largely unchanged as the two rotors are transported to large separations after turning off the control field. Finally, optimal control simulations of transition dynamics between the MOS and the MES reveal the intricate interplay between orientation and entanglement.
Participation in International Large-Scale Assessments from a US Perspective
ERIC Educational Resources Information Center
Plisko, Valena White
2013-01-01
International large-scale assessments (ILSAs) play a distinct role in the United States' decentralized federal education system. Separate from national and state assessments, they offer an external, objective measure for the United States to assess student performance comparatively with other countries and over time. The US engagement in ILSAs…
MEMBRANE AND PROTOPLASM RESISTANCE IN THE SQUID GIANT AXON
Cole, Kenneth S.; Hodgkin, Alan L.
1939-01-01
The direct current longitudinal resistance of the squid giant axon was measured as a function of the electrode separation. Large sea water electrodes were used and the inter-electrode length was immersed in oil. The slope of the resistance vs. separation curve is large for a small electrode separation, but becomes smaller and finally constant as the separation is increased. An analysis of the resistance vs. length curves gives the following results. The nerve membrane has a resistance of about 1000 ohm cm.2 The protoplasm has a specific resistance of about 1.4 times that of sea water. The resistance of the connective tissue sheath outside the fiber corresponds to a layer of sea water about 20µ in thickness. The characteristic length for the axon is about 2.3 mm. in oil and 6.0 mm. in sea water. PMID:19873126
Polymer Dispersed Liquid Crystal Displays
NASA Astrophysics Data System (ADS)
Doane, J. William
The following sections are included: * INTRODUCTION AND HISTORICAL DEVELOPMENT * PDLC MATERIALS PREPARATION * Polymerization induced phase separation (PIPS) * Thermally induced phase separation (TIPS) * Solvent induced phase separation (SIPS) * Encapsulation (NCAP) * RESPONSE VOLTAGE * Dielectric and resistive effects * Radial configuration * Bipolar configuration * Other director configurations * RESPONSE TIME * DISPLAY CONTRAST * Light scattering and index matching * Incorporation of dyes * Contrast measurements * PDLC DISPLAY DEVICES AND INNOVATIONS * Reflective direct view displays * Large-scale, flexible displays * Switchable windows * Projection displays * High definition spatial light modulator * Haze-free PDLC shutters: wide angle view displays * ENVIRONMENTAL STABILITY * ACKNOWLEDGEMENTS * REFERENCES
NASA Astrophysics Data System (ADS)
Fernandez, P.; Wang, Q.
2017-12-01
We investigate the impact of numerical discretization on the Lyapunov spectrum of separated flow simulations. The two-dimensional chaotic flow around the NACA 0012 airfoil at a low Reynolds number and large angle of attack is considered to that end. Time, space and accuracy-order refinement studies are performed to examine each of these effects separately. Numerical results show that the time discretization has a small impact on the dynamics of the system, whereas the spatial discretization can dramatically change them. Also, the finite-time Lyapunov exponents associated to unstable modes are shown to be positively skewed, and quasi-homoclinic tangencies are observed in the attractor of the system. The implications of these results on flow physics and sensitivity analysis of chaotic flows are discussed.
Superadiabatic driving of a three-level quantum system
NASA Astrophysics Data System (ADS)
Theisen, M.; Petiziol, F.; Carretta, S.; Santini, P.; Wimberger, S.
2017-07-01
We study superadiabatic quantum control of a three-level quantum system whose energy spectrum exhibits multiple avoided crossings. In particular, we investigate the possibility of treating the full control task in terms of independent two-level Landau-Zener problems. We first show that the time profiles of the elements of the full control Hamiltonian are characterized by peaks centered around the crossing times. These peaks decay algebraically for large times. In principle, such a power-law scaling invalidates the hypothesis of perfect separability. Nonetheless, we address the problem from a pragmatic point of view by studying the fidelity obtained through separate control as a function of the intercrossing separation. This procedure may be a good approach to achieve approximate adiabatic driving of a specific instantaneous eigenstate in realistic implementations.
Downey, Mark O; Rochfort, Simone
2008-08-01
A limitation of large-scale viticultural trials is the time and cost of comprehensive compositional analysis of the fruit by high-performance liquid chromatography (HPLC). In addition, separate methods have generally been required to identify and quantify different classes of metabolites. To address these shortcomings a reversed-phase HPLC method was developed to simultaneously separate the anthocyanins and flavonols present in grape skins. The method employs a methanol and water gradient acidified with 10% formic acid with a run-time of 48 min including re-equilibration. Identity of anthocyanins and flavonols in Shiraz (Vitis vinifera L.) skin was confirmed by mass spectral analysis.
Analysis of Massively Separated Flows of Aircraft Using Detached Eddy Simulation
NASA Astrophysics Data System (ADS)
Morton, Scott
2002-08-01
An important class of turbulent flows of aerodynamic interest are those characterized by massive separation, e.g., the flow around an aircraft at high angle of attack. Numerical simulation is an important tool for analysis, though traditional models used in the solution of the Reynolds-averaged Navier-Stokes (RANS) equations appear unable to accurately account for the time-dependent and three-dimensional motions governing flows with massive separation. Large-eddy simulation (LES) is able to resolve these unsteady three-dimensional motions, yet is cost prohibitive for high Reynolds number wall-bounded flows due to the need to resolve the small scale motions in the boundary layer. Spalart et. al. proposed a hybrid technique, Detached-Eddy Simulation (DES), which takes advantage of the often adequate performance of RANS turbulence models in the "thin," typically attached regions of the flow. In the separated regions of the flow the technique becomes a Large Eddy Simulation, directly resolving the time-dependent and unsteady features that dominate regions of massive separation. The current work applies DES to a 70 degree sweep delta wing at 27 degrees angle of attack, a geometrically simple yet challenging flowfield that exhibits the unsteady three-dimensional massively separated phenomena of vortex breakdown. After detailed examination of this basic flowfield, the method is demonstrated on three full aircraft of interest characterized by massive separation, the F-16 at 45 degrees angle of attack, the F-15 at 65 degree angle of attack (with comparison to flight test), and the C-130 in a parachute drop condition at near stall speed with cargo doors open.
Divergence between human populations estimated from linkage disequilibrium.
Sved, John A; McRae, Allan F; Visscher, Peter M
2008-12-01
Observed linkage disequilibrium (LD) between genetic markers in different populations descended independently from a common ancestral population can be used to estimate their absolute time of divergence, because the correlation of LD between populations will be reduced each generation by an amount that, approximately, depends only on the recombination rate between markers. Although drift leads to divergence in allele frequencies, it has less effect on divergence in LD values. We derived the relationship between LD and time of divergence and verified it with coalescent simulations. We then used HapMap Phase II data to estimate time of divergence between human populations. Summed over large numbers of pairs of loci, we find a positive correlation of LD between African and non-African populations at levels of up to approximately 0.3 cM. We estimate that the observed correlation of LD is consistent with an effective separation time of approximately 1,000 generations or approximately 25,000 years before present. The most likely explanation for such relatively low separation times is the existence of substantial levels of migration between populations after the initial separation. Theory and results from coalescent simulations confirm that low levels of migration can lead to a downward bias in the estimate of separation time.
Parental Separation, Parental Alcoholism, and Timing of First Sexual Intercourse
Waldron, Mary; Doran, Kelly A.; Bucholz, Kathleen K.; Duncan, Alexis E.; Lynskey, Michael T.; Madden, Pamela A. F.; Sartor, Carolyn E.; Heath, Andrew C.
2015-01-01
Purpose We examined timing of first voluntary sexual intercourse as a joint function of parental separation during childhood and parental history of alcoholism. Methods Data were drawn from a birth cohort of female like-sex twins (n=569 African Ancestry [AA], n=3415 European or other Ancestry [EA]). Cox proportional hazards regression was conducted predicting age at first sex from dummy variables coding for parental separation and parental alcoholism. Propensity score analysis was also employed comparing intact and separated families, stratified by predicted probability of separation. Results Earlier sex was reported by EA twins from separated and alcoholic families, compared to EA twins from intact nonalcoholic families, with effects most pronounced through age 14. Among AA twins, effects of parental separation and parental alcoholism were largely nonsignificant. Results of propensity score analyses confirmed unique risks from parental separation in EA families, where consistent effects of parental separation were observed across predicted probability of separation. For AA families there was poor matching on risk-factors presumed to predate separation, which limited interpretability of survival-analytic findings. Conclusions In European American families, parental separation during childhood is an important predictor of early-onset sex, beyond parental alcoholism and other correlated risk-factors. To characterize risk for African Americans associated with parental separation, additional research is needed where matching on confounders can be achieved. PMID:25907653
An Eulerian time filtering technique to study large-scale transient flow phenomena
NASA Astrophysics Data System (ADS)
Vanierschot, Maarten; Persoons, Tim; van den Bulck, Eric
2009-10-01
Unsteady fluctuating velocity fields can contain large-scale periodic motions with frequencies well separated from those of turbulence. Examples are the wake behind a cylinder or the processing vortex core in a swirling jet. These turbulent flow fields contain large-scale, low-frequency oscillations, which are obscured by turbulence, making it impossible to identify them. In this paper, we present an Eulerian time filtering (ETF) technique to extract the large-scale motions from unsteady statistical non-stationary velocity fields or flow fields with multiple phenomena that have sufficiently separated spectral content. The ETF method is based on non-causal time filtering of the velocity records in each point of the flow field. It is shown that the ETF technique gives good results, similar to the ones obtained by the phase-averaging method. In this paper, not only the influence of the temporal filter is checked, but also parameters such as the cut-off frequency and sampling frequency of the data are investigated. The technique is validated on a selected set of time-resolved stereoscopic particle image velocimetry measurements such as the initial region of an annular jet and the transition between flow patterns in an annular jet. The major advantage of the ETF method in the extraction of large scales is that it is computationally less expensive and it requires less measurement time compared to other extraction methods. Therefore, the technique is suitable in the startup phase of an experiment or in a measurement campaign where several experiments are needed such as parametric studies.
Large zeolites - Why and how to grow in space
NASA Technical Reports Server (NTRS)
Sacco, Albert, Jr.
1991-01-01
The growth of zeolite crystals which are considered to be the most valuable catalytic and adsorbent materials of the chemical processing industry are discussed. It is proposed to use triethanolamine as a nucleation control agent to control the time release of Al in a zeolite A solution and to increase the average and maximum crystal size by 25-50 times. Large zeolites could be utilized to make membranes for reactors/separators which will substantially increase their efficiency.
A High-Efficiency Superhydrophobic Plasma Separator
Liu, Changchun; Liao, Shih-Chuan; Song, Jinzhao; Mauk, Michael G.; Li, Xuanwen; Wu, Gaoxiang; Ge, Dengteng; Greenberg, Robert M.; Yang, Shu; Bau, Haim H.
2016-01-01
To meet stringent limit-of-detection specifications for low abundance target molecules, a relatively large volume of plasma is needed for many blood-based clinical diagnostics. Conventional centrifugation methods for plasma separation are not suitable for on-site testing or bedside diagnostics. Here, we report a simple, yet high-efficiency, clamshell-style, superhydrophobic plasma separator that is capable of separating a relatively large volume of plasma from several hundred microliters of whole blood (finger-prick blood volume). The plasma separator consists of a superhydrophobic top cover with a separation membrane and a superhydrophobic bottom substrate. Unlike previously reported membrane-based plasma separators, the separation membrane in our device is positioned at the top of the sandwiched whole blood film to increase the membrane separation capacity and plasma yield. In addition, the device’s superhydrophobic characteristics (i) facilitates the formation of well-defined, contracted, thin blood film with a high contact angle; (ii) minimizes biomolecular adhesion to surfaces; (iii) increases blood clotting time; and (iv) reduces blood cell hemolysis. The device demonstrated a “blood in-plasma out” capability, consistently extracting 65±21.5 μL of plasma from 200 μL of whole blood in less than 10 min without electrical power. The device was used to separate plasma from Schistosoma mansoni genomic DNA-spiked whole blood with a recovery efficiency of > 84.5 ± 25.8 %. The S. mansoni genomic DNA in the separated plasma was successfully tested on our custom-made microfluidic chip by using loop mediated isothermal amplification (LAMP) method. PMID:26732765
Cell Partition in Two Polymer Aqueous Phases
NASA Technical Reports Server (NTRS)
Brooks, D. E.
1985-01-01
In a reduced gravity environment the two polymer phases will not separate via density driven settling in an acceptably short length of time. It is to be expected that a certain amount of phase separation will take place, however, driven by the reduction in free energy gained when the interfacial area is reduced. This stage of separation process will therefore depend directly on the magnitude of the interfacial tension between the phases. In order to induce complete phase separation in a short time, electric field-induced separation which occurs because the droplets of one phase in the other have high electrophoretic mobilities which increase with droplet size was investigated. These mobilities are significant only in the presence of certain salts, particularly phosphates. The presence of such salts, in turn has a strong effect on the cell partition behavior in dextran-poly (ethylene glycol) (PEG) systems. The addition of the salts necessary to produce phase drop mobilities has a large effect on the interfacial tensions in the systems.
Anderson, D L
1975-03-21
The concept of a stressed elastic lithospheric plate riding on a viscous asthenosphere is used to calculate the recurrence interval of great earthquakes at convergent plate boundaries, the separation of decoupling and lithospheric earthquakes, and the migration pattern of large earthquakes along an arc. It is proposed that plate motions accelerate after great decoupling earthquakes and that most of the observed plate motions occur during short periods of time, separated by periods of relative quiescence.
Delcourt, Johann; Becco, Christophe; Vandewalle, Nicolas; Poncin, Pascal
2009-02-01
The capability of a new multitracking system to track a large number of unmarked fish (up to 100) is evaluated. This system extrapolates a trajectory from each individual and analyzes recorded sequences that are several minutes long. This system is very efficient in statistical individual tracking, where the individual's identity is important for a short period of time in comparison with the duration of the track. Individual identification is typically greater than 99%. Identification is largely efficient (more than 99%) when the fish images do not cross the image of a neighbor fish. When the images of two fish merge (occlusion), we consider that the spot on the screen has a double identity. Consequently, there are no identification errors during occlusions, even though the measurement of the positions of each individual is imprecise. When the images of these two merged fish separate (separation), individual identification errors are more frequent, but their effect is very low in statistical individual tracking. On the other hand, in complete individual tracking, where individual fish identity is important for the entire trajectory, each identification error invalidates the results. In such cases, the experimenter must observe whether the program assigns the correct identification, and, when an error is made, must edit the results. This work is not too costly in time because it is limited to the separation events, accounting for fewer than 0.1% of individual identifications. Consequently, in both statistical and rigorous individual tracking, this system allows the experimenter to gain time by measuring the individual position automatically. It can also analyze the structural and dynamic properties of an animal group with a very large sample, with precision and sampling that are impossible to obtain with manual measures.
Global differences between moderate and large storms
NASA Astrophysics Data System (ADS)
Valek, P. W.; Buzulukova, N.; Fok, M. C. H.; Goldstein, J.; Keesee, A. M.; McComas, D. J.; Perez, J. D.
2015-12-01
The current solar maximum has been relatively quiet compared to previous solar cycles. Whereas numerous moderate storms (Dst < -50 nT) have occurred, there have been only a small number of large (Dst < - 100 nT) and extreme (Dst < -200 nT) storms. Throughout this sequence of storms, the Two Wide-angle Imaging Neutral-atom Spectrometers (TWINS) mission has since 2008 observed the inner magnetosphere. TWINS consists of two ENA cameras flown aboard two separate spacecraft in Molniya orbits. TWINS images the ENA emissions from the inner magnetosphere across a broad range of energies (1 to 100 keV for H, 16 to 256 keV for O). This allows TWINS to observe the evolution in space and time of the trapped and precipitating particles most relevant for storm time dynamics on very high time scales (i.e., minutes). Here we will present the differences seen between moderate storms and the two large storms of 17 March 2015 (Dst < -223, St. Patrick's day storm) and 22 June 2015 (Dst < -195 nT). We will present composition-separated ENA observations of the inner magnetosphere covering the both the medium (1 to 30 keV) and high (30 to > 100 keV) energy ranges, and describe how the inner magnetosphere evolves during storm time.
Voltage sweep ion mobility spectrometry.
Davis, Eric J; Williams, Michael D; Siems, William F; Hill, Herbert H
2011-02-15
Ion mobility spectrometry (IMS) is a rapid, gas-phase separation technique that exhibits excellent separation of ions as a standalone instrument. However, IMS cannot achieve optimal separation power with both small and large ions simultaneously. Similar to the general elution problem in chromatography, fast ions are well resolved using a low electric field (50-150 V/cm), whereas slow drifting molecules are best separated using a higher electric field (250-500 V/cm). While using a low electric field, IMS systems tend to suffer from low ion transmission and low signal-to-noise ratios. Through the use a novel voltage algorithm, some of these effects can be alleviated. The electric field was swept from low to high while monitoring a specific drift time, and the resulting data were processed to create a 'voltage-sweep' spectrum. If an optimal drift time is calculated for each voltage and scanned simultaneously, a spectrum may be obtained with optimal separation throughout the mobility range. This increased the resolving power up to the theoretical maximum for every peak in the spectrum and extended the peak capacity of the IMS system, while maintaining accurate drift time measurements. These advantages may be extended to any IMS, requiring only a change in software.
Parental separation, parental alcoholism, and timing of first sexual intercourse.
Waldron, Mary; Doran, Kelly A; Bucholz, Kathleen K; Duncan, Alexis E; Lynskey, Michael T; Madden, Pamela A F; Sartor, Carolyn E; Heath, Andrew C
2015-05-01
We examined timing of first voluntary sexual intercourse as a joint function of parental separation during childhood and parental history of alcoholism. Data were drawn from a birth cohort of female like-sex twins (n = 569 African ancestry [AA]; n = 3,415 European or other ancestry [EA]). Cox proportional hazards regression was conducted predicting age at first sex from dummy variables coding for parental separation and parental alcoholism. Propensity score analysis was also employed to compare intact and separated families, stratified by predicted probability of separation. Earlier sex was reported by EA twins from separated and alcoholic families, compared to EA twins from intact nonalcoholic families, with effects most pronounced through the age of 14 years. Among AA twins, effects of parental separation and parental alcoholism were largely nonsignificant. Results of propensity score analyses confirmed unique risks from parental separation in EA families, where consistent effects of parental separation were observed across predicted probability of separation. For AA families, there was poor matching on risk factors presumed to predate separation, which limited interpretability of survival-analytic findings. In European American families, parental separation during childhood is an important predictor of early-onset sex, beyond parental alcoholism and other correlated risk factors. To characterize risk for African Americans associated with parental separation, additional research is needed where matching on confounders can be achieved. Copyright © 2015 Society for Adolescent Health and Medicine. Published by Elsevier Inc. All rights reserved.
Large Area Crop Inventory Experiment (LACIE). Phase 3 direct wheat study of North Dakota
NASA Technical Reports Server (NTRS)
Kinsler, M. C.; Nichols, J. D.; Ona, A. L. (Principal Investigator)
1979-01-01
The author has identified the following significant results. The green number and brightness scatter plots, channel plots of radiance values, and visual study of the imagery indicate separability between barley and spring wheat/oats during the wheat mid-heading to mid-ripe stages. In the LACIE Phase 3 North Dakota data set, the separation time is more specifically the wheat soft dough stage. At this time, the barley is ripening, and is therefore, less green and brighter than the wheat. Only 4 of the 18 segments studied indicate separation of barley/other spring small grain, even though 11 of the segments have acquisitions covering the wheat soft dough stage. The remaining seven segments had less than 5 percent barley based on ground truth data.
Kinetics of proton migration in liquid water.
Chen, Hanning; Voth, Gregory A; Agmon, Noam
2010-01-14
We have utilized multistate empirical valence bond (MS-EVB3) simulations of protonated liquid water to calculate the relative mean-square displacement (MSD) and the history-independent time correlation function, c(t), of the hydrated proton center of excess charge (CEC) with respect to the water molecule on which it has initially resided. The MSD is nonlinear for the first 15 ps, suggesting that the relative diffusion coefficient increases from a small value, D(0), at short separations to its larger bulk value, D(infinity), at large separations. With the ensuing distance-dependent diffusion coefficient, D(r), the time dependence of both the MSD and c(t) agrees quantitatively with the solution of a diffusion equation for reversible geminate recombination. This suggests that the relative motion of the CEC is not independent from the nearby water molecules, in agreement with theoretical and experimental observations that large water clusters participate in the mechanism of proton mobility.
Spoerer, Courtney J; Eguchi, Akihiro; Stringer, Simon M
2016-02-01
In order to develop transformation invariant representations of objects, the visual system must make use of constraints placed upon object transformation by the environment. For example, objects transform continuously from one point to another in both space and time. These two constraints have been exploited separately in order to develop translation and view invariance in a hierarchical multilayer model of the primate ventral visual pathway in the form of continuous transformation learning and temporal trace learning. We show for the first time that these two learning rules can work cooperatively in the model. Using these two learning rules together can support the development of invariance in cells and help maintain object selectivity when stimuli are presented over a large number of locations or when trained separately over a large number of viewing angles. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Rapid and Convenient Separation of Chitooligosaccharides by Ion-Exchange Chromatography
NASA Astrophysics Data System (ADS)
Wu, Yuxiao; Lu, Wei-Peng; Wang, Jianing; Gao, Yunhua; Guo, Yanchuan
2017-12-01
Pervious methods for separation of highly purified chitooligosaccharides was time-consuming and labor-intensive, which limited the large-scale production. This study developed a convenient ion-exchange chromatography using the ÄKTA™ avant 150 chromatographic system. Five fractions were automatically collected under detecting the absorption at 210 nm. The fractions were analyzed by high-performance liquid chromatography. It proved that they primarily comprised chitobiose, chitotriose, chitotetraose, chitopentaose, and chitohexaose, respectively, with chromatographic purities over 90%. The separation process was rapid, convenient and could be monitored on-line, which would be benefit for the mass production of chitooligosaccharides.
NASA Astrophysics Data System (ADS)
Joyce, Malcolm J.; Aspinall, Michael D.; Cave, Francis D.; Lavietes, Anthony D.
2012-08-01
Pulse-shape discrimination (PSD) in fast, organic scintillation detectors is a long-established technique used to separate neutrons and γ rays in mixed radiation fields. In the analogue domain the method can achieve separation in real time, but all knowledge of the pulses themselves is lost thereby preventing the possibility of any post- or repeated analysis. Also, it is typically reliant on electronic systems that are largely obsolete and which require significant experience to set up. In the digital domain, PSD is often more flexible but significant post-processing has usually been necessary to obtain neutron/γ-ray separation. Moreover, the scintillation media on which the technique relies usually have a low flashpoint and are thus deemed hazardous. This complicates the ease with which they are used in industrial applications. In this paper, results obtained with a new portable digital pulse-shape discrimination instrument are described. This instrument provides real-time, digital neutron/γ-ray separation whilst preserving the synchronization with the time-of-arrival for each event, and realizing throughputs of 3 × 106 events per second. Furthermore, this system has been tested with a scintillation medium that is non-flammable and not hazardous.
International Deep Planet Survey, 317 stars to determine the wide-separated planet frequency
NASA Astrophysics Data System (ADS)
Galicher, R.; Marois, C.; Macintosh, B.; Zuckerman, B.; Song, I.; Barman, T.; Patience, J.
2013-09-01
Since 2000, more than 300 nearby young stars were observed for the International Deep Planet Survey with adaptive optics systems at Gemini (NIRI/NICI), Keck (Nirc2), and VLT (Naco). Massive young AF stars were included in our sample whereas they have generally been neglected in first generation surveys because the contrast and target distances are less favorable to image substellar companions. The most significant discovery of the campaign is the now well-known HR 8799 multi-planet system. This remarkable finding allows, for the first time, an estimate of the Jovians planet population at large separations (further than a few AUs) instead of deriving upper limits. During my presentation, I will present the survey showing images of multiple stars and planets. I will then propose a statistic study of the observed stars deriving constraints on the Jupiter-like planet frequency at large separations.
NASA Astrophysics Data System (ADS)
Reiter, D. T.; Rodi, W. L.
2015-12-01
Constructing 3D Earth models through the joint inversion of large geophysical data sets presents numerous theoretical and practical challenges, especially when diverse types of data and model parameters are involved. Among the challenges are the computational complexity associated with large data and model vectors and the need to unify differing model parameterizations, forward modeling methods and regularization schemes within a common inversion framework. The challenges can be addressed in part by decomposing the inverse problem into smaller, simpler inverse problems that can be solved separately, providing one knows how to merge the separate inversion results into an optimal solution of the full problem. We have formulated an approach to the decomposition of large inverse problems based on the augmented Lagrangian technique from optimization theory. As commonly done, we define a solution to the full inverse problem as the Earth model minimizing an objective function motivated, for example, by a Bayesian inference formulation. Our decomposition approach recasts the minimization problem equivalently as the minimization of component objective functions, corresponding to specified data subsets, subject to the constraints that the minimizing models be equal. A standard optimization algorithm solves the resulting constrained minimization problems by alternating between the separate solution of the component problems and the updating of Lagrange multipliers that serve to steer the individual solution models toward a common model solving the full problem. We are applying our inversion method to the reconstruction of the·crust and upper-mantle seismic velocity structure across Eurasia.· Data for the inversion comprise a large set of P and S body-wave travel times·and fundamental and first-higher mode Rayleigh-wave group velocities.
Star scanner. [with a reticle with a pair of slits having differing separation
NASA Technical Reports Server (NTRS)
Gutshall, R. L.; Mcconaughey, R. T.; Volpe, F. A. (Inventor)
1974-01-01
A star scanner on a spin stabilized spacecraft is described which includes a reticle with a pair of slits having different separations as a function of the spacecraft vertical plane, to form a V slit. The time between a star image crossing one of the slits relative to a reference telemetry time provides an indication of azimuth angle. The time between the image crossing the two slits provides an indication of elevation angle of the star. If a star cluster is detected such that two stars pass the slits in less time than normally required for a single star to cross the two slits, an indication of the cluster occurrence is derived. Means are provided to prevent effective detection of large celestial bodies, such as the sun or moon.
NASA Astrophysics Data System (ADS)
Simoni, Daniele; Lengani, Davide; Ubaldi, Marina; Zunino, Pietro; Dellacasagrande, Matteo
2017-06-01
The effects of free-stream turbulence intensity (FSTI) on the transition process of a pressure-induced laminar separation bubble have been studied for different Reynolds numbers (Re) by means of time-resolved (TR) PIV. Measurements have been performed along a flat plate installed within a double-contoured test section, designed to produce an adverse pressure gradient typical of ultra-high-lift turbine blade profiles. A test matrix spanning 3 FSTI levels and 3 Reynolds numbers has been considered allowing estimation of cross effects of these parameters on the instability mechanisms driving the separated flow transition process. Boundary layer integral parameters, spatial growth rate and saturation level of velocity fluctuations are discussed for the different cases in order to characterize the base flow response as well as the time-mean properties of the Kelvin-Helmholtz instability. The inspection of the instantaneous velocity vector maps highlights the dynamics of the large-scale structures shed near the bubble maximum displacement, as well as the low-frequency motion of the fore part of the separated shear layer. Proper Orthogonal Decomposition (POD) has been implemented to reduce the large amount of data for each condition allowing a rapid evaluation of the group velocity, spatial wavelength and dominant frequency of the vortex shedding process. The dimensionless shedding wave number parameter makes evident that the modification of the shear layer thickness at separation due to Reynolds number variation mainly drives the length scale of the rollup vortices, while higher FSTI levels force the onset of the shedding phenomenon to occur upstream due to the higher velocity fluctuations penetrating into the separating boundary layer.
Xia, Guobin; Lin, Chunfang; Liu, Songbai
2016-09-01
A large scale isolation and purification of theaflavin (TF) and epigallocatechin (EGC) has been successfully developed by tannase-mediated biotransformation combining high-speed countercurrent chromatography. After tannase hydrolysis of a commercially available theaflavins extract (TE), the content of TF and EGC in tannase-mediated biotransformation product (TBP) achieved approximately 3 times enrichment. SEM studies revealed smooth tannase biotransformation and the possibility of recovery of the tannase. A single 1.5 hours' HSCCC separation for TF and EGC employing a two-phase solvent system could simultaneously produce 180.8 mg of 97.3% purity TF and 87.5 mg of 97.3% purity EGC. However, a preparative HPLC separation of maximum injection volume containing 120 mg TBP prepared 11.2 mg TF of 94.9% purity and 7.7 mg EGC of 89.9% purity. HSCCC separation demonstrated significant advantages over Prep HPLC in terms of sample loading size, separation time, environmental friendly solvent systems, and the production. © 2016 Wiley Periodicals, Inc.
Multiple time step integrators in ab initio molecular dynamics.
Luehr, Nathan; Markland, Thomas E; Martínez, Todd J
2014-02-28
Multiple time-scale algorithms exploit the natural separation of time-scales in chemical systems to greatly accelerate the efficiency of molecular dynamics simulations. Although the utility of these methods in systems where the interactions are described by empirical potentials is now well established, their application to ab initio molecular dynamics calculations has been limited by difficulties associated with splitting the ab initio potential into fast and slowly varying components. Here we present two schemes that enable efficient time-scale separation in ab initio calculations: one based on fragment decomposition and the other on range separation of the Coulomb operator in the electronic Hamiltonian. We demonstrate for both water clusters and a solvated hydroxide ion that multiple time-scale molecular dynamics allows for outer time steps of 2.5 fs, which are as large as those obtained when such schemes are applied to empirical potentials, while still allowing for bonds to be broken and reformed throughout the dynamics. This permits computational speedups of up to 4.4x, compared to standard Born-Oppenheimer ab initio molecular dynamics with a 0.5 fs time step, while maintaining the same energy conservation and accuracy.
A unique measurement technique to study laminar-separation bubble characteristics on an airfoil
NASA Technical Reports Server (NTRS)
Stack, J. P.; Mangalam, S. M.; Berry, S. A.
1987-01-01
A 'nonintrusive', multielement heat-transfer sensor was designed to study laminar-separation bubble characteristics on a NASA LRN (1)-1010 low-Reynolds number airfoil. The sensor consists of 30 individual nickel films, vacuum-deposited on a thin substrate (0.05 mm) that was bonded to the airfoil model with the sensor array placed streamwise on the airfoil upper surface. Experiments were conducted on a 15-cm chord model in the 50,000-300,000 chord Reynolds number range. Time history as well as spectral analysis of signals from surface film gauges were simultaneously obtained to determine the location of laminar separation and the subsequent behavior of the separated shear layer. In addition to the successful determination of laminar separation, a new phenomenon involving a large phase shift in dynamic shear stresses across the separation and reattachment points was observed.
FPGA implementation of ICA algorithm for blind signal separation and adaptive noise canceling.
Kim, Chang-Min; Park, Hyung-Min; Kim, Taesu; Choi, Yoon-Kyung; Lee, Soo-Young
2003-01-01
An field programmable gate array (FPGA) implementation of independent component analysis (ICA) algorithm is reported for blind signal separation (BSS) and adaptive noise canceling (ANC) in real time. In order to provide enormous computing power for ICA-based algorithms with multipath reverberation, a special digital processor is designed and implemented in FPGA. The chip design fully utilizes modular concept and several chips may be put together for complex applications with a large number of noise sources. Experimental results with a fabricated test board are reported for ANC only, BSS only, and simultaneous ANC/BSS, which demonstrates successful speech enhancement in real environments in real time.
Cheetah Reunion - The Challenge of Finding Your Friends Again.
Hubel, Tatjana Y; Shotton, Justine; Wilshin, Simon D; Horgan, Jane; Klein, Rebecca; McKenna, Rick; Wilson, Alan M
2016-01-01
Animals navigate their environment using a variety of senses and strategies. This multiplicity enables them to respond to different navigational requirements resulting from habitat, scale and purpose. One of the challenges social animals face is how to reunite after periods of separation. We explore a variety of possible mechanisms used to reunite the members of a cheetah coalition dispersed within a large area after prolonged separation. Using GPS data from three cheetahs reuniting after weeks of separation, we determined that 1) the likelihood of purely coincidental reunion is miniscule 2) the reunion occurred in an area not normally frequented 3) with very little time spent in the region in advance of the reunion. We therefore propose that timely encounter of scent markings where paths cross is the most likely mechanism used to aid the reunion.
Cheetah Reunion – The Challenge of Finding Your Friends Again
Shotton, Justine; Wilshin, Simon D.; Horgan, Jane; Klein, Rebecca; McKenna, Rick; Wilson, Alan M.
2016-01-01
Animals navigate their environment using a variety of senses and strategies. This multiplicity enables them to respond to different navigational requirements resulting from habitat, scale and purpose. One of the challenges social animals face is how to reunite after periods of separation. We explore a variety of possible mechanisms used to reunite the members of a cheetah coalition dispersed within a large area after prolonged separation. Using GPS data from three cheetahs reuniting after weeks of separation, we determined that 1) the likelihood of purely coincidental reunion is miniscule 2) the reunion occurred in an area not normally frequented 3) with very little time spent in the region in advance of the reunion. We therefore propose that timely encounter of scent markings where paths cross is the most likely mechanism used to aid the reunion. PMID:27926915
NASA Astrophysics Data System (ADS)
Xu, B.
2017-12-01
Interferometric Synthetic Aperture Radar (InSAR) has the advantages of high spatial resolution which enable measure line of sight (LOS) surface displacements with nearly complete spatial continuity and a satellite's perspective that permits large areas view of Earth's surface quickly and efficiently. However, using InSAR to observe long wavelength and small magnitude deformation signals is still significantly limited by various unmodeled errors sources i.e. atmospheric delays, orbit induced errors, Digital Elevation Model (DEM) errors. Independent component analysis (ICA) is a probabilistic method for separating linear mixed signals generated by different underlying physical processes.The signal sources which form the interferograms are statistically independent both in space and in time, thus, they can be separated by ICA approach.The seismic behavior in the Los Angeles Basin is active and the basin has experienced numerous moderate to large earthquakes since the early Pliocene. Hence, understanding the seismotectonic deformation in the Los Angeles Basin is important for analyzing seismic behavior. Compare with the tectonic deformations, nontectonic deformations due to groundwater and oil extraction may be mainly responsible for the surface deformation in the Los Angeles basin. Using the small baseline subset (SBAS) InSAR method, we extracted the surface deformation time series in the Los Angeles basin with a time span of 7 years (September 27, 2003-September 25,2010). Then, we successfully separate the atmospheric noise from InSAR time series and detect different processes caused by different mechanisms.
REAL TIME CONTROL OF SEWERS: US EPA MANUAL
The problem of sewage spills and local flooding has traditionally been addressed by large scale capital improvement programs that focus on construction alternatives such as sewer separation or construction of storage facilities. The cost of such projects is often high, especiall...
Gross separation approaching a blunt trailing edge as the turbulence intensity increases.
Scheichl, B
2014-07-28
A novel rational description of incompressible two-dimensional time-mean turbulent boundary layer (BL) flow separating from a bluff body at an arbitrarily large globally formed Reynolds number, Re, is devised. Partly in contrast to and partly complementing previous approaches, it predicts a pronounced delay of massive separation as the turbulence intensity level increases. This is bounded from above by a weakly decaying Re-dependent gauge function (hence, the BL approximation stays intact locally), and thus the finite intensity level characterizing fully developed turbulence. However, it by far exceeds the moderate level found in a preceding study which copes with the associated moderate delay of separation. Thus, the present analysis bridges this self-consistent and another forerunner theory, proposing extremely retarded separation by anticipating a fully attached external potential flow. Specifically, it is shown upon formulation of a respective distinguished limit at which rate the separation point and the attached-flow trailing edge collapse as [Formula: see text] and how on a short streamwise scale the typical small velocity deficit in the core region of the incident BL evolves to a large one. Hence, at its base, the separating velocity profile varies generically with the one-third power of the wall distance, and the classical triple-deck problem describing local viscous-inviscid interaction crucial for moderately retarded separation is superseded by a Rayleigh problem, governing separation of that core layer. Its targeted solution proves vital for understanding the separation process more close to the wall. Most importantly, the analysis does not resort to any specific turbulence closure. A first comparison with the available experimentally found positions of separation for the canonical flow past a circular cylinder is encouraging. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
NASA Astrophysics Data System (ADS)
Tancredi, U.; Renga, A.; Grassi, M.
2013-05-01
This paper describes a carrier-phase differential GPS approach for real-time relative navigation of LEO satellites flying in formation with large separations. These applications are characterized indeed by a highly varying number of GPS satellites in common view and large ionospheric differential errors, which significantly impact relative navigation performance and robustness. To achieve high relative positioning accuracy a navigation algorithm is proposed which processes double-difference code and carrier measurements on two frequencies, to fully exploit the integer nature of the related ambiguities. Specifically, a closed-loop scheme is proposed in which fixed estimates of the baseline and integer ambiguities produced by means of a partial integer fixing step are fed back to an Extended Kalman Filter for improving the float estimate at successive time instants. The approach also benefits from the inclusion in the filter state of the differential ionospheric delay in terms of the Vertical Total Electron Content of each satellite. The navigation algorithm performance is tested on actual flight data from GRACE mission. Results demonstrate the effectiveness of the proposed approach in managing integer unknowns in conjunction with Extended Kalman Filtering, and that centimeter-level accuracy can be achieved in real-time also with large separations.
Kelly, Joan B
2007-03-01
When parents separate, children typically enter into new living arrangements with each parent in a pattern determined most often by one or both parents or, failing private agreement, as a result of recommendations and decisions by lawyers, therapists, custody evaluators, or family courts. Most of these decisions have been based on cultural traditions and beliefs regarding postseparation parenting plans, visitation guidelines adopted within jurisdictions, unsubstantiated theory, and strongly held personal values and professional opinions, and have resulted since the 1960s in children spending most of their time with one residential parent and limited time with nonresident, or "visiting", parents. A large body of social science and child development research generated over the past three decades has identified factors associated with risk and resiliency of children after divorce. Such research remains largely unknown and untapped by parents and professionals making these crucial decisions about children's living arrangements. This article highlights empirical and clinical research that is relevant to the shape of children's living arrangements after separation, focusing first on what is known about living arrangements following divorce, what factors influence living arrangements for separated and divorced children, children's views about their living arrangements, and living arrangements associated with children's adjustment following divorce. Based on this research, it is argued that traditional visiting patterns and guidelines are, for the majority of children, outdated, unnecessarily rigid, and restrictive, and fail in both the short and long term to address their best interests. Research-based parenting plan models offering multiple options for living arrangements following separation and divorce more appropriately serve children's diverse developmental and psychological needs.
Applied research of shaking table for scandium concentration from a silicate ore
NASA Astrophysics Data System (ADS)
Yan, P.; Zhang, G. F.; Gao, L.; Shi, B. H.; Shi, Z.; Yang, Y. D.
2018-03-01
A poor magnetite iron ore is a super large independent scandium deposit with over the multi-billion potential utilizable value. Shaking table separation is very useful for impurities removing and scandium content increasing as a follow-up step of high-intensity magnetic separation. In the present study, a satisfactory index, namely scandium content of 83.10 g/t and recovery rate of 79.45 wt%, was obtained by shaking table separation. The good result was achieved under the conditions which the parameters were feed concentrate of 18 wt%, feeding quantity of 11 L/min, stroke frequency of 275 times/min and stroke of 17mm.
Enabling Large Focal Plane Arrays through Mosaic Hybridization
NASA Technical Reports Server (NTRS)
Miller, Timothy M.; Jhabvala, Christine A.; Costen, Nick; Benford, Dominic J.
2012-01-01
We have demonstrated the hybridization of large mosaics of far-infrared detectors, joining separately fabricated sub-units into a single unit on a single, large substrate. We produced a single detector mockup on a 100mm diameter wafer and four mockup readout quadrant chips from a separate 100mm wafer. The individually fabricated parts were hybridized using a Suss FC150 flip chip bonder to assemble the detector-readout stack. Once all of the hybridized readouts were in place, a single, large and thick silicon substrate was placed on the stack and attached with permanent epoxy to provide strength and a Coefficient of Thermal Expansion (CTE) match to the silicon components underneath. Wirebond pads on the readout chips connect circuits to warm readout electronics; and were used to validate the successful superconducting electrical interconnection of the mockup mosaic-hybridized detector. This demonstration is directly scalable to 150 mm diameter wafers, enabling pixel areas over ten times the area currently demonstrated.
Long short-term memory for speaker generalization in supervised speech separation
Chen, Jitong; Wang, DeLiang
2017-01-01
Speech separation can be formulated as learning to estimate a time-frequency mask from acoustic features extracted from noisy speech. For supervised speech separation, generalization to unseen noises and unseen speakers is a critical issue. Although deep neural networks (DNNs) have been successful in noise-independent speech separation, DNNs are limited in modeling a large number of speakers. To improve speaker generalization, a separation model based on long short-term memory (LSTM) is proposed, which naturally accounts for temporal dynamics of speech. Systematic evaluation shows that the proposed model substantially outperforms a DNN-based model on unseen speakers and unseen noises in terms of objective speech intelligibility. Analyzing LSTM internal representations reveals that LSTM captures long-term speech contexts. It is also found that the LSTM model is more advantageous for low-latency speech separation and it, without future frames, performs better than the DNN model with future frames. The proposed model represents an effective approach for speaker- and noise-independent speech separation. PMID:28679261
How to leverage a bad inventory situation.
Horsfall, G A
1998-11-01
Small manufacturing companies have a hard time taking advantage of the price breaks that result from large purchase orders. Besides the greater amount of money involved, purchasing large quantities of items demands additional space for storing the items. This article describes a company that created separate inventory management and finance company to provide inventory management services to itself and to market these services to other small companies in its area.
Measurement of Separate Cosmic-Ray Electron and Positron Spectra with the Fermi Large Area Telescope
NASA Technical Reports Server (NTRS)
Ackermann, M.; Ajello, M.; Allafort, A.; Baldini, L.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; Berenji, B.; Blandford, R. D.;
2011-01-01
We measured separate cosmic-ray electron and positron spectra with the Fermi Large Area Telescope. Because the instrument does not have an onboard magnet, we distinguish the two species by exploiting the Earth's shadow, which is offset in opposite directions for opposite charges due to the Earth's magnetic field. We estimate and subtract the cosmic-ray proton background using two different methods that produce consistent results. We report the electron-only spectrum, the positron-only spectrum, and the positron fraction between 20 GeV and 200 GeV, We confirm that the fraction rises with energy in the 20-100 GeV range and determine for the first time that it continues to rise between 100 and 200 GeV,
NASA Astrophysics Data System (ADS)
Herath, Narmada; Del Vecchio, Domitilla
2018-03-01
Biochemical reaction networks often involve reactions that take place on different time scales, giving rise to "slow" and "fast" system variables. This property is widely used in the analysis of systems to obtain dynamical models with reduced dimensions. In this paper, we consider stochastic dynamics of biochemical reaction networks modeled using the Linear Noise Approximation (LNA). Under time-scale separation conditions, we obtain a reduced-order LNA that approximates both the slow and fast variables in the system. We mathematically prove that the first and second moments of this reduced-order model converge to those of the full system as the time-scale separation becomes large. These mathematical results, in particular, provide a rigorous justification to the accuracy of LNA models derived using the stochastic total quasi-steady state approximation (tQSSA). Since, in contrast to the stochastic tQSSA, our reduced-order model also provides approximations for the fast variable stochastic properties, we term our method the "stochastic tQSSA+". Finally, we demonstrate the application of our approach on two biochemical network motifs found in gene-regulatory and signal transduction networks.
Parametric adaptive filtering and data validation in the bar GW detector AURIGA
NASA Astrophysics Data System (ADS)
Ortolan, A.; Baggio, L.; Cerdonio, M.; Prodi, G. A.; Vedovato, G.; Vitale, S.
2002-04-01
We report on our experience gained in the signal processing of the resonant GW detector AURIGA. Signal amplitude and arrival time are estimated by means of a matched-adaptive Wiener filter. The detector noise, entering in the filter set-up, is modelled as a parametric ARMA process; to account for slow non-stationarity of the noise, the ARMA parameters are estimated on an hourly basis. A requirement of the set-up of an unbiased Wiener filter is the separation of time spans with 'almost Gaussian' noise from non-Gaussian and/or strongly non-stationary time spans. The separation algorithm consists basically of a variance estimate with the Chauvenet convergence method and a threshold on the Curtosis index. The subsequent validation of data is strictly connected with the separation procedure: in fact, by injecting a large number of artificial GW signals into the 'almost Gaussian' part of the AURIGA data stream, we have demonstrated that the effective probability distributions of the signal-to-noise ratio χ2 and the time of arrival are those that are expected.
Crosswind Shear Gradient Affect on Wake Vortices
NASA Technical Reports Server (NTRS)
Proctor, Fred H.; Ahmad, Nashat N.
2011-01-01
Parametric simulations with a Large Eddy Simulation (LES) model are used to explore the influence of crosswind shear on aircraft wake vortices. Previous studies based on field measurements, laboratory experiments, as well as LES, have shown that the vertical gradient of crosswind shear, i.e. the second vertical derivative of the environmental crosswind, can influence wake vortex transport. The presence of nonlinear vertical shear of the crosswind velocity can reduce the descent rate, causing a wake vortex pair to tilt and change in its lateral separation. The LES parametric studies confirm that the vertical gradient of crosswind shear does influence vortex trajectories. The parametric results also show that vortex decay from the effects of shear are complex since the crosswind shear, along with the vertical gradient of crosswind shear, can affect whether the lateral separation between wake vortices is increased or decreased. If the separation is decreased, the vortex linking time is decreased, and a more rapid decay of wake vortex circulation occurs. If the separation is increased, the time to link is increased, and at least one of the vortices of the vortex pair may have a longer life time than in the case without shear. In some cases, the wake vortices may never link.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joyce, M. J.; Aspinall, M. D.; Cave, F. D.
Pulse-shape discrimination (PSD) in fast, organic scintillation detectors is a long-established technique used to separate neutrons and {gamma} rays in mixed radiation fields. In the analogue domain the method can achieve separation in real time, but all knowledge of the pulses themselves is lost thereby preventing the possibility of any post- or repeated analysis. Also, it is typically reliant on electronic systems that are largely obsolete and which require significant experience to set up. In the digital domain, PSD is often more flexible but significant post-processing has usually been necessary to obtain neutron/{gamma}-ray separation. Moreover, the scintillation media on whichmore » the technique relies usually have a low flash point and are thus deemed hazardous. This complicates the ease with which they are used in industrial applications. In this paper, results obtained with a new portable digital pulse-shape discrimination instrument are described. This instrument provides real-time, digital neutron/{gamma} separation whilst preserving the synchronization with the time-of-arrival for each event, and realizing throughputs of 3 x 10{sup 6} events per second. Furthermore, this system has been tested with a scintillation medium that is non-flammable and not hazardous. (authors)« less
Identification of a parametric, discrete-time model of ankle stiffness.
Guarin, Diego L; Jalaleddini, Kian; Kearney, Robert E
2013-01-01
Dynamic ankle joint stiffness defines the relationship between the position of the ankle and the torque acting about it and can be separated into intrinsic and reflex components. Under stationary conditions, intrinsic stiffness can described by a linear second order system while reflex stiffness is described by Hammerstein system whose input is delayed velocity. Given that reflex and intrinsic torque cannot be measured separately, there has been much interest in the development of system identification techniques to separate them analytically. To date, most methods have been nonparametric and as a result there is no direct link between the estimated parameters and those of the stiffness model. This paper presents a novel algorithm for identification of a discrete-time model of ankle stiffness. Through simulations we show that the algorithm gives unbiased results even in the presence of large, non-white noise. Application of the method to experimental data demonstrates that it produces results consistent with previous findings.
Selective Hydrogen Isotope Separation via Breathing Transition in MIL-53(Al).
Kim, Jin Yeong; Zhang, Linda; Balderas-Xicohténcatl, Rafael; Park, Jaewoo; Hirscher, Michael; Moon, Hoi Ri; Oh, Hyunchul
2017-12-13
Breathing of MIL-53(Al), a flexible metal-organic framework (MOF), leads to dynamic changes as narrow pore (np) transitions to large pore (lp). During the flexible and reversible transition, the pore apertures are continuously adjusted, thus providing the tremendous opportunity to separate mixtures of similar-sized and similar-shaped molecules that require precise pore tuning. Herein, for the first time, we report a strategy for effectively separating hydrogen isotopes through the dynamic pore change during the breathing of MIL-53(Al), a representative of flexible MOFs. The experiment shows that the selectivity for D 2 over H 2 is strongly related to the state of the pore structure of MIL-53(Al). The highest selectivity (S D 2 /H 2 = 13.6 at 40 K) was obtained by optimizing the exposure temperature, pressure, and time to systematically tune the pore state of MIL-53(Al).
Wedge measures parallax separations...on large-scale 70-mm
Steven L. Wert; Richard J. Myhre
1967-01-01
A new parallax wedge (range: 1.5 to 2 inches) has been designed for use with large-scaled 70-mm. aerial photographs. The narrow separation of the wedge allows the user to measure small parallax separations that are characteristic of large-scale photographs.
Assessment of chemically separated carbon nanotubes for nanoelectronics.
Zhang, Li; Zaric, Sasa; Tu, Xiaomin; Wang, Xinran; Zhao, Wei; Dai, Hongjie
2008-02-27
It remains an elusive goal to obtain high performance single-walled carbon-nanotube (SWNT) electronics such as field effect transistors (FETs) composed of single- or few-chirality SWNTs, due to broad distributions in as-grown materials. Much progress has been made by various separation approaches to obtain materials enriched in metal or semiconducting nanotubes or even in single chiralties. However, research in validating SWNT separations by electrical transport measurements and building functional electronic devices has been scarce. Here, we performed length, diameter, and chirality separation of DNA functionalized HiPco SWNTs by chromatography methods, and we characterized the chiralities by photoluminescence excitation spectroscopy, optical absorption spectroscopy, and electrical transport measurements. The use of these combined methods provided deeper insight to the degree of separation than either technique alone. Separation of SWNTs by chirality and diameter occurred at varying degrees that decreased with increasing tube diameter. This calls for new separation methods capable of metallicity or chirality separation of large diameter SWNTs (in the approximately 1.5 nm range) needed for high performance nanoelectronics. With most of the separated fractions enriched in semiconducting SWNTs, nanotubes placed in parallel in short-channel (approximately 200 nm) electrical devices fail to produce FETs with high on/off switching, indicating incomplete elimination of metallic species. In rare cases with a certain separated SWNT fraction, we were able to fabricate FET devices composed of small-diameter, chemically separated SWNTs in parallel, with high on-/off-current (I(on)/I(off)) ratios up to 105 owing to semiconducting SWNTs with only a few (n,m) chiralities in the fraction. This was the first time that chemically separated SWNTs were used for short channel, all-semiconducting SWNT electronics dominant by just a few (n,m)'s. Nevertheless, the results suggest that much improved chemical separation methods are needed to produce nanotube electronics at a large scale.
Conjugates of magnetic nanoparticle-actinide specific chelator for radioactive waste separation.
Kaur, Maninder; Zhang, Huijin; Martin, Leigh; Todd, Terry; Qiang, You
2013-01-01
A novel nanotechnology for the separation of radioactive waste that uses magnetic nanoparticles (MNPs) conjugated with actinide specific chelators (MNP-Che) is reviewed with a focus on design and process development. The MNP-Che separation process is an effective way of separating heat generating minor actinides (Np, Am, Cm) from spent nuclear fuel solution to reduce the radiological hazard. It utilizes coated MNPs to selectively adsorb the contaminants onto their surfaces, after which the loaded particles are collected using a magnetic field. The MNP-Che conjugates can be recycled by stripping contaminates into a separate, smaller volume of solution, and then become the final waste form for disposal after reusing number of times. Due to the highly selective chelators, this remediation method could be both simple and versatile while allowing the valuable actinides to be recovered and recycled. Key issues standing in the way of large-scale application are stability of the conjugates and their dispersion in solution to maintain their unique properties, especially large surface area, of MNPs. With substantial research progress made on MNPs and their surface functionalization, as well as development of environmentally benign chelators, this method could become very flexible and cost-effective for recycling used fuel. Finally, the development of this nanotechnology is summarized and its future direction is discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dumitru, Irina, E-mail: aniri-dum@yahoo.com; Isar, Aurelian
In the framework of the theory of open systems based on completely positive quantum dynamical semigroups, we give a description of the continuous variable entanglement for a system consisting of two non-interacting bosonic modes embedded in a thermal environment. The calculated measure of entanglement is entanglement of formation. We describe the evolution of entanglement in terms of the covariance matrix for symmetric Gaussian input states. In the case of an entangled initial squeezed thermal state, entanglement suppression (entanglement sudden death) takes place, for all non-zero temperatures of the thermal bath. After that, the system remains for all times in amore » separable state. For a zero temperature of the thermal bath, the system remains entangled for all finite times, but in the limit of asymptotic large times the state becomes separable.« less
Separation as a suicide risk factor.
Wyder, Marianne; Ward, Patrick; De Leo, Diego
2009-08-01
Marital separation (as distinct from divorce) is rarely researched in the suicidological literature. Studies usually report on the statuses of 'separated' and 'divorced' as a combined category, possibly because demographic registries are not able to identify separation reliably. However, in most countries divorce only happens once the process of separation has settled which, in most cases, occurs a long time after the initial break-up. It has been hypothesised that separation might carry a far greater risk of suicide than divorce. The present study investigates the impact of separation on suicide risk by taking into account the effects of age and gender. The incidence of suicide associated with marital status, age and gender was determined by comparing the Queensland Suicide Register (a large dataset of all suicides in Queensland from 1994 to 2004) with the QLD population through two different census datasets: the Registered Marital Status and the Social Marital Status. These two registries permit the isolation of the variable 'separated' with great reliability. During the examined period, 6062 persons died by suicide in QLD (an average of 551 cases per year), with males outnumbering females by four to one. For both males and females separation created a risk of suicide at least 4 times higher than any other marital status. The risk was particularly high for males aged 15 to 24 (RR 91.62). This study highlights a great variation in the incidence of suicide by marital status, age and gender, which suggests that these variables should not be studied in isolation. Furthermore, particularly in younger males, separation appears to be strongly associated with the risk of suicide.
Assessment of Alternative Substrates for Culturing Lumbriculus variegatus
Lasier, P.J.
2007-01-01
The freshwater oligochaete, Lumbriculus variegatus, is tank-cultured to provide organisms for aquatic-habitat assessments, regeneration research and as a clean source of live food for aquarium fishes. Shredded paper is the typical substrate in cultures used to rear L. variegatus for these purposes. However, the effort needed to separate large numbers from decomposing paper can be prohibitive. Burlap and nylon mesh material were compared to paper as potential alternatives that could reduce this effort. Oligochaete production and the amount of time needed to separate animals from substrate were compared for eight weeks among experimental cultures containing burlap, nylon mesh and paper. Cultures with paper substrate increased in number and weight two to three times faster than those with burlap or nylon mesh substrates. The time needed to separate animals from substrate was initially two to three times longer with paper substrate than with burlap or nylon mesh substrates, but this difference increased to between 10 and 40 times longer after six weeks as the paper substrate decomposed. Feeding rates varied by treatment and were based on average wet weight at the time of water replacement. Elevated ammonia and nitrite concentrations resulting from excess food may have reduced production in nylon mesh treatments and was lethal in paper treatments during the final phases of the study. The type of substrate recommended may depend on the desired production rate of oligochaetes, space available for cultures and the amount of effort available for substrate renewal and separating the animals from the cultures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karelin, A. V., E-mail: karelin@hotbox.ru; Borisov, S. V.; Voronov, S. A.
2013-06-15
The PAMELA satellite-borne experiment is designed to study cosmic rays over a broad energy range. The apparatus has been in near-Earth cosmic space from June 2006 to the present time. It is equipped with a magnetic spectrometer for determining the sign of the particle charge and rigidity. In solving some problems, however, information from the magnetic spectrometer becomes inaccessible, so that it is necessary to employ a calorimeter to separate the electron and nuclear cosmic-ray components. A procedure for separating these components for particles arriving off the magnetic-spectrometer aperture is considered.
Xie, Weilin; Xia, Zongyang; Zhou, Qian; Shi, Hongxiao; Dong, Yi; Hu, Weisheng
2015-07-13
We present a photonic approach for generating low phase noise, arbitrary chirped microwave waveforms based on heterodyne beating between high order correlated comb lines extracted from frequency-agile optical frequency comb. Using the dual heterodyne phase transfer scheme, extrinsic phase noises induced by the separate optical paths are efficiently suppressed by 42-dB at 1-Hz offset frequency. Linearly chirped microwave waveforms are achieved within 30-ms temporal duration, contributing to a large time-bandwidth product. The linearity measurement leads to less than 90 kHz RMS frequency error during the entire chirp duration, exhibiting excellent linearity for the microwave and sub-THz waveforms. The capability of generating arbitrary waveforms up to sub-THz band with flexible temporal duration, long repetition period, broad bandwidth, and large time-bandwidth product is investigated and discussed.
Gravity separation of pericardial fat in cardiotomy suction blood: an in vitro model.
Kinard, M Rhett; Shackelford, Anthony G; Sistino, Joseph J
2009-06-01
Fat emboli generated during cardiac surgery have been shown to cause neurologic complications in patients postoperatively. Cardiotomy suction has been known to be a large generator of emboli. This study will examine the efficacy of a separation technique in which the cardiotomy suction blood is stored in a cardiotomy reservoir for various time intervals to allow spontaneous separation of fat from blood by density. Soybean oil was added to heparinized porcine blood to simulate the blood of a patient with hypertriglyceridemia (> 150 mg/dL). Roller pump suction was used to transfer the room temperature blood into the cardiotomy reservoir. Blood was removed from the reservoir in 200-mL aliquots at 0, 15, 30 45, and 60 minutes. Samples were taken at each interval and centrifuged to facilitate further separation of liquid fat. Fat content in each sample was determined by a point-of-care triglyceride analyzer. Three trials were conducted for a total of 30 samples. The 0-minute group was considered a baseline and was compared to the other four times. Fat concentration was reduced significantly in the 45- and 60-minute groups compared to the 0-, 15-, and 30-minute groups (p < .05). Gravity separation of cardiotomy suction blood is effective; however, it may require retention of blood for more time than is clinically acceptable during a routing coronary artery bypass graft surgery.
NASA Astrophysics Data System (ADS)
El-Ashram, Saeed; Suo, Xun
2017-02-01
Several methods have been proposed for separation of eimerian oocysts and trichostronglyid eggs from extraneous debris; however, these methods have been considered to be still inconvenient in terms of time and wide-ranging applications. We describe herein an alternative way using the combination of electrical cream separator and vacuum filtration for harvesting and purifying eimerian oocysts and haemonchine eggs on large-scale applications with approximately 81% and 92% recovery rates for oocysts and nematode eggs obtained from avian and ovine faeces, correspondingly. The sporulation percentages as a measure of viability in the harvested oocysts and eggs from dry faecal materials are nearly 68% and 74%, respectively, and 12 liters of faecal suspension can be processed in approximately 7.5 min. The mode of separation in terms of costs (i.e. simple laboratory equipments and comparably cheap reagents) and benefits renders the reported procedure an appropriate pursuit to harvest and purify parasite oocysts and eggs on a large scale in the shortest duration from diverse volumes of environmental samples compared to the modified traditional sucrose gradient, which can be employed on a small scale.
El-Ashram, Saeed; Suo, Xun
2017-01-01
Several methods have been proposed for separation of eimerian oocysts and trichostronglyid eggs from extraneous debris; however, these methods have been considered to be still inconvenient in terms of time and wide-ranging applications. We describe herein an alternative way using the combination of electrical cream separator and vacuum filtration for harvesting and purifying eimerian oocysts and haemonchine eggs on large-scale applications with approximately 81% and 92% recovery rates for oocysts and nematode eggs obtained from avian and ovine faeces, correspondingly. The sporulation percentages as a measure of viability in the harvested oocysts and eggs from dry faecal materials are nearly 68% and 74%, respectively, and 12 liters of faecal suspension can be processed in approximately 7.5 min. The mode of separation in terms of costs (i.e. simple laboratory equipments and comparably cheap reagents) and benefits renders the reported procedure an appropriate pursuit to harvest and purify parasite oocysts and eggs on a large scale in the shortest duration from diverse volumes of environmental samples compared to the modified traditional sucrose gradient, which can be employed on a small scale. PMID:28233853
Low-Frequency Flow Oscillations on Stalled Wings Exhibiting Cellular Separation Topology
NASA Astrophysics Data System (ADS)
Disotell, Kevin James
One of the most pervasive threats to aircraft controllability is wing stall, a condition associated with loss of lift due to separation of air flow from the wing surface at high angles of attack. A recognized need for improved upset recovery training in extended-envelope flight simulators is a physical understanding of the post-stall aerodynamic environment, particularly key flow phenomena which influence the vehicle trajectory. Large-scale flow structures known as stall cells, which scale with the wing chord and are spatially-periodic along the span, have been previously observed on post-stall airfoils with trailing-edge separation present. Despite extensive documentation of stall cells in the literature, the physical mechanisms behind their formation and evolution have proven to be elusive. The undertaken study has sought to characterize the inherently turbulent separated flow existing above the wing surface with cell formation present. In particular, the question of how the unsteady separated flow may interact with the wing to produce time-averaged cellular surface patterns is considered. Time-resolved, two-component particle image velocimetry measurements were acquired at the plane of symmetry of a single stall cell formed on an extruded NACA 0015 airfoil model at chord Reynolds number of 560,000 to obtain insight into the time-dependent flow structure. The evolution of flow unsteadiness was analyzed over a static angle-of-attack range covering the narrow post-stall regime in which stall cells have been observed. Spectral analysis of velocity fields acquired near the stall angle confirmed a low-frequency flow oscillation previously detected in pointwise surface measurements by Yon and Katz (1998), corresponding to a Strouhal number of 0.042 based on frontal projected chord height. Probability density functions of the streamwise velocity component were used to estimate the convective speed of this mode at approximately half the free-stream velocity, in agreement with Yon and Katz. Large-amplitude streamwise Reynolds stresses in the separated shear layer were found to be manifested by the low-frequency oscillation through inspection of the spectral energy distribution. Using the method of Proper Orthogonal Decomposition to construct reduced-order models of the acquired time sequences, the low-frequency unsteadiness appeared to be linked to an interaction between the separated and trailing-edge shear layers, in contrast to a bubble-bursting mechanism which has been observed for different stall behaviors. As the static angle of attack was increased further, the separated flow structure was seen to transition to a faster eddy motion expected for bluff-body wakes. A novel scaling study was conducted to evaluate the potential role of low-frequency unsteadiness in producing the spanwise wavelengths associated with cell formation, which was found to be in favorable agreement with scaling trends in the literature. Finally, instantaneous pressure-sensitive paint measurements were demonstrated on a DU 97-W-300 wind turbine airfoil at chord Reynolds number of 225,000 with leading-edge trip applied, in which the development of spiral node structures associated with cell formation were captured in the trailing-edge separation. The contributed work suggests that further study into the influence of large-scale unsteadiness on the three-dimensional organization of stall cells is merited.
Ambient noise correlations on a mobile, deformable array.
Naughton, Perry; Roux, Philippe; Yeakle, Riley; Schurgers, Curt; Kastner, Ryan; Jaffe, Jules S; Roberts, Paul L D
2016-12-01
This paper presents a demonstration of ambient acoustic noise processing on a set of free floating oceanic receivers whose relative positions vary with time. It is shown that it is possible to retrieve information that is relevant to the travel time between the receivers. With thousands of short time cross-correlations (10 s) of varying distance, it is shown that on average, the decrease in amplitude of the noise correlation function with increased separation follows a power law. This suggests that there may be amplitude information that is embedded in the noise correlation function. An incoherent beamformer is developed, which shows that it is possible to determine a source direction using an array with moving elements and large element separation. This incoherent beamformer is used to verify cases when the distribution of noise sources in the ocean allows one to recover travel time information between pairs of mobile receivers.
Strategy for large-scale isolation of enantiomers in drug discovery.
Leek, Hanna; Thunberg, Linda; Jonson, Anna C; Öhlén, Kristina; Klarqvist, Magnus
2017-01-01
A strategy for large-scale chiral resolution is illustrated by the isolation of pure enantiomer from a 5kg batch. Results from supercritical fluid chromatography will be presented and compared with normal phase liquid chromatography. Solubility of the compound in the supercritical mobile phase was shown to be the limiting factor. To circumvent this, extraction injection was used but shown not to be efficient for this compound. Finally, a method for chiral resolution by crystallization was developed and applied to give diastereomeric salt with an enantiomeric excess of 99% at a 91% yield. Direct access to a diverse separation tool box will be shown to be essential for solving separation problems in the most cost and time efficient way. Copyright © 2016 Elsevier Ltd. All rights reserved.
Preparative supercritical fluid chromatography: A powerful tool for chiral separations.
Speybrouck, David; Lipka, Emmanuelle
2016-10-07
In 2012, the 4 biggest pharmaceutical blockbusters were pure enantiomers and separating racemic mixtures is now frequently a key step in the development of a new drug. For a long time, preparative liquid chromatography was the technique of choice for the separation of chiral compounds either during the drug discovery process to get up to a hundred grams of a pure enantiomer or during the clinical trial phases needing kilograms of material. However the advent of supercritical Fluid Chromatography (SFC) in the 1990s has changed things. Indeed, the use of carbon dioxide as the mobile phase in SFC offers many advantages including high flow rate, short equilibration time as well as low solvent consumption. Despite some initial teething troubles, SFC is becoming the primary method for preparative chiral chromatography. This article will cover recent developments in preparative SFC for the separation of enantiomers, reviewing several aspects such as instrumentation, chiral stationary phases, mobile phases or purely preparative considerations including overloading, productivity or large scale chromatography. Copyright © 2016 Elsevier B.V. All rights reserved.
Sakamoto, Manabu; Ruta, Marcello
2012-01-01
Background Studies of biological shape evolution are greatly enhanced when framed in a phylogenetic perspective. Inclusion of fossils amplifies the scope of macroevolutionary research, offers a deep-time perspective on tempo and mode of radiations, and elucidates life-trait changes. We explore the evolution of skull shape in felids (cats) through morphometric analyses of linear variables, phylogenetic comparative methods, and a new cladistic study of saber-toothed cats. Methodology/Principal Findings A new phylogenetic analysis supports the monophyly of saber-toothed cats (Machairodontinae) exclusive of Felinae and some basal felids, but does not support the monophyly of various saber-toothed tribes and genera. We quantified skull shape variation in 34 extant and 18 extinct species using size-adjusted linear variables. These distinguish taxonomic group membership with high accuracy. Patterns of morphospace occupation are consistent with previous analyses, for example, in showing a size gradient along the primary axis of shape variation and a separation between large and small-medium cats. By combining the new phylogeny with a molecular tree of extant Felinae, we built a chronophylomorphospace (a phylogeny superimposed onto a two-dimensional morphospace through time). The evolutionary history of cats was characterized by two major episodes of morphological divergence, one marking the separation between saber-toothed and modern cats, the other marking the split between large and small-medium cats. Conclusions/Significance Ancestors of large cats in the ‘Panthera’ lineage tend to occupy, at a much later stage, morphospace regions previously occupied by saber-toothed cats. The latter radiated out into new morphospace regions peripheral to those of extant large cats. The separation between large and small-medium cats was marked by considerable morphologically divergent trajectories early in feline evolution. A chronophylomorphospace has wider applications in reconstructing temporal transitions across two-dimensional trait spaces, can be used in ecophenotypical and functional diversity studies, and may reveal novel patterns of morphospace occupation. PMID:22792186
Precipitation of molybdenum(V) as the hydroxide and its separation from rhenium.
Yatirajam, V; Ahuja, U; Kakkar, L R
1975-03-01
A study of the conditions for precipitation of molybdenum(V) hydroxide shows that for Mo concentration 1 mg ml about 97.5% of the Mo can be precipitated between pH 5 and 5.8. Lower concentrations of molybdenum(V) or molybdenum(VI) can be precipitated quantitatively by using 20 times the amount of zirconium as collector, at the same pH. On this basis, a simple method is given for quantitative separation of rhenium from large amounts of molybdenum and is attested by analysis of synthetic and molybdenite samples.
NASA Technical Reports Server (NTRS)
Newcomb, John
2004-01-01
The end-to-end test would verify the complex sequence of events from lander separation to landing. Due to the large distances involved and the significant delay time in sending a command and receiving verification, the lander needed to operate autonomously after it separated from the orbiter. It had to sense conditions, make decisions, and act accordingly. We were flying into a relatively unknown set of conditions-a Martian atmosphere of unknown pressure, density, and consistency to land on a surface of unknown altitude, and one which had an unknown bearing strength.
Separated matter and antimatter domains with vanishing domain walls
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dolgov, A.D.; Godunov, S.I.; Rudenko, A.S.
2015-10-01
We present a model of spontaneous (or dynamical) C and CP violation where it is possible to generate domains of matter and antimatter separated by cosmologically large distances. Such C(CP) violation existed only in the early universe and later it disappeared with the only trace of generated baryonic and/or antibaryonic domains. So the problem of domain walls in this model does not exist. These features are achieved through a postulated form of interaction between inflaton and a new scalar field, realizing short time C(CP) violation.
Entanglement renormalization, quantum error correction, and bulk causality
NASA Astrophysics Data System (ADS)
Kim, Isaac H.; Kastoryano, Michael J.
2017-04-01
Entanglement renormalization can be viewed as an encoding circuit for a family of approximate quantum error correcting codes. The logical information becomes progres-sively more well-protected against erasure errors at larger length scales. In particular, an approximate variant of holographic quantum error correcting code emerges at low energy for critical systems. This implies that two operators that are largely separated in scales behave as if they are spatially separated operators, in the sense that they obey a Lieb-Robinson type locality bound under a time evolution generated by a local Hamiltonian.
NASA Astrophysics Data System (ADS)
Azuma, Naoki; Itoh, Shintaro; Fukuzawa, Kenji; Zhang, Hedong
2018-02-01
Through electrophoresis driven by a pulsed electric field, we succeeded in separating large DNA molecules with an electrophoretic microchip based on size exclusion chromatography (SEC), which was proposed in our previous study. The conditions of the pulsed electric field required to achieve the separation were determined by numerical analyses using our originally proposed separation model. From the numerical results, we succeeded in separating large DNA molecules (λ DNA and T4 DNA) within 1600 s, which was approximately half of that achieved under a direct electric field in our previous study. Our SEC-based electrophoresis microchip will be one of the effective tools to meet the growing demand of faster and more convenient separation of large DNA molecules, especially in the field of epidemiological research of infectious diseases.
Using Technology to Promote Active and Social Learning Experiences in Health Professions Education
ERIC Educational Resources Information Center
Ruckert, Elizabeth; McDonald, Paige L.; Birkmeier, Marissa; Walker, Bryan; Cotton, Linda; Lyons, Laurie B.; Straker, Howard O.; Plack, Margaret M.
2014-01-01
Time and space constraints, large class sizes, competition for clinical internships, and geographic separation between classroom and clinical rotations for student interaction with peers and faculty pose challenges for health professions educational programs. This article presents a model for effectively incorporating technology to overcome these…
The ROSAT All-Sky Survey view of the Large Magellanic Cloud (LMC)
NASA Technical Reports Server (NTRS)
Pietsch, W.; Denner, K.; Kahabka, P.; Pakull, M.; Schaeidt, S.
1996-01-01
During the Rosat all sky survey, centered on the Large Magellanic Cloud (LMC), 516 X-ray sources were detected. The field was covered from July 1990 to January 1991. The X-ray parameters of the sources, involving position, count rates, hardness ratios, extent, and time variability during the observations, are discussed. Identifications with objects from optical, radio and infrared wavelength allow the LMC candidates to be separated from the foreground stars and the background objects.
Hemdan, A; Abdel-Aziz, Omar
2018-04-01
Run time is a predominant factor in HPLC for quality control laboratories especially if there is large number of samples have to be analyzed. Working at high flow rates cannot be attained with silica based particle packed column due to elevated backpressure issues. The use of monolithic column as an alternative to traditional C-18 column was tested for fast separation of pharmaceuticals, where the results were very competitive. The performance comparison of both columns was tested for separation of anti-diabetic combination containing Metformin, Pioglitazone and Glimepiride using Gliclazide as an internal standard. Working at high flow rates with less significant backpressure was obtained with the monolithic column where the run time was reduced from 6 min in traditional column to only 1 min in monolithic column with accepted resolution. The structure of the monolith contains many pores which can adapt the high flow rate of the mobile phase. Moreover, peak symmetry and equilibration time were more efficient with monolithic column.
Impact of grade separator on pedestrian risk taking behavior.
Khatoon, Mariya; Tiwari, Geetam; Chatterjee, Niladri
2013-01-01
Pedestrians on Delhi roads are often exposed to high risks. This is because the basic needs of pedestrians are not recognized as a part of the urban transport infrastructure improvement projects in Delhi. Rather, an ever increasing number of cars and motorized two-wheelers encourage the construction of large numbers of flyovers/grade separators to facilitate signal free movement for motorized vehicles, exposing pedestrians to greater risk. This paper describes the statistical analysis of pedestrian risk taking behavior while crossing the road, before and after the construction of a grade separator at an intersection of Delhi. A significant number of pedestrians are willing to take risks in both before and after situations. The results indicate that absence of signals make pedestrians behave independently, leading to increased variability in their risk taking behavior. Variability in the speeds of all categories of vehicles has increased after the construction of grade separators. After the construction of the grade separator, the waiting time of pedestrians at the starting point of crossing has increased and the correlation between waiting times and gaps accepted by pedestrians show that after certain time of waiting, pedestrians become impatient and accepts smaller gap size to cross the road. A Logistic regression model is fitted by assuming that the probability of road crossing by pedestrians depends on the gap size (in s) between pedestrian and conflicting vehicles, sex, age, type of pedestrians (single or in a group) and type of conflicting vehicles. The results of Logistic regression explained that before the construction of the grade separator the probability of road crossing by the pedestrian depends on only the gap size parameter; however after the construction of the grade separator, other parameters become significant in determining pedestrian risk taking behavior. Copyright © 2012 Elsevier Ltd. All rights reserved.
Increase in local protein concentration by field-inversion gel electrophoresis.
Tsai, Henghang; Low, Teck Yew; Freeby, Steve; Paulus, Aran; Ramnarayanan, Kalpana; Cheng, Chung-Pui Paul; Leung, Hon-Chiu Eastwood
2007-09-26
Proteins that migrate through cross-linked polyacrylamide gels (PAGs) under the influence of a constant electric field experience negative factors, such as diffusion and non-specific trapping in the gel matrix. These negative factors reduce protein concentrations within a defined gel volume with increasing migration distance and, therefore, decrease protein separation efficiency. Enhancement of protein separation efficiency was investigated by implementing pulsed field-inversion gel electrophoresis (FIGE). Separation of model protein species and large protein complexes was compared between FIGE and constant field electrophoresis (CFE) in different percentages of PAGs. Band intensities of proteins in FIGE with appropriate ratios of forward and backward pulse times were superior to CFE despite longer running times. These results revealed an increase in band intensity per defined gel volume. A biphasic protein relative mobility shift was observed in percentages of PAGs up to 14%. However, the effect of FIGE on protein separation was stochastic at higher PAG percentage. Rat liver lysates subjected to FIGE in the second-dimension separation of two-dimensional polyarcylamide gel electrophoresis (2D PAGE) showed a 20% increase in the number of discernible spots compared with CFE. Nine common spots from both FIGE and CFE were selected for peptide sequencing by mass spectrometry (MS), which revealed higher final ion scores of all nine protein spots from FIGE. Native protein complexes ranging from 800 kDa to larger than 2000 kDa became apparent using FIGE compared with CFE. The present investigation suggests that FIGE under appropriate conditions improves protein separation efficiency during PAGE as a result of increased local protein concentration. FIGE can be implemented with minimal additional instrumentation in any laboratory setting. Despite the tradeoff of longer running times, FIGE can be a powerful protein separation tool.
A small-gap electrostatic micro-actuator for large deflections
Conrad, Holger; Schenk, Harald; Kaiser, Bert; Langa, Sergiu; Gaudet, Matthieu; Schimmanz, Klaus; Stolz, Michael; Lenz, Miriam
2015-01-01
Common quasi-static electrostatic micro actuators have significant limitations in deflection due to electrode separation and unstable drive regions. State-of-the-art electrostatic actuators achieve maximum deflections of approximately one third of the electrode separation. Large electrode separation and high driving voltages are normally required to achieve large actuator movements. Here we report on an electrostatic actuator class, fabricated in a CMOS-compatible process, which allows high deflections with small electrode separation. The concept presented makes the huge electrostatic forces within nanometre small electrode separation accessible for large deflections. Electrostatic actuations that are larger than the electrode separation were measured. An analytical theory is compared with measurement and simulation results and enables closer understanding of these actuators. The scaling behaviour discussed indicates significant future improvement on actuator deflection. The presented driving concept enables the investigation and development of novel micro systems with a high potential for improved device and system performance. PMID:26655557
Enabling Large Focal Plane Arrays Through Mosaic Hybridization
NASA Technical Reports Server (NTRS)
Miller, TImothy M.; Jhabvala, Christine A.; Leong, Edward; Costen, Nicholas P.; Sharp, Elmer; Adachi, Tomoko; Benford, Dominic
2012-01-01
We have demonstrated advances in mosaic hybridization that will enable very large format far-infrared detectors. Specifically we have produced electrical detector models via mosaic hybridization yielding superconducting circuit paths by hybridizing separately fabricated sub-units onto a single detector unit. The detector model was made on a 100mm diameter wafer while four model readout quadrant chips were made from a separate 100mm wafer. The individually fabricated parts were hybridized using a flip-chip bonder to assemble the detector-readout stack. Once all of the hybridized readouts were in place, a single, large and thick silicon substrate was placed on the stack and attached with permanent epoxy to provide strength and a Coefficient of Thermal Expansion match to the silicon components underneath. Wirebond pads on the readout chips connect circuits to warm readout electronics; and were used to validate the successful superconducting electrical interconnection of the model mosaic-hybrid detector. This demonstration is directly scalable to 150 mm diameter wafers, enabling pixel areas over ten times the area currently available.
Wei, Wenping; Zhang, Huamin; Li, Xianfeng; Zhang, Hongzhang; Li, Yun; Vankelecom, Ivo
2013-02-14
Polyvinylidene fluoride (PVDF) ultrafiltration membranes were investigated for the first time in vanadium redox flow battery (VFB) applications. Surprisingly, PVDF ultrafiltration membranes with hydrophobic pore walls and relatively large pore sizes of several tens of nanometers proved able to separate vanadium ions and protons efficiently, thus being suitable as a VFB separator. The ion selectivity of this new type of VFB membrane could be tuned readily by controlling the membrane morphology via changes in the composition of the membrane casting solution, and the casting thickness. The results showed that the PVDF membranes offered good performances and excellent stability in VFB applications, where it could, performance-wise, truly substitute Nafion in VFB applications, but at a much lower cost.
NASA Technical Reports Server (NTRS)
Rubesin, M. W.; Okuno, A. F.; Levy, L. L., Jr.; Mcdevitt, J. B.; Seegmiller, H. L.
1976-01-01
A combined experimental and computational research program is described for testing and guiding turbulence modeling within regions of separation induced by shock waves incident in turbulent boundary layers. Specifically, studies are made of the separated flow the rear portion of an 18%-thick circular-arc airfoil at zero angle of attack in high Reynolds number supercritical flow. The measurements include distributions of surface static pressure and local skin friction. The instruments employed include highfrequency response pressure cells and a large array of surface hot-wire skin-friction gages. Computations at the experimental flow conditions are made using time-dependent solutions of ensemble-averaged Navier-Stokes equations, plus additional equations for the turbulence modeling.
Dual-band frequency selective surface with large band separation and stable performance
NASA Astrophysics Data System (ADS)
Zhou, Hang; Qu, Shao-Bo; Peng, Wei-Dong; Lin, Bao-Qin; Wang, Jia-Fu; Ma, Hua; Zhang, Jie-Qiu; Bai, Peng; Wang, Xu-Hua; Xu, Zhuo
2012-05-01
A new technique of designing a dual-band frequency selective surface with large band separation is presented. This technique is based on a delicately designed topology of L- and Ku-band microwave filters. The two band-pass responses are generated by a capacitively-loaded square-loop frequency selective surface and an aperture-coupled frequency selective surface, respectively. A Faraday cage is located between the two frequency selective surface structures to eliminate undesired couplings. Based on this technique, a dual-band frequency selective surface with large band separation is designed, which possesses large band separation, high selectivity, and stable performance under various incident angles and different polarizations.
Xiaojun, Yan; Dawei, Huang; Xiaoyong, Zhang; Ying, Liu; Qiaolong, Yang
2015-12-01
This paper proposes a SMA (shape memory alloy) wire-based separation actuator with high-load capacity and simple structure. The novel actuator is based on a one-stage locking mechanism, which means that the separation is directly driven by the SMA wire. To release a large preload, a group of anti-friction rollers are adopted to reduce the force for triggering. In addition, two SMA wires are used redundantly to ensure a high reliability. After separation, the actuator can be reset automatically without any auxiliary tool or manual operation. Three prototypes of the separation actuator are fabricated and tested. According to the performance test results, the actuator can release a maximum preload of 40 kN. The separation time tends to decrease as the operation current increases and it can be as short as 0.5 s under a 7.5 A (the voltage is 5.8 V) current. Lifetime test indicates that the actuator has a lifetime of more than 50 cycles. The environmental tests demonstrate that the actuator can endure the typical thermal and vibration environment tests without unexpected separation or structure damage, and separate normally after these environment tests.
Dynamic Load Predictions for Launchers Using Extra-Large Eddy Simulations X-Les
NASA Astrophysics Data System (ADS)
Maseland, J. E. J.; Soemarwoto, B. I.; Kok, J. C.
2005-02-01
Flow-induced unsteady loads can have a strong impact on performance and flight characteristics of aerospace vehicles and therefore play a crucial role in their design and operation. Complementary to costly flight tests and delicate wind-tunnel experiments, unsteady loads can be calculated using time-accurate Computational Fluid Dynamics. A capability to accurately predict the dynamic loads on aerospace structures at flight Reynolds numbers can be of great value for the design and analysis of aerospace vehicles. Advanced space launchers are subject to dynamic loads in the base region during the ascent to space. In particular the engine and nozzle experience aerodynamic pressure fluctuations resulting from massive flow separations. Understanding these phenomena is essential for performance enhancements for future launchers which operate a larger nozzle. A new hybrid RANS-LES turbulence modelling approach termed eXtra-Large Eddy Simulations (X-LES) holds the promise to capture the flow structures associated with massive separations and enables the prediction of the broad-band spectrum of dynamic loads. This type of method has become a focal point, reducing the cost of full LES, driven by the demand for their applicability in an industrial environment. The industrial feasibility of X-LES simulations is demonstrated by computing the unsteady aerodynamic loads on the main-engine nozzle of a generic space launcher configuration. The potential to calculate the dynamic loads is qualitatively assessed for transonic flow conditions in a comparison to wind-tunnel experiments. In terms of turn-around-times, X-LES computations are already feasible within the time-frames of the development process to support the structural design. Key words: massive separated flows; buffet loads; nozzle vibrations; space launchers; time-accurate CFD; composite RANS-LES formulation.
Silove, Derrick; Alonso, Jordi; Bromet, Evelyn; Gruber, Mike; Sampson, Nancy; Scott, Kate; Andrade, Laura; Benjet, Corina; de Almeida, Jose Miguel Caldas; De Girolamo, Giovanni; de Jonge, Peter; Demyttenaere, Koen; Fiestas, Fabian; Florescu, Silvia; Gureje, Oye; He, Yanling; Karam, Elie; Lepine, Jean-Pierre; Murphy, Sam; Villa-Posada, Jose; Zarkov, Zahari; Kessler, Ronald C.
2016-01-01
Objective The age-at-onset criterion for separation anxiety disorder was removed in DSM-5, making it timely to examine the epidemiology of separation anxiety disorder as a disorder with onsets spanning the life course, using cross-country data. Method The sample included 38,993 adults in 18 countries in the World Health Organization (WHO) World Mental Health Surveys. The WHO Composite International Diagnostic Interview was used to assess a range of DSM-IV disorders that included an expanded definition of separation anxiety disorder allowing onsets in adulthood. Analyses focused on prevalence, age at onset, comorbidity, predictors of onset and persistence, and separation anxiety-related role impairment. Results Lifetime separation anxiety disorder prevalence averaged 4.8% across countries (interquartile range [25th–75th percentiles]=1.4%–6.4%), with 43.1% of lifetime onsets occurring after age 18. Significant time-lagged associations were found between earlier separation anxiety disorder and subsequent onset of internalizing and externalizing DSM-IV disorders and conversely between these disorders and subsequent onset of separation anxiety disorder. Other consistently significant predictors of lifetime separation anxiety disorder included female gender, retrospectively reported childhood adversities, and lifetime traumatic events. These predictors were largely comparable for separation anxiety disorder onsets in childhood, adolescence, and adulthood and across country income groups. Twelve-month separation anxiety disorder prevalence was considerably lower than lifetime prevalence (1.0% of the total sample; interquartile range=0.2%–1.2%). Severe separation anxiety-related 12-month role impairment was significantly more common in the presence (42.4%) than absence (18.3%) of 12-month comorbidity. Conclusions Separation anxiety disorder is a common and highly comorbid disorder that can have onset across the lifespan. Childhood adversity and lifetime trauma are important antecedents, and adverse effects on role function make it a significant target for treatment. PMID:26046337
NASA Astrophysics Data System (ADS)
Tumuklu, Ozgur; Levin, Deborah A.; Theofilis, Vassilis
2018-04-01
Shock-dominated hypersonic laminar flows over a double cone are investigated using time accurate direct simulation Monte Carlo combined with the residuals algorithm for unit Reynolds numbers gradually increasing from 9.35 × 104 to 3.74 × 105 m-1 at a Mach number of about 16. The main flow features, such as the strong bow-shock, location of the separation shock, the triple point, and the entire laminar separated region, show a time-dependent behavior. Although the separation shock angle is found to be similar for all Re numbers, the effects of Reynolds number on the structure and extent of the separation region are profound. As the Reynolds number is increased, larger pressure values in the under-expanded jet region due to strong shock interactions form more prominent λ-shocklets in the supersonic region between two contact surfaces. Likewise, the surface parameters, especially on the second cone surface, show a strong dependence on the Reynolds number, with skin friction, pressure, and surface heating rates increasing and velocity slip and temperature jump values decreasing for increasing Re number. A Kelvin-Helmholtz instability arising at the shear layer results in an unsteady flow for the highest Reynolds number. These findings suggest that consideration of experimental measurement times is important when it comes to determining the steady state surface parameters even for a relatively simple double cone geometry at moderately large Reynolds numbers.
Rapid fusion method for the determination of Pu, Np, and Am in large soil samples
Maxwell, Sherrod L.; Culligan, Brian; Hutchison, Jay B.; ...
2015-02-14
A new rapid sodium hydroxide fusion method for the preparation of 10-20 g soil samples has been developed by the Savannah River National Laboratory (SRNL). The method enables lower detection limits for plutonium, neptunium, and americium in environmental soil samples. The method also significantly reduces sample processing time and acid fume generation compared to traditional soil digestion techniques using hydrofluoric acid. Ten gram soil aliquots can be ashed and fused using the new method in 1-2 hours, completely dissolving samples, including refractory particles. Pu, Np and Am are separated using stacked 2mL cartridges of TEVA and DGA Resin and measuredmore » using alpha spectrometry. The method can be adapted for measurement by inductively-coupled plasma mass spectrometry (ICP-MS). Two 10 g soil aliquots of fused soil may be combined prior to chromatographic separations to further improve detection limits. Total sample preparation time, including chromatographic separations and alpha spectrometry source preparation, is less than 8 hours.« less
A multi-user real time inventorying system for radioactive materials: a networking approach.
Mehta, S; Bandyopadhyay, D; Hoory, S
1998-01-01
A computerized system for radioisotope management and real time inventory coordinated across a large organization is reported. It handles hundreds of individual users and their separate inventory records. Use of highly efficient computer network and database technologies makes it possible to accept, maintain, and furnish all records related to receipt, usage, and disposal of the radioactive materials for the users separately and collectively. The system's central processor is an HP-9000/800 G60 RISC server and users from across the organization use their personal computers to login to this server using the TCP/IP networking protocol, which makes distributed use of the system possible. Radioisotope decay is automatically calculated by the program, so that it can make the up-to-date radioisotope inventory data of an entire institution available immediately. The system is specifically designed to allow use by large numbers of users (about 300) and accommodates high volumes of data input and retrieval without compromising simplicity and accuracy. Overall, it is an example of a true multi-user, on-line, relational database information system that makes the functioning of a radiation safety department efficient.
NASA Technical Reports Server (NTRS)
Buffum, Daniel H.; King, Aaron J.; Capece, Vincent R.; El-Aini, Yehia M.
1996-01-01
The aerodynamics of a cascade of airfoils oscillating in torsion about the midchord is investigated experimentally at a large mean incidence angle and, for reference, at a low mean incidence angle. The airfoil section is representative of a modern, low aspect ratio, fan blade tip section. Time-dependent airfoil surface pressure measurements were made for reduced frequencies up to 0.8 for out-of-phase oscillations at Mach numbers up to 0.8 and chordal incidence angles of 0 deg and 10 deg. For the 10 deg chordal incidence angle, a separation bubble formed at the leading edge of the suction surface. The separated flow field was found to have a dramatic effect on the chordwise distribution of the unsteady pressure. In this region, substantial deviations from the attached flow data were found with the deviations becoming less apparent in the aft region of the airfoil for all reduced frequencies. In particular, near the leading edge the separated flow had a strong destabilizing influence while the attached flow had a strong stabilizing influence.
Oscillating cascade aerodynamics at large mean incidence
NASA Technical Reports Server (NTRS)
Buffum, Daniel H.; King, Aaron J.; El-Aini, Yehia M.; Capece, Vincent R.
1996-01-01
The aerodynamics of a cascade of airfoils oscillating in torsion about the midchord is investigated experimentally at a large mean incidence angle and, for reference, at a low mean incidence angle. The airfoil section is representative of a modern, low aspect ratio, fan blade tip section. Time-dependent airfoil surface pressure measurements were made for reduced frequencies of up to 1.2 for out-of-phase oscillations at a Mach number of 0.5 and chordal incidence angles of 0 deg and 10 deg; the Reynolds number was 0.9 x l0(exp 6). For the 10 deg chordal incidence angle, a separation bubble formed at the leading edge of the suction surface. The separated flow field was found to have a dramatic effect on the chordwise distribution of the unsteady pressure. In this region, substantial deviations from the attached flow data were found with the deviations becoming less apparent in the aft region of the airfoil for all reduced frequencies. In particular, near the leading edge the separated flow had a strong destabilizing influence while the attached flow had a strong stabilizing influence.
Cell separations and the demixing of aqueous two phase polymer solutions in microgravity
NASA Technical Reports Server (NTRS)
Brooks, Donald E.; Bamberger, Stephan; Harris, J. M.; Van Alstine, James M.
1991-01-01
Partition in phase separated aqueous polymer solutions is a cell separation procedure thought to be adversely influenced by gravity. In preparation for performing cell partitioning experiments in space, and to provide general information concerning the demixing of immiscible liquids in low gravity, a series of phase separated aqueous polymer solutions have been flown on two shuttle flights. Fluorocarbon oil and water emulsions were also flown on the second flight. The aqueous polymer emulsions, which in one g demix largely by sedimentation and convection due to the density differences between the phases, demixed more slowly than on the ground and the final disposition of the phases was determined by the wetting of the container wall by the phases. The demixing behavior and kinetics were influenced by the phase volume ratio, physical properties of the systems and chamber wall interaction. The average domain size increased linearly with time as the systems demixed.
Two-photon interference of temporally separated photons.
Kim, Heonoh; Lee, Sang Min; Moon, Han Seb
2016-10-06
We present experimental demonstrations of two-photon interference involving temporally separated photons within two types of interferometers: a Mach-Zehnder interferometer and a polarization-based Michelson interferometer. The two-photon states are probabilistically prepared in a symmetrically superposed state within the two interferometer arms by introducing a large time delay between two input photons; this state is composed of two temporally separated photons, which are in two different or the same spatial modes. We then observe two-photon interference fringes involving both the Hong-Ou-Mandel interference effect and the interference of path-entangled two-photon states simultaneously in a single interferometric setup. The observed two-photon interference fringes provide simultaneous observation of the interferometric properties of the single-photon and two-photon wavepackets. The observations can also facilitate a more comprehensive understanding of the origins of the interference phenomena arising from spatially bunched/anti-bunched two-photon states comprised of two temporally separated photons within the interferometer arms.
Fu, Qianqian; Zhu, Biting; Ge, Jianping
2017-02-16
A SiO 2 colloidal photonic crystal film with a hierarchical porous structure is fabricated to demonstrate an integrated separation and colorimetric detection of chemical species for the first time. This new photonic crystal based thin layer chromatography process requires no dyeing, developing and UV irradiation compared to the traditional TLC. The assembling of mesoporous SiO 2 particles via a supersaturation-induced-precipitation process forms uniform and hierarchical photonic crystals with micron-scale cracks and mesopores, which accelerate the diffusion of developers and intensify the adsorption/desorption between the analytes and silica for efficient separation. Meanwhile, the chemical substances infiltrated to the voids of photonic crystals cause an increase of the refractive index and a large contrast of structural colors towards the unloaded part, so that the sample spots can be directly recognized with the naked eye before and after separation.
Parental separation in childhood and adult smoking in the 1958 British birth cohort.
Martindale, Sarah E; Lacey, Rebecca E
2017-08-01
Parental separation or divorce is a known risk factor for poorer adult health. One mechanism may operate through the uptake of risky health behaviours, such as smoking. This study investigated the association between parental separation and adult smoking in a large British birth cohort and also examined potential socioeconomic, relational and psychosocial mediators. Differences by gender and timing of parental separation were also assessed. Multiply imputed data on 11 375 participants of the National Child Development Study (the 1958 British birth cohort) were used. A series of multinomial logistic regression models were estimated to investigate the association between parental separation (0-16 years) and adult smoking status (age 42), and the role of potential socioeconomic, relational and psychosocial mediators. Parental separation in childhood was associated with an increased risk of being a current (RRR = 2.14, 95% CI: 1.77, 2.60) or ex-smoker (RRR = 1.50, 95% CI: 1.22, 1.85) at age 42. This association remained after consideration of potential socioeconomic, psychosocial and relational mediators. Relational (parent-child relationship quality, parental involvement and adult partnership status) and socioeconomic factors (overcrowding, financial hardship, housing tenure, household amenities, free school meal receipt and educational attainment) appeared to be the most important of the groups of mediators investigated. No differences by gender or the timing of parental separation were observed. Parental separation experienced in childhood was associated with increased risk of smoking. Families undergoing separation should be further supported in order to prevent the uptake of smoking and to prevent later health problems. © The Author 2017. Published by Oxford University Press on behalf of the European Public Health Association. All rights reserved.
Computations of Internal and External Axisymmetric Nozzle Aerodynamics at Transonic Speeds
NASA Technical Reports Server (NTRS)
Dalbello, Teryn; Georgiadis, Nicholas; Yoder, Dennis; Keith, Theo
2003-01-01
Computational Fluid Dynamics (CFD) analyses of axisymmetric circular-arc boattail nozzles have been completed in support of NASA's Next Generation Launch Technology Program to investigate the effects of high-speed nozzle geometries on the nozzle internal flow and the surrounding boattail regions. These computations span the very difficult transonic flight regime, with shock-induced separations and strong adverse pressure gradients. External afterbody and internal nozzle pressure distributions computed with the Wind code are compared with experimental data. A range of turbulence models were examined in Wind, including an Explicit Algebraic Stress model (EASM). Computations on two nozzle geometries have been completed at freestream Mach numbers ranging from 0.6 to 0.9, driven by nozzle pressure ratios (NPR) ranging from 2.9 to 5. Results obtained on converging-only geometry indicate reasonable agreement to experimental data, with the EASM and Shear Stress Transport (SST) turbulence models providing the best agreement. Calculations completed on a converging-diverging geometry involving large-scale internal flow separation did not converge to a true steady-state solution when run with variable timestepping (steady-state). Calculations obtained using constant timestepping (time-accurate) indicate less variations in flow properties compared with steady-state solutions. This failure to converge to a steady-state solution was found to be the result of difficulties in using variable time-stepping with large-scale separations present in the flow. Nevertheless, time-averaged boattail surface pressure coefficient and internal nozzle pressures show fairly good agreement with experimental data. The SST turbulence model demonstrates the best over-all agreement with experimental data.
Strum, John S.; Aldredge, Danielle; Barile, Daniela; Lebrilla, Carlito B.
2013-01-01
Mass spectrometry has been coupled with flash liquid chromatography to yield new capabilities for isolating non-chromophoric material from complicated biological mixtures. A flash LC/MS/MS method enabled fraction collection of milk oligosaccharides from biological mixtures based on composition and structure. The method is compatible with traditional gas-pressure driven flow flash chromatography, widely employed in organic chemistry laboratories. The on-line mass detector enabled real-time optimization of chromatographic parameters to favor separation of oligosaccharides that would otherwise be indistinguishable from co-eluting components with a non-specific detector. Unlike previously described preparative LC/MS techniques, we have employed a dynamic flow connection that permits any flow rate from the flash system to be delivered from 1–200 mL/min without affecting the ionization conditions of the mass spectrometer. A new way of packing large amounts of graphitized carbon allowed the enrichment and separation of milligram quantities of structurally heterogeneous mixtures of human milk oligosaccharides (HMOs) and bovine milk oligosaccharides (BMOs). Abundant saccharide components in milk, such as lactose and lacto-N-tetraose, were separated from the rarer and less abundant oligosaccharides that have greater structural diversity and biological functionality. Neutral and acidic HMOs and BMOs were largely separated and enriched with a dual binary solvent system. PMID:22370281
Particle acceleration at a reconnecting magnetic separator
NASA Astrophysics Data System (ADS)
Threlfall, J.; Neukirch, T.; Parnell, C. E.; Eradat Oskoui, S.
2015-02-01
Context. While the exact acceleration mechanism of energetic particles during solar flares is (as yet) unknown, magnetic reconnection plays a key role both in the release of stored magnetic energy of the solar corona and the magnetic restructuring during a flare. Recent work has shown that special field lines, called separators, are common sites of reconnection in 3D numerical experiments. To date, 3D separator reconnection sites have received little attention as particle accelerators. Aims: We investigate the effectiveness of separator reconnection as a particle acceleration mechanism for electrons and protons. Methods: We study the particle acceleration using a relativistic guiding-centre particle code in a time-dependent kinematic model of magnetic reconnection at a separator. Results: The effect upon particle behaviour of initial position, pitch angle, and initial kinetic energy are examined in detail, both for specific (single) particle examples and for large distributions of initial conditions. The separator reconnection model contains several free parameters, and we study the effect of changing these parameters upon particle acceleration, in particular in view of the final particle energy ranges that agree with observed energy spectra.
Airphoto assessment of changes in aquatic vegetation
NASA Technical Reports Server (NTRS)
Markham, B. L.; Philipson, W. R.; Russel, A. E.
1977-01-01
Large scale, multiyear, color and color infrared aerial photographs were used to evaluate changes in aquatic vegetation that have accompanied a reduction in phosphorus inputs to a phosphorus-limited, eutrophic lake in New York State. The study showed that the distribution of emergent, floating and submersed vegetation could be determined with little or no concurrent ground data; that various emergent and floating types could be separated and, with limited field checks, identified; and that different submersed types are generally not separable. Major vegetative types are characterized by spectral and nonspectral features, and a classification is developed for compiling time-sequential vegetation maps.
New Optical Transforms For Statistical Image Recognition
NASA Astrophysics Data System (ADS)
Lee, Sing H.
1983-12-01
In optical implementation of statistical image recognition, new optical transforms on large images for real-time recognition are of special interest. Several important linear transformations frequently used in statistical pattern recognition have now been optically implemented, including the Karhunen-Loeve transform (KLT), the Fukunaga-Koontz transform (FKT) and the least-squares linear mapping technique (LSLMT).1-3 The KLT performs principle components analysis on one class of patterns for feature extraction. The FKT performs feature extraction for separating two classes of patterns. The LSLMT separates multiple classes of patterns by maximizing the interclass differences and minimizing the intraclass variations.
Quantum superposition at the half-metre scale.
Kovachy, T; Asenbaum, P; Overstreet, C; Donnelly, C A; Dickerson, S M; Sugarbaker, A; Hogan, J M; Kasevich, M A
2015-12-24
The quantum superposition principle allows massive particles to be delocalized over distant positions. Though quantum mechanics has proved adept at describing the microscopic world, quantum superposition runs counter to intuitive conceptions of reality and locality when extended to the macroscopic scale, as exemplified by the thought experiment of Schrödinger's cat. Matter-wave interferometers, which split and recombine wave packets in order to observe interference, provide a way to probe the superposition principle on macroscopic scales and explore the transition to classical physics. In such experiments, large wave-packet separation is impeded by the need for long interaction times and large momentum beam splitters, which cause susceptibility to dephasing and decoherence. Here we use light-pulse atom interferometry to realize quantum interference with wave packets separated by up to 54 centimetres on a timescale of 1 second. These results push quantum superposition into a new macroscopic regime, demonstrating that quantum superposition remains possible at the distances and timescales of everyday life. The sub-nanokelvin temperatures of the atoms and a compensation of transverse optical forces enable a large separation while maintaining an interference contrast of 28 per cent. In addition to testing the superposition principle in a new regime, large quantum superposition states are vital to exploring gravity with atom interferometers in greater detail. We anticipate that these states could be used to increase sensitivity in tests of the equivalence principle, measure the gravitational Aharonov-Bohm effect, and eventually detect gravitational waves and phase shifts associated with general relativity.
Enhancing the Detection of Giardia duodenalis Cysts in Foods by Inertial Microfluidic Separation
Ganz, Kyle R.; Clime, Liviu; Farber, Jeffrey M.; Corneau, Nathalie
2015-01-01
The sensitivity and specificity of current Giardia cyst detection methods for foods are largely determined by the effectiveness of the elution, separation, and concentration methods used. The aim of these methods is to produce a final suspension with an adequate concentration of Giardia cysts for detection and a low concentration of interfering food debris. In the present study, a microfluidic device, which makes use of inertial separation, was designed and fabricated for the separation of Giardia cysts. A cyclical pumping platform and protocol was developed to concentrate 10-ml suspensions down to less than 1 ml. Tests involving Giardia duodenalis cysts and 1.90-μm microbeads in pure suspensions demonstrated the specificity of the microfluidic chip for cysts over smaller nonspecific particles. As the suspension cycled through the chip, a large number of beads were removed (70%) and the majority of the cysts were concentrated (82%). Subsequently, the microfluidic inertial separation chip was integrated into a method for the detection of G. duodenalis cysts from lettuce samples. The method greatly reduced the concentration of background debris in the final suspensions (10-fold reduction) in comparison to that obtained by a conventional method. The method also recovered an average of 68.4% of cysts from 25-g lettuce samples and had a limit of detection (LOD) of 38 cysts. While the recovery of cysts by inertial separation was slightly lower, and the LOD slightly higher, than with the conventional method, the sample analysis time was greatly reduced, as there were far fewer background food particles interfering with the detection of cysts by immunofluorescence microscopy. PMID:25841016
SIGN SINGULARITY AND FLARES IN SOLAR ACTIVE REGION NOAA 11158
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sorriso-Valvo, L.; De Vita, G.; Kazachenko, M. D.
Solar Active Region NOAA 11158 has hosted a number of strong flares, including one X2.2 event. The complexity of current density and current helicity are studied through cancellation analysis of their sign-singular measure, which features power-law scaling. Spectral analysis is also performed, revealing the presence of two separate scaling ranges with different spectral index. The time evolution of parameters is discussed. Sudden changes of the cancellation exponents at the time of large flares and the presence of correlation with Extreme-Ultra-Violet and X-ray flux suggest that eruption of large flares can be linked to the small-scale properties of the current structures.
Reliability enhancement of Ohmic RF MEMS switches
NASA Astrophysics Data System (ADS)
Kurth, Steffen; Leidich, Stefan; Bertz, Andreas; Nowack, Markus; Frömel, Jörg; Kaufmann, Christian; Faust, Wolfgang; Gessner, Thomas; Akiba, Akira; Ikeda, Koichi
2011-02-01
This contribution deals with capacitively actuated Ohmic switches in series single pole single throw (SPST) configuration for DC up to 4 GHz signal frequency (<0.5 dB insertion loss, 35 dB isolation) and in shunt switch SPST configuration for a frequency range from DC up to 80 GHz (<1.2 dB insertion loss, 18 dB isolation at 60 GHz). A novel high aspect ratio MEMS fabrication sequence in combination with wafer level packaging is applied for fabrication of the samples and allows for a relatively large actuation electrode area, and for high actuation force resulting in fast onresponse time of 10 μs and off-response time of 6 μs at less than 5 V actuation voltage. Large actuation electrode area and a particular design feature for electrode over travel and dynamic contact separation lead to high contact force in the closed state and to high force for contact separation to overcome sticking. The switch contacts, which are consisting of noble metal, are made in one of the latest process steps. This minimizes contamination of the contact surfaces by fabrication sequence residuals. A life time of 1 Billion switch cycles has been achieved. This paper covers design for reliability issues and reliability test methods using accelerated life time test. Different test methods are combined to examine electric and mechanical motion parameters as well as RF performance.
NASA Technical Reports Server (NTRS)
Liu, Chao-Qun; Shan, H.; Jiang, L.
1999-01-01
Numerical investigation of flow separation over a NACA 0012 airfoil at large angles of attack has been carried out. The numerical calculation is performed by solving the full Navier-Stokes equations in generalized curvilinear coordinates. The second-order LU-SGS implicit scheme is applied for time integration. This scheme requires no tridiagonal inversion and is capable of being completely vectorized, provided the corresponding Jacobian matrices are properly selected. A fourth-order centered compact scheme is used for spatial derivatives. In order to reduce numerical oscillation, a sixth-order implicit filter is employed. Non-reflecting boundary conditions are imposed at the far-field and outlet boundaries to avoid possible non-physical wave reflection. Complex flow separation and vortex shedding phenomenon have been observed and discussed.
Role of density modulation in the spatially resolved dynamics of strongly confined liquids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saw, Shibu, E-mail: shibu.saw@sydney.edu.au; Dasgupta, Chandan, E-mail: cdgupta@physics.iisc.ernet.in
Confinement by walls usually produces a strong modulation in the density of dense liquids near the walls. Using molecular dynamics simulations, we examine the effects of the density modulation on the spatially resolved dynamics of a liquid confined between two parallel walls, using a resolution of a fraction of the interparticle distance in the liquid. The local dynamics is quantified by the relaxation time associated with the temporal autocorrelation function of the local density. We find that this local relaxation time varies in phase with the density modulation. The amplitude of the spatial modulation of the relaxation time can bemore » quite large, depending on the characteristics of the wall and thermodynamic parameters of the liquid. To disentangle the effects of confinement and density modulation on the spatially resolved dynamics, we compare the dynamics of a confined liquid with that of an unconfined one in which a similar density modulation is induced by an external potential. We find several differences indicating that density modulation alone cannot account for all the features seen in the spatially resolved dynamics of confined liquids. We also examine how the dynamics near a wall depends on the separation between the two walls and show that the features seen in our simulations persist in the limit of large wall separation.« less
Electron-ion relaxation in a dense plasma. [supernovae core physics
NASA Technical Reports Server (NTRS)
Littleton, J. E.; Buchler, J.-R.
1974-01-01
The microscopic physics of the thermonuclear runaway in highly degenerate carbon-oxygen cores is investigated to determine if and how a detonation wave is generated. An expression for the electron-ion relaxation time is derived under the assumption of large degeneracy and extreme relativity of the electrons in a two-temperature plasma. Since the nuclear burning time proves to be several orders of magnitude shorter than the relaxation time, it is concluded that in studying the structure of the detonation wave the electrons and ions must be treated as separate fluids.
Basic Numerical Capacities and Prevalence of Developmental Dyscalculia: The Havana Survey
ERIC Educational Resources Information Center
Reigosa-Crespo, Vivian; Valdes-Sosa, Mitchell; Butterworth, Brian; Estevez, Nancy; Rodriguez, Marisol; Santos, Elsa; Torres, Paul; Suarez, Ramon; Lage, Agustin
2012-01-01
The association of enumeration and number comparison capacities with arithmetical competence was examined in a large sample of children from 2nd to 9th grades. It was found that efficiency on numerical capacities predicted separately more than 25% of the variance in the individual differences on a timed arithmetical test, and this occurred for…
Attaining a steady air stream in wind tunnels
NASA Technical Reports Server (NTRS)
Prandtl, L
1933-01-01
Many experimental arrangements of varying kind involve the problems of assuring a large, steady air stream both as to volume and to time. For this reason a separate discussion of the methods by which this is achieved should prove of particular interest. Motors and blades receive special attention and a review of existent wind tunnels is also provided.
A Rotating Space Interferometer with Variable Baselines and Low Power Consumption
NASA Technical Reports Server (NTRS)
Gezari, Daniel Y.
1999-01-01
A new concept is presented here for a large, rotating space interferometer which would achieve full u, v plane coverage with reasonably uniform integration times, yet once set in motion no additional energy would be required to change collector separations, maintain constant baseline rotation rates, or to counteract centrifugal forces on the collectors.
Multi-slice ptychography with large numerical aperture multilayer Laue lenses
Ozturk, Hande; Yan, Hanfei; He, Yan; ...
2018-05-09
Here, the highly convergent x-ray beam focused by multilayer Laue lenses with large numerical apertures is used as a three-dimensional (3D) probe to image layered structures with an axial separation larger than the depth of focus. Instead of collecting weakly scattered high-spatial-frequency signals, the depth-resolving power is provided purely by the intense central cone diverged from the focused beam. Using the multi-slice ptychography method combined with the on-the-fly scan scheme, two layers of nanoparticles separated by 10 μm are successfully reconstructed with 8.1 nm lateral resolution and with a dwell time as low as 0.05 s per scan point. Thismore » approach obtains high-resolution images with extended depth of field, which paves the way for multi-slice ptychography as a high throughput technique for high-resolution 3D imaging of thick samples.« less
Multi-slice ptychography with large numerical aperture multilayer Laue lenses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ozturk, Hande; Yan, Hanfei; He, Yan
Here, the highly convergent x-ray beam focused by multilayer Laue lenses with large numerical apertures is used as a three-dimensional (3D) probe to image layered structures with an axial separation larger than the depth of focus. Instead of collecting weakly scattered high-spatial-frequency signals, the depth-resolving power is provided purely by the intense central cone diverged from the focused beam. Using the multi-slice ptychography method combined with the on-the-fly scan scheme, two layers of nanoparticles separated by 10 μm are successfully reconstructed with 8.1 nm lateral resolution and with a dwell time as low as 0.05 s per scan point. Thismore » approach obtains high-resolution images with extended depth of field, which paves the way for multi-slice ptychography as a high throughput technique for high-resolution 3D imaging of thick samples.« less
Shell Evolution towards 78Ni: Low-Lying States in 77Cu
NASA Astrophysics Data System (ADS)
Sahin, E.; Bello Garrote, F. L.; Tsunoda, Y.; Otsuka, T.; de Angelis, G.; Görgen, A.; Niikura, M.; Nishimura, S.; Xu, Z. Y.; Baba, H.; Browne, F.; Delattre, M.-C.; Doornenbal, P.; Franchoo, S.; Gey, G.; Hadyńska-KlÈ©k, K.; Isobe, T.; John, P. R.; Jung, H. S.; Kojouharov, I.; Kubo, T.; Kurz, N.; Li, Z.; Lorusso, G.; Matea, I.; Matsui, K.; Mengoni, D.; Morfouace, P.; Napoli, D. R.; Naqvi, F.; Nishibata, H.; Odahara, A.; Sakurai, H.; Schaffner, H.; Söderström, P.-A.; Sohler, D.; Stefan, I. G.; Sumikama, T.; Suzuki, D.; Taniuchi, R.; Taprogge, J.; Vajta, Z.; Watanabe, H.; Werner, V.; Wu, J.; Yagi, A.; Yalcinkaya, M.; Yoshinaga, K.
2017-06-01
The level structure of the neutron-rich 77Cu nucleus is investigated through β -delayed γ -ray spectroscopy at the Radioactive Isotope Beam Factory of the RIKEN Nishina Center. Ions of 77Ni are produced by in-flight fission, separated and identified in the BigRIPS fragment separator, and implanted in the WAS3ABi silicon detector array, surrounded by Ge cluster detectors of the EURICA array. A large number of excited states in 77Cu are identified for the first time by correlating γ rays with the β decay of 77Ni, and a level scheme is constructed by utilizing their coincidence relationships. The good agreement between large-scale Monte Carlo shell model calculations and experimental results allows for the evaluation of the single-particle structure near 78Ni and suggests a single-particle nature for both the 5 /21- and 3 /21- states in 77Cu, leading to doubly magic 78Ni.
NASA Astrophysics Data System (ADS)
Ke, Fei; Qiu, Ling-Guang; Zhu, Junfa
2014-01-01
Separation and recycling of catalysts after catalytic reactions are critically required to reduce the cost of catalysts as well as to avoid the generation of waste in industrial applications. In this work, we present a facile fabrication and characterization of a novel type of MOF-based porous catalyst, namely, Fe3O4@MIL-100(Fe) core-shell magnetic microspheres. It has been shown that these catalysts not only exhibit high catalytic activities for the Claisen-Schmidt condensation reactions under environmentally friendly conditions, but remarkably, they can be easily separated and recycled without significant loss of catalytic efficiency after being used for many times. Therefore, compared to other reported catalysts used in the Claisen-Schmidt condensation reactions, these catalysts are green, cheap and more suitable for large scale industrial applications.Separation and recycling of catalysts after catalytic reactions are critically required to reduce the cost of catalysts as well as to avoid the generation of waste in industrial applications. In this work, we present a facile fabrication and characterization of a novel type of MOF-based porous catalyst, namely, Fe3O4@MIL-100(Fe) core-shell magnetic microspheres. It has been shown that these catalysts not only exhibit high catalytic activities for the Claisen-Schmidt condensation reactions under environmentally friendly conditions, but remarkably, they can be easily separated and recycled without significant loss of catalytic efficiency after being used for many times. Therefore, compared to other reported catalysts used in the Claisen-Schmidt condensation reactions, these catalysts are green, cheap and more suitable for large scale industrial applications. Electronic supplementary information (ESI) available: SEM and TEM images, and GC-MS spectra for chalcones. See DOI: 10.1039/c3nr05051c
On the wake flow of asymmetrically beveled trailing edges
NASA Astrophysics Data System (ADS)
Guan, Yaoyi; Pröbsting, Stefan; Stephens, David; Gupta, Abhineet; Morris, Scott C.
2016-05-01
Trailing edge and wake flows are of interest for a wide range of applications. Small changes in the design of asymmetrically beveled or semi-rounded trailing edges can result in significant difference in flow features which are relevant for the aerodynamic performance, flow-induced structural vibration and aerodynamically generated sound. The present study describes in detail the flow field characteristics around a family of asymmetrically beveled trailing edges with an enclosed trailing-edge angle of 25° and variable radius of curvature R. The flow fields over the beveled trailing edges are described using data obtained by particle image velocimetry (PIV) experiments. The flow topology for different trailing edges was found to be strongly dependent on the radius of curvature R, with flow separation occurring further downstream as R increases. This variation in the location of flow separation influences the aerodynamic force coefficients, which were evaluated from the PIV data using a control volume approach. Two-point correlations of the in-plane velocity components are considered to assess the structure in the flow field. The analysis shows large-scale coherent motions in the far wake, which are associated with vortex shedding. The wake thickness parameter yf is confirmed as an appropriate length scale to characterize this large-scale roll-up motion in the wake. The development in the very near wake was found to be critically dependent on R. In addition, high-speed PIV measurements provide insight into the spectral characteristics of the turbulent fluctuations. Based on the time-resolved flow field data, the frequency range associated with the shedding of coherent vortex pairs in the wake is identified. By means of time-correlation of the velocity components, turbulent structures are found to convect from the attached or separated shear layers without distinct separation point into the wake.
Waldron, Mary; Vaughan, Ellen L.; Bucholz, Kathleen K.; Lynskey, Michael T.; Sartor, Carolyn E.; Duncan, Alexis E.; Madden, Pamela A.F.; Heath, Andrew C.
2014-01-01
Background We examined timing of substance involvement as a joint function of parental history of alcoholism and parental separation during childhood. Method Data were drawn from a large cohort of female like-sex twins [n = 613 African Ancestry (AA), n = 3550 European or other Ancestry (EA)]. Cox proportional hazards regression was conducted predicting age at first use of alcohol, first alcohol intoxication, first use and regular use of cigarettes, and first use of cannabis and other illicit drugs from dummy variables coding for parental alcoholism and parental separation. Propensity score analysis was also conducted comparing intact and separated families by predicted probability of parental separation. Results In EA families, increased risk of substance involvement was found in both alcoholic and separated families, particularly through ages 10 or 14 years, with risk to offspring from alcoholic separated families further increased. In AA families, associations with parental alcoholism and parental separation were weak and with few exceptions statistically nonsignificant. While propensity score findings confirmed unique risks observed in EA families, intact and separated AA families were poorly matched on risk-factors presumed to predate parental separation, especially parental alcoholism, requiring cautious interpretation of AA survival-analytic findings. Conclusion For offspring of European ancestry, parental separation predicts early substance involvement that is not explained by parental alcoholism nor associated family background characteristics. Additional research is needed to better characterize risks associated with parental separation in African American families. PMID:24647368
Waldron, Mary; Vaughan, Ellen L; Bucholz, Kathleen K; Lynskey, Michael T; Sartor, Carolyn E; Duncan, Alexis E; Madden, Pamela A F; Heath, Andrew C
2014-05-01
We examined timing of substance involvement as a joint function of parental history of alcoholism and parental separation during childhood. Data were drawn from a large cohort of female like-sex twins [n=613 African Ancestry (AA), n=3550 European or other ancestry (EA)]. Cox proportional hazards regression was conducted predicting age at first use of alcohol, first alcohol intoxication, first use and regular use of cigarettes, and first use of cannabis and other illicit drugs from dummy variables coding for parental alcoholism and parental separation. Propensity score analysis was also conducted comparing intact and separated families by predicted probability of parental separation. In EA families, increased risk of substance involvement was found in both alcoholic and separated families, particularly through ages 10 or 14 years, with risk to offspring from alcoholic separated families further increased. In AA families, associations with parental alcoholism and parental separation were weak and with few exceptions statistically nonsignificant. While propensity score findings confirmed unique risks observed in EA families, intact and separated AA families were poorly matched on risk-factors presumed to predate parental separation, especially parental alcoholism, requiring cautious interpretation of AA survival-analytic findings. For offspring of European ancestry, parental separation predicts early substance involvement that is not explained by parental alcoholism nor associated family background characteristics. Additional research is needed to better characterize risks associated with parental separation in African American families. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Chen, Ting; Zheng, Lei; Yuan, Jie; An, Zhongfu; Chen, Runfeng; Tao, Ye; Li, Huanhuan; Xie, Xiaoji; Huang, Wei
2015-01-01
Developing organic optoelectronic materials with desired photophysical properties has always been at the forefront of organic electronics. The variation of singlet-triplet splitting (ΔEST) can provide useful means in modulating organic excitons for diversified photophysical phenomena, but controlling ΔEST in a desired manner within a large tuning scope remains a daunting challenge. Here, we demonstrate a convenient and quantitative approach to relate ΔEST to the frontier orbital overlap and separation distance via a set of newly developed parameters using natural transition orbital analysis to consider whole pictures of electron transitions for both the lowest singlet (S1) and triplet (T1) excited states. These critical parameters revealed that both separated S1 and T1 states leads to ultralow ΔEST; separated S1 and overlapped T1 states results in small ΔEST; and both overlapped S1 and T1 states induces large ΔEST. Importantly, we realized a widely-tuned ΔEST in a range from ultralow (0.0003 eV) to extra-large (1.47 eV) via a subtle symmetric control of triazine molecules, based on time-dependent density functional theory calculations combined with experimental explorations. These findings provide keen insights into ΔEST control for feasible excited state tuning, offering valuable guidelines for the construction of molecules with desired optoelectronic properties. PMID:26161684
Turbulent transition behavior in a separated and attached-flow low pressure turbine passage
NASA Astrophysics Data System (ADS)
Memory, Curtis L.
Various time accurate numerical simulations were conducted on the aft-loaded L1A low pressure turbine airfoil operating at Reynolds numbers presenting with fully-stalled, non-reattaching laminar separation. The numerical solver TURBO was modified from its annular gas turbine simulation configuration to conduct simulations based on a linear cascade wind tunnel facility. Simulation results for the fully separated flow fields revealed various turbulent decay mechanisms. Separated shear layer decay, in the form of vortices forming between the shear layer and the blade wall, was shown to agree with experimental particle image velocimetry (PIV) data in terms of decay vortex size and core vorticity levels. These vortical structures eventually mix into a large recirculation zone which dominates the blade wake. Turbulent wake ex- tent and time-averaged velocity distributions agreed with PIV data. Steady-blowing vortex generating jet (VGJ) flow control was then applied to the flow fields. VGJ-induced streamwise vorticity was only present at blowing ratios above 1.5. VGJs actuated at the point of flow separation on the blade wall were more effective than those actuated downstream, within the separation zone. Pulsed-blowing VGJs at the upstream blade wall position were then actuated at various pulsing frequencies, duty cycles, and blowing ratios. These condition variations yielded differing levels of separation zone mitigation. Pulsed VGJs were shown to be more effective than steady blowing VGJs at conditions of high blowing ratio, high frequency, or high duty cycle, where blowing ratio had the highest level of influence on pulsed jet efficacy. The characteristic "calm zone" following the end of a given VGJ pulse was observed in simulations exhibiting high levels of separation zone mitigation. Numerical velocity fields near the blade wall during this calm zone was shown to be similar to velocity fields observed in PIV data. Instantaneous numerical vorticity fields indicated that the elimination of the separation zone directly downstream of the VGJ hole is a pri- mary indicator of pulsed VGJ efficacy. This indicator was confirmed by numerical time-averaged velocity magnitude rms data in the same region.
A gravitationally lensed quasar with quadruple images separated by 14.62 arcseconds.
Inada, Naohisa; Oguri, Masamune; Pindor, Bartosz; Hennawi, Joseph F; Chiu, Kuenley; Zheng, Wei; Ichikawa, Shin-Ichi; Gregg, Michael D; Becker, Robert H; Suto, Yasushi; Strauss, Michael A; Turner, Edwin L; Keeton, Charles R; Annis, James; Castander, Francisco J; Eisenstein, Daniel J; Frieman, Joshua A; Fukugita, Masataka; Gunn, James E; Johnston, David E; Kent, Stephen M; Nichol, Robert C; Richards, Gordon T; Rix, Hans-Walter; Sheldon, Erin Scott; Bahcall, Neta A; Brinkmann, J; Ivezić, Zeljko; Lamb, Don Q; McKay, Timothy A; Schneider, Donald P; York, Donald G
2003-12-18
Gravitational lensing is a powerful tool for the study of the distribution of dark matter in the Universe. The cold-dark-matter model of the formation of large-scale structures (that is, clusters of galaxies and even larger assemblies) predicts the existence of quasars gravitationally lensed by concentrations of dark matter so massive that the quasar images would be split by over 7 arcsec. Numerous searches for large-separation lensed quasars have, however, been unsuccessful. All of the roughly 70 lensed quasars known, including the first lensed quasar discovered, have smaller separations that can be explained in terms of galaxy-scale concentrations of baryonic matter. Although gravitationally lensed galaxies with large separations are known, quasars are more useful cosmological probes because of the simplicity of the resulting lens systems. Here we report the discovery of a lensed quasar, SDSS J1004 + 4112, which has a maximum separation between the components of 14.62 arcsec. Such a large separation means that the lensing object must be dominated by dark matter. Our results are fully consistent with theoretical expectations based on the cold-dark-matter model.
Large perturbation flow field analysis and simulation for supersonic inlets
NASA Technical Reports Server (NTRS)
Varner, M. O.; Martindale, W. R.; Phares, W. J.; Kneile, K. R.; Adams, J. C., Jr.
1984-01-01
An analysis technique for simulation of supersonic mixed compression inlets with large flow field perturbations is presented. The approach is based upon a quasi-one-dimensional inviscid unsteady formulation which includes engineering models of unstart/restart, bleed, bypass, and geometry effects. Numerical solution of the governing time dependent equations of motion is accomplished through a shock capturing finite difference algorithm, of which five separate approaches are evaluated. Comparison with experimental supersonic wind tunnel data is presented to verify the present approach for a wide range of transient inlet flow conditions.
Lin, Li; Sun, Luzhao; Zhang, Jincan; Sun, Jingyu; Koh, Ai Leen; Peng, Hailin; Liu, Zhongfan
2016-06-01
A second passivation and a multistage carbon-source supply (CSS) allow a 50-fold enhancement of the growth rate of large single-crystalline graphene with a record growth rate of 101 μm min(-1) , almost 10 times higher than for pure copper. To this end the CSS is tailored at separate stages of graphene growth on copper foil, combined with an effective suppression of new spontaneous nucleation via second passivation. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Wagner, Brian M.; Schuster, Stephanie A.; Boyes, Barry E.; Shields, Taylor J.; Miles, William L.; Haynes, Mark J.; Moran, Robert E.; Kirkland, Joseph J.; Schure, Mark R.
2017-01-01
To facilitate mass transport and column efficiency, solutes must have free access to particle pores to facilitate interactions with the stationary phase. To ensure this feature, particles should be used for HPLC separations which have pores sufficiently large to accommodate the solute without restricted diffusion. This paper describes the design and properties of superficially porous (also called Fused-Core®, core shell or porous shell) particles with very large (1000 Å) pores specifically developed for separating very large biomolecules and polymers. Separations of DNA fragments, monoclonal antibodies, large proteins and large polystyrene standards are used to illustrate the utility of these particles for efficient, high-resolution applications. PMID:28213987
Wagner, Brian M; Schuster, Stephanie A; Boyes, Barry E; Shields, Taylor J; Miles, William L; Haynes, Mark J; Moran, Robert E; Kirkland, Joseph J; Schure, Mark R
2017-03-17
To facilitate mass transport and column efficiency, solutes must have free access to particle pores to facilitate interactions with the stationary phase. To ensure this feature, particles should be used for HPLC separations which have pores sufficiently large to accommodate the solute without restricted diffusion. This paper describes the design and properties of superficially porous (also called Fused-Core ® , core shell or porous shell) particles with very large (1000Å) pores specifically developed for separating very large biomolecules and polymers. Separations of DNA fragments, monoclonal antibodies, large proteins and large polystyrene standards are used to illustrate the utility of these particles for efficient, high-resolution applications. Copyright © 2017 Elsevier B.V. All rights reserved.
On the correlation of absorption cross-section with plasmonic color generation.
Rezaei, Soroosh Daqiqeh; Ho, Jinfa; Ng, Ray Jia Hong; Ramakrishna, Seeram; Yang, Joel K W
2017-10-30
Through numerical simulations, we investigate the correlation between the absorption cross-section and the color saturation of plasmonic nanostructures of varying density. Understanding this correlation, enables the prediction of an optimal nanostructure separation, or combinations of different nanostructure sizes for plasmonic color printing applications. Here, we use metal-insulator-metal (MIM) aluminum nanostructures that support gap-plasmons. Large absorption cross-sections were observed that exceed twelve times the physical cross-section of the nanostructure disks. We derive a set of equations to determine the optimal separation for a periodic array using the absorption cross-section of an individual structure to realize saturated colors. Using the optimum pitch and enabled by the large absorption cross-sections of our structures, we employ color mixing strategies to realize a wider color gamut. The simulated color gamut exceeds the sRGB gamut for some colors, and includes dark tones. Color mixing using structures with large absorption cross-sections is a practical approach to generate a broad range of colors, in comparison to fabricating structures with continuously varying sizes.
Enabling Large Focal Plane Arrays Through Mosaic Hybridization
NASA Technical Reports Server (NTRS)
Miller, Timothy M.; Jhabvala, Christine A.; Leong, Edward; Costen, Nick P.; Sharp, Elmer; Adachi, Tomoko; Benford, Dominic J.
2012-01-01
We have demonstrated advances in mosaic hybridization that will enable very large format far-infrared detectors. Specifically we have produced electrical detector models via mosaic hybridization yielding superconducting circuit patbs by hybridizing separately fabricated sub-units onto a single detector unit. The detector model was made on a 100mm diameter wafer while four model readout quadrant chips were made from a separate 100mm wafer. The individually fabric.ted parts were hybridized using a Suss FCI50 flip chip bonder to assemble the detector-readout stack. Once all of the hybridized readouts were in place, a single, large and thick silicon substrate was placed on the stack and attached with permanent epoxy to provide strength and a Coefficient of Thermal Expansion match to the silicon components underneath. Wirebond pads on the readout chips connect circuits to warm readout electronics; and were used to validate the successful superconducting electrical interconnection of the model mosaic-hybrid detector. This demonstration is directly scalable to 150 mm diameter wafers, enabling pixel areas over ten times the area currently available.
Two-dimensional materials for novel liquid separation membranes.
Ying, Yulong; Yang, Yefeng; Ying, Wen; Peng, Xinsheng
2016-08-19
Demand for a perfect molecular-level separation membrane with ultrafast permeation and a robust mechanical property for any kind of species to be blocked in water purification and desalination is urgent. In recent years, due to their intrinsic characteristics, such as a unique mono-atom thick structure, outstanding mechanical strength and excellent flexibility, as well as facile and large-scale production, graphene and its large family of two-dimensional (2D) materials are regarded as ideal membrane materials for ultrafast molecular separation. A perfect separation membrane should be as thin as possible to maximize its flux, mechanically robust and without failure even if under high loading pressure, and have a narrow nanochannel size distribution to guarantee its selectivity. The latest breakthrough in 2D material-based membranes will be reviewed both in theories and experiments, including their current state-of-the-art fabrication, structure design, simulation and applications. Special attention will be focused on the designs and strategies employed to control microstructures to enhance permeation and selectivity for liquid separation. In addition, critical views on the separation mechanism within two-dimensional material-based membranes will be provided based on a discussion of the effects of intrinsic defects during growth, predefined nanopores and nanochannels during subsequent fabrication processes, the interlayer spacing of stacking 2D material flakes and the surface charge or functional groups. Furthermore, we will summarize the significant progress of these 2D material-based membranes for liquid separation in nanofiltration/ultrafiltration and pervaporation. Lastly, we will recall issues requiring attention, and discuss existing questionable conclusions in some articles and emerging challenges. This review will serve as a valuable platform to provide a compact source of relevant and timely information about the development of 2D material-based membranes as well as fully explain up-to-date mechanisms and models of water transport and molecular separation behavior, which will arouse great interest among researchers entering or already working in the field of 2D material-based membranes.
Two-dimensional materials for novel liquid separation membranes
NASA Astrophysics Data System (ADS)
Ying, Yulong; Yang, Yefeng; Ying, Wen; Peng, Xinsheng
2016-08-01
Demand for a perfect molecular-level separation membrane with ultrafast permeation and a robust mechanical property for any kind of species to be blocked in water purification and desalination is urgent. In recent years, due to their intrinsic characteristics, such as a unique mono-atom thick structure, outstanding mechanical strength and excellent flexibility, as well as facile and large-scale production, graphene and its large family of two-dimensional (2D) materials are regarded as ideal membrane materials for ultrafast molecular separation. A perfect separation membrane should be as thin as possible to maximize its flux, mechanically robust and without failure even if under high loading pressure, and have a narrow nanochannel size distribution to guarantee its selectivity. The latest breakthrough in 2D material-based membranes will be reviewed both in theories and experiments, including their current state-of-the-art fabrication, structure design, simulation and applications. Special attention will be focused on the designs and strategies employed to control microstructures to enhance permeation and selectivity for liquid separation. In addition, critical views on the separation mechanism within two-dimensional material-based membranes will be provided based on a discussion of the effects of intrinsic defects during growth, predefined nanopores and nanochannels during subsequent fabrication processes, the interlayer spacing of stacking 2D material flakes and the surface charge or functional groups. Furthermore, we will summarize the significant progress of these 2D material-based membranes for liquid separation in nanofiltration/ultrafiltration and pervaporation. Lastly, we will recall issues requiring attention, and discuss existing questionable conclusions in some articles and emerging challenges. This review will serve as a valuable platform to provide a compact source of relevant and timely information about the development of 2D material-based membranes as well as fully explain up-to-date mechanisms and models of water transport and molecular separation behavior, which will arouse great interest among researchers entering or already working in the field of 2D material-based membranes.
Exact and Heuristic Algorithms for Runway Scheduling
NASA Technical Reports Server (NTRS)
Malik, Waqar A.; Jung, Yoon C.
2016-01-01
This paper explores the Single Runway Scheduling (SRS) problem with arrivals, departures, and crossing aircraft on the airport surface. Constraints for wake vortex separations, departure area navigation separations and departure time window restrictions are explicitly considered. The main objective of this research is to develop exact and heuristic based algorithms that can be used in real-time decision support tools for Air Traffic Control Tower (ATCT) controllers. The paper provides a multi-objective dynamic programming (DP) based algorithm that finds the exact solution to the SRS problem, but may prove unusable for application in real-time environment due to large computation times for moderate sized problems. We next propose a second algorithm that uses heuristics to restrict the search space for the DP based algorithm. A third algorithm based on a combination of insertion and local search (ILS) heuristics is then presented. Simulation conducted for the east side of Dallas/Fort Worth International Airport allows comparison of the three proposed algorithms and indicates that the ILS algorithm performs favorably in its ability to find efficient solutions and its computation times.
NASA Technical Reports Server (NTRS)
Friedrich, R.; Drewelow, W.
1978-01-01
An algorithm is described that is based on the method of breaking the Laplace transform down into partial fractions which are then inverse-transformed separately. The sum of the resulting partial functions is the wanted time function. Any problems caused by equation system forms are largely limited by appropriate normalization using an auxiliary parameter. The practical limits of program application are reached when the degree of the denominator of the Laplace transform is seven to eight.
1975-09-04
for a large number of candidate fairings would have been too time consuming and the computer time costly for so many runs. This necessitated a paring...factors affect- ing a store’s separation behavior are the forces and moments on the store while in the captive carriage position. Tests have shown that...oscillation started by an initial yaw angle-of-attack would not. The theoretical expression, Eq. (7), confirms this behavior for undamped (T-o.o
Maldacena, Juan; Shenker, Stephen H.; Stanford, Douglas
2016-08-17
We conjecture a sharp bound on the rate of growth of chaos in thermal quantum systems with a large number of degrees of freedom. Chaos can be diagnosed using an out-of-time-order correlation function closely related to the commutator of operators separated in time. We conjecture that the influence of chaos on this correlator can develop no faster than exponentially, with Lyapunov exponent λ L ≤ 2πk B T/ℏ. We give a precise mathematical argument, based on plausible physical assumptions, establishing this conjecture.
Impulsive effects of phase-locked pulse pairs on nuclear motion in the electronic ground state
NASA Astrophysics Data System (ADS)
Cina, J. A.; Smith, T. J.
1993-06-01
The nonlinear effects of ultrashort phase-locked electronically resonant pulse pairs on the ground state nuclear motion are investigated theoretically. The pulse-pair propagator, momentum impulse, and displacement are determined in the weak field limit for pulse pairs separated by a time delay short on a nuclear time scale. Possible application to large amplitude vibrational excitation of the 104 cm-1 mode of α-perylene is considered and comparisons are made to other Raman excitation methods.
NASA Astrophysics Data System (ADS)
Salditch, L.; Brooks, E. M.; Stein, S.; Spencer, B. D.; Campbell, M. R.
2017-12-01
A challenge for earthquake hazard assessment is that geologic records often show large earthquakes occurring in temporal clusters separated by periods of quiescence. For example, in Cascadia, a paleoseismic record going back 10,000 years shows four to five clusters separated by approximately 1,000 year gaps. If we are still in the cluster that began 1700 years ago, a large earthquake is likely to happen soon. If the cluster has ended, a great earthquake is less likely. For a Gaussian distribution of recurrence times, the probability of an earthquake in the next 50 years is six times larger if we are still in the most recent cluster. Earthquake hazard assessments typically employ one of two recurrence models, neither of which directly incorporate clustering. In one, earthquake probability is time-independent and modeled as Poissonian, so an earthquake is equally likely at any time. The fault has no "memory" because when a prior earthquake occurred has no bearing on when the next will occur. The other common model is a time-dependent earthquake cycle in which the probability of an earthquake increases with time until one happens, after which the probability resets to zero. Because the probability is reset after each earthquake, the fault "remembers" only the last earthquake. This approach can be used with any assumed probability density function for recurrence times. We propose an alternative, Long-Term Fault Memory (LTFM), a modified earthquake cycle model where the probability of an earthquake increases with time until one happens, after which it decreases, but not necessarily to zero. Hence the probability of the next earthquake depends on the fault's history over multiple cycles, giving "long-term memory". Physically, this reflects an earthquake releasing only part of the elastic strain stored on the fault. We use the LTFM to simulate earthquake clustering along the San Andreas Fault and Cascadia. In some portions of the simulated earthquake history, events would appear quasiperiodic, while at other times, the events can appear more Poissonian. Hence a given paleoseismic or instrumental record may not reflect the long-term seismicity of a fault, which has important implications for hazard assessment.
Electron transfer beyond the static picture: A TDDFT/TD-ZINDO study of a pentacene dimer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reslan, Randa; Lopata, Kenneth; Arntsen, Christopher
2012-12-14
We use time-dependent density functional theory and time-dependent ZINDO (a semi-empirical method) to study transfer of an extra electron between a pair of pentacene molecules. A measure of the electronic transfer integral is computed in a dynamic picture via the vertical excitation energy from a delocalized anionic ground state. With increasing dimer separation, this dynamical measurement of charge transfer is shown to be significantly larger than the commonly used static approximation (i.e., LUMO+1–LUMO of the neutral dimer, or HOMO–LUMO of the charged dimer), up to an order of magnitude higher at 6 Å. These results offer a word of cautionmore » for calculations involving large separations, as in organic photovoltaics, where care must be taken when using a static picture to model charge transfer.« less
Electron transfer beyond the static picture: A TDDFT/TD-ZINDO study of a pentacene dimer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reslan, Randa; Lopata, Kenneth A.; Arntsen, Christopher D.
2012-12-14
We use time-dependent density functional theory and time-dependent ZINDO (a semi-empirical method) to study transfer of an extra electron between a pair of pentacene dimers. A measure of the electronic transfer integral is computed in a dynamic picture via the vertical excitation energy from a delocalized anionic ground state. With increasing dimer separation, this dynamical measurement of charge transfer is shown to be significantly larger than the commonly used static approximation (i.e., LUMO+1 - LUMO of the neutral dimer, or HOMO - LUMO of the charged dimer), up to an order of magnitude higher at 6 Å. These results offermore » a word of caution for calculations involving large separations, as in organic photovoltaics, where care must be taken when using a static picture to model charge transfer.« less
System identification through nonstationary data using Time-Frequency Blind Source Separation
NASA Astrophysics Data System (ADS)
Guo, Yanlin; Kareem, Ahsan
2016-06-01
Classical output-only system identification (SI) methods are based on the assumption of stationarity of the system response. However, measured response of buildings and bridges is usually non-stationary due to strong winds (e.g. typhoon, and thunder storm etc.), earthquakes and time-varying vehicle motions. Accordingly, the response data may have time-varying frequency contents and/or overlapping of modal frequencies due to non-stationary colored excitation. This renders traditional methods problematic for modal separation and identification. To address these challenges, a new SI technique based on Time-Frequency Blind Source Separation (TFBSS) is proposed. By selectively utilizing "effective" information in local regions of the time-frequency plane, where only one mode contributes to energy, the proposed technique can successfully identify mode shapes and recover modal responses from the non-stationary response where the traditional SI methods often encounter difficulties. This technique can also handle response with closely spaced modes which is a well-known challenge for the identification of large-scale structures. Based on the separated modal responses, frequency and damping can be easily identified using SI methods based on a single degree of freedom (SDOF) system. In addition to the exclusive advantage of handling non-stationary data and closely spaced modes, the proposed technique also benefits from the absence of the end effects and low sensitivity to noise in modal separation. The efficacy of the proposed technique is demonstrated using several simulation based studies, and compared to the popular Second-Order Blind Identification (SOBI) scheme. It is also noted that even some non-stationary response data can be analyzed by the stationary method SOBI. This paper also delineates non-stationary cases where SOBI and the proposed scheme perform comparably and highlights cases where the proposed approach is more advantageous. Finally, the performance of the proposed method is evaluated using a full-scale non-stationary response of a tall building during an earthquake and found it to perform satisfactorily.
Optimizing correlation techniques for improved earthquake location
Schaff, D.P.; Bokelmann, G.H.R.; Ellsworth, W.L.; Zanzerkia, E.; Waldhauser, F.; Beroza, G.C.
2004-01-01
Earthquake location using relative arrival time measurements can lead to dramatically reduced location errors and a view of fault-zone processes with unprecedented detail. There are two principal reasons why this approach reduces location errors. The first is that the use of differenced arrival times to solve for the vector separation of earthquakes removes from the earthquake location problem much of the error due to unmodeled velocity structure. The second reason, on which we focus in this article, is that waveform cross correlation can substantially reduce measurement error. While cross correlation has long been used to determine relative arrival times with subsample precision, we extend correlation measurements to less similar waveforms, and we introduce a general quantitative means to assess when correlation data provide an improvement over catalog phase picks. We apply the technique to local earthquake data from the Calaveras Fault in northern California. Tests for an example streak of 243 earthquakes demonstrate that relative arrival times with normalized cross correlation coefficients as low as ???70%, interevent separation distances as large as to 2 km, and magnitudes up to 3.5 as recorded on the Northern California Seismic Network are more precise than relative arrival times determined from catalog phase data. Also discussed are improvements made to the correlation technique itself. We find that for large time offsets, our implementation of time-domain cross correlation is often more robust and that it recovers more observations than the cross spectral approach. Longer time windows give better results than shorter ones. Finally, we explain how thresholds and empirical weighting functions may be derived to optimize the location procedure for any given region of interest, taking advantage of the respective strengths of diverse correlation and catalog phase data on different length scales.
Hama, Shinji; Yoshida, Ayumi; Tamadani, Naoki; Noda, Hideo; Kondo, Akihiko
2013-05-01
An engineering approach was applied to an efficient biodiesel production from waste cooking oil. In this work, an enzymatic packed-bed reactor (PBR) was integrated with a glycerol-separating system and used successfully for methanolysis, yielding a methyl ester content of 94.3% and glycerol removal of 99.7%. In the glycerol-separating system with enhanced retention time, the effluent contained lesser amounts of glycerol and methanol than those in the unmodified system, suggesting its promising ability to remove hydrophilic impurities from the oil layer. The PBR system was also applied to oils with high acid values, in which fatty acids could be esterified and the large amount of water was extracted using the glycerol-separating system. The long-term operation demonstrated the high lipase stability affording less than 0.2% residual triglyceride in 22 batches. Therefore, the PBR system, which facilitates the separation of hydrophilic impurities, is applicable to the enzymatic biodiesel production from waste cooking oil. Copyright © 2012 Elsevier Ltd. All rights reserved.
Strum, John S; Aldredge, Danielle; Barile, Daniela; Lebrilla, Carlito B
2012-05-15
Mass spectrometry has been coupled with flash liquid chromatography to yield new capabilities for isolating nonchromophoric material from complicated biological mixtures. A flash liquid chromatography/tandem mass spectrometry (LC/MS/MS) method enabled fraction collection of milk oligosaccharides from biological mixtures based on composition and structure. The method is compatible with traditional gas pressure-driven flow flash chromatography widely employed in organic chemistry laboratories. The online mass detector enabled real-time optimization of chromatographic parameters to favor separation of oligosaccharides that would otherwise be indistinguishable from coeluting components with a nonspecific detector. Unlike previously described preparative LC/MS techniques, we have employed a dynamic flow connection that permits any flow rate from the flash system to be delivered from 1 to 200 ml/min without affecting the ionization conditions of the mass spectrometer. A new way of packing large amounts of graphitized carbon allowed the enrichment and separation of milligram quantities of structurally heterogeneous mixtures of human milk oligosaccharides (HMOs) and bovine milk oligosaccharides (BMOs). Abundant saccharide components in milk, such as lactose and lacto-N-tetraose, were separated from the rarer and less abundant oligosaccharides that have greater structural diversity and biological functionality. Neutral and acidic HMOs and BMOs were largely separated and enriched with a dual binary solvent system. Published by Elsevier Inc.
The Effect of Micro-ramps on Supersonic Flow over a Forward-Facing Step
NASA Astrophysics Data System (ADS)
Zhang, Qing-Hu; Yi, Shi-He; Zhu, Yang-Zhu; Chen, Zhi; Wu, Yu
2013-04-01
The effect of micro-ramp control on fully developed turbulent flow over a forward-facing step (FFS) is investigated in a supersonic low-noise wind tunnel at Mach number 3 using nano-tracer planar laser scattering (NPLS) and supersonic particle image velocimetry (PIV) techniques. High spatiotemporal resolution images and the average velocity profiles of supersonic flow over the FFS with and without the control of the micro-ramps are captured. The fine structures of both cases, including the coherent structures of fully developed boundary layer and the large-scale hairpin-like vortices originated from the micro-ramps as well as the interaction of shock waves with the large-scale structures, are revealed and compared. Based on the time-correlation images, the temporal and spatial evolutionary characteristics of the coherent structures are investigated. It is beneficial to understand the dynamic mechanisms of the separated flow and the control mechanisms of the micro-ramps. The size of the separation region is determined by the NPLS and PIV. The results indicate that the control of the micro-ramps is capable of delaying the separation and diminishing the extent of recirculation zone.
Spatial and temporal variability of chorus and hiss
NASA Astrophysics Data System (ADS)
Santolik, O.; Hospodarsky, G. B.; Kurth, W. S.; Kletzing, C.
2017-12-01
Whistler-mode electromagnetic waves, especially natural emissions of chorus and hiss, have been shown to influence the dynamics of the Van Allen radiation belts via quasi-linear or nonlinear wave particle interactions, transferring energy between different electron populations. Average intensities of chorus and hiss emissions have been found to increase with increasing levels of geomagnetic activity but their stochastic variations in individual spacecraft measurements are usually larger these large-scale temporal effects. To separate temporal and spatial variations of wave characteristics, measurements need to be simultaneously carried out in different locations by identical and/or well calibrated instrumentation. We use two-point survey measurements of the Waves instruments of the Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) onboard two Van Allen Probes to asses spatial and temporal variability of chorus and hiss. We take advantage of a systematic analysis of this large data set which has been collected during 2012-2017 over a range of separation vectors of the two spacecraft. We specifically address the question whether similar variations occur at different places at the same time. Our results indicate that power variations are dominated by separations in MLT at scales larger than 0.5h.
36 CFR 1254.92 - How do I submit a request to microfilm records and donated historical materials?
Code of Federal Regulations, 2011 CFR
2011-07-01
..., records preparation, and other NARA requirements in a shorter time frame. (1) You may include in your request only one project to microfilm a complete body of documents, such as an entire series, a major continuous segment of a very large series which is reasonably divisible, or a limited number of separate...
36 CFR 1254.92 - How do I submit a request to microfilm records and donated historical materials?
Code of Federal Regulations, 2010 CFR
2010-07-01
..., records preparation, and other NARA requirements in a shorter time frame. (1) You may include in your request only one project to microfilm a complete body of documents, such as an entire series, a major continuous segment of a very large series which is reasonably divisible, or a limited number of separate...
Barroom Aggression in Hoboken, New Jersey: Don't Blame the Bouncers!
ERIC Educational Resources Information Center
Roberts, James C.
2007-01-01
Relying on a structured observation guide listing a large number of variables shown to be good predictors of aggression in bars by past researchers, trained observers spent a total of 444 hours collecting data in 25 licensed drinking establishments in Hoboken, New Jersey. Observations took place at two separate time periods, 7:30pm-10:30pm and…
Flow Control via a Single Spanwise Wire on the Surface of a Stationary Cylinder
NASA Astrophysics Data System (ADS)
Ekmekci, Alis; Rockwell, Donald
2007-11-01
The flow structure arising from a single spanwise wire attached along the surface of a circular stationary cylinder is investigated experimentally via a cinema technique of digital particle image velocimetry (DPIV). Consideration is given to wires that have smaller and larger scales than the thickness of the unperturbed boundary layer that develops around the cylinder prior to flow separation. The wires have diameters that are 1% and 3% of the cylinder diameter. Over a certain range of angular positions with respect to the approach flow, both small- and large-scale wires show important global effects on the entire near-wake. Two critical angles are identified on the basis of the near-wake structure. These critical angles are associated with extension and contraction of the near-wake, relative to the wake in absence of the effect of a surface disturbance. The critical angle of the wire that yields near-wake extension is associated with bistable oscillations of the separating shear layer, at irregular time intervals, much longer that the time scale associated with classical Karman vortex shedding. Moreover, for the large scale wire, in specific cases, either attenuation or enhancement of the Karman mode of vortex formation is observed.
Experiment to demonstrate separation of Cherenkov and scintillation signals
Caravaca, J.; Descamps, F. B.; Land, B. J.; ...
2017-05-05
The ability to separately identify the Cherenkov and scintillation light components produced in scintillating mediums holds the potential for a major breakthrough in neutrino detection technology, allowing development of a large, low-threshold, directional detector with a broad physics program. Furthermore, the CHESS (CHErenkov/Scintillation Separation) experiment employs an innovative detector design with an array of small, fast photomultiplier tubes and state-of-the-art electronics to demonstrate the reconstruction of a Cherenkov ring in a scintillating medium based on photon hit time and detected photoelectron density. Our paper describes the physical properties and calibration of CHESS along with first results. The ability to reconstructmore » Cherenkov rings are demonstrated in a water target, and a time precision of 338 ± 12 ps FWHM is achieved. Finally, Monte Carlo–based predictions for the ring imaging sensitivity with a liquid scintillator target predict an efficiency for identifying Cherenkov hits of 94 ± 1 % and 81 ± 1 % in pure linear alkyl benzene (LAB) and LAB loaded with 2 g/L of a fluor, PPO, respectively, with a scintillation contamination of 12 ± 1 % and 26 ± 1 % .« less
Experiment to demonstrate separation of Cherenkov and scintillation signals
NASA Astrophysics Data System (ADS)
Caravaca, J.; Descamps, F. B.; Land, B. J.; Wallig, J.; Yeh, M.; Orebi Gann, G. D.
2017-05-01
The ability to separately identify the Cherenkov and scintillation light components produced in scintillating mediums holds the potential for a major breakthrough in neutrino detection technology, allowing development of a large, low-threshold, directional detector with a broad physics program. The CHESS (CHErenkov/Scintillation Separation) experiment employs an innovative detector design with an array of small, fast photomultiplier tubes and state-of-the-art electronics to demonstrate the reconstruction of a Cherenkov ring in a scintillating medium based on photon hit time and detected photoelectron density. This paper describes the physical properties and calibration of CHESS along with first results. The ability to reconstruct Cherenkov rings is demonstrated in a water target, and a time precision of 338 ±12 ps FWHM is achieved. Monte Carlo-based predictions for the ring imaging sensitivity with a liquid scintillator target predict an efficiency for identifying Cherenkov hits of 94 ±1 % and 81 ±1 % in pure linear alkyl benzene (LAB) and LAB loaded with 2 g/L of a fluor, PPO, respectively, with a scintillation contamination of 12 ±1 % and 26 ±1 % .
Miniaturized protein separation using a liquid chromatography column on a flexible substrate
NASA Astrophysics Data System (ADS)
Yang, Yongmo; Chae, Junseok
2008-12-01
We report a prototype protein separator that successfully miniaturizes existing technology for potential use in biocompatible health monitoring implants. The prototype is a liquid chromatography (LC) column (LC mini-column) fabricated on an inexpensive, flexible, biocompatible polydimethylsiloxane (PDMS) enclosure. The LC mini-column separates a mixture of proteins using size exclusion chromatography (SEC) with polydivinylbenzene beads (5-20 µm in diameter with 10 nm pore size). The LC mini-column is smaller than any commercially available LC column by a factor of ~11 000 and successfully separates denatured and native protein mixtures at ~71 psi of the applied fluidic pressure. Separated proteins are analyzed using NuPAGE-gel electrophoresis, high-performance liquid chromatography (HPLC) and an automated electrophoresis system. Quantitative HPLC results demonstrate successful separation based on intensity change: within 12 min, the intensity between large and small protein peaks changed by a factor of ~20. In further evaluation using the automated electrophoresis system, the plate height of the LC mini-column is between 36 µm and 100 µm. The prototype LC mini-column shows the potential for real-time health monitoring in applications that require inexpensive, flexible implant technology that can function effectively under non-laboratory conditions.
Development of Improved Burnable Poisons for Commercial Nuclear Power Reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
M. L. Grossbeck J-P.A. Renier Tim Bigelow
2003-09-30
Burnable poisons are used in nuclear reactors to produce a more level distribution of power in the reactor core and to reduce to necessity for a large control system. An ideal burnable poison would burn at the same rate as the fuel. In this study, separation of neutron-absorbing isotopes was investigated in order to eliminate isotopes that remain as absorbers at the end of fuel life, thus reducing useful fuel life. The isotopes Gd-157, Dy-164, and Er-167 were found to have desirable properties. These isotopes were separated from naturally occurring elements by means of plasma separation to evaluate feasibility andmore » cost. It was found that pure Gd-157 could save approximately $6 million at the end of four years. However, the cost of separation, using the existing facility, made separation cost- ineffective. Using a magnet with three times the field strength is expected to reduce the cost by a factor of ten, making isotopically separated burnable poisons a favorable method of increasing fuel life in commercial reactors, in particular Generation-IV reactors. The project also investigated various burnable poison configurations, and studied incorporation of metallic burnable poisons into fuel cladding.« less
Modular separation-based fiber-optic sensors for remote in situ monitoring.
Dickens, J; Sepaniak, M
2000-02-01
A modular separation-based fiber-optic sensor (SBFOS) with an integrated electronically controlled injection device is described for potential use in remote environmental monitoring. An SBFOS is a chemical monitor that integrates the separation selectivity and versatility afforded by capillary electrophoresis with the remote and high sensitivity capabilities of fiber-optic-based laser-induced fluorescence sensing. The detection module of the SBFOS accommodates all essential sensing components for dual-optical fiber, on-capillary fluorescence detection. An injection module, similar to injection platforms on micro-analysis chips, is also integrated to the SBFOS. The injection module allows for electronically controlled injection of the sample onto the separation capillary. The design and operational characteristics of the modular SBFOS are discussed in this paper. A micellar electrokinetic capillary chromatography mode of separation is employed to evaluate the potential of the sensor for in situ monitoring of neutral toxins (aflatoxins). The analytical figures of merit for the modular SBFOS include analysis times of between 5 and 10 min, separation efficiencies of approximately 10(4) theoretical plates, detection limits for aflatoxins in the mid-to-low nanomolar range, and controllable operation that results in sensor performance that is largely immune to sample matrix effects.
The MRPC-based ALICE time-of-flight detector: Status andperformance
NASA Astrophysics Data System (ADS)
Alici, A.; ALICE Collaboration
2013-04-01
The large time-of-flight (TOF) array is one of the main detectors devoted to charged hadron identification in the mid-rapidity region of the ALICE experiment at the LHC. It allows separation among pions, kaons and protons up to a few GeV/c, covering the full azimuthal angle and -0.9<η<0.9. The TOF exploits the innovative MRPC technology capable of an intrinsic time resolution better than 50 ps with an efficiency close to 100% and a large operational plateau; the full array consists of 1593 MRPCs covering a cylindrical surface of 141 m2. The TOF detector has been efficiently taking data since the first pp collisions recorded in ALICE in December 2009. In this report, the status of the TOF detector and the performance achieved for both pp and Pb-Pb collisions aredescribed.
Yoshikawa, Saya; Saeki, Akinori; Saito, Masahiko; Osaka, Itaru; Seki, Shu
2015-07-21
Although the charge separation (CS) and transport processes that compete with geminate and non-geminate recombination are commonly regarded as the governing factors of organic photovoltaic (OPV) efficiency, the details of the CS mechanism remain largely unexplored. Here we provide a systematic investigation on the role of local charge carrier mobility in bulk heterojunction films of ten different low-bandgap polymers and polythiophene analogues blended with methanofullerene (PCBM). By correlating with the OPV performances, we demonstrated that the local mobility of the blend measured by time-resolved microwave conductivity is more important for the OPV output than those of the pure polymers. Furthermore, the results revealed two separate trends for crystalline and semi-crystalline polymers. This work offers guidance in the design of high-performance organic solar cells.
NASA Astrophysics Data System (ADS)
Wang, Gang; Zhu, Peiwang; Marks, Tobin J.; Ketterson, J. B.
2002-09-01
Thin films consisting of self-assembled chromophoric superlattices exhibit very large second-order nonlinear responses [chi](2). Using such films, a "static" diffraction grating is created by the interference of two coherent infrared beams from a pulsed yttritium-aluminum-garnet laser. This grating is used to switch the second-harmonic and third-harmonic "signal" beams (generated from the fundamental "pump" beam or mixed within the chromophoric superlattice) into different channels (directions). Ultrafast switching response as a function of the time overlap of the pumping beams is demonstrated. It is suggested that such devices can be used to spatially and temporally separate signal trains consisting of pulses having different frequencies and arrival times.
Characterization and Separation of Cancer Cells with a Wicking Fiber Device.
Tabbaa, Suzanne M; Sharp, Julia L; Burg, Karen J L
2017-12-01
Current cancer diagnostic methods lack the ability to quickly, simply, efficiently, and inexpensively screen cancer cells from a mixed population of cancer and normal cells. Methods based on biomarkers are unreliable due to complexity of cancer cells, plasticity of markers, and lack of common tumorigenic markers. Diagnostics are time intensive, require multiple tests, and provide limited information. In this study, we developed a novel wicking fiber device that separates cancer and normal cell types. To the best of our knowledge, no previous work has used vertical wicking of cells through fibers to identify and isolate cancer cells. The device separated mouse mammary tumor cells from a cellular mixture containing normal mouse mammary cells. Further investigation showed the device separated and isolated human cancer cells from a heterogeneous mixture of normal and cancerous human cells. We report a simple, inexpensive, and rapid technique that has potential to identify and isolate cancer cells from large volumes of liquid samples that can be translated to on-site clinic diagnosis.
Collision Cross Sections and Ion Mobility Separation of Fragment Ions from Complex N-Glycans.
Harvey, David J; Watanabe, Yasunori; Allen, Joel D; Rudd, Pauline; Pagel, Kevin; Crispin, Max; Struwe, Weston B
2018-06-01
Ion mobility mass spectrometry (IM-MS) holds great potential for structural glycobiology, in particular in its ability to resolve glycan isomers. Generally, IM-MS has largely been applied to intact glycoconjugate ions with reports focusing on the separation of different adduct types. Here, we explore IM separation and report the collision cross section (CCS) of complex type N-glycans and their fragments in negative ion mode following collision-induced dissociation (CID). CCSs of isomeric fragment ions were found, in some cases, to reveal structural details that were not present in CID spectra themselves. Many fragment ions were confirmed as possessing multiple structure, details of which could be obtained by comparing their drift time profiles to different glycans. By using fragmentation both before and after mobility separation, information was gathered on the fragmentation pathways producing some of the ions. These results help demonstrate the utility of IM and will contribute to the growing use of IM-MS for glycomics. Graphical Abstract ᅟ.
Collision Cross Sections and Ion Mobility Separation of Fragment Ions from Complex N-Glycans
NASA Astrophysics Data System (ADS)
Harvey, David J.; Watanabe, Yasunori; Allen, Joel D.; Rudd, Pauline; Pagel, Kevin; Crispin, Max; Struwe, Weston B.
2018-04-01
Ion mobility mass spectrometry (IM-MS) holds great potential for structural glycobiology, in particular in its ability to resolve glycan isomers. Generally, IM-MS has largely been applied to intact glycoconjugate ions with reports focusing on the separation of different adduct types. Here, we explore IM separation and report the collision cross section (CCS) of complex type N-glycans and their fragments in negative ion mode following collision-induced dissociation (CID). CCSs of isomeric fragment ions were found, in some cases, to reveal structural details that were not present in CID spectra themselves. Many fragment ions were confirmed as possessing multiple structure, details of which could be obtained by comparing their drift time profiles to different glycans. By using fragmentation both before and after mobility separation, information was gathered on the fragmentation pathways producing some of the ions. These results help demonstrate the utility of IM and will contribute to the growing use of IM-MS for glycomics. [Figure not available: see fulltext.
Two-photon interference of temporally separated photons
Kim, Heonoh; Lee, Sang Min; Moon, Han Seb
2016-01-01
We present experimental demonstrations of two-photon interference involving temporally separated photons within two types of interferometers: a Mach-Zehnder interferometer and a polarization-based Michelson interferometer. The two-photon states are probabilistically prepared in a symmetrically superposed state within the two interferometer arms by introducing a large time delay between two input photons; this state is composed of two temporally separated photons, which are in two different or the same spatial modes. We then observe two-photon interference fringes involving both the Hong-Ou-Mandel interference effect and the interference of path-entangled two-photon states simultaneously in a single interferometric setup. The observed two-photon interference fringes provide simultaneous observation of the interferometric properties of the single-photon and two-photon wavepackets. The observations can also facilitate a more comprehensive understanding of the origins of the interference phenomena arising from spatially bunched/anti-bunched two-photon states comprised of two temporally separated photons within the interferometer arms. PMID:27708380
Towards the computation of time-periodic inertial range dynamics
NASA Astrophysics Data System (ADS)
van Veen, L.; Vela-Martín, A.; Kawahara, G.
2018-04-01
We explore the possibility of computing simple invariant solutions, like travelling waves or periodic orbits, in Large Eddy Simulation (LES) on a periodic domain with constant external forcing. The absence of material boundaries and the simple forcing mechanism make this system a comparatively simple target for the study of turbulent dynamics through invariant solutions. We show, that in spite of the application of eddy viscosity the computations are still rather challenging and must be performed on GPU cards rather than conventional coupled CPUs. We investigate the onset of turbulence in this system by means of bifurcation analysis, and present a long-period, large-amplitude unstable periodic orbit that is filtered from a turbulent time series. Although this orbit is computed on a coarse grid, with only a small separation between the integral scale and the LES filter length, the periodic dynamics seem to capture a regeneration process of the large-scale vortices.
The Triggering of Large-Scale Waves by CME Initiation
NASA Astrophysics Data System (ADS)
Forbes, Terry
Studies of the large-scale waves generated at the onset of a coronal mass ejection (CME) can provide important information about the processes in the corona that trigger and drive CMEs. The size of the region where the waves originate can indicate the location of the magnetic forces that drive the CME outward, and the rate at which compressive waves steepen into shocks can provide a measure of how the driving forces develop in time. However, in practice it is difficult to separate the effects of wave formation from wave propagation. The problem is particularly acute for the corona because of the multiplicity of wave modes (e.g. slow versus fast MHD waves) and the highly nonuniform structure of the solar atmosphere. At the present time large-scale numerical simulations provide the best hope for deconvolving wave propagation and formation effects from one another.
Genetic associations between maternal traits and aggressive behaviour in Large White sows.
Appel, A K; Voß, B; Tönepöhl, B; König von Borstel, U; Gauly, M
2016-07-01
The present study examined the possibilities and consequences of selecting pigs for reduced aggression and desirable maternal behaviour. Data were recorded from 798 purebred Large White gilts, with an age of 217±17.7 (mean±SD) days, which were observed at mixing with unfamiliar conspecifics. The reaction of the sows towards separation from their litter was assessed for 2022 litters from 848 Large White sows. Sows' performance during their time in the farrowing unit was scored based on the traits farrowing behaviour (i.e. need of birth assistance), rearing performance (i.e. litter quality at day 10 postpartum (pp)), usability (i.e. additional labour input during lactation period e.g. for treatments) and udder quality of the sow (i.e. udder attachment). For agonistic behaviour, traits heritabilities of h 2=0.11±0.04 to h 2=0.28±0.06 were estimated. For the sow's reaction towards separation from her litter low heritabilities were found (h 2=0.03±0.03 for separation test on day 1 pp and h 2=0.02±0.03 for separation test on day 10 pp). Heritabilities for lactating sow's performance (farrowing behaviour, rearing performance, usability of the sow and udder quality) in the farrowing unit ranged from h 2=0.03±0.02 to h 2=0.19±0.03. Due to these results it can be assumed that selection for these traits, for example, for udder quality or reduced aggression, is possible. Antagonistic associations were found between separation test on day 1 pp and different measures of aggressiveness (r g =-0.22±0.26 aggressive attack and r g =-0.41±0.33 reciprocal fighting). Future studies should determine economic as well as welfare-related values of these traits in order to decide whether selection for these traits will be reasonable.
Hein, Elisabeth; Moore, Cathleen M
2010-01-01
A central bar repeatedly presented in alternation with two flanking bars can lead to the disappearance of the central bar. Recently it has been suggested that this masking effect could be explained by object-mediated updating: the information from the central bar is integrated into the representation of the flankers, leading not only to the disappearance of the central bar as a separate object, but also to the perception of the flankers in apparent motion between their real position and the position of the central bar. This account suggests that the visibility of the central bar should depend on the same factors as those that influence the construction and maintenance of object representations. Therefore separation between central bar and flankers should not influence visibility as long as the time interval between them is adequate to make an interpretation of the scene in terms of one object moving from one location to the other possible location. We found that if the time interval between the central bar and the flankers is neither too short nor too long, the central bar becomes invisible even at large separations. These findings are inconsistent with traditional accounts of the cycling lateral masking displays in terms of local inhibitory mechanisms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ding, Wei -Liang
1999-02-12
Addition of a novel anionic surfactant, namely lauryl polyoxyethylene sulfate, to an aqueous-acetonitrile electrolyte makes it possible to separate nonionic organic compounds by capillary electrophoresis. Separation is based on differences in the association between analytes and the surfactant. Highly hydrophobic compounds such as polyaromatic hydrocarbons are well separated by this new surfactant. Migration times of analytes can be readily changed over an unusually large range by varying the additive concentration and the proportion of acetonitrile in the electrolyte. Several examples are given, including the separation of four methylbenz[a]anthracene isomers and the separation of normal and deuterated acetophenone. The effect ofmore » adding this new surfactant to the acidic electrolyte was also investigated. Incorporation of cetyltrimethylammonium bromide in the electrolyte is shown to dynamically coat the capillary and reverse electroosmotic flow. Chiral recognition mechanism is studied using novel synthetic surfactants as chiral selectors, which are made from amino acids reacting with alkyl chloroformates. A satisfactory separation of both inorganic and organic anions is obtained using electrolyte solutions as high as 5 M sodium chloride using direct photometric detection. The effect of various salts on electrophoretic and electroosmotic mobility is further discussed. Several examples are given under high-salt conditions.« less
Galaxy clustering and the origin of large-scale flows
NASA Technical Reports Server (NTRS)
Juszkiewicz, R.; Yahil, A.
1989-01-01
Peebles's 'cosmic virial theorem' is extended from its original range of validity at small separations, where hydrostatic equilibrium holds, to large separations, in which linear gravitational stability theory applies. The rms pairwise velocity difference at separation r is shown to depend on the spatial galaxy correlation function xi(x) only for x less than r. Gravitational instability theory can therefore be tested by comparing the two up to the maximum separation for which both can reliably be determined, and there is no dependence on the poorly known large-scale density and velocity fields. With the expected improvement in the data over the next few years, however, this method should yield a reliable determination of omega.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhong, Wenwan
2003-01-01
Capillary electrophoresis (CE) offers many advantages over conventional analytical methods, such as speed, simplicity, high resolution, low cost, and small sample consumption, especially for the separation of enantiomers. However, chiral method developments still can be time consuming and tedious. They designed a comprehensive enantioseparation protocol employing neutral and sulfated cyclodextrins as chiral selectors for common basic, neutral, and acidic compounds with a 96-capillary array system. By using only four judiciously chosen separation buffers, successful enantioseparations were achieved for 49 out of 54 test compounds spanning a large variety of pKs and structures. Therefore, unknown compounds can be screened in thismore » manner to identify optimal enantioselective conditions in just one rn. In addition to superior separation efficiency for small molecules, CE is also the most powerful technique for DNA separations. Using the same multiplexed capillary system with UV absorption detection, the sequence of a short DNA template can be acquired without any dye-labels. Two internal standards were utilized to adjust the migration time variations among capillaries, so that the four electropherograms for the A, T, C, G Sanger reactions can be aligned and base calling can be completed with a high level of confidence. the CE separation of DNA can be applied to study differential gene expression as well. Combined with pattern recognition techniques, small variations among electropherograms obtained by the separation of cDNA fragments produced from the total RNA samples of different human tissues can be revealed. These variations reflect the differences in total RNA expression among tissues. Thus, this Ce-based approach can serve as an alternative to the DNA array techniques in gene expression analysis.« less
Beyond a phenomenological description of magnetostriction
Reid, A. H.; Shen, X.; Maldonado, P.; ...
2018-01-26
Magnetostriction, the strain induced by a change in magnetization, is a universal effect in magnetic materials. Owing to the difficulty in unraveling its microscopic origin, it has been largely treated phenomenologically. Here in this paper, we show how the source of magnetostriction—the underlying magnetoelastic stress—can be separated in the time domain, opening the door for an atomistic understanding. X-ray and electron diffraction are used to separate the sub-picosecond spin and lattice responses of FePt nanoparticles. Following excitation with a 50-fs laser pulse, time-resolved X-ray diffraction demonstrates that magnetic order is lost within the nanoparticles with a time constant of 146more » fs. Ultrafast electron diffraction reveals that this demagnetization is followed by an anisotropic, three-dimensional lattice motion. Analysis of the size, speed, and symmetry of the lattice motion, together with ab initio calculations accounting for the stresses due to electrons and phonons, allow us to reveal the magnetoelastic stress generated by demagnetization.« less
Li, X; He, J
1997-03-01
In the paper, the influences of the concentration of sodium dodecyl sulphate (SDS) and borax (Na2B4O7), pH value and applied voltage on the MECC of water soluble vitamins--VB1, VB2, VB6, VB12 and VC in fused silica capillary were studied. In the system of SDS-Na2B4O7, the retention times of the vitamins mentioned above increase with the increase of concentration of SDS and Na2B4O7. But if SDS concentration is too high the separation will become worse, and if Na2B4O7 concentration is too high the peak will be broad because the increase of retention time will lead to the increase of diffusion of molecules. With the pH increasing, the separation efficiency is always increasing. The change of the applied voltage has little effect on the separation efficiency. However, at higher pH and applied voltage, the high ionic strength and large current will produce more Joule heat and cause higher background noise. The optimum run buffer for this separation contains 18mmol/L Na2B4O7 and 25mmol/L SDS, with pH at 8.5 by adjusted with hydrochloric acid. The separation was completed within 4min at an applied voltage of 14.0kV. The separation efficiencies ranged from 1.1 x 10(5) to 2.4 x 10(5) theoretical plates/meter. The application of this method to drug analysis is demonstrated.
A radiographic study of the mandibular third molar root development in different ethnic groups.
Liversidge, H M; Peariasamy, K; Folayan, M O; Adeniyi, A O; Ngom, P I; Mikami, Y; Shimada, Y; Kuroe, K; Tvete, I F; Kvaal, S I
2017-12-01
The nature of differences in the timing of tooth formation between ethnic groups is important when estimating age. To calculate age of transition of the mandibular third (M3) molar tooth stages from archived dental radiographs from sub-Saharan Africa, Malaysia, Japan and two groups from London UK (Whites and Bangladeshi). The number of radiographs was 4555 (2028 males, 2527 females) with an age range 10-25 years. The left M3 was staged into Moorrees stages. A probit model was fitted to calculate mean ages for transitions between stages for males and females and each ethnic group separately. The estimated age distributions given each M3 stage was calculated. To assess differences in timing of M3 between ethnic groups, three models were proposed: a separate model for each ethnic group, a joint model and a third model combining some aspects across groups. The best model fit was tested using Bayesian and Akaikes information criteria (BIC and AIC) and log likelihood ratio test. Differences in mean ages of M3 root stages were found between ethnic groups, however all groups showed large standard deviation values. The AIC and log likelihood ratio test indicated that a separate model for each ethnic group was best. Small differences were also noted between timing of M3 between males and females, with the exception of the Malaysian group. These findings suggests that features of a reference data set (wide age range and uniform age distribution) and a Bayesian statistical approach are more important than population specific convenience samples to estimate age of an individual using M3. Some group differences were evident in M3 timing, however, this has some impact on the confidence interval of estimated age in females and little impact in males because of the large variation in age.
Sissay, Adonay; Abanador, Paul; Mauger, François; Gaarde, Mette; Schafer, Kenneth J; Lopata, Kenneth
2016-09-07
Strong-field ionization and the resulting electronic dynamics are important for a range of processes such as high harmonic generation, photodamage, charge resonance enhanced ionization, and ionization-triggered charge migration. Modeling ionization dynamics in molecular systems from first-principles can be challenging due to the large spatial extent of the wavefunction which stresses the accuracy of basis sets, and the intense fields which require non-perturbative time-dependent electronic structure methods. In this paper, we develop a time-dependent density functional theory approach which uses a Gaussian-type orbital (GTO) basis set to capture strong-field ionization rates and dynamics in atoms and small molecules. This involves propagating the electronic density matrix in time with a time-dependent laser potential and a spatial non-Hermitian complex absorbing potential which is projected onto an atom-centered basis set to remove ionized charge from the simulation. For the density functional theory (DFT) functional we use a tuned range-separated functional LC-PBE*, which has the correct asymptotic 1/r form of the potential and a reduced delocalization error compared to traditional DFT functionals. Ionization rates are computed for hydrogen, molecular nitrogen, and iodoacetylene under various field frequencies, intensities, and polarizations (angle-dependent ionization), and the results are shown to quantitatively agree with time-dependent Schrödinger equation and strong-field approximation calculations. This tuned DFT with GTO method opens the door to predictive all-electron time-dependent density functional theory simulations of ionization and ionization-triggered dynamics in molecular systems using tuned range-separated hybrid functionals.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sissay, Adonay; Abanador, Paul; Mauger, François
2016-09-07
Strong-field ionization and the resulting electronic dynamics are important for a range of processes such as high harmonic generation, photodamage, charge resonance enhanced ionization, and ionization-triggered charge migration. Modeling ionization dynamics in molecular systems from first-principles can be challenging due to the large spatial extent of the wavefunction which stresses the accuracy of basis sets, and the intense fields which require non-perturbative time-dependent electronic structure methods. In this paper, we develop a time-dependent density functional theory approach which uses a Gaussian-type orbital (GTO) basis set to capture strong-field ionization rates and dynamics in atoms and small molecules. This involves propagatingmore » the electronic density matrix in time with a time-dependent laser potential and a spatial non-Hermitian complex absorbing potential which is projected onto an atom-centered basis set to remove ionized charge from the simulation. For the density functional theory (DFT) functional we use a tuned range-separated functional LC-PBE*, which has the correct asymptotic 1/r form of the potential and a reduced delocalization error compared to traditional DFT functionals. Ionization rates are computed for hydrogen, molecular nitrogen, and iodoacetylene under various field frequencies, intensities, and polarizations (angle-dependent ionization), and the results are shown to quantitatively agree with time-dependent Schrödinger equation and strong-field approximation calculations. This tuned DFT with GTO method opens the door to predictive all-electron time-dependent density functional theory simulations of ionization and ionization-triggered dynamics in molecular systems using tuned range-separated hybrid functionals.« less
Analysis of separation of the space shuttle orbiter from a large transport airplane
NASA Technical Reports Server (NTRS)
Wilhite, A. W.
1977-01-01
The feasibility of safely separating the space shuttle orbiter (140A/B) from the top of a large carrier vehicle (the C-5 airplane) at subsonic speeds was investigated. The longitudinal equations of motion for both vehicles were numerically integrated using a digital computer program which incorporates experimentally derived interference aerodynamic data to analyze the separation maneuver for various initial conditions. Separation of the space shuttle orbiter from a carrier vehicle was feasible for a range of dynamic-pressure and flight-path-angle conditions. By using an autopilot, the vehicle attitudes were held constant which ensured separation. Carrier-vehicle engine thrust, landing gear, and spoilers provide some flexibility in the separation maneuver.
Alexander, David M; Trengove, Chris; van Leeuwen, Cees
2015-11-01
An assumption nearly all researchers in cognitive neuroscience tacitly adhere to is that of space-time separability. Historically, it forms the basis of Donders' difference method, and to date, it underwrites all difference imaging and trial-averaging of cortical activity, including the customary techniques for analyzing fMRI and EEG/MEG data. We describe the assumption and how it licenses common methods in cognitive neuroscience; in particular, we show how it plays out in signal differencing and averaging, and how it misleads us into seeing the brain as a set of static activity sources. In fact, rather than being static, the domains of cortical activity change from moment to moment: Recent research has suggested the importance of traveling waves of activation in the cortex. Traveling waves have been described at a range of different spatial scales in the cortex; they explain a large proportion of the variance in phase measurements of EEG, MEG and ECoG, and are important for understanding cortical function. Critically, traveling waves are not space-time separable. Their prominence suggests that the correct frame of reference for analyzing cortical activity is the dynamical trajectory of the system, rather than the time and space coordinates of measurements. We illustrate what the failure of space-time separability implies for cortical activation, and what consequences this should have for cognitive neuroscience.
Culyba, Matthew J; Kubiak, Jeffrey M; Mo, Charlie Y; Goulian, Mark; Kohli, Rahul M
2018-06-01
Biochemical pathways are often genetically encoded as simple transcription regulation networks, where one transcription factor regulates the expression of multiple genes in a pathway. The relative timing of each promoter's activation and shut-off within the network can impact physiology. In the DNA damage repair pathway (known as the SOS response) of Escherichia coli, approximately 40 genes are regulated by the LexA repressor. After a DNA damaging event, LexA degradation triggers SOS gene transcription, which is temporally separated into subsets of 'early', 'middle', and 'late' genes. Although this feature plays an important role in regulating the SOS response, both the range of this separation and its underlying mechanism are not experimentally defined. Here we show that, at low doses of DNA damage, the timing of promoter activities is not separated. Instead, timing differences only emerge at higher levels of DNA damage and increase as a function of DNA damage dose. To understand mechanism, we derived a series of synthetic SOS gene promoters which vary in LexA-operator binding kinetics, but are otherwise identical, and then studied their activity over a large dose-range of DNA damage. In distinction to established models based on rapid equilibrium assumptions, the data best fit a kinetic model of repressor occupancy at promoters, where the drop in cellular LexA levels associated with higher doses of DNA damage leads to non-equilibrium binding kinetics of LexA at operators. Operators with slow LexA binding kinetics achieve their minimal occupancy state at later times than operators with fast binding kinetics, resulting in a time separation of peak promoter activity between genes. These data provide insight into this remarkable feature of the SOS pathway by demonstrating how a single transcription factor can be employed to control the relative timing of each gene's transcription as a function of stimulus dose.
Liu, Lei; Veerappan, Vijaykumar; Pu, Qiaosheng; Cheng, Chang; Wang, Xiayan; Lu, Liping; Allen, Randy D; Guo, Guangsheng
2014-01-07
A high-resolution, rapid, and economical hydrodynamic chromatographic (HDC) method for large DNA separations in free solution was developed using narrow (5 μm diameter), bare open capillaries. Size-based separation was achieved in a chromatographic format with larger DNA molecules being eluting faster than smaller ones. Lambda DNA Mono Cut Mix was baseline-separated with the percentage resolutions generally less than 9.0% for all DNA fragments (1.5 to 48.5 kbp) tested in this work. High efficiencies were achieved for large DNA from this chromatographic technique, and the number of theoretical plates reached 3.6 × 10(5) plates for the longest (48.5 kbp) and 3.7 × 10(5) plates for the shortest (1.5 kbp) fragments. HDC parameters and performances were also discussed. The method was further applied for fractionating large DNA fragments from real-world samples (SacII digested Arabidopsis plant bacterial artificial chromosome (BAC) DNA and PmeI digested Rice BAC DNA) to demonstrate its feasibility for BAC DNA finger printing. Rapid separation of PmeI digested Rice BAC DNA covering from 0.44 to 119.041 kbp was achieved in less than 26 min. All DNA fragments of these samples were baseline separated in narrow bare open capillaries, while the smallest fragment (0.44 kbp) was missing in pulsed-field gel electrophoresis (PFGE) separation mode. It is demonstrated that narrow bare open capillary chromatography can realize a rapid separation for a wide size range of DNA mixtures that contain both small and large DNA fragments in a single run.
Shameli, Seyed Mostafa; Glawdel, Tomasz; Ren, Carolyn L
2015-03-01
Counter-flow gradient electrofocusing allows the simultaneous concentration and separation of analytes by generating a gradient in the total velocity of each analyte that is the sum of its electrophoretic velocity and the bulk counter-flow velocity. In the scanning format, the bulk counter-flow velocity is varying with time so that a number of analytes with large differences in electrophoretic mobility can be sequentially focused and passed by a single detection point. Studies have shown that nonlinear (such as a bilinear) velocity gradients along the separation channel can improve both peak capacity and separation resolution simultaneously, which cannot be realized by using a single linear gradient. Developing an effective separation system based on the scanning counter-flow nonlinear gradient electrofocusing technique usually requires extensive experimental and numerical efforts, which can be reduced significantly with the help of analytical models for design optimization and guiding experimental studies. Therefore, this study focuses on developing an analytical model to evaluate the separation performance of scanning counter-flow bilinear gradient electrofocusing methods. In particular, this model allows a bilinear gradient and a scanning rate to be optimized for the desired separation performance. The results based on this model indicate that any bilinear gradient provides a higher separation resolution (up to 100%) compared to the linear case. This model is validated by numerical studies. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Large gamma-ray detector arrays and electromagnetic separators
NASA Astrophysics Data System (ADS)
Lee, I.-Yang
2013-12-01
The use of large gamma-ray detector arrays with electromagnetic separators is a powerful combination. Various types of gamma-ray detectors have been used; some provide high detector efficiency such as scintillation detector array, others use Ge detectors for good energy resolution, and recently developed Ge energy tracking arrays gives both high peak-to-background ratio and position resolution. Similarly, different types of separators were used to optimize the performance under different experimental requirements and conditions. For example, gas-filled separators were used in heavy element studies for their large efficiency and beam rejection factor. Vacuum separators with good isotope resolution were used in transfer and fragmentation reactions for the study of nuclei far from stability. This paper presents results from recent experiments using gamma-ray detector arrays in combination with electromagnetic separators, and discusses the physics opportunities provided by these instruments. In particular, we review the performance of the instruments currently in use, and discuss the requirements of instruments for future radioactive beam accelerator facilities.
Thermal testing results of an electroformed nickel secondary (M2) mirror
NASA Astrophysics Data System (ADS)
Smith, David R.; Gale, David M.; Cabrera Cuevas, Lizeth; Lucero Álvarez, Maribel; Castro Santos, David; Olmos Tapia, Arak
2016-07-01
To support higher-frequency operation, the Large Millimeter Telescope/Gran Telescopio Milimetrico (or LMT/GTM) is replacing its existing monolithic aluminum secondary mirror (M2). The new mirror is a segmented design based on the same electroformed nickel reflector panel technology that is already in use for the primary reflector segments. While the new M2 is lighter and has better surface accuracy than the original mirror, the electroformed panels are more sensitive to high temperatures. During the design phase, concerns were raised over the level of temperature increase that could occur at M2 during daytime observations. Although the panel surface is designed to scatter visible light, the LMT primary mirror is large enough to cause substantial solar heating, even at significant angular separation from the Sun. To address these concerns, the project conducted a series of field tests, within the constraint of having minimum impact on night time observations. The supplier sent two coupon samples of a reflector panel prepared identically to their proposed M2 surface. Temperature sensors were mounted on the samples and they were temporarily secured to the existing M2 mirror at different distances from the center. The goal was to obtain direct monitoring of the surface temperature under site thermal conditions and the concentration effects from the primary reflector. With the sensors installed, the telescope was then commanded to track the Sun with an elevation offset. Initially, elevation offsets from as far as 40 degrees to as close as 6 degrees were tested. The 6 degree separation test quickly passed the target maximum temperature and the telescope was returned to a safer separation. Based on these initial results, a second set of tests was performed using elevation separations from 30 degrees to 8 degrees. To account for the variability of site conditions, the temperature data were analyzed using multiple metrics. These metrics included maximum temperature, final time average temperature, and an curve fit for heating/ cooling. The results indicate that a solar separation angle of 20 degrees should be suitable for full performance operation of the LMT/GTM. This separation not only is sufficient to avoid high temperatures at the mirror, but also provides time to respond to any emergency conditions that could occur (e.g., switching to a generator after a power failure) for observations that are ahead of the motion of the Sun. Additionally, even approaches of 10 to 15 degrees of angular separation on the sky may be achievable for longer wavelength observations, though these would likely be limited to positions that are behind the position of the Sun along its motion.
Thermodynamic evaluation of transonic compressor rotors using the finite volume approach
NASA Technical Reports Server (NTRS)
Moore, John; Nicholson, Stephen; Moore, Joan G.
1986-01-01
The development of a computational capability to handle viscous flow with an explicit time-marching method based on the finite volume approach is summarized. Emphasis is placed on the extensions to the computational procedure which allow the handling of shock induced separation and large regions of strong backflow. Appendices contain abstracts of papers and whole reports generated during the contract period.
ERIC Educational Resources Information Center
Luna, Yvonne M.; Winters, Stephanie A.
2017-01-01
Introduction to Sociology at a large public university was taught in two separate formats, blended learning and lecture, during the same semester by the first author. While some similarities existed, the distinction was in delivery of course content. Additionally, the blended class had one-third less in-class time that was primarily devoted to…
ERIC Educational Resources Information Center
Hemmings, Philip
2007-01-01
Hungarian family policy focuses on providing generous options to take time off work to look after children. This system not only contributes to Hungary's low employment rate but encourages long separation from the labour market, has largely failed to significantly influence fertility rates and is relatively expensive to run. This paper looks at…
ERIC Educational Resources Information Center
Curs, Bradley; Singell, Larry D., Jr.
2002-01-01
Two separate empirical analyses use time-series data for the University of Oregon to estimate and compare the responsiveness of applicants and enrollees to variations in the net price. Results show that prior studies may understate student price responsiveness. Finds that elasticity estimates differ for in-state and out-of-state students. Suggests…
NASA Technical Reports Server (NTRS)
Froidevaux, C. M.
1980-01-01
Geometric, geomorphic, and structural information derived from the examination of radar imagery and combined with geologic and geophysical evidences strongly indicates that Salawati Island was attached to the Irian Jaya mainland during the time of Miocene lower Pliocene reef development, and that it was separated in middle Pliocene to Pleistocene time, opening the Sele Strait rift zone. The island moved 17.5 km southwestward after an initial counterclockwise rotation of 13 deg. The rift zone is subsequent to the creation of the large left lateral Sorong fault zone that is part of the transitional area separating the westward-moving Pacific plate from the relatively stable Australian plate. The motion was triggered during a widespread magmatic intrusion of the Sorong fault zone, when the basalt infiltrated a right lateral fault system in the area of the present Sele Strait.
Unsteady Analysis of Separated Aerodynamic Flows Using an Unstructured Multigrid Algorithm
NASA Technical Reports Server (NTRS)
Pelaez, Juan; Mavriplis, Dimitri J.; Kandil, Osama
2001-01-01
An implicit method for the computation of unsteady flows on unstructured grids is presented. The resulting nonlinear system of equations is solved at each time step using an agglomeration multigrid procedure. The method allows for arbitrarily large time steps and is efficient in terms of computational effort and storage. Validation of the code using a one-equation turbulence model is performed for the well-known case of flow over a cylinder. A Detached Eddy Simulation model is also implemented and its performance compared to the one equation Spalart-Allmaras Reynolds Averaged Navier-Stokes (RANS) turbulence model. Validation cases using DES and RANS include flow over a sphere and flow over a NACA 0012 wing including massive stall regimes. The project was driven by the ultimate goal of computing separated flows of aerodynamic interest, such as massive stall or flows over complex non-streamlined geometries.
Electron-Muon Identification by Atmospheric Shower and Electron Beam in a New EAS Detector Concept
NASA Astrophysics Data System (ADS)
Iori, M.; Denizli, H.; Yilmaz, A.; Ferrarotto, F.; Russ, J.
2015-03-01
We present results demonstrating the time resolution and μ/e separation capabilities of a new concept for an EAS detector capable of measuring cosmic rays arriving with large zenith angles. This kind of detector has been designed to be part of a large area (several square kilometer) surface array designed to measure ultra high energy (10-200 PeV) τ neutrinos using the Earth-skimming technique. A criterion to identify electron-gammas is also shown and the particle identification capability is tested by measurements in coincidence with the KASKADE-GRANDE experiment in Karlsruhe, Germany.
Successful integration of ergonomics into continuous improvement initiatives.
Monroe, Kimberly; Fick, Faye; Joshi, Madina
2012-01-01
Process improvement initiatives are receiving renewed attention by large corporations as they attempt to reduce manufacturing costs and stay competitive in the global marketplace. These initiatives include 5S, Six Sigma, and Lean. These programs often take up a large amount of available time and budget resources. More often than not, existing ergonomics processes are considered separate initiatives by upper management and struggle to gain a seat at the table. To effectively maintain their programs, ergonomics program managers need to overcome those obstacles and demonstrate how ergonomics initiatives are a natural fit with continuous improvement philosophies.
NASA Technical Reports Server (NTRS)
Olson, R E; Allison, J M
1940-01-01
Report presents the results of an investigation made to determine the influence of various factors on the take-off performance of a hypothetical large flying boat by means of take-off calculations. The factors varied in the calculations were size of hull (load coefficient), wing setting, trim, deflection of flap, wing loading, aspect ratio, and parasite drag. The take-off times and distances were calculated to the stalling speeds and the performance above these speeds was separately studied to determine piloting technique for optimum take-off.
Record of massive upwellings from the Pacific large low shear velocity province
NASA Astrophysics Data System (ADS)
Madrigal, Pilar; Gazel, Esteban; Flores, Kennet E.; Bizimis, Michael; Jicha, Brian
2016-11-01
Large igneous provinces, as the surface expression of deep mantle processes, play a key role in the evolution of the planet. Here we analyse the geochemical record and timing of the Pacific Ocean Large Igneous Provinces and preserved accreted terranes to reconstruct the history of pulses of mantle plume upwellings and their relation with a deep-rooted source like the Pacific large low-shear velocity Province during the Mid-Jurassic to Upper Cretaceous. Petrological modelling and geochemical data suggest the need of interaction between these deep-rooted upwellings and mid-ocean ridges in pulses separated by ~10-20 Ma, to generate the massive volumes of melt preserved today as oceanic plateaus. These pulses impacted the marine biota resulting in episodes of anoxia and mass extinctions shortly after their eruption.
NASA Technical Reports Server (NTRS)
Holden, S. C.; Fleming, J. R.
1978-01-01
Fabrication of a prototype large capacity multiple blade slurry saw is considered. Design of the bladehead which will tension up to 1000 blades, and cut a 45 cm long silicon ingot as large as 12 cm in diameter is given. The large blade tensioning force of 270,000 kg is applied through two bolts acting on a pair of scissor toggles, significantly reducing operator set-up time. Tests with an upside-down cutting technique resulted in 100% wafering yields and the highest wafer accuracy yet experienced with MS slicing. Variations in oil and abrasives resulted only in degraded slicing results. A technique of continuous abrasive slurry separation to remove silicon debris is described.
Timing Calibration of the NEMO Optical Sensors
NASA Astrophysics Data System (ADS)
Circella, M.; de Marzo, C.; Megna, R.; Ruppi, M.
2006-04-01
This paper describes the timing calibration system for the NEMO underwater neutrino telescope. The NEMO Project aims at the construction of a km3 detector, equipped with a large number of photomultipliers, in the Mediterranean Sea. We foresee a redundant system to perform the time calibration of our apparatus: 1) A two-step procedure for measuring the offsets in the time measurements of the NEMO optical sensors, so as to measure separately the time delay for the synchronization signals to reach the offshore electronics and the response time of the photomultipliers to calibration signals delivered from optical pulsers through an optical fibre distribution system; 2) an all-optical procedure for measuring the differences in the time offsets of the different optical modules illuminated by calibration pulses. Such a system can be extended to work for a very large apparatus, even for complex arrangements of widely spaced sensors. The NEMO prototyping activities ongoing at a test site off the coast of Sicily will allow the system described in this work to be operated and tested in situ next year.
Design of coin sorter counter based on MCU
NASA Astrophysics Data System (ADS)
Yang, Yahan; Si, Xu
2018-04-01
With unmanned tickets, vending machines promotion, greatly increased the circulation of coins, especially bus companies, the financial sector need to classify a large number of coins every day, inventory, a huge workload. The design of the microcontroller as the control center, combined with the sensor technology and the corresponding mechanical structure to complete the separation of coins and finishing the packaging work and real-time monitoring and display of the type and number of coins function, this article details the system hardware and software design, and The test adjustment shows that the system can achieve the function of separating and sorting coins and monitoring the type and quantity of coins displayed on the coin.
NASA Technical Reports Server (NTRS)
Nguyen, Nhan T.; Ishihara, Abraham; Stepanyan, Vahram; Boskovic, Jovan
2009-01-01
Recently a new optimal control modification has been introduced that can achieve robust adaptation with a large adaptive gain without incurring high-frequency oscillations as with the standard model-reference adaptive control. This modification is based on an optimal control formulation to minimize the L2 norm of the tracking error. The optimal control modification adaptive law results in a stable adaptation in the presence of a large adaptive gain. This study examines the optimal control modification adaptive law in the context of a system with a time scale separation resulting from a fast plant with a slow actuator. A singular perturbation analysis is performed to derive a modification to the adaptive law by transforming the original system into a reduced-order system in slow time. The model matching conditions in the transformed time coordinate results in increase in the feedback gain and modification of the adaptive law.
Comparison of three large-eddy simulations of shock-induced turbulent separation bubbles
NASA Astrophysics Data System (ADS)
Touber, Emile; Sandham, Neil D.
2009-12-01
Three different large-eddy simulation investigations of the interaction between an impinging oblique shock and a supersonic turbulent boundary layer are presented. All simulations made use of the same inflow technique, specifically aimed at avoiding possible low-frequency interferences with the shock/boundary-layer interaction system. All simulations were run on relatively wide computational domains and integrated over times greater than twenty five times the period of the most commonly reported low-frequency shock-oscillation, making comparisons at both time-averaged and low-frequency-dynamic levels possible. The results confirm previous experimental results which suggested a simple linear relation between the interaction length and the oblique-shock strength if scaled using the boundary-layer thickness and wall-shear stress. All the tested cases show evidences of significant low-frequency shock motions. At the wall, energetic low-frequency pressure fluctuations are observed, mainly in the initial part of interaction.
Status and performance of the ALICE MRPC-based Time-Of-Flight detector
NASA Astrophysics Data System (ADS)
Alici, A.
2012-10-01
ALICE is the dedicated heavy-ion experiment at the CERN LHC. One of the main detectors devoted to charged hadron identification in the ALICE central barrel is a large Time-Of-Flight (TOF) array; it allows separation among pions, kaons and protons up to a few GeV/c, covering the full azimuthal angle and -0.9 < η < 0.9. The very good performance required for such a system has been achieved by means of the Multigap Resistive Plate Chamber (MRPC) whose intrinsic time resolution is better than 50 ps with an overall efficiency close to 100% and a large operational plateau; the full array consists of 1593 MRPCs covering a cylindrical surface of 141 m2. In this report, the status of the TOF detector and the performance achieved during the 2010 and 2011 data taking periods are reported together with selected physics results obtained with pp and Pb-Pb collisions.
NASA Astrophysics Data System (ADS)
Kudinov, I. V.; Kudinov, V. A.
2014-09-01
The differential equation of damped string vibrations was obtained with the finite speed of extension and strain propagation in the Hooke's law formula taken into account. In contrast to the well-known equations, the obtained equation contains the first and third time derivatives of the displacement and the mixed derivative with respect to the space and time variables. Separation of variables was used to obtain its exact closed-form solution, whose analysis showed that, for large values of the relaxation coefficient, the string return to the initial state after its escape from equilibrium is accompanied by high-frequency low-amplitude damped vibrations, which occur on the initial time interval only in the region of positive displacements. And in the limit, for some large values of the relaxation coefficient, the string return to the initial state occurs practically without any oscillatory process.
NASA Astrophysics Data System (ADS)
Farag, Mohammed; Sweity, Haitham; Fleckenstein, Matthias; Habibi, Saeid
2017-08-01
Real-time prediction of the battery's core temperature and terminal voltage is very crucial for an accurate battery management system. In this paper, a combined electrochemical, heat generation, and thermal model is developed for large prismatic cells. The proposed model consists of three sub-models, an electrochemical model, heat generation model, and thermal model which are coupled together in an iterative fashion through physicochemical temperature dependent parameters. The proposed parameterization cycles identify the sub-models' parameters separately by exciting the battery under isothermal and non-isothermal operating conditions. The proposed combined model structure shows accurate terminal voltage and core temperature prediction at various operating conditions while maintaining a simple mathematical structure, making it ideal for real-time BMS applications. Finally, the model is validated against both isothermal and non-isothermal drive cycles, covering a broad range of C-rates, and temperature ranges [-25 °C to 45 °C].
NASA Astrophysics Data System (ADS)
Lee, Woojin; Park, Seongho; Murayama, Akihiro; Lee, Jong-soo; Kyhm, Kwangseuk
2018-06-01
We have synthesized ZnSe/CdS core/shell type-II colloidal quantum dots, where an electron and a hole are separated in the CdS shell and the ZnSe core, respectively. Our theoretical model has revealed that absorbance spectrum of bare ZnSe quantum dots in 2 nm radius becomes broadened with a large redshift (∼1.15 eV) when the electron in ZnSe core is separated by 3.2 nm CdS shell. Also, we found that our type-II QDs are insensitive to an external magnetic field up to 5 T in terms of central emission energy, degree of polarization, and photoluminescence decay time. This can be attributed to the electron–hole charge separation in a type-II structure, whereby the suppressed exchange interaction gives rise to a magnetic insensitivity with a small energy difference between the bright and dark exciton states.
Observation of interspecies ion separation in inertial-confinement-fusion implosions
Hsu, Scott C.; Joshi, Tirtha Raj; Hakel, Peter; ...
2016-10-24
Here we report direct experimental evidence of interspecies ion separation in direct-drive, inertial-confinement-fusion experiments on the OMEGA laser facility. These experiments, which used plastic capsules with D 2/Ar gas fill (1% Ar by atom), were designed specifically to reveal interspecies ion separation by exploiting the predicted, strong ion thermo-diffusion between ion species of large mass and charge difference. Via detailed analyses of imaging x-ray-spectroscopy data, we extract Ar-atom-fraction radial profiles at different times, and observe both enhancement and depletion compared to the initial 1%-Ar gas fill. The experimental results are interpreted with radiation-hydrodynamic simulations that include recently implemented, first-principles modelsmore » of interspecies ion diffusion. Finally, the experimentally inferred Ar-atom-fraction profiles agree reasonably, but not exactly, with calculated profiles associated with the incoming and rebounding first shock.« less
An experimental study of large-scale vortices over a blunt-faced flat plate in pulsating flow
NASA Astrophysics Data System (ADS)
Hwang, K. S.; Sung, H. J.; Hyun, J. M.
Laboratory measurements are made of flow over a blunt flat plate of finite thickness, which is placed in a pulsating free stream, U=Uo(1+Aocos 2πfpt). Low turbulence-intensity wind tunnel experiments are conducted in the ranges of Stp<=1.23 and Ao<=0.118 at ReH=560. Pulsation is generated by means of a woofer speaker. Variations of the time-mean reattachment length xR as functions of Stp and Ao are scrutinized by using the forward-time fraction and surface pressure distributions (Cp). The shedding frequency of large-scale vortices due to pulsation is measured. Flow visualizations depict the behavior of large-scale vortices. The results for non-pulsating flows (Ao=0) are consistent with the published data. In the lower range of Ao, as Stp increases, xR attains a minimum value at a particular pulsation frequency. For large Ao, the results show complicated behaviors of xR. For Stp>=0.80, changes in xR are insignificant as Ao increases. The shedding frequency of large-scale vortices is locked-in to the pulsation frequency. A vortex-pairing process takes place between two neighboring large-scale vortices in the separated shear layer.
Tamba Sompila, Arnaud W G; Héron, Sylvie; Hmida, Dorra; Tchapla, Alain
2017-01-15
The distribution of fatty acid species at the sn-1/3 position or the sn-2 position of triacylglycerols (TAGs) in natural fats and oils affects their physical and nutritional properties. In fats and oils, determining the presence of one or two regioisomers and the identification of structure, where they do have one, as well as their separation, became a problem of fundamental importance to solve. A variety of instrumental technics has been proposed, such as MS, chromatography-MS or pure chromatography. A number of studies deal with the optimization of the separation, but very often, they are expensive in time. In the present study, in order to decrease the analysis time while maintaining good chromatographic separation, we tested different monomeric and polymeric stationary phases and different chromatographic conditions (mobile phase composition and analysis temperature) using Non-Aqueous Reversed Phase Liquid Chromatography (NARP-LC). It was demonstrated that mixed polymeric stationary bonded silica with accessible terminal hydroxyl groups leads to very good separation for the pairs of TAGs regioisomers constituted by two saturated and one unsaturated fatty acid (with double bond number: from 1 to 6). A Nucleodur C18 ISIS percolated by isocratic mobile phase (acetonitrile/2-propanol) at 18°C leads to their separations in less than 15min. The difference of retention times between two regioisomers XYX and XXY are large enough to confirm, as application, the presence of POP, SOP, SOS and PLP and no PPO, SPO, SSO and PPL in Theobroma cacao butter. In the same way, this study respectively shows the presence of SOS, SOP and no SSO, PSO in Butyrospermum parkii butter, POP, SOP, SOS and no PPO, PSO and SSO in Carapa oil and finally POP and no PPO in Pistacia Lentiscus oil. Copyright © 2016 Elsevier B.V. All rights reserved.
Šatínský, Dalibor; Naibrtová, Linda; Fernández-Ramos, Carolina; Solich, Petr
2015-09-01
A new on-line SPE-HPLC method using fused-core columns for on-line solid phase extraction and large volume sample injection for increasing the sensitivity of detection was developed for the determination of insecticides fenoxycarb and cis-, trans-permethrin in surface waters. The separation was carried out on fused-core column Phenyl-Hexyl (100×4.6 mm), particle size 2.7 µm with mobile phase acetonitrile:water in gradient mode at flow rate 1.0 mL min(-1), column temperature 45°C. Large volume sample injection (1500 µL) to the extraction dimension using short precolumn Ascentis Express RP C-18 (5×4.6 mm); fused-core particle size 2.7 µm allowed effective sample preconcentration and efficient ballast sample matrix removal. The washing mobile phase consisting of a mixture of acetonitrile:water; 30:70, (v/v) was pumped at flow rate of 0.5 mL min(-1) through the extraction precolumn to the waste. Time of the valve switch for transferring the preconcentrated sample zone from the extraction to the separation column was set at 3rd min. Elution of preconcentrated insecticides from the extraction precolumn and separation on the analytical column was performed in gradient mode. Linear gradient elution started from 40% of acetonitrile at time of valve switch from SPE column (3rd min) to 95% of acetonitrile at 7th min. Synthetic dye sudan I was chosen as an internal standard. UV detection at wavelength 225 nm was used and the method reached the limits of detection (LOD) at ng mL(-1) levels for both insecticides. The method showing on-line sample pretreatment and preconcentration with highly sensitive determination of insecticides was applied for monitoring of fenoxycarb and both permethrin isomers in different surface water samples in Czech Republic. The time of whole analysis including on-line extraction, interferences removal, chromatography separation and system equilibration was less than 8 min. Copyright © 2015 Elsevier B.V. All rights reserved.
Simulation of the hybrid Tunka Advanced International Gamma-ray and Cosmic ray Astrophysics (TAIGA)
NASA Astrophysics Data System (ADS)
Kunnas, M.; Astapov, I.; Barbashina, N.; Beregnev, S.; Bogdanov, A.; Bogorodskii, D.; Boreyko, V.; Brückner, M.; Budnev, N.; Chiavassa, A.; Chvalaev, O.; Dyachok, A.; Epimakhov, S.; Eremin, T.; Gafarov, A.; Gorbunov, N.; Grebenyuk, V.; Gress, O.; Gress, T.; Grinyuk, A.; Grishin, O.; Horns, D.; Ivanova, A.; Karpov, N.; Kalmykov, N.; Kazarina, Y.; Kindin, V.; Kirichkov, N.; Kiryuhin, S.; Kokoulin, R.; Kompaniets, K.; Konstantinov, E.; Korobchenko, A.; Korosteleva, E.; Kozhin, V.; Kuzmichev, L.; Lenok, V.; Lubsandorzhiev, B.; Lubsandorzhiev, N.; Mirgazov, R.; Mirzoyan, R.; Monkhoev, R.; Nachtigall, R.; Pakhorukov, A.; Panasyuk, M.; Pankov, L.; Perevalov, A.; Petrukhin, A.; Platonov, V.; Poleschuk, V.; Popescu, M.; Popova, E.; Porelli, A.; Porokhovoy, S.; Prosin, V.; Ptuskin, V.; Romanov, V.; Rubtsov, G. I.; Müger; Rybov, E.; Samoliga, V.; Satunin, P.; Saunkin, A.; Savinov, V.; Semeney, Yu; Shaibonov (junior, B.; Silaev, A.; Silaev (junior, A.; Skurikhin, A.; Slunecka, M.; Spiering, C.; Sveshnikova, L.; Tabolenko, V.; Tkachenko, A.; Tkachev, L.; Tluczykont, M.; Veslopopov, A.; Veslopopova, E.; Voronov, D.; Wischnewski, R.; Yashin, I.; Yurin, K.; Zagorodnikov, A.; Zirakashvili, V.; Zurbanov, V.
2015-08-01
Up to several 10s of TeV, Imaging Air Cherenkov Telescopes (IACTs) have proven to be the instruments of choice for GeV/TeV gamma-ray astronomy due to their good reconstrucion quality and gamma-hadron separation power. However, sensitive observations at and above 100 TeV require very large effective areas (10 km2 and more), which is difficult and expensive to achieve. The alternative to IACTs are shower front sampling arrays (non-imaging technique or timing-arrays) with a large area and a wide field of view. Such experiments provide good core position, energy and angular resolution, but only poor gamma-hadron separation. Combining both experimental approaches, using the strengths of both techniques, could optimize the sensitivity to the highest energies. The TAIGA project plans to combine the non-imaging HiSCORE [8] array with small (∼10m2) imaging telescopes. This paper covers simulation results of this hybrid approach.
Effective water content reduction in sewage wastewater sludge using magnetic nanoparticles.
Lakshmanan, Ramnath; Kuttuva Rajarao, Gunaratna
2014-02-01
The present work compares the use of three flocculants for sedimentation of sludge and sludge water content from sewage wastewater i.e. magnetic iron oxide nanoparticles (MION), ferrous sulfate (chemical) and Moringa crude extract (protein). Sludge water content, wet/dry weight, turbidity and color were performed for, time kinetics and large-scale experiment. A 30% reduction of the sludge water content was observed when the wastewater was treated with either protein or chemical coagulant. The separation of sludge from wastewater treated with MION was achieved in less than 5min using an external magnet, resulted in 95% reduction of sludge water content. Furthermore, MION formed denser flocs and more than 80% reduction of microbial content was observed in large volume experiments. The results revealed that MION is efficient in rapid separation of sludge with very low water content, and thus could be a suitable alternative for sludge sedimentation and dewatering in wastewater treatment processes. Copyright © 2013 Elsevier Ltd. All rights reserved.
Kepler eclipsing binaries with δ Scuti components and tidally induced heartbeat stars
NASA Astrophysics Data System (ADS)
Guo, Zhao; Gies, Douglas R.; Matson, Rachel A.
δ Scuti stars are generally fast rotators and their pulsations are not in the asymptotic regime, so the interpretation of their pulsation spectra is a very difficult task. Binary stars, especially eclipsing systems, offer us the opportunity to constrain the space of fundamental stellar parameters. Firstly, we show the results of KIC9851944 and KIC4851217 as two case studies. We found the signature of the large frequency separation in the pulsational spectrum of both stars. The observed mean stellar density and the large frequency separation obey the linear relation in the log-log space as found by Suarez et al. (2014) and García Hernández et al. (2015). Second, we apply the simple `one-layer model' of Moreno & Koenigsberger (1999) to the prototype heartbeat star KOI-54. The model naturally reproduces the tidally induced high frequency oscillations and their frequencies are very close to the observed frequency at 90 and 91 times the orbital frequency.
Sampling rare fluctuations of discrete-time Markov chains
NASA Astrophysics Data System (ADS)
Whitelam, Stephen
2018-03-01
We describe a simple method that can be used to sample the rare fluctuations of discrete-time Markov chains. We focus on the case of Markov chains with well-defined steady-state measures, and derive expressions for the large-deviation rate functions (and upper bounds on such functions) for dynamical quantities extensive in the length of the Markov chain. We illustrate the method using a series of simple examples, and use it to study the fluctuations of a lattice-based model of active matter that can undergo motility-induced phase separation.
Sampling rare fluctuations of discrete-time Markov chains.
Whitelam, Stephen
2018-03-01
We describe a simple method that can be used to sample the rare fluctuations of discrete-time Markov chains. We focus on the case of Markov chains with well-defined steady-state measures, and derive expressions for the large-deviation rate functions (and upper bounds on such functions) for dynamical quantities extensive in the length of the Markov chain. We illustrate the method using a series of simple examples, and use it to study the fluctuations of a lattice-based model of active matter that can undergo motility-induced phase separation.
Paparo, M.; Benko, J. M.; Hareter, M.; ...
2016-05-11
In this study, a sequence search method was developed to search the regular frequency spacing in δ Scuti stars through visual inspection and an algorithmic search. We searched for sequences of quasi-equally spaced frequencies, containing at least four members per sequence, in 90 δ Scuti stars observed by CoRoT. We found an unexpectedly large number of independent series of regular frequency spacing in 77 δ Scuti stars (from one to eight sequences) in the non-asymptotic regime. We introduce the sequence search method presenting the sequences and echelle diagram of CoRoT 102675756 and the structure of the algorithmic search. Four sequencesmore » (echelle ridges) were found in the 5–21 d –1 region where the pairs of the sequences are shifted (between 0.5 and 0.59 d –1) by twice the value of the estimated rotational splitting frequency (0.269 d –1). The general conclusions for the whole sample are also presented in this paper. The statistics of the spacings derived by the sequence search method, by FT (Fourier transform of the frequencies), and the statistics of the shifts are also compared. In many stars more than one almost equally valid spacing appeared. The model frequencies of FG Vir and their rotationally split components were used to formulate the possible explanation that one spacing is the large separation while the other is the sum of the large separation and the rotational frequency. In CoRoT 102675756, the two spacings (2.249 and 1.977 d –1) are in better agreement with the sum of a possible 1.710 d –1 large separation and two or one times, respectively, the value of the rotational frequency.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paparo, M.; Benko, J. M.; Hareter, M.
In this study, a sequence search method was developed to search the regular frequency spacing in δ Scuti stars through visual inspection and an algorithmic search. We searched for sequences of quasi-equally spaced frequencies, containing at least four members per sequence, in 90 δ Scuti stars observed by CoRoT. We found an unexpectedly large number of independent series of regular frequency spacing in 77 δ Scuti stars (from one to eight sequences) in the non-asymptotic regime. We introduce the sequence search method presenting the sequences and echelle diagram of CoRoT 102675756 and the structure of the algorithmic search. Four sequencesmore » (echelle ridges) were found in the 5–21 d –1 region where the pairs of the sequences are shifted (between 0.5 and 0.59 d –1) by twice the value of the estimated rotational splitting frequency (0.269 d –1). The general conclusions for the whole sample are also presented in this paper. The statistics of the spacings derived by the sequence search method, by FT (Fourier transform of the frequencies), and the statistics of the shifts are also compared. In many stars more than one almost equally valid spacing appeared. The model frequencies of FG Vir and their rotationally split components were used to formulate the possible explanation that one spacing is the large separation while the other is the sum of the large separation and the rotational frequency. In CoRoT 102675756, the two spacings (2.249 and 1.977 d –1) are in better agreement with the sum of a possible 1.710 d –1 large separation and two or one times, respectively, the value of the rotational frequency.« less
Numerical Model of Turbulence, Sediment Transport, and Sediment Cover in a Large Canyon-Bound River
NASA Astrophysics Data System (ADS)
Alvarez, L. V.; Schmeeckle, M. W.
2013-12-01
The Colorado River in Grand Canyon is confined by bedrock and coarse-grained sediments. Finer grain sizes are supply limited, and sandbars primarily occur in lateral separation eddies downstream of coarse-grained tributary debris fans. These sandbars are important resources for native fish, recreational boaters, and as a source of aeolian transport preventing the erosion of archaeological resources by gully extension. Relatively accurate prediction of deposition and, especially, erosion of these sandbar beaches has proven difficult using two- and three-dimensional, time-averaged morphodynamic models. We present a parallelized, three-dimensional, turbulence-resolving model using the Detached-Eddy Simulation (DES) technique. DES is a hybrid large eddy simulation (LES) and Reynolds-averaged Navier Stokes (RANS). RANS is applied to the near-bed grid cells, where grid resolution is not sufficient to fully resolve wall turbulence. LES is applied further from the bed and banks. We utilize the Spalart-Allmaras one equation turbulence closure with a rough wall extension. The model resolves large-scale turbulence using DES and simultaneously integrates the suspended sediment advection-diffusion equation. The Smith and McLean suspended sediment boundary condition is used to calculate the upward and downward settling of sediment fluxes in the grid cells attached to the bed. The model calculates the entrainment of five grain sizes at every time step using a mixing layer model. Where the mixing layer depth becomes zero, the net entrainment is zero or negative. As such, the model is able to predict the exposure and burial of bedrock and coarse-grained surfaces by fine-grained sediments. A separate program was written to automatically construct the computational domain between the water surface and a triangulated surface of a digital elevation model of the given river reach. Model results compare favorably with ADCP measurements of flow taken on the Colorado River in Grand Canyon during the High Flow Experiment (HFE) of 2008. The model accurately reproduces the size and position of the major recirculation currents, and the error in velocity magnitude was found to be less than 17% or 0.22 m/s absolute error. The mean deviation of the direction of velocity with respect to the measured velocity was found to be 20 degrees. Large-scale turbulence structures with vorticity predominantly in the vertical direction are produced at the shear layer between the main channel and the separation zone. However, these structures rapidly become three-dimensional with no preferred orientation of vorticity. Surprisingly, cross-stream velocities, into the main recirculation zone just upstream of the point of reattachment and out of the main recirculation region just downstream of the point of separation, are highest near the bed. Lateral separation eddies are more efficient at storing and exporting sediment than previously modeled. The input of sediment to the eddy recirculation zone occurs near the reattachment zone and is relatively continuous in time. While, the export of sediment to the main channel by the return current occurs in pulses. Pulsation of the strength of the return current becomes a key factor to determine the rates of erosion and deposition in the main recirculation zone.
TIME DISTRIBUTIONS OF LARGE AND SMALL SUNSPOT GROUPS OVER FOUR SOLAR CYCLES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kilcik, A.; Yurchyshyn, V. B.; Abramenko, V.
2011-04-10
Here we analyze solar activity by focusing on time variations of the number of sunspot groups (SGs) as a function of their modified Zurich class. We analyzed data for solar cycles 20-23 by using Rome (cycles 20 and 21) and Learmonth Solar Observatory (cycles 22 and 23) SG numbers. All SGs recorded during these time intervals were separated into two groups. The first group includes small SGs (A, B, C, H, and J classes by Zurich classification), and the second group consists of large SGs (D, E, F, and G classes). We then calculated small and large SG numbers frommore » their daily mean numbers as observed on the solar disk during a given month. We report that the time variations of small and large SG numbers are asymmetric except for solar cycle 22. In general, large SG numbers appear to reach their maximum in the middle of the solar cycle (phases 0.45-0.5), while the international sunspot numbers and the small SG numbers generally peak much earlier (solar cycle phases 0.29-0.35). Moreover, the 10.7 cm solar radio flux, the facular area, and the maximum coronal mass ejection speed show better agreement with the large SG numbers than they do with the small SG numbers. Our results suggest that the large SG numbers are more likely to shed light on solar activity and its geophysical implications. Our findings may also influence our understanding of long-term variations of the total solar irradiance, which is thought to be an important factor in the Sun-Earth climate relationship.« less
Rasmussen, Andrew; Cissé, Aïcha; Han, Ying; Roubeni, Sonia
2018-02-12
Immigrants make up large proportions of many low-income neighborhoods, but have been largely ignored in the neighborhood safety literature. We examined perceived safety's association with migration using a six-item, child-specific measure of parents' perceptions of school-aged (5-12 years of age) children's safety in a sample of 93 West African immigrant parents in New York City. Aims of the study were (a) to identify pre-migration correlates (e.g., trauma in home countries), (b) to identify migration-related correlates (e.g., immigration status, time spent separated from children during migration), and (c) to identify pre-migration and migration correlates that accounted for variance after controlling for non-migration-related correlates (e.g., neighborhood crime, parents' psychological distress). In a linear regression model, children's safety was associated with borough of residence, greater English ability, less emotional distress, less parenting difficulty, and a history of child separation. Parents' and children's gender, parents' immigration status, and the number of contacts in the U.S. pre-migration and pre-migration trauma were not associated with children's safety. That child separation was positively associated with safety perceptions suggests that the processes that facilitate parent-child separation might be reconceptualized as strengths for transnational families. Integrating migration-related factors into the discussion of neighborhood safety for immigrant populations allows for more nuanced views of immigrant families' well-being in host countries. © Society for Community Research and Action 2018.
Ge, X; Gu, C D; Wang, X L; Tu, J P
2015-09-15
Adsorption is often time consuming due to slow diffusion kinetic. Sizing he adsorbent down might help to accelerate adsorption. For CoFe spinel oxide, a magnetically separable adsorbent, the preparation of nanosheets faces many challenges including phase separation, grain growth and difficulty in preparing two-dimensional materials. In this work, we prepared porous CoFe oxide nanosheet with chemical formula of Co2.698Fe0.302O4 through topochemical transformation of a CoFe precursor, which has a layered double hydroxide (LDH) analogue structure and a large interlayer spacing. The LDH precursor was synthesized from a cheap deep eutectic solvent (DES) system. The calcined Co2.698Fe0.302O4 has small grain size (10-20nm), nanosheet morphology, and porous structure, which contribute to a large specific surface area of 79.5m(2)g(-1). The Co2.698Fe0.302O4 nanosheets show fast removal ability and good adsorption capacity for both organic waste (305mgg(-1) in 5min for Congo red) and toxic heavy metal ion (5.27mgg(-1) in 30min for Cr (VI)). Furthermore, the Co2.698Fe0.302O4 can be separated magnetically. Considering the precursor can be prepared through a fast, simple, surfactant-free and high-yield synthetic strategy, this work should have practical significance in fabricating adsorbents. Copyright © 2015 Elsevier Inc. All rights reserved.
Unsteady adjoint for large eddy simulation of a coupled turbine stator-rotor system
NASA Astrophysics Data System (ADS)
Talnikar, Chaitanya; Wang, Qiqi; Laskowski, Gregory
2016-11-01
Unsteady fluid flow simulations like large eddy simulation are crucial in capturing key physics in turbomachinery applications like separation and wake formation in flow over a turbine vane with a downstream blade. To determine how sensitive the design objectives of the coupled system are to control parameters, an unsteady adjoint is needed. It enables the computation of the gradient of an objective with respect to a large number of inputs in a computationally efficient manner. In this paper we present unsteady adjoint solutions for a coupled turbine stator-rotor system. As the transonic fluid flows over the stator vane, the boundary layer transitions to turbulence. The turbulent wake then impinges on the rotor blades, causing early separation. This coupled system exhibits chaotic dynamics which causes conventional adjoint solutions to diverge exponentially, resulting in the corruption of the sensitivities obtained from the adjoint solutions for long-time simulations. In this presentation, adjoint solutions for aerothermal objectives are obtained through a localized adjoint viscosity injection method which aims to stabilize the adjoint solution and maintain accurate sensitivities. Preliminary results obtained from the supercomputer Mira will be shown in the presentation.
Gravitational lensing by an ensemble of isothermal galaxies
NASA Technical Reports Server (NTRS)
Katz, Neal; Paczynski, Bohdan
1987-01-01
Calculation of 28,000 models of gravitational lensing of a distant quasar by an ensemble of randomly placed galaxies, each having a singular isothermal mass distribuiton, is reported. The average surface mass density was 0.2 of the critical value in all models. It is found that the surface mass density averaged over the area of the smallest circle that encompasses the multiple images is 0.82, only slightly smaller than expected from a simple analytical model of Turner et al. (1984). The probability of getting multiple images is also as large as expected analytically. Gravitational lensing is dominated by the matter in the beam; i.e., by the beam convergence. The cases where the multiple imaging is due to asymmetry in mass distribution (i.e., due to shear) are very rare. Therefore, the observed gravitational-lens candidates for which no lensing object has been detected between the images cannot be a result of asymmetric mass distribution outside the images, at least in a model with randomly distributed galaxies. A surprisingly large number of large separations between the multiple images is found: up to 25 percent of multiple images have their angular separation 2 to 4 times larger than expected in a simple analytical model.
Development of a Fatigue Crack Growth Coupon for Highly Plastic Stress Conditions
NASA Technical Reports Server (NTRS)
Allen, Phillip A.; Aggarwal, Pravin K.; Swanson, Gregory R.
2003-01-01
This paper presents an analytical approach used to develop a novel fatigue crack growth coupon for a highly plastic 3-D stress field condition. The flight hardware investigated in this paper is a large separation bolt that fractures using pyrotechnics at the appointed time during the flight sequence. The separation bolt has a deep notch that produces a severe stress concentration and a large plastic zone when highly loaded. For this geometry, linear-elastic fracture mechanics (LEFM) techniques are not valid due to the large nonlinear stress field. Unfortunately, industry codes that are generally available for fracture mechanics analysis and fatigue crack growth (e.g. NASGRO (11) are limited to LEFM and are available for only a limited number of geometries. The results of LEFM based codes are questionable when used on geometries with significant plasticity. Therefore elastic-plastic fracture mechanics (EPFM) techniques using the finite element method (FEM) were used to analyze the bolt and test coupons. scale flight hardware is very costly in t e r n of assets, laboratory resources, and schedule. Therefore to alleviate some of these problems, a series of novel test coupons were developed to simulate the elastic-plastic stress field present in the bolt.
A novel mechanical model for phase-separation in debris flows
NASA Astrophysics Data System (ADS)
Pudasaini, Shiva P.
2015-04-01
Understanding the physics of phase-separation between solid and fluid phases as a two-phase mass moves down slope is a long-standing challenge. Here, I propose a fundamentally new mechanism, called 'separation-flux', that leads to strong phase-separation in avalanche and debris flows. This new model extends the general two-phase debris flow model (Pudasaini, 2012) to include a separation-flux mechanism. The new flux separation mechanism is capable of describing and controlling the dynamically evolving phase-separation, segregation, and/or levee formation in a real two-phase, geometrically three-dimensional debris flow motion and deposition. These are often observed phenomena in natural debris flows and industrial processes that involve the transportation of particulate solid-fluid mixture material. The novel separation-flux model includes several dominant physical and mechanical aspects that result in strong phase-separation (segregation). These include pressure gradients, volume fractions of solid and fluid phases and their gradients, shear-rates, flow depth, material friction, viscosity, material densities, boundary structures, gravity and topographic constraints, grain shape, size, etc. Due to the inherent separation mechanism, as the mass moves down slope, more and more solid particles are brought to the front, resulting in a solid-rich and mechanically strong frontal surge head followed by a weak tail largely consisting of the viscous fluid. The primary frontal surge head followed by secondary surge is the consequence of the phase-separation. Such typical and dominant phase-separation phenomena are revealed here for the first time in real two-phase debris flow modeling and simulations. However, these phenomena may depend on the bulk material composition and the applied forces. Reference: Pudasaini, Shiva P. (2012): A general two-phase debris flow model. J. Geophys. Res., 117, F03010, doi: 10.1029/2011JF002186.
Sun, Mingyun; Lin, Jennifer S.
2012-01-01
Double-stranded (ds) DNA fragments over a wide size range were successfully separated in blended polymer matrices by microfluidic chip electrophoresis. Novel blended polymer matrices composed of two types of polymers with three different molar masses were developed to provide improved separations of large dsDNA without negatively impacting the separation of small dsDNA. Hydroxyethyl celluloses (HECs) with average molar masses of ~27 kDa and ~1 MDa were blended with a second class of polymer, high-molar mass (~7 MDa) linear polyacrylamide (LPA). Fast and highly efficient separations of commercially available DNA ladders were achieved on a borosilicate glass microchip. A distinct separation of a 1 Kb DNA extension ladder (200 bp to 40,000 bp) was completed in 2 minutes. An orthogonal Design of Experiments (DOE) was used to optimize experimental parameters for DNA separations over a wide size range. We find that the two dominant factors are the applied electric field strength and the inclusion of a high concentration of low-molar mass polymer in the matrix solution. These two factors exerted different effects on the separations of small dsDNA fragments below 1 kbp, medium dsDNA fragments between 1 kbp and 10 kbp, and large dsDNA fragments above 10 kbp. PMID:22009451
DOE Office of Scientific and Technical Information (OSTI.GOV)
Machicoane, Nathanaël; Volk, Romain
We investigate the response of large inertial particle to turbulent fluctuations in an inhomogeneous and anisotropic flow. We conduct a Lagrangian study using particles both heavier and lighter than the surrounding fluid, and whose diameters are comparable to the flow integral scale. Both velocity and acceleration correlation functions are analyzed to compute the Lagrangian integral time and the acceleration time scale of such particles. The knowledge of how size and density affect these time scales is crucial in understanding particle dynamics and may permit stochastic process modelization using two-time models (for instance, Sawford’s). As particles are tracked over long timesmore » in the quasi-totality of a closed flow, the mean flow influences their behaviour and also biases the velocity time statistics, in particular the velocity correlation functions. By using a method that allows for the computation of turbulent velocity trajectories, we can obtain unbiased Lagrangian integral time. This is particularly useful in accessing the scale separation for such particles and to comparing it to the case of fluid particles in a similar configuration.« less
Hussain, Afzal; AlAjmi, Mohamed F; Ali, Imran
2018-06-01
The pentafluorophenyl (PFP) column is emerging as a new advancement in separation science to analyze a wide range of analytes and, thus, its separation mechanism at supramolecular level is significant. We developed a mechanism for the separation of ibuprofen and omeprazole using different combinations (ranging from 50:50 to 60:40) of water-acetonitrile containing 0.1% formic acid as the mobile phase. The column used was Waters Acquity UPLC HSS PFP (75 × 2.1 mm, 1.8 μm). The reverse order of elution was observed in different combinations of the mobile phases. The docking study indicated hydrogen bonding between ibuprofen and PFP stationary phase (binding energy was -11.30 kJ/mol). Separation at PFP stationary phase is controlled by hydrogen bonding along with π-π interactions. This stationary phase may be used to analyze both aromatic and aliphatic analytes. The developed mechanism will be useful to separate various analytes by considering the possible interactions, leading to saving of energy, time and money. In addition, this work will be highly useful in preparative chromatography where separation is the major problem at a large scale. Moreover, the developed LC-MS-QTOF method may be used to analyze ibuprofen and omeprazole in an unknown sample owing to the low value of detection limits. Copyright © 2018 John Wiley & Sons, Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Misawa, Toru; Inada, Naohisa; Ohsuga, Ken
2013-02-01
We study the origin of absorption features on the blue side of the C IV broad emission line of the large-separation lensed quasar SDSS J1029+2623 at z{sub em} {approx} 2.197. The quasar images, produced by a foreground cluster of galaxies, have a maximum separation angle of {theta} {approx} 22.''5. The large angular separation suggests that the sight lines to the quasar central source can go through different regions of outflowing winds from the accretion disk of the quasar, providing a unique opportunity to study the structure of outflows from the accretion disk, a key ingredient for the evolution of quasarsmore » as well as for galaxy formation and evolution. Based on medium- and high-resolution spectroscopy of the two brightest images conducted at the Subaru telescope, we find that each image has different intrinsic levels of absorptions, which can be attributed either to variability of absorption features over the time delay between the lensed images, {Delta}t {approx} 744 days, or to the fine structure of quasar outflows probed by the multiple sight lines toward the quasar. While both these scenarios are consistent with the current data, we argue that they can be distinguished with additional spectroscopic monitoring observations.« less
Analysis of large soil samples for actinides
Maxwell, III; Sherrod, L [Aiken, SC
2009-03-24
A method of analyzing relatively large soil samples for actinides by employing a separation process that includes cerium fluoride precipitation for removing the soil matrix and precipitates plutonium, americium, and curium with cerium and hydrofluoric acid followed by separating these actinides using chromatography cartridges.
Neural network river forecasting through baseflow separation and binary-coded swarm optimization
NASA Astrophysics Data System (ADS)
Taormina, Riccardo; Chau, Kwok-Wing; Sivakumar, Bellie
2015-10-01
The inclusion of expert knowledge in data-driven streamflow modeling is expected to yield more accurate estimates of river quantities. Modular models (MMs) designed to work on different parts of the hydrograph are preferred ways to implement such approach. Previous studies have suggested that better predictions of total streamflow could be obtained via modular Artificial Neural Networks (ANNs) trained to perform an implicit baseflow separation. These MMs fit separately the baseflow and excess flow components as produced by a digital filter, and reconstruct the total flow by adding these two signals at the output. The optimization of the filter parameters and ANN architectures is carried out through global search techniques. Despite the favorable premises, the real effectiveness of such MMs has been tested only on a few case studies, and the quality of the baseflow separation they perform has never been thoroughly assessed. In this work, we compare the performance of MM against global models (GMs) for nine different gaging stations in the northern United States. Binary-coded swarm optimization is employed for the identification of filter parameters and model structure, while Extreme Learning Machines, instead of ANN, are used to drastically reduce the large computational times required to perform the experiments. The results show that there is no evidence that MM outperform global GM for predicting the total flow. In addition, the baseflow produced by the MM largely underestimates the actual baseflow component expected for most of the considered gages. This occurs because the values of the filter parameters maximizing overall accuracy do not reflect the geological characteristics of the river basins. The results indeed show that setting the filter parameters according to expert knowledge results in accurate baseflow separation but lower accuracy of total flow predictions, suggesting that these two objectives are intrinsically conflicting rather than compatible.
Countering Insider Threats - Handling Insider Threats Using Dynamic, Run-Time Forensics
2007-10-01
able to handle the security policy requirements of a large organization containing many decentralized and diverse users, while being easily managed... contained in the TIF folder. Searching for any text string and sorting is supported also. The cache index file of Internet Explorer is not changed... containing thousands of malware software signatures. Separate datasets can be created for various classifications of malware such as encryption software
Electrorheological (ER) Fluids: A Research Needs Assessment
1993-05-01
transmission, and to reduce energy loss and damage due to vibration and oscillation. A large number and variety of ER devices have been invented; they are...suspension must be stabilized to prevent settling. Separation could cause loss of fluid performance, plugging of flow paths, and other problems...performa.ice of ER fluids, especially those containing water, can change with time as a result of component loss through evaporation at elevated use
Hammarström, Leif
2015-03-17
The conversion and storage of solar energy into a fuel holds promise to provide a significant part of the future renewable energy demand of our societies. Solar energy technologies today generate heat or electricity, while the large majority of our energy is used in the form of fuels. Direct conversion of solar energy to a fuel would satisfy our needs for storable energy on a large scale. Solar fuels can be generated by absorbing light and converting its energy to chemical energy by electron transfer leading to separation of electrons and holes. The electrons are used in the catalytic reduction of a cheap substrate with low energy content into a high-energy fuel. The holes are filled by oxidation of water, which is the only electron source available for large scale solar fuel production. Absorption of a single photon typically leads to separation of a single electron-hole pair. In contrast, fuel production and water oxidation are multielectron, multiproton reactions. Therefore, a system for direct solar fuel production must be able to accumulate the electrons and holes provided by the sequential absorption of several photons in order to complete the catalytic reactions. In this Account, the process is termed accumulative charge separation. This is considerably more complicated than charge separation on a single electron level and needs particular attention. Semiconductor materials and molecular dyes have for a long time been optimized for use in photovoltaic devices. Efforts are made to develop new systems for light harvesting and charge separation that are better optimized for solar fuel production than those used in the early devices presented so far. Significant progress has recently been made in the discovery and design of better homogeneous and heterogeneous catalysts for solar fuels and water oxidation. While the heterogeneous ones perform better today, molecular catalysts based on transition metal complexes offer much greater tunability of electronic and structural properties, they are typically more amenable to mechanistic analysis, and they are small and therefore require less material. Therefore, they have arguably greater potential as future efficient catalysts but must be efficiently coupled to accumulative charge separation. This Account discusses accumulative charge separation with focus on molecular and molecule-semiconductor hybrid systems. The coupling between charge separation and catalysis involves many challenges that are often overlooked, and they are not always apparent when studying water oxidation and fuel formation as separate half-reactions with sacrificial agents. Transition metal catalysts, as well as other multielectron donors and acceptors, cycle through many different states that may quench the excited sensitizer by nonproductive pathways. Examples where this has been shown, often with ultrafast rates, are reviewed. Strategies to avoid these competing energy-loss reactions and still obtain efficient coupling of charge separation to catalysis are discussed. This includes recent examples of dye-sensitized semiconductor devices with molecular catalysts and dyes that realize complete water splitting, albeit with limited efficiency.
Trend assessment: applications for hydrology and climate research
NASA Astrophysics Data System (ADS)
Kallache, M.; Rust, H. W.; Kropp, J.
2005-02-01
The assessment of trends in climatology and hydrology still is a matter of debate. Capturing typical properties of time series, like trends, is highly relevant for the discussion of potential impacts of global warming or flood occurrences. It provides indicators for the separation of anthropogenic signals and natural forcing factors by distinguishing between deterministic trends and stochastic variability. In this contribution river run-off data from gauges in Southern Germany are analysed regarding their trend behaviour by combining a deterministic trend component and a stochastic model part in a semi-parametric approach. In this way the trade-off between trend and autocorrelation structure can be considered explicitly. A test for a significant trend is introduced via three steps: First, a stochastic fractional ARIMA model, which is able to reproduce short-term as well as long-term correlations, is fitted to the empirical data. In a second step, wavelet analysis is used to separate the variability of small and large time-scales assuming that the trend component is part of the latter. Finally, a comparison of the overall variability to that restricted to small scales results in a test for a trend. The extraction of the large-scale behaviour by wavelet analysis provides a clue concerning the shape of the trend.
Inorganic separator technology program
NASA Technical Reports Server (NTRS)
Smatko, J. S.; Weaver, R. D.; Kalhammer, F. R.
1973-01-01
Testing and failure analyses of silver zinc cells with largely inorganic separators were performed. The results showed that the wet stand and cycle life objective of the silver-zinc cell development program were essentially accomplished and led to recommendations for cell composition, design, and operation that should yield further improvement in wet and cycle life. A series of advanced inorganic materials was successfully developed and formulated into rigid and semiflexible separator samples. Suitable screening tests for evaluation of largely inorganic separators were selected and modified for application to the separator materials. The results showed that many of these formulations are potentially superior to previously used materials and permitted selection of three promising materials for further evaluation in silver-zinc cells.
Hirshberg, Barak; Sagiv, Lior; Gerber, R Benny
2017-03-14
Algorithms for quantum molecular dynamics simulations that directly use ab initio methods have many potential applications. In this article, the ab initio classical separable potentials (AICSP) method is proposed as the basis for approximate algorithms of this type. The AICSP method assumes separability of the total time-dependent wave function of the nuclei and employs mean-field potentials that govern the dynamics of each degree of freedom. In the proposed approach, the mean-field potentials are determined by classical ab initio molecular dynamics simulations. The nuclear wave function can thus be propagated in time using the effective potentials generated "on the fly". As a test of the method for realistic systems, calculations of the stationary anharmonic frequencies of hydrogen stretching modes were carried out for several polyatomic systems, including three amino acids and the guanine-cytosine pair of nucleobases. Good agreement with experiments was found. The method scales very favorably with the number of vibrational modes and should be applicable for very large molecules, e.g., peptides. The method should also be applicable for properties such as vibrational line widths and line shapes. Work in these directions is underway.
Xia, Hongjun; Wan, Guangping; Zhao, Junlong; Liu, Jiawei; Bai, Quan
2016-11-04
High performance liquid chromatography (HPLC) is a kind of efficient separation technology and has been used widely in many fields. Micro-sized porous silica microspheres as the most popular matrix have been used for fast separation and analysis in HPLC. In this paper, the monodisperse large-porous silica microspheres with controllable size and structure were successfully synthesized with polymer microspheres as the templates and characterized. First, the poly(glycidyl methacrylate-co-ethyleneglycol dimethacrylate) microspheres (P GMA-EDMA ) were functionalized with tetraethylenepentamine (TEPA) to generate amino groups which act as a catalyst in hydrolysis of tetraethyl orthosilicate (TEOS) to form Si-containing low molecular weight species. Then the low molecular weight species diffused into the functionalized P GMA-EDMA microspheres by induction force of the amino groups to form polymer/silica hybrid microspheres. Finally, the organic polymer templates were removed by calcination, and the large-porous silica microspheres were obtained. The compositions, morphology, size distribution, specific surface area and pore size distribution of the porous silica microspheres were characterized by infrared analyzer, scanning-electron microscopy, dynamic laser scattering, the mercury intrusion method and thermal gravimetric analysis, respectively. The results show that the agglomeration of the hybrid microspheres can be overcome when the templates were functionalized with TEPA as amination reagent, and the yield of 95.7% of the monodisperse large-porous silica microspheres can be achieved with high concentration of polymer templates. The resulting large-porous silica microspheres were modified with octadecyltrichlorosilane (ODS) and the chromatographic evaluation was performed by separating the proteins and the digest of BSA. The baseline separation of seven kinds of protein standards was achieved, and the column delivered a better performance when separating BSA digests comparing with the commercial one currently available. The high column efficiency and good reproducibility present that the large-porous silica microspheres obtained can be used as a matrix for peptide and protein separation. Copyright © 2016 Elsevier B.V. All rights reserved.
Chebrolu, Kranthi K; Yousef, Gad G; Park, Ryan; Tanimura, Yoshinori; Brown, Allan F
2015-09-15
A high-throughput, robust and reliable method for simultaneous analysis of five carotenoids, four chlorophylls and one tocopherol was developed for rapid screening large sample populations to facilitate molecular biology and plant breeding. Separation was achieved for 10 known analytes and four unknown carotenoids in a significantly reduced run time of 10min. Identity of the 10 analytes was confirmed by their UV-Vis absorption spectras. Quantification of tocopherol, carotenoids and chlorophylls was performed at 290nm, 460nm and 650nm respectively. In this report, two sub two micron particle core-shell columns, Kinetex from Phenomenex (1.7μm particle size, 12% carbon load) and Cortecs from Waters (1.6μm particle size, 6.6% carbon load) were investigated and their separation efficiencies were evaluated. The peak resolutions were >1.5 for all analytes except for chlorophyll-a' with Cortecs column. The ruggedness of this method was evaluated in two identical but separate instruments that produced CV<2 in peak retentions for nine out of 10 analytes separated. Copyright © 2015 Elsevier B.V. All rights reserved.
Simulator for Testing Spacecraft Separation Devices
NASA Technical Reports Server (NTRS)
Johnston, Nick; Gaines, Joe; Bryan, Tom
2006-01-01
A report describes the main features of a system for testing pyrotechnic and mechanical devices used to separate spacecraft and modules of spacecraft during flight. The system includes a spacecraft simulator [also denoted a large mobility base (LMB)] equipped with air thrusters, sensors, and data-acquisition equipment. The spacecraft simulator floats on air bearings over an epoxy-covered concrete floor. This free-flotation arrangement enables simulation of motion in outer space in three degrees of freedom: translation along two orthogonal horizontal axes and rotation about a vertical axis. The system also includes a static stand. In one application, the system was used to test a bolt-retraction system (BRS) intended for separation of the lifting-body and deorbit-propulsion stages of the X- 38 spacecraft. The LMB was connected via the BRS to the static stand, then pyrotechnic devices that actuate the BRS were fired. The separation distance and acceleration were measured. The report cites a document, not yet published at the time of reporting the information for this article, that is said to present additional detailed information.
NASA Astrophysics Data System (ADS)
Reis, Wieland G.; Tomović, Željko; Weitz, R. Thomas; Krupke, Ralph; Mikhael, Jules
2017-03-01
The potential of single-walled carbon nanotubes (SWCNTs) to outperform silicon in electronic application was finally enabled through selective separation of semiconducting nanotubes from the as-synthesized statistical mix with polymeric dispersants. Such separation methods provide typically high semiconducting purity samples with narrow diameter distribution, i.e. almost single chiralities. But for a wide range of applications high purity mixtures of small and large diameters are sufficient or even required. Here we proof that weak field centrifugation is a diameter independent method for enrichment of semiconducting nanotubes. We show that the non-selective and strong adsorption of polyarylether dispersants on nanostructured carbon surfaces enables simple separation of diverse raw materials with different SWCNT diameter. In addition and for the first time, we demonstrate that increased temperature enables higher purity separation. Furthermore we show that the mode of action behind this electronic enrichment is strongly connected to both colloidal stability and protonation. By giving simple access to electronically sorted SWCNTs of any diameter, the wide dynamic range of weak field centrifugation can provide economical relevance to SWCNTs.
Validation of an ultra-fast UPLC-UV method for the separation of antituberculosis tablets.
Nguyen, Dao T-T; Guillarme, Davy; Rudaz, Serge; Veuthey, Jean-Luc
2008-04-01
A simple method using ultra performance LC (UPLC) coupled with UV detection was developed and validated for the determination of antituberculosis drugs in combined dosage form, i. e. isoniazid (ISN), pyrazinamide (PYR) and rifampicin (RIF). Drugs were separated on a short column (2.1 mm x 50 mm) packed with 1.7 mum particles, using an elution gradient procedure. At 30 degrees C, less than 2 min was necessary for the complete separation of the three antituberculosis drugs, while the original USP method was performed in 15 min. Further improvements were obtained with the combination of UPLC and high temperature (up to 90 degrees C), namely HT-UPLC, which allows the application of higher mobile phase flow rates. Therefore, the separation of ISN, PYR and RIF was performed in less than 1 min. After validation (selectivity, trueness, precision and accuracy), both methods (UPLC and HT-UPLC) have proven suitable for the routine quality control analysis of antituberculosis drugs in combined dosage form. Additionally, a large number of samples per day can be analysed due to the short analysis times.
Probing sunspots with two-skip time-distance helioseismology
NASA Astrophysics Data System (ADS)
Duvall, Thomas L., Jr.; Cally, Paul S.; Przybylski, Damien; Nagashima, Kaori; Gizon, Laurent
2018-06-01
Context. Previous helioseismology of sunspots has been sensitive to both the structural and magnetic aspects of sunspot structure. Aims: We aim to develop a technique that is insensitive to the magnetic component so the two aspects can be more readily separated. Methods: We study waves reflected almost vertically from the underside of a sunspot. Time-distance helioseismology was used to measure travel times for the waves. Ray theory and a detailed sunspot model were used to calculate travel times for comparison. Results: It is shown that these large distance waves are insensitive to the magnetic field in the sunspot. The largest travel time differences for any solar phenomena are observed. Conclusions: With sufficient modeling effort, these should lead to better understanding of sunspot structure.
Record of massive upwellings from the Pacific large low shear velocity province
Madrigal, Pilar; Gazel, Esteban; Flores, Kennet E.; Bizimis, Michael; Jicha, Brian
2016-01-01
Large igneous provinces, as the surface expression of deep mantle processes, play a key role in the evolution of the planet. Here we analyse the geochemical record and timing of the Pacific Ocean Large Igneous Provinces and preserved accreted terranes to reconstruct the history of pulses of mantle plume upwellings and their relation with a deep-rooted source like the Pacific large low-shear velocity Province during the Mid-Jurassic to Upper Cretaceous. Petrological modelling and geochemical data suggest the need of interaction between these deep-rooted upwellings and mid-ocean ridges in pulses separated by ∼10–20 Ma, to generate the massive volumes of melt preserved today as oceanic plateaus. These pulses impacted the marine biota resulting in episodes of anoxia and mass extinctions shortly after their eruption. PMID:27824054
NASA Astrophysics Data System (ADS)
Dhariwal, Rohit; Bragg, Andrew D.
2018-03-01
In this paper, we consider how the statistical moments of the separation between two fluid particles grow with time when their separation lies in the dissipation range of turbulence. In this range, the fluid velocity field varies smoothly and the relative velocity of two fluid particles depends linearly upon their separation. While this may suggest that the rate at which fluid particles separate is exponential in time, this is not guaranteed because the strain rate governing their separation is a strongly fluctuating quantity in turbulence. Indeed, Afik and Steinberg [Nat. Commun. 8, 468 (2017), 10.1038/s41467-017-00389-8] argue that there is no convincing evidence that the moments of the separation between fluid particles grow exponentially with time in the dissipation range of turbulence. Motivated by this, we use direct numerical simulations (DNS) to compute the moments of particle separation over very long periods of time in a statistically stationary, isotropic turbulent flow to see if we ever observe evidence for exponential separation. Our results show that if the initial separation between the particles is infinitesimal, the moments of the particle separation first grow as power laws in time, but we then observe convincing evidence that at sufficiently long times the moments do grow exponentially. However, this exponential growth is only observed after extremely long times ≳200 τη , where τη is the Kolmogorov time scale. This is due to fluctuations in the strain rate about its mean value measured along the particle trajectories, the effect of which on the moments of the particle separation persists for very long times. We also consider the backward-in-time (BIT) moments of the article separation, and observe that they too grow exponentially in the long-time regime. However, a dramatic consequence of the exponential separation is that at long times the difference between the rate of the particle separation forward in time (FIT) and BIT grows exponentially in time, leading to incredibly strong irreversibility in the dispersion. This is in striking contrast to the irreversibility of their relative dispersion in the inertial range, where the difference between FIT and BIT is constant in time according to Richardson's phenomenology.
NASA Technical Reports Server (NTRS)
Nowak, Michael A.; Wilms, Joern; Vaughan, Brian A.; Dove, James B.; Begelman, Mitchell C.
1999-01-01
We have recently shown that a 'sphere + disk' geometry Compton corona model provides a good description of Rossi X-ray Timing Explorer (RXTE) observations of the hard/low state of Cygnus X-1. Separately, we have analyzed the temporal data provided by RXTE. In this paper we consider the implications of this timing analysis for our best-fit 'sphere + disk' Comptonization models. We focus our attention on the observed Fourier frequency-dependent time delays between hard and soft photons. We consider whether the observed time delays are: created in the disk but are merely reprocessed by the corona; created by differences between the hard and soft photon diffusion times in coronae with extremely large radii; or are due to 'propagation' of disturbances through the corona. We find that the time delays are most likely created directly within the corona; however, it is currently uncertain which specific model is the most likely explanation. Models that posit a large coronal radius [or equivalently, a large Advection Dominated Accretion Flow (ADAF) region] do not fully address all the details of the observed spectrum. The Compton corona models that do address the full spectrum do not contain dynamical information. We show, however, that simple phenomenological propagation models for the observed time delays for these latter models imply extremely slow characteristic propagation speeds within the coronal region.
Effect of helicity on the correlation time of large scales in turbulent flows
NASA Astrophysics Data System (ADS)
Cameron, Alexandre; Alexakis, Alexandros; Brachet, Marc-Étienne
2017-11-01
Solutions of the forced Navier-Stokes equation have been conjectured to thermalize at scales larger than the forcing scale, similar to an absolute equilibrium obtained for the spectrally truncated Euler equation. Using direct numeric simulations of Taylor-Green flows and general-periodic helical flows, we present results on the probability density function, energy spectrum, autocorrelation function, and correlation time that compare the two systems. In the case of highly helical flows, we derive an analytic expression describing the correlation time for the absolute equilibrium of helical flows that is different from the E-1 /2k-1 scaling law of weakly helical flows. This model predicts a new helicity-based scaling law for the correlation time as τ (k ) ˜H-1 /2k-1 /2 . This scaling law is verified in simulations of the truncated Euler equation. In simulations of the Navier-Stokes equations the large-scale modes of forced Taylor-Green symmetric flows (with zero total helicity and large separation of scales) follow the same properties as absolute equilibrium including a τ (k ) ˜E-1 /2k-1 scaling for the correlation time. General-periodic helical flows also show similarities between the two systems; however, the largest scales of the forced flows deviate from the absolute equilibrium solutions.
Bitumen recovery from oil sands using deep eutectic solvent and its aqueous solutions
NASA Astrophysics Data System (ADS)
Pulati, Nuerxida
Oil sands compose a significant proportion of the world's known oil reserves. Oil sands are also known as tar sands and bituminous sands, are complex mixtures of sand, clays, water and bitumen, which is "heavy" and highly viscous oil. The extraction and separation of bitumen from oil sands requires significant amount of energy and large quantities of water and poses several environmental challenges. Bitumen can be successfully separated from oil sands using imidazolium based ionic liquids and nonpolar solvents, however, ionic liquids are expensive and toxic. In this thesis, the ionic liquid alternatives- deep eutectic solvent, were investigated. Oil sands separation can be successfully achieved by using deep eutectic solvents DES (choline chloride and urea) and nonpolar solvent naphtha in different types of oil sands, including Canadian ("water-wet"), Utah ("oil-wet") and low grade Kentucky oil sands. The separation quality depends on oil sands type, including bitumen and fine content, and separation condition, such as solvent ratio, temperature, mixing time and mechanical centrifuge. This separation claims to the DES ability to form ion /charge layering on mineral surface, which results in reduction of adhesion forces between bitumen and minerals and promote their separation. Addition of water to DES can reduce DES viscosity. DES water mixture as a media, oil sands separation can be achieved. However, concentration at about 50 % or higher might be required to obtain a clear separation. And the separation efficiency is oil sands sample dependent. The highest bitumen extraction yield happened at 75% DES-water solution for Utah oil sands samples, and at 50 60% DES-water solutions for Alberta oil sands samples. Force curves were measured using Atomic Force Microscopy new technique, PeakForce Tapping Quantitative Nanomechanical Mapping (PFTQNM). The results demonstrate that, by adding DES, the adhesion force between bitumen and silica and dissipation energy will decrease comparing to DI water. At higher concentration DES solution (>80%DES), the amount of decrease can be up to 80-90%. In lower concentration, at about 50% decrease was observed. The results provide fundamental insights into the mechanism of bitumen separation from oil sands. The reduction of adhesion force between bitumen and minerals (silica) in DES media is the main reason which facilitates the separation between them, which by means existence of DES will favor bitumen and minerals separation. Comparing to other techniques, DES based separation is environmentally compatible and economically viable. The separation can easily happen at room temperature. Choline chloride and urea are biodegradable, environmentally compatible, accessible in large scale and easily prepared by mixing and heating (<80 °C). Further improvement is needed regarding to separation quality and efficiency, either in the direction of developing better separation techniques or by looking for chemical additives which can improve separation and reduce environmental side-effects.
How Much Can We Learn from a Single Chromatographic Experiment? A Bayesian Perspective.
Wiczling, Paweł; Kaliszan, Roman
2016-01-05
In this work, we proposed and investigated a Bayesian inference procedure to find the desired chromatographic conditions based on known analyte properties (lipophilicity, pKa, and polar surface area) using one preliminary experiment. A previously developed nonlinear mixed effect model was used to specify the prior information about a new analyte with known physicochemical properties. Further, the prior (no preliminary data) and posterior predictive distribution (prior + one experiment) were determined sequentially to search towards the desired separation. The following isocratic high-performance reversed-phase liquid chromatographic conditions were sought: (1) retention time of a single analyte within the range of 4-6 min and (2) baseline separation of two analytes with retention times within the range of 4-10 min. The empirical posterior Bayesian distribution of parameters was estimated using the "slice sampling" Markov Chain Monte Carlo (MCMC) algorithm implemented in Matlab. The simulations with artificial analytes and experimental data of ketoprofen and papaverine were used to test the proposed methodology. The simulation experiment showed that for a single and two randomly selected analytes, there is 97% and 74% probability of obtaining a successful chromatogram using none or one preliminary experiment. The desired separation for ketoprofen and papaverine was established based on a single experiment. It was confirmed that the search for a desired separation rarely requires a large number of chromatographic analyses at least for a simple optimization problem. The proposed Bayesian-based optimization scheme is a powerful method of finding a desired chromatographic separation based on a small number of preliminary experiments.
Downscaling ocean conditions: Experiments with a quasi-geostrophic model
NASA Astrophysics Data System (ADS)
Katavouta, A.; Thompson, K. R.
2013-12-01
The predictability of small-scale ocean variability, given the time history of the associated large-scales, is investigated using a quasi-geostrophic model of two wind-driven gyres separated by an unstable, mid-ocean jet. Motivated by the recent theoretical study of Henshaw et al. (2003), we propose a straightforward method for assimilating information on the large-scale in order to recover the small-scale details of the quasi-geostrophic circulation. The similarity of this method to the spectral nudging of limited area atmospheric models is discussed. Results from the spectral nudging of the quasi-geostrophic model, and an independent multivariate regression-based approach, show that important features of the ocean circulation, including the position of the meandering mid-ocean jet and the associated pinch-off eddies, can be recovered from the time history of a small number of large-scale modes. We next propose a hybrid approach for assimilating both the large-scales and additional observed time series from a limited number of locations that alone are too sparse to recover the small scales using traditional assimilation techniques. The hybrid approach improved significantly the recovery of the small-scales. The results highlight the importance of the coupling between length scales in downscaling applications, and the value of assimilating limited point observations after the large-scales have been set correctly. The application of the hybrid and spectral nudging to practical ocean forecasting, and projecting changes in ocean conditions on climate time scales, is discussed briefly.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Shulei; Zheng, Shili; Wang, Zheming
The recent research on adsorption-based lithium recovery from lithium-containing solutions has been centred on adsorption capacity and separation of lithium ion-sieves powder from solutions. Herein, an effective iron-doped lithium titanium oxide (Fe-doped Li 2TiO 3) was synthesized by Fe-doping via solid state reactions followed by acid treatment to form iron-doped lithium ion-sieves (Fe/Ti-x(H)). The resulting solid powder displays both superior adsorption capacity of lithium and high separation efficiency of the adsorbent from the solutions. SEM imaging and BET surface area measurement results showed that at Fe doping levels x ≤ 0.15, Fe-doping led to grain shrinkage as compared to Limore » 2TiO 3 and at the same time the BET surface area increased. The Fe/Ti-0.15(H) exhibited saturated magnetization values of 13.76 emu g -1, allowing effective separation of the material from solid suspensions through the use of a magnet. Consecutive magnetic separation results suggested that the Fe/Ti-0.15(H) powders could be applied at large-scale and continuously removed from LiOH solutions with separation efficiency of 96% or better. Lithium adsorption studies indicated that the equilibrium adsorption capacity of Fe/Ti-0.15(H) in LiOH solutions (1.8 g L -1 Li, pH 12) reached 53.3 mg g -1 within 24 h, which was higher than that of pristine Li 2TiO 3 (50.5 mg g-1) without Fe doping. Competitive adsorption and regeneration results indicated that the Fe/Ti-0.15(H) possessed a high selectivity for Li with facile regeneration. Therefore, it could be expected that the iron-doped lithium ion-sieves have practical applicability potential for large scale lithium extraction and recovery from lithium-bearing solutions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Shulei; Zheng, Shili; Wang, Zheming
The recent research on adsorption-based lithium recovery from lithium-containing solutions has been centred on adsorption capacity and separation of lithium ion-sieves powder from solutions. Herein, an effective iron-doped lithium titanium oxide (Fe-doped Li2TiO3) was synthesized by Fe-doping via solid state reactions followed by acid treatment to form iron-doped lithium ion-sieves (Fe/Ti-x(H)). The resulting solid powder displays both superior adsorption capacity of lithium and high separation efficiency of the adsorbent from the solutions. SEM imaging and BET surface area measurement results showed that at Fe doping levels x0.15, Fe-doping led to grain shrinkage as compared to Li2TiO3 and at the samemore » time the BET surface area increased. The Fe/Ti-0.15(H) exhibited saturated magnetization values of 13.76 emu g-1, allowing effective separation of the material from solid suspensions through the use of a magnet. Consecutive magnetic separation results suggested that the Fe/Ti-0.15(H) powders could be applied at large-scale and continuously removed from LiOH solutions with separation efficiency of 96% or better. Lithium adsorption studies indicated that the equilibrium adsorption capacity of Fe/Ti-0.15(H) in LiOH 2 solutions (1.8 g L-1 Li, pH 12) reached 53.3 mg g-1 within 24 h, which was higher than that of pristine Li2TiO3 (50.5 mg g-1) without Fe doping. Competitive adsorption and regeneration results indicated that the Fe/Ti-0.15(H) possessed a high selectivity for Li with facile regeneration. Therefore, it could be expected that the iron-doped lithium ion-sieves have practical applicability potential for large scale lithium extraction and recovery from lithium-bearing solutions.« less
Wang, Shulei; Zheng, Shili; Wang, Zheming; ...
2018-09-09
The recent research on adsorption-based lithium recovery from lithium-containing solutions has been centred on adsorption capacity and separation of lithium ion-sieves powder from solutions. Herein, an effective iron-doped lithium titanium oxide (Fe-doped Li 2TiO 3) was synthesized by Fe-doping via solid state reactions followed by acid treatment to form iron-doped lithium ion-sieves (Fe/Ti-x(H)). The resulting solid powder displays both superior adsorption capacity of lithium and high separation efficiency of the adsorbent from the solutions. SEM imaging and BET surface area measurement results showed that at Fe doping levels x ≤ 0.15, Fe-doping led to grain shrinkage as compared to Limore » 2TiO 3 and at the same time the BET surface area increased. The Fe/Ti-0.15(H) exhibited saturated magnetization values of 13.76 emu g -1, allowing effective separation of the material from solid suspensions through the use of a magnet. Consecutive magnetic separation results suggested that the Fe/Ti-0.15(H) powders could be applied at large-scale and continuously removed from LiOH solutions with separation efficiency of 96% or better. Lithium adsorption studies indicated that the equilibrium adsorption capacity of Fe/Ti-0.15(H) in LiOH solutions (1.8 g L -1 Li, pH 12) reached 53.3 mg g -1 within 24 h, which was higher than that of pristine Li 2TiO 3 (50.5 mg g-1) without Fe doping. Competitive adsorption and regeneration results indicated that the Fe/Ti-0.15(H) possessed a high selectivity for Li with facile regeneration. Therefore, it could be expected that the iron-doped lithium ion-sieves have practical applicability potential for large scale lithium extraction and recovery from lithium-bearing solutions.« less
Development of a High-Order Space-Time Matrix-Free Adjoint Solver
NASA Technical Reports Server (NTRS)
Ceze, Marco A.; Diosady, Laslo T.; Murman, Scott M.
2016-01-01
The growth in computational power and algorithm development in the past few decades has granted the science and engineering community the ability to simulate flows over complex geometries, thus making Computational Fluid Dynamics (CFD) tools indispensable in analysis and design. Currently, one of the pacing items limiting the utility of CFD for general problems is the prediction of unsteady turbulent ows.1{3 Reynolds-averaged Navier-Stokes (RANS) methods, which predict a time-invariant mean flowfield, struggle to provide consistent predictions when encountering even mild separation, such as the side-of-body separation at a wing-body junction. NASA's Transformative Tools and Technologies project is developing both numerical methods and physical modeling approaches to improve the prediction of separated flows. A major focus of this e ort is efficient methods for resolving the unsteady fluctuations occurring in these flows to provide valuable engineering data of the time-accurate flow field for buffet analysis, vortex shedding, etc. This approach encompasses unsteady RANS (URANS), large-eddy simulations (LES), and hybrid LES-RANS approaches such as Detached Eddy Simulations (DES). These unsteady approaches are inherently more expensive than traditional engineering RANS approaches, hence every e ort to mitigate this cost must be leveraged. Arguably, the most cost-effective approach to improve the efficiency of unsteady methods is the optimal placement of the spatial and temporal degrees of freedom (DOF) using solution-adaptive methods.
Terrazas, Enrique; Hamill, Timothy R.; Wang, Ye; Channing Rodgers, R. P.
2007-01-01
The Department of Laboratory Medicine at the University of California, San Francisco (UCSF) has been split into widely separated facilities, leading to much time being spent traveling between facilities for meetings. We installed an open-source AccessGrid multi-media-conferencing system using (largely) consumer-grade equipment, connecting 6 sites at 5 separate facilities. The system was accepted rapidly and enthusiastically, and was inexpensive compared to alternative approaches. Security was addressed by aspects of the AG software and by local network administrative practices. The chief obstacles to deployment arose from security restrictions imposed by multiple independent network administration regimes, requiring a drastically reduced list of network ports employed by AG components. PMID:18693930
Terrazas, Enrique; Hamill, Timothy R; Wang, Ye; Channing Rodgers, R P
2007-10-11
The Department of Laboratory Medicine at the University of California, San Francisco (UCSF) has been split into widely separated facilities, leading to much time being spent traveling between facilities for meetings. We installed an open-source AccessGrid multi-media-conferencing system using (largely) consumer-grade equipment, connecting 6 sites at 5 separate facilities. The system was accepted rapidly and enthusiastically, and was inexpensive compared to alternative approaches. Security was addressed by aspects of the AG software and by local network administrative practices. The chief obstacles to deployment arose from security restrictions imposed by multiple independent network administration regimes, requiring a drastically reduced list of network ports employed by AG components.
Future Opportunities at the Facility for Rare Isotope Beams
NASA Astrophysics Data System (ADS)
Sherrill, Bradley M.
2018-05-01
This paper overviews the Facility for Rare Isotope Beams, FRIB, its construction status at the time of the conference, and its scientific program. FRIB is based on a high-power, heavy-ion, superconducting linear accelerator that is designed to deliver at least 400kW at 200 MeV/u for all stable-ion beams and produce a large fraction of all possible isotopes of the elements. A three-stage fragment separator will separate rare isotope beams for use in experiments at high energy or stopped and reaccelerated to up to 10MeV/u. The facility is expected to have first beams in 2021. An overview of the planned scientific program, experimental capabilities, and equipment initiatives are presented.
Seeber, Martin; Scherer, Reinhold; Müller-Putz, Gernot R
2016-11-16
Sequencing and timing of body movements are essential to perform motoric tasks. In this study, we investigate the temporal relation between cortical oscillations and human motor behavior (i.e., rhythmic finger movements). High-density EEG recordings were used for source imaging based on individual anatomy. We separated sustained and movement phase-related EEG source amplitudes based on the actual finger movements recorded by a data glove. Sustained amplitude modulations in the contralateral hand area show decrease for α (10-12 Hz) and β (18-24 Hz), but increase for high γ (60-80 Hz) frequencies during the entire movement period. Additionally, we found movement phase-related amplitudes, which resembled the flexion and extension sequence of the fingers. Especially for faster movement cadences, movement phase-related amplitudes included high β (24-30 Hz) frequencies in prefrontal areas. Interestingly, the spectral profiles and source patterns of movement phase-related amplitudes differed from sustained activities, suggesting that they represent different frequency-specific large-scale networks. First, networks were signified by the sustained element, which statically modulate their synchrony levels during continuous movements. These networks may upregulate neuronal excitability in brain regions specific to the limb, in this study the right hand area. Second, movement phase-related networks, which modulate their synchrony in relation to the movement sequence. We suggest that these frequency-specific networks are associated with distinct functions, including top-down control, sensorimotor prediction, and integration. The separation of different large-scale networks, we applied in this work, improves the interpretation of EEG sources in relation to human motor behavior. EEG recordings provide high temporal resolution suitable to relate cortical oscillations to actual movements. Investigating EEG sources during rhythmic finger movements, we distinguish sustained from movement phase-related amplitude modulations. We separate these two EEG source elements motivated by our previous findings in gait. Here, we found two types of large-scale networks, representing the right fingers in distinction from the time sequence of the movements. These findings suggest that EEG source amplitudes reconstructed in a cortical patch are the superposition of these simultaneously present network activities. Separating these frequency-specific networks is relevant for studying function and possible dysfunction of the cortical sensorimotor system in humans as well as to provide more advanced features for brain-computer interfaces. Copyright © 2016 the authors 0270-6474/16/3611671-11$15.00/0.
Analysis of sequencing and scheduling methods for arrival traffic
NASA Technical Reports Server (NTRS)
Neuman, Frank; Erzberger, Heinz
1990-01-01
The air traffic control subsystem that performs scheduling is discussed. The function of the scheduling algorithms is to plan automatically the most efficient landing order and to assign optimally spaced landing times to all arrivals. Several important scheduling algorithms are described and the statistical performance of the scheduling algorithms is examined. Scheduling brings order to an arrival sequence for aircraft. First-come-first-served scheduling (FCFS) establishes a fair order, based on estimated times of arrival, and determines proper separations. Because of the randomness of the traffic, gaps will remain in the scheduled sequence of aircraft. These gaps are filled, or partially filled, by time-advancing the leading aircraft after a gap while still preserving the FCFS order. Tightly scheduled groups of aircraft remain with a mix of heavy and large aircraft. Separation requirements differ for different types of aircraft trailing each other. Advantage is taken of this fact through mild reordering of the traffic, thus shortening the groups and reducing average delays. Actual delays for different samples with the same statistical parameters vary widely, especially for heavy traffic.
Meng, Qing-Hao; Yang, Wei-Xing; Wang, Yang; Zeng, Ming
2011-01-01
This paper addresses the collective odor source localization (OSL) problem in a time-varying airflow environment using mobile robots. A novel OSL methodology which combines odor-source probability estimation and multiple robots' search is proposed. The estimation phase consists of two steps: firstly, the separate probability-distribution map of odor source is estimated via Bayesian rules and fuzzy inference based on a single robot's detection events; secondly, the separate maps estimated by different robots at different times are fused into a combined map by way of distance based superposition. The multi-robot search behaviors are coordinated via a particle swarm optimization algorithm, where the estimated odor-source probability distribution is used to express the fitness functions. In the process of OSL, the estimation phase provides the prior knowledge for the searching while the searching verifies the estimation results, and both phases are implemented iteratively. The results of simulations for large-scale advection-diffusion plume environments and experiments using real robots in an indoor airflow environment validate the feasibility and robustness of the proposed OSL method.
Meng, Qing-Hao; Yang, Wei-Xing; Wang, Yang; Zeng, Ming
2011-01-01
This paper addresses the collective odor source localization (OSL) problem in a time-varying airflow environment using mobile robots. A novel OSL methodology which combines odor-source probability estimation and multiple robots’ search is proposed. The estimation phase consists of two steps: firstly, the separate probability-distribution map of odor source is estimated via Bayesian rules and fuzzy inference based on a single robot’s detection events; secondly, the separate maps estimated by different robots at different times are fused into a combined map by way of distance based superposition. The multi-robot search behaviors are coordinated via a particle swarm optimization algorithm, where the estimated odor-source probability distribution is used to express the fitness functions. In the process of OSL, the estimation phase provides the prior knowledge for the searching while the searching verifies the estimation results, and both phases are implemented iteratively. The results of simulations for large-scale advection–diffusion plume environments and experiments using real robots in an indoor airflow environment validate the feasibility and robustness of the proposed OSL method. PMID:22346650
Computational Study of Axisymmetric Off-Design Nozzle Flows
NASA Technical Reports Server (NTRS)
DalBello, Teryn; Georgiadis, Nicholas; Yoder, Dennis; Keith, Theo
2003-01-01
Computational Fluid Dynamics (CFD) analyses of axisymmetric circular-arc boattail nozzles operating off-design at transonic Mach numbers have been completed. These computations span the very difficult transonic flight regime with shock-induced separations and strong adverse pressure gradients. External afterbody and internal nozzle pressure distributions computed with the Wind code are compared with experimental data. A range of turbulence models were examined, including the Explicit Algebraic Stress model. Computations have been completed at freestream Mach numbers of 0.9 and 1.2, and nozzle pressure ratios (NPR) of 4 and 6. Calculations completed with variable time-stepping (steady-state) did not converge to a true steady-state solution. Calculations obtained using constant timestepping (timeaccurate) indicate less variations in flow properties compared with steady-state solutions. This failure to converge to a steady-state solution was the result of using variable time-stepping with large-scale separations present in the flow. Nevertheless, time-averaged boattail surface pressure coefficient and internal nozzle pressures show reasonable agreement with experimental data. The SST turbulence model demonstrates the best overall agreement with experimental data.
Transport and Lagrangian Statistics in Rotating Stratified Turbulence
NASA Astrophysics Data System (ADS)
Rosenberg, D. L.
2015-12-01
Transport plays a crucial role in geophysical flows, both in theatmosphere and in the ocean. Transport in such flows is ultimatelycontrolled by small-scale turbulence, although the large scales arein geostrophic balance between pressure gradient, gravity and Coriolisforces. As a result of the seemingly random nature of the flow, singleparticles are dispersed by the flow and on time scales significantlylonger than the eddy turn-over time, they undergo a diffusive motionwhose diffusion coefficient is the integral of the velocity correlationfunction. On intermediate time scales, in homogeneous, isotropic turbuilence(HIT) the separation between particle pairs has been argued to grow withtime according to the Richardson law: <(Δ x)2(t)> ~ t3, with aproportionality constant that depends on the initial particleseparation. The description of the phenomena associated withthe dispersion of single particles, or of particle pairs, ultimatelyrests on relatively simple statistical properties of the flowvelocity transporting the particles, in particular on its temporalcorrelation function. In this work, we investigate particle dispersionin the anisotropic case of rotating stratified turbulence examining whetherthe dependence on initial particle separation differs from HIT,particularly in the presence of an inverse cascade.
NASA Technical Reports Server (NTRS)
Yen, David A.; Zhang, Shuxia; Langenberger, Sherri E.
1988-01-01
Large temperature jumps at the interface of layered convection are important to the argument used against the likelihood of separate circulations in the upper and lower mantles. This problem was studied within the framework of a compressible, constant viscosity spherical-shell model. Both mechanical and thermal coupling configurations are considered. Although the temperature jumps are reduced by compressibility, their magnitudes remain quite large, in the case of mechanical coupling. For thermal coupling, the temperature jumps become smaller but still are substantial, between 500 to 1000 C. In layered spherical-shell convection, flows in the lower mantle are several times greater than the surface velocities.
Advances in Proteomics Data Analysis and Display Using an Accurate Mass and Time Tag Approach
Zimmer, Jennifer S.D.; Monroe, Matthew E.; Qian, Wei-Jun; Smith, Richard D.
2007-01-01
Proteomics has recently demonstrated utility in understanding cellular processes on the molecular level as a component of systems biology approaches and for identifying potential biomarkers of various disease states. The large amount of data generated by utilizing high efficiency (e.g., chromatographic) separations coupled to high mass accuracy mass spectrometry for high-throughput proteomics analyses presents challenges related to data processing, analysis, and display. This review focuses on recent advances in nanoLC-FTICR-MS-based proteomics approaches and the accompanying data processing tools that have been developed to display and interpret the large volumes of data being produced. PMID:16429408
NASA Astrophysics Data System (ADS)
Fourel, Loïc; Limare, Angela; Jaupart, Claude; Surducan, Emanoil; Farnetani, Cinzia G.; Kaminski, Edouard C.; Neamtu, Camelia; Surducan, Vasile
2017-08-01
Convective motions in silicate planets are largely driven by internal heat sources and secular cooling. The exact amount and distribution of heat sources in the Earth are poorly constrained and the latter is likely to change with time due to mixing and to the deformation of boundaries that separate different reservoirs. To improve our understanding of planetary-scale convection in these conditions, we have designed a new laboratory setup allowing a large range of heat source distributions. We illustrate the potential of our new technique with a study of an initially stratified fluid involving two layers with different physical properties and internal heat production rates. A modified microwave oven is used to generate a uniform radiation propagating through the fluids. Experimental fluids are solutions of hydroxyethyl cellulose and salt in water, such that salt increases both the density and the volumetric heating rate. We determine temperature and composition fields in 3D with non-invasive techniques. Two fluorescent dyes are used to determine temperature. A Nd:YAG planar laser beam excites fluorescence, and an optical system, involving a beam splitter and a set of colour filters, captures the fluorescence intensity distribution on two separate spectral bands. The ratio between the two intensities provides an instantaneous determination of temperature with an uncertainty of 5% (typically 1K). We quantify mixing processes by precisely tracking the interfaces separating the two fluids. These novel techniques allow new insights on the generation, morphology and evolution of large-scale heterogeneities in the Earth's lower mantle.
Nergiz, Humeyra; Tabur, Mehmet Ali; Ayvaz, Yusuf
2013-08-01
Diurnal time-activity budgets of White-headed Ducks were investigated with respect to sex and temporal environmental variables to document behavioral responses to winter conditions and nutritional requirements at Burdur Lake where the largest winter concentrations occur. Behaviors of males and females were recorded separately in randomly selected focal flocks during 1140 sessions. For the entire population a large proportion of time was spent resting. During the day they spent 61% of time resting, 22% feeding, 12% comfort and 5% in locomotion. Resting peaked in the middle of day while feeding was observed frequently in evening and morning. Time use did not differ significantly between sexes. However, it was detected that more time was spent feeding during windy days as wave-height increased.
Large distance expansion of mutual information for disjoint disks in a free scalar theory
Agón, Cesar A.; Cohen-Abbo, Isaac; Schnitzer, Howard J.
2016-11-11
We compute the next-to-leading order term in the long-distance expansion of the mutual information for free scalars in three space-time dimensions. The geometry considered is two disjoint disks separated by a distance r between their centers. No evidence for non-analyticity in the Rényi parameter n for the continuation n → 1 in the next-to-leading order term is found.
Sol/Gel Processing Techniques for Glass Matrix Composites.
1987-11-01
silica alkoxide gels were also produced by an initial partial hydrolysis of TEOS. ,. After an aging period of 18-24 hrs. titanium (IV) isopropoxide ...preparation of these materials is the large difference in hydrolysis rate for titanium versus silica alkoxides. Thus, the tendency towards phase separation in...ethanol solution (Ref. 6-9). After an aging time, the more reactive titanium alkoxide is added. This solution gels quickly and is ready to be further
Green, Shulamite A; Goff, Bonnie; Gee, Dylan G; Gabard-Durnam, Laurel; Flannery, Jessica; Telzer, Eva H; Humphreys, Kathryn L; Louie, Jennifer; Tottenham, Nim
2016-10-01
Significant disruption in caregiving is associated with increased internalizing symptoms, most notably heightened separation anxiety symptoms during childhood. It is also associated with altered functional development of the amygdala, a neurobiological correlate of anxious behavior. However, much less is known about how functional alterations of amygdala predict individual differences in anxiety. Here, we probed amygdala function following institutional caregiving using very subtle social-affective stimuli (trustworthy and untrustworthy faces), which typically result in large differences in amygdala signal, and change in separation anxiety behaviors over a 2-year period. We hypothesized that the degree of differentiation of amygdala signal to trustworthy versus untrustworthy face stimuli would predict separation anxiety symptoms. Seventy-four youths mean (SD) age = 9.7 years (2.64) with and without previous institutional care, who were all living in families at the time of testing, participated in an fMRI task designed to examine differential amygdala response to trustworthy versus untrustworthy faces. Parents reported on their children's separation anxiety symptoms at the time of scan and again 2 years later. Previous institutional care was associated with diminished amygdala signal differences and behavioral differences to the contrast of untrustworthy and trustworthy faces. Diminished differentiation of these stimuli types predicted more severe separation anxiety symptoms 2 years later. Older age at adoption was associated with diminished differentiation of amygdala responses. A history of institutional care is associated with reduced differential amygdala responses to social-affective cues of trustworthiness that are typically exhibited by comparison samples. Individual differences in the degree of amygdala differential responding to these cues predict the severity of separation anxiety symptoms over a 2-year period. These findings provide a biological mechanism to explain the associations between early caregiving adversity and individual differences in internalizing symptomology during development, thereby contributing to individualized predictions of future clinical outcomes. © 2016 Association for Child and Adolescent Mental Health.
Improvement of pre-treatment method for 36Cl/Cl measurement of Cl in natural groundwater by AMS
NASA Astrophysics Data System (ADS)
Nakata, Kotaro; Hasegawa, Takuma
2011-02-01
Estimation of 36Cl/Cl by accelerator mass spectrometry (AMS) is a useful method to trace hydrological processes in groundwater. For accurate estimation, separation of SO42- from Cl - in groundwater is required because 36S affects AMS measurement of 36Cl. Previous studies utilized the difference in solubility between BaSO 4 and BaCl 2 (BaSO 4 method) to chemically separate SO42- from Cl -. However, the accuracy of the BaSO 4 method largely depends on operator skill, and consequently Cl - recovery is typically incomplete (70-80%). In addition, the method is time consuming (>1 week), and cannot be applied directly to dilute solutions. In this study, a method based on ion-exchange column chromatography (column method) was developed for separation of Cl - and SO42-. Optimum conditions were determined for the diameter and height of column, type and amount of resin, type and concentration of eluent, and flow rate. The recovery of Cl - was almost 100%, which allowed complete separation from SO42-. The separation procedure was short (<6 h), and was successfully applied to dilute (1 mg/L Cl) solution. Extracted pore water and diluted seawater samples were processed by the column and BaSO 4 methods, and then analyzed by AMS to estimate 36S counts and 36Cl/Cl values. 36S counts in samples processed by the column method were stable and lower than those from the BaSO 4 method. The column method has the following advantages over the BaSO 4 method: (1) complete and stable separation of Cl - and SO42-, (2) less operator influence on results, (3) short processing time (<6 h), (4) high (almost 100%) recovery of Cl -, and (5) concentration of Cl - and separation from SO42- in the one system for dilute solutions.
Predicting streamflow regime metrics for ungauged streamsin Colorado, Washington, and Oregon
NASA Astrophysics Data System (ADS)
Sanborn, Stephen C.; Bledsoe, Brian P.
2006-06-01
Streamflow prediction in ungauged basins provides essential information for water resources planning and management and ecohydrological studies yet remains a fundamental challenge to the hydrological sciences. A methodology is presented for stratifying streamflow regimes of gauged locations, classifying the regimes of ungauged streams, and developing models for predicting a suite of ecologically pertinent streamflow metrics for these streams. Eighty-four streamflow metrics characterizing various flow regime attributes were computed along with physical and climatic drainage basin characteristics for 150 streams with little or no streamflow modification in Colorado, Washington, and Oregon. The diverse hydroclimatology of the study area necessitates flow regime stratification and geographically independent clusters were identified and used to develop separate predictive models for each flow regime type. Multiple regression models for flow magnitude, timing, and rate of change metrics were quite accurate with many adjusted R2 values exceeding 0.80, while models describing streamflow variability did not perform as well. Separate stratification schemes for high, low, and average flows did not considerably improve models for metrics describing those particular aspects of the regime over a scheme based on the entire flow regime. Models for streams identified as 'snowmelt' type were improved if sites in Colorado and the Pacific Northwest were separated to better stratify the processes driving streamflow in these regions thus revealing limitations of geographically independent streamflow clusters. This study demonstrates that a broad suite of ecologically relevant streamflow characteristics can be accurately modeled across large heterogeneous regions using this framework. Applications of the resulting models include stratifying biomonitoring sites and quantifying linkages between specific aspects of flow regimes and aquatic community structure. In particular, the results bode well for modeling ecological processes related to high-flow magnitude, timing, and rate of change such as the recruitment of fish and riparian vegetation across large regions.
Exoplanet Direct Imaging: Coronagraph Probe Mission Study EXO-C
NASA Technical Reports Server (NTRS)
Stapelfeldt, Karl R.
2013-01-01
Flagship mission for spectroscopy of ExoEarths is a long-term priority for space astrophysics (Astro2010). Requires 10(exp 10) contrast at 3 lambda/D separation, ( (is) greater than 10,000 times beyond HST performance) and large telescope (is) greater than 4m aperture. Big step. Mission for spectroscopy of giant planets and imaging of disks requires 10(exp 9) contrast at 3 lambda/D (already demonstrated in lab) and (is) approximately 1.5m telescope. Should be much more affordable, good intermediate step.Various PIs have proposed many versions of the latter mission 17 times since 1999; no unified approach.
Microphysical Timescales in Clouds and their Application in Cloud-Resolving Modeling
NASA Technical Reports Server (NTRS)
Zeng, Xiping; Tao, Wei-Kuo; Simpson, Joanne
2007-01-01
Independent prognostic variables in cloud-resolving modeling are chosen on the basis of the analysis of microphysical timescales in clouds versus a time step for numerical integration. Two of them are the moist entropy and the total mixing ratio of airborne water with no contributions from precipitating particles. As a result, temperature can be diagnosed easily from those prognostic variables, and cloud microphysics be separated (or modularized) from moist thermodynamics. Numerical comparison experiments show that those prognostic variables can work well while a large time step (e.g., 10 s) is used for numerical integration.
1994-07-01
Photo Artwork composite by JPL This depiction of comet Shoemaker-Levy 9 impacting Jupiter is shown from several perspectives. IMAGE B shows the perspective from Galileo spacecraft which can observe the impact point directly. For visual appeal, most of the large cometary fragments are shown close to one another in this image. At the time of Jupiter impact, the fragments will be separated from one another by serveral times the distances shown. This image was created by D.A. Seal of JPL's Mission Design Section using orbital computations provIded by P.W. Chodas and D.K. Yeomans of JPL's Navigation Section.
1994-07-01
Photo Artwork composite by JPL This depiction of comet Shoemaker-Levy 9 impacting Jupiter is shown from several perspectives. IMAGE A is shown from the perspective of Earth based observers. For visual appeal, most of the large cometary fragments are shown close to one another in this image. At the time of Jupiter impact, the fragments will be separated from one another by serveral times the distances shown. This image was created by D.A. Seal of JPL's Mission Design Section using orbital computations provIded by P.W. Chodas and D.K. Yeomans of JPL's Navigation Section.
1994-07-01
Photo Artwork composite by JPL This depiction of comet Shoemaker-Levy 9 impacting Jupiter is shown from several perspectives. IMAGE D depicts a generic view from Jupiter's south pole. For visual appeal, most of the large cometary fragments are shown close to one another in this image. At the time of Jupiter impact, the fragments will be separated from one another by serveral times the distances shown. This image was created by D.A. Seal of JPL's Mission Design Section using orbital computations provIded by P.W. Chodas and D.K. Yeomans of JPL's Navigation Section.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Zhongming; Liu, Heping; Katul, Gabriel G.
It is now accepted that large-scale turbulent eddies impact the widely reported non-closure of the surface energy balance when latent and sensible heat fluxes are measured using the eddy covariance method in the atmospheric surface layer (ASL). However, a mechanistic link between large eddies and non-closure of the surface energy balance remains a subject of inquiry. Here, measured 10 Hz time series of vertical velocity, air temperature, and water vapor density collected in the ASL are analyzed for conditions where entrainment and/or horizontal advection separately predominate. The series are decomposed into small- and large- eddies based on a frequency cutoffmore » and their contributions to turbulent fluxes are analyzed. Phase difference between vertical velocity and water vapor density associated with large eddies reduces latent heat fluxes, especially in conditions where advection prevails. Furthermore, enlarged phase difference of large eddies linked to entrainment or advection occurrence leads to increased residuals of the surface energy balance.« less
Gao, Zhongming; Liu, Heping; Katul, Gabriel G.; ...
2017-03-16
It is now accepted that large-scale turbulent eddies impact the widely reported non-closure of the surface energy balance when latent and sensible heat fluxes are measured using the eddy covariance method in the atmospheric surface layer (ASL). However, a mechanistic link between large eddies and non-closure of the surface energy balance remains a subject of inquiry. Here, measured 10 Hz time series of vertical velocity, air temperature, and water vapor density collected in the ASL are analyzed for conditions where entrainment and/or horizontal advection separately predominate. The series are decomposed into small- and large- eddies based on a frequency cutoffmore » and their contributions to turbulent fluxes are analyzed. Phase difference between vertical velocity and water vapor density associated with large eddies reduces latent heat fluxes, especially in conditions where advection prevails. Furthermore, enlarged phase difference of large eddies linked to entrainment or advection occurrence leads to increased residuals of the surface energy balance.« less
A steadying effect of acoustic excitation on transitory stall
NASA Technical Reports Server (NTRS)
Zaman, K. B. M. Q.
1991-01-01
The effect of acoustic excitation on a class of separated flows with a transitional boundary layer at the point of separation is considered. Experimental results on the flow over airfoils, a two-dimensional backward-facing step, and through large angle conical diffusers are presented. In all cases, the separated flow undergoes large amplitude fluctuations, much of the energy being concentrated at unusually low frequencies. In each case, an appropriate high frequency acoustic excitation is found to be effective in reducing the fluctuations substantially. The effective excitation frequency scales on the initial boundary layer thickness and the effect is apparently achieved through acoustic tripping of the separating boundary layer.
NASA Astrophysics Data System (ADS)
Vigan, A.; Chauvin, G.; Bonavita, M.; Desidera, S.; Bonnefoy, M.; Mesa, D.; Beuzit, J.-L.; Augereau, J.-C.; Biller, B.; Boccaletti, A.; Brugaletta, E.; Buenzli, E.; Carson, J.; Covino, E.; Delorme, P.; Eggenberger, A.; Feldt, M.; Hagelberg, J.; Henning, T.; Lagrange, A.-M.; Lanzafame, A.; Ménard, F.; Messina, S.; Meyer, M.; Montagnier, G.; Mordasini, C.; Mouillet, D.; Moutou, C.; Mugnier, L.; Quanz, S. P.; Reggiani, M.; Ségransan, D.; Thalmann, C.; Waters, R.; Zurlo, A.
2014-01-01
Over the past decade, a growing number of deep imaging surveys have started to provide meaningful constraints on the population of extrasolar giant planets at large orbital separation. Primary targets for these surveys have been carefully selected based on their age, distance and spectral type, and often on their membership to young nearby associations where all stars share common kinematics, photometric and spectroscopic properties. The next step is a wider statistical analysis of the frequency and properties of low mass companions as a function of stellar mass and orbital separation. In late 2009, we initiated a coordinated European Large Program using angular differential imaging in the H band (1.66 μm) with NaCo at the VLT. Our aim is to provide a comprehensive and statistically significant study of the occurrence of extrasolar giant planets and brown dwarfs at large (5-500 AU) orbital separation around ~150 young, nearby stars, a large fraction of which have never been observed at very deep contrast. The survey has now been completed and we present the data analysis and detection limits for the observed sample, for which we reach the planetary-mass domain at separations of >~50 AU on average. We also present the results of the statistical analysis that has been performed over the 75 targets newly observed at high-contrast. We discuss the details of the statistical analysis and the physical constraints that our survey provides for the frequency and formation scenario of planetary mass companions at large separation.
NASA Astrophysics Data System (ADS)
Burke-Spolaor, Sarah; Lazio, Joseph; Nyland, Kristina; Blecha, Laura; Bogdanovic, Tamara; Comerford, Julie; Liu, Xin; Taylor, Gregory; Shen, Yue; Maccarone, T. J.; Chomiuk, Laura; Reines, Amy
2018-01-01
Dual ( < ˜1 kpc separation) and binary (< ˜10 pc separation) supermassive black holes are formed during the merger of two massive galaxies. Their formation and subsequent evolution is controlled by interactions with their environment and, at close separations, the emission of gravitational waves. If we can determine the occurrance rate of dual active nuclei in galaxy mergers, we can directly measure merger-induced active nucleus activity, supermassive black hole growth, and the physical processes that drive both the remnant's dynamics and the inspiral of the black hole pair. A systematic census of the dual supermassive black hole population will also directly constrain the strength and distribution of objects emitting gravitational waves that will be detected by pulsar timing arrays and future space-based laser interferometers. Although the population of dual supermassive black holes in galaxy merger products is central to these topics and others, few have yet been discovered.A suite of radio, visible-infrared, and X-ray telescopes have just begun to reveal the population of kiloparsec-separation dual active nuclei. This poster will present the unique capability of radio observations to explore the dual and binary population of supermassive black hole binaries, and will highlight the observational techniques and discoveries expected for the Next-Generation Very Large Array.Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. The NANOGrav project receives support from NSF Physics Frontier Center award number 1430284.
Veldhuizen, R A; Inchley, K; Hearn, S A; Lewis, J F; Possmayer, F
1993-01-01
Pulmonary surfactant obtained from lung lavages can be separated by differential centrifugation into two distinct subfractions known as large surfactant aggregates and small surfactant aggregates. The large-aggregate fraction is the precursor of the small-aggregate fraction. The ratio of the small non-surface-active to large surface-active surfactant aggregates increases after birth and in several types of lung injury. We have utilized an in vitro system, surface area cycling, to study the conversion of large into small aggregates. Small aggregates generated by surface area cycling were separated from large aggregates by centrifugation at 40,000 g for 15 min rather than by the normal sucrose gradient centrifugation. This new separation method was validated by morphological studies. Surface-tension-reducing activity of total surfactant extracts, as measured with a pulsating-bubble surfactometer, was impaired after surface area cycling. This impairment was related to the generation of small aggregates. Immunoblot analysis of large and small aggregates separated by sucrose gradient centrifugation revealed the presence of detectable amounts of surfactant-associated protein B (SP-B) in large aggregates but not in small aggregates. SP-A was detectable in both large and small aggregates. PAGE of cycled and non-cycled surfactant showed a reduction in SP-B after surface area cycling. We conclude that SP-B is degraded during the formation of small aggregates in vitro and that a change in surface area appears to be necessary for exposing SP-B to protease activity. Images Figure 2 Figure 5 Figure 6 Figure 7 PMID:8216208
Chen, Baiyi; Qiu, Jianhui; Sakai, Eiichi; Kanazawa, Nobuhiro; Liang, Ruilu; Feng, Huixia
2016-07-13
Conventional superhydrophobic surfaces have always depended on expensive, sophisticated, and fragile roughness structures. Therefore, poor robustness has turned into the bottleneck for large-scale industrial applications of the superhydrophobic surfaces. To handle this problem, a superhydrophobic surface with firm robustness urgently needs to be developed. In this work, we created a versatile strategy to fabricate robust, self-cleaning, and superhydrophobic surfaces for both soft and hard substrates. We created an ethanol based suspension of perfluorooctyltriethoxysilane-mdodified calcium carbonate nanoparticles which can be sprayed onto both hard and soft substrates to form superhydrophobic surfaces. For all kinds of substrates, spray adhesive was directly coated onto abluent substrate surfaces to promote the robustness. These superhydrophobic surfaces showed remarkable robustness against knife scratch and sandpaper abrasion, while retaining its superhydrophobicity even after 30 abrasion cycles with sandpaper. What is more, the superhydrophobic surfaces have shown promising potential applications in self-cleaning and oil-water separation. The surfaces retained their self-cleaning property even immersed in oil. In addition to oil-water separation, the water contents in oil after separation of various mixtures were all below 150 ppm, and for toluene even as low as 55 ppm. Furthermore, the as-prepared device for oil-water separation could be cycled 6 times and still retained excellent oil-water separation efficiency.
Effects of surface roughness on an adverse-pressure-gradient separating turbulent boundary layer
NASA Astrophysics Data System (ADS)
Wu, Wen; Piomelli, Ugo; Turbulence Simulation; Modelling Laboratory Team
2017-11-01
Separating turbulent boundary layers over smooth and rough flat plates are investigated by large-eddy simulations. A suction-blowing velocity distribution is imposed at the top boundary to produce an adverse-to-favourable pressure gradient and a closed separation bubble. Sandgrain roughness in the fully-rough regime is modelled by an immersed boundary method. In the rough-wall case, streamline detachment occurs earlier and the separation region is substantially larger due to the momentum deficit caused by the roughness. The adverse pressure gradient decreases the form drag and causes a thin reversed-flow region below the roughness crest, so that Cf = 0 does not coincide with the detachment of the flow from the surface. The wake regions behind roughness elements affect the intermittency of the near-wall flow, so that upstream of the detachment point the flow can be reversed half of the time, but its average is positive. The separated shear layer exhibits higher turbulent kinetic energy (TKE); the growth of the TKE there begins earlier relative to the separation point, and the peak TKE occurs close to the separation point. The momentum deficit caused by the roughness, again, plays a critical role in these changes. The authors acknowledge the support from Hydro-Québec and the NSERC Collaborative Research & Development program (CRDPJ 418786-11). The simulations were performed at CAC Queen't site. UP also thanks the support of Canada Research Chair Program.
Yao, Ning; Chen, Hemei; Lin, Huaqing; Deng, Chunhui; Zhang, Xiangmin
2008-03-21
Human serum contains a complex array of proteolytically derived peptides (serum peptidome), which contain biomarkers of preclinical screening and disease diagnosis. Recently, commercial C(8)-functionalized magnetic beads (1-10 microm) were widely applied to the separation and enrichment of peptides in human serum, prior to matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) analysis. In this work, laboratory-prepared C(8)-functionalized magnetic nanoparticles (about 50 nm) were prepared and applied to the fast separation and the enrichment of peptides from serum. At first, the C(8)-magnetic nanoparticles were synthesized by modifying amine-functionalized magnetic nanoparticles with chlorodimethyloctylsilane. These synthesized C(8)-amine-functionalized magnetic particles have excellent magnetic responsibility, high dispersibility and large surface area. Finally, the C(8)-magnetic nanoparticles were successfully applied to fast and efficient enrichment of low-abundance peptides from protein tryptic digestion and human serum followed by MALDI-TOF-MS analysis.
NASA Astrophysics Data System (ADS)
Poleski, R.; Udalski, A.; Bond, I. A.; Beaulieu, J. P.; Clanton, C.; Gaudi, S.; Szymański, M. K.; Soszyński, I.; Pietrukowicz, P.; Kozłowski, Szymon; Skowron, J.; Wyrzykowski, Ł.; Ulaczyk, K.; Bennett, D. P.; Sumi, T.; Suzuki, D.; Rattenbury, N. J.; Koshimoto, N.; Abe, F.; Asakura, Y.; Barry, R. K.; Bhattacharya, A.; Donachie, M.; Evans, P.; Fukui, A.; Hirao, Y.; Itow, Y.; Li, M. C. A.; Ling, C. H.; Masuda, K.; Matsubara, Y.; Muraki, Y.; Nagakane, M.; Ohnishi, K.; Ranc, C.; Saito, To.; Sharan, A.; Sullivan, D. J.; Tristram, P. J.; Yamada, T.; Yamada, T.; Yonehara, A.; Batista, V.; Marquette, J. B.
2017-08-01
We present the discovery of a substellar companion to the primary host lens in the microlensing event MOA-2012-BLG-006. The companion-to-host mass ratio is 0.016, corresponding to a companion mass of ≈8 MJup(M∗/ 0.5 M⊙). Thus, the companion is either a high-mass giant planet or a low-mass brown dwarf, depending on the mass of the primary M∗. The companion signal was separated from the peak of the primary event by a time that was as much as four times longer than the event timescale. We therefore infer a relatively large projected separation of the companion from its host of ≈10 au(M∗/ 0.5 M⊙)1 / 2 for a wide range (3-7 kpc) of host star distances from the Earth. We also challenge a previous claim of a planetary companion to the lens star in microlensing event OGLE-2002-BLG-045.
A laboratory demonstration of the capability to image an Earth-like extrasolar planet.
Trauger, John T; Traub, Wesley A
2007-04-12
The detection and characterization of an Earth-like planet orbiting a nearby star requires a telescope with an extraordinarily large contrast at small angular separations. At visible wavelengths, an Earth-like planet would be 1 x 10(-10) times fainter than the star at angular separations of typically 0.1 arcsecond or less. There are several proposed space telescope systems that could, in principle, achieve this. Here we report a laboratory experiment that reaches these limits. We have suppressed the diffracted and scattered light near a star-like source to a level of 6 x 10(-10) times the peak intensity in individual coronagraph images. In a series of such images, together with simple image processing, we have effectively reduced this to a residual noise level of about 0.1 x 10(-10). This demonstrates that a coronagraphic telescope in space could detect and spectroscopically characterize nearby exoplanetary systems, with the sensitivity to image an 'Earth-twin' orbiting a nearby star.
Antenna Allocation in MIMO Radar with Widely Separated Antennas for Multi-Target Detection
Gao, Hao; Wang, Jian; Jiang, Chunxiao; Zhang, Xudong
2014-01-01
In this paper, we explore a new resource called multi-target diversity to optimize the performance of multiple input multiple output (MIMO) radar with widely separated antennas for detecting multiple targets. In particular, we allocate antennas of the MIMO radar to probe different targets simultaneously in a flexible manner based on the performance metric of relative entropy. Two antenna allocation schemes are proposed. In the first scheme, each antenna is allocated to illuminate a proper target over the entire illumination time, so that the detection performance of each target is guaranteed. The problem is formulated as a minimum makespan scheduling problem in the combinatorial optimization framework. Antenna allocation is implemented through a branch-and-bound algorithm and an enhanced factor 2 algorithm. In the second scheme, called antenna-time allocation, each antenna is allocated to illuminate different targets with different illumination time. Both antenna allocation and time allocation are optimized based on illumination probabilities. Over a large range of transmitted power, target fluctuations and target numbers, both of the proposed antenna allocation schemes outperform the scheme without antenna allocation. Moreover, the antenna-time allocation scheme achieves a more robust detection performance than branch-and-bound algorithm and the enhanced factor 2 algorithm when the target number changes. PMID:25350505
Antenna allocation in MIMO radar with widely separated antennas for multi-target detection.
Gao, Hao; Wang, Jian; Jiang, Chunxiao; Zhang, Xudong
2014-10-27
In this paper, we explore a new resource called multi-target diversity to optimize the performance of multiple input multiple output (MIMO) radar with widely separated antennas for detecting multiple targets. In particular, we allocate antennas of the MIMO radar to probe different targets simultaneously in a flexible manner based on the performance metric of relative entropy. Two antenna allocation schemes are proposed. In the first scheme, each antenna is allocated to illuminate a proper target over the entire illumination time, so that the detection performance of each target is guaranteed. The problem is formulated as a minimum makespan scheduling problem in the combinatorial optimization framework. Antenna allocation is implemented through a branch-and-bound algorithm and an enhanced factor 2 algorithm. In the second scheme, called antenna-time allocation, each antenna is allocated to illuminate different targets with different illumination time. Both antenna allocation and time allocation are optimized based on illumination probabilities. Over a large range of transmitted power, target fluctuations and target numbers, both of the proposed antenna allocation schemes outperform the scheme without antenna allocation. Moreover, the antenna-time allocation scheme achieves a more robust detection performance than branch-and-bound algorithm and the enhanced factor 2 algorithm when the target number changes.
Time resolved flow-field measurements of a turbulent mixing layer over a rectangular cavity
NASA Astrophysics Data System (ADS)
Bian, Shiyao; Driscoll, James F.; Elbing, Brian R.; Ceccio, Steven L.
2011-07-01
High Reynolds number, low Mach number, turbulent shear flow past a rectangular, shallow cavity has been experimentally investigated with the use of dual-camera cinematographic particle image velocimetry (CPIV). The CPIV had a 3 kHz sampling rate, which was sufficient to monitor the time evolution of large-scale vortices as they formed, evolved downstream and impinged on the downstream cavity wall. The time-averaged flow properties (velocity and vorticity fields, streamwise velocity profiles and momentum and vorticity thickness) were in agreement with previous cavity flow studies under similar operating conditions. The time-resolved results show that the separated shear layer quickly rolled-up and formed eddies immediately downstream of the separation point. The vortices convect downstream at approximately half the free-stream speed. Vorticity strength intermittency as the structures approach the downstream edge suggests an increase in the three-dimensionality of the flow. Time-resolved correlations reveal that the in-plane coherence of the vortices decays within 2-3 structure diameters, and quasi-periodic flow features are present with a vortex passage frequency of ~1 kHz. The power spectra of the vertical velocity fluctuations within the shear layer revealed a peak at a non-dimensional frequency corresponding to that predicted using linear, inviscid instability theory.
Sabino, Jennifer; Kumar, Anand
2014-01-01
Summary: Reconstructive surgeons supporting military operations are required to definitively treat severe pediatric abdominal injuries in austere environments. The safety and efficacy of using a components separation technique to treat large ventral hernias in pediatric patients in this setting remains understudied. Components separation technique was required to achieve definitive closure in a 12-month-old pediatric patient in Kandahar, Afghanistan. Her course was complicated by an anastomotic leak after small bowel resection. Her abdominal was successfully reopened, the leak repaired, and closed primarily without incident on postinjury day 9. Abdominal trauma with a large ventral hernia requiring components separation is extremely rare. A pediatric patient treated with components separation demonstrated minimal complications, avoidance of abdominal compartment syndrome, and no mortality. PMID:25426363
Determination of urine-derived odorous compounds in a source separation sanitation system.
Liu, Bianxia; Giannis, Apostolos; Chen, Ailu; Zhang, Jiefeng; Chang, Victor W C; Wang, Jing-Yuan
2017-02-01
Source separation sanitation systems have attracted more and more attention recently. However, separate urine collection and treatment could induce odor issues, especially in large scale application. In order to avoid such issues, it is necessary to monitor the odor related compounds that might be generated during urine storage. This study investigated the odorous compounds that emitted from source-separated human urine under different hydrolysis conditions. Batch experiments were conducted to investigate the effect of temperature, stale/fresh urine ratio and urine dilution on odor emissions. It was found that ammonia, dimethyl disulfide, allyl methyl sulfide and 4-heptanone were the main odorous compounds generated from human urine, with headspace concentrations hundreds of times higher than their respective odor thresholds. Furthermore, the high temperature accelerated urine hydrolysis and liquid-gas mass transfer, resulting a remarkable increase of odor emissions from the urine solution. The addition of stale urine enhanced urine hydrolysis and expedited odor emissions. On the contrary, diluted urine emitted less odorous compounds ascribed to reduced concentrations of odorant precursors. In addition, this study quantified the odor emissions and revealed the constraints of urine source separation in real-world applications. To address the odor issue, several control strategies are recommended for odor mitigation or elimination from an engineering perspective. Copyright © 2016. Published by Elsevier B.V.
Hill, Brian; Kambeyanda, Rohan; Fewell, Donna; Bryant, Stewart; Delaney, Kevin O; Herrera, Fernando A
2018-06-01
In this study, we reviewed our institution's experience using component separation for repair of ventral hernias. This was a retrospective review of all component separations for ventral hernia between July 2009 and December 2015. Recorded data included body mass index (BMI), preoperative albumin, smoking history, comorbidities, additional procedures, length of surgery, hospitalization, recurrence, and postoperative complications. One hundred ninety-six component separations were performed in the study period. The average patient age was 56 years, and 65.3% of patients were female. The average BMI was 32.6 kg/m; preoperative albumin was 3.59; 18.4% were current smokers; 28.1% were diabetic; and 14.3% had heart disease. Postoperative complications developed in 16.8% of patients. Recurrence developed in 8.7% of patients. Patients who developed a postoperative complication had a higher BMI (P = 0.025) and lower albumin (P = 0.047) compared with patients who did not develop complications. Current smokers were more likely to develop complications (P = 0.008). More than one third of patients had additional procedures at the time of the ventral hernia repair. The addition of a plastic surgery procedure was not associated with an increased risk of developing a complication (P = 0.25). Patients who developed complications had a significantly longer hospital course (P < 0.001) but no difference in total operative time (P = 0.975). Increased number of comorbidities did not statistically correlate with an increased complication rate (P = 0.65) or length of hospital stay (P = 0.43). We identified risk factors that increase the likelihood of postoperative complications and length of hospital stay. In addition, this study suggests that more comorbidities and additional procedures at the time of the hernia repair may not have as large of impact on complication risk as previously thought.
NASA Astrophysics Data System (ADS)
Polkehn, M.; Tamura, H.; Burghardt, I.
2018-01-01
This study addresses the mechanism of ultrafast charge separation in regioregular oligothiophene-fullerene assemblies representative of poly-3-hexylthiophene (P3HT)-[6,6]-phenyl-C61 butyric acid methyl ester (PCBM) heterojunctions, with special emphasis on the inclusion of charge transfer excitons in the oligothiophene phase. The formation of polaronic inter-chain charge separated species in highly ordered oligothiophene has been demonstrated in recent experiments and could have a significant impact on the net charge transfer to the fullerene acceptor. The present approach combines a first-principles parametrized multi-site Hamiltonian, based on time-dependent density functional theory calculations, with accurate quantum dynamics simulations using the multi-layer multi-configuration time-dependent Hartree method. Quantum dynamical studies are carried out for up to 182 electronic states and 112 phonon modes. The present analysis follows up on our previous study of (Huix-Rotllant et al 2015 J. Phys. Chem. Lett. 6 1702) and significantly expands the scope of this analysis by including the dynamical role of charge transfer excitons. Our investigation highlights the pronounced mixing of photogenerated Frenkel excitons with charge transfer excitons in the oligothiophene domain, and the opening of new transfer channels due the creation of such charge-separated species. As a result, it turns out that the interfacial donor/acceptor charge transfer state can be largely circumvented due to the presence of charge transfer excitons. However, the latter states in turn act as a trap, such that the free carrier yield observed on ultrafast time scales is tangibly reduced. The present analysis underscores the complexity of the transfer pathways at P3HT-PCBM type junctions.
Blind source separation and localization using microphone arrays
NASA Astrophysics Data System (ADS)
Sun, Longji
The blind source separation and localization problem for audio signals is studied using microphone arrays. Pure delay mixtures of source signals typically encountered in outdoor environments are considered. Our proposed approach utilizes the subspace methods, including multiple signal classification (MUSIC) and estimation of signal parameters via rotational invariance techniques (ESPRIT) algorithms, to estimate the directions of arrival (DOAs) of the sources from the collected mixtures. Since audio signals are generally considered broadband, the DOA estimates at frequencies with the large sum of squared amplitude values are combined to obtain the final DOA estimates. Using the estimated DOAs, the corresponding mixing and demixing matrices are computed, and the source signals are recovered using the inverse short time Fourier transform. Subspace methods take advantage of the spatial covariance matrix of the collected mixtures to achieve robustness to noise. While the subspace methods have been studied for localizing radio frequency signals, audio signals have their special properties. For instance, they are nonstationary, naturally broadband and analog. All of these make the separation and localization for the audio signals more challenging. Moreover, our algorithm is essentially equivalent to the beamforming technique, which suppresses the signals in unwanted directions and only recovers the signals in the estimated DOAs. Several crucial issues related to our algorithm and their solutions have been discussed, including source number estimation, spatial aliasing, artifact filtering, different ways of mixture generation, and source coordinate estimation using multiple arrays. Additionally, comprehensive simulations and experiments have been conducted to examine various aspects of the algorithm. Unlike the existing blind source separation and localization methods, which are generally time consuming, our algorithm needs signal mixtures of only a short duration and therefore supports real-time implementation.
Discrete-vortex simulation of pulsating flow on a turbulent leading-edge separation bubble
NASA Technical Reports Server (NTRS)
Sung, Hyung Jin; Rhim, Jae Wook; Kiya, Masaru
1992-01-01
Studies are made of the turbulent separation bubble in a two-dimensional semi-infinite blunt plate aligned to a uniform free stream with a pulsating component. The discrete-vortex method is applied to simulate this flow situation because this approach is effective for representing the unsteady motions of the turbulent shear layer and the effect of viscosity near the solid surface. The numerical simulation provides reasonable predictions when compared with the experimental results. A particular frequency with a minimum reattachment is related to the drag reduction. The most effective frequency is dependent on the amplified shedding frequency. The turbulent flow structure is scrutinized. This includes the time-mean and fluctuations of the velocity and the surface pressure, together with correlations between the fluctuating components. A comparison between the pulsating flow and the non-pulsating flow at the particular frequency of the minimum reattachment length of the separation bubble suggests that the large-scale vortical structure is associated with the shedding frequency and the flow instabilities.
Separated Carbon Nanotube Macroelectronics for Active Matrix Organic Light-Emitting Diode Displays
NASA Astrophysics Data System (ADS)
Fu, Yue; Zhang, Jialu; Wang, Chuan; Chen, Pochiang; Zhou, Chongwu
2012-02-01
Active matrix organic light-emitting diode (AMOLED) display holds great potential for the next generation visual technologies due to its high light efficiency, flexibility, lightweight, and low-temperature processing. However, suitable thin-film transistors (TFTs) are required to realize the advantages of AMOLED. Pre-separated, semiconducting enriched carbon nanotubes are excellent candidates for this purpose because of their excellent mobility, high percentage of semiconducting nanotubes, and room-temperature processing compatibility. Here we report, for the first time, the demonstration of AMOLED displays driven by separated nanotube thin-film transistors (SN-TFTs) including key technology components such as large-scale high-yield fabrication of devices with superior performance, carbon nanotube film density optimization, bilayer gate dielectric for improved substrate adhesion to the deposited nanotube film, and the demonstration of monolithically integrated AMOLED display elements with 500 pixels driven by 1000 SN-TFTs. Our approach can serve as the critical foundation for future nanotube-based thin-film display electronics.
Progressive mechanical indentation of large-format Li-ion cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Hsin; Kumar, Abhishek; Simunovic, Srdjan
We used large format Li-ion cells to study the mechanical responses of single cells of thickness 6.5 mm and stacks of three cells under compressive loading. We carried out various sequences of increasing depth indentations using a 1.0 inch (25.4 mm) diameter steel ball with steel plate as a rigid support surface. The indentation depths were between 0.025 and 0.250 with main indentation increments tests of 0.025 steps. Increment steps of 0.100 and 0.005 were used to pinpoint the onset of internal-short that occurred between 0.245 and 0.250 . The indented cells were disassembled and inspected for internal damage. Loadmore » vs. time curves were compared with the developed computer models. Separator thinning leading to the short circuit was simulated using both isotropic and anisotropic mechanical properties. This study show that separators behave differently when tested as a single layer vs. a stack in a typical pouch cell. The collective responses of the multiple layers must be taken into account in failure analysis. A model that resolves the details of the individual internal cell components was able to simulate the internal deformation of the large format cells and the onset of failure assumed to coincide with the onset of internal short circuit.« less
Progressive mechanical indentation of large-format Li-ion cells
NASA Astrophysics Data System (ADS)
Wang, Hsin; Kumar, Abhishek; Simunovic, Srdjan; Allu, Srikanth; Kalnaus, Sergiy; Turner, John A.; Helmers, Jacob C.; Rules, Evan T.; Winchester, Clinton S.; Gorney, Philip
2017-02-01
Large format Li-ion cells were used to study the mechanical responses of single cells of thickness 6.5 mm and stacks of three cells under compressive loading. Various sequences of increasing depth indentations were carried out using a 1.0 inch (25.4 mm) diameter steel ball with steel plate as a rigid support surface. The indentation depths were between 0.025″ and 0.250″ with main indentation increments tests of 0.025″ steps. Increment steps of 0.100″ and 0.005″ were used to pinpoint the onset of internal-short that occurred between 0.245″ and 0.250″. The indented cells were disassembled and inspected for internal damage. Load vs. time curves were compared with the developed computer models. Separator thinning leading to the short circuit was simulated using both isotropic and anisotropic mechanical properties. Our study show that separators behave differently when tested as a single layer vs. a stack in a typical pouch cell. The collective responses of the multiple layers must be taken into account in failure analysis. A model that resolves the details of the individual internal cell components was able to simulate the internal deformation of the large format cells and the onset of failure assumed to coincide with the onset of internal short circuit.
Progressive mechanical indentation of large-format Li-ion cells
Wang, Hsin; Kumar, Abhishek; Simunovic, Srdjan; ...
2016-12-07
We used large format Li-ion cells to study the mechanical responses of single cells of thickness 6.5 mm and stacks of three cells under compressive loading. We carried out various sequences of increasing depth indentations using a 1.0 inch (25.4 mm) diameter steel ball with steel plate as a rigid support surface. The indentation depths were between 0.025 and 0.250 with main indentation increments tests of 0.025 steps. Increment steps of 0.100 and 0.005 were used to pinpoint the onset of internal-short that occurred between 0.245 and 0.250 . The indented cells were disassembled and inspected for internal damage. Loadmore » vs. time curves were compared with the developed computer models. Separator thinning leading to the short circuit was simulated using both isotropic and anisotropic mechanical properties. This study show that separators behave differently when tested as a single layer vs. a stack in a typical pouch cell. The collective responses of the multiple layers must be taken into account in failure analysis. A model that resolves the details of the individual internal cell components was able to simulate the internal deformation of the large format cells and the onset of failure assumed to coincide with the onset of internal short circuit.« less
Métadier, M; Bertrand-Krajewski, J-L
2011-01-01
With the increasing implementation of continuous monitoring of both discharge and water quality in sewer systems, large data bases are now available. In order to manage large amounts of data and calculate various variables and indicators of interest it is necessary to apply automated methods for data processing. This paper deals with the processing of short time step turbidity time series to estimate TSS (Total Suspended Solids) and COD (Chemical Oxygen Demand) event loads in sewer systems during storm events and their associated uncertainties. The following steps are described: (i) sensor calibration, (ii) estimation of data uncertainties, (iii) correction of raw data, (iv) data pre-validation tests, (v) final validation, and (vi) calculation of TSS and COD event loads and estimation of their uncertainties. These steps have been implemented in an integrated software tool. Examples of results are given for a set of 33 storm events monitored in a stormwater separate sewer system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Naughton, M.J.; Bourke, W.; Browning, G.L.
The convergence of spectral model numerical solutions of the global shallow-water equations is examined as a function of the time step and the spectral truncation. The contributions to the errors due to the spatial and temporal discretizations are separately identified and compared. Numerical convergence experiments are performed with the inviscid equations from smooth (Rossby-Haurwitz wave) and observed (R45 atmospheric analysis) initial conditions, and also with the diffusive shallow-water equations. Results are compared with the forced inviscid shallow-water equations case studied by Browning et al. Reduction of the time discretization error by the removal of fast waves from the solution usingmore » initialization is shown. The effects of forcing and diffusion on the convergence are discussed. Time truncation errors are found to dominate when a feature is large scale and well resolved; spatial truncation errors dominate for small-scale features and also for large scale after the small scales have affected them. Possible implications of these results for global atmospheric modeling are discussed. 31 refs., 14 figs., 4 tabs.« less
Rouse, Adam G.
2016-01-01
Reaching and grasping typically are considered to be spatially separate processes that proceed concurrently in the arm and the hand, respectively. The proximal representation in the primary motor cortex (M1) controls the arm for reaching, while the distal representation controls the hand for grasping. Many studies of M1 activity therefore have focused either on reaching to various locations without grasping different objects, or else on grasping different objects all at the same location. Here, we recorded M1 neurons in the anterior bank and lip of the central sulcus as monkeys performed more naturalistic movements, reaching toward, grasping, and manipulating four different objects in up to eight different locations. We quantified the extent to which variation in firing rates depended on location, on object, and on their interaction—all as a function of time. Activity proceeded largely in two sequential phases: the first related predominantly to the location to which the upper extremity reached, and the second related to the object about to be grasped. Both phases involved activity distributed widely throughout the sampled territory, spanning both the proximal and the distal upper extremity representation in caudal M1. Our findings indicate that naturalistic reaching and grasping, rather than being spatially segregated processes that proceed concurrently, each are spatially distributed processes controlled by caudal M1 in large part sequentially. Rather than neuromuscular processes separated in space but not time, reaching and grasping are separated more in time than in space. SIGNIFICANCE STATEMENT Reaching and grasping typically are viewed as processes that proceed concurrently in the arm and hand, respectively. The arm region in the primary motor cortex (M1) is assumed to control reaching, while the hand region controls grasping. During naturalistic reach–grasp–manipulate movements, we found, however, that neuron activity proceeds largely in two sequential phases, each spanning both arm and hand representations in M1. The first phase is related predominantly to the reach location, and the second is related to the object about to be grasped. Our findings indicate that reaching and grasping are successive aspects of a single movement. Initially the arm and the hand both are projected toward the object's location, and later both are shaped to grasp and manipulate. PMID:27733614
Kicking atoms with finite duration pulses
NASA Astrophysics Data System (ADS)
Fekete, Julia; Chai, Shijie; Daszuta, Boris; Andersen, Mikkel F.
2016-05-01
The atom optics delta-kicked particle is a paradigmatic system for experimental studies of quantum chaos and classical-quantum correspondence. It consists of a cloud of laser cooled atoms exposed to a periodically pulsed standing wave of far off-resonant laser light. A purely quantum phenomena in such systems are quantum resonances which transfers the atoms into a coherent superposition of largely separated momentum states. Using such large momentum transfer ``beamsplitters'' in atom interferometers may have applications in high precision metrology. The growth in momentum separation cannot be maintained indefinitely due to finite laser power. The largest momentum transfer is achieved by violating the usual delta-kick assumption. Therefore we explore the behavior of the atom optics kicked particle with finite pulse duration. We have developed a semi-classical model which shows good agreement with the full quantum description as well as our experiments. Furthermore we have found a simple scaling law that helps to identify optimal parameters for an atom interferometer. We verify this by measurements of the ``Talbot time'' (a measurement of h/m) which together with other well-known constants constitute a measurement of the fine structure constant.
Ultrafast Generation of Large Schrodinger Cat States
NASA Astrophysics Data System (ADS)
Johnson, Kale; Neyenhuis, Brian; Wong-Campos, David; Mizrahi, Jonathan; Campbell, Wes; Monroe, Christopher
2014-05-01
Using a series of spin-dependent kicks on a trapped Yb + ion, we create large, entangled, Schrodinger cat states. We prepare the ion in a superposition of its two mf = 0 hyperfine ground states, representing an effective spin-1/2 system. Trapped in a harmonic potential, the ion is illuminated with a specially shaped, 1.5 ns pulse that imparts a momentum kick on the ion with a spin-dependent direction. A fast Pockels cell allows us to change the direction of the spin-dependent kick from each subsequent pulse out of an 80 MHz mode-locked laser. By concatenating a series of these very high fidelity spin-dependent kicks, we separate the ion's wave packet into two, spatially distinct states separated by about 200 recoil momenta and involving about 70 phonons. This method for creating a Schrodinger cat state is not time-limited by the trap frequency, and does not rely on confinement in the Lamb-Dicke regime. This work is supported by grants from the U.S. Army Research Office with funding from the DARPA OLE program, IARPA, and the MURI program; and the NSF Physics Frontier Center at JQI.
Time-of-flight expansion of binary Bose–Einstein condensates at finite temperature
NASA Astrophysics Data System (ADS)
Lee, K. L.; Jørgensen, N. B.; Wacker, L. J.; Skou, M. G.; Skalmstang, K. T.; Arlt, J. J.; Proukakis, N. P.
2018-05-01
Ultracold quantum gases provide a unique setting for studying and understanding the properties of interacting quantum systems. Here, we investigate a multi-component system of 87Rb–39K Bose–Einstein condensates (BECs) with tunable interactions both theoretically and experimentally. Such multi-component systems can be characterized by their miscibility, where miscible components lead to a mixed ground state and immiscible components form a phase-separated state. Here we perform the first full simulation of the dynamical expansion of this system including both BECs and thermal clouds, which allows for a detailed comparison with experimental results. In particular we show that striking features emerge in time-of-flight (TOF) for BECs with strong interspecies repulsion, even for systems which were separated in situ by a large gravitational sag. An analysis of the centre of mass positions of the BECs after expansion yields qualitative agreement with the homogeneous criterion for phase-separation, but reveals no clear transition point between the mixed and the separated phases. Instead one can identify a transition region, for which the presence of a gravitational sag is found to be advantageous. Moreover, we analyse the situation where only one component is condensed and show that the density distribution of the thermal component also shows some distinct features. Our work sheds new light on the analysis of multi-component systems after TOF and will guide future experiments on the detection of miscibility in these systems.
Membrane-based, sedimentation-assisted plasma separator for point-of-care applications.
Liu, Changchun; Mauk, Michael; Gross, Robert; Bushman, Frederic D; Edelstein, Paul H; Collman, Ronald G; Bau, Haim H
2013-11-05
Often, high-sensitivity, point-of-care (POC) clinical tests, such as HIV viral load, require large volumes of plasma. Although centrifuges are ubiquitously used in clinical laboratories to separate plasma from whole blood, centrifugation is generally inappropriate for on-site testing. Suitable alternatives are not readily available to separate the relatively large volumes of plasma from milliliters of blood that may be needed to meet stringent limit-of-detection specifications for low-abundance target molecules. We report on a simple-to-use, low-cost, pump-free, membrane-based, sedimentation-assisted plasma separator capable of separating a relatively large volume of plasma from undiluted whole blood within minutes. This plasma separator consists of an asymmetric, porous, polysulfone membrane housed in a disposable chamber. The separation process takes advantage of both gravitational sedimentation of blood cells and size exclusion-based filtration. The plasma separator demonstrated a "blood in-plasma out" capability, consistently extracting 275 ± 33.5 μL of plasma from 1.8 mL of undiluted whole blood within less than 7 min. The device was used to separate plasma laden with HIV viruses from HIV virus-spiked whole blood with recovery efficiencies of 95.5% ± 3.5%, 88.0% ± 9.5%, and 81.5% ± 12.1% for viral loads of 35,000, 3500, and 350 copies/mL, respectively. The separation process is self-terminating to prevent excessive hemolysis. The HIV-laden plasma was then injected into our custom-made microfluidic chip for nucleic acid testing and was successfully subjected to reverse-transcriptase loop-mediated isothermal amplification (RT-LAMP), demonstrating that the plasma is sufficiently pure to support high-efficiency nucleic acid amplification.
Membrane-based, sedimentation-assisted plasma separator for point-of-care applications
Liu, Changchun; Mauk, Michael; Gross, Robert; Bushman, Frederic D.; Edelstein, Paul H.; Collman, Ronald G.; Bau, Haim H.
2014-01-01
Often, high sensitivity, point of care, clinical tests, such as HIV viral load, require large volumes of plasma. Although centrifuges are ubiquitously used in clinical laboratories to separate plasma from whole blood, centrifugation is generally inappropriate for on-site testing. Suitable alternatives are not readily available to separate the relatively large volumes of plasma from milliliters of blood that may be needed to meet stringent limit-of-detection specifications for low abundance target molecules. We report on a simple to use, low-cost, pump-free, membrane-based, sedimentation-assisted plasma separator capable of separating a relatively large volume of plasma from undiluted whole blood within minutes. This plasma separator consists of an asymmetric, porous, polysulfone membrane housed in a disposable chamber. The separation process takes advantage of both gravitational sedimentation of blood cells and size exclusion-based filtration. The plasma separator demonstrated a “blood in-plasma out” capability, consistently extracting 275 ±33.5 μL of plasma from 1.8 mL of undiluted whole blood in less than 7 min. The device was used to separate plasma laden with HIV viruses from HIV virus-spiked whole blood with recovery efficiencies of 95.5% ± 3.5%, 88.0% ± 9.5%, and 81.5% ± 12.1% for viral loads of 35,000, 3,500 and 350 copies/mL, respectively. The separation process is self-terminating to prevent excessive hemolysis. The HIV-laden plasma was then injected into our custom-made microfluidic chip for nucleic acid Testing And Was Successfully Subjected To Reverse Transcriptase Loop mediated isothermal amplification (RT-LAMP), demonstrating that the plasma is sufficiently pure to support high efficiency nucleic acid amplification. PMID:24099566
Probing Cherenkov and Scintillation Light Separation for Next-Generation Neutrino Detectors
NASA Astrophysics Data System (ADS)
Caravaca, J.; Descamps, F. B.; Land, B. J.; Orebi Gann, G. D.; Wallig, J.; Yeh, M.
2017-09-01
The ability to separate Cherenkov and scintillation signals in liquid scintillator detectors would enable outstanding background rejection for next-generation neutrino experiments. Reconstruction of directional information, ring imaging, and sub-Cherenkov threshold detection all have the potential to substantially improve particle and event identification. The Cherenkov-Scintillation Separation (CHESS) experiment uses an array of small, fast photomultipliers (PMTs) and state-of-the-art electronics to demonstrate the reconstruction of a Cherenkov ring in a scintillation medium based on photon hit times and detected charge. This setup has been used to characterize the ability to detect Cherenkov light in a range of target media. We show results with pure organic scintillator (LAB) and the prospects with scintillators with a secondary fluor (LAB/PPO). There are future plans to deploy the newly developed water-based liquid scintillator, a medium with a higher Cherenkov/Scintillation light yield ratio than conventional pure liquid scintillators, enhancing the visibility of the less abundant Cherenkov light in the presence of scintillation light. These results can inform the development of future large-scale detectors, such as the proposed Theia experiment, or other large detectors at underground laboratories such as the far-site of the new Long Baseline Neutrino Facility at the Sanford Underground Research Facility. CHESS detector calibrations and commissioning will be discussed, and the latest results will be presented.
M13 bacteriophage-activated superparamagnetic beads for affinity separation.
Muzard, Julien; Platt, Mark; Lee, Gil U
2012-08-06
The growth of the biopharmaceutical industry has created a demand for new technologies for the purification of genetically engineered proteins.The efficiency of large-scale, high-gradient magnetic fishing could be improved if magnetic particles offering higher binding capacity and magnetization were available. This article describes several strategies for synthesizing microbeads that are composed of a M13 bacteriophage layer assembled on a superparamagnetic core. Chemical cross-linking of the pVIII proteins to a carboxyl-functionalized bead produces highly responsive superparamagnetic particles (SPM) with a side-on oriented, adherent virus monolayer. Also, the genetic manipulation of the pIII proteins with a His(6) peptide sequence allows reversible assembly of the bacteriophage on a nitrilotriacetic-acid-functionalized core in an end-on configuration. These phage-magnetic particles are successfully used to separate antibodies from high-protein concentration solutions in a single step with a >90% purity. The dense magnetic core of these particles makes them five times more responsive to magnetic fields than commercial materials composed of polymer-(iron oxide) composites and a monolayer of phage could produce a 1000 fold higher antibody binding capacity. These new bionanomaterials appear to be well-suited to large-scale high-gradient magnetic fishing separation and promise to be cost effective as a result of the self-assembling and self-replicating properties of genetically engineered M13 bacteriophage. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Controllability of multiplex, multi-time-scale networks
NASA Astrophysics Data System (ADS)
Pósfai, Márton; Gao, Jianxi; Cornelius, Sean P.; Barabási, Albert-László; D'Souza, Raissa M.
2016-09-01
The paradigm of layered networks is used to describe many real-world systems, from biological networks to social organizations and transportation systems. While recently there has been much progress in understanding the general properties of multilayer networks, our understanding of how to control such systems remains limited. One fundamental aspect that makes this endeavor challenging is that each layer can operate at a different time scale; thus, we cannot directly apply standard ideas from structural control theory of individual networks. Here we address the problem of controlling multilayer and multi-time-scale networks focusing on two-layer multiplex networks with one-to-one interlayer coupling. We investigate the practically relevant case when the control signal is applied to the nodes of one layer. We develop a theory based on disjoint path covers to determine the minimum number of inputs (Ni) necessary for full control. We show that if both layers operate on the same time scale, then the network structure of both layers equally affect controllability. In the presence of time-scale separation, controllability is enhanced if the controller interacts with the faster layer: Ni decreases as the time-scale difference increases up to a critical time-scale difference, above which Ni remains constant and is completely determined by the faster layer. We show that the critical time-scale difference is large if layer I is easy and layer II is hard to control in isolation. In contrast, control becomes increasingly difficult if the controller interacts with the layer operating on the slower time scale and increasing time-scale separation leads to increased Ni, again up to a critical value, above which Ni still depends on the structure of both layers. This critical value is largely determined by the longest path in the faster layer that does not involve cycles. By identifying the underlying mechanisms that connect time-scale difference and controllability for a simplified model, we provide crucial insight into disentangling how our ability to control real interacting complex systems is affected by a variety of sources of complexity.
Faghihi, Faramarz; Moustafa, Ahmed A.
2015-01-01
Information processing in the hippocampus begins by transferring spiking activity of the entorhinal cortex (EC) into the dentate gyrus (DG). Activity pattern in the EC is separated by the DG such that it plays an important role in hippocampal functions including memory. The structural and physiological parameters of these neural networks enable the hippocampus to be efficient in encoding a large number of inputs that animals receive and process in their life time. The neural encoding capacity of the DG depends on its single neurons encoding and pattern separation efficiency. In this study, encoding by the DG is modeled such that single neurons and pattern separation efficiency are measured using simulations of different parameter values. For this purpose, a probabilistic model of single neurons efficiency is presented to study the role of structural and physiological parameters. Known neurons number of the EC and the DG is used to construct a neural network by electrophysiological features of granule cells of the DG. Separated inputs as activated neurons in the EC with different firing probabilities are presented into the DG. For different connectivity rates between the EC and DG, pattern separation efficiency of the DG is measured. The results show that in the absence of feedback inhibition on the DG neurons, the DG demonstrates low separation efficiency and high firing frequency. Feedback inhibition can increase separation efficiency while resulting in very low single neuron’s encoding efficiency in the DG and very low firing frequency of neurons in the DG (sparse spiking). This work presents a mechanistic explanation for experimental observations in the hippocampus, in combination with theoretical measures. Moreover, the model predicts a critical role for impaired inhibitory neurons in schizophrenia where deficiency in pattern separation of the DG has been observed. PMID:25859189
Orbiter Repair Maneuver Contingency Separation Methods and Analysis
NASA Technical Reports Server (NTRS)
Machula, Michael
2005-01-01
Repairing damaged thermal protection system tile requires the Space Shuttle to be oriented such that repair platform access from the International Space Station (ISS) is possible. To do this, the Space Shuttle uses the Orbiter Repair Maneuver (ORM), which utilizes the Shuttle Remote Manipulator System (SRMS) to rotate the Space Shuttle in relation to the ISS, for extended periods of time. These positions cause difficulties and challenges to performing a safe separation (no collision or thruster plume damage to sensitive ISS structures) should an inadvertent release occur or a contingency procedure require it. To help protect for an SRMS failure or other failures, a method for separating without collision and the ability to redock to ISS from the ORM configuration was needed. The contingency ORM separation solution elegantly takes advantage of orbital mechanics between ISS and the separating Space Shuttle. By pitching the ISS down approximately 45 degrees, in a majority of the ORM repair positions, the altitude difference between the ISS and Space Shuttle center of gravity is maximized. This altitude difference results in different orbital energies (orbital periods) causing objects to separate from each other without requiring translational firings. Using this method, a safe contingency ORM separation is made possible in many odd positions even though some separation positions point high powered thrusters directly at fragile ISS and Soyuz solar arrays. Documented in this paper are the development simulations and procedures of the contingency ORM separation and the challenges encountered with large constraints to work around. Lastly, a method of returning to redock with the ISS to pick up the stranded crew members (or transfer the final crew members) is explained as well as the thruster and ISS loads analysis.
STOCHASTIC OPTICS: A SCATTERING MITIGATION FRAMEWORK FOR RADIO INTERFEROMETRIC IMAGING
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Michael D., E-mail: mjohnson@cfa.harvard.edu
2016-12-10
Just as turbulence in the Earth’s atmosphere can severely limit the angular resolution of optical telescopes, turbulence in the ionized interstellar medium fundamentally limits the resolution of radio telescopes. We present a scattering mitigation framework for radio imaging with very long baseline interferometry (VLBI) that partially overcomes this limitation. Our framework, “stochastic optics,” derives from a simplification of strong interstellar scattering to separate small-scale (“diffractive”) effects from large-scale (“refractive”) effects, thereby separating deterministic and random contributions to the scattering. Stochastic optics extends traditional synthesis imaging by simultaneously reconstructing an unscattered image and its refractive perturbations. Its advantages over direct imagingmore » come from utilizing the many deterministic properties of the scattering—such as the time-averaged “blurring,” polarization independence, and the deterministic evolution in frequency and time—while still accounting for the stochastic image distortions on large scales. These distortions are identified in the image reconstructions through regularization by their time-averaged power spectrum. Using synthetic data, we show that this framework effectively removes the blurring from diffractive scattering while reducing the spurious image features from refractive scattering. Stochastic optics can provide significant improvements over existing scattering mitigation strategies and is especially promising for imaging the Galactic Center supermassive black hole, Sagittarius A*, with the Global mm-VLBI Array and with the Event Horizon Telescope.« less
Improvement of CO2/N2 separation performance by polymer matrix cellulose acetate butyrate
NASA Astrophysics Data System (ADS)
Lee, R. J.; Jawad, Z. A.; Ahmad, A. L.; Ngo, J. Q.; Chua, H. B.
2017-06-01
With the rapid development of modern civilization, carbon dioxide (CO2) is produced in large quantities and mainly generated from industrial sectors. The gas emission is the major contributor to global warming. To address this issue, the membrane technology is implemented for the CO2 removal, due to the energy efficiency and economic advantages presented. Cellulose acetate butyrate (CAB) is selected as the polymeric material, due to the excellent film-forming properties and capable of developing a defect-free layer of neat membrane. This study described the fabrication development of CAB using a wet phase inversion method with different casting conditions. Where the composition of the casting solutions (3-5 wt %) and solvent evaporation time (4-6 min) were determined. The outcomes of these dominant parameters were then used to determine the best CAB membrane for CO2/Nitrogen (N2) separation and supported by the characterization i.e. scanning electron micrograph. Gas permeation measurements showed satisfactory performance for CAB membrane fabricated with 5 min evaporation time and 4 wt% polymer composition (M2). Where, its permeance and selectivity are 120.19 GPU and 3.17, respectively. In summary, this study showed a brief outlined of the future direction and perspective of CAB membrane for CO2/N2 separation.
β -decay studies of very neutron-rich Pd and Ag isotopes
NASA Astrophysics Data System (ADS)
Smith, Karl
2014-03-01
The rapid-neutron capture process (r-process) is attributed as the source of nearly half the elements heavier than iron. To gain insight into the r-process nucleosynthesis, uncertainties such as the nuclear physics involved must be minimized. An experiment was performed to measure properties of neutron-rich nuclei just below the N = 82 shell closure believed to be responsible for production of the A = 130 peak in the solar r-process abundance pattern. β-decay half-lives and neutron branching ratios, Pn values, were measured for Pd and Ag isotopes at the GSI Fragment Separator (FRS). The FRS provided in-flight separation and identification of fission fragments produced by a 900 MeV/u 238U beam. Ions of interest were implanted in the Silicon Implantation detector and Beta Absorber (SIMBA) array. The large pixelation of the array allowed for position-time correlation between implants and the corresponding β-decays. The parent nucleus may decay to an excited state in the daughter, above the neutron separation energy emitting a neutron. These neutrons were moderated and detected in Beta deLayEd Neutron (BELEN) detector surrounding SIMBA. Resulting analysis of half-lives and neutron emission branching ratios including a time-dependent background will be presented.
Properties of water as a novel stationary phase in capillary gas chromatography.
Gallant, Jonathan A; Thurbide, Kevin B
2014-09-12
A novel method of separation that uses water as a stationary phase in capillary gas chromatography (GC) is presented. Through applying a water phase to the interior walls of a stainless steel capillary, good separations were obtained for a large variety of analytes in this format. It was found that carrier gas humidification and backpressure were key factors in promoting stable operation over time at various temperatures. For example, with these measures in place, the retention time of an acetone test analyte was found to reduce by only 44s after 100min of operation at a column temperature of 100°C. In terms of efficiency, under optimum conditions the method produced about 20,000 plates for an acetone test analyte on a 250μm i.d.×30m column. Overall, retention on the stationary phase generally increased with analyte water solubility and polarity, but was relatively little correlated with analyte volatility. Conversely, non-polar analytes were essentially unretained in the system. These features were applied to the direct analysis of different polar analytes in both aqueous and organic samples. Results suggest that this approach could provide an interesting alternative tool in capillary GC separations. Copyright © 2014 Elsevier B.V. All rights reserved.
Core-shell TiO2@ZnO nanorods for efficient ultraviolet photodetection
NASA Astrophysics Data System (ADS)
Panigrahi, Shrabani; Basak, Durga
2011-05-01
Core-shell TiO2@ZnO nanorods (NRs) have been fabricated by a simple two step method: growth of ZnO NRs' array by an aqueous chemical technique and then coating of the NRs with a solution of titanium isopropoxide [Ti(OC3H7)4] followed by a heating step to form the shell. The core-shell nanocomposites are composed of single-crystalline ZnO NRs, coated with a thin TiO2 shell layer obtained by varying the number of coatings (one, three and five times). The ultraviolet (UV) emission intensity of the nanocomposite is largely quenched due to an efficient electron-hole separation reducing the band-to-band recombinations. The UV photoconductivity of the core-shell structure with three times TiO2 coating has been largely enhanced due to photoelectron transfer between the core and the shell. The UV photosensitivity of the nanocomposite becomes four times larger while the photocurrent decay during steady UV illumination has been decreased almost by 7 times compared to the as-grown ZnO NRs indicating high efficiency of these core-shell structures as UV sensors.
NASA Astrophysics Data System (ADS)
Grillmair, Carl J.; Carey, S.; Helou, G.; Hurt, R.; Rebull, L.; Soifer, T.; Squires, G. K.; Storrie-Lombardi, L.
2007-12-01
The Spitzer Space Telescope will exhaust its cryogen supply sometime around March of 2009. However, the observatory is expected to remain operational until early 2014 with undiminished 3.6 and 4.5 micron imaging capabilities over two 5'x5’ fields-of-view. During this "warm” mission, Spitzer will operate with extremely high efficiency and provide up to 35,000 hours of science observing time. This will enable unprecedented opportunities to address key scientific questions requiring large allocations of observing time, while maintaining opportunities for broad community use with more "traditional” time allocations. Spitzer will remain a particularly valuable resource for studies of extrasolar planets, with applications including: 1) transit timing observations and precise radius measurements of Earth-sized planets transiting nearby M-dwarfs, 2) measuring thermal emission and distinguishing between broad band emission and absorption in the atmospheres of transiting hot Jupiters, 3) measuring orbital phase variations of thermal emission for both transiting and non-transiting, close-in planets, and 4) sensitive imaging searches for young planets at large angular separations from their parent stars.
Effective Pb2+ removal from water using nanozerovalent iron stored 10 months
NASA Astrophysics Data System (ADS)
Ahmed, M. A.; Bishay, Samiha T.; Ahmed, Fatma M.; El-Dek, S. I.
2017-10-01
Heavy metal removal from water required reliable and cost-effective considerations, fast separation as well as easy methodology. In this piece of research, nanozerovalent iron (NZVI) was prepared as ideal sorbent for Pb2+ removal. The sample was characterized using X-ray diffraction (XRD), high-resolution transmission electron microscope (HRTEM), and atomic force microscope (AFM-SPM). Batch experiments comprised the effect of pH value and contact time on the adsorption process. The same NZVI was stored for a shelf time (10 months) and the batch experiment was repeated. The outcomes of the investigation assured that NZVI publicized an extraordinary large metal uptake (98%) after a short contact time (10 h). The stored sample revealed the same effectiveness on Pb2+ removal under the same conditions. The results of the physical properties, magnetic susceptibility, and conductance were correlated with the adsorption efficiency. This work offers evidence that these NZVI particles could be potential candidate for Pb2+ removal in large scale, stored for a long time using a simple, green, and cost-effective methodology, and represent an actual feedback in waste water treatment.
Conditions for extreme sensitivity of protein diffusion in membranes to cell environments
Tserkovnyak, Yaroslav; Nelson, David R.
2006-01-01
We study protein diffusion in multicomponent lipid membranes close to a rigid substrate separated by a layer of viscous fluid. The large-distance, long-time asymptotics for Brownian motion are calculated by using a nonlinear stochastic Navier–Stokes equation including the effect of friction with the substrate. The advective nonlinearity, neglected in previous treatments, gives only a small correction to the renormalized viscosity and diffusion coefficient at room temperature. We find, however, that in realistic multicomponent lipid mixtures, close to a critical point for phase separation, protein diffusion acquires a strong power-law dependence on temperature and the distance to the substrate H, making it much more sensitive to cell environment, unlike the logarithmic dependence on H and very small thermal correction away from the critical point. PMID:17008402
Electrophoresis-mass spectrometry probe
Andresen, Brian D.; Fought, Eric R.
1987-01-01
The invention involves a new technique for the separation of complex mixtures of chemicals, which utilizes a unique interface probe for conventional mass spectrometers which allows the electrophoretically separated compounds to be analyzed in real-time by a mass spectrometer. This new chemical analysis interface, which couples electrophoresis with mass spectrometry, allows complex mixtures to be analyzed very rapidly, with much greater specificity, and with greater sensitivity. The interface or probe provides a means whereby large and/or polar molecules in complex mixtures to be completely characterized. The preferred embodiment of the probe utilizes a double capillary tip which allows the probe tip to be continually wetted by the buffer, which provides for increased heat dissipation, and results in a continually operating interface which is more durable and electronically stable than the illustrated single capillary tip probe interface.
Dynamic evolution of liquid–liquid phase separation during continuous cooling
Imhoff, Seth D.; Gibbs, Paul J.; Katz, Martha R.; ...
2015-01-06
Solidification from a multiphase fluid involves many unknown quantities due to the difficulty of predicting the impact of fluid flow on chemical partitioning. Real-time x-ray radiography was used to observe liquid-liquid phase separation in Al 90In 10 prior to solidification. Quantitative image analysis was used to measure the motion and population characteristics of the dispersed indium-rich liquid phase during cooling. Here we determine that the droplet growth characteristics resemble well known steady-state coarsening laws with likely enhancement by concurrent growth due to supersaturation. Simplistic views of droplet motion are found to be insufficient until late in the reaction due tomore » a hydrodynamic instability caused by the large density difference between the dispersed and matrix liquid phases.« less
Wade, James H; Bailey, Ryan C
2014-01-07
Refractive index-based sensors offer attractive characteristics as nondestructive and universal detectors for liquid chromatographic separations, but a small dynamic range and sensitivity to minor thermal perturbations limit the utility of commercial RI detectors for many potential applications, especially those requiring the use of gradient elutions. As such, RI detectors find use almost exclusively in sample abundant, isocratic separations when interfaced with high-performance liquid chromatography. Silicon photonic microring resonators are refractive index-sensitive optical devices that feature good sensitivity and tremendous dynamic range. The large dynamic range of microring resonators allows the sensors to function across a wide spectrum of refractive indices, such as that encountered when moving from an aqueous to organic mobile phase during a gradient elution, a key analytical advantage not supported in commercial RI detectors. Microrings are easily configured into sensor arrays, and chip-integrated control microrings enable real-time corrections of thermal drift. Thermal controls allow for analyses at any temperature and, in the absence of rigorous temperature control, obviates extended detector equilibration wait times. Herein, proof of concept isocratic and gradient elution separations were performed using well-characterized model analytes (e.g., caffeine, ibuprofen) in both neat buffer and more complex sample matrices. These experiments demonstrate the ability of microring arrays to perform isocratic and gradient elutions under ambient conditions, avoiding two major limitations of commercial RI-based detectors and maintaining comparable bulk RI sensitivity. Further benefit may be realized in the future through selective surface functionalization to impart degrees of postcolumn (bio)molecular specificity at the detection phase of a separation. The chip-based and microscale nature of microring resonators also make it an attractive potential detection technology that could be integrated within lab-on-a-chip and microfluidic separation devices.
NASA Astrophysics Data System (ADS)
Choi, N.; Lee, M. I.; Lim, Y. K.; Kim, K. M.
2017-12-01
Heatwave is an extreme hot weather event which accompanies fatal damage to human health. The heatwave has a strong relationship with the large-scale atmospheric teleconnection patterns. In this study, we examine the spatial pattern of heatwave in East Asia by using the EOF analysis and the relationship between heatwave frequency and large-scale atmospheric teleconnection patterns. We also separate the time scale of heatwave frequency as the time scale longer than a decade and the interannual time scale. The long-term variation of heatwave frequency in East Asia shows a linkage with the sea surface temperature (SST) variability over the North Atlantic with a decadal time scale (a.k.a. the Atlantic Multidecadal Oscillation; AMO). On the other hands, the interannual variation of heatwave frequency is linked with the two dominant spatial patterns associated with the large-scale teleconnection patterns mimicking the Scandinavian teleconnection (SCAND-like) pattern and the circumglobal teleconnection (CGT-like) pattern, respectively. It is highlighted that the interannual variation of heatwave frequency in East Asia shows a remarkable change after mid-1990s. While the heatwave frequency was mainly associated with the CGT-like pattern before mid-1990s, the SCAND-like pattern becomes the most dominant one after mid-1990s, making the CGT-like pattern as the second. This study implies that the large-scale atmospheric teleconnection patterns play a key role in developing heatwave events in East Asia. This study further discusses possible mechanisms for the decadal change in the linkage between heatwave frequency and the large-scale teleconnection patterns in East Asia such as early melting of snow cover and/or weakening of East Asian jet stream due to global warming.
Limited communication capacity unveils strategies for human interaction
NASA Astrophysics Data System (ADS)
Miritello, Giovanna; Lara, Rubén; Cebrian, Manuel; Moro, Esteban
2013-06-01
Connectivity is the key process that characterizes the structural and functional properties of social networks. However, the bursty activity of dyadic interactions may hinder the discrimination of inactive ties from large interevent times in active ones. We develop a principled method to detect tie de-activation and apply it to a large longitudinal, cross-sectional communication dataset (~19 months, ~20 million people). Contrary to the perception of ever-growing connectivity, we observe that individuals exhibit a finite communication capacity, which limits the number of ties they can maintain active in time. On average men display higher capacity than women, and this capacity decreases for both genders over their lifespan. Separating communication capacity from activity reveals a diverse range of tie activation strategies, from stable to exploratory. This allows us to draw novel relationships between individual strategies for human interaction and the evolution of social networks at global scale.
Limited communication capacity unveils strategies for human interaction
Miritello, Giovanna; Lara, Rubén; Cebrian, Manuel; Moro, Esteban
2013-01-01
Connectivity is the key process that characterizes the structural and functional properties of social networks. However, the bursty activity of dyadic interactions may hinder the discrimination of inactive ties from large interevent times in active ones. We develop a principled method to detect tie de-activation and apply it to a large longitudinal, cross-sectional communication dataset (≈19 months, ≈20 million people). Contrary to the perception of ever-growing connectivity, we observe that individuals exhibit a finite communication capacity, which limits the number of ties they can maintain active in time. On average men display higher capacity than women, and this capacity decreases for both genders over their lifespan. Separating communication capacity from activity reveals a diverse range of tie activation strategies, from stable to exploratory. This allows us to draw novel relationships between individual strategies for human interaction and the evolution of social networks at global scale. PMID:23739519
Synthetic carbohydrate: An aid to nutrition in the future
NASA Technical Reports Server (NTRS)
Berman, G. A. (Editor); Murashige, K. H. (Editor)
1973-01-01
The synthetic production of carbohydrate on a large scale is discussed. Three possible nonagricultural methods of making starch are presented in detail and discussed. The simplest of these, the hydrolysis of cellulose wastes to glucose followed by polymerization to starch, appears a reasonable and economic supplement to agriculture at the present time. The conversion of fossil fuels to starch was found to be not competitive with agriculture at the present time, but tractable enough to allow a reasonable plant design to be made. A reconstruction of the photosynthetic process using isolated enzyme systems proved technically much more difficult than either of the other two processes. Particular difficulties relate to the replacement of expensive energy carrying compounds, separation of similar materials, and processing of large reactant volumes. Problem areas were pinpointed, and technological progress necessary to permit such a system to become practical is described.
NASA Technical Reports Server (NTRS)
Kersten, K.; Cattell, C. A.; Breneman, A.; Goetz, K.; Kellogg, P. J.; Wygant, J. R.; Wilson, L. B., III; Blake, J. B.; Looper, M. D.; Roth, I.
2011-01-01
We present multi-satellite observations of large amplitude radiation belt whistler-mode waves and relativistic electron precipitation. On separate occasions during the Wind petal orbits and STEREO phasing orbits, Wind and STEREO recorded intense whistler-mode waves in the outer nightside equatorial radiation belt with peak-to-peak amplitudes exceeding 300 mV/m. During these intervals of intense wave activity, SAMPEX recorded relativistic electron microbursts in near magnetic conjunction with Wind and STEREO. This evidence of microburst precipitation occurring at the same time and at nearly the same magnetic local time and L-shell with a bursty temporal structure similar to that of the observed large amplitude wave packets suggests a causal connection between the two phenomena. Simulation studies corroborate this idea, showing that nonlinear wave.particle interactions may result in rapid energization and scattering on timescales comparable to those of the impulsive relativistic electron precipitation.
Automatic measurements and computations for radiochemical analyses
Rosholt, J.N.; Dooley, J.R.
1960-01-01
In natural radioactive sources the most important radioactive daughter products useful for geochemical studies are protactinium-231, the alpha-emitting thorium isotopes, and the radium isotopes. To resolve the abundances of these thorium and radium isotopes by their characteristic decay and growth patterns, a large number of repeated alpha activity measurements on the two chemically separated elements were made over extended periods of time. Alpha scintillation counting with automatic measurements and sample changing is used to obtain the basic count data. Generation of the required theoretical decay and growth functions, varying with time, and the least squares solution of the overdetermined simultaneous count rate equations are done with a digital computer. Examples of the complex count rate equations which may be solved and results of a natural sample containing four ??-emitting isotopes of thorium are illustrated. These methods facilitate the determination of the radioactive sources on the large scale required for many geochemical investigations.
The on-orbit calibration of the Fermi Large Area Telescope
Abdo, A. A.; Ackermann, M.; Ajello, M.; ...
2009-09-06
The Large Area Telescope (LAT) on-board the Fermi Gamma-ray Space Telescope began its on-orbit operations on June 23, 2008. Calibrations, defined in a generic sense, correspond to synchronization of trigger signals, optimization of delays for latching data, determination of detector thresholds, gains and responses, evaluation of the perimeter of the South Atlantic Anomaly (SAA), measurements of live time, of absolute time, and internal and spacecraft boresight alignments. Here in this work, we describe on-orbit calibration results obtained using known astrophysical sources, galactic cosmic rays, and charge injection into the front-end electronics of each detector. Instrument response functions will be describedmore » in a separate publication. This paper demonstrates the stability of calibrations and describes minor changes observed since launch. Lastly, these results have been used to calibrate the LAT datasets to be publicly released in August 2009.« less
Dynamical evolution of domain walls in an expanding universe
NASA Technical Reports Server (NTRS)
Press, William H.; Ryden, Barbara S.; Spergel, David N.
1989-01-01
Whenever the potential of a scalar field has two or more separated, degenerate minima, domain walls form as the universe cools. The evolution of the resulting network of domain walls is calculated for the case of two potential minima in two and three dimensions, including wall annihilation, crossing, and reconnection effects. The nature of the evolution is found to be largely independent of the rate at which the universe expands. Wall annihilation and reconnection occur almost as fast as causality allows, so that the horizon volume is 'swept clean' and contains, at any time, only about one, fairly smooth, wall. Quantitative statistics are given. The total area of wall per volume decreases as the first power of time. The relative slowness of the decrease and the smoothness of the wall on the horizon scale make it impossible for walls to both generate large-scale structure and be consistent with quadrupole microwave background anisotropy limits.
Microfluidic ultrasonic particle separators with engineered node locations and geometries
Rose, Klint A.; Fisher, Karl A.; Wajda, Douglas A.; Mariella, Jr., Raymond P.; Bailey, Christopher; Dehlinger, Dietrich; Shusteff, Maxim; Jung, Byoungsok; Ness, Kevin D.
2016-04-26
An ultrasonic microfluidic system includes a separation channel for conveying a sample fluid containing small particles and large particles, flowing substantially parallel, adjacent to a recovery fluid, with which it is in contact. An acoustic transducer produces an ultrasound standing wave, that generates a pressure field having at least one node of minimum pressure amplitude. An acoustic extension structure is located proximate to said separation channel for positioning said acoustic node off center in said acoustic area and concentrating the large particles in said recovery fluid stream.
Microfluidic ultrasonic particle separators with engineered node locations and geometries
Rose, Klint A; Fisher, Karl A; Wajda, Douglas A; Mariella, Jr., Raymond P; Bailey, Christopher; Dehlinger, Dietrich; Shusteff, Maxim; Jung, Byoungsok; Ness, Kevin D
2015-03-31
An ultrasonic microfluidic system includes a separation channel for conveying a sample fluid containing small particles and large particles, flowing substantially parallel, adjacent to a recovery fluid, with which it is in contact. An acoustic transducer produces an ultrasound standing wave, that generates a pressure field having at least one node of minimum, pressure amplitude. An acoustic extension structure is located proximate to said separation channel for positioning said acoustic node off center in said acoustic area and concentrating the large particles in said recovery fluid stream.
Microfluidic ultrasonic particle separators with engineered node locations and geometries
Rose, Klint A; Fisher, Karl A; Wajda, Douglas A; Mariella, Jr., Raymond P; Bailey, Christoppher; Dehlinger, Dietrich; Shusteff, Maxim; Jung, Byoungsok; Ness, Kevin D
2014-05-20
An ultrasonic microfluidic system includes a separation channel for conveying a sample fluid containing small particles and large particles, flowing substantially parallel, adjacent to a recovery fluid, with which it is in contact. An acoustic transducer produces an ultrasound standing wave, that generates a pressure field having at least one node of minimum pressure amplitude. An acoustic extension structure is located proximate to said separation channel for positioning said acoustic node off center in said acoustic area and concentrating the large particles in said recovery fluid stream.
NASA Astrophysics Data System (ADS)
ElJack, Eltayeb
2017-05-01
In the present work, large eddy simulations of the flow field around a NACA-0012 aerofoil near stall conditions are performed at a Reynolds number of 5 × 104, Mach number of 0.4, and at various angles of attack. The results show the following: at relatively low angles of attack, the bubble is present and intact; at moderate angles of attack, the laminar separation bubble bursts and generates a global low-frequency flow oscillation; and at relatively high angles of attack, the laminar separation bubble becomes an open bubble that leads the aerofoil into a full stall. Time histories of the aerodynamic coefficients showed that the low-frequency oscillation phenomenon and its associated physics are indeed captured in the simulations. The aerodynamic coefficients compared to previous and recent experimental data with acceptable accuracy. Spectral analysis identified a dominant low-frequency mode featuring the periodic separation and reattachment of the flow field. At angles of attack α ≤ 9.3°, the low-frequency mode featured bubble shedding rather than bubble bursting and reformation. The underlying mechanism behind the quasi-periodic self-sustained low-frequency flow oscillation is discussed in detail.
Kostanyan, Artak E; Shishilov, Oleg N
2018-06-01
Multiple dual mode counter-current chromatography (MDM CCC) separation processes with semi-continuous large sample loading consist of a succession of two counter-current steps: with "x" phase (first step) and "y" phase (second step) flow periods. A feed mixture dissolved in the "x" phase is continuously loaded into a CCC machine at the beginning of the first step of each cycle over a constant time with the volumetric rate equal to the flow rate of the pure "x" phase. An easy-to-use calculating machine is developed to simulate the chromatograms and the amounts of solutes eluted with the phases at each cycle for steady-state (the duration of the flow periods of the phases is kept constant for all the cycles) and non-steady-state (with variable duration of alternating phase elution steps) separations. Using the calculating machine, the separation of mixtures containing up to five components can be simulated and designed. Examples of the application of the calculating machine for the simulation of MDM CCC processes are discussed. Copyright © 2018 Elsevier B.V. All rights reserved.
Dickson; Odom; Ducheneaux; Murray; Milofsky
2000-07-15
Despite the impressive separation efficiency afforded by capillary electrochromatography (CEC), the detection of UV-absorbing compounds following separation in capillary dimensions remains limited by the short path length (5-75 microm) through the column. Moreover, analytes that are poor chromophores present an additional challenge with respect to sensitive detection in CEC. This paper illustrates a new photochemical reaction detection scheme for CEC that takes advantage of the catalytic nature of type II photooxidation reactions. The sensitive detection scheme is selective toward molecules capable of photosensitizing the formation of singlet molecular oxygen (1O2). Following separation by CEC, UV-absorbing analytes promote groundstate 3O2 to an excited state (1O2) which reacts rapidly with tert-butyl-3,4,5-trimethylpyrrolecarboxylate, which is added to the running buffer. Detection is based on the loss of pyrrole. The reaction is catalytic in nature since one analyte molecule may absorb light many times, producing large amounts of 1O2. The detection limit for 9-acetylanthracene, following separation by CEC, is approximately 6 x 10(-9) M (S/N = 3). Optimization of the factors effecting the S/N for four model compounds is discussed.
NASA Astrophysics Data System (ADS)
Yu, Caixia; Zhao, Jingtao; Wang, Yanfei; Wang, Chengxiang; Geng, Weifeng
2017-03-01
The small-scale geologic inhomogeneities or discontinuities, such as tiny faults, cavities or fractures, generally have spatial scales comparable to or even smaller than the seismic wavelength. Therefore, the seismic responses of these objects are coded in diffractions and an attempt to high-resolution imaging can be made if we can appropriately image them. As the amplitudes of reflections can be several orders of magnitude larger than those of diffractions, one of the key problems of diffraction imaging is to suppress reflections and at the same time to preserve diffractions. A sparsity-promoting method for separating diffractions in the common-offset domain is proposed that uses the Kirchhoff integral formula to enforce the sparsity of diffractions and the linear Radon transform to formulate reflections. A subspace trust-region algorithm that can provide globally convergent solutions is employed for solving this large-scale computation problem. The method not only allows for separation of diffractions in the case of interfering events but also ensures a high fidelity of the separated diffractions. Numerical experiment and field application demonstrate the good performance of the proposed method in imaging the small-scale geological features related to the migration channel and storage spaces of carbonate reservoirs.
Effect of ambiguities on SAR picture quality
NASA Technical Reports Server (NTRS)
Korwar, V. N.; Lipes, R. G.
1978-01-01
The degradation of picture quality in a high-resolution, large-swath SAR mapping system caused by speckle, additive white Gaussian noise and range and azimuthal ambiguities occurring because of the nonfinite antenna pattern produced by a square aperture antenna was studied and simulated. The effect of the azimuth antenna pattern was accounted for by calculating the azimuth ambiguity function. Range ambiguities were accounted for by adding, to each pixel of interest, appropriate pixels at a range separation corresponding to one pulse repetition period, but attenuated by the antenna pattern. It is concluded that azimuth ambiguities do not cause any noticeable degradation (for large time bandwidth product systems, at least) but range ambiguities might.
Landsat-TM identification of Amblyomma variegatum (Acari: Ixodidae) habitats in Guadeloupe
NASA Technical Reports Server (NTRS)
Hugh-Jones, M.; Barre, N.; Nelson, G.; Wehnes, K.; Warner, J.; Garvin, J.; Garris, G.
1992-01-01
The feasibility of identifying specific habitats of the African bont tick, Amblyomma variegatum, from Landsat-TM images was investigated by comparing remotely sensed images of visible farms in Grande Terre (Guadeloupe) with field observations made in the same period of time (1986-1987). The different tick habitates could be separated using principal component analysis. The analysis clustered the sites by large and small variance of band values, and by vegetation and moisture indexes. It was found that herds in heterogeneous sites with large variances had more ticks than those in homogeneous or low variance sites. Within the heterogeneous sites, those with high vegetation and moisture indexes had more ticks than those with low values.
Formation metrology and control for large separated optics space telescopes
NASA Technical Reports Server (NTRS)
Mettler, E.; Quadrelli, M.; Breckenridge, W.
2002-01-01
In this paper we present formation flying performance analysis initial results for a representative large space telescope composed of separated optical elements [Mett 02]. A virtual-structure construct (an equivalent rigid body) is created by unique metrology and control that combines both centralized and decentralized methods. The formation may be in orbit at GEO for super-resolution Earth observation, as in the case of Figure 1, or it may be in an Earth-trailing orbit for astrophysics, Figure 2. Extended applications are envisioned for exo-solar planet interferometric imaging by a formation of very large separated optics telescopes, Figure 3. Space telescopes, with such large apertures and f/10 to f/100 optics, are not feasible if connected by massive metering structures. Instead, the new virtual-structure paradigm of information and control connectivity between the formation elements provides the necessary spatial rigidity and alignment precision for the telescope.
Rapid microscopy measurement of very large spectral images.
Lindner, Moshe; Shotan, Zav; Garini, Yuval
2016-05-02
The spectral content of a sample provides important information that cannot be detected by the human eye or by using an ordinary RGB camera. The spectrum is typically a fingerprint of the chemical compound, its environmental conditions, phase and geometry. Thus measuring the spectrum at each point of a sample is important for a large range of applications from art preservation through forensics to pathological analysis of a tissue section. To date, however, there is no system that can measure the spectral image of a large sample in a reasonable time. Here we present a novel method for scanning very large spectral images of microscopy samples even if they cannot be viewed in a single field of view of the camera. The system is based on capturing information while the sample is being scanned continuously 'on the fly'. Spectral separation implements Fourier spectroscopy by using an interferometer mounted along the optical axis. High spectral resolution of ~5 nm at 500 nm could be achieved with a diffraction-limited spatial resolution. The acquisition time is fairly high and takes 6-8 minutes for a sample size of 10mm x 10mm measured under a bright-field microscope using a 20X magnification.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paparó, M.; Benkő, J. M.; Hareter, M.
A sequence search method was developed to search the regular frequency spacing in δ Scuti stars through visual inspection and an algorithmic search. We searched for sequences of quasi-equally spaced frequencies, containing at least four members per sequence, in 90 δ Scuti stars observed by CoRoT . We found an unexpectedly large number of independent series of regular frequency spacing in 77 δ Scuti stars (from one to eight sequences) in the non-asymptotic regime. We introduce the sequence search method presenting the sequences and echelle diagram of CoRoT 102675756 and the structure of the algorithmic search. Four sequences (echelle ridges)more » were found in the 5–21 d{sup −1} region where the pairs of the sequences are shifted (between 0.5 and 0.59 d{sup −1}) by twice the value of the estimated rotational splitting frequency (0.269 d{sup −1}). The general conclusions for the whole sample are also presented in this paper. The statistics of the spacings derived by the sequence search method, by FT (Fourier transform of the frequencies), and the statistics of the shifts are also compared. In many stars more than one almost equally valid spacing appeared. The model frequencies of FG Vir and their rotationally split components were used to formulate the possible explanation that one spacing is the large separation while the other is the sum of the large separation and the rotational frequency. In CoRoT 102675756, the two spacings (2.249 and 1.977 d{sup −1}) are in better agreement with the sum of a possible 1.710 d{sup −1} large separation and two or one times, respectively, the value of the rotational frequency.« less
An Efficient Format for Nearly Constant-Time Access to Arbitrary Time Intervals in Large Trace Files
Chan, Anthony; Gropp, William; Lusk, Ewing
2008-01-01
A powerful method to aid in understanding the performance of parallel applications uses log or trace files containing time-stamped events and states (pairs of events). These trace files can be very large, often hundreds or even thousands of megabytes. Because of the cost of accessing and displaying such files, other methods are often used that reduce the size of the tracefiles at the cost of sacrificing detail or other information. This paper describes a hierarchical trace file format that provides for display of an arbitrary time window in a time independent of the total size of the file and roughlymore » proportional to the number of events within the time window. This format eliminates the need to sacrifice data to achieve a smaller trace file size (since storage is inexpensive, it is necessary only to make efficient use of bandwidth to that storage). The format can be used to organize a trace file or to create a separate file of annotations that may be used with conventional trace files. We present an analysis of the time to access all of the events relevant to an interval of time and we describe experiments demonstrating the performance of this file format.« less
Upgrading the SPP-500-1 moisture separators-steam reheaters used in the Leningrad NPP turbine units
NASA Astrophysics Data System (ADS)
Legkostupova, V. V.; Sudakov, A. V.
2015-03-01
The specific features of existing designs of moisture separators-steam reheaters (MSRs) and experience gained with using them at nuclear power plants are considered. Main factors causing damage to and failures of MSRs are described: nonuniform distribution of wet steam flow among the separation modules, breakthrough of moisture through the separator (and sometimes also through the steam reheater), which may lead to the occurrence of additional thermal stresses and, hence, to thermal-fatigue damage to or stress corrosion cracking of metal. MSR failure results in a less efficient operation of the turbine unit as a whole and have an adverse effect on the reliability of the low-pressure cylinder's last-stage blades. By the time the design service life of the SPP-500-1 MSRs had been exhausted in power units equipped with RBMK-1000 reactors, the number of damages inflicted to both the separation part and to the pipework and heating surface tubes was so large, that a considerable drop of MSR effectiveness and turbine unit efficiency as a whole occurred. The design of the upgraded separation part used in the SPP-500-1 MSR at the Leningrad NPP is described and its effectiveness is shown, which was confirmed by tests. First, efforts taken to achieve more uniform distribution of moisture content over the perimeter and height of steam space downstream of the separation modules and to bring it to values close to the design ones were met with success. Second, no noticeable effect of the individual specific features of separation modules on the moisture content was revealed. Recommendations on elaborating advanced designs of moisture separators-steam reheaters are given: an MSR arrangement in which the separator is placed under or on the side from the steam reheater; axial admission of wet steam for ensuring its uniform distribution among the separation modules; inlet chambers with an extended preliminary separation system and devices for uniformly distributing steam flows in the separator; separated layout of the of the separator and steam reheater; and use of transversely finned tube bundles for organizing cross flow of steam over the tubes.
Gravimetric enrichment of high lipid and starch accumulating microalgae.
Hassanpour, Morteza; Abbasabadi, Mahsa; Ebrahimi, Sirous; Hosseini, Maryam; Sheikhbaglou, Ahmad
2015-11-01
This study presents gravimetric enrichment of mixed culture to screen starch and lipid producing species separately in a sequencing batch reactor. In the enriched starch-producing mixed culture photobioreactor, the starch content at the end of steady state batch became 3.42 times the beginning of depletion. Whereas in the enriched lipid-producing photobioreactor, the lipid content at the end of steady state batch became 3 times the beginning of famine phase. The obtained results revealed that the gravimetric enrichment is a suitable screening method for specific production of storage compounds in none-sterile large-scaled condition. Copyright © 2015 Elsevier Ltd. All rights reserved.
A parallel algorithm for switch-level timing simulation on a hypercube multiprocessor
NASA Technical Reports Server (NTRS)
Rao, Hariprasad Nannapaneni
1989-01-01
The parallel approach to speeding up simulation is studied, specifically the simulation of digital LSI MOS circuitry on the Intel iPSC/2 hypercube. The simulation algorithm is based on RSIM, an event driven switch-level simulator that incorporates a linear transistor model for simulating digital MOS circuits. Parallel processing techniques based on the concepts of Virtual Time and rollback are utilized so that portions of the circuit may be simulated on separate processors, in parallel for as large an increase in speed as possible. A partitioning algorithm is also developed in order to subdivide the circuit for parallel processing.
Accuracy Analysis on Large Blocks of High Resolution Images
NASA Technical Reports Server (NTRS)
Passini, Richardo M.
2007-01-01
Although high altitude frequencies effects are removed at the time of basic image generation, low altitude (Yaw) effects are still present in form of affinity/angular affinity. They are effectively removed by additional parameters. Bundle block adjustment based on properly weighted ephemeris/altitude quaternions (BBABEQ) are not enough to remove the systematic effect. Moreover, due to the narrow FOV of the HRSI, position and altitude are highly correlated making it almost impossible to separate and remove their systematic effects without extending the geometric model (Self-Calib.) The systematic effects gets evident on the increase of accuracy (in terms of RMSE at GCPs) for looser and relaxed ground control at the expense of large and strong block deformation with large residuals at check points. Systematic errors are most freely distributed and their effects propagated all over the block.
Survivable pulse power space radiator
Mims, James; Buden, David; Williams, Kenneth
1989-01-01
A thermal radiator system is described for use on an outer space vehicle, which must survive a long period of nonuse and then radiate large amounts of heat for a limited period of time. The radiator includes groups of radiator panels that are pivotally connected in tandem, so that they can be moved to deployed configuration wherein the panels lie largely coplanar, and to a stowed configuration wherein the panels lie in a stack to resist micrometeorite damage. The panels are mounted on a boom which separates a hot power source from a payload. While the panels are stowed, warm fluid passes through their arteries to keep them warm enough to maintain the coolant in a liquid state and avoid embrittlement of material. The panels can be stored in a largely cylindrical shell, with panels progressively further from the boom being of progressively shorter length.
Chapter Two – Separations Versus Sustainability: There is No Such Thing as a Free Lunch
Separation operations in chemical processes are generally “uphill” tasks—defying natural tendencies. Historically, such separations have been accomplished by applying generous portions of fossil energy and materials, leaving behind a large environmental footprint. In this chapter...
Zhang, Zhi-Hui; Wang, Hu-Jun; Liang, Yun-Hong; Li, Xiu-Juan; Ren, Lu-Quan; Cui, Zhen-Quan; Luo, Cheng
2018-03-01
Superhydrophobic surfaces have great potential for application in self-cleaning and oil/water separation. However, the large-scale practical applications of superhydrophobic coating surfaces are impeded by many factors, such as complicated fabrication processes, the use of fluorinated reagents and noxious organic solvents and poor mechanical stability. Herein, we describe the successful preparation of a fluorine-free multifunctional coating without noxious organic solvents that was brushed, dipped or sprayed onto glass slides and stainless-steel meshes as substrates. The obtained multifunctional superhydrophobic and superoleophilic surfaces (MSHOs) demonstrated self-cleaning abilities even when contaminated with or immersed in oil. The superhydrophobic surfaces were robust and maintained their water repellency after being scratched with a knife or abraded with sandpaper for 50 cycles. In addition, stainless-steel meshes sprayed with the coating quickly separated various oil/water mixtures with a high separation efficiency (>93%). Furthermore, the coated mesh maintained a high separation efficiency above 95% over 20 cycles of separation. This simple and effective strategy will inspire the large-scale fabrication of multifunctional surfaces for practical applications in self-cleaning and oil/water separation.
NASA Astrophysics Data System (ADS)
Leibowitz, Elia
2017-01-01
In an intensive observational campaign in the nine month duration of Chandra X-ray Visionary Project that was conducted in the year 2012, 39 large X-ray flares of Sgr A* were recorded. An analysis of the times of the observed flares reveals that the 39 flares are separated in time by intervals that are grouped around integer numbers times 0.10333 days. This time interval is thus the period of a uniform grid of equally spaced points on the time axis. The grouping of the flares around tic marks of this grid is derived from the data with at least a 3.2 σ level of statistical significance. No signal of any period can be found among 22 flares recorded by Chandra in the years 2013-2014. If the 0.10333 day period is that of a nearly circular Keplerian orbit around the blackhole at the center of the Galaxy, its radius is at 7.6 Schwarzschild radii. Large flares were more likely to be triggered when the agent responsible for their outbursts was near the peri-center phase of its slightly eccentric orbit.
Diurnal variation of eye movement and heart rate variability in the human fetus at term.
Morokuma, S; Horimoto, N; Satoh, S; Nakano, H
2001-07-01
To elucidate diurnal variations in eye movement and fetal heart rate (FHR) variability in the term fetus, we observed these two parameters continuously for 24 h, using real-time ultrasound and Doppler cardiotocograph, respectively. Studied were five uncomplicated fetuses at term. The time series data of the presence and absence of eye movement and mean FHR value for each 1 min were analyzed using the maximum entropy method (MEM) and subsequent nonlinear least squares fitting. According to the power value of eye movement, all five cases were classified into two groups: three cases in the large power group and two cases in the small power group. The acrophases of eye movement and FHR variability in the large power group were close, thereby implying the existence of a diurnal rhythm in both these parameters and also that they are synchronized. In the small power group, the acrophases were separated. The synchronization of eye movement and FHR variability in the large power group suggests that these phenomena are governed by a common central mechanism related to diurnal rhythm generation.
Functional requirements for reward-modulated spike-timing-dependent plasticity.
Frémaux, Nicolas; Sprekeler, Henning; Gerstner, Wulfram
2010-10-06
Recent experiments have shown that spike-timing-dependent plasticity is influenced by neuromodulation. We derive theoretical conditions for successful learning of reward-related behavior for a large class of learning rules where Hebbian synaptic plasticity is conditioned on a global modulatory factor signaling reward. We show that all learning rules in this class can be separated into a term that captures the covariance of neuronal firing and reward and a second term that presents the influence of unsupervised learning. The unsupervised term, which is, in general, detrimental for reward-based learning, can be suppressed if the neuromodulatory signal encodes the difference between the reward and the expected reward-but only if the expected reward is calculated for each task and stimulus separately. If several tasks are to be learned simultaneously, the nervous system needs an internal critic that is able to predict the expected reward for arbitrary stimuli. We show that, with a critic, reward-modulated spike-timing-dependent plasticity is capable of learning motor trajectories with a temporal resolution of tens of milliseconds. The relation to temporal difference learning, the relevance of block-based learning paradigms, and the limitations of learning with a critic are discussed.
Evidence for the interaction of large scale magnetic structures in solar flares
NASA Technical Reports Server (NTRS)
Mandrini, C. H.; Demoulin, P.; Henoux, J. C.; Machado, M. E.
1991-01-01
By modeling the observed vertical magnetic field of an active region AR 2372 by the potential field of an ensemble of magnetic dipoles, the likely location of the separatrices, surfaces that separates cells of different field line connectivities, and of the separator which is the intersection of the separatrices, is derived. Four of the five off-band H-alpha kernels of a flare that occurred less than 20 minutes before obtaining the magnetogram are shown to have taken place near or at the separatrices. These H-alpha kernels are connected by field lines that pass near the separator. This indicates that the flare may have resulted from the interaction in the separator region of large scale magnetic structures.
Anisotropic extinction distortion of the galaxy correlation function
NASA Astrophysics Data System (ADS)
Fang, Wenjuan; Hui, Lam; Ménard, Brice; May, Morgan; Scranton, Ryan
2011-09-01
Similar to the magnification of the galaxies’ fluxes by gravitational lensing, the extinction of the fluxes by comic dust, whose existence is recently detected by [B. Ménard, R. Scranton, M. Fukugita, and G. Richards, Mon. Not. R. Astron. Soc.MNRAA40035-8711 405, 1025 (2010)DOI: 10.1111/j.1365-2966.2010.16486.x.], also modifies the distribution of a flux-selected galaxy sample. We study the anisotropic distortion by dust extinction to the 3D galaxy correlation function, including magnification bias and redshift distortion at the same time. We find the extinction distortion is most significant along the line of sight and at large separations, similar to that by magnification bias. The correction from dust extinction is negative except at sufficiently large transverse separations, which is almost always opposite to that from magnification bias (we consider a number count slope s>0.4). Hence, the distortions from these two effects tend to reduce each other. At low z (≲1), the distortion by extinction is stronger than that by magnification bias, but at high z, the reverse holds. We also study how dust extinction affects probes in real space of the baryon acoustic oscillations (BAO) and the linear redshift distortion parameter β. We find its effect on BAO is negligible. However, it introduces a positive scale-dependent correction to β that can be as large as a few percent. At the same time, we also find a negative scale-dependent correction from magnification bias, which is up to percent level at low z, but to ˜40% at high z. These corrections are non-negligible for precision cosmology, and should be considered when testing General Relativity through the scale-dependence of β.
Waszczuk, M A; Zavos, H M S; Gregory, A M; Eley, T C
2016-01-01
Depression and anxiety persist within and across diagnostic boundaries. The manner in which common v. disorder-specific genetic and environmental influences operate across development to maintain internalizing disorders and their co-morbidity is unclear. This paper investigates the stability and change of etiological influences on depression, panic, generalized, separation and social anxiety symptoms, and their co-occurrence, across adolescence and young adulthood. A total of 2619 twins/siblings prospectively reported symptoms of depression and anxiety at mean ages 15, 17 and 20 years. Each symptom scale showed a similar pattern of moderate continuity across development, largely underpinned by genetic stability. New genetic influences contributing to change in the developmental course of the symptoms emerged at each time point. All symptom scales correlated moderately with one another over time. Genetic influences, both stable and time-specific, overlapped considerably between the scales. Non-shared environmental influences were largely time- and symptom-specific, but some contributed moderately to the stability of depression and anxiety symptom scales. These stable, longitudinal environmental influences were highly correlated between the symptoms. The results highlight both stable and dynamic etiology of depression and anxiety symptom scales. They provide preliminary evidence that stable as well as newly emerging genes contribute to the co-morbidity between depression and anxiety across adolescence and young adulthood. Conversely, environmental influences are largely time-specific and contribute to change in symptoms over time. The results inform molecular genetics research and transdiagnostic treatment and prevention approaches.
Towards Reconfigurable, Separable and Hard Real-Time Hybrid Simulation and Test Systems
NASA Astrophysics Data System (ADS)
Quartier, F.; Delatte, B.; Joubert, M.
2009-05-01
Formation flight needs several new technologies, new disciplines, new approaches and above all, more concurrent engineering by more players. One of the problems to be addressed are more complex simulation and test systems that are easy to re-configure to include parts of the target hardware and that can provide sufficient power to handle simulation cores that are requiring one to two orders of magnitude more processing power than the current technology provides. Critical technologies that are already addressed by CNES and Spacebel are study model reuse and simulator reconfigurability (Basiles), model portability (SMP2) and the federation of several simulators using HLA. Two more critical issues are addressed in ongoing R&D work by CNES and Spacebel and are covered by this paper and concern the time engineering and management. The first issue concerns separability (characterisation, identification and handling of separable subsystems) and the consequences on practical systems. Experiments on the Pleiades operational simulator have shown that adding precise simulation of instruments such as Doris and the Star Tracker can be added without significantly impacting overall performance. Improved time analysis leads to better system understanding and testability. The second issue concerns architectures for distributed hybrid simulators systems that provide hard real-time capabilities and can react with a relative time precision and jitter that is in the 10 to 50 µsecond range using mainstream PC's and mainstream Operating Systems. This opens a way to make smaller economic hardware test systems that can be reconfigured to make large hardware test systems without restarting development. Although such systems were considered next to impossible till now, distributed hard real-time systems are getting in reach when modern but mainstream electronics are used and when processor cores can be isolated and reserved for real-time cores. This requires a complete rethinking of the overall system, but needs very little overall changes. Automated identification of potential parallel simulation capability might become possible in a not so distant future.
Rich, Ryan M; Stankowska, Dorota L; Maliwal, Badri P; Sørensen, Thomas Just; Laursen, Bo W; Krishnamoorthy, Raghu R; Gryczynski, Zygmunt; Borejdo, Julian; Gryczynski, Ignacy; Fudala, Rafal
2013-02-01
Sample autofluorescence (fluorescence of inherent components of tissue and fixative-induced fluorescence) is a significant problem in direct imaging of molecular processes in biological samples. A large variety of naturally occurring fluorescent components in tissue results in broad emission that overlaps the emission of typical fluorescent dyes used for tissue labeling. In addition, autofluorescence is characterized by complex fluorescence intensity decay composed of multiple components whose lifetimes range from sub-nanoseconds to a few nanoseconds. For these reasons, the real fluorescence signal of the probe is difficult to separate from the unwanted autofluorescence. Here we present a method for reducing the autofluorescence problem by utilizing an azadioxatriangulenium (ADOTA) dye with a fluorescence lifetime of approximately 15 ns, much longer than those of most of the components of autofluorescence. A probe with such a long lifetime enables us to use time-gated intensity imaging to separate the signal of the targeting dye from the autofluorescence. We have shown experimentally that by discarding photons detected within the first 20 ns of the excitation pulse, the signal-to-background ratio is improved fivefold. This time-gating eliminates over 96 % of autofluorescence. Analysis using a variable time-gate may enable quantitative determination of the bound probe without the contributions from the background.
The big brown bat's perceptual dimension of target range
NASA Astrophysics Data System (ADS)
Simmons, James A.
2005-09-01
Big brown bats determine the distance to targets from echo delay, but information actually is entered onto the bat's psychological delay scale from two sources. The first is the target-ranging system itself, from the time that elapses between single-spike neural responses evoked by the broadcast and similar responses evoked by echoes at different delays. These responses register the FM sweeps of broadcasts or echoes, and the associated system of neural delay lines and coincidence detectors cross correlates the spectrograms along the time axis. The second source is the echo spectrum, which relates to shape expressed as range profile. The target-ranging system extracts this by fanning out to encompass parallel representations of many possible notch frequencies and notch widths in echoes. Bats perceive delay separations of 5-30 μs and have a resolution limit of about 2 μs, but interference amplifies small delay separations by transposing them into large changes in notch frequency, so only perception of intervals smaller than 5 μs is surprising. Experiments with phase-shifted echoes show that the psychological time scale can represent two different delays originating entirely in the time domain when they are at least as close together as 10 μs. [Work supported by NIH and ONR.
An experiment to study energetic particle fluxes in and beyond the earth's outer magnetosphere
NASA Technical Reports Server (NTRS)
Anderson, K. A.; Lin, R. P.; Paoli, R. J.; Parks, G. K.; Lin, C. S.; Reme, H.; Bosqued, J. M.; Martel, F.; Cotin, F.; Cros, A.
1978-01-01
This experiment is designed to take advantage of the ISEE Mother/Daughter dual spacecraft system to study energetic particle phenomena in the earth's outer magnetosphere and beyond. Large geometric factor fixed voltage electrostatic analyzers and passively cooled semiconductor detector telescopes provide high time resolution coverage of the energy range from 1.5 to 300 keV for both ions and electrons. Essentially identical instrumentation is placed on the two spacecraft to separate temporal from spatial effects in the observed particle phenomena.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stratz, S. Adam; Jones, Steven J.; Mullen, Austin D.
Newly-established adsorption enthalpy and entropy values of 12 lanthanide hexafluoroacetylacetonates, denoted Ln[hfac] 4, along with the experimental and theoretical methodology used to obtain these values, are presented for the first time. The results of this work can be used in conjunction with theoretical modeling techniques to optimize a large-scale gas-phase separation experiment using isothermal chromatography. The results to date indicate average adsorption enthalpy and entropy values of the 12 Ln[hfac] 4 complexes ranging from -33 to -139 kJ/mol K and -299 to -557 J/mol, respectively.
The All-Volunteer Force: An Analysis of Youth Participation, Attrition, and Reenlistment,
1980-05-01
reenlistees is not large enough at this time to conduct a separate analysis. How- ever, reenlistment intentions were asked and we identify a number of factors...752 per month. Thus, the Government imputes to his salary $240 per month for the privilege of eating in the mess hall and sleeping in the barracks...terms of military service. The same factors which cause them to leave the armed forces may affect their ability to get and keep decent employment in the
Closed-Form Evaluation of Mutual Coupling in a Planar Array of Circular Apertures
NASA Technical Reports Server (NTRS)
Bailey, M. C.
1996-01-01
The integral expression for the mutual admittance between circular apertures in a planar array is evaluated in closed form. Very good accuracy is realized when compared with values that were obtained by numerical integration. Utilization of this closed-form expression, for all element pairs that are separated by more than one element spacing, yields extremely accurate results and significantly reduces the computation time that is required to analyze the performance of a large electronically scanning antenna array.
NASA Astrophysics Data System (ADS)
Kirkil, Gokhan; Constantinescu, George
2012-07-01
Large eddy simulation (LES) is used to investigate the structure of the laminar horseshoe vortex (HV) system and the dynamics of the necklace vortices as they fold around the base of a circular cylinder mounted on the flat bed of an open channel for Reynolds numbers defined with the cylinder diameter, D, smaller than 4460. The study concentrates on the analysis of the structure of the HV system in the periodic breakaway sub-regime, which is characterized by the formation of three main necklace vortices. Over one oscillation cycle of the previously observed breakaway sub-regime, the corner vortex and the primary vortex merge (amalgamate) and a developing vortex separates from the incoming laminar boundary layer (BL) to become the new primary vortex. Results show that while the classical breakaway sub-regime, in which one amalgamation event occurs per oscillation cycle, is present when the nondimensional displacement thickness of the incoming BL at the location of the cylinder is relatively large (δ*/D > 0.1), a new type of breakaway sub-regime is present for low values of δ*/D. This sub-regime, which we call the double-breakaway sub-regime, is characterized by the occurrence of two amalgamation events over one full oscillation cycle. LES results show that when the HV system is in one of the breakaway sub-regimes, the interactions between the highly coherent necklace vortices and the eddies shed inside the separated shear layers (SSLs) are very strong. For the relatively shallow flow conditions considered in this study (H/D ≅ 1, H is the channel depth), at times, the disturbances induced by the legs of the necklace vortices do not allow the SSLs on the two sides of the cylinder to interact in a way that allows the vorticity redistribution mechanism to lead to the formation of a new wake roller. As a result, the shedding of large-scale rollers in the turbulent wake is suppressed for relatively large periods of time. Simulation results show that the wake structure changes randomly between time intervals when large-scale rollers are forming and are convected in the wake (von Karman regime), and time intervals when the rollers do not form. When the wake is in the von Karman regime, the shedding frequency of the rollers is close to that observed for flow past infinitely long cylinders.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chan, Wai Kit, E-mail: kekyeung@ust.hk; Joueet, Justine; Heng, Samuel
An advanced ozone membrane reactor that synergistically combines membrane distributor for ozone gas, membrane contactor for pollutant adsorption and reaction, and membrane separator for clean water production is described. The membrane reactor represents an order of magnitude improvement over traditional semibatch reactor design and is capable of complete conversion of recalcitrant endocrine disrupting compounds (EDCs) in water at less than three minutes residence time. Coating the membrane contactor with alumina and hydrotalcite (Mg/Al=3) adsorbs and traps the organics in the reaction zone resulting in 30% increase of total organic carbon (TOC) removal. Large surface area coating that diffuses surface chargesmore » from adsorbed polar organic molecules is preferred as it reduces membrane polarization that is detrimental to separation. - Graphical abstract: Advanced ozone membrane reactor synergistically combines membrane distributor for ozone, membrane contactor for sorption and reaction and membrane separator for clean water production to achieve an order of magnitude enhancement in treatment performance compared to traditional ozone reactor. Highlights: Black-Right-Pointing-Pointer Novel reactor using membranes for ozone distributor, reaction contactor and water separator. Black-Right-Pointing-Pointer Designed to achieve an order of magnitude enhancement over traditional reactor. Black-Right-Pointing-Pointer Al{sub 2}O{sub 3} and hydrotalcite coatings capture and trap pollutants giving additional 30% TOC removal. Black-Right-Pointing-Pointer High surface area coating prevents polarization and improves membrane separation and life.« less
Turbulent flow separation control through passive techniques
NASA Technical Reports Server (NTRS)
Lin, J. C.; Howard, F. G.; Selby, G. V.
1989-01-01
Several passive separation control techniques for controlling moderate two-dimensional turbulent flow separation over a backward-facing ramp are studied. Small transverse and swept grooves, passive porous surfaces, large longitudinal grooves, and vortex generators were among the techniques used. It was found that, unlike the transverse and longitudinal grooves of an equivalent size, the 45-deg swept-groove configurations tested tended to enhance separation.
Pairs of galaxies in low density regions of a combined redshift catalog
NASA Technical Reports Server (NTRS)
Charlton, Jane C.; Salpeter, Edwin E.
1990-01-01
The distributions of projected separations and radial velocity differences of pairs of galaxies in the CfA and Southern Sky Redshift Survey (SSRS) redshift catalogs are examined. The authors focus on pairs that fall in low density environments rather than in clusters or large groups. The projected separation distribution is nearly flat, while uncorrelated galaxies would have given one linearly rising with r sub p. There is no break in this curve even below 50 kpc, the minimum halo size consistent with measured galaxy rotation curves. The significant number of pairs at small separations is inconsistent with the N-body result that galaxies with overlapping halos will rapidly merge, unless there are significant amounts of matter distributed out to a few hundred kpc of the galaxies. This dark matter may either be in distinct halos or more loosely distributed. Large halos would allow pairs at initially large separations to head toward merger, replenishing the distribution at small separations. In the context of this model, the authors estimate that roughly 10 to 25 percent of these low density galaxies are the product of a merger, compared with the elliptical/SO fraction of 18 percent, observed in low density regions of the sample.
Dickel, Timo; Plaß, Wolfgang R; Lippert, Wayne; Lang, Johannes; Yavor, Mikhail I; Geissel, Hans; Scheidenberger, Christoph
2017-06-01
A novel method for (ultra-)high-resolution spatial mass separation in time-of-flight mass spectrometers is presented. Ions are injected into a time-of-flight analyzer from a radio frequency (rf) trap, dispersed in time-of-flight according to their mass-to-charge ratios and then re-trapped dynamically in the same rf trap. This re-trapping technique is highly mass-selective and after sufficiently long flight times can provide even isobaric separation. A theoretical treatment of the method is presented and the conditions for optimum performance of the method are derived. The method has been implemented in a multiple-reflection time-of-flight mass spectrometer and mass separation powers (FWHM) in excess of 70,000, and re-trapping efficiencies of up to 35% have been obtained for the protonated molecular ion of caffeine. The isobars glutamine and lysine (relative mass difference of 1/4000) have been separated after a flight time of 0.2 ms only. Higher mass separation powers can be achieved using longer flight times. The method will have important applications, including isobar separation in nuclear physics and (ultra-)high-resolution precursor ion selection in multiple-stage tandem mass spectrometry. Graphical Abstract ᅟ.
NASA Astrophysics Data System (ADS)
Dickel, Timo; Plaß, Wolfgang R.; Lippert, Wayne; Lang, Johannes; Yavor, Mikhail I.; Geissel, Hans; Scheidenberger, Christoph
2017-06-01
A novel method for (ultra-)high-resolution spatial mass separation in time-of-flight mass spectrometers is presented. Ions are injected into a time-of-flight analyzer from a radio frequency (rf) trap, dispersed in time-of-flight according to their mass-to-charge ratios and then re-trapped dynamically in the same rf trap. This re-trapping technique is highly mass-selective and after sufficiently long flight times can provide even isobaric separation. A theoretical treatment of the method is presented and the conditions for optimum performance of the method are derived. The method has been implemented in a multiple-reflection time-of-flight mass spectrometer and mass separation powers (FWHM) in excess of 70,000, and re-trapping efficiencies of up to 35% have been obtained for the protonated molecular ion of caffeine. The isobars glutamine and lysine (relative mass difference of 1/4000) have been separated after a flight time of 0.2 ms only. Higher mass separation powers can be achieved using longer flight times. The method will have important applications, including isobar separation in nuclear physics and (ultra-)high-resolution precursor ion selection in multiple-stage tandem mass spectrometry. [Figure not available: see fulltext.
Multistage Electrophoretic Separators
NASA Technical Reports Server (NTRS)
Thomas, Nathan; Doyle, John F.; Kurk, Andy; Vellinger, John C.; Todd, Paul
2006-01-01
A multistage electrophoresis apparatus has been invented for use in the separation of cells, protein molecules, and other particles and solutes in concentrated aqueous solutions and suspensions. The design exploits free electrophoresis but overcomes the deficiencies of prior free-electrophoretic separators by incorporating a combination of published advances in mathematical modeling of convection, sedimentation, electro-osmotic flow, and the sedimentation and aggregation of droplets. In comparison with other electrophoretic separators, these apparatuses are easier to use and are better suited to separation in relatively large quantities characterized in the art as preparative (in contradistinction to smaller quantities characterized in the art as analytical). In a multistage electrophoretic separator according to the invention, an applied vertical steady electric field draws the electrically charged particles of interest from within a cuvette to within a collection cavity that has been moved into position of the cuvette. There are multiple collection cavities arranged in a circle; each is aligned with the cuvette for a prescribed short time. The multistage, short-migration-path character of the invention solves, possibly for the first time, the fluid-instability problems associated with free electrophoresis. The figure shows a prototype multistage electrophoretic separator that includes four sample stations and five collection stages per sample. At each sample station, an aqueous solution or suspension containing charged species to be separated is loaded into a cuvette, which is machined into a top plate. The apparatus includes a lower plate, into which 20 collection cavities have been milled. Each cavity is filled with an electrophoresis buffer solution. For the collection of an electrophoretic fraction, the lower plate is rotated to move a designated collection cavity into alignment with the opening of the cuvette. An electric field is then applied between a non-gassing electrode in the collection cavity and an electrolyte compartment, which is separated from the cuvette by a semipermeable membrane. The electrolyte is refreshed by circulation by use of a peristaltic pump. In subsequent steps, the lower plate is rotated to collect other electrophoretic fractions. Later, the collected fractions are removed from the collection cavities through ports that have threaded plugs. The base of the apparatus contains power supplies and a computer interface. The design includes provisions for monitoring and feedback control of cavity position, electric field, and temperature. The operation of the apparatus can easily be automated, as demonstrated by use of software that has already been written for this purpose.
NASA Technical Reports Server (NTRS)
Hong, S. D.; Fedors, R. F.; Schwarzl, F.; Moacanin, J.; Landel, R. F.
1981-01-01
A theoretical analysis of the tensile stress-strain relation of elastomers at constant strain rate is presented which shows that the time and the stress effect are separable if the experimental time scale coincides with a segment of the relaxation modulus that can be described by a single power law. It is also shown that time-strain separability is valid if the strain function is linearly proportional to the Cauchy strain, and that when time-strain separability holds, two strain-dependent quantities can be obtained experimentally. In the case where time and strain effect are not separable, superposition can be achieved only by using temperature and strain-dependent shift factors.
NASA Astrophysics Data System (ADS)
Yang, Yang; Li, Xiukun
2016-06-01
Separation of the components of rigid acoustic scattering by underwater objects is essential in obtaining the structural characteristics of such objects. To overcome the problem of rigid structures appearing to have the same spectral structure in the time domain, time-frequency Blind Source Separation (BSS) can be used in combination with image morphology to separate the rigid scattering components of different objects. Based on a highlight model, the separation of the rigid scattering structure of objects with time-frequency distribution is deduced. Using a morphological filter, different characteristics in a Wigner-Ville Distribution (WVD) observed for single auto term and cross terms can be simplified to remove any cross-term interference. By selecting time and frequency points of the auto terms signal, the accuracy of BSS can be improved. An experimental simulation has been used, with changes in the pulse width of the transmitted signal, the relative amplitude and the time delay parameter, in order to analyzing the feasibility of this new method. Simulation results show that the new method is not only able to separate rigid scattering components, but can also separate the components when elastic scattering and rigid scattering exist at the same time. Experimental results confirm that the new method can be used in separating the rigid scattering structure of underwater objects.
Petersen, Kevin E; Manangon, Eliana; Hood, Joshua L; Wickline, Samuel A; Fernandez, Diego P; Johnson, William P; Gale, Bruce K
2014-12-01
Exosomes participate in cancer metastasis, but studying them presents unique challenges as a result of their small size and purification difficulties. Asymmetrical field flow fractionation with in-line ultraviolet absorbance, dynamic light scattering, and multi-angle light scattering was applied to the size separation and characterization of non-labeled B16-F10 exosomes from an aggressive mouse melanoma cell culture line. Fractions were collected and further analyzed using batch mode dynamic light scattering, transmission electron microscopy and compared with known size standards. Fractogram peak positions and computed radii show good agreement between samples and across fractions. Ultraviolet absorbance fractograms in combination with transmission electron micrographs were able to resolve subtle heterogeneity of vesicle retention times between separate batches of B16-F10 exosomes collected several weeks apart. Further, asymmetrical field flow fractionation also effectively separated B16-F10 exosomes into vesicle subpopulations by size. Overall, the flow field flow fractionation instrument combined with multiple detectors was able to rapidly characterize and separate exosomes to a degree not previously demonstrated. These approaches have the potential to facilitate a greater understanding of exosome function by subtype, as well as ultimately allow for "label-free" isolation of large scale clinical exosomes for the purpose of developing future exosome-based diagnostics and therapeutics.
High-performance computing-based exploration of flow control with micro devices.
Fujii, Kozo
2014-08-13
The dielectric barrier discharge (DBD) plasma actuator that controls flow separation is one of the promising technologies to realize energy savings and noise reduction of fluid dynamic systems. However, the mechanism for controlling flow separation is not clearly defined, and this lack of knowledge prevents practical use of this technology. Therefore, large-scale computations for the study of the DBD plasma actuator have been conducted using the Japanese Petaflops supercomputer 'K' for three different Reynolds numbers. Numbers of new findings on the control of flow separation by the DBD plasma actuator have been obtained from the simulations, and some of them are presented in this study. Knowledge of suitable device parameters is also obtained. The DBD plasma actuator is clearly shown to be very effective for controlling flow separation at a Reynolds number of around 10(5), and several times larger lift-to-drag ratio can be achieved at higher angles of attack after stall. For higher Reynolds numbers, separated flow is partially controlled. Flow analysis shows key features towards better control. DBD plasma actuators are a promising technology, which could reduce fuel consumption and contribute to a green environment by achieving high aerodynamic performance. The knowledge described above can be obtained only with high-end computers such as the supercomputer 'K'. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
Do reading and spelling share a lexicon?
Jones, Angela C; Rawson, Katherine A
2016-05-01
In the reading and spelling literature, an ongoing debate concerns whether reading and spelling share a single orthographic lexicon or rely upon independent lexica. Available evidence tends to support a single lexicon account over an independent lexica account, but evidence is mixed and open to alternative explanation. In the current work, we propose another, largely ignored account--separate-but-shared lexica--according to which reading and spelling have separate orthographic lexica, but information can be shared between them. We report three experiments designed to competitively evaluate these three theoretical accounts. In each experiment, participants learned new words via reading training and/or spelling training. The key manipulation concerned the amount of reading versus spelling practice a given item received. Following training, we assessed both response time and accuracy on final outcome measures of reading and spelling. According to the independent lexica account, final performance in one modality will not be influenced by the level of practice in the other modality. According to the single lexicon account, final performance will depend on the overall amount of practice regardless of modality. According to the separate-but-shared account, final performance will be influenced by the level of practice in both modalities but will benefit more from same-modality practice. Results support the separate-but-shared account, indicating that reading and spelling rely upon separate lexica, but information can be shared between them. Copyright © 2016 Elsevier Inc. All rights reserved.
Atlas-Centaur Separation Test in the Space Power Chambers
1963-11-21
An Atlas/Centaur mass model undergoes a separation test inside the Space Power Chambers at NASA Lewis Research Center. Lewis was in the midst of an extensive effort to prepare the Centaur second-stage rocket for its missions to send the Surveyor spacecraft to the moon as a precursor to the Apollo missions. As part of these preparations, Lewis management decided to convert its Altitude Wind Tunnel into two large test chambers—the Space Power Chambers. The conversion included the removal of the tunnel’s internal components and the insertion of bulkheads to seal off the new chambers within the tunnel. One chamber could simulate conditions found at 100 miles altitude, while this larger chamber simulated the upper atmosphere. In this test series, researchers wanted to verify that the vehicle’s retrorockets would properly separate the Centaur from the Atlas. The model was suspended horizontally on a trolley system inside chamber. A net was hung at one end to catch the jettisoned Atlas model. The chamber atmosphere was reduced to a pressure altitude of 100,000 feet, and high-speed cameras were synchronized to the ignition of the retrorockets. The simulated Centaur is seen here jettisoning from the Atlas out of view to the right. The study resulted in a new jettison method that would significantly reduce the separation time and thus minimize the danger of collision between the two stages during separation.
Block copolymer self-assembly derived ultrafiltration membranes: From science to start-up
NASA Astrophysics Data System (ADS)
Wiesner, Ulrich
In the last ten years a novel method to generate asymmetric ultrafiltration membranes has been established. It is based on the combination of block copolymer self-assembly with non-solvent induced phase separation (NIPS) and is now referred to as SNIPS. NIPS as an industry proven method for the formation of phase inversion membranes opening a pathway to scale up and commercialization of these membranes. The combination of NIPS with block copolymer self-assembly leads to asymmetric membranes with narrow pore size distributions in the top surface layer (so called isoporous membranes) as well as high pore densities, thereby potentially combining high resolution with high flux in membrane separation processes. Such membranes have potential applications in the biopharmaceutical industry where a large fraction of the costs are currently associated with time-consuming non-membrane based separation processes. This talk will describe a family of isoporous ultrafiltration membranes based on the self-assembly behavior of an ABC triblock terpolymer which has led to the formation of a start-up company out of Cornell University. After introduction of the SNIPS process in general, and its application to such ABC triblock terpolymers in particular, open scientific questions associated with the formation mechanisms of the top surface separation layer in such membranes is discussed, which is at the heart of enabling high performance separation behavior. Furthermore, challenges translating scientific work into industrial settings are highlighted.
Manangon, Eliana; Hood, Joshua L.; Wickline, Samuel A.; Fernandez, Diego P.; Johnson, William P.; Gale, Bruce K.
2015-01-01
Exosomes participate in cancer metastasis, but studying them presents unique challenges as a result of their small size and purification difficulties. Asymmetrical field flow fractionation with in-line ultraviolet absorbance, dynamic light scattering, and multi-angle light scattering was applied to the size separation and characterization of non-labeled B16-F10 exosomes from an aggressive mouse melanoma cell culture line. Fractions were collected and further analyzed using batch mode dynamic light scattering, transmission electron microscopy and compared with known size standards. Fractogram peak positions and computed radii show good agreement between samples and across fractions. Ultraviolet absorbance fractograms in combination with transmission electron micrographs were able to resolve subtle heterogeneity of vesicle retention times between separate batches of B16-F10 exosomes collected several weeks apart. Further, asymmetrical field flow fractionation also effectively separated B16-F10 exosomes into vesicle subpopulations by size. Overall, the flow field flow fractionation instrument combined with multiple detectors was able to rapidly characterize and separate exosomes to a degree not previously demonstrated. These approaches have the potential to facilitate a greater understanding of exosome function by subtype, as well as ultimately allow for “label-free” isolation of large scale clinical exosomes for the purpose of developing future exosome-based diagnostics and therapeutics. PMID:25084738
Duffy, Ciarán F; MacCraith, Brian; Diamond, Dermot; O'Kennedy, Richard; Arriaga, Edgar A
2006-08-01
The analysis of mitochondria by capillary electrophoresis usually takes longer than 20 min per replicate which may compromise the quality of the mitochondria due to degradation. In addition, low sample consumption may be beneficial in the analysis of rare or difficult samples. In this report, we demonstrate the ability to analyze individual mitochondrial events in picoliter-volume samples (approximately 80 pL) taken from a bovine liver preparation using microchip capillary electrophoresis with laser-induced fluorescence detection (micro-chip CE-LIF). Using a commercial "double-T" glass microchip, the sample was electrokinetically loaded in the "double-T" intersection and then subjected to electrophoretic separation along the main separation channel. In order to decrease interactions of mitochondria with channel walls during the analysis, poly(vinyl alcohol) was used as a dynamic coating. This procedure eliminates the need for complicated covalent surface modifications within the channels that were previously used in capillary electrophoresis methods. For analysis, mitochondria, isolated from bovine liver tissue, were selectively labelled using 10-nonyl acridine orange (NAO). The results consist of electropherograms where each mitochondrial event is a narrow spike (240 +/- 44 ms). While the spike intensity is representative of its NAO content, its migration time is used to calculate and describe its electrophoretic mobility, which is a property still largely unexplored for intracellular organelles. The five-fold decrease in separation time (4 min for microchip versus 20 min for capillary electrophoresis) makes microchip electrophoretic separations of organelles a faster, sensitive, low-sample volume alternative for the characterization of individual organelle properties and for investigations of subcellular heterogeneity.
Supramolecular gel electrophoresis of large DNA fragments.
Tazawa, Shohei; Kobayashi, Kazuhiro; Oyoshi, Takanori; Yamanaka, Masamichi
2017-10-01
Pulsed-field gel electrophoresis is a frequent technique used to separate exceptionally large DNA fragments. In a typical continuous field electrophoresis, it is challenging to separate DNA fragments larger than 20 kbp because they migrate at a comparable rate. To overcome this challenge, it is necessary to develop a novel matrix for the electrophoresis. Here, we describe the electrophoresis of large DNA fragments up to 166 kbp using a supramolecular gel matrix and a typical continuous field electrophoresis system. C 3 -symmetric tris-urea self-assembled into a supramolecular hydrogel in tris-boric acid-EDTA buffer, a typical buffer for DNA electrophoresis, and the supramolecular hydrogel was used as a matrix for electrophoresis to separate large DNA fragments. Three types of DNA marker, the λ-Hind III digest (2 to 23 kbp), Lambda DNA-Mono Cut Mix (10 to 49 kbp), and Marker 7 GT (10 to 165 kbp), were analyzed in this study. Large DNA fragments of greater than 100 kbp showed distinct mobility using a typical continuous field electrophoresis system. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Direct imaging of multiple planets orbiting the star HR 8799.
Marois, Christian; Macintosh, Bruce; Barman, Travis; Zuckerman, B; Song, Inseok; Patience, Jennifer; Lafrenière, David; Doyon, René
2008-11-28
Direct imaging of exoplanetary systems is a powerful technique that can reveal Jupiter-like planets in wide orbits, can enable detailed characterization of planetary atmospheres, and is a key step toward imaging Earth-like planets. Imaging detections are challenging because of the combined effect of small angular separation and large luminosity contrast between a planet and its host star. High-contrast observations with the Keck and Gemini telescopes have revealed three planets orbiting the star HR 8799, with projected separations of 24, 38, and 68 astronomical units. Multi-epoch data show counter clockwise orbital motion for all three imaged planets. The low luminosity of the companions and the estimated age of the system imply planetary masses between 5 and 13 times that of Jupiter. This system resembles a scaled-up version of the outer portion of our solar system.
Electrophoresis-mass spectrometry probe
Andresen, B.D.; Fought, E.R.
1987-11-10
The invention involves a new technique for the separation of complex mixtures of chemicals, which utilizes a unique interface probe for conventional mass spectrometers which allows the electrophoretically separated compounds to be analyzed in real-time by a mass spectrometer. This new chemical analysis interface, which couples electrophoresis with mass spectrometry, allows complex mixtures to be analyzed very rapidly, with much greater specificity, and with greater sensitivity. The interface or probe provides a means whereby large and/or polar molecules in complex mixtures to be completely characterized. The preferred embodiment of the probe utilizes a double capillary tip which allows the probe tip to be continually wetted by the buffer, which provides for increased heat dissipation, and results in a continually operating interface which is more durable and electronically stable than the illustrated single capillary tip probe interface. 8 figs.
Demonstration of a Pyrotechnic Bolt-Retractor System
NASA Technical Reports Server (NTRS)
Johnston, Nick; Ahmed, Rafiq; Garrison, Craig; Gaines, Joseph; Waggoner, Jason
2004-01-01
A paper describes a demonstration of the X-38 bolt-retractor system (BRS) on a spacecraft-simulating apparatus, called the Large Mobility Base, in NASA's Flight Robotics Laboratory (FRL). The BRS design was proven safe by testing in NASA's Pyrotechnic Shock Facility (PSF) before being demonstrated in the FRL. The paper describes the BRS, FRL, PSF, and interface hardware. Information on the bolt-retraction time and spacecraft-simulator acceleration, and an analysis of forces, are presented. The purpose of the demonstration was to show the capability of the FRL for testing of the use of pyrotechnics to separate stages of a spacecraft. Although a formal test was not performed because of schedule and budget constraints, the data in the report show that the BRS is a successful design concept and the FRL is suitable for future separation tests.
Yang, Wan-li; An, Jun-Hong; Zhang, Cheng-jie; Chen, Chang-yong; Oh, C. H.
2015-01-01
We investigate the dynamics of quantum correlation between two separated nitrogen vacancy centers (NVCs) placed near a one-dimensional plasmonic waveguide. As a common medium of the radiation field of NVCs propagating, the plasmonic waveguide can dynamically induce quantum correlation between the two NVCs. It is interesting to find that such dynamically induced quantum correlation can be preserved in the long-time steady state by locally applying individual driving on the two NVCs. In particular, we also show that a large degree of quantum correlation can be established by this scheme even when the distance between the NVCs is much larger than their operating wavelength. This feature may open new perspectives for devising active decoherence-immune solid-state optical devices and long-distance NVC-based quantum networks in the context of plasmonic quantum electrodynamics. PMID:26493045
Magnetic graphene oxide for adsorption of organic dyes from aqueous solution
NASA Astrophysics Data System (ADS)
Drashya, Lal, Shyam; Hooda, Sunita
2018-05-01
Graphene oxide (GO), a 2-D carbon nanomaterial, large surface area, oxygen-containing groups (like: hydroxyl, epoxy and carboxyl) and excellent water dispersibility due to it is good adsorbent dye removal from pollutant water1. But it's difficult to separate GO from water after adsorption. Therefore, Iron oxide was introduced in Graphene oxide by decorating method to make separation more efficient2. We present herein a one step process to prepare Magnetic Graphene oxide (MGO). The Fourier transform infrared spectrometer (FT-IR), X-ray diffraction (XRD) and Raman Spectroscopy characterized the chemical structure of the MGO composite. The adsorption of dyes onto MGO was studied in relation to initial concentration of Dyes, contact time, adsorbent dose, temperature and pH value of solution. We have studied adsorption capacity of different dyes (Methylene blue and crystal violet) by MGO.
The physiology of keystroke dynamics
NASA Astrophysics Data System (ADS)
Jenkins, Jeffrey; Nguyen, Quang; Reynolds, Joseph; Horner, William; Szu, Harold
2011-06-01
A universal implementation for most behavioral Biometric systems is still unknown since some behaviors aren't individual enough for identification. Habitual behaviors which are measurable by sensors are considered 'soft' biometrics (i.e., walking style, typing rhythm), while physical attributes (i.e., iris, fingerprint) are 'hard' biometrics. Thus, biometrics can aid in the identification of a human not only in cyberspace but in the world we live in. Hard biometrics have proven to be a rather successful form of identification, despite a large amount of individual signatures to keep track of. Virtually all soft biometric strategies, however, share a common pitfall. Instead of the classical pass/fail decision based on the measurements used by hard biometrics, a confidence threshold is imposed, increasing False Alarm and False Rejection Rates. This unreliability is a major roadblock for large scale system integration. Common computer security requires users to log-in with a six or more digit PIN (Personal Identification Number) to access files on the disk. Commercially available Keystroke Dynamics (KD) software can separately calculate and keep track of the mean and variance for each time travelled between each key (air time), and the time spent pressing each key (touch time). Despite its apparent utility, KD is not yet a robust, fault-tolerant system. We begin with a simple question: how could a pianist quickly control so many different finger and wrist movements to play music? What information, if any, can be gained from analyzing typing behavior over time? Biology has shown us that the separation of arm and finger motion is due to 3 long nerves in each arm; regulating movement in different parts of the hand. In this paper we wish to capture the underlying behavioral information of a typist through statistical memory and non-linear dynamics. Our method may reveal an inverse Compressive Sensing mapping; a unique individual signature.
The Growth of Protein Crystals Using McDUCK
NASA Technical Reports Server (NTRS)
Ewing, Felicia; Wilson, Lori; Nadarajah, Arunan; Pusey, Marc
1998-01-01
Most of the current microgravity crystal growth hardware is optimized to produce crystals within the limited time available on orbit. This often results in the actual nucleation and growth process being rushed or the system not coming to equilibrium within the limited time available. Longer duration hardware exists, but one cannot readily pick out crystals grown early versus those which nucleated and grew more slowly. We have devised a long duration apparatus, the Multi-chamber Dialysis Unit for Crystallization Kinetics, or McDUCK. This apparatus-is a series of protein chambers, stacked upon a precipitant reservoir chamber. All chambers are separated by a dialysis membrane, which serves to pass small molecules while retaining the protein. The volume of the Precipitant chamber is equal to the sum of the volumes of the protein chamber. In operation, the appropriate chambers are filled with precipitant solution or protein solution, and the McDUCK is placed standing upright, with the precipitant chamber on the bottom. The precipitant diffuses upwards over time, with the time to reach equilibration a function of the diffusivity of the precipitant and the overall length of the diffusion pathway. Typical equilibration times are approximately 2-4 months, and one can readily separate rapid from slow nucleation and growth crystals. An advantage on Earth is that the vertical precipitant concentration gradient dominates that of the solute, thus dampening out solute density gradient driven convective flows. However, large Earth-grown crystals have so far tended to be more two dimensional. Preliminary X-ray diffraction analysis of lysozyme crystals grown in McDUCK have indicated that the best, and largest, come from the middle chambers, suggesting that there is an optimal growth rate. Further, the improvements in diffraction resolution have been better signal to noise ratios in the low resolution data, not an increase in resolution overall. Due to the persistently large crystals grown we are currently proposing McDUCK for the growth of macromolecule crystals for use in neutron diffraction studies.
NASA Astrophysics Data System (ADS)
Joshi, Tirtha Raj
2016-10-01
Interspecies ion separation has been proposed as a yield-degradation mechanism in inertial-confinement-fusion (ICF) experiments. We present direct experimental evidence of interspecies ion separation in direct-drive ICF experiments performed at the OMEGA laser facility. These experiments were designed based on the fact that interspecies ion thermo-diffusion would be strongest for species with large mass and charge difference. The targets were spherical plastic shells filled with D2 and Ar (1% by atom). Ar K-shell spectral features were observed primarily between the time of first-shock convergence and slightly before neutron bang time, using a time- and space-integrated spectrometer, streaked crystal spectrometer, and two gated multi-monochromatic X-ray imagers fielded along quasi-orthogonal lines-of-sight. Detailed spectroscopic analyses of spatially resolved Ar K-shell lines reveal deviation from the initial 1%-Ar gas fill and show both Ar-concentration enhancement and depletion at different times and radial positions of the implosion. The experimental results are interpreted with radiation-hydrodynamic simulations that include recently implemented, first-principles models of interspecies ion diffusion. The experimentally inferred Ar-atom-fraction profiles agree gently with calculated profiles associated with the incoming and rebounding first shock. This work was done in collaboration with P. Hakel, S. C. Hsu, E. L. Vold, M. J. Schmitt, N. M. Hoffman, R. M. Rauenzahn, G. Kagan, X.-Z. Tang, Y. Kim, and H. W. Herrmann of LANL, and R. C. Mancini of UNR. LA-UR-16-24804. Supported by the LANL ICF and ASC Programs under US-DoE contract no. DE-AC52-06NA25396.
NASA Astrophysics Data System (ADS)
Martin-Belda, D.; Cameron, R. H.
2016-02-01
Aims: We aim to determine the effect of converging flows on the evolution of a bipolar magnetic region (BMR), and to investigate the role of these inflows in the generation of poloidal flux. We also discuss whether the flux dispersal due to turbulent flows can be described as a diffusion process. Methods: We developed a simple surface flux transport model based on point-like magnetic concentrations. We tracked the tilt angle, the magnetic flux and the axial dipole moment of a BMR in simulations with and without inflows and compared the results. To test the diffusion approximation, simulations of random walk dispersal of magnetic features were compared against the predictions of the diffusion treatment. Results: We confirm the validity of the diffusion approximation to describe flux dispersal on large scales. We find that the inflows enhance flux cancellation, but at the same time affect the latitudinal separation of the polarities of the bipolar region. In most cases the latitudinal separation is limited by the inflows, resulting in a reduction of the axial dipole moment of the BMR. However, when the initial tilt angle of the BMR is small, the inflows produce an increase in latitudinal separation that leads to an increase in the axial dipole moment in spite of the enhanced flux destruction. This can give rise to a tilt of the BMR even when the BMR was originally aligned parallel to the equator.
On the Rate of Relaxation for the Landau Kinetic Equation and Related Models
NASA Astrophysics Data System (ADS)
Bobylev, Alexander; Gamba, Irene M.; Zhang, Chenglong
2017-08-01
We study the rate of relaxation to equilibrium for Landau kinetic equation and some related models by considering the relatively simple case of radial solutions of the linear Landau-type equations. The well-known difficulty is that the evolution operator has no spectral gap, i.e. its spectrum is not separated from zero. Hence we do not expect purely exponential relaxation for large values of time t>0. One of the main goals of our work is to numerically identify the large time asymptotics for the relaxation to equilibrium. We recall the work of Strain and Guo (Arch Rat Mech Anal 187:287-339 2008, Commun Partial Differ Equ 31:17-429 2006), who rigorously show that the expected law of relaxation is \\exp (-ct^{2/3}) with some c > 0. In this manuscript, we find an heuristic way, performed by asymptotic methods, that finds this "law of two thirds", and then study this question numerically. More specifically, the linear Landau equation is approximated by a set of ODEs based on expansions in generalized Laguerre polynomials. We analyze the corresponding quadratic form and the solution of these ODEs in detail. It is shown that the solution has two different asymptotic stages for large values of time t and maximal order of polynomials N: the first one focus on intermediate asymptotics which agrees with the "law of two thirds" for moderately large values of time t and then the second one on absolute, purely exponential asymptotics for very large t, as expected for linear ODEs. We believe that appearance of intermediate asymptotics in finite dimensional approximations must be a generic behavior for different classes of equations in functional spaces (some PDEs, Boltzmann equations for soft potentials, etc.) and that our methods can be applied to related problems.
Riedewald, Frank; Goode, Kieran; Sexton, Aidan; Sousa-Gallagher, Maria J
2016-01-01
Every year about 1.5 billion tyres are discarded worldwide representing a large amount of solid waste, but also a largely untapped source of raw materials. The objective of the method was to prove the concept of a novel scrap tyre recycling process which uses molten zinc as the direct heat transfer fluid and, simultaneously, uses this media to separate the solids products (i.e. steel and rCB) in a sink-float separation at an operating temperature of 450-470 °C. This methodology involved: •construction of the laboratory scale batch reactor,•separation of floating rCB from the zinc,•recovery of the steel from the bottom of the reactor following pyrolysis.
Townes Group Activities from 1983-2000: Personal Recollections of William Danchi
NASA Technical Reports Server (NTRS)
Danchi, William C.
2015-01-01
I arrived in Berkeley in October 1983 as a post-doc, and my appointment was at the Space Sciences Laboratory (SSL). During that time the group was very large, with multiple activities led by Charlie himself and also by Senior Fellows such as John Lacy, Dan Jaffe, and Al Betz at the top of the hill at Space Sciences. Another significant contingent of the Townes group was housed in Birge Hall on campus, led by Reinhard Genzel when he was an Assistant Professor in the Physics Department. Although the group encompassed two separate locations, it functioned as one large group. Either we rode with Charlie up and down the hill, or (if we were concerned about our safety!) we took the bus.
Recent observations with phase-contrast x-ray computed tomography
NASA Astrophysics Data System (ADS)
Momose, Atsushi; Takeda, Tohoru; Itai, Yuji; Tu, Jinhong; Hirano, Keiichi
1999-09-01
Recent development in phase-contrast X-ray computed tomography using an X-ray interferometer is reported. To observe larger samples than is possible with our previous X-ray interferometer, a large monolithic X-ray interferometer and a separated-type X-ray interferometer were studied. At the present time, 2.5 cm X 1.5 cm interference patterns have been generated with the X-ray interferometers using synchrotron X-rays. The large monolithic X-ray interferometer has produced interference fringes with 80% visibility, and has been used to measure various tissues. To produce images with higher spatial resolution, we fabricated another X-ray interferometer whose wafer was partially thinned by chemical etching. A preliminary test suggested that the spatial resolution has been improved.
Guerrin, F; Dumas, J
2001-02-01
This paper describes a qualitative model of the functioning of salmon redds (spawning areas of salmon) and its impact on mortality rates of early stages. For this, we use Qsim, a qualitative simulator, which appeared adequate for representing available qualitative knowledge of freshwater ecology experts (see Part I of this paper). Since the number of relevant variables was relatively large, it appeared necessary to decompose the model into two parts, corresponding to processes occurring at separate time-scales. A qualitative clock allows us to submit the simulation of salmon developmental stages to the calculation of accumulated daily temperatures (degree-days), according to the clock ticks and a water temperature regime set by the user. Therefore, this introduces some way of real-time dating and duration in a purely qualitative model. Simulating both sub-models, either separately or by means of alternate transitions, allows us to generate the evolutions of variables of interest, such as the mortality rates according to two factors (flow of oxygenated water and plugging of gravel interstices near the bed surface), under various scenarios.
Non-ideal energy conversion during asymmetric magnetic reconnection with a moderate guide field
NASA Astrophysics Data System (ADS)
Genestreti, K. J.; Varsani, A.; Hesse, M.; Torbert, R. B.; Burch, J.; Cassak, P.; Ergun, R.; Phan, T.; Nakamura, R.; Giles, B. L.; Schwartz, S. J.; Wang, S.; Toledo Redondo, S.; Hwang, K. J.; Laignel, B.; Escoubet, C. P.; Fear, R. C.; Khotyaintsev, Y. V.
2017-12-01
Using data from NASA's Magnetospheric Multiscale (MMS) mission, we investigate the local (in time and space) rate of work done by the non-ideal electric field on the plasma during a crossing through the magnetopause reconnection region. The four MMS spacecraft were in a tight tetrahedral formation ( 7 km separation) and observed several ion and electron-scale signatures of asymmetric reconnection, one of which was J.E' (=J.(E+vexB))>0. The data indicate that the magnetic field was expending energy both (1) near the magnetosphere-side separator, where the current was carried by counter-streaming electrons with crescent-shaped velocity distribution functions, and (2) near the magnetic X-point, where the current was carried by accelerated inflowing magnetosheath electrons moving against the guide field. Near the X-point, the current-aligned portion of the non-ideal electric field is largely a result of electron pressure divergence. We further investigate the pressure tensor divergence, separating the components from in and out-of-the-plane gradients as well as gyrotropic and non-gyrotropic pressures.
NASA Astrophysics Data System (ADS)
Park, George Ilhwan; Moin, Parviz
2016-01-01
This paper focuses on numerical and practical aspects associated with a parallel implementation of a two-layer zonal wall model for large-eddy simulation (LES) of compressible wall-bounded turbulent flows on unstructured meshes. A zonal wall model based on the solution of unsteady three-dimensional Reynolds-averaged Navier-Stokes (RANS) equations on a separate near-wall grid is implemented in an unstructured, cell-centered finite-volume LES solver. The main challenge in its implementation is to couple two parallel, unstructured flow solvers for efficient boundary data communication and simultaneous time integrations. A coupling strategy with good load balancing and low processors underutilization is identified. Face mapping and interpolation procedures at the coupling interface are explained in detail. The method of manufactured solution is used for verifying the correct implementation of solver coupling, and parallel performance of the combined wall-modeled LES (WMLES) solver is investigated. The method has successfully been applied to several attached and separated flows, including a transitional flow over a flat plate and a separated flow over an airfoil at an angle of attack.
A wet/wet differential pressure sensor for measuring vertical hydraulic gradient.
Fritz, Brad G; Mackley, Rob D
2010-01-01
Vertical hydraulic gradient is commonly measured in rivers, lakes, and streams for studies of groundwater-surface water interaction. While a number of methods with subtle differences have been applied, these methods can generally be separated into two categories; measuring surface water elevation and pressure in the subsurface separately or making direct measurements of the head difference with a manometer. Making separate head measurements allows for the use of electronic pressure sensors, providing large datasets that are particularly useful when the vertical hydraulic gradient fluctuates over time. On the other hand, using a manometer-based method provides an easier and more rapid measurement with a simpler computation to calculate the vertical hydraulic gradient. In this study, we evaluated a wet/wet differential pressure sensor for use in measuring vertical hydraulic gradient. This approach combines the advantage of high-temporal frequency measurements obtained with instrumented piezometers with the simplicity and reduced potential for human-induced error obtained with a manometer board method. Our results showed that the wet/wet differential pressure sensor provided results comparable to more traditional methods, making it an acceptable method for future use.
Evolution of a phase separated gravity independent bioreactor
NASA Technical Reports Server (NTRS)
Villeneuve, Peter E.; Dunlop, Eric H.
1992-01-01
The evolution of a phase-separated gravity-independent bioreactor is described. The initial prototype, a zero head-space manifold silicone membrane based reactor, maintained large diffusional resistances. Obtaining oxygen transfer rates needed to support carbon-recycling aerobic microbes is impossible if large resistances are maintained. Next generation designs (Mark I and II) mimic heat exchanger design to promote turbulence at the tubing-liquid interface, thereby reducing liquid and gas side diffusional resistances. While oxygen transfer rates increased by a factor of ten, liquid channeling prevented further increases. To overcome these problems, a Mark III reactor was developed which maintains inverted phases, i.e., media flows inside the silicone tubing, oxygen gas is applied external to the tubing. This enhances design through changes in gas side driving force concentration and liquid side turbulence levels. Combining an applied external pressure of 4 atm with increased Reynolds numbers resulted in oxygen transfer intensities of 232 mmol O2/l per hr (1000 times greater than the first prototype and comparable to a conventional fermenter). A 1.0 liter Mark III reactor can potentially deliver oxygen supplies necessary to support cell cultures needed to recycle a 10-astronaut carbon load continuously.
Wente, Stephen P.
2004-01-01
Many Federal, Tribal, State, and local agencies monitor mercury in fish-tissue samples to identify sites with elevated fish-tissue mercury (fish-mercury) concentrations, track changes in fish-mercury concentrations over time, and produce fish-consumption advisories. Interpretation of such monitoring data commonly is impeded by difficulties in separating the effects of sample characteristics (species, tissues sampled, and sizes of fish) from the effects of spatial and temporal trends on fish-mercury concentrations. Without such a separation, variation in fish-mercury concentrations due to differences in the characteristics of samples collected over time or across space can be misattributed to temporal or spatial trends; and/or actual trends in fish-mercury concentration can be misattributed to differences in sample characteristics. This report describes a statistical model and national data set (31,813 samples) for calibrating the aforementioned statistical model that can separate spatiotemporal and sample characteristic effects in fish-mercury concentration data. This model could be useful for evaluating spatial and temporal trends in fishmercury concentrations and developing fish-consumption advisories. The observed fish-mercury concentration data and model predictions can be accessed, displayed geospatially, and downloaded via the World Wide Web (http://emmma.usgs.gov). This report and the associated web site may assist in the interpretation of large amounts of data from widespread fishmercury monitoring efforts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tippett, Michael K.
2014-04-09
This report is a progress report of the accomplishments of the research grant “Collaborative Research: Separating Forced and Unforced Decadal Predictability in Models and Observa- tions” during the period 1 May 2011- 31 August 2013. This project is a collaborative one between Columbia University and George Mason University. George Mason University will submit a final technical report at the conclusion of their no-cost extension. The purpose of the proposed research is to identify unforced predictable components on decadal time scales, distinguish these components from forced predictable components, and to assess the reliability of model predictions of these components. Components ofmore » unforced decadal predictability will be isolated by maximizing the Average Predictability Time (APT) in long, multimodel control runs from state-of-the-art climate models. Components with decadal predictability have large APT, so maximizing APT ensures that components with decadal predictability will be detected. Optimal fingerprinting techniques, as used in detection and attribution analysis, will be used to separate variations due to natural and anthropogenic forcing from those due to unforced decadal predictability. This methodology will be applied to the decadal hindcasts generated by the CMIP5 project to assess the reliability of model projections. The question of whether anthropogenic forcing changes decadal predictability, or gives rise to new forms of decadal predictability, also will be investigated.« less
Sultan, Mohammad M; Kiss, Gert; Shukla, Diwakar; Pande, Vijay S
2014-12-09
Given the large number of crystal structures and NMR ensembles that have been solved to date, classical molecular dynamics (MD) simulations have become powerful tools in the atomistic study of the kinetics and thermodynamics of biomolecular systems on ever increasing time scales. By virtue of the high-dimensional conformational state space that is explored, the interpretation of large-scale simulations faces difficulties not unlike those in the big data community. We address this challenge by introducing a method called clustering based feature selection (CB-FS) that employs a posterior analysis approach. It combines supervised machine learning (SML) and feature selection with Markov state models to automatically identify the relevant degrees of freedom that separate conformational states. We highlight the utility of the method in the evaluation of large-scale simulations and show that it can be used for the rapid and automated identification of relevant order parameters involved in the functional transitions of two exemplary cell-signaling proteins central to human disease states.
Climate and reproduction of grizzly bears in Yellowstone National Park
Picton, Harold D.
1978-01-01
Controversy surrounds the conflicts between the requirements of human safety and the preservation of grizzly bears (Ursus arctos horribilis) in western North America. It has been difficult to separate the effect of factors such as the closure of garbage dumps from that of the climate. It has also proved difficult to relate climatic data to changes in the populations of large mammals. I report here a correlation of climatic change with fluctuations in the sizes of litters of grizzly bears born in Yellowstone National Park, Wyoming, during 1958–1976. The decrease in litter sizes observed since the closure of garbage dumps seems to be largely a consequence of unfavourable weather during the periods of the final fattening of the mother, winter sleep, birth, lactation and early spring foraging. This study represents one of the few times that the effects of climate have been demonstrated for large omnivorous or carnivorous mammals.
Survivable pulse power space radiator
Mims, J.; Buden, D.; Williams, K.
1988-03-11
A thermal radiator system is described for use on an outer space vehicle, which must survive a long period of nonuse and then radiate large amounts of heat for a limited period of time. The radiator includes groups of radiator panels that are pivotally connected in tandem, so that they can be moved to deployed configuration wherein the panels lie largely coplanar, and to a stowed configuration wherein the panels lie in a stack to resist micrometerorite damage. The panels are mounted on a boom which separates a hot power source from a payload. While the panels are stowed, warm fluid passes through their arteries to keep them warm enough to maintain the coolant in a liquid state and avoid embrittlement of material. The panels can be stored in a largely cylindrical shell, with panels progressively further from the boom being of progressively shorter length. 5 figs.
Large-scale structure non-Gaussianities with modal methods
NASA Astrophysics Data System (ADS)
Schmittfull, Marcel
2016-10-01
Relying on a separable modal expansion of the bispectrum, the implementation of a fast estimator for the full bispectrum of a 3d particle distribution is presented. The computational cost of accurate bispectrum estimation is negligible relative to simulation evolution, so the bispectrum can be used as a standard diagnostic whenever the power spectrum is evaluated. As an application, the time evolution of gravitational and primordial dark matter bispectra was measured in a large suite of N-body simulations. The bispectrum shape changes characteristically when the cosmic web becomes dominated by filaments and halos, therefore providing a quantitative probe of 3d structure formation. Our measured bispectra are determined by ~ 50 coefficients, which can be used as fitting formulae in the nonlinear regime and for non-Gaussian initial conditions. We also compare the measured bispectra with predictions from the Effective Field Theory of Large Scale Structures (EFTofLSS).
ERIC Educational Resources Information Center
Haberman, Shelby J.
2009-01-01
A regression procedure is developed to link simultaneously a very large number of item response theory (IRT) parameter estimates obtained from a large number of test forms, where each form has been separately calibrated and where forms can be linked on a pairwise basis by means of common items. An application is made to forms in which a…
High Order Numerical Simulation of Waves Using Regular Grids and Non-conforming Interfaces
2013-10-06
SECURITY CLASSIFICATION OF: We study the propagation of waves over large regions of space with smooth, but not necessarily constant, material...of space with smooth, but not necessarily constant, material characteristics, separated into sub-domains by interfaces of arbitrary shape. We...Abstract We study the propagation of waves over large regions of space with smooth, but not necessarily constant, material characteristics, separated into
NASA Astrophysics Data System (ADS)
Christiansen, E. H.
2016-12-01
Simple models describing silicic magma reservoirs and their connections with volcanic rocks have been denigrated as "big red blobs" and "balloons-and-soda straws." Although these models are certainly generalized to convey complex relations, there are multiple reasons to accept the existence of large magma chambers and direct connections between volcanoes and plutonic rocks. These include:-Geophysical evidence (seismic, magnetotelluric, and geodetic) for the existence of large bodies of magma in the crust today. Magma is a mixture of liquids, solids, and fluids. It does not have to be melt rich, nor does it need to be mobile and eruptible; it just has to have melt present. -Eruptions of large volumes (>1,000 km3) of dacitic to rhyolitic magma and large collapse calderas (30-50 km across). -The thermal lifetimes of large bodies are extended by high recharge rates. Individual bodies of magma may exist for tens to hundreds of thousands of years.-Geochronological evidence that pluton lifetimes are similar to those of volcanic fields.-Evidence for incremental emplacement of a pluton is not evidence against the former existence of a large magma reservoir, but the natural consequence of ongoing replenishment and crystallization after eruptions cease. Thus, what might have been a large liquid-dominated system at the time of eruption of a large ignimbrite, is subsequently intruded by new batches of magma as it crystallizes and closes down. This destroys the evidence for a large red blob and creates a composite pluton. -Direct and indirect evidence connect plutons to large eruptions. This is shown by field relations, geochronology, as well as chemical, mineralogical, and isotopic similarities of volcanic and plutonic rocks. -Volcanic and plutonic differentiation patterns are very similar, but differ in some ways because cumulates are preserved in the plutonic record and because intrusions continue to differentiate (liquids separate from solids) until the last bit of liquid is consumed. Highly evolved liquids are present in the volcanic record, but are less common than in intrusions. Most plutonic rocks appear to be mixtures of cumulate minerals and interstitial melt unable to separate from the coarsening mush.
Liquid/Gas Separator Handles Varying Loads
NASA Technical Reports Server (NTRS)
Mann, John
1992-01-01
Liquid/gas separator includes two independent motors, one for pumping mixture and other for drawing off extracted gas. Two materials moved at speeds best suited for them. Liquid expelled radially outward from separator rotor. Entrained gas released, flows axially through rotor, and leaves through fan at downstream end. Unit developed to separate air from urine in spacecraft wastewater-treatment system, also functions in normal gravity. Made largely of titanium to resist corrosion.
Micro-Macro Coupling in Plasma Self-Organization Processes during Island Coalescence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wan Weigang; Lapenta, Giovanni; Centrum voor Plasma-Astrofysica, Departement Wiskunde, Katholieke Universiteit Leuven, Celestijnenlaan 200B, 3001 Leuven
The collisionless island coalescence process is studied with particle-in-cell simulations, as an internal-driven magnetic self-organization scenario. The macroscopic relaxation time, corresponding to the total time required for the coalescence to complete, is found to depend crucially on the scale of the system. For small-scale systems, where the macroscopic scales and the dissipation scales are more tightly coupled, the relaxation time is independent of the strength of the internal driving force: the small-scale processes of magnetic reconnection adjust to the amount of the initial magnetic flux to be reconnected, indicating that at the microscopic scales reconnection is enslaved by the macroscopicmore » drive. However, for large-scale systems, where the micro-macro scale separation is larger, the relaxation time becomes dependent on the driving force.« less
Time-synchronized continuous wave laser-induced fluorescence on an oscillatory xenon discharge.
MacDonald, N A; Cappelli, M A; Hargus, W A
2012-11-01
A novel approach to time-synchronizing laser-induced fluorescence measurements to an oscillating current in a 60 Hz xenon discharge lamp using a continuous wave laser is presented. A sample-hold circuit is implemented to separate out signals at different phases along a current cycle, and is followed by a lock-in amplifier to pull out the resulting time-synchronized fluorescence trace from the large background signal. The time evolution of lower state population is derived from the changes in intensity of the fluorescence excitation line shape resulting from laser-induced fluorescence measurements of the 6s(')[1/2](1)(0)-6p(')[3/2](2) xenon atomic transition at λ = 834.68 nm. Results show that the lower state population oscillates at twice the frequency of the discharge current, 120 Hz.
Tada, Shigeru
2015-01-01
The analysis of cell separation has many important biological and medical applications. Dielectrophoresis (DEP) is one of the most effective and widely used techniques for separating and identifying biological species. In the present study, a DEP flow channel, a device that exploits the differences in the dielectric properties of cells in cell separation, was numerically simulated and its cell-separation performance examined. The samples of cells used in the simulation were modeled as human leukocyte (B cell) live and dead cells. The cell-separation analysis was carried out for a flow channel equipped with a planar electrode on the channel's top face and a pair of interdigitated counter electrodes on the bottom. This yielded a three-dimensional (3D) nonuniform AC electric field in the entire space of the flow channel. To investigate the optimal separation conditions for mixtures of live and dead cells, the strength of the applied electric field was varied. With appropriately selected conditions, the device was predicted to be very effective at separating dead cells from live cells. The major advantage of the proposed method is that a large volume of sample can be processed rapidly because of a large spacing of the channel height.
Long-term implications of observing an expanding cosmological civilization
NASA Astrophysics Data System (ADS)
Olson, S. Jay
2018-01-01
Suppose that advanced civilizations, separated by a cosmological distance and time, wish to maximize their access to cosmic resources by rapidly expanding into the universe. How does the presence of one limit the expansionistic ambitions of another, and what sort of boundary forms between their expanding domains? We describe a general scenario for any expansion speed, separation distance and time. We then specialize to a question of particular interest: What are the future prospects for a young and ambitious civilization if they can observe the presence of another at a cosmological distance? We treat cases involving the observation of one or two expanding domains. In the single-observation case, we find that almost any plausible detection will limit one's future cosmic expansion to some extent. Also, practical technological limits to expansion speed (well below the speed of light) play an interesting role. If a domain is visible at the time one embarks on cosmic expansion, higher practical limits to expansion speed are beneficial only up to a certain point. Beyond this point, a higher speed limit means that gains in the ability to expand are more than offset by the first-mover advantage of the observed domain. In the case of two visible domains, it is possible to be `trapped' by them if the practical speed limit is high enough and their angular separation in the sky is large enough, i.e. one's expansion in any direction will terminate at a boundary with the two visible civilizations. Detection at an extreme cosmological distance has surprisingly little mitigating effect on our conclusions.
African-American/Afro-Canadian Schooling: From the Colonial Period to the Present
ERIC Educational Resources Information Center
Glenn, Charles L.
2011-01-01
Tracing the history of black schooling in North America, this book emphasizes factors in society at large--and sometimes within black communities--which led to black children being separate from the white majority. This separation was continued and reinforced as efforts by European immigrants to provide separate Catholic, Lutheran, and Calvinist…
Separation as an Important Risk Factor for Suicide: A Systematic Review
ERIC Educational Resources Information Center
Ide, Naoko; Wyder, Marianne; Kolves, Kairi; De Leo, Diego
2010-01-01
Examining how different phases of relationship separation effects the development of suicidal behaviors has been largely ignored in suicide studies. The few studies conducted suggest that individuals experiencing the acute phase of marital/de facto separation may be at greater risk of suicide compared with those experiencing long-term separation…
Ethnic Variations in the Connection between Work-Induced Family Separation and Turnover Intent
ERIC Educational Resources Information Center
Behnke, Andrew O.; MacDermid, Shelley M.; Anderson, James C.; Weiss, Howard M.
2010-01-01
Using conservation of resources theory, this study examines the role of resources in the relationship between work-induced family separation and workers' intentions to leave their employment and how these relationships vary across ethnic groups. Analyses of a large representative sample of military members reveal that family separation is…
Core-shell TiO2@ZnO nanorods for efficient ultraviolet photodetection.
Panigrahi, Shrabani; Basak, Durga
2011-05-01
Core-shell TiO(2)@ZnO nanorods (NRs) have been fabricated by a simple two step method: growth of ZnO NRs' array by an aqueous chemical technique and then coating of the NRs with a solution of titanium isopropoxide [Ti(OC(3)H(7))(4)] followed by a heating step to form the shell. The core-shell nanocomposites are composed of single-crystalline ZnO NRs, coated with a thin TiO(2) shell layer obtained by varying the number of coatings (one, three and five times). The ultraviolet (UV) emission intensity of the nanocomposite is largely quenched due to an efficient electron-hole separation reducing the band-to-band recombinations. The UV photoconductivity of the core-shell structure with three times TiO(2) coating has been largely enhanced due to photoelectron transfer between the core and the shell. The UV photosensitivity of the nanocomposite becomes four times larger while the photocurrent decay during steady UV illumination has been decreased almost by 7 times compared to the as-grown ZnO NRs indicating high efficiency of these core-shell structures as UV sensors. © The Royal Society of Chemistry 2011
Coordinated platooning with multiple speeds
Luo, Fengqiao; Larson, Jeffrey; Munson, Todd
2018-03-22
In a platoon, vehicles travel one after another with small intervehicle distances; trailing vehicles in a platoon save fuel because they experience less aerodynamic drag. This work presents a coordinated platooning model with multiple speed options that integrates scheduling, routing, speed selection, and platoon formation/dissolution in a mixed-integer linear program that minimizes the total fuel consumed by a set of vehicles while traveling between their respective origins and destinations. The performance of this model is numerically tested on a grid network and the Chicago-area highway network. We find that the fuel-savings factor of a multivehicle system significantly depends on themore » time each vehicle is allowed to stay in the network; this time affects vehicles’ available speed choices, possible routes, and the amount of time for coordinating platoon formation. For problem instances with a large number of vehicles, we propose and test a heuristic decomposed approach that applies a clustering algorithm to partition the set of vehicles and then routes each group separately. When the set of vehicles is large and the available computational time is small, the decomposed approach finds significantly better solutions than does the full model.« less
Coordinated platooning with multiple speeds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luo, Fengqiao; Larson, Jeffrey; Munson, Todd
In a platoon, vehicles travel one after another with small intervehicle distances; trailing vehicles in a platoon save fuel because they experience less aerodynamic drag. This work presents a coordinated platooning model with multiple speed options that integrates scheduling, routing, speed selection, and platoon formation/dissolution in a mixed-integer linear program that minimizes the total fuel consumed by a set of vehicles while traveling between their respective origins and destinations. The performance of this model is numerically tested on a grid network and the Chicago-area highway network. We find that the fuel-savings factor of a multivehicle system significantly depends on themore » time each vehicle is allowed to stay in the network; this time affects vehicles’ available speed choices, possible routes, and the amount of time for coordinating platoon formation. For problem instances with a large number of vehicles, we propose and test a heuristic decomposed approach that applies a clustering algorithm to partition the set of vehicles and then routes each group separately. When the set of vehicles is large and the available computational time is small, the decomposed approach finds significantly better solutions than does the full model.« less
Optimizing agent-based transmission models for infectious diseases.
Willem, Lander; Stijven, Sean; Tijskens, Engelbert; Beutels, Philippe; Hens, Niel; Broeckhove, Jan
2015-06-02
Infectious disease modeling and computational power have evolved such that large-scale agent-based models (ABMs) have become feasible. However, the increasing hardware complexity requires adapted software designs to achieve the full potential of current high-performance workstations. We have found large performance differences with a discrete-time ABM for close-contact disease transmission due to data locality. Sorting the population according to the social contact clusters reduced simulation time by a factor of two. Data locality and model performance can also be improved by storing person attributes separately instead of using person objects. Next, decreasing the number of operations by sorting people by health status before processing disease transmission has also a large impact on model performance. Depending of the clinical attack rate, target population and computer hardware, the introduction of the sort phase decreased the run time from 26% up to more than 70%. We have investigated the application of parallel programming techniques and found that the speedup is significant but it drops quickly with the number of cores. We observed that the effect of scheduling and workload chunk size is model specific and can make a large difference. Investment in performance optimization of ABM simulator code can lead to significant run time reductions. The key steps are straightforward: the data structure for the population and sorting people on health status before effecting disease propagation. We believe these conclusions to be valid for a wide range of infectious disease ABMs. We recommend that future studies evaluate the impact of data management, algorithmic procedures and parallelization on model performance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Voelker, Gary; Arnold, John
The objective of this project was to improve the safety of operation of Lithium ion batteries (LIB)and at the same time significantly reduce the manufacturing cost of LIB separators. The project was very successful in demonstrating the improved performance and reduced cost attributed to using UV curable binder and high speed printing technology to place a very thin and precisely controlled ceramic layer on the surface of base separators made of polyolefins such as Polyethylene, Polypropylene and combinations of the two as well as cellulosic base separators. The underlying need for this new technology is the recently identified potential ofmore » fire in large format Lithium ion batteries used in hybrid, plug-in hybrid and electric vehicles. The primary potential cause of battery fire is thermal runaway caused by several different electrical or mechanical mechanisms; such as, overcharge, puncture, overheating, compaction, and internal short circuit. During thermal runaway, the ideal separator prevents ion flow and continues to physically separate the anode from the cathode. If the temperature of the battery gets higher, the separator may melt and partially clog the pores and help prevent ion flows but it also can shrink which can result in physical contact of the electrodes and accelerate thermal run-away even further. Ceramic coated separators eliminate many of the problems related to the usage of traditional separators. The ceramic coating provides an electrically insulating layer that retains its physical integrity at high temperature, allows for more efficient thermal heat transfer, helps reduce thermal shrinkage, and inhibits dendrite growth that could create a potential short circuit. The use of Ultraviolet (UV) chemistry to bind fine ceramic particles on separators is a unique and innovative approach primarily because of the instant curing of the UV curable binder upon exposure to UV light. This significant reduction in drying/curing time significantly reduces the cost of a ceramic coating. Another innovation is high precision, high speed, printing techniques that can apply a unique pattern of ceramic particles on base separators. The pattern will maximize ionic conductivity and minimize ceramic coating weight and thickness, while retaining the benefits of increased puncture strength, reduced thermal shrinkage and no decomposition. This project has met all of its goals and has been successfully completed. This successful completion has enabled Miltec UV to take the final steps leading to the commercialization of an innovative technology that will result in ceramic coated separators that can be manufactured and sold from the US, with increased production capacity, reduced cost, and improved battery safety.« less
Franciò, Giancarlo; Hintermair, Ulrich; Leitner, Walter
2015-01-01
Solution-phase catalysis using molecular transition metal complexes is an extremely powerful tool for chemical synthesis and a key technology for sustainable manufacturing. However, as the reaction complexity and thermal sensitivity of the catalytic system increase, engineering challenges associated with product separation and catalyst recovery can override the value of the product. This persistent downstream issue often renders industrial exploitation of homogeneous catalysis uneconomical despite impressive batch performance of the catalyst. In this regard, continuous-flow systems that allow steady-state homogeneous turnover in a stationary liquid phase while at the same time effecting integrated product separation at mild process temperatures represent a particularly attractive scenario. While continuous-flow processing is a standard procedure for large volume manufacturing, capitalizing on its potential in the realm of the molecular complexity of organic synthesis is still an emerging area that requires innovative solutions. Here we highlight some recent developments which have succeeded in realizing such systems by the combination of near- and supercritical fluids with homogeneous catalysts in supported liquid phases. The cases discussed exemplify how all three levels of continuous-flow homogeneous catalysis (catalyst system, separation strategy, process scheme) must be matched to locate viable process conditions. PMID:26574523
Describing long-range charge-separation processes with subsystem density-functional theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Solovyeva, Alisa; Neugebauer, Johannes, E-mail: j.neugebauer@uni-muenster.de; Pavanello, Michele, E-mail: m.pavanello@rutgers.edu
2014-04-28
Long-range charge-transfer processes in extended systems are difficult to describe with quantum chemical methods. In particular, cost-effective (non-hybrid) approximations within time-dependent density functional theory (DFT) are not applicable unless special precautions are taken. Here, we show that the efficient subsystem DFT can be employed as a constrained DFT variant to describe the energetics of long-range charge-separation processes. A formal analysis of the energy components in subsystem DFT for such excitation energies is presented, which demonstrates that both the distance dependence and the long-range limit are correctly described. In addition, electronic couplings for these processes as needed for rate constants inmore » Marcus theory can be obtained from this method. It is shown that the electronic structure of charge-separated states constructed by a positively charged subsystem interacting with a negatively charged one is difficult to converge — charge leaking from the negative subsystem to the positive one can occur. This problem is related to the delocalization error in DFT and can be overcome with asymptotically correct exchange–correlation (XC) potentials or XC potentials including a sufficiently large amount of exact exchange. We also outline an approximate way to obtain charge-transfer couplings between locally excited and charge-separated states.« less
Franciò, Giancarlo; Hintermair, Ulrich; Leitner, Walter
2015-12-28
Solution-phase catalysis using molecular transition metal complexes is an extremely powerful tool for chemical synthesis and a key technology for sustainable manufacturing. However, as the reaction complexity and thermal sensitivity of the catalytic system increase, engineering challenges associated with product separation and catalyst recovery can override the value of the product. This persistent downstream issue often renders industrial exploitation of homogeneous catalysis uneconomical despite impressive batch performance of the catalyst. In this regard, continuous-flow systems that allow steady-state homogeneous turnover in a stationary liquid phase while at the same time effecting integrated product separation at mild process temperatures represent a particularly attractive scenario. While continuous-flow processing is a standard procedure for large volume manufacturing, capitalizing on its potential in the realm of the molecular complexity of organic synthesis is still an emerging area that requires innovative solutions. Here we highlight some recent developments which have succeeded in realizing such systems by the combination of near- and supercritical fluids with homogeneous catalysts in supported liquid phases. The cases discussed exemplify how all three levels of continuous-flow homogeneous catalysis (catalyst system, separation strategy, process scheme) must be matched to locate viable process conditions. © 2015 The Authors.
Huang, Yanfei; Han, Yatao; Chen, Keli; Huang, Bisheng; Liu, Yuan
2015-12-01
Flavonoids are the main components of Meconopsis integrifolia (Maxim.) Franch, which is a traditional Tibetan medicine. However, traditional chromatography separation requires a large quantity of raw M. integrifolia and is very time consuming. Herein, we applied high-speed counter-current chromatography in the separation and purification of flavonoids from the ethanol extracts of M. integrifolia flower. Ethyl acetate/n-butanol/water (2:3:5, v/v/v) was selected as the optimum solvent system to purify the four components, namely quercetin-3-O-β-d-glucopyrannosy-(1→6)-β-d-glucopyranoside (compound 1, 60 mg), quercetin 3-O-[2'''-O-acetyl-β-d-glucopyranosyl-(1→6)-β-d-glucopyranoside (compound 2, 40 mg), quercetin 3-O-[3'''-O-acetyl-β-d-glucopyranosyl-(1→6)-β-d-glucopyranoside (compound 3, 11 mg), and quercetin 3-O-[6'''-O-acetyl-β-d-glucopyranosyl-(1→6)-β-d-glucopyranoside (compound 4, 16 mg). Among the four compounds, 3 and 4 were new acetylated flavonol diglucosides. After the high-speed counter-current chromatography separation, the purities of the four flavonol diglucosides were 98, 95, 90, and 92%, respectively. The structures of these compounds were identified by mass spectrometry and NMR spectroscopy. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Feasibility of Higher-Order Differential Ion Mobility Separations Using New Asymmetric Waveforms
Shvartsburg, Alexandre A.; Mashkevich, Stefan V.; Smith, Richard D.
2011-01-01
Technologies for separating and characterizing ions based on their transport properties in gases have been around for three decades. The early method of ion mobility spectrometry (IMS) distinguished ions by absolute mobility that depends on the collision cross section with buffer gas atoms. The more recent technique of field asymmetric waveform IMS (FAIMS) measures the difference between mobilities at high and low electric fields. Coupling IMS and FAIMS to soft ionization sources and mass spectrometry (MS) has greatly expanded their utility, enabling new applications in biomedical and nanomaterials research. Here, we show that time-dependent electric fields comprising more than two intensity levels could, in principle, effect an infinite number of distinct differential separations based on the higher-order terms of expression for ion mobility. These analyses could employ the hardware and operational procedures similar to those utilized in FAIMS. Methods up to the 4th or 5th order (where conventional IMS is 1st order and FAIMS is 2nd order) should be practical at field intensities accessible in ambient air, with still higher orders potentially achievable in insulating gases. Available experimental data suggest that higher-order separations should be largely orthogonal to each other and to FAIMS, IMS, and MS. PMID:16494377
Heat and Bleach: A Cost-Efficient Method for Extracting Microplastics from Return Activated Sludge.
Sujathan, Surya; Kniggendorf, Ann-Kathrin; Kumar, Arun; Roth, Bernhard; Rosenwinkel, Karl-Heinz; Nogueira, Regina
2017-11-01
The extraction of plastic microparticles, so-called microplastics, from sludge is a challenging task due to the complex, highly organic material often interspersed with other benign microparticles. The current procedures for microplastic extraction from sludge are time consuming and require expensive reagents for density separation as well as large volumes of oxidizing agents for organic removal, often resulting in tiny sample sizes and thus a disproportional risk of sample bias. In this work, we present an improved extraction method tested on return activated sludge (RAS). The treatment of 100 ml of RAS requires only 6% hydrogen peroxide (H 2 O 2 ) for bleaching at 70 °C, followed by density separation with sodium nitrate/sodium thiosulfate (SNT) solution, and is completed within 24 h. Extracted particles of all sizes were chemically analyzed with confocal Raman microscopy. An extraction efficiency of 78 ± 8% for plastic particle sizes 20 µm and up was confirmed in a recovery experiment. However, glass shards with a diameter of less than 20 µm remained in the sample despite the density of glass exceeding the density of the separating SNT solution by 1.1 g/cm 3 . This indicates that density separation may be unreliable for particle sizes in the lower micrometer range.
NASA Astrophysics Data System (ADS)
Bedford, J. R.; Moreno, M.; Oncken, O.; Li, S.; Schurr, B.; Metzger, S.; Baez, J. C.; Deng, Z.; Melnick, D.
2016-12-01
Various algorithms for the detection of transient deformation in cGPS networks are under currently being developed to relieve us of by-eye detection, which is an error prone and time-expensive activity. Such algorithms aim to separate the time series into secular, seasonal, and transient components. Additional white and coloured noise, as well as common-mode (network correlated) noise, may remain in the separated transient component of the signal, depending on the processing flow before the separation step. The a-priori knowledge of regional seismicity can assist in the recognition of steps in the data, which are generally corrected for if they are above the noise-floor. Sometimes, the cumulative displacement caused by small earthquakes can create a seemingly continuous transient signal in the cGPS leading to confusion as to whether to attribute this transient motion as seismic or aseismic. Here we demonstrate the efficacy of various transient detection algorithms for subsets of the Chilean cGPS network and present the optimal processing flow for teasing out the transients. We present a step-detection and removal algorithm and estimate the seismic efficiency of any detected transient signals by forward modelling the surface displacements of the earthquakes and comparing to the recovered transient signals. A major challenge in separating signals in the Chilean cGPS network is the overlapping of postseismic effects at adjacent segments: For example, a Mw 9 earthquake will produce a postseismic viscoelastic relaxation that is sustained over decades and several hundreds of kilometres. Additionally, it has been observed in Chile and Japan that following moderately large earthquakes (e.g. Mw > 8) the secular velocities of adjacent segments in the subduction margin suddenly change and remain changed: this effect may be related to a change in speed of slab subduction rather than viscoelastic relaxation, and therefore the signal separation algorithms that assume a time-independent secular velocity at each station may need to be revised to account for this effect. Accordingly, we categorize the recovered separated secular and transient signals of a particular station in terms of the seismic cycle in both its own and adjacent segments and discuss the appropriate modelling strategy for this station given its category.
1994-07-01
Photo Artwork composite by JPL This depiction of comet Shoemaker-Levy 9 impacting Jupiter is shown from several perspectives. IMAGE C is shown from the Voyager 2 spacecraft, which may observe the event from its unique position at the outer reaches of the solar system. For visual appeal, most of the large cometary fragments are shown close to one another in this image. At the time of Jupiter impact, the fragments will be separated from one another by serveral times the distances shown. This image was created by D.A. Seal of JPL's Mission Design Section using orbital computations provIded by P.W. Chodas and D.K. Yeomans of JPL's Navigation Section.
NASA Technical Reports Server (NTRS)
Bivolaru, Daniel (Inventor); Cutler, Andrew D. (Inventor); Danehy, Paul M. (Inventor)
2015-01-01
A system that simultaneously measures the translational temperature, bulk velocity, and density in gases by collecting, referencing, and analyzing nanosecond time-scale Rayleigh scattered light from molecules is described. A narrow-band pulsed laser source is used to probe two largely separated measurement locations, one of which is used for reference. The elastically scattered photons containing information from both measurement locations are collected at the same time and analyzed spectrally using a planar Fabry-Perot interferometer. A practical means of referencing the measurement of velocity using the laser frequency, and the density and temperature using the information from the reference measurement location maintained at constant properties is provided.
Ueda, Keisuke; Higashi, Kenjirou; Moribe, Kunikazu
2017-07-03
We investigated the phase separation behavior and maintenance mechanism of the supersaturated state of poorly water-soluble nifedipine (NIF) in hypromellose (HPMC) derivative solutions. Highly supersaturated NIF formed NIF-rich nanodroplets through phase separation from aqueous solution containing HPMC derivative. Dissolvable NIF concentration in the bulk water phase was limited by the phase separation of NIF from the aqueous solution. HPMC derivatives stabilized the NIF-rich nanodroplets and maintained the NIF supersaturation with phase-separated NIF for several hours. The size of the NIF-rich phase was different depending on the HPMC derivatives dissolved in aqueous solution, although the droplet size had no correlation with the time for which NIF supersaturation was maintained without NIF crystallization. HPMC acetate and HPMC acetate succinate (HPMC-AS) effectively maintained the NIF supersaturation containing phase-separated NIF compared with HPMC. Furthermore, HPMC-AS stabilized NIF supersaturation more effectively in acidic conditions. Solution 1 H NMR measurements of NIF-supersaturated solution revealed that HPMC derivatives distributed into the NIF-rich phase during the phase separation of NIF from the aqueous solution. The hydrophobicity of HPMC derivative strongly affected its distribution into the NIF-rich phase. Moreover, the distribution of HPMC-AS into the NIF-rich phase was promoted at lower pH due to the lower aqueous solubility of HPMC-AS. The distribution of a large amount of HPMC derivatives into NIF-rich phase induced the strong inhibition of NIF crystallization from the NIF-rich phase. Polymer distribution into the drug-rich phase directly monitored by solution NMR technique can be a useful index for the stabilization efficiency of drug-supersaturated solution containing a drug-rich phase.
Erny, Guillaume L; Simó, Carolina; Cifuentes, Alejandro; Esteves, Valdemar I
2014-02-21
In separation techniques hyphenated to mass spectrometry (MS) the bulk from the separation step is continuously flowing into the mass spectrometer where the compounds, arriving at each separation time, are ionized and further separated based on their m/z ratio. An MS detector is recognized as being a universal detector, although it can also be a very selective instrument. In spite of these advantages, classical two dimensional representations from these hyphenated systems, such as those based on the base peak of electropherogram/chromatogram or on the total ion of electropherogram/chromatogram, usually hide a large number of features that if correctly assessed will show the presence of co-migrating species and/or the low abundant ones. The uses of peak picking algorithms to detect and measure as many peaks as possible from a dataset allow extracting much more information. However, a single migrating compound usually produces a multiplicity of ions, making difficult to differentiate peaks generated by the same compound from other peaks due e.g., to closely co-migrating/eluting species. In this work, a new representation is proposed and its usefulness demonstrated with experimental data from capillary electrophoresis-hyphenated to a time of flight mass spectrometer via an electrospray interface. This representation, called centergram, is obtained after using a peak picking methodology that detects electrophoretic peaks of single ions and measure their positions. The centergram is the histogram (i.e. the count of the number of observations that fall into each one of the intervals, known as bins, as determined by the user) of the measured positions. The intensity of the bars in this histogram will indicate the amount of peaks in the whole dataset whose centers are within each interval. As a compound that has been separated and has entered the MS instrument will produce multiple images at the same position along the m/z dimension, the centergram will exhibit a series of intense bars around the migration time. Those bars will allow defining a centergram peak whose area will be proportional to the number of different types of ions that have been generated in the ionization chamber, the position will be equal to the migration/retention time of the parent compounds and the width will depend on the precision in the measurement of the peak positions. The efficiency of this peak is determined to be up to thirty times higher than the equivalent peak in the classical base peak electropherogram allowing detecting easily co-migrating peaks or the presence of compounds at very low abundance. The number of peaks detected by using this new tool called centergram was increased by more than a factor of 3 compared to the standard representations. Copyright © 2014 Elsevier B.V. All rights reserved.
Active Flow Control and Global Stability Analysis of Separated Flow Over a NACA 0012 Airfoil
NASA Astrophysics Data System (ADS)
Munday, Phillip M.
The objective of this computational study is to examine and quantify the influence of fundamental flow control inputs in suppressing flow separation over a canonical airfoil. Most flow control studies to this date have relied on the development of actuator technology, and described the control input based on specific actuators. Taking advantage of a computational framework, we generalize the inputs to fundamental perturbations without restricting inputs to a particular actuator. Utilizing this viewpoint, generalized control inputs aim to aid in the quantification and support the design of separation control techniques. This study in particular independently introduces wall-normal momentum and angular momentum to the separated flow using swirling jets through model boundary conditions. The response of the flow field and the surface vorticity fluxes to various combinations of actuation inputs are examined in detail. By closely studying different variables, the influence of the wall-normal and angular momentum injections on separated flow is identified. As an example, open-loop control of fully separated, incompressible flow over a NACA 0012 airfoil at alpha = 6° and 9° with Re = 23,000 is examined with large-eddy simulations. For the shallow angle of attack alpha = 6°, the small recirculation region is primarily affected by wall-normal momentum injection. For a larger separation region at alpha = 9°, it is observed that the addition of angular momentum input to wall-normal momentum injection enhances the suppression of flow separation. Reducing the size of the separated flow region significantly impacts the forces, and in particular reduces drag and increases lift on the airfoil. It was found that the influence of flow control on the small recirculation region (alpha = 6°) can be sufficiently quantified with the traditional coefficient of momentum. At alpha = 9°, the effects of wall-normal and angular momentum inputs are captured by modifying the standard definition of the coefficient of momentum, which successfully characterizes suppression of separation and lift enhancement. The effect of angular momentum is incorporated into the modified coefficient of momentum by introducing a characteristic swirling jet velocity based on the non-dimensional swirl number. With the modified coefficient of momentum, this single value is able to categorize controlled flows into separated, transitional, and attached flows. With inadequate control input (separated flow regime), lift decreased compared to the baseline flow. Increasing the modified coefficient of momentum, flow transitions from separated to attached and accordingly results in improved aerodynamic forces. Modifying the spanwise spacing, it is shown that the minimum modified coefficient of momentum input required to begin transitioning the flow is dependent on actuator spacing. The growth (or decay) of perturbations can facilitate or inhibit the influence of flow control inputs. Biglobal stability analysis is considered to further analyze the behavior of control inputs on separated flow over a symmetric airfoil. Assuming a spanwise periodic waveform for the perturbations, the eigenvalues and eigenvectors about a base flow are solved to understand the influence of spanwise variation on the development of the flow. Two algorithms are developed and validated to solve for the eigenvalues of the flow: an algebraic eigenvalue solver (matrix based) and a time-stepping algorithm. The matrix based approach is formulated without ever storing the matrices, creating a computationally memory efficient algorithm. Increasing the Reynolds number to Re = 23,000 over a NACA 0012 airfoil, the time-stepper method is implemented due to rising computational cost of the matrix-based method. Stability analysis about the time-averaged flow is performed for spanwise wavenumbers of beta = 1/c, 10pi/ c and 20pi/c, which the latter two wavenumbers are representative of the spanwise spacing between the actuators. The largest spanwise wavelength (beta = 1/c) contained unstable modes that ranged from low to high frequency, and a particular unstable low-frequency mode corresponding to a frequency observed in the lift forces of the baseline large-eddy simulation. For the larger spanwise wavenumbers, beta = 10pi/ c (Lz/c = 0.2) and 20pi/c (Lz/c = 0.1), low-frequency modes were damped and only modes with f > 5were unstable. These results help us gain further insight into the influence of the flow control inputs. In conclusion, it was shown that the influence of wall-normal and angular momentum inputs on fully separated flow can adequately be described by the modified coefficient of momentum. Through further analysis and the development of a biglobal stability solver, spanwise spacing effects observed in the flow control study can be explained. The findings from this study should aid in the development of more intelligently designed flow control strategies and provide guidance in the selection of flow control actuators.
The solubility of gallium oxide in vapor and two-phase fluid filtration in hydrothermal systems
NASA Astrophysics Data System (ADS)
Bychkov, Andrew; Matveeva, Svetlana; Nekrasov, Stanislav
2010-05-01
The solubility of gallium and aluminum oxides in gas phase in the system Ga2O3 (Al2O3)-HCl-H2O was studied at 150-350°C and pressure up to saturated vapor. The concentration of gallium increases with the increasing of HCl pressure. The formulae of gallium gaseous specie was determined as GaOHCl2. The constant of gallium oxide solubility reaction was calculated at 150, 200, 250, 300 and 350°C. The concentration of aluminum in gas phase is insignificant in the same conditions. The possibility of gallium transportation in gas phase with small quantity of Al allow to divide this elements in hydrothermal processes with gas phase. The Ga/Al ratio in muscovite can be used as the indicator of gas phase separation and condensation. This indicator was not considered in the geochemical literature earlier. The separation of gas and liquid phases was determined in Akchatau (Kazahstan) and Spokoinoe (Russia) greisen W deposit by carbon isotope fractionation of carbon dioxide in fluid inclusion. The important feature of both ore mains is heterogenization and boiling of ore-forming fluids. Greisen ore bodies are formed as a result of strongly focused solution flow in the T-P gradient fields. It is possible to divide ore bodies of Akchatau in two types: muscovite and quartz. Muscovite type veins are thin and have small metasyntactic zone. Quartz type veins are localized in fault with large vertical extent (500 m) and content the large quantity of wolframite. These veins formed in condition of significant pressure decreasing from 2.5 to 0.5 kbar with fluid boiling. Gas and liquid phase separation specifies the vertical zonality of quartz type veins. The gas phase with the high gallium concentration is separated from a flow of liquid phase. Liquid phase react with the granites forming greisen metasomatites. Condensation of the gas phase in upper parts of massive produces the increasing of Ga/Al ratio in muscovite 3-5 times more, then in granites and bottom part of vein (from 2×10-4 to 8×10-4 mass ratio). The muscovite type veins has no separation between gas and liquid due to there thickness and small pressure gradient. There is no difference in Ga/Al ratio in muscovite from this veins. The Spokoinoe deposit is classified by mineralized dome type. The heterogenization of fluid occurs in H2O-CO2 system for water phase and carbon dioxide with temperature decreasing. Two-phase flow is separated in granite, forming greisen metosomatites. The Ga/Al ratio in rock increase up to 3 times to the upper part of metasomatitic zone. The Ga/Al ratio in muscovite can be applied for other hydrothermal systems for geochemical indicator of gas phase separation and condensation zone determination. This work is supported by RFBR project 10-05-00670 and 10-05-00320.
Modeling and testing of a tube-in-tube separation mechanism of bodies in space
NASA Astrophysics Data System (ADS)
Michaels, Dan; Gany, Alon
2016-12-01
A tube-in-tube concept for separation of bodies in space was investigated theoretically and experimentally. The separation system is based on generation of high pressure gas by combustion of solid propellant and restricting the expansion of the gas only by ejecting the two bodies in opposite directions, in such a fashion that maximizes generated impulse. An interior ballistics model was developed in order to investigate the potential benefits of the separation system for a large range of space body masses and for different design parameters such as geometry and propellant. The model takes into account solid propellant combustion, heat losses, and gas phase chemical reactions. The model shows that for large bodies (above 100 kg) and typical separation velocities of 5 m/s, the proposed separation mechanism may be characterized by a specific impulse of 25,000 s, two order of magnitude larger than that of conventional solid rockets. It means that the proposed separation system requires only 1% of the propellant mass that would be needed for a conventional rocket for the same mission. Since many existing launch vehicles obtain such separation velocities by using conventional solid rocket motors (retro-rockets), the implementation of the new separation system design can reduce dramatically the mass of the separation system and increase safety. A dedicated experimental setup was built in order to demonstrate the concept and validate the model. The experimental results revealed specific impulse values of up to 27,000 s and showed good correspondence with the model.
NASA Astrophysics Data System (ADS)
Luo, Xueyi; Liao, Youhao; Zhu, Yunmin; Li, Minsui; Chen, Fangbing; Huang, Qiming; Li, Weishan
2017-04-01
Currently, the suitable proportion of inorganic particles in the ceramic separator has not been reported yet, due to the contradictory about the content of nano-particles in research papers (10 wt.%) and commercial application (large amount) [1,2]. In this paper, the nano-CeO2 contents on the properties of polyethylene (PE)-supported separator coating with poly (methyl methacrylate-butyl acrylate-acrylonitrile-styrene) (P(MMA-BA-AN-St)) copolymer is investigated systematically used in high voltage batteries for the first time. Since the copolymer contributes to high electrolyte uptake, and nano-CeO2 dedicates dimensional stability, the separator with 10 wt.% nano-CeO2 shows the highest ionic conductivity (2.5 × 10-3 S cm-1) at room temperature and the maximal electrolyte uptake (81.0 g m-2), while the separator with 100 wt.% nano-CeO2 exhibits better mechanical strength (52 MPa) and smaller shrinkage percentage (36%). Successively, cyclic performance of Li/LiNi0.5Mn1.5O4 cells indicates that the capacity retention of the cell using separator with 100 wt.% nano-CeO2 (72%) is second only to that with 10 wt.% nano-CeO2 (74%) after 200 cycles at 0.2 C between 3 V and 5 V, far larger than that without doping nano-CeO2 (51%) and PE (40%). By the consideration both of comprehensive performances and economic cost, 100 wt.% content is regarded as the most suitable appending proportion.
Risk-Based Causal Modeling of Airborne Loss of Separation
NASA Technical Reports Server (NTRS)
Geuther, Steven C.; Shih, Ann T.
2015-01-01
Maintaining safe separation between aircraft remains one of the key aviation challenges as the Next Generation Air Transportation System (NextGen) emerges. The goals of the NextGen are to increase capacity and reduce flight delays to meet the aviation demand growth through the 2025 time frame while maintaining safety and efficiency. The envisioned NextGen is expected to enable high air traffic density, diverse fleet operations in the airspace, and a decrease in separation distance. All of these factors contribute to the potential for Loss of Separation (LOS) between aircraft. LOS is a precursor to a potential mid-air collision (MAC). The NASA Airspace Operations and Safety Program (AOSP) is committed to developing aircraft separation assurance concepts and technologies to mitigate LOS instances, therefore, preventing MAC. This paper focuses on the analysis of causal and contributing factors of LOS accidents and incidents leading to MAC occurrences. Mid-air collisions among large commercial aircraft are rare in the past decade, therefore, the LOS instances in this study are for general aviation using visual flight rules in the years 2000-2010. The study includes the investigation of causal paths leading to LOS, and the development of the Airborne Loss of Separation Analysis Model (ALOSAM) using Bayesian Belief Networks (BBN) to capture the multi-dependent relations of causal factors. The ALOSAM is currently a qualitative model, although further development could lead to a quantitative model. ALOSAM could then be used to perform impact analysis of concepts and technologies in the AOSP portfolio on the reduction of LOS risk.
Self-assembled structural color in nature
NASA Astrophysics Data System (ADS)
Parnell, Andrew
The vibrancy and variety of structural color found in nature has long been well-known; what has only recently been discovered is the sophistication of the physics that underlies these effects. In the talk I will discuss some of our recent studies of the structures responsible for color in bird feathers and beetle elytra, based on structural characterization using small angle x-ray scattering, x-ray tomography and optical modeling. These have enabled us to study a large number of structural color exhibiting materials and look for trends in the structures nature uses to provide these optical effects. In terms of creating the optical structure responsible for the color of the Eurasian Jay feathers (Garrulus glandarius) the nanostructure is produced by a phase-separation process that is arrested at a late stage; mastery of the color is achieved by control over the duration of this phase-separation process. Our analysis shows that nanostructure in single bird feather barbs can be varied continuously by controlling the time the keratin network is allowed to phase separate before mobility in the system is arrested. Dynamic scaling analysis of the single barb scattering data implies that the phase separation arrest mechanism is rapid and also distinct from the spinodal phase separation mechanism i.e. it is not gelation or intermolecular re-association. Any growing lengthscale using this spinodal phase separation approach must first traverse the UV and blue wavelength regions, growing the structure by coarsening, resulting in a broad distribution of domain sizes. AJP acknowledges financial support via the APS/DPOLY exchange lectureship 2017.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Foxall, B; Sweeney, J J; Walter, W R
1998-07-07
Interferograms constmcted from satellite-borne synthetic aperture radar images have the capability of mapping sub-cm ground surface deformation over areas on the order of 100 x 100 km with a spatial resolution on the order of 10 meters. We investigate the utility of synthetic aperture radar interferomehy (InSAR) used in conjunction with regional seismic methods in detecting and discriminating different types of seismic events in the context of special event analysis for the CTBT. For this initial study, we carried out elastic dislocation modeling of underground explosions, mine collapses and small (M<5.5) shallow earthquakes to produce synthetic interferograms and then analyzedmore » satellite radar data for a large mine collapse. The synthetic modeling shows that, for a given magnitude each type of event produces a distinctive pattern of ground deformation that can be recognized in, and recovered from, the corresponding interferogram. These diagnostic characteristics include not only differences in the polarities of surface displacements but also differences in displacement amplitudes from the different sources. The technique is especially sensitive to source depth, a parameter that is crucial in discriminating earthquakes from the other event types but is often very poorly constrained by regional seismic data alone. The ERS radar data analyzed is from a M L 5.2 seismic event that occurred in southwestern Wyoming on February 3,1995. Although seismic data from the event have some characteristics of an underground explosion, based on seismological and geodetic data it has been identified as being caused by a large underground collapse in the Solvay Mine. Several pairs of before-collapse and after-collapse radar images were phase processed to obtain interferograms. The minimum time separation for a before-collapse and after-collapse pair was 548 days. Even with this long time separation, phase coherence between the image pairs was acceptable and a deformation map was successfully obtained. Two images, separated by 1 day and occurring after the mine collapse, were used to form a digital elevation map (DEM) that was used to correct for topography. The interferograms identify the large deformation at the Solvay Mine as well as some areas of lesser deformation near other mines in the area. The large amount of deformation at the Solvay Mine was identified, but (as predicted by our dislocation modeling) could not be quantified absolutely because of the incoherent interference pattern it produced« less
Synthetic Vortex Generator Jets Used to Control Separation on Low-Pressure Turbine Airfoils
NASA Technical Reports Server (NTRS)
Ashpis, David E.; Volino, Ralph J.
2005-01-01
Low-pressure turbine (LPT) airfoils are subject to increasingly stronger pressure gradients as designers impose higher loading in an effort to improve efficiency and lower cost by reducing the number of airfoils in an engine. When the adverse pressure gradient on the suction side of these airfoils becomes strong enough, the boundary layer will separate. Separation bubbles, particularly those that fail to reattach, can result in a significant loss of lift and a subsequent degradation of engine efficiency. The problem is particularly relevant in aircraft engines. Airfoils optimized to produce maximum power under takeoff conditions may still experience boundary layer separation at cruise conditions because of the thinner air and lower Reynolds numbers at altitude. Component efficiency can drop significantly between takeoff and cruise conditions. The decrease is about 2 percent in large commercial transport engines, and it could be as large as 7 percent in smaller engines operating at higher altitudes. Therefore, it is very beneficial to eliminate, or at least reduce, the separation bubble.
Al-Balbeesi, Hana O; Bin Huraib, Sahar M; AlNahas, Nadia W; AlKawari, Huda M; Abu-Amara, Abdulrahman B; Vellappally, Sajith; Anil, Sukumaran
2016-01-01
The objective of the present investigation is to evaluate patients' pain perception and discomfort, the duration of pain and the level of self-medication over time during tooth separation, and the effectiveness of elastomeric and spring types of orthodontic separators in Saudi population. The study group consisted of 30 female adolescent patients who had elastomeric/spring separators as part of their orthodontic treatment. A self-administrated questionnaire comprising 16 multiple choice questions and another with visual analog scale were used to record the patient's pain perceptions at 4 hours, 24 hours, 3 days, 5 days, and 7 days from the time of insertion. The level of pain and discomfort during these time periods were assessed by a visual analog scale. After a separation period of 7 days, the amount of separation was measured with a leaf gauge. Type and frequency of analgesic consumption was also recorded. The Statistical Package for the Social Sciences (SPSS) version 20 (IBM SPSS -Chicago, IL: SPSS Inc.,) was used for statistical analysis. The data showed significant increase in the level of pain at 4 hours, 24 hours, and 3 days from separator placement. The elastomeric separators produced significantly more separation than the spring separators and also caused maximum pain during the first 3 days after insertion. However, there was no significant difference between the score of pain between two separators at all time intervals. Both elastomeric and spring separators showed comparative levels of pain and discomfort during the early phase of separation. Elastomeric separators were found to be more effective in tooth separation than spring separators. However, further studies are necessary to substantiate this preliminary observation.
NASA Technical Reports Server (NTRS)
He, Yuning
2015-01-01
Safety of unmanned aerial systems (UAS) is paramount, but the large number of dynamically changing controller parameters makes it hard to determine if the system is currently stable, and the time before loss of control if not. We propose a hierarchical statistical model using Treed Gaussian Processes to predict (i) whether a flight will be stable (success) or become unstable (failure), (ii) the time-to-failure if unstable, and (iii) time series outputs for flight variables. We first classify the current flight input into success or failure types, and then use separate models for each class to predict the time-to-failure and time series outputs. As different inputs may cause failures at different times, we have to model variable length output curves. We use a basis representation for curves and learn the mappings from input to basis coefficients. We demonstrate the effectiveness of our prediction methods on a NASA neuro-adaptive flight control system.
Compression technique for large statistical data bases
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eggers, S.J.; Olken, F.; Shoshani, A.
1981-03-01
The compression of large statistical databases is explored and are proposed for organizing the compressed data, such that the time required to access the data is logarithmic. The techniques exploit special characteristics of statistical databases, namely, variation in the space required for the natural encoding of integer attributes, a prevalence of a few repeating values or constants, and the clustering of both data of the same length and constants in long, separate series. The techniques are variations of run-length encoding, in which modified run-lengths for the series are extracted from the data stream and stored in a header, which ismore » used to form the base level of a B-tree index into the database. The run-lengths are cumulative, and therefore the access time of the data is logarithmic in the size of the header. The details of the compression scheme and its implementation are discussed, several special cases are presented, and an analysis is given of the relative performance of the various versions.« less
Tests of neutrino interaction models with the MicroBooNE detector
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rafique, Aleena
2018-01-01
I measure a large set of observables in inclusive charged current muon neutrino scattering on argon with the MicroBooNE liquid argon time projection chamber operating at Fermilab. I evaluate three neutrino interaction models based on the widely used GENIE event generator using these observables. The measurement uses a data set consisting of neutrino interactions with a final state muon candidate fully contained within the MicroBooNE detector. These data were collected in 2016 with the Fermilab Booster Neutrino Beam, which has an average neutrino energy ofmore » $800$ MeV, using an exposure corresponding to $$5.0\\times10^{19}$$ protons-on-target. The analysis employs fully automatic event selection and charged particle track reconstruction and uses a data-driven technique to separate neutrino interactions from cosmic ray background events. I find that GENIE models consistently describe the shapes of a large number of kinematic distributions for fixed observed multiplicity, but I show an indication that the observed multiplicity fractions deviate from GENIE expectations.« less
Relationship between Birkeland current regions, particle precipitation, and electric fields
NASA Technical Reports Server (NTRS)
De La Beaujardiere, O.; Watermann, J.; Newell, P.; Rich, F.
1993-01-01
The relationship of the large-scale dayside Birkeland currents to large-scale particle precipitation patterns, currents, and convection is examined using DMSP and Sondrestrom radar observations. It is found that the local time of the mantle currents is not limited to the longitude of the cusp proper, but covers a larger local time extent. The mantle currents flow entirely on open field lines. About half of region 1 currents flow on open field lines, consistent with the assumption that the region 1 currents are generated by the solar wind dynamo and flow within the surface that separates open and closed field lines. More than 80 percent of the Birkeland current boundaries do not correspond to particle precipitation boundaries. Region 2 currents extend beyond the plasma sheet poleward boundary; region 1 currents flow in part on open field lines; mantle currents and mantle particles are not coincident. On most passes when a triple current sheet is observed, the convection reversal is located on closed field lines.
A blood circulation model for reference man
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leggett, R.W.; Eckerman, K.F.; Williams, L.R.
This paper describes a dynamic blood circulation model that predicts the movement and gradual dispersal of a bolus of material in the circulation after its intravascular injection into an adult human. The main purpose of the model is to improve the dosimetry of internally deposited radionuclides that decay in the circulation to a significant extent. The total blood volume is partitioned into the blood contents of 24 separate organs or tissues, right heart chambers, left heart chambers, pulmonary circulation, arterial outflow to the systemic tissues (aorta and large arteries), and venous return from the systemic tissues (large veins). As amore » compromise between physical reality and computational simplicity, the circulation of blood is viewed as a system of first-order transfers between blood pools, with the delay time depending on the mean transit time across the pool. The model allows consideration of incomplete, tissue-dependent extraction of material during passage through the circulation and return of material from tissues to plasma.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hwang, Ji-Gwang; Kim, Eun-San, E-mail: eskim1@knu.ac.kr; Hatanaka, Kichiji
2015-03-15
The rare isotope beam separator with a large angular acceptance and energy acceptance is essential for examining the characteristics of unstable nuclei and exotic nuclear reactions. Careful design, however, is required to compensate for the effects of high order aberrations induced by large aperture magnets, which are used to collect rare isotopes obtained from a high energy primary heavy-ion beam hitting a target. In order to minimize the effect of the high order aberration, the optics was based on the mirror symmetry optics, which provides smaller high order aberrations, for the separation of {sup 132}Sn produced by a fission reactionmore » between the primary beam of {sup 238}U and a relatively thick Pb target. The designed optics provides energy acceptance (full), horizontal angular acceptance, and vertical acceptance of approximately 8%, 60 mrad, and 130 mrad, respectively.« less
Hwang, Ji-Gwang; Kim, Eun-San; Hatanaka, Kichiji
2015-03-01
The rare isotope beam separator with a large angular acceptance and energy acceptance is essential for examining the characteristics of unstable nuclei and exotic nuclear reactions. Careful design, however, is required to compensate for the effects of high order aberrations induced by large aperture magnets, which are used to collect rare isotopes obtained from a high energy primary heavy-ion beam hitting a target. In order to minimize the effect of the high order aberration, the optics was based on the mirror symmetry optics, which provides smaller high order aberrations, for the separation of (132)Sn produced by a fission reaction between the primary beam of (238)U and a relatively thick Pb target. The designed optics provides energy acceptance (full), horizontal angular acceptance, and vertical acceptance of approximately 8%, 60 mrad, and 130 mrad, respectively.
NASA Astrophysics Data System (ADS)
Hwang, Ji-Gwang; Kim, Eun-San; Hatanaka, Kichiji
2015-03-01
The rare isotope beam separator with a large angular acceptance and energy acceptance is essential for examining the characteristics of unstable nuclei and exotic nuclear reactions. Careful design, however, is required to compensate for the effects of high order aberrations induced by large aperture magnets, which are used to collect rare isotopes obtained from a high energy primary heavy-ion beam hitting a target. In order to minimize the effect of the high order aberration, the optics was based on the mirror symmetry optics, which provides smaller high order aberrations, for the separation of 132Sn produced by a fission reaction between the primary beam of 238U and a relatively thick Pb target. The designed optics provides energy acceptance (full), horizontal angular acceptance, and vertical acceptance of approximately 8%, 60 mrad, and 130 mrad, respectively.
A Scoping Review of Qualitative Studies about Children Experiencing Parental Separation
ERIC Educational Resources Information Center
Birnbaum, Rachel; Saini, Michael
2013-01-01
This article explores a scoping review of qualitative studies about children's experiences and feelings during times of parental separation. The purpose of the review was to explore children's feelings and attitudes about their parents' separation and how their voices are heard during times of parental separation. The scoping review examined 44…
Impinging jet separators for liquid metal magnetohydrodynamic power cycles
NASA Technical Reports Server (NTRS)
Bogdanoff, D. W.
1973-01-01
In many liquid metal MHD power, cycles, it is necessary to separate the phases of a high-speed liquid-gas flow. The usual method is to impinge the jet at a glancing angle against a solid surface. These surface separators achieve good separation of the two phases at a cost of a large velocity loss due to friction at the separator surface. This report deals with attempts to greatly reduce the friction loss by impinging two jets against each other. In the crude impinging jet separators tested to date, friction losses were greatly reduced, but the separation of the two phases was found to be much poorer than that achievable with surface separators. Analyses are presented which show many lines of attack (mainly changes in separator geometry) which should yield much better separation for impinging jet separators).
Alcoholism and Timing of Separation in Parents: Findings in a Midwestern Birth Cohort
Waldron, Mary; Bucholz, Kathleen K.; Lynskey, Michael T.; Madden, Pamela A. F.; Heath, Andrew C.
2013-01-01
Objective: We examined history of alcoholism and occurrence and timing of separation in parents of a female twin cohort. Method: Parental separation (never-together; never-married cohabitants who separated; married who separated) was predicted from maternal and paternal alcoholism in 326 African ancestry (AA) and 1,849 European/other ancestry (EA) families. Broad (single-informant, reported in abstract) and narrow (self-report or two-informant) measures of alcoholism were compared. Results: Parental separation was more common in families with parental alcoholism: By the time twins were 18 years of age, parents had separated in only 24% of EA families in which neither parent was alcoholic, contrasted with 58% of families in which only the father was (father-only), 61% of families in which only the mother was (mother-only), and 75% in which both parents were alcoholic (two-parent); corresponding AA percentages were 59%, 71%, 82%, and 86%, respectively. Maternal alcoholism was more common in EA never-together couples (mother-only: odds ratio [OR] = 5.95; two parent: OR = 3.69). In ever-together couples, alcoholism in either parent predicted elevated risk of separation, with half of EA relationships ending in separation within 12 years of twins’ birth for father-only families, 9 years for mother-only families, and 4 years for both parents alcoholic; corresponding median survival times for AA couples were 9, 4, and 2 years, respectively. EA maternal alcoholism was especially strongly associated with separation in the early postnatal years (mother-only: birth—5 years, hazard ratio [HR] = 4.43; 6 years on, HR = 2.52; two-parent: HRs = 5.76, 3.68, respectively). Conclusions: Parental separation is a childhood environmental exposure that is more common in children of alcoholics, with timing of separation highly dependent on alcoholic parent gender. PMID:23384382
Alcoholism and timing of separation in parents: findings in a midwestern birth cohort.
Waldron, Mary; Bucholz, Kathleen K; Lynskey, Michael T; Madden, Pamela A F; Heath, Andrew C
2013-03-01
We examined history of alcoholism and occurrence and timing of separation in parents of a female twin cohort. Parental separation (never-together; never-married cohabitants who separated; married who separated) was predicted from maternal and paternal alcoholism in 326 African ancestry (AA) and 1,849 European/ other ancestry (EA) families. Broad (single-informant, reported in abstract) and narrow (self-report or two-informant) measures of alcoholism were compared. Parental separation was more common in families with parental alcoholism: By the time twins were 18 years of age, parents had separated in only 24% of EA families in which neither parent was alcoholic, contrasted with 58% of families in which only the father was (father-only), 61% of families in which only the mother was (mother-only), and 75% in which both parents were alcoholic (two-parent); corresponding AA percentages were 59%, 71%, 82%, and 86%, respectively. Maternal alcoholism was more common in EA nevertogether couples (mother-only: odds ratio [OR] = 5.95; two parent: OR = 3.69). In ever-together couples, alcoholism in either parent predicted elevated risk of separation, with half of EA relationships ending in separation within 12 years of twins' birth for father-only families, 9 years for mother-only families, and 4 years for both parents alcoholic; corresponding median survival times for AA couples were 9, 4, and 2 years, respectively. EA maternal alcoholism was especially strongly associated with separation in the early postnatal years (mother-only: birth-5 years, hazard ratio [HR] = 4.43; 6 years on, HR = 2.52; two-parent: HRs = 5.76, 3.68, respectively). Parental separation is a childhood environmental exposure that is more common in children of alcoholics, with timing of separation highly dependent on alcoholic parent gender.
Oxygen transport in the Sr{sub 2}Fe{sub 3{minus}x}Co{sub x}O{sub y} system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, B.
The mixed-conducting Sr-Fe-Co oxide has potential use as a gas separation membrane. Its superior oxygen transport reveals the feasibility of using oxide membranes in large-scale oxygen separation. Sr{sub 2}Fe{sub 3{minus}x}Co{sub x}O{sub y} (with x = 0.0, 0.3, 0.6, and 1.0) samples were made by solid state reaction. To understand the oxygen transport mechanism in this system, conductivity and thermogravimetry experiments were conducted at high temperature in various oxygen partial pressure environments. The oxygen diffusion coefficient was determined from the time relaxation transient behavior of the specimen after switching the surrounding atmosphere. Mobility of the charge carrier was derived from relativemore » conductivity and weight changes. X-ray diffraction experiments were carried out on these samples to determine their crystal structures.« less
Exploration, Sampling, And Reconstruction of Free Energy Surfaces with Gaussian Process Regression.
Mones, Letif; Bernstein, Noam; Csányi, Gábor
2016-10-11
Practical free energy reconstruction algorithms involve three separate tasks: biasing, measuring some observable, and finally reconstructing the free energy surface from those measurements. In more than one dimension, adaptive schemes make it possible to explore only relatively low lying regions of the landscape by progressively building up the bias toward the negative of the free energy surface so that free energy barriers are eliminated. Most schemes use the final bias as their best estimate of the free energy surface. We show that large gains in computational efficiency, as measured by the reduction of time to solution, can be obtained by separating the bias used for dynamics from the final free energy reconstruction itself. We find that biasing with metadynamics, measuring a free energy gradient estimator, and reconstructing using Gaussian process regression can give an order of magnitude reduction in computational cost.
Brand communities embedded in social networks.
Zaglia, Melanie E
2013-02-01
Brand communities represent highly valuable marketing, innovation management, and customer relationship management tools. However, applying successful marketing strategies today, and in the future, also means exploring and seizing the unprecedented opportunities of social network environments. This study combines these two social phenomena which have largely been researched separately, and aims to investigate the existence, functionality and different types of brand communities within social networks. The netnographic approach yields strong evidence of this existence; leading to a better understanding of such embedded brand communities, their peculiarities, and motivational drivers for participation; therefore the findings contribute to theory by combining two separate research streams. Due to the advantages of social networks, brand management is now able to implement brand communities with less time and financial effort; however, choosing the appropriate brand community type, cultivating consumers' interaction, and staying tuned to this social engagement are critical factors to gain anticipated brand outcomes.
Miller, C.M.; Nogar, N.S.
1982-09-02
Photoionization via autoionizing atomic levels combined with conventional mass spectroscopy provides a technique for quantitative analysis of trace quantities of chemical elements in the presence of much larger amounts of other elements with substantially the same atomic mass. Ytterbium samples smaller than 10 ng have been detected using an ArF* excimer laser which provides the atomic ions for a time-of-flight mass spectrometer. Elemental selectivity of greater than 5:1 with respect to lutetium impurity has been obtained. Autoionization via a single photon process permits greater photon utilization efficiency because of its greater absorption cross section than bound-free transitions, while maintaining sufficient spectroscopic structure to allow significant photoionization selectivity between different atomic species. Separation of atomic species from others of substantially the same atomic mass is also described.
Brand communities embedded in social networks☆
Zaglia, Melanie E.
2013-01-01
Brand communities represent highly valuable marketing, innovation management, and customer relationship management tools. However, applying successful marketing strategies today, and in the future, also means exploring and seizing the unprecedented opportunities of social network environments. This study combines these two social phenomena which have largely been researched separately, and aims to investigate the existence, functionality and different types of brand communities within social networks. The netnographic approach yields strong evidence of this existence; leading to a better understanding of such embedded brand communities, their peculiarities, and motivational drivers for participation; therefore the findings contribute to theory by combining two separate research streams. Due to the advantages of social networks, brand management is now able to implement brand communities with less time and financial effort; however, choosing the appropriate brand community type, cultivating consumers’ interaction, and staying tuned to this social engagement are critical factors to gain anticipated brand outcomes. PMID:23564989
Analysis of peptides using an integrated microchip HPLC-MS/MS system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kirby, Brian J.; Chirica, Gabriela S.; Reichmuth, David S.
Hyphendated LC-MS techniques are quickly becoming the standard tool for protemic analyses. For large homogeneous samples, bulk processing methods and capillary injection and separation techniques are suitable. However, for analysis of small or heterogeneous samples, techniques that can manipulate picoliter samples without dilution are required or samples will be lost or corrupted; further, static nanospray-type flowrates are required to maximize SNR. Microchip-level integration of sample injection with separation and mass spectrometry allow small-volume analytes to be processed on chip and immediately injected without dilution for analysis. An on-chip HPLC was fabricated using in situ polymerization of both fixed and mobilemore » polymer monoliths. Integration of the chip with a nanospray MS emitter enables identification of peptides by the use of tandem MS. The chip is capable of analyzing of very small sample volumes (< 200 pl) in short times (< 3 min).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Langer, S. H.; Scott, H. A.
2016-08-05
The Cretin iCOE project has a goal of enabling the efficient generation of Non-LTE opacities for use in radiation-hydrodynamic simulation codes using the Nvidia boards on LLNL’s upcoming Sierra system. Achieving the desired level of accuracy for some simulations require the use of a vary large number of atomic configurations (a configuration includes the atomic level for all electrons and how they are coupled together). The NLTE rate matrix needs to be solved separately in each zone. Calculating NLTE opacities can consume more time than all other physics packages used in a simulation.
Gas chemical adsorption characterization of lanthanide hexafluoroacetylacetonates
Stratz, S. Adam; Jones, Steven J.; Mullen, Austin D.; ...
2017-03-21
Newly-established adsorption enthalpy and entropy values of 12 lanthanide hexafluoroacetylacetonates, denoted Ln[hfac] 4, along with the experimental and theoretical methodology used to obtain these values, are presented for the first time. The results of this work can be used in conjunction with theoretical modeling techniques to optimize a large-scale gas-phase separation experiment using isothermal chromatography. The results to date indicate average adsorption enthalpy and entropy values of the 12 Ln[hfac] 4 complexes ranging from -33 to -139 kJ/mol K and -299 to -557 J/mol, respectively.
Method for producing thin graphite flakes with large aspect ratios
Bunnell, L. Roy
1993-01-01
A method for making graphite flakes of high aspect ratio by the steps of providing a strong concentrated acid and heating the graphite in the presence of the acid for a time and at a temperature effective to intercalate the acid in the graphite; heating the intercalated graphite at a rate and to a temperature effective to exfoliate the graphite in discrete layers; subjecting the graphite layers to ultrasonic energy, mechanical shear forces, or freezing in an amount effective to separate the layes into discrete flakes.
Flame balls dynamics in divergent channel
NASA Astrophysics Data System (ADS)
Fursenko, R.; Minaev, S.
2011-12-01
A three-dimensional reaction-diffusion model for lean low-Lewis-number premixed flames with radiative heat losses propagating in divergent channel is studied numerically. Effects of inlet gas velocity and heat-loss intensity on flame structure at low Lewis numbers are investigated. It is found that continuous flame front exists at small heat losses and the separate flame balls settled within restricted domain inside the divergent channel at large heat losses. It is shown that the time averaged flame balls coordinate may be considered as important characteristic analogous to coordinate of continuous flame stabilized in divergent channel.
VizieR Online Data Catalog: Gould's Belt Very Large Array survey. IV. Taurus (Dzib+, 2015)
NASA Astrophysics Data System (ADS)
Dzib, S. A.; Loinard, L.; Rodriguez, L. F.; Mioduszewski, A. J.; Ortiz-Leon, G. N.; Kounkel, M. A.; Pech, G.; Rivera, J. L.; Torres, R. M.; Boden, A. F.; Hartmann, L.; Evans, N. J., II; Briceno, C.; Tobin, J.
2015-07-01
The observations were obtained with the Karl G. Jansky VLA of the National Radio Astronomy Observatory (NRAO). Two frequency sub-bands, each 1GHz wide, and centered at 4.5 and 7.5GHz, respectively, were recorded simultaneously. The observations were obtained on three different time periods (February 25/26/28 to March 6; April 12/17/20/25, and April 30 to May 1/5/14/22 in 2011) typically separated from one another by a month. (2 data files).
Subsurface damage in precision ground ULE(R) and Zerodur(R) surfaces.
Tonnellier, X; Morantz, P; Shore, P; Baldwin, A; Evans, R; Walker, D D
2007-09-17
The total process cycle time for large ULE((R)) and Zerodur((R))optics can be improved using a precise and rapid grinding process, with low levels of surface waviness and subsurface damage. In this paper, the amounts of defects beneath ULE((R)) and Zerodur((R) )surfaces ground using a selected grinding mode were compared. The grinding response was characterised by measuring: surface roughness, surface profile and subsurface damage. The observed subsurface damage can be separated into two distinct depth zones, which are: 'process' and 'machine dynamics' related.
Oktyabrsky, Serge; Yakimov, Michael; Tokranov, Vadim; ...
2016-03-30
Here, a picosecond-range timing of charged particles and photons is a long-standing challenge for many high-energy physics, biophysics, medical and security applications. We present a design, technological pathway and challenges, and some properties important for realization of an ultrafast high-efficient room-temperature semiconductor scintillator based on self-assembled InAs quantum dots (QD) embedded in a GaAs matrix. Low QD density (<; 10 15 cm -3), fast (~5 ps) electron capture, luminescence peak redshifted by 0.2-0.3 eV from GaAs absorption edge with fast decay time (0.5-1 ns) along with the efficient energy transfer in the GaAs matrix (4.2 eV/pair) allows for fabrication ofmore » a semiconductor scintillator with the unsurpassed performance parameters. The major technological challenge is fabrication of a large volume (> 1 cm 3 ) of epitaxial QD medium. This requires multiple film separation and bonding, likely using separate epitaxial films as waveguides for improved light coupling. Compared to traditional inorganic scintillators, the semiconductor-QD based scintillators could have about 5x higher light yield and 20x faster decay time, opening a way to gamma detectors with the energy resolution better than 1% and sustaining counting rates MHz. Picosecond-scale timing requires segmented low-capacitance photodiodes integrated with the scintillator. For photons, the proposed detector inherently provides the depth-of-interaction information.« less
Rich, Ryan M.; Stankowska, Dorota L.; Maliwal, Badri P.; Sørensen, Thomas Just; Laursen, Bo W.; Krishnamoorthy, Raghu R.; Gryczynski, Zygmunt; Borejdo, Julian
2013-01-01
Sample autofluorescence (fluorescence of inherent components of tissue and fixative-induced fluorescence) is a significant problem in direct imaging of molecular processes in biological samples. A large variety of naturally occurring fluorescent components in tissue results in broad emission that overlaps the emission of typical fluorescent dyes used for tissue labeling. In addition, autofluorescence is characterized by complex fluorescence intensity decay composed of multiple components whose lifetimes range from sub-nanoseconds to a few nanoseconds. For these reasons, the real fluorescence signal of the probe is difficult to separate from the unwanted autofluorescence. Here we present a method for reducing the autofluorescence problem by utilizing an azadioxatriangulenium (ADOTA) dye with a fluorescence lifetime of approximately 15 ns, much longer than those of most of the components of autofluorescence. A probe with such a long lifetime enables us to use time-gated intensity imaging to separate the signal of the targeting dye from the autofluorescence. We have shown experimentally that by discarding photons detected within the first 20 ns of the excitation pulse, the signal-to-background ratio is improved fivefold. This time-gating eliminates over 96 % of autofluorescence. Analysis using a variable time-gate may enable quantitative determination of the bound probe without the contributions from the background. PMID:23254457
Yan, Xiaojing; Sun, Liangliang; Zhu, Guijie; Cox, Olivia F.; Dovichi, Norman J.
2016-01-01
A tryptic digest generated from Xenopus laevis fertilized embryos was fractionated by reversed phase liquid chromatography. One set of 30 fractions was analyzed by 100-min CZE-ESI-MS/MS separations (50 hr total instrument time), and a second set of 15 fractions was analyzed by 3-hr UPLC-ESI-MS/MS separations (45 hr total instrument time). CZE-MS/MS produced 70% as many protein IDs (4,134 vs. 5,787) and 60% as many peptide IDs (22,535 vs. 36,848) as UPLC-MS/MS with similar instrument time (50 h vs. 45 h) but with 50 times smaller total consumed sample amount (1.5 μg vs. 75 μg). Surprisingly, CZE generated peaks that were 25% more intense than UPLC for peptides that were identified by both techniques, despite the 50-fold lower loading amount; this high sensitivity reflects the efficient ionization produced by the electrokinetically-pumped nanospray interface used in CZE. This report is the first comparison of CZE-MS/MS and UPLC-MS/MS for large-scale eukaryotic proteomic analysis. The numbers of protein and peptide identifications produced by CZE-ESI-MS/MS approach those produced by UPLC-MS/MS, but with nearly two orders of magnitude lower sample amounts. PMID:27723263
Wang, Runchun M.; Hamilton, Tara J.; Tapson, Jonathan C.; van Schaik, André
2015-01-01
We present a neuromorphic implementation of multiple synaptic plasticity learning rules, which include both Spike Timing Dependent Plasticity (STDP) and Spike Timing Dependent Delay Plasticity (STDDP). We present a fully digital implementation as well as a mixed-signal implementation, both of which use a novel dynamic-assignment time-multiplexing approach and support up to 226 (64M) synaptic plasticity elements. Rather than implementing dedicated synapses for particular types of synaptic plasticity, we implemented a more generic synaptic plasticity adaptor array that is separate from the neurons in the neural network. Each adaptor performs synaptic plasticity according to the arrival times of the pre- and post-synaptic spikes assigned to it, and sends out a weighted or delayed pre-synaptic spike to the post-synaptic neuron in the neural network. This strategy provides great flexibility for building complex large-scale neural networks, as a neural network can be configured for multiple synaptic plasticity rules without changing its structure. We validate the proposed neuromorphic implementations with measurement results and illustrate that the circuits are capable of performing both STDP and STDDP. We argue that it is practical to scale the work presented here up to 236 (64G) synaptic adaptors on a current high-end FPGA platform. PMID:26041985
An evaluation of the Parents Plus-Parenting When Separated programme.
Keating, Adele; Sharry, John; Murphy, Michelle; Rooney, Brendan; Carr, Alan
2016-04-01
This study evaluated the Parents Plus-Parenting when Separated Programme, an intervention specifically designed to address the needs of separated parents in an Irish context. In a randomized control trial, 82 separated parents with young children were assigned to the Parents Plus-Parenting when Separated Programme treatment group and 79 to a waiting-list control group. They were assessed on measures of client goals, parenting satisfaction, child and parental adjustment and interparental conflict at baseline (Time 1) and 6 weeks later (Time 2), after the treatment group completed the Parents Plus-Parenting when Separated Programme. From Time 1 to 2, significant goal attainment, increases in parenting satisfaction and decreases in child behaviour problems, parental adjustment problems and interparental conflict occurred in the Parents Plus-Parenting when Separated Programme group, but not in the control group. These results supported the effectiveness of Parents Plus-Parenting when Separated Programme, which should be made more widely available to separated parents. © The Author(s) 2015.
An Ancestral Recombination Graph for Diploid Populations with Skewed Offspring Distribution
Birkner, Matthias; Blath, Jochen; Eldon, Bjarki
2013-01-01
A large offspring-number diploid biparental multilocus population model of Moran type is our object of study. At each time step, a pair of diploid individuals drawn uniformly at random contributes offspring to the population. The number of offspring can be large relative to the total population size. Similar “heavily skewed” reproduction mechanisms have been recently considered by various authors (cf. e.g., Eldon and Wakeley 2006, 2008) and reviewed by Hedgecock and Pudovkin (2011). Each diploid parental individual contributes exactly one chromosome to each diploid offspring, and hence ancestral lineages can coalesce only when in distinct individuals. A separation-of-timescales phenomenon is thus observed. A result of Möhle (1998) is extended to obtain convergence of the ancestral process to an ancestral recombination graph necessarily admitting simultaneous multiple mergers of ancestral lineages. The usual ancestral recombination graph is obtained as a special case of our model when the parents contribute only one offspring to the population each time. Due to diploidy and large offspring numbers, novel effects appear. For example, the marginal genealogy at each locus admits simultaneous multiple mergers in up to four groups, and different loci remain substantially correlated even as the recombination rate grows large. Thus, genealogies for loci far apart on the same chromosome remain correlated. Correlation in coalescence times for two loci is derived and shown to be a function of the coalescence parameters of our model. Extending the observations by Eldon and Wakeley (2008), predictions of linkage disequilibrium are shown to be functions of the reproduction parameters of our model, in addition to the recombination rate. Correlations in ratios of coalescence times between loci can be high, even when the recombination rate is high and sample size is large, in large offspring-number populations, as suggested by simulations, hinting at how to distinguish between different population models. PMID:23150600
Tavakoli, Paniz; Campbell, Kenneth
2016-10-01
A rarely occurring and highly relevant auditory stimulus occurring outside of the current focus of attention can cause a switching of attention. Such attention capture is often studied in oddball paradigms consisting of a frequently occurring "standard" stimulus which is changed at odd times to form a "deviant". The deviant may result in the capturing of attention. An auditory ERP, the P3a, is often associated with this process. To collect a sufficient amount of data is however very time-consuming. A more multi-feature "optimal" paradigm has been proposed but it is not known if it is appropriate for the study of attention capture. An optimal paradigm was run in which 6 different rare deviants (p=.08) were separated by a standard stimulus (p=.50) and compared to results when 4 oddball paradigms were also run. A large P3a was elicited by some of the deviants in the optimal paradigm but not by others. However, very similar results were observed when separate oddball paradigms were run. The present study indicates that the optimal paradigm provides a very time-saving method to study attention capture and the P3a. Copyright © 2016 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nadeau, Jeremy S.; Wright, Bob W.; Synovec, Robert E.
2010-04-15
A critical comparison of methods for correcting severely retention time shifted gas chromatography-mass spectrometry (GC-MS) data is presented. The method reported herein is an adaptation to the Piecewise Alignment Algorithm to quickly align severely shifted one-dimensional (1D) total ion current (TIC) data, then applying these shifts to broadly align all mass channels throughout the separation, referred to as a TIC shift function (SF). The maximum shift varied from (-) 5 s in the beginning of the chromatographic separation to (+) 20 s toward the end of the separation, equivalent to a maximum shift of over 5 peak widths. Implementing themore » TIC shift function (TIC SF) prior to Fisher Ratio (F-Ratio) feature selection and then principal component analysis (PCA) was found to be a viable approach to classify complex chromatograms, that in this study were obtained from GC-MS separations of three gasoline samples serving as complex test mixtures, referred to as types C, M and S. The reported alignment algorithm via the TIC SF approach corrects for large dynamic shifting in the data as well as subtle peak-to-peak shifts. The benefits of the overall TIC SF alignment and feature selection approach were quantified using the degree-of-class separation (DCS) metric of the PCA scores plots using the type C and M samples, since they were the most similar, and thus the most challenging samples to properly classify. The DCS values showed an increase from an initial value of essentially zero for the unaligned GC-TIC data to a value of 7.9 following alignment; however, the DCS was unchanged by feature selection using F-Ratios for the GC-TIC data. The full mass spectral data provided an increase to a final DCS of 13.7 after alignment and two-dimensional (2D) F-Ratio feature selection.« less
High-Throughput Microfludic Applications
Doneanu, A.; Murphy, J.; Johnson, J.; Cohen, S.; Astarita, G.; Chakraborty, A.; Martin, LeRoy
2013-01-01
A novel platform was developed for the expansion of microfludic LC-MS beyond typical nanoscale applications into areas traditionally performed at analytical scales. The material used to fabricate the device allows for pressures of 12,000 psi. The integrated metal electrospray emitter supports flow rates from 100s of nl/min up to 8 μl/min and allows for the use of 150 μm in ID separation channels. Peak widths are on par with commercial ultra-high pressure LC instrumentation and cycle times as low as 10 min. System versatility will be demonstrated by several examples including intact proteins analysis, lipidomics and biopharmaceutical applications. All experiments were performed using a nanoflow system coupled with an oaTOF mass spectrometer fitted with an electrospray ionization source designed to accommodate the microfluidic device. The emitter is connected to a packed channel by zero dead-volume connections and incorporates the use of nebulising gas. The separation channel was 150 μm × 5 cm and packed with sub-2-μm reverse-phased particles of various chemistries. For intact protein analysis, using Ribonuclease A, Cyctochrome C, Holotransferrin and Apomyoglobin, good resolution was achieved using shorter alkyl chain resins. Additionally, light and heavy chains of reduced monoclonal antibodies could be separated. Separations were performed at 80°C, using a 3 μL/min linear gradient from 20% to 55% ACN over 5 min. Applicability for biopharmaceutical use is shown with minute amounts of Trastuzumab, demonstrating peak widths less than 6 s with 90% sequence coverage. Methionine oxidation and sites of glycosylation were also detected. The method was also employed for lipid analysis showing improved separation for the major classes, particularly inter and intra forms. The microfluidic system offered high retention time reproducibility with RSD values smaller than 0.2%. This is especially useful for lipidomic analysis, which requires the comparison of a large number of LC-MS chromatograms from multiple sample sets.
Freire, Carmen S. R.; Coutinho, João A. P.; Silvestre, Armando J. D.; Freire, Mara G.
2016-01-01
Due to their unique properties, in recent years, ionic liquids (ILs) have been largely investigated in the field of analytical chemistry. Particularly during the last sixteen years, they have been successfully applied in the chromatographic and electrophoretic analysis of value-added compounds extracted from biomass. Considering the growing interest in the use of ILs in this field, this critical review provides a comprehensive overview on the improvements achieved using ILs as constituents of mobile or stationary phases in analytical techniques, namely in capillary electrophoresis and its different modes, in high performance liquid chromatography, and in gas chromatography, for the separation and analysis of natural compounds. The impact of the IL chemical structure and the influence of secondary parameters, such as the IL concentration, temperature, pH, voltage and analysis time (when applied), are also critically addressed regarding the achieved separation improvements. Major conclusions on the role of ILs in the separation mechanisms and the performance of these techniques in terms of efficiency, resolution and selectivity are provided. Based on a critical analysis of all published results, some target-oriented ILs are suggested. Finally, current drawbacks and future challenges in the field are highlighted. In particular, the design and use of more benign and effective ILs as well as the development of integrated (and thus more sustainable) extraction–separation processes using IL aqueous solutions are suggested within a green chemistry perspective. PMID:27667965
The interference aerodynamics caused by the wing elasticity during store separation
NASA Astrophysics Data System (ADS)
Lei, Yang; Zheng-yin, Ye
2016-04-01
Air-launch-to-orbit is the technology that has stores carried aloft and launched the store from the plane to the orbit. The separation between the aircraft and store is one of the most important and difficult phases in air-launch-to-orbit technology. There exists strong aerodynamic interference between the aircraft and the store in store separation. When the aspect ratio of the aircraft is large, the elastic deformations of the wing must be considered. The main purpose of this article is to study the influence of the interference aerodynamics caused by the elastic deformations of the wing to the unsteady aerodynamics of the store. By solving the coupled functions of unsteady Navier-Stokes equations, six degrees of freedom dynamic equations and structural dynamic equations simultaneously, the store separation with the elastic deformation of the aircraft considered is simulated numerically. And the interactive aerodynamic forces are analyzed. The study shows that the interference aerodynamics is obvious at earlier time during the separation, and the dominant frequency of the elastic wing determines the aerodynamic forces frequencies of the store. Because of the effect of the interference aerodynamics, the roll angle response and pitch angle response increase. When the store is mounted under the wingtip, the additional aerodynamics caused by the wingtip vortex is obvious, which accelerate the divergence of the lateral force and the lateral-directional attitude angle of the store. This study supports some beneficial conclusions to the engineering application of the air-launch-to-orbit.
Multiplexed Western Blotting Using Microchip Electrophoresis.
Jin, Shi; Furtaw, Michael D; Chen, Huaxian; Lamb, Don T; Ferguson, Stephen A; Arvin, Natalie E; Dawod, Mohamed; Kennedy, Robert T
2016-07-05
Western blotting is a commonly used protein assay that combines the selectivity of electrophoretic separation and immunoassay. The technique is limited by long time, manual operation with mediocre reproducibility, and large sample consumption, typically 10-20 μg per assay. Western blots are also usually used to measure only one protein per assay with an additional housekeeping protein for normalization. Measurement of multiple proteins is possible; however, it requires stripping membranes of antibody and then reprobing with a second antibody. Miniaturized alternatives to Western blot based on microfluidic or capillary electrophoresis have been developed that enable higher-throughput, automation, and greater mass sensitivity. In one approach, proteins are separated by electrophoresis on a microchip that is dragged along a polyvinylidene fluoride membrane so that as proteins exit the chip they are captured on the membrane for immunoassay. In this work, we improve this method to allow multiplexed protein detection. Multiple injections made from the same sample can be deposited in separate tracks so that each is probed with a different antibody. To further enhance multiplexing capability, the electrophoresis channel dimensions were optimized for resolution while keeping separation and blotting times to less than 8 min. Using a 15 μm deep × 50 μm wide × 8.6 cm long channel, it is possible to achieve baseline resolution of proteins that differ by 5% in molecular weight, e.g., ERK1 (44 kDa) from ERK2 (42 kDa). This resolution allows similar proteins detected by cross-reactive antibodies in a single track. We demonstrate detection of 11 proteins from 9 injections from a single Jurkat cell lysate sample consisting of 400 ng of total protein using this procedure. Thus, multiplexed Western blots are possible without cumbersome stripping and reprobing steps.
NASA Astrophysics Data System (ADS)
Kang, Dong-Hyun; Kim, Kyongtae; Kim, Yong-Jun
2018-02-01
Microfluidic devices for plasma extraction are popular because they offer the advantage of smaller reagent consumption compared to conventional centrifugations. The plasma yield (volume percentage of plasma that can be extracted) is an important factor for diagnoses in microdevices with small reagent consumptions. However, recently designed microfluidic devices tend to have a low plasma yield because they have been optimized to improve the purity of extracted plasma. Thus, these devices require large amounts of reagents, and this complexity has eliminated the advantage of microfluidic devices that can operate with only small amounts of reagents. We therefore propose a continuous, real-time, blood plasma separation device, for plasma extraction rate enhancements. Moreover, a blood plasma separation device was designed to achieve improved plasma yields with high-purity efficiency. To obtain a high plasma yield, microstructures were placed on the bottom side of the channel to increase the concentration of blood cells. Plasma separation was then accomplished via microfluidic networks based on the Zweifach-Fung effect. The proposed device was fabricated based on the polydimethylsiloxane molding process using the SU-8 microfluidic channel for the fabrication of the mold and bottom structures. Human blood diluted in a phosphate buffered saline solution (25% hematocrit) was injected into the inlet of the device. The purity efficiencies were approximately equal to 96% with a maximum of 96.75% at a flow rate of 2 µl min-1, while the plasma yield was approximately 59% with a maximum of 59.92% at a flow rate of 4 µl min-1. Compared to results obtained using other devices, our proposed device could obtain comparable or higher plasma purity and a high plasma yield.
Tactical Conflict Detection in Terminal Airspace
NASA Technical Reports Server (NTRS)
Tang, Huabin; Robinson, John E.; Denery, Dallas G.
2010-01-01
Air traffic systems have long relied on automated short-term conflict prediction algorithms to warn controllers of impending conflicts (losses of separation). The complexity of terminal airspace has proven difficult for such systems as it often leads to excessive false alerts. Thus, the legacy system, called Conflict Alert, which provides short-term alerts in both en-route and terminal airspace currently, is often inhibited or degraded in areas where frequent false alerts occur, even though the alerts are provided only when an aircraft is in dangerous proximity of other aircraft. This research investigates how a minimal level of flight intent information may be used to improve short-term conflict detection in terminal airspace such that it can be used by the controller to maintain legal aircraft separation. The flight intent information includes a site-specific nominal arrival route and inferred altitude clearances in addition to the flight plan that includes the RNAV (Area Navigation) departure route. A new tactical conflict detection algorithm is proposed, which uses a single analytic trajectory, determined by the flight intent and the current state information of the aircraft, and includes a complex set of current, dynamic separation standards for terminal airspace to define losses of separation. The new algorithm is compared with an algorithm that imitates a known en-route algorithm and another that imitates Conflict Alert by analysis of false-alert rate and alert lead time with recent real-world data of arrival and departure operations and a large set of operational error cases from Dallas/Fort Worth TRACON (Terminal Radar Approach Control). The new algorithm yielded a false-alert rate of two per hour and an average alert lead time of 38 seconds.
Tsugawa, Hiroshi; Arita, Masanori; Kanazawa, Mitsuhiro; Ogiwara, Atsushi; Bamba, Takeshi; Fukusaki, Eiichiro
2013-05-21
We developed a new software program, MRMPROBS, for widely targeted metabolomics by using the large-scale multiple reaction monitoring (MRM) mode. The strategy became increasingly popular for the simultaneous analysis of up to several hundred metabolites at high sensitivity, selectivity, and quantitative capability. However, the traditional method of assessing measured metabolomics data without probabilistic criteria is not only time-consuming but is often subjective and makeshift work. Our program overcomes these problems by detecting and identifying metabolites automatically, by separating isomeric metabolites, and by removing background noise using a probabilistic score defined as the odds ratio from an optimized multivariate logistic regression model. Our software program also provides a user-friendly graphical interface to curate and organize data matrices and to apply principal component analyses and statistical tests. For a demonstration, we conducted a widely targeted metabolome analysis (152 metabolites) of propagating Saccharomyces cerevisiae measured at 15 time points by gas and liquid chromatography coupled to triple quadrupole mass spectrometry. MRMPROBS is a useful and practical tool for the assessment of large-scale MRM data available to any instrument or any experimental condition.
An Examination of Parameters Affecting Large Eddy Simulations of Flow Past a Square Cylinder
NASA Technical Reports Server (NTRS)
Mankbadi, M. R.; Georgiadis, N. J.
2014-01-01
Separated flow over a bluff body is analyzed via large eddy simulations. The turbulent flow around a square cylinder features a variety of complex flow phenomena such as highly unsteady vortical structures, reverse flow in the near wall region, and wake turbulence. The formation of spanwise vortices is often times artificially suppressed in computations by either insufficient depth or a coarse spanwise resolution. As the resolution is refined and the domain extended, the artificial turbulent energy exchange between spanwise and streamwise turbulence is eliminated within the wake region. A parametric study is performed highlighting the effects of spanwise vortices where the spanwise computational domain's resolution and depth are varied. For Re=22,000, the mean and turbulent statistics computed from the numerical large eddy simulations (NLES) are in good agreement with experimental data. Von-Karman shedding is observed in the wake of the cylinder. Mesh independence is illustrated by comparing a mesh resolution of 2 million to 16 million. Sensitivities to time stepping were minimized and sampling frequency sensitivities were nonpresent. While increasing the spanwise depth and resolution can be costly, this practice was found to be necessary to eliminating the artificial turbulent energy exchange.
Long hard road from Nuna to Rodinia
NASA Astrophysics Data System (ADS)
Pisarevsky, Sergei
2014-05-01
The popular concept of supercontinental cycles suggests the existence of at least two Precambrian supercontinents, referred to as Nuna (or Columbia) and Rodinia. The times of their assembly and breakup are debated, as are their constituents and configurations. The recent compilation of paleomagnetic data supported by the geological evidence suggests that Nuna have broken up at ca. 1450-1380 Ma by separation of the Australia-Mawson continent from western Laurentia. The recent robust paleomagnetic pole from 1210 Ma mafic dykes in Western Australia provides an additional evidence of wide separation of these continents by the time of the dykes' emplacement. On the other hand, there is the evidence that Laurentia and Baltica have been rigidly connected with present Scandinavia facing East Greenland until after 1270 Ma, when they broke up. Baltica then moved c.1000 km south and rotated clockwise 95° with respect to Laurentia by 1000 Ma and two continents recombined again with the Scandinavian margin of Baltica facing Scottish terranes of the Laurentian affinity, Rockall Bank and southeast Greenland. However, the published model of the simple fan-like opening of the Asgard Sea Between Laurentia and Baltica is somewhat hampered by the recent 1120 Ma paleomagnetic pole from Finland, which suggests a more complicated drift of Baltica with respect to Laurentia. There are also reasons to suggest that a large part of Nuna, which included Laurentia and Siberia has been incorporated into Rodinia after 1000 Ma. The c. 1300-1000 Ma Apparent Polar Wander Paths for Laurentia, Baltica, Australia, Amazonia and India are significantly different in their lengths and shapes suggesting relative movements of these continents with respect to each other. There is still not enough reliable published late Mesoproterozoic - early Neoproterozoic paleomagnetic data to make the unequivocal paleogeographic reconstructions for this time interval. However, it is unlikely that a large supercontinent did exist in the late Mesoproterozoic. This may have been a transitional time between the final breakup of Nuna and the assembly of Rodinia.
NASA Technical Reports Server (NTRS)
Ball, J. W.; Lindahl, R. H.
1976-01-01
The purpose of the test was to investigate the nature of the Orbiter boundary layer characteristics at angles of attack from -4 to 32 degrees at a Mach number of 4.6. The effect of large grit, employed as transition strips, on both the nature of the boundary layer and the force and moment characteristics were investigated along with the effects of large negative elevon deflection on lee side separation. In addition, laminar and turbulent boundary layer separation phenomena which could cause asymmetric flow separation were investigated.