Sample records for large variations observed

  1. Effects of large-scale wind driven turbulence on sound propagation

    NASA Technical Reports Server (NTRS)

    Noble, John M.; Bass, Henry E.; Raspet, Richard

    1990-01-01

    Acoustic measurements made in the atmosphere have shown significant fluctuations in amplitude and phase resulting from the interaction with time varying meteorological conditions. The observed variations appear to have short term and long term (1 to 5 minutes) variations at least in the phase of the acoustic signal. One possible way to account for this long term variation is the use of a large scale wind driven turbulence model. From a Fourier analysis of the phase variations, the outer scales for the large scale turbulence is 200 meters and greater, which corresponds to turbulence in the energy-containing subrange. The large scale turbulence is assumed to be elongated longitudinal vortex pairs roughly aligned with the mean wind. Due to the size of the vortex pair compared to the scale of the present experiment, the effect of the vortex pair on the acoustic field can be modeled as the sound speed of the atmosphere varying with time. The model provides results with the same trends and variations in phase observed experimentally.

  2. Large scale mass redistribution and surface displacement from GRACE and SLR

    NASA Astrophysics Data System (ADS)

    Cheng, M.; Ries, J. C.; Tapley, B. D.

    2012-12-01

    Mass transport between the atmosphere, ocean and solid earth results in the temporal variations in the Earth gravity field and loading induced deformation of the Earth. Recent space-borne observations, such as GRACE mission, are providing extremely high precision temporal variations of gravity field. The results from 10-yr GRACE data has shown a significant annual variations of large scale vertical and horizontal displacements occurring over the Amazon, Himalayan region and South Asia, African, and Russian with a few mm amplitude. Improving understanding from monitoring and modeling of the large scale mass redistribution and the Earth's response are a critical for all studies in the geosciences, in particular for determination of Terrestrial Reference System (TRS), including geocenter motion. This paper will report results for the observed seasonal variations in the 3-dimentional surface displacements of SLR and GPS tracking stations and compare with the prediction from time series of GRACE monthly gravity solution.

  3. Groundwater storage variations in the North China Plain using multiple space geodetic observations

    NASA Astrophysics Data System (ADS)

    Feng, W.; Longuevergne, L.; Kusche, J.; Liang, S.; Zhang, Y.; Scanlon, B. R.; Shum, C. K.; Yeh, P. J. F.; Long, D.; Cao, G.; Zhong, M.; Xu, H.; Xia, J.

    2017-12-01

    Water storage and pressure variations in the subsurface generate measurable gravity changes and surface displacements. This study presents the joint interpretation of GRACE and GPS/InSAR observations to better understand shallow and deep groundwater storage (GWS) variations associated with unsustainable pumping and impact of climate variability in the North China Plain (NCP). On seasonal timescales, GRACE-derived GWS variations are well explained by the combined effect of groundwater abstraction due to anthropogenic irrigation activities and groundwater recharge from natural precipitation. Interannual GWS variations in the NCP detected by GRACE is consistent with precipitation anomalies. During the drought years (e.g., 2002 and 2014), significant GWS depletion is detected by GRACE satellites. The GRACE-derived GWS variation rate is -8.0 ± 1.5 km3/yr during 2002-2014, which is significantly larger than the estimate from phreatic monitoring well observations. The difference between them indicates the significant GWS depletion in the confined deep aquifers of the NCP, generating large subsidence rates, which has been largely underestimated up to now. The GWS variation rate in deep aquifers estimated from GPS/InSAR observations can explain the difference between the GWS depletion rate from GRACE and that from well observations. Both GRACE and surface displacement offer significant potential to better understand water redistribution in shallow and deep aquifer systems of the NCP.

  4. Telluric currents: A meeting of theory and observation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boteler, D.H.; Seager, W.H.

    Pipe-to-soil (P/S) potential variations resulting from telluric currents have been observed on pipelines in many locations. However, it has never teen clear which parts of a pipeline will experience the worst effects. Two studies were conducted to answer this question. Distributed-source transmission line (DSTL) theory was applied to the problem of modeling geomagnetic induction in pipelines. This theory predicted that the largest P/S potential variations would occur at the ends of the pipeline. The theory also predicted that large P/S potential variations, of opposite sign, should occur on either side of an insulating flange. Independently, an observation program was conductedmore » to determine the change in telluric current P/S potential variations and to design counteractive measures along a pipeline in northern Canada. Observations showed that the amplitude of P/S potential fluctuations had maxima at the northern and southern ends of the pipeline. A further set of recordings around an insulating flange showed large P/S potential variations, of opposite sign, on either side of the flange. Agreement between the observations and theoretical predictions was remarkable. While the observations confirmed the theory, the theory explains how P/S potential variations are produced by telluric currents and provides the basis for design of cathodic protection systems for pipelines that can counteract any adverse telluric effects.« less

  5. Observation of spatial and temporal variations in X-ray bright point emergence patterns. [at solar surface

    NASA Technical Reports Server (NTRS)

    Golub, L.; Krieger, A. S.; Vaiana, G. S.

    1976-01-01

    Observations of X-ray bright points (XBP) over a six-month interval in 1973 show significant variations in both the number density of XBP as a function of heliographic longitude and in the full-sun average number of XBP from one rotation to the next. The observed increases in XBP emergence are estimated to be equivalent to several large active regions emerging per day for several months. The number of XBP emerging at high latitudes varies in phase with the low-latitude variation and reaches a maximum approximately simultaneous with a major outbreak of active regions. The quantity of magnetic flux emerging in the form of XBP at high latitudes alone is estimated to be as large as the contribution from all active regions.

  6. Control Variate Estimators of Survivor Growth from Point Samples

    Treesearch

    Francis A. Roesch; Paul C. van Deusen

    1993-01-01

    Two estimators of the control variate type for survivor growth from remeasured point samples are proposed and compared with more familiar estimators. The large reductionsin variance, observed in many cases forestimators constructed with control variates, arealso realized in thisapplication. A simulation study yielded consistent reductions in variance which were often...

  7. The imprint of surface fluxes and transport on variations in total column carbon dioxide

    NASA Astrophysics Data System (ADS)

    Keppel-Aleks, G.; Wennberg, P. O.; Washenfelder, R. A.; Wunch, D.; Schneider, T.; Toon, G. C.; Andres, R. J.; Blavier, J.-F.; Connor, B.; Davis, K. J.; Desai, A. R.; Messerschmidt, J.; Notholt, J.; Roehl, C. M.; Sherlock, V.; Stephens, B. B.; Vay, S. A.; Wofsy, S. C.

    2011-07-01

    New observations of the vertically integrated CO2 mixing ratio, ⟨CO2⟩, from ground-based remote sensing show that variations in ⟨CO2⟩ are primarily determined by large-scale flux patterns. They therefore provide fundamentally different information than observations made within the boundary layer, which reflect the combined influence of large scale and local fluxes. Observations of both ⟨CO2⟩ and CO2 concentrations in the free troposphere show that large-scale spatial gradients induce synoptic-scale temporal variations in ⟨CO2⟩ in the Northern Hemisphere midlatitudes through horizontal advection. Rather than obscure the signature of surface fluxes on atmospheric CO2, these synoptic-scale variations provide useful information that can be used to reveal the meridional flux distribution. We estimate the meridional gradient in ⟨CO2⟩ from covariations in ⟨CO2⟩ and potential temperature, θ, a dynamical tracer, on synoptic timescales to evaluate surface flux estimates commonly used in carbon cycle models. We find that Carnegie Ames Stanford Approach (CASA) biospheric fluxes underestimate both the ⟨CO2⟩ seasonal cycle amplitude throughout the Northern Hemisphere midlatitudes as well as the meridional gradient during the growing season. Simulations using CASA net ecosystem exchange (NEE) with increased and phase-shifted boreal fluxes better reflect the observations. Our simulations suggest that boreal growing season NEE (between 45-65° N) is underestimated by ~40 % in CASA. We describe the implications for this large seasonal exchange on inference of the net Northern Hemisphere terrestrial carbon sink.

  8. The imprint of surface fluxes and transport on variations in total column carbon dioxide

    NASA Astrophysics Data System (ADS)

    Keppel-Aleks, G.; Wennberg, P. O.; Washenfelder, R. A.; Wunch, D.; Schneider, T.; Toon, G. C.; Andres, R. J.; Blavier, J.-F.; Connor, B.; Davis, K. J.; Desai, A. R.; Messerschmidt, J.; Notholt, J.; Roehl, C. M.; Sherlock, V.; Stephens, B. B.; Vay, S. A.; Wofsy, S. C.

    2012-03-01

    New observations of the vertically integrated CO2 mixing ratio, ⟨CO2⟩, from ground-based remote sensing show that variations in CO2⟩ are primarily determined by large-scale flux patterns. They therefore provide fundamentally different information than observations made within the boundary layer, which reflect the combined influence of large-scale and local fluxes. Observations of both ⟨CO2⟩ and CO2 concentrations in the free troposphere show that large-scale spatial gradients induce synoptic-scale temporal variations in ⟨CO2⟩ in the Northern Hemisphere midlatitudes through horizontal advection. Rather than obscure the signature of surface fluxes on atmospheric CO2, these synoptic-scale variations provide useful information that can be used to reveal the meridional flux distribution. We estimate the meridional gradient in ⟨CO2⟩ from covariations in ⟨CO2⟩ and potential temperature, θ, a dynamical tracer, on synoptic timescales to evaluate surface flux estimates commonly used in carbon cycle models. We find that simulations using Carnegie Ames Stanford Approach (CASA) biospheric fluxes underestimate both the ⟨CO2⟩ seasonal cycle amplitude throughout the Northern Hemisphere midlatitudes and the meridional gradient during the growing season. Simulations using CASA net ecosystem exchange (NEE) with increased and phase-shifted boreal fluxes better fit the observations. Our simulations suggest that climatological mean CASA fluxes underestimate boreal growing season NEE (between 45-65° N) by ~40%. We describe the implications for this large seasonal exchange on inference of the net Northern Hemisphere terrestrial carbon sink.

  9. Selection and phenotypic characterization of a core collection of Brachypodium distachyon inbred lines.

    PubMed

    Tyler, Ludmila; Fangel, Jonatan U; Fagerström, Alexandra Dotson; Steinwand, Michael A; Raab, Theodore K; Willats, William Gt; Vogel, John P

    2014-01-14

    The model grass Brachypodium distachyon is increasingly used to study various aspects of grass biology. A large and genotypically diverse collection of B. distachyon germplasm has been assembled by the research community. The natural variation in this collection can serve as a powerful experimental tool for many areas of inquiry, including investigating biomass traits. We surveyed the phenotypic diversity in a large collection of inbred lines and then selected a core collection of lines for more detailed analysis with an emphasis on traits relevant to the use of grasses as biofuel and grain crops. Phenotypic characters examined included plant height, growth habit, stem density, flowering time, and seed weight. We also surveyed differences in cell wall composition using near infrared spectroscopy (NIR) and comprehensive microarray polymer profiling (CoMPP). In all cases, we observed extensive natural variation including a two-fold variation in stem density, four-fold variation in ferulic acid bound to hemicellulose, and 1.7-fold variation in seed mass. These characterizations can provide the criteria for selecting diverse lines for future investigations of the genetic basis of the observed phenotypic variation.

  10. A double-observer method for reducing bias in faecal pellet surveys of forest ungulates

    USGS Publications Warehouse

    Jenkins, K.J.; Manly, B.F.J.

    2008-01-01

    1. Faecal surveys are used widely to study variations in abundance and distribution of forest-dwelling mammals when direct enumeration is not feasible. The utility of faecal indices of abundance is limited, however, by observational bias and variation in faecal disappearance rates that obscure their relationship to population size. We developed methods to reduce variability in faecal surveys and improve reliability of faecal indices. 2. We used double-observer transect sampling to estimate observational bias of faecal surveys of Roosevelt elk Cervus elaphus roosevelti and Columbian black-tailed deer Odocoileus hemionus columbianus in Olympic National Park, Washington, USA. We also modelled differences in counts of faecal groups obtained from paired cleared and uncleared transect segments as a means to adjust standing crop faecal counts for a standard accumulation interval and to reduce bias resulting from variable decay rates. 3. Estimated detection probabilities of faecal groups ranged from < 0.2-1.0 depending upon the observer, whether the faecal group was from elk or deer, faecal group size, distance of the faecal group from the sampling transect, ground vegetation cover, and the interaction between faecal group size and distance from the transect. 4. Models of plot-clearing effects indicated that standing crop counts of deer faecal groups required 34% reduction on flat terrain and 53% reduction on sloping terrain to represent faeces accumulated over a standard 100-day interval, whereas counts of elk faecal groups required 0% and 46% reductions on flat and sloping terrain, respectively. 5. Synthesis and applications. Double-observer transect sampling provides a cost-effective means of reducing observational bias and variation in faecal decay rates that obscure the interpretation of faecal indices of large mammal abundance. Given the variation we observed in observational bias of faecal surveys and persistence of faeces, we emphasize the need for future researchers to account for these comparatively manageable sources of bias before comparing faecal indices spatially or temporally. Double-observer sampling methods are readily adaptable to study variations in faecal indices of large mammals at the scale of the large forest reserve, natural area, or other forested regions when direct estimation of populations is problematic. ?? 2008 The Authors.

  11. FPI observations of nighttime mesospheric and thermospheric winds in China and their comparisons with HWM07

    NASA Astrophysics Data System (ADS)

    Yuan, Wei

    2015-04-01

    We analyzed the nighttime horizontal neutral winds in the middle atmosphere (˜87 and ˜98 km) and thermosphere (˜250 km) derived from a Fabry-Perot interferometer (FPI), which was installed at Xinglong station (40.2◦ N, 117.4◦ E) in central China. The wind data covered the period from April 2010 to July 2012. We studied the annual, semiannual and terannual variations of the midnight winds at ˜87 km, ˜98 km and ˜250 km for the first time and compared them with Horizontal Wind Model 2007 (HWM07). Our results show the following: (1) at ˜ 87 km, both the observed and model zonal winds have similar phases in the annual and semiannual variations. However, the HWM07 amplitudes are much larger. (2) At ˜98 km, the model shows strong eastward wind in the summer solstice, resulting in a large annual variation, while the observed strongest component is semiannual. The observation and model midnight meridional winds agree well. Both are equatorward throughout the year and have small amplitudes in the annual and semiannual variations. (3) There are large discrepancies between the observed and HWM07 winds at ˜250 km. This discrepancy is largely due to the strong semiannual zonal wind in the model and the phase difference in the annual variation of the meridional wind. The FPI annual variation coincides with the results from Arecibo, which has similar geomagnetic latitude as Xinglong station. In General, the consistency of FPI winds with model winds is better at ˜87 and ˜98 km than that at ˜250 km. We also studied the seasonally and monthly averaged nighttime winds. The most salient features include the following: (1) the seasonally averaged zonal winds at ˜87 and ˜98 km typically have small variations throughout the night. (2) The model zonal and meridional nighttime wind variations are typically much larger than those of observations at ˜87 km and ˜98 km. (3) At ˜250 km, model zonal wind compares well with the observation in the winter. For spring and autumn, the model wind is more eastward before ˜ 03:00 LT but more westward after. The observed nighttime zonal and meridional winds on average are close to zero in the summer and autumn, which indicates a lack of strong stable tides. The consistency of FPI zonal wind with model wind at ˜250 km is better than the meridional wind.

  12. Large trench-parallel gravity variations predict seismogenic behavior in subduction zones.

    PubMed

    Song, Teh-Ru Alex; Simons, Mark

    2003-08-01

    We demonstrate that great earthquakes occur predominantly in regions with a strongly negative trench-parallel gravity anomaly (TPGA), whereas regions with strongly positive TPGA are relatively aseismic. These observations suggest that, over time scales up to at least 1 million years, spatial variations of seismogenic behavior within a given subduction zone are stationary and linked to the geological structure of the fore-arc. The correlations we observe are consistent with a model in which spatial variations in frictional properties on the plate interface control trench-parellel variations in fore-arc topography, gravity, and seismogenic behavior.

  13. Optical polarization variations in the blazar PKS 1749+096

    NASA Astrophysics Data System (ADS)

    Uemura, Makoto; Itoh, Ryosuke; Liodakis, Ioannis; Blinov, Dmitry; Nakayama, Masanori; Xu, Longyin; Sawada, Naoko; Wu, Hsiang-Yun; Fujishiro, Issei

    2017-12-01

    We report on the variation in the optical polarization of the blazar PKS 1749+096 observed in 2008-2015. The degree of polarization (PD) tends to increase in short flares, having a time-scale of a few days. The object favors a polarization angle (PA) of 40°-50° at the flare maxima, which is close to the position angle of the jet (20°-40°). Three clear polarization rotations were detected in the negative PA direction associated with flares. In addition, a rapid and large decrease in the PA was observed in the other two flares, while another two flares showed no large PA variation. The light-curve maxima of the flares possibly tended to lag behind the PD maxima and color-index minima. The PA became -50° to -20° in the decay phase of active states, which is almost perpendicular to the jet position angle. We propose a scenario to explain these observational features, where transverse shocks propagate along curved trajectories. The favored PA at the flare maxima suggests that the observed variations were governed by the variations in the Doppler factor, δ. Based on this scenario, the minimum viewing angle of the source, θ _min = 4.8°-6.6°, and the location of the source, Δr ≳ 0.1 pc, from the central black hole were estimated. In addition, the acceleration of electrons by the shock and synchrotron cooling would have a time-scale similar to that of the change in δ. The combined effect of the variation in δ and acceleration/cooling of electrons is probably responsible for the observed diversity of the polarization variations in the flares.

  14. Seasonal stratospheric photochemistry on Uranus and Neptune

    NASA Astrophysics Data System (ADS)

    Moses, Julianne I.; Fletcher, Leigh N.; Greathouse, Thomas K.; Orton, Glenn S.; Hue, Vincent

    2018-06-01

    A time-variable 1D photochemical model is used to study the distribution of stratospheric hydrocarbons as a function of altitude, latitude, and season on Uranus and Neptune. The results for Neptune indicate that in the absence of stratospheric circulation or other meridional transport processes, the hydrocarbon abundances exhibit strong seasonal and meridional variations in the upper stratosphere, but that these variations become increasingly damped with depth due to increasing dynamical and chemical time scales. At high altitudes, hydrocarbon mixing ratios are typically largest where the solar insolation is the greatest, leading to strong hemispheric dichotomies between the summer-to-fall hemisphere and winter-to-spring hemisphere. At mbar pressures and deeper, slower chemistry and diffusion lead to latitude variations that become more symmetric about the equator. On Uranus, the stagnant, poorly mixed stratosphere confines methane and its photochemical products to higher pressures, where chemistry and diffusion time scales remain large. Seasonal variations in hydrocarbons are therefore predicted to be more muted on Uranus, despite the planet's very large obliquity. Radiative-transfer simulations demonstrate that latitude variations in hydrocarbons on both planets are potentially observable with future JWST mid-infrared spectral imaging. Our seasonal model predictions for Neptune compare well with retrieved C2H2 and C2H6 abundances from spatially resolved ground-based observations (no such observations currently exist for Uranus), suggesting that stratospheric circulation - which was not included in these models - may have little influence on the large-scale meridional hydrocarbon distributions on Neptune, unlike the situation on Jupiter and Saturn.

  15. Diminished tektite ablation in the wake of a swarm

    NASA Technical Reports Server (NTRS)

    Sepri, P.; Chen, K. K.; Okeefe, J. A.

    1981-01-01

    Observations of ablation markings on tektite surfaces reveal that a large variation in aerodynamic heating must have occurred among the members of a swarm during atmospheric entry. In a few cases, the existence of jagged features indicates that these tektite surfaces may have barely reached the melting temperature. Such an observation seems to be incompatible with the necessarily large heating rates suffered by other tektites which exhibit the ring wave melt flow. A reconciliation is proposed in the form of a wake shielding model which is a natural consequence of swarm entry. Calculations indicate that the observed ablation variations are actually possible for swarm entry at greater than escape velocity. This aerodynamic conclusion provides support for the arguments favoring extraterrestrial origin of tektites.

  16. Observed large-scale structures and diabatic heating and drying profiles during TWP-ICE

    DOE PAGES

    Xie, Shaocheng; Hume, Timothy; Jakob, Christian; ...

    2010-01-01

    This study documents the characteristics of the large-scale structures and diabatic heating and drying profiles observed during the Tropical Warm Pool–International Cloud Experiment (TWP-ICE), which was conducted in January–February 2006 in Darwin during the northern Australian monsoon season. The examined profiles exhibit significant variations between four distinct synoptic regimes that were observed during the experiment. The active monsoon period is characterized by strong upward motion and large advective cooling and moistening throughout the entire troposphere, while the suppressed and clear periods are dominated by moderate midlevel subsidence and significant low- to midlevel drying through horizontal advection. The midlevel subsidence andmore » horizontal dry advection are largely responsible for the dry midtroposphere observed during the suppressed period and limit the growth of clouds to low levels. During the break period, upward motion and advective cooling and moistening located primarily at midlevels dominate together with weak advective warming and drying (mainly from horizontal advection) at low levels. The variations of the diabatic heating and drying profiles with the different regimes are closely associated with differences in the large-scale structures, cloud types, and rainfall rates between the regimes. Strong diabatic heating and drying are seen throughout the troposphere during the active monsoon period while they are moderate and only occur above 700 hPa during the break period. The diabatic heating and drying tend to have their maxima at low levels during the suppressed periods. Furthermore, the diurnal variations of these structures between monsoon systems, continental/coastal, and tropical inland-initiated convective systems are also examined.« less

  17. Understanding Madden-Julian-Induced sea surface temperature variations in the North Western Australian Basin

    NASA Astrophysics Data System (ADS)

    Vialard, J.; Drushka, K.; Bellenger, H.; Lengaigne, M.; Pous, S.; Duvel, J. P.

    2013-12-01

    The strongest large-scale intraseasonal (30-110 day) sea surface temperature (SST) variations in austral summer in the tropics are found in the eastern Indian Ocean between Australia and Indonesia (North-Western Australian Basin, or NWAB). TMI and Argo observations indicate that the temperature signal (std. ~0.4 °C) is most prominent within the top 20 m. This temperature signal appears as a standing oscillation with a 40-50 day timescale within the NWAB, associated with ~40 Wm-2 net heat fluxes (primarily shortwave and latent) and ~0.02 Nm-2 wind stress perturbations. This signal is largely related to the Madden-Julian Oscillation. A slab ocean model with climatological observed mixed-layer depth and an ocean general circulation model both accurately reproduce the observed intraseasonal SST oscillations in the NWAB. Both indicate that most of the intraseasonal SST variations in the NWAB in austral winter are related to surface heat flux forcing, and that intraseasonal SST variations are largest in austral summer because the mixed-layer is shallow (~20 m) and thus more responsive during that season. The general circulation model indicates that entrainment cooling plays little role in intraseasonal SST variations. The larger intraseasonal SST variations in the NWAB as compared to the widely-studied thermocline-ridge of the Indian Ocean region is explained by the larger convective and air-sea heat flux perturbations in the NWAB.

  18. The role of ensemble-based statistics in variational assimilation of cloud-affected observations from infrared imagers

    NASA Astrophysics Data System (ADS)

    Hacker, Joshua; Vandenberghe, Francois; Jung, Byoung-Jo; Snyder, Chris

    2017-04-01

    Effective assimilation of cloud-affected radiance observations from space-borne imagers, with the aim of improving cloud analysis and forecasting, has proven to be difficult. Large observation biases, nonlinear observation operators, and non-Gaussian innovation statistics present many challenges. Ensemble-variational data assimilation (EnVar) systems offer the benefits of flow-dependent background error statistics from an ensemble, and the ability of variational minimization to handle nonlinearity. The specific benefits of ensemble statistics, relative to static background errors more commonly used in variational systems, have not been quantified for the problem of assimilating cloudy radiances. A simple experiment framework is constructed with a regional NWP model and operational variational data assimilation system, to provide the basis understanding the importance of ensemble statistics in cloudy radiance assimilation. Restricting the observations to those corresponding to clouds in the background forecast leads to innovations that are more Gaussian. The number of large innovations is reduced compared to the more general case of all observations, but not eliminated. The Huber norm is investigated to handle the fat tails of the distributions, and allow more observations to be assimilated without the need for strict background checks that eliminate them. Comparing assimilation using only ensemble background error statistics with assimilation using only static background error statistics elucidates the importance of the ensemble statistics. Although the cost functions in both experiments converge to similar values after sufficient outer-loop iterations, the resulting cloud water, ice, and snow content are greater in the ensemble-based analysis. The subsequent forecasts from the ensemble-based analysis also retain more condensed water species, indicating that the local environment is more supportive of clouds. In this presentation we provide details that explain the apparent benefit from using ensembles for cloudy radiance assimilation in an EnVar context.

  19. The origin of large local uplift in extensional regions

    USGS Publications Warehouse

    King, G.; Ellis, M.

    1990-01-01

    Large localized uplift is commonly observed in continental regions undergoing extension. These observations can be modelled by planar, high-angle normal faulting of an elastic upper crust overlying an inviscid lower crust. Isostasy provides the necessary driving force. The model quantifies the role of flexural rigidity, density variations in the crust, and erosion and deposition of sediment.

  20. Origins of tropospheric ozone interannual variation over Réunion: A model investigation

    NASA Astrophysics Data System (ADS)

    Liu, Junhua; Rodriguez, Jose M.; Thompson, Anne M.; Logan, Jennifer A.; Douglass, Anne R.; Olsen, Mark A.; Steenrod, Stephen D.; Posny, Françoise

    2016-01-01

    Observations from long-term ozonesonde measurements show robust variations and trends in the evolution of ozone in the middle and upper troposphere over Réunion Island (21.1°S, 55.5°E) in June-August. Here we examine possible causes of the observed ozone variation at Réunion Island using hindcast simulations by the stratosphere-troposphere Global Modeling Initiative chemical transport model for 1992-2014, driven by assimilated Modern-Era Retrospective Analysis for Research and Applications meteorological fields. Réunion Island is at the edge of the subtropical jet, a region of strong stratospheric-tropospheric exchange. Our analysis implies that the large interannual variation (IAV) of upper tropospheric ozone over Réunion is driven by the large IAV of the stratospheric influence. The IAV of the large-scale, quasi-horizontal wind patterns also contributes to the IAV of ozone in the upper troposphere. Comparison to a simulation with constant emissions indicates that increasing emissions do not lead to the maximum trend in the middle and upper troposphere over Réunion during austral winter implied by the sonde data. The effects of increasing emission over southern Africa are limited to the lower troposphere near the surface in August-September.

  1. Origins of Tropospheric Ozone Interannual Variation (IAV) over Reunion: A Model Investigation

    NASA Technical Reports Server (NTRS)

    Liu, Junhua; Rodriguez, Jose M.; Thompson, Anne M.; Logan, Jennifer A.; Douglass, Anne R.; Olsen, Mark A.; Steenrod, Stephen D.; Posny, Francoise

    2016-01-01

    Observations from long-term ozonesonde measurements show robust variations and trends in the evolution of ozone in the middle and upper troposphere over Reunion Island (21.1 degrees South Latitude, 55.5 degrees East Longitude) in June-August. Here we examine possible causes of the observed ozone variation at Reunion Island using hindcast simulations by the stratosphere-troposphere Global Modeling Initiative chemical transport model for 1992-2014, driven by assimilated Modern-Era Retrospective Analysis for Research and Applications (MERRA) meteorological fields. Reunion Island is at the edge of the subtropical jet, a region of strong stratospheric-tropospheric exchange. Our analysis implies that the large interannual variation (IAV) of upper tropospheric ozone over Reunion is driven by the large IAV of the stratospheric influence. The IAV of the large-scale, quasi-horizontal wind patterns also contributes to the IAV of ozone in the upper troposphere. Comparison to a simulation with constant emissions indicates that increasing emissions do not lead to the maximum trend in the middle and upper troposphere over Reunion during austral winter implied by the sonde data. The effects of increasing emission over southern Africa are limited tothe lower troposphere near the surface in August-September.

  2. Observed and theoretical variations of atmospheric ozone

    NASA Technical Reports Server (NTRS)

    London, J.

    1976-01-01

    Results are summarized from three areas of ozone research: (1) continued analysis of the global distribution of total ozone to extend the global ozone atlas to summarize 15 years (1957-72) of ground based observations; (2) analysis of balloon borne ozonesonde observations for Arosa, Switzerland, and Hohenpeissenberg, Germany (GFR); (3) contined processing of the (Orbiting Geophysical Observatory-4) satellite data to complete the analysis of the stratospheric ozone distribution from the available OGO-4 data. Results of the analysis of the total ozone observations indicated that the long term ozone variation have marked regional patterns and tend to alternate with season and hemisphere. It is becoming increasingly clear that these long period changes are associated with large scale variations in the general upper atmosphere circulation patterns.

  3. Lake transparency: a window into decadal variations in dissolved organic carbon concentrations in Lakes of Acadia National Park, Maine

    USGS Publications Warehouse

    Roesler, Collin S.; Culbertson, Charles W.

    2016-01-01

    A forty year time series of Secchi depth observations from approximately 25 lakes in Acadia National Park, Maine, USA, evidences large variations in transparency between lakes but relatively little seasonal cycle within lakes. However, there are coherent patterns over the time series, suggesting large scale processes are responsible. It has been suggested that variations in colored dissolved organic matter (CDOM) are primarily responsible for the variations in transparency, both between lakes and over time and further that CDOM is a robust optical proxy for dissolved organic carbon (DOC). Here we present a forward model of Secchi depth as a function of DOC based upon first principles and bio-optical relationships. Inverting the model to estimate DOC concentration from Secchi depth observations compared well with the measured DOC concentrations collected since 1995 (RMS error < 1.3 mg C l-1). This inverse model allows the time series of DOC to be extended back to the mid 1970s when only Secchi depth observations were collected, and thus provides a means for investigating lake response to climate forcing, changing atmospheric chemistry and watershed characteristics, including land cover and land use.

  4. Extracting Compositional Variation from THEMIS Data for Features with Large Topography on Mars Via Atmospheric Equalization

    NASA Technical Reports Server (NTRS)

    Anderson, F. S.; Drake, J. S.; Hamilton, V. E.

    2005-01-01

    We have developed a means of equalizing the atmospheric signature in Mars Odyssey Thermal Emission Imaging System (THEMIS) infrared data over regions with large topography such as the Valles Marineris (VM). This equalization allows for the analysis of compositional variations in regions that previously have been difficult to study because of the large differences in atmospheric path length that result from large changes in surface elevation. Specifically, our motivation for this study is to examine deposits that are small at the scales observable by the Thermal Emission Spectrometer (TES) onboard Mars Global Surveyor, but which are more readily resolved with THEMIS.

  5. Amoeboid Olivine Aggregates in Antarctic CR Chondrites: Petrologic Variations Among CR Chondrites

    NASA Astrophysics Data System (ADS)

    Komatsu, M.; Fagan, T. J.; Yamaguchi, A.; Mikouchi, T.; Yasutake, M.; Zolensky, M. E.

    2017-07-01

    A set of Antarctic CRs were examined to see intra-group variations. AOAs in Y-791498, Y-793261, and A-881828 have largely escaped from aqueous alteration. Extensive aqueous alteration in A-881595 and shock deformation in Y-982405 are also observed.

  6. Modeling the Diurnal Tides in the MLT Region with the Doppler Spread Parameterization of Gravity Waves

    NASA Technical Reports Server (NTRS)

    Mayr, H. G.; Mengel, J. G.; Chan, K. L.; Trob, D.; Porter, H. C.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    Special Session: SA03 The mesosphere/lower thermosphere region: Structure, dynamics, composition, and emission. Ground based and satellite observations in the upper mesosphere and lower thermosphere (MLT) reveal large seasonal variations in the horizontal wind fields of the diurnal and semidiurnal tides. To provide an understanding of the observations, we discuss results obtained with our Numerical Spectral Model (NMS) that incorporates the gravity wave Doppler Spread Parameterization (DSP) of Hines. Our model reproduces many of the salient features observed, and we discuss numerical experiments that delineate the important processes involved. Gravity wave momentum deposition and the seasonal variations in the tidal excitation contribute primarily to produce the large equinoctial amplitude maxima in the diurnal tide. Gravity wave induced variations in eddy viscosity, not accounted for in the model, have been shown by Akmaev to be important too. For the semidiurnal tide, with amplitude maximum observed during winter solstice, these processes also contribute, but filtering by the mean zonal circulation is more important. A deficiency of our model is that it cannot reproduce the observed seasonal variations in the phase of the semidiurnal tide, and numerical experiments are being carried out to diagnose the cause and to alleviate this problem. The dynamical components of the upper mesosphere are tightly coupled through non-linear processes and wave filtering, and this may constrain the model and require it to reproduce in detail the observed phenomenology.

  7. Coupled extremely light Ca and Fe isotopes in peridotites

    NASA Astrophysics Data System (ADS)

    Zhao, Xinmiao; Zhang, Zhaofeng; Huang, Shichun; Liu, Yufei; Li, Xin; Zhang, Hongfu

    2017-07-01

    Large metal stable isotopic variations have been observed in both extraterrestrial and terrestrial samples. For example, Ca exhibits large mass-dependent isotopic variation in terrestrial igneous rocks and mantle minerals (on the order of ∼2‰ variation in 44Ca/40Ca). A thorough assessment and understanding of such isotopic variations in peridotites provides important constraints on the evolution and compositon of the Earth's mantle. In order to better understand the Ca and Fe isotopic variations in terrestrial silicate rocks, we report Ca isotopic compositions in a set of peridotitic xenoliths from North China Craton (NCC), which have been studied for Fe isotopes. These NCC peridotites have large Ca and Fe isotopic variations, with δ44/40Ca ranging from -0.08 to 0.92 (delta value relative to SRM915a) and δ57/54Fe (delta value relative to IRMM-014) ranging from -0.61 to 0.16, and these isotopic variations are correlated with large Mg# (100 × Mg/(Mg + Fe) molar ratio) variation, ranging from 80 to 90. Importantly, NCC Fe-rich peridotites have the lowest 44Ca/40Ca and 57Fe/54Fe ratios in all terrestrial silicate rocks. In contrast, although ureilites, mantle rocks from a now broken differentiated asteroid(s), have large Mg# variation, from 70 to 92, they have very limited δ57Fe/54Fe variation (0.03-0.21, delta value relative to IRMM-014). Our model calculations show that the coupled extremely light Ca-Fe isotopic signatures in NCC Fe-rich peridotites most likely reflect kinetic isotopic fractionation during melt-peridotite reaction on a timescale of several to 104 years. In addition, our new data and compiled literature data show a possible compositional effect on the inter-mineral Ca isotopic fractionation between co-existing clinopyroxene and orthopyroxene pairs.

  8. An interplanetary planar magnetic structure oriented at a large (about 80 deg) angle to the Parker spiral

    NASA Technical Reports Server (NTRS)

    Farrugia, M. W.; Dunlop, M. W.; Geurts, F.; Balogh, A.; Southwood, D. J.; Bryant, D. A.; Neugebauer, M.

    1990-01-01

    Magnetic field structures in the solar wind, characterized by a variation of the field vectors within a plane inclined to the ecliptic ('Planar Magnetic Structures', PMSs), were reported recently (Nakagawa et al., 1989). These PMSs have the property that the plane of variation of the field also contains the nominal Parker spiral direction. An observation of a PMS where the direction of the line of intersection of the plane of field variation with the ecliptic plane makes a large (about 80 deg) angle to the Parker spiral direction is presented. Furthermore, the angular variables of the field (1) vary over a restricted range, and (2) are linearly related. The latter property is related to the former. Currently proposed models for the origin of PMS, inasmuch as they require field configurations which retain strict alignment with the Parker spiral direction from formation to observation, are probably incomplete.

  9. Can the envisaged reductions of fossil fuel CO2 emissions be detected by atmospheric observations?

    PubMed

    Levin, Ingeborg; Rödenbeck, Christian

    2008-03-01

    The lower troposphere is an excellent receptacle, which integrates anthropogenic greenhouse gases emissions over large areas. Therefore, atmospheric concentration observations over populated regions would provide the ultimate proof if sustained emissions changes have occurred. The most important anthropogenic greenhouse gas, carbon dioxide (CO(2)), also shows large natural concentration variations, which need to be disentangled from anthropogenic signals to assess changes in associated emissions. This is in principle possible for the fossil fuel CO(2) component (FFCO(2)) by high-precision radiocarbon ((14)C) analyses because FFCO(2) is free of radiocarbon. Long-term observations of (14)CO(2) conducted at two sites in south-western Germany do not yet reveal any significant trends in the regional fossil fuel CO(2) component. We rather observe strong inter-annual variations, which are largely imprinted by changes of atmospheric transport as supported by dedicated transport model simulations of fossil fuel CO(2). In this paper, we show that, depending on the remoteness of the site, changes of about 7-26% in fossil fuel emissions in respective catchment areas could be detected with confidence by high-precision atmospheric (14)CO(2) measurements when comparing 5-year averages if these inter-annual variations were taken into account. This perspective constitutes the urgently needed tool for validation of fossil fuel CO(2) emissions changes in the framework of the Kyoto protocol and successive climate initiatives.

  10. Maternal correlates of growth in toddler vocabulary production in low-income families.

    PubMed

    Pan, Barbara Alexander; Rowe, Meredith L; Singer, Judith D; Snow, Catherine E

    2005-01-01

    This study investigated predictors of growth in toddlers' vocabulary production between the ages of 1 and 3 years by analyzing mother-child communication in 108 low-income families. Individual growth modeling was used to describe patterns of growth in children's observed vocabulary production and predictors of initial status and between-person change. Results indicate large variation in growth across children. Observed variation was positively related to diversity of maternal lexical input and maternal language and literacy skills, and negatively related to maternal depression. Maternal talkativeness was not related to growth in children's vocabulary production in this sample. Implications of the examination of longitudinal data from this relatively large sample of low-income families are discussed.

  11. Amplitude Variability in gamma Dor and delta Sct Stars Observed by Kepler

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guzik, Joyce Ann; Kosak, Mary Katherine; Bradley, Paul Andrew

    2015-08-17

    The NASA Kepler spacecraft data revealed a large number of new multimode nonradially pulsating gamma Dor and delta Sct variable stars. The Kepler high-precision long time-series photometry makes it possible to study amplitude variations of the frequencies, and recent literature on amplitude and frequency variations in nonradially pulsating variables is summarized. Several methods are applied to study amplitude variability in about a dozen gamma Doradus or delta Scuti candidate variable stars observed for several quarters as part of the Kepler Guest Observer program. The magnitude and timescale of the amplitude variations are discussed, along with the presence or absence ofmore » correlations between amplitude variations for different frequencies of a given star. Proposed causes of amplitude spectrum variability that will require further investigation are also discussed.« less

  12. The Sun as a variable star: Solar and stellar irradiance variations; Colloquium of the International Astronomical Union, 143rd, Boulder, CO, Jun. 20-25, 1993

    NASA Technical Reports Server (NTRS)

    Pap, Judit M. (Editor); Froehlich, Claus (Editor); Hudson, Hugh S. (Editor); Tobiska, W. Kent (Editor)

    1994-01-01

    Variations in solar and stellar irradiances have long been of interest. An International Astronomical Union (IAU) colloquium reviewed such relevant subjects as observations, theoretical interpretations, and empirical and physical models, with a special emphasis on climatic impact of solar irradiance variability. Specific topics discussed included: (1) General Reviews on Observations of Solar and Stellar Irradiance Variability; (2) Observational Programs for Solar and Stellar Irradiance Variability; (3) Variability of Solar and Stellar Irradiance Related to the Network, Active Regions (Sunspots and Plages), and Large-Scale Magnetic Structures; (4) Empirical Models of Solar Total and Spectral Irradiance Variability; (5) Solar and Stellar Oscillations, Irradiance Variations and their Interpretations; and (6) The Response of the Earth's Atmosphere to Solar Irradiance Variations and Sun-Climate Connections.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kataria, T.; Showman, A. P.; Fortney, J. J.

    We present three-dimensional atmospheric circulation models of GJ 1214b, a 2.7 Earth-radius, 6.5 Earth-mass super Earth detected by the MEarth survey. Here we explore the planet's circulation as a function of atmospheric metallicity and atmospheric composition, modeling atmospheres with a low mean molecular weight (MMW; i.e., H{sub 2}-dominated) and a high MMW (i.e., water- and CO{sub 2}-dominated). We find that atmospheres with a low MMW have strong day-night temperature variations at pressures above the infrared photosphere that lead to equatorial superrotation. For these atmospheres, the enhancement of atmospheric opacities with increasing metallicity lead to shallower atmospheric heating, larger day-night temperaturemore » variations, and hence stronger superrotation. In comparison, atmospheres with a high MMW have larger day-night and equator-to-pole temperature variations than low MMW atmospheres, but differences in opacity structure and energy budget lead to differences in jet structure. The circulation of a water-dominated atmosphere is dominated by equatorial superrotation, while the circulation of a CO{sub 2}-dominated atmosphere is instead dominated by high-latitude jets. By comparing emergent flux spectra and light curves for 50× solar and water-dominated compositions, we show that observations in emission can break the degeneracy in determining the atmospheric composition of GJ 1214b. The variation in opacity with wavelength for the water-dominated atmosphere leads to large phase variations within water bands and small phase variations outside of water bands. The 50× solar atmosphere, however, yields small variations within water bands and large phase variations at other characteristic wavelengths. These observations would be much less sensitive to clouds, condensates, and hazes than transit observations.« less

  14. Temperatures of the martian surface and atmosphere: viking observation of diurnal and geometric variations.

    PubMed

    Kieffer, H H; Christensen, P R; Martin, T Z; Miner, E D; Palluconi, F D

    1976-12-11

    Selected observations made with the Viking infrared thermal mapper after the first landing are reported. Atmospheric temperatures measured at the latitude of the Viking 2 landing site (48 degrees N) over most of a martian day reveal a diurnal variation of at least 15 K, with peak temperatures occurring near 2.2 hours after noon, implying significant absorption of sunlight in the lower 30 km of the atmosphere by entrained dust. The summit temperature of Arsia Mons varies by a factor of nearly two each day; large diurnal temperature variation is characteristic of the south Tharsis upland and implies the presence of low thermal inertia material. The thermal inertia of material on the floors of several typical large craters is found to be higher than for the surrounding terrain; this suggests that craters are somehow effective in sorting aeolian material. Brightness temperatures of the Viking 1 landing area decrease at large emission angles; the intensity of reflected sunlight shows a more complex dependence on geometry than expected, implying atmospheric as well as surface scattering.

  15. A model for seasonal changes in GPS positions and seismic wave speeds due to thermoelastic and hydrologic variations

    USGS Publications Warehouse

    Tsai, V.C.

    2011-01-01

    It is known that GPS time series contain a seasonal variation that is not due to tectonic motions, and it has recently been shown that crustal seismic velocities may also vary seasonally. In order to explain these changes, a number of hypotheses have been given, among which thermoelastic and hydrology-induced stresses and strains are leading candidates. Unfortunately, though, since a general framework does not exist for understanding such seasonal variations, it is currently not possible to quickly evaluate the plausibility of these hypotheses. To fill this gap in the literature, I generalize a two-dimensional thermoelastic strain model to provide an analytic solution for the displacements and wave speed changes due to either thermoelastic stresses or hydrologic loading, which consists of poroelastic stresses and purely elastic stresses. The thermoelastic model assumes a periodic surface temperature, and the hydrologic models similarly assume a periodic near-surface water load. Since all three models are two-dimensional and periodic, they are expected to only approximate any realistic scenario; but the models nonetheless provide a quantitative framework for estimating the effects of thermoelastic and hydrologic variations. Quantitative comparison between the models and observations is further complicated by the large uncertainty in some of the relevant parameters. Despite this uncertainty, though, I find that maximum realistic thermoelastic effects are unlikely to explain a large fraction of the observed annual variation in a typical GPS displacement time series or of the observed annual variations in seismic wave speeds in southern California. Hydrologic loading, on the other hand, may be able to explain a larger fraction of both the annual variations in displacements and seismic wave speeds. Neither model is likely to explain all of the seismic wave speed variations inferred from observations. However, more definitive conclusions cannot be made until the model parameters are better constrained. Copyright ?? 2011 by the American Geophysical Union.

  16. The imprint of surface fluxes and transport on variations in total column carbon dioxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keppel-Aleks, G; Wennberg, PO; Washenfelder, RA

    2012-01-01

    New observations of the vertically integrated CO{sub 2} mixing ratio, , from ground-based remote sensing show that variations in are primarily determined by large-scale flux patterns. They therefore provide fundamentally different information than observations made within the boundary layer, which reflect the combined influence of large-scale and local fluxes. Observations of both and CO{sub 2} concentrations in the free troposphere show that large-scale spatial gradients induce synoptic-scale temporal variations in in the Northern Hemisphere midlatitudes through horizontal advection. Rather than obscure the signature of surface fluxes on atmospheric CO{sub 2}, these synoptic-scale variationsmore » provide useful information that can be used to reveal the meridional flux distribution. We estimate the meridional gradient in from covariations in and potential temperature, {theta}, a dynamical tracer, on synoptic timescales to evaluate surface flux estimates commonly used in carbon cycle models. We find that simulations using Carnegie Ames Stanford Approach (CASA) biospheric fluxes underestimate both the seasonal cycle amplitude throughout the Northern Hemisphere midlatitudes and the meridional gradient during the growing season. Simulations using CASA net ecosystem exchange (NEE) with increased and phase-shifted boreal fluxes better fit the observations. Our simulations suggest that climatological mean CASA fluxes underestimate boreal growing season NEE (between 45-65{sup o} N) by {approx}40%. We describe the implications for this large seasonal exchange on inference of the net Northern Hemisphere terrestrial carbon sink.« less

  17. THE TWO REGIMES OF PHOTOSPHERIC MOTIONS IN {alpha} HYDRA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gray, David F., E-mail: dfgray@uwo.ca

    2013-02-10

    High-resolution spectroscopic observations of {alpha} Hya were acquired between 2003 and 2010. Analysis of line shifts, differential shifts, line widths, and line bisectors points to two regimes of velocity fields in the photosphere of {alpha} Hya: (1) normal granulation embedded in (2) large convection cells. Variations occur on a wide range of timescales, from several years on down. Radial velocity variations, which are irregular and span 786 m s{sup -1}, have a distribution consistent with a true mean rise velocity of the large cells of {approx}725 m s{sup -1} and a dispersion of {approx}220 m s{sup -1}. The distribution ofmore » granulation velocities, as measured from the widths of spectral lines, shows only small variations, consistent with the two regime concepts. On the multi-year timescale, radial velocity changes, small temperature variations ({approx}10 K), and small line-width variations ({approx}<0.8%) track each other, possibly with phase shifts. The granulation velocity gradient for {alpha} Hya is about half as large as the Sun's and no variation with time was seen, implying that any variation in velocity gradient from one large cell to the next must be less than a few percent. The asymmetry in the granulation velocity distribution, as specified in the flux deficit, is smaller than expected for {alpha} Hya's position in the HR diagram and appears to be variable.« less

  18. Origins of tropospheric ozone interannual variation (IAV) over Réunion: A model investigation.

    PubMed

    Liu, Junhua; Rodriguez, Jose M; Thompson, Anne M; Logan, Jennifer A; Douglass, Anne R; Olsen, Mark A; Steenrod, Stephen D; Posny, Francoise

    2016-01-16

    Observations from long-term ozonesonde measurements show robust variations and trends in the evolution of ozone in the middle and upper troposphere over Réunion Island (21.1°S, 55.5°E) in June-August. Here we examine possible causes of the observed ozone variation at Réunion Island using hindcast simulations by the stratosphere-troposphere Global Modeling Initiative chemical transport model (GMI-CTM) for 1992-2014, driven by assimilated Modern-Era Retrospective Analysis for Research and Applications (MERRA) meteorological fields. Réunion Island is at the edge of the subtropical jet, a region of strong stratospheric-tropospheric exchange (STE). Our analysis implies that the large interannual variation (IAV) of upper tropospheric ozone over Réunion is driven by the large IAV of the stratospheric influence. The IAV of the large-scale, quasi-horizontal wind patterns also contributes to the IAV of ozone in the upper troposphere. Comparison to a simulation with constant emissions indicates that increasing emissions do not lead to the maximum trend in the middle and upper troposphere over Réunion during austral winter implied by the sonde data. The effects of increasing emission over southern Africa are limited to the lower troposphere near the surface in August - September.

  19. Origins of tropospheric ozone interannual variation (IAV) over Réunion: A model investigation

    PubMed Central

    Liu, Junhua; Rodriguez, Jose M.; Thompson, Anne M.; Logan, Jennifer A.; Douglass, Anne R.; Olsen, Mark A.; Steenrod, Stephen D.; Posny, Francoise

    2018-01-01

    Observations from long-term ozonesonde measurements show robust variations and trends in the evolution of ozone in the middle and upper troposphere over Réunion Island (21.1°S, 55.5°E) in June-August. Here we examine possible causes of the observed ozone variation at Réunion Island using hindcast simulations by the stratosphere-troposphere Global Modeling Initiative chemical transport model (GMI-CTM) for 1992–2014, driven by assimilated Modern-Era Retrospective Analysis for Research and Applications (MERRA) meteorological fields. Réunion Island is at the edge of the subtropical jet, a region of strong stratospheric-tropospheric exchange (STE). Our analysis implies that the large interannual variation (IAV) of upper tropospheric ozone over Réunion is driven by the large IAV of the stratospheric influence. The IAV of the large-scale, quasi-horizontal wind patterns also contributes to the IAV of ozone in the upper troposphere. Comparison to a simulation with constant emissions indicates that increasing emissions do not lead to the maximum trend in the middle and upper troposphere over Réunion during austral winter implied by the sonde data. The effects of increasing emission over southern Africa are limited to the lower troposphere near the surface in August – September. PMID:29657911

  20. EUCLIA—Exploring the UV/Optical Continuum Lag in Active Galactic Nuclei. I. A Model without Light Echoing

    NASA Astrophysics Data System (ADS)

    Cai, Zhen-Yi; Wang, Jun-Xian; Zhu, Fei-Fan; Sun, Mou-Yuan; Gu, Wei-Min; Cao, Xin-Wu; Yuan, Feng

    2018-03-01

    The tight interband correlation and the lag–wavelength relation among UV/optical continua of active galactic nuclei have been firmly established. They are usually understood within the widespread reprocessing scenario; however, the implied interband lags are generally too small. Furthermore, it is challenged by new evidence, such as that the X-ray reprocessing yields too much high-frequency UV/optical variation and that it fails to reproduce the observed timescale-dependent color variations among the Swift light curves of NGC 5548. In a different manner, we demonstrate that an upgraded inhomogeneous accretion disk model, whose local independent temperature fluctuations are subject to a speculated common large-scale temperature fluctuation, can intrinsically generate the tight interband correlation and lag across the UV/optical and be in nice agreement with several observational properties of NGC 5548, including the timescale-dependent color variation. The emergent lag is a result of the differential regression capability of local temperature fluctuations when responding to the large-scale fluctuation. An average speed of propagations as large as ≳15% of the speed of light may be required by this common fluctuation. Several potential physical mechanisms for such propagations are discussed. Our interesting phenomenological scenario may shed new light on comprehending the UV/optical continuum variations of active galactic nuclei.

  1. Computing 3-D wavefields in mantle circulations models to test hypotheses on the origin of lower mantle heterogeneity under Africa directly against seismic observations

    NASA Astrophysics Data System (ADS)

    Schuberth, Bernhard; Zaroli, Christophe; Nolet, Guust

    2015-04-01

    Of particular interest for the tectonic evolution of the Atlantic region is the influence of lower mantle structure under Africa on flow in the upper mantle beneath the ocean basin. Along with its Pacific counterpart, the large African anomaly in the lowermost mantle with strongly reduced seismic velocities has received considerable attention in seismological and geodynamic studies. Several seismological observations are typically taken as an indication that these two anomalies are being caused by large-scale compositional variations and that they are piles of material with higher density than normal mantle rock. This would imply negative buoyancy in the lowermost mantle under Africa, which has important implications for the flow at shallower depth and inferences on the processes that led to the formation of the Atlantic Ocean basin. However, a large number of recent studies argue for a strong thermal gradient across the core-mantle boundary that might provide an alternative explanation for the lower mantle anomaly through the resulting large lateral temperature variations. Recently, we developed a new joint forward modeling approach to test such geodynamic hypotheses directly against the seismic observations: Seismic heterogeneity is predicted by converting the temperature field of a high-resolution 3-D mantle circulation model into seismic velocities using thermodynamic models of mantle mineralogy. 3-D global wave propagation in the synthetic elastic structures is then simulated using a spectral element method. Being based on forward modelling only, this approach allows us to generate synthetic wavefields and seismograms independently of seismic observations. The statistics of observed long-period body wave traveltime variations show a markedly different behaviour for P- and S-waves: the standard deviation of P-wave delay times stays almost constant with ray turning depth, while that of the S-wave delay times increases strongly throughout the mantle. In an earlier study, we showed that synthetic traveltime variations computed for an isochemical mantle circulation model with strong core heating can reproduce these different trends. This was taken as a strong indication that seismic heterogeneity in the lower mantle is likely dominated by thermal variations on large length-scales (i.e., relevant for long-period body waves). We will discuss the robustness of this earlier conclusion by exploring the uncertainties in the mineralogical models used to convert temperatures to seismic velocities. In particular, we investigate the influence of anelasticity on the standard deviation of our synthetic traveltime variations. Owing to the differences in seismic frequency content between laboratory measurements (MHz to GHz) and the Earth (mHz to Hz), the seismic velocities given in the mineralogical model need to be adjusted; that is, corrected for dispersion due to anelastic effects.

  2. The role of tributary mixing in chemical variations at a karst spring, Milandre, Switzerland

    NASA Astrophysics Data System (ADS)

    Perrin, J.; Jeannin, P.-Y.; Cornaton, F.

    2007-01-01

    SummarySolute concentration variations during flood events were investigated in a karst aquifer of the Swiss Jura. Observations were made at the spring, and at the three main subterraneous tributaries feeding the spring. A simple transient flow and transport numerical model was able to reproduce chemographs and hydrographs observed at the spring, as a result of a mixing of the concentration and discharge of the respective tributaries. Sensitivity analysis carried out with the model showed that it is possible to produce chemical variations at the spring even if all tributaries have constant (but different for each of them) solute concentrations. This process is called tributary mixing. The good match between observed and modelled curves indicate that, in the phreatic zone, tributary mixing is probably an important process that shapes spring chemographs. Chemical reactions and other mixing components (e.g. from low permeability volumes) have a limited influence. Dissolution-related (calcium, bicarbonate, specific conductance) and pollution-related parameters (nitrate, chloride, potassium) displayed slightly different behaviours: during moderate flood events, the former showed limited variations compared to the latter. During large flood events, both presented chemographs with significant changes. No significant event water participates in moderate flood events and tributary mixing will be the major process shaping chemographs. Variations are greater for parameters with higher spatial variability (e.g. pollution-related). Whereas for large flood events, the contribution of event water becomes significant and influences the chemographs of all the parameters. As a result, spring water vulnerability to an accidental pollution is low during moderate flood events and under base flow conditions. It strongly increases during large flood events, because event water contributes to the spring discharge.

  3. Regional variation in health care utilization in Sweden - the importance of demand-side factors.

    PubMed

    Johansson, Naimi; Jakobsson, Niklas; Svensson, Mikael

    2018-06-04

    Differences in health care utilization across geographical areas are well documented within several countries. If the variation across areas cannot be explained by differences in medical need, it can be a sign of inefficiency or misallocation of public health care resources. In this observational, longitudinal panel study we use regional level data covering the 21 Swedish regions (county councils) over 13 years and a random effects model to assess to what degree regional variation in outpatient physician visits is explained by observed demand factors such as health, demography and socio-economic factors. The results show that regional mortality, as a proxy for population health, and demography do not explain regional variation in visits to primary care physicians, but explain about 50% of regional variation in visits to outpatient specialists. Adjusting for socio-economic and basic supply-side factors explains 33% of the regional variation in primary physician visits, but adds nothing to explaining the variation in specialist visits. 50-67% of regional variation remains unexplained by a large number of observable regional characteristics, indicating that omitted and possibly unobserved factors contribute substantially to the regional variation. We conclude that variations in health care utilization across regions is not very well explained by underlying medical need and demand, measured by mortality, demographic and socio-economic factors.

  4. Magnetosheath Flow Anomalies in 3-D

    NASA Technical Reports Server (NTRS)

    Vaisberg, O. L.; Burch, J. L.; Smirnov, V. N.; Avanov, L. A.; Moore, T. E.; Waite, J. H., Jr.; Skalsky, A. A.; Borodkova, N. L.; Coffey, V. N.; Gallagher, D. L.; hide

    2000-01-01

    Measurements of the plasma and magnetic field with high temporal resolution on the Interball Tail probe reveal many flow anomalies in the magnetosheath. They are usually seen as flow direction and number density variations, accompanied by magnetic field discontinuities. Large flow anomalies with number density variations of factor of 2 or more and velocity variations of 100 km/s or more are seen with periodicity of about I per hour. The cases of flow anomalies following in succession are also observed, and suggest their decay while propagating through the magnetosheath. Some magnetospheric disturbances observed in the outer magnetosphere after the satellite has crossed the magnetopause on the inbound orbit suggest their association with magnetosheath flow anomalies observed in the magnetosheath prior to magnetopause crossing.

  5. Strain distribution in an Si single crystal measured by interference fringes of X-ray mirage diffraction

    PubMed Central

    Jongsukswat, Sukswat; Fukamachi, Tomoe; Ju, Dongying; Negishi, Riichirou; Hirano, Keiichi; Kawamura, Takaaki

    2013-01-01

    In X-ray interference fringes accompanied by mirage diffraction, variations have been observed in the spacing and position of the fringes from a plane-parallel Si single crystal fixed at one end as a function of distance from the incident plane of the X-rays to the free crystal end. The variations can be explained by distortion of the sample crystal due to gravity. From the variations and positions of the fringes, the strain gradient of the crystal has been determined. The distribution of the observed strain agrees with that expected from rod theory except for residual strain. When the distortion is large, the observed strain distribution does not agree with that expected from rod theory. PMID:24068841

  6. Characterizing Mathematics Classroom Practice: Impact of Observation and Coding Choices

    ERIC Educational Resources Information Center

    Ing, Marsha; Webb, Noreen M.

    2012-01-01

    Large-scale observational measures of classroom practice increasingly focus on opportunities for student participation as an indicator of instructional quality. Each observational measure necessitates making design and coding choices on how to best measure student participation. This study investigated variations of coding approaches that may be…

  7. Anomalously strong observations of PKiKP/PcP amplitude ratios on a global scale

    NASA Astrophysics Data System (ADS)

    Waszek, Lauren; Deuss, Arwen

    2015-07-01

    The inner core boundary marks the phase transition between the solid inner core and the fluid outer core. As the site of inner core solidification, the boundary provides insight into the processes generating the seismic structures of the inner core. In particular, it may hold the key to understanding the previously observed hemispherical asymmetry in inner core seismic velocity, anisotropy, and attenuation. Here we use a large PKiKP-PcP amplitude ratio and travel time residual data set to investigate velocity and density contrast properties near the inner core boundary. Although hemispherical structure at the boundary has been proposed by previous inner core studies, we find no evidence for hemispheres in the amplitude ratios or travel time residuals. In addition, we find that the amplitude ratios are much larger than can be explained by variations in density contrast at the inner core boundary or core-mantle boundary. This indicates that PKiKP is primarily observed when it is anomalously large, due to focusing along its raypath. Using data in which PKiKP is not detected above the noise level, we calculate an upper estimate for the inner core boundary (ICB) density contrast of 1.2 kg m-3. The travel time residuals display large regional variations, which differ on long and short length scales. These regions may be explained by large-scale velocity variations in the F layer just above the inner core boundary, and/or small-scale topography of varying magnitude on the ICB, which also causes the large amplitudes. Such differences could arise from localized freezing and melting of the inner core.

  8. Assessing Self-concept as a Mediator Between Anger and Resilience in Adolescents With Cancer in Taiwan.

    PubMed

    Wu, Wei-Wen; Chang, Joanne T; Tsai, Shao-Yu; Liang, Shu-Yuan

    Anger is considered a common method used by patients to relieve emotional frustrations. However, this emotional response is not a common research focus for adolescents with cancer. The aim of this study was to determine whether self-concept mediated the relationship between anger and resilience for adolescent patients currently being treated for cancer. A cross-sectional study of 40 adolescents with cancer was conducted. The instruments included the Chinese Beck Self-Concept Inventory, the Chinese Beck Anger Inventory, and the Chinese Resilience Scale. Mediation analysis was also conducted. The results indicate that (1) variations in anger significantly account for 6.86% of observed variations in self-concept, (2) variations in self-concept significantly account for 52.83% of observed variations in resilience, (3) variations in anger significantly account for 10.96% of observed variations in resilience, and (4) when paths in conditions 1 and 2 were controlled, variations in anger through self-concept significantly account for 54.04% of observed variations in resilience, and variations in anger did not significantly account for observed variations in resilience. Gender and age might affect anger control. Despite worse physical functioning and an impacted appearance, participants had normative-to-positive self-concept levels, suggesting that their self-concept might not be affected by cancer. Self-concept might play a mediating role between anger and resilience, thus helping to bridge this knowledge gap. The current gap in knowledge regarding the mediating relationship necessitates the implementation of a large-scale study designed to verify the mediating role of self-concept between anger and resilience.

  9. The Genetic Basis of Natural Variation in Caenorhabditis elegans Telomere Length

    PubMed Central

    Cook, Daniel E.; Zdraljevic, Stefan; Tanny, Robyn E.; Seo, Beomseok; Riccardi, David D.; Noble, Luke M.; Rockman, Matthew V.; Alkema, Mark J.; Braendle, Christian; Kammenga, Jan E.; Wang, John; Kruglyak, Leonid; Félix, Marie-Anne; Lee, Junho; Andersen, Erik C.

    2016-01-01

    Telomeres are involved in the maintenance of chromosomes and the prevention of genome instability. Despite this central importance, significant variation in telomere length has been observed in a variety of organisms. The genetic determinants of telomere-length variation and their effects on organismal fitness are largely unexplored. Here, we describe natural variation in telomere length across the Caenorhabditis elegans species. We identify a large-effect variant that contributes to differences in telomere length. The variant alters the conserved oligonucleotide/oligosaccharide-binding fold of protection of telomeres 2 (POT-2), a homolog of a human telomere-capping shelterin complex subunit. Mutations within this domain likely reduce the ability of POT-2 to bind telomeric DNA, thereby increasing telomere length. We find that telomere-length variation does not correlate with offspring production or longevity in C. elegans wild isolates, suggesting that naturally long telomeres play a limited role in modifying fitness phenotypes in C. elegans. PMID:27449056

  10. Coordinated ultraviolet and radio observations of selected nearby stars

    NASA Technical Reports Server (NTRS)

    Lang, Kenneth R.

    1987-01-01

    All of the US2 shifts assigned were successfully completed with simultaneous International Ultraviolet Explorer (IUE) and the Very Large Array (VLA) observations of the proposed target stars. The target stars included dwarf M flare stars and RS CVn stars. The combined ultraviolet (IUE) and microwave (VLA) observations have provided important new insights to the radiation mechanisms at these two widely-separated regions of the electromagnetic spectrum. The VLA results included the discovery of narrow-band microwave radiation and rapid time variations in the microwave radiation of dwarf M flare stars. The results indicate that conventional radiation mechanisms cannot explain the microwave emission from these stars. In general, ultraviolet variations and bursts occur when no similar variations are detected at microwave wavelengths and vice versa. Although these is some overlap, the variations in these two spectral regions are usually uncorrelated, suggesting that there is little interaction between the activity centers at the two associated atmospheric levels.

  11. Large-Scale Oceanic Variability Associated with the Madden-Julian Oscillation during the CINDY/DYNAMO Field Campaign from Satellite Observations

    DTIC Science & Technology

    2013-04-29

    during the field campaign. For the first time, it is demonstrated that subseasonal SSS variations in the central Indian Ocean can be monitored by Aquarius...westerlies were observed in both Northern and Southern Hemispheres in the central and eastern Indian Oceans. The anomalous SSH associated with strong...it is demonstrated that subseasonal SSS variations in the central Indian Ocean can be monitored by Aquarius measurements based on the comparison

  12. The influence of the Atlantic Warm Pool on the Florida panhandle sea breeze

    USGS Publications Warehouse

    Misra, Vasubandhu; Moeller, Lauren; Stefanova, Lydia; Chan, Steven; O'Brien, James J.; Smith, Thomas J.; Plant, Nathaniel

    2011-01-01

    In this paper we examine the variations of the boreal summer season sea breeze circulation along the Florida panhandle coast from relatively high resolution (10 km) regional climate model integrations. The 23 year climatology (1979–2001) of the multidecadal dynamically downscaled simulations forced by the National Centers for Environmental Prediction–Department of Energy (NCEP-DOE) Reanalysis II at the lateral boundaries verify quite well with the observed climatology. The variations at diurnal and interannual time scales are also well simulated with respect to the observations. We show from composite analyses made from these downscaled simulations that sea breezes in northwestern Florida are associated with changes in the size of the Atlantic Warm Pool (AWP) on interannual time scales. In large AWP years when the North Atlantic Subtropical High becomes weaker and moves further eastward relative to the small AWP years, a large part of the southeast U.S. including Florida comes under the influence of relatively strong anomalous low-level northerly flow and large-scale subsidence consistent with the theory of the Sverdrup balance. This tends to suppress the diurnal convection over the Florida panhandle coast in large AWP years. This study is also an illustration of the benefit of dynamic downscaling in understanding the low-frequency variations of the sea breeze.

  13. Variation of normal tissue complication probability (NTCP) estimates of radiation-induced hypothyroidism in relation to changes in delineation of the thyroid gland.

    PubMed

    Rønjom, Marianne F; Brink, Carsten; Lorenzen, Ebbe L; Hegedüs, Laszlo; Johansen, Jørgen

    2015-01-01

    To examine the variations of risk-estimates of radiation-induced hypothyroidism (HT) from our previously developed normal tissue complication probability (NTCP) model in patients with head and neck squamous cell carcinoma (HNSCC) in relation to variability of delineation of the thyroid gland. In a previous study for development of an NTCP model for HT, the thyroid gland was delineated in 246 treatment plans of patients with HNSCC. Fifty of these plans were randomly chosen for re-delineation for a study of the intra- and inter-observer variability of thyroid volume, Dmean and estimated risk of HT. Bland-Altman plots were used for assessment of the systematic (mean) and random [standard deviation (SD)] variability of the three parameters, and a method for displaying the spatial variation in delineation differences was developed. Intra-observer variability resulted in a mean difference in thyroid volume and Dmean of 0.4 cm(3) (SD ± 1.6) and -0.5 Gy (SD ± 1.0), respectively, and 0.3 cm(3) (SD ± 1.8) and 0.0 Gy (SD ± 1.3) for inter-observer variability. The corresponding mean differences of NTCP values for radiation-induced HT due to intra- and inter-observer variations were insignificantly small, -0.4% (SD ± 6.0) and -0.7% (SD ± 4.8), respectively, but as the SDs show, for some patients the difference in estimated NTCP was large. For the entire study population, the variation in predicted risk of radiation-induced HT in head and neck cancer was small and our NTCP model was robust against observer variations in delineation of the thyroid gland. However, for the individual patient, there may be large differences in estimated risk which calls for precise delineation of the thyroid gland to obtain correct dose and NTCP estimates for optimized treatment planning in the individual patient.

  14. The Impact of Accelerating Faster than Exponential Population Growth on Genetic Variation

    PubMed Central

    Reppell, Mark; Boehnke, Michael; Zöllner, Sebastian

    2014-01-01

    Current human sequencing projects observe an abundance of extremely rare genetic variation, suggesting recent acceleration of population growth. To better understand the impact of such accelerating growth on the quantity and nature of genetic variation, we present a new class of models capable of incorporating faster than exponential growth in a coalescent framework. Our work shows that such accelerated growth affects only the population size in the recent past and thus large samples are required to detect the models’ effects on patterns of variation. When we compare models with fixed initial growth rate, models with accelerating growth achieve very large current population sizes and large samples from these populations contain more variation than samples from populations with constant growth. This increase is driven almost entirely by an increase in singleton variation. Moreover, linkage disequilibrium decays faster in populations with accelerating growth. When we instead condition on current population size, models with accelerating growth result in less overall variation and slower linkage disequilibrium decay compared to models with exponential growth. We also find that pairwise linkage disequilibrium of very rare variants contains information about growth rates in the recent past. Finally, we demonstrate that models of accelerating growth may substantially change estimates of present-day effective population sizes and growth times. PMID:24381333

  15. The impact of accelerating faster than exponential population growth on genetic variation.

    PubMed

    Reppell, Mark; Boehnke, Michael; Zöllner, Sebastian

    2014-03-01

    Current human sequencing projects observe an abundance of extremely rare genetic variation, suggesting recent acceleration of population growth. To better understand the impact of such accelerating growth on the quantity and nature of genetic variation, we present a new class of models capable of incorporating faster than exponential growth in a coalescent framework. Our work shows that such accelerated growth affects only the population size in the recent past and thus large samples are required to detect the models' effects on patterns of variation. When we compare models with fixed initial growth rate, models with accelerating growth achieve very large current population sizes and large samples from these populations contain more variation than samples from populations with constant growth. This increase is driven almost entirely by an increase in singleton variation. Moreover, linkage disequilibrium decays faster in populations with accelerating growth. When we instead condition on current population size, models with accelerating growth result in less overall variation and slower linkage disequilibrium decay compared to models with exponential growth. We also find that pairwise linkage disequilibrium of very rare variants contains information about growth rates in the recent past. Finally, we demonstrate that models of accelerating growth may substantially change estimates of present-day effective population sizes and growth times.

  16. The methane distribution on Titan: high resolution spectroscopy in the near-IR with Keck NIRSPEC/AO

    NASA Astrophysics Data System (ADS)

    Adamkovics, Mate; Mitchell, Jonathan L.

    2014-11-01

    The distribution of methane on Titan is a diagnostic of regional scale meteorology and large scale atmospheric circulation. The observed formation of clouds and the transport of heat through the atmosphere both depend on spatial and temporal variations in methane humidity. We have performed observations to measure the the distribution on methane Titan using high spectral resolution near-IR (H-band) observations made with NIRSPEC, with adaptive optics, at Keck Observatory in July 2014. This work builds on previous attempts at this measurement with improvement in the observing protocol and data reduction, together with increased integration times. Radiative transfer models using line-by-line calculation of methane opacities from the HITRAN2012 database are used to retrieve methane abundances. We will describe analysis of the reduced observations, which show latitudinal spatial variation in the region the spectrum that is thought to be sensitive to methane abundance. Quantifying the methane abundance variation requires models that include the spatial variation in surface albedo and meridional haze gradient; we will describe (currently preliminary) analysis of the the methane distribution and uncertainties in the retrieval.

  17. Seasonal air and water mass redistribution effects on LAGEOS and Starlette

    NASA Technical Reports Server (NTRS)

    Gutierrez, Roberto; Wilson, Clark R.

    1987-01-01

    Zonal geopotential coefficients have been computed from average seasonal variations in global air and water mass distribution. These coefficients are used to predict the seasonal variations of LAGEOS' and Starlette's orbital node, the node residual, and the seasonal variation in the 3rd degree zonal coefficient for Starlette. A comparison of these predictions with the observed values indicates that air pressure and, to a lesser extent, water storage may be responsible for a large portion of the currently unmodeled variation in the earth's gravity field.

  18. A FORTRAN Program for Computing Refractive Index Using the Double Variation Method.

    ERIC Educational Resources Information Center

    Blanchard, Frank N.

    1984-01-01

    Describes a computer program which calculates a best estimate of refractive index and dispersion from a large number of observations using the double variation method of measuring refractive index along with Sellmeier constants of the immersion oils. Program listing with examples will be provided on written request to the author. (Author/JM)

  19. Modelling and mitigating refractive propagation effects in precision pulsar timing observations

    NASA Astrophysics Data System (ADS)

    Shannon, R. M.; Cordes, J. M.

    2017-01-01

    To obtain the most accurate pulse arrival times from radio pulsars, it is necessary to correct or mitigate the effects of the propagation of radio waves through the warm and ionized interstellar medium. We examine both the strength of propagation effects associated with large-scale electron-density variations and the methodology used to estimate infinite frequency arrival times. Using simulations of two-dimensional phase-varying screens, we assess the strength and non-stationarity of timing perturbations associated with large-scale density variations. We identify additional contributions to arrival times that are stochastic in both radio frequency and time and therefore not amenable to correction solely using times of arrival. We attribute this to the frequency dependence of the trajectories of the propagating radio waves. We find that this limits the efficacy of low-frequency (metre-wavelength) observations. Incorporating low-frequency pulsar observations into precision timing campaigns is increasingly problematic for pulsars with larger dispersion measures.

  20. Variational treatment of entanglement in the Dicke model

    NASA Astrophysics Data System (ADS)

    Bakemeier, L.; Alvermann, A.; Fehske, H.

    2015-10-01

    We introduce a variational ansatz for the Dicke model that extends mean-field theory through the inclusion of spin-oscillator correlations. The correlated variational state is obtained from the mean-field product state via a unitary transformation. The ansatz becomes correct in the limit of large oscillator frequency and in the limit of a large spin, for which it captures the leading quantum corrections to the classical limit exactly including the spin-oscillator entanglement entropy. We explain the origin of the unitary transformation before we show that the ansatz improves substantially upon mean-field theory, giving near exact results for the ground state energy and very good results for other observables. We then discuss why the ansatz still encounters problems in the transition regime at moderate spin lengths, where it fails to capture the precursors of the superradiant quantum phase transition faithfully. This observation illustrates the principal limits of semi-classical formulations, even after they are extended with correlations and entanglement.

  1. A Model of the Temporal Variability of Optical Light from Extrasolar Terrestrial Planets

    NASA Astrophysics Data System (ADS)

    Ford, E. B.; Seager, S.; Turner, E. L.

    2001-05-01

    New observatories such as TPF (NASA) and Darwin (ESA) are being designed to detect light directly from terrestrial-mass planets. Such observations will provide new data to constrain theories of planet formation and may identify the possible presence of liquid water and even spectroscopic signatures suggestive of life. We model the light scattered by Earth-like planets focusing on temporal variability due to planetary rotation and weather. Since a majority of the scattered light comes from only a small fraction of the planet's surface, significant variations in brightness are possible. The variations can be as large as a factor of two for a cloud-free planet which has a range of albedos similar to those of the different surfaces found on Earth. If a significant fraction of the observed light is scattered by the planet's atmosphere, including clouds, then the amplitude of variations due to surface features will be diluted. Atmospheric variability (e.g. clouds) itself is extremely interesting because it provides evidence for weather. The planet's rotation period, fractional ice and cloud cover, gross distribution of land and water on the surface, large scale weather patterns, large regions of unusual reflectivity or color (such as major desserts or vegetation's "red edge") as well as the geometry of its spin, orbit, and illumination relative to the observer all have substantial effects on the planet's rotational light curve.

  2. The rotation of the sun - Observations at Stanford

    NASA Technical Reports Server (NTRS)

    Scherrer, P. H.; Wilcox, J. M.; Svalgaard, L.

    1980-01-01

    Daily observations of the photospheric rotation rate using the Doppler effect have been made at the Stanford Solar Observatory since May 1976. These observations show no daily or long-period variations in the rotation rate that exceed the observational error of about 1%. The average rotation rate is the same as that of the sunspots and the large-scale magnetic field structures.

  3. Large-scale vertical velocity, diabatic heating and drying profiles associated with seasonal and diurnal variations of convective systems observed in the GoAmazon2014/5 experiment

    DOE PAGES

    Tang, Shuaiqi; Xie, Shaocheng; Zhang, Yunyan; ...

    2016-11-16

    This study describes the characteristics of large-scale vertical velocity, apparent heating source ( Q 1) and apparent moisture sink ( Q 2) profiles associated with seasonal and diurnal variations of convective systems observed during the two intensive operational periods (IOPs) that were conducted from 15 February to 26 March 2014 (wet season) and from 1 September to 10 October 2014 (dry season) near Manaus, Brazil, during the Green Ocean Amazon (GoAmazon2014/5) experiment. The derived large-scale fields have large diurnal variations according to convective activity in the GoAmazon region and the morning profiles show distinct differences between the dry and wetmore » seasons. In the wet season, propagating convective systems originating far from the GoAmazon region are often seen in the early morning, while in the dry season they are rarely observed. Afternoon convective systems due to solar heating are frequently seen in both seasons. Accordingly, in the morning, there is strong upward motion and associated heating and drying throughout the entire troposphere in the wet season, which is limited to lower levels in the dry season. In the afternoon, both seasons exhibit weak heating and strong moistening in the boundary layer related to the vertical convergence of eddy fluxes. Here, a set of case studies of three typical types of convective systems occurring in Amazonia – i.e., locally occurring systems, coastal-occurring systems and basin-occurring systems – is also conducted to investigate the variability of the large-scale environment with different types of convective systems.« less

  4. Large-scale vertical velocity, diabatic heating and drying profiles associated with seasonal and diurnal variations of convective systems observed in the GoAmazon2014/5 experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, Shuaiqi; Xie, Shaocheng; Zhang, Yunyan

    2016-01-01

    This study describes the characteristics of large-scale vertical velocity, apparent heating source ( Q 1) and apparent moisture sink ( Q 2) profiles associated with seasonal and diurnal variations of convective systems observed during the two intensive operational periods (IOPs) that were conducted from 15 February to 26 March 2014 (wet season) and from 1 September to 10 October 2014 (dry season) near Manaus, Brazil, during the Green Ocean Amazon (GoAmazon2014/5) experiment. The derived large-scale fields have large diurnal variations according to convective activity in the GoAmazon region and the morning profiles show distinct differences between the dry and wetmore » seasons. In the wet season, propagating convective systems originating far from the GoAmazon region are often seen in the early morning, while in the dry season they are rarely observed. Afternoon convective systems due to solar heating are frequently seen in both seasons. Accordingly, in the morning, there is strong upward motion and associated heating and drying throughout the entire troposphere in the wet season, which is limited to lower levels in the dry season. In the afternoon, both seasons exhibit weak heating and strong moistening in the boundary layer related to the vertical convergence of eddy fluxes. A set of case studies of three typical types of convective systems occurring in Amazonia – i.e., locally occurring systems, coastal-occurring systems and basin-occurring systems – is also conducted to investigate the variability of the large-scale environment with different types of convective systems.« less

  5. Diurnal and seasonal variations in surface methane at a tropical coastal station: Role of mesoscale meteorology.

    PubMed

    Kavitha, M; Nair, Prabha R; Girach, I A; Aneesh, S; Sijikumar, S; Renju, R

    2018-08-01

    In view of the large uncertainties in the methane (CH 4 ) emission estimates and the large spatial gaps in its measurements, studies on near-surface CH 4 on regional basis become highly relevant. This paper presents the first time observational results of a study on the impacts of mesoscale meteorology on the temporal variations of near-surface CH 4 at a tropical coastal station, in India. It is based on the in-situ measurements conducted during January 2014 to August 2016, using an on-line CH 4 analyzer working on the principle of gas chromatography. The diurnal variation shows a daytime low (1898-1925ppbv) and nighttime high (1936-2022ppbv) extending till early morning hours. These changes are closely associated with the mesoscale circulations, namely Sea Breeze (SB) and Land Breeze (LB), as obtained through the meteorological observations, WRF simulations of the circulations and the diurnal variation of boundary layer height as observed by the Microwave Radiometer Profiler. The diurnal enhancement always coincides with the onset of LB. Several cases of different onset timings of LB were examined and results presented. The CH 4 mixing ratio also exhibits significant seasonal patterns being maximum in winter and minimum in pre-monsoon/monsoon with significant inter-annual variations, which is also reflected in diurnal patterns, and are associated with changing synoptic meteorology. This paper also presents an analysis of in-situ measured near-surface CH 4 , column averaged and upper tropospheric CH 4 retrieved by Atmospheric Infrared Sounder (AIRS) onboard Earth Observing System (EOS)/Aqua which gives insight into the vertical distribution of the CH 4 over the location. An attempt is also made to estimate the instantaneous radiative forcing for the measured CH 4 mixing ratio. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Variation of atmospheric carbon monoxide over the Arctic Ocean during summer 2012

    NASA Astrophysics Data System (ADS)

    Park, Keyhong; Siek Rhee, Tae; Emmons, Louisa

    2014-05-01

    Atmospheric carbon monoxide (CO) plays an important role in ozone-related chemistry in the troposphere, especially under low-NOx conditions like the open ocean. During summer 2012, we performed a continuous high-resolution (0.1Hz) shipboard measurement of atmospheric CO over the Arctic Ocean. We also simulated the observation using a 3-D global chemical transport model (the Model for OZone And Related chemical Tracers-4; MOZART-4) for further analysis of the observed results. In the model, tags for each sources and emission regions of CO are applied and this enables us to delineate the source composition of the observations. Along with the observed variation of CO concentration during the research cruise, we will present in detailed analysis of the variation of source components and change of regional contributions. We found large (~80ppbv) variation of CO concentration in the Arctic Ocean which is mostly influenced by the variation of biomass burning activity. The contribution of anthropogenic emission is limited over the Arctic Ocean, although the northeast Asian anthropogenic emission shows a dominant component of transported anthropogenic CO. Also, our analysis shows, near the Bering Strait, Europe is the main emission region for anthropogenic CO.

  7. Model for energy transfer in the solar wind: Model results

    NASA Technical Reports Server (NTRS)

    Barnes, A. A., Jr.; Hartle, R. E.

    1972-01-01

    A description is given of the results of solar wind flow in which the heating is due to (1) propagation and dissipation of hydromagnetic waves generated near the base of the wind, and (2) thermal conduction. A series of models is generated for fixed values of density, electron and proton temperature, and magnetic field at the base by varying the wave intensity at the base of the model. This series of models predicts the observed correlation between flow speed and proton temperature for a large range of velocities. The wave heating takes place in a shell about the sun greater than or approximately equal to 10 R thick. We conclude that large-scale variations observed in the solar wind are probably due mainly to variation in the hydromagnetic wave flux near the sun.

  8. {Interball-1 Plasma, Magnetic Field, and Energetic Particle Observations}

    NASA Technical Reports Server (NTRS)

    Sibeck, David G.

    1998-01-01

    Funding from NASA was received in two installments. The first installment supported research using Russian/Czech/Slovak/French Interball-1 plasma, magnetic field, and energetic particles observations in the vicinity of the magnetopause. The second installment provided salary support to review unsolicited proposals to NASA for data recovery and archiving, and also to survey ISTP data provision efforts. Two papers were published under the auspices of the grant. Sibeck et al. reported Interball-1 observations of a wave on the magnetopause with an amplitude in excess of 5 R(sub E), the largest ever reported to date. They attributed the wave to a hot flow anomaly striking the magnetopause and suggested that the hot flow anomaly itself formed during the interaction of an IMF discontinuity with the bow shock. Nemecek et al. used Interball-1's VDP Faraday cup to identify large transient increases in the magnetosheath density. They noted large variations in simultaneous Wind observations of the IMF cone angle, but were unable to establish any relationship between the cone angle variations at Wind and the density variations at Interball-1. Funds from the second installment were used to review over 20 proposals from various researchers in the scientific community who sought NASA support to restore or archive past observations. It also supported a survey of ISTP data provisions which was used as input to a Senior Review of ongoing NASA ISTP programs.

  9. Abundances in the red giants of M13 and M22

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lehnert, M.D.; Bell, R.A.; Cohen, J.G.

    Abundances of Ca, Na, and Fe are derived for 10 red giant branch stars in the globular clusters M13 and M22, by means of model atmosphere analyses of high-dispersion spectra. It was found that M13 and M22 represent two different types of globular clusters. M13 is similar to M92 and many other globular clusters in that it displays variations in CH and CN band strengths, while showing no variation in either Ca or Fe abundance. The Na abundance was found to vary and its variation correlates with CN band strengths. This suggests that the source of the observed CN bandmore » strength variation is the same as that of the Na variation. M22, on the other hand, is similar to Omega Cen, in that it displays variations in Ca, Na, and Fe abundances, and these variations correlate with variations in CH and CN band strengths. These correlations suggest that the cause of the variations in M22 is largely primordial, and that mixing may only make a relatively small contribution to the C and N variations observed. 61 refs.« less

  10. Large-Scale Sidereal Anisotropy of Galactic Cosmic-Ray Intensity Observed by the Tibet Air Shower Array

    NASA Astrophysics Data System (ADS)

    Amenomori, M.; Ayabe, S.; Cui, S. W.; Danzengluobu; Ding, L. K.; Ding, X. H.; Feng, C. F.; Feng, Z. Y.; Gao, X. Y.; Geng, Q. X.; Guo, H. W.; He, H. H.; He, M.; Hibino, K.; Hotta, N.; Hu, Haibing; Hu, H. B.; Huang, J.; Huang, Q.; Jia, H. Y.; Kajino, F.; Kasahara, K.; Katayose, Y.; Kato, C.; Kawata, K.; Labaciren; Le, G. M.; Li, J. Y.; Lu, H.; Lu, S. L.; Meng, X. R.; Mizutani, K.; Mu, J.; Munakata, K.; Nagai, A.; Nanjo, H.; Nishizawa, M.; Ohnishi, M.; Ohta, I.; Onuma, H.; Ouchi, T.; Ozawa, S.; Ren, J. R.; Saito, T.; Sakata, M.; Sasaki, T.; Shibata, M.; Shiomi, A.; Shirai, T.; Sugimoto, H.; Takita, M.; Tan, Y. H.; Tateyama, N.; Torii, S.; Tsuchiya, H.; Udo, S.; Utsugi, T.; Wang, B. S.; Wang, H.; Wang, X.; Wang, Y. G.; Wu, H. R.; Xue, L.; Yamamoto, Y.; Yan, C. T.; Yang, X. C.; Yasue, S.; Ye, Z. H.; Yu, G. C.; Yuan, A. F.; Yuda, T.; Zhang, H. M.; Zhang, J. L.; Zhang, N. J.; Zhang, X. Y.; Zhang, Y.; Zhang, Yi; Zhaxisangzhu; Zhou, X. X.; Tibet Asγ Collaboration

    2005-06-01

    We present the large-scale sidereal anisotropy of Galactic cosmic-ray intensity in the multi-TeV region observed with the Tibet-III air shower array during the period from 1999 through 2003. The sidereal daily variation of cosmic rays observed in this experiment shows an excess of relative intensity around 4-7 hr local sidereal time as well as a deficit around 12 hr local sidereal time. While the amplitude of the excess is not significant when averaged over all declinations, the excess in individual declination bands becomes larger and clearer as the viewing direction moves toward the south. The maximum phase of the excess intensity changes from ~7 hr at the Northern Hemisphere to ~4 hr at the equatorial region. We also show that both the amplitude and the phase of the first harmonic vector of the daily variation are remarkably independent of primary energy in the multi-TeV region. This is the first result determining the energy and declination dependences of the full 24 hr profiles of the sidereal daily variation in the multi-TeV region with a single air shower experiment.

  11. LAMP: the long-term accretion monitoring programme of T Tauri stars in Chamaeleon I

    NASA Astrophysics Data System (ADS)

    Costigan, G.; Scholz, A.; Stelzer, B.; Ray, T.; Vink, J. S.; Mohanty, S.

    2012-12-01

    We present the results of a variability study of accreting young stellar objects in the Chameleon I star-forming region, based on ˜300 high-resolution optical spectra from the Fibre Large Area Multi-Element Spectrograph (FLAMES) at the European Southern Observatory (ESO) Very Large Telescope (VLT). 25 objects with spectral types from G2-M5.75 were observed 12 times over the course of 15 months. Using the emission lines Hα (6562.81 Å) and Ca II (8662.1 Å) as accretion indicators, we found 10 accreting and 15 non-accreting objects. We derived accretion rates for all accretors in the sample using the Hα equivalent width, Hα 10 per cent width and Ca II (8662.1 Å) equivalent width. We found that the Hα equivalent widths of accretors varied by ˜7-100 Å over the 15-month period. This corresponds to a mean amplitude of variations in the derived accretion rate of ˜0.37 dex. The amplitudes of variations in the derived accretion rate from Ca II equivalent width were ˜0.83 dex and those from Hα 10 per cent width were ˜1.11 dex. Based on the large amplitudes of variations in accretion rate derived from the Hα 10 per cent width with respect to the other diagnostics, we do not consider it to be a reliable accretion rate estimator. Assuming the variations in Hα and Ca II equivalent width accretion rates to be closer to the true value, these suggest that the spread that was found around the accretion rate to stellar-mass relation is not due to the variability of individual objects on time-scales of weeks to ˜1 year. From these variations, we can also infer that the accretion rates are stable within <0.37 dex over time-scales of less than 15 months. A major portion of the accretion variability was found to occur over periods shorter than the shortest time-scales in our observations, 8-25 days, which are comparable with the rotation periods of these young stellar objects. This could be an indication that what we are probing is spatial structure in the accretion flows and it also suggests that observations on time-scales of ˜a couple of weeks are sufficient to limit the total extent of accretion-rate variations in typical young stars. No episodic accretion was observed: all 10 accretors accreted continuously for the entire period of observations and, though they may have undetected low accretion rates, the non-accretors never showed any large changes in their emission that would imply a jump in accretion rate.

  12. Variations in the abundance of iron on Mercury's surface from MESSENGER X-Ray Spectrometer observations

    NASA Astrophysics Data System (ADS)

    Weider, Shoshana Z.; Nittler, Larry R.; Starr, Richard D.; McCoy, Timothy J.; Solomon, Sean C.

    2014-06-01

    We present measurements of Mercury's surface composition from the analysis of MESSENGER X-Ray Spectrometer data acquired during 55 large solar flares, which each provide a statistically significant detection of Fe X-ray fluorescence. The Fe/Si data display a clear dependence on phase angle, for which the results are empirically corrected. Mercury's surface has a low total abundance of Fe, with a mean Fe/Si ratio of ˜0.06 (equivalent to ˜1.5 wt% Fe). The absolute Fe/Si values are subject to a number of systematic uncertainties, including the phase-angle correction and possible mineral mixing effects. Individual Fe/Si measurements have an intrinsic error of ˜10%. Observed Fe/Si values display small variations (significant at two standard deviations) from the planetary average value across large regions in Mercury's southern hemisphere. Larger differences are observed between measured Fe/Si values from more spatially resolved footprints on volcanic smooth plains deposits in the northern hemisphere and from those in surrounding terrains. Fe is most likely contained as a minor component in sulfide phases (e.g., troilite, niningerite, daubréelite) and as Fe metal, rather than within mafic silicates. Variations in surface reflectance (i.e., differences in overall reflectance and spectral slope) across Mercury are unlikely to be caused by variations in the abundance of Fe.

  13. Linking plant and ecosystem functional biogeography.

    PubMed

    Reichstein, Markus; Bahn, Michael; Mahecha, Miguel D; Kattge, Jens; Baldocchi, Dennis D

    2014-09-23

    Classical biogeographical observations suggest that ecosystems are strongly shaped by climatic constraints in terms of their structure and function. On the other hand, vegetation function feeds back on the climate system via biosphere-atmosphere exchange of matter and energy. Ecosystem-level observations of this exchange reveal very large functional biogeographical variation of climate-relevant ecosystem functional properties related to carbon and water cycles. This variation is explained insufficiently by climate control and a classical plant functional type classification approach. For example, correlations between seasonal carbon-use efficiency and climate or environmental variables remain below 0.6, leaving almost 70% of variance unexplained. We suggest that a substantial part of this unexplained variation of ecosystem functional properties is related to variations in plant and microbial traits. Therefore, to progress with global functional biogeography, we should seek to understand the link between organismic traits and flux-derived ecosystem properties at ecosystem observation sites and the spatial variation of vegetation traits given geoecological covariates. This understanding can be fostered by synergistic use of both data-driven and theory-driven ecological as well as biophysical approaches.

  14. Linking plant and ecosystem functional biogeography

    PubMed Central

    Reichstein, Markus; Bahn, Michael; Mahecha, Miguel D.; Kattge, Jens; Baldocchi, Dennis D.

    2014-01-01

    Classical biogeographical observations suggest that ecosystems are strongly shaped by climatic constraints in terms of their structure and function. On the other hand, vegetation function feeds back on the climate system via biosphere–atmosphere exchange of matter and energy. Ecosystem-level observations of this exchange reveal very large functional biogeographical variation of climate-relevant ecosystem functional properties related to carbon and water cycles. This variation is explained insufficiently by climate control and a classical plant functional type classification approach. For example, correlations between seasonal carbon-use efficiency and climate or environmental variables remain below 0.6, leaving almost 70% of variance unexplained. We suggest that a substantial part of this unexplained variation of ecosystem functional properties is related to variations in plant and microbial traits. Therefore, to progress with global functional biogeography, we should seek to understand the link between organismic traits and flux-derived ecosystem properties at ecosystem observation sites and the spatial variation of vegetation traits given geoecological covariates. This understanding can be fostered by synergistic use of both data-driven and theory-driven ecological as well as biophysical approaches. PMID:25225392

  15. Jet outflow and gamma-ray emission correlations in S5 0716+714

    DOE PAGES

    Rani, B.; Krichbaum, T. P.; Marscher, A. P.; ...

    2014-11-06

    Here, using millimeter very long baseline interferometry (VLBI) observations of the BL Lac object S5 0716+714 from August 2008 to September 2013, we investigate variations in the core flux density and orientation of the sub-parsec scale jet, i.e. position angle. The γ-ray data obtained by the Fermi Large Area Telescope are used to investigate the high-energy flux variations over the same time period. For the first time in any blazar, we report a significant correlation between the γ-ray flux variations and the position angle variations in the VLBI jet. The cross-correlation analysis also indicates a positive correlation such that themore » mm-VLBI core flux density variations are delayed with respect to the γ-ray flux by 82±32 days. This suggests that the high-energy emission is coming from a region located ≥(3.8±1.9) parsecs upstream of the mm-VLBI core (closer to the central black hole). Lastly, these results imply that the observed inner jet morphology has a strong connection with the observed γ-ray flares.« less

  16. Jet outflow and gamma-ray emission correlations in S5 0716+714

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rani, B.; Krichbaum, T. P.; Marscher, A. P.

    Here, using millimeter very long baseline interferometry (VLBI) observations of the BL Lac object S5 0716+714 from August 2008 to September 2013, we investigate variations in the core flux density and orientation of the sub-parsec scale jet, i.e. position angle. The γ-ray data obtained by the Fermi Large Area Telescope are used to investigate the high-energy flux variations over the same time period. For the first time in any blazar, we report a significant correlation between the γ-ray flux variations and the position angle variations in the VLBI jet. The cross-correlation analysis also indicates a positive correlation such that themore » mm-VLBI core flux density variations are delayed with respect to the γ-ray flux by 82±32 days. This suggests that the high-energy emission is coming from a region located ≥(3.8±1.9) parsecs upstream of the mm-VLBI core (closer to the central black hole). Lastly, these results imply that the observed inner jet morphology has a strong connection with the observed γ-ray flares.« less

  17. 2.5D global-disk oscillation models of the Be shell star ζ Tauri. I. Spectroscopic and polarimetric analysis

    NASA Astrophysics Data System (ADS)

    Escolano, C.; Carciofi, A. C.; Okazaki, A. T.; Rivinius, T.; Baade, D.; Štefl, S.

    2015-04-01

    Context. A large number of Be stars exhibit intensity variations of their violet and red emission peaks in their H i lines observed in emission. This is the so-called V/R phenomenon, usually explained by the precession of a one-armed spiral density perturbation in the circumstellar disk. That global-disk oscillation scenario was confirmed, both observationally and theoretically, in the previous series of two papers analyzing the Be shell star ζ Tauri. The vertically averaged (2D) global-disk oscillation model used at the time was able to reproduce the V/R variations observed in Hα, as well as the spatially resolved interferometric data from AMBER/VLTI. Unfortunately, that model failed to reproduce the V/R phase of Br15 and the amplitude of the polarization variation, suggesting that the inner disk structure predicted by the model was incorrect. Aims: The first aim of the present paper is to quantify the temporal variations of the shell-line characteristics of ζ Tauri. The second aim is to better understand the physics underlying the V/R phenomenon by modeling the shell-line variations together with the V/R and polarimetric variations. The third aim is to test a new 2.5D disk oscillation model, which solves the set of equations that describe the 3D perturbed disk structure but keeps only the equatorial (i.e., 2D) component of the solution. This approximation was adopted to allow comparisons with the previous 2D model, and as a first step toward a future 3D model. Methods: We carried out an extensive analysis of ζ Tauri's spectroscopic variations by measuring various quantities characterizing its Balmer line profiles: red and violet emission peak intensities (for Hα, Hβ, and Br15), depth and asymmetry of the shell absorption (for Hβ, Hγ, and Hδ), and the respective position (i.e., radial velocity) of each component. We attempted to model the observed variations by implementing in the radiative transfer code HDUST the perturbed disk structure computed with a recently developed 2.5D global-disk oscillation model. Results: The observational analysis indicates that the peak separation and the position of the shell absorption both exhibit variations following the V/R variations and, thus, may provide good diagnostic tools of the global-disk oscillation phenomenon. The shell absorption seems to become slightly shallower close to the V/R maximum, but the scarcity of the data does not allow the exact pattern to be identified. The asymmetry of the shell absorption does not seem to correlate with the V/R cycle; no significant variations of this parameter are observed, except during certain periods where Hα and Hβ exhibit perturbed emission profiles. The origin of these so-called triple-peak phases remains unknown. On the theoretical side, the new 2.5D formalism appears to improve the agreement with the observed V/R variations of Hα and Br15, under the proviso that a large value of the viscosity parameter, α = 0.8, be adopted. It remains challenging for the models to reproduce consistently the amplitude and the average level of the polarization data. The 2D formalism provides a better match to the peak separation, although the variation amplitude predicted by both the 2D and 2.5D models is smaller than the observed value. Shell-line variations are difficult for the models to reproduce, whatever formalism is adopted. Appendices are available in electronic form at http://www.aanda.org

  18. Verification of CH4 on Mars and investigation of its temporal and spatial variations by SOFIA/EXES

    NASA Astrophysics Data System (ADS)

    Aoki, Shohei

    2015-10-01

    Discovery of CH4 in the Martian atmosphere has led to much discussion since it could be a signature of on-going and/or past biological/geological activities on Mars. However, the presence of CH4 and its temporal and spatial variations are still under discussion because previous observations had large uncertainties. We propose sensitive measurements of the Martian CH4 by SOFIA/EXES in order to verify the presence and investigate its temporal and spatial variation. Our primal goal is to demonstrate the firm detection of CH4 on Mars. SOFIA/EXES allows us to perform sensitive observations of the Martian CH4 from the Earth using the 7.5 um band. The high altitude of SOFIA telescope (~12 km) enables us to significantly reduce the effects of terrestrial atmosphere, and high spectral resolution of EXES (R~90,000) enables us to detect the tiny lines of the Martian CH4. We request to perform weekly observations of CH4 by SOFIA/EXES during larger Doppler-shift period (between Feb./2016-March/2016). The large Doppler shift (-14.3 - -17.3 km/s) allows us to separate the Martian and terrestrial CH4 lines. In addition, owing to the relatively large diameter of the SOFIA telescope (~ 2.5 m), geographical distribution of CH4 (3 x 3 areas over the Martian disk) can be investigated. Last but not least, we plan to perform joint observations with (1) the spacecraft-borne MEX/PFS, (2) the ground-based T60/MILAHI, (3) ground-based IRTF/CSHELL, and (4) in-situ Curiosity/TLS. Combination of the current best instruments for the joint observations provide definitive confirmation of the presence (or absence) of CH4, and clues to search for the source.

  19. The influence of the Atlantic Warm Pool on the Florida panhandle sea breeze

    USGS Publications Warehouse

    Misra, V.; Moeller, L.; Stefanova, L.; Chan, S.; O'Brien, J. J.; Smith, T.J.; Plant, N.

    2011-01-01

    In this paper we examine the variations of the boreal summer season sea breeze circulation along the Florida panhandle coast from relatively high resolution (10 km) regional climate model integrations. The 23 year climatology (1979-2001) of the multidecadal dynamically downscaled simulations forced by the National Centers for Environmental Prediction-Department of Energy (NCEP-DOE) Reanalysis II at the lateral boundaries verify quite well with the observed climatology. The variations at diurnal and interannual time scales are also well simulated with respect to the observations. We show from composite analyses made from these downscaled simulations that sea breezes in northwestern Florida are associated with changes in the size of the Atlantic Warm Pool (AWP) on interannual time scales. In large AWP years when the North Atlantic Subtropical High becomes weaker and moves further eastward relative to the small AWP years, a large part of the southeast U.S. including Florida comes under the influence of relatively strong anomalous low-level northerly flow and large-scale subsidence consistent with the theory of the Sverdrup balance. This tends to suppress the diurnal convection over the Florida panhandle coast in large AWP years. This study is also an illustration of the benefit of dynamic downscaling in understanding the low-frequency variations of the sea breeze. Copyright 2011 by the American Geophysical Union.

  20. Variations in Maternal 5-HTTLPR Affect Observed Sensitive Parenting

    ERIC Educational Resources Information Center

    Cents, Rolieke A. M.; Kok, Rianne; Tiemeier, Henning; Lucassen, Nicole; Székely, Eszter; Bakermans-Kranenburg, Marian J.; Hofman, Albert; Jaddoe, Vincent W. V.; IJzendoorn, Marinus H.; Verhulst, Frank C.; Lambregtse-van den Berg, Mijke P.

    2014-01-01

    Background: Little is known about the genetic determinants of sensitive parenting. Two earlier studies examined the effect of the serotonin transporter polymorphism (5-HTTLPR) on sensitive parenting, but reported opposite results. In a large cohort we further examined whether 5-HTTLPR is a predictor of observed maternal sensitivity and whether…

  1. Within and between Population Variation in Epidermal Club Cell Investment in a Freshwater Prey Fish: A Cautionary Tale for Evolutionary Ecologists

    PubMed Central

    Manek, Aditya K.; Ferrari, Maud C. O.; Pollock, Robyn J.; Vicente, Daniel; Weber, Lynn P.; Chivers, Douglas P.

    2013-01-01

    Many prey fishes possess large club cells in their epidermis. The role of these cells has garnered considerable attention from evolutionary ecologists. These cells likely form part of the innate immune system of fishes, however, they also have an alarm function, releasing chemical cues that serve to warn nearby conspecifics of danger. Experiments aimed at understanding the selection pressures leading to the evolution of these cells have been hampered by a surprisingly large intraspecific variation in epidermal club cell (ECC) investment. The goal of our current work was to explore the magnitude and nature of this variation in ECC investment. In a field survey, we documented large differences in ECC investment both within and between several populations of minnows. We then tested whether we could experimentally reduce variation in mean ECC number by raising fish under standard laboratory conditions for 4 weeks. Fish from different populations responded very differently to being held under standard laboratory conditions; some populations showed an increase in ECC investment while others remained unchanged. More importantly, we found some evidence that we could reduce within population variation in ECC investment through time, but could not reduce among-population variation in mean ECC investment. Given the large variation we observed in wild fish and our limited ability to converge mean cell number by holding the fish under standard conditions, we caution that future studies may be hard pressed to find subtle effects of various experimental manipulations; this will make elucidating the selection pressures leading to the evolution of the cells challenging. PMID:23469175

  2. Reduction and analysis of seasons 15 and 16 (1991 - 1992) Pioneer Venus radio occultation data and correlative studies with observations of the near-infrared emission of Venus

    NASA Technical Reports Server (NTRS)

    Jenkins, Jon M.

    1992-01-01

    Radio occultation experiments, and radio astronomical observations have suggested that significant variations (both spatial and temporal) in the abundances of sulfur-bearing gases are occurring below the Venus cloud layers. In addition, recent Near Infra-Red images of the nightside of Venus revealed large-scale features which sustain their shape over multiple rotations (the rotation periods of the features are 6.0 +/- 0.5 days). Presumably, the contrast variations in the NIR images are caused by variations in the abundance of large particles in the cloud deck. If these particles are composed of liquid sulfuric acid, one would expect a strong anticorrelation between regions with a high abundance of sulfuric acid vapor, and regions where there are large particles. One technique for monitoring the abundance and distribution of sulfuric acid vapor (H2SO4) at and below the main Venus cloud layer (altitudes below 50 km) is to measure the 13-cm wavelength opacity using Pioneer Venus Orbiter Radio Occultation Studies (PV-ORO). We are working to characterize variations in the abundance and distribution of subcloud H2SO4(g) in the Venus atmosphere by using a number of 13-cm radio occultation measurements conducted with the Pioneer Venus Orbiter near the inferior conjunction of 1991. When retrieved, the vertical profiles of the abundance of H2SO4(g) will be compared and correlated with NIR images of the night side of Venus made during the same period of time. Hopefully, the combination of these two different types of data will make it possible to constrain or identify the composition of the large particles causing the features observed in the NIR images. Considered on their own, however, the parameters retrieved from the radio occultation experiments are valuable science products.

  3. The Genetic Basis of Natural Variation in Caenorhabditis elegans Telomere Length.

    PubMed

    Cook, Daniel E; Zdraljevic, Stefan; Tanny, Robyn E; Seo, Beomseok; Riccardi, David D; Noble, Luke M; Rockman, Matthew V; Alkema, Mark J; Braendle, Christian; Kammenga, Jan E; Wang, John; Kruglyak, Leonid; Félix, Marie-Anne; Lee, Junho; Andersen, Erik C

    2016-09-01

    Telomeres are involved in the maintenance of chromosomes and the prevention of genome instability. Despite this central importance, significant variation in telomere length has been observed in a variety of organisms. The genetic determinants of telomere-length variation and their effects on organismal fitness are largely unexplored. Here, we describe natural variation in telomere length across the Caenorhabditis elegans species. We identify a large-effect variant that contributes to differences in telomere length. The variant alters the conserved oligonucleotide/oligosaccharide-binding fold of protection of telomeres 2 (POT-2), a homolog of a human telomere-capping shelterin complex subunit. Mutations within this domain likely reduce the ability of POT-2 to bind telomeric DNA, thereby increasing telomere length. We find that telomere-length variation does not correlate with offspring production or longevity in C. elegans wild isolates, suggesting that naturally long telomeres play a limited role in modifying fitness phenotypes in C. elegans. Copyright © 2016 by the Genetics Society of America.

  4. Helioseismology Observations of Solar Cycles and Dynamo Modeling

    NASA Astrophysics Data System (ADS)

    Kosovichev, A. G.; Guerrero, G.; Pipin, V.

    2017-12-01

    Helioseismology observations from the SOHO and SDO, obtained in 1996-2017, provide unique insight into the dynamics of the Sun's deep interior for two solar cycles. The data allow us to investigate variations of the solar interior structure and dynamics, and compare these variations with dynamo models and simulations. We use results of the local and global helioseismology data processing pipelines at the SDO Joint Science Operations Center (Stanford University) to study solar-cycle variations of the differential rotation, meridional circulation, large-scale flows and global asphericity. By comparing the helioseismology results with the evolution of surface magnetic fields we identify characteristic changes associated the initiation and development of Solar Cycles 23 and 24. For the physical interpretation of observed variations, the results are compared with the current mean-field dynamo models and 3D MHD dynamo simulations. It is shown that the helioseismology inferences provide important constraints on the solar dynamo mechanism, may explain the fundamental difference between the two solar cycles, and also give information about the next solar cycle.

  5. Teacher Effects and Teacher-Related Policies

    ERIC Educational Resources Information Center

    Jackson, C. Kirabo; Rockoff, Jonah E.; Staiger, Douglas O.

    2014-01-01

    The emergence of large longitudinal data sets linking students to teachers has led to rapid growth in the study of teacher effects on student outcomes by economists over the past decade. One large literature has documented wide variation in teacher effectiveness that is not well explained by observable student or teacher characteristics. A second…

  6. Uniform Temperature Dependency in the Phenology of a Keystone Herbivore in Lakes of the Northern Hemisphere

    PubMed Central

    Straile, Dietmar; Adrian, Rita; Schindler, Daniel E.

    2012-01-01

    Spring phenologies are advancing in many ecosystems associated with climate warming causing unpredictable changes in ecosystem functioning. Here we establish a phenological model for Daphnia, an aquatic keystone herbivore based on decadal data on water temperatures and the timing of Daphnia population maxima from Lake Constance, a large European lake. We tested this model with long-term time-series data from two lakes (Müggelsee, Germany; Lake Washington, USA), and with observations from a diverse set of 49 lakes/sites distributed widely across the Northern Hemisphere (NH). The model successfully captured the observed temporal variation of Daphnia phenology in the two case study sites (r2 = 0.25 and 0.39 for Müggelsee and Lake Washington, respectively) and large-scale spatial variation in the NH (R2 = 0.57). These results suggest that Daphnia phenology follows a uniform temperature dependency in NH lakes. Our approach – based on temperature phenologies – has large potential to study and predict phenologies of animal and plant populations across large latitudinal gradients in other ecosystems. PMID:23071520

  7. Are the traditional large-scale drought indices suitable for shallow water wetlands? An example in the Everglades.

    PubMed

    Zhao, Dehua; Wang, Penghe; Zuo, Jie; Zhang, Hui; An, Shuqing; Ramesh, Reddy K

    2017-08-01

    Numerous drought indices have been developed over the past several decades. However, few studies have focused on the suitability of indices for studies of ephemeral wetlands. The objective is to answer the following question: can the traditional large-scale drought indices characterize drought severity in shallow water wetlands such as the Everglades? The question was approached from two perspectives: the available water quantity and the response of wetland ecosystems to drought. The results showed the unsuitability of traditional large-scale drought indices for characterizing the actual available water quantity based on two findings. (1) Large spatial variations in precipitation (P), potential evapotranspiration (PE), water table depth (WTD) and the monthly water storage change (SC) were observed in the Everglades; notably, the spatial variation in SC, which reflects the monthly water balance, was 1.86 and 1.62 times larger than the temporal variation between seasons and between years, respectively. (2) The large-scale water balance measured based on the water storage variation had an average indicating efficiency (IE) of only 60.01% due to the redistribution of interior water. The spatial distribution of variations in the Normalized Different Vegetation Index (NDVI) in the 2011 dry season showed significantly positive, significantly negative and weak correlations with the minimum WTD in wet prairies, graminoid prairies and sawgrass wetlands, respectively. The significant and opposite correlations imply the unsuitability of the traditional large-scale drought indices in evaluating the effect of drought on shallow water wetlands. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Short term variations of total electron content (TEC) fitting to a regional GPS network over the Kingdom of Saudi Arabia (KSA)

    NASA Astrophysics Data System (ADS)

    Alothman, A. O.; Alsubaie, M. A.; Ayhan, M. E.

    2011-09-01

    The ionosphere is a dispersive medium for radio waves with the refractive index which is a function of frequency and total electron content (TEC). TEC has a strong diurnal variation in addition to monthly, seasonal and solar cycle variations and small and large scale irregularities. Dual frequency GPS observations can be utilized to obtain TEC and investigate its spatial and temporal variations. We here studied short term TEC variations over the Kingdom of Saudi Arabia (KSA). A regional GPS network is formed consisting of 16 sites in and around KSA. GPS observations, acquired between 1st and 11th February 2009, were processed on a daily basis by using the Bernese v5.0 software and IGS final products. The geometry-free zero difference smoothed code observables were used to obtain two hour interval snapshots of TEC and their RMS errors at 0.5 × 0.5 degree grid nodes and regional ionosphere models in a spherical harmonics expansion to degree and order six. The equatorial ionized anomaly (EIA) is recovered in the south of 20°N from 08:00 to 12:00 UT. We found that day-by-day TEC variation is more stable than the night time variation.

  9. Evolution of Precipitation Structure During the November DYNAMO MJO Event: Cloud-Resolving Model Intercomparison and Cross Validation Using Radar Observations

    NASA Astrophysics Data System (ADS)

    Li, Xiaowen; Janiga, Matthew A.; Wang, Shuguang; Tao, Wei-Kuo; Rowe, Angela; Xu, Weixin; Liu, Chuntao; Matsui, Toshihisa; Zhang, Chidong

    2018-04-01

    Evolution of precipitation structures are simulated and compared with radar observations for the November Madden-Julian Oscillation (MJO) event during the DYNAmics of the MJO (DYNAMO) field campaign. Three ground-based, ship-borne, and spaceborne precipitation radars and three cloud-resolving models (CRMs) driven by observed large-scale forcing are used to study precipitation structures at different locations over the central equatorial Indian Ocean. Convective strength is represented by 0-dBZ echo-top heights, and convective organization by contiguous 17-dBZ areas. The multi-radar and multi-model framework allows for more stringent model validations. The emphasis is on testing models' ability to simulate subtle differences observed at different radar sites when the MJO event passed through. The results show that CRMs forced by site-specific large-scale forcing can reproduce not only common features in cloud populations but also subtle variations observed by different radars. The comparisons also revealed common deficiencies in CRM simulations where they underestimate radar echo-top heights for the strongest convection within large, organized precipitation features. Cross validations with multiple radars and models also enable quantitative comparisons in CRM sensitivity studies using different large-scale forcing, microphysical schemes and parameters, resolutions, and domain sizes. In terms of radar echo-top height temporal variations, many model sensitivity tests have better correlations than radar/model comparisons, indicating robustness in model performance on this aspect. It is further shown that well-validated model simulations could be used to constrain uncertainties in observed echo-top heights when the low-resolution surveillance scanning strategy is used.

  10. Large Scale Ionospheric Response During March 17, 2013 Geomagnetic Storm: Reanalysis Based on Multiple Satellites Observations and TIEGCM Simulations

    NASA Astrophysics Data System (ADS)

    Yue, X.; Wang, W.; Schreiner, W. S.; Kuo, Y. H.; Lei, J.; Liu, J.; Burns, A. G.; Zhang, Y.; Zhang, S.

    2015-12-01

    Based on slant total electron content (TEC) observations made by ~10 satellites and ~450 ground IGS GNSS stations, we constructed a 4-D ionospheric electron density reanalysis during the March 17, 2013 geomagnetic storm. Four main large-scale ionospheric disturbances are identified from reanalysis: (1) The positive storm during the initial phase; (2) The SED (storm enhanced density) structure in both northern and southern hemisphere; (3) The large positive storm in main phase; (4) The significant negative storm in middle and low latitude during recovery phase. We then run the NCAR-TIEGCM model with Heelis electric potential empirical model as polar input. The TIEGCM can reproduce 3 of 4 large-scale structures (except SED) very well. We then further analyzed the altitudinal variations of these large-scale disturbances and found several interesting things, such as the altitude variation of SED, the rotation of positive/negative storm phase with local time. Those structures could not be identified clearly by traditional used data sources, which either has no gloval coverage or no vertical resolution. The drivers such as neutral wind/density and electric field from TIEGCM simulations are also analyzed to self-consistantly explain the identified disturbance features.

  11. A new method of presentation the large-scale magnetic field structure on the Sun and solar corona

    NASA Technical Reports Server (NTRS)

    Ponyavin, D. I.

    1995-01-01

    The large-scale photospheric magnetic field, measured at Stanford, has been analyzed in terms of surface harmonics. Changes of the photospheric field which occur within whole solar rotation period can be resolved by this analysis. For this reason we used daily magnetograms of the line-of-sight magnetic field component observed from Earth over solar disc. We have estimated the period during which day-to-day full disc magnetograms must be collected. An original algorithm was applied to resolve time variations of spherical harmonics that reflect time evolution of large-scale magnetic field within solar rotation period. This method of magnetic field presentation can be useful enough in lack of direct magnetograph observations due to sometimes bad weather conditions. We have used the calculated surface harmonics to reconstruct the large-scale magnetic field structure on the source surface near the sun - the origin of heliospheric current sheet and solar wind streams. The obtained results have been compared with spacecraft in situ observations and geomagnetic activity. We tried to show that proposed technique can trace shon-time variations of heliospheric current sheet and short-lived solar wind streams. We have compared also our results with those obtained traditionally from potential field approximation and extrapolation using synoptic charts as initial boundary conditions.

  12. Hysteresis-Free Carbon Nanotube Field-Effect Transistors.

    PubMed

    Park, Rebecca S; Hills, Gage; Sohn, Joon; Mitra, Subhasish; Shulaker, Max M; Wong, H-S Philip

    2017-05-23

    While carbon nanotube (CNT) field-effect transistors (CNFETs) promise high-performance and energy-efficient digital systems, large hysteresis degrades these potential CNFET benefits. As hysteresis is caused by traps surrounding the CNTs, previous works have shown that clean interfaces that are free of traps are important to minimize hysteresis. Our previous findings on the sources and physics of hysteresis in CNFETs enabled us to understand the influence of gate dielectric scaling on hysteresis. To begin with, we validate through simulations how scaling the gate dielectric thickness results in greater-than-expected benefits in reducing hysteresis. Leveraging this insight, we experimentally demonstrate reducing hysteresis to <0.5% of the gate-source voltage sweep range using a very large-scale integration compatible and solid-state technology, simply by fabricating CNFETs with a thin effective oxide thickness of 1.6 nm. However, even with negligible hysteresis, large subthreshold swing is still observed in the CNFETs with multiple CNTs per transistor. We show that the cause of large subthreshold swing is due to threshold voltage variation between individual CNTs. We also show that the source of this threshold voltage variation is not explained solely by variations in CNT diameters (as is often ascribed). Rather, other factors unrelated to the CNTs themselves (i.e., process variations, random fixed charges at interfaces) are a significant factor in CNT threshold voltage variations and thus need to be further improved.

  13. Numerical modeling of an estuary: A comprehensive skill assessment

    USGS Publications Warehouse

    Warner, J.C.; Geyer, W.R.; Lerczak, J.A.

    2005-01-01

    Numerical simulations of the Hudson River estuary using a terrain-following, three-dimensional model (Regional Ocean Modeling System (ROMS)) are compared with an extensive set of time series and spatially resolved measurements over a 43 day period with large variations in tidal forcing and river discharge. The model is particularly effective at reproducing the observed temporal variations in both the salinity and current structure, including tidal, spring neap, and river discharge-induced variability. Large observed variations in stratification between neap and spring tides are captured qualitatively and quantitatively by the model. The observed structure and variations of the longitudinal salinity gradient are also well reproduced. The most notable discrepancy between the model and the data is in the vertical salinity structure. While the surface-to-bottom salinity difference is well reproduced, the stratification in the model tends to extend all the way to the water surface, whereas the observations indicate a distinct pycnocline and a surface mixed layer. Because the southern boundary coindition is located near the mouth the estuary, the salinity within the domain is particularly sensitive to the specification of salinity at the boundary. A boundary condition for the horizontal salinity gradient, based on the local value of salinity, is developed to incorporate physical processes beyond the open boundary not resolved by the model. Model results are sensitive to the specification of the bottom roughness length and vertical stability functions, insofar as they influence the intensity of vertical mixing. The results only varied slightly between different turbulence closure methods of k-??, k-??, and k-kl. Copyright 2005 by the American Geophysical Union.

  14. Relationship of D'' structure with the velocity variations near the inner-core boundary

    NASA Astrophysics Data System (ADS)

    Luo, Sheng-Nian; Ni, Sidao; Helmberger, Don

    2002-06-01

    Variations in regional differential times between PKiKP (i) and PKIKP (I) have been attributed to hemispheric P-velocity variations of about 1% in the upper 100 km of the inner core (referred to as HIC). The top of the inner core appears relatively fast beneath Asia where D'' is also fast. An alternative interpretation could be the lateral variation in P velocity at the lowermost outer core (HOC) producing the same differential times. To resolve this issue, we introduce the diffracted PKP phase near the B caustic (Bdiff) in the range of 139-145° epicenter distances, and the corresponding differential times between Bdiff and PKiKP and PKIKP as observed on broadband arrays. Due to the long-wavelength nature of Bdiff, we scaled the S-wave tomography model with k values (k ≡ dlnVs/dlnVp) to obtain large-scale P-wave velocity structure in the lower mantle as proposed by earlier studies. Waveform synthetics of Bdiff constructed with small k's predict complex waveforms not commonly observed, confirming the validity of large scaling factor k. With P-velocity in lower mantle constrained at large scale, the extra travel-time constraint imposed by Bdiff helps to resolve the HOC-HIC issue. Our preliminary results suggest k > 2 for the lowermost mantle and support HIC hypothesis. An important implication is that there appears to be a relationship of D'' velocity structures with the structures near the inner core boundary via core dynamics.

  15. Spatially resolved Spectroscopy of Europa’s Large-scale Compositional Units at 3-4 μm with Keck NIRSPEC

    NASA Astrophysics Data System (ADS)

    Fischer, P. D.; Brown, M. E.; Trumbo, S. K.; Hand, K. P.

    2017-01-01

    We present spatially resolved spectroscopic observations of Europa’s surface at 3-4 μm obtained with the near-infrared spectrograph and adaptive optics system on the Keck II telescope. These are the highest quality spatially resolved reflectance spectra of Europa’s surface at 3-4 μm. The observations spatially resolve Europa’s large-scale compositional units at a resolution of several hundred kilometers. The spectra show distinct features and geographic variations associated with known compositional units; in particular, large-scale leading hemisphere chaos shows a characteristic longward shift in peak reflectance near 3.7 μm compared to icy regions. These observations complement previous spectra of large-scale chaos, and can aid efforts to identify the endogenous non-ice species.

  16. Solar Wind Speed Structure in the Inner Corona at 3-12 Ro

    NASA Technical Reports Server (NTRS)

    Woo, Richard

    1995-01-01

    Estimates of solar wind speed obtained by Armstrong et al. [1986] based on 1983 VLA multiple-station intensity scintillation measurements inside 12 R(sub o) have been correlated with the electron density structure observed in white-light coronagraph measurements. The observed large- scale and apparently systematic speed variations are found to depend primarily on changes in heliographic latitude and longitude, which leads to the first results on large-scale speed structure in the acceleration region of the solar wind. Over an equatorial hole, solar wind speed is relatively steady, with peak-to-peak variations of 50 km/s and an average of 230 km/s. In contrast, the near-Sun flow speed across the streamer belt shows regular large-scale variations in the range of 100-300 km/s. Based on four groups of data, the gradient is 36 km/s per degree in heliocentric coordinates (corresponding to a rise of 260 km/s over a spatial distance on the Sun of two arcmin) with a standard deviation of 2.4 km/s per degree. The lowest speeds most likely coincide with the stalks of coronal streamers observed in white-light measurements. The detection of significant wind shear over the streamer belt is consistent with in situ and scintillation measurements showing that the density spectrum has a power-law form characteristic of fully developed turbulence over a much broader range of scales than in neighboring regions.

  17. The rotation of the Sun: Observations at Stanford. [using the Doppler effect

    NASA Technical Reports Server (NTRS)

    Scherrer, J. M.; Wilcox, J. M.; Svalgaard, L.

    1980-01-01

    Daily observations of the photospheric rotation rate using the Doppler effect made at the Stanford Solar Observatory since May 1976 are analyzed. Results show that these observations show no daily or long period variations in the rotation rate that exceed the observational error of about one percent. The average rotation rate is the same as that of the sunspot and the large-scale magnetic field structures.

  18. SU-G-BRB-12: Polarity Effects in Small Volume Ionization Chambers in Small Fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arora, V; Parsai, E; Mathew, D

    2016-06-15

    Purpose: Dosimetric quantities such as the polarity correction factor (Ppol) are important parameters for determining the absorbed dose and can influence the choice of dosimeter. Ppol has been shown to depend on beam energy, chamber design, and field size. This study is to investigate the field size and detector orientation dependence of Ppol in small fields for several commercially available micro-chambers. Methods: We evaluate the Exradin A26, Exradin A16, PTW 31014, PTW 31016, and two prototype IBA CC-01 micro-chambers in both horizontal and vertical orientations. Measurements were taken at 10cm depth and 100cm SSD in a Wellhofer BluePhantom2. Measurements weremore » made at square fields of 0.6, 0.8, 1.0, 1.2, 1.4, 2.0, 2.4, 3.0, and 5.0 cm on each side using 6MV with both ± 300VDC biases. PPol was evaluated as described in TG-51, reported using −300VDC bias for Mraw. Ratios of PPol measured in the clinical field to the reference field are presented. Results: A field size dependence of Ppol was observed for all chambers, with increased variations when mounted vertically. The maximum variation observed in PPol over all chambers mounted horizontally was <1%, and occurred at different field sizes for different chambers. Vertically mounted chambers demonstrated variations as large as 3.2%, always at the smallest field sizes. Conclusion: Large variations in Ppol were observed for vertically mounted chambers compared to horizontal mountings. Horizontal mountings demonstrated a complicated relationship between polarity variation and field size, probably relating to differing details in each chambers construction. Vertically mounted chambers consistently demonstrated the largest PPol variations for the smallest field sizes. Measurements obtained with a horizontal mounting appear to not need significant polarity corrections for relative measurements, while those obtained using a vertical mounting should be corrected for variations in PPol.« less

  19. The role of sexual selection and conflict in mediating among-population variation in mating strategies and sexually dimorphic traits in Sepsis punctum.

    PubMed

    Dmitriew, Caitlin; Blanckenhorn, Wolf U

    2012-01-01

    The black scavenger fly Sepsis punctum exhibits striking among-population variation in the direction and magnitude of sexual size dimorphism, modification to the male forelimb and pre-copulatory behaviour. In some populations, male-biased sexual size dimorphism is observed; in other, less dimorphic, populations males court prior to mating. Such variation in reproductive traits is of interest to evolutionary biologists because it has the potential to limit gene flow among populations, contributing to speciation. Here, we investigate whether large male body size and modified forefemur are associated with higher male mating success within populations, whether these traits are associated with higher mating success among populations, and if these traits carry viability costs that could constrain their response to sexual selection. Flies from five distinct populations were reared at high or low food, generating high and low quality males. The expression of body size, forelimb morphology and courtship rate were each greater at high food, but high food males experienced higher mating success or reduced latency to first copulation in only one of the populations. Among populations, overall mating success increased with the degree of male-bias in overall body size and forelimb modification, suggesting that these traits have evolved as a means of increasing male mating rate. The increased mating success observed in large-male populations raises the question of why variation in magnitude of dimorphism persists among populations. One reason may be that costs of producing a large size constrain the evolution of ever-larger males. We found no evidence that juvenile mortality under food stress was greater for large-male populations, but development time was considerably longer and may represent an important constraint in an ephemeral and competitive growth environment.

  20. Internal friction peaks observed in explosively deformed polycrystalline Mo, Nb, and Cu

    NASA Technical Reports Server (NTRS)

    Rieu, G. E.; Grimes, H. H.; Romain, J. P.; Defouquet, J.

    1974-01-01

    Explosive deformation (50 kbar range) induced, in Cu, Mo and Nb, internal friction peaks identical to those observed after large normal deformation. The variation of the peaks with pressure for Mo and Nb lead to an explanation of these processes in terms of double kink generation in screw and edge dislocations.

  1. The Diversity Present in 5140 Human Mitochondrial Genomes

    PubMed Central

    Pereira, Luísa; Freitas, Fernando; Fernandes, Verónica; Pereira, Joana B.; Costa, Marta D.; Costa, Stephanie; Máximo, Valdemar; Macaulay, Vincent; Rocha, Ricardo; Samuels, David C.

    2009-01-01

    We analyzed the current status (as of the end of August 2008) of human mitochondrial genomes deposited in GenBank, amounting to 5140 complete or coding-region sequences, in order to present an overall picture of the diversity present in the mitochondrial DNA of the global human population. To perform this task, we developed mtDNA-GeneSyn, a computer tool that identifies and exhaustedly classifies the diversity present in large genetic data sets. The diversity observed in the 5140 human mitochondrial genomes was compared with all possible transitions and transversions from the standard human mitochondrial reference genome. This comparison showed that tRNA and rRNA secondary structures have a large effect in limiting the diversity of the human mitochondrial sequences, whereas for the protein-coding genes there is a bias toward less variation at the second codon positions. The analysis of the observed amino acid variations showed a tolerance of variations that convert between the amino acids V, I, A, M, and T. This defines a group of amino acids with similar chemical properties that can interconvert by a single transition. PMID:19426953

  2. Shipboard measurements and modeling of the distribution of CH4 and 13CH4 in the western Pacific

    NASA Astrophysics Data System (ADS)

    Bromley, T.; Allan, W.; Martin, R.; Mikaloff Fletcher, S. E.; Lowe, D. C.; Struthers, H.; Moss, R.

    2012-02-01

    We present observations of methane (CH4) mixing ratio and 13C/12C isotopic ratios in CH4 (δ13C) data from a collaborative shipboard project using bulk carrier ships sailing between Nelson, New Zealand, and Osaka, Japan, in the western Pacific Ocean. Measurements of the CH4 mixing ratio and δ13C in CH4were obtained from large clean-air samples collected in each 2.5° to 5° of latitude between 30°S and 30°N on eight voyages from 2004 to 2007. The data show large variations in CH4 mixing ratio in the tropical western Pacific, and data analysis suggests that these large variations are related to the positions and strengths of the South Pacific Convergence Zone and the Intertropical Convergence Zone, with variability in the sources playing a much smaller role. These measurements are compared with results from a modified version of the Unified Model (UMeth) general circulation model along two transects, one similar to the ship transects and another 18.75° to the east. Although UMeth was run to a steady state with the same sources and sinks each year, the gradient structures varied considerably from year to year, supporting our conclusion that variability in transport is a major driver for the observed variations in CH4. Simulations forced with an idealized representation of the El Niño-Southern Oscillation (ENSO) suggest that a large component of the observed variability in latitudinal gradients of CH4 and its δ13C arises from intrinsic variability in the climate system that does not occur on ENSO time scales.

  3. Spatio-temporal Variations of Nitrogen Dioxide over Western China from Satellite Observations during 2005-2013

    NASA Astrophysics Data System (ADS)

    Cui, Y.; Lin, J.; Huang, B.; Song, C.

    2015-12-01

    Western China has experienced rapid urbanization and industrialization since the implementation of National Western Development Strategy by Chinese Government. Most resource-intensive industries and high-pollution factories had been moved from the east coast to Western China after 2000. In this research, the spatial and temporal variations of tropospheric NO2 concentration in 2005 - 2013 is analyzed based on the satellite observations by Ozone Measurement Instrument (OMI). The annual trends and seasonality of tropospheric NO2 over Western China are calculated. The results show that large increases are observed in urban areas and the polluted regions are expanding. Additionally, the seasonal patterns of some regions over Western China are changing significantly and more clean areas tend to changing from the characteristics of natural emissions to those of anthropogenic emissions. The spatial and temporal variations of NO2 concentrations are well responded to the rapid urbanization and industrialization over Western China.

  4. On the Possibilities of Predicting Geomagnetic Secular Variation with Geodynamo Modeling

    NASA Technical Reports Server (NTRS)

    Kuang, Wei-Jia; Tangborn, Andrew; Sabaka, Terrance

    2004-01-01

    We use our MoSST core dynamics model and geomagnetic field at the core-mantle boundary (CMB) continued downward from surface observations to investigate possibilities of geomagnetic data assimilation, so that model results and current geomagnetic observations can be used to predict geomagnetic secular variation in future. As the first attempt, we apply data insertion technique to examine evolution of the model solution that is modified by geomagnetic input. Our study demonstrate that, with a single data insertion, large-scale poloidal magnetic field obtained from subsequent numerical simulation evolves similarly to the observed geomagnetic variation, regardless of the initial choice of the model solution (so long it is a well developed numerical solution). The model solution diverges on the time scales on the order of 60 years, similar to the time scales of the torsional oscillations in the Earth's core. Our numerical test shows that geomagnetic data assimilation is promising with our MoSST model.

  5. Solar activity beyond the disk and variations of the cosmic ray gradient

    NASA Technical Reports Server (NTRS)

    Belov, A. V.; Dorman, L. I.; Eroshenko, E. A.; Ishkov, V. N.; Oleneva, V. A.

    1985-01-01

    Part of galactic cosmic rays (CR) observed near the Earth and on the Earth come from beyond-disk regions of circumsolar space. But CR of those energies which undergo substantial modulation cover too large a path across the lines of force of the interplanetary magnetic field (IMF) in order that they could provide an effective transfer of information about beyond-disk solar activity. And if it is still possible, the most probable channel for transferring such information must be a neutral layer of heliomagnetosphere in which the transverse CR transport is facilitated by their drift in an inhomogeneous magnetic field. A simple diffusion model for an expected CR variation in a neutral layer near the Earth is discussed. It is of importance that variations of the CR gradient are not at all always accompanied by considerable variations of IMF and solar wind velocity at the point of observation.

  6. Evidence of Dynamic Crustal Deformation in Tohoku, Japan, From Time-Varying Receiver Functions

    NASA Astrophysics Data System (ADS)

    Porritt, R. W.; Yoshioka, S.

    2017-10-01

    Temporal variation of crustal structure is key to our understanding of Earth processes on human timescales. Often, we expect that the most significant structural variations are caused by strong ground shaking associated with large earthquakes, and recent studies seem to confirm this. Here we test the possibility of using P receiver functions (PRF) to isolate structural variations over time. Synthetic receiver function tests indicate that structural variation could produce PRF changes on the same order of magnitude as random noise or contamination by local earthquakes. Nonetheless, we find significant variability in observed receiver functions over time at several stations located in northeastern Honshu. Immediately following the Tohoku-oki earthquake, we observe high PRF variation clustering spatially, especially in two regions near the beginning and end of the rupture plane. Due to the depth sensitivity of PRF and the timescales over which this variability is observed, we infer this effect is primarily due to fluid migration in volcanic regions and shear stress/strength reorganization. While the noise levels in PRF are high for this type of analysis, by sampling small data sets, the computational cost is lower than other methods, such as ambient noise, thereby making PRF a useful tool for estimating temporal variations in crustal structure.

  7. Seasonal Variation of Dystocia in a Large Danish Cohort

    PubMed Central

    Rohr Thomsen, Christine; Uldbjerg, Niels; Hvidman, Lone; Atladóttir, Hjördís Ósk; Henriksen, Tine Brink; Milidou, Ioanna

    2014-01-01

    Background Dystocia is one of the most frequent causes of cesarean delivery in nulliparous women. Despite this, its causes are largely unknown. Vitamin D receptor (VDR) has been found in the myometrium. Thus, it is possible that vitamin D affects the contractility of the myometrium and may be involved in the pathogenesis of dystocia. Seasonal variation of dystocia in areas with distinct seasonal variation in sunlight exposure, like Denmark, could imply that vitamin D may play a role. This study examined whether there was seasonal variation in the incidence of dystocia in a Danish population. Method We used information from a cohort of 34,261 nulliparous women with singleton pregnancies, spontaneous onset of labor between 37 and 42 completed gestational weeks, and vertex fetal presentation. All women gave birth between 1992 and 2010 at the Department of Obstetrics and Gynecology, Aarhus University Hospital, Skejby. Logistic regression combined with cubic spline was used to estimate the seasonal variation for each outcome after adjusting for calendar time. Results No evidence for seasonal variation was found for any of the outcomes: acute cesarean delivery due to dystocia (p = 0.44); instrumental vaginal delivery due to dystocia (p = 0.69); oxytocin augmentation due to dystocia (p = 0.46); and overall dystocia (p = 0.91). Conclusion No seasonal variation in the incidence of dystocia was observed in a large cohort of Danish women. This may reflect no association between vitamin D and dystocia, or alternatively that other factors with seasonal variation and influence on the occurrence of dystocia attenuate such an association. PMID:24736600

  8. Seasonal variation of dystocia in a large Danish cohort.

    PubMed

    Rohr Thomsen, Christine; Uldbjerg, Niels; Hvidman, Lone; Atladóttir, Hjördís Ósk; Henriksen, Tine Brink; Milidou, Ioanna

    2014-01-01

    Dystocia is one of the most frequent causes of cesarean delivery in nulliparous women. Despite this, its causes are largely unknown. Vitamin D receptor (VDR) has been found in the myometrium. Thus, it is possible that vitamin D affects the contractility of the myometrium and may be involved in the pathogenesis of dystocia. Seasonal variation of dystocia in areas with distinct seasonal variation in sunlight exposure, like Denmark, could imply that vitamin D may play a role. This study examined whether there was seasonal variation in the incidence of dystocia in a Danish population. We used information from a cohort of 34,261 nulliparous women with singleton pregnancies, spontaneous onset of labor between 37 and 42 completed gestational weeks, and vertex fetal presentation. All women gave birth between 1992 and 2010 at the Department of Obstetrics and Gynecology, Aarhus University Hospital, Skejby. Logistic regression combined with cubic spline was used to estimate the seasonal variation for each outcome after adjusting for calendar time. No evidence for seasonal variation was found for any of the outcomes: acute cesarean delivery due to dystocia (p = 0.44); instrumental vaginal delivery due to dystocia (p = 0.69); oxytocin augmentation due to dystocia (p = 0.46); and overall dystocia (p = 0.91). No seasonal variation in the incidence of dystocia was observed in a large cohort of Danish women. This may reflect no association between vitamin D and dystocia, or alternatively that other factors with seasonal variation and influence on the occurrence of dystocia attenuate such an association.

  9. Possible causes of variation in acrylamide concentration in French fries prepared in food service establishments: an observational study.

    PubMed

    Sanny, M; Jinap, S; Bakker, E J; van Boekel, M A J S; Luning, P A

    2012-05-01

    Acrylamide is a probable human carcinogen, and its presence in a range of fried and oven-cooked foods has raised considerable health concern world-wide. Dietary intake studies observed significant variations in acrylamide concentrations, which complicate risk assessment and the establishment of effective control measures. The objective of this study was to obtain an insight into the actual variation in acrylamide concentrations in French fries prepared under typical conditions in a food service establishment (FSE). Besides acrylamide, frying time, frying temperature, and reducing sugars were measured and the actual practices at receiving, thawing and frying during French fries preparation were observed and recorded. The variation in the actual frying temperature contributed most to the variation in acrylamide concentrations, followed by the variation in actual frying time; no obvious effect of reducing sugars was found. The lack of standardised control of frying temperature and frying time (due to inadequate frying equipment) and the variable practices of food handlers seem to contribute most to the large variation and high acrylamide concentrations in French fries prepared in a restaurant type of FSE as compared to chain fast-food services, and institutional caterers. The obtained insights in this study can be used to develop dedicated control measures in FSE, which may contribute to a sustainable reduction in the acrylamide intake. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Trends and geographic patterns in drug-poisoning death rates in the U.S., 1999-2009.

    PubMed

    Rossen, Lauren M; Khan, Diba; Warner, Margaret

    2013-12-01

    Drug poisoning mortality has increased substantially in the U.S. over the past 3 decades. Previous studies have described state-level variation and urban-rural differences in drug-poisoning deaths, but variation at the county level has largely not been explored in part because crude county-level death rates are often highly unstable. The goal of the study was to use small-area estimation techniques to produce stable county-level estimates of age-adjusted death rates (AADR) associated with drug poisoning for the U.S., 1999-2009, in order to examine geographic and temporal variation. Population-based observational study using data on 304,087 drug-poisoning deaths in the U.S. from the 1999-2009 National Vital Statistics Multiple Cause of Death Files (analyzed in 2012). Because of the zero-inflated and right-skewed distribution of drug-poisoning death rates, a two-stage modeling procedure was used in which the first stage modeled the probability of observing a death for a given county and year, and the second stage modeled the log-transformed drug-poisoning death rate given that a death occurred. Empirical Bayes estimates of county-level drug-poisoning death rates were mapped to explore temporal and geographic variation. Only 3% of counties had drug-poisoning AADRs greater than ten per 100,000 per year in 1999-2000, compared to 54% in 2008-2009. Drug-poisoning AADRs grew by 394% in rural areas compared to 279% for large central metropolitan counties, but the highest drug-poisoning AADRs were observed in central metropolitan areas from 1999 to 2009. There was substantial geographic variation in drug-poisoning mortality across the U.S. Published by American Journal of Preventive Medicine on behalf of American Journal of Preventive Medicine.

  11. Crustal density contrast detection by global gravity and topography models and in-situ gravity observations

    NASA Astrophysics Data System (ADS)

    Claessens, S. J.

    2016-12-01

    Mass density contrasts in the Earth's crust can be detected using an inversion of terrestrial or airborne gravity data. This contribution shows a technique to detect short-scale density contrasts using in-situ gravity observations in combination with a high-resolution global gravity model that includes variations in the gravity field due to topography. The technique is exemplified at various test sites using the Global Gravity Model Plus (GGMplus), which is a 7.2 arcsec resolution model of the Earth's gravitational field, covering all land masses and near-coastal areas within +/- 60° latitude. The model is a composite of GRACE and GOCE satellite observations, the EGM2008 global gravity model, and short-scale topographic gravity effects. Since variations in the Earth's gravity field due to topography are successfully modelled by GGMplus, any remaining differences with in-situ gravity observations are primarily due to mass density variations. It is shown that this technique effectively filters out large-scale density variations, and highlights short-scale near-surface density contrasts in the Earth's crust. Numerical results using recent high-density gravity surveys are presented, which indicate a strong correlation between density contrasts found and known lines of geological significance.

  12. Hydrological and oceanic excitations to polar motion andlength-of-day variation

    NASA Astrophysics Data System (ADS)

    Chen, J. L.; Wilson, C. R.; Chao, B. F.; Shum, C. K.; Tapley, B. D.

    2000-04-01

    Water mass redistributions in the global hydrosphere, including continental water storage change and non-steric sea level change, introduce variations in the hydrological angular momentum (HAM) and the oceanic angular momentum (OAM). Under the conservation of angular momentum, HAM and OAM variations are significant excitation sources of the Earth rotational variations at a wide range of timescales. In this paper, we estimate HAM and OAM variations and their excitations to polar motion and length-of-day variation using soil moisture and snow estimates andnon-steric sea level change determined by TOPEX/Poseidon satellite radar altimeter observations and a simplified steric sea level change model. The results are compared with the variations of polar motion and LOD that are not accounted for by the atmosphere. This study indicates that seasonal continental water storage change provides significant contributions to both polar motion and LOD variation, especially to polar motion X, and the non-steric sea level change is responsible for a major part of the remaining excitations at both seasonal scale and high frequencies, particularly in polar motion Y and LOD. The good correlation between OAM contributions and the remaining excitations shows that large-scale non-tidal mass variation exists in the oceans and can be detected by TOPEX/Poseidon altimeter observations.

  13. SPATIALLY RESOLVED SPECTROSCOPY OF EUROPA’S LARGE-SCALE COMPOSITIONAL UNITS AT 3–4 μ m WITH KECK NIRSPEC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fischer, P. D.; Brown, M. E.; Trumbo, S. K.

    2017-01-01

    We present spatially resolved spectroscopic observations of Europa’s surface at 3–4 μ m obtained with the near-infrared spectrograph and adaptive optics system on the Keck II telescope. These are the highest quality spatially resolved reflectance spectra of Europa’s surface at 3–4 μ m. The observations spatially resolve Europa’s large-scale compositional units at a resolution of several hundred kilometers. The spectra show distinct features and geographic variations associated with known compositional units; in particular, large-scale leading hemisphere chaos shows a characteristic longward shift in peak reflectance near 3.7 μ m compared to icy regions. These observations complement previous spectra of large-scalemore » chaos, and can aid efforts to identify the endogenous non-ice species.« less

  14. ISEE-3 measurements of solar energetic particle composition

    NASA Technical Reports Server (NTRS)

    Von Rosenvinge, T. T.; Reames, D. V.

    1980-01-01

    Preliminary observations of energetic particles from solar flares beginning on September 23 and November 10, 1978 are reported. The measurements were made from the ISEE-3 spacecraft using very thin, large area solid-state detectors. Charge composition was measured for all elements from Z = 2 to Z = 26 above approximately 2 MeV/nucleon. More than 100,000 nuclei with Z greater than 2 were pulse-height analyzed during the course of the first event, while the second was substantially smaller. These good statistics enable the observation of variations in composition at low energies as a function of time. For example, the Fe/O ratio (2.0-3.1 MeV/n) was observed in the September event to decrease by a factor of approximately 5. By contrast, this same ratio increased by a factor of approximately 1.5 during the November 10 event. Similar variations have been reported earlier by Scholer et al. (1978). These authors, however were unable to observe the He/O ratio which has now been observed also to show significant variation.

  15. Understanding the City Size Wage Gap*

    PubMed Central

    Baum-Snow, Nathaniel; Pavan, Ronni

    2013-01-01

    In this paper, we decompose city size wage premia into various components. We base these decompositions on an estimated on-the-job search model that incorporates latent ability, search frictions, firm-worker match quality, human capital accumulation and endogenous migration between large, medium and small cities. Counterfactual simulations of the model indicate that variation in returns to experience and differences in wage intercepts across location type are the most important mechanisms contributing to observed city size wage premia. Variation in returns to experience is more important for generating wage premia between large and small locations while differences in wage intercepts are more important for generating wage premia betwen medium and small locations. Sorting on unobserved ability within education group and differences in labor market search frictions and distributions of firm-worker match quality contribute little to observed city size wage premia. These conclusions hold for separate samples of high school and college graduates. PMID:24273347

  16. Understanding the City Size Wage Gap.

    PubMed

    Baum-Snow, Nathaniel; Pavan, Ronni

    2012-01-01

    In this paper, we decompose city size wage premia into various components. We base these decompositions on an estimated on-the-job search model that incorporates latent ability, search frictions, firm-worker match quality, human capital accumulation and endogenous migration between large, medium and small cities. Counterfactual simulations of the model indicate that variation in returns to experience and differences in wage intercepts across location type are the most important mechanisms contributing to observed city size wage premia. Variation in returns to experience is more important for generating wage premia between large and small locations while differences in wage intercepts are more important for generating wage premia betwen medium and small locations. Sorting on unobserved ability within education group and differences in labor market search frictions and distributions of firm-worker match quality contribute little to observed city size wage premia. These conclusions hold for separate samples of high school and college graduates.

  17. Cold dark matter confronts the cosmic microwave background - Large-angular-scale anisotropies in Omega sub 0 + lambda 1 models

    NASA Technical Reports Server (NTRS)

    Gorski, Krzysztof M.; Silk, Joseph; Vittorio, Nicola

    1992-01-01

    A new technique is used to compute the correlation function for large-angle cosmic microwave background anisotropies resulting from both the space and time variations in the gravitational potential in flat, vacuum-dominated, cold dark matter cosmological models. Such models with Omega sub 0 of about 0.2, fit the excess power, relative to the standard cold dark matter model, observed in the large-scale galaxy distribution and allow a high value for the Hubble constant. The low order multipoles and quadrupole anisotropy that are potentially observable by COBE and other ongoing experiments should definitively test these models.

  18. Dispersion Measure Variation of Repeating Fast Radio Burst Sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Yuan-Pei; Zhang, Bing, E-mail: yypspore@gmail.com, E-mail: zhang@physics.unlv.edu

    The repeating fast radio burst (FRB) 121102 was recently localized in a dwarf galaxy at a cosmological distance. The dispersion measure (DM) derived for each burst from FRB 121102 so far has not shown significant evolution, even though an apparent increase was recently seen with newly detected VLA bursts. It is expected that more repeating FRB sources may be detected in the future. In this work, we investigate a list of possible astrophysical processes that might cause DM variation of a particular FRB source. The processes include (1) cosmological scale effects such as Hubble expansion and large-scale structure fluctuations; (2)more » FRB local effects such as gas density fluctuation, expansion of a supernova remnant (SNR), a pulsar wind nebula, and an H ii region; and (3) the propagation effect due to plasma lensing. We find that the DM variations contributed by the large-scale structure are extremely small, and any observable DM variation is likely caused by the plasma local to the FRB source. In addition to mechanisms that decrease DM over time, we suggest that an FRB source in an expanding SNR around a nearly neutral ambient medium during the deceleration (Sedov–Taylor and snowplow) phases or in a growing H ii region can increase DM. Some effects (e.g., an FRB source moving in an H ii region or plasma lensing) can produce either positive or negative DM variations. Future observations of DM variations of FRB 121102 and other repeating FRB sources can provide important clues regarding the physical origin of these sources.« less

  19. Color Variation on the Surfaces of Jupiter’s Greek and Trojan Asteroids

    NASA Astrophysics Data System (ADS)

    Chatelain, Joseph; Trilling, David E.; Emery, Joshua P.

    2017-10-01

    The L4 and L5 Lagrange points of Jupiter are populated with thousands of known, and possibly hundreds of thousands of unknown, Greek and Trojan Asteroids. Understanding the environmental and weathering conditions experienced by these objects over their lifetimes could constrain formation models for the Solar System. In an effort to shine some light on this issue, we have collected partial, simultaneous, lightcurves in both Johnson-Cousins V and I filters for a dozen large Jupiter Trojans. We found significant signs of color variation over the surfaces of four of these objects, and more subtle signs on an additional four. The most convincing examples of variation occur on (4709) Ennomos and (4833) Meges. Such a variation in color with rotation likely implies a large surface feature such as a recent crater. That such a high fraction of observed Trojans display these signatures could imply a more active collisional history for Jupiter Trojans than previously thought. It is therefore likely that one or more of the targets for the Lucy mission will have experienced a large, relatively recent, cratering event. This may help us obtain a much more in-depth understanding of the evolutionary processes ongoing for the Jupiter Trojan populations.

  20. A longitudinal survey of anti-Ostertagia ostertagi antibody levels in individual and bulk tank milk in two dairy herds in Normandy.

    PubMed

    Charlier, Johannes; Camuset, Philippe; Claerebout, Edwin; Courtay, Bruno; Vercruysse, Jozef

    2007-10-01

    The Ostertagia-specific antibody levels in milk were monitored in 2 dairy herds to investigate seasonal variations and the relationship between individual and bulk tank milk antibody levels. Bulk tank and individual milk samples from all lactating animals were collected over a 1-year period at weekly and monthly intervals, respectively. The Ostertagia-specific antibody levels were measured with an indirect ELISA and the test results were expressed as optical density ratios (ODR). A clear seasonal pattern that followed the expected intake of infectious larvae was observed in the individual and bulk tank milk antibody levels of both herds. Within each herd, there was a large variation in the individual ODRs. This variation remained large when the distribution of individual ODRs was plotted according to high and low bulk tank milk ODR categories. The results suggest that the effect of seasonal variations on cut-off levels that predict production responses after anthelmintic control, needs to be assessed.

  1. Wall of fundamental constants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olive, Keith A.; School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota, 55455; Peloso, Marco

    2011-02-15

    We consider the signatures of a domain wall produced in the spontaneous symmetry breaking involving a dilatonlike scalar field coupled to electromagnetism. Domains on either side of the wall exhibit slight differences in their respective values of the fine-structure constant, {alpha}. If such a wall is present within our Hubble volume, absorption spectra at large redshifts may or may not provide a variation in {alpha} relative to the terrestrial value, depending on our relative position with respect to the wall. This wall could resolve the contradiction between claims of a variation of {alpha} based on Keck/Hires data and of themore » constancy of {alpha} based on Very Large Telescope data. We derive the properties of the wall and the parameters of the underlying microscopic model required to reproduce the possible spatial variation of {alpha}. We discuss the constraints on the existence of the low-energy domain wall and describe its observational implications concerning the variation of the fundamental constants.« less

  2. The double quasar 0957+561: examination of the gravitational lens hypothesis using the very large array.

    PubMed

    Greenfield, P E; Roberts, D H; Burke, B F

    1980-05-02

    A full 12-hour synthesis at 6-centimeter wavelength with the Very Large Array confirms the major features previously reported for the double quasar 0957+561. In addition, the existence of radio jets apparently associated with both quasars is demonstrated. Gravitational lens models are now favored on the basis of recent optical observations, and the radio jets place severe constraints on such models. Further radio observations of the double quasar are needed to establish the expected relative time delay in variations between the images.

  3. Studies of hot B subdwarfs. III - Carbon, nitrogen, and silicon abundances in three sdB stars

    NASA Technical Reports Server (NTRS)

    Lamontagne, R.; Wesemael, F.; Fontaine, G.; Sion, E. M.

    1985-01-01

    Optical and high-dispersion IUE observations of three hot B subdwarfs (UV 1758 + 36, Ton S-227, and Feige 65) are presented. These data are analyzed with model atmosphere techniques, and element abundances for C, N, and Si are derived. The abundances are either near (N) or below (C, Si) the solar value; large variations (1) in the extent of underabundances of carbon and silicon among the objects, as well as (2) in the abundances (with respect to the solar values) characterizing each star are observed. A preliminary interpretation of the observed variations in these and other hot subdwarfs in terms of radiative forces disrupting the downward diffusion of heavy elements is presented.

  4. Real-time evolution of a large-scale relativistic jet

    NASA Astrophysics Data System (ADS)

    Martí, Josep; Luque-Escamilla, Pedro L.; Romero, Gustavo E.; Sánchez-Sutil, Juan R.; Muñoz-Arjonilla, Álvaro J.

    2015-06-01

    Context. Astrophysical jets are ubiquitous in the Universe on all scales, but their large-scale dynamics and evolution in time are hard to observe since they usually develop at a very slow pace. Aims: We aim to obtain the first observational proof of the expected large-scale evolution and interaction with the environment in an astrophysical jet. Only jets from microquasars offer a chance to witness the real-time, full-jet evolution within a human lifetime, since they combine a "short", few parsec length with relativistic velocities. Methods: The methodology of this work is based on a systematic recalibraton of interferometric radio observations of microquasars available in public archives. In particular, radio observations of the microquasar GRS 1758-258 over less than two decades have provided the most striking results. Results: Significant morphological variations in the extended jet structure of GRS 1758-258 are reported here that were previously missed. Its northern radio lobe underwent a major morphological variation that rendered the hotspot undetectable in 2001 and reappeared again in the following years. The reported changes confirm the Galactic nature of the source. We tentatively interpret them in terms of the growth of instabilities in the jet flow. There is also evidence of surrounding cocoon. These results can provide a testbed for models accounting for the evolution of jets and their interaction with the environment.

  5. Reduction of observer variation using matched CT-PET for lung cancer delineation: A three-dimensional analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steenbakkers, Roel; Duppen, Joop C.; Fitton, Isabelle

    2006-02-01

    Purpose: Target delineation using only CT information introduces large geometric uncertainties in radiotherapy for lung cancer. Therefore, a reduction of the delineation variability is needed. The impact of including a matched CT scan with 2-[{sup 18}F]fluoro-2-deoxy-D-glucose positron emission tomography (FDG-PET) and adaptation of the delineation protocol and software on target delineation in lung cancer was evaluated in an extensive multi-institutional setting and compared with the delineations using CT only. Methods and Materials: The study was separated into two phases. For the first phase, 11 radiation oncologists (observers) delineated the gross tumor volume (GTV), including the pathologic lymph nodes of 22more » lung cancer patients (Stages I-IIIB) on CT only. For the second phase (1 year later), the same radiation oncologists delineated the GTV of the same 22 patients on a matched CT-FDG-PET scan using an adapted delineation protocol and software (according to the results of the first phase). All delineated volumes were analyzed in detail. The observer variation was computed in three dimensions by measuring the distance between the median GTV surface and each individual GTV. The variation in distance of all radiation oncologists was expressed as a standard deviation. The observer variation was evaluated for anatomic regions (lung, mediastinum, chest wall, atelectasis, and lymph nodes) and interpretation regions (agreement and disagreement; i.e., >80% vs. <80% of the radiation oncologists delineated the same structure, respectively). All radiation oncologist-computer interactions were recorded and analyzed with a tool called 'Big Brother.' Results: The overall three-dimensional observer variation was reduced from 1.0 cm (SD) for the first phase (CT only) to 0.4 cm (SD) for the second phase (matched CT-FDG-PET). The largest reduction in the observer variation was seen in the atelectasis region (SD 1.9 cm reduced to 0.5 cm). The mean ratio between the common and encompassing volume was 0.17 and 0.29 for the first and second phases, respectively. For the first phase, the common volume was 0 in 4 patients (i.e., no common point for all GTVs). In the second phase, the common volume was always >0. For all anatomic regions, the interpretation differences among the radiation oncologists were reduced. The amount of disagreement was 45% and 18% for the first and second phase, respectively. Furthermore, the mean delineation time (12 vs. 16 min, p < 0.001) and mean number of corrections (25 vs. 39, p < 0.001) were reduced in the second phase compared with the first phase. Conclusion: For high-precision radiotherapy, the delineation of lung target volumes using only CT introduces too great a variability among radiation oncologists. Implementing matched CT-FDG-PET and adapted delineation protocol and software reduced observer variation in lung cancer delineation significantly with respect to CT only. However, the remaining observer variation was still large compared with other geometric uncertainties (setup variation and organ motion)« less

  6. Observing the variation of asteroid thermal inertia with heliocentric distance

    NASA Astrophysics Data System (ADS)

    Rozitis, B.; Green, S. F.; MacLennan, E.; Emery, J. P.

    2018-06-01

    Thermal inertia is a useful property to characterize a planetary surface, since it can be used as a qualitative measure of the regolith grain size. It is expected to vary with heliocentric distance because of its dependence on temperature. However, no previous investigation has conclusively observed a change in thermal inertia for any given planetary body. We have addressed this by using NEOWISE data and the Advanced Thermophysical Model to study the thermophysical properties of the near-Earth asteroids (1036) Ganymed, (1580) Betulia, and (276 049) 2002 CE26 as they moved around their highly eccentric orbits. We confirm that the thermal inertia values of Ganymed and 2002 CE26 do vary with heliocentric distance, although the degree of variation observed depends on the spectral emissivity assumed in the thermophysical modelling. We also confirm that the thermal inertia of Betulia did not change for three different observations obtained at the same heliocentric distance. Depending on the spectral emissivity, the variations for Ganymed and 2002 CE26 are potentially more extreme than that implied by theoretical models of heat transfer within asteroidal regoliths, which might be explained by asteroids having thermal properties that also vary with depth. Accounting for this variation reduces a previously observed trend of decreasing asteroid thermal inertia with increasing size, and suggests that the surfaces of small and large asteroids could be much more similar than previously thought. Furthermore, this variation can affect Yarkovsky orbital drift predictions by a few tens of per cent.

  7. Small vs. Large Convective Cloud Objects from CERES Aqua Observations: Where are the Intraseasonal Variation Signals?

    NASA Technical Reports Server (NTRS)

    Xu, Kuan-Man

    2016-01-01

    During inactive phases of Madden-Julian oscillation (MJO), there are plenty of deep but small convective systems and far fewer deep and large ones. During active phases of MJO, a manifestation of an increase in the occurrence of large and deep cloud clusters results from an amplification of large-scale motions by stronger convective heating. This study is designed to quantitatively examine the roles of small and large cloud clusters during the MJO life cycle. We analyze the cloud object data from Aqua CERES observations for tropical deep convective (DC) and cirrostratus (CS) cloud object types according to the real-time multivariate MJO index. The cloud object is a contiguous region of the earth with a single dominant cloud-system type. The size distributions, defined as the footprint numbers as a function of cloud object diameters, for particular MJO phases depart greatly from the combined (8-phase) distribution at large cloud-object diameters due to the reduced/increased numbers of cloud objects related to changes in the large-scale environments. The medium diameter corresponding to the combined distribution is determined and used to partition all cloud objects into "small" and "large" groups of a particular phase. The two groups corresponding to the combined distribution have nearly equal numbers of footprints. The medium diameters are 502 km for DC and 310 km for cirrostratus. The range of the variation between two extreme phases (typically, the most active and depressed phases) for the small group is 6-11% in terms of the numbers of cloud objects and the total footprint numbers. The corresponding range for the large group is 19-44%. In terms of the probability density functions of radiative and cloud physical properties, there are virtually no differences between the MJO phases for the small group, but there are significant differences for the large groups for both DC and CS types. These results suggest that the intreseasonal variation signals reside at the large cloud clusters while the small cloud clusters represent the background noises resulting from various types of the tropical waves with different wavenumbers and propagation directions/speeds.

  8. Regional distribution of the high-altitude clouds over the Indian subcontinent and surrounding oceanic regions based on seven years of satellite observations

    NASA Astrophysics Data System (ADS)

    Meenu, S.; Rajeev, K.; Parameswaran, K.; Suresh Raju, C.

    2006-12-01

    Quantitative estimates of the spatio-temporal variations in deep convective events over the Indian subcontinent, Arabian Sea, Bay of Bengal, and tropical Indian Ocean are carried out using the data obtained from Advanced Very High Resolution Radiometer (AVHRR) onboard NOAA-14 and NOAA-16 during the period 1996-2003. Pixels having thermal IR brightness temperature (BT) less than 245K are considered as high altitude clouds and those having BT<220 K are considered as very high altitude clouds. Very deep convective clouds are observed over north Bay of Bengal during the Asian summer monsoon season when the mean cloud top temperature reaches as low as 190K. Over the Head Bay of Bengal (HBoB) from June to September, more than 50% of the observed clouds are deep convective type and more than half of these deep convective clouds are very deep convective clouds. Histogram analysis of the cloud top temperatures during this period shows that over HBoB the most prominent cloud top temperature of the deep convective clouds is ~205K over the HBoB while that over southeast Arabian Sea (SEAS) is ~220K. This indicates that most probably the cloud top altitude over HBoB is ~2 km larger than that over SEAS during the Asian summer monsoon period. Another remarkable feature observed during the Asian summer monsoon period is the significantly low values of deep convective clouds observed over the south Bay of Bengal close to Srilanka, which appears as a large pool of reduced cloud amount surrounded by regions of large-scale deep convection. Over both SEAS and HBoB, the total, deep convective and very deep convective cloud amounts as well as their corresponding cloud top temperatures (or the altitude of the cloud top) undergo large seasonal variations, while such variations are less prominent over the eastern equatorial Indian Ocean.

  9. Variations in the rotation of the earth

    NASA Astrophysics Data System (ADS)

    Carter, W. E.; Robertson, D. S.; Pettey, J. E.; Tapley, B. D.; Schutz, B. E.; Eanes, R. J.; Miao, L.

    Variations in the earth's rotation (UTI) and length of day have been tracked at the submillisecond level by astronomical radio interferometry and laser ranging to the LAGEOS satellite. Three years of regular measurements reveal complex patterns of variations including UTI fluctuations as large as 5 milliseconds in a few weeks. Comparison of the observed changes in length of day with variations in the global atmospheric angular momentum indicates that the dominant cause of changes in the earth's spin rate, on time scales from a week to several years, is the exchange of angular momentum between the atmosphere and the mantle. The unusually intense El Nino of 1982-1983 was marked by a strong peak in the length of day.

  10. Electrodynamics of the middle atmosphere: Superpressure balloon program

    NASA Technical Reports Server (NTRS)

    Holzworth, Robert H.

    1987-01-01

    In this experiment a comprehensive set of electrical parameters were measured during eight long duration flights in the southern hemisphere stratosphere. These flight resulted in the largest data set ever collected from the stratosphere. The stratosphere has never been electrodynamically sampled in the systematic manner before. New discoveries include short term variability in the planetary scale electric current system, the unexpected observation of stratospheric conductivity variations over thunderstorms and the observation of direct stratospheric conductivity variations following a relatively small solar flare. Major statistical studies were conducted of the large scale current systems, the stratospheric conductivity and the neutral gravity waves (from pressure and temperature data) using the entire data set.

  11. The shape and surface variation of 2 Pallas from the Hubble Space Telescope.

    PubMed

    Schmidt, B E; Thomas, P C; Bauer, J M; Li, J-Y; McFadden, L A; Mutchler, M J; Radcliffe, S C; Rivkin, A S; Russell, C T; Parker, J Wm; Stern, S A

    2009-10-09

    We obtained Hubble Space Telescope images of 2 Pallas in September 2007 that reveal distinct color and albedo variations across the surface of this large asteroid. Pallas's shape is an ellipsoid with radii of 291 (+/-9), 278 (+/-9), and 250 (+/-9) kilometers, implying a density of 2400 (+/-250) kilograms per cubic meter-a value consistent with a body that formed from water-rich material. Our observations are consistent with the presence of an impact feature, 240 (+/-25) kilometers in diameter, within Pallas's ultraviolet-dark terrain. Our observations imply that Pallas is an intact protoplanet that has undergone impact excavation and probable internal alteration.

  12. The impact of nectar chemical features on phenotypic variation in two related nectar yeasts.

    PubMed

    Pozo, María I; Herrera, Carlos M; Van den Ende, Wim; Verstrepen, Kevin; Lievens, Bart; Jacquemyn, Hans

    2015-06-01

    Floral nectars become easily colonized by microbes, most often species of the ascomycetous yeast genus Metschnikowia. Although it is known that nectar composition can vary tremendously among plant species, most probably corresponding to the nutritional requirements of their main pollinators, far less is known about how variation in nectar chemistry affects intraspecific variation in nectarivorous yeasts. Because variation in nectar traits probably affects growth and abundance of nectar yeasts, nectar yeasts can be expected to display large phenotypic variation in order to cope with varying nectar conditions. To test this hypothesis, we related variation in the phenotypic landscape of a vast collection of nectar-living yeast isolates from two Metschnikowia species (M. reukaufii and M. gruessii) to nectar chemical traits using non-linear redundancy analyses. Nectar yeasts were collected from 19 plant species from different plant families to include as much variation in nectar chemical traits as possible. As expected, nectar yeasts displayed large variation in phenotypic traits, particularly in traits related to growth performance in carbon sources and inhibitors, which was significantly related to the host plant from which they were isolated. Total sugar concentration and relative fructose content significantly explained the observed variation in the phenotypic profile of the investigated yeast species, indicating that sugar concentration and composition are the key traits that affect phenotypic variation in nectarivorous yeasts. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  13. Average diurnal variation of summer lightning over the Florida peninsula

    NASA Technical Reports Server (NTRS)

    Maier, L. M.; Krider, E. P.; Maier, M. W.

    1984-01-01

    Data derived from a large network of electric field mills are used to determine the average diurnal variation of lightning in a Florida seacoast environment. The variation at the NASA Kennedy Space Center and the Cape Canaveral Air Force Station area is compared with standard weather observations of thunder, and the variation of all discharges in this area is compared with the statistics of cloud-to-ground flashes over most of the South Florida peninsula and offshore waters. The results show average diurnal variations that are consistent with statistics of thunder start times and the times of maximum thunder frequency, but that the actual lightning tends to stop one to two hours before the recorded thunder. The variation is also consistent with previous determinations of the times of maximum rainfall and maximum rainfall rate.

  14. Compositional analyses of small lunar pyroclastic deposits using Clementine multispectral data

    USGS Publications Warehouse

    Gaddis, L.R.; Hawke, B.R.; Robinson, M.S.; Coombs, C.

    2000-01-01

    Clementine ultraviolet-visible (UVVIS) data are used to examine the compositions of 18 pyroclastic deposits (15 small, three large) at 13 sites on the Moon. Compositional variations among pyroclastic deposits largely result from differing amounts of new basaltic (or juvenile) material and reworked local material entrained in their ejecta upon eruption. Characterization of pyroclastic deposit compositions allows us to understand the mechanisms of lunar explosive volcanism. Evidence for compositional differences between small pyroclastic deposits at a single site is observed at Atlas crater. At all sites, compositional variation among the small pyroclastic deposits is consistent with earlier classification based on Earth-based spectra: three compositional groups can be observed, and the trend of increasing mafic absorption band strength from Group 1 to Group 2 to Group 3 is noted. As redefined here, Group 1 deposits include those of Alphonsus West, Alphonsus Southeast, Alphonsus Northeast 2, Atlas South, Crüger, Franklin, Grimaldi, Lavoisier, Oppenheimer, Orientale, and Riccioli. Group 1 deposits resemble lunar highlands, with weak mafic bands and relatively high UV/VIS ratios. Group 2 deposits include those of Alphonsus Northeast 1, Atlas North, Eastern Frigoris East and West, and Aristarchus Plateau; Group 2 deposits are similar to mature lunar maria, with moderate mafic band depths and intermediate UV/VIS ratios. The single Group 3 deposit, J. Herschel, has a relatively strong mafic band and a low UV/VIS ratio, and olivine is a likely juvenile component. Two of the deposits in these groups, Orientale and Aristarchus, are large pyroclastic deposits. The third large pyroclastic deposit, Apollo 17/Taurus Littrow, has a very weak mafic band and a high UV/VIS ratio and it does not belong to any of the compositional groups for small pyroclastic deposits. The observed compositional variations indicate that highland and mare materials are also present in many large and small pyroclastic deposits, and they suggest that volcanic glasses or spheres may not be dominant juvenile components in all large pyroclastic deposits. Copyright 2000 by the American Geophysical Union.

  15. Maintenance of phenotypic variation: Repeatability, heritability and size-dependent processes in a wild brook trout population

    USGS Publications Warehouse

    Letcher, B.H.; Coombs, J.A.; Nislow, K.H.

    2011-01-01

    Phenotypic variation in body size can result from within-cohort variation in birth dates, among-individual growth variation and size-selective processes. We explore the relative effects of these processes on the maintenance of wide observed body size variation in stream-dwelling brook trout (Salvelinus fontinalis). Based on the analyses of multiple recaptures of individual fish, it appears that size distributions are largely determined by the maintenance of early size variation. We found no evidence for size-dependent compensatory growth (which would reduce size variation) and found no indication that size-dependent survival substantially influenced body size distributions. Depensatory growth (faster growth by larger individuals) reinforced early size variation, but was relatively strong only during the first sampling interval (age-0, fall). Maternal decisions on the timing and location of spawning could have a major influence on early, and as our results suggest, later (>age-0) size distributions. If this is the case, our estimates of heritability of body size (body length=0.25) will be dominated by processes that generate and maintain early size differences. As a result, evolutionary responses to environmental change that are mediated by body size may be largely expressed via changes in the timing and location of reproduction. Published 2011. This article is a US Government work and is in the public domain in the USA.

  16. Stratigraphy in Apollo 16 drill section 60002

    NASA Technical Reports Server (NTRS)

    Blanford, G. E.; Morrison, D. A.

    1976-01-01

    Contacts in drill stem 60002 which indicate layers at least several centimeters thick and with one firm age of about 2.5 x 10 to the 7th yr are observed on the basis of characteristic patterns of track density variation with depth from the contact. The patterns can be observed primarily because the drill stem has a large immature component (path II soils).

  17. Higher magnesium intake is associated with lower fasting glucose and insulin, with no evidence of interaction with select genetic loci, in a meta-analysis of 15 charge consortium studies

    USDA-ARS?s Scientific Manuscript database

    Favorable associations between magnesium intake and glycemic traits, such as fasting glucose and insulin, are observed in observational and clinical studies, but whether genetic variation affects these associations is largely unknown. We hypothesized that single nucleotide polymorphisms (SNPs) assoc...

  18. Observations at mercury encounter by the plasma science experiment on mariner 10.

    PubMed

    Ogilvie, K W; Scudder, J D; Hartle, R E; Siscoe, G L; Bridge, H S; Lazarus, A J; Asbridge, J R; Bame, S J; Yeates, C M

    1974-07-12

    A fully developed bow shock and magnetosheath were observed near Mercury, providing unambiguous evidence for a strong interaction between Mercury and the solar wind. Inside the sheath there is a distinct region analogous to the magnetosphere or magnetotail of Earth, populated by electrons with lower density and higher temperature than the electrons observed in the solar wind or magnetosheath. At the time of encounter, conditions were such that a perpendicular shock was observed on the inbound leg and a parallel shock was observed on the outbound leg of the trajectory, and energetic plasma electron events were detected upstream from the outbound shock crossing. The interaction is most likely not atmospheric, but the data clearly indicate that the obstacle to solar wind flow is magnetic, either intrinsic or induced. The particle fluxes and energy spectra showed large variations while the spacecraft was inside the magnetosphere, and these variations could be either spatial or temporal.

  19. Space Technology 5 Multipoint Observations of Temporal and Spatial Variability of Field-Aligned Currents

    NASA Technical Reports Server (NTRS)

    Le, G.; Wang, Y.; Slavin, J. A.; Strangeway, R. L.

    2009-01-01

    Space Technology 5 (ST5) is a constellation mission consisting of three microsatellites. It provides the first multipoint magnetic field measurements in low Earth orbit, which enables us to separate spatial and temporal variations. In this paper, we present a study of the temporal variability of field-aligned currents using the ST5 data. We examine the field-aligned current observations during and after a geomagnetic storm and compare the magnetic field profiles at the three spacecraft. The multipoint data demonstrate that mesoscale current structures, commonly embedded within large-scale current sheets, are very dynamic with highly variable current density and/or polarity in approx.10 min time scales. On the other hand, the data also show that the time scales for the currents to be relatively stable are approx.1 min for mesoscale currents and approx.10 min for large-scale currents. These temporal features are very likely associated with dynamic variations of their charge carriers (mainly electrons) as they respond to the variations of the parallel electric field in auroral acceleration region. The characteristic time scales for the temporal variability of mesoscale field-aligned currents are found to be consistent with those of auroral parallel electric field.

  20. Extreme possible variations of the deuterium abundance within the Galaxy

    NASA Astrophysics Data System (ADS)

    Delbourgo-Salvador, P.; Audouze, J.; Vidal-Madjar, A.

    1987-03-01

    In order to reconcile the present baryonic densities deduced respectively from the primordial abundances of D and 4He, some recent chemical evolution models imply that D could have been destroyed more thoroughly during the Galaxy evolution than what was previously predicted. Under the conditions outlined by these models, the present abundance of D may vary by factors as large as 50 in different parts of the Galaxy. If such variations are not observed, this implies that the ratio X(D)prim/X(D)present is not large (2 - 3): the simplest Big Bang models may then be unable to reconcile the baryonic densities predicted by D and 4He respectively.

  1. Seismic noise level variation in South Korea

    NASA Astrophysics Data System (ADS)

    Sheen, D.; Shin, J.

    2008-12-01

    The variations of seismic background noise in South Korea have been investigated by means of power spectral analysis. The Korea Institute of Geoscience and Mineral Resources (KIGAM) and the Korea Meteorological Administation (KMA) have national wide seismic networks in South Korea, and, in the end of 2007, there are 30 broadband stations which have been operating for more than a year. In this study, we have estimated the power spectral density of seismic noise for 30 broadband stations from 2005 to 2007. Since we estimate PSDs from a large dataset of continuous waveform in this study, a robust PSD estimate of McNamara and Buland (2004) is used. In the frequency range 1-5 Hz, the diurnal variations of noise are observed at most of stations, which are especially larger at coastal stations and at insular than at inland. Some stations shows daily difference of diurnal variations, which represents that cultural activities contribute to the noise level of a station. The variation of number of triggered stations, however, shows that cultural noise has little influence on the detection capability of seismic network in South Korea. Seasonal variations are observed well in the range 0.1-0.5 Hz, while much less found in the frequency range 1-5 Hz. We observed that strong peaks in the range 0.1-0.5 Hz occur at the summer when Pacific typhoons are close to the Korean Peninsula.

  2. Amplitude variations of whistler-mode signals caused by their interaction with energetic electrons of the magnetosphere

    NASA Technical Reports Server (NTRS)

    Bernard, L. C.

    1973-01-01

    Whistler mode waves that propagate through the magnetosphere exchange energy with energetic electrons by wave-particle interaction mechanisms. Using linear theory, a detailed investigation is presented of the resulting amplitude variations of the wave as it propagates. Arbitrary wave frequency and direction of propagation are considered. A general class of electron distributions that are nonseparable in particle energy and pitch-angle is proposed. It is found that the proposed distribution model is consistent with available whistler and particle observations. This model yields insignificant amplitude variation over a large frequency band, a feature commonly observed in whistler data. This feature implies a certain equilibrium between waves and particles in the magnetosphere over a wide spread of particle energy, and is relevant to plasma injection experiments and to monitoring the distribution of energetic electrons in the magnetosphere.

  3. Blue large-amplitude pulsators as a new class of variable stars

    NASA Astrophysics Data System (ADS)

    Pietrukowicz, Paweł; Dziembowski, Wojciech A.; Latour, Marilyn; Angeloni, Rodolfo; Poleski, Radosław; di Mille, Francesco; Soszyński, Igor; Udalski, Andrzej; Szymański, Michał K.; Wyrzykowski, Łukasz; Kozłowski, Szymon; Skowron, Jan; Skowron, Dorota; Mróz, Przemek; Pawlak, Michał; Ulaczyk, Krzysztof

    2017-08-01

    Regular intrinsic brightness variations observed in many stars are caused by pulsations. These pulsations provide information on the global and structural parameters of the star. The pulsation periods range from seconds to years, depending on the compactness of the star and properties of the matter that forms its outer layers. Here, we report the discovery of more than a dozen previously unknown short-period variable stars: blue large-amplitude pulsators. These objects show very regular brightness variations with periods in the range of 20-40 min and amplitudes of 0.2-0.4 mag in the optical passbands. The phased light curves have a characteristic sawtooth shape, similar to the shape of classical Cepheids and RR Lyrae-type stars pulsating in the fundamental mode. The objects are significantly bluer than main-sequence stars observed in the same fields, which indicates that all of them are hot stars. Follow-up spectroscopy confirms a high surface temperature of about 30,000 K. Temperature and colour changes over the cycle prove the pulsational nature of the variables. However, large-amplitude pulsations at such short periods are not observed in any known type of stars, including hot objects. Long-term photometric observations show that the variable stars are very stable over time. Derived rates of period change are of the order of 10-7 per year and, in most cases, they are positive. According to pulsation theory, such large-amplitude oscillations may occur in evolved low-mass stars that have inflated helium-enriched envelopes. The evolutionary path that could lead to such stellar configurations remains unknown.

  4. Geometrical and gravimetrical observations of the Aral Sea and its tributaries along with hydrological models

    NASA Astrophysics Data System (ADS)

    Singh, A.; Seitz, F.; Schwatke, C.; Güntner, A.

    2012-04-01

    Satellite altimetry is capable of measuring surface water level changes of large water bodies. This is especially interesting for regions where in-situ gauges are sparse or not available. Temporal variations of coastline and horizontal extent of a water body can be derived from optical remote sensing data. A joint analysis of both data types together with a digital elevation model allows for the estimation of water volume changes. Related variations of water mass map into the observations of the satellite gravity field mission GRACE. In this presentation, we demonstrate the application of heterogeneuous remote sensing methods for studying chages of water volume and mass of the Aral Sea and compare the results with respect to their consistency. Our analysis covers the period 2002-2011. In particular we deal with data from multi-mission radar and laser satellite altimetry that are analyzed in combination with coastlines from Landsat images. The resultant vertical and horizontal variations of the lake surface are geometrically intersected with the bathymetry of the Aral Sea in order to compute volumetric changes. These are transformed into variations of water mass that are subsequently compared with storage changes derived from GRACE satellite gravimetry. Hence we obtain a comprehensive picture of the hydrological changes in the region. Observations from all datasets correspond quite well with each other with respect to their temporal development. However, geometrically determined volume changes and mass changes observed by GRACE agree less well during years of heavy water inflow in to the Aral Sea from its southern tributary 'Amu Darya' since the GRACE signals are contaminated by the large mass of water stored in the river delta and prearalie region On the other hand, GRACE observations of the river basins of Syr Darya and Amu Dayra correspond very well with hydrological models and mass changes computed from the balance of precipitation, evaporation and runoff determined from the atmospheric-terrestrial water balance.

  5. Variations of mesoscale and large-scale sea ice morphology in the 1984 Marginal Ice Zone Experiment as observed by microwave remote sensing

    NASA Technical Reports Server (NTRS)

    Campbell, W. J.; Josberger, E. G.; Gloersen, P.; Johannessen, O. M.; Guest, P. S.

    1987-01-01

    The data acquired during the summer 1984 Marginal Ice Zone Experiment in the Fram Strait-Greenland Sea marginal ice zone, using airborne active and passive microwave sensors and the Nimbus 7 SMMR, were analyzed to compile a sequential description of the mesoscale and large-scale ice morphology variations during the period of June 6 - July 16, 1984. Throughout the experiment, the long ice edge between northwest Svalbard and central Greenland meandered; eddies were repeatedly formed, moved, and disappeared but the ice edge remained within a 100-km-wide zone. The ice pack behind this alternately diffuse and compact edge underwent rapid and pronounced variations in ice concentration over a 200-km-wide zone. The high-resolution ice concentration distributions obtained in the aircraft images agree well with the low-resolution distributions of SMMR images.

  6. Changes in atmospheric composition inferred from ionospheric production rates

    NASA Technical Reports Server (NTRS)

    Titheridge, J. E.

    1974-01-01

    Changes in the total electron content of the ionosphere near sunrise are used to determine the integrated production rate in the ionosphere (Q) from 1965 to 1971 at latitudes of 34S, 20N, and 34N. The observed regular semiannual variation in Q through a range of 1:3:1 is interpreted as an increase in the ratio O/N2 (relative densities) near the equinoxes. It follows that there is a worldwide semiannual variation in atmospheric composition, with the above ratio maximum just after the equinoxes. There is a large seasonal variation in the Northern hemisphere with a maximum in mid-summer. This effect is absent in the Southern hemisphere. At all times except solar maximum in the Northern hemisphere there is a global asymmetry. The ratio O/N2 is about three times as large in the Northern hemisphere. The overall mechanism appears to be N2 absorption.

  7. A search for relativistic electron induced stratospheric ozone depletion

    NASA Technical Reports Server (NTRS)

    Aikin, Arthur C.

    1994-01-01

    Possible ozone changes at 1 mb associated with the time variation and precipitation of relativistic electrons are investigated by examining the NIMBUS 7 SBUV ozone data set and corresponding temperatures derived from NMC data. No ozone depletion was observed in high-latitude summer when temperature fluctuations are small. In winter more variation in ozone occurs, but large temperature changes make it difficult to identify specific ozone decreases as being the result of relativistic electron precipitation.

  8. Poster 12: Nitrile and Hydrocarbon Spatial Abundance Variations in Titan's Atmosphere

    NASA Astrophysics Data System (ADS)

    Thelen, Alexander E.; Nixon, Conor A.; Molter, Edward; Serigano, Joseph; Cordiner, Martin A.; Charnley, Steven B.; Teanby, Nick; Chanover, Nancy

    2016-06-01

    Many minor constituents of Titan's atmosphere exhibit latitudinal variations in abundance as a result of atmospheric circulation, photochemical production and subsequent destruction throughout Titan's seasonal cycle [1,2]. Species with observed spatial abundance variations include hydrocarbons - such as CH3CCH - and nitriles - HCN, HC3N, CH3CN, and C2H5CN - as found by Cassini [3,4]. Recent calibration images of Titan taken by the Atacama Large Millimeter/Submillimeter Array (ALMA) allow for measurements of rotational transition lines of these species in spatially resolved regions of Titan's disk [5]. Abundance profiles in Titan's lower/middle atmosphere are retrieved by modeling high resolution ALMA spectra using the Non-linear Optimal Estimator for MultivariatE Spectral analySIS (NEMESIS) radiative transfer code [6]. We present continuous abundance profiles for various species in Titan's atmosphere obtained from ALMA data in 2014. These species show polar abundance enhancements which can be compared to studies using Cassini data [7]. Measurements in the mesosphere will constrain molecular photochemical and dynamical models, while temporal variations inform our knowledge of chemical lifetimes for the large inventory of organic species produced in Titan's atmosphere. The synthesis of the ALMA and Cassini datasets thus allow us to observe the important changes in production and circulation of numerous trace components of Titan's atmosphere, which are attributed to Titan's seasons.

  9. Genome-wide recombination dynamics are associated with phenotypic variation in maize.

    PubMed

    Pan, Qingchun; Li, Lin; Yang, Xiaohong; Tong, Hao; Xu, Shutu; Li, Zhigang; Li, Weiya; Muehlbauer, Gary J; Li, Jiansheng; Yan, Jianbing

    2016-05-01

    Meiotic recombination is a major driver of genetic diversity, species evolution, and agricultural improvement. Thus, an understanding of the genetic recombination landscape across the maize (Zea mays) genome will provide insight and tools for further study of maize evolution and improvement. Here, we used c. 50 000 single nucleotide polymorphisms to precisely map recombination events in 12 artificial maize segregating populations. We observed substantial variation in the recombination frequency and distribution along the ten maize chromosomes among the 12 populations and identified 143 recombination hot regions. Recombination breakpoints were partitioned into intragenic and intergenic events. Interestingly, an increase in the number of genes containing recombination events was accompanied by a decrease in the number of recombination events per gene. This kept the overall number of intragenic recombination events nearly invariable in a given population, suggesting that the recombination variation observed among populations was largely attributed to intergenic recombination. However, significant associations between intragenic recombination events and variation in gene expression and agronomic traits were observed, suggesting potential roles for intragenic recombination in plant phenotypic diversity. Our results provide a comprehensive view of the maize recombination landscape, and show an association between recombination, gene expression and phenotypic variation, which may enhance crop genetic improvement. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  10. Assessing signal-to-noise in quantitative proteomics: multivariate statistical analysis in DIGE experiments.

    PubMed

    Friedman, David B

    2012-01-01

    All quantitative proteomics experiments measure variation between samples. When performing large-scale experiments that involve multiple conditions or treatments, the experimental design should include the appropriate number of individual biological replicates from each condition to enable the distinction between a relevant biological signal from technical noise. Multivariate statistical analyses, such as principal component analysis (PCA), provide a global perspective on experimental variation, thereby enabling the assessment of whether the variation describes the expected biological signal or the unanticipated technical/biological noise inherent in the system. Examples will be shown from high-resolution multivariable DIGE experiments where PCA was instrumental in demonstrating biologically significant variation as well as sample outliers, fouled samples, and overriding technical variation that would not be readily observed using standard univariate tests.

  11. Multiwavelength monitoring of the BL Lacertae object PKS 2155-304. 3: Ground-based observations in 1991 November

    NASA Technical Reports Server (NTRS)

    Courvoisier, T. J.-L.; Blecha, A.; Bouchet, P.; Bratschi, P.; Carini, M. T.; Donahue, M.; Edelson, R.; Feigelson, E. D.; Filippenko, A. V.; Glass, I. S.

    1995-01-01

    We present ground-based observations of the BL Lac object PKS 2155-304 during 1991 November. These data were obtained as part of a large international campaign of observations spanning the electro-magnetic spectrum from the radio waves to the X-rays. The data presented here include radio and UBVRI fluxes, as well as optical polarimetry. The U to I data show the same behavior in all bands and that only upper limits to any lag can be deduced from the cross-correlation of the light curves. The spectral slope in the U-I domain remained constant on all epochs but 2. There is no correlation between changes in the spectral slope and large variations in the total or polarized flux. The radio flux variations did not follow the same pattern of variability as the optical and infrared fluxes. The polarized flux varied by a larger factor than the total flux. The variations of the polarized flux are poorly correlated with those of the total flux in the optical (and hence UV domain; see the accompanying paper by Edelson et al.) nor with those of the soft X-rays. We conclude that the variability of PKS 2155-304 in the optical and near-infrared spectral domains are easier to understand in the context of variable geometry or bulk Lorentz factor than of variable electron acceleration and cooling rates.

  12. Soil Moisture Controls on Rainfall and Temperature Variability: A Modeler Searches Through Observational Data

    NASA Technical Reports Server (NTRS)

    Koster, Randal

    2010-01-01

    The degree to which atmospheric processes respond to variations in soil moisture - a potentially important but largely untapped element of subseasonal to seasonal prediction - can be determined easily and directly for an atmospheric model but cannot be determined directly for nature through an analysis of observations. In atmospheric models) directions of causality can be artificially manipulated; we can avoid difficulties associated with the fact that atmospheric variations have a much larger impact on land state variations than vice-versa. In nature) on the other hand) the dominant direction of causality (the atmosphere forcing the ground) cannot be artificially "turned off") and the statistics associated with this dominant direction overwhelm those of the feedback signal. Observational data) however) do allow a number of indirect measures of landatmosphere feedback. This seminar reports on a series of joint analyses of observational and model data designed to illuminate the degree of land-atmosphere feedback present in the real world. The indirect measures do in fact suggest that feedback in nature, though small) is significant - enough to warrant the development of realistic land initialization strategies for subseasonal and seasonal forecasts.

  13. Jovian Space Weather in the Juno Era: Remote Observations

    NASA Astrophysics Data System (ADS)

    MacDowall, R. J.; Reiner, M. J.; Farrell, W. M.; Connerney, J. E. P.

    2017-12-01

    Jupiter is a large and rapidly rotating planet with a strong magnetic field, its magnetospheric dynamics only minimally influenced by the solar wind and interplanetary magnetic field (IMF). Yet, there are a number of manifestations of the Jovian magnetospheric interaction with elements of the solar wind and IMF. Variations in Jovian radio emissions are a prime example (Reiner et al. 2000, Zarka et al. 2004, Bose et al. 2008, Panchenko et al. 2012), as are auroral variations monitored in the infrared and ultraviolet.We present a review of the many journal papers that have examined the relationship between solar wind and IMF conditions (at the Jovian magnetosphere) and the Jovian radio burst variations and other associated phenomena.We present recent results from the joint observations by STEREO WAVES and WIND WAVES of Jovian radio emissions in the band of 1 - 15 MHz. The goal is to add a remote radio observation component to the determination of Jovian space weather, of particular use for data analysis by spacecraft orbiting the planet within the magnetosphere.

  14. Escher in color space: individual-differences multidimensional scaling of color dissimilarities collected with a gestalt formation task.

    PubMed

    Bimler, David; Kirkland, John; Pichler, Shaun

    2004-02-01

    The structure of color perception can be examined by collecting judgments about color dissimilarities. In the procedure used here, stimuli are presented three at a time on a computer monitor and the spontaneous grouping of most-similar stimuli into gestalts provides the dissimilarity comparisons. Analysis with multidimensional scaling allows such judgments to be pooled from a number of observers without obscuring the variations among them. The anomalous perceptions of color-deficient observers produce comparisons that are represented well by a geometric model of compressed individual color spaces, with different forms of deficiency distinguished by different directions of compression. The geometrical model is also capable of accommodating the normal spectrum of variation, so that there is greater variation in compression parameters between tests on normal subjects than in those between repeated tests on individual subjects. The method is sufficiently sensitive and the variations sufficiently large that they are not obscured by the use of a range of monitors, even under somewhat loosely controlled conditions.

  15. Frequent pauses in Escherichia coli flagella elongation revealed by single cell real-time fluorescence imaging.

    PubMed

    Zhao, Ziyi; Zhao, Yifan; Zhuang, Xiang-Yu; Lo, Wei-Chang; Baker, Matthew A B; Lo, Chien-Jung; Bai, Fan

    2018-05-14

    The bacterial flagellum is a large extracellular protein organelle that extrudes from the cell surface. The flagellar filament is assembled from tens of thousands of flagellin subunits that are exported through the flagellar type III secretion system. Here, we measure the growth of Escherichia coli flagella in real time and find that, although the growth rate displays large variations at similar lengths, it decays on average as flagella lengthen. By tracking single flagella, we show that the large variations in growth rate occur as a result of frequent pauses. Furthermore, different flagella on the same cell show variable growth rates with correlation. Our observations are consistent with an injection-diffusion model, and we propose that an insufficient cytoplasmic flagellin supply is responsible for the pauses in flagellar growth in E. coli.

  16. 22-year surface salinity changes in the Seasonal Ice Zone near 140°E off Antarctica

    NASA Astrophysics Data System (ADS)

    Morrow, Rosemary; Kestenare, Elodie

    2017-11-01

    Seasonal and interannual variations in sea surface salinity (SSS) are analyzed in the Sea Ice Zone south of 60°S, from a 22-year time series of observations near 140°E. In the northern sea-ice zone during the warming, melting cycle from October to March, waters warm by an average of 3.5 °C and become fresher by 0.1 to 0.25. In the southern sea-ice zone, the surface temperatures vary from - 1 to 1 °C over summer, and the maximal SSS range occurs in December, with a minimum SSS of 33.65 near the Southern Boundary of the ACC, reaching 34.4 in the shelf waters close to the coast. The main fronts, normally defined at subsurface, are shown to have more distinct seasonal characteristics in SSS than in SST. The interannual variations in SSS are more closely linked to variations in upstream sea-ice cover than surface forcing. SSS and sea-ice variations show distinct phases, with large biannual variations in the early 1990s, weaker variations in the 2000s and larger variations again from 2009 onwards. The calving of the Mertz Glacier Tongue in February 2010 leads to increased sea-ice cover and widespread freshening of the surface layers from 2011 onwards. Summer freshening in the northern sea-ice zone is 0.05-0.07 per decade, increasing to 0.08 per decade in the southern sea-ice zone, largely influenced by the Mertz Glacier calving event at the end of our time series. The summer time series of SSS on the shelf at 140°E is in phase but less variable than the SSS observed upstream in the Adélie Depression, and thus represents a spatially integrated index of the wider SSS variations.

  17. Atmospheric diurnal and semi-diurnal variations observed with GPS radio occultation soundings

    NASA Astrophysics Data System (ADS)

    Xie, F.; Wu, D. L.; Ao, C. O.; Mannucci, A. J.

    2009-11-01

    Diurnal and semi-diurnal variations, driven by solar forcing, are two fundamental modes in the Earth's weather and climate system. Radio occultation (RO) measurements from the six COSMIC satellites (Constellation Observing System for Meteorology Ionosphere and Climate) provide rather uniform global coverage with high vertical resolution, all-weather and diurnal sampling capability. This paper analyzes the diurnal and semi-diurnal variations of both temperature and refractivity from two-year (2007-2008) COSMIC RO measurements in the troposphere and stratosphere. The RO observations reveal both propagating and trapped vertical structures of diurnal and semi-diurnal variations, including transition regions near the tropopause where data with high vertical resolution are critical. In the tropics the diurnal amplitude in refractivity decreases with altitude from a local maximum in the planetary boundary layer and reaches the minimum around 14 km and then further increase amplitude in the stratosphere. The upward propagating component of the migrating diurnal tides in the tropics is clearly captured by the GPS RO measurements, which show a downward progression in phase from upper troposphere to the stratopause with a vertical wavelength of about 25 km. Below 500 hPa (~5.5 km), seasonal variations of the peak diurnal amplitude in the tropics follow the solor forcing change in latitude, while at 30 km the seasonal pattern reverses with the diurnal amplitude peaking at the opposite side of the equator relative to the solar forcing. Polar regions shows large diurnal variations in the stratosphere with strong seasonal variations and the cause(s) of these variations require further investigations.

  18. A tool to estimate the Fermi Large Area Telescope background for short-duration observations

    DOE PAGES

    Vasileiou, Vlasios

    2013-07-25

    Here, the proper estimation of the background is a crucial component of data analyses in astrophysics, such as source detection, temporal studies, spectroscopy, and localization. For the case of the Large Area Telescope (LAT) on board the Fermi spacecraft, approaches to estimate the background for short (≲1000 s duration) observations fail if they ignore the strong dependence of the LAT background on the continuously changing observational conditions. We present a (to be) publicly available background-estimation tool created and used by the LAT Collaboration in several analyses of Gamma Ray Bursts. This tool can accurately estimate the expected LAT background formore » any observational conditions, including, for example, observations with rapid variations of the Fermi spacecraft’s orientation occurring during automatic repointings.« less

  19. Seasonal Variations in Mortality, Clinical, and Laboratory Parameters in Hemodialysis Patients: A 5-Year Cohort Study

    PubMed Central

    Usvyat, Len A.; Carter, Mary; Thijssen, Stephan; Kooman, Jeroen P.; van der Sande, Frank M.; Zabetakis, Paul; Balter, Paul; Levin, Nathan W.; Kotanko, Peter

    2012-01-01

    Summary Background and objectives Mortality varies seasonally in the general population, but it is unknown whether this phenomenon is also present in hemodialysis patients with known higher background mortality and emphasis on cardiovascular causes of death. This study aimed to assess seasonal variations in mortality, in relation to clinical and laboratory variables in a large cohort of chronic hemodialysis patients over a 5-year period. Design, setting, participants, & measurements This study included 15,056 patients of 51 Renal Research Institute clinics from six states of varying climates in the United States. Seasonal differences were assessed by chi-squared tests and univariate and multivariate cosinor analyses. Results Mortality, both all-cause and cardiovascular, was significantly higher during winter compared with other seasons (14.2 deaths per 100 patient-years in winter, 13.1 in spring, 12.3 in autumn, and 11.9 in summer). The increase in mortality in winter was more pronounced in younger patients, as well as in whites and in men. Seasonal variations were similar across climatologically different regions. Seasonal variations were also observed in neutrophil/lymphocyte ratio and serum calcium, potassium, and platelet values. Differences in mortality disappeared when adjusted for seasonally variable clinical parameters. Conclusions In a large cohort of dialysis patients, significant seasonal variations in overall and cardiovascular mortality were observed, which were consistent over different climatic regions. Other physiologic and laboratory parameters were also seasonally different. Results showed that mortality differences were related to seasonality of physiologic and laboratory parameters. Seasonal variations should be taken into account when designing and interpreting longitudinal studies in dialysis patients. PMID:22096041

  20. Variation in hunting behaviour in neighbouring chimpanzee communities in the Budongo forest, Uganda

    PubMed Central

    Hobaiter, Catherine; Samuni, Liran; Mullins, Caroline; Akankwasa, Walter John; Zuberbühler, Klaus

    2017-01-01

    Hunting and sharing of meat is seen across all chimpanzee sites, with variation in prey preferences, hunting techniques, frequencies, and success rates. Here, we compared hunting and meat-eating behaviour in two adjacent chimpanzee communities (Pan troglodytes schweinfurthii) of Budongo Forest, Uganda: the Waibira and Sonso communities. We observed consistent between-group differences in prey-species preferences and in post-hunting behaviour. Sonso chimpanzees show a strong prey preference for Guereza colobus monkeys (Colobus guereza occidentalis; 74.9% hunts), and hunt regularly (1–2 times a month) but with large year-to-year and month-to-month variation. Waibira chimpanzee prey preferences are distributed across primate and duiker species, and resemble those described in an early study of Sonso hunting. Waibira chimpanzees (which include ex-Sonso immigrants) have been observed to feed on red duiker (Cephalophus natalensis; 25%, 9/36 hunts), a species Sonso has never been recorded to feed on (18 years data, 27 years observations), despite no apparent differences in prey distribution; and show less rank-related harassment of meat possessors. We discuss the two most likely and probably interrelated explanations for the observed intergroup variation in chimpanzee hunting behaviour, that is, long-term disruption of complex group-level behaviour due to human presence and possible socially transmitted differences in prey preferences. PMID:28636646

  1. Longitudinal Variations in the Variability of Spread F Occurrence

    NASA Astrophysics Data System (ADS)

    Groves, K. M.; Bridgwood, C.; Carrano, C. S.

    2017-12-01

    The complex dynamics of the equatorial ionosphere have attracted the interest and attention of researchers for many decades. The relatively local processes that give rise to large meridional gradients have been well documented and the associated terminology has entered the common lexicon of ionospheric research (e.g., fountain effect, equatorial anomaly, bubbles, Spread F). Zonal variations have also been noted, principally at the level of determining longitudinal differences in seasonal activity patterns. Due to a historical lack of high resolution ground-based observations at low latitudes, the primary source of data for such analyses has been space-based observations from satellites such as ROCSAT, DMSP, C/NOFS that measure in situ electron density variations. An important longitudinal variation in electron density structure associated with non-migrating diurnal tides was discovered by Immel et al. in 2006 using data from the FUV sensor aboard the NASA IMAGE satellite. These satellite observations have been very helpful in identifying the structural characteristics of the equatorial ionosphere and the occurrence of Spread F, but they provide little insight into variations in scintillation features and potential differences in bubble development characteristics. Moreover space-based studies tend towards the statistics of occurrence frequency over periods of weeks to months. A recent analysis of daily spread F occurrence as determined by low latitude VHF scintillation activity shows that statistical results that are consistent with previous space-based observations, but the level of variability in the occurrence data show marked variations with longitude. For example, the American sector shows very low in-season variability while the African and Asian sectors exhibit true day-to-day variability regardless of seasonal variations. The results have significant implications for space weather as they suggest that long-term forecasts of equatorial scintillation may be meaningful within specific longitude boundaries.

  2. Verifying Diurnal Variations of Global Precipitation in Three New Global Reanalyses

    NASA Astrophysics Data System (ADS)

    Wu, S.; Xie, P.; Sun, F.; Joyce, R.

    2013-12-01

    Diurnal variations of global precipitation and their representation in three sets of new generation global reanalyses are examined using the reprocessed and bias corrected CMORPH satellite precipitation estimates. The CMORPH satellite precipitation estimates are produced on an 8km by 8km grid over the globe (60oS-60oN) and in a 30-min interval covering a 15-year period from 1998 to the present through combining information from IR and PMW observations from all available satellites. Bias correction is performed for the raw CMORPH precipitation estimates through calibration against an gauge-based analysis over land and against the pentad GPCP analysis over ocean. The reanalyses examined here include the NCEP CFS reanalysis (CFSR), NASA/GSFC MERRA, and ECMWF Interim. The bias-corrected CMORPH is integrated from its original resolution to the reanalyses grid systems to facilitate the verification. First, quantitative agreements between the reanalysis precipitation fields and the CMORPH satellite observation are examined over the global domain. Precipitation structures associated with the large-scale topography are well reproduced when compared against the observation. Evolution of precipitation patterns with the development of transient weather systems are captured by the CFSR and two other reanalyses. The reanalyses tend to generate precipitation fields with wider raining areas and reduced intensity for heavy rainfall cases compared the observations over both land and ocean. Seasonal migration of global precipitation depicted in the 15-year CMORPH satellite observations is very well captured by the three sets of new reanalyses, although magnitude of precipitation is larger, especially in the CFSR, compared to that in the observations. In general, the three sets of new reanalyses exhibit substantial improvements in their performance to represent global precipitation distributions and variations. In particular, the new reanalyses produced precipitation variations of fine time/space scales collated in the observations. The diurnal cycle of the precipitation is reasonably well reproduced by the reanalyses over many global oceanic and land areas. Diurnal amplitude of the reanalyses precipitation, defined as the standard deviation of the 24 hourly mean values, is smaller than that in the observations over most of the oceanic regions, attributable largely to the continuous weak precipitation throughout the diurnal cycle in all of the three reanalyses. Over ocean, the pattern of diurnal variations of precipitation in the reanalyses is quite similar to that in the observations, with the timing of maximum precipitation shifted by1-3 hours. Over land especially over Africa, the reanalyses tend to produce maximum precipitation around noon, much earlier than that in the observations. Particularly noticeable is the diurnal cycle of warm season precipitation over CONUS in association with the eastward propagation of meso-scale systems distinct in the observations. None of the three new reanalyses are capable of detecting this pattern of diurnal variations. A comprehensive description and diagnostic discussions will be given at the AGU meeting.

  3. Quantifying the imprint of mesoscale and synoptic-scale atmospheric transport on total column carbon dioxide measurements

    NASA Astrophysics Data System (ADS)

    Torres, A. D.; Keppel-Aleks, G.; Doney, S. C.; Feng, S.; Lauvaux, T.; Fendrock, M. A.; Rheuben, J.

    2017-12-01

    Remote sensing instruments provide an unprecedented density of observations of the atmospheric CO2 column average mole fraction (denoted as XCO2), which can be used to constrain regional scale carbon fluxes. Inferring fluxes from XCO2 observations is challenging, as measurements and inversion methods are sensitive to not only the imprint local and large-scale fluxes, but also mesoscale and synoptic-scale atmospheric transport. Quantifying the fine-scale variability in XCO2 from mesoscale and synoptic-scale atmospheric transport will likely improve overall error estimates from flux inversions by improving estimates of representation errors that occur when XCO2 observations are compared to modeled XCO2 in relatively coarse transport models. Here, we utilize various statistical methods to quantify the imprint of atmospheric transport on XCO2 observations. We compare spatial variations along Orbiting Carbon Observatory (OCO-2) satellite tracks to temporal variations observed by the Total Column Carbon Observing Network (TCCON). We observe a coherent seasonal cycle of both within-day temporal and fine-scale spatial variability (of order 10 km) of XCO2 from these two datasets, suggestive of the imprint of mesoscale systems. To account for other potential sources of error in XCO2 retrieval, we compare observed temporal and spatial variations of XCO2 to high-resolution output from the Weather Research and Forecasting (WRF) model run at 9 km resolution. In both simulations and observations, the Northern hemisphere mid-latitude XCO2 showed peak variability during the growing season when atmospheric gradients are largest. These results are qualitatively consistent with our expectations of seasonal variations of the imprint of synoptic and mesoscale atmospheric transport on XCO2 observations; suggesting that these statistical methods could be sensitive to the imprint of atmospheric transport on XCO2 observations.

  4. Seasonal variation in physiological condition of Amblema plicata in the Upper Mississippi River

    USGS Publications Warehouse

    Monroe, E.M.; Newton, T.J.

    2001-01-01

    Measures of physiological condition are being used as sub-lethal endpoints in studies with unionids exposed to a variety of stressors, yet the natural seasonal variation in these measures are largely undocumented. We measured concentrations of glycogen in foot and mantle tissue and a tissue condition index (TCI) in Amblema plicata (Say 1817), about monthly, for 2 years in mussels that were: (1) obtained directly from the Upper Mississippi River (riverine group); and (2) relocated from the river into an artificial pond (relocated group). In both groups, we observed significant seasonal variation in all physiological indicators. Seasonal variation in glycogen was 72% in mantle and 52% in foot tissue and paralleled reproductive activity in this short-term breeder. In the relocated group, most of the variation in glycogen occurred during the first six months after relocation, suggesting that handling stress may have been a contributing factor. The significant seasonal variation in the TCI paralleled glycogen in riverine mussels. We observed tissue-specific differences in glycogen in the riverine group, but not in the relocated group. These data suggest that an interaction of environmental and biological factors influence the energetic status of mussels in natural populations. A better understanding of this variation is needed to interpret changes in physiological condition due to stressors such as relocation.

  5. Spatial and Temporal Dynamics of Pacific Oyster Hemolymph Microbiota across Multiple Scales

    PubMed Central

    Lokmer, Ana; Goedknegt, M. Anouk; Thieltges, David W.; Fiorentino, Dario; Kuenzel, Sven; Baines, John F.; Wegner, K. Mathias

    2016-01-01

    Unveiling the factors and processes that shape the dynamics of host associated microbial communities (microbiota) under natural conditions is an important part of understanding and predicting an organism's response to a changing environment. The microbiota is shaped by host (i.e., genetic) factors as well as by the biotic and abiotic environment. Studying natural variation of microbial community composition in multiple host genetic backgrounds across spatial as well as temporal scales represents a means to untangle this complex interplay. Here, we combined a spatially-stratified with a longitudinal sampling scheme within differentiated host genetic backgrounds by reciprocally transplanting Pacific oysters between two sites in the Wadden Sea (Sylt and Texel). To further differentiate contingent site from host genetic effects, we repeatedly sampled the same individuals over a summer season to examine structure, diversity and dynamics of individual hemolymph microbiota following experimental removal of resident microbiota by antibiotic treatment. While a large proportion of microbiome variation could be attributed to immediate environmental conditions, we observed persistent effects of antibiotic treatment and translocation suggesting that hemolymph microbial community dynamics is subject to within-microbiome interactions and host population specific factors. In addition, the analysis of spatial variation revealed that the within-site microenvironmental heterogeneity resulted in high small-scale variability, as opposed to large-scale (between-site) stability. Similarly, considerable within-individual temporal variability was in contrast with the overall temporal stability at the site level. Overall, our longitudinal, spatially-stratified sampling design revealed that variation in hemolymph microbiota is strongly influenced by site and immediate environmental conditions, whereas internal microbiome dynamics and oyster-related factors add to their long-term stability. The combination of small and large scale resolution of spatial and temporal observations therefore represents a crucial but underused tool to study host-associated microbiome dynamics. PMID:27630625

  6. Solar gravitational energy and luminosity variations

    NASA Astrophysics Data System (ADS)

    Fazel, Z.; Rozelot, J. P.; Lefebvre, S.; Ajabshirizadeh, A.; Pireaux, S.

    2008-02-01

    Due to non-homogeneous mass distribution and non-uniform velocity rate inside the Sun, the solar outer shape is distorted in latitude. In this paper, we analyze the consequences of a temporal change in this figure on the luminosity. To do so, we use the Total Solar Irradiance (TSI) as an indicator of luminosity. Considering that most of the authors have explained the largest part of the TSI modulation with magnetic network (spots and faculae) but not the whole, we could set constraints on radius and effective temperature variations. Our best fit of modelled to observed irradiance gives d T = 1.2 K at d R = 10 mas. However computations show that the amplitude of solar irradiance modulation is very sensitive to photospheric temperature variations. In order to understand discrepancies between our best fit and recent observations of [Livingston, W.C., Gray, D., Wallace, L., White, O.R., 2005. In: Sankarasubramanian, K., Penn, M., Pevtsov, A. (Eds.), Large-scale Structures and their Role in Solar Activity, ASP Conference Series, vol. 346. Astronomical Society of the Pacific, p. 353], showing no effective surface temperature variation during the solar cycle, we investigated small effective temperature variation in irradiance modeling. We emphasized a phase-shift (correlated or anticorrelated radius and irradiance variations) in the (d R, d T)-parameter plane. We further obtained an upper limit on the amplitude of cyclic solar radius variations between 3.87 and 5.83 km, deduced from the gravitational energy variations. Our estimate is consistent with both observations of the helioseismic radius through the analysis of f-mode frequencies and observations of the basal photospheric temperature at Kitt Peak. Finally, we suggest a mechanism to explain weak changes in the solar shape due to variation of magnetic pressure which modifies the granules size. This mechanism is supported by an estimate of the asphericity-luminosity parameter, w = -7.61 × 10 -3, which implies an effectiveness of convective heat transfer only in very outer layers of the Sun.

  7. Phenotypic Association Analyses With Copy Number Variation in Recurrent Depressive Disorder.

    PubMed

    Rucker, James J H; Tansey, Katherine E; Rivera, Margarita; Pinto, Dalila; Cohen-Woods, Sarah; Uher, Rudolf; Aitchison, Katherine J; Craddock, Nick; Owen, Michael J; Jones, Lisa; Jones, Ian; Korszun, Ania; Barnes, Michael R; Preisig, Martin; Mors, Ole; Maier, Wolfgang; Rice, John; Rietschel, Marcella; Holsboer, Florian; Farmer, Anne E; Craig, Ian W; Scherer, Stephen W; McGuffin, Peter; Breen, Gerome

    2016-02-15

    Defining the molecular genomic basis of the likelihood of developing depressive disorder is a considerable challenge. We previously associated rare, exonic deletion copy number variants (CNV) with recurrent depressive disorder (RDD). Sex chromosome abnormalities also have been observed to co-occur with RDD. In this reanalysis of our RDD dataset (N = 3106 cases; 459 screened control samples and 2699 population control samples), we further investigated the role of larger CNVs and chromosomal abnormalities in RDD and performed association analyses with clinical data derived from this dataset. We found an enrichment of Turner's syndrome among cases of depression compared with the frequency observed in a large population sample (N = 34,910) of live-born infants collected in Denmark (two-sided p = .023, odds ratio = 7.76 [95% confidence interval = 1.79-33.6]), a case of diploid/triploid mosaicism, and several cases of uniparental isodisomy. In contrast to our previous analysis, large deletion CNVs were no more frequent in cases than control samples, although deletion CNVs in cases contained more genes than control samples (two-sided p = .0002). After statistical correction for multiple comparisons, our data do not support a substantial role for CNVs in RDD, although (as has been observed in similar samples) occasional cases may harbor large variants with etiological significance. Genetic pleiotropy and sample heterogeneity suggest that very large sample sizes are required to study conclusively the role of genetic variation in mood disorders. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  8. A near-infrared variability campaign of TMR-1: New light on the nature of the candidate protoplanet TMR-1C

    NASA Astrophysics Data System (ADS)

    Riaz, B.; Martín, E. L.; Petr-Gotzens, M. G.; Monin, J.-L.

    2013-11-01

    We present a near-infrared (NIR) photometric variability study of the TMR-1 system, a Class I protobinary located in the Taurus molecular cloud. Our aim is to confirm NIR variability for the candidate protoplanet, TMR-1C, located at a separation of about 10″ (~1000 AU) from the protobinary. We conducted a photometric monitoring campaign between October 2011 and January 2012 using the CFHT/WIRCam imager. We were able to obtain 44 epochs of observations in each of the H and Ks filters, resulting in high-quality photometry with uncertainties of less than one-tenth of a magnitude. The shortest time difference between two epochs is ~14 min, and the longest is ~4 months. Based on the final accuracy of our observations, we do not find any strong evidence of short-term NIR variability at amplitudes of ≥0.15-0.2 mag for TMR-1C or TMR-1AB. Our present observations, however, have reconfirmed the large-amplitude long-term variations in the NIR emission for TMR-1C, which were observed between 1998 and 2002, and have also shown that no particular correlation exists between the brightness and the color changes. The object TMR-1C became brighter in the H band by ~1.8 mag between 1998 and 2002, and then fainter again by ~0.7 mag between 2002 and 2011. In contrast, TMR-1C became continually brighter in the Ks band in the period between 1998 and 2011. The (H - Ks) color for TMR-1C shows large variations, from a red value of 1.3 ± 0.07 and 1.6 ± 0.05 mag in 1998 and 2000, to a much bluer color of -0.1 ± 0.5 mag in 2002, and then again a red color of 1.1 ± 0.08 mag in 2011. The difference in the variability trends observed in the H and Ks bands suggests the presence of more than one origin for the observed variations. The observed variability from 1998 to 2011 suggests that TMR-1C becomes fainter when it gets redder, as expected from variable extinction, while the brightening observed in the Ks band could be due to physical variations in the inner disk structure of TMR-1C. We have argued in favor of TMR-1C being a young stellar object (YSO), rather than a faint background star passing behind some foreground material. There may exist short-term NIR variations at an amplitude level lower than our detection limit (~0.2 mag), which would be consistent with the YSO hypothesis. If the observed long-term variability is due to foreground extinction, then we would expect simultaneous brightening/dimming in the H and Ks bands, which we do not find to be the case. Variable foreground extinction is also expected to occur over a large spatial scale; we monitored several other objects within 4'× 4' of the TMR-1 system, and found only two objects which show long-term variations, indicating that this is not a large-scale effect. The NIR colors for TMR-1C obtained using the high-precision photometry from 1998, 2000, and 2011 observations are similar to the protostars in Taurus, suggesting that it could be a faint dusty Class I source. This object is thus a strong candidate YSO, but final confirmation as a protoplanet remains elusive and requires further investigation. Our study has also revealed two new variable sources in the vicinity of TMR-1AB that show long-term variations of ~1-2 mag in the NIR colors between 2002 and 2011. The proper motions measured for TMR-1AB and TMR-1C are -40,+58 mas/yr and -22,+5 mas/yr, respectively, with an uncertainty of ~31 mas/yr. A larger baseline of 20 years or more is required to confidently confirm the physical association of TMR-1AB and C. Tables 1-4 are available in electronic form at http://www.aanda.org

  9. A major locus controls local adaptation and adaptive life history variation in a perennial plant.

    PubMed

    Wang, Jing; Ding, Jihua; Tan, Biyue; Robinson, Kathryn M; Michelson, Ingrid H; Johansson, Anna; Nystedt, Björn; Scofield, Douglas G; Nilsson, Ove; Jansson, Stefan; Street, Nathaniel R; Ingvarsson, Pär K

    2018-06-04

    The initiation of growth cessation and dormancy represent critical life-history trade-offs between survival and growth and have important fitness effects in perennial plants. Such adaptive life-history traits often show strong local adaptation along environmental gradients but, despite their importance, the genetic architecture of these traits remains poorly understood. We integrate whole genome re-sequencing with environmental and phenotypic data from common garden experiments to investigate the genomic basis of local adaptation across a latitudinal gradient in European aspen (Populus tremula). A single genomic region containing the PtFT2 gene mediates local adaptation in the timing of bud set and explains 65% of the observed genetic variation in bud set. This locus is the likely target of a recent selective sweep that originated right before or during colonization of northern Scandinavia following the last glaciation. Field and greenhouse experiments confirm that variation in PtFT2 gene expression affects the phenotypic variation in bud set that we observe in wild natural populations. Our results reveal a major effect locus that determines the timing of bud set and that has facilitated rapid adaptation to shorter growing seasons and colder climates in European aspen. The discovery of a single locus explaining a substantial fraction of the variation in a key life-history trait is remarkable, given that such traits are generally considered to be highly polygenic. These findings provide a dramatic illustration of how loci of large-effect for adaptive traits can arise and be maintained over large geographical scales in natural populations.

  10. Facial Cosmetics and Attractiveness: Comparing the Effect Sizes of Professionally-Applied Cosmetics and Identity.

    PubMed

    Jones, Alex L; Kramer, Robin S S

    2016-01-01

    Forms of body decoration exist in all human cultures. However, in Western societies, women are more likely to engage in appearance modification, especially through the use of facial cosmetics. How effective are cosmetics at altering attractiveness? Previous research has hinted that the effect is not large, especially when compared to the variation in attractiveness observed between individuals due to differences in identity. In order to build a fuller understanding of how cosmetics and identity affect attractiveness, here we examine how professionally-applied cosmetics alter attractiveness and compare this effect with the variation in attractiveness observed between individuals. In Study 1, 33 YouTube models were rated for attractiveness before and after the application of professionally-applied cosmetics. Cosmetics explained a larger proportion of the variation in attractiveness compared with previous studies, but this effect remained smaller than variation caused by differences in attractiveness between individuals. Study 2 replicated the results of the first study with a sample of 45 supermodels, with the aim of examining the effect of cosmetics in a sample of faces with low variation in attractiveness between individuals. While the effect size of cosmetics was generally large, between-person variability due to identity remained larger. Both studies also found interactions between cosmetics and identity-more attractive models received smaller increases when cosmetics were worn. Overall, we show that professionally-applied cosmetics produce a larger effect than self-applied cosmetics, an important theoretical consideration for the field. However, the effect of individual differences in facial appearance is ultimately more important in perceptions of attractiveness.

  11. Facial Cosmetics and Attractiveness: Comparing the Effect Sizes of Professionally-Applied Cosmetics and Identity

    PubMed Central

    Kramer, Robin S. S.

    2016-01-01

    Forms of body decoration exist in all human cultures. However, in Western societies, women are more likely to engage in appearance modification, especially through the use of facial cosmetics. How effective are cosmetics at altering attractiveness? Previous research has hinted that the effect is not large, especially when compared to the variation in attractiveness observed between individuals due to differences in identity. In order to build a fuller understanding of how cosmetics and identity affect attractiveness, here we examine how professionally-applied cosmetics alter attractiveness and compare this effect with the variation in attractiveness observed between individuals. In Study 1, 33 YouTube models were rated for attractiveness before and after the application of professionally-applied cosmetics. Cosmetics explained a larger proportion of the variation in attractiveness compared with previous studies, but this effect remained smaller than variation caused by differences in attractiveness between individuals. Study 2 replicated the results of the first study with a sample of 45 supermodels, with the aim of examining the effect of cosmetics in a sample of faces with low variation in attractiveness between individuals. While the effect size of cosmetics was generally large, between-person variability due to identity remained larger. Both studies also found interactions between cosmetics and identity–more attractive models received smaller increases when cosmetics were worn. Overall, we show that professionally-applied cosmetics produce a larger effect than self-applied cosmetics, an important theoretical consideration for the field. However, the effect of individual differences in facial appearance is ultimately more important in perceptions of attractiveness. PMID:27727311

  12. The Influence of Internal and External Torques on Titan's Length-of-day Variations

    NASA Astrophysics Data System (ADS)

    van Hoolst, T.; Karatekin, O.; Rambaux, N.

    2008-12-01

    Cassini radar observations show that Titan's spin is slightly faster than synchronous spin. Angular momentum exchange between Titan and its atmosphere is the most likely cause of the observed non-synchronous rotation. We study the effect of Saturn's gravitational torque and torques between Titan's internal layers on the length-of-day (LOD) variations driven by the atmosphere. Those torques depend on the equatorial flattening of Titan resulting from static tides raised by Saturn. We calculate Titan's flattening under the assumption of hydrostatic equilibrium and show that the gravitational forcing by Saturn, due to misalignment of the long axis of Titan with the line joining the mass centers of Titan and Saturn, reduces the LOD variations with respect to those for a spherical Titan by an order of magnitude. Internal gravitational and pressure coupling between the ice shell and the interior beneath a putative ocean tends to diminish any differential rotation between shell and interior and reduces further the LOD variations by a few times. For the current estimate of the atmospheric torque, we obtain LOD variations of a hydrostatic Titan that are more than 50 times smaller than the observations indicate when a subsurface ocean exists and more than 100 times smaller when Titan has no ocean. Moreover, Saturn's torque causes the rotation to be slower than synchronous in contrast to the Cassini observations. Those large differences with the observations suggest that non-hydrostatic effects in Titan are important. In particular, we show that the amplitude and phase of the calculated rotation variations would be similar to the observed values if non-hydrostatic effects strongly reduce the equatorial flattening of the ice shell above an internal ocean. Alternatively, the calculated LOD variations could be increased if the atmospheric torque is larger than predicted or if fast viscous relaxation of the ice shell could reduce the gravitational coupling, but it remains to be studied if a two order of magnitude increase is possible and if these effects can explain the phase difference of the predicted rotation variations.

  13. Identifying water mass depletion in Northern Iraq observed by GRACE

    NASA Astrophysics Data System (ADS)

    Mulder, G.; Olsthoorn, T. N.; Al-Manmi, D. A. M. A.; Schrama, E. J. O.; Smidt, E. H.

    2014-10-01

    Observations acquired by Gravity Recovery And Climate Experiment (GRACE) mission indicate a mass loss of 31 ± 3 km3 or 130 ± 14 mm in Northern Iraq between 2007 and 2009. This data is used as an independent validation of a hydrologic model of the region including lake mass variations. We developed a rainfall-runoff model for five tributaries of the Tigris River, based on local geology and climate conditions. Model inputs are precipitation from Tropical Rainfall Measurement Mission (TRMM) observations, and potential evaporation from GLDAS model parameters. Our model includes a representation of the karstified aquifers that cause large natural groundwater variations in this region. Observed river discharges were used to calibrate our model. In order to get the total mass variations, we corrected for lake mass variations derived from Moderate Resolution Imaging Spectroradiometer (MODIS) in combination with satellite altimetry and some in-situ data. Our rainfall-runoff model confirms that Northern Iraq suffered a drought between 2007 and 2009 and is consistent with the mass loss observed by GRACE over that period. Also, GRACE observed the annual cycle predicted by the rainfall-runoff model. The total mass depletion seen by GRACE between 2007 and 2009 is mainly explained by a lake mass depletion of 74 ± 4 mm and a natural groundwater depletion of 37 ± 6 mm. Our findings indicate that man-made groundwater extraction has a minor influence in this region while depletion of lake mass and geology play a key role.

  14. Explaining variation in hospice visit intensity for routine home care.

    PubMed

    Stearns, Sally C; Sheingold, Steven; Zuckerman, Rachael B

    2014-01-01

    Medicare pays a flat per diem rate by level of hospice service without case-mix adjustment, although previous research shows that visit intensity varies considerably over the course of hospice episodes. Concerns pertain to the inherent financial incentives for routine home care, the most frequently used level, and whether payment efficiency can be improved using case-mix adjustment. The aim of this study was to assess variation in hospice visit intensity during hospice episodes by patient, hospice, and episode characteristics to inform policy discussions regarding hospice payment methods. This observational study used Medicare claims for hospice episodes in 2010. Multiple observations were constructed per episode phase (eg, days 1-14, 15-30, etc.). Episode phase and observed characteristics were regressed on average routine home care visit intensity per day; patient and hospice fixed effects controlled for unobserved characteristics. Visit intensity was constructed using national wages to weight visits by provider type. Observed patient characteristics included age, sex, race, diagnoses, venue of care, use of other hospice levels of care, and discharge status; hospice characteristics included ownership, affiliation, size, and urban/state location. Visit intensity varied substantially by episode phase. This pattern was largely invariant to observed patient and hospice characteristics, which explained <4% of variation in visit intensity per day after adjusting for episode phase. Unobserved patient characteristics explained approximately 85% of remaining variation. These results show that case-mix adjustment based on commonly observed factors would only minimally improve hospice payment methodology.

  15. Research on Spectroscopy, Opacity, and Atmospheres

    NASA Technical Reports Server (NTRS)

    Kurucz, Robert L.

    1996-01-01

    I discuss errors in theory and in interpreting observations that are produced by the failure to consider resolution in space, time, and energy. I discuss convection in stellar model atmospheres and in stars. Large errors in abundances are possible such as the factor of ten error in the Li abundance for extreme Population II stars. Finally I discuss the variation of microturbulent velocity with depth, effective temperature, gravity and abundance. These variations must be dealt with in computing models and grids and in any type of photometric calibration.

  16. Total Hydrogen Budget of the Equatorial Upper Stratosphere

    DTIC Science & Technology

    2010-02-24

    series show quasi- biennial ( QBO ) variations which peak near 2.2 hPa in the equatorial upper stratosphere due to the large vertical gradients in CH4...Cordero et al., 1997] and directly relate to the observed QBO variations in H2O through CH4 oxidation. An increase in H2O mixing ratios during the early...by calculating the amplitudes of the QBO , annual, and semiannual cycles as function of pressure determined by a least squares regression fit to the

  17. Correlations Between Variations in Solar EUV and Soft X-Ray Irradiance and Photoelectron Energy Spectra Observed on Mars and Earth

    NASA Technical Reports Server (NTRS)

    Peterson, W. K.; Brain, D. A.; Mitchell, D. L.; Bailey, S. M.; Chamberlin, P. C.

    2013-01-01

    Solar extreme ultraviolet (EUV; 10-120 nm) and soft X-ray (XUV; 0-10 nm) radiation are major heat sources for the Mars thermosphere as well as the primary source of ionization that creates the ionosphere. In investigations of Mars thermospheric chemistry and dynamics, solar irradiance models are used to account for variations in this radiation. Because of limited proxies, irradiance models do a poor job of tracking the significant variations in irradiance intensity in the EUV and XUV ranges over solar rotation time scales when the Mars-Sun-Earth angle is large. Recent results from Earth observations show that variations in photoelectron energy spectra are useful monitors of EUV and XUV irradiance variability. Here we investigate photoelectron energy spectra observed by the Mars Global Surveyor (MGS) Electron Reflectometer (ER) and the FAST satellite during the interval in 2005 when Earth, Mars, and the Sun were aligned. The Earth photoelectron data in selected bands correlate well with calculations based on 1 nm resolution observations above 27 nm supplemented by broadband observations and a solar model in the 0-27 nm range. At Mars, we find that instrumental and orbital limitations to the identifications of photoelectron energy spectra in MGS/ER data preclude their use as a monitor of solar EUV and XUV variability. However, observations with higher temporal and energy resolution obtained at lower altitudes on Mars might allow the separation of the solar wind and ionospheric components of electron energy spectra so that they could be used as reliable monitors of variations in solar EUV and XUV irradiance than the time shifted, Earth-based, F(10.7) index currently used.

  18. Correlations between variations in solar EUV and soft X-ray irradiance and photoelectron energy spectra observed on Mars and Earth

    NASA Astrophysics Data System (ADS)

    Peterson, W. K.; Brain, D. A.; Mitchell, D. L.; Bailey, S. M.; Chamberlin, P. C.

    2013-11-01

    extreme ultraviolet (EUV; 10-120 nm) and soft X-ray (XUV; 0-10 nm) radiation are major heat sources for the Mars thermosphere as well as the primary source of ionization that creates the ionosphere. In investigations of Mars thermospheric chemistry and dynamics, solar irradiance models are used to account for variations in this radiation. Because of limited proxies, irradiance models do a poor job of tracking the significant variations in irradiance intensity in the EUV and XUV ranges over solar rotation time scales when the Mars-Sun-Earth angle is large. Recent results from Earth observations show that variations in photoelectron energy spectra are useful monitors of EUV and XUV irradiance variability. Here we investigate photoelectron energy spectra observed by the Mars Global Surveyor (MGS) Electron Reflectometer (ER) and the FAST satellite during the interval in 2005 when Earth, Mars, and the Sun were aligned. The Earth photoelectron data in selected bands correlate well with calculations based on 1 nm resolution observations above 27 nm supplemented by broadband observations and a solar model in the 0-27 nm range. At Mars, we find that instrumental and orbital limitations to the identifications of photoelectron energy spectra in MGS/ER data preclude their use as a monitor of solar EUV and XUV variability. However, observations with higher temporal and energy resolution obtained at lower altitudes on Mars might allow the separation of the solar wind and ionospheric components of electron energy spectra so that they could be used as reliable monitors of variations in solar EUV and XUV irradiance than the time shifted, Earth-based, F10.7 index currently used.

  19. Auger electron intensity variations in oxygen-exposed large grain polycrystalline silver

    NASA Technical Reports Server (NTRS)

    Lee, W. S.; Outlaw, R. A.; Hoflund, G. B.; Davidson, M. R.

    1989-01-01

    Auger electron spectroscopic studies of the grains in oxygen-charged polycrystal-line silver show significant intensity variations as a function of crystallographic orientation. These intensity variations were observed by studies of the Auger images and line scans of the different grains (randomly selected) for each silver transition energy. The results can be attributed to the diffraction of the ejected Auger electrons and interpreted by corresponding changes in the electron mean-free path for inelastic scattering and by oxygen atom accumulation in the subsurface. The subsurface (second layer) octahedral sites increased in size because of surface relaxation and serve as a stable reservoir for the dissolved oxygen.

  20. X-ray wind tomography of IGR J17252-3616

    NASA Astrophysics Data System (ADS)

    Manousakis, Antonios; Walter, Roland

    IGR J17252-3616 is an heavily absorbed and eclipsing High Mass X-ray Binary with an ab-sorbing hydrogen column density >1023 cm-2 . We have observed it with XMM-Newton to understand the geometry of the absorbing material. Observations were scheduled in order to cover as many orbital phases as possible. Timing analysis is constraining the orbital solution and the physical parameters of the system. Spectral analysis reveals remarkable variations of the absorbing column density and of the Iron Kα fluorescence line around the eclipse. These variations allow to map the geometry of the absorbing and reflection material. Very large accretion structures could be imaged for the first time.

  1. Temporal variations of the anomalous oxygen component

    NASA Technical Reports Server (NTRS)

    Cummings, A. C.; Webber, W. R.

    1983-01-01

    Data from the cosmic ray experiment on Voyagers 1 and 2 was used to examine anomalous oxygen in the time period from launch in 1977 to the end of 1981. Several time periods were found where large periodic (typically 26 day) temporal variations of the oxygen intensity between approximately 5 - 15 MeV/nuc are present. Variations in intensity by up to a factor of 10 are observed during these periods. Several characteristics of these variations indicate that they are not higher energy extensions of the low energy particle (approximately 1 MeV/nuc) increases found in many corotating interaction regions (CIR's). Many of these periodic temporal variations are correlated with similar, but much smaller, recurrent variations in the 75 MeV proton rate. Voyager 1 and Voyager 2 counting rates were compared to estimate the local radial gradient for both the protons and the oxygen. The proton gradients during periods of both maximum and minumum fluxes are consistent with the overall positive radial gradients reported by others from Pioneer and near-Earth observations, supporting the view that these variations are due to local modulation of a source outside the radial range of project measurements. In contrast, the oxygen gradients during periods of maximum proton flux differ in sign from those during minimum proton fluxes, suggesting that the origin of the oxygen variations is different from that of the protons.

  2. Comparative Analysis of Seasonal Variation in Tropospheric Nitrogen Dioxide over Pakistan and Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Fahim Khokhar, Muhammad; Wagner, Thomas; Jamil, Mohsin

    2016-07-01

    In this study, spatial and temporal distributions of tropospheric NO2 vertical column densities over Pakistan and Saudi Arabia during the time period of 2004-2015 are discussed. Data products from the satellite instrument OMI are used. The results show a large NO2 growth over major cities of both countries, particularly the areas with rapid urbanization. Different seasonal cycles were observed over both countries. Especially, seasonal variation in tropospheric NO2 over Pakistan is largely impacted by the photolysis rate, OH radical and monsoon rains in addition to soil emissions, agriculture fires and other anthropogenic activities. While in the case of Saudi Arabia, the seasonal variation in tropospheric NO2 is completely driven by thermal power generation. Furthermore, different regions of Pakistan exhibited different seasonal trends. In the provinces of Punjab (north-east), Khyber Paktunkhwa (north-west) and Sindh (south-east), NO2 columns are maximum in winter and minimum in summer months while a reversed seasonality was observed in the province of Baluchistan (south-west). We compared the observed Spatio-temporal patterns to existing emission inventories and found that for the most populated provinces the NOx emissions are clearly dominated by anthropogenic sources. In these areas also the strongest positive trends were observed. NOx released from soils and produced by lightning both together contribute about 20% for the provinces of Punjab, Sindh, and Khyber Pakhtunkhwa, while its contribution in Baluchistan is much stronger (~50%). NOx emissions from biomass burning are negligible. This finding can also explain the observed summer maximum in Baluchistan since the highest lightning activity occurs during the Monsoon season. Our comparison also indicates that the inventories of anthropogenic NOx emissions over Pakistan seem to underestimate the true emissions by about a factor of two.

  3. On the Regulation of the Pacific Warm Pool Temperature

    NASA Technical Reports Server (NTRS)

    Chou, Ming-Dah; Chou, Sue-Hsien; Chan, Pui-King; Lau, William K. M. (Technical Monitor)

    2002-01-01

    In the tropical western Pacific, regions of the highest sea surface temperature (SST) and the largest cloud cover are found to have the largest surface heating, primarily due to the weak evaporative cooling associated with weak winds. This situation is in variance with the suggestions that the temperature in the Pacific warm pool is regulated either by the reduced solar heating due to an enhanced cloudiness or by the enhanced evaporative cooling due to an elevated SST. It is clear that an enhanced surface heating in an enhanced convection region is not sustainable and must be interrupted by variations in large-scale atmospheric circulation. As the deep convective regions shift away from regions of high SST due primarily to seasonal variation and secondarily to interannual variation of the large-scale atmospheric and oceanic circulation, both trade wind and evaporative cooling in the high SST region increase, leading to a reduction in SST. We conclude that the evaporative cooling associated with the seasonal and interannual variations of trade winds in the primary factor that prevent the warm pool SST from increasing to a value much higher than what is observed.

  4. Implications for the origins of pure anorthosites found in the feldspathic lunar meteorites, Dhofar 489 group

    NASA Astrophysics Data System (ADS)

    Nagaoka, Hiroshi; Takeda, Hiroshi; Karouji, Yuzuru; Ohtake, Makiko; Yamaguchi, Akira; Yoneda, Shigekazu; Hasebe, Nobuyuki

    2014-12-01

    Remote observation by the reflectance spectrometers onboard the Japanese lunar explorer Kaguya (SELENE) showed the purest anorthosite (PAN) spots (>98% plagioclase) at some large craters. Mineralogical and petrologic investigations on the feldspathic lunar meteorites, Dhofar 489 and Dhofar 911, revealed the presence of several pure anorthosite clasts. A comparison with Apollo nearside samples of ferroan anorthosite (FAN) indicated that of the FAN samples returned by the Apollo missions, sample 60015 is the largest anorthosite with the highest plagioclase abundance and homogeneous mafic mineral compositions. These pure anorthosites (>98% plagioclase) have large chemical variations in Mg number (Mg# = molar 100 × Mg/(Mg + Fe)) of each coexisting mafic mineral. The variations imply that these pure anorthosites underwent complex formation processes and were not formed by simple flotation of plagioclase. The lunar highland samples with pure anorthosite and the PAN observed by Kaguya suggest that pure anorthosite is widely distributed as lunar crust lithology over the entire Moon.

  5. Anomalous Ionospheric signatures observed at low-mid latitude Indian station Delhi prior to earthquake events during the year 2015 to early 2016.

    NASA Astrophysics Data System (ADS)

    Upadhayaya, A. K.; Gupta, S.; Kotnala, R. K.

    2017-12-01

    Five major earthquake events measuring greater than six on Richter scale (M>6) that occurred during the year 2015 to early 2016, affecting Indian region ionosphere, are analyzed using F2 layer critical parameters (foF2, hmF2) obtained using Digisonde from a low-mid latitude Indian station, Delhi (28.6°N, 77.2°E, 19.2°N Geomagnetic latitude, 42.4°N Dip). Normal day-to-day variability occurring in ionosphere is segregated by calculating F2 layer critical frequency and peak height variations (ΔfoF2, ΔhmF2) from the normal quiet time behavior. We find that the ionospheric F2 region across Delhi by and large shows some significant perturbations 3-4 days prior to these earthquake events, resulting in a large peak electron density variation of 200%. These observed perturbations indicate towards a possibility of seismo-ionospheric coupling as the solar and geomagnetic indices were normally quiet and stable during the period of these events. It was also observed that the precursory effect of earthquake was predominantly seen even outside the earthquake preparation zone, as given by Dobrovolsky et al. [1979]. The thermosphere neutral composition (O/N2) as observed by GUVI [Christensen et al., 2003], across Delhi, during these earthquake events does not show any marked variation. Further, the effect of earthquake events on ionospheric peak electron density is compared to the lower atmosphere meteorological phenomenon of 2015 Sudden Stratospheric Warming event and are found to be comparable.

  6. Fewer clouds in the Mediterranean: consistency of observations and climate simulations

    PubMed Central

    Sanchez-Lorenzo, Arturo; Enriquez-Alonso, Aaron; Calbó, Josep; González, Josep-Abel; Wild, Martin; Folini, Doris; Norris, Joel R.; Vicente-Serrano, Sergio M.

    2017-01-01

    Clouds play a major role in the climate system, but large uncertainties remain about their decadal variations. Here we report a widespread decrease in cloud cover since the 1970 s over the Mediterranean region, in particular during the 1970 s–1980 s, especially in the central and eastern areas and during springtime. Confidence in these findings is high due to the good agreement between the interannual variations of cloud cover provided by surface observations and several satellite-derived and reanalysis products, although some discrepancies exist in their trends. Climate model simulations of the historical experiment from the Coupled Model Intercomparison Project Phase 5 (CMIP5) also exhibit a decrease in cloud cover over the Mediterranean since the 1970 s, in agreement with surface observations, although the rate of decrease is slightly lower. The observed northward expansion of the Hadley cell is discussed as a possible cause of detected trends. PMID:28148960

  7. Midlatitude D region variations measured from broadband radio atmospherics

    NASA Astrophysics Data System (ADS)

    Han, Feng

    The high power, broadband very low frequency (VLF, 3--30 kHz) and extremely low frequency (ELF, 3--3000 Hz) electromagnetic waves generated by lightning discharges and propagating in the Earth-ionosphere waveguide can be used to measure the average electron density profile of the lower ionosphere (D region) across the wave propagation path due to several reflections by the upper boundary (lower ionosphere) of the waveguide. This capability makes it possible to frequently and even continuously monitor the D region electron density profile variations over geographically large regions, which are measurements that are essentially impossible by other means. These guided waves, usually called atmospherics (or sferics for short), are recorded by our sensors located near Duke University. The purpose of this work is to develop and implement algorithms to derive the variations of D region electron density profile which is modeled by two parameters (one is height and another is sharpness), by comparing the recorded sferic spectra to a series of model simulated sferic spectra from using a finite difference time domain (FDTD) code. In order to understand the time scales, magnitudes and sources for the midlatitude nighttime D region variations, we analyzed the sferic data of July and August 2005, and extracted both the height and sharpness of the D region electron density profile. The heights show large temporal variations of several kilometers on some nights and the relatively stable behavior on others. Statistical calculations indicate that the hourly average heights during the two months range between 82.0 km and 87.2 km with a mean value of 84.9 km and a standard deviation of 1.1 km. We also observed spatial variations of height as large as 2.0 km over 5 degrees latitudes on some nights, and no spatial variation on others. In addition, the measured height variations exhibited close correlations with local lightning occurrence rate on some nights but no correlation with local lightning or displaced lightning on others. The nighttime profile sharpness during 2.5 hours in two different nights was calculated, and the results were compared to the equivalent sharpness derived from International Reference Ionosphere (IRI) models. Both the absolute values and variation trends in IRI models are different from those in broadband measurements. Based on sferic data similar to those for nighttime, we also measured the day-time D region electron density profile variations in July and August 2005 near Duke University. As expected, the solar radiation is the dominant but not the only determinant source for the daytime D region profile height temporal variations. The observed quiet time heights showed close correlations with solar zenith angle changes but unexpected spatial variations not linked to the solar zenith angle were also observed on some days, with 15% of days exhibiting regional differences larger than 0.5 km. During the solar flare, the induced height change was approximately proportional to the logarithm of the X-ray fluxes. During the rising and decaying phases of the solar flare, the height changes correlated more consistently with the short (wavelength 0.5--4 A), rather than the long (wavelength 1--8 A) X-ray flux changes. The daytime profile sharpness during morning, noontime and afternoon periods in three different days and for the solar zenith angle range 20 to 75 degrees was calculated. These broadband measured results were compared to narrowband VLF measurements, IRI models and Faraday rotation base IRI models (called FIRI). The estimated sharpness from all these sources was more consistent when the solar zenith angle was small than when it was large. By applying the nighttime and daytime measurement techniques, we also derived the D region variations during sunrise and sunset periods. The measurements showed that both the electron density profile height and sharpness decrease during the sunrise period while increase during the sunset period.

  8. Observations of Radar Backscatter at Ku and C Bands in the Presence of Large Waves during the Surface Wave Dynamics Experiment

    NASA Technical Reports Server (NTRS)

    Nghiem, S. V.; Li, Fuk K.; Lou, Shu-Hsiang; Neumann, Gregory; McIntosh, Robert E.; Carson, Steven C.; Carswell, James R.; Walsh, Edward J.; Donelan, Mark A.; Drennan, William M.

    1995-01-01

    Ocean radar backscatter in the presence of large waves is investigated using data acquired with the Jet Propulsion Laboratory NUSCAT radar at Ku band for horizontal and vertical polarizations and the University of Massachusetts CSCAT radar at C band for vertical polarization during the Surface Wave Dynamics Experiment. Off-nadir backscatter data of ocean surfaces were obtained in the presence of large waves with significant wave height up to 5.6 m. In moderate-wind cases, effects of large waves are not detectable within the measurement uncertainty and no noticeable correlation between backscatter coefficients and wave height is found. Under high-wave light-wind conditions, backscatter is enhanced significantly at large incidence angles with a weaker effect at small incidence angles. Backscatter coefficients in the wind speed range under consideration are compared with SASS-2 (Ku band), CMOD3-H1 (C band), and Plant's model results which confirm the experimental observations. Variations of the friction velocity, which can give rise to the observed backscatter behaviors in the presence of large waves, are presented.

  9. Rapid-run ionosonde observations of traveling ionospheric disturbances in the auroral ionosphere

    NASA Astrophysics Data System (ADS)

    Kozlovsky, Alexander; Turunen, Tauno; Ulich, Thomas

    2013-08-01

    2007, the Sodankylä Geophysical Observatory routinely performs vertical ionosphere soundings once per minute, using a frequency-modulated continuous-wave chirp at the rate of 500 kHz/s from 500 kHz to 16 MHz. We used these data to study traveling ionospheric disturbances (TIDs) during 10-16 local time. The observations were made between April 2007 and June 2012, mostly during low solar activity. The TIDs were studied in five bands of periods corresponding to the following: infrasonic (acoustic) waves and the buoyancy cutoff (periods from 5 to 10 min); small-scale gravity waves (GWs; 10-15 min); medium-scale (MS; 15-30 min) GWs; medium-large scale (MS-LS; 30-60 min) GWs; and large-scale (LS; 60-120 min) GWs. Relative contribution (with respect to LS TIDs) of the short-period (5-15 min) and MS (15-30 min) TIDs shows minima in winter and maxima in summer. These annual variations anticorrelate with variations of true height, namely, the largest relative amplitudes occur in summer, when TIDs were observed at minimal heights. We suggest that the summer increase of shorter-period TIDs is due to lowering reflection to the height where the Brunt-Väisälä period is smaller and, hence, shorter-period gravity waves exist. The summer maxima were most prominent during the 3 years of minimal solar activity (2008-2010). In 2011, when solar activity increased, the annual variation seems less prominent. Annual variations of the longer-period (30-120 min) TIDs are essentially less significant. For all TIDs, no obvious dependences on the AE and Ap indices of magnetic activity were found.

  10. Cloud and boundary layer structure over San Nicolas Island during FIRE

    NASA Technical Reports Server (NTRS)

    Albrecht, Bruce A.; Fairall, Christopher W.; Syrett, William J.; Schubert, Wayne H.; Snider, Jack B.

    1990-01-01

    The temporal evolution of the structure of the marine boundary layer and of the associated low-level clouds observed in the vicinity of the San Nicolas Island (SNI) is defined from data collected during the First ISCCP Regional Experiment (FIRE) Marine Stratocumulus Intense Field Observations (IFO) (July 1 to 19). Surface, radiosonde, and remote-sensing measurements are used for this analysis. Sounding from the Island and from the ship Point Sur, which was located approximately 100 km northwest of SNI, are used to define variations in the thermodynamic structure of the lower-troposphere on time scales of 12 hours and longer. Time-height sections of potential temperature and equivalent potential temperature clearly define large-scale variations in the height and the strength of the inversion and periods where the conditions for cloud-top entrainment instability (CTEI) are met. Well defined variations in the height and the strength of the inversion were associated with a Cataline Eddy that was present at various times during the experiment and with the passage of the remnants of a tropical cyclone on July 18. The large-scale variations in the mean thermodynamic structure at SNI correlate well with those observed from the Point Sur. Cloud characteristics are defined for 19 days of the experiment using data from a microwave radiometer, a cloud ceilometer, a sodar, and longwave and shortwave radiometers. The depth of the cloud layer is estimated by defining inversion heights from the sodar reflectivity and cloud-base heights from a laser ceilometer. The integrated liquid water obtained from NOAA's microwave radiometer is compared with the adiabatic liquid water content that is calculated by lifting a parcel adiabatically from cloud base. In addition, the cloud structure is characterized by the variability in cloud-base height and in the integrated liquid water.

  11. Inexplicable or Simply Unexplained? The Management of Maize Seed in Mexico

    PubMed Central

    Dyer, George A.; López-Feldman, Alejandro

    2013-01-01

    Farmer management of plant germplasm pre-dates crop domestication, but humans’ role in crop evolution and diversity remains largely undocumented and often contested. Seemingly inexplicable practices observed throughout agricultural history, such as exchanging or replacing seed, continue to structure crop populations across the developing world. Seed management practices can be construed as events in the life history of crops and management data used to model crop demography, but this requires suitable quantitative data. As a prerequisite to addressing the causes and implications of maize seed management, we describe its patterns of variation across Mexico by drawing from the literature and new analysis. We find that rates of seed replacement, introduction and diffusion differ significantly across regions and altitudinal zones, but interactions among explanatory factors can obscure patterns of variation. The type, source, geographic origin and ownership of seed help explain observed rates. Yet, controlling for the characteristics of germplasm barely reduces interregional differences vastly exceeding variation across elevations. With few exceptions, monotonic altitudinal trends are absent. Causal relationships between management practices and the physical environment could determine farmers’ wellbeing and crop conservation in the face of climate change. Scarce and inconsistent data on management nevertheless could prevent an understanding of these relationships. Current conceptions on the management and dynamics of maize diversity are founded on a patchwork of observations in surprisingly few and dissimilar environments. Our estimates of management practices should shed light on differences in maize population dynamics across Mexico. Consistency with previous studies spanning over a decade suggests that common sets of forces are present within large areas, but causal associations remain unknown. The next step in explaining crop diversity should address variation in seed management across space and time simultaneously while identifying farmers’ values and motivations as underlying forces. PMID:23840847

  12. Inexplicable or simply unexplained? The management of maize seed in Mexico.

    PubMed

    Dyer, George A; López-Feldman, Alejandro

    2013-01-01

    Farmer management of plant germplasm pre-dates crop domestication, but humans' role in crop evolution and diversity remains largely undocumented and often contested. Seemingly inexplicable practices observed throughout agricultural history, such as exchanging or replacing seed, continue to structure crop populations across the developing world. Seed management practices can be construed as events in the life history of crops and management data used to model crop demography, but this requires suitable quantitative data. As a prerequisite to addressing the causes and implications of maize seed management, we describe its patterns of variation across Mexico by drawing from the literature and new analysis. We find that rates of seed replacement, introduction and diffusion differ significantly across regions and altitudinal zones, but interactions among explanatory factors can obscure patterns of variation. The type, source, geographic origin and ownership of seed help explain observed rates. Yet, controlling for the characteristics of germplasm barely reduces interregional differences vastly exceeding variation across elevations. With few exceptions, monotonic altitudinal trends are absent. Causal relationships between management practices and the physical environment could determine farmers' wellbeing and crop conservation in the face of climate change. Scarce and inconsistent data on management nevertheless could prevent an understanding of these relationships. Current conceptions on the management and dynamics of maize diversity are founded on a patchwork of observations in surprisingly few and dissimilar environments. Our estimates of management practices should shed light on differences in maize population dynamics across Mexico. Consistency with previous studies spanning over a decade suggests that common sets of forces are present within large areas, but causal associations remain unknown. The next step in explaining crop diversity should address variation in seed management across space and time simultaneously while identifying farmers' values and motivations as underlying forces.

  13. Geographic Variation in Opioid Prescribing in the U.S.

    PubMed Central

    McDonald, Douglas C.; Carlson, Kenneth; Izrael, David

    2012-01-01

    Estimates of geographic variation among states and counties in the prevalence of opioid prescribing are developed using data from a large (135M) representative national sample of opioid prescriptions dispensed during 2008 by 37,000 retail pharmacies. Statistical analyses are used to estimate the extent to which county variation is explained by characteristics of resident populations, their healthcare utilization, proxy measures of morbidity, availability of healthcare resources, and prescription monitoring laws. Geographic variation in prevalence of prescribed opioids is large, greater than variation observed for other healthcare services. Counties having the highest prescribing rates for opioids were disproportionately located in Appalachia and in Southern and Western states. The number of available physicians was by far the strongest predictor of amounts prescribed, but only one-third of county variation is explained by the combination of all measured factors. Wide variation in prescribing opioids reflects weak consensus regarding the appropriate use of opioids for treating pain, especially chronic non-cancer pain. Patients’ demands for treatment have increased, more potent opioids have become available, an epidemic of abuse has emerged, and calls for increased government regulation are growing. Greater guidance, education and training in opioid prescribing are needed for clinicians to support appropriate prescribing practices. Perspective Wide geographic variation that does not reflect differences in the prevalence of injuries, surgeries, or conditions requiring analgesics raises questions about opioid prescribing practices. Low prescription rates may indicate under-treatment, while high rates may indicate overprescribing and insufficient attention to risks of misuse. PMID:23031398

  14. Evidence for Large Decadal Variability in the Tropical Mean Radiative Energy Budget

    NASA Technical Reports Server (NTRS)

    Wielicki, Bruce A.; Wong, Takmeng; Allan, Richard; Slingo, Anthony; Kiehl, Jeffrey T.; Soden, Brian J.; Gordon, C. T.; Miller, Alvin J.; Yang, Shi-Keng; Randall, David R.; hide

    2001-01-01

    It is widely assumed that variations in the radiative energy budget at large time and space scales are very small. We present new evidence from a compilation of over two decades of accurate satellite data that the top-of-atmosphere (TOA) tropical radiative energy budget is much more dynamic and variable than previously thought. We demonstrate that the radiation budget changes are caused by changes In tropical mean cloudiness. The results of several current climate model simulations fall to predict this large observed variation In tropical energy budget. The missing variability in the models highlights the critical need to Improve cloud modeling in the tropics to support Improved prediction of tropical climate on Inter-annual and decadal time scales. We believe that these data are the first rigorous demonstration of decadal time scale changes In the Earth's tropical cloudiness, and that they represent a new and necessary test of climate models.

  15. Climate and Edaphic Controls on Humid Tropical Forest Tree Height

    NASA Astrophysics Data System (ADS)

    Yang, Y.; Saatchi, S. S.; Xu, L.

    2014-12-01

    Uncertainty in the magnitude and spatial variations of forest carbon density in tropical regions is due to under sampling of forest structure from inventory plots and the lack of regional allometry to estimate the carbon density from structure. Here we quantify the variation of tropical forest structure by using more than 2.5 million measurements of canopy height from systematic sampling of Geoscience Laser Altimeter System (GLAS) satellite observations between 2004 to 2008 and examine the climate and edaphic variables influencing the variations. We used top canopy height of GLAS footprints (~ 0.25 ha) to grid the statistical mean and 90 percentile of samples at 0.5 degrees to capture the regional variability of large trees in tropics. GLAS heights were also aggregated based on a stratification of tropical regions using soil, elevation, and forest types. Both approaches provided consistent patterns of statistically dominant large trees and the least heterogeneity, both as strong drivers of distribution of high biomass forests. Statistical models accounting for spatial autocorrelation suggest that climate, soil and spatial features together can explain more than 60% of the variations in observed tree height information, while climate-only variables explains about one third of the first-order changes in tree height. Soil basics, including physical compositions such as clay and sand contents, chemical properties such as PH values and cation-exchange capacity, as well as biological variables such as organic matters, all present independent but statistically significant relationships to tree height variations. The results confirm other landscape and regional studies that soil fertility, geology and climate may jointly control a majority of the regional variations of forest structure in pan-tropics and influencing both biomass stocks and dynamics. Consequently, other factors such as biotic and disturbance regimes, not included in this study, may have less influence on regional variations but strongly mediate landscape and small-scale forest structure and dynamics.

  16. Brightness Variations of Sun-like Stars: The Mystery Deepens - Astronomers facing Socratic "ignorance"

    NASA Astrophysics Data System (ADS)

    2009-12-01

    An extensive study made with ESO's Very Large Telescope deepens a long-standing mystery in the study of stars similar to the Sun. Unusual year-long variations in the brightness of about one third of all Sun-like stars during the latter stages of their lives still remain unexplained. Over the past few decades, astronomers have offered many possible explanations, but the new, painstaking observations contradict them all and only deepen the mystery. The search for a suitable interpretation is on. "Astronomers are left in the dark, and for once, we do not enjoy it," says Christine Nicholls from Mount Stromlo Observatory, Australia, lead author of a paper reporting the study. "We have obtained the most comprehensive set of observations to date for this class of Sun-like stars, and they clearly show that all the possible explanations for their unusual behaviour just fail." The mystery investigated by the team dates back to the 1930s and affects about a third of Sun-like stars in our Milky Way and other galaxies. All stars with masses similar to our Sun become, towards the end of their lives, red, cool and extremely large, just before retiring as white dwarfs. Also known as red giants, these elderly stars exhibit very strong periodic variations in their luminosity over timescales up to a couple of years. "Such variations are thought to be caused by what we call 'stellar pulsations'," says Nicholls. "Roughly speaking, the giant star swells and shrinks, becoming brighter and dimmer in a regular pattern. However, one third of these stars show an unexplained additional periodic variation, on even longer timescales - up to five years." In order to find out the origin of this secondary feature, the astronomers monitored 58 stars in our galactic neighbour, the Large Magellanic Cloud, over two and a half years. They acquired spectra using the high resolution FLAMES/GIRAFFE spectrograph on ESO's Very Large Telescope and combined them with images from other telescopes [1], achieving an impressive collection of the properties of these variable stars. Outstanding sets of data like the one collected by Nicholls and her colleagues often offer guidance on how to solve a cosmic puzzle by narrowing down the plethora of possible explanations proposed by the theoreticians. In this case, however, the observations are incompatible with all the previously conceived models and re-open an issue that has been thoroughly debated. Thanks to this study, astronomers are now aware of their own "ignorance" - a genuine driver of the knowledge-seeking process, as the ancient Greek philosopher Socrates is said to have taught. "The newly gathered data show that pulsations are an extremely unlikely explanation for the additional variation," says team leader Peter Wood. "Another possible mechanism for producing luminosity variations in a star is to have the star itself move in a binary system. However, our observations are strongly incompatible with this hypothesis too." The team found from further analysis that whatever the cause of these unexplained variations is, it also causes the giant stars to eject mass either in clumps or as an expanding disc. "A Sherlock Holmes is needed to solve this very frustrating mystery," concludes Nicholls. Notes [1] Precise brightness measurements were made by the MACHO and OGLE collaborations, running on telescopes in Australia and Chile, respectively. The OGLE observations were made at the same time as the VLT observations. More information This research was presented in two papers: one appeared in the November issue of the Monthly Notices of the Royal Astronomical Society ("Long Secondary Periods in Variable Red Giants", by C. P. Nicholls et al.), and the other has just been published in the Astrophysical Journal ("Evidence for mass ejection associated with long secondary periods in red giants", by P. R. Wood and C. P. Nicholls). The team is composed of Christine P. Nicholls and Peter R. Wood (Research School of Astronomy and Astrophysics, Australia National University), Maria-Rosa L. Cioni (Centre for Astrophysics Research, University of Hertfordshire, UK) and Igor Soszyński (Warsaw University Observatory). ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".

  17. Multi-model study of mercury dispersion in the atmosphere: atmospheric processes and model evaluation

    NASA Astrophysics Data System (ADS)

    Travnikov, Oleg; Angot, Hélène; Artaxo, Paulo; Bencardino, Mariantonia; Bieser, Johannes; D'Amore, Francesco; Dastoor, Ashu; De Simone, Francesco; Diéguez, María del Carmen; Dommergue, Aurélien; Ebinghaus, Ralf; Feng, Xin Bin; Gencarelli, Christian N.; Hedgecock, Ian M.; Magand, Olivier; Martin, Lynwill; Matthias, Volker; Mashyanov, Nikolay; Pirrone, Nicola; Ramachandran, Ramesh; Read, Katie Alana; Ryjkov, Andrei; Selin, Noelle E.; Sena, Fabrizio; Song, Shaojie; Sprovieri, Francesca; Wip, Dennis; Wängberg, Ingvar; Yang, Xin

    2017-04-01

    Current understanding of mercury (Hg) behavior in the atmosphere contains significant gaps. Some key characteristics of Hg processes, including anthropogenic and geogenic emissions, atmospheric chemistry, and air-surface exchange, are still poorly known. This study provides a complex analysis of processes governing Hg fate in the atmosphere involving both measured data from ground-based sites and simulation results from chemical transport models. A variety of long-term measurements of gaseous elemental Hg (GEM) and reactive Hg (RM) concentration as well as Hg wet deposition flux have been compiled from different global and regional monitoring networks. Four contemporary global-scale transport models for Hg were used, both in their state-of-the-art configurations and for a number of numerical experiments to evaluate particular processes. Results of the model simulations were evaluated against measurements. As follows from the analysis, the interhemispheric GEM gradient is largely formed by the prevailing spatial distribution of anthropogenic emissions in the Northern Hemisphere. The contributions of natural and secondary emissions enhance the south-to-north gradient, but their effect is less significant. Atmospheric chemistry has a limited effect on the spatial distribution and temporal variation of GEM concentration in surface air. In contrast, RM air concentration and wet deposition are largely defined by oxidation chemistry. The Br oxidation mechanism can reproduce successfully the observed seasonal variation of the RM / GEM ratio in the near-surface layer, but it predicts a wet deposition maximum in spring instead of in summer as observed at monitoring sites in North America and Europe. Model runs with OH chemistry correctly simulate both the periods of maximum and minimum values and the amplitude of observed seasonal variation but shift the maximum RM / GEM ratios from spring to summer. O3 chemistry does not predict significant seasonal variation of Hg oxidation. Hence, the performance of the Hg oxidation mechanisms under study differs in the extent to which they can reproduce the various observed parameters. This variation implies possibility of more complex chemistry and multiple Hg oxidation pathways occurring concurrently in various parts of the atmosphere.

  18. Temporal and spatial variations of Gutenberg-Richter parameter and fractal dimension in Western Anatolia, Turkey

    NASA Astrophysics Data System (ADS)

    Bayrak, Erdem; Yılmaz, Şeyda; Bayrak, Yusuf

    2017-05-01

    The temporal and spatial variations of Gutenberg-Richter parameter (b-value) and fractal dimension (DC) during the period 1900-2010 in Western Anatolia was investigated. The study area is divided into 15 different source zones based on their tectonic and seismotectonic regimes. We calculated the temporal variation of b and DC values in each region using Zmap. The temporal variation of these parameters for the prediction of major earthquakes was calculated. The spatial distribution of these parameters is related to the stress levels of the faults. We observed that b and DC values change before the major earthquakes in the 15 seismic regions. To evaluate the spatial distribution of b and DC values, 0.50° × 0.50° grid interval were used. The b-values smaller than 0.70 are related to the Aegean Arc and Eskisehir Fault. The highest values are related to Sultandağı and Sandıklı Faults. Fractal correlation dimension varies from 1.65 to 2.60, which shows that the study area has a higher DC value. The lowest DC values are related to the joining area between Aegean and Cyprus arcs, Burdur-Fethiye fault zone. Some have concluded that b-values drop instantly before large shocks. Others suggested that temporally stable low b value zones identify future large earthquake locations. The results reveal that large earthquakes occur when b decreases and DC increases, suggesting that variation of b and DC can be used as an earthquake precursor. Mapping of b and DC values provide information about the state of stress in the region, i.e. lower b and higher DC values associated with epicentral areas of large earthquakes.

  19. Global Climate Forcing from Albedo Change Caused by Large-scale Deforestation and Reforestation: Quantification and Attribution of Geographic Variation

    NASA Technical Reports Server (NTRS)

    Gao, Feng; Ghimire, Bardan; Jiao, Tong; Williams, Christopher A.; Masek, Jeffrey; Schaaf, Crystal

    2017-01-01

    Large-scale deforestation and reforestation have contributed substantially to historical and contemporary global climate change in part through albedo-induced radiative forcing, with meaningful implications for forest management aiming to mitigate climate change. Associated warming or cooling varies widely across the globe due to a range of factors including forest type, snow cover, and insolation, but resulting geographic variation remain spoorly described and has been largely based on model assessments. This study provides an observation-based approach to quantify local and global radiative forcings from large-scale deforestation and reforestation and further examines mechanisms that result in the spatial heterogeneity of radiative forcing. We incorporate a new spatially and temporally explicit land cover-specific albedo product derived from Moderate Resolution Imaging Spectroradiometer with a historical land use data set (Land Use Harmonization product). Spatial variation in radiative forcing was attributed to four mechanisms, including the change in snow-covered albedo, change in snow-free albedo, snow cover fraction, and incoming solar radiation. We find an albedo-only radiative forcing (RF) of -0.819 W m(exp -2) if year 2000 forests were completely deforested and converted to croplands. Albedo RF from global reforestation of present-day croplands to recover year 1700 forests is estimated to be 0.161 W m)exp -2). Snow-cover fraction is identified as the primary factor in determining the spatial variation of radiative forcing in winter, while the magnitude of the change in snow-free albedo is the primary factor determining variations in summertime RF. Findings reinforce the notion that, for conifers at the snowier high latitudes, albedo RF diminishes the warming from forest loss and the cooling from forest gain more so than for other forest types, latitudes, and climate settings.

  20. Anatomical and morphological spine variation in Gymnocalycium kieslingii subsp. castaneum (Cactaceae).

    PubMed

    Gebauer, Roman; Řepka, Radomír; Šmudla, Radek; Mamoňová, Miroslava; Ďurkovič, Jaroslav

    2016-01-01

    Although spine variation within cacti species or populations is assumed to be large, the minimum sample size of different spine anatomical and morphological traits required for species description is less studied. There are studies where only 2 spines were used for taxonomical comparison amnog species. Therefore, the spine structure variation within areoles and individuals of one population of Gymnocalycium kieslingii subsp. castaneum (Ferrari) Slaba was analyzed. Fifteen plants were selected and from each plant one areole from the basal, middle and upper part of the plant body was sampled. A scanning electron microscopy was used for spine surface description and a light microscopy for measurements of spine width, thickness, cross-section area, fiber diameter and fiber cell wall thickness. The spine surface was more visible and damaged less in the upper part of the plant body than in the basal part. Large spine and fiber differences were found between upper and lower parts of the plant body, but also within single areoles. In general, the examined traits in the upper part had by 8-17% higher values than in the lower parts. The variation of spine and fiber traits within areoles was lower than the differences between individuals. The minimum sample size was largely influenced by the studied spine and fiber traits, ranging from 1 to 70 spines. The results provide pioneer information useful in spine sample collection in the field for taxonomical, biomechanical and structural studies. Nevertheless, similar studies should be carried out for other cacti species to make generalizations. The large spine and fiber variation within areoles observed in our study indicates a very complex spine morphogenesis.

  1. Anatomical and morphological spine variation in Gymnocalycium kieslingii subsp. castaneum (Cactaceae)

    PubMed Central

    Gebauer, Roman; Řepka, Radomír; Šmudla, Radek; Mamoňová, Miroslava; Ďurkovič, Jaroslav

    2016-01-01

    Abstract Although spine variation within cacti species or populations is assumed to be large, the minimum sample size of different spine anatomical and morphological traits required for species description is less studied. There are studies where only 2 spines were used for taxonomical comparison amnog species. Therefore, the spine structure variation within areoles and individuals of one population of Gymnocalycium kieslingii subsp. castaneum (Ferrari) Slaba was analyzed. Fifteen plants were selected and from each plant one areole from the basal, middle and upper part of the plant body was sampled. A scanning electron microscopy was used for spine surface description and a light microscopy for measurements of spine width, thickness, cross-section area, fiber diameter and fiber cell wall thickness. The spine surface was more visible and damaged less in the upper part of the plant body than in the basal part. Large spine and fiber differences were found between upper and lower parts of the plant body, but also within single areoles. In general, the examined traits in the upper part had by 8–17% higher values than in the lower parts. The variation of spine and fiber traits within areoles was lower than the differences between individuals. The minimum sample size was largely influenced by the studied spine and fiber traits, ranging from 1 to 70 spines. The results provide pioneer information useful in spine sample collection in the field for taxonomical, biomechanical and structural studies. Nevertheless, similar studies should be carried out for other cacti species to make generalizations. The large spine and fiber variation within areoles observed in our study indicates a very complex spine morphogenesis. PMID:27698579

  2. Using USArray Data to Explore Large-Scale Features in the Seismic Wavefield (Invited)

    NASA Astrophysics Data System (ADS)

    Woodward, R.; Simpson, D. W.; Busby, R. W.

    2009-12-01

    We explore variations in seismic waves, in both time and space, observed by the Transportable Array (TA) component of EarthScope’s USArray. The TA has collected data from over 800 station locations, stretching from the Pacific coast to the Great Plains. The stations are deployed in a 70 km grid, with each location occupied for two years, and producing continuous three-component broadband data. Given the dense station spacing and vast geographical extent of the TA network it is possible to make unprecedented direct observations of a variety of wave propagation effects. We utilize both time and frequency domain techniques to observe variations in wave propagation characteristics for individual earthquakes as well as the spatio-temporal evolution of seismic noise when observed over hours to years. Using time-domain visualizations of the propagating waves reveals clear off-great-circle propagation, wavefront distortion, and a variety of amplitude effects. Perturbations in Rayleigh wave amplitudes are pronounced, with distinct linear features in observed amplitudes across the network. At periods around 20 s these amplitude features can be spatially coherent for over 1,000 km but with sharp boundaries - marked by variations up to a factor of ten in amplitude occurring over distances as short as 70 km. We explore these observations of amplitude anomalies in greater detail to better understand their origin as source- or path-related. Our frequency domain analyses of the TA data utilize power spectra that are computed automatically, for every hour of every station-day, by the IRIS Data Management Center. The power spectra utilize hour-long data segments, with 50% overlap. The time variation of the power spectra values across the array, when rendered as individual movie frames, allow one to easily examine the evolution of both seismic noise and signals across the full spatio-temporal extent of the TA. The frequency domain view of the TA displays a number of familiar characteristics associated with seismic noise and earthquake signals. However, there are also unexpected features such as large-scale, geographically-coherent bands of high-noise which, though transient, exist for many hours. These features may be related to very weak observations of the aforementioned Rayleigh wave amplitude anomalies that are associated with elevated and sustained seismicity in particular source regions. We present examples of these observations and test hypotheses for their origin.

  3. Amplitude Variations in Pulsating Red Giants. II. Some Systematics

    NASA Astrophysics Data System (ADS)

    Percy, J. R.; Laing, J.

    2017-12-01

    In order to extend our previous studies of the unexplained phenomenon of cyclic amplitude variations in pulsating red giants, we have used the AAVSO time-series analysis package vstar to analyze long-term AAVSO visual observations of 50 such stars, mostly Mira stars. The relative amount of the variation, typically a factor of 1.5, and the time scale of the variation, typically 20-35 pulsation periods, are not significantly different in longer-period, shorter-period, and carbon stars in our sample, and they also occur in stars whose period is changing secularly, perhaps due to a thermal pulse. The time scale of the variations is similar to that in smaller-amplitude SR variables, but the relative amount of the variation appears to be larger in smaller-amplitude stars, and is therefore more conspicuous. The cause of the amplitude variations remains unclear, though they may be due to rotational modulation of a star whose pulsating surface is dominated by the effects of large convective cells.

  4. Observation of X-ray eclipses from LMC X-4

    NASA Technical Reports Server (NTRS)

    Li, F.; Rappaport, S.; Epstein, A.

    1978-01-01

    Observations made with the Rotation Modulation Collimator system (RMC) have revealed that X-ray source X-4 in the Large Magellanic Cloud (LMC X-4) is most likely part of a binary system. An analysis of the star's coordinates is presented, with attention given to orbital period and flux intensity variations. Stellar mass and orbital inclination angle are estimated for both X-4 and its companion star.

  5. Low Relative Humidity in the Atmosphere

    DTIC Science & Technology

    1989-01-01

    occur [1]. Dew points in most standard metrorological data are calculated from measurements with psychrometers to determine wet-bulb and dry-bulb...variation existed in relation to the observed data during the day. Only one entire day was missing, and an interpolation was made between the...few sporadic reports at other hours. No attempt has been made to interpolate missing observations as was done for Yuma. Because of the large number of

  6. Observed variations of methane on Mars unexplained by known atmospheric chemistry and physics.

    PubMed

    Lefèvre, Franck; Forget, François

    2009-08-06

    The detection of methane on Mars has revived the possibility of past or extant life on this planet, despite the fact that an abiogenic origin is thought to be equally plausible. An intriguing aspect of the recent observations of methane on Mars is that methane concentrations appear to be locally enhanced and change with the seasons. However, methane has a photochemical lifetime of several centuries, and is therefore expected to have a spatially uniform distribution on the planet. Here we use a global climate model of Mars with coupled chemistry to examine the implications of the recently observed variations of Martian methane for our understanding of the chemistry of methane. We find that photochemistry as currently understood does not produce measurable variations in methane concentrations, even in the case of a current, local and episodic methane release. In contrast, we find that the condensation-sublimation cycle of Mars' carbon dioxide atmosphere can generate large-scale methane variations differing from those observed. In order to reproduce local methane enhancements similar to those recently reported, we show that an atmospheric lifetime of less than 200 days is necessary, even if a local source of methane is only active around the time of the observation itself. This implies an unidentified methane loss process that is 600 times faster than predicted by standard photochemistry. The existence of such a fast loss in the Martian atmosphere is difficult to reconcile with the observed distribution of other trace gas species. In the case of a destruction mechanism only active at the surface of Mars, destruction of methane must occur with an even shorter timescale of the order of approximately 1 hour to explain the observations. If recent observations of spatial and temporal variations of methane are confirmed, this would suggest an extraordinarily harsh environment for the survival of organics on the planet.

  7. Large-Eddy Simulation Sensitivities to Variations of Configuration and Forcing Parameters in Canonical Boundary-Layer Flows for Wind Energy Applications

    DOE PAGES

    Mirocha, Jeffrey D.; Churchfield, Matthew J.; Munoz-Esparza, Domingo; ...

    2017-08-28

    Here, the sensitivities of idealized Large-Eddy Simulations (LES) to variations of model configuration and forcing parameters on quantities of interest to wind power applications are examined. Simulated wind speed, turbulent fluxes, spectra and cospectra are assessed in relation to variations of two physical factors, geostrophic wind speed and surface roughness length, and several model configuration choices, including mesh size and grid aspect ratio, turbulence model, and numerical discretization schemes, in three different code bases. Two case studies representing nearly steady neutral and convective atmospheric boundary layer (ABL) flow conditions over nearly flat and homogeneous terrain were used to force andmore » assess idealized LES, using periodic lateral boundary conditions. Comparison with fast-response velocity measurements at five heights within the lowest 50 m indicates that most model configurations performed similarly overall, with differences between observed and predicted wind speed generally smaller than measurement variability. Simulations of convective conditions produced turbulence quantities and spectra that matched the observations well, while those of neutral simulations produced good predictions of stress, but smaller than observed magnitudes of turbulence kinetic energy, likely due to tower wakes influencing the measurements. While sensitivities to model configuration choices and variability in forcing can be considerable, idealized LES are shown to reliably reproduce quantities of interest to wind energy applications within the lower ABL during quasi-ideal, nearly steady neutral and convective conditions over nearly flat and homogeneous terrain.« less

  8. Large-Eddy Simulation Sensitivities to Variations of Configuration and Forcing Parameters in Canonical Boundary-Layer Flows for Wind Energy Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mirocha, Jeffrey D.; Churchfield, Matthew J.; Munoz-Esparza, Domingo

    Here, the sensitivities of idealized Large-Eddy Simulations (LES) to variations of model configuration and forcing parameters on quantities of interest to wind power applications are examined. Simulated wind speed, turbulent fluxes, spectra and cospectra are assessed in relation to variations of two physical factors, geostrophic wind speed and surface roughness length, and several model configuration choices, including mesh size and grid aspect ratio, turbulence model, and numerical discretization schemes, in three different code bases. Two case studies representing nearly steady neutral and convective atmospheric boundary layer (ABL) flow conditions over nearly flat and homogeneous terrain were used to force andmore » assess idealized LES, using periodic lateral boundary conditions. Comparison with fast-response velocity measurements at five heights within the lowest 50 m indicates that most model configurations performed similarly overall, with differences between observed and predicted wind speed generally smaller than measurement variability. Simulations of convective conditions produced turbulence quantities and spectra that matched the observations well, while those of neutral simulations produced good predictions of stress, but smaller than observed magnitudes of turbulence kinetic energy, likely due to tower wakes influencing the measurements. While sensitivities to model configuration choices and variability in forcing can be considerable, idealized LES are shown to reliably reproduce quantities of interest to wind energy applications within the lower ABL during quasi-ideal, nearly steady neutral and convective conditions over nearly flat and homogeneous terrain.« less

  9. Land cover variation and West Nile virus prevalence: Patterns, processes, and implications for disease control

    USGS Publications Warehouse

    Ezenwa, V.O.; Milheim, L.E.; Coffey, M.F.; Godsey, M.S.; King, R.J.; Guptill, S.C.

    2007-01-01

    Identifying links between environmental variables and infectious disease risk is essential to understanding how human-induced environmental changes will effect the dynamics of human and wildlife diseases. Although land cover change has often been tied to spatial variation in disease occurrence, the underlying factors driving the correlations are often unknown, limiting the applicability of these results for disease prevention and control. In this study, we described associations between land cover composition and West Nile virus (WNV) infection prevalence, and investigated three potential processes accounting for observed patterns: (1) variation in vector density; (2) variation in amplification host abundance; and (3) variation in host community composition. Interestingly, we found that WNV infection rates among Culex mosquitoes declined with increasing wetland cover, but wetland area was not significantly associated with either vector density or amplification host abundance. By contrast, wetland area was strongly correlated with host community composition, and model comparisons suggested that this factor accounted, at least partially, for the observed effect of wetland area on WNV infection risk. Our results suggest that preserving large wetland areas, and by extension, intact wetland bird communities, may represent a valuable ecosystem-based approach for controlling WNV outbreaks. ?? Mary Ann Liebert, Inc.

  10. Rain attenuation measurements: Variability and data quality assessment

    NASA Technical Reports Server (NTRS)

    Crane, Robert K.

    1989-01-01

    Year to year variations in the cumulative distributions of rain rate or rain attenuation are evident in any of the published measurements for a single propagation path that span a period of several years of observation. These variations must be described by models for the prediction of rain attenuation statistics. Now that a large measurement data base has been assembled by the International Radio Consultative Committee, the information needed to assess variability is available. On the basis of 252 sample cumulative distribution functions for the occurrence of attenuation by rain, the expected year to year variation in attenuation at a fixed probability level in the 0.1 to 0.001 percent of a year range is estimated to be 27 percent. The expected deviation from an attenuation model prediction for a single year of observations is estimated to exceed 33 percent when any of the available global rain climate model are employed to estimate the rain rate statistics. The probability distribution for the variation in attenuation or rain rate at a fixed fraction of a year is lognormal. The lognormal behavior of the variate was used to compile the statistics for variability.

  11. Magnetic Field Strengths and Grain Alignment Variations in the Local Bubble Wall

    NASA Astrophysics Data System (ADS)

    Medan, Ilija; Andersson, B.-G.

    2018-01-01

    Optical and infrared continuum polarization is known to be due to irregular dust grains aligned with the magnetic field. This provides an important tool to probe the geometry and strength of those fields, particularly if the variations in the grain alignment efficiencies can be understood. Here, we examine polarization variations observed throughout the Local Bubble for b>30○, using a large polarization survey of the North Galactic cap from Berdyugin et al. (2014). These data are supported by archival photometric and spectroscopic data along with the mapping of the Local Bubble by Lallement et al. (2003). We can accurately model the observational data assuming that the grain alignment variations are due to the radiation from the OB associations within 1 kpc of the sun. This strongly supports radiatively driven grain alignment. We also probe the relative strength of the magnetic field in the wall of the Local Bubble using the Davis-Chandrasekhar-Fermi method. We find evidence for a bimodal field strength distribution, where the variations in the field are correlated with the variations in grain alignment efficiency, indicating that the higher strength regions might represent a compression of the wall by the interaction of the outflow in the Local Bubble and the opposing flows by the surrounding OB associations.

  12. Implications of a primordial origin for the dispersion in D/H in quasar absorption systems

    PubMed Central

    Copi, Craig J.; Olive, Keith A.; Schramm, David N.

    1998-01-01

    We explore the difficulties with a primordial origin of variations of D/H in quasar absorption systems. In particular we examine options such as a very large-scale inhomogeneity in the baryon content of the universe. We show that very large-scale (much larger than 1 Mpc) isocurvature perturbations are excluded by current cosmic microwave background observations. Smaller-scale ad hoc perturbations (∼1 Mpc) still may lead to a large dispersion in primordial abundances but are subject to other constraints. PMID:9501162

  13. Implications of a primordial origin for the dispersion in D/H in quasar absorption systems.

    PubMed

    Copi, C J; Olive, K A; Schramm, D N

    1998-03-17

    We explore the difficulties with a primordial origin of variations of D/H in quasar absorption systems. In particular we examine options such as a very large-scale inhomogeneity in the baryon content of the universe. We show that very large-scale (much larger than 1 Mpc) isocurvature perturbations are excluded by current cosmic microwave background observations. Smaller-scale ad hoc perturbations (approximately 1 Mpc) still may lead to a large dispersion in primordial abundances but are subject to other constraints.

  14. Meteor Shower Activity Derived from "Meteor Watching Public-Campaign" in Japan

    NASA Technical Reports Server (NTRS)

    Sato, M.; Watanabe, J.

    2011-01-01

    We tried to analyze activities of meteor showers from accumulated data collected by public campaigns for meteor showers which were performed as outreach programs. The analyzed campaigns are Geminids (in 2007 and 2009), Perseids (in 2008 and 2009), Quadrantids (in 2009) and Orionids (in 2009). Thanks to the huge number of reports, the derived time variations of the activities of meteor showers is very similar to those obtained by skilled visual observers. The values of hourly rates are about one-fifth (Geminids 2007) or about one-fourth (Perseids 2008) compared with the data of skilled observers, mainly due to poor observational sites such as large cities and urban areas, together with the immature skill of participants in the campaign. It was shown to be highly possible to estimate time variation in the meteor shower activity from our campaign.

  15. Longitudinal dependence of the seasonal variations of the topside ionospheric and plasmaspheric electron content: observations and model results

    NASA Astrophysics Data System (ADS)

    Zhang, Man-Lian; Liu, Libo; Ning, Baiqi; Wan, Weixing

    2016-07-01

    Radio signals transmitted from GPS satellite going through the ionization zone above the Earth will be refracted by the ionized components in the ionosphere and the plasmasphere, which would produce additional transfer delay and generate extra errors in satellite navigation and positioning, etc. These errors have strong relation with the total electron content (TEC) along the signal's travelling path. Therefore TEC is one of the most important parameters required by many users for different modern usage purposes. The topside ionospheric and plasmaspheric electron content makes a large contribution to TEC. In the present study, data for the year 2008 of the topside ionospheric and plasmaspheric electron content (PEC) between the height of 800-20200km above the Earth derived from the upward-looking TEC measurements of the precise orbit determination antenna on board the COSMIC low Earth orbit (LEO) satellites to the GPS signals are used to study the longitudinal dependence of the seasonal variations of PEC. A comparison study of the observed PEC with the IZMIRAN_Plas model results is also made. Our study showed that PEC shows different seasonal variations at different longitudinal sectors: for the 240°E-60°E longitudinal sector, PEC shows a strong annual variation with lowest value in the June solstice and highest value in the December solstice months; In contrast, very weak seasonal variations are observed for PEC at 60°E-240°E longitudinal sector; Comparison study showed that this longitudinal dependence feature of the observed PEC's seasonal variation is not well captured by the IZMIRAN_Plas model result. Acknowledgments This research was supported by the National Natural Science Foundation of China (NSFC No. 41274163)

  16. Optical observational programs at the Indian Institute of Astrophysics

    NASA Astrophysics Data System (ADS)

    Singh, Jagdev; Ravindra, B.

    The Indian Institute of Astrophysics has been making optical observations of the sun for more than a century by taking images of the sun in continuum to study the photosphere, Ca-K line and H-alpha line in order to study the chromosphere by using the same instruments which are used to study the long term variations of the magnetic fields on the sun. The digitizers have been developed using uniform light sources, imaging optics without any vignetting in the required FOV and large format 4K×4K CCD cameras to digitize the data for scientific studies. At the Solar Tower Telescope we have performed very high resolution spectroscopic observations around Ca-K line to investigate the variations and delineate the contribution of various features to the solar cycle variations. Solar coronal studies have been done during the occurrence of total solar eclipses and with a coronagraph to study the coronal heating. Here we discuss the systematic temporal variations observed in the green and red emission profiles using high spectral and temporal observations during the 2006, 2009 and 2010 total solar eclipses. The TWIN telescope a new facility has been fabricated and installed at Kodaikanal observatory to continue the synoptic observations of the sun and a space-based coronagraph is also being designed and fabricated in collaboration with various laboratories of ISRO (LEOS, ISAC and SAC) and USO. In this article we present the summary of results of optical observational programs carried out at Kodaikanal Observatory and during the eclipse expeditions where authors have played a leading role. Furthermore, this review is not complete in all respects of all the observational programs carried out at the Kodaikanal observatory.

  17. Electrochemically controlled iron isotope fractionation

    NASA Astrophysics Data System (ADS)

    Black, Jay R.; Young, Edward D.; Kavner, Abby

    2010-02-01

    Variations in the stable isotope abundances of transition metals have been observed in the geologic record and trying to understand and reconstruct the physical/environmental conditions that produced these signatures is an area of active research. It is clear that changes in oxidation state lead to large fractionations of the stable isotopes of many transition metals such as iron, suggesting that transition metal stable isotope signatures could be used as a paleo-redox proxy. However, the factors contributing to these observed stable isotope variations are poorly understood. Here we investigate how the kinetics of iron redox electrochemistry generates isotope fractionation. Through a combination of electrodeposition experiments and modeling of electrochemical processes including mass-transport, we show that electron transfer reactions are the cause of a large isotope separation, while mass transport-limited supply of reactant to the electrode attenuates the observed isotopic fractionation. Furthermore, the stable isotope composition of electroplated transition metals can be tuned in the laboratory by controlling parameters such as solution chemistry, reaction overpotential, and solution convection. These methods are potentially useful for generating isotopically-marked metal surfaces for tracking and forensic purposes. In addition, our studies will help interpret stable isotope data in terms of identifying underlying electron transfer processes in laboratory and natural samples.

  18. A photometric function of planetary surfaces for gourmets

    NASA Astrophysics Data System (ADS)

    Shkuratov, Yuriy; Korokhin, Viktor; Shevchenko, Vasilij; Mikhalchenko, Olga; Belskaya, Irina; Kaydash, Vadym; Videen, Gorden; Zubko, Evgenij; Velikodsky, Yuriy

    2018-03-01

    A new photometric model with small number of parameters is presented. The model is based on an assumption that there exist such surfaces for which spatial brightness variations caused by small topography undulations can be reproduced exactly by corresponding spatial variations of albedo. This indistinguishability results in a differential equation suggesting a new photometric function that generalizes, in particular, the Akimov disk-function. Our model provides excellent fits in a wide phase-angle range for integral observations of asteroids of different albedos. We also carried out fitting to integral observations of the Moon and Mercury, confirming difficulties in describing Mercury's phase function at large phase angles, which were also found for the Hapke model. Comparisons of global latitude and longitude trends with our model calculations have shown good coincidence for the Moon. To retrieve the lunar trends, we use the phase-ratio technique, applying it to our telescope observations. Mapping the model parameters using LROC WAC data were carried out for a region comprising the Reiner Gamma formation. This mapping allows us to calculate phase-ratio images of the region, showing at large phase angles systematically steeper phase curves of young craters and smaller steepness for the very Reiner Gamma formation.

  19. Seasonal variation of wave activities near the mesopause region observed at King Sejong Station (62.22°S, 58.78°W), Antarctica

    NASA Astrophysics Data System (ADS)

    Lee, Changsup; Kim, Yong Ha; Kim, Jeong-Han; Jee, Geonhwa; Won, Young-In; Wu, Dong L.

    2013-12-01

    We analyzed the neutral wind data at altitudes of 80-100 km obtained from a VHF meteor radar at King Sejong Station (KSS, 62.22°S, 58.78°W), a key location to study wave activities above the stratospheric vortex near the Antarctic Peninsula. The seasonal behavior of the semidiurnal tides is generally consistent with the prediction of Global Scale Wave Model (GSWM02) except in the altitude region above ~96 km. Gravity wave (GW) activities inferred from the neutral wind variances show a seasonal variation very similar to the semidiurnal tide amplitudes, suggesting a strong interaction between gravity waves and the tide. Despite the consistent seasonal variations of the GW wind variances observed at the adjacent Rothera station, the magnitudes of the wind variance obtained at KSS are much larger than those at Rothera, especially during May-September. The enhanced GW activity at KSS is also observed by Aura Microwave Limb Sounder (MLS) from space in its temperature variance. The observed large wind variances at KSS imply that the Antarctic vortex in the stratosphere may act as an effective filter and source for the GWs in the upper atmosphere.

  20. The investigation of short-term variations of Jupiter's Synchrotron Radiation with the large radio interferometer GMRT

    NASA Astrophysics Data System (ADS)

    Imai, Kota; Misawa, Hiroaki; Bhardwaj, Anil; Tsuchiya, Fuminori; Doi, Akihiro; Kondo, Tetsuro; Morioka, Akira

    The goal of this research is to investigate physical processes of short term variations of Jupiter's Synchrotron Radiation (JSR) which is important for revealing the origin of relativistic electrons at Jupiter's Radiation Belt (JRB). JSR has been frequently observed by radio interferometers and single dish radio telescopes to understand characteristics of the spatial distribution and variations inferring dynamics and energetics of the relativistic electrons. Observations with radio interferometers have showed JSR source structure (Dunn et al., 2003, etc), and contributed to modeling of JRB (Garrett et al., 2005, etc). On the other hand, observations of total intensity of JSR with a single dish radio telescope have revealed characteristics of time variable phenomena. The time variations are indispensable parameters giving clues to understand particle source and/or loss processes which characterize the formation of JRB. Recently, Miyoshi et al. (1999) and Bolton et al. (2002) confirmed the existence of short term (days to weeks) variations in JSR. The detection of short term variations makes a great impact on the study on JRB because it has been believed for a long time that the strong internal magnetic field and rapidly rotating magnetosphere of Jupiter protect the JRB region from solar wind variations and magnetospheric disturbances as theoretically suggested by de Pater and Goertz (1994). So far we have made the JSR observations to investigate the short term variations of mainly several hundreds MHz JSR which is emitted by low energy particles (< 10MeV) and has been observed systematically only few times (Miyoshi et al., 1999, Misawa et al., 2005, etc). The latter observation suggested that the short term variation is a general feature at low frequencies. Therefore, it is essential to study its detailed characteristics and the causalities. Theoretically expected physical processes which are responsible for the short term variation are enhanced radial diffusion initiated by solar UV flux enhancement and scattering of the JRB particles toward the polar region by whistler-mode wave, although it is still not known whether solar UV flux or whistler-mode wave is a dominant initiator. In order to investigate physical processes of short term variations, we observed JSR with the Giant Metrewave Radio Telescope (GMRT) from 23rd May 2007 to 27th June 2007. Bhardwaj et al. (2005) first made JSR observations with the GMRT for about a week in 2003 and suggested that JSR flux increased with Solar 10.7cm radio flux (F10.7), which is correlated to solar UV flux. On the other hand, the initial results of GMRT observation in 2007 show that the total flux of JSR varies in several days but is not strongly correlated to F10.7. Then, when the total flux of JSR increased, the peak position of JSR moved outward, and the flux of JSR increased in the outer emitting region. It is implied that the other acceleration processes cause these variations except the enhanced radial diffusion, because enhanced radial diffusion increases the flux of JSR and the peak position of JSR moves toward Jupiter. In this presentation, we will discuss the variations of JSR spatial distribution shown in the 2007 GMRT observation results. Acknowledgement: We would like to appreciate helpful support of Ishwara Chandra C. H. And, we thank the staff of the GMRT who have made these observations possible. GMRT is run by the National Centre for Radio Astrophysics of the Tata Institute of Fundamental Research.

  1. Time variations in the mechanical characteristics of local crustal segments according to seismic observations

    NASA Astrophysics Data System (ADS)

    Kocharyan, G. G.; Gamburtseva, N. G.; Sanina, I. A.; Danilova, T. V.; Nesterkina, M. A.; Gorbunova, E. M.; Ivanchenko, G. N.

    2011-04-01

    The results of the seismic observations made with two different experimental setups are presented. In the first case, the signals produced by underground nuclear explosions at the Semipalatinsk Test Site were measured on a linear profile, which allowed one to definitely outline the areas where the mechanical properties of rocks experienced considerable time variations. In the second case, the waves excited by the open-pit mine blasts recorded at a small-aperture seismic array at the Mikhnevo Geophysical Station (Institute of Geosphere Dynamics, Russian Academy of Sciences) on the East European Platform favored the estimation of variations in the integral characteristics of the seismic path. Measurements in aseismic regions characterized by diverse geological structure and different tectonic conditions revealed similar effects of the strong dependency of seismic parameters on the time of explosions. Here, the variations experienced by the maximum amplitudes of oscillations and irrelevant to seasonal changes or local conditions reached a factor of two. The generic periods of these variations including the distinct annual rhythm are probably the fragments of a lower-frequency process. The obtained results suggest that these variations are due to changes in the stressstrain state of active fault zones, which, in turn, can be associated with the macroscale motion of large blocks triggered by tidal strains, tectonic forces and, possibly, variations in the rate of the Earth's rotation.

  2. Validation of Ray Tracing Code Refraction Effects

    NASA Technical Reports Server (NTRS)

    Heath, Stephanie L.; McAninch, Gerry L.; Smith, Charles D.; Conner, David A.

    2008-01-01

    NASA's current predictive capabilities using the ray tracing program (RTP) are validated using helicopter noise data taken at Eglin Air Force Base in 2007. By including refractive propagation effects due to wind and temperature, the ray tracing code is able to explain large variations in the data observed during the flight test.

  3. Spatial perspectives in state-and-transition models: A missing link to land management?

    USDA-ARS?s Scientific Manuscript database

    Conceptual models of alternative states and thresholds are based largely on observations of ecosystem processes at a few points in space. Because the distribution of alternative states in spatially-structured ecosystems is the result of variations in pattern-process interactions at different scales,...

  4. Benchmarking dairy herd health status using routinely recorded herd summary data

    USDA-ARS?s Scientific Manuscript database

    Genetic improvement of dairy cattle health through the use of producer-recorded data has been determined to be feasible. Low estimated heritabilities indicate that genetic progress will be slow. Variation observed in lowly heritable traits can largely be attributed to non-genetic factors, such as th...

  5. Anomalous width variations for ion acoustic rarefactive solitary waves in a warm ion plasma with two electron temperatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghosh, S.S.; Sekar Iyengar, A.N.

    1997-09-01

    Anomalous width{endash}amplitude variations were observed in large amplitude rarefactive solitary waves which show increasing width with increasing amplitude, contrasting the usual reciprocal relation between the square of the width and the amplitude, beyond a certain value of the plasma parameters [S. S. Ghosh, K. K. Ghosh, and A. N. Sekar Iyengar, Phys. Plasmas, {bold 3}, 3939 (1996)]. For the limiting maximum amplitude, the {open_quotes}increasing width{close_quotes} solitary wave tends to a double layer-like solution. The overall variation was found to depend crucially on the specific parameter space. From a detailed investigation of the above behavior, a plausible physical explanation has beenmore » presented for such increases in the width. It is found that the ions{close_quote} initial kinetic energies and the cold electron concentration within the perturbed region play a significant role in determining the observed width{endash}amplitude variation. This contradicts the investigation of Sayal, Yadav, and Sharma [Phys. Scr. {bold 47}, 576 (1993)]. {copyright} {ital 1997 American Institute of Physics.}« less

  6. Spatio-temporal variation in chemical characteristics of PM10 over Indo Gangetic Plain of India.

    PubMed

    Sharma, S K; Mandal, T K; Srivastava, M K; Chatterjee, A; Jain, Srishti; Saxena, M; Singh, B P; Saraswati; Sharma, A; Adak, A; K Ghosh, S

    2016-09-01

    The paper presents the spatio-temporal variation of chemical compositions (organic carbon (OC), elemental carbon (EC), and water-soluble inorganic ionic components (WSIC)) of particulate matter (PM10) over three locations (Delhi, Varanasi, and Kolkata) of Indo Gangetic Plain (IGP) of India for the year 2011. The observational sites are chosen to represent the characteristics of upper (Delhi), middle (Varanasi), and lower (Kolkata) IGP regions as converse to earlier single-station observation. Average mass concentration of PM10 was observed higher in the middle IGP (Varanasi 206.2 ± 77.4 μg m(-3)) as compared to upper IGP (Delhi 202.3 ± 74.3 μg m(-3)) and lower IGP (Kolkata 171.5 ± 38.5 μg m(-3)). Large variation in OC values from 23.57 μg m(-3) (Delhi) to 12.74 μg m(-3) (Kolkata) indicating role of formation of secondary aerosols, whereas EC have not shown much variation with maximum concentration over Delhi (10.07 μg m(-3)) and minimum over Varanasi (7.72 μg m(-3)). As expected, a strong seasonal variation was observed in the mass concentration of PM10 as well as in its chemical composition over the three locations. Principal component analysis (PCA) identifies the contribution of secondary aerosol, biomass burning, fossil fuel combustion, vehicular emission, and sea salt to PM10 mass concentration at the observational sites of IGP, India. Backward trajectory analysis indicated the influence of continental type aerosols being transported from the Bay of Bengal, Pakistan, Afghanistan, Rajasthan, Gujarat, and surrounding areas to IGP region.

  7. TIME DISTRIBUTIONS OF LARGE AND SMALL SUNSPOT GROUPS OVER FOUR SOLAR CYCLES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kilcik, A.; Yurchyshyn, V. B.; Abramenko, V.

    2011-04-10

    Here we analyze solar activity by focusing on time variations of the number of sunspot groups (SGs) as a function of their modified Zurich class. We analyzed data for solar cycles 20-23 by using Rome (cycles 20 and 21) and Learmonth Solar Observatory (cycles 22 and 23) SG numbers. All SGs recorded during these time intervals were separated into two groups. The first group includes small SGs (A, B, C, H, and J classes by Zurich classification), and the second group consists of large SGs (D, E, F, and G classes). We then calculated small and large SG numbers frommore » their daily mean numbers as observed on the solar disk during a given month. We report that the time variations of small and large SG numbers are asymmetric except for solar cycle 22. In general, large SG numbers appear to reach their maximum in the middle of the solar cycle (phases 0.45-0.5), while the international sunspot numbers and the small SG numbers generally peak much earlier (solar cycle phases 0.29-0.35). Moreover, the 10.7 cm solar radio flux, the facular area, and the maximum coronal mass ejection speed show better agreement with the large SG numbers than they do with the small SG numbers. Our results suggest that the large SG numbers are more likely to shed light on solar activity and its geophysical implications. Our findings may also influence our understanding of long-term variations of the total solar irradiance, which is thought to be an important factor in the Sun-Earth climate relationship.« less

  8. Quality variations in black musli (curculigo orchioides gaertn.).

    PubMed

    Mathew, P P Joy Samuel; Savithri, K E; Skaria, Baby P; Kurien, Kochurani

    2004-07-01

    Black musli (Curculigo orchioides Gaertn.) one of the ayurvedic dasapushpa and a rejuvenating and aphrodisiac drug. Is on the verge of extinction and needs to be conserved and cultivated. Large variations are also observed in the quality of the crude drug available in the market. Study on the quality of C. orchioides in natural habitat, under cultivation and in trade in south India showed that there was considerable variation with biotypes and habitats. Drugs collected form the natural habitat was superior in quality to that produced by cultivation. Among the market samples collected from the various Zones of kerala, those from the High Ranges were superior in most of the quality parameters, which indicated its superiority for high quality drug formulation. Among the southern states, Tamil Nadu samples ranked next to High Range samples in this respect. There exists large variability in the market samples and there is felt-need for proper standardization of the crude drug for ensuring quality in the drug formulations.

  9. Large Magneto-ionic Variations toward the Galactic Center Magnetar, PSR J1745-2900

    NASA Astrophysics Data System (ADS)

    Desvignes, G.; Eatough, R. P.; Pen, U. L.; Lee, K. J.; Mao, S. A.; Karuppusamy, R.; Schnitzeler, D. H. F. M.; Falcke, H.; Kramer, M.; Wucknitz, O.; Spitler, L. G.; Torne, P.; Liu, K.; Bower, G. C.; Cognard, I.; Lyne, A. G.; Stappers, B. W.

    2018-01-01

    Polarized radio emission from PSR J1745‑2900 has already been used to investigate the strength of the magnetic field in the Galactic center (GC), close to Sagittarius A*. Here we report how persistent radio emission from this magnetar, for over four years since its discovery, has revealed large changes in the observed Faraday rotation measure (RM), by up to 3500 rad m‑2 (a 5% fractional change). From simultaneous analysis of the dispersion measure, we determine that these fluctuations are dominated by variations in either the projected magnetic field or the free electron content within the GC, along the changing line of sight to the rapidly moving magnetar. From a structure function analysis of RM variations, and a recent epoch of rapid change of RM, we determine a minimum scale of magneto-ionic fluctuations of size ∼2 au at the GC distance, inferring PSR J1745‑2900 is just ∼0.1 pc behind an additional scattering screen.

  10. Medium and large-scale variations of dynamo-induced electric fields from AE ion drift measurements

    NASA Technical Reports Server (NTRS)

    Coley, W. R.; Mcclure, J. P.

    1986-01-01

    Current models of the low latitude electric field are largely based on data from incoherent scatter radars. These observations are extended through the addition of the rather extensive high quality electric field measurements from the Ion Drift Meter (IDM) aboard the Atmosphere Explorer (AE) spacecraft. Some preliminary results obtained from the Unified Abstract files of satellite AE-E are presented. This satellite was active from the end of 1975 through June 1981 in various elliptical and circular orbits having an inclination near 20 deg. The resulting data can be examined for the variation of ion drift with latitude, longitude, season, solar cycle, altitude, and magnetic activity. The results presented deal primarily with latitudinal variations of the drift features. Diagrams of data are given and briefly interpreted. The preliminary results presented here indicate that IDM data from the AE and the more recent Dynamics Explorer B spacecraft should continue to disclose some interesting and previously unobserved dynamical features of the low latitude F region.

  11. Self-compensating design for reduction of timing and leakage sensitivity to systematic pattern dependent variation

    NASA Astrophysics Data System (ADS)

    Gupta, Puneet; Kahng, Andrew B.; Kim, Youngmin; Sylvester, Dennis

    2006-03-01

    Focus is one of the major sources of linewidth variation. CD variation caused by defocus is largely systematic after the layout is finished. In particular, dense lines "smile" through focus while isolated lines "frown" in typical Bossung plots. This well-defined systematic behavior of focus-dependent CD variation allows us to develop a self-compensating design methodology. In this work, we propose a novel design methodology that allows explicit compensation of focus-dependent CD variation, either within a cell (self-compensated cells) or across cells in a critical path (self-compensated design). By creating iso and dense variants for each library cell, we can achieve designs that are more robust to focus variation. Optimization with a mixture of iso and dense cell variants is possible both for area and leakage power, with the latter providing an interesting complement to existing leakage reduction techniques such as dual-Vth. We implement both heuristic and Mixed-Integer Linear Programming (MILP) solution methods to address this optimization, and experimentally compare their results. Our results indicate that designing with a self-compensated cell library incurs ~12% area penalty and ~6% leakage increase over original layouts while compensating for focus-dependent CD variation (i.e., the design meets timing constraints across a large range of focus variation). We observe ~27% area penalty and ~7% leakage increase at the worst-case defocus condition using only single-pitch cells. The area penalty of circuits after using either the heuristic or MILP optimization approach is reduced to ~3% while maintaining timing. We also apply our optimizations to leakage, which traditionally shows very large variability due to its exponential relationship with gate CD. We conclude that a mixed iso/dense library combined with a sensitivity-based optimization approach yields much better area/timing/leakage tradeoffs than using a self-compensated cell library alone. Self-compensated design shows an average of 25% leakage reduction at the worst defocus condition for the benchmark designs that we have studied.

  12. MAVEN Observations of Solar Wind-Driven Magnetosonic Waves Heating the Martian Dayside Ionosphere

    NASA Astrophysics Data System (ADS)

    Fowler, C. M.; Andersson, L.; Ergun, R. E.; Harada, Y.; Hara, T.; Collinson, G.; Peterson, W. K.; Espley, J.; Halekas, J.; Mcfadden, J.; Mitchell, D. L.; Mazelle, C.; Benna, M.; Jakosky, B. M.

    2018-05-01

    We present Mars Atmosphere and Volatile EvolutioN observations of large-amplitude magnetosonic waves propagating through the magnetosheath into the Martian ionosphere near the subsolar point on the dayside of the planet. The observed waves grow in amplitude as predicted for a wave propagating into a denser, charged medium, with wave amplitudes reaching 25 nT, equivalent to ˜40% of the background field strength. These waves drive significant density and temperature variations (˜20% to 100% in amplitude) in the suprathermal electrons and light ion species (H+) that correlate with compressional fronts of the magnetosonic waves. Density and temperature variations are also observed for the ionospheric electrons, and heavy ion species (O+ and O2+); however, these variations are not in phase with the magnetic field variations. Whistler waves are observed at compressional wave fronts and are thought to be produced by unstable, anistropic suprathermal electrons. The magnetosonic waves drive significant ion and electron heating down to just above the exobase region. Ion heating rates are estimated to be between 0.03 and 0.2 eVs-1 per ion, and heavier ions could thus gain escape energy if located in this heating region for ˜10-70 s. The measured ionospheric density profile indicates severe ionospheric erosion above the exobase region, and this is likely caused by substantial ion outflow that is driven by the observed heating. The effectiveness of these magnetosonic waves to energize the plasma close to the exobase could have important implications for the long-term climate evolution for unmagnetized bodies that are exposed to the solar wind.

  13. Analysis and implications of mutational variation.

    PubMed

    Keightley, Peter D; Halligan, Daniel L

    2009-06-01

    Variation from new mutations is important for several questions in quantitative genetics. Key parameters are the genomic mutation rate and the distribution of effects of mutations (DEM), which determine the amount of new quantitative variation that arises per generation from mutation (V(M)). Here, we review methods and empirical results concerning mutation accumulation (MA) experiments that have shed light on properties of mutations affecting quantitative traits. Surprisingly, most data on fitness traits from laboratory assays of MA lines indicate that the DEM is platykurtic in form (i.e., substantially less leptokurtic than an exponential distribution), and imply that most variation is produced by mutations of moderate to large effect. This finding contrasts with results from MA or mutagenesis experiments in which mutational changes to the DNA can be assayed directly, which imply that the vast majority of mutations have very small phenotypic effects, and that the distribution has a leptokurtic form. We compare these findings with recent approaches that attempt to infer the DEM for fitness based on comparing the frequency spectra of segregating nucleotide polymorphisms at putatively neutral and selected sites in population samples. When applied to data for humans and Drosophila, these analyses also indicate that the DEM is strongly leptokurtic. However, by combining the resultant estimates of parameters of the DEM with estimates of the mutation rate per nucleotide, the predicted V(M) for fitness is only a tiny fraction of V(M) observed in MA experiments. This discrepancy can be explained if we postulate that a few deleterious mutations of large effect contribute most of the mutational variation observed in MA experiments and that such mutations segregate at very low frequencies in natural populations, and effectively are never seen in population samples.

  14. Multi-model analysis of terrestrial carbon cycles in Japan: limitations and implications of model calibration using eddy flux observations

    NASA Astrophysics Data System (ADS)

    Ichii, K.; Suzuki, T.; Kato, T.; Ito, A.; Hajima, T.; Ueyama, M.; Sasai, T.; Hirata, R.; Saigusa, N.; Ohtani, Y.; Takagi, K.

    2010-07-01

    Terrestrial biosphere models show large differences when simulating carbon and water cycles, and reducing these differences is a priority for developing more accurate estimates of the condition of terrestrial ecosystems and future climate change. To reduce uncertainties and improve the understanding of their carbon budgets, we investigated the utility of the eddy flux datasets to improve model simulations and reduce variabilities among multi-model outputs of terrestrial biosphere models in Japan. Using 9 terrestrial biosphere models (Support Vector Machine - based regressions, TOPS, CASA, VISIT, Biome-BGC, DAYCENT, SEIB, LPJ, and TRIFFID), we conducted two simulations: (1) point simulations at four eddy flux sites in Japan and (2) spatial simulations for Japan with a default model (based on original settings) and a modified model (based on model parameter tuning using eddy flux data). Generally, models using default model settings showed large deviations in model outputs from observation with large model-by-model variability. However, after we calibrated the model parameters using eddy flux data (GPP, RE and NEP), most models successfully simulated seasonal variations in the carbon cycle, with less variability among models. We also found that interannual variations in the carbon cycle are mostly consistent among models and observations. Spatial analysis also showed a large reduction in the variability among model outputs. This study demonstrated that careful validation and calibration of models with available eddy flux data reduced model-by-model differences. Yet, site history, analysis of model structure changes, and more objective procedure of model calibration should be included in the further analysis.

  15. Fundamental constants and high-resolution spectroscopy

    NASA Astrophysics Data System (ADS)

    Bonifacio, P.; Rahmani, H.; Whitmore, J. B.; Wendt, M.; Centurion, M.; Molaro, P.; Srianand, R.; Murphy, M. T.; Petitjean, P.; Agafonova, I. I.; D'Odorico, S.; Evans, T. M.; Levshakov, S. A.; Lopez, S.; Martins, C. J. A. P.; Reimers, D.; Vladilo, G.

    2014-01-01

    Absorption-line systems detected in high resolution quasar spectra can be used to compare the value of dimensionless fundamental constants such as the fine-structure constant, α, and the proton-to-electron mass ratio, μ = m_p/m_e, as measured in remote regions of the Universe to their value today on Earth. In recent years, some evidence has emerged of small temporal and also spatial variations in α on cosmological scales which may reach a fractional level of ≈ 10 ppm (parts per million). We are conducting a Large Programme of observations with the Very Large Telescope's Ultraviolet and Visual Echelle Spectrograph (UVES), and are obtaining high-resolution ({R ≈ 60 000}) and high signal-to-noise ratio (S/N ≈ 100) spectra calibrated specifically to study the variations of the fundamental constants. We here provide a general overview of the Large Programme and report on the first results for these two constants, discussed in detail in Molaro et al. (2013) and Rahmani et al. (2013). A stringent bound for Δα/α is obtained for the absorber at z_abs = 1.6919 towards HE 2217-2818. The absorption profile is complex with several very narrow features, and is modeled with 32 velocity components. The relative variation in α in this system is +1.3± 2.4_stat ± 1.0_sys ppm if Al II λ 1670 Å and three Fe II transitions are used, and +1.1 ± 2.6_stat ppm in a slightly different analysis with only Fe II transitions used. This is one of the tightest bounds on α-variation from an individual absorber and reveals no evidence for variation in α at the 3-ppm precision level (1σ confidence). The expectation at this sky position of the recently-reported dipolar variation of α is (3.2-5.4)±1.7 ppm depending on dipole model used and this constraint of Δα/α at face value is not supporting this expectation but not inconsistent with it at the 3σ level. For the proton-to-electron mass ratio the analysis of the H_2 absorption lines of the z_abs ≈ 2.4018 damped Lyα system towards HE 0027-1836 provides Δμ/μ = (-7.6 ± 8.1_stat ± 6.3_sys) ppm which is also consistent with a null variation. The cross-correlation analysis between individual exposures taken over three years and comparison with almost simultaneous asteroid observations revealed the presence of a possible wavelength dependent velocity drift as well as of inter-order distortions which probably dominate the systematic error and are a significant obstacle to achieve more accurate measurements. Based on observations obtained with UVES at the the 8.2 m Kueyen ESO telescope programme L185.A-0745.

  16. Host-parasite coevolution: genetic variation in a virus population and the interaction with a host gene.

    PubMed

    Wilfert, L; Jiggins, F M

    2010-07-01

    Host-parasite coevolution is considered to be an important factor in maintaining genetic variation in resistance to pathogens. Drosophila melanogaster is naturally infected by the sigma virus, a vertically transmitted and host-specific pathogen. In fly populations, there is a large amount of genetic variation in the transmission rate from parent to offspring, much of which is caused by major-effect resistance polymorphisms. We have found that there are similarly high levels of genetic variation in the rate of paternal transmission among 95 different isolates of the virus as in the host. However, when we examined a transmission-blocking gene in the host, we found that it was effective across virus isolates. Therefore, the high levels of genetic variation observed in this system do not appear to be maintained because of coevolution resulting from interactions between this host gene and parasite genes.

  17. Global variations of zonal mean ozone during stratospheric warming events

    NASA Technical Reports Server (NTRS)

    Randel, William J.

    1993-01-01

    Eight years of Solar Backscatter Ultraviolet (SBUV) ozone data are examined to study zonal mean variations associated with stratospheric planetary wave (warming) events. These fluctuations are found to be nearly global in extent, with relatively large variations in the tropics, and coherent signatures reaching up to 50 deg in the opposite (summer) hemisphere. These ozone variations are a manifestation of the global circulation cells associated with stratospheric warming events; the ozone responds dynamically in the lower stratosphere to transport, and photochemically in the upper stratosphere to the circulation-induced temperature changes. The observed ozone variations in the tropics are of particular interest because transport is dominated by zonal-mean vertical motions (eddy flux divergences and mean meridional transports are negligible), and hence, substantial simplifications to the governing equations occur. The response of the atmosphere to these impulsive circulation changes provides a situation for robust estimates of the ozone-temperature sensitivity in the upper stratosphere.

  18. A Numerical Climate Observing Network Design Study

    NASA Technical Reports Server (NTRS)

    Stammer, Detlef

    2003-01-01

    This project was concerned with three related questions of an optimal design of a climate observing system: 1. The spatial sampling characteristics required from an ARGO system. 2. The degree to which surface observations from ARGO can be used to calibrate and test satellite remote sensing observations of sea surface salinity (SSS) as it is anticipated now. 3. The more general design of an climate observing system as it is required in the near future for CLIVAR in the Atlantic. An important question in implementing an observing system is that of the sampling density required to observe climate-related variations in the ocean. For that purpose this project was concerned with the sampling requirements for the ARGO float system, but investigated also other elements of a climate observing system. As part of this project we studied the horizontal and vertical sampling characteristics of a global ARGO system which is required to make it fully complementary to altimeter data with the goal to capture climate related variations on large spatial scales (less thanAttachment: 1000 km). We addressed this question in the framework of a numerical model study in the North Atlantic with an 1/6 horizontal resolution. The advantage of a numerical design study is the knowledge of the full model state. Sampled by a synthetic float array, model results will therefore allow to test and improve existing deployment strategies with the goal to make the system as optimal and cost-efficient as possible. Attachment: "Optimal observations for variational data assimilation".

  19. Three-dimensional hydrodynamic simulations of OMEGA implosions

    NASA Astrophysics Data System (ADS)

    Igumenshchev, I. V.; Michel, D. T.; Shah, R. C.; Campbell, E. M.; Epstein, R.; Forrest, C. J.; Glebov, V. Yu.; Goncharov, V. N.; Knauer, J. P.; Marshall, F. J.; McCrory, R. L.; Regan, S. P.; Sangster, T. C.; Stoeckl, C.; Schmitt, A. J.; Obenschain, S.

    2017-05-01

    The effects of large-scale (with Legendre modes ≲ 10) asymmetries in OMEGA direct-drive implosions caused by laser illumination nonuniformities (beam-power imbalance and beam mispointing and mistiming), target offset, and variation in target-layer thickness were investigated using the low-noise, three-dimensional Eulerian hydrodynamic code ASTER. Simulations indicate that these asymmetries can significantly degrade the implosion performance. The most important sources of the asymmetries are the target offsets ( ˜10 to 20 μm), beam-power imbalance ( σrms˜10 %), and variations ( ˜5 %) in target-layer thickness. Large-scale asymmetries distort implosion cores, resulting in a reduced hot-spot confinement and an increased residual kinetic energy of implosion targets. The ion temperature inferred from the width of simulated neutron spectra is influenced by bulk fuel motion in the distorted hot spot and can result in up to an ˜1 -keV increase in apparent temperature. Similar temperature variations along different lines of sight are observed. Demonstrating hydrodynamic equivalence to ignition designs on OMEGA requires a reduction in large-scale target and laser-imposed nonuniformities, minimizing target offset, and employing highly efficient mid-adiabat (α = 4) implosion designs, which mitigate cross-beam energy transfer and suppress short-wavelength Rayleigh-Taylor growth.

  20. Three-dimensional hydrodynamic simulations of OMEGA implosions

    DOE PAGES

    Igumenshchev, I. V.; Michel, D. T.; Shah, R. C.; ...

    2017-03-30

    Here, the effects of large-scale (with Legendre modes ≲10) asymmetries in OMEGA direct-drive implosions caused by laser illumination nonuniformities (beam-power imbalance and beam mispointing and mistiming), target offset, and variation in target-layer thickness were investigated using the low-noise, three-dimensional Eulerian hydrodynamic code ASTER. Simulations indicate that these asymmetries can significantly degrade the implosion performance. The most important sources of the asymmetries are the target offsets (~10 to 20 μm), beam-power imbalance (σ rms ~ 10%), and variations (~5%) in target-layer thickness. Large-scale asymmetries distort implosion cores, resulting in a reduced hot-spot confinement and an increased residual kinetic energy of implosionmore » targets. The ion temperature inferred from the width of simulated neutron spectra is influenced by bulk fuel motion in the distorted hot spot and can result in up to an ~1 -keV increase in apparent temperature. Similar temperature variations along different lines of sight are observed. Demonstrating hydrodynamic equivalence to ignition designs on OMEGA requires a reduction in large-scale target and laser-imposed nonuniformities, minimizing target offset, and employing highly efficient mid-adiabat (α = 4) implosion designs, which mitigate cross-beam energy transfer and suppress short-wavelength Rayleigh–Taylor growth.« less

  1. Three-dimensional hydrodynamic simulations of OMEGA implosions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Igumenshchev, I. V.; Michel, D. T.; Shah, R. C.

    Here, the effects of large-scale (with Legendre modes ≲10) asymmetries in OMEGA direct-drive implosions caused by laser illumination nonuniformities (beam-power imbalance and beam mispointing and mistiming), target offset, and variation in target-layer thickness were investigated using the low-noise, three-dimensional Eulerian hydrodynamic code ASTER. Simulations indicate that these asymmetries can significantly degrade the implosion performance. The most important sources of the asymmetries are the target offsets (~10 to 20 μm), beam-power imbalance (σ rms ~ 10%), and variations (~5%) in target-layer thickness. Large-scale asymmetries distort implosion cores, resulting in a reduced hot-spot confinement and an increased residual kinetic energy of implosionmore » targets. The ion temperature inferred from the width of simulated neutron spectra is influenced by bulk fuel motion in the distorted hot spot and can result in up to an ~1 -keV increase in apparent temperature. Similar temperature variations along different lines of sight are observed. Demonstrating hydrodynamic equivalence to ignition designs on OMEGA requires a reduction in large-scale target and laser-imposed nonuniformities, minimizing target offset, and employing highly efficient mid-adiabat (α = 4) implosion designs, which mitigate cross-beam energy transfer and suppress short-wavelength Rayleigh–Taylor growth.« less

  2. ON TEMPORAL VARIATIONS OF THE MULTI-TeV COSMIC RAY ANISOTROPY USING THE TIBET III AIR SHOWER ARRAY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amenomori, M.; Bi, X. J.; Ding, L. K.

    2010-03-01

    We analyze the large-scale two-dimensional sidereal anisotropy of multi-TeV cosmic rays (CRs) by the Tibet Air Shower Array, with the data taken from 1999 November to 2008 December. To explore temporal variations of the anisotropy, the data set is divided into nine intervals, each with a time span of about one year. The sidereal anisotropy of magnitude, about 0.1%, appears fairly stable from year to year over the entire observation period of nine years. This indicates that the anisotropy of TeV Galactic CRs remains insensitive to solar activities since the observation period covers more than half of the 23rd solarmore » cycle.« less

  3. The Rotational Excitation Temperature of the 6614 DIB Carrier

    NASA Technical Reports Server (NTRS)

    Cami, J.; Salama, F.; Jimenez-Vicente, J.; Galazutdinov, G.; Krelowski, J.

    2004-01-01

    Analysis of high spectral resolution observations of the lambda6614 DIB line profile show systematic variations in the positions of the peaks in the substructure of the profile. These variations can only be understood in the framework of rotational contours of large molecules, where the variations are caused by changes in the rotational excitation temperature. We show that the rotational excitation temperature for the DIB carrier is of the order 10-40 K - much lower than the gas kinetic temperature - indicating that for this particular DIB carrier angular momentum buildup is not very efficient. The rotational constant indicates that the carrier of this DIB is smaller than previously assumed:7-22 C atoms, depending on the geometry.

  4. Solar wind conditions in the outer heliosphere and the distance to the termination shock

    NASA Technical Reports Server (NTRS)

    Belcher, John W.; Lazarus, Alan J.; Mcnutt, Ralph L., Jr.; Gordon, George S., Jr.

    1993-01-01

    The Plasma Science experiment on the Voyager 2 spacecraft has measured the properties of solar wind protons from 1 to 40.4 AU. We use these observations to discuss the probable location and motion of the termination shock of the solar wind. Assuming that the interstellar pressure is due to a 5 micro-G magnetic field draped over the upstream face of the heliopause, the radial variation of ram pressure implies that the termination shock will be located at an average distance near 89 AU. This distance scales inversely as the assumed field strength. There are also large variations in ram pressure on time scales of tens of days, due primarily to large variations in solar wind density at a given radius. Such rapid changes in the solar wind ram pressure can cause large perturbations in the location of the termination shock. We study the nonequilibrium location of the termination shock as it responds to these ram pressure changes. The results of this study suggest that the position of the termination shock can vary by as much as 10 AU in a single year, depending on the nature of variations in the ram pressure, and that multiple crossings of the termination shock by a given outer heliosphere spacecraft are likely. After the first crossing, such models of shock motion will be useful for predicting the timing of subsequent crossings.

  5. Atmospheric Structure and Diurnal Variations at Low Altitudes in the Martian Tropics

    NASA Astrophysics Data System (ADS)

    Hinson, David P.; Spiga, A.; Lewis, S.; Tellmann, S.; Pätzold, M.; Asmar, S.; Häusler, B.

    2013-10-01

    We are using radio occultation measurements from Mars Express, Mars Reconnaissance Orbiter, and Mars Global Surveyor to characterize the diurnal cycle in the lowest scale height above the surface. We focus on northern spring and summer, using observations from 4 Martian years at local times of 4-5 and 15-17 h. We supplement the observations with results obtained from large-eddy simulations and through data assimilation by the UK spectral version of the LMD Mars Global Circulation Model. We previously investigated the depth of the daytime convective boundary layer (CBL) and its variations with surface elevation and surface properties. We are now examining unusual aspects of the temperature structure observed at night. Most important, predawn profiles in the Tharsis region contain an unexpected layer of neutral static stability at pressures of 200-300 Pa with a depth of 4-5 km. The mixed layer is bounded above by a midlevel temperature inversion and below by another strong inversion adjacent to the surface. The narrow temperature minimum at the base of the midlevel inversion suggests the presence of a water ice cloud layer, with the further implication that radiative cooling at cloud level can induce convective activity at lower altitudes. Conversely, nighttime profiles in Amazonis show no sign of a midlevel inversion or a detached mixed layer. These regional variations in the nighttime temperature structure appear to arise in part from large-scale variations in topography, which have several notable effects. First, the CBL is much deeper in the Tharsis region than in Amazonis, owing to a roughly 6-km difference in surface elevation. Second, large-eddy simulations show that daytime convection is not only deeper above Tharsis but also considerably more intense than it is in Amazonis. Finally, the daytime surface temperatures are comparable in the two regions, so that Tharsis acts as an elevated heat source throughout the CBL. These topographic effects are expected to enhance the vertical mixing of water vapor above elevated terrain, which might lead to the formation and regional confinement of nighttime clouds.

  6. Dielectric studies on PEG-LTMS based polymer composites

    NASA Astrophysics Data System (ADS)

    Patil, Ravikumar V.; Praveen, D.; Damle, R.

    2018-02-01

    PEG LTMS based polymer composites were prepared and studied for dielectric constant variation with frequency and temperature as a potential candidate with better dielectric properties. Solution cast technique is used for the preparation of polymer composite with five different compositions. Samples show variation in dielectric constant with frequency and temperature. Dielectric constant is large at low frequencies and higher temperatures. Samples with larger space charges have shown larger dielectric constant. The highest dielectric constant observed was about 29244 for PEG25LTMS sample at 100Hz and 312 K.

  7. Constraining Earth System Models in the Tropics with Multiple Satellite Observations

    NASA Astrophysics Data System (ADS)

    Shi, M.; Liu, J.; Saatchi, S. S.; Chan, S.; Yu, Y.; Zhao, M.

    2016-12-01

    Because of the impacts of cloud and atmospheric aerosol on spectral observations and the saturation of spectral observations over dense forests, the current spectral observations (e.g., Moderate Resolution Imaging Spectroradiometer) have large uncertainties in the tropics. Nevertheless, the backscatter observations from the SeaWinds Scatterometer onboard QuikSCAT (QSCAT) are sensitive to the variations of canopy water content and structure of forest canopy, and are not affected by clouds and atmospheric aerosols. In addition, the lack of sensitivity of the Soil Moisture Active Passive (SMAP) Level 1C brightness temperature (TB) to soil moisture under dense forest canopies (e.g., forests in tropics) makes the SMAP TB data a direct indicator of canopy properties. In this study, we use a variety of new satellite observations, including the QSCAT backscatter observations, the Gravity Recovery and Climate Experiment (GRACE) satellite's observed temporal gravity field variations, and the SMAP Level 1C TB, to constrain the carbon (C) cycle simulated by the Community Land Model version 4.5 BGC (CLM4.5) for the 2005 Amazonia drought and 2015 El Nino. Our results show that the leaf C pool size simulated by CLM4.5 decreases dramatically in southwest Amazonia in the 2005 drought, and recovers slowly afterward (after about 3 years). This result is consistent with the long-term C-recovery after the 2005 Amazonia drought observed by QSCAT. The slow C pool recovery is associated with large fire disturbance and the slow water storage recovery simulated by CLM4.5 and observed by GRACE. We will also discuss the impact of the 2015 El Nino on the tropical C dynamics constrained by SMAP Level 1C data. This study represents an innovative way of using satellite microwave observations to constrain C cycle in an Earth system model.

  8. Shapes of strong shock fronts in an inhomogeneous solar wind

    NASA Technical Reports Server (NTRS)

    Heinemann, M. A.; Siscoe, G. L.

    1974-01-01

    The shapes expected for solar-flare-produced strong shock fronts in the solar wind have been calculated, large-scale variations in the ambient medium being taken into account. It has been shown that for reasonable ambient solar wind conditions the mean and the standard deviation of the east-west shock normal angle are in agreement with experimental observations including shocks of all strengths. The results further suggest that near a high-speed stream it is difficult to distinguish between corotating shocks and flare-associated shocks on the basis of the shock normal alone. Although the calculated shapes are outside the range of validity of the linear approximation, these results indicate that the variations in the ambient solar wind may account for large deviations of shock normals from the radial direction.

  9. Measuring Ucrit and endurance: equipment choice influences estimates of fish swimming performance.

    PubMed

    Kern, P; Cramp, R L; Gordos, M A; Watson, J R; Franklin, C E

    2018-01-01

    This study compared the critical swimming speed (U crit ) and endurance performance of three Australian freshwater fish species in different swim-test apparatus. Estimates of U crit measured in a large recirculating flume were greater for all species compared with estimates from a smaller model of the same recirculating flume. Large differences were also observed for estimates of endurance swimming performance between these recirculating flumes and a free-surface swim tunnel. Differences in estimates of performance may be attributable to variation in flow conditions within different types of swim chambers. Variation in estimates of swimming performance between different types of flumes complicates the application of laboratory-based measures to the design of fish passage infrastructure. © 2017 The Fisheries Society of the British Isles.

  10. Analyzing the uncertainty of ensemble-based gridded observations in land surface simulations and drought assessment

    NASA Astrophysics Data System (ADS)

    Ahmadalipour, Ali; Moradkhani, Hamid

    2017-12-01

    Hydrologic modeling is one of the primary tools utilized for drought monitoring and drought early warning systems. Several sources of uncertainty in hydrologic modeling have been addressed in the literature. However, few studies have assessed the uncertainty of gridded observation datasets from a drought monitoring perspective. This study provides a hydrologic modeling oriented analysis of the gridded observation data uncertainties over the Pacific Northwest (PNW) and its implications on drought assessment. We utilized a recently developed 100-member ensemble-based observed forcing data to simulate hydrologic fluxes at 1/8° spatial resolution using Variable Infiltration Capacity (VIC) model, and compared the results with a deterministic observation. Meteorological and hydrological droughts are studied at multiple timescales over the basin, and seasonal long-term trends and variations of drought extent is investigated for each case. Results reveal large uncertainty of observed datasets at monthly timescale, with systematic differences for temperature records, mainly due to different lapse rates. The uncertainty eventuates in large disparities of drought characteristics. In general, an increasing trend is found for winter drought extent across the PNW. Furthermore, a ∼3% decrease per decade is detected for snow water equivalent (SWE) over the PNW, with the region being more susceptible to SWE variations of the northern Rockies than the western Cascades. The agricultural areas of southern Idaho demonstrate decreasing trend of natural soil moisture as a result of precipitation decline, which implies higher appeal for anthropogenic water storage and irrigation systems.

  11. Evolutionary Determinants of Genetic Variation in Susceptibility to Infectious Diseases in Humans

    PubMed Central

    Baker, Christi; Antonovics, Janis

    2012-01-01

    Although genetic variation among humans in their susceptibility to infectious diseases has long been appreciated, little focus has been devoted to identifying patterns in levels of variation in susceptibility to different diseases. Levels of genetic variation in susceptibility associated with 40 human infectious diseases were assessed by a survey of studies on both pedigree-based quantitative variation, as well as studies on different classes of marker alleles. These estimates were correlated with pathogen traits, epidemiological characteristics, and effectiveness of the human immune response. The strongest predictors of levels of genetic variation in susceptibility were disease characteristics negatively associated with immune effectiveness. High levels of genetic variation were associated with diseases with long infectious periods and for which vaccine development attempts have been unsuccessful. These findings are consistent with predictions based on theoretical models incorporating fitness costs associated with the different types of resistance mechanisms. An appreciation of these observed patterns will be a valuable tool in directing future research given that genetic variation in disease susceptibility has large implications for vaccine development and epidemiology. PMID:22242158

  12. Not-so-simple stellar populations in the intermediate-age Large Magellanic Cloud star clusters NGC 1831 and NGC 1868

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Chengyuan; De Grijs, Richard; Deng, Licai, E-mail: joshuali@pku.edu.cn, E-mail: grijs@pku.edu.cn

    2014-04-01

    Using a combination of high-resolution Hubble Space Telescope/Wide-Field and Planetary Camera-2 observations, we explore the physical properties of the stellar populations in two intermediate-age star clusters, NGC 1831 and NGC 1868, in the Large Magellanic Cloud based on their color-magnitude diagrams. We show that both clusters exhibit extended main-sequence turn offs. To explain the observations, we consider variations in helium abundance, binarity, age dispersions, and the fast rotation of the clusters' member stars. The observed narrow main sequence excludes significant variations in helium abundance in both clusters. We first establish the clusters' main-sequence binary fractions using the bulk of themore » clusters' main-sequence stellar populations ≳ 1 mag below their turn-offs. The extent of the turn-off regions in color-magnitude space, corrected for the effects of binarity, implies that age spreads of order 300 Myr may be inferred for both clusters if the stellar distributions in color-magnitude space were entirely due to the presence of multiple populations characterized by an age range. Invoking rapid rotation of the population of cluster members characterized by a single age also allows us to match the observed data in detail. However, when taking into account the extent of the red clump in color-magnitude space, we encounter an apparent conflict for NGC 1831 between the age dispersion derived from that based on the extent of the main-sequence turn off and that implied by the compact red clump. We therefore conclude that, for this cluster, variations in stellar rotation rate are preferred over an age dispersion. For NGC 1868, both models perform equally well.« less

  13. Systematic detection and classification of earthquake clusters in Italy

    NASA Astrophysics Data System (ADS)

    Poli, P.; Ben-Zion, Y.; Zaliapin, I. V.

    2017-12-01

    We perform a systematic analysis of spatio-temporal clustering of 2007-2017 earthquakes in Italy with magnitudes m>3. The study employs the nearest-neighbor approach of Zaliapin and Ben-Zion [2013a, 2013b] with basic data-driven parameters. The results indicate that seismicity in Italy (an extensional tectonic regime) is dominated by clustered events, with smaller proportion of background events than in California. Evaluation of internal cluster properties allows separation of swarm-like from burst-like seismicity. This classification highlights a strong geographical coherence of cluster properties. Swarm-like seismicity are dominant in regions characterized by relatively slow deformation with possible elevated temperature and/or fluids (e.g. Alto Tiberina, Pollino), while burst-like seismicity are observed in crystalline tectonic regions (Alps and Calabrian Arc) and in Central Italy where moderate to large earthquakes are frequent (e.g. L'Aquila, Amatrice). To better assess the variation of seismicity style across Italy, we also perform a clustering analysis with region-specific parameters. This analysis highlights clear spatial changes of the threshold separating background and clustered seismicity, and permits better resolution of different clusters in specific geological regions. For example, a large proportion of repeaters is found in the Etna region as expected for volcanic-induced seismicity. A similar behavior is observed in the northern Apennines with high pore pressure associated with mantle degassing. The observed variations of earthquakes properties highlight shortcomings of practices using large-scale average seismic properties, and points to connections between seismicity and local properties of the lithosphere. The observations help to improve the understanding of the physics governing the occurrence of earthquakes in different regions.

  14. The adaptive evolution of the mammalian mitochondrial genome

    PubMed Central

    da Fonseca, Rute R; Johnson, Warren E; O'Brien, Stephen J; Ramos, Maria João; Antunes, Agostinho

    2008-01-01

    Background The mitochondria produce up to 95% of a eukaryotic cell's energy through oxidative phosphorylation. The proteins involved in this vital process are under high functional constraints. However, metabolic requirements vary across species, potentially modifying selective pressures. We evaluate the adaptive evolution of 12 protein-coding mitochondrial genes in 41 placental mammalian species by assessing amino acid sequence variation and exploring the functional implications of observed variation in secondary and tertiary protein structures. Results Wide variation in the properties of amino acids were observed at functionally important regions of cytochrome b in species with more-specialized metabolic requirements (such as adaptation to low energy diet or large body size, such as in elephant, dugong, sloth, and pangolin, and adaptation to unusual oxygen requirements, for example diving in cetaceans, flying in bats, and living at high altitudes in alpacas). Signatures of adaptive variation in the NADH dehydrogenase complex were restricted to the loop regions of the transmembrane units which likely function as protons pumps. Evidence of adaptive variation in the cytochrome c oxidase complex was observed mostly at the interface between the mitochondrial and nuclear-encoded subunits, perhaps evidence of co-evolution. The ATP8 subunit, which has an important role in the assembly of F0, exhibited the highest signal of adaptive variation. ATP6, which has an essential role in rotor performance, showed a high adaptive variation in predicted loop areas. Conclusion Our study provides insight into the adaptive evolution of the mtDNA genome in mammals and its implications for the molecular mechanism of oxidative phosphorylation. We present a framework for future experimental characterization of the impact of specific mutations in the function, physiology, and interactions of the mtDNA encoded proteins involved in oxidative phosphorylation. PMID:18318906

  15. The effect of gravitational and pressure torques on Titan's length-of-day variations

    NASA Astrophysics Data System (ADS)

    Van Hoolst, T.; Rambaux, N.; Karatekin, Ö.; Baland, R.-M.

    2009-03-01

    Cassini radar observations show that Titan's spin is slightly faster than synchronous spin. Angular momentum exchange between Titan's surface and the atmosphere over seasonal time scales corresponding to Saturn's orbital period of 29.5 year is the most likely cause of the observed non-synchronous rotation. We study the effect of Saturn's gravitational torque and torques between internal layers on the length-of-day (LOD) variations driven by the atmosphere. Because static tides deform Titan into an ellipsoid with the long axis approximately in the direction to Saturn, non-zero gravitational and pressure torques exist that can change the rotation rate of Titan. For the torque calculation, we estimate the flattening of Titan and its interior layers under the assumption of hydrostatic equilibrium. The gravitational forcing by Saturn, due to misalignment of the long axis of Titan with the line joining the mass centers of Titan and Saturn, reduces the LOD variations with respect to those for a spherical Titan by an order of magnitude. Internal gravitational and pressure coupling between the ice shell and the interior beneath a putative ocean tends to reduce any differential rotation between shell and interior and reduces further the LOD variations by a few times. For the current estimate of the atmospheric torque, we obtain LOD variations of a hydrostatic Titan that are more than 100 times smaller than the observations indicate when Titan has no ocean as well as when a subsurface ocean exists. Moreover, Saturn's torque causes the rotation to be slower than synchronous in contrast to the Cassini observations. The calculated LOD variations could be increased if the atmospheric torque is larger than predicted and or if fast viscous relaxation of the ice shell could reduce the gravitational coupling, but it remains to be studied if a two order of magnitude increase is possible and if these effects can explain the phase difference of the predicted rotation variations. Alternatively, the large differences with the observations may suggest that non-hydrostatic effects in Titan are important. In particular, we show that the amplitude and phase of the calculated rotation variations are similar to the observed values if non-hydrostatic effects could strongly reduce the equatorial flattening of the ice shell above an internal ocean.

  16. The Effect of Alongcoast Advection on Pacific Northwest Shelf and Slope Water Properties in Relation to Upwelling Variability

    NASA Astrophysics Data System (ADS)

    Stone, Hally B.; Banas, Neil S.; MacCready, Parker

    2018-01-01

    The Northern California Current System experiences highly variable seasonal upwelling in addition to larger basin-scale variability, both of which can significantly affect its water chemistry. Salinity and temperature fields from a 7 year ROMS hindcast model of this region (43°N-50°N), along with extensive particle tracking, were used to study interannual variability in water properties over both the upper slope and the midshelf bottom. Variation in slope water properties was an order of magnitude smaller than on the shelf. Furthermore, the primary relationship between temperature and salinity anomalies in midshelf bottom water consisted of variation in density (cold/salty versus warm/fresh), nearly orthogonal to the anomalies along density levels (cold/fresh versus warm/salty) observed on the upper slope. These midshelf anomalies were well-explained (R2 = 0.6) by the combination of interannual variability in local and remote alongshore wind stress, and depth of the California Undercurrent (CUC) core. Lagrangian analysis of upper slope and midshelf bottom water shows that both are affected simultaneously by large-scale alongcoast advection of water through the northern and southern boundaries. The amplitude of anomalies in bottom oxygen and dissolved inorganic carbon (DIC) on the shelf associated with upwelling variability are larger than those associated with typical variation in alongcoast advection, and are comparable to observed anomalies in this region. However, a large northern intrusion event in 2004 illustrates that particular, large-scale alongcoast advection anomalies can be just as effective as upwelling variability in changing shelf water properties on the interannual scale.

  17. Temporal and spatial variations of soil carbon dioxide, methane, and nitrous oxide fluxes in a Southeast Asian tropical rainforest

    NASA Astrophysics Data System (ADS)

    Itoh, M.; Kosugi, Y.; Takanashi, S.; Hayashi, Y.; Kanemitsu, S.; Osaka, K.; Tani, M.; Nik, A. R.

    2010-09-01

    To clarify the factors controlling temporal and spatial variations of soil carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) fluxes, we investigated these gas fluxes and environmental factors in a tropical rainforest in Peninsular Malaysia. Temporal variation of CO2 flux in a 2-ha plot was positively related to soil water condition and rainfall history. Spatially, CO2 flux was negatively related to soil water condition. When CO2 flux hotspots were included, no other environmental factors such as soil C or N concentrations showed any significant correlation. Although the larger area sampled in the present study complicates explanations of spatial variation of CO2 flux, our results support a previously reported bipolar relationship between the temporal and spatial patterns of CO2 flux and soil water condition observed at the study site in a smaller study plot. Flux of CH4 was usually negative with little variation, resulting in the soil at our study site functioning as a CH4 sink. Both temporal and spatial variations of CH4 flux were positively related to the soil water condition. Soil N concentration was also related to the spatial distribution of CH4 flux. Some hotspots were observed, probably due to CH4 production by termites, and these hotspots obscured the relationship between both temporal and spatial variations of CH4 flux and environmental factors. Temporal variation of N2O flux and soil N2O concentration was large and significantly related to the soil water condition, or in a strict sense, to rainfall history. Thus, the rainfall pattern controlled wet season N2O production in soil and its soil surface flux. Spatially, large N2O emissions were detected in wet periods at wetter and anaerobic locations, and were thus determined by soil physical properties. Our results showed that, even in Southeast Asian rainforests where distinct dry and wet seasons do not exist, variation in the soil water condition related to rainfall history controlled the temporal variations of soil CO2 flux, CH4 uptake, and N2O emission. The soil water condition associated with soil hydraulic properties was also the important controlling factor of the spatial distributions of these gas fluxes.

  18. Solar Variability from 240 to 1750 nm in Terms of Faculae Brightening and Sunspot Darkening from SCIAMACHY

    NASA Astrophysics Data System (ADS)

    Pagaran, J.; Weber, M.; Burrows, J.

    2009-08-01

    The change of spectral decomposition of the total radiative output on various timescales of solar magnetic activity is of large interest to terrestrial and solar-stellar atmosphere studies. Starting in 2002, SCIAMACHY was the first satellite instrument to observe daily solar spectral irradiance (SSI) continuously from 230 nm (UV) to 1750 nm (near-infrared; near-IR). In order to address the question of how much UV, visible (vis), and IR spectral regions change on 27 day and 11 year timescales, we parameterize short-term SSI variations in terms of faculae brightening (Mg II index) and sunspot darkening (photometric sunspot index) proxies. Although spectral variations above 300 nm are below 1% and, therefore, well below the accuracy of absolute radiometric calibration, relative accuracy for short-term changes is shown to be in the per mill range. This enables us to derive short-term spectral irradiance variations from the UV to the near-IR. During Halloween solar storm in 2003 with a record high sunspot area, we observe a reduction of 0.3% in the near-IR to 0.5% in the vis and near-UV. This is consistent with a 0.4% reduction in total solar irradiance (TSI). Over an entire 11 year solar cycle, SSI variability covering simultaneously the UV, vis, and IR spectral regions have not been directly observed so far. Using variations of solar proxies over solar cycle 23, solar cycle spectral variations have been estimated using scaling factors that best matched short-term variations of SCIAMACHY. In the 300-400 nm region, which strongly contributes to TSI solar cycle change, a contribution of 34% is derived from SCIAMACHY observations, which is lower than the reported values from SUSIM satellite data and the empirical SATIRE model. The total UV contribution (below 400 nm) to TSI solar cycle variations is estimated to be 55%.

  19. A double-observer approach for estimating detection probability and abundance from point counts

    USGS Publications Warehouse

    Nichols, J.D.; Hines, J.E.; Sauer, J.R.; Fallon, F.W.; Fallon, J.E.; Heglund, P.J.

    2000-01-01

    Although point counts are frequently used in ornithological studies, basic assumptions about detection probabilities often are untested. We apply a double-observer approach developed to estimate detection probabilities for aerial surveys (Cook and Jacobson 1979) to avian point counts. At each point count, a designated 'primary' observer indicates to another ('secondary') observer all birds detected. The secondary observer records all detections of the primary observer as well as any birds not detected by the primary observer. Observers alternate primary and secondary roles during the course of the survey. The approach permits estimation of observer-specific detection probabilities and bird abundance. We developed a set of models that incorporate different assumptions about sources of variation (e.g. observer, bird species) in detection probability. Seventeen field trials were conducted, and models were fit to the resulting data using program SURVIV. Single-observer point counts generally miss varying proportions of the birds actually present, and observer and bird species were found to be relevant sources of variation in detection probabilities. Overall detection probabilities (probability of being detected by at least one of the two observers) estimated using the double-observer approach were very high (>0.95), yielding precise estimates of avian abundance. We consider problems with the approach and recommend possible solutions, including restriction of the approach to fixed-radius counts to reduce the effect of variation in the effective radius of detection among various observers and to provide a basis for using spatial sampling to estimate bird abundance on large areas of interest. We believe that most questions meriting the effort required to carry out point counts also merit serious attempts to estimate detection probabilities associated with the counts. The double-observer approach is a method that can be used for this purpose.

  20. Hints of correlation between broad-line and radio variations for 3C 120

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, H. T.; Bai, J. M.; Li, S. K.

    2014-01-01

    In this paper, we investigate the correlation between broad-line and radio variations for the broad-line radio galaxy 3C 120. By the z-transformed discrete correlation function method and the model-independent flux randomization/random subset selection (FR/RSS) Monte Carlo method, we find that broad Hβ line variations lead the 15 GHz variations. The FR/RSS method shows that the Hβ line variations lead the radio variations by a factor of τ{sub ob} = 0.34 ± 0.01 yr. This time lag can be used to locate the position of the emitting region of radio outbursts in the jet, on the order of ∼5 lt-yr frommore » the central engine. This distance is much larger than the size of the broad-line region. The large separation of the radio outburst emitting region from the broad-line region will observably influence the gamma-ray emission in 3C 120.« less

  1. Scientific interpretation of historical auroral records

    NASA Astrophysics Data System (ADS)

    Willis, D. M.; Stephenson, F. R.

    The available historical auroral records from both Europe and East Asia are examined critically for their relevance in the investigation of long-term variations in both solar activity and the Earth's magnetic field. The early oriental records are sufficiently numerous to allow scientific studies of variations on several time scales. Special attention is paid to the seasonal and secular variations of the early oriental auroral observations. In addition, the oriental auroral records exhibit a clear 27-day recurrence tendency at particular periods of time. A search has been made for examples of strictly simultaneous and indisputably independent observations of the aurora from spatially separated sites in East Asia. This search has yielded nine observations of mid-latitude auroral displays at more than one site in East Asia on the same night. A particular geomagnetic storm that occurred during December in AD 1128 is investigated in detail. Five days after the observation of two large sunspots in England, a red auroral display was observed from Korea. In addition, between the middle of AD 1127 and the middle of AD 1129, five Chinese and five Korean auroral observations were recorded. These provide evidence for recurrent auroral activity on a timescale almost exactly equal to the synodic-solar-rotation period (approximately 27 days). Finally, a new attempt is made to use the oriental historical auroral records to determine the location of the north geomagnetic pole during the European Middle Ages.

  2. The Effects of Magnetic-Field Geometry on Longitudinal Oscillations of Solar Prominences: Cross-Sectional Area Variation for Thin Tubes

    NASA Technical Reports Server (NTRS)

    Luna, M.; Diaz, A. J.; Oliver, R.; Terradas, J.; Karpen, J.

    2016-01-01

    Solar prominences are subject to both field-aligned (longitudinal) and transverse oscillatory motions, as evidenced by an increasing number of observations. Large-amplitude longitudinal motions provide valuable information on the geometry of the filament channel magnetic structure that supports the cool prominence plasma against gravity. Our pendulum model, in which the restoring force is the gravity projected along the dipped field lines of the magnetic structure, best explains these oscillations. However, several factors can influence the longitudinal oscillations, potentially invalidating the pendulum model. Aims. The aim of this work is to study the influence of large-scale variations in the magnetic field strength along the field lines, i.e., variations of the cross-sectional area along the flux tubes supporting prominence threads. Methods. We studied the normal modes of several flux tube configurations, using linear perturbation analysis, to assess the influence of different geometrical parameters on the oscillation properties. Results. We found that the influence of the symmetric and asymmetric expansion factors on longitudinal oscillations is small.Conclusions. We conclude that the longitudinal oscillations are not significantly influenced by variations of the cross-section of the flux tubes, validating the pendulum model in this context.

  3. A Correlation Between Changes in Solar Luminosity and Differential Radius Measurements

    NASA Technical Reports Server (NTRS)

    Kroll, R. J.; Hill, H. A.; Beardsley, B. J.

    1990-01-01

    Solar luminosity variations occurring during solar cycle 21 can be attributed in large part to the presence of sunspots and faculae. Nevertheless, there remains a residual portion of the luminosity variation distinctly unaccounted for by these phenomena of solar activity. At the Santa Catalina Laboratory for Experimental Relativity by Astrometry (SCLERA), observations of the solar limb are capable of detecting changes in the solar limb darkening function by monitoring a quantity known as the differential radius. These observations are utilized in such a way that the effects of solar activity are minimized in order to reveal the more fundamental structure of the photosphere. The results of observations made during solar cycle 21 at various solar latitudes indicate that a measurable change did occur in the global photospheric limb darkening function. It is proposed that the residual luminosity change is associated in part with this change in limb darkening.

  4. On the Effect of Variability on Fermi, Pasta and Ulam Matrices

    NASA Astrophysics Data System (ADS)

    Nelson, Heather; Choubey, Bhaskar

    The first numerical experiment by Fermi, Pasta, Ulam and Tsingou in 1955 observed recurrence in an array of non-linear systems. This has led to a large number of nonlinear numerical experiments with various new results from a chain of ideal oscillators. FPUT arrays consists of linear oscillators connected nonlinearly which leads to recurrence of energy mode with time. However, if such a system were to be physically constructed, inherent process variations would introduce a manufacturing tolerance into the parameters of the system. This abstract reports investigation into the effects of these tolerances on the FPU matrices. It has been observed that tolerance in the oscillators can degrade the observance of recurrence and with a chain of even 64 oscillators, recurrence cannot be observed with tolerances more than 10%. It has also been observed that linear oscillators tolerances have more effects on recurrence than those of the nonlinear coupling. Even with very small tolerances of +/- 1% on the linear components, one start to observe variations in the quality and magnitude of the recurrence and at +/- 5%, recurrence is starting to break down.

  5. Global Biomass Variation and its Geodynamic Effects, 1982-1998

    NASA Technical Reports Server (NTRS)

    Rodell, M.; Chao, B. F.; Au, A. Y.; Kimball, J. S.; McDonald, K. C.

    2005-01-01

    Redistribution of mass near Earth's surface alters its rotation, gravity field, and geocenter location. Advanced techniques for measuring these geodetic variations now exist, but the ability to attribute the observed modes to individual Earth system processes has been hampered by a shortage of reliable global data on such processes, especially hydrospheric processes. To address one aspect of this deficiency, 17 yrs of monthly, global maps of vegetation biomass were produced by applying field-based relationships to satellite-derived vegetation type and leaf area index. The seasonal variability of biomass was estimated to be as large as 5 kg m(exp -2). Of this amount, approximately 4 kg m(exp -2) is due to vegetation water storage variations. The time series of maps was used to compute geodetic anomalies, which were then compared with existing geodetic observations as well as the estimated measurement sensitivity of the Gravity Recovery and Climate Experiment (GRACE). For gravity, the seasonal amplitude of biomass variations may be just within GRACE'S limits of detectability, but it is still an order of magnitude smaller than current observation uncertainty using the satellite-laser-ranging technique. The contribution of total biomass variations to seasonal polar motion amplitude is detectable in today's measurement, but it is obscured by contributions from various other sources, some of which are two orders of magnitude larger. The influence on the length of day is below current limits of detectability. Although the nonseasonal geodynamic signals show clear interannual variability, they are too small to be detected.

  6. How does the terrestrial carbon exchange respond to inter-annual climatic variations? A quantification based on atmospheric CO2 data

    NASA Astrophysics Data System (ADS)

    Rödenbeck, Christian; Zaehle, Sönke; Keeling, Ralph; Heimann, Martin

    2018-04-01

    The response of the terrestrial net ecosystem exchange (NEE) of CO2 to climate variations and trends may crucially determine the future climate trajectory. Here we directly quantify this response on inter-annual timescales by building a linear regression of inter-annual NEE anomalies against observed air temperature anomalies into an atmospheric inverse calculation based on long-term atmospheric CO2 observations. This allows us to estimate the sensitivity of NEE to inter-annual variations in temperature (seen as a climate proxy) resolved in space and with season. As this sensitivity comprises both direct temperature effects and the effects of other climate variables co-varying with temperature, we interpret it as inter-annual climate sensitivity. We find distinct seasonal patterns of this sensitivity in the northern extratropics that are consistent with the expected seasonal responses of photosynthesis, respiration, and fire. Within uncertainties, these sensitivity patterns are consistent with independent inferences from eddy covariance data. On large spatial scales, northern extratropical and tropical inter-annual NEE variations inferred from the NEE-T regression are very similar to the estimates of an atmospheric inversion with explicit inter-annual degrees of freedom. The results of this study offer a way to benchmark ecosystem process models in more detail than existing effective global climate sensitivities. The results can also be used to gap-fill or extrapolate observational records or to separate inter-annual variations from longer-term trends.

  7. SCM-Forcing Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Shaocheng; Tang, Shuaiqi; Zhang, Yunyan

    2016-07-01

    Single-Column Model (SCM) Forcing Data are derived from the ARM facility observational data using the constrained variational analysis approach (Zhang and Lin 1997 and Zhang et al., 2001). The resulting products include both the large-scale forcing terms and the evaluation fields, which can be used for driving the SCMs and Cloud Resolving Models (CRMs) and validating model simulations.

  8. Repetition Blindness for Rotated Objects

    ERIC Educational Resources Information Center

    Hayward, William G.; Zhou, Guomei; Man, Wai-Fung; Harris, Irina M.

    2010-01-01

    Repetition blindness (RB) is the finding that observers often miss the repetition of an item within a rapid stream of words or objects. Recent studies have shown that RB for objects is largely unaffected by variations in viewpoint between the repeated items. In 5 experiments, we tested RB under different axes of rotation, with different types of…

  9. Controls on interannual variation in evapotranspiration and water use efficiency in a mature, furrow-irrigated peach orchard

    USDA-ARS?s Scientific Manuscript database

    Evapotranspiration (ET) and water use efficiency (WUE) in peach orchards has previously been observed in young (less than 5-8 years old), drip irrigated orchards using micrometeorological techniques such as Eddy Covariance or large-weighing lysimeters. However, no work has been reported on ET and W...

  10. Multi-Scale Three-Dimensional Variational Data Assimilation System for Coastal Ocean Prediction

    NASA Technical Reports Server (NTRS)

    Li, Zhijin; Chao, Yi; Li, P. Peggy

    2012-01-01

    A multi-scale three-dimensional variational data assimilation system (MS-3DVAR) has been formulated and the associated software system has been developed for improving high-resolution coastal ocean prediction. This system helps improve coastal ocean prediction skill, and has been used in support of operational coastal ocean forecasting systems and field experiments. The system has been developed to improve the capability of data assimilation for assimilating, simultaneously and effectively, sparse vertical profiles and high-resolution remote sensing surface measurements into coastal ocean models, as well as constraining model biases. In this system, the cost function is decomposed into two separate units for the large- and small-scale components, respectively. As such, data assimilation is implemented sequentially from large to small scales, the background error covariance is constructed to be scale-dependent, and a scale-dependent dynamic balance is incorporated. This scheme then allows effective constraining large scales and model bias through assimilating sparse vertical profiles, and small scales through assimilating high-resolution surface measurements. This MS-3DVAR enhances the capability of the traditional 3DVAR for assimilating highly heterogeneously distributed observations, such as along-track satellite altimetry data, and particularly maximizing the extraction of information from limited numbers of vertical profile observations.

  11. The seasonal timing of warming that controls onset of the growing season.

    PubMed

    Clark, James S; Melillo, Jerry; Mohan, Jacqueline; Salk, Carl

    2014-04-01

    Forecasting how global warming will affect onset of the growing season is essential for predicting terrestrial productivity, but suffers from conflicting evidence. We show that accurate estimates require ways to connect discrete observations of changing tree status (e.g., pre- vs. post budbreak) with continuous responses to fluctuating temperatures. By coherently synthesizing discrete observations with continuous responses to temperature variation, we accurately quantify how increasing temperature variation accelerates onset of growth. Application to warming experiments at two latitudes demonstrates that maximum responses to warming are concentrated in late winter, weeks ahead of the main budbreak period. Given that warming will not occur uniformly over the year, knowledge of when temperature variation has the most impact can guide prediction. Responses are large and heterogeneous, yet predictable. The approach has immediate application to forecasting effects of warming on growing season length, requiring only information that is readily available from weather stations and generated in climate models. © 2013 John Wiley & Sons Ltd.

  12. Surface Inhomogeneities of the White Dwarf in the Binary EUVE J2013+400

    NASA Astrophysics Data System (ADS)

    Vennes, Stephane

    We propose to study the white dwarf in the binary EUVE J2013+400. The object is paired with a dMe star and new extreme ultraviolet (EUV) observations will offer critical insights into the properties of the white dwarf. The binary behaves, in every other aspects, like its siblings EUVE J0720-317 and EUVE J1016-053 and new EUV observations will help establish their class properties; in particular, EUV photometric variations in 0720-317 and 1016-053 over a period of 11 hours and 57 minutes, respectively, are indicative of surface abundance inhomogeneities coupled with the white dwarfs rotation period. These variations and their large photospheric helium abundance are best explained by a diffusion-accretion model in which time-variable accretion and possible coupling to magnetic poles contribute to abundance variations across the surface and possibly as a function of depth. EUV spectroscopy will also enable a study of the helium abundance as a function of depth and a detailed comparison with theoretical diffusion profile.

  13. Local Time Variation of Water Ice Clouds on Mars as Observed by TES During Aerobraking.

    NASA Astrophysics Data System (ADS)

    AlJanaahi, A. A.; AlShamsi, M. R.; Smith, M. D.; Altunaiji, E. S.; Edwards, C. S.

    2016-12-01

    The large elliptical orbit during Mars Global Surveyor aerobraking enabled sampling the martian atmosphere over many local times. The Thermal Emission Spectrometer (TES) aerobraking spectra were taken between Mars Year 23, Ls=180° and Mars Year 24, Ls=30°. These early data from before the main "mapping" part of the mission have been mostly overlooked, and relatively little analysis has been done with them. These datasets have not been used before to study local time variation. Radiative transfer modeling is used to fit the spectra to retrieve surface and atmospheric temperature, and dust and water ice optical depths. Retrievals show significant and systematic variation in water ice cloud optical depth as a function of local time. Cloud optical depth is higher in the early morning (before 9:00) and in the evening (after 17:00) for all seasons observed (Ls=180°-30°). Clouds form consistently in the Tyrrhena region and in the area around Tharsis.

  14. Implications of Galaxy Buildup for Putative IMF Variations in Massive Galaxies

    NASA Astrophysics Data System (ADS)

    Blancato, Kirsten; Genel, Shy; Bryan, Greg

    2017-08-01

    Recent observational evidence for initial mass function (IMF) variations in massive quiescent galaxies at z = 0 challenges the long-established paradigm of a universal IMF. While a few theoretical models relate the IMF to birth cloud conditions, the physical driver underlying these putative IMF variations is still largely unclear. Here we use post-processing analysis of the Illustris cosmological hydrodynamical simulation to investigate possible physical origins of IMF variability with galactic properties. We do so by tagging stellar particles in the simulation (each representing a stellar population of ≈ {10}6 {M}⊙ ) with individual IMFs that depend on various physical conditions, such as velocity dispersion, metallicity, or star formation rate, at the time and place in which the stars are formed. We then follow the assembly of these populations throughout cosmic time and reconstruct the overall IMF of each z = 0 galaxy from the many distinct IMFs it is composed of. Our main result is that applying the observed relations between IMF and galactic properties to the conditions at the star formation sites does not result in strong enough IMF variations between z = 0 galaxies. Steeper physical IMF relations are required for reproducing the observed IMF trends, and some stellar populations must form with more extreme IMFs than those observed. The origin of this result is the hierarchical nature of massive galaxy assembly, and it has implications for the reliability of the strong observed trends, for the ability of cosmological simulations to capture certain physical conditions in galaxies, and for theories of star formation aiming to explain the physical origin of a variable IMF.

  15. Aggregation and the Measurement of Health Care Costs

    PubMed Central

    Getzen, Thomas E

    2006-01-01

    Objective This study evaluated the extent to which the causes of variation in health care costs differ by the level at which observations are made. Methods More than 40 U.S. and international studies providing empirical estimates of the sources of variation in health care costs were reviewed and arrayed by size of observational units. A simplified graphical analysis demonstrating how estimated correlation coefficients change with the level and type of aggregation is presented. Results As the unit of observation becomes larger, association between health care costs and health status/morbidity becomes weaker and smaller in magnitude, while correlation with income (per capita GDP) becomes stronger and larger. Individual expenditure variation within a particular health care system is largely due to differences in health status, but across systems, morbidity has almost no effect on costs. For nations, differences in per capita income explain over 90 percent of the variation in both time series and cross section. Conclusions Units of observation used for analysis of health care costs must be matched to the units at which decision making occurs. The observed pattern of empirical results is consistent with a multilevel allocative model incorporating aggregate capacity constraints. To the extent that macro constraints determine total budgets at the national level, policy interventions at the micro level (substitution of generic pharmaceuticals, use of CEA for allocation of treatments, controls on construction and technology, etc.) can act to improve efficiency, equity and average health status, but will not usually reduce aggregate average per capita costs of medical care. PMID:16987309

  16. Identifying water mass depletion in Northern Iraq observed by GRACE

    NASA Astrophysics Data System (ADS)

    Mulder, Gert; Olsthoorn, Theo; Al-Manmi, Diary; Schrama, Ernst; Smidt, Ebel

    2014-05-01

    Observations acquired by Gravity Recovery And Climate Experiment (GRACE) mission indicates a mass loss of 31±3 km3 or 130±14 mm in Northern Iraq between 2006 and 2009. This data is used as an independent validation of a hydrologic model of the region including lake mass variations. We developed a rainfall-runoff model for five tributaries of the Tigris River, based on local geology and climate conditions. Model inputs are precipitation data from Tropical Rainfall Measurement Mission (TRMM) observations, and potential evaporation from GLDAS parameters. Our model includes an extensive network of karstified aquifers that causes large natural groundwater variations in this region. Observed river discharges have been used to calibrate our model. In order to get the total mass variations, we correct for lake mass variations derived from Moderate Resolution Imaging Spectroradiometer (MODIS) data in combination with satellite altimetry and some in-situ data. Our rainfall-runoff model confirms that Northern Iraq suffered a drought between 2006 and 2009 and is consistent with the mass loss observed by GRACE in that period. Also, GRACE picks up the annual cycle predicted by the rainfall-runoff model. The total mass depletion seen by GRACE between 2006 and 2009 is 130±14 mm, which is mainly explained by a lake mass depletion of 74±4 mm and a natural groundwater depletion of approximately 50 mm. Our findings indicate that man-made groundwater extraction has a minor influence in this region while depletion of lake mass and geology play a key role.

  17. Using altimetry to help explain patchy changes in hydrographic carbon measurements

    NASA Astrophysics Data System (ADS)

    Rodgers, Keith B.; Key, Robert M.; Gnanadesikan, Anand; Sarmiento, Jorge L.; Aumont, Olivier; Bopp, Laurent; Doney, Scott C.; Dunne, John P.; Glover, David M.; Ishida, Akio; Ishii, Masao; Jacobson, Andrew R.; Lo Monaco, Claire; Maier-Reimer, Ernst; Mercier, Herlé; Metzl, Nicolas; PéRez, Fiz F.; Rios, Aida F.; Wanninkhof, Rik; Wetzel, Patrick; Winn, Christopher D.; Yamanaka, Yasuhiro

    2009-09-01

    Here we use observations and ocean models to identify mechanisms driving large seasonal to interannual variations in dissolved inorganic carbon (DIC) and dissolved oxygen (O2) in the upper ocean. We begin with observations linking variations in upper ocean DIC and O2 inventories with changes in the physical state of the ocean. Models are subsequently used to address the extent to which the relationships derived from short-timescale (6 months to 2 years) repeat measurements are representative of variations over larger spatial and temporal scales. The main new result is that convergence and divergence (column stretching) attributed to baroclinic Rossby waves can make a first-order contribution to DIC and O2 variability in the upper ocean. This results in a close correspondence between natural variations in DIC and O2 column inventory variations and sea surface height (SSH) variations over much of the ocean. Oceanic Rossby wave activity is an intrinsic part of the natural variability in the climate system and is elevated even in the absence of significant interannual variability in climate mode indices. The close correspondence between SSH and both DIC and O2 column inventories for many regions suggests that SSH changes (inferred from satellite altimetry) may prove useful in reducing uncertainty in separating natural and anthropogenic DIC signals (using measurements from Climate Variability and Predictability's CO2/Repeat Hydrography program).

  18. Observed Differences between North American Snow Extent and Snow Depth Variability

    NASA Astrophysics Data System (ADS)

    Ge, Y.; Gong, G.

    2006-12-01

    Snow extent and snow depth are two related characteristics of a snowpack, but they need not be mutually consistent. Differences between these two variables at local scales are readily apparent. However at larger scales which interact with atmospheric circulation and climate, snow extent is typically the variable used, while snow depth is often assumed to be minor and/or mutually consistent compared to snow extent, though this is rarely verified. In this study, a new regional/continental-scale gridded dataset derived from field observations is utilized to quantitatively evaluate the relationship between snow extent and snow depth over North America. Various statistical methods are applied to assess the mutual consistency of monthly snow depth vs. snow extent, including correlations, composites and principal components. Results indicate that snow depth variations are significant in their own rights, and that depth and extent anomalies are largely unrelated, especially over broad high latitude regions north of the snowline. In the vicinity of the snowline, where precipitation and ablation can affect both snow extent and snow depth, the two variables vary concurrently, especially in autumn and spring. It is also found that deeper winter snow translates into larger snow-covered area in the subsequent spring/summer season, which suggests a possible influence of winter snow depth on summer climate. The observed lack of mutual consistency at continental/regional scales suggests that snowpack depth variations may be of sufficiently large magnitude, spatial scope and temporal duration to influence regional-hemispheric climate, in a manner unrelated to the more extensively studied snow extent variations.

  19. D/H Ratios in Lipids as a Tool to Elucidate Microbial Metabolism

    NASA Astrophysics Data System (ADS)

    Wijker, R. S.; Sessions, A. L.

    2015-12-01

    Large D/H fractionations have been observed in the lipids and growth water of most organisms studied today. These fractionations have generally been assumed to be constant across most biota because they originate solely from isotope effects imposed by the highly conserved lipid biosynthetic pathway. Recent data is illustrating this conclusion as incomplete. Lipids from field and laboratory samples exhibit huge variations in D/H fractionation. In environmental samples, lipids vary in δD by up to 300 ‰ and in laboratory cultures the documented variation is up to 500 ‰ within the same organism. Remarkably, the isotope fractionation appears to be correlated with the type of metabolism employed by the host organism. However, the underlying biochemical mechanisms leading to these isotopic variations are not yet fully understood. Because the largest proportion of H-bound C in fatty acids is derived directly from NADPH during biosynthesis, the original hypothesis was that large differences in the isotopic composition of NADPH, generated by different central metabolic pathways, were the primary source of D/H variation in lipids. However, recent observations indicate that this cannot be the whole story and lead us to the conclusion that additional processes must affect the isotope composition of NADPH. These processes may include the isotopic exchange of NADPH with water as well as fractionation of NADPH by transhydrogenases, interconverting NADH to NADPH by exhibiting large isotope effects. In this project, our objective is to ascertain whether D/H fractionation and these biochemical processes are correlated. We investigate correlations between cellular NADPH/NADP+ as well as NADH/NAD+ pool sizes and the D/H fractionation in a set of different microorganisms and will present the first trends here. Our results will contribute to a more comprehensive understanding of the basic biological regulations over D/H fractionation and potentially enables their use as tracers and proxies across earth and biological sciences.

  20. D/H Ratios in Lipids as a Tool to Elucidate Microbial Metabolism

    NASA Astrophysics Data System (ADS)

    Wijker, Reto S.; Sessions, Alex L.

    2016-04-01

    Large D/H fractionations have been observed in the lipids and growth water of most organisms studied today. These fractionations have generally been assumed to be constant across most biota because they originate solely from isotope effects imposed by the highly conserved lipid biosynthetic pathway. Recent data is illustrating this conclusion as incomplete. Lipids from field and laboratory samples exhibit huge variations in D/H fractionation. In environmental samples, lipids vary in δD by up to 300 ‰ and in laboratory cultures the documented variation is up to 500 ‰ within the same organism. Remarkably, the isotope fractionation appears to be correlated with the type of metabolism employed by the host organism. However, the underlying biochemical mechanisms leading to these isotopic variations are not yet fully understood. Because the largest proportion of H-bound C in fatty acids is derived directly from NADPH during biosynthesis, the original hypothesis was that large differences in the isotopic composition of NADPH, generated by different central metabolic pathways, were the primary source of D/H variation in lipids. However, recent observations indicate that this cannot be the whole story and lead us to the conclusion that additional processes must affect the isotope composition of NADPH. These processes may include the isotopic exchange of NADPH with water as well as fractionation of NADPH by transhydrogenases, interconverting NADH to NADPH by exhibiting large isotope effects. In this project, our objective is to ascertain whether D/H fractionation and these biochemical processes are correlated. We investigate correlations between cellular NADPH/NADP+ as well as NADH/NAD+ pool sizes and the D/H fractionation in a set of different microorganisms and will present the trends here. Our results will contribute to a more comprehensive understanding of the basic biological regulations over D/H fractionation and potentially enables their use as tracers and proxies across earth and biological sciences.

  1. Pulsation in the presence of a strong magnetic field: the roAp star HD166473

    NASA Astrophysics Data System (ADS)

    Mathys, G.; Kurtz, D. W.; Elkin, V. G.

    2007-09-01

    Phase-resolved high-resolution, high signal-to-noise ratio (S/N) observations of the strongly magnetic roAp star HD166473 are analysed. HD166473 was selected as the target of this study because it has one of the strongest magnetic fields of all the roAp stars known with resolved magnetically split lines. Indeed, we show that enhanced pulsation diagnosis can be achieved from consideration of the different pulsation behaviour of the π and σ Zeeman components of the resolved spectral lines. This study is based on a time-series of high spectral resolution observations obtained with the Ultraviolet and Visual Echelle Spectrograph of the Very Large Telescope of the European Southern Observatory. Radial velocity variations due to pulsation are observed in rare earth lines, with amplitudes up to 110ms-1. The variations occur with three frequencies, already detected in photometry, but which can in this work be determined with better precision: 1.833, 1.886 and 1.928mHz. The pulsation amplitudes and phases observed in the rare earth element lines vary with atmospheric height, as is the case in other roAp stars studied in detail. Lines of Fe and of other (mostly non-rare earth) elements do not show any variation to very high precision (1.5ms-1 in the case of Fe). The low amplitudes of the observed variations do not allow the original goal of studying differences between the behaviour of the resolved Zeeman line components to be reached; the S/N achieved in the radial velocity determinations is insufficient to establish definitely the possible existence of such differences. Yet the analysis provides a tantalizing hint at the occurrence of variations of the mean magnetic field modulus with the pulsation frequency, with an amplitude of 21 +/- 5G. Based on observations collected at the European Southern Observatory, Paranal, Chile, as part of programme 067.D-0272. E-mail: gmathys@eso.org

  2. Transient deformation of karst aquifers observed by GPS: improved knowledge from Central Apennines (Italy)

    NASA Astrophysics Data System (ADS)

    Silverii, F.; D'Agostino, N.; Borsa, A. A.

    2017-12-01

    The redistribution of water masses due to temporal variations of hydrological conditions can produce observable deformation of the shallow crust. Space geodesy, e.g., GPS and InSAR, has provided a considerable improvement in terms of data accuracy and spatial and temporal resolution for the detection and investigation of this kind of deformation. In particular, in the areas where snow and water accumulate for long periods, such as aquifers, relatively high deformation (up to several millimeters) has been observed. Karst aquifers are able to store huge amounts of water and a clear deformation related to the groundwater storage variations has been observed in some regions. In a recent study we showed that the karst aquifers of Southern Apennines deform in response of seasonal and interannual variations of groundwater content, producing a visible transient signal in the time series of the surrounding GPS sites. In this work, we analyze the GPS time series and hydrological data of Central Italy, an interesting and complex area which hosts huge karst aquifers and is characterized by high seismic activity. We show that a noticeable transient signal with features similar to those of Southern Apennines affects also the time series of Central Apennines, suggesting that the large karst aquifers of this region experience a process analogue to the ones in Southern Italy. Thanks to the availability of a dense GPS network and different kinds of hydrological data (rainfall, spring discharge, groundwater level) we focus on the process causing the observed deformation. In particular, we model the observed deformation by inverting the GPS data using Green's functions for finite strain cuboid sources (Barbot et al. 2017). An enhanced understanding of the causes and implications of the highlighted deformation of karst aquifers is of primary interest for an improved management of this important water resource and for a better understanding of the possible interactions between groundwater variations, variations of pore pressure in the crust and seismicity.

  3. Greater temporal changes of sediment microbial community than its waterborne counterpart in Tengchong hot springs, Yunnan Province, China

    PubMed Central

    Wang, Shang; Dong, Hailiang; Hou, Weiguo; Jiang, Hongchen; Huang, Qiuyuan; Briggs, Brandon R.; Huang, Liuqin

    2014-01-01

    Temporal variation in geochemistry can cause changes in microbial community structure and diversity. Here we studied temporal changes of microbial communities in Tengchong hot springs of Yunnan Province, China in response to geochemical variations by using microbial and geochemical data collected in January, June and August of 2011. Greater temporal variations were observed in individual taxa than at the whole community structure level. Water and sediment communities exhibited different temporal variation patterns. Water communities were largely stable across three sampling times and dominated by similar microbial lineages: Hydrogenobaculum in moderate-temperature acidic springs, Sulfolobus in high-temperature acidic springs, and Hydrogenobacter in high-temperature circumneutral to alkaline springs. Sediment communities were more diverse and responsive to changing physicochemical conditions. Most of the sediment communities in January and June were similar to those in waters. However, the August sediment community was more diverse and contained more anaerobic heterotrophs than the January and June: Desulfurella and Acidicaldus in moderate-temperature acidic springs, Ignisphaera and Desulfurococcus in high-temperature acidic springs, the candidate division OP1 and Fervidobacterium in alkaline springs, and Thermus and GAL35 in neutral springs. Temporal variations in physicochemical parameters including temperature, pH, and dissolved organic carbon may have triggered the observed microbial community shifts. PMID:25524763

  4. Study on Interaction Between Diurnal Tide and Atmospheric Aerosols Observed by Mars Climate Sounder

    NASA Astrophysics Data System (ADS)

    Wu, Z.; Li, T.

    2016-12-01

    The increased local time coverage observed by Mars Climate Sounder (MCS) on board Mars Reconnaissance Orbiter (MRO) can enable direct extraction of thermal tides in Mars middle atmosphere with reduced aliasing. Using temperature profiles from Mars year (MY) 30 to 32, we study the latitudinal and seasonal variations of tides and stationary planetary waves with zonal wave numbers s = 1-3. The amplitude of the migrating diurnal tide (DW1) has strong semiannual variations both in the equatorial region and in the Southern Hemisphere (SH) middle latitudes. Aerosols widely distributed in the atmosphere of Mars, namely, dust and water ice also show apparent diurnal variations, which may be caused by a dynamical process of tidal vertical wind. Tidal response in dust abundance indicates an annual variation with maximum amplitude in aphelion seasons while the background abundance of dust peaks in perihelion seasons when global dust storm occurs frequently, which suggests that extremely large abundance of dust may restrain its own tidal response. Water ice abundance in the middle latitudes has a semiannual variation which is similar to the thermal diurnal tide. In addition, the diurnal heating rate of aerosols is calculated and Hough decomposition is performed to estimate the radiative effect of aerosols on diurnal tide.

  5. Estimating variation in stomatal frequency at intra-individual, intra-site, and inter-taxonomic levels in populations of the Leonardoxa africana (Fabaceae) complex over environmental gradients in Cameroon

    NASA Astrophysics Data System (ADS)

    Finsinger, Walter; Dos Santos, Thibaut; McKey, Doyle

    2013-07-01

    Variation of stomatal frequency (stomatal density and stomatal index) includes genetically-based, potentially-adaptive variation, and variation due to phenotypic plasticity, the degree of which may be fundamental to the ability to maintain high water-use efficiency and thus to deal with environmental change. We analysed stomatal frequency and morphology (pore length, pore width) in leaves from several individuals from nine populations of four sub-species of the Leonardoxa africana complex. The dataset represents a hierarchical sampling wherein factors are nested within each level (leaves in individuals, individuals in sites, etc.), allowing estimation of the contribution of different levels to overall variation, using variance-component analysis. SI showed significant variation among sites ("site" is largely confounded with "sub-species"), being highest in the sub-species localized in the highest-elevation site. However, most of the observed variance was accounted for at intra-site and intra-individual levels. This variance could reflect great phenotypic plasticity, presumably in response to highly local variation in micro-environmental conditions.

  6. Selecting Magnet Laminations Recipes Using the Meth-od of Sim-u-la-ted Annealing

    NASA Astrophysics Data System (ADS)

    Russell, A. D.; Baiod, R.; Brown, B. C.; Harding, D. J.; Martin, P. S.

    1997-05-01

    The Fermilab Main Injector project is building 344 dipoles using more than 7000 tons of steel. Budget and logistical constraints required that steel production, lamination stamping and magnet fabrication proceed in parallel. There were significant run-to-run variations in the magnetic properties of the steel (Martin, P.S., et al., Variations in the Steel Properties and the Excitation Characteristics of FMI Dipoles, this conference). The large lamination size (>0.5 m coil opening) resulted in variations of gap height due to differences in stress relief in the steel after stamping. To minimize magnet-to-magnet strength and field shape variations the laminations were shuffled based on the available magnetic and mechanical data and assigned to magnets using a computer program based on the method of simulated annealing. The lamination sets selected by the program have produced magnets which easily satisfy the design requirements. Variations of the average magnet gap are an order of magnitude smaller than the variations in lamination gaps. This paper discusses observed gap variations, the program structure and the strength uniformity results.

  7. Implications of the Observed Mesoscale Variations of Clouds for Earth's Radiation Budget

    NASA Technical Reports Server (NTRS)

    Rossow, William B.; Delo, Carl; Cairns, Brian; Hansen, James E. (Technical Monitor)

    2001-01-01

    The effect of small-spatial-scale cloud variations on radiative transfer in cloudy atmospheres currently receives a lot of research attention, but the available studies are not very clear about which spatial scales are important and report a very large range of estimates of the magnitude of the effects. Also, there have been no systematic investigations of how to measure and represent these cloud variations. We exploit the cloud climatology produced by the International Satellite Cloud Climatology Project (ISCCP) to: (1) define and test different methods of representing cloud variation statistics, (2) investigate the range of spatial scales that should be included, (3) characterize cloud variations over a range of space and time scales covering mesoscale (30 - 300 km, 3-12 hr) into part of the lower part of the synoptic scale (300 - 3000 km, 1-30 days), (4) obtain a climatology of the optical thickness, emissivity and cloud top temperature variability of clouds that can be used in weather and climate GCMS, together with the parameterization proposed by Cairns et al. (1999), to account for the effects of small-scale cloud variations on radiative fluxes, and (5) evaluate the effect of observed cloud variations on Earth's radiation budget. These results lead to the formulation of a revised conceptual model of clouds for use in radiative transfer calculations in GCMS. The complete variability climatology can be obtained from the ISCCP Web site at http://isccp.giss.nasa.gov.

  8. Genomic structural variation contributes to phenotypic change of industrial bioethanol yeast Saccharomyces cerevisiae.

    PubMed

    Zhang, Ke; Zhang, Li-Jie; Fang, Ya-Hong; Jin, Xin-Na; Qi, Lei; Wu, Xue-Chang; Zheng, Dao-Qiong

    2016-03-01

    Genomic structural variation (GSV) is a ubiquitous phenomenon observed in the genomes of Saccharomyces cerevisiae strains with different genetic backgrounds; however, the physiological and phenotypic effects of GSV are not well understood. Here, we first revealed the genetic characteristics of a widely used industrial S. cerevisiae strain, ZTW1, by whole genome sequencing. ZTW1 was identified as an aneuploidy strain and a large-scale GSV was observed in the ZTW1 genome compared with the genome of a diploid strain YJS329. These GSV events led to copy number variations (CNVs) in many chromosomal segments as well as one whole chromosome in the ZTW1 genome. Changes in the DNA dosage of certain functional genes directly affected their expression levels and the resultant ZTW1 phenotypes. Moreover, CNVs of large chromosomal regions triggered an aneuploidy stress in ZTW1. This stress decreased the proliferation ability and tolerance of ZTW1 to various stresses, while aneuploidy response stress may also provide some benefits to the fermentation performance of the yeast, including increased fermentation rates and decreased byproduct generation. This work reveals genomic characters of the bioethanol S. cerevisiae strain ZTW1 and suggests that GSV is an important kind of mutation that changes the traits of industrial S. cerevisiae strains. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  9. Deriving photometric redshifts using fuzzy archetypes and self-organizing maps - I. Methodology

    NASA Astrophysics Data System (ADS)

    Speagle, Joshua S.; Eisenstein, Daniel J.

    2017-07-01

    We propose a method to substantially increase the flexibility and power of template fitting-based photometric redshifts by transforming a large number of galaxy spectral templates into a corresponding collection of 'fuzzy archetypes' using a suitable set of perturbative priors designed to account for empirical variation in dust attenuation and emission-line strengths. To bypass widely separated degeneracies in parameter space (e.g. the redshift-reddening degeneracy), we train self-organizing maps (SOMs) on large 'model catalogues' generated from Monte Carlo sampling of our fuzzy archetypes to cluster the predicted observables in a topologically smooth fashion. Subsequent sampling over the SOM then allows full reconstruction of the relevant probability distribution functions (PDFs). This combined approach enables the multimodal exploration of known variation among galaxy spectral energy distributions with minimal modelling assumptions. We demonstrate the power of this approach to recover full redshift PDFs using discrete Markov chain Monte Carlo sampling methods combined with SOMs constructed from Large Synoptic Survey Telescope ugrizY and Euclid YJH mock photometry.

  10. Inter-annual and decadal changes in teleconnections drive continental-scale synchronization of tree reproduction.

    PubMed

    Ascoli, Davide; Vacchiano, Giorgio; Turco, Marco; Conedera, Marco; Drobyshev, Igor; Maringer, Janet; Motta, Renzo; Hacket-Pain, Andrew

    2017-12-20

    Climate teleconnections drive highly variable and synchronous seed production (masting) over large scales. Disentangling the effect of high-frequency (inter-annual variation) from low-frequency (decadal trends) components of climate oscillations will improve our understanding of masting as an ecosystem process. Using century-long observations on masting (the MASTREE database) and data on the Northern Atlantic Oscillation (NAO), we show that in the last 60 years both high-frequency summer and spring NAO, and low-frequency winter NAO components are highly correlated to continent-wide masting in European beech and Norway spruce. Relationships are weaker (non-stationary) in the early twentieth century. This finding improves our understanding on how climate variation affects large-scale synchronization of tree masting. Moreover, it supports the connection between proximate and ultimate causes of masting: indeed, large-scale features of atmospheric circulation coherently drive cues and resources for masting, as well as its evolutionary drivers, such as pollination efficiency, abundance of seed dispersers, and natural disturbance regimes.

  11. BIG BANG NUCLEOSYNTHESIS WITH A NON-MAXWELLIAN DISTRIBUTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bertulani, C. A.; Fuqua, J.; Hussein, M. S.

    The abundances of light elements based on the big bang nucleosynthesis model are calculated using the Tsallis non-extensive statistics. The impact of the variation of the non-extensive parameter q from the unity value is compared to observations and to the abundance yields from the standard big bang model. We find large differences between the reaction rates and the abundance of light elements calculated with the extensive and the non-extensive statistics. We found that the observations are consistent with a non-extensive parameter q = 1{sub -} {sub 0.12}{sup +0.05}, indicating that a large deviation from the Boltzmann-Gibbs statistics (q = 1)more » is highly unlikely.« less

  12. The effects of nucleation and solidification mechanisms on the microstructure and thermomechanical response of tin silver copper solder joints

    NASA Astrophysics Data System (ADS)

    Arfaei, Babak

    This work examines the nucleation mechanism of Sn in SnAgCu alloys and its effect on the microstructure of those solder joints. The nucleation rate of Sn in a SAC alloy was obtained by simultaneous calorimetric examination of the isothermal solidification of 88 flip chip Sn-Ag-Cu solder joints. Qualitative agreement with classic nucleation theory was observed, although it was concluded that the spherical cap model cannot be applied to explain the structure of nucleus. It was shown that the solidification temperature significantly affects the microstructure; samples that undercooled less than approximately 40oC revealed one or three large Sn grains, while interlaced twinning was observed in the samples that solidified at lower temperatures. In order to better understand the effect of microstructure on the thermomechanical properties of solder joints, a study of the dependence of room temperature shear fatigue lifetime on Sn grain number and orientation was conducted. This study examined the correlations of variations in fatigue life of solder balls with the microstructure of Sn-Ag-Cu solder. The mean fatigue lifetime was found to be significantly longer for samples with multiple Sn grains than for samples with single Sn grains. For single grain samples, correlations between Sn grain orientation (with respect to the loading direction) and lifetime were observed, providing insight on early failures in SnAgCu solder joints. Correlations between the lifetimes of single Sn grained, SAC205 solder joints with differences in Ag3Sn and Cu6Sn5 precipitate microstructures were investigated. It was found that Ag3Sn precipitates were highly segregated from Cu6Sn 5 precipitates on a length scale of approximately twenty microns. Furthermore, large (factor of two) variations of the Sn dendrite arm size were observed within given samples. Such variations in values of dendrite arm size within a single sample were much larger than observed variations of this parameter between individual samples. Few significant differences were observed in the average size of precipitates in different samples. While the earliest and latest lifetimes of single Sn grained samples were correlated with Sn grain orientation, effects of precipitate microstructure on lifetimes were not clearly delineated.

  13. Thermospheric O/N2 in the Sunlit Disk From More Than Five Years of GUVI/TIMED Observations

    NASA Astrophysics Data System (ADS)

    Craven, J. D.; Christensen, A. B.; Paxton, L. J.

    2007-12-01

    GUVI indirect observations of the thermospheric column density ratio, O/N2, in the sunlit hemisphere have been made on a nearly continuous basis from day 50 of 2002 to the present as part of the TIMED spacecraft mission. The basic large-scale spatial structure includes variations with local time (greater values in the morning), Universal Time (modulation at high latitudes due to the offset magnetic dipole), and season (greater values in the local winter hemisphere). These differences are seen to fade in the approach to solar minimum. Superposed on this reasonably well-behaved background structure are the complex, transient perturbations driven by auroral substorms and geomagnetic storms. The spatial and temporal variations are summarized in part by time-lapse movies

  14. Ionospheric chemistry of NO(+)

    NASA Technical Reports Server (NTRS)

    Breig, E. L.; Hanson, W. B.; Hoffman, J. H.

    1984-01-01

    An investigation is described of the behavior of NO(+) in the daytime F region, with basic ion concentration measurements from the Atmosphere Explorer C satellite. The data set was acquired along select orbits at low latitudes and exhibits substantial variations in the NO(+) concentration, both along and between nearby orbits. An excellent consistency is demonstrated between these observations and current chemical equilibrium theory, in contrast to differences that have been reported for the related N2(+) ion. Large variations in the concurrently observed electron temperature permit a relevant comparison between different laboratory determinations of the dissociative recombination rate coefficient. Contributions to the NO(+) production from several secondary sources are also evaluated. Results strengthen the basis for the current theoretical ionospheric chemistry of NO(+) and establish important constraints on resolution of the difficulties with N2(+).

  15. Simultaneous optical and IR photometry of the T Tauri star RU LUPI

    NASA Astrophysics Data System (ADS)

    Giovannelli, F.; Errico, L.; Vittone, A. A.; Rossi, C.

    1991-01-01

    Two simultaneous optical and IR photometric observation runs of RU Lupi were carried out at the ESO in February 1983 and in June 1986 within the framework of a large multifrequency coordinated campaign of observations. RU Lupi was found in two different states. In the first case the star was in 'quiescence', in the second it was brighter and showed larger variations due to flare like event (FLE). A positive correlation between luminosity and its variations has been found. A Fourier analysis of the light curve available in literature was performed to point out the rotational period. The analysis of these data excludes any periodicity. The color-color diagnostic diagram clearly shows that RU Lupi variability is mainly due to a strong photospheric and chromospheric activity.

  16. Measuring the potential utility of seasonal climate predictions

    NASA Astrophysics Data System (ADS)

    Tippett, Michael K.; Kleeman, Richard; Tang, Youmin

    2004-11-01

    Variation of sea surface temperature (SST) on seasonal-to-interannual time-scales leads to changes in seasonal weather statistics and seasonal climate anomalies. Relative entropy, an information theory measure of utility, is used to quantify the impact of SST variations on seasonal precipitation compared to natural variability. An ensemble of general circulation model (GCM) simulations is used to estimate this quantity in three regions where tropical SST has a large impact on precipitation: South Florida, the Nordeste of Brazil and Kenya. We find the yearly variation of relative entropy is strongly correlated with shifts in ensemble mean precipitation and weakly correlated with ensemble variance. Relative entropy is also found to be related to measures of the ability of the GCM to reproduce observations.

  17. Global View of Aerosol Vertical Distributions from CALIPSO Lidar Measurements and GOCART Simulations: Regional and Seasonal Variations

    NASA Technical Reports Server (NTRS)

    Yu, Hongbin; Chin, Mian; Winker, David M.; Omar, Ali H.; Liu, Zhaoyan; Kittaka, Chieko; Diehl, Thomas

    2010-01-01

    This study examines seasonal variations of the vertical distribution of aerosols through a statistical analysis of the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) lidar observations from June 2006 to November 2007. A data-screening scheme is developed to attain good quality data in cloud-free conditions, and the polarization measurement is used to separate dust from non-dust aerosol. The CALIPSO aerosol observations are compared with aerosol simulations from the Goddard Chemistry Aerosol Radiation Transport (GOCART) model and aerosol optical depth (AOD) measurements from the MODerate resolution Imaging Spectroradiometer (MODIS). The CALIPSO observations of geographical patterns and seasonal variations of AOD are generally consistent with GOCART simulations and MODIS retrievals especially near source regions, while the magnitude of AOD shows large discrepancies in most regions. Both the CALIPSO observation and GOCART model show that the aerosol extinction scale heights in major dust and smoke source regions are generally higher than that in industrial pollution source regions. The CALIPSO aerosol lidar ratio also generally agrees with GOCART model within 30% on regional scales. Major differences between satellite observations and GOCART model are identified, including (1) an underestimate of aerosol extinction by GOCART over the Indian sub-continent, (2) much larger aerosol extinction calculated by GOCART than observed by CALIPSO in dust source regions, (3) much weaker in magnitude and more concentrated aerosol in the lower atmosphere in CALIPSO observation than GOCART model over transported areas in midlatitudes, and (4) consistently lower aerosol scale height by CALIPSO observation than GOCART model. Possible factors contributing to these differences are discussed.

  18. Characterizing the nature of subpulse drifting in pulsars

    NASA Astrophysics Data System (ADS)

    Basu, Rahul; Mitra, Dipanjan

    2018-04-01

    We report a detailed study of subpulse drifting in four long-period pulsars. These pulsars were observed in the Meterwavelength Single-pulse Polarimetric Emission Survey and the presence of phase-modulated subpulse drifting was reported in each case. We carried out longer duration and more sensitive observations lasting 7000-12 000 periods in the frequency range 306-339 MHz. The drifting features were characterized in great detail, including the phase variations across the pulse window. For two pulsars, J0820-1350 and J1720-2933, the phases changed steadily across the pulse window. The pulsar J1034-3224 has five components. The leading component was very weak and was barely detectable in our single-pulse observations. The four trailing components showed subpulse drifting. The phase variations changed in alternate components with a reversal in the sign of the gradient. This phenomenon is known as bi-drifting. The pulsar J1555-3134 showed two distinct peak frequencies of comparable strengths in the fluctuation spectrum. The two peaks did not appear to be harmonically related and were most likely a result of different physical processes. Additionally, the long observations enabled us to explore the temporal variations of the drifting features. The subpulse drifting was largely constant with time but small fluctuations around a mean value were seen.

  19. Quantifying Geographic Variation in Health Care Outcomes in the United States before and after Risk-Adjustment.

    PubMed

    Rosenberg, Barry L; Kellar, Joshua A; Labno, Anna; Matheson, David H M; Ringel, Michael; VonAchen, Paige; Lesser, Richard I; Li, Yue; Dimick, Justin B; Gawande, Atul A; Larsson, Stefan H; Moses, Hamilton

    2016-01-01

    Despite numerous studies of geographic variation in healthcare cost and utilization at the local, regional, and state levels across the U.S., a comprehensive characterization of geographic variation in outcomes has not been published. Our objective was to quantify variation in US health outcomes in an all-payer population before and after risk-adjustment. We used information from 16 independent data sources, including 22 million all-payer inpatient admissions from the Healthcare Cost and Utilization Project (which covers regions where 50% of the U.S. population lives) to analyze 24 inpatient mortality, inpatient safety, and prevention outcomes. We compared outcome variation at state, hospital referral region, hospital service area, county, and hospital levels. Risk-adjusted outcomes were calculated after adjusting for population factors, co-morbidities, and health system factors. Even after risk-adjustment, there exists large geographical variation in outcomes. The variation in healthcare outcomes exceeds the well publicized variation in US healthcare costs. On average, we observed a 2.1-fold difference in risk-adjusted mortality outcomes between top- and bottom-decile hospitals. For example, we observed a 2.3-fold difference for risk-adjusted acute myocardial infarction inpatient mortality. On average a 10.2-fold difference in risk-adjusted patient safety outcomes exists between top and bottom-decile hospitals, including an 18.3-fold difference for risk-adjusted Central Venous Catheter Bloodstream Infection rates. A 3.0-fold difference in prevention outcomes exists between top- and bottom-decile counties on average; including a 2.2-fold difference for risk-adjusted congestive heart failure admission rates. The population, co-morbidity, and health system factors accounted for a range of R2 between 18-64% of variability in mortality outcomes, 3-39% of variability in patient safety outcomes, and 22-70% of variability in prevention outcomes. The amount of variability in health outcomes in the U.S. is large even after accounting for differences in population, co-morbidities, and health system factors. These findings suggest that: 1) additional examination of regional and local variation in risk-adjusted outcomes should be a priority; 2) assumptions of uniform hospital quality that underpin rationale for policy choices (such as narrow insurance networks or antitrust enforcement) should be challenged; and 3) there exists substantial opportunity for outcomes improvement in the US healthcare system.

  20. Background Noises Versus Intraseasonal Variation Signals: Small vs. Large Convective Cloud Objects From CERES Aqua Observations

    NASA Technical Reports Server (NTRS)

    Xu, Kuan-Man

    2015-01-01

    During inactive phases of Madden-Julian Oscillation (MJO), there are plenty of deep but small convective systems and far fewer deep and large ones. During active phases of MJO, a manifestation of an increase in the occurrence of large and deep cloud clusters results from an amplification of large-scale motions by stronger convective heating. This study is designed to quantitatively examine the roles of small and large cloud clusters during the MJO life cycle. We analyze the cloud object data from Aqua CERES (Clouds and the Earth's Radiant Energy System) observations between July 2006 and June 2010 for tropical deep convective (DC) and cirrostratus (CS) cloud object types according to the real-time multivariate MJO index, which assigns the tropics to one of the eight MJO phases each day. The cloud object is a contiguous region of the earth with a single dominant cloud-system type. The criteria for defining these cloud types are overcast footprints and cloud top pressures less than 400 hPa, but DC has higher cloud optical depths (=10) than those of CS (<10). The size distributions, defined as the footprint numbers as a function of cloud object diameters, for particular MJO phases depart greatly from the combined (8-phase) distribution at large cloud-object diameters due to the reduced/increased numbers of cloud objects related to changes in the large-scale environments. The medium diameter corresponding to the combined distribution is determined and used to partition all cloud objects into "small" and "large" groups of a particular phase. The two groups corresponding to the combined distribution have nearly equal numbers of footprints. The medium diameters are 502 km for DC and 310 km for cirrostratus. The range of the variation between two extreme phases (typically, the most active and depressed phases) for the small group is 6-11% in terms of the numbers of cloud objects and the total footprint numbers. The corresponding range for the large group is 19-44%. In terms of the probability density functions of radiative and cloud physical properties, there are virtually no differences between the MJO phases for the small group, but there are significant differences for the large groups for both DC and CS types. These results suggest that the intreseasonal variation signals reside at the large cloud clusters while the small cloud clusters represent the background noises resulting from various types of the tropical waves with different wavenumbers and propagation speeds/directions.

  1. Mechanisms of diurnal precipitation over the US Great Plains: a cloud resolving model perspective

    NASA Astrophysics Data System (ADS)

    Lee, Myong-In; Choi, Ildae; Tao, Wei-Kuo; Schubert, Siegfried D.; Kang, In-Sik

    2010-02-01

    The mechanisms of summertime diurnal precipitation in the US Great Plains were examined with the two-dimensional (2D) Goddard Cumulus Ensemble (GCE) cloud-resolving model (CRM). The model was constrained by the observed large-scale background state and surface flux derived from the Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Program’s Intensive Observing Period (IOP) data at the Southern Great Plains (SGP). The model, when continuously-forced by realistic surface flux and large-scale advection, simulates reasonably well the temporal evolution of the observed rainfall episodes, particularly for the strongly forced precipitation events. However, the model exhibits a deficiency for the weakly forced events driven by diurnal convection. Additional tests were run with the GCE model in order to discriminate between the mechanisms that determine daytime and nighttime convection. In these tests, the model was constrained with the same repeating diurnal variation in the large-scale advection and/or surface flux. The results indicate that it is primarily the surface heat and moisture flux that is responsible for the development of deep convection in the afternoon, whereas the large-scale upward motion and associated moisture advection play an important role in preconditioning nocturnal convection. In the nighttime, high clouds are continuously built up through their interaction and feedback with long-wave radiation, eventually initiating deep convection from the boundary layer. Without these upper-level destabilization processes, the model tends to produce only daytime convection in response to boundary layer heating. This study suggests that the correct simulation of the diurnal variation in precipitation requires that the free-atmospheric destabilization mechanisms resolved in the CRM simulation must be adequately parameterized in current general circulation models (GCMs) many of which are overly sensitive to the parameterized boundary layer heating.

  2. Mechanisms of Diurnal Precipitation over the United States Great Plains: A Cloud-Resolving Model Simulation

    NASA Technical Reports Server (NTRS)

    Lee, M.-I.; Choi, I.; Tao, W.-K.; Schubert, S. D.; Kang, I.-K.

    2010-01-01

    The mechanisms of summertime diurnal precipitation in the US Great Plains were examined with the two-dimensional (2D) Goddard Cumulus Ensemble (GCE) cloud-resolving model (CRM). The model was constrained by the observed large-scale background state and surface flux derived from the Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Program s Intensive Observing Period (IOP) data at the Southern Great Plains (SGP). The model, when continuously-forced by realistic surface flux and large-scale advection, simulates reasonably well the temporal evolution of the observed rainfall episodes, particularly for the strongly forced precipitation events. However, the model exhibits a deficiency for the weakly forced events driven by diurnal convection. Additional tests were run with the GCE model in order to discriminate between the mechanisms that determine daytime and nighttime convection. In these tests, the model was constrained with the same repeating diurnal variation in the large-scale advection and/or surface flux. The results indicate that it is primarily the surface heat and moisture flux that is responsible for the development of deep convection in the afternoon, whereas the large-scale upward motion and associated moisture advection play an important role in preconditioning nocturnal convection. In the nighttime, high clouds are continuously built up through their interaction and feedback with long-wave radiation, eventually initiating deep convection from the boundary layer. Without these upper-level destabilization processes, the model tends to produce only daytime convection in response to boundary layer heating. This study suggests that the correct simulation of the diurnal variation in precipitation requires that the free-atmospheric destabilization mechanisms resolved in the CRM simulation must be adequately parameterized in current general circulation models (GCMs) many of which are overly sensitive to the parameterized boundary layer heating.

  3. Modeling Modern Methane Emissions from Natural Wetlands. 2; Interannual Variations 1982-1993

    NASA Technical Reports Server (NTRS)

    Walter, Bernadette P.; Heimann, Martin; Mattews, Elaine; Hansen, James E. (Technical Monitor)

    2001-01-01

    A global run of a process-based methane model [Walter et al., this issue] is performed using high-frequency atmospheric forcing fields from ECMWF reanalyses of the period from 1982 to 1993. We calculate global annual methane emissions to be 260 Tg/ yr. 25% of methane emissions originate from wetlands north of 30 deg. N. Only 60% of the produced methane is emitted, while the rest is re-oxidized. A comparison of zonal integrals of simulated global wetland emissions and results obtained by an inverse modeling approach shows good agreement. In a test with data from two wetlands, the seasonality of simulated and observed methane emissions agrees well. The effects of sub-grid scale variations in model parameters and input data are examined. Modeled methane emissions show high regional, seasonal and interannual variability. Seasonal cycles of methane emissions are dominated by temperature in high latitude wetlands, and by changes in the water table in tropical wetlands. Sensitivity tests show that +/- 1 C changes in temperature lead to +/- 20 % changes in methane emissions from wetlands. Uniform changes of +/- 20% in precipitation alter methane emissions by about +/- 18%. Limitations in the model are analyzed. Simulated interannual variations in methane emissions from wetlands are compared to observed atmospheric growth rate anomalies. Our model simulation results suggest that contributions from other sources than wetlands and/or the sinks are more important in the tropics than north-of 30 deg. N. In higher northern latitudes, it seems that a large part, of the observed interannual variations can be explained by variations in wetland emissions. Our results also suggest that reduced wetland emissions played an important role in the observed negative methane growth rate anomaly in 1992.

  4. An abundance of rare functional variants in 202 drug target genes sequenced in 14,002 people

    PubMed Central

    Nelson, Matthew R.; Wegmann, Daniel; Ehm, Margaret G.; Kessner, Darren; St. Jean, Pamela; Verzilli, Claudio; Shen, Judong; Tang, Zhengzheng; Bacanu, Silviu-Alin; Fraser, Dana; Warren, Liling; Aponte, Jennifer; Zawistowski, Matthew; Liu, Xiao; Zhang, Hao; Zhang, Yong; Li, Jun; Li, Yun; Li, Li; Woollard, Peter; Topp, Simon; Hall, Matthew D.; Nangle, Keith; Wang, Jun; Abecasis, Gonçalo; Cardon, Lon R.; Zöllner, Sebastian; Whittaker, John C.; Chissoe, Stephanie L.; Novembre, John; Mooser, Vincent

    2015-01-01

    Rare genetic variants contribute to complex disease risk; however, the abundance of rare variants in human populations remains unknown. We explored this spectrum of variation by sequencing 202 genes encoding drug targets in 14,002 individuals. We find rare variants are abundant (one every 17 bases) and geographically localized, such that even with large sample sizes, rare variant catalogs will be largely incomplete. We used the observed patterns of variation to estimate population growth parameters, the proportion of variants in a given frequency class that are putatively deleterious, and mutation rates for each gene. Overall we conclude that, due to rapid population growth and weak purifying selection, human populations harbor an abundance of rare variants, many of which are deleterious and have relevance to understanding disease risk. PMID:22604722

  5. Time- and sediment depth-related variations in bacterial diversity and community structure in subtidal sands.

    PubMed

    Böer, Simone I; Hedtkamp, Stefanie I C; van Beusekom, Justus E E; Fuhrman, Jed A; Boetius, Antje; Ramette, Alban

    2009-07-01

    Bacterial community structure and microbial activity were determined together with a large number of contextual environmental parameters over 2 years in subtidal sands of the German Wadden Sea in order to identify the main factors shaping microbial community structure and activity in this habitat. Seasonal changes in temperature were directly reflected in bacterial activities and total community respiration, but could not explain variations in the community structure. Strong sediment depth-related patterns were observed for bacterial abundances, carbon production rates and extracellular enzymatic activities. Bacterial community structure also showed a clear vertical variation with higher operational taxonomic unit (OTU) numbers at 10-15 cm depth than in the top 10 cm, probably because of the decreasing disturbance by hydrodynamic forces with sediment depth. The depth-related variations in bacterial community structure could be attributed to vertical changes in bacterial abundances, chlorophyll a and NO(3)(-), indicating that spatial patterns of microbes are partially environmentally controlled. Time was the most important single factor affecting microbial community structure with an OTU replacement of up to 47% over 2 years and a contribution of 34% to the total variation. A large part of this variation was not related to any environmental parameters, suggesting that temporal variations in bacterial community structure are caused by yet unknown environmental drivers and/or by stochastic events in coastal sand habitats. Principal ecosystem functions such as benthic oxygen consumption and extracellular hydrolysis of organic matter were, however, at a high level at all times, indicating functional redundancy in the microbial communities.

  6. Seasonality of the Mindanao Current/Undercurrent System

    NASA Astrophysics Data System (ADS)

    Ren, Qiuping; Li, Yuanlong; Wang, Fan; Song, Lina; Liu, Chuanyu; Zhai, Fangguo

    2018-02-01

    Seasonality of the Mindanao Current (MC)/Undercurrent (MUC) system is investigated using moored acoustic Doppler current profiler (ADCP) measurements off Mindanao (8°N, 127.05°E) and ocean model simulations. The mooring observation during December 2010 to August 2014 revealed that the surface-layer MC between 50-150 m is dominated by annual-period variation and tends to be stronger in spring (boreal) and weaker in fall. Prominent semiannual variations were detected below 150 m. The lower MC between 150 and 400 m is stronger in spring and fall and weaker in summer and winter, while the northward MUC below 400 m emerges in summer and winter and disappears in spring and fall. In-phase and out-of-phase current anomalies above and below 150 m were observed alternatively. These variations are faithfully reproduced by an eddy-resolving ocean model simulation (OFES). Further analysis demonstrates that seasonal variation of the MC is a component of large-scale upper-ocean circulation gyre, while current variations in the MUC layer are confined near the western boundary and featured by shorter-scale (200-400 km) structures. Most of the MC variations and approximately half of the MUC variations can be explained by the first and second baroclinic modes and caused by local wind forcing of the western Pacific. Semiannual surface wind variability and superimposition of the two baroclinic modes jointly give rise to the enhanced subsurface semiannual variations. The pronounced mesoscale eddy variability in the MUC layer may also contribute to the seasonality of the MUC through eddy-current interaction.

  7. Reevaluating the Mass-Radius Relation for Low-mass, Main-sequence Stars

    NASA Astrophysics Data System (ADS)

    Feiden, Gregory A.; Chaboyer, Brian

    2012-09-01

    We examine the agreement between the observed and theoretical low-mass (<0.8 M ⊙) stellar main-sequence mass-radius relationship by comparing detached eclipsing binary (DEB) data with a new, large grid of stellar evolution models. The new grid allows for a realistic variation in the age and metallicity of the DEB population, characteristic of the local galactic neighborhood. Overall, our models do a reasonable job of reproducing the observational data. A large majority of the models match the observed stellar radii to within 4%, with a mean absolute error of 2.3%. These results represent a factor of two improvement compared to previous examinations of the low-mass mass-radius relationship. The improved agreement between models and observations brings the radius deviations within the limits imposed by potential starspot-related uncertainties for 92% of the stars in our DEB sample.

  8. Thermospheric Airglow Perturbations in the Upper Atmosphere Caused by Hurricane Harvey

    NASA Astrophysics Data System (ADS)

    Bhatt, A.; Kendall, E. A.

    2017-12-01

    The Midlatitude Allsky imaging Network for Geophysical Observations (MANGO) consists of seven allsky imagers distributed across the United States recording observations of large-scale airglow perturbations. The imagers are filtered at 630 nm, a forbidden oxygen line, in order to record the predominant source of airglow at 250 km altitude. While the ubiquitous airglow layer is challenging to observe when under uniform conditions, waves in the upper atmosphere cause ripples in the airglow layer which can easily be imaged by appropriate instrumentation. MANGO is the first network to record perturbations in the airglow layer on a continent-size scale. Large and Mid-scale Traveling Ionospheric Disturbances (LSTIDs and MSTIDs) are recorded that are caused by auroral forcing, mountain turbulence, and tidal variations. On August 25, airglow perturbations centered on the Hurricane Harvey path were observed by MANGO. These images and connections to other complimentary data sets such as GPS will be presented.

  9. Distinct subtype distribution and somatic mutation spectrum of lymphomas in East Asia.

    PubMed

    Ren, Weicheng; Li, Wei; Ye, Xiaofei; Liu, Hui; Pan-Hammarström, Qiang

    2017-07-01

    Here, we give an updated overview of the subtype distribution of lymphomas in East Asia and also present the genome sequencing data on two major subtypes of these tumors. The distribution of lymphoma types/subtypes among East Asian countries is very similar, with a lower proportion of B-cell malignancies and a higher proportion of T/natural killer (NK)-cell lymphomas as compared to Western populations. Extranodal NK/T-cell lymphoma is more frequently observed in East Asia, whereas follicular lymphoma and chronic lymphocytic leukemia, are proportionally lower. The incidence rate of lymphoma subtypes in Asians living in the US was generally intermediate to the general rate in US and Asia, suggesting that both genetic and environmental factors may underlie the geographical variations observed.Key cancer driver mutations have been identified in Asian patients with diffuse large B-cell lymphoma or extranodal NK/T-cell lymphoma through genome sequencing. A distinct somatic mutation profile has also been observed in Chinese diffuse large B-cell lymphoma patients. The incidence and distribution of lymphoma subtypes differed significantly between patients from East Asia and Western countries, suggesting subtype-specific etiologic mechanisms. Further studies on the mechanism underlying these geographical variations may give new insights into our understanding of lymphomagenesis.

  10. The Nature of Variations in Anomalies of the Chemical Composition of the Solar Corona with the 11-Year Cycle

    NASA Astrophysics Data System (ADS)

    Pipin, V. V.; Tomozov, V. M.

    2018-04-01

    Evidence that the distribution of the abundances of admixtures with low first-ionization potentials (FIP < 10 eV) in the lower solar corona could be associated with the typology of the largescale magnetic field is presented. Solar observations show an enhancement in the abundances of elements with low FIPs compared to elements with high FIPs (>10 eV) in active regions and closed magnetic configurations in the lower corona. Observations with the ULYSSES spacecraft and at the Stanford Solar Observatory have revealed strong correlations between the manifestation of the FIP effect in the solar wind, the strength of the open magnetic flux (without regard to sign), and the ratio of the large-scale toroidal and poloidal magnetic fields at the solar surface. Analyses of observations of the Sun as a star show that the enhancement of the abundances of admixtures with low FIPs in the corona compared to their abundances in the photosphere (the FIP effect) is closely related to the solar-activity cycle and also with variations in the topology of the large-scale magnetic field. A possible mechanism for the relationship between the FIP effect and the spectral type of a star is discussed in the framework of solar-stellar analogies.

  11. [Correlation of intraocular pressure variation after visual field examination with 24-hour intraocular pressure variations in primary open-angle glaucoma].

    PubMed

    Noro, Takahiko; Nakamoto, Kenji; Sato, Makoto; Yasuda, Noriko; Ito, Yoshinori; Ogawa, Shumpei; Nakano, Tadashi; Tsuneoka, Hiroshi

    2014-10-01

    We retrospectively examined intraocular pressure variations after visual field examination in primary open angle glaucoma (POAG), together with its influencing factors and its association with 24-hour intraocular pressure variations. Subjects were 94 eyes (52 POAG patients) subjected to measurements of 24-hour intraocular pressure and of changes in intraocular pressure after visual field examination using a Humphrey Visual Field Analyzer. Subjects were classified into three groups according to the magnitude of variation (large, intermediate and small), and 24-hour intraocular pressure variations were compared among the three groups. Factors influencing intraocular pressure variations after visual field examination and those associated with the large variation group were investigated. Average intraocular pressure variation after visual field examination was -0.28 ± 1.90 (range - 6.0(-) + 5.0) mmHg. No significant influencing factors were identified. The intraocular pressure at 3 a.m. was significantly higher in the large variation group than other two groups (p < 0.001). Central corneal thickness was correlated with the large variation group (odds ratio = 1.04; 95% confidence interval, 1.01-1.07 ; p = 0.02). No particular tendencies in intraocular pressure variations were found after visual field examination. Increases in intraocular pressure during the night might be associated with large intraocular pressure variations after visual field examination.

  12. Intra and Interspecific Variations of Gene Expression Levels in Yeast Are Largely Neutral: (Nei Lecture, SMBE 2016, Gold Coast).

    PubMed

    Yang, Jian-Rong; Maclean, Calum J; Park, Chungoo; Zhao, Huabin; Zhang, Jianzhi

    2017-09-01

    It is commonly, although not universally, accepted that most intra and interspecific genome sequence variations are more or less neutral, whereas a large fraction of organism-level phenotypic variations are adaptive. Gene expression levels are molecular phenotypes that bridge the gap between genotypes and corresponding organism-level phenotypes. Yet, it is unknown whether natural variations in gene expression levels are mostly neutral or adaptive. Here we address this fundamental question by genome-wide profiling and comparison of gene expression levels in nine yeast strains belonging to three closely related Saccharomyces species and originating from five different ecological environments. We find that the transcriptome-based clustering of the nine strains approximates the genome sequence-based phylogeny irrespective of their ecological environments. Remarkably, only ∼0.5% of genes exhibit similar expression levels among strains from a common ecological environment, no greater than that among strains with comparable phylogenetic relationships but different environments. These and other observations strongly suggest that most intra and interspecific variations in yeast gene expression levels result from the accumulation of random mutations rather than environmental adaptations. This finding has profound implications for understanding the driving force of gene expression evolution, genetic basis of phenotypic adaptation, and general role of stochasticity in evolution. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  13. Multiband optical variability of the blazar OJ 287 during its outbursts in 2015-2016

    NASA Astrophysics Data System (ADS)

    Gupta, Alok C.; Agarwal, Aditi; Mishra, Alka; Gaur, H.; Wiita, P. J.; Gu, M. F.; Kurtanidze, O. M.; Damljanovic, G.; Uemura, M.; Semkov, E.; Strigachev, A.; Bachev, R.; Vince, O.; Zhang, Z.; Villarroel, B.; Kushwaha, P.; Pandey, A.; Abe, T.; Chanishvili, R.; Chigladze, R. A.; Fan, J. H.; Hirochi, J.; Itoh, R.; Kanda, Y.; Kawabata, M.; Kimeridze, G. N.; Kurtanidze, S. O.; Latev, G.; Dimitrova, R. V. Muñoz; Nakaoka, T.; Nikolashvili, M. G.; Shiki, K.; Sigua, L. A.; Spassov, B.

    2017-03-01

    We present recent optical photometric observations of the blazar OJ 287 taken during 2015 September-2016 May. Our intense observations of the blazar started in 2015 November and continued until 2016 May and included detection of the large optical outburst in 2015 December that was predicted using the binary black hole model for OJ 287. For our observing campaign, we used a total of nine ground-based optical telescopes of which one is in Japan, one is in India, three are in Bulgaria, one is in Serbia, one is in Georgia, and two are in the USA. These observations were carried out in 102 nights with a total of ∼1000 image frames in BVRI bands, though the majority were in the R band. We detected a second comparably strong flare in 2016 March. In addition, we investigated multiband flux variations, colour variations, and spectral changes in the blazar on diverse time-scales as they are useful in understanding the emission mechanisms. We briefly discuss the possible physical mechanisms most likely responsible for the observed flux, colour, and spectral variability.

  14. What Are the Environmental Determinants of Phenotypic Selection? A Meta-analysis of Experimental Studies.

    PubMed

    Caruso, Christina M; Martin, Ryan A; Sletvold, Nina; Morrissey, Michael B; Wade, Michael J; Augustine, Kate E; Carlson, Stephanie M; MacColl, Andrew D C; Siepielski, Adam M; Kingsolver, Joel G

    2017-09-01

    Although many selection estimates have been published, the environmental factors that cause selection to vary in space and time have rarely been identified. One way to identify these factors is by experimentally manipulating the environment and measuring selection in each treatment. We compiled and analyzed selection estimates from experimental studies. First, we tested whether the effect of manipulating the environment on selection gradients depends on taxon, trait type, or fitness component. We found that the effect of manipulating the environment was larger when selection was measured on life-history traits or via survival. Second, we tested two predictions about the environmental factors that cause variation in selection. We found support for the prediction that variation in selection is more likely to be caused by environmental factors that have a large effect on mean fitness but not for the prediction that variation is more likely to be caused by biotic factors. Third, we compared selection gradients from experimental and observational studies. We found that selection varied more among treatments in experimental studies than among spatial and temporal replicates in observational studies, suggesting that experimental studies can detect relationships between environmental factors and selection that would not be apparent in observational studies.

  15. Performance Evaluation of Particle Sampling Probes for Emission Measurements of Aircraft Jet Engines

    NASA Technical Reports Server (NTRS)

    Lee, Poshin; Chen, Da-Ren; Sanders, Terry (Technical Monitor)

    2001-01-01

    Considerable attention has been recently received on the impact of aircraft-produced aerosols upon the global climate. Sampling particles directly from jet engines has been performed by different research groups in the U.S. and Europe. However, a large variation has been observed among published data on the conversion efficiency and emission indexes of jet engines. The variation results surely from the differences in test engine types, engine operation conditions, and environmental conditions. The other factor that could result in the observed variation is the performance of sampling probes used. Unfortunately, it is often neglected in the jet engine community. Particle losses during the sampling, transport, and dilution processes are often not discussed/considered in literatures. To address this issue, we evaluated the performance of one sampling probe by challenging it with monodisperse particles. A significant performance difference was observed on the sampling probe evaluated under different temperature conditions. Thermophoretic effect, nonisokinetic sampling and turbulence loss contribute to the loss of particles in sampling probes. The results of this study show that particle loss can be dramatic if the sampling probe is not well designed. Further, the result allows ones to recover the actual size distributions emitted from jet engines.

  16. Midweek Intensification of Rain in the U.S.: Does Air Pollution Invigorate Storms?

    NASA Technical Reports Server (NTRS)

    Bell, T. L.; Rosenfeld, D.; Hahnenberger, M.

    2005-01-01

    The effect of pollution on rainfall has been observed to depend both on the type of pollution and the precipitating environment. The climatological consequences of pollution for rainfall are uncertain. In some urban areas, pollution varies with the day of the week because of weekly variations in human activity, in effect providing a repeated experiment on the effects of pollution. Weekly variations in temperature, pressure, cloud characteristics, hails and lightning are observed in many areas. Observing a weekly cycle in rainfall statistics has proven to be more difficult, although there is some evidence for it. Here we examine rainfall statistics from the Tropical Rainfall Measuring Mission (TRMM) satellite over the southern U.S. and adjacent waters, and find that there is a distinct, statistically significant weekly cycle in summertime rainfall over the southeast U.S., as well as weekly variations in rainfall over the nearby Atlantic and the Gulf of Mexico. Rainfall over land peaks in the middle of the week, suggesting that summer rainfall on large scales may increase as pollution levels rise. Both rain statistics over land and what appear to be compensating effects over adjacent seas support the suggestion that air pollution invigorates convection and outflow aloft.

  17. Intracolonial genetic variation in the scleractinian coral Seriatopora hystrix

    NASA Astrophysics Data System (ADS)

    Maier, E.; Buckenmaier, A.; Tollrian, R.; Nürnberger, B.

    2012-06-01

    In recent years, increasing numbers of studies revealed intraorganismal genetic variation, primarily in modular organisms like plants or colonial marine invertebrates. Two underlying mechanisms are distinguished: Mosaicism is caused by somatic mutation, whereas chimerism originates from allogeneic fusion. We investigated the occurrence of intracolonial genetic variation at microsatellite loci in five natural populations of the scleractinian coral Seriatopora hystrix on the Great Barrier Reef. This coral is a widely distributed, brooding species that is at present a target of intensive population genetic research on reproduction and dispersal patterns. From each of 155 S. hystrix colonies, either two or three samples were genotyped at five or six loci. Twenty-seven (~17%) genetically heterogeneous colonies were found. Statistical analyses indicated the occurrence of both mosaicism and chimerism. In most cases, intracolonial variation was found only at a single allele. Our analyses suggest that somatic mutations present a major source of genetic heterogeneity within a single colony. Moreover, we observed large, apparently stable chimeric colonies that harbored clearly distinct genotypes and contrast these findings with the patterns typically observed in laboratory-based experiments. We discuss the error that mosaicism and chimerism introduce into population genetic analyses.

  18. Solar wind velocity and daily variation of cosmic rays

    NASA Technical Reports Server (NTRS)

    Ahluwalia, H. S.; Riker, J. F.

    1985-01-01

    Recently parameters applicable to the solar wind and the interplanetary magnetic field (IMF) have become much better defined. Superior quality of data bases that are now available, particularly for post-1971 period, make it possible to believe the long-term trends in the data. These data are correlated with the secular changes observed in the diurnal variation parameters obtained from neutron monitor data at Deep River and underground muon telescope data at Embudo (30 MEW) and Socorro (82 MWE). The annual mean amplitudes appear to have large values during the epochs of high speed solar wind streams. Results are discussed.

  19. Comparison of fasting and non-fasting lipid profiles in a large cohort of patients presenting at a community hospital.

    PubMed

    Cartier, Louis-Jacques; Collins, Charlene; Lagacé, Mathieu; Douville, Pierre

    2018-02-01

    To compare the fasting and non-fasting lipid profile including ApoB in a cohort of patients from a community setting. Our purpose was to determine the proportion of results that could be explained by the known biological variation in the fasting state and to examine the additional impact of non-fasting on these same lipid parameters. 1093 adult outpatients with fasting lipid requests were recruited from February to September 2016 at the blood collection sites of the Moncton Hospital. Participants were asked to come back in the next 3-4days after having eaten a regular breakfast to have their blood drawn for a non-fasting lipid profile. 91.6% of patients in this study had a change in total cholesterol that fell within the biological variation expected for this parameter. Similar results were seen for HDL-C (94.3%) non-HDL-C (88.8%) and ApoB (93.0%). A smaller number of patients fell within the biological variation expected for TG (78.8%) and LDL-C (74.6%). An average TG increase of 0.3mmol/L was observed in fed patients no matter the level of fasting TG. A gradual widening in the range of change in TG concentration was observed as fasting TG increased. Similar results were seen in diabetic patients. Outside of LDL-C and TG, little changes were seen in lipid parameters in the postprandial state. A large part of these changes could be explained by the biological variation. We observed a gradual widening in the range of increase in TG for patients with higher fasting TG. Non-HDL-C and ApoB should be the treatment target of choice for patients in the non-fasting state. Copyright © 2017 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  20. Large-scale Observations of a Subauroral Polarization Stream by Midlatitude SuperDARN Radars: Instantaneous Longitudinal Velocity Variations

    NASA Technical Reports Server (NTRS)

    Clausen, L. B. N.; Baker, J. B. H.; Sazykin, S.; Ruohoniemi, J. M.; Greenwald, R. A.; Thomas, E. J.; Shepherd, S. G.; Talaat, E. R.; Bristow, W. A.; Zheng, Y.; hide

    2012-01-01

    We present simultaneous measurements of flow velocities inside a subauroral polarization stream (SAPS) made by six midlatitude high-frequency SuperDARN radars. The instantaneous observations cover three hours of universal time and six hours of magnetic local time (MLT). From velocity variations across the field-of-view of the radars we infer the local 2D flow direction at three different longitudes. We find that the local flow direction inside the SAPS channel is remarkably constant over the course of the event. The flow speed, however, shows significant temporal and spatial variations. After correcting for the radar look direction we are able to accurately determine the dependence of the SAPS velocity on magnetic local time. We find that the SAPS velocity variation with magnetic local time is best described by an exponential function. The average velocity at 00 MLT was 1.2 km/s and it decreased with a spatial e-folding scale of two hours of MLT toward the dawn sector. We speculate that the longitudinal distribution of pressure gradients in the ring current is responsible for this dependence and find these observations in good agreement with results from ring current models. Using TEC measurements we find that the high westward velocities of the SAPS are - as expected - located in a region of low TEC values, indicating low ionospheric conductivities.

  1. Global X-ray Spectral Variation of Eta Carinae through the 2003 X-ray Minimum

    NASA Technical Reports Server (NTRS)

    Hamaguchi, K.; Corcoran, M. F.; White, N. E.; Gull, T.; Damineli, A.; Davidson, K.

    2006-01-01

    We report on the results of the X-ray observing campaign of the massive, evolved star Eta Carinae in 2003 around its recent X-ray Minimum, mainly using data from the XMM-Newton observatory. These imaging observations show that the hard X-ray source associated with the Eta Carinae system does not completely disappear in any of the observations during the Minimum. The variation of the spectral shape revealed two emission components. One newly discovered component did not exhibit any variation on kilo-second to year-long timescales, in a combined analysis with earlier ASCA and ROSAT data, and might represent the collision of a high speed outflow from Eta Carinae with ambient gas clouds. The other emission component was strongly variable in flux but the temperature of the hottest plasma did not vary significantly at any orbital phase. Absorption to the hard emission, was about a factor of three larger than the absorption determined from the cutoff of the soft emission, and reached a maximum of approx.4 x 10(exp 23)/sq cm before the Minimum. The thermal Fe\\rm XXV emission line showed significant excesses on both the red and blue sides of the line outside the Minimum and exhibited a large redward excess during the Minimum. This variation in the line profile probably requires an abrupt change in ionization balance in the shocked gas.

  2. Space Technology 5 Multi-Point Observations of Temporal Variability of Field-Aligned Currents

    NASA Technical Reports Server (NTRS)

    Le, Guan; Wang, Yongli; Slavin, James A.; Strangeway, Robert J.

    2008-01-01

    Space Technology 5 (ST5) is a three micro-satellite constellation deployed into a 300 x 4500 km, dawn-dusk, sun-synchronous polar orbit from March 22 to June 21, 2006, for technology validations. In this paper, we present a study of the temporal variability of field-aligned currents using multi-point magnetic field measurements from ST5. The data demonstrate that meso-scale current structures are commonly embedded within large-scale field-aligned current sheets. The meso-scale current structures are very dynamic with highly variable current density and/or polarity in time scales of approximately 10 min. They exhibit large temporal variations during both quiet and disturbed times in such time scales. On the other hand, the data also shown that the time scales for the currents to be relatively stable are approximately 1 min for meso-scale currents and approximately 10 min for large scale current sheets. These temporal features are obviously associated with dynamic variations of their particle carriers (mainly electrons) as they respond to the variations of the parallel electric field in auroral acceleration region. The characteristic time scales for the temporal variability of meso-scale field-aligned currents are found to be consistent with those of auroral parallel electric field.

  3. Space Technology 5 (ST-5) Observations of Field-Aligned Currents: Temporal Variability

    NASA Technical Reports Server (NTRS)

    Le, Guan

    2010-01-01

    Space Technology 5 (ST-5) is a three micro-satellite constellation deployed into a 300 x 4500 km, dawn-dusk, sun-synchronous polar orbit from March 22 to June 21, 2006, for technology validations. In this paper, we present a study of the temporal variability of field-aligned currents using multi-point magnetic field measurements from STS. The data demonstrate that masoscale current structures are commonly embedded within large-scale field-aligned current sheets. The meso-scale current structures are very dynamic with highly variable current density and/or polarity in time scales of about 10 min. They exhibit large temporal variations during both quiet and disturbed times in such time scales. On the other hand, the data also shown that the time scales for the currents to be relatively stable are about I min for meso-scale currents and about 10 min for large scale current sheets. These temporal features are obviously associated with dynamic variations of their particle carriers (mainly electrons) as they respond to the variations of the parallel electric field in auroral acceleration region. The characteristic time scales for the temporal variability of meso-scale field-aligned currents are found to be consistent with those of auroral parallel electric field.

  4. Space Technology 5 Multi-point Observations of Field-aligned Currents: Temporal Variability of Meso-Scale Structures

    NASA Technical Reports Server (NTRS)

    Le, Guan; Wang, Yongli; Slavin, James A.; Strangeway, Robert J.

    2007-01-01

    Space Technology 5 (ST5) is a three micro-satellite constellation deployed into a 300 x 4500 km, dawn-dusk, sun-synchronous polar orbit from March 22 to June 21, 2006, for technology validations. In this paper, we present a study of the temporal variability of field-aligned currents using multi-point magnetic field measurements from ST5. The data demonstrate that meso-scale current structures are commonly embedded within large-scale field-aligned current sheets. The meso-scale current structures are very dynamic with highly variable current density and/or polarity in time scales of - 10 min. They exhibit large temporal variations during both quiet and disturbed times in such time scales. On the other hand, the data also shown that the time scales for the currents to be relatively stable are approx. 1 min for meso-scale currents and approx. 10 min for large scale current sheets. These temporal features are obviously associated with dynamic variations of their particle carriers (mainly electrons) as they respond to the variations of the parallel electric field in auroral acceleration region. The characteristic time scales for the temporal variability of meso-scale field-aligned currents are found to be consistent with those of auroral parallel electric field.

  5. Space Technology 5 (ST-5) Multipoint Observations of Temporal and Spatial Variability of Field-Aligned Currents

    NASA Technical Reports Server (NTRS)

    Le, Guan

    2010-01-01

    Space Technology 5 (ST-5) is a three micro-satellite constellation deployed into a 300 x 4500 km, dawn-dusk, sun-synchronous polar orbit from March 22 to June 21, 2006, for technology validations. In this paper, we present a study of the temporal variability of field-aligned currents using multi-point magnetic field measurements from ST5. The data demonstrate that mesoscale current structures are commonly embedded within large-scale field-aligned current sheets. The meso-scale current structures are very dynamic with highly variable current density and/or polarity in time scales of about 10 min. They exhibit large temporal variations during both quiet and disturbed times in such time scales. On the other hand, the data also shown that the time scales for the currents to be relatively stable are about 1 min for meso-scale currents and about 10 min for large scale current sheets. These temporal features are obviously associated with dynamic variations of their particle carriers (mainly electrons) as they respond to the variations of the parallel electric field in auroral acceleration region. The characteristic time scales for the temporal variability of meso-scale field-aligned currents are found to be consistent with those of auroral parallel electric field.

  6. Process contributions of Australian ecosystems to interannual variations in the carbon cycle

    NASA Astrophysics Data System (ADS)

    Haverd, Vanessa; Smith, Benjamin; Trudinger, Cathy

    2016-05-01

    New evidence is emerging that semi-arid ecosystems dominate interannual variability (IAV) of the global carbon cycle, largely via fluctuating water availability associated with El Niño/Southern Oscillation. Recent evidence from global terrestrial biosphere modelling and satellite-based inversion of atmospheric CO2 point to a large role of Australian ecosystems in global carbon cycle variability, including a large contribution from Australia to the record land sink of 2011. However the specific mechanisms governing this variability, and their bioclimatic distribution within Australia, have not been identified. Here we provide a regional assessment, based on best available observational data, of IAV in the Australian terrestrial carbon cycle and the role of Australia in the record land sink anomaly of 2011. We find that IAV in Australian net carbon uptake is dominated by semi-arid ecosystems in the east of the continent, whereas the 2011 anomaly was more uniformly spread across most of the continent. Further, and in contrast to global modelling results suggesting that IAV in Australian net carbon uptake is amplified by lags between production and decomposition, we find that, at continental scale, annual variations in production are dampened by annual variations in decomposition, with both fluxes responding positively to precipitation anomalies.

  7. Finding hidden periodic signals in time series - an application to stock prices

    NASA Astrophysics Data System (ADS)

    O'Shea, Michael

    2014-03-01

    Data in the form of time series appear in many areas of science. In cases where the periodicity is apparent and the only other contribution to the time series is stochastic in origin, the data can be `folded' to improve signal to noise and this has been done for light curves of variable stars with the folding resulting in a cleaner light curve signal. Stock index prices versus time are classic examples of time series. Repeating patterns have been claimed by many workers and include unusually large returns on small-cap stocks during the month of January, and small returns on the Dow Jones Industrial average (DJIA) in the months June through September compared to the rest of the year. Such observations imply that these prices have a periodic component. We investigate this for the DJIA. If such a component exists it is hidden in a large non-periodic variation and a large stochastic variation. We show how to extract this periodic component and for the first time reveal its yearly (averaged) shape. This periodic component leads directly to the `Sell in May and buy at Halloween' adage. We also drill down and show that this yearly variation emerges from approximately half of the underlying stocks making up the DJIA index.

  8. Fabric Development in a Late-Hercynian Magmatic Strike-Slip Shear Zone in Southern Corsica: Indications of Melt-Supported Large-Scale Deformation Localization

    NASA Astrophysics Data System (ADS)

    Kruhl, J. H.; Vernon, R. H.

    2009-05-01

    The calc-alcaline granitoids of the Hercynian Corsica Batholith show a large-scale magmatic flow pattern, outlined by the alignment of large (mm-cm) euhedral feldspar crystals. The trend of the steep magmatic foliation is generally N-S in the northern part of the island, swings to approximately E-W orientation in the central part of the Batholith and back again to approximately N-S orientation in the southern part. This pattern is intensified by large-scale magmatic layering, mainly kilometer long lenses and layers of mafic and intermediate intrusions into the granitoids. On the macro- to micro-scale, magma mingling and mixing are present, reflecting the complex intrusion history and the compositional variability of the Corsica Batholith on different scales. Around the Golf of Valinco, a steep, sinistral magmatic shear zone is represented by E-W trending magmatic layering in mingled dioritic, tonalitic, and granitic magmas - previously misleadingly interpreted as migmatites - and by a magmatic flow foliation formed by the alignment of platy feldspar crystals, as well as amphibole and biotite. Characteristic magmatic structures include multiple thin layering, boudinage, monoclinic folding, melt-injected micro shear zones, and fragmenting and back- veining of dioritic enclaves. The intensity of grain alignment roughly correlates with the thickness of layers. It is low in thick and short boudins and high in cm-thin and cm-m long layers. The monoclinic folds refold the magmatic layering. Flat faces of amphibole and biotite grains are aligned in the axial planes of the folds. The feldspar crystals are locally recrystallized to a few large polygonal grains (up to 1 mm across), and quartz commonly shows chessboard subgrain patterns. No further indications of solid-state deformation are present. Field observations, as well as pattern quantification on variably oriented rock surfaces, indicate variations of crystal alignment and fabric anisotropy in cm- to more than 100m-wide bands parallel to the E-W oriented layering, and various stages of melt-present fragmentation. These variations are interpreted as variations of flow intensity and possibly strain-rate variation. The observations on the macro- as well as the micro-scale point to repeated injection of mafic to felsic magma and crystallization in the presence of a regional stress field. The resulting km-scale sinistral, sub-horizontal synmagmatic shear zone reflects large-scale movements during late-Hercynian crustal reorganization and represents an excellent example of localization of deformation into magma-enriched parts of the continental crust.

  9. Nonlinear observation of internal states of fuel cell cathode utilizing a high-order sliding-mode algorithm

    NASA Astrophysics Data System (ADS)

    Xu, Liangfei; Hu, Junming; Cheng, Siliang; Fang, Chuan; Li, Jianqiu; Ouyang, Minggao; Lehnert, Werner

    2017-07-01

    A scheme for designing a second-order sliding-mode (SOSM) observer that estimates critical internal states on the cathode side of a polymer electrolyte membrane (PEM) fuel cell system is presented. A nonlinear, isothermal dynamic model for the cathode side and a membrane electrolyte assembly are first described. A nonlinear observer topology based on an SOSM algorithm is then introduced, and equations for the SOSM observer deduced. Online calculation of the inverse matrix produces numerical errors, so a modified matrix is introduced to eliminate the negative effects of these on the observer. The simulation results indicate that the SOSM observer performs well for the gas partial pressures and air stoichiometry. The estimation results follow the simulated values in the model with relative errors within ± 2% at stable status. Large errors occur during the fast dynamic processes (<1 s). Moreover, the nonlinear observer shows good robustness against variations in the initial values of the internal states, but less robustness against variations in system parameters. The partial pressures are more sensitive than the air stoichiometry to system parameters. Finally, the order of effects of parameter uncertainties on the estimation results is outlined and analyzed.

  10. Towards a Systematic Search for Triggered Seismic Events in the USA

    NASA Astrophysics Data System (ADS)

    Tang, V.; Chao, K.; Van der Lee, S.

    2017-12-01

    Dynamic triggering of small earthquakes and tectonic tremor by small stress variations associated with passing surface waves from large-magnitude teleseismic earthquakes have been observed in seismically active regions in the western US. Local stress variations as small as 5 10 kPa can suffice to advance slip on local faults. Observations of such triggered events share certain distinct characteristics. With an eye towards an eventual application of machine learning, we began a systematic search for dynamically triggered seismic events in the USA that have these characteristics. Such a systematic survey has the potential to help us to better understand the fundamental process of dynamic triggering and hazards implied by it. Using visual inspection on top of timing and frequency based selection criteria for these seismic phenomena, our search yielded numerous false positives, indicating the challenge posed by moving from ad-hoc observations of dynamic triggering to a systematic search that also includes a catalog of non-triggering, even when sufficient stress variations are supplied. Our search includes a dozen large earthquakes that occurred during the tenure of USArray. One of these earthquakes (11 April 2012 Mw8.6 Sumatra), for example, was observed by USArray-TA stations in the Midwest and other station networks (such as PB and UW), and yielded candidate-triggered events at 413 stations. We kept 79 of these observations after closer visual inspection of the observed events suggested distinct P and S arrivals from a local earthquake, or a tremor modulation with the same period as the surface wave, among other criteria. We confirmed triggered seismic events in 63 stations along the western plate boundary where triggered events have previously been observed. We also newly found triggered tremor sources in eastern Oregon and Yellowstone, and candidate-triggered earthquake sources in New Mexico and Minnesota. Learning whether 14 of remaining candidates are confirmed as triggered events or not will provide constraints on the state of intraplate stress in the USA. Learning what it takes to discriminate between triggered events and false positives will be important for future monitoring practices.

  11. Investigation on the monthly variation of cirrus optical properties over the Indian subcontinent using cloud-aerosol lidar and infrared pathfinder satellite observation (Calipso)

    NASA Astrophysics Data System (ADS)

    Dhaman, Reji K.; Satyanarayana, Malladi; Jayeshlal, G. S.; Mahadevan Pillai, V. P.; Krishnakumar, V.

    2016-05-01

    Cirrus clouds have been identified as one of the atmospheric component which influence the radiative processes in the atmosphere and plays a key role in the Earth Radiation Budget. CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation) is a joint NASA-CNES satellite mission designed to provide insight in understanding of the role of aerosols and clouds in the climate system. This paper reports the study on the variation of cirrus cloud optical properties of over the Indian sub - continent for a period of two years from January 2009 to December 2010, using cloud-aerosol lidar and infrared pathfinder satellite observations (Calipso). Indian Ocean and Indian continent is one of the regions where cirrus occurrence is maximum particularly during the monsoon periods. It is found that during the south-west monsoon periods there is a large cirrus cloud distribution over the southern Indian land masses. Also it is observed that the north-east monsoon periods had optical thick clouds hugging the coast line. The summer had large cloud formation in the Arabian Sea. It is also found that the land masses near to the sea had large cirrus presence. These cirrus clouds were of high altitude and optical depth. The dependence of cirrus cloud properties on cirrus cloud mid-cloud temperature and geometrical thickness are generally similar to the results derived from the ground-based lidar. However, the difference in macrophysical parameter variability shows the limits of space-borne-lidar and dissimilarities in regional climate variability and the nature and source of cloud nuclei in different geographical regions.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, Shuaiqi; Xie, Shaocheng; Zhang, Yunyan

    This study describes the characteristics of large-scale vertical velocity, apparent heating source ( Q 1) and apparent moisture sink ( Q 2) profiles associated with seasonal and diurnal variations of convective systems observed during the two intensive operational periods (IOPs) that were conducted from 15 February to 26 March 2014 (wet season) and from 1 September to 10 October 2014 (dry season) near Manaus, Brazil, during the Green Ocean Amazon (GoAmazon2014/5) experiment. The derived large-scale fields have large diurnal variations according to convective activity in the GoAmazon region and the morning profiles show distinct differences between the dry and wetmore » seasons. In the wet season, propagating convective systems originating far from the GoAmazon region are often seen in the early morning, while in the dry season they are rarely observed. Afternoon convective systems due to solar heating are frequently seen in both seasons. Accordingly, in the morning, there is strong upward motion and associated heating and drying throughout the entire troposphere in the wet season, which is limited to lower levels in the dry season. In the afternoon, both seasons exhibit weak heating and strong moistening in the boundary layer related to the vertical convergence of eddy fluxes. Here, a set of case studies of three typical types of convective systems occurring in Amazonia – i.e., locally occurring systems, coastal-occurring systems and basin-occurring systems – is also conducted to investigate the variability of the large-scale environment with different types of convective systems.« less

  13. Experimental Observation of Convective Cell Formation due to a Fast Wave Antenna in the Large Plasma Device

    NASA Astrophysics Data System (ADS)

    Martin, M. J.; Gekelman, W.; Van Compernolle, B.; Pribyl, P.; Carter, T.

    2017-11-01

    An experiment in a linear device, the Large Plasma Device, is used to study sheaths caused by an actively powered radio frequency (rf) antenna. The rf antenna used in the experiment consists of a single current strap recessed inside a copper box enclosure without a Faraday screen. A large increase in the plasma potential was observed along magnetic field lines that connect to the antenna limiter. The electric field from the spatial variation of the rectified plasma potential generated E →×B→0 flows, often referred to as convective cells. The presence of the flows generated by these potentials is confirmed by Mach probes. The observed convective cell flows are seen to cause the plasma in front of the antenna to flow away and cause a density modification near the antenna edge. These can cause hot spots and damage to the antenna and can result in a decrease in the ion cyclotron range of frequencies antenna coupling.

  14. Experimental Observation of Convective Cell Formation due to a Fast Wave Antenna in the Large Plasma Device.

    PubMed

    Martin, M J; Gekelman, W; Van Compernolle, B; Pribyl, P; Carter, T

    2017-11-17

    An experiment in a linear device, the Large Plasma Device, is used to study sheaths caused by an actively powered radio frequency (rf) antenna. The rf antenna used in the experiment consists of a single current strap recessed inside a copper box enclosure without a Faraday screen. A large increase in the plasma potential was observed along magnetic field lines that connect to the antenna limiter. The electric field from the spatial variation of the rectified plasma potential generated E[over →]×B[over →]_{0} flows, often referred to as convective cells. The presence of the flows generated by these potentials is confirmed by Mach probes. The observed convective cell flows are seen to cause the plasma in front of the antenna to flow away and cause a density modification near the antenna edge. These can cause hot spots and damage to the antenna and can result in a decrease in the ion cyclotron range of frequencies antenna coupling.

  15. Global weather and local butterflies: variable responses to a large-scale climate pattern along an elevational gradient.

    PubMed

    Pardikes, Nicholas A; Shapiro, Arthur M; Dyer, Lee A; Forister, Matthew L

    2015-11-01

    Understanding the spatial and temporal scales at which environmental variation affects populations of plants and animals is an important goal for modern population biology, especially in the context of shifting climatic conditions. The El Niño Southern Oscillation (ENSO) generates climatic extremes of interannual variation, and has been shown to have significant effects on the diversity and abundance of a variety of terrestrial taxa. However, studies that have investigated the influence of such large-scale climate phenomena have often been limited in spatial and taxonomic scope. We used 23 years (1988-2010) of a long-term butterfly monitoring data set to explore associations between variation in population abundance of 28 butterfly species and variation in ENSO-derived sea surface temperature anomalies (SSTA) across 10 sites that encompass an elevational range of 2750 m in the Sierra Nevada mountain range of California. Our analysis detected a positive, regional effect of increased SSTA on butterfly abundance (wetter and warmer years predict more butterfly observations), yet the influence of SSTA on butterfly abundances varied along the elevational gradient, and also differed greatly among the 28 species. Migratory species had the strongest relationships with ENSO-derived SSTA, suggesting that large-scale climate indices are particularly valuable for understanding biotic-abiotic relationships of the most mobile species. In general, however, the ecological effects of large-scale climatic factors are context dependent between sites and species. Our results illustrate the power of long-term data sets for revealing pervasive yet subtle climatic effects, but also caution against expectations derived from exemplar species or single locations in the study of biotic-abiotic interactions.

  16. Preschool Center Quality and School Readiness: Quality Effects and Variation by Demographic and Child Characteristics

    ERIC Educational Resources Information Center

    Keys, Tran D.; Farkas, George; Burchinal, Margaret R.; Duncan, Greg J.; Vandell, Deborah L.; Li, Weilin; Ruzek, Erik A.; Howes, Carollee

    2013-01-01

    This article examines associations between observed quality in preschool center classrooms for approximately 6,250 three- to five-year-olds and their school readiness skills at kindergarten entry. Secondary analyses were conducted using data from four large-scale studies to estimate the effects of preschool center quality and interactions between…

  17. Validation Test Report for a Genetic Algorithm in the Glider Observation STrategies (GOST 1.0) Project: Sensitivity Studies

    DTIC Science & Technology

    2012-08-15

    Environmental Model ( GDEM ) 72 levels) was conserved in the interpolated profiles and small variations in the vertical field may have lead to large...Planner ETKF Ensemble Transform Kalman Filter G8NCOM 1/8⁰ Global NCOM GA Genetic Algorithm GDEM Generalized Digital Environmental Model GOST

  18. High-resolution observations of combustion in heterogeneous surface fuels

    Treesearch

    E. Louise Loudermilk; Gary L. Achtemeier; Joseph J. O' Brien; J. Kevin Hiers; Benjamin S. Hornsby

    2014-01-01

    In ecosystems with frequent surface fires, fire and fuel heterogeneity at relevant scales have been largely ignored. This could be because complete burns give an impression of homogeneity, or due to the difficulty in capturing fine-scale variation in fuel characteristics and fire behaviour. Fire movement between patches of fuel can have implications for modelling fire...

  19. Variations in the Solar Neutrino Flux

    DOE R&D Accomplishments Database

    Davis, R. Jr.; Cleveland, B. T.; Rowley, J. K.

    1987-08-02

    Observations are reported from the chlorine solar neutrino detector in the Homestake Gold Mine, South Dakota, USA. They extend from 1970 to 1985 and yield an average neutrino capture rate of 2.1 +- 0.3 SNU. The results from 1977 to 1985 show an anti-correlation with the solar activity cycle, and an apparent increased rate during large solar flares.

  20. High-resolution determination of the stress in individual interconnect lines and the variation due to electromigration

    NASA Astrophysics Data System (ADS)

    Ma, Qing; Chiras, S.; Clarke, D. R.; Suo, Z.

    1995-08-01

    Large tensile stresses usually exist in metallic interconnect lines on silicon substrates as a result of thermal mismatch. When a current is subsequently passed any divergence of atomic flux can create superimposed stress variations along the line. Together, these stresses can significantly influence the growth of voids and therefore affect interconnect reliability. In this work, a high-resolution (˜2 μm) optical spectroscopy method has been used to measure the localized stresses around passivated aluminum lines on a silicon wafer, both as-fabricated and after electromigration testing. The method is based on the piezospectroscopic properties of silicon, specifically the frequency shift of the Raman line at 520 R cm-1. By focusing a laser beam at points adjacent to the aluminum lines, the Raman signal was excited and collected. The stresses in the aluminum lines can then be derived from the stresses in the silicon using finite element methods. Large variations of stress along an electromigration-tested line were observed and compared to a theoretical model based on differences in effective diffusivities from grain to grain in a polycrystalline interconnect line.

  1. Scale-dependent temporal variations in stream water geochemistry.

    PubMed

    Nagorski, Sonia A; Moore, Iohnnie N; McKinnon, Temple E; Smith, David B

    2003-03-01

    A year-long study of four western Montana streams (two impacted by mining and two "pristine") evaluated surface water geochemical dynamics on various time scales (monthly, daily, and bi-hourly). Monthly changes were dominated by snowmelt and precipitation dynamics. On the daily scale, post-rain surges in some solute and particulate concentrations were similar to those of early spring runoff flushing characteristics on the monthly scale. On the bi-hourly scale, we observed diel (diurnal-nocturnal) cycling for pH, dissolved oxygen, water temperature, dissolved inorganic carbon, total suspended sediment, and some total recoverable metals at some or all sites. A comparison of the cumulative geochemical variability within each of the temporal groups reveals that for many water quality parameters there were large overlaps of concentration ranges among groups. We found that short-term (daily and bi-hourly) variations of some geochemical parameters covered large proportions of the variations found on a much longer term (monthly) time scale. These results show the importance of nesting short-term studies within long-term geochemical study designs to separate signals of environmental change from natural variability.

  2. Post-midnight equatorial irregularity distributions and vertical drift velocity variations during solstices

    NASA Astrophysics Data System (ADS)

    Su, S.-Y.; Liu, C. H.; Chao, C.-K.

    2018-04-01

    Longitudinal distributions of post-midnight equatorial ionospheric irregularity occurrences observed by ROCSAT-1 (1st satellite of the Republic of China) during moderate to high solar activity years in two solstices are studied with respect to the vertical drift velocity and density variations. The post-midnight irregularity distributions are found to be similar to the well-documented pre-midnight ones, but are different from some published distributions taken during solar minimum years. Even though the post-midnight ionosphere is sinking in general, longitudes of frequent positive vertical drift and high density seems to coincide with the longitudes of high irregularity occurrences. Large scatters found in the vertical drift velocity and density around the dip equator in different ROCSAT-1 orbits indicate the existence of large and frequent variations in the vertical drift velocity and density that seem to be able to provide sufficient perturbations for the Rayleigh-Taylor (RT) instability to cause the irregularity occurrences. The need of seeding agents such as gravity waves from atmospheric convective clouds to initiate the Rayleigh-Taylor instability may not be necessary.

  3. Scale-dependent temporal variations in stream water geochemistry

    USGS Publications Warehouse

    Nagorski, S.A.; Moore, J.N.; McKinnon, Temple E.; Smith, D.B.

    2003-01-01

    A year-long study of four western Montana streams (two impacted by mining and two "pristine") evaluated surface water geochemical dynamics on various time scales (monthly, daily, and bi-hourly). Monthly changes were dominated by snowmelt and precipitation dynamics. On the daily scale, post-rain surges in some solute and particulate concentrations were similar to those of early spring runoff flushing characteristics on the monthly scale. On the bi-hourly scale, we observed diel (diurnal-nocturnal) cycling for pH, dissolved oxygen, water temperature, dissolved inorganic carbon, total suspended sediment, and some total recoverable metals at some or all sites. A comparison of the cumulative geochemical variability within each of the temporal groups reveals that for many water quality parameters there were large overlaps of concentration ranges among groups. We found that short-term (daily and bi-hourly) variations of some geochemical parameters covered large proportions of the variations found on a much longer term (monthly) time scale. These results show the importance of nesting short-term studies within long-term geochemical study designs to separate signals of environmental change from natural variability.

  4. Characterizing relative humidity with respect to ice in midlatitude cirrus clouds as a function of atmospheric state

    NASA Astrophysics Data System (ADS)

    Dzambo, Andrew M.; Turner, David D.

    2016-10-01

    Midlatitude cirrus cloud macrophysical and microphysical properties have been shown in previous studies to vary seasonally and in various large-scale dynamical regimes, but relative humidity with respect to ice (RHI) within cirrus clouds has not been studied extensively in this context. Using a combination of radiosonde and millimeter-wavelength cloud radar data, we identify 1076 cirrus clouds spanning a 7 year period from 2004 to 2011. These data are separated into five classes using a previously published algorithm that is based largely on synoptic conditions. Using these data and classification scheme, we find that RHI in cirrus clouds varies seasonally. Variations in cirrus cloud RHI exist within the prescribed classifications; however, most of the variations are within the measurement uncertainty. Additionally, with the exception of nonsummer class cirrus, these variations are not statistically significant. We also find that cirrus cloud occurrence is not necessarily correlated with higher observed values of RHI. The structure of RHI in cirrus clouds varies more in thicker clouds, which follows previous studies showing that macrophysical and microphysical variability increases in thicker cirrus clouds.

  5. Interannual Variations of MLS Carbon Monoxide Induced by Solar Cycle

    NASA Technical Reports Server (NTRS)

    Lee, Jae N.; Wu, Dong L.; Ruzmaikin, Alexander

    2013-01-01

    More than eight years (2004-2012) of carbon monoxide (CO) measurements from the Aura Microwave Limb Sounder (MLS) are analyzed. The mesospheric CO, largely produced by the carbon dioxide (CO2) photolysis in the lower thermosphere, is sensitive to the solar irradiance variability. The long-term variation of observed mesospheric MLS CO concentrations at high latitudes is likely driven by the solar-cycle modulated UV forcing. Despite of different CO abundances in the southern and northern hemispheric winter, the solar-cycle dependence appears to be similar. This solar signal is further carried down to the lower altitudes by the dynamical descent in the winter polar vortex. Aura MLS CO is compared with the Solar Radiation and Climate Experiment (SORCE) total solar irradiance (TSI) and also with the spectral irradiance in the far ultraviolet (FUV) region from the SORCE Solar-Stellar Irradiance Comparison Experiment (SOLSTICE). Significant positive correlation (up to 0.6) is found between CO and FUVTSI in a large part of the upper atmosphere. The distribution of this positive correlation in the mesosphere is consistent with the expectation of CO changes induced by the solar irradiance variations.

  6. Hydrological Variations in Australia Recovered by GRACE High-Resolution Mascons Solutions

    NASA Technical Reports Server (NTRS)

    Carabajal, Claudia C.; Boy, Jean-Paul; Sabaka, Terence J.; Lemoine, Frank G.; Rowlands. David; Luthcke, Scott B.; Brown, M. Y.

    2011-01-01

    Australia represents a challenging region in which to study hydrological variations as recovered by the GRACE (Gravity Recovery And Climate Experiment) mission data. Much of Australia is characterized by relatively small hydrological signals, with large precipitation gradients between the North and the South. These signals are better recovered using innovative GRACE processing techniques such as high-resolution mascon solutions, which may help overcome the deficiencies in the standard GRACE data processing and filtering methods. We will show the power of using regional and global mas con solutions to recover hydrological variations from 2003 to 2011, as well as the oceanic mass variations in the surrounding regions. We will compare the GRACE signals with state of the art hydrology and ocean general circulation models, precipitation, soil moisture and groundwater data sets. We especially emphasize the gravity signatures observed during the decadal drought in the Murray-Darling river basin and the early 2011 floods in North-Western Australia.

  7. Termite mound emissions of CH4 and CO2 are primarily determined by seasonal changes in termite biomass and behaviour.

    PubMed

    Jamali, Hizbullah; Livesley, Stephen J; Dawes, Tracy Z; Hutley, Lindsay B; Arndt, Stefan K

    2011-10-01

    Termites are a highly uncertain component in the global source budgets of CH(4) and CO(2). Large seasonal variations in termite mound fluxes of CH(4) and CO(2) have been reported in tropical savannas but the reason for this is largely unknown. This paper investigated the processes that govern these seasonal variations in CH(4) and CO(2) fluxes from the mounds of Microcerotermes nervosus Hill (Termitidae), a common termite species in Australian tropical savannas. Fluxes of CH(4) and CO(2) of termite mounds were 3.5-fold greater in the wet season as compared to the dry season and were a direct function of termite biomass. Termite biomass in mound samples was tenfold greater in the wet season compared to the dry season. When expressed per unit termite biomass, termite fluxes were only 1.2 (CH(4)) and 1.4 (CO(2))-fold greater in the wet season as compared to the dry season and could not explain the large seasonal variations in mound fluxes of CH(4) and CO(2). Seasonal variation in both gas diffusivity through mound walls and CH(4) oxidation by mound material was negligible. These results highlight for the first time that seasonal termite population dynamics are the main driver for the observed seasonal differences in mound fluxes of CH(4) and CO(2). These findings highlight the need to combine measurements of gas fluxes from termite mounds with detailed studies of termite population dynamics to reduce the uncertainty in quantifying seasonal variations in termite mound fluxes of CH(4) and CO(2).

  8. An adaptive and generalizable closed-loop system for control of medically induced coma and other states of anesthesia

    NASA Astrophysics Data System (ADS)

    Yang, Yuxiao; Shanechi, Maryam M.

    2016-12-01

    Objective. Design of closed-loop anesthetic delivery (CLAD) systems is an important topic, particularly for medically induced coma, which needs to be maintained for long periods. Current CLADs for medically induced coma require a separate offline experiment for model parameter estimation, which causes interruption in treatment and is difficult to perform. Also, CLADs may exhibit bias due to inherent time-variation and non-stationarity, and may have large infusion rate variations at steady state. Finally, current CLADs lack theoretical performance guarantees. We develop the first adaptive CLAD for medically induced coma, which addresses these limitations. Further, we extend our adaptive system to be generalizable to other states of anesthesia. Approach. We designed general parametric pharmacodynamic, pharmacokinetic and neural observation models with associated guidelines, and derived a novel adaptive controller. We further penalized large steady-state drug infusion rate variations in the controller. We derived theoretical guarantees that the adaptive system has zero steady-state bias. Using simulations that resembled real time-varying and noisy environments, we tested the closed-loop system for control of two different anesthetic states, burst suppression in medically induced coma and unconsciousness in general anesthesia. Main results. In 1200 simulations, the adaptive system achieved precise control of both anesthetic states despite non-stationarity, time-variation, noise, and no initial parameter knowledge. In both cases, the adaptive system performed close to a baseline system that knew the parameters exactly. In contrast, a non-adaptive system resulted in large steady-state bias and error. The adaptive system also resulted in significantly smaller steady-state infusion rate variations compared to prior systems. Significance. These results have significant implications for clinically viable CLAD design for a wide range of anesthetic states, with potential cost-saving and therapeutic benefits.

  9. An adaptive and generalizable closed-loop system for control of medically induced coma and other states of anesthesia.

    PubMed

    Yang, Yuxiao; Shanechi, Maryam M

    2016-12-01

    Design of closed-loop anesthetic delivery (CLAD) systems is an important topic, particularly for medically induced coma, which needs to be maintained for long periods. Current CLADs for medically induced coma require a separate offline experiment for model parameter estimation, which causes interruption in treatment and is difficult to perform. Also, CLADs may exhibit bias due to inherent time-variation and non-stationarity, and may have large infusion rate variations at steady state. Finally, current CLADs lack theoretical performance guarantees. We develop the first adaptive CLAD for medically induced coma, which addresses these limitations. Further, we extend our adaptive system to be generalizable to other states of anesthesia. We designed general parametric pharmacodynamic, pharmacokinetic and neural observation models with associated guidelines, and derived a novel adaptive controller. We further penalized large steady-state drug infusion rate variations in the controller. We derived theoretical guarantees that the adaptive system has zero steady-state bias. Using simulations that resembled real time-varying and noisy environments, we tested the closed-loop system for control of two different anesthetic states, burst suppression in medically induced coma and unconsciousness in general anesthesia. In 1200 simulations, the adaptive system achieved precise control of both anesthetic states despite non-stationarity, time-variation, noise, and no initial parameter knowledge. In both cases, the adaptive system performed close to a baseline system that knew the parameters exactly. In contrast, a non-adaptive system resulted in large steady-state bias and error. The adaptive system also resulted in significantly smaller steady-state infusion rate variations compared to prior systems. These results have significant implications for clinically viable CLAD design for a wide range of anesthetic states, with potential cost-saving and therapeutic benefits.

  10. Modification of a variational objective analysis model for new equations for pressure gradient and vertical velocity in the lower troposphere and for spatial resolution and accuracy of satellite data

    NASA Technical Reports Server (NTRS)

    Achtemeier, G. L.

    1986-01-01

    Since late 1982 NASA has supported research to develop a numerical variational model for the diagnostic assimilation of conventional and space-based meteorological data. In order to analyze the model components, four variational models are defined dividing the problem naturally according to increasing complexity. The first of these variational models (MODEL I), the subject of this report, contains the two nonlinear horizontal momentum equations, the integrated continuity equation, and the hydrostatic equation. This report summarizes the results of research (1) to improve the way the large nonmeteorological parts of the pressure gradient force are partitioned between the two terms of the pressure gradient force terms of the horizontal momentum equations, (2) to generalize the integrated continuity equation to account for variable pressure thickness over elevated terrain, and (3) to introduce horizontal variation in the precision modulus weights for the observations.

  11. Analysis of Trends in the Seasonal Cycle of Atmospheric CO2 in the Northern Hemisphere from 1958 to 2010

    NASA Astrophysics Data System (ADS)

    Piper, S. C.; Keeling, R. F.; Patra, P. K.; Welp, L. R.

    2011-12-01

    We present an analysis of the trends and interannual variations in the phase and amplitude of the seasonal cycle of atmospheric CO2 at Northern Hemisphere stations of the Scripps network from 1958 to 2010. The seasonal cycle here primarily reflects biospheric activity over large land regions and provides a strong constraint on NEE. The analysis includes observational records at Pt. Barrow (71°N), La Jolla (33°N), and Kumukahi (20°N), in addition to Mauna Loa (20°N), Station Papa (50°N), and Alert, Canada (82°N). We compare observations with forward atmospheric transport simulations which employ interannually-varying reanalyzed winds with seasonally variable terrestrial biospheric, oceanic and fossil fuel sources to account for atmospheric transport. The observed increase in seasonal amplitude since 1958 has varied among stations and with time at each station. The temporal changes often have not been coherent among stations. The amplitude increased less than 10% at Mauna Loa and 45% at Barrow, Alaska from the 1960s. The record at Alert, which started in 1986, appears to match variations at Barrow, and recent measurements at Station Papa in the Alaskan Gyre suggest an increase intermediate between that of Mauna Loa and Point Barrow. The most striking increase has been at midlatitudes at La Jolla, about 60% since the late 1950s in part resulting from changes in local meteorological conditions. For Barrow and Mauna Loa, the amplitude increased rapidly from 1970 to 1990, after which it slowed significantly at Barrow, and decreased at Mauna Loa. The variations at Alert were similar to those at Barrow suggesting that both records are representative of large-scale Arctic air masses. Kumukahi and Mauna Loa are located at the same latitude but different altitudes. For common years of record in 1980-2000, the amplitude at both stations varied interannually but without a long term trend. After 2000, however, the amplitude at Mauna Loa increased dramatically to 2004 and decreased to 2009, while the amplitude at Kumukahi increased slowly. These differences reflect different influences of source regions and transport at the two stations. Climate variations are an important driver for both the long term trend and shorter term interannual variations in the seasonal amplitude. However, several studies for short periods suggest that atmospheric transport has an important influence. Model simulations with interannually-varying winds for the entire Mauna Loa record, from 1958 to 2010, indicate that the long-term advance in the observed phase at Mauna Loa, by about 8 days in 50 years, is produced by atmospheric transport up until 1990, but not afterward. Observed variations in the seasonal amplitude however are poorly simulated suggesting that variations in terrestrial sources, perhaps driven by temperature before 1990 and drought afterwards may be important as suggested in previous studies. Findings for the remaining stations will be presented. As a whole, temporal and spatial variations in amplitude and phase reflect a complex interplay of climate-driven changes in sources and atmospheric transport.

  12. SOLAR VARIABILITY FROM 240 TO 1750 nm IN TERMS OF FACULAE BRIGHTENING AND SUNSPOT DARKENING FROM SCIAMACHY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pagaran, J.; Weber, M.; Burrows, J.

    2009-08-01

    The change of spectral decomposition of the total radiative output on various timescales of solar magnetic activity is of large interest to terrestrial and solar-stellar atmosphere studies. Starting in 2002, SCIAMACHY was the first satellite instrument to observe daily solar spectral irradiance (SSI) continuously from 230 nm (UV) to 1750 nm (near-infrared; near-IR). In order to address the question of how much UV, visible (vis), and IR spectral regions change on 27 day and 11 year timescales, we parameterize short-term SSI variations in terms of faculae brightening (Mg II index) and sunspot darkening (photometric sunspot index) proxies. Although spectral variationsmore » above 300 nm are below 1% and, therefore, well below the accuracy of absolute radiometric calibration, relative accuracy for short-term changes is shown to be in the per mill range. This enables us to derive short-term spectral irradiance variations from the UV to the near-IR. During Halloween solar storm in 2003 with a record high sunspot area, we observe a reduction of 0.3% in the near-IR to 0.5% in the vis and near-UV. This is consistent with a 0.4% reduction in total solar irradiance (TSI). Over an entire 11 year solar cycle, SSI variability covering simultaneously the UV, vis, and IR spectral regions have not been directly observed so far. Using variations of solar proxies over solar cycle 23, solar cycle spectral variations have been estimated using scaling factors that best matched short-term variations of SCIAMACHY. In the 300-400 nm region, which strongly contributes to TSI solar cycle change, a contribution of 34% is derived from SCIAMACHY observations, which is lower than the reported values from SUSIM satellite data and the empirical SATIRE model. The total UV contribution (below 400 nm) to TSI solar cycle variations is estimated to be 55%.« less

  13. Regional geographic variations in kidney cancer incidence rates in European countries.

    PubMed

    Li, Peng; Znaor, Ariana; Holcatova, Ivana; Fabianova, Eleonora; Mates, Dana; Wozniak, Magdalena B; Ferlay, Jacques; Scelo, Ghislaine

    2015-06-01

    Marked unexplained national variations in incidence rates of kidney cancer have been observed for decades in Europe. To investigate geographic variations at the regional level and identify European regions with high incidence rates of kidney cancer. Regional- and national-level incidence data were extracted from the Cancer Incidence in Five Continents databases, local cancer registry databases, and local published reports. World population age-standardised rates (ASRs) were calculated for the periods 2003-2007 and 1988-1992. Rates by period and sex were compared using map visualisation. During 2003-2007, the highest ASR was found in the Plzen region, Czech Republic (31.4/100,000 person-years in men). Other regions of the Czech Republic had ASRs of 18.6-27.5/100,000 in men, with a tendency for higher rates in regions south of Prague. Surrounding regions, including eastern Germany and regions of Slovakia and Austria, had medium-to-high incidence rates (13.0-16.8/100,000 in men). Three other areas in Europe showed higher incidence rates in men compared with the rest of the continent: Lithuania, Estonia, Latvia, and Belarus (15.0-17.6/100,000); Iceland (13.5/100,000), and northern Italy (up to 16.0/100,000). Similar regional differences were observed among women, with rates approximately half of those observed in men in the same region. In general, these regional geographic variations remained stable over the periods 1988-1992 and 2003-2007, although higher incidence rates were detected in the Baltic countries in 2003-2007. Several European regions show particularly high rates of kidney cancer incidence. Large variations were observed within countries covered by national health-care systems, implying that overdetection is not the major factor. We present regional geographic variations in kidney cancer incidence rates in Europe. We highlight several regions with high incidence rates where further studies should be conducted for cancer control and prevention. Copyright © 2014 European Association of Urology. Published by Elsevier B.V. All rights reserved.

  14. Quantifying the sources of variability in equine faecal egg counts: implications for improving the utility of the method.

    PubMed

    Denwood, M J; Love, S; Innocent, G T; Matthews, L; McKendrick, I J; Hillary, N; Smith, A; Reid, S W J

    2012-08-13

    The faecal egg count (FEC) is the most widely used means of quantifying the nematode burden of horses, and is frequently used in clinical practice to inform treatment and prevention. The statistical process underlying the FEC is complex, comprising a Poisson counting error process for each sample, compounded with an underlying continuous distribution of means between samples. Being able to quantify the sources of variability contributing to this distribution of means is a necessary step towards providing estimates of statistical power for future FEC and FECRT studies, and may help to improve the usefulness of the FEC technique by identifying and minimising unwanted sources of variability. Obtaining such estimates require a hierarchical statistical model coupled with repeated FEC observations from a single animal over a short period of time. Here, we use this approach to provide the first comparative estimate of multiple sources of within-horse FEC variability. The results demonstrate that a substantial proportion of the observed variation in FEC between horses occurs as a result of variation in FEC within an animal, with the major sources being aggregation of eggs within faeces and variation in egg concentration between faecal piles. The McMaster procedure itself is associated with a comparatively small coefficient of variation, and is therefore highly repeatable when a sufficiently large number of eggs are observed to reduce the error associated with the counting process. We conclude that the variation between samples taken from the same animal is substantial, but can be reduced through the use of larger homogenised faecal samples. Estimates are provided for the coefficient of variation (cv) associated with each within animal source of variability in observed FEC, allowing the usefulness of individual FEC to be quantified, and providing a basis for future FEC and FECRT studies. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Observing Storm Surges from Space: A New Opportunity

    NASA Astrophysics Data System (ADS)

    Han, Guoqi; Ma, Zhimin; Chen, Dake; de Young, Brad; Chen, Nancy

    2013-04-01

    Coastal tide gauges can be used to monitor variations of a storm surge along the coast, but not in the cross-shelf direction. As a result, the cross-shelf structure of a storm surge has rarely been observed. In this study we focus on Hurricane Igor-induced storm surge off Newfoundland, Canada. Altimetric observations at about 2:30, September 22, 2010 UTC (hours after the passage of Hurricane Igor) reveal prominent cross-shelf variation of sea surface height during the storm passage, including a large nearshore slope and a mid-shelf depression. A significant coastal surge of 1 m derived from satellite altimetry is found to be consistent with tide-gauge measurements at nearby St. John's station. The post-storm sea level variations at St. John's and Argentia are argued to be associated with free equatorward-propagating continental shelf waves (with phase speeds of 11-13 m/s), generated along the northeast Newfoundland coast hours after the storm moved away from St. John's. The cross-shelf e-folding scale of the shelf wave was estimated to be ~100 km. We further show approximate agreement of altimetric and tide-gauge observations in the Gulf of Mexico during Hurricane Katrina (2005) and Isaac (2012). The study for the first time in the literature shows the robustness of satellite altimetry to observe storm surges, complementing tide-gauge observations for the analysis of storm surge characteristics and for the validation and improvement of storm surge models.

  16. Arase: mission overview and initial results

    NASA Astrophysics Data System (ADS)

    Miyoshi, Y.; Shinohara, I.; Takashima, T.; Asamura, K.; Wang, S. Y.; Kazama, Y.; Kasahara, S.; Yokota, S.; Mitani, T.; Higashio, N.; Kasahara, Y.; Kasaba, Y.; Yagitani, S.; Matsuoka, A.; Kojima, H.; Kazuo, S.; Seki, K.; Hori, T.; Shoji, M.; Teramoto, M.; Chang, T. F.; Kurita, S.; Matsuda, S.; Keika, K.; Miyashita, Y.; Hosokawa, K.; Ogawa, Y.; Kadokura, A.; Kataoka, R.; Ono, T.

    2017-12-01

    Geospace Exploation Project; ERG addresses what mechanisms cause acceleration, transportation and loss of MeV electrons of the radiation belts and evolutions of space storms. Cross-energy and cross-regional couplings are key concepts for the project. In order to address questions, the project has been organized by three research teams; satellite observations, ground-based observations, and modeling/data-analysis studies, and interdisciplinary research are realized for comprehensive understanding of geospace. The Arase (ERG) satellite had been developed and 9 science instruments are developed and provided from JAXA, universities and instituted in Japan and Taiwan. The Arase satellite was successfully launched on December 20, 2016. After the initial operation including maneuvers, Arase has started normal observations since March, 2017. Until now, Arase has observed several geomagnetic storms driven by coronal hole streams and CMEs, and several interesting features are observed associated with geomagnetic disturbances. The six particle instruments; LEP-e/LEP-i/MEP-e/MEP-i/HEP/XEP have shown large enhancement as well as loss of wide energy electrons and ions and variations as well as changes of pitch angle and energy spectrum. The two field/wave instruments: PWE and MGF observed several kinds of plasma waves such as chorus, hiss, EMIC as well as large scale electric and magnetic field variations. And newly developed S-WPIA has been operated to identify micro-process of wave-particle interactions. Since conjugate observations between Arase and ground-based observations are essential for comprehensive understanding of geospace, we organized several campaign observations that include both satellite and ground-based observations. The project has collaborated with the international projects, EISCAT, SuperDARN and other ground-based observations, and various data are obtained from such international collaborations. Moreover, multi-point satellite observations by collaboration with other satellites; Van Allen Probes, THEMIS and MMS are realized. In this presentation, we will report overview and initial highlights for the first year and discuss importance of synergies of multi-satellites and ground-based observations that are realized by international collaborations.

  17. Relative importance of local- and large-scale drivers of alpine soil microarthropod communities.

    PubMed

    Mitchell, Ruth J; Urpeth, Hannah M; Britton, Andrea J; Black, Helaina; Taylor, Astrid R

    2016-11-01

    Nitrogen (N) deposition and climate are acknowledged drivers of change in biodiversity and ecosystem function at large scales. However, at a local scale, their impact on functions and community structure of organisms is filtered by drivers like habitat quality and food quality/availability. This study assesses the relative impact of large-scale factors, N deposition and climate (rainfall and temperature), versus local-scale factors of habitat quality and food quality/availability on soil fauna communities at 15 alpine moss-sedge heaths along an N deposition gradient in the UK. Habitat quality and food quality/availability were the primary drivers of microarthropod communities. No direct impacts of N deposition on the microarthropod community were observed, but induced changes in habitat quality (decline in moss cover and depth) and food quality (decreased vegetation C:N) associated with increased N deposition strongly suggest an indirect impact of N. Habitat quality and climate explained variation in the composition of the Oribatida, Mesostigmata, and Collembola communities, while only habitat quality significantly impacted the Prostigmata. Food quality and prey availability were important in explaining the composition of the oribatid and mesostigmatid mite communities, respectively. This study shows that, in alpine habitats, soil microarthropod community structure responds most strongly to local-scale variation in habitat quality and food availability rather than large-scale variation in climate and pollution. However, given the strong links between N deposition and the key habitat quality parameters, we conclude that N deposition indirectly drives changes in the soil microarthropod community, suggesting a mechanism by which large-scale drivers indirectly impacts these functionally important groups.

  18. Large Interstellar Polarisation Survey. II. UV/optical study of cloud-to-cloud variations of dust in the diffuse ISM

    NASA Astrophysics Data System (ADS)

    Siebenmorgen, R.; Voshchinnikov, N. V.; Bagnulo, S.; Cox, N. L. J.; Cami, J.; Peest, C.

    2018-03-01

    It is well known that the dust properties of the diffuse interstellar medium exhibit variations towards different sight-lines on a large scale. We have investigated the variability of the dust characteristics on a small scale, and from cloud-to-cloud. We use low-resolution spectro-polarimetric data obtained in the context of the Large Interstellar Polarisation Survey (LIPS) towards 59 sight-lines in the Southern Hemisphere, and we fit these data using a dust model composed of silicate and carbon particles with sizes from the molecular to the sub-micrometre domain. Large (≥6 nm) silicates of prolate shape account for the observed polarisation. For 32 sight-lines we complement our data set with UVES archive high-resolution spectra, which enable us to establish the presence of single-cloud or multiple-clouds towards individual sight-lines. We find that the majority of these 35 sight-lines intersect two or more clouds, while eight of them are dominated by a single absorbing cloud. We confirm several correlations between extinction and parameters of the Serkowski law with dust parameters, but we also find previously undetected correlations between these parameters that are valid only in single-cloud sight-lines. We find that interstellar polarisation from multiple-clouds is smaller than from single-cloud sight-lines, showing that the presence of a second or more clouds depolarises the incoming radiation. We find large variations of the dust characteristics from cloud-to-cloud. However, when we average a sufficiently large number of clouds in single-cloud or multiple-cloud sight-lines, we always retrieve similar mean dust parameters. The typical dust abundances of the single-cloud cases are [C]/[H] = 92 ppm and [Si]/[H] = 20 ppm.

  19. Cone-Beam Computed Tomography–Guided Positioning of Laryngeal Cancer Patients with Large Interfraction Time Trends in Setup and Nonrigid Anatomy Variations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gangsaas, Anne, E-mail: a.gangsaas@erasmusmc.nl; Astreinidou, Eleftheria; Quint, Sandra

    2013-10-01

    Purpose: To investigate interfraction setup variations of the primary tumor, elective nodes, and vertebrae in laryngeal cancer patients and to validate protocols for cone beam computed tomography (CBCT)-guided correction. Methods and Materials: For 30 patients, CBCT-measured displacements in fractionated treatments were used to investigate population setup errors and to simulate residual setup errors for the no action level (NAL) offline protocol, the extended NAL (eNAL) protocol, and daily CBCT acquisition with online analysis and repositioning. Results: Without corrections, 12 of 26 patients treated with radical radiation therapy would have experienced a gradual change (time trend) in primary tumor setup ≥4more » mm in the craniocaudal (CC) direction during the fractionated treatment (11/12 in caudal direction, maximum 11 mm). Due to these trends, correction of primary tumor displacements with NAL resulted in large residual CC errors (required margin 6.7 mm). With the weekly correction vector adjustments in eNAL, the trends could be largely compensated (CC margin 3.5 mm). Correlation between movements of the primary and nodal clinical target volumes (CTVs) in the CC direction was poor (r{sup 2}=0.15). Therefore, even with online setup corrections of the primary CTV, the required CC margin for the nodal CTV was as large as 6.8 mm. Also for the vertebrae, large time trends were observed for some patients. Because of poor CC correlation (r{sup 2}=0.19) between displacements of the primary CTV and the vertebrae, even with daily online repositioning of the vertebrae, the required CC margin around the primary CTV was 6.9 mm. Conclusions: Laryngeal cancer patients showed substantial interfraction setup variations, including large time trends, and poor CC correlation between primary tumor displacements and motion of the nodes and vertebrae (internal tumor motion). These trends and nonrigid anatomy variations have to be considered in the choice of setup verification protocol and planning target volume margins. eNAL could largely compensate time trends with minor prolongation of fraction time.« less

  20. Hydroclimatic variability in the Lake Mondsee region and its relationships with large-scale climate anomaly patterns

    NASA Astrophysics Data System (ADS)

    Rimbu, Norel; Ionita, Monica; Swierczynski, Tina; Brauer, Achim; Kämpf, Lucas; Czymzik, Markus

    2017-04-01

    Flood triggered detrital layers in varved sediments of Lake Mondsee, located at the northern fringe of the European Alps (47°48'N,13°23'E), provide an important archive of regional hydroclimatic variability during the mid- to late Holocene. To improve the interpretation of the flood layer record in terms of large-scale climate variability, we investigate the relationships between observational hydrological records from the region, like the Mondsee lake level, the runoff of the lake's main inflow Griesler Ache, with observed precipitation and global climate patterns. The lake level shows a strong positive linear trend during the observational period in all seasons. Additionally, lake level presents important interannual to multidecadal variations. These variations are associated with distinct seasonal atmospheric circulation patterns. A pronounced anomalous anticyclonic center over the Iberian Peninsula is associated with high lake levels values during winter. This center moves southwestward during spring, summer and autumn. In the same time, a cyclonic anomaly center is recorded over central and western Europe. This anomalous circulation extends southwestward from winter to autumn. Similar atmospheric circulation patterns are associated with river runoff and precipitation variability from the region. High lake levels are associated with positive local precipitation anomalies in all seasons as well as with negative local temperature anomalies during spring, summer and autumn. A correlation analysis reveals that lake level, runoff and precipitation variability is related to large-scale sea surface temperature anomaly patterns in all seasons suggesting a possible impact of large-scale climatic modes, like the North Atlantic Oscillation and Atlantic Multidecadal Oscillation on hydroclimatic variability in the Lake Mondsee region. The results presented in this study can be used for a more robust interpretation of the long flood layer record from Lake Mondsee sediments in terms of regional and large-scale climate variability during the past.

  1. Morphological and molecular variation in Mitchella undulata, with special reference to the systematic treatment of the dwarf form from Yakushima.

    PubMed

    Yokoyama, Jun; Fukuda, Tatsuya; Tsukaya, Hirokazu

    2003-08-01

    Morphological and molecular variation in Mitchella undulata Siebold et Zucc. was examined to evaluate the genetic basis for recognizing the dwarf variety, M. undulata var. minor Masamune. Considerable variation in leaf size in M. undulata, but no obvious morphological discontinuities, were found between the normal and dwarf varieties. Instead, a weak cline running from the Pacific Ocean to the Sea of Japan was found. Anatomical observations of leaf blades revealed that the large variation in leaf size can be attributed to variation in the number of leaf cells and not to differences in cell size. A molecular analysis based on sequences of rDNA internal transcribed spacer regions indicated that there were two major genotypes in M. undulata with minor variation in haplotypes resulting from additional substitutions or putative recombination. The dwarf form from Yakushima was neither genetically uniform nor apparently differentiated from other populations. From these results, we conclude that the dwarf form of M. undulata should be treated at the rank of forma.

  2. Environmental effects on the shape variation of male ultraviolet patterns in the Brimstone butterfly ( Gonepteryx rhamni, Pieridae, Lepidoptera)

    NASA Astrophysics Data System (ADS)

    Pecháček, Pavel; Stella, David; Keil, Petr; Kleisner, Karel

    2014-12-01

    The males of the Brimstone butterfly ( Gonepteryx rhamni) have ultraviolet pattern on the dorsal surfaces of their wings. Using geometric morphometrics, we have analysed correlations between environmental variables (climate, productivity) and shape variability of the ultraviolet pattern and the forewing in 110 male specimens of G. rhamni collected in the Palaearctic zone. To start with, we subjected the environmental variables to principal component analysis (PCA). The first PCA axis (precipitation, temperature, latitude) significantly correlated with shape variation of the ultraviolet patterns across the Palaearctic. Additionally, we have performed two-block partial least squares (PLS) analysis to assess co-variation between intraspecific shape variation and the variation of 11 environmental variables. The first PLS axis explained 93 % of variability and represented the effect of precipitation, temperature and latitude. Along this axis, we observed a systematic increase in the relative area of ultraviolet colouration with increasing temperature and precipitation and decreasing latitude. We conclude that the shape variation of ultraviolet patterns on the forewings of male Brimstones is correlated with large-scale environmental factors.

  3. Variations between Dust and Gas in the Diffuse Interstellar Medium. III. Changes in Dust Properties

    NASA Astrophysics Data System (ADS)

    Reach, William T.; Bernard, Jean-Philippe; Jarrett, Thomas H.; Heiles, Carl

    2017-12-01

    We study infrared emission of 17 isolated, diffuse clouds with masses of order {10}2 {M}ȯ to test the hypothesis that grain property variations cause the apparently low gas-to-dust ratios that have been measured in those clouds. Maps of the clouds were constructed from Wide-field Infrared Survey Explorer (WISE) data and directly compared with the maps of dust optical depth from Planck. The mid-infrared emission per unit dust optical depth has a significant trend toward lower values at higher optical depths. The trend can be quantitatively explained by the extinction of starlight within the clouds. The relative amounts of polycyclic aromatic hydrocarbon and very small grains traced by WISE, compared with large grains tracked by Planck, are consistent with being constant. The temperature of the large grains significantly decreases for clouds with larger dust optical depth; this trend is partially due to dust property variations, but is primarily due to extinction of starlight. We updated the prediction for molecular hydrogen column density, taking into account variations in dust properties, and find it can explain the observed dust optical depth per unit gas column density. Thus, the low gas-to-dust ratios in the clouds are most likely due to “dark gas” that is molecular hydrogen.

  4. Simulating observations with HARMONI: the integral field spectrograph for the European Extremely Large Telescope

    NASA Astrophysics Data System (ADS)

    Zieleniewski, Simon; Thatte, Niranjan; Kendrew, Sarah; Houghton, Ryan; Tecza, Matthias; Clarke, Fraser; Fusco, Thierry; Swinbank, Mark

    2014-07-01

    With the next generation of extremely large telescopes commencing construction, there is an urgent need for detailed quantitative predictions of the scientific observations that these new telescopes will enable. Most of these new telescopes will have adaptive optics fully integrated with the telescope itself, allowing unprecedented spatial resolution combined with enormous sensitivity. However, the adaptive optics point spread function will be strongly wavelength dependent, requiring detailed simulations that accurately model these variations. We have developed a simulation pipeline for the HARMONI integral field spectrograph, a first light instrument for the European Extremely Large Telescope. The simulator takes high-resolution input data-cubes of astrophysical objects and processes them with accurate atmospheric, telescope and instrumental effects, to produce mock observed cubes for chosen observing parameters. The output cubes represent the result of a perfect data reduc- tion process, enabling a detailed analysis and comparison between input and output, showcasing HARMONI's capabilities. The simulations utilise a detailed knowledge of the telescope's wavelength dependent adaptive op- tics point spread function. We discuss the simulation pipeline and present an early example of the pipeline functionality for simulating observations of high redshift galaxies.

  5. Diurnal variations of BrONO2 observed by MIPAS-B at midlatitudes and in the Arctic

    NASA Astrophysics Data System (ADS)

    Wetzel, Gerald; Oelhaf, Hermann; Höpfner, Michael; Friedl-Vallon, Felix; Ebersoldt, Andreas; Gulde, Thomas; Kazarski, Sebastian; Kirner, Oliver; Kleinert, Anne; Maucher, Guido; Nordmeyer, Hans; Orphal, Johannes; Ruhnke, Roland; Sinnhuber, Björn-Martin

    2017-12-01

    The first stratospheric measurements of the diurnal variation in the inorganic bromine (Bry) reservoir species BrONO2 around sunrise and sunset are reported. Arctic flights of the balloon-borne Michelson Interferometer for Passive Atmospheric Sounding (MIPAS-B) were carried out from Kiruna (68° N, Sweden) in January 2010 and March 2011 inside the stratospheric polar vortices where diurnal variations of BrONO2 around sunrise have been observed. High nighttime BrONO2 volume mixing ratios of up to 21 pptv (parts per trillion by volume) were detected in late winter 2011 in the absence of polar stratospheric clouds (PSCs). In contrast, the amount of measured BrONO2 was significantly lower in January 2010 due to low available NO2 amounts (for the build-up of BrONO2), the heterogeneous destruction of BrONO2 on PSC particles, and the gas-phase interaction of BrO (the source to form BrONO2) with ClO. A further balloon flight took place at midlatitudes from Timmins (49° N, Canada) in September 2014. Mean BrONO2 mixing ratios of 22 pptv were observed after sunset in the altitude region between 21 and 29 km. Measurements are compared and discussed with the results of a multi-year simulation performed with the chemistry climate model ECHAM5/MESSy Atmospheric Chemistry (EMAC). The calculated temporal variation in BrONO2 largely reproduces the balloon-borne observations. Using the nighttime simulated ratio between BrONO2 and Bry, the amount of Bry observed by MIPAS-B was estimated to be about 21-25 pptv in the lower stratosphere.

  6. Downscaling Satellite Precipitation with Emphasis on Extremes: A Variational ℓ1-Norm Regularization in the Derivative Domain

    NASA Astrophysics Data System (ADS)

    Foufoula-Georgiou, E.; Ebtehaj, A. M.; Zhang, S. Q.; Hou, A. Y.

    2014-05-01

    The increasing availability of precipitation observations from space, e.g., from the Tropical Rainfall Measuring Mission (TRMM) and the forthcoming Global Precipitation Measuring (GPM) Mission, has fueled renewed interest in developing frameworks for downscaling and multi-sensor data fusion that can handle large data sets in computationally efficient ways while optimally reproducing desired properties of the underlying rainfall fields. Of special interest is the reproduction of extreme precipitation intensities and gradients, as these are directly relevant to hazard prediction. In this paper, we present a new formalism for downscaling satellite precipitation observations, which explicitly allows for the preservation of some key geometrical and statistical properties of spatial precipitation. These include sharp intensity gradients (due to high-intensity regions embedded within lower-intensity areas), coherent spatial structures (due to regions of slowly varying rainfall), and thicker-than-Gaussian tails of precipitation gradients and intensities. Specifically, we pose the downscaling problem as a discrete inverse problem and solve it via a regularized variational approach (variational downscaling) where the regularization term is selected to impose the desired smoothness in the solution while allowing for some steep gradients (called ℓ1-norm or total variation regularization). We demonstrate the duality between this geometrically inspired solution and its Bayesian statistical interpretation, which is equivalent to assuming a Laplace prior distribution for the precipitation intensities in the derivative (wavelet) space. When the observation operator is not known, we discuss the effect of its misspecification and explore a previously proposed dictionary-based sparse inverse downscaling methodology to indirectly learn the observation operator from a data base of coincidental high- and low-resolution observations. The proposed method and ideas are illustrated in case studies featuring the downscaling of a hurricane precipitation field.

  7. Chemical variations observed on Aeolis Mons in Gale Crater, Mars

    NASA Astrophysics Data System (ADS)

    Frydenvang, Jens; Gasda, Patrick J.; Thompson, Lucy; Hurowitz, Joel; Grotzinger, John P.; Blaney, Diana L.; Gellert, Ralf; Wiens, Roger; Vasavada, Ashwin R.; MSL Science Team

    2016-10-01

    The extraordinarily extensive exposure of hematite-, clay-, sulfate-bearing stratigraphic layers in the lower part of Aeolis Mons was the primary reason Gale Crater was selected as the landing site for the Mars Science Laboratory rover, Curiosity. 753 martian solar days (sols) after the Curiosity rover landed in Gale Crater in August 2012, and after driving more than 9 km, the Curiosity rover arrived at the first exposure of the Murray formation, the basal layer of Aeolis Mons. The Murray formation is a thinly laminated lacustrine mudstone showing stratification down to the millimeter scale. This supports the idea that the stratigraphic layers of Aeolis Mons are sedimentary, and likely deposited in a series of long-lived lakes extending into the early Hesperian time, as recently described by Grotzinger et al. (Science, vol. 350, 2015). The chemical variations observed throughout the Murray formation by the ChemCam and APXS instruments in the 600+ sols since first arriving at Aeolis Mons will be presented. While Murray remains thinly laminated throughout the 30+ vertical meters of stratigraphy explored, large chemical variations are observed. The most extreme variations arise from likely co-located detrital and diagenetic silica enrichments in Murray. Remarkably, an associated diagenetic silica enrichment is also observed in the unconformably overlying eolian sandstone of the Stimson formation in that location. The detrital enrichment provides evidence of how the source region chemistry varied as the sedimentary layers of Aeolis Mons were deposited. Conversely, the diagenetic enrichment observed across both the Murray and Stimson formations provides compelling evidence for the presence of subsurface fluids in Gale Crater, thousands to millions of years after the crater lakes disappeared. This evidence of liquid water greatly extends the timescale in which Gale Crater might have been habitable.

  8. Downscaling Satellite Precipitation with Emphasis on Extremes: A Variational 1-Norm Regularization in the Derivative Domain

    NASA Technical Reports Server (NTRS)

    Foufoula-Georgiou, E.; Ebtehaj, A. M.; Zhang, S. Q.; Hou, A. Y.

    2013-01-01

    The increasing availability of precipitation observations from space, e.g., from the Tropical Rainfall Measuring Mission (TRMM) and the forthcoming Global Precipitation Measuring (GPM) Mission, has fueled renewed interest in developing frameworks for downscaling and multi-sensor data fusion that can handle large data sets in computationally efficient ways while optimally reproducing desired properties of the underlying rainfall fields. Of special interest is the reproduction of extreme precipitation intensities and gradients, as these are directly relevant to hazard prediction. In this paper, we present a new formalism for downscaling satellite precipitation observations, which explicitly allows for the preservation of some key geometrical and statistical properties of spatial precipitation. These include sharp intensity gradients (due to high-intensity regions embedded within lower-intensity areas), coherent spatial structures (due to regions of slowly varying rainfall),and thicker-than-Gaussian tails of precipitation gradients and intensities. Specifically, we pose the downscaling problem as a discrete inverse problem and solve it via a regularized variational approach (variational downscaling) where the regularization term is selected to impose the desired smoothness in the solution while allowing for some steep gradients(called 1-norm or total variation regularization). We demonstrate the duality between this geometrically inspired solution and its Bayesian statistical interpretation, which is equivalent to assuming a Laplace prior distribution for the precipitation intensities in the derivative (wavelet) space. When the observation operator is not known, we discuss the effect of its misspecification and explore a previously proposed dictionary-based sparse inverse downscaling methodology to indirectly learn the observation operator from a database of coincidental high- and low-resolution observations. The proposed method and ideas are illustrated in case studies featuring the downscaling of a hurricane precipitation field.

  9. Punishment of alcohol-reinforced responding in alcohol preferring P rats reveals a bimodal population: Implications for models of compulsive drug seeking.

    PubMed

    Marchant, Nathan J; Campbell, Erin J; Kaganovsky, Konstantin

    2017-07-25

    Individual variations in animal behaviour can be used to describe relationships between different constructs, as well as the underlying neurobiological mechanisms responsible for such variation. In humans, variation in the expression of certain traits contributes to the onset of psychopathologies, such as drug addiction. Addiction is characterised by persistent drug use despite negative consequences, but it occurs in only a sub-population of drug users. Compulsive drug use is modelled in laboratory animals by punishing a drug-reinforced operant response. It has been reported that there is individual variability in the response to punishment, and in this report we aim to further define the conditions under which this variation can be observed. We have previously used footshock punishment to suppress alcohol seeking in an animal model of context-induced relapse to alcohol seeking after punishment-imposed abstinence. Here we present a re-examination of the training and punishment data from a large cohort of rats (n=499) collected over several years. We found evidence for a bimodal distribution in the response to punishment in alcohol preferring P rats. We only observed this population split when rats received constant shock intensity for three sessions, but not when increasing shock intensity was used. This observation provides evidence for the existence of two distinct groups of rats, defined by their response to punishment, in an otherwise homogeneous population. The implications of this observation are discussed in reference to prior observations using punishment of other addictive drugs (cocaine and methamphetamine), the potential causes of this phenomenon, and with broader implications for the cause of alcohol and drug addiction in humans. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Assessment of the Performance of a Scanning Wind Doppler Lidar at an Urban-Mountain Site in Seoul

    NASA Astrophysics Data System (ADS)

    Park, S.; Kim, S. W.

    2017-12-01

    Winds in the planetary boundary layer (PBL) are important factors for accurate modelling of air quality, numerical weather prediction and conversion of satellite measurements to near-surface air quality information (Seibert et al., AE, 2000; Emeis et al., Meteorol. Z., 2008). In this study, we (1) evaluate wind speed (WS) and direction (WD) retrieved from Wind Doppler Lidar (WDL) measurements by two methods [so called, `sine-fitting (SF) method' and `singular value decomposition (SVD) method'] and (2) analyze the WDL data at Seoul National University (SNU), Seoul, to investigate the diurnal evolution of winds and aerosol characteristics in PBL. Evaluation of the two methods used in retrieving wind from radial velocity was done through comparison with radiosonde soundings from the same site. Winds retrieved using the SVD method from mean radial velocity of 15 minutes showed good agreement with radiosonde profiles (i.e., bias of 0.03 m s-1 and root mean square of 1.70 m s-1 in WS). However, the WDL was found to have difficulty retrieving signals under clean conditions (i.e., too small signal to noise ratio) or under the presence of near-surface optically-thick aerosol/cloud layer (i.e., strong signal attenuation). Despite this shortcoming, the WDL was able to successfully capture the diurnal variation of PBL wind. Two major wind patterns were observed at SNU; first of all, when convective boundary layer was strongly developed, thermally induced winds with large variation of vertical WS in the afternoon and a diurnal variation in WD showing characteristics of mountain and valley winds were observed. Secondly, small variation in WS and WD throughout the day was a major characteristic of cases when wind was largely influenced by the synoptic weather pattern.

  11. Weather-forced variations of Central and East Pacific ENSO events

    NASA Astrophysics Data System (ADS)

    Alexander, M. A.; Newman, M.; Shin, S.

    2010-12-01

    It has been suggested that a possible outcome of climate change is an increase in the occurrence of “Modoki” or central Pacific El Nino events relative to canonical eastern Pacific El Nino events, and that this change may already be occurring. Such a determination, however, is complicated by possible natural variations of the two types of events. How large a change in the relative occurrence can be expected from purely internal variability? To explore this question, a “patterns-based” red noise null hypothesis is constructed from 40 years of observed seasonally-averaged SST, 20 deg C thermocline depth, and surface zonal wind stress anomalies. Patterns-based (or multivariate) red noise differs from “local” (or univariate) red noise since it allows for non-local advective processes; for example, weather noise driving surface wind stress in one location to produce an ocean response in a different location. It is shown that natural random variations of the central Pacific to east Pacific El Nino occurrence ratio are large enough that they could account for all past observed differences as well as all differences found in the SRESA1B runs of all AR4 climate models. Additionally, the correlation between Nino3 and Nino4 SST indices over 30-yr periods can range between 0.7 and 0.9 simply due to such variations in noise, with apparent multidecadal “trends” during which the value increases or decreases. Further analysis shows the different spatial patterns of “noise” (i.e., random weather forcing) that can lead to the development of central vs. eastern Pacific ENSO events or various combinations thereof.

  12. Patterns in micronekton diversity across the North Pacific Subtropical Gyre observed from the diet of longnose lancetfish (Alepisaurus ferox)

    NASA Astrophysics Data System (ADS)

    Portner, Elan J.; Polovina, Jeffrey J.; Choy, C. Anela

    2017-07-01

    We examined the diet of a common midwater predator, the longnose lancetfish (Alepisaurus ferox, n=1371), with respect to fork length, season, and capture location within the North Pacific Subtropical Gyre (NPSG). While A. ferox fed diversely across 97 prey families, approximately 70% of its diet by wet weight consisted of seven prey families (fishes: Sternoptychidae, Anoplogastridae, Omosudidae, Alepisauridae; hyperiid amphipods: Phrosinidae; octopods: Amphitretidae; polychaetes: Alciopidae). Altogether, these micronekton prey families constitute a poorly known forage community distinct from those exploited by other pelagic predators and poorly sampled by conventional methods. We demonstrate ontogenetic variation in diet between two size classes of A. ferox (<97 cm fork length=;small;, ≥97 cm fork length=;large;). Large A. ferox consumed more fish and octopods, fewer crustaceans, and were more cannibalistic than small A. ferox. Ontogenetic shifts in vertical foraging habitat were observed as the consumption of larger and more mesopelagic prey with increasing fork length. Spatial and seasonal variation in the diet of A. ferox is consistent with expected patterns of variation in prey distribution with respect to oceanographic features of the NPSG. Within both size classes, the diets of specimens collected from the oligotrophic core of the NPSG were more diverse than those collected near the boundaries of the gyre and appeared to track seasonal variation in the position of the northern boundary of the gyre. Our data suggest seasonal and spatial variability in the composition of midwater forage communities exploited by A. ferox across the NPSG, and demonstrate that sustained monitoring of diet could provide valuable insights into long-term changes in these understudied communities.

  13. A 3D model of polarized dust emission in the Milky Way

    NASA Astrophysics Data System (ADS)

    Martínez-Solaeche, Ginés; Karakci, Ata; Delabrouille, Jacques

    2018-05-01

    We present a three-dimensional model of polarized galactic dust emission that takes into account the variation of the dust density, spectral index and temperature along the line of sight, and contains randomly generated small-scale polarization fluctuations. The model is constrained to match observed dust emission on large scales, and match on smaller scales extrapolations of observed intensity and polarization power spectra. This model can be used to investigate the impact of plausible complexity of the polarized dust foreground emission on the analysis and interpretation of future cosmic microwave background polarization observations.

  14. Studying Near-Trench Characteristics of the 2011 Tohoku-Oki Megathrust Rupture Using Differential Multi-Beam Bathymetry before and after the Earthquake

    NASA Astrophysics Data System (ADS)

    Sun, T.; Fujiwara, T.; Kodaira, S.; Wang, K.; He, J.

    2014-12-01

    Large coseismic motion (up to ~ 31 m) of seafloor GPS sites during the 2011 M 9 Tohoku earthquake suggests large rupture at shallow depths of the megathrust. However, compilation of all published rupture models, constrained by the near-field seafloor geodetic observation and also various other datasets, shows large uncertainties in the slip of the most near-trench (within ~ 50 km from the trench) part of the megathrust. Repeated multi-beam bathymetry surveys that cover the trench axis, carried out by Japan Agency for Marine-Earth Science and Technology, for the first time recorded coseismic deformation in a megathrust earthquake at the trench. In previous studies of the differential bathymetry (DB) before and after the earthquake to determine coseismic fault slip, only the rigid-body translation component of the upper plate deformation was considered. In this work, we construct Synthetic Differential Bathymetry (SDB) using an elastic deformation model and make comparisons with the observed DB. We use a 3-D elastic Finite Element model with actual fault geometry of the Japan trench subduction zone and allowing the rupture to breach the trench. The SDB can well predict short-wavelength variations in the observed DB. Our tests using different coseismic slip models show that the internal elastic deformation of the hanging wall plays an important role in generating DB. Comparing the SDB with the observed DB suggests that the largest slip is located within ~ 50 km from the trench. The SDB proves to be the most effective tool to evaluate the performance of different rupture models in predicting near-trench slip. Our SDB work will further explore the updip slip variation. The SDB may help to constrain the slip gradient in the updip direction and may help to determine whether the large shallow slip in the Tohoku earthquake plateaued at the trench or before reaching the trench. Resolving these issues will provide some of the key tests for various competing models that were proposed to explain the large shallow rupture in this event.

  15. The determination of ionospheric electron content and distribution from satellite observations. Part 2. Results of the analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garriott, O K

    1960-04-01

    The results of observations of the radio transmissions from Sputnik III (1958 δ 2) in an 8-month period are presented. The measurements of integrated electron density are made in two ways, described in part 1. The measurements reveal the diurnal variation of the total ionospheric electron content; and the ratio of the total content to the content of the lower ionosphere below the height of maximum density in the F layer is obtained. An estimate of the average electron-density profile above the F-layer peak is made possible by the slow variation in the height of the satellite due to rotationmore » of the perigee position. The gross effects of large magnetic storms on the electron content and distribution are found.« less

  16. Turbulence decay downstream of an active grid

    NASA Astrophysics Data System (ADS)

    Bewley, Gregory; Bodenschatz, Eberhard

    2015-11-01

    A grid in a wind tunnel stirs up turbulence that has a certain large-scale structure. The moving parts in a so-called ``active grid'' can be programmed to produce different structures. We use a special active grid in which each of 129 paddles on the grid has its own position-controlled servomotor that can move independently of the others. We observe among other things that the anisotropy in the amplitude of the velocity fluctuations and in the correlation lengths can be set and varied with an algorithm that oscillates the paddles in a specified way. The variation in the anisotropies that we observe can be explained by our earlier analysis of anisotropic ``soccer ball'' turbulence (Bewley, Chang and Bodenschatz 2012, Phys. Fluids). We define the influence of this variation in structure on the downstream evolution of the turbulence. with Eberhard Bodenschatz and others.

  17. SIMULTANEOUS B'V'R' MONITORING OF BL LACERTAE OBJECT S5 0716+714 AND DETECTION OF INTER-BAND TIME DELAY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu Jianghua; He Xiangtao; Boettcher, Markus

    We present the results of our optical monitoring of the BL Lac object S5 0716+714 over seven nights in 2006 December. The monitoring was carried out simultaneously at three optical wavelengths with a novel photometric system. The object did not show large-amplitude internight variations during this period. Intranight variations were observed on four nights and probably on one more. Strong bluer-when-brighter chromatism was detected on both intranight and internight timescales. The intranight variation amplitude decreases in the wavelength sequence of B', R', and V'. Cross-correlation analyses revealed that the variability at the B' and V' bands leads that at themore » R' band by about 30 minutes on one night.« less

  18. The effects of snowpack grain size on satellite passive microwave observations from the Upper Colorado River Basin

    USGS Publications Warehouse

    Josberger, E.G.; Gloersen, P.; Chang, A.; Rango, A.

    1996-01-01

    Understanding the passive microwave emissions of a snowpack, as observed by satellite sensors, requires knowledge of the snowpack properties: water equivalent, grain size, density, and stratigraphy. For the snowpack in the Upper Colorado River Basin, measurements of snow depth and water equivalent are routinely available from the U.S. Department of Agriculture, but extremely limited information is available for the other properties. To provide this information, a field program from 1984 to 1995 obtained profiles of snowpack grain size, density, and temperature near the time of maximum snow accumulation, at sites distributed across the basin. A synoptic basin-wide sampling program in 1985 showed that the snowpack exhibits consistent properties across large regions. Typically, the snowpack in the Wyoming region contains large amounts of depth hoar, with grain sizes up to 5 mm, while the snowpack in Colorado and Utah is dominated by rounded snow grains less than 2 mm in diameter. In the Wyoming region, large depth hoar crystals in shallow snowpacks yield the lowest emissivities or coldest brightness temperatures observed across the entire basin. Yearly differences in the average grain sizes result primarily from variations in the relative amount of depth hoar within the snowpack. The average grain size for the Colorado and Utah regions shows much less variation than do the grain sizes from the Wyoming region. Furthermore, the greatest amounts of depth hoar occur in the Wyoming region during 1987 and 1992, years with strong El Nin??o Southern Oscillation, but the Colorado and Utah regions do not show this behavior.

  19. RXTE Monitoring of the Anomalous X-ray Pulsar 1E 1048.1-5937: Long-Term Variability and the 2007 March Event

    NASA Technical Reports Server (NTRS)

    Dib, Rim; Kaspi, Victoria M.; Gavriil, Fotis P.

    2009-01-01

    After three years of no unusual activity, Anomalous X-ray Pulsar 1E 1048.1-5937 reactivated in 2007 March. We report on the detection of a large glitch (deltav/v = 1.63(2) x 10(exp -5)) on 2007 March 26 (MJD 54185.9), contemporaneous with the onset of a pulsed-flux flare, the third flare observed from this source in 10 years of monitoring with the Rossi X-ray Timing Explorer. Additionally, we report on a detailed study of the evolution of the timing properties, the pulsed flux, and the pulse profile of this source as measured by RXTE from 1996 July to 2008 January. In our timing study, we attempted phase coherent timing of all available observations. We show that in 2001, a timing anomaly of uncertain nature occurred near the rise of the first pulsed flux flare; we show that a likely glitch (deltav/v = 2.91(9) x 10(exp -6)) occurred in 2002, near the rise of the second flare, and we present a detailed description of the variations in the spin-down. In our pulsed flux study, we compare the decays of the three flares and discuss changes in the hardness ratio. In our pulse profile study, we show that the profile exhibited large variations near the peak of the first two flares, and several small short-term profile variations during the most recent flare. Finally, we report on the discovery of a small burst 27 days after the peak of the last flare, the fourth burst discovered from this source. We discuss the relationships between the observed properties in the framework of the magnetar model.

  20. Methane related authigenic carbonates, chimneys and crusts from the Gulf of Cadiz

    NASA Astrophysics Data System (ADS)

    Magalhães, V.; Vasconcelos, C.; Gaspar, L.; Monteiro, H.; Pinheiro, L.; Ivanov, M.; Díaz-del-Río, V.; Somoza, L.

    2003-04-01

    During the TTR 11 and TTR 12 cruises (2001 and 2002), the area south and southwest of the Guadalquivir Diapiric Ridge was intensely surveyed with seismics, side scan sonar (MAK), underwater TV and sampling. This area is characterized by a very strong backscatter on the available side scan sonar images and a very irregular seafloor, with morphological and sedimentological features evidencing fluid escape structures (mud diapirs and mud volcanoes); and sedimentary structures associated with the outflow of the Mediterranean water (MOW). Based on the data and samples collected during the TTR11 and TTR12 cruises, complemented with data from the ANASTYA 2000 and 2001 cruises, it seems that this area corresponds to a large field of carbonate chimneys and crusts. Dredge profiles on the Iberico dome and west of this structure, on the main channel of the MOW, yielded a large amount of carbonate slabs and chimneys. These consist essentially of intrapelbiomicrite. Petrographic and XRD shows that their mineralogical composition consists mainly of dolomite, high magnesium calcite, quartz, feldspar and clays. Bioclasts of plantonic foraminifera (globigerinoids), ostracods and peletts are observed. Iron and manganese oxides are present and the cement is essentially biomicrite. In different samples from the same chimney a variation on the dolomite/calcite ratio is observed from the interior to the external part of the chimney. Values of dolomite show a variation from 47% in the interior to 17 % in the exterior. As regards Si02 (19-16%), Al2O3 (4-3%) and Fe2O3 (5-7%), the variations observed are not significant. Stable isotopic analysis of Carbon shown low d13C values (down to -46.88 per mil vs. PDB) and d18O up to + 4.90 per mil vs.

  1. A Combined Length-of-Day Series Spanning 1832-1997

    NASA Technical Reports Server (NTRS)

    Gross, Richard S.

    1999-01-01

    The Earth's rotation is not constant but exhibits minute changes on all observable time scales ranging from subdaily to secular. This rich spectrum of observed Earth rotation changes reflects the rich variety of astronomical and geophysical phenomena that are causing the Earth's rotation to change, including, but not limited to, ocean and solid body tides, atmospheric wind and pressure changes, oceanic current and sea level height changes, post-glacial rebound, and torques acting at the core-mantle boundary. In particular, the decadal-scale variations of the Earth's rotation are thought to be largely caused by interactions between the Earth's outer core and mantle. Comparing the inferred Earth rotation variations caused by the various core-mantle interactions to observed variations requires Earth rotation observations spanning decades, if not centuries. During the past century many different techniques have been used to observe the Earth's rotation. By combining the individual Earth rotation series determined by each of these techniques, a series of the Earth's rotation can be obtained that is based upon independent measurements spanning the greatest possible time interval. In this study, independent observations of the Earth's rotation are combined to generate a length-of-day series spanning 1832-1997. The observations combined include lunar occultation measurements spanning 1832-1955, optical astrometric measurements spanning 1956-1982, lunar laser ranging measurements spanning 1970-1997, and very long baseline interferometric measurements spanning 1978-1998. These series are combined using a Kalman filter developed at JPL for just this purpose. The resulting combined length-of-day series will be presented and compared with other available length-of-day series of similar duration.

  2. Extracting spatial information from large aperture exposures of diffuse sources

    NASA Technical Reports Server (NTRS)

    Clarke, J. T.; Moos, H. W.

    1981-01-01

    The spatial properties of large aperture exposures of diffuse emission can be used both to investigate spatial variations in the emission and to filter out camera noise in exposures of weak emission sources. Spatial imaging can be accomplished both parallel and perpendicular to dispersion with a resolution of 5-6 arc sec, and a narrow median filter running perpendicular to dispersion across a diffuse image selectively filters out point source features, such as reseaux marks and fast particle hits. Spatial information derived from observations of solar system objects is presented.

  3. Variations and asymmetries in regional brain surface in the genus Homo.

    PubMed

    Balzeau, Antoine; Holloway, Ralph L; Grimaud-Hervé, Dominique

    2012-06-01

    Paleoneurology is an important field of research within human evolution studies. Variations in size and shape of an endocast help to differentiate among fossil hominin species whereas endocranial asymmetries are related to behavior and cognitive function. Here we analyse variations of the surface of the frontal, parieto-temporal and occipital lobes among different species of Homo, including 39 fossil hominins, ten fossil anatomically modern Homo sapiens and 100 endocasts of extant modern humans. We also test for the possible asymmetries of these features in a large sample of modern humans and observe individual particularities in the fossil specimens. This study contributes important new information about the brain evolution in the genus Homo. Our results show that the general pattern of surface asymmetry for the different regional brain surfaces in fossil species of Homo does not seem to be different from the pattern described in a large sample of anatomically modern H. sapiens, i.e., the right hemisphere has a larger surface than the left, as do the right frontal, the right parieto-temporal and the left occipital lobes compared with the contra-lateral side. It also appears that Asian Homo erectus specimens are discriminated from all other samples of Homo, including African and Georgian specimens that are also sometimes included in that taxon. The Asian fossils show a significantly smaller relative size of the parietal and temporal lobes. Neandertals and anatomically modern H. sapiens, who share the largest endocranial volume of all hominins, show differences when considering the relative contribution of the frontal, parieto-temporal and occipital lobes. These results illustrate an original variation in the pattern of brain organization in hominins independent of variations in total size. The globularization of the brain and the enlargement of the parietal lobes could be considered derived features observed uniquely in anatomically modern H. sapiens. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Variation in the macrofaunal community over large temporal and spatial scales in the southern Yellow Sea

    NASA Astrophysics Data System (ADS)

    Xu, Yong; Sui, Jixing; Yang, Mei; Sun, Yue; Li, Xinzheng; Wang, Hongfa; Zhang, Baolin

    2017-09-01

    To detect large, temporal- and spatial-scale variations in the macrofaunal community in the southern Yellow Sea, data collected along the western, middle and eastern regions of the southern Yellow Sea from 1958 to 2014 were organized and analyzed. Statistical methods such as cluster analysis, non-metric multidimensional scaling ordination (nMDS), permutational multivariate analysis of variance (PERMANOVA), redundancy analysis (RDA) and canonical correspondence analysis (CCA) were applied. The abundance of polychaetes increased in the western region but decreased in the eastern region from 1958 to 2014, whereas the abundance of echinoderms showed an opposite trend. For the entire macrofaunal community, Margalef's richness (d), the Shannon-Wiener index (H‧) and Pielou's evenness (J‧) were significantly lower in the eastern region when compared with the other two regions. No significant temporal differences were found for d and H‧, but there were significantly lower values of J‧ in 2014. Considerable variation in the macrofaunal community structure over the past several decades and among the geographical regions at the species, genus and family levels were observed. The species, genera and families that contributed to the temporal variation in each region were also identified. The most conspicuous pattern was the increase in the species Ophiura sarsii vadicola in the eastern region. In the western region, five polychaetes (Ninoe palmata, Notomastus latericeus, Paralacydonia paradoxa, Paraprionospio pinnata and Sternaspis scutata) increased consistently from 1958 to 2014. The dominance curves showed that both the species diversity and the dominance patterns were relatively stable in the western and middle regions. Environmental parameters such as depth, temperature and salinity could only partially explain the observed biological variation in the southern Yellow Sea. Anthropogenic activities such as demersal fishing and other unmeasured environmental variables may be more responsible for the long-term changes in the macrofaunal community.

  5. Eavesdropping on the Arctic: Automated bioacoustics reveal dynamics in songbird breeding phenology.

    PubMed

    Oliver, Ruth Y; Ellis, Daniel P W; Chmura, Helen E; Krause, Jesse S; Pérez, Jonathan H; Sweet, Shannan K; Gough, Laura; Wingfield, John C; Boelman, Natalie T

    2018-06-01

    Bioacoustic networks could vastly expand the coverage of wildlife monitoring to complement satellite observations of climate and vegetation. This approach would enable global-scale understanding of how climate change influences phenomena such as migratory timing of avian species. The enormous data sets that autonomous recorders typically generate demand automated analyses that remain largely undeveloped. We devised automated signal processing and machine learning approaches to estimate dates on which songbird communities arrived at arctic breeding grounds. Acoustically estimated dates agreed well with those determined via traditional surveys and were strongly related to the landscape's snow-free dates. We found that environmental conditions heavily influenced daily variation in songbird vocal activity, especially before egg laying. Our novel approaches demonstrate that variation in avian migratory arrival can be detected autonomously. Large-scale deployment of this innovation in wildlife monitoring would enable the coverage necessary to assess and forecast changes in bird migration in the face of climate change.

  6. GCM Simulation of the Large-scale North American Monsoon Including Water Vapor Tracer Diagnostics

    NASA Technical Reports Server (NTRS)

    Bosilovich, Michael G.; Walker, Gregory; Schubert, Siegfried D.; Sud, Yogesh; Atlas, Robert M. (Technical Monitor)

    2001-01-01

    The geographic sources of water for the large-scale North American monsoon in a GCM are diagnosed using passive constituent tracers of regional water'sources (Water Vapor Tracers, WVT). The NASA Data Assimilation Office Finite Volume (FV) GCM was used to produce a 10-year simulation (1984 through 1993) including observed sea surface temperature. Regional and global WVT sources were defined to delineate the surface origin of water for precipitation in and around the North American i'vionsoon. The evolution of the mean annual cycle and the interannual variations of the monsoonal circulation will be discussed. Of special concern are the relative contributions of the local source (precipitation recycling) and remote sources of water vapor to the annual cycle and the interannual variation of warm season precipitation. The relationships between soil water, surface evaporation, precipitation and precipitation recycling will be evaluated.

  7. GCM Simulation of the Large-Scale North American Monsoon Including Water Vapor Tracer Diagnostics

    NASA Technical Reports Server (NTRS)

    Bosilovich, Michael G.; Walker, Gregory; Schubert, Siegfried D.; Sud, Yogesh; Atlas, Robert M. (Technical Monitor)

    2002-01-01

    The geographic sources of water for the large scale North American monsoon in a GCM (General Circulation Model) are diagnosed using passive constituent tracers of regional water sources (Water Vapor Tracers, WVT). The NASA Data Assimilation Office Finite Volume (FV) GCM was used to produce a 10-year simulation (1984 through 1993) including observed sea surface temperature. Regional and global WVT sources were defined to delineate the surface origin of water for precipitation in and around the North American Monsoon. The evolution of the mean annual cycle and the interannual variations of the monsoonal circulation will be discussed. Of special concern are the relative contributions of the local source (precipitation recycling) and remote sources of water vapor to the annual cycle and the interannual variation of monsoonal precipitation. The relationships between soil water, surface evaporation, precipitation and precipitation recycling will be evaluated.

  8. Geographical Genomics of Human Leukocyte Gene Expression Variation in Southern Morocco

    PubMed Central

    Idaghdour, Youssef; Czika, Wendy; Shianna, Kevin V.; Lee, S. Hong; Visscher, Peter M.; Martin, Hilary C.; Miclaus, Kelci; Jadallah, Sami J.; Goldstein, David B.; Wolfinger, Russell D.; Gibson, Greg

    2009-01-01

    Studies of the genetics of gene expression reveal expression SNPs that explain variation in transcript abundance. Here we address the robustness of eSNP associations to environmental geography and population structure in a comparison of 194 Arab and Amazigh individuals from a city and two villages in southern Morocco. Gene expression differed between pairs of locations for up to a third of all transcripts, with notable enrichment for ribosomal biosynthesis and oxidative phosphorylation. Robust associations were observed in the leukocyte samples with cis-eSNPs (P < 10−08) for 346 genes, and trans-eSNPs (P < 10−11) with 10 genes. All of these were consistent across the three sample locations and after controlling for ethnicity and relatedness. No evidence for large-effect trans-acting mediators of the pervasive environmental influence was found and instead genetic and environmental factors acted in a largely additive manner. PMID:19966804

  9. Overview of Sea-Ice Properties, Distribution and Temporal Variations, for Application to Ice-Atmosphere Chemical Processes.

    NASA Astrophysics Data System (ADS)

    Moritz, R. E.

    2005-12-01

    The properties, distribution and temporal variation of sea-ice are reviewed for application to problems of ice-atmosphere chemical processes. Typical vertical structure of sea-ice is presented for different ice types, including young ice, first-year ice and multi-year ice, emphasizing factors relevant to surface chemistry and gas exchange. Time average annual cycles of large scale variables are presented, including ice concentration, ice extent, ice thickness and ice age. Spatial and temporal variability of these large scale quantities is considered on time scales of 1-50 years, emphasizing recent and projected changes in the Arctic pack ice. The amount and time evolution of open water and thin ice are important factors that influence ocean-ice-atmosphere chemical processes. Observations and modeling of the sea-ice thickness distribution function are presented to characterize the range of variability in open water and thin ice.

  10. Large-scale controls of methanogenesis inferred from methane and gravity spaceborne data.

    PubMed

    Bloom, A Anthony; Palmer, Paul I; Fraser, Annemarie; Reay, David S; Frankenberg, Christian

    2010-01-15

    Wetlands are the largest individual source of methane (CH4), but the magnitude and distribution of this source are poorly understood on continental scales. We isolated the wetland and rice paddy contributions to spaceborne CH4 measurements over 2003-2005 using satellite observations of gravity anomalies, a proxy for water-table depth Gamma, and surface temperature analyses TS. We find that tropical and higher-latitude CH4 variations are largely described by Gamma and TS variations, respectively. Our work suggests that tropical wetlands contribute 52 to 58% of global emissions, with the remainder coming from the extra-tropics, 2% of which is from Arctic latitudes. We estimate a 7% rise in wetland CH4 emissions over 2003-2007, due to warming of mid-latitude and Arctic wetland regions, which we find is consistent with recent changes in atmospheric CH4.

  11. Characterization of the Q-switched MOBLAS Laser Transmitter and Its Ranging Performance Relative to a PTM Q-switched System

    NASA Technical Reports Server (NTRS)

    Degnan, J. J., III; Zagwodski, T. W.

    1979-01-01

    A prototype Q-switched Nd:YAG laser transmitter intended for use in the NASA mobile laser ranging system was subjected to various tests of temporal pulse shape and stability, output energy and stability, beam divergence, and range bias errors. Peak to peak variations in the mean range were as large as 30 cm and drift rates of system bias with time as large as 6 mm per minute of operation were observed. The incorporation of a fast electro-optic cavity dump into the oscillator gave significantly improved results. Reevaluation of the ranging performance after modification showed a reduction in the peak to peak variation in the mean range to the 2 or 3 cm level and a drift rate of system time biases of less than 1 mm per minute of operation. A qualitative physical explanation for the superior performance of cavity dumped lasers is given.

  12. Large-Scale Controls of Methanogenesis Inferred from Methane and Gravity Spaceborne Data

    NASA Astrophysics Data System (ADS)

    Bloom, A. Anthony; Palmer, Paul I.; Fraser, Annemarie; Reay, David S.; Frankenberg, Christian

    2010-01-01

    Wetlands are the largest individual source of methane (CH4), but the magnitude and distribution of this source are poorly understood on continental scales. We isolated the wetland and rice paddy contributions to spaceborne CH4 measurements over 2003-2005 using satellite observations of gravity anomalies, a proxy for water-table depth Γ, and surface temperature analyses TS. We find that tropical and higher-latitude CH4 variations are largely described by Γ and TS variations, respectively. Our work suggests that tropical wetlands contribute 52 to 58% of global emissions, with the remainder coming from the extra-tropics, 2% of which is from Arctic latitudes. We estimate a 7% rise in wetland CH4 emissions over 2003-2007, due to warming of mid-latitude and Arctic wetland regions, which we find is consistent with recent changes in atmospheric CH4.

  13. Viking-1 meteorological measurements - First impressions

    NASA Technical Reports Server (NTRS)

    Hess, S. L.; Henry, R. M.; Leovy, C. B.; Tillman, J. E.; Ryan, J. A.

    1976-01-01

    A preliminary evaluation is given of in situ meteorological measurements made by Viking 1 on Mars. The data reported show that: (1) the atmosphere has approximate volume mixing ratios of 1.5% argon, 3% nitrogen, and 95% carbon dioxide; (2) the diurnal temperature range is large and regular, with a sunrise minimum of about 188 K and a midafternoon maximum near 244 K; (3) air and ground temperatures coincide quite closely during the night, but ground temperature exceeds air temperature near midday by as much as 25 C; (4) the winds exhibit a marked diurnal cycle; and (5) a large diurnal pressure variation with an afternoon minimum and an early-morning maximum parallels the wind pattern. The variations are explained in terms of familiar meteorological processes. It is suggested that latent heat is unlikely to play an important role on Mars because no evidence has been observed for traveling synoptic-scale disturbances such as those that occur in the terrestrial tropics.

  14. Banana production systems: identification of alternative systems for more sustainable production.

    PubMed

    Bellamy, Angelina Sanderson

    2013-04-01

    Large-scale, monoculture production systems dependent on synthetic fertilizers and pesticides, increase yields, but are costly and have deleterious impacts on human health and the environment. This research investigates variations in banana production practices in Costa Rica, to identify alternative systems that combine high productivity and profitability, with reduced reliance on agrochemicals. Farm workers were observed during daily production activities; 39 banana producers and 8 extension workers/researchers were interviewed; and a review of field experiments conducted by the National Banana Corporation between 1997 and 2002 was made. Correspondence analysis showed that there is no structured variation in large-scale banana producers' practices, but two other banana production systems were identified: a small-scale organic system and a small-scale conventional coffee-banana intercropped system. Field-scale research may reveal ways that these practices can be scaled up to achieve a productive and profitable system producing high-quality export bananas with fewer or no pesticides.

  15. Interhost dispersal alters microbiome assembly and can overwhelm host innate immunity in an experimental zebrafish model.

    PubMed

    Burns, Adam R; Miller, Elizabeth; Agarwal, Meghna; Rolig, Annah S; Milligan-Myhre, Kathryn; Seredick, Steve; Guillemin, Karen; Bohannan, Brendan J M

    2017-10-17

    The diverse collections of microorganisms associated with humans and other animals, collectively referred to as their "microbiome," are critical for host health, but the mechanisms that govern their assembly are poorly understood. This has made it difficult to identify consistent host factors that explain variation in microbiomes across hosts, despite large-scale sampling efforts. While ecological theory predicts that the movement, or dispersal, of individuals can have profound and predictable consequences on community assembly, its role in the assembly of animal-associated microbiomes remains underexplored. Here, we show that dispersal of microorganisms among hosts can contribute substantially to microbiome variation, and is able to overwhelm the effects of individual host factors, in an experimental test of ecological theory. We manipulated dispersal among wild-type and immune-deficient myd88 knockout zebrafish and observed that interhost dispersal had a large effect on the diversity and composition of intestinal microbiomes. Interhost dispersal was strong enough to overwhelm the effects of host factors, largely eliminating differences between wild-type and immune-deficient hosts, regardless of whether dispersal occurred within or between genotypes, suggesting dispersal can independently alter the ecology of microbiomes. Our observations are consistent with a predictive model that assumes metacommunity dynamics and are likely mediated by dispersal-related microbial traits. These results illustrate the importance of microbial dispersal to animal microbiomes and motivate its integration into the study of host-microbe systems.

  16. Diurnal variation in martian dust devil activity

    NASA Astrophysics Data System (ADS)

    Chapman, R. M.; Lewis, S. R.; Balme, M.; Steele, L. J.

    2017-08-01

    We show that the dust devil parameterisation in use in most Mars Global Circulation Models (MGCMs) results in an unexpectedly high level of dust devil activity during morning hours. Prior expectations of the diurnal variation of Martian dust devils are based mainly upon the observed behaviour of terrestrial dust devils: i.e. that the majority occur during the afternoon. We instead find that large areas of the Martian surface experience dust devil activity during the morning in our MGCM, and that many locations experience a peak in dust devil activity before mid-sol. We find that the diurnal variation in dust devil activity is governed by near-surface wind speeds. Within the range of daylight hours, higher wind speeds tend to produce higher levels of dust devil activity, rather than the activity simply being governed by the availability of heat at the planet's surface, which peaks in early afternoon. Evidence for whether the phenomenon we observe is real or an artefact of the parameterisation is inconclusive. We compare our results with surface-based observations of Martian dust devil timings and obtain a good match with the majority of surveys. We do not find a good match with orbital observations, which identify a diurnal distribution more closely matching that of terrestrial dust devils, but orbital observations have limited temporal coverage, biased towards the early afternoon. We propose that the generally accepted description of dust devil behaviour on Mars is incomplete, and that theories of dust devil formation may need to be modified specifically for the Martian environment. Further surveys of dust devil observations are required to support any such modifications. These surveys should include both surface and orbital observations, and the range of observations must encompass the full diurnal period and consider the wider meteorological context surrounding the observations.

  17. Small lakes show muted climate change signal in deepwater temperatures

    USGS Publications Warehouse

    Winslow, Luke A.; Read, Jordan S.; Hansen, Gretchen J. A.; Hanson, Paul C.

    2015-01-01

    Water temperature observations were collected from 142 lakes across Wisconsin, USA, to examine variation in temperature of lakes exposed to similar regional climate. Whole lake water temperatures increased across the state from 1990 to 2012, with an average trend of 0.042°C yr−1 ± 0.01°C yr−1. In large (>0.5 km2) lakes, the positive temperature trend was similar across all depths. In small lakes (<0.5 km2), the warming trend was restricted to shallow waters, with no significant temperature trend observed in water >0.5 times the maximum lake depth. The differing response of small versus large lakes is potentially a result of wind-sheltering reducing turbulent mixing magnitude in small lakes. These results demonstrate that small lakes respond differently to climate change than large lakes, suggesting that current predictions of impacts to lakes from climate change may require modification.

  18. Interstellar extinction curve variations towards the inner Milky Way: a challenge to observational cosmology

    NASA Astrophysics Data System (ADS)

    Nataf, David M.; Gonzalez, Oscar A.; Casagrande, Luca; Zasowski, Gail; Wegg, Christopher; Wolf, Christian; Kunder, Andrea; Alonso-Garcia, Javier; Minniti, Dante; Rejkuba, Marina; Saito, Roberto K.; Valenti, Elena; Zoccali, Manuela; Poleski, Radosław; Pietrzyński, Grzegorz; Skowron, Jan; Soszyński, Igor; Szymański, Michał K.; Udalski, Andrzej; Ulaczyk, Krzysztof; Wyrzykowski, Łukasz

    2016-03-01

    We investigate interstellar extinction curve variations towards ˜4 deg2 of the inner Milky Way in VIJKs photometry from the OGLE-III (third phase of the Optical Gravitational Lensing Experiment) and VVV (VISTA Variables in the Via Lactea) surveys, with supporting evidence from diffuse interstellar bands and F435W, F625W photometry. We obtain independent measurements towards ˜2000 sightlines of AI, E(V - I), E(I - J) and E(J - Ks), with median precision and accuracy of 2 per cent. We find that the variations in the extinction ratios AI/E(V - I), E(I - J)/E(V - I) and E(J - Ks)/E(V - I) are large (exceeding 20 per cent), significant and positively correlated, as expected. However, both the mean values and the trends in these extinction ratios are drastically shifted from the predictions of Cardelli and Fitzpatrick, regardless of how RV is varied. Furthermore, we demonstrate that variations in the shape of the extinction curve have at least two degrees of freedom, and not one (e.g. RV), which we confirm with a principal component analysis. We derive a median value of = 13.44, which is ˜60 per cent higher than the `standard' value. We show that the Wesenheit magnitude WI = I - 1.61(I - J) is relatively impervious to extinction curve variations. Given that these extinction curves are linchpins of observational cosmology, and that it is generally assumed that RV variations correctly capture variations in the extinction curve, we argue that systematic errors in the distance ladder from studies of Type Ia supernovae and Cepheids may have been underestimated. Moreover, the reddening maps from the Planck experiment are shown to systematically overestimate dust extinction by ˜100 per cent and lack sensitivity to extinction curve variations.

  19. Photometric Evidence for a Disc-Jet Connection in CH Cygni

    NASA Astrophysics Data System (ADS)

    Sokoloski, J. L.; Kenyon, S. J.

    2001-12-01

    We describe observations of the rapid optical variations of the symbiotic star CH Cygni on 12 nights between 1997 and 1999. The B-band differential light curves reveal an incredible diversity of flickering behavior, from large-amplitude (up to 0.5 mag) variations with a power-law power spectrum, to lower amplitude (0.1 mag) variations with both power-law and non-power-law power spectra, to the complete absence of rapid variations down to a level of mmag. The series of light curves from observations in 1997/1998 exhibit an evolution from smooth, low-amplitude variations, to high-amplitude flickering with power at all measurable time scales. This evolution may be showing us the re-creation of the inner accretion disc after its disruption in association with the jet that was produced in early 1997 (Karovska et al. 1998). We do not find any evidence for quasi-periodic oscillations in the power spectra of individual light curves, and we believe the instances in which flickering completely disappeared coincide with eclipse of the white dwarf and accretion disc. We discuss the implications of our results for magnetic propeller models of this system, as well as compare CH Cygni to other systems where disc-jet connections have been proposed, such as the Galactic microquasar GRS 1915+105. This work was funded in part by NSF grant INT-9902665 to J.L.S.

  20. Evaluating Agronomic Performance and Investigating Molecular Structure of Drought and Heat Tolerant Wild Alfalfa (Medicago sativa L.) Collection from the Southeastern Turkey.

    PubMed

    Basbag, Mehmet; Aydin, Ali; Sakiroglu, Muhammet

    2017-02-01

    Drought is a major stress factor for agricultural production including alfalfa production. One way to counterbalance the yield losses is the introgression of drought tolerant germplasm into breeding programs. As an effort to exploit such germplasm, 16 individual plants were selected from the Southeastern Turkey from their natural habitat and clonally propagated in field trials with an ultimate goal to use the germplasm as parents for releasing a synthetic cultivar. Forage yield and forage quality traits were evaluated and molecular genetic diversity among genotypes were determined using inter simple sequence repeat markers. Genotypes showed a variation from growth habit to yield and quality traits indicating sufficient phenotypic variation for diverse breeding efforts (for grazing or harvesting) and long term selection schemes. A large amount of genetic variation was observed even with a limited number of marker and genotypes. However, no pattern of spatial genetic structure was observed for the scale of the study when genetic variation is linked to the geographic origin. We conclude that ex situ natural variation provides a wealth of germplasm that could be incorporated into breeding programs aiming to improve drought tolerance. We also suggest an extensive collection of seeds/plant tissue from unique plants with desirable traits rather than putting more efforts to create a spatial germplasm sampling efforts in narrow regions.

  1. Allelic Imbalance Is a Prevalent and Tissue-Specific Feature of the Mouse Transcriptome

    PubMed Central

    Pinter, Stefan F.; Colognori, David; Beliveau, Brian J.; Sadreyev, Ruslan I.; Payer, Bernhard; Yildirim, Eda; Wu, Chao-ting; Lee, Jeannie T.

    2015-01-01

    In mammals, several classes of monoallelic genes have been identified, including those subject to X-chromosome inactivation (XCI), genomic imprinting, and random monoallelic expression (RMAE). However, the extent to which these epigenetic phenomena are influenced by underlying genetic variation is unknown. Here we perform a systematic classification of allelic imbalance in mouse hybrids derived from reciprocal crosses of divergent strains. We observe that deviation from balanced biallelic expression is common, occurring in ∼20% of the mouse transcriptome in a given tissue. Allelic imbalance attributed to genotypic variation is by far the most prevalent class and typically is tissue-specific. However, some genotype-based imbalance is maintained across tissues and is associated with greater genetic variation, especially in 5′ and 3′ termini of transcripts. We further identify novel random monoallelic and imprinted genes and find that genotype can modify penetrance of parental origin even in the setting of large imprinted regions. Examination of nascent transcripts in single cells from inbred parental strains reveals that genes showing genotype-based imbalance in hybrids can also exhibit monoallelic expression in isogenic backgrounds. This surprising observation may suggest a competition between alleles and/or reflect the combined impact of cis- and trans-acting variation on expression of a given gene. Our findings provide novel insights into gene regulation and may be relevant to human genetic variation and disease. PMID:25858912

  2. Factors associated with plant species richness in a coastal tall-grass prairie

    USGS Publications Warehouse

    Grace, James B.; Allain, Larry K.; Allen, Charles

    2000-01-01

    In this study we examine the factors associated with variations in species richness within a remnant tall-grass prairie in order to gain insight into the relative importance of controlling variables. The study area was a small, isolated prairie surrounded by wetlands and located within the coastal prairie region, which occurs along the northwestern Gulf of Mexico coastal plain. Samples were taken along three transects that spanned the prairie. Parameters measured included micro-elevation, soil characteristics, indications of recent disturbance, above-ground biomass (including litter), light penetration through the plant canopy, and species richness. Species richness was found to correlate with micro-elevation, certain soil parameters, and light penetration through the canopy, but not with above-ground biomass. Structural equation analysis was used to assess the direct and indirect effects of micro-elevation, soil properties, disturbance, and indicators of plant abundance on species richness. The results of this analysis showed that observed variations in species richness were primarily associated with variations in environmental effects (from soil and microtopography) and were largely unrelated to variations in measures of plant abundance (biomass and light penetration). These findings suggest that observed variations in species richness in this system primarily resulted from environmental effects on the species pool. These results fit with a growing body of information that suggests that environmental effects on species richness are of widespread importance.

  3. Relative contributions of neutral and non-neutral genetic differentiation to inform conservation of steelhead trout across highly variable landscapes

    PubMed Central

    Matala, Andrew P; Ackerman, Michael W; Campbell, Matthew R; Narum, Shawn R

    2014-01-01

    Mounting evidence of climatic effects on riverine environments and adaptive responses of fishes have elicited growing conservation concerns. Measures to rectify population declines include assessment of local extinction risk, population ecology, viability, and genetic differentiation. While conservation planning has been largely informed by neutral genetic structure, there has been a dearth of critical information regarding the role of non-neutral or functional genetic variation. We evaluated genetic variation among steelhead trout of the Columbia River Basin, which supports diverse populations distributed among dynamic landscapes. We categorized 188 SNP loci as either putatively neutral or candidates for divergent selection (non-neutral) using a multitest association approach. Neutral variation distinguished lineages and defined broad-scale population structure consistent with previous studies, but fine-scale resolution was also detected at levels not previously observed. Within distinct coastal and inland lineages, we identified nine and 22 candidate loci commonly associated with precipitation or temperature variables and putatively under divergent selection. Observed patterns of non-neutral variation suggest overall climate is likely to shape local adaptation (e.g., potential rapid evolution) of steelhead trout in the Columbia River region. Broad geographic patterns of neutral and non-neutral variation demonstrated here can be used to accommodate priorities for regional management and inform long-term conservation of this species. PMID:25067950

  4. Spectral analysis of pipe-to-soil potentials with variations of the Earth's magnetic field in the Australian region

    NASA Astrophysics Data System (ADS)

    Marshall, R. A.; Waters, C. L.; Sciffer, M. D.

    2010-05-01

    Long, steel pipelines used to transport essential resources such as gas and oil are potentially vulnerable to space weather. In order to inhibit corrosion, the pipelines are usually coated in an insulating material and maintained at a negative electric potential with respect to Earth using cathodic protection units. During periods of enhanced geomagnetic activity, potential differences between the pipeline and surrounding soil (referred to as pipe-to-soil potentials (PSPs)) may exhibit large voltage swings which place the pipeline outside the recommended "safe range" and at an increased risk of corrosion. The PSP variations result from the "geoelectric" field at the Earth's surface and associated geomagnetic field variations. Previous research investigating the relationship between the surface geoelectric field and geomagnetic source fields has focused on the high-latitude regions where line currents in the ionosphere E region are often the assumed source of the geomagnetic field variations. For the Australian region Sq currents also contribute to the geomagnetic field variations and provide the major contribution during geomagnetic quiet times. This paper presents the results of a spectral analysis of PSP measurements from four pipeline networks from the Australian region with geomagnetic field variations from nearby magnetometers. The pipeline networks extend from Queensland in the north of Australia to Tasmania in the south and provide PSP variations during both active and quiet geomagnetic conditions. The spectral analyses show both consistent phase and amplitude relationships across all pipelines, even for large separations between magnetometer and PSP sites and for small-amplitude signals. Comparison between the observational relationships and model predictions suggests a method for deriving a geoelectric field proxy suitable for indicating PSP-related space weather conditions.

  5. Macrophytes shape trophic niche variation among generalist fishes.

    PubMed

    Vejříková, Ivana; Eloranta, Antti P; Vejřík, Lukáš; Šmejkal, Marek; Čech, Martin; Sajdlová, Zuzana; Frouzová, Jaroslava; Kiljunen, Mikko; Peterka, Jiří

    2017-01-01

    Generalist species commonly have a fundamental role in ecosystems as they can integrate spatially distinct habitats and food-web compartments, as well as control the composition, abundance and behavior of organisms at different trophic levels. Generalist populations typically consist of specialized individuals, but the potential for and hence degree of individual niche variation can be largely determined by habitat complexity. We compared individual niche variation within three generalist fishes between two comparable lakes in the Czech Republic differing in macrophyte cover, i.e. macrophyte-rich Milada and macrophyte-poor Most. We tested the hypothesis that large individual niche variation among generalist fishes is facilitated by the presence of macrophytes, which provides niches and predation shelter for fish and their prey items. Based on results from stable nitrogen (δ15N) and carbon (δ13C) isotopic mixing models, perch (Perca fluviatilis L.) and rudd (Scardinius erythrophthalmus (L.)) showed larger individual variation (i.e., variance) in trophic position in Milada as compared to Most, whereas no significant between-lake differences were observed for roach (Rutilus rutilus (L.)). Contrary to our hypothesis, all the three species showed significantly lower individual variation in the relative reliance on littoral food resources in Milada than in Most. Rudd relied significantly more whereas perch and roach relied less on littoral food resources in Milada than in Most, likely due to prevalent herbivory by rudd and prevalent zooplanktivory by perch and roach in the macrophyte-rich Milada as compared to macrophyte-poor Most. Our study demonstrates how the succession of macrophyte vegetation, via its effects on the physical and biological complexity of the littoral zone and on the availability of small prey fish and zooplankton, can strongly influence individual niche variation among generalist fishes with different ontogenetic trajectories, and hence the overall food-web structures in lake ecosystems.

  6. Ozone photochemical production in urban Shanghai, China: Analysis based on ground level observations

    NASA Astrophysics Data System (ADS)

    Ran, Liang; Zhao, Chunsheng; Geng, Fuhai; Tie, Xuexi; Tang, Xu; Peng, Li; Zhou, Guangqiang; Yu, Qiong; Xu, Jianmin; Guenther, Alex

    2009-08-01

    Ozone and its precursors were measured from 15 June 2006 to 14 June 2007 at an urban site in Shanghai and used to characterize photochemical oxidant production in this region. During the observation period, ozone displays a seasonal variation with a maximum in spring. Observed nitrogen oxides (NOx) and carbon monoxide (CO) reached a maximum in winter and a minimum in summer. NOx and CO has a similar double-peak diurnal cycle, implying that they are largely of motor vehicle origin. Total nonmethane organic compounds (NMOC) concentrations averaged over the morning, and the 24-hour periods have a large day-to-day variation with no apparent seasonal cycle. Aromatics play a dominant role in contributing to total NMOC reactivity and ozone-forming potential. Anthropogenic NMOC of diverse sources are major components of total NMOC and consist mainly of moderate and low reactivity species. In contrast, relatively low levels of biogenic NMOC concentrations were observed in urban Shanghai. The early morning NMOC/NOx ratios are typically below 8:1 with an average of around 4:1, indicating that the sampling location is situated in a NMOC-limited regime. Model simulations confirm that potential photochemical ozone production in Shanghai is NMOC-sensitive. It is presently difficult to predict the impact of future human activities, such as the increase of automobiles and vegetation-covered landscapes and the reduction of aerosol on ozone pollution in the fast developing megacities of China, and additional studies are needed to better understand the highly nonlinear ozone problem.

  7. Hydraulic tests in highly permeable aquifers

    NASA Astrophysics Data System (ADS)

    Butler, James J.; Zhan, Xiaoyong

    2004-12-01

    A semianalytical solution is presented for a mathematical model describing the flow of groundwater in response to a slug or pumping test in a highly permeable, confined aquifer. This solution, which is appropriate for wells of any degree of penetration and incorporates inertial mechanisms at both the test and observation wells, can be used to gain new insights into hydraulic tests in highly permeable settings. The oscillatory character of slug- and pumping-induced responses will vary considerably across a site, even in an essentially homogeneous formation, when wells of different radii, depths, and screen lengths are used. Thus variations in the oscillatory character of responses do not necessarily indicate variations in hydraulic conductivity (K). Existing models for slug tests in partially penetrating wells in high-K aquifers neglect the storage properties of the media. That assumption, however, appears reasonable for a wide range of common conditions. Unlike in less permeable formations, drawdown at an observation well in a high-K aquifer will be affected by head losses in the pumping well. Those losses, which affect the form of the pumping-induced oscillations, can be difficult to characterize. Thus analyses of observation-well drawdown should utilize data from the period after the oscillations have dissipated whenever possible. Although inertial mechanisms can have a large impact on early-time drawdown, that impact decreases rapidly with duration of pumping and distance to the observation well. Conventional methods that do not consider inertial mechanisms should therefore be viable options for the analysis of drawdown data at moderate to large times.

  8. Age and Mass for 920 Large Magellanic Cloud Clusters Derived from 100 Million Monte Carlo Simulations

    NASA Astrophysics Data System (ADS)

    Popescu, Bogdan; Hanson, M. M.; Elmegreen, Bruce G.

    2012-06-01

    We present new age and mass estimates for 920 stellar clusters in the Large Magellanic Cloud (LMC) based on previously published broadband photometry and the stellar cluster analysis package, MASSCLEANage. Expressed in the generic fitting formula, d 2 N/dMdtvpropM α t β, the distribution of observed clusters is described by α = -1.5 to -1.6 and β = -2.1 to -2.2. For 288 of these clusters, ages have recently been determined based on stellar photometric color-magnitude diagrams, allowing us to gauge the confidence of our ages. The results look very promising, opening up the possibility that this sample of 920 clusters, with reliable and consistent age, mass, and photometric measures, might be used to constrain important characteristics about the stellar cluster population in the LMC. We also investigate a traditional age determination method that uses a χ2 minimization routine to fit observed cluster colors to standard infinite-mass limit simple stellar population models. This reveals serious defects in the derived cluster age distribution using this method. The traditional χ2 minimization method, due to the variation of U, B, V, R colors, will always produce an overdensity of younger and older clusters, with an underdensity of clusters in the log (age/yr) = [7.0, 7.5] range. Finally, we present a unique simulation aimed at illustrating and constraining the fading limit in observed cluster distributions that includes the complex effects of stochastic variations in the observed properties of stellar clusters.

  9. Natural variation in differentiated hemocytes is related to parasitoid resistance in Drosophila melanogaster.

    PubMed

    Gerritsma, Sylvia; Haan, Ammerins de; Zande, Louis van de; Wertheim, Bregje

    2013-02-01

    As a measure of parasitoid resistance, hemocyte load and encapsulation ability were measured in lines collected from natural populations of Drosophila melanogaster in Europe. Results show large geographic variation in resistance against the parasitoid wasp Asobara tabida among the field lines, but there was no clear correlation between resistance and total hemocyte load, neither before nor after parasitization. This was in contrast to the patterns that had been found in a comparison among species of Drosophila, where total hemocyte counts were positively correlated to encapsulation rates. This suggests that the mechanisms underlying between-species variation in parasitoid resistance do not extend to the natural variation that exists within a species. Although hemocyte counts did not correspond to encapsulation ability within D. melanogaster, the ratios of lamellocytes and crystal cells were very similar in lines with successful encapsulation responses. Apart from variation in the hemocytic response of the different hemocyte types, within-species variation was also observed for accurate targeting of the foreign body by the hemocytes. These results are discussed in the context of possible causes of variation in immune functions among natural populations. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Additive genetic variation in the craniofacial skeleton of baboons (genus Papio) and its relationship to body and cranial size.

    PubMed

    Joganic, Jessica L; Willmore, Katherine E; Richtsmeier, Joan T; Weiss, Kenneth M; Mahaney, Michael C; Rogers, Jeffrey; Cheverud, James M

    2018-02-01

    Determining the genetic architecture of quantitative traits and genetic correlations among them is important for understanding morphological evolution patterns. We address two questions regarding papionin evolution: (1) what effect do body and cranial size, age, and sex have on phenotypic (V P ) and additive genetic (V A ) variation in baboon crania, and (2) how might additive genetic correlations between craniofacial traits and body mass affect morphological evolution? We use a large captive pedigreed baboon sample to estimate quantitative genetic parameters for craniofacial dimensions (EIDs). Our models include nested combinations of the covariates listed above. We also simulate the correlated response of a given EID due to selection on body mass alone. Covariates account for 1.2-91% of craniofacial V P . EID V A decreases across models as more covariates are included. The median genetic correlation estimate between each EID and body mass is 0.33. Analysis of the multivariate response to selection reveals that observed patterns of craniofacial variation in extant baboons cannot be attributed solely to correlated response to selection on body mass, particularly in males. Because a relatively large proportion of EID V A is shared with body mass variation, different methods of correcting for allometry by statistically controlling for size can alter residual V P patterns. This may conflate direct selection effects on craniofacial variation with those resulting from a correlated response to body mass selection. This shared genetic variation may partially explain how selection for increased body mass in two different papionin lineages produced remarkably similar craniofacial phenotypes. © 2017 Wiley Periodicals, Inc.

  11. Observation on the transformation domains of super-elastic NiTi shape memory alloy and their evolutions during cyclic loading

    NASA Astrophysics Data System (ADS)

    Xie, Xi; Kan, Qianhua; Kang, Guozheng; Li, Jian; Qiu, Bo; Yu, Chao

    2016-04-01

    The strain field of a super-elastic NiTi shape memory alloy (SMA) and its variation during uniaxial cyclic tension-unloading were observed by a non-contact digital image correlation method, and then the transformation domains and their evolutions were indirectly investigated and discussed. It is seen that the super-elastic NiTi (SMA) exhibits a remarkable localized deformation and the transformation domains evolve periodically with the repeated cyclic tension-unloading within the first several cycles. However, the evolutions of transformation domains at the stage of stable cyclic transformation depend on applied peak stress: when the peak stress is low, no obvious transformation band is observed and the strain field is nearly uniform; when the peak stress is large enough, obvious transformation bands occur due to the residual martensite caused by the prevention of enriched dislocations to the reverse transformation from induced martensite to austenite. Temperature variations measured by an infrared thermal imaging method further verifies the formation and evolution of transformation domains.

  12. Low-latitude variability of ice cloud properties and cloud thermodynamic phase observed by the Atmospheric Infrared Sounder (AIRS)

    NASA Astrophysics Data System (ADS)

    Kahn, B. H.; Yue, Q.; Davis, S. M.; Fetzer, E. J.; Schreier, M. M.; Tian, B.; Wong, S.

    2016-12-01

    We will quantify the time and space dependence of ice cloud effective radius (CER), optical thickness (COT), cloud top temperature (CTT), effective cloud fraction (ECF), and cloud thermodynamic phase (ice, liquid, or unknown) with the Version 6 Atmospheric Infrared Sounder (AIRS) satellite observational data set from September 2002 until present. We show that cloud frequency, CTT, COT, and ECF have substantially different responses to ENSO variations. Large-scale changes in ice CER are also observed with a several micron tropics-wide increase during the 2015-2016 El Niño and similar decreases during the La Niña phase. We show that the ice CER variations reflect fundamental changes in the spatial distributions and relative frequencies of different ice cloud types. Lastly, the high spatial and temporal resolution variability of the cloud fields are explored and we show that these data capture a multitude of convectively coupled tropical waves such as Kelvin, westward and eastward intertio-gravity, equatorial Rossby, and mixed Rossby-gravity waves.

  13. Relationship of the interplanetary electric field to the high-latitude ionospheric electric field and currents Observations and model simulation

    NASA Technical Reports Server (NTRS)

    Clauer, C. R.; Banks, P. M.

    1986-01-01

    The electrical coupling between the solar wind, magnetosphere, and ionosphere is studied. The coupling is analyzed using observations of high-latitude ion convection measured by the Sondre Stromfjord radar in Greenland and a computer simulation. The computer simulation calculates the ionospheric electric potential distribution for a given configuration of field-aligned currents and conductivity distribution. The technique for measuring F-region in velocities at high time resolution over a large range of latitudes is described. Variations in the currents on ionospheric plasma convection are examined using a model of field-aligned currents linking the solar wind with the dayside, high-latitude ionosphere. The data reveal that high-latitude ionospheric convection patterns, electric fields, and field-aligned currents are dependent on IMF orientation; it is observed that the electric field, which drives the F-region plasma curve, responds within about 14 minutes to IMF variations in the magnetopause. Comparisons of the simulated plasma convection with the ion velocity measurements reveal good correlation between the data.

  14. Ionospheric response to 17 March 2013 geomagnetic storm identified by data assimilation result

    NASA Astrophysics Data System (ADS)

    Yue, Xinan; Zhao, Biqiang; Hu, Lianhuan; She, Chengli

    2017-04-01

    Based on slant total electron content (TEC) observations made by 10 satellites and 450 ground IGS GNSS stations, we constructed a 4-D ionospheric electron density reanalysis during the March 17, 2013 geomagnetic storm. Four main large-scale ionospheric disturbances are identified from reanalysis: (1) The positive storm during the initial phase; (2) The SED (storm enhanced density) structure in both northern and southern hemisphere; (3) The large positive storm in main phase; (4) The significant negative storm in middle and low latitude during recovery phase. We then run the NCAR-TIEGCM model with Heelis electric potential empirical model as polar input. The TIEGCM can reproduce 3 of 4 large-scale structures (except SED) very well. We then further analyzed the altitudinal variations of these large-scale disturbances and found several interesting things, such as the altitude variation of SED, the rotation of positive/negative storm phase with local time. Those structures could not be identified clearly by traditional used data sources, which either has no global coverage or no vertical resolution. The drivers such as neutral wind/density and electric field from TIEGCM simulations are also analyzed to self-consistently explain the identified disturbance features.

  15. Inclusion of Linearized Moist Physics in Nasa's Goddard Earth Observing System Data Assimilation Tools

    NASA Technical Reports Server (NTRS)

    Holdaway, Daniel; Errico, Ronald; Gelaro, Ronaldo; Kim, Jong G.

    2013-01-01

    Inclusion of moist physics in the linearized version of a weather forecast model is beneficial in terms of variational data assimilation. Further, it improves the capability of important tools, such as adjoint-based observation impacts and sensitivity studies. A linearized version of the relaxed Arakawa-Schubert (RAS) convection scheme has been developed and tested in NASA's Goddard Earth Observing System data assimilation tools. A previous study of the RAS scheme showed it to exhibit reasonable linearity and stability. This motivates the development of a linearization of a near-exact version of the RAS scheme. Linearized large-scale condensation is included through simple conversion of supersaturation into precipitation. The linearization of moist physics is validated against the full nonlinear model for 6- and 24-h intervals, relevant to variational data assimilation and observation impacts, respectively. For a small number of profiles, sudden large growth in the perturbation trajectory is encountered. Efficient filtering of these profiles is achieved by diagnosis of steep gradients in a reduced version of the operator of the tangent linear model. With filtering turned on, the inclusion of linearized moist physics increases the correlation between the nonlinear perturbation trajectory and the linear approximation of the perturbation trajectory. A month-long observation impact experiment is performed and the effect of including moist physics on the impacts is discussed. Impacts from moist-sensitive instruments and channels are increased. The effect of including moist physics is examined for adjoint sensitivity studies. A case study examining an intensifying Northern Hemisphere Atlantic storm is presented. The results show a significant sensitivity with respect to moisture.

  16. Visualizing Structure and Dynamics of Disaccharide Simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matthews, J. F.; Beckham, G. T.; Himmel, M. E.

    2012-01-01

    We examine the effect of several solvent models on the conformational properties and dynamics of disaccharides such as cellobiose and lactose. Significant variation in timescale for large scale conformational transformations are observed. Molecular dynamics simulation provides enough detail to enable insight through visualization of multidimensional data sets. We present a new way to visualize conformational space for disaccharides with Ramachandran plots.

  17. Aquarius salinity and wind retrieval using the cap algorithm and application to water cycle observation in the Indian ocean and subcontinent

    USDA-ARS?s Scientific Manuscript database

    Aquarius is a combined passive/active L-band microwave instrument developed to map the ocean surface salinity field from space. The primary science objective of this mission is to monitor the seasonal and interannual variation of the large scale features of the surface salinity field in the open oc...

  18. Variation among northern red oak provenances in bark thickness:dbh ratios

    Treesearch

    Matthew S. Russell; Jeffrey O. Dawson

    1995-01-01

    Differences in bark thickness in relation to diameter at breast height were observed in a 30-32 year old Illinois planting of 32 provenances of northern red oak (Quercus rubra) from throughout its natural range. Bark thickness by itself is often a good indication of relative cambial insulation from fire. Fire resistance in trees can largely be...

  19. Spatial variation in spawning habitat of cutthroat trout in a sediment-rich basin

    Treesearch

    James P. Magee; Thomas E. McMahon; Russell F. Thurow

    1996-01-01

    We examined distribution and habitat characteristics of spawning sites of cutthroat trout Oncorhynchus clarki at various spatial scales to assess effects of sedimentation within a large basin in Montana. Redd density varied widely across the basin; nearly all (99%) of the 362 redds observed occurred in two high-elevation headwater tributaries. Redd density at the reach...

  20. Geographic pattern of genetic variation in the European globeflower Trollius europaeus L. (Ranunculaceae) inferred from amplified fragment length polymorphism markers.

    PubMed

    Despres, Laurence; Loriot, Sandrine; Gaudeul, Myriam

    2002-11-01

    The distribution of genetic variation and the phylogenetic relationships between 18 populations of the arctic-alpine plant Trollius europaeus were analysed in three main regions (Alps, Pyrenees and Fennoscandia) by using dominant AFLP markers. Analysis of molecular variance revealed that most of the genetic variability was found within populations (64%), although variation among regions (17%) and among populations within regions (19%) was highly significant (P < 0.001). Accordingly, the global fixation index FST averaged over loci was high (0.39). The among-population differentiation indicates restricted gene flow, congruent with limited dispersal of specific globeflower's pollinating flies (Chiastocheta spp.). Within-population diversity levels were significantly higher in the Alps (mean Nei's expected heterozygosity HE = 0.229) than in the Pyrenees (HE= 0.197) or in Fennoscandia (HE = 0.158). This finding is congruent with the species-richness of the associated flies, which is maximum in the Alps. We discuss the processes involved in shaping observed patterns of genetic diversity within and among T. europaeus populations. Genetic drift is the major factor acting on the small Pyrenean populations at the southern edge of T. europaeus distribution, while large Fennoscandian populations result probably from a founder effect followed by demographic expansion. The Alpine populations represent moderately fragmented relics of large southern ancestral populations. The patterns of genetic variability observed in the host plant support the hypothesis of sympatric speciation in associated flies, rather than recurrent allopatric speciations.

  1. Social inequality, ethnicity and cardiovascular disease.

    PubMed

    Cooper, R S

    2001-10-01

    Epidemiological research on cardiovascular risk factors has led to important advances in prevention science by providing insights that have now resulted in substantial reductions in mortality. This research used the variation in risk among individuals as the guide to causal exposures. Large differentials remain among socio-demographic groups, however, and the causes of these differentials may be distinctly different from those observed at the individual level. Vital statistics and census data from the US and selected regions were used in an ecologic analysis. In 1996 heart disease mortality in the US varied from 156/100 000 among African-American women to 51/100 000 among Asian women; similar differentials were observed for men. Income equality was correlated with heart disease mortality among the 47 largest US cities (r = -0.4; P = 0.006). Independent of income equality, racial segregation was also associated with risk of death from cardiovascular disease in this sample of cities. Social processes generate marked differentials in heart disease mortality among demographic groups. In the US, death rates are currently 2-3 times higher among African Americans compared to Asians. Broadly speaking, this variation results from their separate cultural legacies, based on well-recognized lifestyle factors and dietary patterns. Ecological comparisons across cities that share similar lifestyle patterns suggest that income inequality and patterns of racial discrimination are each associated with large variation in mortality in a similar manner. Racism and social inequality can be conceptualized as social causes of excess cardiovascular mortality that may not be measurable at the individual level.

  2. Design and performance of a punch mechanism based pellet injector for alternative injection in the large helical device

    NASA Astrophysics Data System (ADS)

    Mishra, J. S.; Sakamoto, R.; Motojima, G.; Matsuyama, A.; Yamada, H.

    2011-02-01

    A low speed single barrel pellet injector, using a mechanical punch device has been developed for alternative injection in the large helical device. A pellet is injected by the combined operation of a mechanical punch and a pneumatic propellant system. The pellet shape is cylindrical, 3 mm in diameter and 3 mm in length. Using this technique the speed of the pellet can be controlled flexibly in the range of 100-450 m/s, and a higher speed can be feasible for a higher gas pressure. The injector is equipped with a guide tube selector to direct the pellet to different injection locations. Pellets are exposed to several curved parts with the curvature radii Rc = 0.8 and 0.3 m when they are transferred in guided tubes to the respective injection locations. Pellet speed variation with pressure at different pellet formation temperatures has been observed. Pellet intactness tests through these guide tubes show a variation in the intact speed limit over a range of pellet formation temperatures from 6.5 to 9.8 K. Pellet speed reduction of less than 6% has been observed after the pellet moves through the curved guide tubes.

  3. Observed, unknown distributions of clinical chemical quantities should be considered to be log-normal: a proposal.

    PubMed

    Haeckel, Rainer; Wosniok, Werner

    2010-10-01

    The distribution of many quantities in laboratory medicine are considered to be Gaussian if they are symmetric, although, theoretically, a Gaussian distribution is not plausible for quantities that can attain only non-negative values. If a distribution is skewed, further specification of the type is required, which may be difficult to provide. Skewed (non-Gaussian) distributions found in clinical chemistry usually show only moderately large positive skewness (e.g., log-normal- and χ(2) distribution). The degree of skewness depends on the magnitude of the empirical biological variation (CV(e)), as demonstrated using the log-normal distribution. A Gaussian distribution with a small CV(e) (e.g., for plasma sodium) is very similar to a log-normal distribution with the same CV(e). In contrast, a relatively large CV(e) (e.g., plasma aspartate aminotransferase) leads to distinct differences between a Gaussian and a log-normal distribution. If the type of an empirical distribution is unknown, it is proposed that a log-normal distribution be assumed in such cases. This avoids distributional assumptions that are not plausible and does not contradict the observation that distributions with small biological variation look very similar to a Gaussian distribution.

  4. Parallel Geographic Variation in Drosophila melanogaster

    PubMed Central

    Reinhardt, Josie A.; Kolaczkowski, Bryan; Jones, Corbin D.; Begun, David J.; Kern, Andrew D.

    2014-01-01

    Drosophila melanogaster, an ancestrally African species, has recently spread throughout the world, associated with human activity. The species has served as the focus of many studies investigating local adaptation relating to latitudinal variation in non-African populations, especially those from the United States and Australia. These studies have documented the existence of shared, genetically determined phenotypic clines for several life history and morphological traits. However, there are no studies designed to formally address the degree of shared latitudinal differentiation at the genomic level. Here we present our comparative analysis of such differentiation. Not surprisingly, we find evidence of substantial, shared selection responses on the two continents, probably resulting from selection on standing ancestral variation. The polymorphic inversion In(3R)P has an important effect on this pattern, but considerable parallelism is also observed across the genome in regions not associated with inversion polymorphism. Interestingly, parallel latitudinal differentiation is observed even for variants that are not particularly strongly differentiated, which suggests that very large numbers of polymorphisms are targets of spatially varying selection in this species. PMID:24610860

  5. Seasonal and spatial variations of source and drinking water quality in small municipal systems of two Canadian regions.

    PubMed

    Scheili, A; Rodriguez, M J; Sadiq, R

    2015-03-01

    A one-year sampling program covering twenty-five small municipal systems was carried out in two Canadian regions to improve our understanding of the variability of water quality in small systems from water source to the end of the distribution system (DS). The database obtained was used to develop a global portrait of physical, chemical and microbiological water quality parameters. More precisely, the temporal and the spatial variability of these parameters were investigated. We observed that the levels of natural organic matter (NOM) were variable during different seasons, with maxima in the fall for both provinces. In the regions under study, the highest trihalomethane (THM) and haloacetic acid (HAA) levels were achieved in warmer seasons (summer, fall), as observed in previous studies involving large systems. Observed THM and HAA levels were three times higher in systems in the province of Newfoundland & Labrador than in the province of Quebec. Taste and odor indicators were detected during the summer and fall, and higher heterotrophic plate count (HPC) levels were associated with lower free chlorine levels. To determine spatial variations, stepwise statistical analysis was used to identify parameters and locations in the DS that act as indicators of drinking water quality. As observed for medium and large systems, free chlorine consumption, THM and HAA levels were dependent on their location in the DS. We also observed that the degradation of HAAs is more important in small systems than in medium or large DS reported in the literature, and this degradation can occur from the beginning of the DS. The results of this research may contribute to providing precious information on drinking water quality to small system operators and pave the way for several opportunities to improve water quality management. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Understanding the Central Equatorial African long-term drought using AMIP-type simulations

    NASA Astrophysics Data System (ADS)

    Hua, Wenjian; Zhou, Liming; Chen, Haishan; Nicholson, Sharon E.; Jiang, Yan; Raghavendra, Ajay

    2018-02-01

    Previous studies show that Indo-Pacific sea surface temperature (SST) variations may help to explain the observed long-term drought during April-May-June (AMJ) since the 1990s over Central equatorial Africa (CEA). However, the underlying physical mechanisms for this drought are still not clear due to observation limitations. Here we use the AMIP-type simulations with 24 ensemble members forced by observed SSTs from the ECHAM4.5 model to explore the likely physical processes that determine the rainfall variations over CEA. We not only examine the ensemble mean (EM), but also compare the "good" and "poor" ensemble members to understand the intra-ensemble variability. In general, EM and the "good" ensemble member can simulate the drought and associated reduced vertical velocity and anomalous anti-cyclonic circulation in the lower troposphere. However, the "poor" ensemble members cannot simulate the drought and associated circulation patterns. These contrasts indicate that the drought is tightly associated with the tropical Walker circulation and atmospheric teleconnection patterns. If the observational circulation patterns cannot be reproduced, the CEA drought will not be captured. Despite the large intra-ensemble spread, the model simulations indicate an essential role of SST forcing in causing the drought. These results suggest that the long-term drought may result from tropical Indo-Pacific SST variations associated with the enhanced and westward extended tropical Walker circulation.

  7. Nutrient elements in large Chinese estuaries

    NASA Astrophysics Data System (ADS)

    Zhang, Jing

    1996-07-01

    Based on comprehensive observations since 1983, this study summarizes major features of nutrient elements (nitrogen, phosphorus and silicon) in large Chinese river/estuary systems. Elevated nutrient element levels were observed in Chinese rivers, when compared to large and less disturbed aquatic systems (e.g. the Amazon, Zaire and Orinoco). Data from this study are similar to those obtained from the polluted and/or eutrophic rivers in Europe and North America (e.g. the Rhóne and Loire). Nutrient elements may have either conservative or active distributions, or both, in the mixing zone, depending on the element and the estuary. For example, non-conservative behaviors were observed in the upper estuary, where nutrient elements may be remobilized due to the strong desorption and variations of the fresh water end-member, but conservative distributions were found afterwards in the lower estuary. Outside the riverine effluent plumes, nutrient elements may be depleted in surface waters relative to elevated bioproduction, whereas the regeneration with respect to decomposition of organic material and/or nitrification/denitrification offshore, may sustain high levels of nutrient elements in near-bottom waters. Laboratory experiment data generally compares well with field observations. The high fluxes and area] yields of nutrient elements from large Chinese rivers, indicate the extensive use of chemical fertilizers and domestic waste drainage over watersheds in China.

  8. Genetic Drift, Not Life History or RNAi, Determine Long-Term Evolution of Transposable Elements

    PubMed Central

    Szitenberg, Amir; Cha, Soyeon; Opperman, Charles H.; Bird, David M.; Blaxter, Mark L.; Lunt, David H.

    2016-01-01

    Abstract Transposable elements (TEs) are a major source of genome variation across the branches of life. Although TEs may play an adaptive role in their host’s genome, they are more often deleterious, and purifying selection is an important factor controlling their genomic loads. In contrast, life history, mating system, GC content, and RNAi pathways have been suggested to account for the disparity of TE loads in different species. Previous studies of fungal, plant, and animal genomes have reported conflicting results regarding the direction in which these genomic features drive TE evolution. Many of these studies have had limited power, however, because they studied taxonomically narrow systems, comparing only a limited number of phylogenetically independent contrasts, and did not address long-term effects on TE evolution. Here, we test the long-term determinants of TE evolution by comparing 42 nematode genomes spanning over 500 million years of diversification. This analysis includes numerous transitions between life history states, and RNAi pathways, and evaluates if these forces are sufficiently persistent to affect the long-term evolution of TE loads in eukaryotic genomes. Although we demonstrate statistical power to detect selection, we find no evidence that variation in these factors influence genomic TE loads across extended periods of time. In contrast, the effects of genetic drift appear to persist and control TE variation among species. We suggest that variation in the tested factors are largely inconsequential to the large differences in TE content observed between genomes, and only by these large-scale comparisons can we distinguish long-term and persistent effects from transient or random changes. PMID:27566762

  9. Correcting for strong eddy current induced B0 modulation enables two-spoke RF pulse design with parallel transmission: demonstration at 9.4T in the human brain.

    PubMed

    Wu, Xiaoping; Adriany, Gregor; Ugurbil, Kamil; Van de Moortele, Pierre-Francois

    2013-01-01

    Successful implementation of homogeneous slice-selective RF excitation in the human brain at 9.4T using 16-channel parallel transmission (pTX) is demonstrated. A novel three-step pulse design method incorporating fast real-time measurement of eddy current induced B0 variations as well as correction of resulting phase errors during excitation is described. To demonstrate the utility of the proposed method, phantom and in-vivo experiments targeting a uniform excitation in an axial slice were conducted using two-spoke pTX pulses. Even with the pre-emphasis activated, eddy current induced B0 variations with peak-to-peak values greater than 4 kHz were observed on our system during the rapid switches of slice selective gradients. This large B0 variation, when not corrected, resulted in drastically degraded excitation fidelity with the coefficient of variation (CV) of the flip angle calculated for the region of interest being large (~ 12% in the phantom and ~ 35% in the brain). By comparison, excitation fidelity was effectively restored, and satisfactory flip angle uniformity was achieved when using the proposed method, with the CV value reduced to ~ 3% in the phantom and ~ 8% in the brain. Additionally, experimental results were in good agreement with the numerical predictions obtained from Bloch simulations. Slice-selective flip angle homogenization in the human brain at 9.4T using 16-channel 3D spoke pTX pulses is achievable despite of large eddy current induced excitation phase errors; correcting for the latter was critical in this success.

  10. Application of Satellite Solar-Induced Chlorophyll Fluorescence to Understanding Large-Scale Variations in Vegetation Phenology and Function Over Northern High Latitude Forests

    NASA Technical Reports Server (NTRS)

    Jeong, Su-Jong; Schimel, David; Frankenberg, Christian; Drewry, Darren T.; Fisher, Joshua B.; Verma, Manish; Berry, Joseph A.; Lee, Jung-Eun; Joiner, Joanna

    2016-01-01

    This study evaluates the large-scale seasonal phenology and physiology of vegetation over northern high latitude forests (40 deg - 55 deg N) during spring and fall by using remote sensing of solar-induced chlorophyll fluorescence (SIF), normalized difference vegetation index (NDVI) and observation-based estimate of gross primary productivity (GPP) from 2009 to 2011. Based on GPP phenology estimation in GPP, the growing season determined by SIF time-series is shorter in length than the growing season length determined solely using NDVI. This is mainly due to the extended period of high NDVI values, as compared to SIF, by about 46 days (+/-11 days), indicating a large-scale seasonal decoupling of physiological activity and changes in greenness in the fall. In addition to phenological timing, mean seasonal NDVI and SIF have different responses to temperature changes throughout the growing season. We observed that both NDVI and SIF linearly increased with temperature increases throughout the spring. However, in the fall, although NDVI linearly responded to temperature increases, SIF and GPP did not linearly increase with temperature increases, implying a seasonal hysteresis of SIF and GPP in response to temperature changes across boreal ecosystems throughout their growing season. Seasonal hysteresis of vegetation at large-scales is consistent with the known phenomena that light limits boreal forest ecosystem productivity in the fall. Our results suggest that continuing measurements from satellite remote sensing of both SIF and NDVI can help to understand the differences between, and information carried by, seasonal variations vegetation structure and greenness and physiology at large-scales across the critical boreal regions.

  11. Orbital Dynamics and Habitability of Exoplanets

    NASA Astrophysics Data System (ADS)

    Deitrick, Russell J.

    With the discoveries of thousands of extra-solar planets, a handful of which are terrestrial in size and located within the "habitable zone" of their host stars, the discovery of another instance of life in the universe seems increasingly within our grasp. Yet, a number of difficulties remain--with current and developing technologies, the full characterization of a terrestrial atmosphere and, hence, the detection of biosignatures will be extraordinarily difficult and expensive. Furthermore, observations will be ambiguous, as recent developments have shown that there is no "smoking gun" for the presence of life. Ultimately, the interpretation of observations will depend heavily upon our understanding of life's fundamental properties and the physical context of a planet's observed properties. This thesis is devoted to a development of the latter quantity, physical context, focusing on a topic oft-neglected in theoretical works of habitability: orbital dynamics. I show a number of ways in which orbital dynamics can affect the habitability of exoplanets. This work highlights the crucial role of stability, mutual inclinations, and resonances, demonstrating how these properties influence atmospheric states. Studies of exoplanetary systems tend to assume that the planets are coplanar, however, the large mutual inclination of the planets orbiting upsilon Andromedae suggests that coplanarity is not always a valid assumption. In my study of this system, I show that the large inclination between planets c and d and their large eccentricities lead to dramatic orbital variations. Though there is almost certainly no habitable planet orbiting upsilon And, the existence of this system demonstrates that we should expect other such dynamically "hot" planetary systems, some of which may contain potentially habitable planets. Minute variations in a planet's orbit can lead to changes in the global temperature, and indeed, these variations seem to be intimately connected to Earth's Pleistocene ice ages. Mutual inclinations lead not only to larger variations in a planet's obliquity, but also uncover secular spin-orbit resonances, which lead to yet more dramatic behavior. I modeled the obliquity evolution of planets in this highly non-linear dynamical regime. Connecting the dynamical models to an simple climate model with ice sheets, I modeled the effects of such dynamical evolution on an Earth-like planet's climate. As expected, such "exo-Milankovitch cycles" can be rapid and dramatic, often leading to complete collapse into a snowball state. By demonstrating a handful of the many ways dynamics can influence habitability, this research provides context to observations of exoplanets and connects to one of the key goals of astrobiology, to "Determine the potential for habitable planets beyond the Solar System, and characterize those that are observable" (Des Marais et al., 2008). It provides tools and techniques that may be used to help prioritize exoplanet targets for characterization missions when very little information is known other than orbital properties. It also demonstrates how orbital evolution affects observable quantities like albedo, and will assist in the interpretation of spectra.

  12. Surface composition of Mars: A Viking multispectral view

    NASA Technical Reports Server (NTRS)

    Adams, John B.; Smith, Milton O.; Arvidson, Raymond E.; Dale-Bannister, Mary; Guinness, Edward A.; Singer, Robert; Adams, John B.

    1987-01-01

    A new method of analyzing multispectral images takes advantage of the spectral variation from pixel to pixel that is typical for natural planetary surfaces, and treats all pixels as potential mixtures of spectrally distinct materials. For Viking Lander images, mixtures of only three spectral end members (rock, soil, and shade) are sufficient to explain the observed spectral variation to the level of instrumental noise. It was concluded that a large portion of the Martian surface consists of only two spectrally distinct materials, basalt and palgonitic soil. It is emphasized, however, that as viewed through the three broad bandpasses of Viking Orbiter, other materials cannot be distinguished from the mixtures.

  13. Intraspecific variation in the diet of the Mexican garter snake Thamnophis eques

    PubMed Central

    Pacheco-Tinoco, Martha; Venegas-Barrera, Crystian S.

    2017-01-01

    The Mexican Garter Snake (Thamnophis eques) is a terrestrial-aquatic generalist that feeds on both aquatic and terrestrial prey. We describe size-related variation and sexual variation in the diet of T. eques through analysis of 262 samples of identifiable stomach contents in snakes from 23 locations on the Mexican Plateau. The snake T. eques we studied consumed mostly fish, followed in lesser amounts by leeches, earthworms, frogs, and tadpoles. Correspondence analysis suggested that the frequency of consumption of various prey items differed between the categories of age but not between sex of snakes, and the general pattern was a reduction of prey item diversity with size of snake. Snake length was correlated positively with mass of ingested prey. Large snakes consumed large prey and continued to consume smaller prey. In general, no differences were found between the prey taxa of male and female snakes, although males ate two times more tadpoles than females. Males and females did not differ in the mass of leeches, earthworms, fishes, frogs and tadpoles that they ate, and males and females that ate each prey taxon were similar in length. We discuss proximate and functional determinants of diet and suggest that the observed intraspecific variation in T. eques could be explored by temporal variation in prey availability, proportions of snake size classes and possible sexual dimorphism in head traits and prey dimensions to assess the role of intersexual resource competition. PMID:29158976

  14. Seasonal patterns of predation for gray wolves in the multi-prey system of Yellowstone National Park.

    PubMed

    Metz, Matthew C; Smith, Douglas W; Vucetich, John A; Stahler, Daniel R; Peterson, Rolf O

    2012-05-01

    1. For large predators living in seasonal environments, patterns of predation are likely to vary among seasons because of related changes in prey vulnerability. Variation in prey vulnerability underlies the influence of predators on prey populations and the response of predators to seasonal variation in rates of biomass acquisition. Despite its importance, seasonal variation in predation is poorly understood. 2. We assessed seasonal variation in prey composition and kill rate for wolves Canis lupus living on the Northern Range (NR) of Yellowstone National Park. Our assessment was based on data collected over 14 winters (1995-2009) and five spring-summers between 2004 and 2009. 3. The species composition of wolf-killed prey and the age and sex composition of wolf-killed elk Cervus elaphus (the primary prey for NR wolves) varied among seasons. 4. One's understanding of predation depends critically on the metric used to quantify kill rate. For example, kill rate was greatest in summer when quantified as the number of ungulates acquired per wolf per day, and least during summer when kill rate was quantified as the biomass acquired per wolf per day. This finding contradicts previous research that suggests that rates of biomass acquisition for large terrestrial carnivores tend not to vary among seasons. 5. Kill rates were not well correlated among seasons. For example, knowing that early-winter kill rate is higher than average (compared with other early winters) provides little basis for anticipating whether kill rates a few months later during late winter will be higher or lower than average (compared with other late winters). This observation indicates how observing, for example, higher-than-average kill rates throughout any particular season is an unreliable basis for inferring that the year-round average kill rate would be higher than average. 6. Our work shows how a large carnivore living in a seasonal environment displays marked seasonal variation in predation because of changes in prey vulnerability. Patterns of wolf predation were influenced by the nutritional condition of adult elk and the availability of smaller prey (i.e. elk calves, deer). We discuss how these patterns affect our overall understanding of predator and prey population dynamics. © 2012 The Authors. Journal of Animal Ecology © 2012 British Ecological Society.

  15. Microwave brightness temperature features of lunar craters: observation from Chang'E-1 mission

    NASA Astrophysics Data System (ADS)

    Hu, Guo-Ping; Chen, Ke; Guo, Wei; Li, Qing-Xia; Su, Hong-Yan

    2013-01-01

    Topographic features of lunar craters have been found from the brightness temperature (TB) observed by the multichannel (3.0, 7.8, 19.35, and 37 GHz) microwave radiometer (MRM) aboard Chang'E-1 (CE-1) in a single track view. As the topographic effect is more obvious at 37 GHz, 37 GHz TB has been focused on in this work. The variation of 37 GHz daytime (nighttime) TB along the profile of a crater is found to show an oscillatory behavior. The amplitude of daytime TB is significantly affected by the observation time and the shape of the crater, whose diameter is bigger than the spatial resolution of MRM onboard CE-1. The large and typical diurnal TB difference (nighttime TB minus daytime TB) at 37 GHz over selected young craters due to the large rock abundance in craters, have been discussed and compared with the altitude profile.

  16. Irminger Sea deep convection injects oxygen and anthropogenic carbon to the ocean interior

    PubMed Central

    Fröb, F.; Olsen, A.; Våge, K.; Moore, G. W. K.; Yashayaev, I.; Jeansson, E.; Rajasakaren, B.

    2016-01-01

    Deep convection in the subpolar North Atlantic ventilates the ocean for atmospheric gases through the formation of deep water masses. Variability in the intensity of deep convection is believed to have caused large variations in North Atlantic anthropogenic carbon storage over the past decades, but observations of the properties during active convection are missing. Here we document the origin, extent and chemical properties of the deepest winter mixed layers directly observed in the Irminger Sea. As a result of the deep convection in winter 2014–2015, driven by large oceanic heat loss, mid-depth oxygen concentrations were replenished and anthropogenic carbon storage rates almost tripled compared with Irminger Sea hydrographic section data in 1997 and 2003. Our observations provide unequivocal evidence that ocean ventilation and anthropogenic carbon uptake take place in the Irminger Sea and that their efficiency can be directly linked to atmospheric forcing. PMID:27786263

  17. Ogo 5 observations of LHR noise, emissions, and whistlers near the plasmapause at several earth radii during a large magnetic storm.

    NASA Technical Reports Server (NTRS)

    Scarf, F. L.; Fredricks, R. W.; Smith, E. J.; Frandsen, A. M. A.; Serbu, G. P.

    1972-01-01

    On May 15, 1969, Ogo 5 crossed the plasmapause during a major storm that produced severe geomagnetic disturbances (Kp up to 8-), large and rapid variations in ring-current intensity (as measured by Dst), intense low-latitude aurora, and persistent SAR arcs. Near the highly structured plasmasphere boundary, the electric- and magnetic-field sensors on Ogo 5 detected lower-hybrid-resonance noise bursts, whistlers, ELF hiss, and other discrete signals or emissions. Some LHR noise bursts were associated with whistlers, and these high-altitude phenomena resembled the corresponding ionospheric ones. This report contains a description of the VLF observations. We also show that intense ULF magnetic signals were present near the plasmapause, and we attempt to relate these observations to the predictions of various theories of proton ring-current decay and SAR-arc formation.

  18. Whole Genome Sequencing Identifies a 78 kb Insertion from Chromosome 8 as the Cause of Charcot-Marie-Tooth Neuropathy CMTX3

    PubMed Central

    Brewer, Megan H.; Chaudhry, Rabia; Qi, Jessica; Kidambi, Aditi; Drew, Alexander P.; Ryan, Monique M.; Subramanian, Gopinath M.; Young, Helen K.; Zuchner, Stephan; Reddel, Stephen W.; Nicholson, Garth A.; Kennerson, Marina L.

    2016-01-01

    With the advent of whole exome sequencing, cases where no pathogenic coding mutations can be found are increasingly being observed in many diseases. In two large, distantly-related families that mapped to the Charcot-Marie-Tooth neuropathy CMTX3 locus at chromosome Xq26.3-q27.3, all coding mutations were excluded. Using whole genome sequencing we found a large DNA interchromosomal insertion within the CMTX3 locus. The 78 kb insertion originates from chromosome 8q24.3, segregates fully with the disease in the two families, and is absent from the general population as well as 627 neurologically normal chromosomes from in-house controls. Large insertions into chromosome Xq27.1 are known to cause a range of diseases and this is the first neuropathy phenotype caused by an interchromosomal insertion at this locus. The CMTX3 insertion represents an understudied pathogenic structural variation mechanism for inherited peripheral neuropathies. Our finding highlights the importance of considering all structural variation types when studying unsolved inherited peripheral neuropathy cases with no pathogenic coding mutations. PMID:27438001

  19. Human Y chromosome copy number variation in the next generation sequencing era and beyond.

    PubMed

    Massaia, Andrea; Xue, Yali

    2017-05-01

    The human Y chromosome provides a fertile ground for structural rearrangements owing to its haploidy and high content of repeated sequences. The methodologies used for copy number variation (CNV) studies have developed over the years. Low-throughput techniques based on direct observation of rearrangements were developed early on, and are still used, often to complement array-based or sequencing approaches which have limited power in regions with high repeat content and specifically in the presence of long, identical repeats, such as those found in human sex chromosomes. Some specific rearrangements have been investigated for decades; because of their effects on fertility, or their outstanding evolutionary features, the interest in these has not diminished. However, following the flourishing of large-scale genomics, several studies have investigated CNVs across the whole chromosome. These studies sometimes employ data generated within large genomic projects such as the DDD study or the 1000 Genomes Project, and often survey large samples of healthy individuals without any prior selection. Novel technologies based on sequencing long molecules and combinations of technologies, promise to stimulate the study of Y-CNVs in the immediate future.

  20. Species composition and morphologic variation of Porites in the Gulf of California

    NASA Astrophysics Data System (ADS)

    López-Pérez, R. A.

    2013-09-01

    Morphometric analysis of corallite calices confirmed that from the late Miocene to the Recent, four species of Porites have inhabited the Gulf of California: the extinct Porites carrizensis, the locally extirpated Porites lobata and the extant Porites sverdrupi and Porites panamensis. Furthermore, large-scale spatial and temporal phenotypic plasticity was observed in the dominant species P. panamensis. Canonical discriminant analysis and ANOVA demonstrated that the calice structures of P. panamensis experienced size reduction between the late Pleistocene and Recent. Similarly, PERMANOVA, regression and correlation analyses demonstrated that across the 800 km north to south in the gulf, P. panamensis populations displayed a similar reduction in calice structures. Based on correlation analysis with environmental data, these large spatial changes are likely related to changes in nutrient concentration and sea surface temperature. As such, the large-scale spatial and temporal phenotypic variation recorded in populations of P. panamensis in the Gulf of California is likely related to optimization of corallite performance (energy acquisition) within various environmental scenarios. These findings may have relevance to modern conservation efforts within this ecological dominant genus.

  1. Diurnal variation of eye movement and heart rate variability in the human fetus at term.

    PubMed

    Morokuma, S; Horimoto, N; Satoh, S; Nakano, H

    2001-07-01

    To elucidate diurnal variations in eye movement and fetal heart rate (FHR) variability in the term fetus, we observed these two parameters continuously for 24 h, using real-time ultrasound and Doppler cardiotocograph, respectively. Studied were five uncomplicated fetuses at term. The time series data of the presence and absence of eye movement and mean FHR value for each 1 min were analyzed using the maximum entropy method (MEM) and subsequent nonlinear least squares fitting. According to the power value of eye movement, all five cases were classified into two groups: three cases in the large power group and two cases in the small power group. The acrophases of eye movement and FHR variability in the large power group were close, thereby implying the existence of a diurnal rhythm in both these parameters and also that they are synchronized. In the small power group, the acrophases were separated. The synchronization of eye movement and FHR variability in the large power group suggests that these phenomena are governed by a common central mechanism related to diurnal rhythm generation.

  2. The topside behavior in the mesospheric sodium layer observed by lidar at Yanqing (40.46°N, 115.98°E) and at Haikou (20.01°N, 110.32°E)

    NASA Astrophysics Data System (ADS)

    Liu, Yingjie; Clemesha, Barclay Robert; Wang, Jihong

    2016-04-01

    Due to meteoric ablation, large amounts of metal atoms deposit in the mesopause region, forming the metal layers that can be observed by ground-based lidars. It is widely acknowledged that the meteoric metal layers are normally confined to altitudes of 75-115 km. In fact, the observable upper limit of the topside layer depends largely on the performance of the instruments, the integration time and the observation conditions. With the support of the Chinese Meridional project in the eastern hemisphere, two brand new sodium fluorescence lidars with the same configuration were respectively set up at Yanqing (40.46°N, 115.98°E) and at Haikou (20.01°N, 110.32°E) in April, 2010. They displayed powerful detection capabilities which allow us to study the topside behavior of the mesospheric sodium layer. Based on the observations made at Yanqing between April 2010 and June 2012 and those at Haikou between April 2010 and December 2012, seasonal variations of sodium densities were studied. Comparison between these two sites (~2300 km apart) reveals a strong correlation in the topside sodium layer. Independently of their seasonal characteristics at lower altitudes, they both show an extension to 120 km and above, predominantly during summer. 90 nights of simultaneous observations at these two sites shows that the variation trends of sodium densities above 102 km are remarkably similar in contrast to their different seasonal characteristics below 98 km. At 105 km the correlation coefficient reaches up to 0.71, and almost all of the major peaks can be found one by one with their relative strengths reproduced to a large degree. It indicates that the topside extension effect is global in the mesospheric sodium layer, combined with the observations at other latitudes. Comparison with known meteor showers shows that most of these extensions correspond well to one or more meteor showers, although not one by one. Meteor showers with velocities less than 35 km/s appear to have more influence on these extensions.

  3. Constraining the Methane Budget Variations after the Pinatubo Eruption using a Combined Forward and Inverse Modeling Approach

    NASA Astrophysics Data System (ADS)

    Banda, N.; Krol, M. C.; van Weele, M.; van Noije, T.; Dlugokencky, E. J.; Röckmann, T.

    2015-12-01

    The eruption of Pinatubo in 1991 caused global scale changes in climate and radiation. Large perturbations in the methane growth rate were observed after the eruption, caused by variations in either methane sources or methane sinks. Natural methane emissions from wetlands are influenced by changes in temperature and precipitation, having a significant contribution to methane variability. The main removal of methane from the atmosphere is the reaction with the hydroxyl radical (OH). OH concentrations are in turn sensitive to temperature, humidity and the amount of UV radiation. In Bândă et al. (2015), we quantified the variability in methane sources and sinks in the 5 years following the eruption, using the 3D chemistry and transport model TM5. We derived an OH inter-annual variability of 1.6% during this period. A 4.5% increase in OH levels from 1992 to 1993, caused by enhanced stratospheric ozone depletion, a recovery of stratospheric aerosols and decreased NMVOC emissions, was found to contribute to the observed drop in methane growth rate. However, using bottom-up inventories of methane emissions, the exact timing and magnitude of the observed methane growth rate variations could not be matched by our simulations. The variability in natural wetland emissions and in biomass burning emissions is quite uncertain in this period. Emission reductions in the Former Soviet Union were also proposed as a reason for the observed decrease in methane growth rate. Based on the OH variability from our previous chemistry forward model simulations, we infer methane emissions after the Pinatubo eruption using a linearized inverse modeling setup. We can therefore quantify the variability in the methane emissions needed to match the methane variations observed in weekly air samples collected in NOAA's Cooperative Global Air Sampling Network and to identify the emission categories that contributed to these variations. Reference: Bândă, N., Krol, M., van Weele, M., van Noije, T., Le Sager, P., and Röckmann, T.: Can we explain the observed methane variability after the Mount Pinatubo eruption?, Atmos. Chem. Phys. Discuss., 15, 19111-19160, doi:10.5194/acpd-15-19111-2015, 2015.

  4. CCN activity and organic hygroscopicity of aerosols downwind of an urban region in central Amazonia: seasonal and diel variations and impact of anthropogenic emissions

    NASA Astrophysics Data System (ADS)

    Thalman, Ryan; de Sá, Suzane S.; Palm, Brett B.; Barbosa, Henrique M. J.; Pöhlker, Mira L.; Lizabeth Alexander, M.; Brito, Joel; Carbone, Samara; Castillo, Paulo; Day, Douglas A.; Kuang, Chongai; Manzi, Antonio; Ng, Nga Lee; Sedlacek, Arthur J., III; Souza, Rodrigo; Springston, Stephen; Watson, Thomas; Pöhlker, Christopher; Pöschl, Ulrich; Andreae, Meinrat O.; Artaxo, Paulo; Jimenez, Jose L.; Martin, Scot T.; Wang, Jian

    2017-10-01

    During the Observations and Modeling of the Green Ocean Amazon (GoAmazon2014/5) campaign, size-resolved cloud condensation nuclei (CCN) spectra were characterized at a research site (T3) 60 km downwind of the city of Manaus, Brazil, in central Amazonia for 1 year (12 March 2014 to 3 March 2015). Particle hygroscopicity (κCCN) and mixing state were derived from the size-resolved CCN spectra, and the hygroscopicity of the organic component of the aerosol (κorg) was then calculated from κCCN and concurrent chemical composition measurements. The annual average κCCN increased from 0.13 at 75 nm to 0.17 at 171 nm, and the increase was largely due to an increase in sulfate volume fraction. During both wet and dry seasons, κCCN, κorg, and particle composition under background conditions exhibited essentially no diel variations. The constant κorg of ˜ 0. 15 is consistent with the largely uniform and high O : C value (˜ 0. 8), indicating that the aerosols under background conditions are dominated by the aged regional aerosol particles consisting of highly oxygenated organic compounds. For air masses strongly influenced by urban pollution and/or local biomass burning, lower values of κorg and organic O : C atomic ratio were observed during night, due to accumulation of freshly emitted particles, dominated by primary organic aerosol (POA) with low hygroscopicity, within a shallow nocturnal boundary layer. The O : C, κorg, and κCCN increased from the early morning hours and peaked around noon, driven by the formation and aging of secondary organic aerosol (SOA) and dilution of POA emissions into a deeper boundary layer, while the development of the boundary layer, which leads to mixing with aged particles from the residual layer aloft, likely also contributed to the increases. The hygroscopicities associated with individual organic factors, derived from PMF (positive matrix factorization) analysis of AMS (aerosol mass spectrometry) spectra, were estimated through multivariable linear regression. For the SOA factors, the variation of the κ value with O : C agrees well with the linear relationship reported from earlier laboratory studies of SOA hygroscopicity. On the other hand, the variation in O : C of ambient aerosol organics is largely driven by the variation in the volume fractions of POA and SOA factors, which have very different O : C values. As POA factors have hygroscopicity values well below the linear relationship between SOA hygroscopicity and O : C, mixtures with different POA and SOA fractions exhibit a steeper slope for the increase in κorg with O : C, as observed during this and earlier field studies. This finding helps better understand and reconcile the differences in the relationships between κorg and O : C observed in laboratory and field studies, therefore providing a basis for improved parameterization in global models, especially in a tropical context.

  5. CCN activity and organic hygroscopicity of aerosols downwind of an urban region in central Amazonia: Seasonal and diel variations and impact of anthropogenic emissions

    DOE PAGES

    Thalman, Ryan; de Sá, Suzane S.; Palm, Brett B.; ...

    2017-10-05

    During the Observations and Modeling of the Green Ocean Amazon (GoAmazon2014/5) campaign, size-resolved cloud condensation nuclei (CCN) spectra were characterized at a research site (T3) 60km downwind of the city of Manaus, Brazil, in central Amazonia for one year (12 March 2014 to 3 March 2015). Particle hygroscopicity (κCCN) and mixing state were derived from the size-resolved CCN spectra, and the hygroscopicity of the organic component of the aerosol (κorg) was then calculated from κCCN and concurrent chemical composition measurements. The annual average κCCN increased from 0.13 at 75 nm to 0.17 at 171 nm, and the increase was largely duemore » to an increase in sulfate volume fraction. Also, during both wet and dry seasons, κCCN, κorg, and particle composition under background conditions exhibited essentially no diel variations. The constant κorg of ~0.15 is consistent with the largely uniform and high O:C value (~0.8), indicating that the aerosols under background conditions are dominated by the aged regional aerosol particles consisting of highly oxygenated organic compounds. For air masses strongly influenced by urban pollution and/or local biomass burning, lower values of κorg and organic O:C atomic ratio were observed during night, due to accumulation of freshly emitted particles, dominated by primary organic aerosol (POA) with low hygroscopicity, within a shallow nocturnal boundary layer. The O:C, κorg, and κCCN increased from the early morning hours and peaked around noon, driven by the formation and aging of secondary organic aerosol (SOA) and dilution of POA emissions into a deeper boundary layer, while the development of the boundary layer, which leads to mixing with aged particles from the residual layer aloft, likely also contributed to the increases. The hygroscopicities associated with individual organic factors, derived from PMF analysis of AMS spectra, were estimated through multi-variable linear regression. For the SOA factors, the variation of the κ value with O:C agrees well with the linear relationship reported from earlier laboratory studies of SOA hygroscopicity. On the other hand, the variation in O:C of ambient aerosol organics is largely driven by the variation in the volume fractions of POA and SOA factors, which have very different O:C values. As POA factors have hygroscopicity values well below the linear relationship between SOA hygroscopicity and O:C, mixtures with different POA and SOA fractions exhibit a steeper slope for the increase of κorg with O:C, as observed during this and earlier field studies. Our finding helps better understand and reconcile the differences in the relationships between κorg and O:C observed in laboratory and field studies, therefore providing a basis for improved parameterization in global models, especially in a tropical context.« less

  6. CCN activity and organic hygroscopicity of aerosols downwind of an urban region in central Amazonia: Seasonal and diel variations and impact of anthropogenic emissions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thalman, Ryan; de Sá, Suzane S.; Palm, Brett B.

    During the Observations and Modeling of the Green Ocean Amazon (GoAmazon2014/5) campaign, size-resolved cloud condensation nuclei (CCN) spectra were characterized at a research site (T3) 60km downwind of the city of Manaus, Brazil, in central Amazonia for one year (12 March 2014 to 3 March 2015). Particle hygroscopicity (κCCN) and mixing state were derived from the size-resolved CCN spectra, and the hygroscopicity of the organic component of the aerosol (κorg) was then calculated from κCCN and concurrent chemical composition measurements. The annual average κCCN increased from 0.13 at 75 nm to 0.17 at 171 nm, and the increase was largely duemore » to an increase in sulfate volume fraction. Also, during both wet and dry seasons, κCCN, κorg, and particle composition under background conditions exhibited essentially no diel variations. The constant κorg of ~0.15 is consistent with the largely uniform and high O:C value (~0.8), indicating that the aerosols under background conditions are dominated by the aged regional aerosol particles consisting of highly oxygenated organic compounds. For air masses strongly influenced by urban pollution and/or local biomass burning, lower values of κorg and organic O:C atomic ratio were observed during night, due to accumulation of freshly emitted particles, dominated by primary organic aerosol (POA) with low hygroscopicity, within a shallow nocturnal boundary layer. The O:C, κorg, and κCCN increased from the early morning hours and peaked around noon, driven by the formation and aging of secondary organic aerosol (SOA) and dilution of POA emissions into a deeper boundary layer, while the development of the boundary layer, which leads to mixing with aged particles from the residual layer aloft, likely also contributed to the increases. The hygroscopicities associated with individual organic factors, derived from PMF analysis of AMS spectra, were estimated through multi-variable linear regression. For the SOA factors, the variation of the κ value with O:C agrees well with the linear relationship reported from earlier laboratory studies of SOA hygroscopicity. On the other hand, the variation in O:C of ambient aerosol organics is largely driven by the variation in the volume fractions of POA and SOA factors, which have very different O:C values. As POA factors have hygroscopicity values well below the linear relationship between SOA hygroscopicity and O:C, mixtures with different POA and SOA fractions exhibit a steeper slope for the increase of κorg with O:C, as observed during this and earlier field studies. Our finding helps better understand and reconcile the differences in the relationships between κorg and O:C observed in laboratory and field studies, therefore providing a basis for improved parameterization in global models, especially in a tropical context.« less

  7. Global Distribution of Density Irregularities in the Equatorial Ionosphere

    NASA Technical Reports Server (NTRS)

    Kil, Hyosub; Heelis, R. A.

    1998-01-01

    We analyzed measurements of ion number density made by the retarding potential analyzer aboard the Atmosphere Explorer-E (AE-E) satellite, which was in an approximately circular orbit at an altitude near 300 km in 1977 and later at an altitude near 400 km. Large-scale (greater than 60 km) density measurements in the high-altitude regions show large depletions of bubble-like structures which are confined to narrow local time longitude, and magnetic latitude ranges, while those in the low-altitude regions show relatively small depletions which are broadly distributed,in space. For this reason we considered the altitude regions below 300 km and above 350 km and investigated the global distribution of irregularities using the rms deviation delta N/N over a path length of 18 km as an indicator of overall irregularity intensity. Seasonal variations of irregularity occurrence probability are significant in the Pacific regions, while the occurrence probability is always high in die Atlantic-African regions and is always low in die Indian regions. We find that the high occurrence probability in the Pacific regions is associated with isolated bubble structures, while that near 0 deg longitude is produced by large depictions with bubble structures which are superimposed on a large-scale wave-like background. Considerations of longitude variations due to seeding mechanisms and due to F region winds and drifts are necessary to adequately explain the observations at low and high altitudes. Seeding effects are most obvious near 0 deg longitude, while the most easily observed effect of the F region is the suppression of irregularity growth by interhemispheric neutral winds.

  8. Metabolic Model-Based Integration of Microbiome Taxonomic and Metabolomic Profiles Elucidates Mechanistic Links between Ecological and Metabolic Variation.

    PubMed

    Noecker, Cecilia; Eng, Alexander; Srinivasan, Sujatha; Theriot, Casey M; Young, Vincent B; Jansson, Janet K; Fredricks, David N; Borenstein, Elhanan

    2016-01-01

    Multiple molecular assays now enable high-throughput profiling of the ecology, metabolic capacity, and activity of the human microbiome. However, to date, analyses of such multi-omic data typically focus on statistical associations, often ignoring extensive prior knowledge of the mechanisms linking these various facets of the microbiome. Here, we introduce a comprehensive framework to systematically link variation in metabolomic data with community composition by utilizing taxonomic, genomic, and metabolic information. Specifically, we integrate available and inferred genomic data, metabolic network modeling, and a method for predicting community-wide metabolite turnover to estimate the biosynthetic and degradation potential of a given community. Our framework then compares variation in predicted metabolic potential with variation in measured metabolites' abundances to evaluate whether community composition can explain observed shifts in the community metabolome, and to identify key taxa and genes contributing to the shifts. Focusing on two independent vaginal microbiome data sets, each pairing 16S community profiling with large-scale metabolomics, we demonstrate that our framework successfully recapitulates observed variation in 37% of metabolites. Well-predicted metabolite variation tends to result from disease-associated metabolism. We further identify several disease-enriched species that contribute significantly to these predictions. Interestingly, our analysis also detects metabolites for which the predicted variation negatively correlates with the measured variation, suggesting environmental control points of community metabolism. Applying this framework to gut microbiome data sets reveals similar trends, including prediction of bile acid metabolite shifts. This framework is an important first step toward a system-level multi-omic integration and an improved mechanistic understanding of the microbiome activity and dynamics in health and disease. Studies characterizing both the taxonomic composition and metabolic profile of various microbial communities are becoming increasingly common, yet new computational methods are needed to integrate and interpret these data in terms of known biological mechanisms. Here, we introduce an analytical framework to link species composition and metabolite measurements, using a simple model to predict the effects of community ecology on metabolite concentrations and evaluating whether these predictions agree with measured metabolomic profiles. We find that a surprisingly large proportion of metabolite variation in the vaginal microbiome can be predicted based on species composition (including dramatic shifts associated with disease), identify putative mechanisms underlying these predictions, and evaluate the roles of individual bacterial species and genes. Analysis of gut microbiome data using this framework recovers similar community metabolic trends. This framework lays the foundation for model-based multi-omic integrative studies, ultimately improving our understanding of microbial community metabolism.

  9. Metabolic Model-Based Integration of Microbiome Taxonomic and Metabolomic Profiles Elucidates Mechanistic Links between Ecological and Metabolic Variation

    PubMed Central

    Noecker, Cecilia; Eng, Alexander; Srinivasan, Sujatha; Theriot, Casey M.; Young, Vincent B.; Jansson, Janet K.; Fredricks, David N.

    2016-01-01

    ABSTRACT Multiple molecular assays now enable high-throughput profiling of the ecology, metabolic capacity, and activity of the human microbiome. However, to date, analyses of such multi-omic data typically focus on statistical associations, often ignoring extensive prior knowledge of the mechanisms linking these various facets of the microbiome. Here, we introduce a comprehensive framework to systematically link variation in metabolomic data with community composition by utilizing taxonomic, genomic, and metabolic information. Specifically, we integrate available and inferred genomic data, metabolic network modeling, and a method for predicting community-wide metabolite turnover to estimate the biosynthetic and degradation potential of a given community. Our framework then compares variation in predicted metabolic potential with variation in measured metabolites’ abundances to evaluate whether community composition can explain observed shifts in the community metabolome, and to identify key taxa and genes contributing to the shifts. Focusing on two independent vaginal microbiome data sets, each pairing 16S community profiling with large-scale metabolomics, we demonstrate that our framework successfully recapitulates observed variation in 37% of metabolites. Well-predicted metabolite variation tends to result from disease-associated metabolism. We further identify several disease-enriched species that contribute significantly to these predictions. Interestingly, our analysis also detects metabolites for which the predicted variation negatively correlates with the measured variation, suggesting environmental control points of community metabolism. Applying this framework to gut microbiome data sets reveals similar trends, including prediction of bile acid metabolite shifts. This framework is an important first step toward a system-level multi-omic integration and an improved mechanistic understanding of the microbiome activity and dynamics in health and disease. IMPORTANCE Studies characterizing both the taxonomic composition and metabolic profile of various microbial communities are becoming increasingly common, yet new computational methods are needed to integrate and interpret these data in terms of known biological mechanisms. Here, we introduce an analytical framework to link species composition and metabolite measurements, using a simple model to predict the effects of community ecology on metabolite concentrations and evaluating whether these predictions agree with measured metabolomic profiles. We find that a surprisingly large proportion of metabolite variation in the vaginal microbiome can be predicted based on species composition (including dramatic shifts associated with disease), identify putative mechanisms underlying these predictions, and evaluate the roles of individual bacterial species and genes. Analysis of gut microbiome data using this framework recovers similar community metabolic trends. This framework lays the foundation for model-based multi-omic integrative studies, ultimately improving our understanding of microbial community metabolism. PMID:27239563

  10. An accessible method for implementing hierarchical models with spatio-temporal abundance data

    USGS Publications Warehouse

    Ross, Beth E.; Hooten, Melvin B.; Koons, David N.

    2012-01-01

    A common goal in ecology and wildlife management is to determine the causes of variation in population dynamics over long periods of time and across large spatial scales. Many assumptions must nevertheless be overcome to make appropriate inference about spatio-temporal variation in population dynamics, such as autocorrelation among data points, excess zeros, and observation error in count data. To address these issues, many scientists and statisticians have recommended the use of Bayesian hierarchical models. Unfortunately, hierarchical statistical models remain somewhat difficult to use because of the necessary quantitative background needed to implement them, or because of the computational demands of using Markov Chain Monte Carlo algorithms to estimate parameters. Fortunately, new tools have recently been developed that make it more feasible for wildlife biologists to fit sophisticated hierarchical Bayesian models (i.e., Integrated Nested Laplace Approximation, ‘INLA’). We present a case study using two important game species in North America, the lesser and greater scaup, to demonstrate how INLA can be used to estimate the parameters in a hierarchical model that decouples observation error from process variation, and accounts for unknown sources of excess zeros as well as spatial and temporal dependence in the data. Ultimately, our goal was to make unbiased inference about spatial variation in population trends over time.

  11. Variation of consumer contact with household products: a preliminary investigation.

    PubMed

    Weegels, M E; van Veen, M P

    2001-06-01

    Little information is available on product use by consumers, which severely hampers exposure estimation for consumer products. This article describes actual contact with several consumer products, specifically dishwashing detergents, cleaning products, and hair styling products. How and where products are handled, as well as the duration, frequency, and amount of use were studied by means of diaries, in-home observations, and measurements. This study addressed the question, "To what extent are frequency, duration, and amount of use associated?" Findings showed that there was a large intra- as well as interindividual variation in frequency, duration, and amount of use, with the interindividual variation being considerably larger. At the same time, results showed that, for a given activity, users tended to follow their own routine. Few relations were found among frequency, duration, and amount of use. It was concluded that among persons, frequency, duration, and amount of product act in practice as independent parameters. Diaries appear to be quite suitable for gaining insight into frequently used products. Observations of usage, recorded on video, were indispensable for obtaining particular information on product use. In addition, home visits enabled the collection of specific measurements. Although diaries and home visits are time-consuming, the combination provided insight into variation as well as relations among frequency, duration, and amount of use.

  12. Atmosphere-Ionosphere Response to the M9 Tohoku Earthquake Revealed by Multi-Instrument Space-Borne and Ground Observations. Preliminary Results

    NASA Technical Reports Server (NTRS)

    Ouzounov, Dimitar; Pulinets, Sergey; Romanov, Alexey; Romanov, Alexander; Tsbulya, Konstantin; Davidenko, Dmitri; Kafatos, Menas; Taylor, Patrick

    2011-01-01

    We retrospectively analyzed the temporal and spatial variations of four different physical parameters characterizing the state of the atmosphere and ionosphere several days before the M9 Tohoku Japan earthquake of March 11, 2011. Data include outgoing long wave radiation (OLR), GPS/TEC, Low-Earth orbit ionospheric tomography and critical frequency foF2. Our first results show that on March 8th a rapid increase of emitted infrared radiation was observed from the satellite data and an anomaly developed near the epicenter. The GPS/TEC data indicate an increase and variation in electron density reaching a maximum value on March 8. Starting on this day in the lower ionospheric there was also confirmed an abnormal TEC variation over the epicenter. From March 3-11 a large increase in electron concentration was recorded at all four Japanese ground based ionosondes, which returned to normal after the main earthquake The joined preliminary analysis of atmospheric and ionospheric parameters during the M9 Tohoku Japan earthquake has revealed the presence of related variations of these parameters implying their connection with the earthquake process. This study may lead to a better understanding of the response of the atmosphere/ionosphere to the Great Tohoku earthquake.

  13. Modulation of ENA in the heliosphere

    NASA Astrophysics Data System (ADS)

    Bzowski, Maciej; Kubiak, Marzena; Czechowski, Andrzej

    Energetic Neutral Atoms (ENA), an important part of heliospheric physics, have recently en-joyed an increased interest because of the breakthrough observations by the NASA SMEX mission IBEX. Generally, ENA appear as a product of charge exchange reaction between an energetic ion and a neutral gas atom. Being insensitive to electromagnetic forces, ENA run away freely from their birth sites and can carry information on the physical state of the parent plasma on (somewhat energy-dependent) distances well in excess of 100 AU. The ENA fluxes exhibit modulation due to time variations of their source function due to modulation of solar wind on time scales from days to solar cycle and due to large-scale variation in the latitude structure of the solar wind, as well as to the variations in the loss rate due to re-ionization. Once created, the ENA flux suffers losses mostly due to photoionization by solar EUV photons, but also to charge exchange and electron impact. We will review the variation of survival prob-ability of the ENA created in the inner heliosheath and observed by spacecraft on Mars, Earth, and Venus orbits (like Mars Express, IBEX, and Venus Express) and solar-cycle modulation of the radially-expanding spectral flux of ENA consisting of the solar wind protons and alpha particles transcharged on the neutral interstellar gas inside the heliosphere.

  14. Gravity monitoring of Tatun Volcanic Group activities and inference for underground fluid circulations

    NASA Astrophysics Data System (ADS)

    Mouyen, Maxime; Chao, Benjamin Fong; Hwang, Cheinway; Hsieh, Wen-Chi

    2016-12-01

    The Tatun Volcano Group (TVG), located on the northern coast of Taiwan adjacent to the city of Taipei, experiences active hydrothermalism but has no historical record of volcanic eruption. Yet recent studies suggest that TVG is dormant-active rather than extinct. To monitor mass transfers and to gain further understanding of this volcanic area, gravity variations have been recorded continuously since 2012 using a superconducting gravimeter, and once every few months since 2005 using absolute gravimeters. We analyze the continuous gravity time series and propose a model that best explains the gravity variations due to local groundwater redistribution. By correcting these variations, we identify gravity changes as large as 35 μGal that occurred concomitantly to fluid pressure-induced earthquakes and changes in the gas composition at Dayoukeng, one of TVG's fumaroles, over 2005-2007. We examine several fluid movements that can match the gravity observations, yet too few additional constraints exist to favor any of them. In particular, no significant ground displacements are observed when these gravity variations occurred. On the other hand, the model of gravity changes due to local groundwater redistribution can be routinely computed and removed from the ongoing time gravity measurements in order to quickly identify any unusual mass transfer occurring beneath TVG.

  15. Gravity monitoring of Tatun Volcanic Group activities and inference for underground fluid circulations

    NASA Astrophysics Data System (ADS)

    Mouyen, Maxime; Chao, Benjamin; Hwang, Cheinway; Hsieh, Wen-Chi

    2017-04-01

    The Tatun Volcano Group (TVG), located on the northern coast of Taiwan adjacent to the city of Taipei, experiences active hydrothermalism but has no historical record of volcanic eruption. Yet recent studies suggest that TVG is dormant-active rather than extinct. To monitor mass transfers and to gain further understanding of this volcanic area, gravity variations have been recorded continuously since 2012 using a superconducting gravimeter, and once every few months since 2005 using absolute gravimeters. We analyze the continuous gravity time series and propose a model that best explain the gravity variations due to local groundwater redistribution. By correcting these variations, we identify gravity changes as large as 35 µGal that occurred concomitantly to fluid pressure-induced earthquakes and changes in the gas composition at Dayoukeng, one of TVG's fumaroles, over 2005-2007. We examine several fluid movements that can match the gravity observations, yet too few additional constraints exist to favor any of them. In particular, no significant ground displacements are observed when these gravity variations occurred. On the other hand, the model of gravity changes due to local groundwater redistribution can be routinely computed and removed from the ongoing time gravity measurements in order to quickly identify any unusual mass transfer occurring beneath TVG.

  16. Genetic and environmental influences on cold hardiness of native and introduced riparian trees

    USGS Publications Warehouse

    Friedman, Jonathan M.; Roelle, James E.; Cade, Brian S.

    2012-01-01

    To explore latitudinal genetic variation in cold hardiness and leaf phenology, we planted a common garden of paired collections of native and introduced riparian trees sampled along a latitudinal gradient. The garden in Fort Collins, Colorado (latitude 40.6°N), included 681 native plains cottonwood (Populus deltoides subsp. monilifera) and introduced saltcedar (Tamarix ramosissima, T. chinensis, and hybrids) collected from 15 sites from 29.2 to 47.6°N in the central United States. In the common garden, both species showed latitudinal variation in fall, but not spring, leaf phenology. This suggests that latitudinal gradient field observations in fall phenology are a result, at least in part, of the inherited variation in the critical photoperiod. Conversely, the latitudinal gradient field observations in spring phenology are largely a plastic response to the temperature gradient. Populations from higher latitudes exhibited earlier bud set and leaf senescence. Cold hardiness varied latitudinally in both fall and spring for both species. Although cottonwood was hardier than saltcedar in midwinter, the reverse was true in late fall and early spring. The latitudinal variation in fall phenology and cold hardiness of saltcedar appears to have developed as a result of multiple introductions of genetically distinct populations, hybridization, and natural selection in the 150 years since introduction.

  17. Light-driven growth in Amazon evergreen forests explained by seasonal variations of vertical canopy structure.

    PubMed

    Tang, Hao; Dubayah, Ralph

    2017-03-07

    Light-regime variability is an important limiting factor constraining tree growth in tropical forests. However, there is considerable debate about whether radiation-induced green-up during the dry season is real, or an apparent artifact of the remote-sensing techniques used to infer seasonal changes in canopy leaf area. Direct and widespread observations of vertical canopy structures that drive radiation regimes have been largely absent. Here we analyze seasonal dynamic patterns between the canopy and understory layers in Amazon evergreen forests using observations of vertical canopy structure from a spaceborne lidar. We discovered that net leaf flushing of the canopy layer mainly occurs in early dry season, and is followed by net abscission in late dry season that coincides with increasing leaf area of the understory layer. Our observations of understory development from lidar either weakly respond to or are not correlated to seasonal variations in precipitation or insolation, but are strongly related to the seasonal structural dynamics of the canopy layer. We hypothesize that understory growth is driven by increased light gaps caused by seasonal variations of the canopy. This light-regime variability that exists in both spatial and temporal domains can better reveal the drought-induced green-up phenomenon, which appears less obvious when treating the Amazon forests as a whole.

  18. First NICER Observations of the Enigmatic Be Star, Gamma Cassiopeiae

    NASA Astrophysics Data System (ADS)

    Hamaguchi, Kenji; Drake, Stephen; Corcoran, Michael; Gendreau, Keith C.; Steiner, Jack; NICER team

    2018-01-01

    Gamma Cassiopeiae is an enigmatic Be star with unusually hard, strong X-ray emission compared with normal main-sequence B stars (but a much lower X-ray luminosity than the classic X-ray binaries). The X-ray characteristics - hot (kT ~12 keV), thermal plasma spectrum and rapid time variations on timescales of 10-1000 sec - is reminiscent of accreting compact objects. Alternatively, its shot-like rapid variations somewhat resemble solar-type magnetic reconnection flares, so that plasma heating by the star-disk magnetic dynamo of the Be star has been proposed. A recent discovery of rapid X-ray color variations with the Suzaku X-ray observatory revealed the presence of rapidly moving absorbers in the X-ray line of sight, giving a strong constraint on the geometry of the X-ray emitting regions and absorbers.The X-ray observatory onboard ISS, NICER, has observed Gamma Cas multiple times. The large collecting area in the 0.3-10 keV band, tolerance to photon pile-ups, and decent energy resolution in particular below 1 keV, should provide excellent pieces of information on how the X-ray emission and/or absorbing column change on short timescales. We will present the first result of the gamma Cas observations made by the NICER observatory.

  19. Seasonal Ozone Variations in the Isentropic Layer between 330 and 380 K as Observed by SAGE 2: Implications of Extratropical Cross-Tropopause Transport

    NASA Technical Reports Server (NTRS)

    Wang, Pi-Huan; Cunnold, Derek M.; Zawodny, Joseph M.; Pierce, R. Bradley; Olson, Jennifer R.; Kent, Geoffrey S.; Skeens, Kristi, M.

    1998-01-01

    To provide observational evidence on the extratropical cross-tropopause transport between the stratosphere and the troposphere via quasi-isentropic processes in the middleworld (the part of the atmosphere in which the isentropic surfaces intersect the tropopause), this report presents an analysis of the seasonal variations of the ozone latitudinal distribution in the isentropic layer between 330 K and 380 K based on the measurements from the Stratospheric Aerosol and Gas Experiment (SAGE) II. The results from SAGE II data analysis are consistent with (1) the buildup of ozone-rich air in the extratropical middleworld through the large-scale descending mass circulation during winter, (2) the spread of ozone-rich air in the isentropic layer from midlatitudes to subtropics via quasi-isentropic transport during spring, (3) significant photochemical ozone removal and the absence of an ozone-rich supply of air to the layer during summer, and (4) air mass exchange between the subtropics and the extratropics during the summer monsoon period. Thus the SAGE II observed ozone seasonal variations in the middleworld are consistent with the existing model calculated annual cycle of the diabatic circulation as well as the conceptual role of the eddy quasi-adiabatic transport in the stratosphere-troposphere exchange reported in the literature.

  20. Venus mesospheric sulfur dioxide measurement retrieved from SOIR on board Venus Express

    NASA Astrophysics Data System (ADS)

    Mahieux, A.; Vandaele, A. C.; Robert, S.; Wilquet, V.; Drummond, R.; Chamberlain, S.; Belyaev, D.; Bertaux, J. L.

    2015-08-01

    SOIR on board Venus Express sounds the Venus upper atmosphere using the solar occultation technique. It detects the signature from many Venus atmosphere species, including those of SO2 and CO2. SO2 has a weak absorption structure at 4 μm, from which number density profiles are regularly inferred. SO2 volume mixing ratios (VMR) are calculated from the total number density that are also derived from the SOIR measurements. This work is an update of the previous work by Belyaev et al. (2012), considering the SO2 profiles on a broader altitude range, from 65 to 85 km. Positive detection VMR profiles are presented. In 68% of the occultation spectral datasets, SO2 is detected. The SO2 VMR profiles show a large variability up to two orders of magnitude, on a short term time scales. We present mean VMR profiles for various bins of latitudes, and study the latitudinal variations; the mean latitude variations are much smaller than the short term temporal variations. A permanent minimum showing a weak latitudinal structure is observed. Long term temporal trends are also considered and discussed. The trend observed by Marcq et al. (2013) is not observed in this dataset. Our results are compared to literature data and generally show a good agreement.

  1. L-Band Brightness Temperature Variations at Dome C and Snow Metamorphism at the Surface

    NASA Technical Reports Server (NTRS)

    Brucker, Ludovic; Dinnat, Emmanuel; Picard, Ghislain; Champollion, Nicolas

    2014-01-01

    The Antarctic Plateau is a promising site to monitor microwave radiometers' drift, and to inter-calibrate microwave radiometers, especially 1.4 GigaHertz (L-band) radiometers on board the Soil Moisture and Ocean Salinity (SMOS), and AquariusSAC-D missions. The Plateau is a thick ice cover, thermally stable in depth, with large dimensions, and relatively low heterogeneities. In addition, its high latitude location in the Southern Hemisphere enables frequent observations by polar-orbiting satellites, and no contaminations by radio frequency interference. At Dome C (75S, 123E), on the Antarctic Plateau, the substantial amount of in-situ snow measurements available allows us to interpret variations in space-borne microwave brightness temperature (TB) (e.g. Macelloni et al., 2007, 2013, Brucker et al., 2011, Champollion et al., 2013). However, to analyze the observations from the Aquarius radiometers, whose sensitivity is 0.15 K, the stability of the snow layers near the surface that are most susceptible to rapidly change needs to be precisely assessed. This study focuses on the spatial and temporal variations of the Aquarius TB over the Antarctic Plateau, and at Dome C in particular, to highlight the impact of snow surface metamorphism on the TB observations at L-band.

  2. Aquarius Brightness Temperature Variations at Dome C and Snow Metamorphism at the Surface. [29

    NASA Technical Reports Server (NTRS)

    Brucker, Ludovic; Dinnat, Emmanuel Phillippe; Picard, Ghislain; Champollion, Nicolas

    2014-01-01

    The Antarctic Plateau is a promising site to monitor microwave radiometers' drift, and to inter-calibrate microwave radiometers, especially 1.4 GHz (L-band) radiometers on board the Soil Moisture and Ocean Salinity (SMOS), and AquariusSAC-D missions. The Plateau is a thick ice cover, thermally stable in depth, with large dimensions, and relatively low heterogeneities. In addition, its high latitude location in the Southern Hemisphere enables frequent observations by polar-orbiting satellites, and no contaminations by radio frequency interference. At Dome C (75S, 123E), on the Antarctic Plateau, the substantial amount of in-situ snow measurements available allows us to interpret variations in space-borne microwave brightness temperature (TB) (e.g. Macelloni et al., 2007, 2013, Brucker et al., 2011, Champollion et al., 2013). However, to analyze the observations from the Aquarius radiometers, whose sensitivity is 0.15 K, the stability of the snow layers near the surface that are most susceptible to rapidly change needs to be precisely assessed. This study focuses on the spatial and temporal variations of the Aquarius TB over the Antarctic Plateau, and at Dome C in particular, to highlight the impact of snow surface metamorphism on the TB observations at L-band.

  3. Radiological findings for hip dysplasia at skeletal maturity. Validation of digital and manual measurement techniques.

    PubMed

    Engesæter, Ingvild Øvstebø; Laborie, Lene Bjerke; Lehmann, Trude Gundersen; Sera, Francesco; Fevang, Jonas; Pedersen, Douglas; Morcuende, José; Lie, Stein Atle; Engesæter, Lars Birger; Rosendahl, Karen

    2012-07-01

    To report on intra-observer, inter-observer, and inter-method reliability and agreement for radiological measurements used in the diagnosis of hip dysplasia at skeletal maturity, as obtained by a manual and a digital measurement technique. Pelvic radiographs from 95 participants (56 females) in a follow-up hip study of 18- to 19-year-old patients were included. Eleven radiological measurements relevant for hip dysplasia (Sharp's, Wiberg's, and Ogata's angles; acetabular roof angle of Tönnis; articulo-trochanteric distance; acetabular depth-width ratio; femoral head extrusion index; maximum teardrop width; and the joint space width in three different locations) were validated. Three observers measured the radiographs using both a digital measurement program and manually in AgfaWeb1000. Inter-method and inter- and intra-observer agreement were analyzed using the mean differences between the readings/readers, establishing the 95% limits of agreement. We also calculated the minimum detectable change and the intra-class correlation coefficient. Large variations among different radiological measurements were demonstrated. However, the variation was not related to the use of either the manual or digital measurement technique. For measurements with greater absolute values (Sharp's angle, femoral head extrusion index, and acetabular depth-width ratio) the inter- and intra-observer and inter-method agreements were better as compared to measurements with lower absolute values (acetabular roof angle, teardrop and joint space width). The inter- and intra-observer variation differs notably across different radiological measurements relevant for hip dysplasia at skeletal maturity, a fact that should be taken into account in clinical practice. The agreement between the manual and digital methods is good.

  4. B and Mg isotopic variations in Leoville mrs-06 type B1 cai:origin of 10Be and 26Al

    NASA Astrophysics Data System (ADS)

    Chaussidon, M.; Robert, F.; Russel, S. S.; Gounelle, M.; Ash, R. D.

    2003-04-01

    The finding [1-3] in Ca-Al-rich refractory inclusions (CAI) of primitive chondrites of traces of the in situ decay of radioactive 10Be (half-life 1.5Myr) indicates that irradiation of the protosolar nebula by the young Sun in its T-Tauri phase has produced significant amounts of the Li-Be-B elements. This irradiation may have produced also some or all of the short-lived 26Al (half-life 0.7Myr) and 41Ca (half-life 0.1Myr) previously detected in CAIs. To constrain the origin of 10Be and 10Al it is important to look for coupled variations in the 10Be/9Be and 26Al/27Al ratios in CAIs and to understand the processes responsible for these variations (e.g. variations in the fluences of irradiation, secondary perturbations of the CAIs, ...) We have thus studied the Li and B isotopic compositions and the Be/Li and Be/B concentration ratios in one CAI (MRS-06) from the Leoville CV3 chondrite in which large variations of the Mg isotopic compositions showing both the in situ decay of 26Al and the secondary redistribution of Mg isotopes have been observed [4]. The results show large variations for the Li and B isotopic compositions (^7Li/^6Li ranging from 11.02±0.21 to 11.82±0.07, and 10B/11B ratios ranging from 0.2457±0.0053 to 0.2980±0.0085). The ^7Li/^6Li ratio tend to decrease towards the rim of the inclusion. The 10B/11B ratios are positively correlated with the ^9Be/11B ratios indicating the in situ decay of 10Be. However perturbations of the 10Be/B system are observed. They would correspond to an event which occurred approximately 2Myr after the formation of the CAI and the irradiation of the CAI precursors which is responsible for the 10Be observed in the core of the CAI. These perturbations seem compatible with those observed for the 26Al/Mg system but they might be due to an irradiation of the already-formed, isolated CAI which would have resulted in increased 10Be/^9Be ratios and low ^7Li/^6Li ratios in the margin of the CAI. [1] McKeegan K. D. et al. (2000) Science, 90, 1334-1337. [2] Sugiura N. et al. et al. (2001) Meteoritics &Planet. Sci., 36, 1397-1408. [3] McPherson G. J. and Huss G. R. (2001) LPS XXXII, Abstract #1882. [4] Ash R. D. et al. (2002) LPS XXXIII, Abstract #2063.

  5. Chameleon dark energy models with characteristic signatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gannouji, Radouane; Department of Physics, Faculty of Science, Tokyo University of Science, 1-3, Kagurazaka, Shinjuku-ku, Tokyo 162-8601; Moraes, Bruno

    2010-12-15

    In chameleon dark energy models, local gravity constraints tend to rule out parameters in which observable cosmological signatures can be found. We study viable chameleon potentials consistent with a number of recent observational and experimental bounds. A novel chameleon field potential, motivated by f(R) gravity, is constructed where observable cosmological signatures are present both at the background evolution and in the growth rate of the perturbations. We study the evolution of matter density perturbations on low redshifts for this potential and show that the growth index today {gamma}{sub 0} can have significant dispersion on scales relevant for large scale structures.more » The values of {gamma}{sub 0} can be even smaller than 0.2 with large variations of {gamma} on very low redshifts for the model parameters constrained by local gravity tests. This gives a possibility to clearly distinguish these chameleon models from the {Lambda}-cold-dark-matter ({Lambda}CDM) model in future high-precision observations.« less

  6. Decoupling Contributions from Canopy Structure and Leaf Optics is Critical for Remote Sensing Leaf Biochemistry (Reply to Townsend, et al.)

    NASA Technical Reports Server (NTRS)

    Knyazikhin, Yuri; Lewis, Philip; Disney, Mathias I.; Stenberg, Pauline; Mottus, Matti; Rautianinen, Miina; Kaufmann, Robert K.; Marshak, Alexander; Schull, Mitchell A.; Carmona, Pedro Latorre; hide

    2013-01-01

    Townsend et al. (1) agree that we explained that the apparent relationship (2) between foliar nitrogen (%N) and near-infrared (NIR) canopy reflectance was largely attributable to structure (which is in turn caused by variation in fraction of broadleaf canopy). Our conclusion that the observed correlation with %N was spurious (i.e., lacking a causal basis) is, thus, clearly justified: we demonstrated that structure explained the great majority of observed correlation, where the structural influence was derived precisely via reconciling the observed correlation with radiative-transfer theory. What this also suggests is that such correlations, although observed, do not uniquely provide information on canopy biochemical constituents.

  7. Observations of the Earth's magnetic field from the Space Station: Measurement at high and extremely low altitude using Space Station-controlled free-flyers

    NASA Technical Reports Server (NTRS)

    Webster, W., Jr.; Frawley, J. J.; Stefanik, M.

    1984-01-01

    Simulation studies established that the main (core), crustal and electrojet components of the Earth's magnetic field can be observed with greater resolution or over a longer time-base than is presently possible by using the capabilities provided by the space station. Two systems are studied. The first, a large lifetime, magnetic monitor would observe the main field and its time variation. The second, a remotely-piloted, magnetic probe would observe the crustal field at low altitude and the electrojet field in situ. The system design and the scientific performance of these systems is assessed. The advantages of the space station are reviewed.

  8. Quantitative analysis of interaction between the free troposphere and planetary boundary layer using multiple measurements and large eddy simulation model

    NASA Astrophysics Data System (ADS)

    Huang, Guanyu

    We investigate the interaction between the free troposphere (FT) and planetary boundary layer (PBL) using multiple measurements and Dutch Atmospheric Large Eddy Simulation (DALES) coupled with a chemical module. A residual layer (RL) storing high ozone concentrations can significantly influence ground ozone concentration through the entrainment process whereby the RL aloft is incorporated into the growing convective boundary layer (CBL) during the morning transition. We use DALES model coupled with a chemical module to simultaneously study the dynamical and chemical impacts of a RL (200-1200 m above ground level (AGL)) on ground-level (0-200 m AGL) ozone concentrations. Four numerical experiments test these interactions: 1) a RL with high ozone (100 ppb); 2) a RL with low ozone (50 ppb); 3) no RL with high ozone above the NBL (100 ppb from 200-1200 m AGL); and 4) no RL with low ozone above the NBL (50 ppb). The results indicate that ozone stored in the RL can contribute up to 86% of the ozone concentration in the CBL during the following day in Case 1. Even in Case 2, 64% of the ozone in the developed CBL results from intrusions from the RL. Additionally, a RL also increases the enhancement rate of ozone in the CBL. Furthermore, we investigate the ozone diurnal variation on September 6, 2013 in Huntsville AL. The ozone variation in the CBL is mainly caused by local emissions due to the weather conditions being controlled by an anticyclonic system. The local chemical production contributes over 67% of the ozone enhancement in the CBL. The dynamical processes contribute the rest. The numerical experiments show good agreement with our ozone lidar observations. However, our simulation results and ozone lidar observations fail to reproduce a declining trend of surface ozone measured by an Environment Protection Agency (EPA) surface monitoring station that is 6 km south of our facilities, which is very likely due to the large ozone horizontal variation and the diurnal variation of ozone dry deposition under urban environment.

  9. Scale Height variations with solar cycle in the ionosphere of Mars

    NASA Astrophysics Data System (ADS)

    Sanchez-Cano, Beatriz; Lester, Mark; Witasse, Olivier; Milan, Stephen E.; Hall, Benjamin E. S.; Cartacci, Marco; Radicella, Sandro M.; Blelly, Pierre-Louis

    2015-04-01

    The Mars Advanced Radar for Subsurface and Ionospheric Sounding (MARSIS) on board the Mars Express spacecraft has been probing the topside of the ionosphere of Mars since June 2005, covering currently almost one solar cycle. A good knowledge of the behaviour of the ionospheric variability for a whole solar period is essential since the ionosphere is strongly dependent on solar activity. Using part of this dataset, covering the years 2005 - 2012, differences in the shape of the topside electron density profiles have been observed. These variations seem to be linked to changes in the ionospheric temperature due to the solar cycle variation. In particular, Mars' ionospheric response to the extreme solar minimum between end-2007 and end-2009 followed a similar pattern to the response observed in the Earth's ionosphere, despite the large differences related to internal origin of the magnetic field between both planets. Plasma parameters such as the scale height as a function of altitude, the main peak characteristics (altitude, density), the total electron content (TEC), the temperatures, and the ionospheric thermal pressures show variations related to the solar cycle. The main changes in the topside ionosphere are detected during the period of very low solar minimum, when ionospheric cooling occurs. The effect on the scale height is analysed in detail. In contrast, a clear increase of the scale height is observed during the high solar activity period due to enhanced ionospheric heating. The scale height variation during the solar cycle has been empirically modelled. The results have been compared with other datasets such as radio-occultation and retarding potential analyser data from old missions, especially in low solar activity periods (e.g. Mariner 4, Viking 1 and 2 landers), as well as with numerical modelling.

  10. Evidence of Temporal Variation of Titan Atmospheric Density in 2005-2013

    NASA Technical Reports Server (NTRS)

    Lee, Allan Y.; Lim, Ryan S.

    2013-01-01

    One major science objective of the Cassini mission is an investigation of Titan's atmosphere constituent abundances. Titan's atmospheric density is of interest not only to planetary scientists but also to mission design and mission control engineers. Knowledge of the dependency of Titan's atmospheric density with altitude is important because any unexpectedly high atmospheric density has the potential to tumble the spacecraft during a flyby. During low-altitude Titan flyby, thrusters are fired to counter the torque imparted on the spacecraft due to the Titan atmosphere. The denser the Titan's atmosphere is, the higher are the duty cycles of the thruster firings. Therefore thruster firing telemetry data could be used to estimate the atmospheric torque imparted on the spacecraft. Since the atmospheric torque imparted on the spacecraft is related to the Titan's atmospheric density, atmospheric densities are estimated accordingly. In 2005-2013, forty-three low-altitude Titan flybys were executed. The closest approach altitudes of these Titan flybys ranged from 878 to 1,074.8 km. Our density results are also compared with those reported by other investigation teams: Voyager-1 (in November 1980) and the Huygens Atmospheric Structure Instrument, HASI (in January 2005). From our results, we observe a temporal variation of the Titan atmospheric density in 2005-2013. The observed temporal variation is significant and it isn't due to the estimation uncertainty (5.8%, 1 sigma) of the density estimation methodology. Factors that contributed to this temporal variation have been conjectured but are largely unknown. The observed temporal variation will require synergetic analysis with measurements made by other Cassini science instruments and future years of laboratory and modeling efforts to solve. The estimated atmospheric density results are given in this paper help scientists to better understand and model the density structure of the Titan atmosphere.

  11. Towards a universal trait-based model of terrestrial primary production

    NASA Astrophysics Data System (ADS)

    Wang, H.; Prentice, I. C.; Cornwell, W.; Keenan, T. F.; Davis, T.; Wright, I. J.; Evans, B. J.; Peng, C.

    2015-12-01

    Systematic variations of plant traits along environmental gradients have been observed for decades. For example, the tendencies of leaf nitrogen per unit area to increase, and of the leaf-internal to ambient CO2 concentration ratio (ci:ca) to decrease, with aridity are well established. But ecosystem models typically represent trait variation based purely on empirical relationships, or on untested conjectures, or not at all. Neglect of quantitative trait variation and its adapative significance probably contributes to the persistent large uncertainties among models in predicting the response of the carbon cycle to environmental change. However, advances in ecological theory and the accumulation of extensive data sets during recent decades suggest that theoretically based and testable predictions of trait variation could be achieved. Based on well-established ecophysiological principles and consideration of the adaptive significance of traits, we propose universal relationships between photosynthetic traits (ci:ca, carbon fixation capacity, and the ratio of electron transport capacity to carbon fixation capacity) and primary environmental variables, which capture observed trait variations both within and between plant functional types. Moreover, incorporating these traits into the standard model of C3photosynthesis allows gross primary production (GPP) of natural vegetation to be predicted by a single equation with just two free parameters, which can be estimated from independent observations. The resulting model performs as well as much more complex models. Our results provide a fresh perspective with potentially high reward: the possibility of a deeper understanding of the relationships between plant traits and environment, simpler and more robust and reliable representation of land processes in Earth system models, and thus improved predictability for biosphere-atmosphere interactions and climate feedbacks.

  12. Combinatorial study of Ni-Ti-Pt ternary metal gate electrodes on HfO{sub 2} for the advanced gate stack

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, K.-S.; Green, M. L.; Suehle, J.

    2006-10-02

    The authors have fabricated combinatorial Ni-Ti-Pt ternary metal gate thin film libraries on HfO{sub 2} using magnetron co-sputtering to investigate flatband voltage shift ({delta}V{sub fb}), work function ({phi}{sub m}), and leakage current density (J{sub L}) variations. A more negative {delta}V{sub fb} is observed close to the Ti-rich corner than at the Ni- and Pt-rich corners, implying smaller {phi}{sub m} near the Ti-rich corners and higher {phi}{sub m} near the Ni- and Pt-rich corners. In addition, measured J{sub L} values can be explained consistently with the observed {phi}{sub m} variations. Combinatorial methodologies prove to be useful in surveying the large compositionalmore » space of ternary alloy metal gate electrode systems.« less

  13. Strainmeters and tiltmeters in geophysics

    NASA Technical Reports Server (NTRS)

    Goulty, N. R.

    1976-01-01

    Several types of sensitive strainmeters and tiltmeters have been developed, and it is now becoming clear which geophysical applications are most suitable for these instruments. In general, strainmeters and tiltmeters are used for observing ground deformation at periods of minutes to days. Small-scale lateral inhomogeneities at the instrument sites distort signals by a few percent, although the effects of large structures can be calculated. In earth tide work these lateral inhomogeneities and unknown ocean loading signals prevent accurate values of the regional tide from being obtained. This limits tidal investigations to looking for temporal variations, possibly associated with pre-earthquake dilatancy, and spatial variations caused by gross elasticity contrasts in the local geological structure. Strainmeters and tiltmeters are well suited for observing long-period seismic waves, seismic slip events on faults and volcano tumescence, where small site-induced distortions in the measured signals are seldom important.

  14. Monthly mean forecast experiments with the GISS model

    NASA Technical Reports Server (NTRS)

    Spar, J.; Atlas, R. M.; Kuo, E.

    1976-01-01

    The GISS general circulation model was used to compute global monthly mean forecasts for January 1973, 1974, and 1975 from initial conditions on the first day of each month and constant sea surface temperatures. Forecasts were evaluated in terms of global and hemispheric energetics, zonally averaged meridional and vertical profiles, forecast error statistics, and monthly mean synoptic fields. Although it generated a realistic mean meridional structure, the model did not adequately reproduce the observed interannual variations in the large scale monthly mean energetics and zonally averaged circulation. The monthly mean sea level pressure field was not predicted satisfactorily, but annual changes in the Icelandic low were simulated. The impact of temporal sea surface temperature variations on the forecasts was investigated by comparing two parallel forecasts for January 1974, one using climatological ocean temperatures and the other observed daily ocean temperatures. The use of daily updated sea surface temperatures produced no discernible beneficial effect.

  15. Contrasting spatial structures of Atlantic Multidecadal Oscillation between observations and slab ocean model simulations

    NASA Astrophysics Data System (ADS)

    Sun, Cheng; Li, Jianping; Kucharski, Fred; Xue, Jiaqing; Li, Xiang

    2018-04-01

    The spatial structure of Atlantic multidecadal oscillation (AMO) is analyzed and compared between the observations and simulations from slab ocean models (SOMs) and fully coupled models. The observed sea surface temperature (SST) pattern of AMO is characterized by a basin-wide monopole structure, and there is a significantly high degree of spatial coherence of decadal SST variations across the entire North Atlantic basin. The observed SST anomalies share a common decadal-scale signal, corresponding to the basin-wide average (i. e., the AMO). In contrast, the simulated AMO in SOMs (AMOs) exhibits a tripole-like structure, with the mid-latitude North Atlantic SST showing an inverse relationship with other parts of the basin, and the SOMs fail to reproduce the observed strong spatial coherence of decadal SST variations associated with the AMO. The observed spatial coherence of AMO SST anomalies is identified as a key feature that can be used to distinguish the AMO mechanism. The tripole-like SST pattern of AMOs in SOMs can be largely explained by the atmosphere-forced thermodynamics mechanism due to the surface heat flux changes associated with the North Atlantic Oscillation (NAO). The thermodynamic forcing of AMOs by the NAO gives rise to a simultaneous inverse NAO-AMOs relationship at both interannual and decadal timescales and a seasonal phase locking of the AMOs variability to the cold season. However, the NAO-forced thermodynamics mechanism cannot explain the observed NAO-AMO relationship and the seasonal phase locking of observed AMO variability to the warm season. At decadal timescales, a strong lagged relationship between NAO and AMO is observed, with the NAO leading by up to two decades, while the simultaneous correlation of NAO with AMO is weak. This lagged relationship and the spatial coherence of AMO can be well understood from the view point of ocean dynamics. A time-integrated NAO index, which reflects the variations in Atlantic meridional overturning circulation (AMOC) and northward ocean heat transport caused by the accumulated effect of NAO forcing, reasonably well captures the observed multidecadal fluctuations in the AMO. Further analysis using the fully coupled model simulations provides direct modeling evidence that the observed spatial coherence of decadal SST variations across North Atlantic basin can be reproduced only by including the AMOC-related ocean dynamics, and the AMOC acts as a common forcing signal that results in a spatially coherent variation of North Atlantic SST.

  16. The variability of SE2 tide extracted from TIMED/SABER observations

    NASA Astrophysics Data System (ADS)

    Li, Xing; Wan, Weixing; Ren, Zhipeng; Yu, You

    2017-04-01

    Based on the temperature observations of the SABER/TIMED, the variability of the non-migrating tide SE2 with high resolution (one-day) is analyzed, using the method from Li et al., [2015]. From the temperature observation data measured in the mesosphere and lower atmosphere region (MLT, 70-110 km altitudes) and at the low- and mid -latitudes (45S - 45N) from2002 to 2012), we obtained the non-migrating tide SE2 and further studied it in detail. It is found that the climatological features (large time scale variability and spatial distribution) of the SE2 tidal component are similar with the results from the previous researches, which are picked up from the interpolated data with 60-day resolution. The climatological features are that the SE2 tidal component manifests mainly at the low-mid latitudes around 30. The northern hemisphere tidal amplitudes below 110 km are larger than the southern hemisphere tide, at the same time, its peaks below 110 km mainly present between 100 and 110 km altitude; the tidal amplitudes below 110 km occur a north-south asymmetry about the equator in the annual variation: in the southern hemisphere, SE2 occurs with an obvious annual variation with a maximum of tidal amplitudes in December; while, in the northern one, the semi-annual variations with maximum at the equinoxes are stronger than that in the southern one. Herein, owing to the high-resolution tidal data (one day), we could research the short term (day-to-day) variations of the SE2 tide. We found that: (1) the day-to-day variations manifests mainly at the altitudes range between 100 and 110 km; (2) it increases gradually with latitudes and it is stronger at the low-mid latitudes; (3) it is relatively slightly stronger around solstices than equinoxes; (4) it does not present a remarkably inter-annual variation. Finally, the SE2 day-to-day variations may be composed by the absolute amplitudes' variance and the impact of the wave phases. In addition, the variations of variance are more important.

  17. Temporal variation of tectonic tremor activity in southern Taiwan around the 2010 ML6.4 Jiashian earthquake

    NASA Astrophysics Data System (ADS)

    Chao, Kevin; Peng, Zhigang; Hsu, Ya-Ju; Obara, Kazushige; Wu, Chunquan; Ching, Kuo-En; van der Lee, Suzan; Pu, Hsin-Chieh; Leu, Peih-Lin; Wech, Aaron

    2017-07-01

    Deep tectonic tremor, which is extremely sensitive to small stress variations, could be used to monitor fault zone processes during large earthquake cycles and aseismic processes before large earthquakes. In this study, we develop an algorithm for the automatic detection and location of tectonic tremor beneath the southern Central Range of Taiwan and examine the spatiotemporal relationship between tremor and the 4 March 2010 ML6.4 Jiashian earthquake, located about 20 km from active tremor sources. We find that tremor in this region has a relatively short duration, short recurrence time, and no consistent correlation with surface GPS data. We find a short-term increase in the tremor rate 19 days before the Jiashian main shock, and around the time when the tremor rate began to rise one GPS station recorded a flip in its direction of motion. We hypothesize that tremor is driven by a slow-slip event that preceded the occurrence of the shallower Jiashian main shock, even though the inferred slip is too small to be observed by all GPS stations. Our study shows that tectonic tremor may reflect stress variation during the prenucleation process of a nearby earthquake.

  18. Population Structure and Domestication Revealed by High-Depth Resequencing of Korean Cultivated and Wild Soybean Genomes†

    PubMed Central

    Chung, Won-Hyong; Jeong, Namhee; Kim, Jiwoong; Lee, Woo Kyu; Lee, Yun-Gyeong; Lee, Sang-Heon; Yoon, Woongchang; Kim, Jin-Hyun; Choi, Ik-Young; Choi, Hong-Kyu; Moon, Jung-Kyung; Kim, Namshin; Jeong, Soon-Chun

    2014-01-01

    Despite the importance of soybean as a major crop, genome-wide variation and evolution of cultivated soybeans are largely unknown. Here, we catalogued genome variation in an annual soybean population by high-depth resequencing of 10 cultivated and 6 wild accessions and obtained 3.87 million high-quality single-nucleotide polymorphisms (SNPs) after excluding the sites with missing data in any accession. Nuclear genome phylogeny supported a single origin for the cultivated soybeans. We identified 10-fold longer linkage disequilibrium (LD) in the wild soybean relative to wild maize and rice. Despite the small population size, the long LD and large SNP data allowed us to identify 206 candidate domestication regions with significantly lower diversity in the cultivated, but not in the wild, soybeans. Some of the genes in these candidate regions were associated with soybean homologues of canonical domestication genes. However, several examples, which are likely specific to soybean or eudicot crop plants, were also observed. Consequently, the variation data identified in this study should be valuable for breeding and for identifying agronomically important genes in soybeans. However, the long LD of wild soybeans may hinder pinpointing causal gene(s) in the candidate regions. PMID:24271940

  19. Genome size variation in deep-sea amphipods

    PubMed Central

    Jamieson, A. J.; Piertney, S. B.

    2017-01-01

    Genome size varies considerably across taxa, and extensive research effort has gone into understanding whether variation can be explained by differences in key ecological and life-history traits among species. The extreme environmental conditions that characterize the deep sea have been hypothesized to promote large genome sizes in eukaryotes. Here we test this supposition by examining genome sizes among 13 species of deep-sea amphipods from the Mariana, Kermadec and New Hebrides trenches. Genome sizes were estimated using flow cytometry and found to vary nine-fold, ranging from 4.06 pg (4.04 Gb) in Paralicella caperesca to 34.79 pg (34.02 Gb) in Alicella gigantea. Phylogenetic independent contrast analysis identified a relationship between genome size and maximum body size, though this was largely driven by those species that display size gigantism. There was a distinct shift in the genome size trait diversification rate in the supergiant amphipod A. gigantea relative to the rest of the group. The variation in genome size observed is striking and argues against genome size being driven by a common evolutionary history, ecological niche and life-history strategy in deep-sea amphipods. PMID:28989783

  20. Impact of lateral boundary conditions on regional analyses

    NASA Astrophysics Data System (ADS)

    Chikhar, Kamel; Gauthier, Pierre

    2017-04-01

    Regional and global climate models are usually validated by comparison to derived observations or reanalyses. Using a model in data assimilation results in a direct comparison to observations to produce its own analyses that may reveal systematic errors. In this study, regional analyses over North America are produced based on the fifth-generation Canadian Regional Climate Model (CRCM5) combined with the variational data assimilation system of the Meteorological Service of Canada (MSC). CRCM5 is driven at its boundaries by global analyses from ERA-interim or produced with the global configuration of the CRCM5. Assimilation cycles for the months of January and July 2011 revealed systematic errors in winter through large values in the mean analysis increments. This bias is attributed to the coupling of the lateral boundary conditions of the regional model with the driving data particularly over the northern boundary where a rapidly changing large scale circulation created significant cross-boundary flows. Increasing the time frequency of the lateral driving and applying a large-scale spectral nudging improved significantly the circulation through the lateral boundaries which translated in a much better agreement with observations.

  1. Delayed production of sulfuric acid condensation nuclei in the polar stratosphere from El Chichon volcanic vapors

    NASA Technical Reports Server (NTRS)

    Hofmann, D. J.; Rosen, J. M.; Gringel, W.

    1985-01-01

    It is pointed out that measurements of the vertical profiles of atmospheric condensation nuclei (CN) have been conducted since 1973. Studies with a new instrument revealed that the CN concentration undergoes a remarkable annual variation in the 30-km region characterized by a large increase in the late winter/early spring period with a subsequent decay during the remainder of the year. The event particles are observed to be volatile at 150 C, suggesting a sulfuric acid-water composition similar to that found in the normal 20 km aerosol layer. The development of about 10 to the 7th metric tons of sulfuric acid aerosol following the injection of sulfurous gases by El Chichon in April 1982, prompted Hofmann and Rosen (1983) to predict a very large CN event for 1983. The present investigation is concerned with the actual observation of the predicted event. Attention is given to the observation of a very large increase of what appear to be small sulfuric acid droplets at 30-km altitude in January 1983 over Laramie, WY, in January 1983.

  2. Solar-terrestrial coupling through atmospheric electricity

    NASA Technical Reports Server (NTRS)

    Roble, R. G.; Hays, P. B.

    1979-01-01

    There are a number of measurements of electrical variations that suggest a solar-terrestrial influence on the global atmospheric electrical circuit. The measurements show variations associated with solar flares, solar magnetic sector boundary crossings, geomagnetic activity, aurorae, differences between ground current and potential gradients at high and low latitudes, and solar cycle variations. The evidence for each variation is examined. Both the experimental evidence and the calculations made with a global model of atmospheric electricity indicate that there is solar-terrestrial coupling through atmospheric electricity which operates by altering the global electric current and field distribution. A global redistribution of currents and fields can be caused by large-scale changes in electrical conductivity, by alteration of the columnar resistance between thunderstorm cloud tops and the ionosphere, or by both. If the columnar resistance is altered above thunderstorms, more current will flow in the global circuit, changing the ionospheric potential and basic circuit variables such as current density and electric fields. The observed variations of currents and fields during solar-induced disturbances are generally less than 50% of mean values near the earth's surface.

  3. Natural variation in learning rate and memory dynamics in parasitoid wasps: opportunities for converging ecology and neuroscience

    PubMed Central

    Hoedjes, Katja M.; Kruidhof, H. Marjolein; Huigens, Martinus E.; Dicke, Marcel; Vet, Louise E. M.; Smid, Hans M.

    2011-01-01

    Although the neural and genetic pathways underlying learning and memory formation seem strikingly similar among species of distant animal phyla, several more subtle inter- and intraspecific differences become evident from studies on model organisms. The true significance of such variation can only be understood when integrating this with information on the ecological relevance. Here, we argue that parasitoid wasps provide an excellent opportunity for multi-disciplinary studies that integrate ultimate and proximate approaches. These insects display interspecific variation in learning rate and memory dynamics that reflects natural variation in a daunting foraging task that largely determines their fitness: finding the inconspicuous hosts to which they will assign their offspring to develop. We review bioassays used for oviposition learning, the ecological factors that are considered to underlie the observed differences in learning rate and memory dynamics, and the opportunities for convergence of ecology and neuroscience that are offered by using parasitoid wasps as model species. We advocate that variation in learning and memory traits has evolved to suit an insect's lifestyle within its ecological niche. PMID:21106587

  4. Provincial variation of carbon emissions from bituminous coal: Influence of inertinite and other factors

    USGS Publications Warehouse

    Quick, J.C.; Brill, T.

    2002-01-01

    We observe a 1.3 kg C/net GJ variation of carbon emissions due to inertinite abundance in some commercially available bituminous coal. An additional 0.9 kg C/net GJ variation of carbon emissions is expected due to the extent of coalification through the bituminous rank stages. Each percentage of sulfur in bituminous coal reduces carbon emissions by about 0.08 kg C/net GJ. Other factors, such as mineral content, liptinite abundance and individual macerals, also influence carbon emissions, but their quantitative effect is less certain. The large range of carbon emissions within the bituminous rank class suggests that rank- specific carbon emission factors are provincial rather than global. Although carbon emission factors that better account for this provincial variation might be calculated, we show that the data used for this calculation may vary according to the methods used to sample and analyze coal. Provincial variation of carbon emissions and the use of different coal sampling and analytical methods complicate the verification of national greenhouse gas inventories. Published by Elsevier Science B.V.

  5. On the frequency spectra of the core magnetic field Gauss coefficients

    NASA Astrophysics Data System (ADS)

    Lesur, Vincent; Wardinski, Ingo; Baerenzung, Julien; Holschneider, Matthias

    2018-03-01

    From monthly mean observatory data spanning 1957-2014, geomagnetic field secular variation values were calculated by annual differences. Estimates of the spherical harmonic Gauss coefficients of the core field secular variation were then derived by applying a correlation based modelling. Finally, a Fourier transform was applied to the time series of the Gauss coefficients. This process led to reliable temporal spectra of the Gauss coefficients up to spherical harmonic degree 5 or 6, and down to periods as short as 1 or 2 years depending on the coefficient. We observed that a k-2 slope, where k is the frequency, is an acceptable approximation for these spectra, with possibly an exception for the dipole field. The monthly estimates of the core field secular variation at the observatory sites also show that large and rapid variations of the latter happen. This is an indication that geomagnetic jerks are frequent phenomena and that significant secular variation signals at short time scales - i.e. less than 2 years, could still be extracted from data to reveal an unexplored part of the core dynamics.

  6. Do Reductions in Class Size Raise Students' Test Scores? Evidence from Population Variation in Minnesota's Elementary Schools

    ERIC Educational Resources Information Center

    Cho, Hyunkuk; Glewwe, Paul; Whitler, Melissa

    2012-01-01

    Many U.S. states and cities spend substantial funds to reduce class size, especially in elementary (primary) school. Estimating the impact of class size on learning is complicated, since children in small and large classes differ in many observed and unobserved ways. This paper uses a method of Hoxby (2000) to assess the impact of class size on…

  7. Variations in Early Attachment Mechanisms Contribute to Attachment Quality: Case Studies Including Babies Born Preterm

    ERIC Educational Resources Information Center

    Witting, Andrea; Ruiz, Nina; Ahnert, Lieselotte

    2016-01-01

    Three boys (an extremely preterm, a moderate preterm twin and a full-term toddler; all 12 to 15 months old) were selected from a large sample to investigate mechanisms of parent-child attachments, specifically of babies born preterm. Attachments were observed at home with the Attachment-Q-Sort (AQS) as well as in the lab with the Strange Situation…

  8. The variability of SE2 tide extracted from TIMED/SABER observations

    NASA Astrophysics Data System (ADS)

    Li, X.; Wan, W.; Ren, Z.

    2017-12-01

    Based on the temperature observations of the TIMED/SABER in mesosphere/lower thermosphere region (70-110 km altitudes) and at the low latitude and midlatitude (45°S-45°N) from 2002 to 2012, the variability of the nonmigrating tide SE2 with 1 day resolution is analyzed. It is found that the climatological features (large-scale variability) of the semidiurnal nonmigrating tide with zonal wave number 2 (SE2) tide are similar with the results from the previous research works. The SE2 tide manifests mainly at the low-mid latitudes around ±30°. The northern hemisphere tidal amplitudes below 110 km are larger than the southern hemisphere tide. SE2 peaks below 110 km mainly present between 100 and 110 km altitude. The tidal amplitudes below 110 km occur a north-south asymmetry about the equator in the annual variation: in the southern hemisphere, SE2 occurs with an obvious annual variation with a maximum of tidal amplitudes in December, while in the northern one, the semiannual variations with maximum at the equinoxes. Herein, owing to the high-resolution tidal data, we could research the short-term (day-to-day) variations of SE2. We found that the day-to-day variations manifest mainly at between 100 and 110 km altitudes; it increases gradually with latitudes, and it is stronger at the low-mid latitudes; it is relatively slightly stronger around solstices than equinoxes; and it does not present a remarkably interannual variation. The SE2 day-to-day variations may be composed by the absolute amplitudes' variance and the impact of the wave phases, and the latter ones are more important.

  9. The variability of SE2 tide extracted from TIMED/SABER observations

    NASA Astrophysics Data System (ADS)

    Li, Xing; Wan, Weixing; Ren, Zhipeng; Yu, You

    2017-02-01

    Based on the temperature observations of the TIMED/Sounding of the Atmosphere using Broadband Emission Radiometry in mesosphere/lower thermosphere region (70-110 km altitudes) and at the low latitude and midlatitude (45°S-45°N) from 2002 to 2012, the variability of the nonmigrating tide SE2 with 1 day resolution is analyzed, using the method from Li et al. (2015). It is found that the climatological features (large-scale variability) of the SE2 tide are similar with the results from the previous research works. The SE2 tide manifests mainly at the low-mid latitudes around ±30°. The northern hemisphere tidal amplitudes below 110 km are larger than the southern hemisphere tide. SE2 peaks below 110 km mainly present between 100 and 110 km altitude. The tidal amplitudes below 110 km occur a north-south asymmetry about the equator in the annual variation: in the southern hemisphere, SE2 occurs with an obvious annual variation with a maximum of tidal amplitudes in December, while in the northern one, the semiannual variations with maximum at the equinoxes. Herein, owing to the high-resolution tidal data, we could research the short-term (day-to-day) variations of SE2. We found that the day-to-day variations manifest mainly at between 100 and 110 km altitudes; it increases gradually with latitudes, and it is stronger at the low-mid latitudes; it is relatively slightly stronger around solstices than equinoxes; and it does not present a remarkably interannual variation. The SE2 day-to-day variations may be composed by the absolute amplitudes' variance and the impact of the wave phases, and the latter ones are more important.

  10. Extremely Rapid Crystal Fractionation During Episodes 30-31 of the Pu`u O`o Eruption: Implications for Magma Chamber Processes

    NASA Astrophysics Data System (ADS)

    Garcia, M. O.; Rhodes, J. M.; Pietruszka, A. J.; Rose, W. I.

    2002-12-01

    The Pu`u O`o eruption offers excellent opportunities to examine petrologic and geochemical processes in shallow, basaltic magma chamber due to the intense, multi-disciplinary monitoring of its activity, frequent sampling and repeated eruptions at the same vent. Strong compositional variations were observed during some of the high fire-fountaining (400 m) episodes in 1985. Following a 20-30 day hiatus in eruptive activity, the shallow magma chamber was largely evacuated during brief (1-2 day) eruptions. Samples collected during these episodes, especially at the beginning and end, document the compositional variation between and during eruptive episodes. Lavas and tephra from episodes 30 and 31 showed a remarkable and systematic variation (2 wt% increase in MgO; 7% decrease in incompatible elements like Ba) during and between these episodes. Most of the intra-episode lava compositional variation was observed during a brief period (<2 hours) with little variation before or after. Olivines in these weakly prophyritic Pu`u O`o lavas are in equilibrium with the host rock composition indicating that compositional variation is not related to magma mixing or accumulation of olivine. We interpret the variation to reflect crystal fractionation within the shallow (tens to hundreds of meter deep) Pu`u O`o magma chamber. This extremely high rate of crystallization (up to 0.3%/day) and cooling (2°C/day), compared to estimates of 1°C/year for the rift zone interior, must reflect the high surface area of the dike-shaped and open topped magma chamber. These features may represent the tapping of a diffusive interface separating well mixed zones of hotter and more primitive magma in the lower part of the chamber from cooler, somewhat evolved magma above.

  11. Temperature Inversions and Nighttime Convection in the Martian Tropics

    NASA Astrophysics Data System (ADS)

    Hinson, D. P.; Spiga, A.; Lewis, S.; Tellmann, S.; Paetzold, M.; Asmar, S. W.; Häusler, B.

    2013-12-01

    We are using radio occultation measurements from Mars Express, Mars Reconnaissance Orbiter, and Mars Global Surveyor to characterize the diurnal cycle in the lowest scale height above the surface. We focus on northern spring and summer, using observations from 4 Martian years at local times of 4-5 and 15-17 h. We supplement the observations with results obtained from large-eddy simulations and through data assimilation by the UK spectral version of the LMD Mars Global Circulation Model. We previously investigated the depth of the daytime convective boundary layer (CBL) and its variations with surface elevation and surface properties. We are now examining unusual aspects of the temperature structure observed at night. Most important, predawn profiles in the Tharsis region contain an unexpected layer of neutral static stability at pressures of 200-300 Pa with a depth of 4-5 km. The mixed layer is bounded above by a midlevel temperature inversion and below by another strong inversion adjacent to the surface. The sharp temperature minimum at the base of the midlevel inversion suggests the presence of a thin water ice cloud layer, with the further implication that radiative cooling at cloud level can induce convective activity at lower altitudes. Conversely, nighttime profiles in Amazonis show no sign of a midlevel inversion or a detached mixed layer. These regional variations in the nighttime temperature structure appear to arise in part from large-scale variations in topography, which have several notable effects. First, the CBL is much deeper in the Tharsis region than in Amazonis, owing to a roughly 6-km difference in surface elevation. Second, large-eddy simulations show that daytime convection is not only deeper above Tharsis but also considerably more intense than it is in Amazonis. Finally, the daytime surface temperatures are comparable in the two regions, so that Tharsis acts as an elevated heat source throughout the CBL. These topographic effects are expected to enhance the vertical mixing of water vapor above elevated terrain, which might lead to the formation and regional confinement of nighttime clouds.

  12. Protoplanetary Disks in Multiple Star Systems

    NASA Astrophysics Data System (ADS)

    Harris, Robert J.

    Most stars are born in multiple systems, so the presence of a stellar companion may commonly influence planet formation. Theory indicates that companions may inhibit planet formation in two ways. First, dynamical interactions can tidally truncate circumstellar disks. Truncation reduces disk lifetimes and masses, leaving less time and material for planet formation. Second, these interactions might reduce grain-coagulation efficiency, slowing planet formation in its earliest stages. I present three observational studies investigating these issues. First is a spatially resolved Submillimeter Array (SMA) census of disks in young multiple systems in the Taurus-Auriga star-forming region to study their bulk properties. With this survey, I confirmed that disk lifetimes are preferentially decreased in multiples: single stars have detectable millimeter-wave continuum emission twice as often as components of multiples. I also verified that millimeter luminosity (proportional to disk mass) declines with decreasing stellar separation. Furthermore, by measuring resolved-disk radii, I quantitatively tested tidal-truncation theories: results were mixed, with a few disks much larger than expected. I then switch focus to the grain-growth properties of disks in multiple star systems. By combining SMA, Combined Array for Research in Millimeter Astronomy (CARMA), and Jansky Very Large Array (VLA) observations of the circumbinary disk in the UZ Tau quadruple system, I detected radial variations in the grain-size distribution: large particles preferentially inhabit the inner disk. Detections of these theoretically predicted variations have been rare. I related this to models of grain coagulation in gas disks and find that our results are consistent with growth limited by radial drift. I then present a study of grain growth in the disks of the AS 205 and UX Tau multiple systems. By combining SMA, Atacama Large Millimeter/submillimeter Array (ALMA), and VLA observations, I detected radial variations of the grain-size distribution in the AS 205 A disk, but not in the UX Tau A disk. I find that some combination of radial drift and fragmentation limits growth in the AS 205 A disk. In the final chapter, I summarize my findings that, while multiplicity clearly influences bulk disk properties, it does not obviously inhibit grain growth. Other investigations are suggested.

  13. Global Vertical Rates from VLBl

    NASA Technical Reports Server (NTRS)

    Ma, Chopo; MacMillan, D.; Petrov, L.

    2003-01-01

    The analysis of global VLBI observations provides vertical rates for 50 sites with formal errors less than 2 mm/yr and median formal error of 0.4 mm/yr. These sites are largely in Europe and North America with a few others in east Asia, Australia, South America and South Africa. The time interval of observations is up to 20 years. The error of the velocity reference frame is less than 0.5 mm/yr, but results from several sites with observations from more than one antenna suggest that the estimated vertical rates may have temporal variations or non-geophysical components. Comparisons with GPS rates and corresponding site position time series will be discussed.

  14. A comparison of thunderstorm reflectivities measured at the VHF and UHF

    NASA Technical Reports Server (NTRS)

    Larsen, M. F.; Rottger, J.

    1986-01-01

    Observations of thunderstorms made with two radars operating at different wavelengths of 70 cm and 5.67 m are compared. The first set of observations was made with the UHF radar at the Arecibo Observatory in Puerto Rico, and the second set was made with the Max-Planck-Institut fur Aeronomie VHF radar in the Harz Mountains in West Germany. Both sets of observations show large echo strengths in the convective region above the -10 C isothem. At UHF, there appears to be a contribution from both the precipitation echoes and the normal echoes due to scatter from turbulent variations in the refractive index.

  15. Solar cycle variations in mesospheric carbon monoxide

    NASA Astrophysics Data System (ADS)

    Lee, Jae N.; Wu, Dong L.; Ruzmaikin, Alexander; Fontenla, Juan

    2018-05-01

    As an extension of Lee et al. (2013), solar cycle variation of carbon monoxide (CO) is analyzed with MLS observation, which covers more than thirteen years (2004-2017) including maximum of solar cycle 24. Being produced primarily by the carbon dioxide (CO2) photolysis in the lower thermosphere, the variations of the mesospheric CO concentration are largely driven by the solar cycle modulated ultraviolet (UV) variation. This solar signal extends down to the lower altitudes by the dynamical descent in the winter polar vortex, showing a time lag that is consistent with the average descent velocity. To characterize a global distribution of the solar impact, MLS CO is correlated with the SORCE measured total solar irradiance (TSI) and UV. As high as 0.8 in most of the polar mesosphere, the linear correlation coefficients between CO and UV/TSI are more robust than those found in the previous work. The photochemical contribution explains most (68%) of the total variance of CO while the dynamical contribution accounts for 21% of the total variance at upper mesosphere. The photochemistry driven CO anomaly signal is extended in the tropics by vertical mixing. The solar cycle signal in CO is further examined with the Whole Atmosphere Community Climate Model (WACCM) 3.5 simulation by implementing two different modeled Spectral Solar Irradiances (SSIs): SRPM 2012 and NRLSSI. The model simulations underestimate the mean CO amount and solar cycle variations of CO, by a factor of 3, compared to those obtained from MLS observation. Different inputs of the solar spectrum have small impacts on CO variation.

  16. Spatio-temporal variation of methane over Indian region: Seasonal and inter-annual variation .

    NASA Astrophysics Data System (ADS)

    M, K.; Nair, P. R.

    2015-12-01

    Methane (CH4) has an important role in the radiation budget and chemistry in the lower and middle atmosphere as a greenhouse and reactive trace gas. The rapid developments in the agriculture and industry over India have lead to the emission of many pollutants like CO, O3, CH4, CO2, SO2 etc into the atmosphere. However, their sources, sinks and concentration levels are poorly understood because of the lack of systematic sampling and monitoring. The advent of satellite remote sensing has helped to analyze the chemical composition of atmosphere with good spatial coverage especially over tropical region which was poorly sampled with the existing surface network. This work attempts an analysis of spatial distribution, seasonal cycle and inter annual variation of CH4 over Indian region during 2003-2009 using SCIAMACHY data onboard ENVISAT. Column CH4 varies from 1740-1890 ppbv over Indian region with distinct spatial and temporal features. We observed a dependence of seasonal CH4 variation on rice cultivation, convective activities and changes in boundary layer characteristics. The comparative study using satellite, aircraft and surface measurement shown CH4 has non-homogeneity in its distribution and seasonal variation in different layers of atmosphere. A comparative study of CH4 at different hot spot regions over the globe was carried out which showed prominent hemispherical variations. Large spread in column CH4 was observed at India and Chinese region compared to other regions with a significant seasonal variability. This study points to the blending of satellite, aircraft and surface measurements for the realization of regional distribution of CH4.

  17. Defining restoration targets for water depth and salinity in wind-dominated Spartina patens (Ait.) Muhl. coastal marshes

    USGS Publications Warehouse

    Nyman, J.A.; LaPeyre, Megan K.; Caldwell, Andral W.; Piazza, Sarai C.; Thom, C.; Winslow, C.

    2009-01-01

    Coastal wetlands provide valued ecosystem functions but the sustainability of those functions often is threatened by artificial hydrologic conditions. It is widely recognized that increased flooding and salinity can stress emergent plants, but there are few measurements to guide restoration, management, and mitigation. Marsh flooding can be estimated over large areas with few data where winds have little effect on water levels, but quantifying flooding requires hourly measurements over long time periods where tides are wind-dominated such as the northern Gulf of Mexico. Estimating salinity of flood water requires direct daily measurements because coastal marshes are characterized by dynamic salinity gradients. We analyzed 399,772 hourly observations of water depth and 521,561 hourly observations of water salinity from 14 sites in Louisiana coastal marshes dominated by Spartina patens (Ait.) Muhl. Unlike predicted water levels, observed water levels varied monthly and annually. We attributed those observed variations to variations in river runoff and winds. In stable marshes with slow wetland loss rates, we found that marsh elevation averaged 1 cm above mean high water, 15 cm above mean water, and 32 cm above mean low water levels. Water salinity averaged 3.7 ppt during April, May, and June, and 5.4 ppt during July, August, and September. The daily, seasonal, and annual variation in water levels and salinity that were evident would support the contention that such variation be retained when designing and operating coastal wetland management and restoration projects. Our findings might be of interest to scientists, engineers, and managers involved in restoration, management, and restoration in other regions where S. patens or similar species are common but local data are unavailable.

  18. Defining restoration targets for water depth and salinity in wind-dominated Spartina patens (Ait.) Muhl. coastal marshes

    USGS Publications Warehouse

    Nyman, J.A.; La Peyre, M.K.; Caldwell, A.; Piazza, S.; Thom, C.; Winslow, C.

    2009-01-01

    Coastal wetlands provide valued ecosystem functions but the sustainability of those functions often is threatened by artificial hydrologic conditions. It is widely recognized that increased flooding and salinity can stress emergent plants, but there are few measurements to guide restoration, management, and mitigation. Marsh flooding can be estimated over large areas with few data where winds have little effect on water levels, but quantifying flooding requires hourly measurements over long time periods where tides are wind-dominated such as the northern Gulf of Mexico. Estimating salinity of flood water requires direct daily measurements because coastal marshes are characterized by dynamic salinity gradients. We analyzed 399,772 hourly observations of water depth and 521,561 hourly observations of water salinity from 14 sites in Louisiana coastal marshes dominated by Spartina patens (Ait.) Muhl. Unlike predicted water levels, observed water levels varied monthly and annually. We attributed those observed variations to variations in river runoff and winds. In stable marshes with slow wetland loss rates, we found that marsh elevation averaged 1 cm above mean high water, 15 cm above mean water, and 32 cm above mean low water levels. Water salinity averaged 3.7 ppt during April, May, and June, and 5.4 ppt during July, August, and September. The daily, seasonal, and annual variation in water levels and salinity that were evident would support the contention that such variation be retained when designing and operating coastal wetland management and restoration projects. Our findings might be of interest to scientists, engineers, and managers involved in restoration, management, and restoration in other regions where S. patens or similar species are common but local data are unavailable. ?? 2009 Elsevier B.V.

  19. Spatio-temporal changes of seismic anisotropy in seismogenic zones

    NASA Astrophysics Data System (ADS)

    Saade, M.; Montagner, J.; Roux, P.; Paul, C.; Brenguier, F.; Enescu, B.; Shiomi, K.

    2013-12-01

    Seismic anisotropy plays a key role in the study of stress and strain fields in the earth. Potential temporal change of seismic anisotropy can be interpreted as change of the orientation of cracks in seismogenic zones and thus change of the stress field. Such temporal changes have been observed in seismogenic zones before and after earthquakes (Durand et al. , 2011) but are still not well understood. In this study, from a numerical point of view, we investigate the variations of the polarization of surface waves in anisotropic media. These variations are related to the elastic properties of the medium, in particular to anisotropy. The technique used is based on the calculation of the whole cross-correlation tensor (CCT) of ambient seismic noise. If the sources are randomly distributed in homogeneous medium, it allows us to reconstruct the Green's tensor between two stations continuously and to monitor the region through the use of its fluctuations. Therefore, the temporal change of the Green's cross-correlation tensor enables the monitoring of stress and strain fields. This technique is applied to synthetic seismograms computed in a transversally isotropic medium with horizontal symmetry axis (hereafter referred to an HTI medium) using a code RegSEM (Cupillard et al. , 2012) based on the spectral element method. We designed an experiment in order to investigate the influence of anisotropy on the CCT. In homogeneous, isotropic medium the off-diagonal terms of the Green's tensor are null. The CCT is computed between each pair of stations and then rotated in order to approximate the Green's tensor by minimizing the off-diagonal components. This procedure permits the calculation of the polarization angle of quasi-Rayleigh and quasi-Love waves, and to observe the azimuthal variation of their polarization. The results show that even a small variation of the azimuth of seismic anisotropy with respect to a certain pair of stations can induce, in some cases, a large variation in the horizontal polarization of surface waves along the direction of this pair of stations. It depends on the relative azimuth angle between the pair of stations and the direction of anisotropy, on the amplitude of anisotropy and the frequency band of the signal. Therefore, it is now possible to explain the large, rapid and very localized variations of surface waves horizontal polarization observed by Durand et al. (2011) during the Parkfield earthquake of 2004. Furthermore, some preliminary results about the investigation of seismic anisotropy change caused by the June 13, 2008 Iwate-Miyagi Nairiku earthquake (Mw = 6.9) will be presented.

  20. Nest size is predicted by female identity and the local environment in the blue tit (Cyanistes caeruleus), but is not related to the nest size of the genetic or foster mother

    PubMed Central

    Parker, Timothy H.; Griffith, Simon C.

    2018-01-01

    The potential for animals to respond to changing climates has sparked interest in intraspecific variation in avian nest structure since this may influence nest microclimate and protect eggs and offspring from inclement weather. However, there have been relatively few large-scale attempts to examine variation in nests or the determinates of individual variation in nest structure within populations. Using a set of mostly pre-registered analyses, we studied potential predictors of variation in the size of a large sample (803) of blue tit (Cyanistes caeruleus) nests across three breeding seasons at Wytham Woods, UK. While our pre-registered analyses found that individual females built very similar nests across years, there was no evidence in follow-up (post hoc) analyses that their nest size correlated to that of their genetic mother or, in a cross-fostering experiment, to the nest where they were reared. In further pre-registered analyses, spatial environmental variability explained nest size variability at relatively broad spatial scales, and especially strongly at the scale of individual nest boxes. Our study indicates that nest structure is a characteristic of individuals, but is not strongly heritable, indicating that it will not respond rapidly to selection. Explaining the within-individual and within-location repeatability we observed requires further study. PMID:29765658

Top