Jain, Anil Kumar; Khan, Asma M
2012-09-01
: The potential for fluid overload in large-volume liposuction is a source of serious concern. Fluid management in these patients is controversial and governed by various formulas that have been advanced by many authors. Basically, it is the ratio of what goes into the patient and what comes out. Central venous pressure has been used to monitor fluid therapy. Dynamic parameters, such as stroke volume and pulse pressure variation, are better predictors of volume responsiveness and are superior to static indicators, such as central venous pressure and pulmonary capillary wedge pressure. Stroke volume variation was used in this study to guide fluid resuscitation and compared with one guided by an intraoperative fluid ratio of 1.2 (i.e., Rohrich formula). : Stroke volume variation was used as a guide for intraoperative fluid administration in 15 patients subjected to large-volume liposuction. In another 15 patients, fluid resuscitation was guided by an intraoperative fluid ratio of 1.2. The amounts of intravenous fluid administered in the groups were compared. : The mean amount of fluid infused was 561 ± 181 ml in the stroke volume variation group and 2383 ± 1208 ml in the intraoperative fluid ratio group. The intraoperative fluid ratio when calculated for the stroke volume variation group was 0.936 ± 0.084. All patients maintained hemodynamic parameters (heart rate and systolic, diastolic, and mean blood pressure). Renal and metabolic indices remained within normal limits. : Stroke volume variation-guided fluid application could result in an appropriate amount of intravenous fluid use in patients undergoing large-volume liposuction. : Therapeutic, II.
Bladder filling variation during conformal radiotherapy for rectal cancer
NASA Astrophysics Data System (ADS)
Sithamparam, S.; Ahmad, R.; Sabarudin, A.; Othman, Z.; Ismail, M.
2017-05-01
Conformal radiotherapy for rectal cancer is associated with small bowel toxicity mainly diarrhea. Treating patients with a full bladder is one of the practical solutions to reduce small bowel toxicity. Previous studies on prostate and cervix cancer patients revealed that maintaining consistent bladder volume throughout radiotherapy treatment is challenging. The aim of this study was to measure bladder volume variation throughout radiotherapy treatment. This study also measured the association between bladder volume changes and diarrhea. Twenty two rectal cancer patients were recruited prospectively. Patients were planned for treatment with full bladder following departmental bladder filling protocol and the planning bladder volume was measured during CT-simulation. During radiotherapy, the bladder volume was measured weekly using cone-beam computed tomography (CBCT) and compared to planning bladder volume. Incidence and severity of diarrhea were recorded during the weekly patient review. There was a negative time trend for bladder volume throughout five weeks treatment. The mean bladder volume decreased 18 % from 123 mL (SD 54 mL) during CT-simulation to 101 mL (SD 71 mL) on the 5th week of radiotherapy, but the decrease is not statistically significant. However, there was a large variation of bladder volume within each patient during treatment. This study showed an association between changes of bladder volume and diarrhea (P = 0.045). In conclusion bladder volume reduced throughout radiotherapy treatment for conformal radiotherapy for rectal cancer and there was a large variation of bladder volume within patients.
SU-E-T-429: Uncertainties of Cell Surviving Fractions Derived From Tumor-Volume Variation Curves
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chvetsov, A
2014-06-01
Purpose: To evaluate uncertainties of cell surviving fraction reconstructed from tumor-volume variation curves during radiation therapy using sensitivity analysis based on linear perturbation theory. Methods: The time dependent tumor-volume functions V(t) have been calculated using a twolevel cell population model which is based on the separation of entire tumor cell population in two subpopulations: oxygenated viable and lethally damaged cells. The sensitivity function is defined as S(t)=[δV(t)/V(t)]/[δx/x] where δV(t)/V(t) is the time dependent relative variation of the volume V(t) and δx/x is the relative variation of the radiobiological parameter x. The sensitivity analysis was performed using direct perturbation method wheremore » the radiobiological parameter x was changed by a certain error and the tumor-volume was recalculated to evaluate the corresponding tumor-volume variation. Tumor volume variation curves and sensitivity functions have been computed for different values of cell surviving fractions from the practically important interval S{sub 2}=0.1-0.7 using the two-level cell population model. Results: The sensitivity functions of tumor-volume to cell surviving fractions achieved a relatively large value of 2.7 for S{sub 2}=0.7 and then approached zero as S{sub 2} is approaching zero Assuming a systematic error of 3-4% we obtain that the relative error in S{sub 2} is less that 20% in the range S2=0.4-0.7. This Resultis important because the large values of S{sub 2} are associated with poor treatment outcome should be measured with relatively small uncertainties. For the very small values of S2<0.3, the relative error can be larger than 20%; however, the absolute error does not increase significantly. Conclusion: Tumor-volume curves measured during radiotherapy can be used for evaluation of cell surviving fractions usually observed in radiation therapy with conventional fractionation.« less
Epoxidized Natural Rubber/Chitosan Network Binder for Silicon Anode in Lithium-Ion Battery.
Lee, Sang Ha; Lee, Jeong Hun; Nam, Dong Ho; Cho, Misuk; Kim, Jaehoon; Chanthad, Chalathorn; Lee, Youngkwan
2018-05-16
Polymeric binder is extremely important for Si-based anode in lithium-ion batteries due to large volume variation during charging/discharging process. Here, natural rubber-incorporated chitosan networks were designed as a binder material to obtain both adhesion and elasticity. Chitosan could strongly anchor Si particles through hydrogen bonding, while the natural rubber could stretch reversibly during the volume variation of Si particles, resulting in high cyclic performance. The prepared electrode exhibited the specific capacities of 1350 mAh/g after 1600 cycles at the current density of 8 A/g and 2310 mAh/g after 500 cycles at the current density of 1 A/g. Furthermore, the cycle test with limiting lithiation capacity was conducted to study the optimal binder properties at varying degree of the volume expansion of silicon, and it was found that the elastic property of binder material was strongly required when the large volume expansion of Si occurred.
NASA Technical Reports Server (NTRS)
Rampino, M. R.
1979-01-01
A possible relationship between large scale changes in global ice volume, variations in the earth's magnetic field, and short term climatic cooling is investigated through a study of the geomagnetic and climatic records of the past 300,000 years. The calculations suggest that redistribution of the Earth's water mass can cause rotational instabilities which lead to geomagnetic excursions; these magnetic variations in turn may lead to short-term coolings through upper atmosphere effects. Such double coincidences of magnetic excursions and sudden coolings at times of ice volume changes have occurred at 13,500, 30,000, 110,000, and 135,000 YBP.
Theory of microemulsions in a gravitational field
NASA Technical Reports Server (NTRS)
Jeng, J. F.; Miller, Clarence A.
1989-01-01
A theory of microemulsions developed previously is extended to include the effect of a gravitational field. It predicts variation with position of drop size, drop volume fraction, and area per molecule in the surfactant films within a microemulsion phase. Variation in volume fraction is greatest and occurs in such a way that oil content increases with increasing elevation, as has been found experimentally. Large composition variations are predicted within a middle phase microemulsion near optimal conditions because inversion from the water-continuous to the oil-continuous arrangement occurs with increasing elevation. Generally speaking, gravity reduces solubilization within microemulsions and promotes separation of excess phases.
Morimoto, Naoki; Wani, Ryoji; Naglik, Carole; Klug, Christian
2015-01-01
Nautilus remains of great interest to palaeontologists after a long history of actualistic comparisons and speculations on aspects of the palaeoecology of fossil cephalopods, which are otherwise impossible to assess. Although a large amount of work has been dedicated to Nautilus ecology, conch geometry and volumes of shell parts and chambers have been studied less frequently. In addition, although the focus on volumetric analyses for ammonites has been increasing recently with the development of computed tomographic technology, the intraspecific variation of volumetric parameters has never been examined. To investigate the intraspecific variation of the phragmocone chamber volumes throughout ontogeny, 30 specimens of Recent Nautilus pompilius and two Middle Jurassic ammonites (Normannites mitis) were reconstructed using computed tomography and grinding tomography, respectively. Both of the ontogenetic growth trajectories from the two Normannites demonstrate logistic increase. However, a considerable difference in Normannites has been observed between their entire phragmocone volumes (cumulative chamber volumes), in spite of their similar morphology and size. Ontogenetic growth trajectories from Nautilus also show a high variation. Sexual dimorphism appears to contribute significantly to this variation. Finally, covariation between chamber widths and volumes was examined. The results illustrate the strategic difference in chamber construction between Nautilus and Normannites. The former genus persists to construct a certain conch shape, whereas the conch of the latter genus can change its shape flexibly under some constraints. PMID:26500816
Leypoldt, John K; Akonur, Alp; Agar, Baris U; Culleton, Bruce F
2012-10-01
The kinetics of plasma phosphorus concentrations during hemodialysis (HD) are complex and cannot be described by conventional one- or two-compartment kinetic models. It has recently been shown by others that the physiologic (or apparent distribution) volume for phosphorus (Vr-P) increases with increasing treatment time and shows a large variation among patients treated by thrice weekly and daily HD. Here, we describe the dependence of Vr-P on treatment time and predialysis plasma phosphorus concentration as predicted by a novel pseudo one-compartment model. The kinetics of plasma phosphorus during conventional and six times per week daily HD were simulated as a function of treatment time per session for various dialyzer phosphate clearances and patient-specific phosphorus mobilization clearances (K(M)). Vr-P normalized to extracellular volume from these simulations were reported and compared with previously published empirical findings. Simulated results were relatively independent of dialyzer phosphate clearance and treatment frequency. In contrast, Vr-P was strongly dependent on treatment time per session; the increase in Vr-P with treatment time was larger for higher values of K(M). Vr-P was inversely dependent on predialysis plasma phosphorus concentration. There was significant variation among predicted Vr-P values, depending largely on the value of K(M). We conclude that a pseudo one-compartment model can describe the empirical dependence of the physiologic volume of phosphorus on treatment time and predialysis plasma phosphorus concentration. Further, the variation in physiologic volume of phosphorus among HD patients is largely due to differences in patient-specific phosphorus mobilization clearance. © 2012 The Authors. Hemodialysis International © 2012 International Society for Hemodialysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chvetsov, Alexei V., E-mail: chvetsov2@gmail.com; Schwartz, Jeffrey L.; Mayr, Nina
2014-06-15
Purpose: In our previous work, the authors showed that a distribution of cell surviving fractionsS{sub 2} in a heterogeneous group of patients could be derived from tumor-volume variation curves during radiotherapy for head and neck cancer. In this research study, the authors show that this algorithm can be applied to other tumors, specifically in nonsmall cell lung cancer. This new application includes larger patient volumes and includes comparison of data sets obtained at independent institutions. Methods: Our analysis was based on two data sets of tumor-volume variation curves for heterogeneous groups of 17 patients treated for nonsmall cell lung cancermore » with conventional dose fractionation. The data sets were obtained previously at two independent institutions by using megavoltage computed tomography. Statistical distributions of cell surviving fractionsS{sub 2} and clearance half-lives of lethally damaged cells T{sub 1/2} have been reconstructed in each patient group by using a version of the two-level cell population model of tumor response and a simulated annealing algorithm. The reconstructed statistical distributions of the cell surviving fractions have been compared to the distributions measured using predictive assays in vitro. Results: Nonsmall cell lung cancer presents certain difficulties for modeling surviving fractions using tumor-volume variation curves because of relatively large fractional hypoxic volume, low gradient of tumor-volume response, and possible uncertainties due to breathing motion. Despite these difficulties, cell surviving fractionsS{sub 2} for nonsmall cell lung cancer derived from tumor-volume variation measured at different institutions have similar probability density functions (PDFs) with mean values of 0.30 and 0.43 and standard deviations of 0.13 and 0.18, respectively. The PDFs for cell surviving fractions S{sub 2} reconstructed from tumor volume variation agree with the PDF measured in vitro. Conclusions: The data obtained in this work, when taken together with the data obtained previously for head and neck cancer, suggests that the cell surviving fractionsS{sub 2} can be reconstructed from the tumor volume variation curves measured during radiotherapy with conventional fractionation. The proposed method can be used for treatment evaluation and adaptation.« less
Chvetsov, Alexei V; Yartsev, Slav; Schwartz, Jeffrey L; Mayr, Nina
2014-06-01
In our previous work, the authors showed that a distribution of cell surviving fractions S2 in a heterogeneous group of patients could be derived from tumor-volume variation curves during radiotherapy for head and neck cancer. In this research study, the authors show that this algorithm can be applied to other tumors, specifically in nonsmall cell lung cancer. This new application includes larger patient volumes and includes comparison of data sets obtained at independent institutions. Our analysis was based on two data sets of tumor-volume variation curves for heterogeneous groups of 17 patients treated for nonsmall cell lung cancer with conventional dose fractionation. The data sets were obtained previously at two independent institutions by using megavoltage computed tomography. Statistical distributions of cell surviving fractions S2 and clearance half-lives of lethally damaged cells T(1/2) have been reconstructed in each patient group by using a version of the two-level cell population model of tumor response and a simulated annealing algorithm. The reconstructed statistical distributions of the cell surviving fractions have been compared to the distributions measured using predictive assays in vitro. Nonsmall cell lung cancer presents certain difficulties for modeling surviving fractions using tumor-volume variation curves because of relatively large fractional hypoxic volume, low gradient of tumor-volume response, and possible uncertainties due to breathing motion. Despite these difficulties, cell surviving fractions S2 for nonsmall cell lung cancer derived from tumor-volume variation measured at different institutions have similar probability density functions (PDFs) with mean values of 0.30 and 0.43 and standard deviations of 0.13 and 0.18, respectively. The PDFs for cell surviving fractions S2 reconstructed from tumor volume variation agree with the PDF measured in vitro. The data obtained in this work, when taken together with the data obtained previously for head and neck cancer, suggests that the cell surviving fractions S2 can be reconstructed from the tumor volume variation curves measured during radiotherapy with conventional fractionation. The proposed method can be used for treatment evaluation and adaptation.
Jhingran, Anuja; Salehpour, Mohammad; Sam, Marianne; Levy, Larry; Eifel, Patricia J
2012-01-01
To evaluate variations in bladder and rectal volume and the position of the vaginal vault during a 5-week course of pelvic intensity-modulated radiation therapy (IMRT) after hysterectomy. Twenty-four patients were instructed how to fill their bladders before simulation and treatment. These patients underwent computed tomography simulations with full and empty bladders and then underwent rescanning twice weekly during IMRT; patients were asked to have full bladder for treatment. Bladder and rectal volumes and the positions of vaginal fiducial markers were determined, and changes in volume and position were calculated. The mean full and empty bladder volumes at simulation were 480 cc (range, 122-1,052) and 155 cc (range, 49-371), respectively. Bladder volumes varied widely during IMRT: the median difference between the maximum and minimum volumes was 247 cc (range, 96-585). Variations in rectal volume during IMRT were less pronounced. For the 16 patients with vaginal fiducial markers in place throughout IMRT, the median maximum movement of the markers during IMRT was 0.59 cm in the right-left direction (range, 0-0.9), 1.46 cm in the anterior-posterior direction (range, 0.8-2.79), and 1.2 cm in the superior-inferior direction (range, 0.6-2.1). Large variations in rectal or bladder volume frequently correlated with significant displacement of the vaginal apex. Although treatment with a full bladder is usually preferred because of greater sparing of small bowel, our data demonstrate that even with detailed instruction, patients are unable to maintain consistent bladder filling. Variations in organ position during IMRT can result in marked changes in the position of the target volume and the volume of small bowel exposed to high doses of radiation. Copyright © 2012 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jhingran, Anuja, E-mail: ajhingra@mdanderson.org; Salehpour, Mohammad; Sam, Marianne
2012-01-01
Purpose: To evaluate variations in bladder and rectal volume and the position of the vaginal vault during a 5-week course of pelvic intensity-modulated radiation therapy (IMRT) after hysterectomy. Methods and Materials: Twenty-four patients were instructed how to fill their bladders before simulation and treatment. These patients underwent computed tomography simulations with full and empty bladders and then underwent rescanning twice weekly during IMRT; patients were asked to have full bladder for treatment. Bladder and rectal volumes and the positions of vaginal fiducial markers were determined, and changes in volume and position were calculated. Results: The mean full and empty bladdermore » volumes at simulation were 480 cc (range, 122-1,052) and 155 cc (range, 49-371), respectively. Bladder volumes varied widely during IMRT: the median difference between the maximum and minimum volumes was 247 cc (range, 96-585). Variations in rectal volume during IMRT were less pronounced. For the 16 patients with vaginal fiducial markers in place throughout IMRT, the median maximum movement of the markers during IMRT was 0.59 cm in the right-left direction (range, 0-0.9), 1.46 cm in the anterior-posterior direction (range, 0.8-2.79), and 1.2 cm in the superior-inferior direction (range, 0.6-2.1). Large variations in rectal or bladder volume frequently correlated with significant displacement of the vaginal apex. Conclusion: Although treatment with a full bladder is usually preferred because of greater sparing of small bowel, our data demonstrate that even with detailed instruction, patients are unable to maintain consistent bladder filling. Variations in organ position during IMRT can result in marked changes in the position of the target volume and the volume of small bowel exposed to high doses of radiation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chvetsov, A; Schwartz, J; Mayr, N
2014-06-01
Purpose: To show that a distribution of cell surviving fractions S{sub 2} in a heterogeneous group of patients can be derived from tumor-volume variation curves during radiotherapy for non-small cell lung cancer. Methods: Our analysis was based on two data sets of tumor-volume variation curves for heterogeneous groups of 17 patients treated for nonsmall cell lung cancer with conventional dose fractionation. The data sets were obtained previously at two independent institutions by using megavoltage (MV) computed tomography (CT). Statistical distributions of cell surviving fractions S{sup 2} and cell clearance half-lives of lethally damaged cells T1/2 have been reconstructed in eachmore » patient group by using a version of the two-level cell population tumor response model and a simulated annealing algorithm. The reconstructed statistical distributions of the cell surviving fractions have been compared to the distributions measured using predictive assays in vitro. Results: Non-small cell lung cancer presents certain difficulties for modeling surviving fractions using tumor-volume variation curves because of relatively large fractional hypoxic volume, low gradient of tumor-volume response, and possible uncertainties due to breathing motion. Despite these difficulties, cell surviving fractions S{sub 2} for non-small cell lung cancer derived from tumor-volume variation measured at different institutions have similar probability density functions (PDFs) with mean values of 0.30 and 0.43 and standard deviations of 0.13 and 0.18, respectively. The PDFs for cell surviving fractions S{sup 2} reconstructed from tumor volume variation agree with the PDF measured in vitro. Comparison of the reconstructed cell surviving fractions with patient survival data shows that the patient survival time decreases as the cell surviving fraction increases. Conclusion: The data obtained in this work suggests that the cell surviving fractions S{sub 2} can be reconstructed from the tumor volume variation curves measured during radiotherapy with conventional fractionation. The proposed method can be used for treatment evaluation and adaptation.« less
On the effect of standard PFEM remeshing on volume conservation in free-surface fluid flow problems
NASA Astrophysics Data System (ADS)
Franci, Alessandro; Cremonesi, Massimiliano
2017-07-01
The aim of this work is to analyze the remeshing procedure used in the particle finite element method (PFEM) and to investigate how this operation may affect the numerical results. The PFEM remeshing algorithm combines the Delaunay triangulation and the Alpha Shape method to guarantee a good quality of the Lagrangian mesh also in large deformation processes. However, this strategy may lead to local variations of the topology that may cause an artificial change of the global volume. The issue of volume conservation is here studied in detail. An accurate description of all the situations that may induce a volume variation during the PFEM regeneration of the mesh is provided. Moreover, the crucial role of the parameter α used in the Alpha Shape method is highlighted and a range of values of α for which the differences between the numerical results are negligible, is found. Furthermore, it is shown that the variation of volume induced by the remeshing reduces by refining the mesh. This check of convergence is of paramount importance for the reliability of the PFEM. The study is carried out for 2D free-surface fluid dynamics problems, however the conclusions can be extended to 3D and to all those problems characterized by significant variations of internal and external boundaries.
Heilweil, Victor M.; Susong, David D.
2007-01-01
Sand Hollow, Utah, is the site of a surface-water reservoir completed in March 2002 and operated by the Washington County Water Conservancy District (WCWCD) primarily as an aquifer storage and recovery project. The reservoir is an off-channel facility that receives water from the Virgin River, diverted near the town of Virgin, Utah. Hydrologic data collected are described and listed in this report, including ground-water levels, reservoir stage, reservoir-water temperature, meteorology, evaporation, and estimated ground-water recharge. Since the construction of the reservoir in 2002, diversions from the Virgin River have resulted in generally rising stage and surface area. Large spring run-off volumes during 2005-06 allowed the WCWCD to fill the reservoir to near capacity, with a surface area of about 1,300 acres in 2006. Reservoir stage reached a record altitude of about 3,060 feet in May 2006, resulting in a depth of nearly 90 feet and a reservoir storage of about 51,000 acre-feet. Water temperature in the reservoir shows large seasonal variation and has ranged from about 5 to 32?C. Estimated ground-water recharge rates have ranged from 0.01 to 0.43 feet per day. Estimated recharge volumes have ranged from about 200 to about 3,500 acre-feet per month. Total ground-water recharge from March 2002 through August 2006 is estimated to be about 51,000 acre-feet. Estimated evaporation rates have varied from 0.05 to 0.97 feet per month, resulting in evaporation losses of 20 to 1,200 acre-feet per month. Total evaporation from March 2002 through August 2006 is estimated to be about 17,000 acre-feet. The combination of generally declining recharge rates and increasing reservoir altitude and area explains the trend of an increasing ratio of evaporation to recharge volume over time, with the total volume of water lost through evaporation nearly as large as the volume of ground-water recharge during the first 8 months of 2006. With removal of the viscosity effects (caused by seasonal water temperature variations), the intrinsic permeability indicates a large seasonal variation in clogging, with large winter increases likely caused by a combination of both decreased biofilms and the reduced volume of trapped gas bubbles.
Variational principle model for the nuclear caloric curve
DOE Office of Scientific and Technical Information (OSTI.GOV)
Das Gupta, S.
2005-12-15
Following the lead of a recent work, I perform a variational principle model calculation for the nuclear caloric curve. A Skyrme-type interaction with and without momentum dependence is used. The calculation is done for a large nucleus, i.e., in the nuclear matter limit. Thus I address the issue of volume fragmentation only. Nonetheless, the results are similar to the previous, largely phenomenological calculation for a finite nucleus. I find that the onset of fragmentation can be sudden as a function of temperature or excitation energy.
NASA Technical Reports Server (NTRS)
1979-01-01
the development of large space structure technology is discussed. A detailed thermal analysis of a model space fabricated 1 meter beam is presented. Alternative thermal coatings are evaluated, and deflections, stresses, and stiffness variations resulting from flight orientations and solar conditions are predicted.
Huang, Xinru; Roth, Connie B
2016-06-21
Recent studies have measured or predicted thickness-dependent shifts in density or specific volume of polymer films as a possible means of understanding changes in the glass transition temperature Tg(h) with decreasing film thickness with some experimental works claiming unrealistically large (25%-30%) increases in film density with decreasing thickness. Here we use ellipsometry to measure the temperature-dependent index of refraction of polystyrene (PS) films supported on silicon and investigate the validity of the commonly used Lorentz-Lorenz equation for inferring changes in density or specific volume from very thin films. We find that the density (specific volume) of these supported PS films does not vary by more than ±0.4% of the bulk value for film thicknesses above 30 nm, and that the small variations we do observe are uncorrelated with any free volume explanation for the Tg(h) decrease exhibited by these films. We conclude that the derivation of the Lorentz-Lorenz equation becomes invalid for very thin films as the film thickness approaches ∼20 nm, and that reports of large density changes greater than ±1% of bulk for films thinner than this likely suffer from breakdown in the validity of this equation or in the difficulties associated with accurately measuring the index of refraction of such thin films. For larger film thicknesses, we do observed small variations in the effective specific volume of the films of 0.4 ± 0.2%, outside of our experimental error. These shifts occur simultaneously in both the liquid and glassy regimes uniformly together starting at film thicknesses less than ∼120 nm but appear to be uncorrelated with Tg(h) decreases; possible causes for these variations are discussed.
Selective Reverberation Cancellation via Adaptive Beamforming
1985-12-01
pteropods , euphausiids and fish. The diurnal migrating cycle of the DSL and its frequency-selective backscattering properties have been studied inten...1976]. It is characterized by large fluctuations of temperature and salinity. In addition to the usual seasonal variations 72 in the top ~30m...a period of two years has revealed multiple scattering layers with substantial seasonal variations [Anderson, 1981]. The maximum measured volume
Mastalerz, Maria; Drobniak, A.; Strapoc, D.; Solano-Acosta, W.; Rupp, J.
2008-01-01
The Seelyville Coal Member of the Linton Formation (Pennsylvanian) in Indiana was studied to: 1) understand variations in pore characteristics within a coal seam at a single location and compare these variations with changes occurring between the same coal at different locations, 2) elaborate on the influence of mineral-matter and maceral composition on mesopore and micropore characteristics, and 3) discuss implications of these variations for coal bed gas content. The coal is high volatile bituminous rank with R0 ranging from 0.57% to 0.60%. BET specific surface areas (determined by nitrogen adsorption) of the coals samples studied range from 1.8 to 22.9??m2/g, BJH adsorption mesopore volumes from 0.0041 to 0.0339??cm3/g, and micropore volumes (determined by carbon dioxide adsorption) from 0.0315 to 0.0540??cm3/g. The coals that had the largest specific surface areas and largest mesopore volumes occur at the shallowest depths, whereas the smallest values for these two parameters occur in the deepest coals. Micropore volumes, in contrast, are not depth-dependent. In the coal samples examined for this study, mineral-matter content influenced both specific surface area as well as mesopore and micropore volumes. It is especially clear in the case of micropores, where an increase in mineral-matter content parallels the decrease of micropore volume of the coal. No obvious relationships were observed between the total vitrinite content and pore characteristics but, after splitting vitrinite into individual macerals, we see that collotelinite influences both meso- and micropore volume positively, whereas collodetrinite contributes to the reduction of mesopore and micropore volumes. There are large variations in gas content within a single coal at a single location. Because of this variability, the entire thickness of the coal must be desorbed in order to determine gas content reliably and to accurately calculate the level of gas saturation. ?? 2008 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakamura, Mitsuhiro; Shibuya, Keiko, E-mail: kei@kuhp.kyoto-u.ac.jp; Nakamura, Akira
2012-04-01
Purpose: To investigate the interfractional dose variations for intensity-modulated radiotherapy (RT) combined with breath-hold (BH) at end-exhalation (EE) for pancreatic cancer. Methods and Materials: A total of 10 consecutive patients with pancreatic cancer were enrolled. Each patient was fixed in the supine position on an individualized vacuum pillow with both arms raised. Computed tomography (CT) scans were performed before RT, and three additional scans were performed during the course of chemoradiotherapy using a conventional RT technique. The CT data were acquired under EE-BH conditions (BH-CT) using a visual feedback technique. The intensity-modulated RT plan, which used five 15-MV coplanar ports,more » was designed on the initial BH-CT set with a prescription dose of 39 Gy at 2.6 Gy/fraction. After rigid image registration between the initial and subsequent BH-CT scans, the dose distributions were recalculated on the subsequent BH-CT images under the same conditions as in planning. Changes in the dose-volume metrics of the gross tumor volume (GTV), clinical target volume (CTV = GTV + 5 mm), stomach, and duodenum were evaluated. Results: For the GTV and clinical target volume (CTV), the 95th percentile of the interfractional variations in the maximal dose, mean dose, dose covering 95% volume of the region of structure, and percentage of the volume covered by the 90% isodose line were within {+-}3%. Although the volume covered by the 39 Gy isodose line for the stomach and duodenum did not exceed 0.1 mL at planning, the volume covered by the 39 Gy isodose line for these structures was up to 11.4 cm{sup 3} and 1.8 cm{sup 3}, respectively. Conclusions: Despite variations in the gastrointestinal state and abdominal wall position at EE, the GTV and CTV were mostly ensured at the planned dose, with the exception of 1 patient. Compared with the duodenum, large variations in the stomach volume receiving high-dose radiation were observed, which might be beyond the negligible range in achieving dose escalation with intensity-modulated RT combined with BH at EE.« less
The significance of large variations in oil properties of the Dai Hung field, Vietnam
DOE Office of Scientific and Technical Information (OSTI.GOV)
Behrenbruch, P.; Du, P.Q.
1995-10-01
The Dai Hung Oil field, offshore Vietnam, is comprised of a complex subsurface structure containing stacked reservoir sequences typically found in many other Southeast Asian fields. Combined with areal fault compartmentalization, this situation has led to the observed, large variations in oil properties. Furthermore, the depositional environment in terms of burial history has created a unique overpressure situation which also had an affect, particularly on the crude saturation conditions of individual reservoirs. For commercial and technical reasons, this situation required a detailed analysis, both in terms of variation in crude assay and live oil properties. For whole crude properties: gravity,more » K factor, wax content and pour point-graphs were drawn up using a large data base of worldwide crudes against which the Dai Hung data could be validated. In case of PVT properties (bubble point and formation volume factor) existing industry correlations were examined. It could be concluded that the sweet, medium gravity and moderately waxy Dai Hung crude has whole crude properties which are comparable to other, similar crudes. The general framework of crude properties established is suitable to type other crudes, even if limited information is available. Of the existing PVT correlations tested, it was found that Standing`s correlation for the oil formation volume factor and the Kartoatmodjo-Schmidt correlation for the bubble point fitted the Dai Hung crude data the best. For the lower shrinkage Dai Hung crudes the Malaysian oil formation volume factor correlation by Omar-Todd gave the best data fit.« less
Analysis of growth of tetraploid nuclei in roots of Vicia faba.
Bansal, J; Davidson, D
1978-03-01
Growth of nuclei of a marked population of cells was determined from G1 to prophase in roots of Vicia faba. The cells were marked by inducing them to become tetraploid by treatment with 0.002% colchicine for 1 hr. Variation in nuclear volume is large; it is established in early G1 and maintained through interphase and into prophase. One consequence of this variation is that there is considerable overlap between volumes of nuclei of different ages in the cell cycle; nuclear volume, we suggest, cannot be used as an accurate indicator of the age of the cell in its growth cycle. Nuclei exhibit considerable variation in their growth rate through the cell cycle. Of the marked population of cells, about 65% had completed a cell cycle 14--15 hr after they were formed. These tetraploid nuclei have a cell cycle duration similar to that of fast cycling diploid cells of the same roots. Since they do complete a cell cycle, at least 65% of the nuclei studied must come from rapidly proliferating cells, showing that variability in nuclear volumes must be present in growing cells and cannot be attributed solely to the presence, in our samples, of non-cycling cells.
Large Topographic Rises on Venus: Implications for Mantle Upwelling
NASA Technical Reports Server (NTRS)
Stofan, Ellen R.; Smrekar, Suzanne E.; Bindschandler, Duane L.; Senske, David A.
1995-01-01
Topographic rises on Venus have been identified that are interpreted to be the surface manifestation of mantle upwellings. These features are classified into groups based on their dominant morphology. Atla and Beta Regiones are classified as rift-dominated, Dione, western Eistla, Bell, and Imdr Regiones as volcano-dominated, and Themis, eastern Eistla, and central Eistla Regiones as corona-dominated. At several topographic rises, geologic indicators were identified that may provide evidence of uplifted topography (e.g., volcanic flow features trending upslope). We assessed the minimum contribution of volcanic construction to the topography of each rise, which in general represents less than 5% of the volume of the rise, similar to the volumes of edifices at terrestrial hotspot swells. The total melt volume at each rise is approximated to be 10(exp 4) - 10(exp 6) cu km. The variations in morphology, topography, and gravity signatures at topographic rises are not interpreted to indicate variations in stage of evolution of a mantle upwelling. Instead, the morphologic variations between the three classes of topographic rises are interpreted to indicate the varying influences of lithospheric structure, plume characteristics, and regional tectonic environment. Within each class, variations in topography, gravity, and amount of volcanism may be indicative of differing stages of evolution. The similarity between swell and volcanic volumes for terrestrial and Venusian hotspots implies comparable time-integrated plume strengths for individual upwellings on the two planets.
Effect of cold drawing ratio on γ′ precipitation in Inconel X-750
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ha, Jeong Won; Research and Development Center, KOS Limited, Yangsan 626-230; Seong, Baek Seok
2014-10-15
Inconel X-750 is a Ni-based precipitation-hardened superalloy having large tensile and fracture strengths. In the study, X-750 wires were cold drawn to different extents. Small angle neutron scattering was employed to quantitatively measure the size and volume fraction of the γ′ phase as a function of the cold drawing ratio (DR) and aging temperature. The presence and size of γ′ precipitates were confirmed by transmission electron microscopy. The drawing ratio had an important effect on the volume fraction of the γ′ precipitates. However, the size of the precipitates was independent on the drawing ratio. The specimen with the minimum drawingmore » ratio (DR0) produced the largest volume fraction of γ′ as compared with large drawing ratio (DR) specimens such as DR17 and DR42. The small volume fraction of the γ′ phase for a sizeable drawing ratio was associated with the large amount of nucleation sites for secondary carbides, M{sub 23}C{sub 6}, and the fast diffusion path, i.e., dislocation, needed to form M{sub 23}C{sub 6}. A Cr depletion zone around the secondary carbides raised the solubility of γ′. Therefore, the significant drawing ratio contributing to the large volume fraction of the secondary carbides decreased the volume fraction of the γ′ precipitates in Inconel X-750. - Highlights: • The volume fraction of secondary carbides increased with the drawing ratio. • The volume fraction of γ′ decreased as the drawing ratio increased. • The drawing ratio affected the γ′ volume fraction with no variation of the γ' size. • The volume fraction of γ′ was affected by the secondary carbide volume fraction.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steenbakkers, Roel; Duppen, Joop C.; Fitton, Isabelle
2006-02-01
Purpose: Target delineation using only CT information introduces large geometric uncertainties in radiotherapy for lung cancer. Therefore, a reduction of the delineation variability is needed. The impact of including a matched CT scan with 2-[{sup 18}F]fluoro-2-deoxy-D-glucose positron emission tomography (FDG-PET) and adaptation of the delineation protocol and software on target delineation in lung cancer was evaluated in an extensive multi-institutional setting and compared with the delineations using CT only. Methods and Materials: The study was separated into two phases. For the first phase, 11 radiation oncologists (observers) delineated the gross tumor volume (GTV), including the pathologic lymph nodes of 22more » lung cancer patients (Stages I-IIIB) on CT only. For the second phase (1 year later), the same radiation oncologists delineated the GTV of the same 22 patients on a matched CT-FDG-PET scan using an adapted delineation protocol and software (according to the results of the first phase). All delineated volumes were analyzed in detail. The observer variation was computed in three dimensions by measuring the distance between the median GTV surface and each individual GTV. The variation in distance of all radiation oncologists was expressed as a standard deviation. The observer variation was evaluated for anatomic regions (lung, mediastinum, chest wall, atelectasis, and lymph nodes) and interpretation regions (agreement and disagreement; i.e., >80% vs. <80% of the radiation oncologists delineated the same structure, respectively). All radiation oncologist-computer interactions were recorded and analyzed with a tool called 'Big Brother.' Results: The overall three-dimensional observer variation was reduced from 1.0 cm (SD) for the first phase (CT only) to 0.4 cm (SD) for the second phase (matched CT-FDG-PET). The largest reduction in the observer variation was seen in the atelectasis region (SD 1.9 cm reduced to 0.5 cm). The mean ratio between the common and encompassing volume was 0.17 and 0.29 for the first and second phases, respectively. For the first phase, the common volume was 0 in 4 patients (i.e., no common point for all GTVs). In the second phase, the common volume was always >0. For all anatomic regions, the interpretation differences among the radiation oncologists were reduced. The amount of disagreement was 45% and 18% for the first and second phase, respectively. Furthermore, the mean delineation time (12 vs. 16 min, p < 0.001) and mean number of corrections (25 vs. 39, p < 0.001) were reduced in the second phase compared with the first phase. Conclusion: For high-precision radiotherapy, the delineation of lung target volumes using only CT introduces too great a variability among radiation oncologists. Implementing matched CT-FDG-PET and adapted delineation protocol and software reduced observer variation in lung cancer delineation significantly with respect to CT only. However, the remaining observer variation was still large compared with other geometric uncertainties (setup variation and organ motion)« less
A Variational Statistical-Field Theory for Polar Liquid Mixtures
NASA Astrophysics Data System (ADS)
Zhuang, Bilin; Wang, Zhen-Gang
Using a variational field-theoretic approach, we derive a molecularly-based theory for polar liquid mixtures. The resulting theory consists of simple algebraic expressions for the free energy of mixing and the dielectric constant as functions of mixture composition. Using only the dielectric constants and the molar volumes of the pure liquid constituents, the theory evaluates the mixture dielectric constants in good agreement with the experimental values for a wide range of liquid mixtures, without using adjustable parameters. In addition, the theory predicts that liquids with similar dielectric constants and molar volumes dissolve well in each other, while sufficient disparity in these parameters result in phase separation. The calculated miscibility map on the dielectric constant-molar volume axes agrees well with known experimental observations for a large number of liquid pairs. Thus the theory provides a quantification for the well-known empirical ``like-dissolves-like'' rule. Bz acknowledges the A-STAR fellowship for the financial support.
Jin, Peng; van der Horst, Astrid; de Jong, Rianne; van Hooft, Jeanin E; Kamphuis, Martijn; van Wieringen, Niek; Machiels, Melanie; Bel, Arjan; Hulshof, Maarten C C M; Alderliesten, Tanja
2015-12-01
The aim of this study was to quantify interfractional esophageal tumor position variation using markers and investigate the use of markers for setup verification. Sixty-five markers placed in the tumor volumes of 24 esophageal cancer patients were identified in computed tomography (CT) and follow-up cone-beam CT. For each patient we calculated pairwise distances between markers over time to evaluate geometric tumor volume variation. We then quantified marker displacements relative to bony anatomy and estimated the variation of systematic (Σ) and random errors (σ). During bony anatomy-based setup verification, we visually inspected whether the markers were inside the planning target volume (PTV) and attempted marker-based registration. Minor time trends with substantial fluctuations in pairwise distances implied tissue deformation. Overall, Σ(σ) in the left-right/cranial-caudal/anterior-posterior direction was 2.9(2.4)/4.1(2.4)/2.2(1.8) mm; for the proximal stomach, it was 5.4(4.3)/4.9(3.2)/1.9(2.4) mm. After bony anatomy-based setup correction, all markers were inside the PTV. However, due to large tissue deformation, marker-based registration was not feasible. Generally, the interfractional position variation of esophageal tumors is more pronounced in the cranial-caudal direction and in the proximal stomach. Currently, marker-based setup verification is not feasible for clinical routine use, but markers can facilitate the setup verification by inspecting whether the PTV covers the tumor volume adequately. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Ung, K A; White, R; Mathlum, M; Mak-Hau, V; Lynch, R
2014-01-01
In post-prostatectomy radiotherapy to the prostatic bed, consistent bladder volume is essential to maintain the position of treatment target volume. We assessed the differences between bladder volume readings from a portable bladder scanner (BS-V) and those obtained from planning CT (CT-V) or cone-beam CT (CBCT-V). Interfraction bladder volume variation was also determined. BS-V was recorded before and after planning CT or CBCT. The percentage differences between the readings using the two imaging modalities, standard deviations and 95% confidence intervals were determined. Data were analysed for the whole patient cohort and separately for the older BladderScan™ BVI3000 and newer BVI9400 model. Interfraction bladder volume variation was determined from the percentage difference between the CT-V and CBCT-V. Treatment duration, incorporating the time needed for BS and CBCT, was recorded. Fourteen patients were enrolled, producing 133 data sets for analysis. BS-V was taken using the BVI9400 in four patients (43 data sets). The mean BS-V was 253.2 mL, and the mean CT-V or CBCT-V was 199 cm(3). The mean percentage difference between the two modalities was 19.7% (SD 42.2; 95%CI 12.4 to 26.9). The BVI9400 model produced more consistent readings, with a mean percentage difference of -6.2% (SD 27.8; 95% CI -14.7 to -2.4%). The mean percentage difference between CT-V and CBCT-V was 31.3% (range -48% to 199.4%). Treatment duration from time of first BS reading to CBCT was, on average, 12 min (range 6-27). The BS produces bladder volume readings of an average 19.7% difference from CT-V or CBCT-V and can potentially be used to screen for large interfraction bladder volume variations in radiotherapy to prostatic bed. The observed interfraction bladder volume variation suggests the need to improve bladder volume consistency. Incorporating the BS into practice is feasible. © 2014 The Royal Australian and New Zealand College of Radiologists.
Cryogenic Calcite: A Morphologic and Isotopic Analog to the ALH84001 Carbonates
NASA Technical Reports Server (NTRS)
Niles, P. B.; Leshin, L. A.; Socki, R. A.; Guan, Y.; Ming, D. W.; Gibson, E. K.
2004-01-01
Martian meteorite ALH84001 carbonates preserve large and variable microscale isotopic compositions, which in some way reflect their formation environment. These measurements show large variations (>20%) in the carbon and oxygen isotopic compositions of the carbonates on a 10-20 micron scale that are correlated with chemical composition. However, the utilization of these data sets for interpreting the formation conditions of the carbonates is complex due to lack of suitable terrestrial analogs and the difficulty of modeling under non-equilibrium conditions. Thus, the mechanisms and processes are largely unknown that create and preserve large microscale isotopic variations in carbonate minerals. Experimental tests of the possible environments and mechanisms that lead to large microscale isotopic variations can help address these concerns. One possible mechanism for creating large carbon isotopic variations in carbonates involves the freezing of water. Carbonates precipitate during extensive CO2 degassing that occurs during the freezing process as the fluid s decreasing volume drives CO2 out. This rapid CO2 degassing results in a kinetic isotopic fractionation where the CO2 gas has a much lighter isotopic composition causing an enrichment of 13C in the remaining dissolved bicarbonate. This study seeks to determine the suitability of cryogenically formed carbonates as analogs to ALH84001 carbonates. Specifically, our objective is to determine how accurately models using equilibrium fractionation factors approximate the isotopic compositions of cryogenically precipitated carbonates. This includes determining the accuracy of applying equilibrium fractionation factors during a kinetic process, and determining how isotopic variations in the fluid are preserved in microscale variations in the precipitated carbonates.
NASA Astrophysics Data System (ADS)
Trolese, Matteo; Giordano, Guido; Cifelli, Francesca; Winkler, Aldo; Mattei, Massimo
2017-11-01
Few studies have detailed the thermal architecture of large-volume pyroclastic density current deposits, although such work has a clear importance for understanding the dynamics of eruptions of this magnitude. Here we examine the temperature of emplacement of large-volume caldera-forming ignimbrites related to magmatic and phreatomagmatic eruptions at the Colli Albani volcano, Italy, by using thermal remanent magnetization analysis on both lithic and juvenile clasts. Results show that all the magmatic ignimbrites were deposited at high temperature, between the maximum blocking temperature of the magnetic carrier (600-630 °C) and the glass transition temperature (about 710 °C). Temperature estimations for the phreatomagmatic ignimbrite range between 200 and 400 °C, with most of the clasts emplaced between 200 and 320 °C. Because all the investigated ignimbrites, magmatic and phreatomagmatic, share similar magma composition, volume and mobility, we attribute the temperature difference to magma-water interaction, highlighting its pronounced impact on thermal dissipation, even in large-volume eruptions. The homogeneity of the deposit temperature of each ignimbrite across its areal extent, which is maintained across topographic barriers, suggests that these systems are thermodynamically isolated from the external environment for several tens of kilometers. Based on these findings, we propose that these large-volume ignimbrites are dominated by the mass flux, which forces the lateral transport of mass, momentum, and thermal energy for distances up to tens of kilometers away from the vent. We conclude that spatial variation of the emplacement temperature can be used as a proxy for determining the degree of forced-convection flow.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gangsaas, Anne, E-mail: a.gangsaas@erasmusmc.nl; Astreinidou, Eleftheria; Quint, Sandra
2013-10-01
Purpose: To investigate interfraction setup variations of the primary tumor, elective nodes, and vertebrae in laryngeal cancer patients and to validate protocols for cone beam computed tomography (CBCT)-guided correction. Methods and Materials: For 30 patients, CBCT-measured displacements in fractionated treatments were used to investigate population setup errors and to simulate residual setup errors for the no action level (NAL) offline protocol, the extended NAL (eNAL) protocol, and daily CBCT acquisition with online analysis and repositioning. Results: Without corrections, 12 of 26 patients treated with radical radiation therapy would have experienced a gradual change (time trend) in primary tumor setup ≥4more » mm in the craniocaudal (CC) direction during the fractionated treatment (11/12 in caudal direction, maximum 11 mm). Due to these trends, correction of primary tumor displacements with NAL resulted in large residual CC errors (required margin 6.7 mm). With the weekly correction vector adjustments in eNAL, the trends could be largely compensated (CC margin 3.5 mm). Correlation between movements of the primary and nodal clinical target volumes (CTVs) in the CC direction was poor (r{sup 2}=0.15). Therefore, even with online setup corrections of the primary CTV, the required CC margin for the nodal CTV was as large as 6.8 mm. Also for the vertebrae, large time trends were observed for some patients. Because of poor CC correlation (r{sup 2}=0.19) between displacements of the primary CTV and the vertebrae, even with daily online repositioning of the vertebrae, the required CC margin around the primary CTV was 6.9 mm. Conclusions: Laryngeal cancer patients showed substantial interfraction setup variations, including large time trends, and poor CC correlation between primary tumor displacements and motion of the nodes and vertebrae (internal tumor motion). These trends and nonrigid anatomy variations have to be considered in the choice of setup verification protocol and planning target volume margins. eNAL could largely compensate time trends with minor prolongation of fraction time.« less
Batterman, Stuart
2015-01-01
Patterns of traffic activity, including changes in the volume and speed of vehicles, vary over time and across urban areas and can substantially affect vehicle emissions of air pollutants. Time-resolved activity at the street scale typically is derived using temporal allocation factors (TAFs) that allow the development of emissions inventories needed to predict concentrations of traffic-related air pollutants. This study examines the spatial and temporal variation of TAFs, and characterizes prediction errors resulting from their use. Methods are presented to estimate TAFs and their spatial and temporal variability and used to analyze total, commercial and non-commercial traffic in the Detroit, Michigan, U.S. metropolitan area. The variability of total volume estimates, quantified by the coefficient of variation (COV) representing the percentage departure from expected hourly volume, was 21, 33, 24 and 33% for weekdays, Saturdays, Sundays and holidays, respectively. Prediction errors mostly resulted from hour-to-hour variability on weekdays and Saturdays, and from day-to-day variability on Sundays and holidays. Spatial variability was limited across the study roads, most of which were large freeways. Commercial traffic had different temporal patterns and greater variability than noncommercial vehicle traffic, e.g., the weekday variability of hourly commercial volume was 28%. The results indicate that TAFs for a metropolitan region can provide reasonably accurate estimates of hourly vehicle volume on major roads. While vehicle volume is only one of many factors that govern on-road emission rates, air quality analyses would be strengthened by incorporating information regarding the uncertainty and variability of traffic activity. PMID:26688671
Binzoni, T; Leung, T S; Rüfenacht, D; Delpy, D T
2006-01-21
Based on quasi-elastic scattering theory (and random walk on a lattice approach), a model of laser-Doppler flowmetry (LDF) has been derived which can be applied to measurements in large tissue volumes (e.g. when the interoptode distance is >30 mm). The model holds for a semi-infinite medium and takes into account the transport-corrected scattering coefficient and the absorption coefficient of the tissue, and the scattering coefficient of the red blood cells. The model holds for anisotropic scattering and for multiple scattering of the photons by the moving scatterers of finite size. In particular, it has also been possible to take into account the simultaneous presence of both Brownian and pure translational movements. An analytical and simplified version of the model has also been derived and its validity investigated, for the case of measurements in human skeletal muscle tissue. It is shown that at large optode spacing it is possible to use the simplified model, taking into account only a 'mean' light pathlength, to predict the blood flow related parameters. It is also demonstrated that the 'classical' blood volume parameter, derived from LDF instruments, may not represent the actual blood volume variations when the investigated tissue volume is large. The simplified model does not need knowledge of the tissue optical parameters and thus should allow the development of very simple and cost-effective LDF hardware.
Yee, Yohan; Fernandes, Darren J; French, Leon; Ellegood, Jacob; Cahill, Lindsay S; Vousden, Dulcie A; Spencer Noakes, Leigh; Scholz, Jan; van Eede, Matthijs C; Nieman, Brian J; Sled, John G; Lerch, Jason P
2018-05-18
An organizational pattern seen in the brain, termed structural covariance, is the statistical association of pairs of brain regions in their anatomical properties. These associations, measured across a population as covariances or correlations usually in cortical thickness or volume, are thought to reflect genetic and environmental underpinnings. Here, we examine the biological basis of structural volume covariance in the mouse brain. We first examined large scale associations between brain region volumes using an atlas-based approach that parcellated the entire mouse brain into 318 regions over which correlations in volume were assessed, for volumes obtained from 153 mouse brain images via high-resolution MRI. We then used a seed-based approach and determined, for 108 different seed regions across the brain and using mouse gene expression and connectivity data from the Allen Institute for Brain Science, the variation in structural covariance data that could be explained by distance to seed, transcriptomic similarity to seed, and connectivity to seed. We found that overall, correlations in structure volumes hierarchically clustered into distinct anatomical systems, similar to findings from other studies and similar to other types of networks in the brain, including structural connectivity and transcriptomic similarity networks. Across seeds, this structural covariance was significantly explained by distance (17% of the variation, up to a maximum of 49% for structural covariance to the visceral area of the cortex), transcriptomic similarity (13% of the variation, up to maximum of 28% for structural covariance to the primary visual area) and connectivity (15% of the variation, up to a maximum of 36% for structural covariance to the intermediate reticular nucleus in the medulla) of covarying structures. Together, distance, connectivity, and transcriptomic similarity explained 37% of structural covariance, up to a maximum of 63% for structural covariance to the visceral area. Additionally, this pattern of explained variation differed spatially across the brain, with transcriptomic similarity playing a larger role in the cortex than subcortex, while connectivity explains structural covariance best in parts of the cortex, midbrain, and hindbrain. These results suggest that both gene expression and connectivity underlie structural volume covariance, albeit to different extents depending on brain region, and this relationship is modulated by distance. Copyright © 2018. Published by Elsevier Inc.
Evolution of brain region volumes during artificial selection for relative brain size.
Kotrschal, Alexander; Zeng, Hong-Li; van der Bijl, Wouter; Öhman-Mägi, Caroline; Kotrschal, Kurt; Pelckmans, Kristiaan; Kolm, Niclas
2017-12-01
The vertebrate brain shows an extremely conserved layout across taxa. Still, the relative sizes of separate brain regions vary markedly between species. One interesting pattern is that larger brains seem associated with increased relative sizes only of certain brain regions, for instance telencephalon and cerebellum. Till now, the evolutionary association between separate brain regions and overall brain size is based on comparative evidence and remains experimentally untested. Here, we test the evolutionary response of brain regions to directional selection on brain size in guppies (Poecilia reticulata) selected for large and small relative brain size. In these animals, artificial selection led to a fast response in relative brain size, while body size remained unchanged. We use microcomputer tomography to investigate how the volumes of 11 main brain regions respond to selection for larger versus smaller brains. We found no differences in relative brain region volumes between large- and small-brained animals and only minor sex-specific variation. Also, selection did not change allometric scaling between brain and brain region sizes. Our results suggest that brain regions respond similarly to strong directional selection on relative brain size, which indicates that brain anatomy variation in contemporary species most likely stem from direct selection on key regions. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.
Luo, Yunjian; Zhang, Xiaoquan; Wang, Xiaoke; Ren, Yin
2014-01-01
Biomass conversion factors (BCFs, defined as the ratios of tree components (i.e. stem, branch, foliage and root), as well as aboveground and whole biomass of trees to growing stock volume, Mg m-3) are considered as important parameters in large-scale forest biomass carbon estimation. To date, knowledge of possible sources of the variation in BCFs is still limited at large scales. Using our compiled forest biomass dataset of China, we presented forest type-specific values of BCFs, and examined the variation in BCFs in relation to forest type, stand development and environmental factors (climate and soil fertility). BCFs exhibited remarkable variation across forest types, and also were significantly related to stand development (especially growing stock volume). BCFs (except Stem BCF) had significant relationships with mean annual temperature (MAT) and mean annual precipitation (MAP) (P<0.001). Climatic data (MAT and MAP) collectively explained 10.0-25.0% of the variation in BCFs (except Stem BCFs). Moreover, stronger climatic effects were found on BCFs for functional components (i.e. branch, foliage and root) than BCFs for combined components (i.e. aboveground section and whole trees). A general trend for BCFs was observed to decrease and then increase from low to high soil fertility. When qualitative soil fertility and climatic data (MAT and MAP) were combined, they explained 14.1-29.7% of the variation in in BCFs (except Stem BCFs), adding only 4.1-4.9% than climatic data used. Therefore, to reduce the uncertainty induced by BCFs in forest carbon estimates, we should apply values of BCFs for a specified forest type, and also consider climatic and edaphic effects, especially climatic effect, in developing predictive models of BCFs (except Stem BCF).
Wang, Xiaoke; Ren, Yin
2014-01-01
Biomass conversion factors (BCFs, defined as the ratios of tree components (i.e. stem, branch, foliage and root), as well as aboveground and whole biomass of trees to growing stock volume, Mg m−3) are considered as important parameters in large-scale forest biomass carbon estimation. To date, knowledge of possible sources of the variation in BCFs is still limited at large scales. Using our compiled forest biomass dataset of China, we presented forest type-specific values of BCFs, and examined the variation in BCFs in relation to forest type, stand development and environmental factors (climate and soil fertility). BCFs exhibited remarkable variation across forest types, and also were significantly related to stand development (especially growing stock volume). BCFs (except Stem BCF) had significant relationships with mean annual temperature (MAT) and mean annual precipitation (MAP) (P<0.001). Climatic data (MAT and MAP) collectively explained 10.0–25.0% of the variation in BCFs (except Stem BCFs). Moreover, stronger climatic effects were found on BCFs for functional components (i.e. branch, foliage and root) than BCFs for combined components (i.e. aboveground section and whole trees). A general trend for BCFs was observed to decrease and then increase from low to high soil fertility. When qualitative soil fertility and climatic data (MAT and MAP) were combined, they explained 14.1–29.7% of the variation in in BCFs (except Stem BCFs), adding only 4.1–4.9% than climatic data used. Therefore, to reduce the uncertainty induced by BCFs in forest carbon estimates, we should apply values of BCFs for a specified forest type, and also consider climatic and edaphic effects, especially climatic effect, in developing predictive models of BCFs (except Stem BCF). PMID:24728222
Freas, C A; Bingman, K; Ladage, L D; Pravosudov, V V
2013-01-01
Variation in environmental conditions associated with differential selection on spatial memory has been hypothesized to result in evolutionary changes in the morphology of the hippocampus, a brain region involved in spatial memory. At the same time, it is well known that the morphology of the hippocampus might also be directly affected by environmental conditions. Understanding the role of environment-based plasticity is therefore critical when investigating potential adaptive evolutionary changes in the hippocampus associated with environmental variation. We previously demonstrated large elevation-related variation in hippocampus morphology in mountain chickadees over an extremely small spatial scale. We hypothesized that this variation is related to differential selection pressures associated with differences in winter climate severity along an elevation gradient, which make different demands on spatial memory used for food cache retrieval. Here, we tested whether such variation is experience based, generated by potential differences in the environment, by comparing the hippocampus morphology of chickadees from different elevations maintained in a uniform captive environment in a laboratory with those sampled directly from the wild. In addition, we compared hippocampal neuron soma size in chickadees sampled directly from the wild with those maintained in laboratory conditions with restricted and unrestricted spatial memory use via manipulation of food-caching experiences to test whether memory use can affect neuron soma size. There were significant elevation-related differences in hippocampus volume and the total number of hippocampal neurons, but not in neuron soma size, in captive birds. Captive environmental conditions were associated with a large reduction in hippocampus volume and neuron soma size, but not in the total number of neurons or in neuron soma size in other telencephalic regions. Restriction of memory use while in laboratory conditions produced no significant effects on hippocampal neuron soma size. Overall our results showed that captivity has a strong effect on hippocampus volume, which could be due, at least partly, to a reduction in neuron soma size specifically in the hippocampus, but it did not override elevation-related differences in hippocampus volume or in the total number of hippocampal neurons. These data are consistent with the idea of the adaptive nature of the elevation-related differences associated with selection on spatial memory, while at the same time demonstrating additional environment-based plasticity in hippocampus volume, but not in neuron numbers. Our results, however, cannot rule out that the differences between elevations might still be driven by some developmental or early posthatching conditions/experiences. © 2013 S. Karger AG, Basel.
Construction and Start-up of a Large-Volume Thermostat for Dielectric-Constant Gas Thermometry
NASA Astrophysics Data System (ADS)
Merlone, A.; Moro, F.; Zandt, T.; Gaiser, C.; Fellmuth, B.
2010-07-01
A liquid-bath thermostat with a volume of about 800 L was designed to provide a suitable thermal environment for a dielectric-constant gas thermometer (DCGT) in the range from the triple point of mercury to the melting point of gallium. In the article, results obtained with the unique, huge thermostat without the DCGT measuring chamber are reported to demonstrate the capability of controlling the temperature of very large systems at a metrological level. First tests showed that the bath together with its temperature controller provide a temperature variation of less than ±0.5mK peak-to-peak. This temperature instability could be maintained over a period of several days. In the central working volume (diameter—500mm, height—650mm), in which the vacuum chamber containing the measuring system of the DCGT will be placed later, the temperature inhomogeneity has been demonstrated to be also well below 1mK.
Parfitt, E.A.; Wilson, L.; Neal, C.A.
1995-01-01
The heights of lava fountains formed in Hawaiian-style eruptions are controlled by magma gas content, volume flux and the amounts of lava re-entrainment and gas bubble coalescence. Theoretical models of lava fountaining are used to analyse data on lava fountain height variations collected during the 1983-1986 Pu'u 'O'o vent of Kilauea volcano, Hawaii. The results show that the variable fountain heights can be largely explained by the impact of variations in volume flux and amount of lava re-entrainment on erupting magmas with a constant gas content of ???0.32 wt.% H2O. However, the gas content of the magma apparently declined by ???0.05 wt.% during the last 10 episodes of the eruption series and this decline is attributed to more extensive pre-eruption degassing due to a shallowing of the sub-vent feeder dike. It is concluded that variations in lava fountain height cannot be simply interpreted as variations in gas content, as has previously been suggested, but that fountain height can still be a useful guide to minimum gas contents. Where sufficient data are available on eruptive volume fluxes and extent of lava entrainment, greatly improved estimates can be made of magma gas content from lava fountain height. ?? 1995 Springer-Verlag.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olive, Keith A.; School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota, 55455; Peloso, Marco
2011-02-15
We consider the signatures of a domain wall produced in the spontaneous symmetry breaking involving a dilatonlike scalar field coupled to electromagnetism. Domains on either side of the wall exhibit slight differences in their respective values of the fine-structure constant, {alpha}. If such a wall is present within our Hubble volume, absorption spectra at large redshifts may or may not provide a variation in {alpha} relative to the terrestrial value, depending on our relative position with respect to the wall. This wall could resolve the contradiction between claims of a variation of {alpha} based on Keck/Hires data and of themore » constancy of {alpha} based on Very Large Telescope data. We derive the properties of the wall and the parameters of the underlying microscopic model required to reproduce the possible spatial variation of {alpha}. We discuss the constraints on the existence of the low-energy domain wall and describe its observational implications concerning the variation of the fundamental constants.« less
Use of a Modern Polymerization Pilot-Plant for Undergraduate Control Projects.
ERIC Educational Resources Information Center
Mendoza-Bustos, S. A.; And Others
1991-01-01
Described is a project where students gain experience in handling large volumes of hazardous materials, process start up and shut down, equipment failures, operational variations, scaling up, equipment cleaning, and run-time scheduling while working in a modern pilot plant. Included are the system design, experimental procedures, and results. (KR)
Data retrieval system provides unlimited hardware design information
NASA Technical Reports Server (NTRS)
Rawson, R. D.; Swanson, R. L.
1967-01-01
Data is input to magnetic tape on a single format card that specifies the system, location, and component, the test point identification number, the operators initial, the date, a data code, and the data itself. This method is efficient for large volume data storage and retrieval, and permits output variations without continuous program modifications.
NASA Astrophysics Data System (ADS)
Zhang, Xiaolin; Mao, Mao; Yin, Yan; Wang, Bin
2018-01-01
This study numerically evaluates the effects of aerosol microphysics, including coated volume fraction of black carbon (BC), shell/core ratio, and size distribution, on the absorption enhancement (
Measurement, variation, and scaling of osteocyte lacunae: a case study in birds.
D'Emic, Michael D; Benson, Roger B J
2013-11-01
Basic issues surrounding osteocyte biology are still poorly understood, including the variability of osteocyte morphology within and among bones, individuals, and species. Several studies have suggested that the volume or shape of osteocytes (or their lacunae) is related to bone and/or organismal growth rate or metabolism, but the nature of this relationship, if any, is unclear. Furthermore, several studies have linked osteocyte lacuna volume with genome size or growth rate and suggested that osteocyte lacuna volume is unrelated to body size. Herein the scaling of osteocyte lacuna volume with body mass, growth and basal metabolic rates, genome size, and red blood cell size is examined using a broad sample of extant birds within a phylogenetic framework. Over 12,000 osteocyte lacuna axes were measured in a variety of bones from 34 avian and four non-avian dinosaur species. Osteocyte lacunae in parallel-fibered bone are scalene ellipsoids; their morphology and volume cannot be reliably estimated from any single thin section, and using a prolate ellipsoid model to estimate osteocyte lacuna volume results in a substantial (ca. 2-7 times) underestimate relative to true lacunar volume. Orthogonal thin sections reveal that in birds, even when only observing parallel-fibered, primary, cortical bone, intra-skeletal variation in osteocyte lacuna volume and shape is very high (volumes vary by a factor of 5.4 among different bones), whereas variation among homologous bones of the same species is low (1.2-44%; mean=12%). Ordinary and phylogenetically informed bivariate and multiple regressions demonstrate that in birds, osteocyte volume scales significantly but weakly with body mass and mass-specific basal metabolic rate and moderately with genome size, but not with erythrocyte size. Avian whole-body growth rate and osteocyte lacuna volume are weakly and inversely related. Finally, we present the first three-dimensionally calculated osteocyte volumes for several non-avian dinosaurs, which are much larger than previously reported values and smaller than those of large extant avians. Osteocyte volumes estimated from a single transverse section and assuming prolate morphology, as done in previous studies, are relative underestimates in theropod dinosaurs compared to sauropod dinosaurs, raising the possibility that no major change in osteocyte volumes (and genome size) occurred within Theropoda on the lineage leading to birds. Osteocyte volume is intertwined with several organismal attributes whose relative importance varies at a number of hierarchical levels. © 2013.
NASA Astrophysics Data System (ADS)
Meyer, Victoria; Saatchi, Sassan; Clark, David B.; Keller, Michael; Vincent, Grégoire; Ferraz, António; Espírito-Santo, Fernando; d'Oliveira, Marcus V. N.; Kaki, Dahlia; Chave, Jérôme
2018-06-01
Large tropical trees store significant amounts of carbon in woody components and their distribution plays an important role in forest carbon stocks and dynamics. Here, we explore the properties of a new lidar-derived index, the large tree canopy area (LCA) defined as the area occupied by canopy above a reference height. We hypothesize that this simple measure of forest structure representing the crown area of large canopy trees could consistently explain the landscape variations in forest volume and aboveground biomass (AGB) across a range of climate and edaphic conditions. To test this hypothesis, we assembled a unique dataset of high-resolution airborne light detection and ranging (lidar) and ground inventory data in nine undisturbed old-growth Neotropical forests, of which four had plots large enough (1 ha) to calibrate our model. We found that the LCA for trees greater than 27 m (˜ 25-30 m) in height and at least 100 m2 crown size in a unit area (1 ha), explains more than 75 % of total forest volume variations, irrespective of the forest biogeographic conditions. When weighted by average wood density of the stand, LCA can be used as an unbiased estimator of AGB across sites (R2 = 0.78, RMSE = 46.02 Mg ha-1, bias = -0.63 Mg ha-1). Unlike other lidar-derived metrics with complex nonlinear relations to biomass, the relationship between LCA and AGB is linear and remains unique across forest types. A comparison with tree inventories across the study sites indicates that LCA correlates best with the crown area (or basal area) of trees with diameter greater than 50 cm. The spatial invariance of the LCA-AGB relationship across the Neotropics suggests a remarkable regularity of forest structure across the landscape and a new technique for systematic monitoring of large trees for their contribution to AGB and changes associated with selective logging, tree mortality and other types of tropical forest disturbance and dynamics.
Bioluminescence of Marine Dinoflagellates
Seliger, H. H.; Fastie, W. G.; Taylor, W. R.; McElroy, W. D.
1962-01-01
Portable light-baffled underwater photometers have been designed for the measurement of dinoflagellate bioluminescence by day and night. Maximal light emission is obtained by mechanical stimulation in a defined volume. The pump which stimulates the dinoflagellates also constantly replenishes the sample volume so that continuous measurements are possible. Evidence for both diurnal variation and vertical migration is presented. Using luminous bacteria for calibration a single dinoflagellate has been found to emit of the order of 1010 light quanta per flash. The technique suggests that large scale mapping of bioluminescence is feasible. PMID:19873546
NASA Technical Reports Server (NTRS)
Head, James W., III; Wilson, Lionel
1987-01-01
Factors most important in determining fountain height in Hawaiian-type basaltic eruptions were assessed on the basis of theoretical calculations and observations at Pu'u 'O'o vent, east rift zone of Kilauea, Hawaii. It is shown that fountain height is very sensitive to changes in exsolved gas content (and, thus, can be used to estimate variability in exsolved gas content) and relatively insensitive to large variations in volume flux. Volume flux was found to be the most important parameter determining the equilibrium vent diameter. The results of calculations also indicate that there was a general increase in magma gas content over the first 20 episodes of the Pu'u 'O'o eruption and that gas depletion took place in the conduit beneath the vent during repose periods.
Photoacoustic projection imaging using an all-optical detector array
NASA Astrophysics Data System (ADS)
Bauer-Marschallinger, J.; Felbermayer, K.; Berer, T.
2018-02-01
We present a prototype for all-optical photoacoustic projection imaging. By generating projection images, photoacoustic information of large volumes can be retrieved with less effort compared to common photoacoustic computed tomography where many detectors and/or multiple measurements are required. In our approach, an array of 60 integrating line detectors is used to acquire photoacoustic waves. The line detector array consists of fiber-optic MachZehnder interferometers, distributed on a cylindrical surface. From the measured variation of the optical path lengths of the interferometers, induced by photoacoustic waves, a photoacoustic projection image can be reconstructed. The resulting images represent the projection of the three-dimensional spatial light absorbance within the imaged object onto a two-dimensional plane, perpendicular to the line detector array. The fiber-optic detectors achieve a noise-equivalent pressure of 24 Pascal at a 10 MHz bandwidth. We present the operational principle, the structure of the array, and resulting images. The system can acquire high-resolution projection images of large volumes within a short period of time. Imaging large volumes at high frame rates facilitates monitoring of dynamic processes.
NASA Astrophysics Data System (ADS)
Singh, A.; Seitz, F.; Schwatke, C.; Güntner, A.
2012-04-01
Satellite altimetry is capable of measuring surface water level changes of large water bodies. This is especially interesting for regions where in-situ gauges are sparse or not available. Temporal variations of coastline and horizontal extent of a water body can be derived from optical remote sensing data. A joint analysis of both data types together with a digital elevation model allows for the estimation of water volume changes. Related variations of water mass map into the observations of the satellite gravity field mission GRACE. In this presentation, we demonstrate the application of heterogeneuous remote sensing methods for studying chages of water volume and mass of the Aral Sea and compare the results with respect to their consistency. Our analysis covers the period 2002-2011. In particular we deal with data from multi-mission radar and laser satellite altimetry that are analyzed in combination with coastlines from Landsat images. The resultant vertical and horizontal variations of the lake surface are geometrically intersected with the bathymetry of the Aral Sea in order to compute volumetric changes. These are transformed into variations of water mass that are subsequently compared with storage changes derived from GRACE satellite gravimetry. Hence we obtain a comprehensive picture of the hydrological changes in the region. Observations from all datasets correspond quite well with each other with respect to their temporal development. However, geometrically determined volume changes and mass changes observed by GRACE agree less well during years of heavy water inflow in to the Aral Sea from its southern tributary 'Amu Darya' since the GRACE signals are contaminated by the large mass of water stored in the river delta and prearalie region On the other hand, GRACE observations of the river basins of Syr Darya and Amu Dayra correspond very well with hydrological models and mass changes computed from the balance of precipitation, evaporation and runoff determined from the atmospheric-terrestrial water balance.
West, Robert M; Cattle, Brian A; Bouyssie, Marianne; Squire, Iain; de Belder, Mark; Fox, Keith A A; Boyle, Roger; McLenachan, Jim M; Batin, Philip D; Greenwood, Darren C; Gale, Chris P
2011-03-01
To quantify the determinants of primary percutaneous coronary intervention (PCI) performance in England and Wales between 2004 and 2007. All 8653 primary PCI cases admitted to acute hospitals in England and Wales as recorded in the Myocardial Ischaemia National Audit Project (MINAP) 2004-2007. We studied the impact of the volume of primary PCI cases (hospital volume) on door-to-balloon (DTB) times and the proportion of patients treated with primary PCI (hospital proportion) on 30-day mortality and employed regression analysis to identify reasons for DTB time variations with a multilevel component to express hospital variation. The proportion of patients receiving primary PCI increased from 5% in 2004 to 20% in 2007. Median DTB times reduced from 84 min in 2004 to 61 min in 2007. Median DTB times decreased as the number of primary PCI procedures increased. The 30-day all-cause mortality rate for hospitals performing primary PCI on >25% of ST-elevation myocardial infarction patients [5.0%; 95% confidence interval (CI): 3.9-6.1%] was almost double that of hospitals performing primary PCI on more than 75% (2.7%; 95% CI: 2.0-3.5%). Time-of-day, year of admission, sex, and diabetes significantly influenced DTB times. Hospital variation was evident by a hospital-level DTB time standard deviation of 12 min. There was a large variation in DTB times between the best and worst performing hospitals. Although patient-related factors impacted upon DTB times, the volume and proportion of patients undergoing primary PCI were significantly associated with delay and early mortality-hospitals with the highest proportion of primary PCI had the lowest mortality.
Isola, A A; Schmitt, H; van Stevendaal, U; Begemann, P G; Coulon, P; Boussel, L; Grass, M
2011-09-21
Large area detector computed tomography systems with fast rotating gantries enable volumetric dynamic cardiac perfusion studies. Prospectively, ECG-triggered acquisitions limit the data acquisition to a predefined cardiac phase and thereby reduce x-ray dose and limit motion artefacts. Even in the case of highly accurate prospective triggering and stable heart rate, spatial misalignment of the cardiac volumes acquired and reconstructed per cardiac cycle may occur due to small motion pattern variations from cycle to cycle. These misalignments reduce the accuracy of the quantitative analysis of myocardial perfusion parameters on a per voxel basis. An image-based solution to this problem is elastic 3D image registration of dynamic volume sequences with variable contrast, as it is introduced in this contribution. After circular cone-beam CT reconstruction of cardiac volumes covering large areas of the myocardial tissue, the complete series is aligned with respect to a chosen reference volume. The results of the registration process and the perfusion analysis with and without registration are evaluated quantitatively in this paper. The spatial alignment leads to improved quantification of myocardial perfusion for three different pig data sets.
Thermodynamic and kinetic modeling of Mn-Ni-Si precipitates in low-Cu reactor pressure vessel steels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ke, Huibin; Wells, Peter; Edmondson, Philip D.
Formation of large volume fractions of Mn-Ni-Si precipitates (MNSPs) causes excess irradiation embrittlement of reactor pressure vessel (RPV) steels at high, extended-life fluences. Thus, a new and unique, semi-empirical cluster dynamics model was developed to study the evolution of MNSPs in low-Cu RPV steels. The model is based on CALPHAD thermodynamics and radiation enhanced diffusion kinetics. The thermodynamics dictates the compositional and temperature dependence of the free energy reductions that drive precipitation. The model treats both homogeneous and heterogeneous nucleation, where the latter occurs on cascade damage, like dislocation loops. The model has only four adjustable parameters that were fitmore » to an atom probe tomography (APT) database. The model predictions are in semi-quantitative agreement with systematic Mn, Ni and Si composition variations in alloys characterized by APT, including a sensitivity to local tip-to-tip variations even in the same steel. The model predicts that heterogeneous nucleation plays a critical role in MNSP formation in lower alloy Ni contents. Single variable assessments of compositional effects show that Ni plays a dominant role, while even small variations in irradiation temperature can have a large effect on the MNSP evolution. Within typical RPV steel ranges, Mn and Si have smaller effects. Furthermore, the delayed but then rapid growth of MNSPs to large volume fractions at high fluence is well predicted by the model. For purposes of illustration, the effect of MNSPs on transition temperature shifts are presented based on well-established microstructure-property and property-property models.« less
Thermodynamic and kinetic modeling of Mn-Ni-Si precipitates in low-Cu reactor pressure vessel steels
Ke, Huibin; Wells, Peter; Edmondson, Philip D.; ...
2017-07-12
Formation of large volume fractions of Mn-Ni-Si precipitates (MNSPs) causes excess irradiation embrittlement of reactor pressure vessel (RPV) steels at high, extended-life fluences. Thus, a new and unique, semi-empirical cluster dynamics model was developed to study the evolution of MNSPs in low-Cu RPV steels. The model is based on CALPHAD thermodynamics and radiation enhanced diffusion kinetics. The thermodynamics dictates the compositional and temperature dependence of the free energy reductions that drive precipitation. The model treats both homogeneous and heterogeneous nucleation, where the latter occurs on cascade damage, like dislocation loops. The model has only four adjustable parameters that were fitmore » to an atom probe tomography (APT) database. The model predictions are in semi-quantitative agreement with systematic Mn, Ni and Si composition variations in alloys characterized by APT, including a sensitivity to local tip-to-tip variations even in the same steel. The model predicts that heterogeneous nucleation plays a critical role in MNSP formation in lower alloy Ni contents. Single variable assessments of compositional effects show that Ni plays a dominant role, while even small variations in irradiation temperature can have a large effect on the MNSP evolution. Within typical RPV steel ranges, Mn and Si have smaller effects. Furthermore, the delayed but then rapid growth of MNSPs to large volume fractions at high fluence is well predicted by the model. For purposes of illustration, the effect of MNSPs on transition temperature shifts are presented based on well-established microstructure-property and property-property models.« less
Hann, Mark; Schafheutle, Ellen I; Bradley, Fay; Elvey, Rebecca; Wagner, Andrew; Halsall, Devina; Hassell, Karen
2017-01-01
Objectives This study aimed to identify the organisational and extraorganisational factors associated with existing variation in the volume of services delivered by community pharmacies. Design and setting Linear and ordered logistic regression of linked national data from secondary sources—community pharmacy activity, socioeconomic and health need datasets—and primary data from a questionnaire survey of community pharmacies in nine diverse geographical areas in England. Outcome measures Annual dispensing volume; annual volume of medicines use reviews (MURs). Results National dataset (n=10 454 pharmacies): greater dispensing volume was significantly associated with pharmacy ownership type (large chains>independents>supermarkets), greater deprivation, higher local prevalence of cardiovascular disease and depression, older people (aged >75 years) and infants (aged 0–4 years) but lower prevalence of mental health conditions. Greater volume of MURs was significantly associated with pharmacy ownership type (large chains/supermarkets>>independents), greater dispensing volume, and lower disease prevalence. Survey dataset (n=285 pharmacies; response=34.6%): greater dispensing volume was significantly associated with staffing, skill-mix, organisational culture, years open and greater deprivation. Greater MUR volume was significantly associated with pharmacy ownership type (large chains/supermarkets>>independents), greater dispensing volume, weekly opening hours and lower asthma prevalence. Conclusions Organisational and extraorganisational factors were found to impact differently on dispensing volume and MUR activity, the latter being driven more by corporate ownership than population need. While levels of staffing and skill-mix were associated with dispensing volume, they did not influence MUR activity. Despite recent changes to the contractual framework, the existing fee-for-service reimbursement may therefore not be the most appropriate for the delivery of cognitive (rather than supply) services, still appearing to incentivise quantity over the quality (in terms of appropriate targeting) of services delivered. Future research should focus on the development of quality measures that could be incorporated into community pharmacy reimbursement mechanisms. PMID:29018074
Tephra productivity and eruption flux of the subglacial Katla volcano, Iceland
NASA Astrophysics Data System (ADS)
Óladóttir, Bergrún Arna; Sigmarsson, Olgeir; Larsen, Guðrún
2018-07-01
The influence of the mode of magma ascent on eruption fluxes is uncertain beneath active volcanoes. To study this, the subglacial volcano Katla, Iceland, whichhas produced abundant tephra through the Holocene, has been investigated through volume estimations of the largest eruptions from the last 3500 years. Tephra volume measurements allow tephra productivity and their variation through time to be estimated. By adding the volume of lava from effusive eruptions, the total eruption flux is obtained. Tephra productivity shows variations with time, ranging from 2.0 km3/century, during the prehistoric period examined, to 0.7 km3/century, during historical time (after 939 CE). However, the average eruption flux remained unchanged ( 2.2 km3/century) during the studied 3500 years due to the large lava produced during the Eldgjá flood basalt eruption (939 CE). Following the Eldgjá event, tephra production declined and also eruption frequency, decreasing from 5.6-2.0 eruptions/century. Magma ascending vertically to the glacier -covered volcano results in explosive phreatomagmatic eruptions and tephra formation, whereas magma transferred in a laterally extended dyke leads to predominant fissural eruptions outside the glacier (e.g., Eldgjá). The mode of magma ascent thus exerts control on the eruption frequency and the volcanic style at Katla volcano without affecting the long-term eruption flux. A uniform increase in cumulative magma volume from Katla suggests a time-integrated steady-state behavior over the last 3500 years. Finally, although the large fissural eruption of Eldgjá lowered the following eruption frequency, it only temporarily affected the time averaged eruption flux of Katla.
NASA Astrophysics Data System (ADS)
Deng, Xiang; Huang, Haibin; Zhu, Lei; Du, Guangwei; Xu, Xiaodong; Sun, Yiyong; Xu, Chenyang; Jolly, Marie-Pierre; Chen, Jiuhong; Xiao, Jie; Merges, Reto; Suehling, Michael; Rinck, Daniel; Song, Lan; Jin, Zhengyu; Jiang, Zhaoxia; Wu, Bin; Wang, Xiaohong; Zhang, Shuai; Peng, Weijun
2008-03-01
Comprehensive quantitative evaluation of tumor segmentation technique on large scale clinical data sets is crucial for routine clinical use of CT based tumor volumetry for cancer diagnosis and treatment response evaluation. In this paper, we present a systematic validation study of a semi-automatic image segmentation technique for measuring tumor volume from CT images. The segmentation algorithm was tested using clinical data of 200 tumors in 107 patients with liver, lung, lymphoma and other types of cancer. The performance was evaluated using both accuracy and reproducibility. The accuracy was assessed using 7 commonly used metrics that can provide complementary information regarding the quality of the segmentation results. The reproducibility was measured by the variation of the volume measurements from 10 independent segmentations. The effect of disease type, lesion size and slice thickness of image data on the accuracy measures were also analyzed. Our results demonstrate that the tumor segmentation algorithm showed good correlation with ground truth for all four lesion types (r = 0.97, 0.99, 0.97, 0.98, p < 0.0001 for liver, lung, lymphoma and other respectively). The segmentation algorithm can produce relatively reproducible volume measurements on all lesion types (coefficient of variation in the range of 10-20%). Our results show that the algorithm is insensitive to lesion size (coefficient of determination close to 0) and slice thickness of image data(p > 0.90). The validation framework used in this study has the potential to facilitate the development of new tumor segmentation algorithms and assist large scale evaluation of segmentation techniques for other clinical applications.
Control your inventory in a world of lean retailing.
Abernathy, F H; Dunlop, J T; Hammond, J H; Weil, D
2000-01-01
As retailers adopt lean retailing practices, manufacturers are feeling the pinch. Retailers no longer place large seasonal orders for goods in advance-instead, they require ongoing replenishment of stock, forcing manufacturers to predict demand and then hold substantial inventories indefinitely. Manufacturers now carry the cost of inventory risk--the possibility that demand will dry up and goods will have to be sold below cost. And as product proliferation increases, customer demand becomes harder to predict. Most manufacturers apply one inventory policy for all stock-keeping units in a product line. But the inventory demand for SKUs within the same product line can vary significantly. SKUs with high volume typically have little variation in weekly sales, while slow-selling SKUs can vary enormously in weekly sales. The greater the variation, the larger the inventory the manufacturer must hold relative to an SKU's expected weekly sales. By differentiating inventory policies at the SKU level, manufacturers can reduce inventories for the high-volume SKUs and increase them for the low-volume ones--and thereby improve the profit-ability of the entire line. SKU-level differentiation can also be applied to sourcing strategies. Instead of producing all the SKUs for a product line at a single location, either offshore at low cost or close to market at higher cost, manufacturers can typically do better by going for a mixed allocation. Low-variation goods should be produced mainly offshore, while high-variation goods are best made close to markets.
TU-G-BRD-03: IMRT Dosimetry Differences in An Institution with Community and Academic Model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Srivastava, S; Indiana University School of Medicine, Indianapolis, IN; Andersen, A
Purpose: Radiation outcome among institutions can be interpreted meaningfully if the dose delivery and prescription to the target volume is documented accurately and consistently. ICRU-83 recommended specific guidelines in IMRT for target volume definitions and dose reporting. This retrospective study evaluates the pattern of IMRT dose prescription and recording in an academic institution (AI) and a community hospital (CH) models in a single institution with reference to ICRU-83 recommendation. Materials & Methods: Dosimetric information of 625 (500 from academic and 125 from community) patients treated with IMRT was collected retrospectively from the AI and a CH. The dose-volume histogram (DVH)more » for the target volume of each patient was extracted. Standard dose parameters such as D2, D50, D95, D98, D100, as well as the homogeneity index (HI) defined as (D2-D98)/D50 and monitor units (MUs) were collected. Results: Significant dosimetric variations were observed in disease sites and between AI and CH. The variation in the mean value of D95 for AI is 98.48±4.12 and for CH is 96.41±4.13. A similar pattern was noticed for D50 (104.18±6.04 for AI and 101.05±3.49 for CH). Thus, nearly 95% of patients received dosage higher than 100% to the site viewed by D50 and varied between AI and CH models. The average variation of HI is found to be 0.12±0.08 and 0.11±0.08 for AI and CH model, showing better IMRT treatment plans for academic model compared to community. Conclusion: Even with the implementation of ICRU-83 guidelines, there is a large variation in dose prescription and delivery in IMRT. The variation is institution and site specific. For any meaningful comparison of the IMRT outcome, strict guidelines for dose reporting should be maintained in every institution.« less
NASA Astrophysics Data System (ADS)
Monnin, Christophe
1989-06-01
Literature density data for binary and common ion ternary solutions in the Na-K-Ca-Mg-Cl-SO 4-HCO 3-CO3-H 2O system at 25°C have been analysed with Pitzer's ion interaction model, which provides an adequate representation of the experimental data for binary and common ion ternary solutions up to high concentration. This analysis yields Pitzer's interaction parameters for the apparent and partial molal volumes, which are the first derivatives with respect to pressure of the interaction parameters for the free energy. From this information, densities of natural waters as well as partial molal volumes of their solutes can be predicted with good accuracy, as shown by several comparisons of calculated and measured values. It is shown that V¯MX - V¯0mx, the excess partial molal volume of the salt MX, depends more on the type of salt than on the electrolyte itself and that it increases with the charges of the salt components. The influence of concentration and composition on the variation of activity coefficients with pressure and on the partial molal volumes of the salts is discussed, using as an example the partial molal volume of CaSO 4(aq) in solutions of various compositions. The increase of V¯CaSO 4, with ionic strength is very large but is not very different for a NaCl-dominated natural water like the Red Sea lower brine than for a simple NaCl solution. Although the variation of activity coefficients with pressure is usually ignored for moderate pressures, like those found in hydrothermal environments, the present example shows that it can be as large as 30% for a 2-2 salt for a pressure increase from 1 to 500 bars at high ionic strength.
Large-scale tomographic particle image velocimetry using helium-filled soap bubbles
NASA Astrophysics Data System (ADS)
Kühn, Matthias; Ehrenfried, Klaus; Bosbach, Johannes; Wagner, Claus
2011-04-01
To measure large-scale flow structures in air, a tomographic particle image velocimetry (tomographic PIV) system for measurement volumes of the order of one cubic metre is developed, which employs helium-filled soap bubbles (HFSBs) as tracer particles. The technique has several specific characteristics compared to most conventional tomographic PIV systems, which are usually applied to small measurement volumes. One of them is spot lights on the HFSB tracers, which slightly change their position, when the direction of observation is altered. Further issues are the large particle to voxel ratio and the short focal length of the used camera lenses, which result in a noticeable variation of the magnification factor in volume depth direction. Taking the specific characteristics of the HFSBs into account, the feasibility of our large-scale tomographic PIV system is demonstrated by showing that the calibration errors can be reduced down to 0.1 pixels as required. Further, an accurate and fast implementation of the multiplicative algebraic reconstruction technique, which calculates the weighting coefficients when needed instead of storing them, is discussed. The tomographic PIV system is applied to measure forced convection in a convection cell at a Reynolds number of 530 based on the inlet channel height and the mean inlet velocity. The size of the measurement volume and the interrogation volumes amount to 750 mm × 450 mm × 165 mm and 48 mm × 48 mm × 24 mm, respectively. Validation of the tomographic PIV technique employing HFSBs is further provided by comparing profiles of the mean velocity and of the root mean square velocity fluctuations to respective planar PIV data.
Rønjom, Marianne F; Brink, Carsten; Lorenzen, Ebbe L; Hegedüs, Laszlo; Johansen, Jørgen
2015-01-01
To examine the variations of risk-estimates of radiation-induced hypothyroidism (HT) from our previously developed normal tissue complication probability (NTCP) model in patients with head and neck squamous cell carcinoma (HNSCC) in relation to variability of delineation of the thyroid gland. In a previous study for development of an NTCP model for HT, the thyroid gland was delineated in 246 treatment plans of patients with HNSCC. Fifty of these plans were randomly chosen for re-delineation for a study of the intra- and inter-observer variability of thyroid volume, Dmean and estimated risk of HT. Bland-Altman plots were used for assessment of the systematic (mean) and random [standard deviation (SD)] variability of the three parameters, and a method for displaying the spatial variation in delineation differences was developed. Intra-observer variability resulted in a mean difference in thyroid volume and Dmean of 0.4 cm(3) (SD ± 1.6) and -0.5 Gy (SD ± 1.0), respectively, and 0.3 cm(3) (SD ± 1.8) and 0.0 Gy (SD ± 1.3) for inter-observer variability. The corresponding mean differences of NTCP values for radiation-induced HT due to intra- and inter-observer variations were insignificantly small, -0.4% (SD ± 6.0) and -0.7% (SD ± 4.8), respectively, but as the SDs show, for some patients the difference in estimated NTCP was large. For the entire study population, the variation in predicted risk of radiation-induced HT in head and neck cancer was small and our NTCP model was robust against observer variations in delineation of the thyroid gland. However, for the individual patient, there may be large differences in estimated risk which calls for precise delineation of the thyroid gland to obtain correct dose and NTCP estimates for optimized treatment planning in the individual patient.
Clarence E. Neese; Linda S. Gribko
1997-01-01
Color-infrared aerial photographs are widely used to aid in the classification and inventory of large forested tracts. Areas of similar photographic color and texture are delineated and a limited number of categories (or groups of areas with similar features) are identified. The forest cover type, and sometimes the average timber volume, of each group is then...
Huo, Yuankai; Xu, Zhoubing; Bao, Shunxing; Bermudez, Camilo; Plassard, Andrew J.; Liu, Jiaqi; Yao, Yuang; Assad, Albert; Abramson, Richard G.; Landman, Bennett A.
2018-01-01
Spleen volume estimation using automated image segmentation technique may be used to detect splenomegaly (abnormally enlarged spleen) on Magnetic Resonance Imaging (MRI) scans. In recent years, Deep Convolutional Neural Networks (DCNN) segmentation methods have demonstrated advantages for abdominal organ segmentation. However, variations in both size and shape of the spleen on MRI images may result in large false positive and false negative labeling when deploying DCNN based methods. In this paper, we propose the Splenomegaly Segmentation Network (SSNet) to address spatial variations when segmenting extraordinarily large spleens. SSNet was designed based on the framework of image-to-image conditional generative adversarial networks (cGAN). Specifically, the Global Convolutional Network (GCN) was used as the generator to reduce false negatives, while the Markovian discriminator (PatchGAN) was used to alleviate false positives. A cohort of clinically acquired 3D MRI scans (both T1 weighted and T2 weighted) from patients with splenomegaly were used to train and test the networks. The experimental results demonstrated that a mean Dice coefficient of 0.9260 and a median Dice coefficient of 0.9262 using SSNet on independently tested MRI volumes of patients with splenomegaly.
Degassing, gas retention and release in Fe(0) permeable reactive barriers.
Ruhl, Aki S; Jekel, Martin
2014-04-01
Corrosion of Fe(0) has been successfully utilized for the reductive treatment of multiple contaminants. Under anaerobic conditions, concurrent corrosion leads to the generation of hydrogen and its liberation as a gas. Gas bubbles are mobile or trapped within the irregular pore structure leading to a reduction of the water filled pore volume and thus decreased residence time and permeability (gas clogging). With regard to the contaminant transport to the reactive site, the estimation of surface properties of the reactive material indicated that individual gas bubbles only occupied minor contact areas of the reactive surface. Quantification of gas entrapment by both gravimetrical and tracer investigations revealed that development of preferential flow paths was not significant. A novel continuous gravimetrical method was implemented to record variations in gas entrapment and gas bubble releases from the reactive filling. Variation of grain size fractions revealed that the pore geometry had a significant impact on gas release. Large pores led to the release of comparably large gas amounts while smaller volumes were released from finer pores with a higher frequency. Relevant processes are explained with a simplified pictorial sequence that incorporates relevant mechanisms. Copyright © 2014 Elsevier B.V. All rights reserved.
Preliminary interpretation of thermal data from the Nevada Test Site
Sass, John Harvey; Lachenbruch, Arthur H.
1982-01-01
Analysis of data from 60 wells in and around the Nevada Test Site, including 16 in the Yucca Mountain area, indicates a thermal regime characterized by large vertical and lateral gradients in heat flow. Estimates of heat flow indicate considerable variation on both regional and local scales. The variations are attributable primarily to hydrologic processes involving interbasin flow with a vertical component of (seepage) velocity (volume flux) of a few mm/yr. Apart from indicating a general downward movement of water at a few mm/yr, the results from Yucca Mountain are as yet inconclusive.
Bassand, J P; Faivre, R; Berthout, P; Cardot, J C; Verdenet, J; Bidet, R; Maurat, J P
1985-06-01
Previous studies have shown that variations of the ejection fraction (EF) during exercise were representative of the contractile state of the left ventricle: an increased EF on effort is considered to be physiological, whilst a decrease would indicate latent LV dysfunction unmasked during exercise. This hypothesis was tested by performing Technetium 99 gamma cineangiography at equilibrium under basal conditions and at maximal effort in 8 healthy subjects and 44 patients with pure, severe aortic regurgitation to measure the ejection and regurgitant fractions and the variations in end systolic and end diastolic LV volume. In the control group the EF increased and end systolic volume decreased significantly on effort whilst the regurgitant fraction and end diastolic volume were unchanged. In the 44 patients with aortic regurgitation no significant variations in EF, end systolic and end diastolic volumes were observed because the individual values were very dispersed. Variations of the EF and end systolic volume were inversely correlated. The regurgitant fraction decreased significantly on effort. Based on the variations of the EF and end systolic volume three different types of response to effort could be identified: in 7 patients, the EF increased on effort and end systolic volume decreased without any significant variation in the end diastolic volume, as in the group of normal control subjects; in 22 patients, a reduction in EF was observed on effort, associated with an increased end systolic volume. These changes indicated latent IV dysfunction inapparent at rest and unmasked by exercise; in a third group of 15 patients, the EF decreased on effort despite a physiological decrease in end systolic volume due to a greater decrease in end diastolic volume.(ABSTRACT TRUNCATED AT 250 WORDS)
NASA Technical Reports Server (NTRS)
Welker, J. E.
2004-01-01
Ideally, the Crop Country Inventory, CCI, is a methodology for the pre-harvest prediction of large variations in a country s crop production. This is accomplished by monitoring the historical climatic fluctuations, especially during the crop calendar period, in a climate sensitive large crop production region or sub-country, rather than the entire country. The argument can be made that the climatic fluctuations in the climatic sensitive region are responsible for the major annual crop country variations and that the remainder of the country, without major climatic fluctuations for a given year, can be assumed to be a steady-state crop producer. The principal data set that has been used is the Global Climate Mode (GCM) data from the National Center for Environmental Prediction (NCEP), taken over the last half century. As a test of its accuracy, GCM data can and has been correlated with the actual meteorological station data at the station site.
Mother-infant interactions and regional brain volumes in infancy: an MRI study.
Sethna, Vaheshta; Pote, Inês; Wang, Siying; Gudbrandsen, Maria; Blasi, Anna; McCusker, Caroline; Daly, Eileen; Perry, Emily; Adams, Kerrie P H; Kuklisova-Murgasova, Maria; Busuulwa, Paula; Lloyd-Fox, Sarah; Murray, Lynne; Johnson, Mark H; Williams, Steven C R; Murphy, Declan G M; Craig, Michael C; McAlonan, Grainne M
2017-07-01
It is generally agreed that the human brain is responsive to environmental influences, and that the male brain may be particularly sensitive to early adversity. However, this is largely based on retrospective studies of older children and adolescents exposed to extreme environments in childhood. Less is understood about how normative variations in parent-child interactions are associated with the development of the infant brain in typical settings. To address this, we used magnetic resonance imaging to investigate the relationship between observational measures of mother-infant interactions and regional brain volumes in a community sample of 3- to 6-month-old infants (N = 39). In addition, we examined whether this relationship differed in male and female infants. We found that lower maternal sensitivity was correlated with smaller subcortical grey matter volumes in the whole sample, and that this was similar in both sexes. However, male infants who showed greater levels of positive communication and engagement during early interactions had smaller cerebellar volumes. These preliminary findings suggest that variations in mother-infant interaction dimensions are associated with differences in infant brain development. Although the study is cross-sectional and causation cannot be inferred, the findings reveal a dynamic interaction between brain and environment that may be important when considering interventions to optimize infant outcomes.
Interannual variability of Indian Ocean subtropical mode water subduction rate
NASA Astrophysics Data System (ADS)
Ma, Jie; Lan, Jian
2017-06-01
The interannual variation of Indian Ocean subtropical mode water (IOSTMW) subduction rate in the Southwest Indian Ocean from 1980 to 2007 is investigated in this paper based on Simple Ocean Data Assimilation (SODA) outputs. Climatology of subduction rate exceeds 75 m/year in the IOSTMW formation area. The renewal time of permanent pycnocline water mass based on the subduction rate is calculated for each density class: 3-6 years for IOSTMW (25.8 < σ θ < 26.2 kg m-3). Subduction rate in the Southwest Indian Ocean subtropical gyre exhibits a great year-to-year variability. This interannual variations of the IOSTMW subduction rate is primarily dominated by the lateral induction term, associated with the interannual variations of strong meridional gradient of winter mixed layer depth (MLD). The slope of the mixed layer depth in the mode water is closely linked to the large variations of deep late winter MLD in the mid-latitudes and negligible variations of shallow winter MLD in lower latitudes. It is further identified that the interannual variation of late winter MLD in this area is largely controlled by the latent and sensible heat flux components. The water volume of the permanent pycnocline in the IOSTMW distribution area is also found to show a significant interannual variability, and it is well correlated with the interannual variation of subduction rate.
Background levels of methane in Mars’ atmosphere show strong seasonal variations
NASA Astrophysics Data System (ADS)
Webster, Christopher R.; Mahaffy, Paul R.; Atreya, Sushil K.; Moores, John E.; Flesch, Gregory J.; Malespin, Charles; McKay, Christopher P.; Martinez, German; Smith, Christina L.; Martin-Torres, Javier; Gomez-Elvira, Javier; Zorzano, Maria-Paz; Wong, Michael H.; Trainer, Melissa G.; Steele, Andrew; Archer, Doug; Sutter, Brad; Coll, Patrice J.; Freissinet, Caroline; Meslin, Pierre-Yves; Gough, Raina V.; House, Christopher H.; Pavlov, Alexander; Eigenbrode, Jennifer L.; Glavin, Daniel P.; Pearson, John C.; Keymeulen, Didier; Christensen, Lance E.; Schwenzer, Susanne P.; Navarro-Gonzalez, Rafael; Pla-García, Jorge; Rafkin, Scot C. R.; Vicente-Retortillo, Álvaro; Kahanpää, Henrik; Viudez-Moreiras, Daniel; Smith, Michael D.; Harri, Ari-Matti; Genzer, Maria; Hassler, Donald M.; Lemmon, Mark; Crisp, Joy; Sander, Stanley P.; Zurek, Richard W.; Vasavada, Ashwin R.
2018-06-01
Variable levels of methane in the martian atmosphere have eluded explanation partly because the measurements are not repeatable in time or location. We report in situ measurements at Gale crater made over a 5-year period by the Tunable Laser Spectrometer on the Curiosity rover. The background levels of methane have a mean value 0.41 ± 0.16 parts per billion by volume (ppbv) (95% confidence interval) and exhibit a strong, repeatable seasonal variation (0.24 to 0.65 ppbv). This variation is greater than that predicted from either ultraviolet degradation of impact-delivered organics on the surface or from the annual surface pressure cycle. The large seasonal variation in the background and occurrences of higher temporary spikes (~7 ppbv) are consistent with small localized sources of methane released from martian surface or subsurface reservoirs.
Jones, Jeryl C; Appt, Susan E; Werre, Stephen R; Tan, Joshua C; Kaplan, Jay R
2010-06-01
The purpose of this study was to validate low radiation dose, contrast-enhanced, multi-detector computed tomography (MDCT) as a non-invasive method for measuring ovarian volume in macaques. Computed tomography scans of four known-volume phantoms and nine mature female cynomolgus macaques were acquired using a previously described, low radiation dose scanning protocol, intravenous contrast enhancement, and a 32-slice MDCT scanner. Immediately following MDCT, ovaries were surgically removed and the ovarian weights were measured. The ovarian volumes were determined using water displacement. A veterinary radiologist who was unaware of actual volumes measured ovarian CT volumes three times, using a laptop computer, pen display tablet, hand-traced regions of interest, and free image analysis software. A statistician selected and performed all tests comparing the actual and CT data. Ovaries were successfully located in all MDCT scans. The iliac arteries and veins, uterus, fallopian tubes, cervix, ureters, urinary bladder, rectum, and colon were also consistently visualized. Large antral follicles were detected in six ovaries. Phantom mean CT volume was 0.702+/-SD 0.504 cc and the mean actual volume was 0.743+/-SD 0.526 cc. Ovary mean CT volume was 0.258+/-SD 0.159 cc and mean water displacement volume was 0.257+/-SD 0.145 cc. For phantoms, the mean coefficient of variation for CT volumes was 2.5%. For ovaries, the least squares mean coefficient of variation for CT volumes was 5.4%. The ovarian CT volume was significantly associated with actual ovarian volume (ICC coefficient 0.79, regression coefficient 0.5, P=0.0006) and the actual ovarian weight (ICC coefficient 0.62, regression coefficient 0.6, P=0.015). There was no association between the CT volume accuracy and mean ovarian CT density (degree of intravenous contrast enhancement), and there was no proportional or fixed bias in the CT volume measurements. Findings from this study indicate that MDCT is a valid non-invasive technique for measuring the ovarian volume in macaques.
A Principled Approach to Managing Routing in Large ISP Networks
2009-06-01
giving me valuable feedback on my work . v I owe a special thank you to Ioannis Avramopoulos, Eric Keller, Brian Biskeborn and Michael Schapira for their...Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 5.3.1 Using Morpheus and VROOM to Handle Traffic Engineering . . . . . . . 124...when working at maximum capacity [17]. We argue that, with VROOM , the variations in daily traffic volume can be exploited to reduce power consumption
Lange, Nicholas; Froimowitz, Michael P; Bigler, Erin D; Lainhart, Janet E
2010-01-01
In the course of efforts to establish quantitative norms for healthy brain development by magnetic resonance imaging (MRI) (Brain Development Cooperative Group, 2006), previously unreported associations of parental education and temporal and frontal lobe volumes with full scale IQ and its verbal and performance subscales were discovered. Our findings were derived from the largest, most representative MRI sample to date of healthy children and adolescents, ages 4 years 10 months to 18 years 4 months. We first find that parental education has a strong association with IQ in children that is not mediated by total or regional brain volumes. Second, we find that our observed correlations between temporal gray matter, temporal white matter and frontal white matter volumes with full scale IQ, between 0.14 to 0.27 in children and adolescents, are due in large part to their correlations with performance IQ and not verbal IQ. The volumes of other lobar gray and white matter, subcortical gray matter (thalamus, caudate nucleus, putamen, and globus pallidus), cerebellum, and brainstem do not contribute significantly to IQ variation. Third, we find that head circumference is an insufficient index of cerebral volume in typically developing older children and adolescents. The relations between total and regional brain volumes and IQ can best be discerned when additional variables known to be associated with IQ, especially parental education and other demographic measures, are considered concurrently.
Mankiw, Catherine; Park, Min Tae M; Reardon, P K; Fish, Ari M; Clasen, Liv S; Greenstein, Deanna; Giedd, Jay N; Blumenthal, Jonathan D; Lerch, Jason P; Chakravarty, M Mallar; Raznahan, Armin
2017-05-24
The cerebellum is a large hindbrain structure that is increasingly recognized for its contribution to diverse domains of cognitive and affective processing in human health and disease. Although several of these domains are sex biased, our fundamental understanding of cerebellar sex differences-including their spatial distribution, potential biological determinants, and independence from brain volume variation-lags far behind that for the cerebrum. Here, we harness automated neuroimaging methods for cerebellar morphometrics in 417 individuals to (1) localize normative male-female differences in raw cerebellar volume, (2) compare these to sex chromosome effects estimated across five rare sex (X/Y) chromosome aneuploidy (SCA) syndromes, and (3) clarify brain size-independent effects of sex and SCA on cerebellar anatomy using a generalizable allometric approach that considers scaling relationships between regional cerebellar volume and brain volume in health. The integration of these approaches shows that (1) sex and SCA effects on raw cerebellar volume are large and distributed, but regionally heterogeneous, (2) human cerebellar volume scales with brain volume in a highly nonlinear and regionally heterogeneous fashion that departs from documented patterns of cerebellar scaling in phylogeny, and (3) cerebellar organization is modified in a brain size-independent manner by sex (relative expansion of total cerebellum, flocculus, and Crus II-lobule VIIIB volumes in males) and SCA (contraction of total cerebellar, lobule IV, and Crus I volumes with additional X- or Y-chromosomes; X-specific contraction of Crus II-lobule VIIIB). Our methods and results clarify the shifts in human cerebellar organization that accompany interwoven variations in sex, sex chromosome complement, and brain size. SIGNIFICANCE STATEMENT Cerebellar systems are implicated in diverse domains of sex-biased behavior and pathology, but we lack a basic understanding of how sex differences in the human cerebellum are distributed and determined. We leverage a rare neuroimaging dataset to deconvolve the interwoven effects of sex, sex chromosome complement, and brain size on human cerebellar organization. We reveal topographically variegated scaling relationships between regional cerebellar volume and brain size in humans, which (1) are distinct from those observed in phylogeny, (2) invalidate a traditional neuroimaging method for brain volume correction, and (3) allow more valid and accurate resolution of which cerebellar subcomponents are sensitive to sex and sex chromosome complement. These findings advance understanding of cerebellar organization in health and sex chromosome aneuploidy. Copyright © 2017 the authors 0270-6474/17/375222-11$15.00/0.
Honeck, Patrick; Michel, Maurice Stephan; Trojan, Lutz; Alken, Peter
2009-02-01
Despite the large number of surgical techniques for continent cutaneous diversion described in literature, the creation of a reliable, continent and easily catheterizable continence mechanism remains a complex surgical procedure. Aim of this study was the evaluation of a new method for a catheterizable continence mechanism using stapled pig intestine. Small and large pig intestines were used for construction. A 3 or 6 cm double row stapling system was used. Three variations using small and large intestine segments were constructed. A 3 or 6 cm long stapler line was placed alongside a 12 Fr catheter positioned at the antimesenterial side creating a partially two-luminal segment. Construction time for the tube was measured. The created tube was then embedded into the pouch. Pressure evaluation of the continence mechanism was performed for each variation. Intermittent external manual compression was used to simulate sudden pressure exposure. All variations were 100% continent under filling volumes of up to 700 ml and pressure levels of 58 +/- 6 cm H(2)O for large intestine and 266 ml and 87 +/- 18 cm H(2)O for small intestine, respectively. With further filling above the mentioned capacity suture insufficiency occurred but no tube insufficiency. Construction time for all variations was less than 12 min. The described technique is an easy and fast method to construct a continence mechanism using small or large intestine. Our ex vivo experiments have shown sufficient continence situation in an ex-vivo model. Further investigations in an in-vivo model are needed to confirm these results.
Hann, Mark; Schafheutle, Ellen I; Bradley, Fay; Elvey, Rebecca; Wagner, Andrew; Halsall, Devina; Hassell, Karen; Jacobs, Sally
2017-10-10
This study aimed to identify the organisational and extraorganisational factors associated with existing variation in the volume of services delivered by community pharmacies. Linear and ordered logistic regression of linked national data from secondary sources-community pharmacy activity, socioeconomic and health need datasets-and primary data from a questionnaire survey of community pharmacies in nine diverse geographical areas in England. Annual dispensing volume; annual volume of medicines use reviews (MURs). National dataset (n=10 454 pharmacies): greater dispensing volume was significantly associated with pharmacy ownership type (large chains>independents>supermarkets), greater deprivation, higher local prevalence of cardiovascular disease and depression, older people (aged >75 years) and infants (aged 0-4 years) but lower prevalence of mental health conditions. Greater volume of MURs was significantly associated with pharmacy ownership type (large chains/supermarkets>independents), greater dispensing volume, and lower disease prevalence.Survey dataset (n=285 pharmacies; response=34.6%): greater dispensing volume was significantly associated with staffing, skill-mix, organisational culture, years open and greater deprivation. Greater MUR volume was significantly associated with pharmacy ownership type (large chains/supermarkets>independents), greater dispensing volume, weekly opening hours and lower asthma prevalence. Organisational and extraorganisational factors were found to impact differently on dispensing volume and MUR activity, the latter being driven more by corporate ownership than population need. While levels of staffing and skill-mix were associated with dispensing volume, they did not influence MUR activity. Despite recent changes to the contractual framework, the existing fee-for-service reimbursement may therefore not be the most appropriate for the delivery of cognitive (rather than supply) services, still appearing to incentivise quantity over the quality (in terms of appropriate targeting) of services delivered. Future research should focus on the development of quality measures that could be incorporated into community pharmacy reimbursement mechanisms. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dongyu, Xu; Department of Mechanical Engineering, University of South Carolina, Columbia, South Carolina 29208; Xin, Cheng
2014-12-28
The laminated 2-2 connectivity cement/polymer based piezoelectric composites with varied piezoelectric phase distribution were fabricated by employing Lead Zirconium Titanate ceramic as active phase, and mixture of cement powder, epoxy resin, and hardener as matrix phase with a mass proportion of 4:4:1. The dielectric, piezoelectric, and electromechanical coupling properties of the composites were studied. The composites with large total volume fraction of piezoelectric phase have large piezoelectric strain constant and relative permittivity, and the piezoelectric and dielectric properties of the composites are independent of the dimensional variations of the piezoelectric ceramic layer. The composites with small total volume fraction ofmore » piezoelectric phase have large piezoelectric voltage constant, but also large dielectric loss. The composite with gradually increased dimension of piezoelectric ceramic layer has the smallest dielectric loss, and that with the gradually increased dimension of matrix layer has the largest piezoelectric voltage constant. The novel piezoelectric composites show potential applications in fabricating ultrasonic transducers with varied surface vibration amplitude of the transducer.« less
Kataoka, Sho; Kamimura, Yoshihiro; Endo, Akira
2018-04-10
Hybrid organic-inorganic layered perovskites are typically nonporous solids. However, the incorporation of silsesquioxanes with a cubic cage structure as interlayer materials creates micropores between the perovskite layers. In this study, we increase in the micropore volume in layered perovskites by replacing a portion of the silsesquioxane interlayers with organic amines. In the proposed method, approximately 20% of the silsesquioxane interlayers can be replaced without changing the layer distance owing to the size of the silsesquioxane. When small amines (e.g., ethylamine) are used in this manner, the micropore volume of the obtained hybrid layered perovskites increases by as much as 44%; when large amines (e.g., phenethylamine) are used, their micropore volume decreases by as much as 43%. Through the variation of amine fraction, the micropore volume can be adjusted in the range. Finally, the magnetic moment measurements reveal that the layered perovskites with mixed interlayers exhibit ferromagnetic ordering at temperature below 20 K, thus indicating that the obtained perovskites maintain their functions as layered perovskites.
Adaptive latitudinal variation in Common Blackbird Turdus merula nest characteristics
Mainwaring, Mark C; Deeming, D Charles; Jones, Chris I; Hartley, Ian R
2014-01-01
Nest construction is taxonomically widespread, yet our understanding of adaptive intraspecific variation in nest design remains poor. Nest characteristics are expected to vary adaptively in response to predictable variation in spring temperatures over large spatial scales, yet such variation in nest design remains largely overlooked, particularly amongst open-cup-nesting birds. Here, we systematically examined the effects of latitudinal variation in spring temperatures and precipitation on the morphology, volume, composition, and insulatory properties of open-cup-nesting Common Blackbirds’ Turdus merula nests to test the hypothesis that birds living in cooler environments at more northerly latitudes would build better insulated nests than conspecifics living in warmer environments at more southerly latitudes. As spring temperatures increased with decreasing latitude, the external diameter of nests decreased. However, as nest wall thickness also decreased, there was no variation in the diameter of the internal nest cups. Only the mass of dry grasses within nests decreased with warmer temperatures at lower latitudes. The insulatory properties of nests declined with warmer temperatures at lower latitudes and nests containing greater amounts of dry grasses had higher insulatory properties. The insulatory properties of nests decreased with warmer temperatures at lower latitudes, via changes in morphology (wall thickness) and composition (dry grasses). Meanwhile, spring precipitation did not vary with latitude, and none of the nest characteristics varied with spring precipitation. This suggests that Common Blackbirds nesting at higher latitudes were building nests with thicker walls in order to counteract the cooler temperatures. We have provided evidence that the nest construction behavior of open-cup-nesting birds systematically varies in response to large-scale spatial variation in spring temperatures. PMID:24683466
Adaptive latitudinal variation in Common Blackbird Turdus merula nest characteristics.
Mainwaring, Mark C; Deeming, D Charles; Jones, Chris I; Hartley, Ian R
2014-03-01
Nest construction is taxonomically widespread, yet our understanding of adaptive intraspecific variation in nest design remains poor. Nest characteristics are expected to vary adaptively in response to predictable variation in spring temperatures over large spatial scales, yet such variation in nest design remains largely overlooked, particularly amongst open-cup-nesting birds. Here, we systematically examined the effects of latitudinal variation in spring temperatures and precipitation on the morphology, volume, composition, and insulatory properties of open-cup-nesting Common Blackbirds' Turdus merula nests to test the hypothesis that birds living in cooler environments at more northerly latitudes would build better insulated nests than conspecifics living in warmer environments at more southerly latitudes. As spring temperatures increased with decreasing latitude, the external diameter of nests decreased. However, as nest wall thickness also decreased, there was no variation in the diameter of the internal nest cups. Only the mass of dry grasses within nests decreased with warmer temperatures at lower latitudes. The insulatory properties of nests declined with warmer temperatures at lower latitudes and nests containing greater amounts of dry grasses had higher insulatory properties. The insulatory properties of nests decreased with warmer temperatures at lower latitudes, via changes in morphology (wall thickness) and composition (dry grasses). Meanwhile, spring precipitation did not vary with latitude, and none of the nest characteristics varied with spring precipitation. This suggests that Common Blackbirds nesting at higher latitudes were building nests with thicker walls in order to counteract the cooler temperatures. We have provided evidence that the nest construction behavior of open-cup-nesting birds systematically varies in response to large-scale spatial variation in spring temperatures.
Besemer, Abigail E; Titz, Benjamin; Grudzinski, Joseph J; Weichert, Jamey P; Kuo, John S; Robins, H Ian; Hall, Lance T; Bednarz, Bryan P
2017-07-06
Variations in tumor volume segmentation methods in targeted radionuclide therapy (TRT) may lead to dosimetric uncertainties. This work investigates the impact of PET and MRI threshold-based tumor segmentation on TRT dosimetry in patients with primary and metastatic brain tumors. In this study, PET/CT images of five brain cancer patients were acquired at 6, 24, and 48 h post-injection of 124 I-CLR1404. The tumor volume was segmented using two standardized uptake value (SUV) threshold levels, two tumor-to-background ratio (TBR) threshold levels, and a T1 Gadolinium-enhanced MRI threshold. The dice similarity coefficient (DSC), jaccard similarity coefficient (JSC), and overlap volume (OV) metrics were calculated to compare differences in the MRI and PET contours. The therapeutic 131 I-CLR1404 voxel-level dose distribution was calculated from the 124 I-CLR1404 activity distribution using RAPID, a Geant4 Monte Carlo internal dosimetry platform. The TBR, SUV, and MRI tumor volumes ranged from 2.3-63.9 cc, 0.1-34.7 cc, and 0.4-11.8 cc, respectively. The average ± standard deviation (range) was 0.19 ± 0.13 (0.01-0.51), 0.30 ± 0.17 (0.03-0.67), and 0.75 ± 0.29 (0.05-1.00) for the JSC, DSC, and OV, respectively. The DSC and JSC values were small and the OV values were large for both the MRI-SUV and MRI-TBR combinations because the regions of PET uptake were generally larger than the MRI enhancement. Notable differences in the tumor dose volume histograms were observed for each patient. The mean (standard deviation) 131 I-CLR1404 tumor doses ranged from 0.28-1.75 Gy GBq -1 (0.07-0.37 Gy GBq -1 ). The ratio of maximum-to-minimum mean doses for each patient ranged from 1.4-2.0. The tumor volume and the interpretation of the tumor dose is highly sensitive to the imaging modality, PET enhancement metric, and threshold level used for tumor volume segmentation. The large variations in tumor doses clearly demonstrate the need for standard protocols for multimodality tumor segmentation in TRT dosimetry.
NASA Astrophysics Data System (ADS)
Besemer, Abigail E.; Titz, Benjamin; Grudzinski, Joseph J.; Weichert, Jamey P.; Kuo, John S.; Robins, H. Ian; Hall, Lance T.; Bednarz, Bryan P.
2017-08-01
Variations in tumor volume segmentation methods in targeted radionuclide therapy (TRT) may lead to dosimetric uncertainties. This work investigates the impact of PET and MRI threshold-based tumor segmentation on TRT dosimetry in patients with primary and metastatic brain tumors. In this study, PET/CT images of five brain cancer patients were acquired at 6, 24, and 48 h post-injection of 124I-CLR1404. The tumor volume was segmented using two standardized uptake value (SUV) threshold levels, two tumor-to-background ratio (TBR) threshold levels, and a T1 Gadolinium-enhanced MRI threshold. The dice similarity coefficient (DSC), jaccard similarity coefficient (JSC), and overlap volume (OV) metrics were calculated to compare differences in the MRI and PET contours. The therapeutic 131I-CLR1404 voxel-level dose distribution was calculated from the 124I-CLR1404 activity distribution using RAPID, a Geant4 Monte Carlo internal dosimetry platform. The TBR, SUV, and MRI tumor volumes ranged from 2.3-63.9 cc, 0.1-34.7 cc, and 0.4-11.8 cc, respectively. The average ± standard deviation (range) was 0.19 ± 0.13 (0.01-0.51), 0.30 ± 0.17 (0.03-0.67), and 0.75 ± 0.29 (0.05-1.00) for the JSC, DSC, and OV, respectively. The DSC and JSC values were small and the OV values were large for both the MRI-SUV and MRI-TBR combinations because the regions of PET uptake were generally larger than the MRI enhancement. Notable differences in the tumor dose volume histograms were observed for each patient. The mean (standard deviation) 131I-CLR1404 tumor doses ranged from 0.28-1.75 Gy GBq-1 (0.07-0.37 Gy GBq-1). The ratio of maximum-to-minimum mean doses for each patient ranged from 1.4-2.0. The tumor volume and the interpretation of the tumor dose is highly sensitive to the imaging modality, PET enhancement metric, and threshold level used for tumor volume segmentation. The large variations in tumor doses clearly demonstrate the need for standard protocols for multimodality tumor segmentation in TRT dosimetry.
Farmer, G.L.; Broxton, D.E.; Warren, R.G.; Pickthorn, W.
1991-01-01
Nd, Sr and O isotopic data were obtained from silicic ash-flow tuffs and lavas at the Tertiary age (16-9 Ma) Timber (Mountain/Oasis Valley volcanic center (TMOV) in southern Nevada, to assess models for the origin and evolution of the large-volume silicic magma bodies generated in this region. The large-volume (>900 km3), chemically-zoned, Topopah Spring (TS) and Tiva Canyon (TC) members of the Paintbrush Tuff, and the Rainier Mesa (RM) and Ammonia Tanks (AT) members of the younger Timber Mountain Tuff all have internal Nd and Sr isotopic zonations. In each tuff, high-silica rhyolites have lower initial e{open}Nd values (???1 e{open}Nd unit), higher87Sr/86Sr, and lower Nd and Sr contents, than cocrupted trachytes. The TS, TC, and RM members have similar e{open}Nd values for high-silica rhyolites (-11.7 to -11.2) and trachytes (-10.5 to -10.7), but the younger AT member has a higher e{open}Nd for both compositional types (-10.3 and -9.4). Oxygen isotope data confirm that the TC and AT members were derived from low e{open}Nd magmas. The internal Sr and Nd isotopic variations in each tuff are interpreted to be the result of the incorporation of 20-40% (by mass) wall-rock into magmas that were injected into the upper crust. The low e{open}Nd magmas most likely formed via the incorporation of low ??18O, hydrothermally-altered, wall-rock. Small-volume rhyolite lavas and ash-flow tuffs have similar isotopic characteristics to the large-volume ash-flow tuffs, but lavas erupted from extracaldera vents may have interacted with higher ??18O crustal rocks peripheral to the main magma chamber(s). Andesitic lavas from the 13-14 Ma Wahmonie/Salyer volcanic center southeast of the TMOV have low e{open}Nd (-13.2 to -13.8) and are considered on the basis of textural evidence to be mixtures of basaltic composition magmas and large proportions (70-80%) of anatectic crustal melts. A similar process may have occurred early in the magmatic history of the TMOV. The large-volume rhyolites may represent a mature stage of magmatism after repeated injection of basaltic magmas, crustal melting, and volcanism cleared sufficient space in the upper crust for large magma bodies to accumulate and differentiate. The TMOV rhyolites and 0-10 Ma old basalts that erupted in southern Nevada all have similar Nd and Sr isotopic compositions, which suggests that silicic and mafic magmatism at the TMOV were genetically related. The distinctive isotopic compositions of the AT member may reflect temporal changes in the isotopic compositions of basaltic magmas entering the upper crust, possibly as a result of increasing "basification" of a lower crustal magma source by repeated injection of mantle-derived mafic magmas. ?? 1991 Springer-Verlag.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malgin, A. S., E-mail: malgin@lngs.infn.it
The parameters of the seasonal modulations in the intensity of muons and cosmogenic neutrons generated by them at a mean muon energy of 280 GeV have been determined in the LVD (Large Volume Detector) experiment. The modulations of muons and neutrons are caused by a temperature effect, the seasonal temperature and density variations of the upper atmospheric layers. The analysis performed here leads to the conclusion that the variations in the mean energy of the muon flux are the main source of underground cosmogenic neutron variations, because the energy of muons is more sensitive to the temperature effect than theirmore » intensity. The parameters of the seasonal modulations in the mean energy of muons and the flux of cosmogenic neutrons at the LVD depth have been determined from the data obtained over seven years of LVD operation.« less
Cardiovascular Adjustments to Gravitational Stress
NASA Technical Reports Server (NTRS)
Blomqvist, C. Gunnar; Stone, H. Lowell
1991-01-01
The effects of gravity on the cardiovascular system must be taken into account whenever a hemodynamic assessment is made. All intravascular pressure have a gravity-dependent hydrostatic component. The interaction between the gravitational field, the position of the body, and the functional characteristics of the blood vessels determines the distribution of intravascular volume. In turn this distribution largely determines cardiac pump function. Multiple control mechanisms are activated to preserve optimal tissue perfusion when the magnitude of the gravitational field or its direction relative to the body changes. Humans are particularly sensitive to such changes because of the combination of their normally erect posture and the large body mass and blood volume below the level of the heart. Current aerospace technology also exposes human subjects to extreme variations in the gravitational forces that range from zero during space travel to as much an nine-times normal during operation of high-performance military aircraft. This chapter therefore emphasizes human physiology.
Precision Composite Space Structures
2007-10-15
large structures. 15. SUBJECT TERMS Composite materials, dimensional stability, microcracking, thermal expansion , space structures, degradation...Figure 32. Variation of normalized coefficients of thermal expansion α11(n), α22(n), and α33(n) with normalized crack density of an AS4/3501-6...coefficients of thermal expansion α11(n), α22(n), and α33(n) with normalized crack density of an AS4/3501-6 composite lamina with a fiber volume
I Lacan; Kathleen R. Matthews; K.V. Feldman
2008-01-01
Between-year variation in snowpack (from 20 to 200% of average) and summer rainfall cause large fluctuations in volume of small lakes in the higher elevation (> 3000 m) Sierra Nevada, which are important habitat for the imperiled Sierra Nevada Yellow-legged Frog, Rana sierrae. Climate change (global warming) is predicted to increase these...
Modelling Wind Effects on Subtidal Salinity in Apalachicola Bay, Florida
NASA Astrophysics Data System (ADS)
Huang, W.; Jones, W. K.; Wu, T. S.
2002-07-01
Salinity is an important factor for oyster and estuarine productivity in Apalachicola Bay. Observations of salinity at oyster reefs have indicated a high correlation between subtidal salinity variations and the surface winds along the bay axis in an approximately east-west direction. In this paper, we applied a calibrated hydrodynamic model to examine the surface wind effects on the volume fluxes in the tidal inlets and the subtidal salinity variations in the bay. Model simulations show that, due to the large size of inlets located at the east and west ends of this long estuary, surface winds have significant effects on the volume fluxes in the estuary inlets for the water exchanges between the estuary and ocean. In general, eastward winds cause the inflow from the inlets at the western end and the outflow from inlets at the eastern end of the bay. Winds at 15 mph speed in the east-west direction can induce a 2000 m3 s-1 inflow of saline seawater into the bay from the inlets, a rate which is about 2·6 times that of the annual average freshwater inflow from the river. Due to the varied wind-induced volume fluxes in the inlets and the circulation in the bay, the time series of subtidal salinity at oyster reefs considerably increases during strong east-west wind conditions in comparison to salinity during windless conditions. In order to have a better understanding of the characteristics of the wind-induced subtidal circulation and salinity variations, the researchers also connected model simulations under constant east-west wind conditions. Results show that the volume fluxes are linearly proportional to the east-west wind stresses. Spatial distributions of daily average salinity and currents clearly show the significant effects of winds on the bay.
Hanson, Jamie L.; Chung, Moo K.; Avants, Brian B.; Rudolph, Karen D.; Shirtcliff, Elizabeth A.; Gee, James C.; Davidson, Richard J.; Pollak, Seth D.
2012-01-01
A large corpus of research indicates exposure to stress impairs cognitive abilities, specifically executive functioning dependent on the prefrontal cortex (PFC). We collected structural MRI scans (n=61), well-validated assessments of executive functioning, and detailed interviews assessing stress exposure in humans, to examine whether cumulative life stress affected brain morphometry and one type of executive functioning, spatial working memory, during adolescence—a critical time of brain development and reorganization. Analysis of variations in brain structure revealed that cumulative life stress and spatial working memory were related to smaller volumes in the PFC, specifically prefrontal gray and white matter between the anterior cingulate and the frontal poles. Mediation analyses revealed that individual differences in prefrontal volumes accounted for the association between cumulative life stress and spatial working memory. These results suggest that structural changes in the PFC may serve as a mediating mechanism through which greater cumulative life stress engenders decrements in cognitive functioning. PMID:22674267
Fernandes, C L
2004-11-01
The volumes of the maxillary sinuses are of interest to surgeons operating endoscopically as variation in maxillary sinus volume may mean variation in anatomical landmarks. Other surgical disciplines, such as dentistry, maxillo-facial surgery and plastic surgery, may benefit from this information. To compare the maxillary sinus volumes of dried crania from cadavers of European and Zulu descent, with respect to ethnic group and gender. Helical, multislice computed tomography (CT) was performed using 1-mm coronal slices. The area for each slice was obtained by tracing the outline of each slice. The CT machine calculated a volume by totalling the slices for each sinus. Ethnic and gender variations were found in the different groups. It was found that European crania had significantly larger antral volumes than Zulu crania and men had larger volumes than women. Race and gender interaction was also assessed, as was maxillary sinus side. A variation in maxillary sinus volume between different ethnic groups and genders exists, and surgeons operating in this region should be aware of this.
NASA Astrophysics Data System (ADS)
Lavigne, Thomas
In the early 1900's, J.W. Whipple began validating C.R. Wilson's Global Electric Circuit (GEC) hypothesis by correlating diurnal variations of global thunder days with diurnal variations of the fair weather electric field. This study applies 16+ years of Precipitation Feature (PF) data from the Tropical Rainfall Measuring Mission (TRMM), including lightning data from the Lightning Imaging Sensor (LIS), alongside 12-years of electric field measurements from Vostok, Antarctica to further examine this relationship. Joint diurnal-seasonal variations of the electric field are compared with PF parameters that are potentially related to the GEC. The flash rate and volume of 30 dBZ between -5°C and -35°C variables are shown to have the best direct relationship to the electric field, with r2 values of 0.67 and 0.62, respectively. However, the Coefficient of Variation (COV) of the flash rate (28%) and the electric field (12%), display relatively large differences in the spread of the variables. The volume of 30 dBZ between -5°C and -35°C shows a closer amplitude agreement to the variance of the electric field (COV=17%). Furthermore, these relationships are analyzed during two different phases of the El Nino Southern Oscillation (ENSO). Results show different seasonal-diurnal variations of the electric field during ENSO phases, with enhancements in the electric field between January through April at 16-24 UTC in La Nina years. In all, similar variations have been found in the fair weather electric field, and the variation of properties of global PFs with high potential of electrification at diurnal, seasonal, and interannual timescales. These confirm the dominant role of the global thunderclouds and electrified clouds in the global electric circuit.
Effects of voxelization on dose volume histogram accuracy
NASA Astrophysics Data System (ADS)
Sunderland, Kyle; Pinter, Csaba; Lasso, Andras; Fichtinger, Gabor
2016-03-01
PURPOSE: In radiotherapy treatment planning systems, structures of interest such as targets and organs at risk are stored as 2D contours on evenly spaced planes. In order to be used in various algorithms, contours must be converted into binary labelmap volumes using voxelization. The voxelization process results in lost information, which has little effect on the volume of large structures, but has significant impact on small structures, which contain few voxels. Volume differences for segmented structures affects metrics such as dose volume histograms (DVH), which are used for treatment planning. Our goal is to evaluate the impact of voxelization on segmented structures, as well as how factors like voxel size affects metrics, such as DVH. METHODS: We create a series of implicit functions, which represent simulated structures. These structures are sampled at varying resolutions, and compared to labelmaps with high sub-millimeter resolutions. We generate DVH and evaluate voxelization error for the same structures at different resolutions by calculating the agreement acceptance percentage between the DVH. RESULTS: We implemented tools for analysis as modules in the SlicerRT toolkit based on the 3D Slicer platform. We found that there were large DVH variation from the baseline for small structures or for structures located in regions with a high dose gradient, potentially leading to the creation of suboptimal treatment plans. CONCLUSION: This work demonstrates that labelmap and dose volume voxel size is an important factor in DVH accuracy, which must be accounted for in order to ensure the development of accurate treatment plans.
Gilmer, Todd P; Kronick, Richard G
2011-07-01
It is well known that Medicaid spending per beneficiary varies widely across states. However, less is known about the cause of this variation, or about whether increased spending is associated with better outcomes. In this article we describe and analyze sources of interstate variation in Medicaid spending over several years. We find substantial variations both in the volume of services and in prices. Overall, per capita spending in the ten highest-spending states was $1,650 above the average national per capita spending, of which $1,186, or 72 percent, was due to the volume of services delivered. Spending in the ten lowest-spending states was $1,161 below the national average, of which $672, or 58 percent, was due to volume. In the mid-Atlantic region, increased price and volume resulted in the most expensive care among regions, whereas reduced price and volume in the South Central region resulted in the least expensive care among regions. Understanding these variations in greater detail should help improve the quality and efficiency of care-a task that will become more important as Medicaid is greatly expanded under the Affordable Care Act of 2010.
GCM Simulation of the Large-scale North American Monsoon Including Water Vapor Tracer Diagnostics
NASA Technical Reports Server (NTRS)
Bosilovich, Michael G.; Walker, Gregory; Schubert, Siegfried D.; Sud, Yogesh; Atlas, Robert M. (Technical Monitor)
2001-01-01
The geographic sources of water for the large-scale North American monsoon in a GCM are diagnosed using passive constituent tracers of regional water'sources (Water Vapor Tracers, WVT). The NASA Data Assimilation Office Finite Volume (FV) GCM was used to produce a 10-year simulation (1984 through 1993) including observed sea surface temperature. Regional and global WVT sources were defined to delineate the surface origin of water for precipitation in and around the North American i'vionsoon. The evolution of the mean annual cycle and the interannual variations of the monsoonal circulation will be discussed. Of special concern are the relative contributions of the local source (precipitation recycling) and remote sources of water vapor to the annual cycle and the interannual variation of warm season precipitation. The relationships between soil water, surface evaporation, precipitation and precipitation recycling will be evaluated.
GCM Simulation of the Large-Scale North American Monsoon Including Water Vapor Tracer Diagnostics
NASA Technical Reports Server (NTRS)
Bosilovich, Michael G.; Walker, Gregory; Schubert, Siegfried D.; Sud, Yogesh; Atlas, Robert M. (Technical Monitor)
2002-01-01
The geographic sources of water for the large scale North American monsoon in a GCM (General Circulation Model) are diagnosed using passive constituent tracers of regional water sources (Water Vapor Tracers, WVT). The NASA Data Assimilation Office Finite Volume (FV) GCM was used to produce a 10-year simulation (1984 through 1993) including observed sea surface temperature. Regional and global WVT sources were defined to delineate the surface origin of water for precipitation in and around the North American Monsoon. The evolution of the mean annual cycle and the interannual variations of the monsoonal circulation will be discussed. Of special concern are the relative contributions of the local source (precipitation recycling) and remote sources of water vapor to the annual cycle and the interannual variation of monsoonal precipitation. The relationships between soil water, surface evaporation, precipitation and precipitation recycling will be evaluated.
Kim, Sangwoo; Choi, Seongdae; Oh, Eunho; Byun, Junghwan; Kim, Hyunjong; Lee, Byeongmoon; Lee, Seunghwan; Hong, Yongtaek
2016-01-01
A percolation theory based on variation of conductive filler fraction has been widely used to explain the behavior of conductive composite materials under both small and large deformation conditions. However, it typically fails in properly analyzing the materials under the large deformation since the assumption may not be valid in such a case. Therefore, we proposed a new three-dimensional percolation theory by considering three key factors: nonlinear elasticity, precisely measured strain-dependent Poisson’s ratio, and strain-dependent percolation threshold. Digital image correlation (DIC) method was used to determine actual Poisson’s ratios at various strain levels, which were used to accurately estimate variation of conductive filler volume fraction under deformation. We also adopted strain-dependent percolation threshold caused by the filler re-location with deformation. When three key factors were considered, electrical performance change was accurately analyzed for composite materials with both isotropic and anisotropic mechanical properties. PMID:27694856
Viking-1 meteorological measurements - First impressions
NASA Technical Reports Server (NTRS)
Hess, S. L.; Henry, R. M.; Leovy, C. B.; Tillman, J. E.; Ryan, J. A.
1976-01-01
A preliminary evaluation is given of in situ meteorological measurements made by Viking 1 on Mars. The data reported show that: (1) the atmosphere has approximate volume mixing ratios of 1.5% argon, 3% nitrogen, and 95% carbon dioxide; (2) the diurnal temperature range is large and regular, with a sunrise minimum of about 188 K and a midafternoon maximum near 244 K; (3) air and ground temperatures coincide quite closely during the night, but ground temperature exceeds air temperature near midday by as much as 25 C; (4) the winds exhibit a marked diurnal cycle; and (5) a large diurnal pressure variation with an afternoon minimum and an early-morning maximum parallels the wind pattern. The variations are explained in terms of familiar meteorological processes. It is suggested that latent heat is unlikely to play an important role on Mars because no evidence has been observed for traveling synoptic-scale disturbances such as those that occur in the terrestrial tropics.
Pharmaceutical management in ProCare Health Limited.
Malcolm, L; Barry, M; MacLean, I
2001-06-22
To review pharmaceutical budget holding and management in ProCare Health Limited by; describing budget holding strategies implemented in 1995/6, identifying prescribing savings achieved, analysing variation in prescribing behaviour and comparing the findings with experience elsewhere. With 340 members, ProCare is one of the largest and most progressive of New Zealand's independent practitioner associations (IPAs). Data were obtained for the three years 1994 to 1996 to determine pharmaceutical expenditure against budget and against national trends, by member and general medical services (GMS) consultations. ProCare has established a classical, quality focussed pharmaceutical management strategy. Savings against the agreed budget was 9.5% comparing 1996 with 1995 but 5.7% compared, with national trends. Wide variation in per capita and per consultation costs was not reduced and was entirely explained by prescribing volumes not drug prices. The most important finding is that general practitioners (GPs), working collaboratively, can establish a strategy of clinical and corporate governance which may be exerting a wide ranging influence over clinical behaviour. Although there may be doubts about the actual levels of saving these appeared to be well in excess of the financial investment in the strategy. Greater savings appear possible with a focus on addressing the large and apparently inappropriate per capita prescribing volume variation between practices. Understanding and successfully addressing this variation will be one of the key issues facing the implementation of the government's primary health care strategy.
Maxwell, M; Howie, J G; Pryde, C J
1998-01-01
BACKGROUND: Prescribing matters (particularly budget setting and research into prescribing variation between doctors) have been handicapped by the absence of credible measures of the volume of drugs prescribed. AIM: To use the defined daily dose (DDD) method to study variation in the volume and cost of drugs prescribed across the seven main British National Formulary (BNF) chapters with a view to comparing different methods of setting prescribing budgets. METHOD: Study of one year of prescribing statistics from all 129 general practices in Lothian, covering 808,059 patients: analyses of prescribing statistics for 1995 to define volume and cost/volume of prescribing for one year for 10 groups of practices defined by the age and deprivation status of their patients, for seven BNF chapters; creation of prescribing budgets for 1996 for each individual practice based on the use of target volume and cost statistics; comparison of 1996 DDD-based budgets with those set using the conventional historical approach; and comparison of DDD-based budgets with budgets set using a capitation-based formula derived from local cost/patient information. RESULTS: The volume of drugs prescribed was affected by the age structure of the practices in BNF Chapters 1 (gastrointestinal), 2 (cardiovascular), and 6 (endocrine), and by deprivation structure for BNF Chapters 3 (respiratory) and 4 (central nervous system). Costs per DDD in the major BNF chapters were largely independent of age, deprivation structure, or fundholding status. Capitation and DDD-based budgets were similar to each other, but both differed substantially from historic budgets. One practice in seven gained or lost more than 100,000 Pounds per annum using DDD or capitation budgets compared with historic budgets. The DDD-based budget, but not the capitation-based budget, can be used to set volume-specific prescribing targets. CONCLUSIONS: DDD-based and capitation-based prescribing budgets can be set using a simple explanatory model and generalizable methods. In this study, both differed substantially from historic budgets. DDD budgets could be created to accommodate new prescribing strategies and raised or lowered to reflect local intentions to alter overall prescribing volume or cost targets. We recommend that future work on setting budgets and researching prescribing variations should be based on DDD statistics. PMID:10024703
Device For Controlling Crystallization Of Protein
NASA Technical Reports Server (NTRS)
Noever, David A.
1993-01-01
Variable sandwich spacer enables optimization of evaporative driving force that governs crystallization of protein from solution. Mechanically more rigid than hanging-drop and sitting-drop devices. Large oscillations and dislodgment of drop of solution in response to vibrations suppressed by glass plates. Other advantages include: suitable for automated delivery, stable handling, and programmable evaporation of protein solution; controlled configuration enables simple and accurate determination of volume of solution without disrupting crystallization; pH and concentration of precipitant controlled dynamically because pH and concentration coupled to rate of evaporation, controllable via adjustment of gap between plates; and enables variation of ratio between surface area and volume of protein solution. Alternative version, plates oriented vertically instead of horizontally.
Price-volume multifractal analysis and its application in Chinese stock markets
NASA Astrophysics Data System (ADS)
Yuan, Ying; Zhuang, Xin-tian; Liu, Zhi-ying
2012-06-01
An empirical research on Chinese stock markets is conducted using statistical tools. First, the multifractality of stock price return series, ri(ri=ln(Pt+1)-ln(Pt)) and trading volume variation series, vi(vi=ln(Vt+1)-ln(Vt)) is confirmed using multifractal detrended fluctuation analysis. Furthermore, a multifractal detrended cross-correlation analysis between stock price return and trading volume variation in Chinese stock markets is also conducted. It is shown that the cross relationship between them is also found to be multifractal. Second, the cross-correlation between stock price Pi and trading volume Vi is empirically studied using cross-correlation function and detrended cross-correlation analysis. It is found that both Shanghai stock market and Shenzhen stock market show pronounced long-range cross-correlations between stock price and trading volume. Third, a composite index R based on price and trading volume is introduced. Compared with stock price return series ri and trading volume variation series vi, R variation series not only remain the characteristics of original series but also demonstrate the relative correlation between stock price and trading volume. Finally, we analyze the multifractal characteristics of R variation series before and after three financial events in China (namely, Price Limits, Reform of Non-tradable Shares and financial crisis in 2008) in the whole period of sample to study the changes of stock market fluctuation and financial risk. It is found that the empirical results verified the validity of R.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Massager, Nicolas, E-mail: nmassage@ulb.ac.be; Neurosurgery-Department, Hospital Erasme, Brussels; Lonneville, Sarah
2011-11-15
Objectives: We investigated variations in the distribution of radiation dose inside (dose inhomogeneity) and outside (dose falloff) the target volume during Gamma Knife (GK) irradiation of vestibular schwannoma (VS). We analyzed the relationship between some parameters of dose distribution and the clinical and radiological outcome of patients. Methods and Materials: Data from dose plans of 203 patients treated for a vestibular schwannoma by GK C using same prescription dose (12 Gy at the 50% isodose) were collected. Four different dosimetric indexes were defined and calculated retrospectively in all plannings on the basis of dose-volume histograms: Paddick conformity index (PI), gradientmore » index (GI), homogeneity index (HI), and unit isocenter (UI). The different measures related to distribution of the radiation dose were compared with hearing and tumor outcome of 203 patients with clinical and radiological follow-up of minimum 2 years. Results: Mean, median, SD, and ranges of the four indexes of dose distribution analyzed were calculated; large variations were found between dose plans. We found a high correlation between the target volume and PI, GI, and UI. No significant association was found between the indexes of dose distribution calculated in this study and tumor control, tumor volume shrinkage, hearing worsening, loss of functional hearing, or complete hearing loss at last follow-up. Conclusions: Parameters of distribution of the radiation dose during GK radiosurgery for VS can be highly variable between dose plans. The tumor and hearing outcome of patients treated is not significantly related to these global indexes of dose distribution inside and around target volume. In GK radiosurgery for VS, the outcome seems more to be influenced by local radiation dose delivered to specific structures or volumes than by global dose gradients.« less
NASA Technical Reports Server (NTRS)
Petro, Elaine; Hughes, David
2011-01-01
Analysis has been performed for MAVEN mission. Due to the elliptical orbit, large pressure variations in orbit will be experienced, there is a need to understand how internal pressures change and the flux of gas from vents could potentially bias instrument measurements. Goal of this analysis is to predict the effect that atmospheric gases trapped and vented from spacecraft volumes could have on instrument measurements.
Aircraft Icing Handbook. Volume 1
1991-03-01
Maryland - . . . Kohiman Aviation, Lawrence , Kansas Ohio State University, Columbus, Ohio .I --- t-r 1-- - -t I.Q,,- t ../e . Pratt and Whitney...lower; about six percent at -22 ’F (-30 *C). 1.2.3 Variations with Season The summer or warm season months create large warm air masses which can...on Aircraft Surfaces," NASA TM 87184, May 1986. 2-54 Hausman , R.J. and Turnock, S.R., "Investigation of Surface Water Behavior During Glaze Ice
NASA Technical Reports Server (NTRS)
Labitzke, K. (Editor); Barnett, J. J. (Editor); Edwards, B. (Editor)
1985-01-01
A draft of a new reference atmosphere for the region between 20 and 80 km which depends largely on recent satellite experiments covering the globe from 80 deg S to 80 deg N is given. A separate international tropical reference atmosphere is given, as well as reference ozone models for the middle atmosphere.
Lanspa, Michael J.; Briggs, Benjamin J.; Hirshberg, Eliotte L.; Pratt, Cristina M.; Grissom, Colin K.; Brown, Samuel M.
2017-01-01
Objective: The accuracy of various techniques to predict response to volume expansion in shock has been studied, but less well known is how feasible these techniques are in the ICU. Methods: This is a prospective observation single-center study of inpatients from a mixed profile ICU who received volume expansion. At time of volume expansion, we determined whether a particular technique to predict response was feasible, according to rules developed from available literature and nurse assessment. Results: We studied 214 volume expansions in 97 patients. The most feasible technique was central venous pressure (50%), followed by vena cava collapsibility, (47%) passive leg raise (42%), and stroke volume variation (22%). Aortic velocity variation, and pulse pressure variation, and were rarely feasible (1% each). In 37% of volume expansions, no technique that we assessed was feasible. Conclusions: Techniques to predict response to volume expansion are infeasible in many patients in shock. PMID:28971030
Barnes, S.-J.; Zientek, M.L.; Severson, M.J.
1997-01-01
The tectonic setting of intraplate magmas, typically a plume intersecting a rift, is ideal for the development of Ni - Cu - platinum-group element-bearing sulphides. The plume transports metal-rich magmas close to the mantle - crust boundary. The interaction of the rift and plume permits rapid transport of the magma into the crust, thus ensuring that no sulphides are lost from the magma en route to the crust. The rift may contain sediments which could provide the sulphur necessary to bring about sulphide saturation in the magmas. The plume provides large volumes of mafic magma; thus any sulphides that form can collect metals from a large volume of magma and consequently the sulphides will be metal rich. The large volume of magma provides sufficient heat to release large quantities of S from the crust, thus providing sufficient S to form a large sulphide deposit. The composition of the sulphides varies on a number of scales: (i) there is a variation between geographic areas, in which sulphides from the Noril'sk - Talnakh area are the richest in metals and those from the Muskox intrusion are poorest in metals; (ii) there is a variation between textural types of sulphides, in which disseminated sulphides are generally richer in metals than the associated massive and matrix sulphides; and (iii) the massive and matrix sulphides show a much wider range of compositions than the disseminated sulphides, and on the basis of their Ni/Cu ratio the massive and matrix sulphides can be divided into Cu rich and Fe rich. The Cu-rich sulphides are also enriched in Pt, Pd, and Au; in contrast, the Fe-rich sulphides are enriched in Fe, Os, Ir, Ru, and Rh. Nickel concentrations are similar in both. Differences in the composition between the sulphides from different areas may be attributed to a combination of differences in composition of the silicate magma from which the sulphides segregated and differences in the ratio of silicate to sulphide liquid (R factors). The higher metal content of the disseminated sulphides relative to the massive and matrix sulphides may be due to the fact that the disseminated sulphides equilibrated with a larger volume of magma than massive and matrix sulphides. The difference in composition between the Cu- and Fe-rich sulphides may be the result of the fractional crystallization of monosulphide solid solution from a sulphide liquid, with the Cu-rich sulphides representing the liquid and the Fe-rich sulphides representing the cumulate.
Morphological Features and Important Parameters of Large Optic Discs for Diagnosing Glaucoma
Okimoto, Satoshi; Yamashita, Keiko; Shibata, Tetsuo; Kiuchi, Yoshiaki
2015-01-01
Purpose To compare the optic disc parameters of glaucomatous eyes to those of non-glaucomatous eyes with large discs. Methods We studied 225 consecutive eyes with large optic discs (>2.82 mm2): 91 eyes with glaucoma and 134 eyes without glaucoma. An eye was diagnosed with glaucoma when visual field defects were detected by the Humphrey Field Analyzer. All of the Heidelberg Retina Tomograph II (HRT II) parameters were compared between the non-glaucomatous and glaucomatous eyes. A logistic regression analysis of the HRT II parameters was used to establish a new formula for diagnosing glaucoma, and the sensitivity and specificity of the Moorfields Regression Analysis (MRA) was compared to the findings made by our analyses. Results The mean disc area was 3.44±0.50 mm2 in the non-glaucomatous group and 3.40±0.52 mm2 in the glaucoma group. The cup area, cup volume, cup-to-disc area ratio, linear cup/disc ratio, mean cup depth, and the maximum cup depth were significantly larger in glaucomatous eyes than in the non-glaucomatous eyes. The rim area, rim volume, cup shape measurement, mean retinal nerve fiber layer (RNFL) thickness, and RFNL cross-sectional area were significantly smaller in glaucomatous eyes than in non-glaucomatous eyes. The cup-to-disc area ratio, the height variation contour (HVC), and the RNFL cross-sectional area were important parameters for diagnosing the early stage glaucoma, and the cup-to-disc area ratio and cup volume were useful for diagnosing advanced stage glaucoma in eyes with a large optic disc. The new formula had higher sensitivity and specificity for diagnosing glaucoma than MRA. Conclusions The cup-to-disc area ratio, HVC, RNFL cross-sectional area, and cup volume were important parameters for diagnosing glaucoma in eyes with a large optic disc. The important disc parameters to diagnose glaucoma depend on the stage of glaucoma in patients with large discs. PMID:25798580
Mechanics of Constriction during Cell Division: A Variational Approach
Almendro-Vedia, Victor G.; Monroy, Francisco; Cao, Francisco J.
2013-01-01
During symmetric division cells undergo large constriction deformations at a stable midcell site. Using a variational approach, we investigate the mechanical route for symmetric constriction by computing the bending energy of deformed vesicles with rotational symmetry. Forces required for constriction are explicitly computed at constant area and constant volume, and their values are found to be determined by cell size and bending modulus. For cell-sized vesicles, considering typical bending modulus of , we calculate constriction forces in the range . The instability of symmetrical constriction is shown and quantified with a characteristic coefficient of the order of , thus evidencing that cells need a robust mechanism to stabilize constriction at midcell. PMID:23990888
NASA Astrophysics Data System (ADS)
Stoecklin, A.; Friedli, B.; Puzrin, A. M.
2017-11-01
The volume of submarine landslides is a key controlling factor for their damage potential. Particularly large landslides are found in active sedimentary regions. However, the mechanism controlling their volume, and in particular their thickness, remains unclear. Here we present a mechanism that explains how rapid sedimentation can lead to localized slope failure at a preferential depth and set the conditions for the emergence of large-scale slope-parallel landslides. We account for the contractive shearing behavior of the sediments, which locally accelerates the development of overpressures in the pore fluid, even on very mild slopes. When applied to the Santa Barbara basin, the mechanism offers an explanation for the regional variation in landslide thickness and their sedimentation-controlled recurrence. Although earthquakes are the most likely trigger for these mass movements, our results suggest that the sedimentation process controls the geometry of their source region. The mechanism introduced here is generally applicable and can provide initial conditions for subsequent landslide triggering, runout, and tsunami-source analyses in sedimentary regions.
Robotic liquid handling and automation in epigenetics.
Gaisford, Wendy
2012-10-01
Automated liquid-handling robots and high-throughput screening (HTS) are widely used in the pharmaceutical industry for the screening of large compound libraries, small molecules for activity against disease-relevant target pathways, or proteins. HTS robots capable of low-volume dispensing reduce assay setup times and provide highly accurate and reproducible dispensing, minimizing variation between sample replicates and eliminating the potential for manual error. Low-volume automated nanoliter dispensers ensure accuracy of pipetting within volume ranges that are difficult to achieve manually. In addition, they have the ability to potentially expand the range of screening conditions from often limited amounts of valuable sample, as well as reduce the usage of expensive reagents. The ability to accurately dispense lower volumes provides the potential to achieve a greater amount of information than could be otherwise achieved using manual dispensing technology. With the emergence of the field of epigenetics, an increasing number of drug discovery companies are beginning to screen compound libraries against a range of epigenetic targets. This review discusses the potential for the use of low-volume liquid handling robots, for molecular biological applications such as quantitative PCR and epigenetics.
Variability in venom volume, flow rate and duration in defensive stings of five scorpion species.
van der Meijden, Arie; Coelho, Pedro; Rasko, Mykola
2015-06-15
Scorpions have been shown to control their venom usage in defensive encounters, depending on the perceived threat. Potentially, the venom amount that is injected could be controlled by reducing the flow speed, the flow duration, or both. We here investigated these variables by allowing scorpions to sting into an oil-filled chamber, and recording the accreting venom droplets with high-speed video. The size of the spherical droplets on the video can then be used to calculate their volume. We recorded defensive stings of 20 specimens representing 5 species. Significant differences in the flow rate and total expelled volume were found between species. These differences are likely due to differences in overall size between the species. Large variation in both venom flow speed and duration are described between stinging events of single individuals. Both venom flow rate and flow duration correlate highly with the total expelled volume, indicating that scorpions may control both variables in order to achieve a desired end volume of venom during a sting. Copyright © 2015 Elsevier Ltd. All rights reserved.
Topology-aware illumination design for volume rendering.
Zhou, Jianlong; Wang, Xiuying; Cui, Hui; Gong, Peng; Miao, Xianglin; Miao, Yalin; Xiao, Chun; Chen, Fang; Feng, Dagan
2016-08-19
Direct volume rendering is one of flexible and effective approaches to inspect large volumetric data such as medical and biological images. In conventional volume rendering, it is often time consuming to set up a meaningful illumination environment. Moreover, conventional illumination approaches usually assign same values of variables of an illumination model to different structures manually and thus neglect the important illumination variations due to structure differences. We introduce a novel illumination design paradigm for volume rendering on the basis of topology to automate illumination parameter definitions meaningfully. The topological features are extracted from the contour tree of an input volumetric data. The automation of illumination design is achieved based on four aspects of attenuation, distance, saliency, and contrast perception. To better distinguish structures and maximize illuminance perception differences of structures, a two-phase topology-aware illuminance perception contrast model is proposed based on the psychological concept of Just-Noticeable-Difference. The proposed approach allows meaningful and efficient automatic generations of illumination in volume rendering. Our results showed that our approach is more effective in depth and shape depiction, as well as providing higher perceptual differences between structures.
Structure and Dynamics of Bimodal Colloidal Dispersions in a Low-Molecular-Weight Polymer Solution
Zhang, Fan; Allen, Andrew J.; Levine, Lyle E.; ...
2017-02-24
We present an experimental study of the structural and dynamical properties of bimodal, micrometersized colloidal dispersions (size ratio ≈ 2) in an aqueous solution of low-molecular weight polymer (polyethylene glycol 2000) using synchrotron ultra-small angle X-ray scattering (USAXS) and USAXSbased X-ray photon correlation spectroscopy. We fixed the volume fraction of the large particles at 5 % and systematically increased the volume fraction of the small particles from 0 % to 5 % to evaluate its effect on the structure and dynamics. The bimodal dispersions were homogenous through the investigated parameter space. We found that the partial structure factors can bemore » satisfactorily retrieved for the bimodal colloidal dispersions using a Percus-Yevick hard sphere potential when the particle size distributions of the particles were taken into account. We also found that the partial structure factor between the large particles does not exhibit significant variation with increasing volume fraction of small particles, whereas the isothermal compressibility of the binary mixture was found to decrease with increasing volume fraction of small particles. The dynamics of single-component large particle dispersion obey the principles of de Gennes narrowing, where the wave vector dependence of the interparticle diffusion coefficient is inversely proportional to the interparticle structure factor. The dynamics of the bimodal dispersions demonstrate strong dependence on the fraction of small particles. As a result, we also made a comparison between the experimental effective dynamic viscosity of the bimodal dispersion with theoretical predictions, which suggest that the complex mutual interactions between large and small particles have a strong effect on the dynamic behaviors of bimodal dispersions.« less
Structure and Dynamics of Bimodal Colloidal Dispersions in a Low-Molecular-Weight Polymer Solution.
Zhang, Fan; Allen, Andrew J; Levine, Lyle E; Tsai, De-Hao; Ilavsky, Jan
2017-03-21
We present an experimental study of the structural and dynamical properties of bimodal, micrometer-sized colloidal dispersions (size ratio ≈ 2) in an aqueous solution of low-molecular-weight polymer (polyethylene glycol 2000) using synchrotron ultra-small angle X-ray scattering (USAXS) and USAXS-based X-ray photon correlation spectroscopy. We fixed the volume fraction of the large particles at 5% and systematically increased the volume fraction of the small particles from 0 to 5% to evaluate their effects on the structure and dynamics. The bimodal dispersions were homogenous through the investigated parameter space. We found that the partial structure factors can be satisfactorily retrieved for the bimodal colloidal dispersions using a Percus-Yevick hard-sphere potential when the size distributions of the particles were taken into account. We also found that the partial structure factor between the large particles did not exhibit a significant variation with increasing volume fraction of the small particles, whereas the isothermal compressibility of the binary mixture was found to decrease with increasing volume fraction of the small particles. The dynamics of single-component large-particle dispersion obey the principles of de Gennes narrowing, where the wave vector dependence of the interparticle diffusion coefficient is inversely proportional to the interparticle structure factor. The dynamics of the bimodal dispersions demonstrate a strong dependence on the fraction of small particles. We also made a comparison between the experimental effective dynamic viscosity of the bimodal dispersion with the theoretical predictions, which suggest that the complex mutual interactions between the large and small particles have a strong effect on the dynamic behaviors of bimodal dispersions.
Structure and Dynamics of Bimodal Colloidal Dispersions in a Low-Molecular-Weight Polymer Solution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Fan; Allen, Andrew J.; Levine, Lyle E.
We present an experimental study of the structural and dynamical properties of bimodal, micrometersized colloidal dispersions (size ratio ≈ 2) in an aqueous solution of low-molecular weight polymer (polyethylene glycol 2000) using synchrotron ultra-small angle X-ray scattering (USAXS) and USAXSbased X-ray photon correlation spectroscopy. We fixed the volume fraction of the large particles at 5 % and systematically increased the volume fraction of the small particles from 0 % to 5 % to evaluate its effect on the structure and dynamics. The bimodal dispersions were homogenous through the investigated parameter space. We found that the partial structure factors can bemore » satisfactorily retrieved for the bimodal colloidal dispersions using a Percus-Yevick hard sphere potential when the particle size distributions of the particles were taken into account. We also found that the partial structure factor between the large particles does not exhibit significant variation with increasing volume fraction of small particles, whereas the isothermal compressibility of the binary mixture was found to decrease with increasing volume fraction of small particles. The dynamics of single-component large particle dispersion obey the principles of de Gennes narrowing, where the wave vector dependence of the interparticle diffusion coefficient is inversely proportional to the interparticle structure factor. The dynamics of the bimodal dispersions demonstrate strong dependence on the fraction of small particles. As a result, we also made a comparison between the experimental effective dynamic viscosity of the bimodal dispersion with theoretical predictions, which suggest that the complex mutual interactions between large and small particles have a strong effect on the dynamic behaviors of bimodal dispersions.« less
Wave energy devices with compressible volumes.
Kurniawan, Adi; Greaves, Deborah; Chaplin, John
2014-12-08
We present an analysis of wave energy devices with air-filled compressible submerged volumes, where variability of volume is achieved by means of a horizontal surface free to move up and down relative to the body. An analysis of bodies without power take-off (PTO) systems is first presented to demonstrate the positive effects a compressible volume could have on the body response. Subsequently, two compressible device variations are analysed. In the first variation, the compressible volume is connected to a fixed volume via an air turbine for PTO. In the second variation, a water column separates the compressible volume from another volume, which is fitted with an air turbine open to the atmosphere. Both floating and bottom-fixed, axisymmetric, configurations are considered, and linear analysis is employed throughout. Advantages and disadvantages of each device are examined in detail. Some configurations with displaced volumes less than 2000 m 3 and with constant turbine coefficients are shown to be capable of achieving 80% of the theoretical maximum absorbed power over a wave period range of about 4 s.
Wave energy devices with compressible volumes
Kurniawan, Adi; Greaves, Deborah; Chaplin, John
2014-01-01
We present an analysis of wave energy devices with air-filled compressible submerged volumes, where variability of volume is achieved by means of a horizontal surface free to move up and down relative to the body. An analysis of bodies without power take-off (PTO) systems is first presented to demonstrate the positive effects a compressible volume could have on the body response. Subsequently, two compressible device variations are analysed. In the first variation, the compressible volume is connected to a fixed volume via an air turbine for PTO. In the second variation, a water column separates the compressible volume from another volume, which is fitted with an air turbine open to the atmosphere. Both floating and bottom-fixed, axisymmetric, configurations are considered, and linear analysis is employed throughout. Advantages and disadvantages of each device are examined in detail. Some configurations with displaced volumes less than 2000 m3 and with constant turbine coefficients are shown to be capable of achieving 80% of the theoretical maximum absorbed power over a wave period range of about 4 s. PMID:25484609
NASA Astrophysics Data System (ADS)
Brandmeier, M.; Wörner, G.
2016-10-01
Multivariate statistical and geospatial analyses based on a compilation of 890 geochemical and 1200 geochronological data for 194 mapped ignimbrites from the Central Andes document the compositional and temporal patterns of large-volume ignimbrites (so-called "ignimbrite flare-ups") during Neogene times. Rapid advances in computational science during the past decade led to a growing pool of algorithms for multivariate statistics for large datasets with many predictor variables. This study applies cluster analysis (CA) and linear discriminant analysis (LDA) on log-ratio transformed data with the aim of (1) testing a tool for ignimbrite correlation and (2) distinguishing compositional groups that reflect different processes and sources of ignimbrite magmatism during the geodynamic evolution of the Central Andes. CA on major and trace elements allows grouping of ignimbrites according to their geochemical characteristics into rhyolitic and dacitic "end-members" and to differentiate characteristic trace element signatures with respect to Eu anomaly, depletions in middle and heavy rare earth elements (REE) and variable enrichments in light REE. To highlight these distinct compositional signatures, we applied LDA to selected ignimbrites for which comprehensive datasets were available. In comparison to traditional geochemical parameters we found that the advantage of multivariate statistics is their capability of dealing with large datasets and many variables (elements) and to take advantage of this n-dimensional space to detect subtle compositional differences contained in the data. The most important predictors for discriminating ignimbrites are La, Yb, Eu, Al2O3, K2O, P2O5, MgO, FeOt, and TiO2. However, other REE such as Gd, Pr, Tm, Sm, Dy and Er also contribute to the discrimination functions. Significant compositional differences were found between (1) the older (> 13 Ma) large-volume plateau-forming ignimbrites in northernmost Chile and southern Peru and (2) the younger (< 10 Ma) Altiplano-Puna-Volcanic-Complex (APVC) ignimbrites that are of similar volumes. Older ignimbrites are less depleted in HREE and less radiogenic in Sr isotopes, indicating smaller crustal contributions during evolution in a thinner and thermally less evolved crust. These compositional variations indicate a relation to crustal thickening with a "transition" from plagioclase to amphibole and garnet residual mineralogy between 13 and 9 Ma. Compositional and volumetric variations correlate to the N-S passage of the Juan-Fernandéz-Ridge, crustal shortening and thickening, and increased average crustal temperatures during the past 26 Ma. Table DR2 Mapped ignimbrite sheets.
CFRP variable curvature mirror used for realizing non-moving-element optical zoom imaging
NASA Astrophysics Data System (ADS)
Zhao, Hui; Fan, Xuewu; Pang, Zhihai; Ren, Guorui; Wang, Wei; Xie, Yongjie; Ma, Zhen; Du, Yunfei; Su, Yu; Wei, Jingxuan
2014-12-01
In recent years, how to eliminate moving elements while realizing optical zoom imaging has been paid much attention. Compared with the conventional optical zooming techniques, removing moving elements would bring in many benefits such as reduction in weight, volume and power cost and so on. The key to implement non-moving-element optical zooming lies in the design of variable curvature mirror (VCM). In order to obtain big enough optical magnification, the VCM should be capable of generating a large variation of saggitus. Hence, the mirror material should not be brittle, in other words the corresponding ultimate strength should be high enough to ensure that mirror surface would not be broken during large curvature variation. Besides that, the material should have a not too big Young's modulus because in this case less force is required to generate a deformation. Among all available materials, for instance SiC, Zerodur and et.al, CFRP (carbon fiber reinforced polymer) satisfies all these requirements and many related research have proven this. In this paper, a CFRP VCM is designed, fabricated and tested. With a diameter of 100mm, a thickness of 2mm and an initial curvature radius of 1740mm, this component could change its curvature radius from 1705mm to 1760mm, which correspond to a saggitus variation of nearly 23μm. The work reported further proves the suitability of CFRP in constructing variable curvature mirror which could generate a large variation of saggitus.
Pigot, Alex L; Trisos, Christopher H; Tobias, Joseph A
2016-01-13
Variation in species richness across environmental gradients may be associated with an expanded volume or increased packing of ecological niche space. However, the relative importance of these alternative scenarios remains unknown, largely because standardized information on functional traits and their ecological relevance is lacking for major diversity gradients. Here, we combine data on morphological and ecological traits for 523 species of passerine birds distributed across an Andes-to-Amazon elevation gradient. We show that morphological traits capture substantial variation in species dietary (75%) and foraging niches (60%) when multiple independent trait dimensions are considered. Having established these relationships, we show that the 14-fold increase in species richness towards the lowlands is associated with both an increased volume and density of functional trait space. However, we find that increases in volume contribute little to changes in richness, with most (78%) lowland species occurring within the range of trait space occupied at high elevations. Taken together, our results suggest that high species richness is mainly associated with a denser occupation of functional trait space, implying an increased specialization or overlap of ecological niches, and supporting the view that niche packing is the dominant trend underlying gradients of increasing biodiversity towards the lowland tropics. © 2016 The Author(s).
Pigot, Alex L.; Trisos, Christopher H.; Tobias, Joseph A.
2016-01-01
Variation in species richness across environmental gradients may be associated with an expanded volume or increased packing of ecological niche space. However, the relative importance of these alternative scenarios remains unknown, largely because standardized information on functional traits and their ecological relevance is lacking for major diversity gradients. Here, we combine data on morphological and ecological traits for 523 species of passerine birds distributed across an Andes-to-Amazon elevation gradient. We show that morphological traits capture substantial variation in species dietary (75%) and foraging niches (60%) when multiple independent trait dimensions are considered. Having established these relationships, we show that the 14-fold increase in species richness towards the lowlands is associated with both an increased volume and density of functional trait space. However, we find that increases in volume contribute little to changes in richness, with most (78%) lowland species occurring within the range of trait space occupied at high elevations. Taken together, our results suggest that high species richness is mainly associated with a denser occupation of functional trait space, implying an increased specialization or overlap of ecological niches, and supporting the view that niche packing is the dominant trend underlying gradients of increasing biodiversity towards the lowland tropics. PMID:26740616
NASA Astrophysics Data System (ADS)
Stemkens, Bjorn; Glitzner, Markus; Kontaxis, Charis; de Senneville, Baudouin Denis; Prins, Fieke M.; Crijns, Sjoerd P. M.; Kerkmeijer, Linda G. W.; Lagendijk, Jan J. W.; van den Berg, Cornelis A. T.; Tijssen, Rob H. N.
2017-09-01
Stereotactic body radiation therapy (SBRT) has shown great promise in increasing local control rates for renal-cell carcinoma (RCC). Characterized by steep dose gradients and high fraction doses, these hypo-fractionated treatments are, however, prone to dosimetric errors as a result of variations in intra-fraction respiratory-induced motion, such as drifts and amplitude alterations. This may lead to significant variations in the deposited dose. This study aims to develop a method for calculating the accumulated dose for MRI-guided SBRT of RCC in the presence of intra-fraction respiratory variations and determine the effect of such variations on the deposited dose. For this, RCC SBRT treatments were simulated while the underlying anatomy was moving, based on motion information from three motion models with increasing complexity: (1) STATIC, in which static anatomy was assumed, (2) AVG-RESP, in which 4D-MRI phase-volumes were time-weighted, and (3) PCA, a method that generates 3D volumes with sufficient spatio-temporal resolution to capture respiration and intra-fraction variations. Five RCC patients and two volunteers were included and treatments delivery was simulated, using motion derived from subject-specific MR imaging. Motion was most accurately estimated using the PCA method with root-mean-squared errors of 2.7, 2.4, 1.0 mm for STATIC, AVG-RESP and PCA, respectively. The heterogeneous patient group demonstrated relatively large dosimetric differences between the STATIC and AVG-RESP, and the PCA reconstructed dose maps, with hotspots up to 40% of the D99 and an underdosed GTV in three out of the five patients. This shows the potential importance of including intra-fraction motion variations in dose calculations.
Variation in Brain Regions Associated with Fear and Learning in Contrasting Climates
Roth, Timothy C.; Gallagher, Caitlin M.; LaDage, Lara D.; Pravosudov, Vladimir V.
2012-01-01
In environments where resources are difficult to obtain and enhanced cognitive capabilities might be adaptive, brain structures associated with cognitive traits may also be enhanced. In our previous studies, we documented a clear and significant relationship among environmental conditions, memory and hippocampal structure using ten populations of black-capped chickadees (Poecile atricapillus) over a large geographic range. In addition, focusing on just the two populations from the geographical extremes of our large-scale comparison, Alaska and Kansas, we found enhanced problem-solving capabilities and reduced neophobia in a captive-raised population of black-capped chickadees originating from the energetically demanding environment (Alaska) relative to conspecifics from the milder environment (Kansas). Here, we focused on three brain regions, the arcopallium (AP), the nucleus taeniae of the amygdala and the lateral striatum (LSt), that have been implicated to some extent in aspects of these behaviors in order to investigate whether potential differences in these brain areas may be associated with our previously detected differences in cognition. We compared the variation in neuron number and volumes of these regions between these populations, in both wild-caught birds and captive-raised individuals. Consistent with our behavioral observations, wild-caught birds from Kansas had a larger AP volume than their wild-caught conspecifics from Alaska, which possessed a higher density of neurons in the LSt. However, there were no other significant differences between populations in the wild-caught and captive-raised groups. Interestingly, individuals from the wild had larger LSt and AP volumes with more neurons than those raised in captivity. Overall, we provide some evidence that population-related differences in problem solving and neophobia may be associated with differences in volume and neuron numbers of our target brain regions. However, the relationship is not completely clear, and our study raises numerous questions about the relationship between the brain and behavior, especially in captive animals. PMID:22286546
Time-dependent cell disintegration kinetics in lung tumors after irradiation
NASA Astrophysics Data System (ADS)
Chvetsov, Alexei V.; Palta, Jatinder J.; Nagata, Yasushi
2008-05-01
We study the time-dependent disintegration kinetics of tumor cells that did not survive radiotherapy treatment. To evaluate the cell disintegration rate after irradiation, we studied the volume changes of solitary lung tumors after stereotactic radiotherapy. The analysis is performed using two approximations: (1) tumor volume is a linear function of the total cell number in the tumor and (2) the cell disintegration rate is governed by the exponential decay with constant risk, which is defined by the initial cell number and a half-life T1/2. The half-life T1/2 is determined using the least-squares fit to the clinical data on lung tumor size variation with time after stereotactic radiotherapy. We show that the tumor volume variation after stereotactic radiotherapy of solitary lung tumors can be approximated by an exponential function. A small constant component in the volume variation does not change with time; however, this component may be the residual irregular density due to radiation fibrosis and was, therefore, subtracted from the total volume variation in our computations. Using computerized fitting of the exponent function to the clinical data for selected patients, we have determined that the average half-life T1/2 of cell disintegration is 28.2 days for squamous cell carcinoma and 72.4 days for adenocarcinoma. This model is needed for simulating the tumor volume variation during radiotherapy, which may be important for time-dependent treatment planning of proton therapy that is sensitive to density variations.
Pelham, Brett W; Shimizu, Mitsuru; Arndt, Jamie; Carvallo, Mauricio; Solomon, Sheldon; Greenberg, Jeff
2018-03-01
We tested predictions about religiosity and terror management processes in 16 nations. Specifically, we examined weekly variation in Google search volume in each nation for 12 years (all weeks for which data were available). In all 16 nations, higher than usual weekly Google search volume for life-threatening illnesses (cancer, diabetes, and hypertension) predicted increases in search volume for religious content (e.g., God, Jesus, prayer) in the following week. This effect held up after controlling for (a) recent past and annual variation in religious search volume, (b) increases in search volume associated with religious holidays, and (c) variation in searches for a non-life-threatening illness ("sore throat"). Terror management threat reduction processes appear to occur across the globe. Furthermore, they may occur over much longer periods than those studied in the laboratory. Managing fears of death via religious belief regulation appears to be culturally pervasive.
Analyzing structural variations along strike in a deep-water thrust belt
NASA Astrophysics Data System (ADS)
Totake, Yukitsugu; Butler, Robert W. H.; Bond, Clare E.; Aziz, Aznan
2018-03-01
We characterize a deep-water fold-thrust arrays imaged by a high-resolution 3D seismic dataset in the offshore NW Borneo, Malaysia, to understand the kinematics behind spatial arrangement of structural variations throughout the fold-thrust system. The seismic volume used covers two sub-parallel fold trains associated with a series of fore-thrusts and back-thrusts. We measured fault heave, shortening value, fold geometries (forelimb dip, interlimb angle and crest depth) along strike in individual fold trains. Heave plot on strike projection allows to identify individual thrust segments showing semi-elliptical to triangular to bimodal patterns, and linkages of these segments. The linkage sites are marked by local minima in cumulative heave. These local heave minima are compensated by additional structures, such as small imbricate thrusts and tight folds indicated by large forelimb dip and small interlimb angle. Complementary profiles of the shortening amount for the two fold trains result in smoother gradient of total shortening across the structures. We interpret this reflects kinematic interaction between two fold-thrust trains. This type of along-strike variation analysis provides comprehensive understanding of a fold-thrust system and may provide an interpretative strategy for inferring the presence of complex multiple faults in less well-imaged parts of seismic volumes.
Effect of sample volume on metastable zone width and induction time
NASA Astrophysics Data System (ADS)
Kubota, Noriaki
2012-04-01
The metastable zone width (MSZW) and the induction time, measured for a large sample (say>0.1 L) are reproducible and deterministic, while, for a small sample (say<1 mL), these values are irreproducible and stochastic. Such behaviors of MSZW and induction time were theoretically discussed both with stochastic and deterministic models. Equations for the distribution of stochastic MSZW and induction time were derived. The average values of stochastic MSZW and induction time both decreased with an increase in sample volume, while, the deterministic MSZW and induction time remained unchanged. Such different behaviors with variation in sample volume were explained in terms of detection sensitivity of crystallization events. The average values of MSZW and induction time in the stochastic model were compared with the deterministic MSZW and induction time, respectively. Literature data reported for paracetamol aqueous solution were explained theoretically with the presented models.
Bjørnebekk, Astrid; Fjell, Anders M; Walhovd, Kristine B; Grydeland, Håkon; Torgersen, Svenn; Westlye, Lars T
2013-01-15
Advances in neuroimaging techniques have recently provided glimpse into the neurobiology of complex traits of human personality. Whereas some intriguing findings have connected aspects of personality to variations in brain morphology, the relations are complex and our current understanding is incomplete. Therefore, we aimed to provide a comprehensive investigation of brain-personality relations using a multimodal neuroimaging approach in a large sample comprising 265 healthy individuals. The NEO Personality Inventory was used to provide measures of core aspects of human personality, and imaging phenotypes included measures of total and regional brain volumes, regional cortical thickness and arealization, and diffusion tensor imaging indices of white matter (WM) microstructure. Neuroticism was the trait most clearly linked to brain structure. Higher neuroticism including facets reflecting anxiety, depression and vulnerability to stress was associated with smaller total brain volume, widespread decrease in WM microstructure, and smaller frontotemporal surface area. Higher scores on extraversion were associated with thinner inferior frontal gyrus, and conscientiousness was negatively associated with arealization of the temporoparietal junction. No reliable associations between brain structure and agreeableness and openness, respectively, were found. The results provide novel evidence of the associations between brain structure and variations in human personality, and corroborate previous findings of a consistent neuroanatomical basis of negative emotionality. Copyright © 2012 Elsevier Inc. All rights reserved.
Animal health pharmaceutical industry.
Carnevale, Richard A; Shryock, Thomas R
2006-02-24
The animal health pharmaceutical industry has proactively reported on the volumes of member company antimicrobial active ingredients sold in the U.S. At the individual company level, reporting of finished product distribution data to the FDA is a regulatory requirement, with applications to surveillance and pharmacovigilance. An accounting of product manufactured is done for purposes of good business practices, as well as marketing analyses. Additional applications of antimicrobial usage data might include use in risk assessments, such as for the FDA's Center for Veterinary Medicine Guidance for Industry #152 for the evaluation of the microbiological safety of antimicrobials intended for use in food animals. Compilation of national usage data will be a complex undertaking, hindered by issues such as confidentiality, auditing, field use practice variations, population dynamics (e.g. disease incidence, market conditions for poultry and livestock production), and generic usage. The amounts or volumes in pounds should be considered relative to the large number of animals under husbandry in the United States. Large volumes might seem impressive unless put into proper context. Until such time as a clearly defined application of national usage data is agreed, it is recommended that local usage programs will provide more useful information to perpetuate prudent antimicrobial use in animals.
Background levels of methane in Mars' atmosphere show strong seasonal variations.
Webster, Christopher R; Mahaffy, Paul R; Atreya, Sushil K; Moores, John E; Flesch, Gregory J; Malespin, Charles; McKay, Christopher P; Martinez, German; Smith, Christina L; Martin-Torres, Javier; Gomez-Elvira, Javier; Zorzano, Maria-Paz; Wong, Michael H; Trainer, Melissa G; Steele, Andrew; Archer, Doug; Sutter, Brad; Coll, Patrice J; Freissinet, Caroline; Meslin, Pierre-Yves; Gough, Raina V; House, Christopher H; Pavlov, Alexander; Eigenbrode, Jennifer L; Glavin, Daniel P; Pearson, John C; Keymeulen, Didier; Christensen, Lance E; Schwenzer, Susanne P; Navarro-Gonzalez, Rafael; Pla-García, Jorge; Rafkin, Scot C R; Vicente-Retortillo, Álvaro; Kahanpää, Henrik; Viudez-Moreiras, Daniel; Smith, Michael D; Harri, Ari-Matti; Genzer, Maria; Hassler, Donald M; Lemmon, Mark; Crisp, Joy; Sander, Stanley P; Zurek, Richard W; Vasavada, Ashwin R
2018-06-08
Variable levels of methane in the martian atmosphere have eluded explanation partly because the measurements are not repeatable in time or location. We report in situ measurements at Gale crater made over a 5-year period by the Tunable Laser Spectrometer on the Curiosity rover. The background levels of methane have a mean value 0.41 ± 0.16 parts per billion by volume (ppbv) (95% confidence interval) and exhibit a strong, repeatable seasonal variation (0.24 to 0.65 ppbv). This variation is greater than that predicted from either ultraviolet degradation of impact-delivered organics on the surface or from the annual surface pressure cycle. The large seasonal variation in the background and occurrences of higher temporary spikes (~7 ppbv) are consistent with small localized sources of methane released from martian surface or subsurface reservoirs. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
NASA Astrophysics Data System (ADS)
Kim, Jongwook; Nam, Myung Jin; Matsuoka, Toshifumi
2013-10-01
In order to monitor injected carbon dioxide (CO2), simultaneous measurements of seismic velocity and electrical resistivity are employed during the drainage (CO2 injection) and imbibition (water injection) processes of a Berea sandstone. Supercritical CO2 (10 MPa at 40 ºC) was injected into a water-saturated Berea sandstone in the drainage stage and monitored via simultaneous measurements. After the injection of supercritical CO2, fresh distilled water was injected into the CO2-injected sandstone during the imbibition stage. Electrical resistivity and P-wave velocity measurements acquired during the drainage and imbibition stages were employed to evaluate CO2 saturations (SCO2) based on the resistivity index and the Gassmann fluid-substitution equations, respectively. Comparing estimated values for SCO2 saturation against those from volume-derived SCO2, based on analysis on injected and drained fluid volumes in the drainage process, we conclude that Gassmann-Brie and resistivity index are suitable for the evaluation based on P-wave velocity and electrical resistivity, respectively. R
Boriani, Filippo; Villani, Riccardo; Morselli, Paolo Giovanni
2014-10-01
Obesity is increasingly frequent in our society and is associated closely with metabolic disorders. As some studies have suggested, removal of fat tissue through liposuction and dermolipectomies may be of some benefit in the improvement of metabolic indices. This article aimed to review the published literature on this topic and to evaluate metabolic variations meta-analytically after liposuction, dermolipectomy, or both. Through a literature search with the PubMed/Medline database, 14 studies were identified. All articles were analyzed, and several metabolic variables were chosen in the attempt to meta-analyze the effect of adipose tissue removal through the various studies. All statistical calculations were performed with Review Manager (RevMan), version 5.0. Several cardiovascular and metabolic variables are described as prone to variations after body-contouring procedures when a significant amount of adipose tissue has been excised. Four of the studies included in the analysis reported improvements in all the parameters examined. Seven articles showed improvement in some variables and no improvement in others, whereas three studies showed no beneficial variation in any of the considered indicators after body-contouring procedures. Fasting plasma insulin was identified as the only variable for which a meta-analysis of five included studies was possible. The meta-analysis showed a statistically significant reduction in fasting plasma insulin resulting from large-volume liposuction in obese healthy women. Many beneficial metabolic effects resulting from dermolipectomy and liposuction procedures are described in the literature. In particular, fasting plasma insulin and thus insulin sensitivity seem to be positively influenced. Further research, including prospective clinical studies, is necessary for better exploration of the effects that body-contouring plastic surgery procedures have on metabolic parameters.
The role of tributary mixing in chemical variations at a karst spring, Milandre, Switzerland
NASA Astrophysics Data System (ADS)
Perrin, J.; Jeannin, P.-Y.; Cornaton, F.
2007-01-01
SummarySolute concentration variations during flood events were investigated in a karst aquifer of the Swiss Jura. Observations were made at the spring, and at the three main subterraneous tributaries feeding the spring. A simple transient flow and transport numerical model was able to reproduce chemographs and hydrographs observed at the spring, as a result of a mixing of the concentration and discharge of the respective tributaries. Sensitivity analysis carried out with the model showed that it is possible to produce chemical variations at the spring even if all tributaries have constant (but different for each of them) solute concentrations. This process is called tributary mixing. The good match between observed and modelled curves indicate that, in the phreatic zone, tributary mixing is probably an important process that shapes spring chemographs. Chemical reactions and other mixing components (e.g. from low permeability volumes) have a limited influence. Dissolution-related (calcium, bicarbonate, specific conductance) and pollution-related parameters (nitrate, chloride, potassium) displayed slightly different behaviours: during moderate flood events, the former showed limited variations compared to the latter. During large flood events, both presented chemographs with significant changes. No significant event water participates in moderate flood events and tributary mixing will be the major process shaping chemographs. Variations are greater for parameters with higher spatial variability (e.g. pollution-related). Whereas for large flood events, the contribution of event water becomes significant and influences the chemographs of all the parameters. As a result, spring water vulnerability to an accidental pollution is low during moderate flood events and under base flow conditions. It strongly increases during large flood events, because event water contributes to the spring discharge.
NASA Astrophysics Data System (ADS)
Koch, C.; Isaacs, D.; Delph, J. R.; Beck, S. L.
2017-12-01
The South American Andes, generated along an active oceanic-continental convergent margin between the Nazca and South American plates, make up the world's longest arc and encompass the second highest orogenic plateau on Earth. Along-strike variations in shortening, slab subduction angle, and volcanism, along with other tectonic processes, have created extraordinarily complex topography, crustal thickness, and compositional variations reflected in the seismic characteristics of the region. Ps receiver functions (PRFs) have been widely used to investigate the Andes, and these studies provide a wealth of information regarding the structure of the Andean crust and the continental Moho beneath the orogen. However, these studies have focused largely on individual networks or latitudinal segments of the Andes, and a regional-scale model that combines all available data has yet to be analyzed, hence it is hard to compare the amplitudes of conversions at the major discontinuities. This study compiles and analyzes all available data from permanent and temporary seismic networks from (1989-2017) to create a continuous, high spatial resolution common conversion point (CCP) volume for the Andes. In total, receiver functions were calculated for over 1500 seismic stations in the Andes, enabling us to obtain high-resolution, regional-scale CCP images of the continental Moho beneath the Andes from Colombia to southern Chile. The resulting CCP volume shows strong lateral variations in P-to-S conversion amplitudes at the base of the crust, indicating a complex and variable crust-mantle transition. In some places, the back-arc of the central Andes is characterized by relatively thick crust (60 - 75 km) and a broad, low amplitude Moho conversion indicative of a gradational Moho possibly due to the eclogitization of the lower crust. Combined with other geophysical data, this may suggest these are sites of ongoing delamination in the central Andes. Additionally, in the central Andes, beneath the interior plateau, parts of the active arc and backarc, we image a pervasive, relatively shallow (15-25 km depth), large-amplitude negative P-to-S converter that exhibits variations in amplitude and structure along strike, likely corresponding to the top of the Andean low velocity zone.
Krause, Florian; Lindemann, Oliver; Toni, Ivan; Bekkering, Harold
2014-04-01
A dominant hypothesis on how the brain processes numerical size proposes a spatial representation of numbers as positions on a "mental number line." An alternative hypothesis considers numbers as elements of a generalized representation of sensorimotor-related magnitude, which is not obligatorily spatial. Here we show that individuals' relative use of spatial and nonspatial representations has a cerebral counterpart in the structural organization of the posterior parietal cortex. Interindividual variability in the linkage between numbers and spatial responses (faster left responses to small numbers and right responses to large numbers; spatial-numerical association of response codes effect) correlated with variations in gray matter volume around the right precuneus. Conversely, differences in the disposition to link numbers to force production (faster soft responses to small numbers and hard responses to large numbers) were related to gray matter volume in the left angular gyrus. This finding suggests that numerical cognition relies on multiple mental representations of analogue magnitude using different neural implementations that are linked to individual traits.
NASA Technical Reports Server (NTRS)
Magee-Roberts, K.; Head, James W., III; Lancaster, M. G.
1992-01-01
Large-volume lava flow fields have been identified on Venus, the most areally extensive of which are known as fluctus and have been subdivided into six morphologic types. Sheetlike flow fields (Type 1) lack the numerous, closely spaced, discrete lava flow lobes that characterize digitate flow fields. Transitional flow fields (Type 2) are similar to sheetlike flow fields but contain one or more broad flow lobes. Digitate flow fields are divided further into divergent (Types 3-5) and subparallel (Type 6) classes on the basis of variations in the amount of downstream flow divergence. As a result of our previous analysis of the detailed morphology, stratigraphy, and tectonic associations of Mylitta Fluctus, we have formulated a number of questions to apply to all large flow fields on Venus. In particular, we would like to address the following: (1) eruption conditions and style of flow emplacement (effusion rate, eruption duration), (2) the nature of magma storage zones (presence of neutral buoyancy zones, deep or shallow crustal magma chambers), (3) the origin of melt and possible link to mantle plumes, and (4) the importance of large flow fields in plains evolution. To answer these questions we have begun to examine variations in flow field dimension and morphology; the distribution of large flow fields in terms of elevation above the mean planetary radius; links to regional tectonic or volcanic structures (e.g., associations with large shield edifices, coronae, or rift zones); statigraphic relationships between large flow fields, volcanic plains, shields, and coronae; and various models of flow emplacement in order to estimate eruption parameters. In this particular study, we have examined the proximal elevations and topographic slopes of 16 of the most distinctive flow fields that represent each of the 6 morphologic types.
Estimation of Rain Intensity Spectra over the Continental US Using Ground Radar-Gauge Measurements
NASA Technical Reports Server (NTRS)
Lin, Xin; Hou, Arthur Y.
2013-01-01
A high-resolution surface rainfall product is used to estimate rain characteristics over the continental US as a function of rain intensity. By defining each data at 4-km horizontal resolutions and 1-h temporal resolutions as an individual precipitating/nonprecipitating sample, statistics of rain occurrence and rain volume including their geographical and seasonal variations are documented. Quantitative estimations are also conducted to evaluate the impact of missing light rain events due to satellite sensors' detection capabilities. It is found that statistics of rain characteristics have large seasonal and geographical variations across the continental US. Although heavy rain events (> 10 mm/hr.) only occupy 2.6% of total rain occurrence, they may contribute to 27% of total rain volume. Light rain events (< 1.0 mm/hr.), occurring much more frequently (65%) than heavy rain events, can also make important contributions (15%) to the total rain volume. For minimum detectable rain rates setting at 0.5 and 0.2 mm/hr which are close to sensitivities of the current and future space-borne precipitation radars, there are about 43% and 11% of total rain occurrence below these thresholds, and they respectively represent 7% and 0.8% of total rain volume. For passive microwave sensors with their rain pixel sizes ranging from 14 to 16 km and the minimum detectable rain rates around 1 mm/hr., the missed light rain events may account for 70% of train occurrence and 16% of rain volume. Statistics of rain characteristics are also examined on domains with different temporal and spatial resolutions. Current issues in estimates of rain characteristics from satellite measurements and model outputs are discussed.
Laidig, Friedrich; Piepho, Hans-Peter; Rentel, Dirk; Drobek, Thomas; Meyer, Uwe; Huesken, Alexandra
2017-01-01
Over the last 32 years, a large gain in grain yield (24 %) was achieved in official German variety trials, and despite considerable loss in protein concentration (-7.9 %), winter wheat baking quality was partially improved over the last 32 years. On-farm gain in grain yield (32 %) exceeded gain in trials, but at yield level about 25 dt ha -1 lower. Breeding progress was very successfully transferred into both progress in grain yield and on-farm baking quality. Long-term gains in grain yield and baking quality of 316 winter wheat varieties from German official trials were evaluated. We dissected progress into a genetic and a non-genetic part to quantify the contribution of genetic improvement. We further investigated the influence of genotype and environment on total variation by estimating variance components. We also estimated genetic and phenotypic correlation between quality traits. For trial data, we found a large gain in grain yield (24%), but a strong decline in protein concentration (-8.0%) and loaf volume (-8.5%) relative to 1983. Improvement of baking quality could be achieved for falling number (5.8%), sedimentation value (7.9%), hardness (13.4%), water absorption (1.2%) and milling yield (2.4%). Grain yield, falling number and protein concentration were highly influenced by environment, whereas for sedimentation value, hardness, water absorption and loaf volume genotypes accounted for more than 60% of total variation. Strong to very strong relations exist among protein concentration, sedimentation value, and loaf volume. On-farm yields were obtained from national statistics, and grain quality data from samples collected by national harvest survey. These on-farm data were compared with trial results. On-farm gain in grain yield was 31.6%, but at a mean level about 25 dt ha -1 lower. Improvement of on-farm quality exceeded trial results considerably. A shift to varieties with improved baking quality can be considered as the main reason for this remarkable improvement of on-farm baking quality.
Results of TV imaging of Phobos - Experiment VSK-Fregat
NASA Technical Reports Server (NTRS)
Avanesov, G.; Zhukov, B.; Ziman, IA.; Kostenko, V.; Kuz'min, A.; Duxbury, T.
1991-01-01
From February to March 1989 the Phobos 2 spacecraft took 37 TV images of Phobos at a distance of 190-1100 km. These images complement Mariner-9 and Viking data by providing higher-resolution coverage of a laarge region west of the crater Stickney (40-160 deg W) and by providing disk-resolved measurements of surface brightness at a greater range of wavelengths and additional phase angles. These images have supported updated mapping and characterization of large craters and grooves, and have provided additional observations of craters' and grooves' bright rims. Variations in surface visible/near-infrared color ratio of almost a factor of 2 have been recognized; these variations appear to be associated with the ejecta of specific large impact craters. Updated determinations of satellite mass and volume allow calculation of a more accurate value of bulk density, 1.90 + or - 0.1 g/cu cm. This is sigificantly lower than the density of meteoritic analogs to Phobos' surface, suggesting a porous interior perhaps containing interstitial ice.
NASA Astrophysics Data System (ADS)
Wang, Fuming; Hunsche, Stefan; Anunciado, Roy; Corradi, Antonio; Tien, Hung Yu; Tang, Peng; Wei, Junwei; Wang, Yongjun; Fang, Wei; Wong, Patrick; van Oosten, Anton; van Ingen Schenau, Koen; Slachter, Bram
2018-03-01
We present an experimental study of pattern variability and defectivity, based on a large data set with more than 112 million SEM measurements from an HMI high-throughput e-beam tool. The test case is a 10nm node SRAM via array patterned with a DUV immersion LELE process, where we see a variation in mean size and litho sensitivities between different unique via patterns that leads to a seemingly qualitative differences in defectivity. The large available data volume enables further analysis to reliably distinguish global and local CDU variations, including a breakdown into local systematics and stochastics. A closer inspection of the tail end of the distributions and estimation of defect probabilities concludes that there is a common defect mechanism and defect threshold despite the observed differences of specific pattern characteristics. We expect that the analysis methodology can be applied for defect probability modeling as well as general process qualification in the future.
1980-06-01
with the extracted plants. Pusher boats were used to feed the plants into the throat of the conveyor where they were then pulled onto the conveyor by...technique or variations of it that involve extracting from the river periodically on the Withlacoochee River or similar rivers, requires 48 that operations...way to readily estimate the land area required to stockpile the large volumes of material that must be extracted from the water in many operational
Rip currents, mega-cusps, and eroding dunes
Thornton, E.B.; MacMahan, J.; Sallenger, A.H.
2007-01-01
Dune erosion is shown to occur at the embayment of beach mega-cusps O(200 m alongshore) that are associated with rip currents. The beach is the narrowest at the embayment of the mega-cusps allowing the swash of large storm waves coincident with high tides to reach the toe of the dune, to undercut the dune and to cause dune erosion. Field measurements of dune, beach, and rip current morphology are acquired along an 18 km shoreline in southern Monterey Bay, California. This section of the bay consists of a sandy shoreline backed by extensive dunes, rising to heights exceeding 40 m. There is a large increase in wave height going from small wave heights in the shadow of a headland, to the center of the bay where convergence of waves owing to refraction over the Monterey Bay submarine canyon results in larger wave heights. The large alongshore gradient in wave height results in a concomitant alongshore gradient in morphodynamic scale. The strongly refracted waves and narrow bay aperture result in near normal wave incidence, resulting in well-developed, persistent rip currents along the entire shoreline. The alongshore variations of the cuspate shoreline are found significantly correlated with the alongshore variations in rip spacing at 95% confidence. The alongshore variations of the volume of dune erosion are found significantly correlated with alongshore variations of the cuspate shoreline at 95% confidence. Therefore, it is concluded the mega-cusps are associated with rip currents and that the location of dune erosion is associated with the embayment of the mega-cusp.
Kalfa, David; Chai, Paul; Bacha, Emile
2014-08-01
A significant inverse relationship of surgical institutional and surgeon volumes to outcome has been demonstrated in many high-stakes surgical specialties. By and large, the same results were found in pediatric cardiac surgery, for which a more thorough analysis has shown that this relationship depends on case complexity and type of surgical procedures. Lower-volume programs tend to underperform larger-volume programs as case complexity increases. High-volume pediatric cardiac surgeons also tend to have better results than low-volume surgeons, especially at the more complex end of the surgery spectrum (e.g., the Norwood procedure). Nevertheless, this trend for lower mortality rates at larger centers is not universal. All larger programs do not perform better than all smaller programs. Moreover, surgical volume seems to account for only a small proportion of the overall between-center variation in outcome. Intraoperative technical performance is one of the most important parts, if not the most important part, of the therapeutic process and a critical component of postoperative outcome. Thus, the use of center-specific, risk-adjusted outcome as a tool for quality assessment together with monitoring of technical performance using a specific score may be more reliable than relying on volume alone. However, the relationship between surgical volume and outcome in pediatric cardiac surgery is strong enough that it ought to support adapted and well-balanced health care strategies that take advantage of the positive influence that higher center and surgeon volumes have on outcome.
NASA Astrophysics Data System (ADS)
Chen, Hsien-Wen; Liu, Cho-Teng; Matsuno, Takeshi; Ichikawa, Kaoru; Fukudome, Ken-ichi; Yang, Yih; Doong, Dong-Jiing; Tsai, Wei-Ling
2016-02-01
The water characteristics of the East China Sea depend on influxes from river run-off, the Kuroshio, and the Taiwan Strait. A three-year observation using an acoustic Doppler current profiler (ADCP) operated on a ferry provides the first nearly continuous data set concerning the seasonal flow pattern and the volume transport from the Taiwan Strait to the East China Sea. The observed volume transport shows strong seasonality and linkage to the along-strait wind stress. An empirical regression formula between the volume transport and wind was derived to fill the gaps of observation so as to obtain a continuous data set. Based on this unique data set, the three-year mean of monthly volume transport is northeastward throughout the year, large (nearly 3 Sv) in summer and low (nearly zero) in winter. The China Coastal Current flows southward in winter, while the northward-flowing Taiwan Strait Current may reverse direction during severe northeasterly winds in the winter or under typhoons. The sea level difference across Taiwan Strait is closely correlated to the transport through the strait, and their relation is found seasonally nearly stable.
Rao, Hengyi; Betancourt, Laura; Giannetta, Joan M; Brodsky, Nancy L; Korczykowski, Marc; Avants, Brian B; Gee, James C; Wang, Jiongjiong; Hurt, Hallam; Detre, John A; Farah, Martha J
2010-01-01
The effects of early life experience on later brain structure and function have been studied extensively in animals, yet the relationship between childhood experience and normal brain development in humans remains largely unknown. Using a unique longitudinal data set including ecologically valid in-home measures of early experience during childhood (at age 4 and 8 years) and high-resolution structural brain imaging during adolescence (mean age 14 years), we examined the effects on later brain morphology of two dimensions of early experience: parental nurturance and environmental stimulation. Parental nurturance at age 4 predicts the volume of the left hippocampus in adolescence, with better nurturance associated with smaller hippocampal volume. In contrast, environmental stimulation did not correlate with hippocampal volume. Moreover, the association between hippocampal volume and parental nurturance disappears at age 8, supporting the existence of a sensitive developmental period for brain maturation. These findings indicate that variation in normal childhood experience is associated with differences in brain morphology, and hippocampal volume is specifically associated with early parental nurturance. Our results provide neuroimaging evidence supporting the important role of warm parental care during early childhood for brain maturation.
NASA Astrophysics Data System (ADS)
Brocher, T. M.
2017-12-01
Amphibious seismic experiments reveal widespread underthrusting of Cascadia accretionary rocks beneath basalts of the Crescent terrane, a large igneous province in the Washington forearc. Along margin variations in the volumes of the underthrust accretionary rocks appear to modulate the faulting within the overlying Crescent terrane, which hosts nearly all of the seismicity in the Washington forearc: the underlying accretionary rocks appear to deform aseismically. The underthrusting and underplating of large volumes of accretionary rocks on the Olympic Peninsula have uplifted and completely eroded a significant volume of the Crescent terrane, affecting the load-bearing strength of the forearc. I propose that as a consequence, the remnant Crescent terrane is actively deforming, as evidenced by the concentrated seismicity within it beneath Puget Lowland. This seismicity, focal mechanisms, fault geometries, and seismic tomography indicate that clockwise rotation and north-south compression of the forearc crust inferred from GPS data are accommodated by numerous thrust and strike slip faults in the remnant Crescent terrane. In addition to the spatial association between the erosion of the Crescent terrane on the Olympic Peninsula and the crustal faulting beneath Puget Lowland, support for the interpretation that the two are related also derives from the temporal coincidence between the mid to late Miocene uplift of the Crescent terrane on the peninsula and the mid-Miocene initiation of the thrust faulting in the lowland. In contrast, the underthrusting and underplating of lower volumes of accretionary rocks in the Washington forearc south of the Olympic Peninsula correlate with lower rates of crustal seismicity. These lower volumes of accretionary rocks have not caused the removal of a significant fraction of the Crescent terrane, resulting in a stronger, more structurally coherent Crescent terrane that deforms at lower rate than to the north.
ERIC Educational Resources Information Center
Proper, Elizabeth C.; And Others
This segment of the national evaluation study of the Follow Through Planned Variation Model discusses findings of analyses of achievement test data which have been adjusted to take into consideration the preschool experience of children in three Follow Through cohorts. These analyses serve as a supplement to analyses presented in Volume IV-A of…
Daisne, Jean-François; Blumhofer, Andreas
2013-06-26
Intensity modulated radiotherapy for head and neck cancer necessitates accurate definition of organs at risk (OAR) and clinical target volumes (CTV). This crucial step is time consuming and prone to inter- and intra-observer variations. Automatic segmentation by atlas deformable registration may help to reduce time and variations. We aim to test a new commercial atlas algorithm for automatic segmentation of OAR and CTV in both ideal and clinical conditions. The updated Brainlab automatic head and neck atlas segmentation was tested on 20 patients: 10 cN0-stages (ideal population) and 10 unselected N-stages (clinical population). Following manual delineation of OAR and CTV, automatic segmentation of the same set of structures was performed and afterwards manually corrected. Dice Similarity Coefficient (DSC), Average Surface Distance (ASD) and Maximal Surface Distance (MSD) were calculated for "manual to automatic" and "manual to corrected" volumes comparisons. In both groups, automatic segmentation saved about 40% of the corresponding manual segmentation time. This effect was more pronounced for OAR than for CTV. The edition of the automatically obtained contours significantly improved DSC, ASD and MSD. Large distortions of normal anatomy or lack of iodine contrast were the limiting factors. The updated Brainlab atlas-based automatic segmentation tool for head and neck Cancer patients is timesaving but still necessitates review and corrections by an expert.
Nakamura, Kensuke; Tomida, Makoto; Ando, Takehiro; Sen, Kon; Inokuchi, Ryota; Kobayashi, Etsuko; Nakajima, Susumu; Sakuma, Ichiro; Yahagi, Naoki
2013-07-01
Evaluation of the intravascular blood volume is an important assessment in emergency and critical care medicine. Measurement of the inferior vena cava (IVC) respiratory variation by ultrasound echography is useful, but it entails subjective problems. We have hypothesized that IVC cardiac variation is also correlated with intravascular blood volume and analyzed it automatically using computer software of two kinds, later comparing the results. Snakes, software to track boundaries by curve line continuity, and template matching software were incorporated into a computer with an ultrasound machine to track the short-axis view of IVC automatically and analyze it with approximation by ellipse. Eight healthy volunteers with temporary mild hypovolemia underwent echography before and after passive leg raising and while wearing medical anti-shock trousers. IVC cardiac variation was visually decreased by both leg raising and medical anti-shock trousers. The collapse index (maximum - minimum/maximum) of area during three cardiac beats was decreased showing a good relationship to fluid load simulations; 0.24 ± 0.03 at baseline versus 0.11 ± 0.01 with leg raising and 0.12 ± 0.01 with medical anti-shock trousers. In conclusion, IVC cardiac variation has the potential to provide an evaluation of water volume. It presents some advantages in mechanical analysis over respiratory variation. At the very least, we need to exercise some caution with cardiac variation when evaluating respiratory variation.
Enlargement of the supraglottal cavity and its relation to stop consonant voicing.
Westbury, J R
1983-04-01
Measurements were made of saggital plane movements of the larynx, soft palate, and portions of the tongue, from a high-speed cinefluorographic film of utterances produced by one adult male speaker of American English. These measures were then used to approximate the temporal variations in supraglottal cavity volume during the closures of voiced and voiceless stop consonants. All data were subsequently related to a synchronous acoustic recording of the utterances. Instances of /p,t,k/ were always accompanied by silent closures, and sometimes accompanied by decreases in supraglottal volume. In contrast, instances of /b,d,g/ were always accompanied both by significant intervals of vocal fold vibration during closure, and relatively large increases in supraglottal volume. However, the magnitudes of volume increments during the voiced stops, and the means by which those increments were achieved, differed considerably across place of articulation and phonetic environment. These results are discussed in the context of a well-known model of the breath-stream control mechanism, and their relevance for a general theory of speech motor control is considered.
NASA Astrophysics Data System (ADS)
Kim, S. Y.; Oh, H. S.; Park, E. S.
2017-10-01
Herein, we elucidate a hidden variable in a shear transformation zone (STZ) volume (Ω) versus Poisson's ratio (ν) relation and clarify the correlation between STZ characteristics and the plasticity of metallic glasses (MGs). On the basis of cooperative shear model and atomic stress theories, we carefully formulate Ω as a function of molar volume (Vm) and ν. The twofold trend in Ω and ν is attributed to a relatively large variation of Vm as compared to that of ν as well as an inverse relation between Vm and ν. Indeed, the derived equation reveals that the number of atoms in an STZ instead of Ω is a microstructural characteristic which has a close relationship with plasticity since it reflects the preference of atomistic behaviors between cooperative shearing and the generation of volume strain fluctuation under stress. The results would deepen our understanding of the correlation between microscopic behaviors (STZ activation) and macroscopic properties (plasticity) in MGs and enable a quantitative approach in associating various STZ-related macroscopic behaviors with intrinsic properties of MGs.
The impact of a forced reduction in traffic volumes on urban air pollution
NASA Astrophysics Data System (ADS)
Yuval; Flicstein, Bernanda; Broday, David M.
The Middle East military conflict of summer 2006 resulted in a few weeks in which the city of Haifa, Israel, and its environs experienced very profound variations in the commercial and personal activities. Large industrial plants continued almost normal operations but activities of small scale industry, shopping, and personal commuting were drastically reduced, leading to a dramatic decrease in the commercial and personal traffic volumes. This period of reduced activity serves as a real life experiment for assessment and demonstration of the impact that human activity, and mainly road traffic, may have on the air pollution levels in a bustling middle-sized city. The analysis is made especially sharp and reliable due to the abruptness of the beginning and the end of the reduced activity period, its length, and the stable summer meteorological conditions in the eastern Mediterranean region. The reduced traffic volumes resulted in lowered levels of NO 2, hydrocarbons and particulate matter. The decrease in these pollutants' mean concentration was significantly larger than the reduction in the mean traffic volume. Slightly higher mean O 3 concentrations were observed during the reduced traffic period.
Evaluation of the effect of localized skin cooling on nasal airway volume by acoustic rhinometry.
Yamagiwa, M; Hilberg, O; Pedersen, O F; Lundqvist, G R
1990-04-01
Ten healthy subjects (four men and six women) were subjected to localized skin cooling by submersion for 5 min of both feet and, in another experiment, one hand and forearm into ice-cold water. Repeated measurements of nasal cavity volumes by a new method, acoustic rhinometry, showed characteristic patterns ranging from marked increases in volumes lasting the entire exposure period to transient monophasic or biphasic responses to no change at all. The pattern in individual subjects was reproducible with the two methods of cooling, and it could be characterized by five types when related to baseline measurements during the preexposure period. Because of large minute-to-minute variations, probably determined by local differences and fluctuations in blood flow in tissues through the nose, evaluation of induced changes in the nasal cavity volume cannot be based on single measurements as has frequently been done in the past by using rhinomanometry as the experimental method. The mechanisms behind the characteristic patterns in immediate human nasal response to local skin cooling challenge remains to be explored.
Del Águila-Carrasco, Antonio J; Domínguez-Vicent, Alberto; Pérez-Vives, Cari; Ferrer-Blasco, Teresa; Montés-Micó, Robert
2015-01-01
To assess the effect of different disposable soft contact lenses on several corneal parameters-thickness, anterior and posterior curvature, and volume-by means of a Scheimpflug imaging-based device (Pentacam HR). Diurnal variations of these parameters were taken into account. Twenty-one young, healthy subjects wore 4 different types of daily disposable soft contact lenses on 4 different days: Dailies AquaComfort Plus, SofLens, Dailies Total1, and Acuvue TruEye. The lenses had different material and water content. Pachymetry and curvature maps and corneal volume values were obtained using the Pentacam HR twice a day: one before putting the lens on and one after an 8-hour period of contact lens wear. Measurements were also taken without any contact lenses being worn. Regarding corneal thickness, the lens with the most similar behavior to the naked eye scenario was the Dailies Total1, causing a thickening of 0.2 ± 0.1% in the central zone and 0.6 ± 0.2% in the periphery. All 4 lenses caused a slight but not significant flattening in the anterior corneal curvature, whereas the posterior corneal curvature only experienced a significant but small steepening with the SofLens. The use of these lenses increased corneal volume slightly. Variations in corneal parameters seem to depend on the type of contact lens used (material, oxygen transmissibility, water content). However, the magnitude of the changes introduced by the use of soft contact lenses over the 8-hour period was small and probably not large enough to influence either visual acuity or comfort.
Low Reynolds number airfoil survey, volume 1
NASA Technical Reports Server (NTRS)
Carmichael, B. H.
1981-01-01
The differences in flow behavior two dimensional airfoils in the critical chordlength Reynolds number compared with lower and higher Reynolds number are discussed. The large laminar separation bubble is discussed in view of its important influence on critical Reynolds number airfoil behavior. The shortcomings of application of theoretical boundary layer computations which are successful at higher Reynolds numbers to the critical regime are discussed. The large variation in experimental aerodynamic characteristic measurement due to small changes in ambient turbulence, vibration, and sound level is illustrated. The difficulties in obtaining accurate detailed measurements in free flight and dramatic performance improvements at critical Reynolds number, achieved with various types of boundary layer tripping devices are discussed.
Visualizing the molecular sociology at the HeLa cell nuclear periphery.
Mahamid, Julia; Pfeffer, Stefan; Schaffer, Miroslava; Villa, Elizabeth; Danev, Radostin; Cuellar, Luis Kuhn; Förster, Friedrich; Hyman, Anthony A; Plitzko, Jürgen M; Baumeister, Wolfgang
2016-02-26
The molecular organization of eukaryotic nuclear volumes remains largely unexplored. Here we combined recent developments in cryo-electron tomography (cryo-ET) to produce three-dimensional snapshots of the HeLa cell nuclear periphery. Subtomogram averaging and classification of ribosomes revealed the native structure and organization of the cytoplasmic translation machinery. Analysis of a large dynamic structure-the nuclear pore complex-revealed variations detectable at the level of individual complexes. Cryo-ET was used to visualize previously elusive structures, such as nucleosome chains and the filaments of the nuclear lamina, in situ. Elucidation of the lamina structure provides insight into its contribution to metazoan nuclear stiffness. Copyright © 2016, American Association for the Advancement of Science.
Weight and volume variation in truckloads of logs hauled in the central Appalachians
Floyd G. Timson
1974-01-01
Variation in volume and weight was found among loaded log trucks even when such factors as truck type, logging job, and driver influence were eliminated. A load range of 10,000 pounds or 1,000 board feet was commonplace for the same truck, driver, and cutting site. Differences in log size, shape, weight, and species caused a major share of this variation. Yet,...
Fornage, Myriam; Mosley, Thomas H; Jack, Clifford R; de Andrade, Mariza; Kardia, Sharon L R; Boerwinkle, Eric; Turner, Stephen T
2007-01-01
Susceptibility to ischemic damage to the subcortical white matter of the brain has a strong genetic basis. Dysregulation of matrix metalloproteinases (MMPs) contributes to loss of cerebrovascular integrity and white matter injury. We investigated whether sequence variation in the genes encoding MMP3 and MMP9 is associated with variation in leukoaraiosis volume, determined by magnetic resonance imaging, in non-Hispanic whites and African-Americans using family-based association tests. Seven hundred and fifty-six white and 671 African-American individuals from sibships ascertained through two or more siblings with hypertension were genotyped for 7 and 8 haplotype-tagging polymorphisms in the MMP3 and MMP9 genes, respectively. MMP3 sequence variation was significantly associated with variation in leukoaraiosis volume in Whites. Two common haplotypes with opposing relationships to leukoaraiosis volume were identified. MMP9 sequence variation was also significantly associated with variation in leukoaraiosis volume in both African-Americans and Whites. Different haplotypes contributed to these associations in the two racial groups. These findings add to the growing body of evidence from animal models and human clinical studies suggesting a role of MMPs in ischemic white matter injury. They provide the basis for further investigation of the role of these genes in susceptibility and/or progression to clinical disease.
NASA Astrophysics Data System (ADS)
Prameswari, I. K.; Manuhara, G. J.; Amanto, B. S.; Atmaka, W.
2018-05-01
Tapioca starch application in bread processing change water absorption level by the dough, while sufficient mixing time makes the optimal water absorption. This research aims to determine the effect of variations in water volume and mixing time on physical properties of tapioca starch – wheat composite bread and the best method for the composite bread processing. This research used Complete Randomized Factorial Design (CRFD) with two factors: variations of water volume (111,8 ml, 117,4 ml, 123 ml) and mixing time (16 minutes, 17 minutes 36 seconds, 19 minutes 12 seconds). The result showed that water volume significantly affected on dough volume, bread volume and specific volume, baking expansion, and crust thickness. Mixing time significantly affected on dough volume and specific volume, bread volume and specific volume, baking expansion, bread height, and crust thickness. While the combination of water volume and mixing time significantly affected for all physical properties parameters except crust thickness.
A low-volume cavity ring-down spectrometer for sample-limited applications
NASA Astrophysics Data System (ADS)
Stowasser, C.; Farinas, A. D.; Ware, J.; Wistisen, D. W.; Rella, C.; Wahl, E.; Crosson, E.; Blunier, T.
2014-08-01
In atmospheric and environmental sciences, optical spectrometers are used for the measurements of greenhouse gas mole fractions and the isotopic composition of water vapor or greenhouse gases. The large sample cell volumes (tens of milliliters to several liters) in commercially available spectrometers constrain the usefulness of such instruments for applications that are limited in sample size and/or need to track fast variations in the sample stream. In an effort to make spectrometers more suitable for sample-limited applications, we developed a low-volume analyzer capable of measuring mole fractions of methane and carbon monoxide based on a commercial cavity ring-down spectrometer. The instrument has a small sample cell (9.6 ml) and can selectively be operated at a sample cell pressure of 140, 45, or 20 Torr (effective internal volume of 1.8, 0.57, and 0.25 ml). We present the new sample cell design and the flow path configuration, which are optimized for small sample sizes. To quantify the spectrometer's usefulness for sample-limited applications, we determine the renewal rate of sample molecules within the low-volume spectrometer. Furthermore, we show that the performance of the low-volume spectrometer matches the performance of the standard commercial analyzers by investigating linearity, precision, and instrumental drift.
A post-reconstruction method to correct cupping artifacts in cone beam breast computed tomography
Altunbas, M. C.; Shaw, C. C.; Chen, L.; Lai, C.; Liu, X.; Han, T.; Wang, T.
2007-01-01
In cone beam breast computed tomography (CT), scattered radiation leads to nonuniform biasing of CT numbers known as a cupping artifact. Besides being visual distractions, cupping artifacts appear as background nonuniformities, which impair efficient gray scale windowing and pose a problem in threshold based volume visualization/segmentation. To overcome this problem, we have developed a background nonuniformity correction method specifically designed for cone beam breast CT. With this technique, the cupping artifact is modeled as an additive background signal profile in the reconstructed breast images. Due to the largely circularly symmetric shape of a typical breast, the additive background signal profile was also assumed to be circularly symmetric. The radial variation of the background signals were estimated by measuring the spatial variation of adipose tissue signals in front view breast images. To extract adipose tissue signals in an automated manner, a signal sampling scheme in polar coordinates and a background trend fitting algorithm were implemented. The background fits compared with targeted adipose tissue signal value (constant throughout the breast volume) to get an additive correction value for each tissue voxel. To test the accuracy, we applied the technique to cone beam CT images of mastectomy specimens. After correction, the images demonstrated significantly improved signal uniformity in both front and side view slices. The reduction of both intra-slice and inter-slice variations in adipose tissue CT numbers supported our observations. PMID:17822018
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang Dian, E-mail: dwang@mcw.edu; Bosch, Walter; Kirsch, David G.
Purpose: To evaluate variability in the definition of preoperative radiotherapy gross tumor volume (GTV) and clinical target volume (CTV) delineated by sarcoma radiation oncologists. Methods and Materials: Extremity sarcoma planning CT images along with the corresponding diagnostic MRI from two patients were distributed to 10 Radiation Therapy Oncology Group sarcoma radiation oncologists with instructions to define GTV and CTV using standardized guidelines. The CT data with contours were then returned for central analysis. Contours representing statistically corrected 95% (V95) and 100% (V100) agreement were computed for each structure. Results: For the GTV, the minimum, maximum, mean (SD) volumes (mL) weremore » 674, 798, 752 {+-} 35 for the lower extremity case and 383, 543, 447 {+-} 46 for the upper extremity case. The volume (cc) of the union, V95 and V100 were 882, 761, and 752 for the lower, and 587, 461, and 455 for the upper extremity, respectively. The overall GTV agreement was judged to be almost perfect in both lower and upper extremity cases (kappa = 0.9 [p < 0.0001] and kappa = 0.86 [p < 0.0001]). For the CTV, the minimum, maximum, mean (SD) volumes (mL) were 1145, 1911, 1605 {+-} 211 for the lower extremity case and 637, 1246, 1006 {+-} 180 for the upper extremity case. The volume (cc) of the union, V95, and V100 were 2094, 1609, and 1593 for the lower, and 1533, 1020, and 965 for the upper extremity cases, respectively. The overall CTV agreement was judged to be almost perfect in the lower extremity case (kappa = 0.85 [p < 0.0001]) but only substantial in the upper extremity case (kappa = 0.77 [p < 0.0001]). Conclusions: Almost perfect agreement existed in the GTV of these two representative cases. Tshere was no significant disagreement in the CTV of the lower extremity, but variation in the CTV of upper extremity was seen, perhaps related to the positional differences between the planning CT and the diagnostic MRI.« less
Inter- and intra-observer variation in soft-tissue sarcoma target definition.
Roberge, D; Skamene, T; Turcotte, R E; Powell, T; Saran, N; Freeman, C
2011-08-01
To evaluate inter- and intra-observer variability in gross tumor volume definition for adult limb/trunk soft tissue sarcomas. Imaging studies of 15 patients previously treated with preoperative radiation were used in this study. Five physicians (radiation oncologists, orthopedic surgeons and a musculoskeletal radiologist) were asked to contour each of the 15 tumors on T1-weighted, gadolinium-enhanced magnetic resonance images. These contours were drawn twice by each physician. The volume and center of mass coordinates for each gross tumor volume were extracted and a Boolean analysis was performed to measure the degree of volume overlap. The median standard deviation in gross tumor volumes across observers was 6.1% of the average volume (range: 1.8%-24.9%). There was remarkably little variation in the 3D position of the gross tumor volume center of mass. For the 15 patients, the standard deviation of the 3D distance between centers of mass ranged from 0.06 mm to 1.7 mm (median 0.1mm). Boolean analysis demonstrated that 53% to 90% of the gross tumor volume was common to all observers (median overlap: 79%). The standard deviation in gross tumor volumes on repeat contouring was 4.8% (range: 0.1-14.4%) with a standard deviation change in the position of the center of mass of 0.4mm (range: 0mm-2.6mm) and a median overlap of 93% (range: 73%-98%). Although significant inter-observer differences were seen in gross tumor volume definition of adult soft-tissue sarcoma, the center of mass of these volumes was remarkably consistent. Variations in volume definition did not correlate with tumor size. Radiation oncologists should not hesitate to review their contours with a colleague (surgeon, radiologist or fellow radiation oncologist) to ensure that they are not outliers in sarcoma gross tumor volume definition. Protocols should take into account variations in volume definition when considering tighter clinical target volumes. Copyright © 2011 Société française de radiothérapie oncologique (SFRO). Published by Elsevier SAS. All rights reserved.
Use of a single ventilator to support 4 patients: laboratory evaluation of a limited concept.
Branson, Richard D; Blakeman, Thomas C; Robinson, Bryce Rh; Johannigman, Jay A
2012-03-01
A mass-casualty respiratory failure event where patients exceed available ventilators has spurred several proposed solutions. One proposal is use of a single ventilator to support 4 patients. A ventilator was modified to allow attachment of 4 circuits. Each circuit was connected to one chamber of 2 dual-chambered, test lungs. The ventilator was set at a tidal volume (V(T)) of 2.0 L, respiratory frequency of 10 breaths/min, and PEEP of 5 cm H(2)O. Tests were repeated with pressure targeted breaths at 15 cm H(2)O. Airway pressure, volume, and flow were measured at each chamber. The test lungs were set to simulate 4 patients using combinations of resistance (R) and compliance (C). These included equivalent C and R, constant R and variable C, constant C and variable R, and variable C and variable R. When R and C were equivalent the V(T) distributed to each chamber of the test lung was similar during both volume (range 428-442 mL) and pressure (range 528-544 mL) breaths. Changing C while R was constant resulted in large variations in delivered V(T) (volume range 257-621 mL, pressure range 320-762 mL). Changing R while C was constant resulted in a smaller variation in V(T) (volume range 418-460 mL, pressure range 502-554 mL) compared to only C changes. When R and C were both varied, the range of delivered V(T) in both volume (336-517 mL) and pressure (417-676 mL) breaths was greater, compared to only R changes. Using a single ventilator to support 4 patients is an attractive concept; however, the V(T) cannot be controlled for each subject and V(T) disparity is proportional to the variability in compliance. Along with other practical limitations, these findings cannot support the use of this concept for mass-casualty respiratory failure.
NASA Astrophysics Data System (ADS)
Abid, Najmul; Mirkhalaf, Mohammad; Barthelat, Francois
2018-03-01
Natural materials such as nacre, collagen, and spider silk are composed of staggered stiff and strong inclusions in a softer matrix. This type of hybrid microstructure results in remarkable combinations of stiffness, strength, and toughness and it now inspires novel classes of high-performance composites. However, the analytical and numerical approaches used to predict and optimize the mechanics of staggered composites often neglect statistical variations and inhomogeneities, which may have significant impacts on modulus, strength, and toughness. Here we present an analysis of localization using small representative volume elements (RVEs) and large scale statistical volume elements (SVEs) based on the discrete element method (DEM). DEM is an efficient numerical method which enabled the evaluation of more than 10,000 microstructures in this study, each including about 5,000 inclusions. The models explore the combined effects of statistics, inclusion arrangement, and interface properties. We find that statistical variations have a negative effect on all properties, in particular on the ductility and energy absorption because randomness precipitates the localization of deformations. However, the results also show that the negative effects of random microstructures can be offset by interfaces with large strain at failure accompanied by strain hardening. More specifically, this quantitative study reveals an optimal range of interface properties where the interfaces are the most effective at delaying localization. These findings show how carefully designed interfaces in bioinspired staggered composites can offset the negative effects of microstructural randomness, which is inherent to most current fabrication methods.
Improving the consistency in cervical esophageal target volume definition by special training.
Tai, Patricia; Van Dyk, Jake; Battista, Jerry; Yu, Edward; Stitt, Larry; Tonita, Jon; Agboola, Olusegun; Brierley, James; Dar, Rashid; Leighton, Christopher; Malone, Shawn; Strang, Barbara; Truong, Pauline; Videtic, Gregory; Wong, C Shun; Wong, Rebecca; Youssef, Youssef
2002-07-01
Three-dimensional conformal radiation therapy requires the precise definition of the target volume. Its potential benefits could be offset by the inconsistency in target definition by radiation oncologists. In a previous survey of radiation oncologists, a large degree of variation in target volume definition of cervical esophageal cancer was noted for the boost phase of radiotherapy. The present study evaluated whether special training could improve the consistency in target volume definitions. A pre-training survey was performed to establish baseline values. This was followed by a special one-on-one training session on treatment planning based on the RTOG 94-05 protocol to 12 radiation oncologists. Target volumes were redrawn immediately and at 1-2 months later. Post-training vs. pre-training target volumes were compared. There was less variability in the longitudinal positions of the target volumes post-training compared to pre-training (p < 0.05 in 5 of 6 comparisons). One case had more variability due to the lack of a visible gross tumor on CT scans. Transverse contours of target volumes did not show any significant difference pre- or post-training. For cervical esophageal cancer, this study suggests that special training on protocol guidelines may improve consistency in target volume definition. Explicit protocol directions are required for situations where the gross tumor is not easily visible on CT scans. This may be particularly important for multicenter clinical trials, to reduce the occurrences of protocol violations.
Variational approach to the volume viscosity of fluids
NASA Astrophysics Data System (ADS)
Zuckerwar, Allan J.; Ash, Robert L.
2006-04-01
The variational principle of Hamilton is applied to develop an analytical formulation to describe the volume viscosity in fluids. The procedure described here differs from those used in the past in that a dissipative process is represented by the chemical affinity and progress variable (sometimes called "order parameter") of a reacting species. These state variables appear in the variational integral in two places: first, in the expression for the internal energy, and second, in a subsidiary condition accounting for the conservation of the reacting species. As a result of the variational procedure, two dissipative terms appear in the Navier-Stokes equation. The first is the traditional volume viscosity term, proportional to the dilatational component of velocity; the second term is proportional to the material time derivative of the pressure gradient. Values of the respective volume viscosity coefficients are determined by applying the resulting volume-viscous Navier-Stokes equation to the case of acoustical propagation and then comparing expressions for the dispersion and absorption of sound. The formulation includes the special case of equilibration of the translational degrees of freedom. As examples, values are tabulated for dry and humid air, argon, and sea water.
2012-01-01
Background F1 hybrid clones of Eucalyptus grandis and E. urophylla are widely grown for pulp and paper production in tropical and subtropical regions. Volume growth and wood quality are priority objectives in Eucalyptus tree improvement. The molecular basis of quantitative variation and trait expression in eucalypt hybrids, however, remains largely unknown. The recent availability of a draft genome sequence (http://www.phytozome.net) and genome-wide genotyping platforms, combined with high levels of genetic variation and high linkage disequilibrium in hybrid crosses, greatly facilitate the detection of quantitative trait loci (QTLs) as well as underlying candidate genes for growth and wood property traits. In this study, we used Diversity Arrays Technology markers to assess the genetic architecture of volume growth (diameter at breast height, DBH) and wood basic density in four-year-old progeny of an interspecific backcross pedigree of E. grandis and E. urophylla. In addition, we used Illumina RNA-Seq expression profiling in the E. urophylla backcross family to identify cis- and trans-acting polymorphisms (eQTLs) affecting transcript abundance of genes underlying QTLs for wood basic density. Results A total of five QTLs for DBH and 12 for wood basic density were identified in the two backcross families. Individual QTLs for DBH and wood basic density explained 3.1 to 12.2% of phenotypic variation. Candidate genes underlying QTLs for wood basic density on linkage groups 8 and 9 were found to share trans-acting eQTLs located on linkage groups 4 and 10, which in turn coincided with QTLs for wood basic density suggesting that these QTLs represent segregating components of an underlying transcriptional network. Conclusion This is the first demonstration of the use of next-generation expression profiling to quantify transcript abundance in a segregating tree population and identify candidate genes potentially affecting wood property variation. The QTLs identified in this study provide a resource for identifying candidate genes and developing molecular markers for marker-assisted breeding of volume growth and wood basic density. Our results suggest that integrated analysis of transcript and trait variation in eucalypt hybrids can be used to dissect the molecular basis of quantitative variation in wood property traits. PMID:22817272
Measures of large-scale structure in the CfA redshift survey slices
NASA Technical Reports Server (NTRS)
De Lapparent, Valerie; Geller, Margaret J.; Huchra, John P.
1991-01-01
Variations of the counts-in-cells with cell size are used here to define two statistical measures of large-scale clustering in three 6 deg slices of the CfA redshift survey. A percolation criterion is used to estimate the filling factor which measures the fraction of the total volume in the survey occupied by the large-scale structures. For the full 18 deg slice of the CfA redshift survey, f is about 0.25 + or - 0.05. After removing groups with more than five members from two of the slices, variations of the counts in occupied cells with cell size have a power-law behavior with a slope beta about 2.2 on scales from 1-10/h Mpc. Application of both this statistic and the percolation analysis to simulations suggests that a network of two-dimensional structures is a better description of the geometry of the clustering in the CfA slices than a network of one-dimensional structures. Counts-in-cells are also used to estimate at 0.3 galaxy h-squared/Mpc the average galaxy surface density in sheets like the Great Wall.
Liu, Hongxing; Chen, Yaning; Shu, Song; Wu, Qiusheng; Wang, Shujie
2017-01-01
This study utilizes ICESat Release 33 GLA14 data to analyse water level variation of Xinjiang’s lakes and reservoirs from 2003 to 2009. By using Landsat images, lakes and reservoirs with area larger than 1 km2 are numerically delineated with a software tool. Based on ICESat observations, we analyse the characteristics of water level variation in different geographic environments, as well as investigate the reasons for the variation. Results indicate that climatic warming contributes to rising water levels in lakes in mountainous areas, especially for lakes that are recharged by snow and glacial melting. For lakes in oases, the water levels are affected jointly by human activity and climate change, while the water levels of reservoirs are mainly affected by human activity. Comparing the annual average rates of water levels, those of lakes are higher than those of reservoirs in oasis areas. The main reasons for the decreasing water levels in desert regions are the reduction of recharged runoff and high evaporation. By analysing the variation of water levels and water volume in different geologic environments, it is found that water level and volume increased in mountainous regions, and decreased in oasis regions and desert regions. Finding also demonstrate that decreasing volume is greater than increasing volume, which results in decreasing total volume of Xinjiang lakes and reservoirs. PMID:28873094
Effect of alloying elements and heat treatment on the fracture toughness of Ti-Al-Nb alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kamat, S.V.; Gogia, A.K.; Banerjee, D.
The fracture toughness and toughening mechanisms of Ti{sub 3}Al based alloy compositions covering a large range of Nb, small variations in Al and quaternary substitutions of Nb have been studied in a variety of heat treated conditions designed to vary the volume fractions of the constituents phases. It was found that the B2 phase of these alloys failed by cleavage in a coarse grained condition but in a ductile manner when fine grained. A higher Nb and a lower Al content improved the cleavage fracture stress of the B2 phase while replacement of a part of Nb and a lowermore » Al content improved the cleavage fracture stress of the B2 phase while replacement of a part of Nb with Mo or Ta had no significant effect. Heat treatments which result in a two phase microstructure ({alpha}{sub 2} + {beta}/B2) exhibited a trend of increasing fracture toughness with increasing volume fraction of {beta}/B2 up to about 60--80 volume fraction of {beta}/B2. This behavior was largely explained by quantifying the role of crack tip blunting. The effect of alloying elements on fracture toughness in two phase microstructures was similar to that observed in the coarse grained B2 condition.« less
NASA Technical Reports Server (NTRS)
Papa, Fabrice; Frappart, Frederic; Guntner, Andreas; Prigent, Catherine; Aires, Filipe; Getirana, Augusto; Maurer, Raffael
2013-01-01
The amount of water stored and moving through the surface water bodies of large river basins (river, floodplains, wetlands) plays a major role in the global water and biochemical cycles and is a critical parameter for water resources management. However, the spatio-temporal variations of these freshwater reservoirs are still widely unknown at the global scale. Here, we propose a hypsographic curve approach to estimate surface freshwater storage variations over the Amazon basin combining surface water extent from a multi-satellite-technique with topographic data from the Global Digital Elevation Model (GDEM) from Advance Spaceborne Thermal Emission and Reflection Radiometer (ASTER). Monthly surface water storage variations for 1993-2007 are presented, showing a strong seasonal and interannual variability, and are evaluated against in situ river discharge and precipitation. The basin-scale mean annual amplitude of approx. 1200 cu km is in the range of previous estimates and contributes to about half of the Gravity Recovery And Climate Experiment (GRACE) total water storage variations. For the first time, we map the surface water volume anomaly during the extreme droughts of 1997 (October-November) and 2005 (September-October) and found that during these dry events the water stored in the river and flood-plains of the Amazon basin was, respectively, approx. 230 (approx. 40%) and 210 (approx. 50%) cu km below the 1993-2007 average. This new 15year data set of surface water volume represents an unprecedented source of information for future hydrological or climate modeling of the Amazon. It is also a first step toward the development of such database at the global scale.
NASA Astrophysics Data System (ADS)
Carrière, Simon D.; Chalikakis, Konstantinos; Danquigny, Charles; Davi, Hendrik; Mazzilli, Naomi; Ollivier, Chloé; Emblanch, Christophe
2016-11-01
Some portions of the porous rock matrix in the karst unsaturated zone (UZ) can contain large volumes of water and play a major role in water flow regulation. The essential results are presented of a local-scale study conducted in 2011 and 2012 above the Low Noise Underground Laboratory (LSBB - Laboratoire Souterrain à Bas Bruit) at Rustrel, southeastern France. Previous research revealed the geological structure and water-related features of the study site and illustrated the feasibility of specific hydrogeophysical measurements. In this study, the focus is on hydrodynamics at the seasonal and event timescales. Magnetic resonance sounding (MRS) measured a high water content (more than 10 %) in a large volume of rock. This large volume of water cannot be stored in fractures and conduits within the UZ. MRS was also used to measure the seasonal variation of water stored in the karst UZ. A process-based model was developed to simulate the effect of vegetation on groundwater recharge dynamics. In addition, electrical resistivity tomography (ERT) monitoring was used to assess preferential water pathways during a rain event. This study demonstrates the major influence of water flow within the porous rock matrix on the UZ hydrogeological functioning at both the local (LSBB) and regional (Fontaine de Vaucluse) scales. By taking into account the role of the porous matrix in water flow regulation, these findings may significantly improve karst groundwater hydrodynamic modelling, exploitation, and sustainable management.
NASA Astrophysics Data System (ADS)
Srirejeki, S.; Manuhara, G. J.; Amanto, B. S.; Atmaka, W.; Laksono, P. W.
2018-03-01
Modification of cassava starch with soaking in the whey (by product on cheese production) resulted in changes of the flour characteristics. Adjustments of processing condition are important to be studied in the making of bread from modified cassava starch and wheat composite flour (30:70). This research aims to determine the effect of water volume and mixing time on the physical properties of the bread. The experimental design of this research was Completely Randomized Factorial Design (CRFD) with two factors which were water volume and mixing time. The variation of water volume significantly affected on bread height, dough volume, dough specific volume, and crust thickness. The variation of mixing time had a significant effect on the increase of dough volume and dough specific volume. The combination of water volume and mixing time had a significant effect on dough height, bread volume, bread specific volume, baking expansion, and weight loss.
Wood and Sediment Dynamics in River Corridors
NASA Astrophysics Data System (ADS)
Wohl, E.; Scott, D.
2015-12-01
Large wood along rivers influences entrainment, transport, and storage of mineral sediment and particulate organic matter. We review how wood alters sediment dynamics and explore patterns among volumes of instream wood, sediment storage, and residual pools for dispersed pieces of wood, logjams, and beaver dams. We hypothesized that: volume of sediment per unit area of channel stored in association with wood is inversely proportional to drainage area; the form of sediment storage changes downstream; sediment storage correlates most strongly with wood load; and volume of sediment stored behind beaver dams correlates with pond area. Lack of data from larger drainage areas limits tests of these hypotheses, but analyses suggest a negative correlation between sediment volume and drainage area and a positive correlation between wood and sediment volume. The form of sediment storage in relation to wood changes downstream, with wedges of sediment upstream from jammed steps most prevalent in small, steep channels and more dispersed sediment storage in lower gradient channels. Use of a published relation between sediment volume, channel width, and gradient predicted about half of the variation in sediment stored upstream from jammed steps. Sediment volume correlates well with beaver pond area. Historically more abundant instream wood and beaver populations likely equated to greater sediment storage within river corridors. This review of the existing literature on wood and sediment dynamics highlights the lack of studies on larger rivers.
Huang, Liang; Nho, Kwangsik; Deng, Min; Chen, Qiang; Weinberger, Daniel R.; Vasquez, Alejandro Arias; Rijpkema, Mark; Mattay, Venkata S.; Saykin, Andrew J.; Shen, Li; Fernández, Guillén; Franke, Barbara; Chen, Jing-chun; Chen, Xiang-ning; Wang, Jin-kai; Xiao, Xiao; Qi, Xue-bin; Xiang, Kun; Peng, Ying-Mei; Cao, Xiang-yu; Li, Yi; Shi, Xiao-dong; Gan, Lin; Su, Bing
2012-01-01
One of the most significant evolutionary changes underlying the highly developed cognitive abilities of humans is the greatly enlarged brain volume. In addition to being far greater than in most other species, the volume of the human brain exhibits extensive variation and distinct sexual dimorphism in the general population. However, little is known about the genetic mechanisms underlying normal variation as well as the observed sex difference in human brain volume. Here we show that interleukin-3 (IL3) is strongly associated with brain volume variation in four genetically divergent populations. We identified a sequence polymorphism (rs31480) in the IL3 promoter which alters the expression of IL3 by affecting the binding affinity of transcription factor SP1. Further analysis indicated that IL3 and its receptors are continuously expressed in the developing mouse brain, reaching highest levels at postnatal day 1–4. Furthermore, we found IL3 receptor alpha (IL3RA) was mainly expressed in neural progenitors and neurons, and IL3 could promote proliferation and survival of the neural progenitors. The expression level of IL3 thus played pivotal roles in the expansion and maintenance of the neural progenitor pool and the number of surviving neurons. Moreover, we found that IL3 activated both estrogen receptors, but estrogen didn’t directly regulate the expression of IL3. Our results demonstrate that genetic variation in the IL3 promoter regulates human brain volume and reveals novel roles of IL3 in regulating brain development. PMID:23226269
Jeon, Seung Hyuck; Chie, Eui Kyu
2018-01-01
The stomach is one of the most deforming organs caused by respiratory motions and daily variation by food intake. Applying radiotherapy has been quite a challenge due to the high risk of missing the target as well as radiation exposure to large volumes of normal tissue. However, real-time magnetic resonance (MR)-guided radiotherapy with adaptive planning could focus the high dose radiation to the target area while minimizing neighboring normal tissue exposure and compensate for not only daily but real-time variation. Here is a case report of a patient with recurrent gastric cancer and multiple co-morbidities, unsuitable for both resection and chemotherapy, who underwent MR guided adaptive radiotherapy. PMID:29900091
The potential for adaptive evolution of pollen grain size in Mimulus guttatus.
Lamborn, Ellen; Cresswell, James E; Macnair, Mark R
2005-07-01
We tested whether pollen grain size (PGS) shows heritable variation in three independent populations of Mimulus guttatus by imposing artificial selection for this character. In addition, we looked for correlated responses to selection in a range of 15 other floral characters. Heritable variation in PGS was found in all three populations, with heritabilities of between 19 and 40% (average 30%). After three generations, upward and downward lines differed on average by 30% in pollen volume. No consistent patterns of correlated response were found in other characters, indicating that PGS can respond to selective forces acting on PGS alone. Possible selection mechanisms on PGS in this species could include intermale selection, if large pollen grains produce more competitive gametophytes; or optimization of patterns of resource allocation, if local mate competition varies.
A combined surface/volume scattering retracking algorithm for ice sheet satellite altimetry
NASA Technical Reports Server (NTRS)
Davis, Curt H.
1992-01-01
An algorithm that is based upon a combined surface-volume scattering model is developed. It can be used to retrack individual altimeter waveforms over ice sheets. An iterative least-squares procedure is used to fit the combined model to the return waveforms. The retracking algorithm comprises two distinct sections. The first generates initial model parameter estimates from a filtered altimeter waveform. The second uses the initial estimates, the theoretical model, and the waveform data to generate corrected parameter estimates. This retracking algorithm can be used to assess the accuracy of elevations produced from current retracking algorithms when subsurface volume scattering is present. This is extremely important so that repeated altimeter elevation measurements can be used to accurately detect changes in the mass balance of the ice sheets. By analyzing the distribution of the model parameters over large portions of the ice sheet, regional and seasonal variations in the near-surface properties of the snowpack can be quantified.
Ice-volume-forced erosion of the Chinese Loess Plateau global Quaternary stratotype site.
Stevens, T; Buylaert, J-P; Thiel, C; Újvári, G; Yi, S; Murray, A S; Frechen, M; Lu, H
2018-03-07
The International Commission on Stratigraphy (ICS) utilises benchmark chronostratigraphies to divide geologic time. The reliability of these records is fundamental to understand past global change. Here we use the most detailed luminescence dating age model yet published to show that the ICS chronology for the Quaternary terrestrial type section at Jingbian, desert marginal Chinese Loess Plateau, is inaccurate. There are large hiatuses and depositional changes expressed across a dynamic gully landform at the site, which demonstrates rapid environmental shifts at the East Asian desert margin. We propose a new independent age model and reconstruct monsoon climate and desert expansion/contraction for the last ~250 ka. Our record demonstrates the dominant influence of ice volume on desert expansion, dust dynamics and sediment preservation, and further shows that East Asian Summer Monsoon (EASM) variation closely matches that of ice volume, but lags insolation by ~5 ka. These observations show that the EASM at the monsoon margin does not respond directly to precessional forcing.
Hill, Shirley Y; Wang, Shuhui; Carter, Howard; McDermott, Michael D; Zezza, Nicholas; Stiffler, Scott
2013-12-12
The increased susceptibility for developing alcohol dependence seen in offspring from families with alcohol dependence may be related to structural and functional differences in brain circuits that influence emotional processing. Early childhood environment, genetic variation in the serotonin transporter-linked polymorphic region (5-HTTLPR) of the SLCA4 gene and allelic variation in the Brain Derived Neurotrophic Factor (BDNF) gene have each been reported to be related to volumetric differences in the temporal lobe especially the amygdala. Magnetic resonance imaging was used to obtain amygdala volumes for 129 adolescent/young adult individuals who were either High-Risk (HR) offspring from families with multiple cases of alcohol dependence (N=71) or Low-Risk (LR) controls (N=58). Childhood family environment was measured prospectively using age-appropriate versions of the Family Environment Scale during a longitudinal follow-up study. The subjects were genotyped for Brain-Derived Neurotrophic Factor (BDNF) Val66Met and the serotonin transporter polymorphism (5-HTTLPR). Two family environment scale scores (Cohesion and Conflict), genotypic variation, and their interaction were tested for their association with amygdala volumes. Personal and prenatal exposure to alcohol and drugs were considered in statistical analyses in order to more accurately determine the effects of familial risk group differences. Amygdala volume was reduced in offspring from families with multiple alcohol dependent members in comparison to offspring from control families. High-Risk offspring who were carriers of the S variant of the 5-HTTLPR polymorphism had reduced amygdala volume in comparison to those with an LL genotype. Larger amygdala volume was associated with greater family cohesion but only in Low-Risk control offspring. Familial risk for alcohol dependence is an important predictor of amygdala volume even when removing cases with significant personal exposure and covarying for prenatal exposure effects. The present study provides new evidence that amygdala volume is modified by 5-HTTLPR variation in High-Risk families.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bojechko, C.; Ford, E. C., E-mail: eford@uw.edu
Purpose: To quantify the ability of electronic portal imaging device (EPID) dosimetry used during treatment (in vivo) in detecting variations that can occur in the course of patient treatment. Methods: Images of transmitted radiation from in vivo EPID measurements were converted to a 2D planar dose at isocenter and compared to the treatment planning dose using a prototype software system. Using the treatment planning system (TPS), four different types of variability were modeled: overall dose scaling, shifting the positions of the multileaf collimator (MLC) leaves, shifting of the patient position, and changes in the patient body contour. The gamma passmore » rate was calculated for the modified and unmodified plans and used to construct a receiver operator characteristic (ROC) curve to assess the detectability of the different parameter variations. The detectability is given by the area under the ROC curve (AUC). The TPS was also used to calculate the impact of the variations on the target dose–volume histogram. Results: Nine intensity modulation radiation therapy plans were measured for four different anatomical sites consisting of 70 separate fields. Results show that in vivo EPID dosimetry was most sensitive to variations in the machine output, AUC = 0.70 − 0.94, changes in patient body habitus, AUC = 0.67 − 0.88, and systematic shifts in the MLC bank positions, AUC = 0.59 − 0.82. These deviations are expected to have a relatively small clinical impact [planning target volume (PTV) D{sub 99} change <7%]. Larger variations have even higher detectability. Displacements in the patient’s position and random variations in MLC leaf positions were not readily detectable, AUC < 0.64. The D{sub 99} of the PTV changed by up to 57% for the patient position shifts considered here. Conclusions: In vivo EPID dosimetry is able to detect relatively small variations in overall dose, systematic shifts of the MLC’s, and changes in the patient habitus. Shifts in the patient’s position which can introduce large changes in the target dose coverage were not readily detected.« less
Ion size effects upon ionic exclusion from dielectric interfaces and slit nanopores
NASA Astrophysics Data System (ADS)
Buyukdagli, Sahin; Achim, C. V.; Ala-Nissila, T.
2011-05-01
A previously developed field-theoretic model (Coalson et al 1995 J. Chem. Phys. 102 4584) that treats core collisions and Coulomb interactions on the same footing is investigated in order to understand ion size effects on the partition of neutral and charged particles at planar interfaces and the ionic selectivity of slit nanopores. We introduce a variational scheme that can go beyond the mean-field (MF) regime and couple in a consistent way pore-modified core interactions, steric effects, electrostatic solvation and image-charge forces, and surface charge induced electrostatic potential. Density profiles of neutral particles in contact with a neutral hard wall, obtained from Monte Carlo (MC) simulations are compared with the solutions of mean-field and variational equations. A recently proposed random-phase approximation (RPA) method is tested as well. We show that in the dilute limit, the MF and the variational theories agree well with simulation results, in contrast to the RPA method. The partition of charged Yukawa particles at a neutral dielectric interface (e.g. an air-water or protein-water interface) is investigated. It is shown that as a result of the competition between core collisions that push the ions toward the surface, and repulsive solvation and image forces that exclude them from the interface, a concentration peak of finite size ions sets in close to the dielectric interface. This effect is amplified with increasing ion size and bulk concentration. An integral expression for the surface tension that accounts for excluded volume effects is computed and the decrease of the surface tension with increasing ion size is illustrated. We also characterize the role played by the ion size in the ionic selectivity of neutral slit nanopores. We show that the complex interplay between electrostatic forces, excluded volume effects induced by core collisions and steric effects leads to an unexpected reversal in the ionic selectivity of the pore with varying pore size: while large pores exhibit a higher conductivity for large ions, narrow pores exclude large ions more efficiently than small ones.
NASA Technical Reports Server (NTRS)
Mann, Michael E.; Lall, Upmanu; Saltzman, Barry
1995-01-01
We demonstrate connections between decadal and secular global climatic variations, and historical variations in the volume of the Great Salt Lake. The decadal variations correspond to a low-frequency shifting of storm tracks which influence winter precipitation and explain nearly 18% of the interannual and longer-term variance in the record of monthly volume change. The secular trend accounts for a more modest approximately 1.5% of the variance.
NASA Astrophysics Data System (ADS)
Návar, José
2011-09-01
SummaryStemflow hydro-ecological importance was measured in trees and assessed in Mexico's northeast forest stands by answering three basic questions: (a) what are the intra and inter-specific stemflow variations; (b) is the stemflow coefficient constant from tree level to stand scales? and (c) what is the stemflow area and wetted soil volume in individual trees and the stemflow volume discharged at the stand scale in two plant communities of northeastern Mexico? Gross rainfall and stemflow flux measurements were conducted on 78 trees of semi-arid, sub-tropical (31 Diospyros texana; 14 Acacia rigidula; four Bumelia celastrina; five Condalia hookeri; three Cordia bioissieri; three Pithecellobium pallens) and temperate forest communities (six Pinus pseudostrobus Lindl. and 12 Quercus spp.). Stemflow was extrapolated from individual trees to the stand scale using 98 inventory plots (1600 m 2 ha -1 each) placed in oak-pine forests and 37 quadrats (5 m × 5 m each) distributed across the Tamaulipan thornscrub forest range. Stemflow infiltration flux and infiltration area measurements assessed the wetted soil volume. Daily measurements were conducted from May of 1997 to November of 1998. Results showed that stemflow coefficients varied between plant communities since they averaged (confidence intervals, α = 0.05) 2.49% (0.57), 0.30% (0.09), and 0.77% (0.27) of the bulk precipitation for Tamaulipan thornscrub, pine, and oak forests, respectively. Intra-specific stemflow variations could not be identified in Tamaulipan although in temperate tree species. Basal diameter explained intra-specific stemflow variation in both plant communities. Stemflow increased threefold since it accounted for by 6.38% and 2.19% of the total bulk rainfall for Tamaulipan thornscrub quadrats and temperate oak-pine inventory plots, respectively. Small shrubs growing underneath large trees, in combination with the presence of small-diameter trees that recorded the largest stemflow coefficients appear to explain the increase of the stemflow coefficient from trees to stands. Stemflow replenishes soil moisture on the average 4.5 (1.4) times larger than does incident rainfall in open soils and appear to contribute to aquifer recharge in temperate forests due to a combination of shallow soils, high infiltration fluxes and the stemflow volume generated during rainfalls with depths >15 mm. Tracing studies should be conducted to test the hypothesis of the stemflow contribution to aquifer recharge in temperate forests of northeastern Mexico.
Volume calculation of CT lung lesions based on Halton low-discrepancy sequences
NASA Astrophysics Data System (ADS)
Li, Shusheng; Wang, Liansheng; Li, Shuo
2017-03-01
Volume calculation from the Computed Tomography (CT) lung lesions data is a significant parameter for clinical diagnosis. The volume is widely used to assess the severity of the lung nodules and track its progression, however, the accuracy and efficiency of previous studies are not well achieved for clinical uses. It remains to be a challenging task due to its tight attachment to the lung wall, inhomogeneous background noises and large variations in sizes and shape. In this paper, we employ Halton low-discrepancy sequences to calculate the volume of the lung lesions. The proposed method directly compute the volume without the procedure of three-dimension (3D) model reconstruction and surface triangulation, which significantly improves the efficiency and reduces the complexity. The main steps of the proposed method are: (1) generate a certain number of random points in each slice using Halton low-discrepancy sequences and calculate the lesion area of each slice through the proportion; (2) obtain the volume by integrating the areas in the sagittal direction. In order to evaluate our proposed method, the experiments were conducted on the sufficient data sets with different size of lung lesions. With the uniform distribution of random points, our proposed method achieves more accurate results compared with other methods, which demonstrates the robustness and accuracy for the volume calculation of CT lung lesions. In addition, our proposed method is easy to follow and can be extensively applied to other applications, e.g., volume calculation of liver tumor, atrial wall aneurysm, etc.
The influence of tree morphology on stemflow generation in a tropical lowland rainforest
NASA Astrophysics Data System (ADS)
Uber, Magdalena; Levia, Delphis F.; Zimmermann, Beate; Zimmermann, Alexander
2014-05-01
Even though stemflow usually accounts for only a small proportion of rainfall, it is an important point source of water and ion input to forest floors and may, for instance, influence soil moisture patterns and groundwater recharge. Previous studies showed that the generation of stemflow depends on a multitude of meteorological and biological factors. Interestingly, despite the tremendous progress in stemflow research during the last decades it is still largely unknown which combination of tree characteristics determines stemflow volumes in species-rich tropical forests. This knowledge gap motivated us to analyse the influence of tree characteristics on stemflow volumes in a 1 hectare plot located in a Panamanian lowland rainforest. Our study comprised stemflow measurements in six randomly selected 10 m by 10 m subplots. In each subplot we measured stemflow of all trees with a diameter at breast height (DBH) > 5 cm on an event-basis for a period of six weeks. Additionally, we identified all tree species and determined a set of tree characteristics including DBH, crown diameter, bark roughness, bark furrowing, epiphyte coverage, tree architecture, stem inclination, and crown position. During the sampling period, we collected 985 L of stemflow (0.98 % of total rainfall). Based on regression analyses and comparisons among plant functional groups we show that palms were most efficient in yielding stemflow due to their large inclined fronds. Trees with large emergent crowns also produced relatively large amounts of stemflow. Due to their abundance, understory trees contribute much to stemflow yield not on individual but on the plot scale. Even though parameters such as crown diameter, branch inclination and position of the crown influence stemflow generation to some extent, these parameters explain less than 30 % of the variation in stemflow volumes. In contrast to published results from temperate forests, we did not detect a negative correlation between bark roughness and stemflow volume. This is because other parameters such as crown diameter obscured this relationship. Due to multicollinearity and poor correlations between single tree characteristics with stemflow volume, an assessment of stemflow volumes based on forest characteristics remains cumbersome in highly diverse ecosystems. Instead of relying on regression relationships, we therefore advocate a total sampling of trees in several plots to determine stand-scale stemflow yield in tropical forests.
1980-12-01
but low gluten ; therefore, it is adequrate as animai teed ’,ut makes a poor breadstuff. The ciief ron-teed rie o! barley is as malt, which is barley...For example, hogs and poultry must have large quantities of grain in their ( diets . On the other hand, the ruminant animals, such as cattle and sheep...relatively cheap grain prices, grain, rather than high roughage diets , will be fed to the rumi- nants. In addition to ration variation by species, grain fed to
The role of compressional viscoelasticity in the lubrication of rolling contacts.
NASA Technical Reports Server (NTRS)
Harrison, G.; Trachman, E. G.
1972-01-01
A simple model for the time-dependent volume response of a liquid to an applied pressure step is used to calculate the variation with rolling speed of the traction coefficient in a rolling contact system. Good agreement with experimental results is obtained at rolling speeds above 50 in/sec. At lower rolling speeds a very rapid change in the effective viscosity of the lubricant is predicted. This behavior, in conjunction with shear rate effects, is shown to lead to large errors when experimental data are extrapolated to zero rolling speed.
The Quality of the Head Start Planned Variation Data. Volume I.
ERIC Educational Resources Information Center
Walker, Debbie Klein; And Others
This publication, the first of two volumes, describes the cognitive, psychomotor, and socioemotional measures used in all years of the Head Start Planned Variation Evaluation. Part I discusses generally the issues involved in evaluating the quality of the data, and summarizes findings. Part II contains technical reports on 12 of the individual…
NASA Astrophysics Data System (ADS)
Bauer, A.; Horstwood, M. S.
2016-12-01
Crust-mantle evolution studies are greatly informed by zircon U-Pb and Lu-Hf isotopic datasets and the ease with which these data can now be acquired has seen their application become commonplace. In order to deconvolute geochemical change and interpret geologic variation in complexly zoned zircons, this information is most ideally obtained on the smallest volume of zircon by successive SIMS U-Pb and LA-MC-ICP-MS Lu-Hf isotopic analyses. However, due to variations in zircon growth zone geometry at depth, the Lu-Hf analysis may not relate to the lower volume U-Pb analysis, potentially causing inaccuracy of the resultant age-corrected Hf isotope signature. Laser ablation split-stream methods are applied to be certain that U-Pb and Lu-Hf data represent the same volume of zircon, however, the sampling volume remains relatively large at 40x30µm1. Coupled ID-TIMS U-Pb and solution MC-ICP-MS Lu-Hf work traditionally utilize whole-zircon dissolution ( 10-50ng Hf), which has the potential to homogenize different zones of geologic significance within an analysis. Conversely, modern ID-TIMS U-Pb methods utilize microsampling of zircon grains, often providing < 5ng Hf, thereby challenging conventional Lu-Hf acquisition protocols to achieve the required precision. In order to obtain usable precision on minimal zircon volumes, we developed laser ablation methods using successive 25um spot U-Pb and Lu-Hf ablation pits with a combined depth of 18um, and low-volume solution introduction methods without Hf-REE separation utilizing Hf amounts as low as 0.4ng, while retaining an uncertainty level of ca. 1 ɛHf for both methods. We investigated methods of Yb interference correction and the potential for matrix effects, with a particular focus on the accurate quantification of 176Lu/177Hf. These improvements reduce the minimum amount of material required for U-Pb and Hf isotopic analysis of zircon by about an order of magnitude. 1Ibanez-Mejia et al (2015). PreRes, 267, 285-310.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, X; Kong, L; Wang, J
2015-06-15
Purpose: To quantify the target volume and organ at risk of nasopharyngeal carcinoma (NPC) patients with preradiation chemotherapy based on CT scanned during intensity-modulated radiotherapy (IMRT), and recalculate the dose distribution. Methods: Seven patients with NPC and preradiation chemotherapy, treated with IMRT (35 to 37 fractions) were reviewed. Repeat CT scanning was required to all of the patients during the radiotherapy, and the number of repeat CTs varies from 2 to 6. The plan CT and repeat CT were generated by different CT scanner. To ensure crespectively on the same IMPT plan. The real dose distribution was calculated by deformablemore » registration and weighted method in Raystation (v 4.5.1). The fraction of each dose is based on radiotherapy record. The volumetric and dose differences among these images were calculated for nascIpharyngeal tumor and retro-pharyngeal lymph nodes (GTV-NX), neck lymph nodes(GTV-ND), and parotid glands. Results: The volume variation in GTV-NX from CT1 to CT2 was 1.15±3.79%, and in GTV-LN −0.23±4.93%. The volume variation in left parotid from CT1 to CT2 was −6.79±11.91%, and in right parotid −3.92±8.80%. In patient 2, the left parotid volume were decreased remarkably, as a Result, the V30 and V40 of it were increased as well. Conclusion: The target volume of patients with NPC varied lightly during IMRT. It shows that preradiation chemotherapy can control the target volume variation and perform a good dose repeatability. Also, the decreasing volume of parotid in some patient might increase the dose of it, which might course potential complications.« less
The morphological interaction between the nasal cavity and maxillary sinuses in living humans.
Holton, Nathan; Yokley, Todd; Butaric, Lauren
2013-03-01
To understand how variation in nasal architecture accommodates the need for effective conditioning of respired air, it is necessary to assess the morphological interaction between the nasal cavity and other aspects of the nasofacial skeleton. Previous studies indicate that the maxillary sinuses may play a key role in accommodating climatically induced nasal variation such that a decrease in nasal cavity volume is associated with a concomitant increase in maxillary sinus volume. However, due to conflicting results in previous studies, the precise interaction of the nasal cavity and maxillary sinuses, in humans, is unclear. This is likely due to the prior emphasis on nasal cavity size, whereas arguably, nasal cavity shape is more important with regard to the interaction with the maxillary sinuses. Using computed tomography scans of living human subjects (N=40), the goal of this study is to assess the interaction between nasal cavity form and maxillary sinus volume in European- and African-derived individuals with differences in nasal cavity morphology. First, we assessed whether there is an inverse relationship between nasal cavity and maxillary sinus volumes. Next, we examined the relationship between maxillary sinus volume and nasal cavity shape using multivariate regression. Our results show that there is a positive relationship between nasal cavity and maxillary sinus volume, indicating that the maxillary sinuses do not accommodate variation in nasal cavity size. However, maxillary sinus volume is significantly correlated with variation in relative internal nasal breadth. Thus, the maxillary sinuses appear to be important for accommodating nasal cavity shape rather than size. Copyright © 2013 Wiley Periodicals, Inc.
Big Cat Coalitions: A Comparative Analysis of Regional Brain Volumes in Felidae.
Sakai, Sharleen T; Arsznov, Bradley M; Hristova, Ani E; Yoon, Elise J; Lundrigan, Barbara L
2016-01-01
Broad-based species comparisons across mammalian orders suggest a number of factors that might influence the evolution of large brains. However, the relationship between these factors and total and regional brain size remains unclear. This study investigated the relationship between relative brain size and regional brain volumes and sociality in 13 felid species in hopes of revealing relationships that are not detected in more inclusive comparative studies. In addition, a more detailed analysis was conducted of four focal species: lions ( Panthera leo ), leopards ( Panthera pardus ), cougars ( Puma concolor ), and cheetahs ( Acinonyx jubatus ). These species differ markedly in sociality and behavioral flexibility, factors hypothesized to contribute to increased relative brain size and/or frontal cortex size. Lions are the only truly social species, living in prides. Although cheetahs are largely solitary, males often form small groups. Both leopards and cougars are solitary. Of the four species, leopards exhibit the most behavioral flexibility, readily adapting to changing circumstances. Regional brain volumes were analyzed using computed tomography. Skulls ( n = 75) were scanned to create three-dimensional virtual endocasts, and regional brain volumes were measured using either sulcal or bony landmarks obtained from the endocasts or skulls. Phylogenetic least squares regression analyses found that sociality does not correspond with larger relative brain size in these species. However, the sociality/solitary variable significantly predicted anterior cerebrum (AC) volume, a region that includes frontal cortex. This latter finding is despite the fact that the two social species in our sample, lions and cheetahs, possess the largest and smallest relative AC volumes, respectively. Additionally, an ANOVA comparing regional brain volumes in four focal species revealed that lions and leopards, while not significantly different from one another, have relatively larger AC volumes than are found in cheetahs or cougars. Further, female lions possess a significantly larger AC volume than conspecific males; female lion values were also larger than those of the other three species (regardless of sex). These results may reflect greater complexity in a female lion's social world, but additional studies are necessary. These data suggest that within family comparisons may reveal variations not easily detected by broad comparative analyses.
Diurnal fluctuations in brain volume: Statistical analyses of MRI from large populations.
Nakamura, Kunio; Brown, Robert A; Narayanan, Sridar; Collins, D Louis; Arnold, Douglas L
2015-09-01
We investigated fluctuations in brain volume throughout the day using statistical modeling of magnetic resonance imaging (MRI) from large populations. We applied fully automated image analysis software to measure the brain parenchymal fraction (BPF), defined as the ratio of the brain parenchymal volume and intracranial volume, thus accounting for variations in head size. The MRI data came from serial scans of multiple sclerosis (MS) patients in clinical trials (n=755, 3269 scans) and from subjects participating in the Alzheimer's Disease Neuroimaging Initiative (ADNI, n=834, 6114 scans). The percent change in BPF was modeled with a linear mixed effect (LME) model, and the model was applied separately to the MS and ADNI datasets. The LME model for the MS datasets included random subject effects (intercept and slope over time) and fixed effects for the time-of-day, time from the baseline scan, and trial, which accounted for trial-related effects (for example, different inclusion criteria and imaging protocol). The model for ADNI additionally included the demographics (baseline age, sex, subject type [normal, mild cognitive impairment, or Alzheimer's disease], and interaction between subject type and time from baseline). There was a statistically significant effect of time-of-day on the BPF change in MS clinical trial datasets (-0.180 per day, that is, 0.180% of intracranial volume, p=0.019) as well as the ADNI dataset (-0.438 per day, that is, 0.438% of intracranial volume, p<0.0001), showing that the brain volume is greater in the morning. Linearly correcting the BPF values with the time-of-day reduced the required sample size to detect a 25% treatment effect (80% power and 0.05 significance level) on change in brain volume from 2 time-points over a period of 1year by 2.6%. Our results have significant implications for future brain volumetric studies, suggesting that there is a potential acquisition time bias that should be randomized or statistically controlled to account for the day-to-day brain volume fluctuations. Copyright © 2015 Elsevier Inc. All rights reserved.
Big Cat Coalitions: A Comparative Analysis of Regional Brain Volumes in Felidae
Sakai, Sharleen T.; Arsznov, Bradley M.; Hristova, Ani E.; Yoon, Elise J.; Lundrigan, Barbara L.
2016-01-01
Broad-based species comparisons across mammalian orders suggest a number of factors that might influence the evolution of large brains. However, the relationship between these factors and total and regional brain size remains unclear. This study investigated the relationship between relative brain size and regional brain volumes and sociality in 13 felid species in hopes of revealing relationships that are not detected in more inclusive comparative studies. In addition, a more detailed analysis was conducted of four focal species: lions (Panthera leo), leopards (Panthera pardus), cougars (Puma concolor), and cheetahs (Acinonyx jubatus). These species differ markedly in sociality and behavioral flexibility, factors hypothesized to contribute to increased relative brain size and/or frontal cortex size. Lions are the only truly social species, living in prides. Although cheetahs are largely solitary, males often form small groups. Both leopards and cougars are solitary. Of the four species, leopards exhibit the most behavioral flexibility, readily adapting to changing circumstances. Regional brain volumes were analyzed using computed tomography. Skulls (n = 75) were scanned to create three-dimensional virtual endocasts, and regional brain volumes were measured using either sulcal or bony landmarks obtained from the endocasts or skulls. Phylogenetic least squares regression analyses found that sociality does not correspond with larger relative brain size in these species. However, the sociality/solitary variable significantly predicted anterior cerebrum (AC) volume, a region that includes frontal cortex. This latter finding is despite the fact that the two social species in our sample, lions and cheetahs, possess the largest and smallest relative AC volumes, respectively. Additionally, an ANOVA comparing regional brain volumes in four focal species revealed that lions and leopards, while not significantly different from one another, have relatively larger AC volumes than are found in cheetahs or cougars. Further, female lions possess a significantly larger AC volume than conspecific males; female lion values were also larger than those of the other three species (regardless of sex). These results may reflect greater complexity in a female lion’s social world, but additional studies are necessary. These data suggest that within family comparisons may reveal variations not easily detected by broad comparative analyses. PMID:27812324
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khoo, Eric L.H., E-mail: eric.khoo@roq.net.au; Schick, Karlissa; Plank, Ashley W.
Purpose: To assess whether an education program on CT and MRI prostate anatomy would reduce inter- and intraobserver prostate contouring variation among experienced radiation oncologists. Methods and Materials: Three patient CT and MRI datasets were selected. Five radiation oncologists contoured the prostate for each patient on CT first, then MRI, and again between 2 and 4 weeks later. Three education sessions were then conducted. The same contouring process was then repeated with the same datasets and oncologists. The observer variation was assessed according to changes in the ratio of the encompassing volume to intersecting volume (volume ratio [VR]), across setsmore » of target volumes. Results: For interobserver variation, there was a 15% reduction in mean VR with CT, from 2.74 to 2.33, and a 40% reduction in mean VR with MRI, from 2.38 to 1.41 after education. A similar trend was found for intraobserver variation, with a mean VR reduction for CT and MRI of 9% (from 1.51 to 1.38) and 16% (from 1.37 to 1.15), respectively. Conclusion: A well-structured education program has reduced both inter- and intraobserver prostate contouring variations. The impact was greater on MRI than on CT. With the ongoing incorporation of new technologies into routine practice, education programs for target contouring should be incorporated as part of the continuing medical education of radiation oncologists.« less
Little, Keriann; Olsson, Craig A; Youssef, George J; Whittle, Sarah; Simmons, Julian G; Yücel, Murat; Sheeber, Lisa B; Foley, Debra L; Allen, Nicholas B
2015-11-01
A single imaging gene-environment (IGxE) framework that is able to simultaneously model genetic, neurobiological, and environmental influences on psychopathology outcomes is needed to improve understanding of how complex interrelationships between allelic variation, differences in neuroanatomy or neuroactivity, and environmental experience affect risk for psychiatric disorder. In a longitudinal study of adolescent development we demonstrate the utility of such an IGxE framework by testing whether variation in parental behavior at age 12 altered the strength of an imaging genetics pathway, involving an indirect association between allelic variation in the serotonin transporter gene to variation in hippocampal volume and consequent onset of major depressive disorder by age 18. Results were consistent with the presence of an indirect effect of the serotonin transporter S-allele on depression onset via smaller left and right hippocampal volumes that was significant only in family environments involving either higher levels of parental aggression or lower levels of positive parenting. The previously reported finding of S-allele carriers' increased risk of depression in adverse environments may, therefore, be partly because of the effects of these environments on a neurobiological pathway from the serotonin transporter gene to depression onset that proceeds through variation in hippocampal volume. (c) 2015 APA, all rights reserved).
Nemoto, Kiyotaka; Takahashi, Tsutomu; Aleksic, Branko; Furuichi, Atsushi; Nakamura, Yumiko; Ikeda, Masashi; Noguchi, Kyo; Kaibuchi, Kozo; Iwata, Nakao; Ozaki, Norio; Suzuki, Michio
2014-01-01
Background YWHAE is a possible susceptibility gene for schizophrenia that encodes 14-3-3epsilon, a Disrupted-in-Schizophrenia 1 (DISC1)-interacting molecule, but the effect of variation in its genotype on brain morphology remains largely unknown. Methods In this voxel-based morphometric magnetic resonance imaging study, we conducted whole-brain analyses regarding the effects of YWHAE single-nucleotide polymorphisms (SNPs) (rs28365859, rs11655548, and rs9393) and DISC1 SNP (rs821616) on gray matter volume in a Japanese sample of 72 schizophrenia patients and 86 healthy controls. On the basis of a previous animal study, we also examined the effect of rs28365859 genotype specifically on hippocampal volume. Results Whole-brain analyses showed no significant genotype effect of these SNPs on gray matter volume in all subjects, but we found significant genotype-by-diagnosis interaction for rs28365859 in the left insula and right putamen. The protective C allele carriers of rs28365859 had a significantly larger left insula than the G homozygotes only for schizophrenia patients, while the controls with G allele homozygosity had a significantly larger right putamen than the C allele carriers. The C allele carriers had a larger right hippocampus than the G allele homozygotes in schizophrenia patients, but not in healthy controls. No significant interaction was found between rs28365859 and DISC1 SNP on gray matter volume. Conclusions These different effects of the YWHAE (rs28365859) genotype on brain morphology in schizophrenia and healthy controls suggest that variation in its genotype might be, at least partly, related to the abnormal neurodevelopment, including in the limbic regions, reported in schizophrenia. Our results also suggest its specific role among YWHAE SNPs in the pathophysiology of schizophrenia. PMID:25105667
Ko, Young Hwii; Song, Phil Hyun
2016-05-01
Because it is well known that the prostate volume is not directly associated with the degrees of lower urinary tract symptom (LUTS), we hypothesized that change of the prostatic urethra led by prostatic enlargement as missing links between them. To provide an integral description, we determined the ratio between prostate volume and prostatic urethral length (RPVL), and investigated its clinical implication. Prostate volume, prostatic urethral length, RPVL was measured from transrectal ultrasonography for 213 consecutive patients. The degree of LUTS was investigated using the international prostate symptom score (IPSS) and uroflowmetry, then the correlations were analyzed. While no variables were significantly linked with total IPSS, obstructive symptoms (IPSS Q247) showed a negative association (r = -0.3, P < 0.001) and irritative symptoms (IPSS Q1356) showed a positive association solely with RPVL (r = 0.186, P = 0.007). These relevancies were enhanced (r = -0.471 [P = <0.001] and 0.3 [P = 0.004], respectively) in patients with a larger prostate (over 30 g, n = 93), but disappeared in their smaller counterparts (below 30 g, n = 120), (r = -0.133 [P = 0.143] and 0.75 [P = 0.410], respectively). In uroflowmetry, prostate urethral length showed positive correlation (r = 0.319 [P < 0.001]), and RPVL showed negative correlation (r = -0.195 [P = 0.004]) with post voiding residual amount, but these relationships similarly vanished in men with a smaller prostate. The structural variation of the prostatic urethra within the prostate reflected by RPVL showed correlation with the degree of LUTS, with a tendency toward increasing prostatic urethra in obstructive and decreasing prostatic urethra in irritative symptoms, in men with a relatively large prostate. © 2014 Wiley Publishing Asia Pty Ltd.
Mandibular molar root morphology in Neanderthals and Late Pleistocene and recent Homo sapiens.
Kupczik, Kornelius; Hublin, Jean-Jacques
2010-11-01
Neanderthals have a distinctive suite of dental features, including large anterior crown and root dimensions and molars with enlarged pulp cavities. Yet, there is little known about variation in molar root morphology in Neanderthals and other recent and fossil members of Homo. Here, we provide the first comprehensive metric analysis of permanent mandibular molar root morphology in Middle and Late Pleistocene Homo neanderthalensis, and Late Pleistocene (Aterian) and recent Homo sapiens. We specifically address the question of whether root form can be used to distinguish between these groups and assess whether any variation in root form can be related to differences in tooth function. We apply a microtomographic imaging approach to visualise and quantify the external and internal dental morphologies of both isolated molars and molars embedded in the mandible (n=127). Univariate and multivariate analyses reveal both similarities (root length and pulp volume) and differences (occurrence of pyramidal roots and dental tissue volume proportion) in molar root morphology among penecontemporaneous Neanderthals and Aterian H. sapiens. In contrast, the molars of recent H. sapiens are markedly smaller than both Pleistocene H. sapiens and Neanderthals, but share with the former the dentine volume reduction and a smaller root-to-crown volume compared with Neanderthals. Furthermore, we found the first molar to have the largest average root surface area in recent H. sapiens and Neanderthals, although in the latter the difference between M(1) and M(2) is small. In contrast, Aterian H. sapiens root surface areas peak at M(2). Since root surface area is linked to masticatory function, this suggests a distinct occlusal loading regime in Neanderthals compared with both recent and Pleistocene H. sapiens. Copyright © 2010 Elsevier Ltd. All rights reserved.
Deeley, M A; Chen, A; Datteri, R; Noble, J; Cmelak, A; Donnelly, E; Malcolm, A; Moretti, L; Jaboin, J; Niermann, K; Yang, Eddy S; Yu, David S; Yei, F; Koyama, T; Ding, G X; Dawant, B M
2011-01-01
The purpose of this work was to characterize expert variation in segmentation of intracranial structures pertinent to radiation therapy, and to assess a registration-driven atlas-based segmentation algorithm in that context. Eight experts were recruited to segment the brainstem, optic chiasm, optic nerves, and eyes, of 20 patients who underwent therapy for large space-occupying tumors. Performance variability was assessed through three geometric measures: volume, Dice similarity coefficient, and Euclidean distance. In addition, two simulated ground truth segmentations were calculated via the simultaneous truth and performance level estimation (STAPLE) algorithm and a novel application of probability maps. The experts and automatic system were found to generate structures of similar volume, though the experts exhibited higher variation with respect to tubular structures. No difference was found between the mean Dice coefficient (DSC) of the automatic and expert delineations as a group at a 5% significance level over all cases and organs. The larger structures of the brainstem and eyes exhibited mean DSC of approximately 0.8–0.9, whereas the tubular chiasm and nerves were lower, approximately 0.4–0.5. Similarly low DSC have been reported previously without the context of several experts and patient volumes. This study, however, provides evidence that experts are similarly challenged. The average maximum distances (maximum inside, maximum outside) from a simulated ground truth ranged from (−4.3, +5.4) mm for the automatic system to (−3.9, +7.5) mm for the experts considered as a group. Over all the structures in a rank of true positive rates at a 2 mm threshold from the simulated ground truth, the automatic system ranked second of the nine raters. This work underscores the need for large scale studies utilizing statistically robust numbers of patients and experts in evaluating quality of automatic algorithms. PMID:21725140
NASA Astrophysics Data System (ADS)
Deeley, M. A.; Chen, A.; Datteri, R.; Noble, J. H.; Cmelak, A. J.; Donnelly, E. F.; Malcolm, A. W.; Moretti, L.; Jaboin, J.; Niermann, K.; Yang, Eddy S.; Yu, David S.; Yei, F.; Koyama, T.; Ding, G. X.; Dawant, B. M.
2011-07-01
The purpose of this work was to characterize expert variation in segmentation of intracranial structures pertinent to radiation therapy, and to assess a registration-driven atlas-based segmentation algorithm in that context. Eight experts were recruited to segment the brainstem, optic chiasm, optic nerves, and eyes, of 20 patients who underwent therapy for large space-occupying tumors. Performance variability was assessed through three geometric measures: volume, Dice similarity coefficient, and Euclidean distance. In addition, two simulated ground truth segmentations were calculated via the simultaneous truth and performance level estimation algorithm and a novel application of probability maps. The experts and automatic system were found to generate structures of similar volume, though the experts exhibited higher variation with respect to tubular structures. No difference was found between the mean Dice similarity coefficient (DSC) of the automatic and expert delineations as a group at a 5% significance level over all cases and organs. The larger structures of the brainstem and eyes exhibited mean DSC of approximately 0.8-0.9, whereas the tubular chiasm and nerves were lower, approximately 0.4-0.5. Similarly low DSCs have been reported previously without the context of several experts and patient volumes. This study, however, provides evidence that experts are similarly challenged. The average maximum distances (maximum inside, maximum outside) from a simulated ground truth ranged from (-4.3, +5.4) mm for the automatic system to (-3.9, +7.5) mm for the experts considered as a group. Over all the structures in a rank of true positive rates at a 2 mm threshold from the simulated ground truth, the automatic system ranked second of the nine raters. This work underscores the need for large scale studies utilizing statistically robust numbers of patients and experts in evaluating quality of automatic algorithms.
Lefevre, Sjannie; McKenzie, David J; Nilsson, Göran E
2017-09-01
Some recent modelling papers projecting smaller fish sizes and catches in a warmer future are based on erroneous assumptions regarding (i) the scaling of gills with body mass and (ii) the energetic cost of 'maintenance'. Assumption (i) posits that insurmountable geometric constraints prevent respiratory surface areas from growing as fast as body volume. It is argued that these constraints explain allometric scaling of energy metabolism, whereby larger fishes have relatively lower mass-specific metabolic rates. Assumption (ii) concludes that when fishes reach a certain size, basal oxygen demands will not be met, because of assumption (i). We here demonstrate unequivocally, by applying accepted physiological principles with reference to the existing literature, that these assumptions are not valid. Gills are folded surfaces, where the scaling of surface area to volume is not constrained by spherical geometry. The gill surface area can, in fact, increase linearly in proportion to gill volume and body mass. We cite the large body of evidence demonstrating that respiratory surface areas in fishes reflect metabolic needs, not vice versa, which explains the large interspecific variation in scaling of gill surface areas. Finally, we point out that future studies basing their predictions on models should incorporate factors for scaling of metabolic rate and for temperature effects on metabolism, which agree with measured values, and should account for interspecific variation in scaling and temperature effects. It is possible that some fishes will become smaller in the future, but to make reliable predictions the underlying mechanisms need to be identified and sought elsewhere than in geometric constraints on gill surface area. Furthermore, to ensure that useful information is conveyed to the public and policymakers about the possible effects of climate change, it is necessary to improve communication and congruity between fish physiologists and fisheries scientists. © 2017 John Wiley & Sons Ltd.
Snow cover, snowmelt and runoff in the Himalayan River basins
NASA Technical Reports Server (NTRS)
Dey, B.; Sharma, V. K.; Goswami, D. C.; Rao, P. Subba
1988-01-01
Not withstanding the seasonal vagaries of both rainfall amount and snowcover extent, the Himalayan rivers retain their basic perennial character. However, it is the component of snowmelt yield that accounts for some 60 to 70 percent of the total annual flow volumes from Hamilayan watersheds. On this large hydropotential predominantly depends the temporal performance of hydropower generation and major irrigation projects. The large scale effects of Himalayan snowcover on the hydrologic responses of a few selected catchments in western Himalayas was studied. The antecedent effects of snowcover area on long and short term meltwater yields can best be analyzed by developing appropriate hydrologic models forecasting the pattern of snowmelt as a function of variations in snowcover area. It is hoped that these models would be of practical value in the management of water resources. The predictability of meltwater for the entire snowmelt season was studied, as was the concurrent flow variation in adjacent watersheds, and their hydrologic significance. And the applicability of the Snowmelt-Runoff Model for real time forecast of daily discharges during the major part of the snowmelt season is examined.
Reus, L. M.; Shen, X.; Gibson, J.; Wigmore, E.; Ligthart, L.; Adams, M. J.; Davies, G.; Cox, S. R.; Hagenaars, S. P.; Bastin, M. E.; Deary, I. J.; Whalley, H. C.; McIntosh, A. M.
2017-01-01
Major depressive disorder (MDD), schizophrenia (SCZ) and bipolar disorder (BP) are common, disabling and heritable psychiatric diseases with a complex overlapping polygenic architecture. Individuals with these disorders, as well as their unaffected relatives, show widespread structural differences in corticostriatal and limbic networks. Structural variation in many of these brain regions is also heritable and polygenic but whether their genetic architecture overlaps with that of major psychiatric disorders is unknown. We sought to address this issue by examining the impact of polygenic risk of MDD, SCZ, and BP on subcortical brain volumes and white matter (WM) microstructure in a large single sample of neuroimaging data; the UK Biobank Imaging study. The first release of UK Biobank imaging data comprised participants with overlapping genetic data and subcortical volumes (N = 978) and WM measures (N = 816). The calculation of polygenic risk scores was based on genome-wide association study results generated by the Psychiatric Genomics Consortium. Our findings indicated no statistically significant associations between either subcortical volumes or WM microstructure, and polygenic risk for MDD, SCZ or BP. These findings suggest that subcortical brain volumes and WM microstructure may not be closely linked to the genetic mechanisms of major psychiatric disorders. PMID:28186152
Reus, L M; Shen, X; Gibson, J; Wigmore, E; Ligthart, L; Adams, M J; Davies, G; Cox, S R; Hagenaars, S P; Bastin, M E; Deary, I J; Whalley, H C; McIntosh, A M
2017-02-10
Major depressive disorder (MDD), schizophrenia (SCZ) and bipolar disorder (BP) are common, disabling and heritable psychiatric diseases with a complex overlapping polygenic architecture. Individuals with these disorders, as well as their unaffected relatives, show widespread structural differences in corticostriatal and limbic networks. Structural variation in many of these brain regions is also heritable and polygenic but whether their genetic architecture overlaps with that of major psychiatric disorders is unknown. We sought to address this issue by examining the impact of polygenic risk of MDD, SCZ, and BP on subcortical brain volumes and white matter (WM) microstructure in a large single sample of neuroimaging data; the UK Biobank Imaging study. The first release of UK Biobank imaging data comprised participants with overlapping genetic data and subcortical volumes (N = 978) and WM measures (N = 816). The calculation of polygenic risk scores was based on genome-wide association study results generated by the Psychiatric Genomics Consortium. Our findings indicated no statistically significant associations between either subcortical volumes or WM microstructure, and polygenic risk for MDD, SCZ or BP. These findings suggest that subcortical brain volumes and WM microstructure may not be closely linked to the genetic mechanisms of major psychiatric disorders.
Volume adjustment of lung density by computed tomography scans in patients with emphysema.
Shaker, S B; Dirksen, A; Laursen, L C; Skovgaard, L T; Holstein-Rathlou, N H
2004-07-01
To determine how to adjust lung density measurements for the volume of the lung calculated from computed tomography (CT) scans in patients with emphysema. Fifty patients with emphysema underwent 3 CT scans at 2-week intervals. The scans were analyzed with a software package that detected the lung in contiguous images and subsequently generated a histogram of the pixel attenuation values. The total lung volume (TLV), lung weight, percentile density (PD), and relative area of emphysema (RA) were calculated from this histogram. RA and PD are commonly applied measures of pulmonary emphysema derived from CT scans. These parameters are markedly influenced by changes in the level of inspiration. The variability of lung density due to within-subject variation in TLV was explored by plotting TLV against PD and RA. The coefficients for volume adjustment for PD were relatively stable over a wide range from the 10th to the 80th percentile, whereas for RA the coefficients showed large variability especially in the lower range, which is the most relevant for quantitation of pulmonary emphysema. Volume adjustment is mandatory in repeated CT densitometry and is more robust for PD than for RA. Therefore, PD seems more suitable for monitoring the progression of emphysema.
Sakai, Hiroyuki; Takahara, Miwa; Honjo, Naomi F; Doi, Shun'ichi; Sadato, Norihiro; Uchiyama, Yuji
2012-01-01
Although low executive functioning is a risk factor for vehicle crashes among elderly drivers, the neural basis of individual differences in this cognitive ability remains largely unknown. Here we aimed to examine regional frontal gray matter volume associated with executive functioning in normal aging individuals, using voxel-based morphometry (VBM). To this end, 39 community-dwelling elderly volunteers who drove a car on a daily basis participated in structural magnetic resonance imaging, and completed two questionnaires concerning executive functioning and risky driving tendencies in daily living. Consequently, we found that participants with low executive function capacity were prone to risky driving. Furthermore, VBM analysis revealed that lower executive function capacity was associated with smaller gray matter volume in the supplementary motor area (SMA). Thus, the current data suggest that SMA volume is a reliable predictor of individual differences in executive function capacity as a risk factor for vehicle crashes among elderly persons. The implication of our results is that regional frontal gray matter volume might underlie the variation in driving tendencies among elderly drivers. Therefore, detailed driving behavior assessments might be able to detect early neurodegenerative changes in the frontal lobe in normal aging adults.
Kim, Elizabeth H; Preissner, Melissa; Carnibella, Richard P; Samarage, Chaminda R; Bennett, Ellen; Diniz, Marcio A; Fouras, Andreas; Zosky, Graeme R; Jones, Heather D
2017-09-01
Increased dead space is an important prognostic marker in early acute respiratory distress syndrome (ARDS) that correlates with mortality. The cause of increased dead space in ARDS has largely been attributed to increased alveolar dead space due to ventilation/perfusion mismatching and shunt. We sought to determine whether anatomic dead space also increases in response to mechanical ventilation. Mice received intratracheal lipopolysaccharide (LPS) or saline and mechanical ventilation (MV). Four-dimensional computed tomography (4DCT) scans were performed at onset of MV and after 5 h of MV. Detailed measurements of airway volumes and lung tidal volumes were performed using image analysis software. The forced oscillation technique was used to obtain measures of airway resistance, tissue damping, and tissue elastance. The ratio of airway volumes to total tidal volume increased significantly in response to 5 h of mechanical ventilation, regardless of LPS exposure, and airways demonstrated significant variation in volumes over the respiratory cycle. These findings were associated with an increase in tissue elastance (decreased lung compliance) but without changes in tidal volumes. Airway volumes increased over time with exposure to mechanical ventilation without a concomitant increase in tidal volumes. These findings suggest that anatomic dead space fraction increases progressively with exposure to positive pressure ventilation and may represent a pathological process. NEW & NOTEWORTHY We demonstrate that anatomic dead space ventilation increases significantly over time in mice in response to mechanical ventilation. The novel functional lung-imaging techniques applied here yield sensitive measures of airway volumes that may have wide applications. Copyright © 2017 the American Physiological Society.
Partial Molar Volumes of Aqua Ions from First Principles.
Wiktor, Julia; Bruneval, Fabien; Pasquarello, Alfredo
2017-08-08
Partial molar volumes of ions in water solution are calculated through pressures obtained from ab initio molecular dynamics simulations. The correct definition of pressure in charged systems subject to periodic boundary conditions requires access to the variation of the electrostatic potential upon a change of volume. We develop a scheme for calculating such a variation in liquid systems by setting up an interface between regions of different density. This also allows us to determine the absolute deformation potentials for the band edges of liquid water. With the properly defined pressures, we obtain partial molar volumes of a series of aqua ions in very good agreement with experimental values.
Thengumpallil, Sheeba; Germond, Jean-François; Bourhis, Jean; Bochud, François; Moeckli, Raphaël
2016-06-01
To investigate the impact of Toshiba phase- and amplitude-sorting algorithms on the margin strategies for free-breathing lung radiotherapy treatments in the presence of breathing variations. 4D CT of a sphere inside a dynamic thorax phantom was acquired. The 4D CT was reconstructed according to the phase- and amplitude-sorting algorithms. The phantom was moved by reproducing amplitude, frequency, and a mix of amplitude and frequency variations. Artefact analysis was performed for Mid-Ventilation and ITV-based strategies on the images reconstructed by phase- and amplitude-sorting algorithms. The target volume deviation was assessed by comparing the target volume acquired during irregular motion to the volume acquired during regular motion. The amplitude-sorting algorithm shows reduced artefacts for only amplitude variations while the phase-sorting algorithm for only frequency variations. For amplitude and frequency variations, both algorithms perform similarly. Most of the artefacts are blurring and incomplete structures. We found larger artefacts and volume differences for the Mid-Ventilation with respect to the ITV strategy, resulting in a higher relative difference of the surface distortion value which ranges between maximum 14.6% and minimum 4.1%. The amplitude- is superior to the phase-sorting algorithm in the reduction of motion artefacts for amplitude variations while phase-sorting for frequency variations. A proper choice of 4D CT sorting algorithm is important in order to reduce motion artefacts, especially if Mid-Ventilation strategy is used. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Masters, Michael; Bruner, Emiliano; Queer, Sarah; Traynor, Sarah; Senjem, Jess
2015-01-01
Recent research on the visual system has focused on investigating the relationship among eye (ocular), orbital, and visual cortical anatomy in humans. This issue is relevant in evolutionary and medical fields. In terms of evolution, only in modern humans and Neandertals are the orbits positioned beneath the frontal lobes, with consequent structural constraints. In terms of medicine, such constraints can be associated with minor deformation of the eye, vision defects, and patterns of integration among these features, and in association with the frontal lobes, are important to consider in reconstructive surgery. Further study is therefore necessary to establish how these variables are related, and to what extent ocular size is associated with orbital and cerebral cortical volumes. Relationships among these anatomical components were investigated using magnetic resonance images from a large sample of 83 individuals, which also included each subject’s body height, age, sex, and uncorrected visual acuity score. Occipital and frontal gyri volumes were calculated using two different cortical parcellation tools in order to provide a better understanding of how the eye and orbit vary in relation to visual cortical gyri, and frontal cortical gyri which are not directly related to visual processing. Results indicated that ocular and orbital volumes were weakly correlated, and that eye volume explains only a small proportion of the variance in orbital volume. Ocular and orbital volumes were also found to be equally and, in most cases, more highly correlated with five frontal lobe gyri than with occipital lobe gyri associated with V1, V2, and V3 of the visual cortex. Additionally, after accounting for age and sex variation, the relationship between ocular and total visual cortical volume was no longer statistically significant, but remained significantly related to total frontal lobe volume. The relationship between orbital and visual cortical volumes remained significant for a number of occipital lobe gyri even after accounting for these cofactors, but was again found to be more highly correlated with the frontal cortex than with the occipital cortex. These results indicate that eye volume explains only a small amount of variation in orbital and visual cortical volume, and that the eye and orbit are generally more structurally associated with the frontal lobes than they are functionally associated with the visual cortex of the occipital lobes. Results also demonstrate that these components of the visual system are highly complex and influenced by a multitude of factors in humans. PMID:26250048
Ice sheets play important role in climate change
NASA Astrophysics Data System (ADS)
Clark, Peter U.; MacAyeal, Douglas R.; Andrews, John T.; Bartlein, Patrick J.
Ice sheets once were viewed as passive elements in the climate system enslaved to orbitally generated variations in solar radiation. Today, modeling results and new geologic records suggest that ice sheets actively participated in late-Pleistocene climate change, amplifying or driving significant variability at millennial as well as orbital timescales. Although large changes in global ice volume were ultimately caused by orbital variations (the Milankovitch hypothesis), once in existence, the former ice sheets behaved dynamically and strongly influenced regional and perhaps even global climate by altering atmospheric and oceanic circulation and temperature.Experiments with General Circulation Models (GCMs) yielded the first inklings of ice sheets' climatic significance. Manabe and Broccoli [1985], for example, found that the topographic and albedo effects of ice sheets alone explain much of the Northern Hemisphere cooling identified in paleoclimatic records of the last glacial maximum (˜21 ka).
NASA Astrophysics Data System (ADS)
Matsuno, T.; Liu, C. T.; Fukudome, K.; Chen, H. W.; Ichikawa, K.; Doong, D. J.; Senjyu, T.
2016-02-01
Circulation in the shelf region of the East China Sea is strongly controlled by the volume transport (VT) through the Taiwan Strait (TwS). It is well known that the VT through TwS has a significant seasonal variation, large in summer and small in winter. Based on a time series of the current field obtained by ADCP installed on a ferry boat crossing the TwS, from Keelung to Matsu Island in Taiwan, it had been investigated that the seasonal variations have a good correlation with the local wind around the TwS. The VT through the TwS had been compared with that through Tsushima Strait (TsS), and the results using the data from 2009 to 2012 were presented in the last OSM. In this study the monitoring data were extended further to 2014 and the difference of VTs between TwS and TsS was compared with wind fields and Ekman transport for not only seasonal variation but also shorter time scale variations. Ekman transport across the shelf break with time scales shorter than one month has a good correlation with the difference of VTs between TwS and TsS, that is, net transport across the shelf break of the East China Sea. The correlation is much better with VT through TwS rather than through TsS. Onshoreward net transport due to the Ekman transport may decrease the VT through TwS, which means that the VT through TwS is not only related to the local wind but also wind field over the East China Sea.
Diurnal variations of BrONO2 observed by MIPAS-B at midlatitudes and in the Arctic
NASA Astrophysics Data System (ADS)
Wetzel, Gerald; Oelhaf, Hermann; Höpfner, Michael; Friedl-Vallon, Felix; Ebersoldt, Andreas; Gulde, Thomas; Kazarski, Sebastian; Kirner, Oliver; Kleinert, Anne; Maucher, Guido; Nordmeyer, Hans; Orphal, Johannes; Ruhnke, Roland; Sinnhuber, Björn-Martin
2017-12-01
The first stratospheric measurements of the diurnal variation in the inorganic bromine (Bry) reservoir species BrONO2 around sunrise and sunset are reported. Arctic flights of the balloon-borne Michelson Interferometer for Passive Atmospheric Sounding (MIPAS-B) were carried out from Kiruna (68° N, Sweden) in January 2010 and March 2011 inside the stratospheric polar vortices where diurnal variations of BrONO2 around sunrise have been observed. High nighttime BrONO2 volume mixing ratios of up to 21 pptv (parts per trillion by volume) were detected in late winter 2011 in the absence of polar stratospheric clouds (PSCs). In contrast, the amount of measured BrONO2 was significantly lower in January 2010 due to low available NO2 amounts (for the build-up of BrONO2), the heterogeneous destruction of BrONO2 on PSC particles, and the gas-phase interaction of BrO (the source to form BrONO2) with ClO. A further balloon flight took place at midlatitudes from Timmins (49° N, Canada) in September 2014. Mean BrONO2 mixing ratios of 22 pptv were observed after sunset in the altitude region between 21 and 29 km. Measurements are compared and discussed with the results of a multi-year simulation performed with the chemistry climate model ECHAM5/MESSy Atmospheric Chemistry (EMAC). The calculated temporal variation in BrONO2 largely reproduces the balloon-borne observations. Using the nighttime simulated ratio between BrONO2 and Bry, the amount of Bry observed by MIPAS-B was estimated to be about 21-25 pptv in the lower stratosphere.
NASA Astrophysics Data System (ADS)
Danas, K.
2017-08-01
This work provides a rigorous analysis of the effective response, i.e., average magnetization and magnetostriction, of magnetoelastic composites that are subjected to overall magnetic and mechanical loads. It clarifies the differences between a coupled magnetomechanical analysis in which one applies a Eulerian (current) magnetic field and an electroactive one where the Lagrangian (reference) electric field is usually applied. For this, we propose an augmented vector potential variational formulation to carry out numerical periodic homogenization studies of magnetoelastic solids at finite strains and magnetic fields. We show that the developed variational principle can be used for bottom-up design of microstructures with desired magnetomechanical coupling by properly canceling out the macro-geometry and specimen shape effects. To achieve that, we properly treat the average Maxwell stresses arising from the medium surrounding the magnetoelastic representative volume element (RVE), while at the same time we impose a uniform average Eulerian and not Lagrangian magnetic field. The developed variational principle is then used to study a large number of ideal as well as more realistic two-dimensional microstructures. We study the effect of particle volume fraction, particle distribution and particle shape and orientation upon the effective magnetoelastic response at finite strains. We consider also unstructured isotropic microstructures based on random adsorption algorithms and we carry out a convergence study of the representativity of the proposed unit cells. Finally, three-phase two-dimensional auxetic microstructures are analyzed. The first consists of a periodic distribution of voids and particle chains in a polymer matrix, while the second takes advantage of particle shape and chirality to produce negative and positive swelling by proper change of the chirality and the applied magnetic field.
NASA Technical Reports Server (NTRS)
Loeb, N. G.; Varnai, Tamas; Winker, David M.
1998-01-01
Recent observational studies have shown that satellite retrievals of cloud optical depth based on plane-parallel model theory suffer from systematic biases that depend on viewing geometry, even when observations are restricted to overcast marine stratus layers, arguably the closest to plane parallel in nature. At moderate to low sun elevations, the plane-parallel model significantly overestimates the reflectance dependence on view angle in the forward-scattering direction but shows a similar dependence in the backscattering direction. Theoretical simulations are performed that show that the likely cause for this discrepancy is because the plane-parallel model assumption does not account for subpixel, scale variations in cloud-top height (i.e., "cloud bumps"). Monte Carlo simulation, comparing ID model radiances to radiances from overcast cloud field with 1) cloud-top height variation, but constant cloud volume extinction; 2) flat tops but horizontal variations in cloud volume extinction; and 3) variations in both cloud top height and cloud extinction are performed over a approximately equal to 4 km x 4 km domain (roughly the size of an individual GAC AVHRR pixel). The comparisons show that when cloud-top height variations are included, departures from 1D theory are remarkably similar (qualitatively) to those obtained observationally. In contrast, when clouds are assumed flat and only cloud extinction is variable, reflectance differences are much smaller and do not show any view-angle dependence. When both cloud-top height and cloud extinction variations are included, however, large increases in cloud extinction variability can enhance reflectance difference. The reason 3D-1D reflectance differences are more sensitive to cloud-top height variations in the forward-scattering direction (at moderate to low, sun elevations) is because photons leaving the cloud field in that direction experience fewer scattering events (low-order scattering) and are restricted to the topmost portions of the cloud. While reflectance deviations from 1D theory are much larger for bumpy clouds than for flat clouds with variable cloud extinction, differences in cloud albedo are comparable for these two cases.
Subsidence driving forces in large Delta Plain
NASA Astrophysics Data System (ADS)
Grall, C.; Steckler, M. S.
2017-12-01
Recent studies show large variability in subsidence rates among large delta plains that directly impact coastal management of these highly vulnerable environments. Observations show both significant spatial variation in subsidence across each delta, as well as large differences in magnitude between different deltas. This variability raises the question of what are the driving forces that control subsidence in large delta plains that this study aims to address. Subsidence and sediment compaction is studied in 4 end-member large Delta Plains: the Ganges-Brahmaputra, the Mekong, the Mississippi and the Nile. Those large delta plains drastically contrast in subsidence rates (from values to several mm/yr to several cm/yr), in the nature of the sediment (notably in clay and organic matter content), and in the volume of sediment supplied by the large rivers that feed those coastal environments. The volume of sediment deposited in each delta plain during the Holocene is estimated and the compaction of the underlying sedimentary column is computed by using a backstripping approach. Sediment compaction behaviors are defined accordingly to the observed clay, silt and organic contents, and the rate of subsidence associated with compaction is determined. Results suggest that about 2/3 of observed Holocene subsidence may be associated with the mechanical and chemical compaction of the underlying sedimentary column due to the load of sediment deposited. The compaction appears to be significantly higher in delta plains characterized by a high sediment input and a high organic matter and clay content. Thus, the observed subsidence rates in the (muddy) Mekong delta appear to be one order of magnitude higher than other delta plains. In contrast, subsidence rates are modest in the Ganges-Brahmaputra, the Mississippi and the Nile delta plains, except away from the major rivers where deposits are muddier.
LaDage, Lara D.; Roth, Timothy C.; Downs, Cynthia J.; Sinervo, Barry; Pravosudov, Vladimir V.
2017-01-01
Variation in an animal's spatial environment can induce variation in the hippocampus, an area of the brain involved in spatial cognitive processing. Specifically, increased spatial area use is correlated with increased hippocampal attributes, such as volume and neurogenesis. In the side-blotched lizard (Uta stansburiana), males demonstrate alternative reproductive tactics and are either territorial—defending large, clearly defined spatial boundaries—or non-territorial—traversing home ranges that are smaller than the territorial males' territories. Our previous work demonstrated cortical volume (reptilian hippocampal homolog) correlates with these spatial niches. We found that territorial holders have larger medial cortices than non-territory holders, yet these differences in the neural architecture demonstrated some degree of plasticity as well. Although we have demonstrated a link among territoriality, spatial use, and brain plasticity, the mechanisms that underlie this relationship are unclear. Previous studies found that higher testosterone levels can induce increased use of the spatial area and can cause an upregulation in hippocampal attributes. Thus, testosterone may be the mechanistic link between spatial area use and the brain. What remains unclear, however, is if testosterone can affect the cortices independent of spatial experiences and whether testosterone differentially interacts with territorial status to produce the resultant cortical phenotype. In this study, we compared neurogenesis as measured by the total number of doublecortin-positive cells and cortical volume between territorial and non-territorial males supplemented with testosterone. We found no significant differences in the number of doublecortin-positive cells or cortical volume among control territorial, control non-territorial, and testosterone-supplemented non-territorial males, while testosterone-supplemented territorial males had smaller medial cortices containing fewer doublecortin-positive cells. These results demonstrate that testosterone can modulate medial cortical attributes outside of differential spatial processing experiences but that territorial males appear to be more sensitive to alterations in testosterone levels compared with non-territorial males. PMID:28298883
DOE Office of Scientific and Technical Information (OSTI.GOV)
Horst, A van der; Houweling, A C; Bijveld, M M C
2015-06-15
Purpose: Pancreatic tumors show large interfractional position variations. In addition, changes in gastrointestinal air volume and body contour take place during treatment. We aim to investigate the robustness of the clinical treatment plans by quantifying the dosimetric effects of these anatomical changes. Methods: Calculations were performed for up to now 3 pancreatic cancer patients who had intratumoral fiducials for daily CBCT-based positioning during their 3-week treatment. For each patient, deformable image registration of the planning CT was used to assign Hounsfield Units to each of the 13—15 CBCTs; air volumes and body contour were copied from CBCT. The clinical treatmentmore » plan was used (CTV-PTV margin = 10 mm; 36Gy; 10MV; 1 arc VMAT). Fraction dose distributions were calculated and accumulated. The V95% of the clinical target volume (CTV) and planning target volume (PTV) were analyzed, as well as the dose to stomach, duodenum and liver. Dose accumulation was done for patient positioning based on the fiducials (as clinically used) as well as for positioning based on bony anatomy. Results: For all three patients, the V95% of the CTV remained 100%, for both fiducial- and bony anatomy-based positioning. For fiducial-based positioning, dose to duodenum en stomach showed no discernable differences with planned dose. For bony anatomy-based positioning, the PTV V95% of the patient with the largest systematic difference in tumor position (patient 1) decreased to 85%; the liver Dmax increased from 33.5Gy (planned) to 35.5Gy. Conclusion: When using intratumoral fiducials, CTV dose coverage was only mildly affected by the daily anatomical changes. When using bony anatomy for patient positioning, we found a decline in PTV dose coverage due to the interfractional tumor position variations. Photon irradiation treatment plans for pancreatic tumors are robust to variations in body contour and gastrointestinal gas, but the use of fiducial-based daily position verification is imperative. This work was supported by the foundation Bergh in het Zadel through the Dutch Cancer Society (KWF Kankerbestrijding) project No. UVA 2011-5271.« less
Mankiw, Catherine; Park, Min Tae M.; Reardon, P.K.; Fish, Ari M.; Clasen, Liv S.; Greenstein, Deanna; Blumenthal, Jonathan D.; Lerch, Jason P.; Chakravarty, M. Mallar
2017-01-01
The cerebellum is a large hindbrain structure that is increasingly recognized for its contribution to diverse domains of cognitive and affective processing in human health and disease. Although several of these domains are sex biased, our fundamental understanding of cerebellar sex differences—including their spatial distribution, potential biological determinants, and independence from brain volume variation—lags far behind that for the cerebrum. Here, we harness automated neuroimaging methods for cerebellar morphometrics in 417 individuals to (1) localize normative male–female differences in raw cerebellar volume, (2) compare these to sex chromosome effects estimated across five rare sex (X/Y) chromosome aneuploidy (SCA) syndromes, and (3) clarify brain size-independent effects of sex and SCA on cerebellar anatomy using a generalizable allometric approach that considers scaling relationships between regional cerebellar volume and brain volume in health. The integration of these approaches shows that (1) sex and SCA effects on raw cerebellar volume are large and distributed, but regionally heterogeneous, (2) human cerebellar volume scales with brain volume in a highly nonlinear and regionally heterogeneous fashion that departs from documented patterns of cerebellar scaling in phylogeny, and (3) cerebellar organization is modified in a brain size-independent manner by sex (relative expansion of total cerebellum, flocculus, and Crus II-lobule VIIIB volumes in males) and SCA (contraction of total cerebellar, lobule IV, and Crus I volumes with additional X- or Y-chromosomes; X-specific contraction of Crus II-lobule VIIIB). Our methods and results clarify the shifts in human cerebellar organization that accompany interwoven variations in sex, sex chromosome complement, and brain size. SIGNIFICANCE STATEMENT Cerebellar systems are implicated in diverse domains of sex-biased behavior and pathology, but we lack a basic understanding of how sex differences in the human cerebellum are distributed and determined. We leverage a rare neuroimaging dataset to deconvolve the interwoven effects of sex, sex chromosome complement, and brain size on human cerebellar organization. We reveal topographically variegated scaling relationships between regional cerebellar volume and brain size in humans, which (1) are distinct from those observed in phylogeny, (2) invalidate a traditional neuroimaging method for brain volume correction, and (3) allow more valid and accurate resolution of which cerebellar subcomponents are sensitive to sex and sex chromosome complement. These findings advance understanding of cerebellar organization in health and sex chromosome aneuploidy. PMID:28314818
Baker, Bruce W.; Augustine, David J.; Sedgwick, James A.; Lubow, Bruce C.
2013-01-01
Colonial, burrowing herbivores can be engineers of grassland and shrubland ecosystems worldwide. Spatial variation in landscapes suggests caution when extrapolating single-place studies of single species, but lack of data and the need to generalize often leads to ‘model system’ thinking and application of results beyond appropriate statistical inference. Generalizations about the engineering effects of prairie dogs (Cynomys sp.) developed largely from intensive study at a single complex of black-tailed prairie dogs C. ludovicianus in northern mixed prairie, but have been extrapolated to other ecoregions and prairie dog species in North America, and other colonial, burrowing herbivores. We tested the paradigm that prairie dogs decrease vegetation volume and the cover of grasses and tall shrubs, and increase bare ground and forb cover. We sampled vegetation on and off 279 colonies at 13 complexes of 3 prairie dog species widely distributed across 5 ecoregions in North America. The paradigm was generally supported at 7 black-tailed prairie dog complexes in northern mixed prairie, where vegetation volume, grass cover, and tall shrub cover were lower, and bare ground and forb cover were higher, on colonies than at paired off-colony sites. Outside the northern mixed prairie, all 3 prairie dog species consistently reduced vegetation volume, but their effects on cover of plant functional groups varied with prairie dog species and the grazing tolerance of dominant perennial grasses. White-tailed prairie dogs C. leucurus in sagebrush steppe did not reduce shrub cover, whereas black-tailed prairie dogs suppressed shrub cover at all complexes with tall shrubs in the surrounding habitat matrix. Black-tailed prairie dogs in shortgrass steppe and Gunnison's prairie dogs C. gunnisoni in Colorado Plateau grassland both had relatively minor effects on grass cover, which may reflect the dominance of grazing-tolerant shortgrasses at both complexes. Variation in modification of vegetation structure may be understood in terms of the responses of different dominant perennial grasses to intense defoliation and differences in foraging behavior among prairie dog species. Spatial variation in the engineering role of prairie dogs suggests spatial variation in their keystone role, and spatial variation in the roles of other ecosystem engineers. Thus, ecosystem engineering can have a spatial component not evident from single-place studies.
SU-G-BRB-12: Polarity Effects in Small Volume Ionization Chambers in Small Fields
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arora, V; Parsai, E; Mathew, D
2016-06-15
Purpose: Dosimetric quantities such as the polarity correction factor (Ppol) are important parameters for determining the absorbed dose and can influence the choice of dosimeter. Ppol has been shown to depend on beam energy, chamber design, and field size. This study is to investigate the field size and detector orientation dependence of Ppol in small fields for several commercially available micro-chambers. Methods: We evaluate the Exradin A26, Exradin A16, PTW 31014, PTW 31016, and two prototype IBA CC-01 micro-chambers in both horizontal and vertical orientations. Measurements were taken at 10cm depth and 100cm SSD in a Wellhofer BluePhantom2. Measurements weremore » made at square fields of 0.6, 0.8, 1.0, 1.2, 1.4, 2.0, 2.4, 3.0, and 5.0 cm on each side using 6MV with both ± 300VDC biases. PPol was evaluated as described in TG-51, reported using −300VDC bias for Mraw. Ratios of PPol measured in the clinical field to the reference field are presented. Results: A field size dependence of Ppol was observed for all chambers, with increased variations when mounted vertically. The maximum variation observed in PPol over all chambers mounted horizontally was <1%, and occurred at different field sizes for different chambers. Vertically mounted chambers demonstrated variations as large as 3.2%, always at the smallest field sizes. Conclusion: Large variations in Ppol were observed for vertically mounted chambers compared to horizontal mountings. Horizontal mountings demonstrated a complicated relationship between polarity variation and field size, probably relating to differing details in each chambers construction. Vertically mounted chambers consistently demonstrated the largest PPol variations for the smallest field sizes. Measurements obtained with a horizontal mounting appear to not need significant polarity corrections for relative measurements, while those obtained using a vertical mounting should be corrected for variations in PPol.« less
Tanentzap, Andrew J; Lee, William G
2017-01-01
Abiotic filters have been found either to increase or reduce evolutionary relatedness in plant communities, making it difficult to generalize responses of this major feature of biodiversity to future environmental change. Here, we hypothesized that the responses of phylogenetic structure to environmental change ultimately depend on how species have evolved traits for tolerating the resulting abiotic changes. Working within ephemeral wetlands, we tested whether species were increasingly related as flooding duration intensified. We also identified the mechanisms underlying increased relatedness by measuring root aerenchyma volume (RAV), a trait which promotes waterlogging tolerance. We found that species-specific responses to flooding explained most of the variation in occurrence for 63 vascular plant species across 5170 plots. For a subset of 22 species, we attributed these responses to variation in RAV. Large RAV specifically increased occurrence when flooding lasted for longer time periods, because large RAV reduced above-ground biomass loss. As large RAV was evolutionarily conserved within obligate wetland species, communities were more phylogenetically related as flooding increased. Our study shows how reconstructing the evolutionary history of traits that influence the responses of species to environmental change can help to predict future patterns in phylogenetic structure. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.
Influence of a large-scale field on energy dissipation in magnetohydrodynamic turbulence
NASA Astrophysics Data System (ADS)
Zhdankin, Vladimir; Boldyrev, Stanislav; Mason, Joanne
2017-07-01
In magnetohydrodynamic (MHD) turbulence, the large-scale magnetic field sets a preferred local direction for the small-scale dynamics, altering the statistics of turbulence from the isotropic case. This happens even in the absence of a total magnetic flux, since MHD turbulence forms randomly oriented large-scale domains of strong magnetic field. It is therefore customary to study small-scale magnetic plasma turbulence by assuming a strong background magnetic field relative to the turbulent fluctuations. This is done, for example, in reduced models of plasmas, such as reduced MHD, reduced-dimension kinetic models, gyrokinetics, etc., which make theoretical calculations easier and numerical computations cheaper. Recently, however, it has become clear that the turbulent energy dissipation is concentrated in the regions of strong magnetic field variations. A significant fraction of the energy dissipation may be localized in very small volumes corresponding to the boundaries between strongly magnetized domains. In these regions, the reduced models are not applicable. This has important implications for studies of particle heating and acceleration in magnetic plasma turbulence. The goal of this work is to systematically investigate the relationship between local magnetic field variations and magnetic energy dissipation, and to understand its implications for modelling energy dissipation in realistic turbulent plasmas.
The use of biomarkers to describe plasma-, red cell-, and blood volume from a simple blood test.
Lobigs, Louisa Margit; Sottas, Pierre-Edouard; Bourdon, Pitre Collier; Nikolovski, Zoran; El-Gingo, Mohamed; Varamenti, Evdokia; Peeling, Peter; Dawson, Brian; Schumacher, Yorck Olaf
2017-01-01
Plasma volume and red cell mass are key health markers used to monitor numerous disease states, such as heart failure, kidney disease, or sepsis. Nevertheless, there is currently no practically applicable method to easily measure absolute plasma or red cell volumes in a clinical setting. Here, a novel marker for plasma volume and red cell mass was developed through analysis of the observed variability caused by plasma volume shifts in common biochemical measures, selected based on their propensity to present with low variations over time. Once a month for 6 months, serum and whole blood samples were collected from 33 active males. Concurrently, the CO-rebreathing method was applied to determine target levels of hemoglobin mass (HbM) and blood volumes. The variability of 18 common chemistry markers and 27 Full Blood Count variables was investigated and matched to the observed plasma volume variation. After the removal of between-subject variations using a Bayesian model, multivariate analysis identified two sets of 8 and 15 biomarkers explaining 68% and 69% of plasma volume variance, respectively. The final multiparametric model contains a weighting function to allow for isolated abnormalities in single biomarkers. This proof-of-concept investigation describes a novel approach to estimate absolute vascular volumes, with a simple blood test. Despite the physiological instability of critically ill patients, it is hypothesized the model, with its multiparametric approach and weighting function, maintains the capacity to describe vascular volumes. This model has potential to transform volume management in clinical settings. Am. J. Hematol. 92:62-67, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Hospital Variation in Perioperative Complications for Laparoscopic Sleeve Gastrectomy in Michigan
Pradarelli, Jason C.; Varban, Oliver A.; Ghaferi, Amir A.; Weiner, Matthew; Carlin, Arthur M.; Dimick, Justin B.
2015-01-01
Structured Abstract Background Laparoscopic sleeve gastrectomy has recently surpassed gastric bypass and laparoscopic adjustable gastric banding as the most common weight-loss procedure. Previously, substantial concerns existed regarding variation in perioperative safety with bariatric surgery. This study aimed to assess rates of perioperative complications for laparoscopic sleeve gastrectomy across hospitals and in relation to procedure volume. Study Design We analyzed 8,693 patients who underwent laparoscopic sleeve gastrectomy from 2013 through 2014 across 40 hospitals in the Michigan Bariatric Surgery Collaborative. Mixed-effects logistic regression was used to assess hospital variation in risk- and reliability-adjusted rates of overall and serious 30-day complications and their relationship with hospital annual stapling procedure volume (gastric bypass and sleeve gastrectomy). Results Overall, 5.4% of patients experienced perioperative complications. Adjusted rates of overall complications varied three-fold across hospitals, ranging from 3.6% (95% CI, 1.9–6.8%) to 11.0% (95% CI, 7.7–15.5%). Serious complications occurred in just 1.2% of patients and varied minimally. In this analysis, hospital volume was not associated with overall or serious complications. The 1 hospital with significantly lower overall complication rates was high-volume (≥125 procedures/year); however, of the 4 hospitals with significantly higher complication rates, 3 were medium-volume (50–124 procedures/year) and 1 was high-volume. The remaining hospitals were not significantly different than the cohort mean. Conclusions Serious complications among patients undergoing laparoscopic sleeve gastrectomy were relatively infrequent. Rates of overall complications varied widely across Michigan hospitals enrolled in a quality collaborative, although this variation was unrelated to volume standards required for accreditation as a comprehensive bariatric surgery center. PMID:26506567
Hospital volume, complications, and cost of cancer surgery in the elderly.
Nathan, Hari; Atoria, Coral L; Bach, Peter B; Elkin, Elena B
2015-01-01
Hospital surgical volume has been shown to correlate with short-term outcomes after cancer surgery, but the relationship between volume and cost of care is unclear. We sought to characterize variation in payments for cancer surgery and assess the relationship between hospital volume and payments. Using 2000 to 2007 Surveillance, Epidemiology, and End Results-Medicare data, we assessed risk-adjusted 30-day episode Medicare payments for elderly patients undergoing one of six procedures for resection of cancer. Payments for the index hospitalization, readmissions, physician services, emergency room visits, and postdischarge ancillary care were analyzed, as were data on 30-day mortality and complications. The analysis included 31,191 colectomies, 2,670 cystectomies, 1,514 pancreatectomies, 2,607 proctectomies, 12,228 prostatectomies, and 10,151 pulmonary lobectomies. There was substantial variation in cost; differences between the first and third terciles of cost varied from 27% for cystectomy to 40% for colectomy. The majority of variation (66% to 82%) was attributable to payments for the index admission rather than readmissions or physician services. There were no meaningful associations between total risk-adjusted payments and hospital volume. Surgical mortality was low, but complication rates ranged from 10% (prostatectomy) to 56% (lobectomy). Complication rates were not correlated with hospital volume, but occurrence of complications was associated with 47% to 70% higher costs. We found substantial variation in Medicare payments for these six cancer procedures. Cost was strongly associated with postoperative complications and primarily driven by differences in the cost of the index hospitalization. Efforts to prevent and cost-effectively manage complications are more likely to reduce costs than volume-based referral of cancer surgery alone. © 2014 by American Society of Clinical Oncology.
Two research studies funded and overseen by EPA have been conducted since October 2006 on soil gas sampling methods and variations in shallow soil gas concentrations with the purpose of improving our understanding of soil gas methods and data for vapor intrusion applications. Al...
Studies of the limit order book around large price changes
NASA Astrophysics Data System (ADS)
Tóth, B.; Kertész, J.; Farmer, J. D.
2009-10-01
We study the dynamics of the limit order book of liquid stocks after experiencing large intra-day price changes. In the data we find large variations in several microscopical measures, e.g., the volatility the bid-ask spread, the bid-ask imbalance, the number of queuing limit orders, the activity (number and volume) of limit orders placed and canceled, etc. The relaxation of the quantities is generally very slow that can be described by a power law of exponent ≈ 0.4. We introduce a numerical model in order to understand the empirical results better. We find that with a zero intelligence deposition model of the order flow the empirical results can be reproduced qualitatively. This suggests that the slow relaxations might not be results of agents' strategic behaviour. Studying the difference between the exponents found empirically and numerically helps us to better identify the role of strategic behaviour in the phenomena. in here
NASA Astrophysics Data System (ADS)
Cardall, Christian Y.; Budiardja, Reuben D.
2018-01-01
The large-scale computer simulation of a system of physical fields governed by partial differential equations requires some means of approximating the mathematical limit of continuity. For example, conservation laws are often treated with a 'finite-volume' approach in which space is partitioned into a large number of small 'cells,' with fluxes through cell faces providing an intuitive discretization modeled on the mathematical definition of the divergence operator. Here we describe and make available Fortran 2003 classes furnishing extensible object-oriented implementations of simple meshes and the evolution of generic conserved currents thereon, along with individual 'unit test' programs and larger example problems demonstrating their use. These classes inaugurate the Mathematics division of our developing astrophysics simulation code GENASIS (Gen eral A strophysical Si mulation S ystem), which will be expanded over time to include additional meshing options, mathematical operations, solver types, and solver variations appropriate for many multiphysics applications.
NASA Astrophysics Data System (ADS)
Kim, Y.; Sievering, H.; Boatman, J.
1990-06-01
As a part of the Global Change Expedition/Coordinated Air-Sea Experiment/Western Atlantic Ocean Experiment (GCE/CASE/WATOX), size distributions of marine aerosols were measured at two altitudes of about 2750 and 150 m above sea level (asl) over the size range 0.1 ˜ 32 μm. Lognormal fitting was applied to the corrected aerosol size spectra to determine the volume and surface area size distributions of the CASE-WATOX marine aerosols. Each aerosol size distribution was fitted with three lognormal distributions representing fine-, large-, and giant-particle modes. Water volume fraction and dry particle size of each aerosol size distribution were also calculated using empirical formulas for particle size as a function of relative humidity and particle type. Because of the increased influence from anthropogenic sources in the continental United States, higher aerosol volume concentrations were observed in the fine-particle mode near-shore off the east coast; 2.11 and 3.63 μm3 cm-3 for free troposphere (FT) and marine boundary layer (MBL), compared with the open-sea Bermuda area values; 0.13 and 0.74 μm3 cm-3 for FT and MBL. The large-particle mode exhibits the least variations in volume distributions between the east coast and open-sea Bermuda area, having a volume geometric median diameter (VGMD) between 1.4 and 1.6 μm and a geometric standard deviation between 1.57 and 1.68. For the giant-particle mode, larger VGMD and volume concentrations were observed for marine aerosols nearshore off the east coast than in the open-sea Bermuda area because of higher relative humidity and higher surface wind speed conditions. Wet VGMD and aerosol water volume concentrations at 15 m asl ship level were determined by extrapolating from those obtained by analysis of the CASE-WATOX aircraft aerosol data. Abundance of aerosol water in the MBL serves as an important pathway for heterogeneous conversion of SO2 in sea salt aerosol particles.
NASA Astrophysics Data System (ADS)
Allison, C. M.; Clarke, A. B.; Pioli, L.; Alfano, F.
2011-12-01
Basaltic scoria cone volcanoes are the most abundant volcanic edifice on Earth and occur in all tectonic settings. Basaltic magmas have lower viscosities, higher temperatures, and lower volatile contents than silicic magmas, and therefore generally have a lower potential for explosive activity. However, basaltic eruptions display great variability in eruptive style, from mild lava flows to more energetic explosions with large plumes. The San Francisco Volcanic Field (SFVF) in northern Arizona, active from 6 Ma-present, consists of over 600 volcanoes, mostly alkali basalt scoria cones, and five silicic centers [Wood and Kienle (1990), Cambridge University Press]. The eruption of Sunset Crater in the SFVF during the Holocene was an anomalously large basaltic explosive eruption, consisting of eight tephra-bearing phases and three lava flows [Amos (1986), MS thesis, ASU]. Typical scoria cone-forming eruptions have volumes <0.1km3 DRE, while the Sunset Crater deposit is at least 0.6km3 DRE [Amos (1986)]. The phases vary in size and style; the beginning stages of explosive activity (phases 1-2) were considerably smaller than phases 3-5, classified as subplinian. Due to its young age, the eruptive material is fresh and the deposit is well-preserved. We sampled the first five tephra units at 25 locations, ranging from 6 km to 20 km from the vent, concentrating our efforts in the downwind direction (E and SE of the vent) along the primary dispersal axes of several phases. Notable variations among the first five phases were found from evaluation of juvenile clast componentry, with each phase containing some proportion of red, grey, and glassy to iridescent clasts. The red and grey clasts are sub-rounded to rounded with high sphericity, while the other clasts are highly angular and slightly elongate, with blue-black to gold glassy and iridescent surfaces. The glassy and iridescent clasts likely represent fresh, juvenile ejecta, which were quenched rapidly, whereas the red and grey rounded clasts may be the result of recycling of the cone or vent-fill material. Alternatively, the differences among the populations may represent lateral variations in conduit flow conditions. In general, phases associated with large volumes and large dispersal areas tend to contain larger proportions of the glassy/iridescent clasts. Phase 1 has a large proportion of glassy clasts. Phase 2 has approximately half red and half grey clasts, as well as a small fraction of glassy material. Phase 3, which is the phase with the largest dispersal area, has a similar proportion of glassy clasts as phase 1. Phase 4, the largest by volume at ~0.11km3 DRE [Amos (1986)], has the highest proportion of glassy clasts. Phase 5 is comparable to phase 4 (similar fractions of each clast type), although the glassy surface changes from gold to black as clast size decreases. Each phase is well- to very well-sorted. Future work will include textural analysis of bubbles and crystals to understand the ascent and cooling history of the different clast types, and also to better interpret differences in abundance as related to variations in eruption or vent dynamics.
Robust isotropic super-resolution by maximizing a Laplace posterior for MRI volumes
NASA Astrophysics Data System (ADS)
Han, Xian-Hua; Iwamoto, Yutaro; Shiino, Akihiko; Chen, Yen-Wei
2014-03-01
Magnetic resonance imaging can only acquire volume data with finite resolution due to various factors. In particular, the resolution in one direction (such as the slice direction) is much lower than others (such as the in-plane direction), yielding un-realistic visualizations. This study explores to reconstruct MRI isotropic resolution volumes from three orthogonal scans. This proposed super- resolution reconstruction is formulated as a maximum a posterior (MAP) problem, which relies on the generation model of the acquired scans from the unknown high-resolution volumes. Generally, the deviation ensemble of the reconstructed high-resolution (HR) volume from the available LR ones in the MAP is represented as a Gaussian distribution, which usually results in some noise and artifacts in the reconstructed HR volume. Therefore, this paper investigates a robust super-resolution by formulating the deviation set as a Laplace distribution, which assumes sparsity in the deviation ensemble based on the possible insight of the appeared large values only around some unexpected regions. In addition, in order to achieve reliable HR MRI volume, we integrates the priors such as bilateral total variation (BTV) and non-local mean (NLM) into the proposed MAP framework for suppressing artifacts and enriching visual detail. We validate the proposed robust SR strategy using MRI mouse data with high-definition resolution in two direction and low-resolution in one direction, which are imaged in three orthogonal scans: axial, coronal and sagittal planes. Experiments verifies that the proposed strategy can achieve much better HR MRI volumes than the conventional MAP method even with very high-magnification factor: 10.
Pravosudov, V V; Lavenex, P; Clayton, N S
2002-05-01
Earlier reports suggested that seasonal variation in food-caching behavior (caching intensity and cache retrieval accuracy) might correlate with morphological changes in the hippocampal formation, a brain structure thought to play a role in remembering cache locations. We demonstrated that changes in cache retrieval accuracy can also be triggered by experimental variation in food supply: captive mountain chickadees (Poecile gambeli) maintained on limited and unpredictable food supply were more accurate at recovering their caches and performed better on spatial memory tests than birds maintained on ad libitum food. In this study, we investigated whether these two treatment groups also differed in the volume and neuron number of the hippocampal formation. If variation in memory for food caches correlates with hippocampal size, then our birds with enhanced cache recovery and spatial memory performance should have larger hippocampal volumes and total neuron numbers. Contrary to this prediction we found no significant differences in volume or total neuron number of the hippocampal formation between the two treatment groups. Our results therefore indicate that changes in food-caching behavior and spatial memory performance, as mediated by experimental variations in food supply, are not necessarily accompanied by morphological changes in volume or neuron number of the hippocampal formation in fully developed, experienced food-caching birds. Copyright 2002 Wiley Periodicals, Inc.
Sources of Regional Variation in Medicare Part D Drug Spending
Donohue, Julie M.; Morden, Nancy E.; Gellad, Walid F.; Bynum, Julie P.; Zhou, Weiping; Hanlon, Joseph T.; Skinner, Jonathan
2012-01-01
BACKGROUND Sources of regional variation in spending for prescription drugs under Medicare Part D are poorly understood, and such variation may reflect differences in health status, use of effective treatments, or selection of branded drugs over lower-cost generics. METHODS We analyzed 2008 Medicare data for 4.7 million beneficiaries for prescription-drug use and expenditures overall and in three drug categories: angiotensin-converting–enzyme (ACE) inhibitors and angiotensin-receptor blockers (ARBs), 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors (statins), and selective serotonin-reuptake inhibitors (SSRIs) and serotonin–norepinephrine reuptake inhibitors (SNRIs). Differences in per capita expenditures across hospital-referral regions (HRRs) were decomposed into annual prescription volume and cost per prescription. The ratio of prescriptions filled as branded drugs to all prescriptions filled was calculated. We adjusted all measures for demographic, socioeconomic, and health-status differences. RESULTS Mean adjusted per capita pharmaceutical spending ranged from $2,413 in the lowest to $3,008 in the highest quintile of HRRs. Most (75.9%) of that difference was attributable to the cost per prescription ($53 vs. $63). Regional differences in cost per prescription explained 87.5% of expenditure variation for ACE inhibitors and ARBs and 56.3% for statins but only 36.1% for SSRIs and SNRIs. The ratio of branded-drug to total prescriptions, which correlated highly with cost per prescription, ranged across HRRs from 0.24 to 0.45 overall and from 0.24 to 0.55 for ACE inhibitors and ARBs, 0.29 to 0.60 for statins, and 0.15 to 0.51 for SSRIs and SNRIs. CONCLUSIONS Regional variation in Medicare Part D spending results largely from differences in the cost of drugs selected rather than prescription volume. A reduction in branded-drug use in some regions through modification of Part D plan benefits might lower costs without reducing quality of care. (Funded by the National Institute on Aging and others.) PMID:22316446
Maeda, Yoshikazu; Sato, Yoshitaka; Shibata, Satoshi; Bou, Sayuri; Yamamoto, Kazutaka; Tamamura, Hiroyasu; Fuwa, Nobukazu; Takamatsu, Shigeyuki; Sasaki, Makoto; Tameshige, Yuji; Kume, Kyo; Minami, Hiroki; Saga, Yusuke; Saito, Makoto
2018-05-01
We quantified interfractional movements of the prostate, seminal vesicles (SVs), and rectum during computed tomography (CT) image-guided proton therapy for prostate cancer and studied the range variation in opposed lateral proton beams. We analyzed 375 sets of daily CT images acquired throughout the proton therapy treatment of ten patients. We analyzed daily movements of the prostate, SVs, and rectum by simulating three image-matching strategies: bone matching, prostate center (PC) matching, and prostate-rectum boundary (PRB) matching. In the PC matching, translational movements of the prostate center were corrected after bone matching. In the PRB matching, we performed PC matching and correction along the anterior-posterior direction to match the boundary between the prostate and the rectum's anterior region. In each strategy, we evaluated systematic errors (Σ) and random errors (σ) by measuring the daily movements of certain points on each anatomic structure. The average positional deviations in millimeter of each point were determined by the Van Herk formula of 2.5Σ + 0.7σ. Using these positional deviations, we created planning target volumes of the prostate and SVs and analyzed the daily variation in the water equivalent length (WEL) from the skin surface to the target along the lateral beam directions using the density converted from the daily CT number. Based on this analysis, we designed prostate cancer treatment planning and evaluated the dose volume histograms (DVHs) for these strategies. The SVs' daily movements showed large variations over the superior-inferior direction, as did the rectum's anterior region. The average positional deviations of the prostate in the anterior, posterior, superior, inferior, and lateral sides (mm) in bone matching, PC matching, and PRB matching were (8.9, 9.8, 7.5, 3.6, 1.6), (5.6, 6.1, 3.5, 4.5, 1.9), and (8.6, 3.2, 3.5, 4.5, 1.9) (mm), respectively. Moreover, the ones of the SV tip were similarly (22.5, 15.5, 11.0, 7.6, 6.0), (11.8, 8.4, 7.8, 5.2, 6.3), and (9.9, 7.5, 7.8, 5.2, 6.3). PRB matching showed the smallest positional deviations at all portions except for the anterior portion of the prostate and was able to markedly reduce the positional deviations at the posterior portion. The averaged WEL variations at the distal and proximal sides of planning target volumes were estimated 7-9 mm and 4-6 mm, respectively, and showed the increasing of a few millimeters in PC and PRB matching compared to bone matching. In the treatment planning simulation, the DVH values of the rectum in PRB matching were reduced compared to those obtained with other matching strategies. The positional deviations for the prostate on the posterior side and the SVs were smaller by PRB matching than the other strategies and effectively reduced the rectal dose. 3D dose calculations indicate that PRB matching with CT image guidance may do a better job relative to other positioning methods to effectively reduce the rectal complications. The WEL variation was quite large, and the appropriate margin (approx. 10 mm) must be adapted to the proton range in an initial planning to maintain the coverage of target volumes throughout entire treatment. © 2018 American Association of Physicists in Medicine.
Gray and white matter correlates of the Big Five personality traits.
Privado, Jesús; Román, Francisco J; Saénz-Urturi, Carlota; Burgaleta, Miguel; Colom, Roberto
2017-05-04
Personality neuroscience defines the scientific study of the neurobiological basis of personality. This field assumes that individual differences in personality traits are related with structural and functional variations of the human brain. Gray and white matters are structural properties considered separately in previous research. Available findings in this regard are largely disparate. Here we analyze the relationships between gray matter (cortical thickness (CT), cortical surface area (CSA), and cortical volume) and integrity scores obtained after several white matter tracts connecting different brain regions, with individual differences in the personality traits comprised by the Five-Factor Model (extraversion, agreeableness, conscientiousness, neuroticism, and openness to experience). These psychological and biological data were obtained from young healthy women. The main findings showed statistically significant associations between occipital CSA variations and extraversion, as well as between parietal CT variations and neuroticism. Regarding white matter integrity, openness showed positive correlations with tracts connecting posterior and anterior brain regions. Therefore, variations in discrete gray matter clusters were associated with temperamental traits (extraversion and neuroticism), whereas long-distance structural connections were related with the dimension of personality that has been associated with high-level cognitive processes (openness). Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Eclancher, Bernard; Arntz, Y.; Chambron, Jacques; Prat, Vincent; Perret, C.; Karman, Miklos; Pszota, Agnes; Nemeth, Laszlo
1999-10-01
A hand-size probe including 64 elementary 5 X 5 X 2 mm CdTe detectors has been optimized to detect the (gamma) tracer 99Tc in the heart left ventricle. The system, has been developed, not for imaging, allowing acquisitions at 33 Hz to describe the labeled blood volume variations. The (gamma) -counts variations were found accurately proportional to the known volume variations of an artificial ventricle paced at variable rate and systolic volume. Softwares for on line data monitoring and for post-processing have been developed for beat to beat assessment of cardiac performance at rest and during physical exercise. The evaluation of this probe has been performed on 5 subjects in the Nucl Dep of Balatonfured Cardiology Hospital. It appears that the probe needs to be better shielded to work properly in the hot environment of the ventricle, but can provide reliable ventriculography, even under heavy exercise load, although the ventricle volume itself is unknown.
Engman, Mikael; Varghese, Suby; Lagerstedt Robinson, Kristina; Malmgren, Helena; Hammarsjö, Anna; Byström, Birgitta; L Lalitkumar, Parameswaran Grace; Gemzell-Danielsson, Kristina
2013-01-01
Progesterone receptor modulators, such as mifepristone are useful and well tolerated in reducing leiomyoma volume although with large individual variation. The objective of this study was to investigate the molecular basis for the observed leiomyoma volume reduction, in response to mifepristone treatment and explore a possible molecular marker for the selective usage of mifepristone in leiomyoma patients. Premenopausal women (N = 14) were treated with mifepristone 50 mg, every other day for 12 weeks prior to surgery. Women were arbitrarily sub-grouped as good (N = 4), poor (N = 4) responders to treatment or intermediate respondents (N = 3). Total RNA was extracted from leiomyoma tissue, after surgical removal of the tumour and the differential expression of genes were analysed by microarray. The results were analysed using Ingenuity Pathway Analysis software. The glutathione pathway was the most significantly altered canonical pathway in which the glutathione-s transferase mu 1 (GSTM1) gene was significantly over expressed (+8.03 folds) among the good responders compared to non responders. This was further confirmed by Real time PCR (p = 0.024). Correlation of immunoreactive scores (IRS) for GSTM1 accumulation in leiomyoma tissue was seen with base line volume change of leiomyoma R = −0.8 (p = 0.011). Furthermore the accumulation of protein GSTM1 analysed by Western Blot correlated significantly with the percentual leiomyoma volume change R = −0.82 (p = 0.004). Deletion of the GSTM1 gene in leiomyoma biopsies was found in 50% of the mifepristone treated cases, with lower presence of the GSTM1 protein. The findings support a significant role for GSTM1 in leiomyoma volume reduction induced by mifepristone and explain the observed individual variation in this response. Furthermore the finding could be useful to further explore GSTM1 as a biomarker for tailoring medical treatment of uterine leiomyomas for optimizing the response to treatment. Clinical Trials identifier www.clinicaltrials.gov: NCT00579475, Protocol date: November 2004. http://clinicaltrials.gov/ct2/show/NCT00579475 PMID:24324590
Ortiz, Héctor; Biondo, Sebastiano; Codina, Antonio; Ciga, Miguel Á; Enríquez-Navascués, José; Espín, Eloy; García-Granero, Eduardo; Roig, José Vicente
2016-04-01
This multicentre observational study aimed to determine the anastomotic leak rate in the hospitals included in the Rectal Cancer Project of the Spanish Society of Surgeons and examine whether hospital volume may contribute to any variation between hospitals. Hospital variation was quantified using a multilevel approach on prospective data derived from the multicentre database of all adenocarcinomas of the rectum operated by an anterior resection at 84 surgical departments from 2006 to 2013. The following variables were included in the analysis; demographics, American Society of Anaesthesiologists classification, use of defunctioning stoma, tumour location and stage, administration of neoadjuvant treatment, and annual volume of elective surgical procedures. A total of 7231 consecutive patients were included. The rate of anastomotic leak was 10.0%. Stratified by annual surgical volume hospitals varied from 9.9 to 11.3%. In multilevel regression analysis, the risk of anastomotic leak increased in male patients, in patients with tumours located below 12 cm from the anal verge, and advanced tumour stages. However, a defunctioning stoma seemed to prevent this complication. Hospital surgical volume was not associated with anastomotic leak (OR: 0.852, [0.487-1.518]; P=.577). Furthermore, there was a statistically significant variation in anastomotic leak between all departments (MOR: 1.475; [1.321-1.681]; P<0.001). Anastomotic leak varies significantly among hospitals included in the project and this difference cannot be attributed to the annual surgical volume. Copyright © 2015 AEC. Publicado por Elsevier España, S.L.U. All rights reserved.
Linking dynamics of transport timescale and variations of hypoxia in the Chesapeake Bay
NASA Astrophysics Data System (ADS)
Hong, Bo; Shen, Jian
2013-11-01
Dissolved oxygen (DO) replenishment in the bottom waters of an estuary depends on physical processes that are significantly influenced by external forcings. The vertical exchange time (VET) is introduced in this study to quantify the physical processes that regulate the DO replenishment in the Chesapeake Bay. A 3-D numerical model was applied to simulate the circulation, VET, and DO. Results indicate that VET is a suitable parameter for evaluating the bottom DO condition over both seasonal and interannual timescales. The VET is negatively correlated with the bottom DO. Hypoxia (DO <2 mg L-1) will develop in the Bay when VET is greater than 23 days in summer if mean total DO consumption rate is about 0.3 g O2 m-3 d-1. This critical VET value may vary around 23 days when the total DO consumption rate changes. The VET volume (volume of water mass with VET >23 days) can account for 77% of variations of hypoxic volume in the main Bay. The VET cannot explain all the DO variations as it can only account for the contribution of physical processes that regulate DO replenishment. It is found that the short-term vertical exchange process is highly controlled by the wind forcing. The VET volume decreases when the high-speed wind events are frequent. The summertime VET volume is less sensitive to short-term variations (pulses) of river discharge. It is sensitive to the total amount of river discharge and the high VET volume can be expected in the wet year.
Tang, Xiaoying; Varma, Vijay R; Miller, Michael I; Carlson, Michelle C
2017-04-01
We evaluated the correlation of educational attainment with structural volume and shape morphometry of the bilateral hippocampi and amygdalae in a sample of 110 non-demented, older adults at elevated sociodemographic risk for cognitive and functional declines. In both men and women, no significant education-volume correlation was detected for either structure. However, when performing shape analysis, we observed regionally specific associations with education after adjusting for age, intracranial volume, and race. By sub-dividing the hippocampus and the amygdala into compatible subregions, we found that education was positively associated with size variations in the CA1 and subiculum subregions of the hippocampus and the basolateral subregion of the amygdala (p < 0.05). In addition, we detected a greater left versus right asymmetric pattern in the shape-education correlation for the hippocampus but not the amygdala. This asymmetric association was largely observed in men versus women. These findings suggest that education in youth may exert direct and indirect influences on brain reserve in regions that are most vulnerable to the neuropathologies of aging, dementia, and specifically, Alzheimer disease.
Tang, Xiaoying; Varma, Vijay R.; Miller, Michael I.; Carlson, Michelle C.
2018-01-01
We evaluated the correlation of educational attainment with structural volume and shape morphometry of the bilateral hippocampi and amygdalae in a sample of 110 non-demented, older adults at elevated sociodemographic risk for cognitive and functional declines. In both men and women, no significant education-volume correlation was detected for either structure. However, when performing shape analysis, we observed regionally specific associations with education after adjusting for age, intracranial volume, and race. By sub-dividing the hippocampus and the amygdala into compatible subregions, we found that education was positively associated with size variations in the CA1 and subiculum subregions of the hippocampus and the basolateral subregion of the amygdala (p<0.05). In addition, we detected a greater left versus right asymmetric pattern in the shape-education correlation for the hippocampus but not the amygdala. This asymmetric association was largely observed in men versus women. These findings suggest that education in youth may exert direct and indirect influences on brain reserve in regions that are most vulnerable to the neuropathologies of aging, dementia, and specifically, Alzheimer disease. PMID:27535407
NASA Astrophysics Data System (ADS)
Velmurugan, Thanigaimalai; Sukumar, Prabakar; Krishnappan, Chokkalingam; Boopathy, Raghavendiran
2010-01-01
Ten patients with cancer of uterine cervix who underwent interstitial brachytherapy using MUPIT templates were CT scanned (CT1) using which bladder, rectum and CTV were delineated. The treatment plan PCT1 was generated and optimized geometrically on the volume. CT scan (CT2) was repeated before the second fraction of the treatment CTV and critical organs were delineated. The plan (PCT2) was created by reproducing the Plan PCT1 in the CT2 images and compared with PCT1. Bladder, Rectum and CTV percentage volume variation ranges from +28.6% to -34.3%, 38.4% to -14.9% and 8.5% to -15.2% respectively. Maximum dose variation in bladder was +17.1%, in rectum was up to +410% and in CTV was -13.0%. The dose to these structures varies independently with no strong correlation with the volume variation. Hence it is suggested that repeat CT and re-planning is mandatory before second fraction execution.
Zhang, Jian; Chen, Chao Qin; Lei, Xiu Zhen; Feng, Zhi Ying; Zhu, Sheng Mei
2013-07-01
This pilot study was designed to utilize stroke volume variation and cardiac index to ensure fluid optimization during one-lung ventilation in patients undergoing thoracoscopic lobectomies. Eighty patients undergoing thoracoscopic lobectomy were randomized into either a goal-directed therapy group or a control group. In the goal-directed therapy group, the stroke volume variation was controlled at 10%±1%, and the cardiac index was controlled at a minimum of 2.5 L.min-1.m-2. In the control group, the MAP was maintained at between 65 mm Hg and 90 mm Hg, heart rate was maintained at between 60 BPM and 100 BPM, and urinary output was greater than 0.5 mL/kg-1/h-1. The hemodynamic variables, arterial blood gas analyses, total administered fluid volume and side effects were recorded. The PaO2/FiO2-ratio before the end of one-lung ventilation in the goal-directed therapy group was significantly higher than that of the control group, but there were no differences between the goal-directed therapy group and the control group for the PaO2/FiO2-ratio or other arterial blood gas analysis indices prior to anesthesia. The extubation time was significantly earlier in the goal-directed therapy group, but there was no difference in the length of hospital stay. Patients in the control group had greater urine volumes, and they were given greater colloid and overall fluid volumes. Nausea and vomiting were significantly reduced in the goal-directed therapy group. The results of this study demonstrated that an optimization protocol, based on stroke volume variation and cardiac index obtained with a FloTrac/Vigileo device, increased the PaO2/FiO2-ratio and reduced the overall fluid volume, intubation time and postoperative complications (nausea and vomiting) in thoracic surgery patients requiring one-lung ventilation.
Crustal evolution derived from the Izu-Bonin-Mariana arc velocity images
NASA Astrophysics Data System (ADS)
Takahashi, N.; Kodaira, S.; Tatsumi, Y.; Miura, S.; Sato, T.; Yamashita, M.; No, T.; Takahashi, T.; Noguchi, N.; Takizawa, K.; Kaiho, Y.; Kaneda, Y.
2010-12-01
The Izu-Bonin-Mariana arc is known as one of typical oceanic island arcs, which has developed by subduction between oceanic crusts producing continental materials. Japan Agency for Marine-Earth Science and Technology has carried out seismic surveys using a multi-channel reflection survey system (MCS) and ocean bottom seismographs (OBSs) in the Izu-Bonin-Mariana (IBM) arc since 2002, and reported these crustal images. As the results, we identified the structural characteristics of whole Izu-Bonin-Mariana arc. Rough structural characteristics are, 1) middle crust with Vp of 6 km/s, 2) upper part of the lower crust with Vp of 6.5-6.8 km/s, 3) lower part of the lower crust with Vp of 6.8-7.5 km/s, and 4) lower mantle velocity beneath the arc crusts. In addition, structural variation along the volcanic front, for example, thickness variation of andesitic layers was imaged and the distributions is consistent with those of rhyolite volcanoes, that is, it suggested that the cause the structural variation is various degree of crustal growth (Kodaira et al., 2007). Moreover, crustal thinning with high velocity lower crust across arc was also imaged, and it is interpreted that such crust has been influenced backarc opening (Takahashi et al., 2009). According to Tatsumi et al. (2008), andesitic middle crust is produced by differentiation of basaltic lower crust and a part of the restites are transformed to the upper mantle. This means that region showing much crustal differentiation has large volume of transformation of dense crustal materials to the mantle. We calculated volume profiles of the lower crust along all seismic lines based on the petrologic model, and compared them with observed real volumes obtained by seismic images. If the real volume of the lower crust is large, it means that the underplating of dense materials to the crustal bottom is dominant rather than transformation of dense materials to the upper mantle. According to obtained profiles to judge if the region is the transformation dominant or underplating, the transformation dominant regions are located along the volcanic front, the remnant arc for the incipient rifting like the Sumisu Rift just behind the volcanic front, rear arc regions, and fore-arc basins. Beneath the fore-arc basins, multiple rows showing transformation dominant distribute, and it extends from north to south around the Ogasawara Trough. On the other hand, the underplating dominant regions distribute between the volcanic front and the rear arc region, beneath the incipient rift, and between the multiple rows beneath the fore-arc basins. These locations showing underplating dominant are consistent with those with high velocity lower crust.
Drop size distributions and related properties of fog for five locations measured from aircraft
NASA Technical Reports Server (NTRS)
Zak, J. Allen
1994-01-01
Fog drop size distributions were collected from aircraft as part of the Synthetic Vision Technology Demonstration Program. Three west coast marine advection fogs, one frontal fog, and a radiation fog were sampled from the top of the cloud to the bottom as the aircraft descended on a 3-degree glideslope. Drop size versus altitude versus concentration are shown in three dimensional plots for each 10-meter altitude interval from 1-minute samples. Also shown are median volume radius and liquid water content. Advection fogs contained the largest drops with median volume radius of 5-8 micrometers, although the drop sizes in the radiation fog were also large just above the runway surface. Liquid water content increased with height, and the total number of drops generally increased with time. Multimodal variations in number density and particle size were noted in most samples where there was a peak concentration of small drops (2-5 micrometers) at low altitudes, midaltitude peak of drops 5-11 micrometers, and high-altitude peak of the larger drops (11-15 micrometers and above). These observations are compared with others and corroborate previous results in fog gross properties, although there is considerable variation with time and altitude even in the same type of fog.
Uncertainty of sensory signal explains variation of color constancy.
Witzel, Christoph; van Alphen, Carlijn; Godau, Christoph; O'Regan, J Kevin
2016-12-01
Color constancy is the ability to recognize the color of an object (or more generally of a surface) under different illuminations. Without color constancy, surface color as a perceptual attribute would not be meaningful in the visual environment, where illumination changes all the time. Nevertheless, it is not obvious how color constancy is possible in the light of metamer mismatching. Surfaces that produce exactly the same sensory color signal under one illumination (metamerism) may produce utterly different sensory signals under another illumination (metamer mismatching). Here we show that this phenomenon explains to a large extent the variation of color constancy across different colors. For this purpose, color constancy was measured for different colors in an asymmetric matching task with photorealistic images. Color constancy performance was strongly correlated to the size of metamer mismatch volumes, which describe the uncertainty of the sensory signal due to metamer mismatching for a given color. The higher the uncertainty of the sensory signal, the lower the observers' color constancy. At the same time, sensory singularities, color categories, and cone ratios did not affect color constancy. The present findings do not only provide considerable insight into the determinants of color constancy, they also show that metamer mismatch volumes must be taken into account when investigating color as a perceptual property of objects and surfaces.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shibayama, Y; Umezu, Y; Nakamura, Y
2016-06-15
Purpose: Our assumption was that interfractional shape variations of target volumes could not be negligible for determination of clinical target volume (CTV)-to-planning target volume (PTV) margins. The aim of this study was to investigate this assumption as a simulation study by developing a computational framework of CTV-to-PTV margins with taking the interfractional shape variations into account based on point distribution model (PDM) Methods: The systematic and random errors for interfractional shape variations and translations of target volumes were evaluated for four types of CTV regions (only a prostate, a prostate plus proximal 1-cm seminal vesicles, a prostate plus proximal 2-cmmore » seminal vesicles, and a prostate plus whole seminal vesicles). The CTV regions were delineated depending on prostate cancer risk groups on planning computed tomography (CT) and cone beam CT (CBCT) images of 73 fractions of 10 patients. The random and systematic errors for shape variations of CTV regions were derived from PDMs of CTV surfaces for all fractions of each patient. Systematic errors of shape variations of CTV regions were derived by comparing PDMs between planning CTV surfaces and average CTV surfaces. Finally, anisotropic CTV-to-PTV margins with shape variations in 6 directions (anterior, posterior, superior, inferior, right, and left) were computed by using a van Herk margin formula. Results: Differences between CTV-to-PTV margins with and without shape variations ranged from 0.7 to 1.7 mm in anterior direction, 1.0 to 2.8 mm in posterior direction, 0.8 to 2.8 mm in superior direction, 0.6 to 1.6 mm in inferior direction, 1.4 to 4.4 mm in right direction, and 1.3 to 5.2 mm in left direction. Conclusion: More than 1.0 mm additional margins were needed at least in 3 directions to guarantee CTV coverage due to shape variations. Therefore, shape variations should be taken into account for the determination of CTV-to-PTV margins.« less
Modeling systolic pressure variation due to positive pressure ventilation.
Messerges, Joanne
2006-01-01
Although many clinical techniques have been proposed to assess blood volume none have been established as an undisputed standard practice, Volume studies suggest systolic pressure variation (SPV) as a promising volume indicator but underlying influences on SPV are not well understood. Successful modeling of SPV will reveal the major SPV influencers, guide algorithm development to accommodate these influencers, and potentially lead to a more clinically relevant interpretation of SPV values, thus improving upon current clinical methods for assessing blood volume. This study takes a first step towards identifying SPV influencers by investigating three variations of an existing pressure-flow cardiovascular model. Each successive version introduces an additional modification in attempt to model SPV under normovolemic and hypovolemic conditions, where the last model accounts for positive pressure ventilation, venous compression, and a rightward septum shift. Under normovolemic conditions, each model yields SPV values of 5.8, 6.4, and 6.7 mmHg, respectively. Under hypovolemic conditions the results do not agree with clinical findings, suggesting these three mechanisms alone do not dictate the clinical SPV response to a decrease in volume. Model results are used to suggest improvements for future work.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karki, K; Hugo, G; Saraiya, S
Purpose: Target delineation in lung cancer radiotherapy has, in general, large variability. MRI has so far not been investigated in detail for lung cancer delineation variability. The purpose of this study is to investigate delineation variability for lung tumors using MRI and compare it to CT alone and PET-CT based delineations. Methods: Seven physicians delineated the primary tumor volumes of nine patients for the following scenarios: (1) CT only; (2) post-contrast T1-weighted MRI registered with diffusion-weighted MRI; and (3) PET-CT fusion images. To compute interobserver variability, the median surface was generated from all observers’ contours and used as the referencemore » surface. A single physician labeled the interface types (tumor to lung, atelectasis (collapsed lung), hilum, mediastinum, or chest-wall) on the median surface. Volume variation (normalized to PET-CT volume), minimum distance (MD), and bidirectional local distance (BLD) between individual observers’ contours and the reference contour were measured. Results: CT- and MRI-based normalized volumes were 1.61±0.76 (mean±SD) and 1.38±0.44, respectively, both significantly larger than PET-CT (p<0.05, paired t-test). The overall uncertainty (root mean square of SD values over all points) of both BLD and MD measures of the observers for the interfaces were not significantly different (p>0.05, two-samples t-test) for all imaging modalities except between tumor-mediastinum and tumor-atelectasis in PET-CT. The largest mean overall uncertainty was observed for tumor-atelectasis interface, the smallest for tumor-mediastinum and tumor-lung interfaces for all modalities. The whole tumor uncertainties for both BLD and MD were not significantly different between any two modalities (p>0.05, paired t-test). Overall uncertainties for the interfaces using BLD were similar to using MD. Conclusion: Large volume variations were observed between the three imaging modalities. Contouring variability appeared to depend on the interface type. This study will be useful for understanding the delineation uncertainty for radiotherapy planning of lung cancer using different imaging modalities. Disclosures: Research agreement with Phillips Healthcare (GH and EW), National Institutes of Health Licensing agreement with Varian Medical Systems (GH and EW), research grants from the National Institute of Health (GH and EW), UpToDate royalties (EW), and none (others). Authors have no potential conflicts of interest to disclose.« less
Estimating sugar maple bark thickness and volume.
Charles L. Stayton; Michael Hoffman
1970-01-01
Sugar maple bark thickness and volume were estimated using first a published method, then equations developed by the authors. Both methods gave estimates that compared closely with measured values. Information is also presented on variation in bark thickness and on weight and volume of bark as a percentage of total merchantable stem weight and volume.
Mukherjee, Kanchan Kumar; Kumar, Narendra; Tripathi, Manjul; Oinam, Arun S; Ahuja, Chirag K; Dhandapani, Sivashanmugam; Kapoor, Rakesh; Ghoshal, Sushmita; Kaur, Rupinder; Bhatt, Sandeep
2017-01-01
To evaluate the feasibility, safety and efficacy of dose fractionated gamma knife radiosurgery (DFGKRS) on a daily schedule beyond the linear quadratic (LQ) model, for large volume arteriovenous malformations (AVMs). Between 2012-16, 14 patients of large AVMs (median volume 26.5 cc) unsuitable for surgery or embolization were treated in 2-3 of DFGKRS sessions. The Leksell G frame was kept in situ during the whole procedure. 86% (n = 12) patients had radiologic evidence of bleed, and 43% (n = 6) had presented with a history of seizures. 57% (n = 8) patients received a daily treatment for 3 days and 43% (n = 6) were on an alternate day (2 fractions) regimen. The marginal dose was split into 2 or 3 fractions of the ideal prescription dose of a single fraction of 23-25 Gy. The median follow up period was 35.6 months (8-57 months). In the three-fraction scheme, the marginal dose ranged from 8.9-11.5 Gy, while in the two-fraction scheme, the marginal dose ranged from 11.3-15 Gy at 50% per fraction. Headache (43%, n = 6) was the most common early postoperative complication, which was controlled with short course steroids. Follow up evaluation of at least three years was achieved in seven patients, who have shown complete nidus obliteration in 43% patients while the obliteration has been in the range of 50-99% in rest of the patients. Overall, there was a 67.8% reduction in the AVM volume at 3 years. Nidus obliteration at 3 years showed a significant rank order correlation with the cumulative prescription dose (p 0.95, P value 0.01), with attainment of near-total (more than 95%) obliteration rates beyond 29 Gy of the cumulative prescription dose. No patient receiving a cumulative prescription dose of less than 31 Gy had any severe adverse reaction. In co-variate adjusted ordinal regression, only the cumulative prescription dose had a significant correlation with common terminology criteria for adverse events (CTCAE) severity (P value 0.04), independent of age, AVM volume, number of fractions and volume of brain receiving atleast 8 Gy of radiation. DFGKRS is feasible for large AVMs with a fair nidus obliteration rate and acceptable toxicity. Cumulative prescription dose seems to be the most significant independent predictor for outcome following DFGKRS with 29-30 Gy resulting in a fair nidus obliteration with least adverse events.
Space-time patterns in ignimbrite compositions revealed by GIS and R based statistical analysis
NASA Astrophysics Data System (ADS)
Brandmeier, Melanie; Wörner, Gerhard
2017-04-01
GIS-based multivariate statistical and geospatial analysis of a compilation of 890 geochemical and ca. 1,200 geochronological data for 194 mapped ignimbrites from Central Andes documents the compositional and temporal pattern of large volume ignimbrites (so-called "ignimbrite flare-ups") during Neogene times. Rapid advances in computational sciences during the past decade lead to a growing pool of algorithms for multivariate statistics on big datasets with many predictor variables. This study uses the potential of R and ArcGIS and applies cluster (CA) and linear discriminant analysis (LDA) on log-ratio transformed spatial data. CA on major and trace element data allows to group ignimbrites according to their geochemical characteristics into rhyolitic and a dacitic "end-members" and differentiates characteristic trace element signatures with respect to Eu anomaly, depletion of MREEs and variable enrichment in LREE. To highlight these distinct compositional signatures, we applied LDA to selected ignimbrites for which comprehensive data sets were available. The most important predictors for discriminating ignimbrites are La (LREE), Yb (HREE), Eu, Al2O3, K2O, P2O5, MgO, FeOt and TiO2. However, other REEs such as Gd, Pr, Tm, Sm and Er also contribute to the discrimination functions. Significant compositional differences were found between the older (>14 Ma) large-volume plateau-forming ignimbrites in northernmost Chile and southern Peru and the younger (< 10 Ma) Altiplano-Puna-Volcanic-Complex ignimbrites that are of similar volumes. Older ignimbrites are less depleted in HREEs and less radiogenic in Sr isotopes, indicating smaller crustal contributions during evolution in thinner and thermally less evolved crust. These compositional variations indicate a relation to crustal thickening with a "transition" from plagioclase to amphibole and garnet residual mineralogy between 13 to 9 Ma. We correlate compositional and volumetric variations to the N-S passage of the Juan-Fernandéz ridge and crustal shortening and thickening during the past 26 Ma. The value of GIS and multivariate statistics in comparison to traditional geochemical parameters are highlighted working with large datasets with many predictors in a spatial and temporal context. Algorithms implemented in R allow taking advantage of an n-dimensional space and, thus, of subtle compositional differences contained in the data, while space-time patterns can be analyzed easily in GIS.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gniewek, Piotr, E-mail: pgniewek@tiger.chem.uw.edu.pl; Jeziorski, Bogumił, E-mail: jeziorsk@chem.uw.edu.pl
The exchange splitting J of the interaction energy of the hydrogen atom with a proton is calculated using the conventional surface-integral formula J{sub surf}[Φ], the volume-integral formula of the symmetry-adapted perturbation theory J{sub SAPT}[Φ], and a variational volume-integral formula J{sub var}[Φ]. The calculations are based on the multipole expansion of the wave function Φ, which is divergent for any internuclear distance R. Nevertheless, the resulting approximations to the leading coefficient j{sub 0} in the large-R asymptotic series J(R) = 2e{sup −R−1}R(j{sub 0} + j{sub 1}R{sup −1} + j{sub 2}R{sup −2} + ⋯) converge with the rate corresponding to the convergencemore » radii equal to 4, 2, and 1 when the J{sub var}[Φ], J{sub surf}[Φ], and J{sub SAPT}[Φ] formulas are used, respectively. Additionally, we observe that also the higher j{sub k} coefficients are predicted correctly when the multipole expansion is used in the J{sub var}[Φ] and J{sub surf}[Φ] formulas. The symmetry adapted perturbation theory formula J{sub SAPT}[Φ] predicts correctly only the first two coefficients, j{sub 0} and j{sub 1}, gives a wrong value of j{sub 2}, and diverges for higher j{sub n}. Since the variational volume-integral formula can be easily generalized to many-electron systems and evaluated with standard basis-set techniques of quantum chemistry, it provides an alternative for the determination of the exchange splitting and the exchange contribution of the interaction potential in general.« less
Male Mating Rate Is Constrained by Seminal Fluid Availability in Bedbugs, Cimex lectularius
Reinhardt, Klaus; Naylor, Richard; Siva-Jothy, Michael T.
2011-01-01
Sexual selection, differences in reproductive success between individuals, continues beyond acquiring a mating partner and affects ejaculate size and composition (sperm competition). Sperm and seminal fluid have very different roles in sperm competition but both components encompass production costs for the male. Theoretical models predict that males should spend ejaculate components prudently and differently for sperm and seminal fluid but empirical evidence for independent variation of sperm number and seminal fluid volume is scarce. It is also largely unknown how sperm and seminal fluid variation affect future mating rate. In bedbugs we developed a protocol to examine the role of seminal fluids in ejaculate allocation and its effect on future male mating rate. Using age-related changes in sperm and seminal fluid volume we estimated the lowest capacity at which mating activity started. We then showed that sexually active males allocate 12% of their sperm and 19% of their seminal fluid volume per mating and predicted that males would be depleted of seminal fluid but not of sperm. We tested (and confirmed) this prediction empirically. Finally, the slightly faster replenishment of seminal fluid compared to sperm did not outweigh the faster decrease during mating. Our results suggest that male mating rate can be constrained by the availability of seminal fluids. Our protocol might be applicable to a range of other organisms. We discuss the idea that economic considerations in sexual conflict research might benefit from distinguishing between costs and benefits that are ejaculate dose-dependent and those that are frequency-dependent on the mating rate per se. PMID:21779378
Method and apparatus for reflection mode imaging
NASA Technical Reports Server (NTRS)
Heyser, Richard C. (Inventor); Rooney, James A. (Inventor)
1989-01-01
A volume is scanned with a raster scan about a center of rotation using a transmitter/receiver at a selected range while gating a range window on the receiver with a selected range differential. The received signals are then demodulated to obtain signals representative of a property within the volume being scanned such as the density of a tumor. The range is varied until the entire volume has been scanned at all ranges to be displayed. An imaging display is synchronously scanned together with the raster scan to display variations of the property on the display. A second transmitter/receiver with associated equipment may be offset from the first and variations displayed from each of the transmitter/receivers on its separate display. The displays may then be combined stereoscopically to provide a three-dimensional image representative of variations of the property.
Robust estimation of simulated urinary volume from camera images under bathroom illumination.
Honda, Chizuru; Bhuiyan, Md Shoaib; Kawanaka, Haruki; Watanabe, Eiichi; Oguri, Koji
2016-08-01
General uroflowmetry method involves the risk of nosocomial infections or time and effort of the recording. Medical institutions, therefore, need to measure voided volume simply and hygienically. Multiple cylindrical model that can estimate the fluid flow rate from the photographed image using camera has been proposed in an earlier study. This study implemented a flow rate estimation by using a general-purpose camera system (Raspberry Pi Camera Module) and the multiple cylindrical model. However, large amounts of noise in extracting liquid region are generated by the variation of the illumination when performing measurements in the bathroom. So the estimation error gets very large. In other words, the specifications of the previous study's camera setup regarding the shutter type and the frame rate was too strict. In this study, we relax the specifications to achieve a flow rate estimation using a general-purpose camera. In order to determine the appropriate approximate curve, we propose a binarizing method using background subtraction at each scanning row and a curve approximation method using RANSAC. Finally, by evaluating the estimation accuracy of our experiment and by comparing it with the earlier study's results, we show the effectiveness of our proposed method for flow rate estimation.
Sugihara, Toru; Yasunaga, Hideo; Horiguchi, Hiromasa; Fujimura, Tetsuya; Fushimi, Kiyohide; Yu, Changhong; Kattan, Michael W; Homma, Yukio
2014-12-01
Little is known about the disparity of choices between three urinary diversions after radical cystectomy, focusing on patient and institutional factors. We identified urothelial carcinoma patients who received radical cystectomy with cutaneous ureterostomy, ileal conduit or continent reservoir using the Japanese Diagnosis Procedure Combination database from 2007 to 2012. Data comprised age, sex, comorbidities (converted into the Charlson index), TNM classification (converted into oncological stage), hospitals' academic status, hospital volume, bed volume and geographical region. Multivariate ordinal logistic regression analyses fitted with the proportional odds model were performed to analyze factors affecting urinary diversion choices. For dependent variables, the three diversions were converted into an ordinal variable in order of complexity: cutaneous ureterostomy (reference), ileal conduit and continent reservoir. Geographical variations were also examined by multivariate logistic regression models. A total of 4790 patients (1131 cutaneous ureterostomies [23.6 %], 2970 ileal conduits [62.0 %] and 689 continent reservoirs [14.4 %]) were included. Ordinal logistic regression analyses showed that male sex, lower age, lower Charlson index, early tumor stage, higher hospital volume (≥3.4 cases/year) and larger bed volume (≥450 beds) were significantly associated with the preference of more complex urinary diversion. Significant geographical disparity was also found. Good patient condition and early oncological status, as well as institutional factors, including high hospital volume, large bed volume and specific geographical regions, are independently related to the likelihood of choosing complex diversions. Recognizing this disparity would help reinforce the need for clinical practice uniformity.
Automated registration of large deformations for adaptive radiation therapy of prostate cancer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Godley, Andrew; Ahunbay, Ergun; Peng Cheng
2009-04-15
Available deformable registration methods are often inaccurate over large organ variation encountered, for example, in the rectum and bladder. The authors developed a novel approach to accurately and effectively register large deformations in the prostate region for adaptive radiation therapy. A software tool combining a fast symmetric demons algorithm and the use of masks was developed in C++ based on ITK libraries to register CT images acquired at planning and before treatment fractions. The deformation field determined was subsequently used to deform the delivered dose to match the anatomy of the planning CT. The large deformations involved required that themore » bladder and rectum volume be masked with uniform intensities of -1000 and 1000 HU, respectively, in both the planning and treatment CTs. The tool was tested for five prostate IGRT patients. The average rectum planning to treatment contour overlap improved from 67% to 93%, the lowest initial overlap is 43%. The average bladder overlap improved from 83% to 98%, with a lowest initial overlap of 60%. Registration regions were set to include a volume receiving 4% of the maximum dose. The average region was 320x210x63, taking approximately 9 min to register on a dual 2.8 GHz Linux system. The prostate and seminal vesicles were correctly placed even though they are not masked. The accumulated doses for multiple fractions with large deformation were computed and verified. The tool developed can effectively supply the previously delivered dose for adaptive planning to correct for interfractional changes.« less
Brain architecture and social complexity in modern and ancient birds.
Burish, Mark J; Kueh, Hao Yuan; Wang, Samuel S-H
2004-01-01
Vertebrate brains vary tremendously in size, but differences in form are more subtle. To bring out functional contrasts that are independent of absolute size, we have normalized brain component sizes to whole brain volume. The set of such volume fractions is the cerebrotype of a species. Using this approach in mammals we previously identified specific associations between cerebrotype and behavioral specializations. Among primates, cerebrotypes are linked principally to enlargement of the cerebral cortex and are associated with increases in the complexity of social structure. Here we extend this analysis to include a second major vertebrate group, the birds. In birds the telencephalic volume fraction is strongly correlated with social complexity. This correlation accounts for almost half of the observed variation in telencephalic size, more than any other behavioral specialization examined, including the ability to learn song. A prominent exception to this pattern is owls, which are not social but still have very large forebrains. Interpolating the overall correlation for Archaeopteryx, an ancient bird, suggests that its social complexity was likely to have been on a par with modern domesticated chickens. Telencephalic volume fraction outperforms residuals-based measures of brain size at separating birds by social structure. Telencephalic volume fraction may be an anatomical substrate for social complexity, and perhaps cognitive ability, that can be generalized across a range of vertebrate brains, including dinosaurs. Copyright 2004 S. Karger AG, Basel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chow, J; Jiang, R; Kiciak, A
2016-06-15
Purpose: This study compared the rectal dose-volume consistency, equivalent uniform dose (EUD) and normal tissue complication probability (NTCP) in prostate intensity modulated radiotherapy (IMRT) and volumetric modulated arc therapy (VMAT). Methods: For forty prostate IMRT and fifty VMAT patients treated using the same dose prescription (78 Gy/39 fraction) and dose-volume criteria in inverse planning optimization, the rectal EUD and NTCP were calculated for each patient. The rectal dose-volume consistency, showing the variability of dose-volume histogram (DVH) among patients, was defined and calculated based on the deviation between the mean and corresponding rectal DVH. Results: From both the prostate IMRT andmore » VMAT plans, the rectal EUD and NTCP were found decreasing with the rectal volume. The decrease rates for the IMRT plans (EUD = 0.47 × 10{sup −3} Gy cm{sup −3} and NTCP = 3.94 × 10{sup −2} % cm{sup −3}) were higher than those for the VMAT (EUD = 0.28 × 10{sup −3} Gy cm{sup −3} and NTCP = 2.61 × 10{sup −2} % cm{sup −3}). In addition, the dependences of the rectal EUD and NTCP on the dose-volume consistency were found very similar between the prostate IMRT and VMAT plans. This shows that both delivery techniques have similar variations of the rectal EUD and NTCP on the dose-volume consistency. Conclusion: Dependences of the dose-volume consistency on the rectal EUD and NTCP were compared between the prostate IMRT and VMAT plans. It is concluded that both rectal EUD and NTCP decreased with an increase of the rectal volume. The variation rates of the rectal EUD and NTCP on the rectal volume were higher for the IMRT plans than VMAT. However, variations of the rectal dose-volume consistency on the rectal EUD and NTCP were found not significant for both delivery techniques.« less
Gollust, Sarah E; Barry, Colleen L; Niederdeppe, Jeff; Baum, Laura; Fowler, Erika Franklin
2014-12-01
Many Americans will learn about the implementation of the Patient Protection and Affordable Care Act (ACA) through the mass media. We examined geographic variation in the volume and content of mass media during the initial two-week rollout of the new health insurance marketplaces in October 2013 across 210 US media markets, using data from the Wesleyan Media Project. We found substantial geographic variation in the volume and tone of insurance product advertisements, political advertisements, and news coverage of the ACA marketplaces. News coverage of the ACA airing in media markets located in states operating federal or partnership marketplaces was more negative than coverage airing in markets located in states running their own marketplaces. Intrastate variation in media volume and content was also substantial and appears distinguishable from the local political climate. Variation in exposure to media messages likely affects public sentiment regarding the ACA and could contribute to geographic differences in insurance enrollment and public perceptions of US health care options. Researchers and policy makers evaluating the implementation of the ACA-and insurance enrollment in the marketplaces in particular-should consider addressing media influences. Copyright © 2014 by Duke University Press.
Mapping of Titan: Results from the first Titan radar passes
Stofan, E.R.; Lunine, J.I.; Lopes, R.; Paganelli, F.; Lorenz, R.D.; Wood, C.A.; Kirk, R.; Wall, S.; Elachi, C.; Soderblom, L.A.; Ostro, S.; Janssen, M.; Radebaugh, J.; Wye, L.; Zebker, H.; Anderson, Y.; Allison, M.; Boehmer, R.; Callahan, P.; Encrenaz, P.; Flamini, E.; Francescetti, G.; Gim, Y.; Hamilton, G.; Hensley, S.; Johnson, W.T.K.; Kelleher, K.; Muhleman, D.; Picardi, G.; Posa, F.; Roth, L.; Seu, R.; Shaffer, S.; Stiles, B.; Vetrella, S.; West, R.
2006-01-01
The first two swaths collected by Cassini's Titan Radar Mapper were obtained in October of 2004 (Ta) and February of 2005 (T3). The Ta swath provides evidence for cryovolcanic processes, the possible occurrence of fluvial channels and lakes, and some tectonic activity. The T3 swath has extensive areas of dunes and two large impact craters. We interpret the brightness variations in much of the swaths to result from roughness variations caused by fracturing and erosion of Titan's icy surface, with additional contributions from a combination of volume scattering and compositional variations. Despite the small amount of Titan mapped to date, the significant differences between the terrains of the two swaths suggest that Titan is geologically complex. The overall scarcity of impact craters provides evidence that the surface imaged to date is relatively young, with resurfacing by cryovolcanism, fluvial erosion, aeolian erosion, and likely atmospheric deposition of materials. Future radar swaths will help to further define the nature of and extent to which internal and external processes have shaped Titan's surface. ?? 2006 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vasco, D.W.; Ferretti, Alessandro; Novali, Fabrizio
2008-05-01
Transient pressure variations within a reservoir can be treated as a propagating front and analyzed using an asymptotic formulation. From this perspective one can define a pressure 'arrival time' and formulate solutions along trajectories, in the manner of ray theory. We combine this methodology and a technique for mapping overburden deformation into reservoir volume change as a means to estimate reservoir flow properties, such as permeability. Given the entire 'travel time' or phase field, obtained from the deformation data, we can construct the trajectories directly, there-by linearizing the inverse problem. A numerical study indicates that, using this approach, we canmore » infer large-scale variations in flow properties. In an application to Interferometric Synthetic Aperture (InSAR) observations associated with a CO{sub 2} injection at the Krechba field, Algeria, we image pressure propagation to the northwest. An inversion for flow properties indicates a linear trend of high permeability. The high permeability correlates with a northwest trending fault on the flank of the anticline which defines the field.« less
Variation in the cost of care for primary total knee arthroplasties.
Haas, Derek A; Kaplan, Robert S
2017-03-01
The study examined the cost variation across 29 high-volume US hospitals and their affiliated orthopaedic surgeons for delivering a primary total knee arthroplasty without major complicating conditions. The hospitals had similar patient demographics, and more than 80% of them had statistically-similar Medicare risk-adjusted readmission and complication rates. Hospital and physician personnel costs were calculated using time-driven activity-based costing. Consumable supply costs, such as the prosthetic implant, were calculated using purchase prices, and postacute care costs were measured using either internal costs or external claims as reported by each hospital. Despite having similar patient demographics and readmission and complication rates, the average cost of care for total knee arthroplasty across the hospitals varied by a factor of about 2 to 1. Even after adjusting for differences in internal labor cost rates, the hospital at the 90th percentile of cost spent about twice as much as the one at the 10th percentile of cost. The large variation in costs among sites suggests major and multiple opportunities to transfer knowledge about process and productivity improvements that lower costs while simultaneously maintaining or improving outcomes.
Silt and gas accumulation beneath an artificial recharge spreading basin, Southwestern Utah, U.S.A.
Heilweil, V.M.; Solomon, D.K.; Ortiz, G.
2009-01-01
Sand Hollow Reservoir in southwestern Utah, USA, is operated for both surface-water storage and artificial recharge to the underlying Navajo Sandstone. The total volume of estimated artificial recharge between 2002 and 2007 is 85 million cubic meters (69,000 acre-feet). Since 2002, artificial recharge rates have generally been declining and are inversely correlated with the increasing surface area of the reservoir. Permeability testing of core samples retrieved from beneath the reservoir indicates that this decline may not be due to silt accumulation. Artificial recharge rates also show much seasonal variability. Calculations of apparent intrinsic permeability show that these variations can only partly be explained by variation in water viscosity associated with seasonal changes in water temperature. Sporadic seasonal trends in recharge rates and intrinsic permeability during 2002-2004 could be associated with the large fluctuations in reservoir elevation and wetted area. From 2005 through 2007, the reservoir was mostly full and there has been a more consistent seasonal pattern of minimum recharge rates during the summer and maximum rates during the autumn. Total dissolved-gas pressure measurements indicate the presence of biogenic gas bubbles in the shallow sediments beneath the shallower parts of Sand Hollow Reservoir when the water is warmer. Permeability reduction associated with this gas clogging may contribute to the decrease in artificial recharge rates during the spring and summer, with a subsequently increasing recharge rates in the autumn associated with a decline in volume of gas bubbles. Other possible causes for seasonal variation in artificial recharge rates require further investigation.
NASA Astrophysics Data System (ADS)
Handoyo; Fatkhan; Del, Fourier
2018-03-01
Reservoir rock containing oil and gas generally has high porosity and permeability. High porosity is expected to accommodate hydrocarbon fluid in large quantities and high permeability is associated with the rock’s ability to let hydrocarbon fluid flow optimally. Porosity and permeability measurement of a rock sample is usually performed in the laboratory. We estimate the porosity and permeability of sandstones digitally by using digital images from μCT-Scan. Advantages of the method are non-destructive and can be applied for small rock pieces also easily to construct the model. The porosity values are calculated by comparing the digital image of the pore volume to the total volume of the sandstones; while the permeability values are calculated using the Lattice Boltzmann calculations utilizing the nature of the law of conservation of mass and conservation of momentum of a particle. To determine variations of the porosity and permeability, the main sandstone samples with a dimension of 300 × 300 × 300 pixels are made into eight sub-cubes with a size of 150 × 150 × 150 pixels. Results of digital image modeling fluid flow velocity are visualized as normal velocity (streamline). Variations in value sandstone porosity vary between 0.30 to 0.38 and permeability variations in the range of 4000 mD to 6200 mD. The results of calculations show that the sandstone sample in this research is highly porous and permeable. The method combined with rock physics can be powerful tools for determining rock properties from small rock fragments.
Multicentre imaging measurements for oncology and in the brain
Tofts, P S; Collins, D J
2011-01-01
Multicentre imaging studies of brain tumours (and other tumour and brain studies) can enable a large group of patients to be studied, yet they present challenging technical problems. Differences between centres can be characterised, understood and minimised by use of phantoms (test objects) and normal control subjects. Normal white matter forms an excellent standard for some MRI parameters (e.g. diffusion or magnetisation transfer) because the normal biological range is low (<2–3%) and the measurements will reflect this, provided the acquisition sequence is controlled. MR phantoms have benefits and they are necessary for some parameters (e.g. tumour volume). Techniques for temperature monitoring and control are given. In a multicentre study or treatment trial, between-centre variation should be minimised. In a cross-sectional study, all groups should be represented at each centre and the effect of centre added as a covariate in the statistical analysis. In a serial study of disease progression or treatment effect, individual patients should receive all of their scans at the same centre; the power is then limited by the within-subject reproducibility. Sources of variation that are generic to any imaging method and analysis parameters include MR sequence mismatch, B1 errors, CT effective tube potential, region of interest generation and segmentation procedure. Specific tissue parameters are analysed in detail to identify the major sources of variation and the most appropriate phantoms or normal studies. These include dynamic contrast-enhanced and dynamic susceptibility contrast gadolinium imaging, T1, diffusion, magnetisation transfer, spectroscopy, tumour volume, arterial spin labelling and CT perfusion. PMID:22433831
Jacobs, Bob; Johnson, Nicholas L.; Wahl, Devin; Schall, Matthew; Maseko, Busisiwe C.; Lewandowski, Albert; Raghanti, Mary A.; Wicinski, Bridget; Butti, Camilla; Hopkins, William D.; Bertelsen, Mads F.; Walsh, Timothy; Roberts, John R.; Reep, Roger L.; Hof, Patrick R.; Sherwood, Chet C.; Manger, Paul R.
2014-01-01
Although the basic morphological characteristics of neurons in the cerebellar cortex have been documented in several species, virtually nothing is known about the quantitative morphological characteristics of these neurons across different taxa. To that end, the present study investigated cerebellar neuronal morphology among eight different, large-brained mammalian species comprising a broad phylogenetic range: afrotherians (African elephant, Florida manatee), carnivores (Siberian tiger, clouded leopard), cetartiodactyls (humpback whale, giraffe) and primates (human, common chimpanzee). Specifically, several neuron types (e.g., stellate, basket, Lugaro, Golgi, and granule neurons; N = 317) of the cerebellar cortex were stained with a modified rapid Golgi technique and quantified on a computer-assisted microscopy system. There was a 64-fold variation in brain mass across species in our sample (from clouded leopard to the elephant) and a 103-fold variation in cerebellar volume. Most dendritic measures tended to increase with cerebellar volume. The cerebellar cortex in these species exhibited the trilaminate pattern common to all mammals. Morphologically, neuron types in the cerebellar cortex were generally consistent with those described in primates (Fox et al., 1967) and rodents (Palay and Chan-Palay, 1974), although there was substantial quantitative variation across species. In particular, Lugaro neurons in the elephant appeared to be disproportionately larger than those in other species. To explore potential quantitative differences in dendritic measures across species, MARSplines analyses were used to evaluate whether species could be differentiated from each other based on dendritic characteristics alone. Results of these analyses indicated that there were significant differences among all species in dendritic measures. PMID:24795574
Heterogeneity and anisotropy in the lithospheric mantle
NASA Astrophysics Data System (ADS)
Tommasi, Andréa; Vauchez, Alain
2015-10-01
The lithospheric mantle is intrinsically heterogeneous and anisotropic. These two properties govern the repartition of deformation, controlling intraplate strain localization and development of new plate boundaries. Geophysical and geological observations provide clues on the types, ranges, and characteristic length scales of heterogeneity and anisotropy in the lithospheric mantle. Seismic tomography points to variations in geothermal gradient and hence in rheological behavior at scales of hundreds of km. Seismic anisotropy data substantiate anisotropic physical properties consistent at scales of tens to hundreds of km. Receiver functions imply lateral and vertical heterogeneity at scales < 10 km, which might record gradients in composition or anisotropy. Observations on naturally deformed peridotites establish that compositional heterogeneity and Crystal Preferred Orientations (CPOs) are ubiquitous from the mm to the km scales. These data allow discussing the processes that produce/destroy heterogeneity and anisotropy and constraining the time scales over which they are active. This analysis highlights: (i) the role of deformation and reactive percolation of melts and fluids in producing compositional and structural heterogeneity and the feedbacks between these processes, (ii) the weak mechanical effect of mineralogical variations, and (iii) the low volumes of fine-grained microstructures and difficulty to preserve them. In contrast, olivine CPO and the resulting anisotropy of mechanical and thermal properties are only modified by deformation. Based on this analysis, we propose that strain localization at the plate scale is, at first order, controlled by large-scale variations in thermal structure and in CPO-induced anisotropy. In cold parts of the lithospheric mantle, grain size reduction may contribute to strain localization, but the low volume of fine-grained domains limits this effect.
Li, X Allen; Chen, Xiaojian; Zhang, Qiang; Kirsch, David G; Petersen, Ivy; DeLaney, Thomas F; Freeman, Carolyn R; Trotti, Andy; Hitchcock, Ying; Bedi, Meena; Haddock, Michael; Salerno, Kilian; Dundas, George; Wang, Dian
2016-01-01
Six imaging modalities were used in Radiation Therapy Oncology Group (RTOG) 0630, a study of image guided radiation therapy (IGRT) for primary soft tissue sarcomas of the extremity. We analyzed all daily patient-repositioning data collected in this trial to determine the impact of daily IGRT on clinical target volume-to-planning target volume (CTV-to-PTV) margin. Daily repositioning data, including shifts in right-left (RL), superior-inferior (SI), and anterior-posterior (AP) directions and rotations for 98 patients enrolled in RTOG 0630 from 18 institutions were analyzed. Patients were repositioned daily on the basis of bone anatomy by using pretreatment images, including kilovoltage orthogonal images (KVorth), megavoltage orthogonal images (MVorth), KV fan-beam computed tomography (KVCT), KV cone beam CT (KVCB), MV fan-beam CT (MVCT), and MV cone beam CT (MVCB). Means and standard deviations (SDs) for each shift and rotation were calculated for each patient and for each IGRT modality. The Student's t tests and F-tests were performed to analyze the differences in the means and SDs. Necessary CTV-to-PTV margins were estimated. The repositioning shifts and day-to-day variations were large and generally similar for the 6 imaging modalities. Of the 2 most commonly used modalities, MVCT and KVorth, there were no statistically significant differences in the shifts and rotations (P = .15 and .59 for the RL and SI shifts, respectively; and P = .22 for rotation), except for shifts in AP direction (P = .002). The estimated CTV-to-PTV margins in the RL, SI, and AP directions would be 13.0, 10.4, and 11.7 mm from MVCT data, respectively, and 13.1, 8.6, and 10.8 mm from KVorth data, respectively, indicating that margins substantially larger than 5 mm used with daily IGRT would be required in the absence of IGRT. The observed large daily repositioning errors and the large variations among institutions imply that daily IGRT is necessary for this tumor site, particularly in multi-institutional trials. Otherwise, a CTV-to-PTV margin of 1.5 cm is required to account for daily setup variations. Copyright © 2016 American Society for Radiation Oncology. Published by Elsevier Inc. All rights reserved.
High day-to-day reliability in lower leg volume measured by water displacement.
Pasley, Jeffrey D; O'Connor, Patrick J
2008-07-01
The day-to-day reliability of lower leg volume is poorly documented. This investigation determined the day-to-day reliability of lower leg volume (soleus and gastrocnemius) measured using water displacement. Thirty young adults (15 men and 15 women) had their right lower leg volume measured by water displacement on five separate occasions. The participants performed normal activities of daily living and were measured at the same time of day after being seated for 30 min. The results revealed a high day-to-day reliability for lower leg volume. The mean percentage change in lower leg volume across days compared to day 1 ranged between 0 and 0.37%. The mean within subjects coefficient of variation in lower leg volume was 0.72% and the coefficient of variation for the entire sample across days ranged from 5.66 to 6.32%. A two way mixed model intraclass correlation (30 subjects x 5 days) showed that the lower leg volume measurement was highly reliable (ICC = 0.972). Foot and total lower leg volumes showed similarly high reliability. Water displacement offers a cost effective and reliable solution for the measurement of lower leg edema across days.
Karbalay-Doust, Saied; Noorafshan, Ali
2012-07-05
Changes in the number and size of oocytes can lead to fertilization problems. The present study aimed to evaluate the number, volume, and surface area of oocytes in healthy as well as nandrolone decanoate-treated (ND) mice using stereological methods. Five control mice received vehicle, and five ND-treated mice received ND. Using the 'isotropic Cavalieri' design', the ovary was sectioned. The volume of the ovary (cortex and medulla) was estimated. The oocytes' volume and surface area were estimated using the invariator. The number of the oocytes was estimated using an optical disector. The volumes of the ovary, cortex, and medulla decreased ~50% in the ND-treated mice. The mean number (coefficient of variation) of preantral, antral, and atretic oocytes in the control ovary were 1,690 (0.29), 2,100 (0.52), and 3,900 (0.2), respectively, which decreased ~54%, ~87%, and ~91%, respectively in the ND-treated animals. The mean volume (coefficient of variation) of the preantral, antral, and atretic oocytes were 86,000 (0.27), 110,000 (0.48), and 27,000 (0.33) μm³, respectively. The mean surface area (coefficient of variation) of the three types of oocytes were 9,000 (0.24), 9,900 (0.28), and 4,700 (0.21) μm², respectively. These parameters remained unchanged in the ND-treated mice. ND induces reduction in the number of oocytes, but not in the volume or the surface area.
Pagliaccio, David; Barch, Deanna M.; Bogdan, Ryan; Wood, Phillip K.; Lynskey, Michael T.; Heath, Andrew C.; Agrawal, Arpana
2015-01-01
Importance Prior neuroimaging studies have suggested that alterations in brain structure may be a consequence of cannabis use. Siblings discordant for cannabis use offer an opportunity to use cross-sectional data to disentangle such causal hypotheses from shared effects of genetics and familial environment on brain structure and cannabis use. Objective To determine whether cannabis use is associated with differences in brain structure in a large sample of twins/siblings and to examine sibling pairs discordant for cannabis use to separate potential causal and predispositional factors linking lifetime cannabis exposure to volumetric alterations. Design Cross-sectional diagnostic interview, behavioral, and neuroimaging data. Setting Community sampling and established family registries. Participants Data from 483 participants (22-35 years old), enrolled in the on-going Human Connectome Project; 262 participants reported cannabis exposure, i.e. ever using cannabis in their lifetime. Main Outcome Measures Whole brain, hippocampus, amygdala, ventral striatum, and orbitofrontal cortex volumes were related to lifetime cannabis use (ever use, age of onset, and frequency of use) using linear regressions. Genetic (ρg) and environmental (ρe) correlations between cannabis use and brain volumes were estimated. Linear mixed-models were used to examine volume differences in sex-matched, concordant unexposed (Npairs=71), exposed (Npairs=81), or exposure discordant (Npairs=89) sibling pairs. Results Cannabis exposure was related to smaller left amygdala (~2.3%) and right ventral striatum volumes (~3.5%). These volumetric differences were within the range of normal variation. The relationship between left amygdala volume and cannabis use was largely due to shared genetic factors (ρg=−0.43, p=0.004), while the origin of the association with right ventral striatum volumes was unclear. Importantly, brain volumes did not differ between sex-matched siblings discordant for use. Both the exposed and unexposed siblings in pairs discordant for cannabis exposure showed reduced amygdala volumes relative to members of concordant unexposed pairs. Conclusions and Relevance Differences in amygdala volume in cannabis users are attributable to common predispositional factors, genetic or environmental in origin, with little support for causal influences. Causal influences, in isolation or in conjunction with predispositional factors, may exist for other brain regions (e.g. ventral striatum) or at more severe levels of cannabis involvement and deserve further study. PMID:26308883
Ortiz, Héctor; Biondo, Sebastiano; Codina, Antonio; Ciga, Miguel Á; Enríquez-Navascués, José M; Espín, Eloy; García-Granero, Eduardo; Roig, José Vicente
2016-01-01
This multicentre observational study examines variation between hospitals in postoperative mortality after elective surgery in the Rectal Cancer Project of the Spanish Society of Surgeons and explores whether hospital volume and patient characteristics contribute to any variation between hospitals. Hospital variation was quantified using a multilevel approach on prospective data derived from the multicentre database of all rectal adenocarcinomas operated by an anterior resection or an abdominoperineal excision at 84 surgical departments from 2006 to 2013. The following variables were included in the analysis; demographics, American Society of Anaesthesiologists classification, tumour location and stage, administration of neoadjuvant treatment, and annual volume of surgical procedures. A total of 9809 consecutive patients were included. The rate of 30-day postoperative mortality was 1.8% Stratified by annual surgical volume hospitals varied from 1.4 to 2.0 in 30-day mortality. In the multilevel regression analysis, male gender (OR 1.623 [1.143; 2.348]; P<.008), increased age (OR: 5.811 [3.479; 10.087]; P<.001), and ASA score (OR 10.046 [3.390; 43.185]; P<.001) were associated with 30-day mortality. However, annual surgical volume was not associated with mortality (OR 1.309 [0.483; 4.238]; P=.619). Besides, there was a statistically significant variation in mortality between all departments (MOR 1.588 [1.293; 2.015]; P<.001). Postoperative mortality varies significantly among hospitals included in the project and this difference cannot be attributed to the annual surgical volume. Copyright © 2015 AEC. Publicado por Elsevier España, S.L.U. All rights reserved.
Walraven, I; Damhuis, R A; Ten Berge, M G; Rosskamp, M; van Eycken, L; de Ruysscher, D; Belderbos, J S A
2017-11-01
Concurrent chemoradiotherapy (CCRT) is considered the standard treatment regimen in non-surgical locally advanced non-small cell lung cancer (NSCLC) patients and sequential chemoradiotherapy (SCRT) is recommended in patients who are unfit to receive CCRT or when the treatment volume is considered too large. In this study, we investigated the proportion of CCRT/SCRT in the Netherlands and Belgium. Furthermore, patient and disease characteristics associated with SCRT were assessed. An observational study was carried out with data from three independent national registries: the Belgian Cancer Registry (BCR), the Netherlands Cancer Registry (NCR) and the Dutch Lung Cancer Audit-Radiotherapy (DLCA-R). Differences in patient and disease characteristics between CCRT and SCRT were tested with unpaired t-tests (for continuous variables) and with chi-square tests (for categorical variables). A prognostic model was constructed to determine patient and disease parameters predictive for the choice of SCRT. This study included 350 patients from the BCR, 780 patients from the NCR and 428 patients from the DLCA-R. More than half of the stage III NSCLC patients in the Netherlands (55%) and in Belgium more than a third (35%) were treated with CCRT. In both the Dutch and Belgian population, higher age and more advanced N-stage were significantly associated with SCRT. Performance score, pulmonary function, comorbidities and tumour volume were not associated with SCRT. In this observational population-based study, a large treatment variation in non-surgical stage III NSCLC patients was observed between and within the Netherlands and Belgium. Higher age and N-stage were significantly associated with the choice for SCRT. Copyright © 2017 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Atlas, E.; Ridley, B.; Walega, J.; Greenberg, J.; Kok, G.; Staffelbach, T.; Schauffler, S.; Lind, J.; Huebler, G.; Norton, R.
1996-01-01
During October 19-20, 1991, one flight of the NASA Global Tropospheric Experiment (GTE) Pacific Exploratory Mission (PEM-West A) mission was conducted near Hawaii as an intercomparison with ground-based measurements of the Mauna Loa Observatory Photochemistry Experiment (MLOPEX 2) and the NOAA Climate Modeling and Diagnostics Laboratory (CMDL). Ozone, reactive nitrogen species, peroxides, hydrocarbons, and halogenated hydrocarbons were measured by investigators aboard the DC-8 aircraft and at the ground site. Lidar cross sections of ozone revealed a complex air mass structure near the island of Hawaii which was evidenced by large variation in some trace gas mixing ratios. This variation limited the time and spatial scales for direct measurement intercomparisons. Where differences occurred between measurements in the same air masses, the intercomparison suggested that biases for some trace gases was due to different calibration scales or, in some cases, instrumental or sampling biases. Relatively large uncertainties were associated with those trace gases present in the low parts per trillion by volume range. Trace gas correlations were used to expand the scope of the intercomparison to identify consistent trends between the different data sets.
Moral values are associated with individual differences in regional brain volume
Lewis, G. J.; Kanai, R.; Bates, T. C.; Rees, G.
2012-01-01
Moral sentiment has been hypothesized to reflect evolved adaptations to social living. If so, individual differences in moral values may relate to regional variation in brain structure. We tested this hypothesis in a sample of 70 young, healthy adults examining whether differences on two major dimensions of moral values were significantly associated with regional gray matter volume. The two clusters of moral values assessed were “individualizing” (values of harm/care and fairness), and “binding” (deference to authority, in-group loyalty, and purity/sanctity). Individualizing was positively associated with left dorsomedial prefrontal cortex volume, and negatively associated with bilateral precuneus volume. For binding, a significant positive association was found for bilateral subcallosal gyrus and a trend to significance for the left anterior insula volume. These findings demonstrate that variation in moral sentiment reflects individual differences in brain structure and suggest a biological basis for moral sentiment, distributed across multiple brain regions. PMID:22571458
NASA Astrophysics Data System (ADS)
Cook, Steve; Watson, Duncan
2017-03-01
Following its introduction in the seminal study of Osborne (1959), a voluminous literature has emerged examining the returns-volume relationship for financial assets. The present paper revisits this relationship in an examination of the FTSE100 which extends the existing literature in two ways. First, alternative daily measures of the FTSE100 index are used to create differing returns and absolute returns series to employ in an examination of returns-volume causality. Second, rolling regression analysis is utilised to explore potential time variation in the returns-volume relationship. The findings obtained depict a hitherto unconsidered complexity in this relationship with the type of returns series considered and financial crisis found to be significant underlying factors. The implications of the newly derived results for both the understanding of the nature of the returns-volume relationship and the development of theories in connection to it are discussed.
Moral values are associated with individual differences in regional brain volume.
Lewis, Gary J; Kanai, Ryota; Bates, Timothy C; Rees, Geraint
2012-08-01
Moral sentiment has been hypothesized to reflect evolved adaptations to social living. If so, individual differences in moral values may relate to regional variation in brain structure. We tested this hypothesis in a sample of 70 young, healthy adults examining whether differences on two major dimensions of moral values were significantly associated with regional gray matter volume. The two clusters of moral values assessed were "individualizing" (values of harm/care and fairness) and "binding" (deference to authority, in-group loyalty, and purity/sanctity). Individualizing was positively associated with left dorsomedial pFC volume and negatively associated with bilateral precuneus volume. For binding, a significant positive association was found for bilateral subcallosal gyrus and a trend to significance for the left anterior insula volume. These findings demonstrate that variation in moral sentiment reflects individual differences in brain structure and suggest a biological basis for moral sentiment, distributed across multiple brain regions.
Aging dynamics in the polymer glass of poly(2-chlorostyrene): Dielectric susceptibility and volume
NASA Astrophysics Data System (ADS)
Fukao, Koji; Tahara, Daisuke
2009-11-01
Aging dynamics was investigated in the glassy states of poly(2-chlorostyrene) by measuring the complex electrical capacitance during aging below the glass transition temperature. The variations with time and temperature of the ac dielectric susceptibility and volume could be determined by simply measuring the variation in the complex electrical capacitance. Isothermal aging at a given temperature for several hours after an intermittent stop in constant-rate cooling is stored in the deviations of both the real and imaginary parts of the complex ac dielectric susceptibility and volume. During cooling after isothermal aging, the deviation of the ac dielectric susceptibility from the reference value decreases and almost vanishes at room temperature. By contrast, the deviation in volume induced during isothermal aging remains almost constant during cooling. The simultaneous measurement of ac dielectric susceptibility and volume clearly revealed that the ac dielectric susceptibility exhibits a full rejuvenation effect, whereas the volume does not show any rejuvenation effects. We discuss a plausible model that can reproduce the present experimental results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brink, Carsten, E-mail: carsten.brink@rsyd.dk; Laboratory of Radiation Physics, Odense University Hospital; Bernchou, Uffe
2014-07-15
Purpose: Large interindividual variations in volume regression of non-small cell lung cancer (NSCLC) are observable on standard cone beam computed tomography (CBCT) during fractionated radiation therapy. Here, a method for automated assessment of tumor volume regression is presented and its potential use in response adapted personalized radiation therapy is evaluated empirically. Methods and Materials: Automated deformable registration with calculation of the Jacobian determinant was applied to serial CBCT scans in a series of 99 patients with NSCLC. Tumor volume at the end of treatment was estimated on the basis of the first one third and two thirds of the scans.more » The concordance between estimated and actual relative volume at the end of radiation therapy was quantified by Pearson's correlation coefficient. On the basis of the estimated relative volume, the patients were stratified into 2 groups having volume regressions below or above the population median value. Kaplan-Meier plots of locoregional disease-free rate and overall survival in the 2 groups were used to evaluate the predictive value of tumor regression during treatment. Cox proportional hazards model was used to adjust for other clinical characteristics. Results: Automatic measurement of the tumor regression from standard CBCT images was feasible. Pearson's correlation coefficient between manual and automatic measurement was 0.86 in a sample of 9 patients. Most patients experienced tumor volume regression, and this could be quantified early into the treatment course. Interestingly, patients with pronounced volume regression had worse locoregional tumor control and overall survival. This was significant on patient with non-adenocarcinoma histology. Conclusions: Evaluation of routinely acquired CBCT images during radiation therapy provides biological information on the specific tumor. This could potentially form the basis for personalized response adaptive therapy.« less
Growth of the eye lens: II. Allometric studies.
Augusteyn, Robert C
2014-01-01
The purpose of this study was to examine the ontogeny and phylogeny of lens growth in a variety of species using allometry. Data on the accumulation of wet and/or dry lens weight as a function of bodyweight were obtained for 40 species and subjected to allometric analysis to examine ontogenic growth and compaction. Allometric analysis was also used to compare the maximum adult lens weights for 147 species with the maximum adult bodyweight and to compare lens volumes calculated from wet and dry weights with eye volumes calculated from axial length. Linear allometric relationships were obtained for the comparison of ontogenic lens and bodyweight accumulation. The body mass exponent (BME) decreased with increasing animal size from around 1.0 in small rodents to 0.4 in large ungulates for both wet and dry weights. Compaction constants for the ontogenic growth ranged from 1.00 in birds and reptiles up to 1.30 in mammals. Allometric comparison of maximum lens wet and dry weights with maximum bodyweights also yielded linear plots with a BME of 0.504 for all warm blooded species except primates which had a BME of 0.25. When lens volumes were compared with eye volumes, all species yielded a scaling constant of 0.75 but the proportionality constants for primates and birds were lower. Ontogenic lens growth is fastest, relative to body growth, in small animals and slowest in large animals. Fiber cell compaction takes place throughout life in most species, but not in birds and reptiles. Maximum adult lens size scales with eye size with the same exponent in all species, but birds and primates have smaller lenses relative to eye size than other species. Optical properties of the lens are generated through the combination of variations in the rate of growth, rate of compaction, shape and size.
NASA Astrophysics Data System (ADS)
Folkes, Chris B.; de Silva, Shanaka L.; Wright, Heather M.; Cas, Raymond A. F.
2011-12-01
By applying a number of analytical techniques across a spectrum of spatial scales (centimeter to micrometer) in juvenile components, we show that the Cerro Galán volcanic system has repeatedly erupted magmas with nearly identical geochemistries over >3.5 Myr. The Cerro Galán system produced nine ignimbrites (˜5.6 to 2 Ma) with a cumulative volume of >1,200 km3 (DRE; dense rock equivalent) of calc-alkaline, high-K rhyodacitic magmas (68-71 wt.% SiO2). The mineralogy is broadly constant throughout the eruptive sequence, comprising plagioclase, quartz, biotite, Fe-Ti oxides, apatite, and titanite. Early ignimbrite magmas also contained amphibole, while the final eruption, the most voluminous Cerro Galán ignimbrite (CGI; 2.08 ± 0.02 Ma) erupted a magma containing rare amphibole, but significant sanidine. Each ignimbrite contains two main juvenile clast types; dominant "white" pumice and ubiquitous but subordinate "grey" pumice. Fe-Ti oxide and amphibole-plagioclase thermometry coupled with amphibole barometry suggest that the grey pumice originated from potentially hotter and deeper magmas (800-840°C, 3-5 kbar) than the more voluminous white pumice (770-810°C, 1.5-2.5 kbar). The grey pumice is interpreted to represent the parental magmas to the Galán system emplaced into the upper crust from a deeper storage zone. Most inter-ignimbrite variations can be accounted for by differences in modal mineralogy and crystal contents that vary from 40 to 55 vol.% on a vesicle-free basis. Geochemical modeling shows that subtle bulk-rock variations in Ta, Y, Nb, Dy, and Yb between the Galán ignimbrites can be reconciled with differences in amounts of crystal fractionation from the "grey" parent magma. The amount of fractionation is inversely correlated with volume; the CGI (˜630 km3) and Real Grande Ignimbrite (˜390 km3) return higher F values (proportion of liquid remaining) than the older Toconquis Group ignimbrites (<50 km3), implying less crystal fractionation took place during the upper-crustal evolution of these larger volume magmas. We attribute this relationship to variations in magma chamber geometry; the younger, largest volume ignimbrites came from flat sill-like magma chambers, reducing the relative proportion of sidewall crystallization and fractionation compared to the older, smaller-volume ignimbrite eruptions. The grey pumice clasts also show evidence of silicic recharge throughout the history of the Cerro Galán system, and recharge days prior to eruption has previously been suggested based on reversely zoned (OH and Cl) apatite phenocrysts. A rare population of plagioclase phenocrysts with thin An-rich rims in juvenile clasts in many ignimbrites supports the importance of recharge in the evolution and potential triggering of eruptions. This study extends the notion that large volumes of nearly identical silicic magmas can be generated repeatedly, producing prolonged geochemical homogeneity from a long-lived magma source in a subduction zone volcanic setting. At Cerro Galán, we propose that there is a zone between mantle magma input and upper crustal chambers, where magmas are geochemically "buffered", producing the underlying geochemical and isotopic signatures. This produces the same parental magmas that are delivered repeatedly to the upper crust. A lower-crustal MASH (melting, assimilation, storage, and homogenization) zone is proposed to act as this buffer zone. Subsequent upper crustal magmatic processes serve only to slightly modify the geochemistry of the magmas.
Identifying with fictive characters: structural brain correlates of the personality trait ‘fantasy’
Hänggi, Jürgen; Jancke, Lutz
2014-01-01
The perception of oneself as absorbed in the thoughts, feelings and happenings of a fictive character (e.g. in a novel or film) as if the character’s experiences were one’s own is referred to as identification. We investigated whether individual variation in the personality trait of identification is associated with individual variation in the structure of specific brain regions, using surface and volume-based morphometry. The hypothesized regions of interest were selected on the basis of their functional role in subserving the cognitive processing domains considered important for identification (i.e. mental imagery, empathy, theory of mind and merging) and for the immersive experience called ‘presence’. Controlling for age, sex, whole-brain volume and other traits, identification covaried significantly with the left hippocampal volume, cortical thickness in the right anterior insula and the left dorsal medial prefrontal cortex, and with gray matter volume in the dorsolateral prefrontal cortex. These findings show that trait identification is associated with structural variation in specific brain regions. The findings are discussed in relation to the potential functional contribution of these regions to identification. PMID:24464847
ERIC Educational Resources Information Center
Bock, Geoffrey; And Others
This segment of the national evaluation study of the Follow Through Planned Variation Model describes each of the 17 models represented in the study and reports the results of analyses of 4 years of student performance data for each model. First a purely descriptive synthesis of findings is presented for each model, with interpretation of the data…
NASA Astrophysics Data System (ADS)
Lacan, I.; Matthews, K. R.
2005-12-01
Year to year variation in snowpack (20-200% average) and summer rain create large fluctuations in the volume of water in ponds and small lakes of the higher elevation (> 3000 m) Sierra Nevada. These water bodies are critical habitat for the imperiled mountain yellow-legged frog, Rana muscosa, which has decreased in abundance by 90% during the past century, due in part to the loss of suitable habitat and introduction of a fish predator (trout, Oncorhynchus spp.). Climate change is predicted to reduce the amount of snowpack, potentially impacting amphibian habitats throughout the Sierra Nevada by further reducing the lake and pond water levels and resulting in drying of small lakes during the summer. Mountain yellow-legged frogs are closely tied to water during all life stages, and are unique in having a three- to four-year tadpole phase. Thus, tadpole survival and future recruitment of adult frogs requires adequate water in lakes and ponds throughout the year, but larger lakes are populated with fish that prey on frogs and tadpoles. Thus, most successful frog breeding occurs in warm, shallow, fishless ponds that undergo wide fluctuations in volume. These water bodies would be most susceptible to the potential climate change effects of reduced snowpack, possibly resulting in lower tadpole survival. This study explores the link between the changes in water availability -- including complete pond drying -- and the abundance and recruitment of mountain yellow-legged frog in Dusy Basin, Kings Canyon National Park, California, USA. We propose using the low-snowpack years (1999, 2002, 2004) as comparative case studies to predict future effects of climate change on aquatic habitat availability and amphibian abundance and survival. To quantify the year to year variation and changes in water volume available to amphibians, we initiated GPS lake mapping in 2002 to quantify water volumes, water surface area, and shoreline length. We tracked these changes by repeated mapping of water surface and volume (bathymetry) during the summer, and concurrently counting all the life stages (adults, subadults, tadpoles) of frogs. As a baseline in this analysis, we present 2002 data when pond volume declined 40-100% during summer in three breeding lakes. The lakes that completely dried up in 2002 were repopulated by adults in 2003 but showed no recruitment of metamorphosed frogs from previous year's tadpoles. The lakes that retained water -- even if they underwent a large reduction in water volume (-60%), surface area (-70%) and shoreline length (-70%) during the summer -- show consistent tadpole-to-subadult recruitment in the following year (2003). Similar results are obtained using frog counts from 1999-2000 and 2004-2005 and estimates of water volume in those years. Our results suggest that more frequent summer drying of small ponds -- as may be induced by climate change -- will severely reduce frog recruitment. When combined with the invasive fish that prevent frog breeding in larger lakes, such effect of climate change may cause loss of local frog populations, and push the entire species towards extinction.
NASA Astrophysics Data System (ADS)
Thalman, Ryan; de Sá, Suzane S.; Palm, Brett B.; Barbosa, Henrique M. J.; Pöhlker, Mira L.; Lizabeth Alexander, M.; Brito, Joel; Carbone, Samara; Castillo, Paulo; Day, Douglas A.; Kuang, Chongai; Manzi, Antonio; Ng, Nga Lee; Sedlacek, Arthur J., III; Souza, Rodrigo; Springston, Stephen; Watson, Thomas; Pöhlker, Christopher; Pöschl, Ulrich; Andreae, Meinrat O.; Artaxo, Paulo; Jimenez, Jose L.; Martin, Scot T.; Wang, Jian
2017-10-01
During the Observations and Modeling of the Green Ocean Amazon (GoAmazon2014/5) campaign, size-resolved cloud condensation nuclei (CCN) spectra were characterized at a research site (T3) 60 km downwind of the city of Manaus, Brazil, in central Amazonia for 1 year (12 March 2014 to 3 March 2015). Particle hygroscopicity (κCCN) and mixing state were derived from the size-resolved CCN spectra, and the hygroscopicity of the organic component of the aerosol (κorg) was then calculated from κCCN and concurrent chemical composition measurements. The annual average κCCN increased from 0.13 at 75 nm to 0.17 at 171 nm, and the increase was largely due to an increase in sulfate volume fraction. During both wet and dry seasons, κCCN, κorg, and particle composition under background conditions exhibited essentially no diel variations. The constant κorg of ˜ 0. 15 is consistent with the largely uniform and high O : C value (˜ 0. 8), indicating that the aerosols under background conditions are dominated by the aged regional aerosol particles consisting of highly oxygenated organic compounds. For air masses strongly influenced by urban pollution and/or local biomass burning, lower values of κorg and organic O : C atomic ratio were observed during night, due to accumulation of freshly emitted particles, dominated by primary organic aerosol (POA) with low hygroscopicity, within a shallow nocturnal boundary layer. The O : C, κorg, and κCCN increased from the early morning hours and peaked around noon, driven by the formation and aging of secondary organic aerosol (SOA) and dilution of POA emissions into a deeper boundary layer, while the development of the boundary layer, which leads to mixing with aged particles from the residual layer aloft, likely also contributed to the increases. The hygroscopicities associated with individual organic factors, derived from PMF (positive matrix factorization) analysis of AMS (aerosol mass spectrometry) spectra, were estimated through multivariable linear regression. For the SOA factors, the variation of the κ value with O : C agrees well with the linear relationship reported from earlier laboratory studies of SOA hygroscopicity. On the other hand, the variation in O : C of ambient aerosol organics is largely driven by the variation in the volume fractions of POA and SOA factors, which have very different O : C values. As POA factors have hygroscopicity values well below the linear relationship between SOA hygroscopicity and O : C, mixtures with different POA and SOA fractions exhibit a steeper slope for the increase in κorg with O : C, as observed during this and earlier field studies. This finding helps better understand and reconcile the differences in the relationships between κorg and O : C observed in laboratory and field studies, therefore providing a basis for improved parameterization in global models, especially in a tropical context.
Thalman, Ryan; de Sá, Suzane S.; Palm, Brett B.; ...
2017-10-05
During the Observations and Modeling of the Green Ocean Amazon (GoAmazon2014/5) campaign, size-resolved cloud condensation nuclei (CCN) spectra were characterized at a research site (T3) 60km downwind of the city of Manaus, Brazil, in central Amazonia for one year (12 March 2014 to 3 March 2015). Particle hygroscopicity (κCCN) and mixing state were derived from the size-resolved CCN spectra, and the hygroscopicity of the organic component of the aerosol (κorg) was then calculated from κCCN and concurrent chemical composition measurements. The annual average κCCN increased from 0.13 at 75 nm to 0.17 at 171 nm, and the increase was largely duemore » to an increase in sulfate volume fraction. Also, during both wet and dry seasons, κCCN, κorg, and particle composition under background conditions exhibited essentially no diel variations. The constant κorg of ~0.15 is consistent with the largely uniform and high O:C value (~0.8), indicating that the aerosols under background conditions are dominated by the aged regional aerosol particles consisting of highly oxygenated organic compounds. For air masses strongly influenced by urban pollution and/or local biomass burning, lower values of κorg and organic O:C atomic ratio were observed during night, due to accumulation of freshly emitted particles, dominated by primary organic aerosol (POA) with low hygroscopicity, within a shallow nocturnal boundary layer. The O:C, κorg, and κCCN increased from the early morning hours and peaked around noon, driven by the formation and aging of secondary organic aerosol (SOA) and dilution of POA emissions into a deeper boundary layer, while the development of the boundary layer, which leads to mixing with aged particles from the residual layer aloft, likely also contributed to the increases. The hygroscopicities associated with individual organic factors, derived from PMF analysis of AMS spectra, were estimated through multi-variable linear regression. For the SOA factors, the variation of the κ value with O:C agrees well with the linear relationship reported from earlier laboratory studies of SOA hygroscopicity. On the other hand, the variation in O:C of ambient aerosol organics is largely driven by the variation in the volume fractions of POA and SOA factors, which have very different O:C values. As POA factors have hygroscopicity values well below the linear relationship between SOA hygroscopicity and O:C, mixtures with different POA and SOA fractions exhibit a steeper slope for the increase of κorg with O:C, as observed during this and earlier field studies. Our finding helps better understand and reconcile the differences in the relationships between κorg and O:C observed in laboratory and field studies, therefore providing a basis for improved parameterization in global models, especially in a tropical context.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thalman, Ryan; de Sá, Suzane S.; Palm, Brett B.
During the Observations and Modeling of the Green Ocean Amazon (GoAmazon2014/5) campaign, size-resolved cloud condensation nuclei (CCN) spectra were characterized at a research site (T3) 60km downwind of the city of Manaus, Brazil, in central Amazonia for one year (12 March 2014 to 3 March 2015). Particle hygroscopicity (κCCN) and mixing state were derived from the size-resolved CCN spectra, and the hygroscopicity of the organic component of the aerosol (κorg) was then calculated from κCCN and concurrent chemical composition measurements. The annual average κCCN increased from 0.13 at 75 nm to 0.17 at 171 nm, and the increase was largely duemore » to an increase in sulfate volume fraction. Also, during both wet and dry seasons, κCCN, κorg, and particle composition under background conditions exhibited essentially no diel variations. The constant κorg of ~0.15 is consistent with the largely uniform and high O:C value (~0.8), indicating that the aerosols under background conditions are dominated by the aged regional aerosol particles consisting of highly oxygenated organic compounds. For air masses strongly influenced by urban pollution and/or local biomass burning, lower values of κorg and organic O:C atomic ratio were observed during night, due to accumulation of freshly emitted particles, dominated by primary organic aerosol (POA) with low hygroscopicity, within a shallow nocturnal boundary layer. The O:C, κorg, and κCCN increased from the early morning hours and peaked around noon, driven by the formation and aging of secondary organic aerosol (SOA) and dilution of POA emissions into a deeper boundary layer, while the development of the boundary layer, which leads to mixing with aged particles from the residual layer aloft, likely also contributed to the increases. The hygroscopicities associated with individual organic factors, derived from PMF analysis of AMS spectra, were estimated through multi-variable linear regression. For the SOA factors, the variation of the κ value with O:C agrees well with the linear relationship reported from earlier laboratory studies of SOA hygroscopicity. On the other hand, the variation in O:C of ambient aerosol organics is largely driven by the variation in the volume fractions of POA and SOA factors, which have very different O:C values. As POA factors have hygroscopicity values well below the linear relationship between SOA hygroscopicity and O:C, mixtures with different POA and SOA fractions exhibit a steeper slope for the increase of κorg with O:C, as observed during this and earlier field studies. Our finding helps better understand and reconcile the differences in the relationships between κorg and O:C observed in laboratory and field studies, therefore providing a basis for improved parameterization in global models, especially in a tropical context.« less
López Ramón, I; Muro, B; Azcona, M; Moleres, M; Sagüés, C; Maeztu, B; Zubía, A; Martínez de Irujo, S
1997-01-01
The aim of the present work is to study the possible increment of blood volume, in the seated as well as the lying position, and to analyse the influence of changes of posture on the changes of blood volume during the hemodialysis. 17 patients were studied, evaluating the variations of the hematocrit in the extracorporeal circuit on entry into the dialyzer, by means of a photometric system (Crit-Line Instrument, Izasa). Every 15 minutes the values of the hematocrit were taken and heir repercussion in the blood volume in different changes of posture. Initially all of the patients improved their blood volume, both seated and lying down. During the session of hemodialysis and ultrafiltration, with the patient in a seated position, an important drop in the blood volume was noticed; this was the case in the 1st, 2nd and 3rd hours. This drop improved when the patient adopted a lying position and there was a "reincidence of post-dialysis blood volume" at the end. According to these results, the supine posture improves the refill, confirming that the patients position influences the vascular refill.
Anomalous Orthopyroxene Cell Volumes from Unshocked Equilibrated H Chondrites
NASA Astrophysics Data System (ADS)
Folco, L.; Mellini, M.; Pillinger, C. T.
1995-09-01
Thirteen orthopyroxenes were extracted from eight unshocked equilibrated H-chondrites representatives of the petrographic types 4 to 6 [1] for crystal-chemical analyses. Chemical compositions were determined through a WDS JEOL JX 8600 electron microprobe. Three to six spot analyses were run on each crystal and no significant chemical variation was detected. High quality single crystal X-ray diffraction data were obtained by a SIEMENS P4 diffractometer using MoK alpha radiation, and site occupancies by least squares structure refinements. Figure 1a shows a significant cell volume (Vc) increase with petrographic type, and a _1.5 Angstrom^3 spread within each petrographic type. In solid solutions, Vc is expected to mainly vary with the chemical composition: the higher the proportion of the large ions present, the larger the Vc. In particular, as shown by [2], Vc variations in orthopyroxenes are essentially linear with Fe/(Fe+Mg), and our data fall within this general trend. However, no such a correlation exists at the scale of our values (Fig.1b), rather, each petrographic type plots along a different roughly negative trend. Furthermore, as experimentally obtained by [3], the decrease of the Fe-Mg ordering between the M1 and M2 sites in orthopyroxenes (a temperature-time-dependent process), causes significant Vc increase due to the displacement of the large Fe2+ ions from the larger M2 to the smaller M1 sites. Again, in the Vc versus kD (i.e., the intracrystalline Fe-Mg distribution coefficient) diagram (Fig.1c), we observe no such a correlation. Contrary to the most immediate expectations, our data suggest that the net increase in Vc from H4 to H6 does not significantly depend upon chemical composition and degree of ordering, and demands that another as yet unidentified parameter accounts for the observed trends. Acknowledgments: We thank EUROMET for the Frontier Mt. samples, and PNRA for supporting this study. References: [1] Folco L. et al., this volume. [2] Sykes-Nord J. A. and Molin G. M. (1993) Am. Mineral., 78, 921-931. [3] Domeneghetti M. C. et al. (1985). Am. Mineral., 70, 987-995.
Stevenson, Tyler J; Ball, Gregory F
2010-01-01
Seasonal variation in the volume of various song control nuclei in many passerine species remains one of the best examples of naturally occurring adult neuroplasticity among vertebrates. The lateral portion of the magnocellular nucleus of the anterior nidopallium (lMAN) is a song nucleus that is important for song learning and seems to be critical for inducing variability in the song structure that is later pruned via a feedback process to produce adult crystallized song. To date, lMAN has not been shown to exhibit seasonal changes in volume, probably because it is difficult to resolve the boundaries of lMAN when employing histological methods based on Nissl staining. Here, lMANcore volumes were examined in intact photostimulated (i.e. breeding), castrated photostimulated and photorefractory (i.e. non-breeding) male starlings (Sturnus vulgaris) to investigate the degree of seasonal variation in brain morphology. We present data demonstrating that the volumes of the total MAN and lMANcore delineated by enkephalin immunoreactivity are greater in photostimulated male starlings as compared to photorefractory males. Moreover, two other regions associated with the song system that have not been investigated previously in the context of seasonal plasticity namely i) the medial portion of MAN (mMAN), and ii) the nucleus interfacialis (NIf) did not display significant volumetric variation. We propose that greater lMANcore volumes are associated with the increase in vocal plasticity which is generally observed prior to production of stereotyped song. PMID:20556824
Stevenson, Tyler J; Ball, Gregory F
2010-09-15
Seasonal variation in the volume of various song control nuclei in many passerine species remains one of the best examples of naturally occurring adult neuroplasticity among vertebrates. The lateral portion of the magnocellular nucleus of the anterior nidopallium (lMAN) is a song nucleus that is important for song learning and seems to be critical for inducing variability in the song structure that is later pruned via a feedback process to produce adult crystallized song. To date, lMAN has not been shown to exhibit seasonal changes in volume, probably because it is difficult to resolve the boundaries of lMAN when employing histological methods based on Nissl staining. Here, lMAN(core) volumes were examined in intact photostimulated (i.e., breeding), castrated photostimulated and photorefractory (i.e., nonbreeding) male starlings (Sturnus vulgaris) to investigate the degree of seasonal variation in brain morphology. We present data demonstrating that the volumes of the total MAN and lMAN(core) delineated by enkephalin immunoreactivity are greater in photostimulated male starlings as compared to photorefractory males. Moreover, two other regions associated with the song system that have not been investigated previously in the context of seasonal plasticity namely (i) the medial portion of MAN (mMAN), and (ii) the nucleus interfacialis (NIf) did not display significant volumetric variation. We propose that greater lMAN(core) volumes are associated with the increase in vocal plasticity that is generally observed prior to production of stereotyped song.
Rococo, E; Mazouni, C; Or, Z; Mobillion, V; Koon Sun Pat, M; Bonastre, J
2016-01-01
Minimum volume thresholds were introduced in France in 2008 to improve the quality of cancer care. We investigated whether/how the quality of treatment decisions in breast cancer surgery had evolved before and after this policy was implemented. We used Hospital Episode Statistics for all women having undergone breast conserving surgery (BCS) or mastectomy in France in 2005 and 2012. Three surgical procedures considered as better treatment options were analyzed: BCS, immediate breast reconstruction (IBR) and sentinel lymph node biopsy (SLNB). We studied the mean rates and variation according to the hospital profile and volume. Between 2005 and 2012, the volume of breast cancer surgery increased by 11% whereas one third of the hospitals no longer performed this type of surgery. In 2012, the mean rate of BCS was 74% and similar in all hospitals whatever the volume. Conversely, IBR and SLNB rates were much higher in cancer centers (CC) and regional teaching hospitals (RTH) [IBR: 19% and 14% versus 8% on average; SLNB: 61% and 47% versus 39% on average]; the greater the hospital volume, the higher the IBR and SLNB rates (p < 0.0001). Overall, whatever the surgical procedure considered, inter-hospital variation in rates declined substantially in CC and RTH. We identified considerable variation in IBR and SLNB rates between French hospitals. Although more complex and less standardized than BCS, most clinical guidelines recommended these procedures. This apparent heterogeneity suggests unequal access to high-quality procedures for women with breast cancer. Copyright © 2015 Elsevier Ltd. All rights reserved.
Multiple anatomy optimization of accumulated dose
DOE Office of Scientific and Technical Information (OSTI.GOV)
Watkins, W. Tyler, E-mail: watkinswt@virginia.edu; Siebers, Jeffrey V.; Moore, Joseph A.
Purpose: To investigate the potential advantages of multiple anatomy optimization (MAO) for lung cancer radiation therapy compared to the internal target volume (ITV) approach. Methods: MAO aims to optimize a single fluence to be delivered under free-breathing conditions such that the accumulated dose meets the plan objectives, where accumulated dose is defined as the sum of deformably mapped doses computed on each phase of a single four dimensional computed tomography (4DCT) dataset. Phantom and patient simulation studies were carried out to investigate potential advantages of MAO compared to ITV planning. Through simulated delivery of the ITV- and MAO-plans, target dosemore » variations were also investigated. Results: By optimizing the accumulated dose, MAO shows the potential to ensure dose to the moving target meets plan objectives while simultaneously reducing dose to organs at risk (OARs) compared with ITV planning. While consistently superior to the ITV approach, MAO resulted in equivalent OAR dosimetry at planning objective dose levels to within 2% volume in 14/30 plans and to within 3% volume in 19/30 plans for each lung V20, esophagus V25, and heart V30. Despite large variations in per-fraction respiratory phase weights in simulated deliveries at high dose rates (e.g., treating 4/10 phases during single fraction beams) the cumulative clinical target volume (CTV) dose after 30 fractions and per-fraction dose were constant independent of planning technique. In one case considered, however, per-phase CTV dose varied from 74% to 117% of prescription implying the level of ITV-dose heterogeneity may not be appropriate with conventional, free-breathing delivery. Conclusions: MAO incorporates 4DCT information in an optimized dose distribution and can achieve a superior plan in terms of accumulated dose to the moving target and OAR sparing compared to ITV-plans. An appropriate level of dose heterogeneity in MAO plans must be further investigated.« less
Grégoire, Vincent; Evans, Mererid; Le, Quynh-Thu; Bourhis, Jean; Budach, Volker; Chen, Amy; Eisbruch, Abraham; Feng, Mei; Giralt, Jordi; Gupta, Tejpal; Hamoir, Marc; Helito, Juliana K; Hu, Chaosu; Hunter, Keith; Johansen, Jorgen; Kaanders, Johannes; Laskar, Sarbani Ghosh; Lee, Anne; Maingon, Philippe; Mäkitie, Antti; Micciche', Francesco; Nicolai, Piero; O'Sullivan, Brian; Poitevin, Adela; Porceddu, Sandro; Składowski, Krzysztof; Tribius, Silke; Waldron, John; Wee, Joseph; Yao, Min; Yom, Sue S; Zimmermann, Frank; Grau, Cai
2018-01-01
Few studies have reported large inter-observer variations in target volume selection and delineation in patients treated with radiotherapy for head and neck squamous cell carcinoma. Consensus guidelines have been published for the neck nodes (see Grégoire et al., 2003, 2014), but such recommendations are lacking for primary tumour delineation. For the latter, two main schools of thoughts are prevailing, one based on geometric expansion of the Gross Tumour Volume (GTV) as promoted by DAHANCA, and the other one based on anatomical expansion of the GTV using compartmentalization of head and neck anatomy. For each anatomic location within the larynx, hypopharynx, oropharynx and oral cavity, and for each T-stage, the DAHANCA proposal has been comprehensively reviewed and edited to include anatomic knowledge into the geometric Clinical Target Volume (CTV) delineation concept. A first proposal was put forward by the leading authors of this publication (VG and CG) and discussed with opinion leaders in head and neck radiation oncology from Europe, Asia, Australia/New Zealand, North America and South America to reach a worldwide consensus. This consensus proposes two CTVs for the primary tumour, the so called CTV-P1 and CVT-P2, corresponding to a high and lower tumour burden, and which should be associated with a high and a lower dose prescription, respectively. Implementation of these guidelines in the daily practice of radiation oncology should contribute to reduce treatment variations from clinicians to clinicians, facilitate the conduct of multi-institutional clinical trials, and contribute to improved care of patients with head and neck carcinoma. Copyright © 2017 Elsevier B.V. All rights reserved.
Experimental determination of the PTW 60019 microDiamond dosimeter active area and volume
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marinelli, Marco, E-mail: marco.marinelli@uniroma2
Purpose: Small field output correction factors have been studied by several research groups for the PTW 60019 microDiamond (MD) dosimeter, by comparing the response of such a device with both reference dosimeters and Monte Carlo simulations. A general good agreement is observed for field sizes down to about 1 cm. However, evident inconsistencies can be noticed when comparing some experimental results and Monte Carlo simulations obtained for smaller irradiation fields. This issue was tentatively attributed by some authors to unintentional large variations of the MD active surface area. The aim of the present study is a nondestructive experimental determination ofmore » the MD active surface area and active volume. Methods: Ten MD dosimeters, one MD prototype, and three synthetic diamond samples were investigated in the present work. 2D maps of the MD response were recorded under scanned soft x-ray microbeam irradiation, leading to an experimental determination of the device active surface area. Profiles of the device responses were measured as well. In order to evaluate the MD active volume, the thickness of the diamond sensing layer was independently evaluated by capacitance measurements and alpha particle detection experiments. The MD sensitivity, measured at the PTW calibration laboratory, was also used to calculate the device active volume thickness. Results: An average active surface area diameter of (2.19 ± 0.02) mm was evaluated by 2D maps and response profiles of all the MDs. Average active volume thicknesses of (1.01 ± 0.13) μm and (0.97 ± 0.14) μm were derived by capacitance and sensitivity measurements, respectively. The obtained results are well in agreement with the nominal values reported in the manufacturer dosimeter specifications. A homogeneous response was observed over the whole device active area. Besides the one from the device active volume, no contributions from other components of the housing nor from encapsulation materials were observed in the 2D response maps. Conclusions: The obtained results demonstrate the high reproducibility of the MD fabrication process. The observed discrepancies among the output correction factors reported by several authors for MD response in very small fields are very unlikely to be ascribed to unintentional variations of the device active surface area and volume. It is the opinion of the authors that the role of the volume averaging as well as of other perturbation effects should be separately investigated instead, both experimentally and by Monte Carlo simulations, in order to better clarify the behaviour of the MD response in very small fields.« less
Gender and Education. An Encyclopedia. Volume II
ERIC Educational Resources Information Center
Bank, Barbara J., Ed.
2007-01-01
This book represents the second of two volumes in a two-volume set where educators explore the intersection of gender and education. Their entries deal with educational theories, research, curricula, practices, personnel, and policies, but also with variations in the gendering of education across historical and cultural contexts. The various…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yee, Don, E-mail: dony@ualberta.c; Parliament, Matthew; Rathee, Satyapal
2010-03-15
Purpose: To quantify daily bladder size and position variations during bladder cancer radiotherapy. Methods and Materials: Ten bladder cancer patients underwent daily cone beam CT (CBCT) imaging of the bladder during radiotherapy. Bladder and planning target volumes (bladder/PTV) from CBCT and planning CT scans were compared with respect to bladder center-of-mass shifts in the x (lateral), y (anterior-posterior), and z (superior-inferior) coordinates, bladder/PTV size, bladder/PTV margin positions, overlapping areas, and mutually exclusive regions. Results: A total of 262 CBCT images were obtained from 10 bladder cancer patients. Bladder center of mass shifted most in the y coordinate (mean, -0.32 cm).more » The anterior bladder wall shifted the most (mean, -0.58 cm). Mean ratios of CBCT-derived bladder and PTV volumes to planning CT-derived counterparts were 0.83 and 0.88. The mean CBCT-derived bladder volume (+- standard deviation [SD]) outside the planning CT counterpart was 29.24 cm{sup 3} (SD, 29.71 cm{sup 3}). The mean planning CT-derived bladder volume outside the CBCT counterpart was 47.74 cm{sup 3} (SD, 21.64 cm{sup 3}). The mean CBCT PTV outside the planning CT-derived PTV was 47.35 cm{sup 3} (SD, 36.51 cm{sup 3}). The mean planning CT-derived PTV outside the CBCT-derived PTV was 93.16 cm{sup 3} (SD, 50.21). The mean CBCT-derived bladder volume outside the planning PTV was 2.41 cm{sup 3} (SD, 3.97 cm{sup 3}). CBCT bladder/ PTV volumes significantly differed from planning CT counterparts (p = 0.047). Conclusions: Significant variations in bladder and PTV volume and position occurred in patients in this trial.« less
Book review: Geomagnetism of baked clays and recent sediments
Mankinen, Edward A.
1984-01-01
This book is an outgrowth of the symposium entitled “Time Scales of Geomagnetic Secular Variations,” which was held at the 4th Assembly of the International Association of Geomagnetism and Aeronomy (Edinburgh, U.K., August 1981). The volume includes many of the papers presented, which described paleomagnetic results from both archeologic materials and Holocene geologic deposits, as well as contributions solicited from other researchers in the fields of archeomagnetism and paleomagnetism. In a remarkably short time after the conclusion of the symposium the editors were able to elicit, edit, and assemble a large body of material from 40 individuals into a thoughtful, wellorganized product.
1979-12-01
and Culicidae. 99. In addition to the sporadic occurrence of minor food items, considerable seasonal variations existed in food habits. Overall, the...included Copepoda, Amphipoda, Hydracarina, and eggs. The remaining 16 food groups were of minor importance in the diet (f bluefin killifish and were...Widgeon 1 Empty Ring-necked duck 8 Seed N.A. 3 American coot 17 Fish 1 1 Hydrilla N.A. 15 Lemna N.A. I Seed N.A. 3 Eleocharis N.A. I Chironomidae 1 1
Smith, A M J; Bonato, M; Dzama, K; Malecki, I A; Cloete, S W P
2018-06-01
Successful assisted reproduction techniques, with specific focus on in vitro semen storage for artificial insemination, are dependent on certain key elements which includes the biochemical profiling of semen. The objective of this study was to complete an ostrich seminal plasma (SP) evaluation by inductively coupled plasma mass spectrometry (ICP-MS) among seven males at different daily intervals (day 1, 3, 7, 11, 15, 19, 21, 23, 25, 26, 27, 28) for a period of 28 days during spring (August to September) for mineral profiling. The effect of collection day and male on sperm concentration, semen volume and seminal plasma volume, was explored as well as the relationships amongst these specific sperm traits and SP minerals. Variation amongst SP mineral concentrations, accounted for by the fixed effects of sperm concentration, semen volume, seminal plasma volume, collection day and male, ranged from 18% to 77%. Male had the largest effect on variation in SP minerals, namely: phosphorus (P), potassium (K), calcium (Ca), sodium (Na), boron (B), iron (Fe), cobalt (Co), nickel (Ni), copper (Cu), molybdenum (Mo), barium (Ba), arsenic (As) and selenium (Se). Sperm concentration instigated fluctuations of P, magnesium (Mg), B, zinc (Zn), Fe, aluminium (Al), Se, manganese (Mn) and lead (Pb). Semen volume had an effect on Na, K, B, Pb and Ba while seminal plasma volume only influenced variation in Na. There were fluctuations among collection days of specific micro minerals, Ni and Mo, with initial Ni concentrations being relatively greater and Mo at lesser concentrations. Semen volume, seminal plasma volume and sperm concentration varied amongst males. Sperm concentrations during the initial collection days, 1 and 3, were less than that for days 7 to 28. Significant variation of SP minerals and sperm characteristics among ejaculates and males suggest an association of these specific elements with sperm function and are, therefore, considered to be of potential importance to success of assisted reproduction technology for the ostrich. The relationship amongst sperm concentration and collection day confirms the need to conduct an initial period of collection to stabilise a greater sperm concentration to optimise sperm numbers for artificial insemination purposes. Copyright © 2018 Elsevier B.V. All rights reserved.
A High-Order Finite Spectral Volume Method for Conservation Laws on Unstructured Grids
NASA Technical Reports Server (NTRS)
Wang, Z. J.; Liu, Yen; Kwak, Dochan (Technical Monitor)
2001-01-01
A time accurate, high-order, conservative, yet efficient method named Finite Spectral Volume (FSV) is developed for conservation laws on unstructured grids. The concept of a 'spectral volume' is introduced to achieve high-order accuracy in an efficient manner similar to spectral element and multi-domain spectral methods. In addition, each spectral volume is further sub-divided into control volumes (CVs), and cell-averaged data from these control volumes is used to reconstruct a high-order approximation in the spectral volume. Riemann solvers are used to compute the fluxes at spectral volume boundaries. Then cell-averaged state variables in the control volumes are updated independently. Furthermore, TVD (Total Variation Diminishing) and TVB (Total Variation Bounded) limiters are introduced in the FSV method to remove/reduce spurious oscillations near discontinuities. A very desirable feature of the FSV method is that the reconstruction is carried out only once, and analytically, and is the same for all cells of the same type, and that the reconstruction stencil is always non-singular, in contrast to the memory and CPU-intensive reconstruction in a high-order finite volume (FV) method. Discussions are made concerning why the FSV method is significantly more efficient than high-order finite volume and the Discontinuous Galerkin (DG) methods. Fundamental properties of the FSV method are studied and high-order accuracy is demonstrated for several model problems with and without discontinuities.
Variations in the sonographic measurement techniques of BI-RADS 3 breast masses.
Francisco, Juliana; Jales, Rodrigo Menezes; de Oliveira, André Desuó Bueno; Arguello, Carlos Henrique Francisco; Derchain, Sophie
2017-06-01
To evaluate the differences in sonographic (US) distance and volume measurements from different sonologists and identify the optimal parameters to avoid clinically relevant variations in the measurement of BI-RADS 3 breast masses. For this cross-sectional study with prospectively collected data, four physicians with various levels of experience in US, herein called sonologists, performed distance and volume US measurements of 80 masses classified as BI-RADS 3. The Cochran Q test was used to compare the matched sets of rates of clinically relevant variability between all pairs of sonologists' measurements. There were clinically relevant differences between sonologists in the measurements of the longest diameter (range, 17.5-43.7%, p = 0.003), the longest diameter perpendicular to the previous one (anteroposterior diameter) (17.5-33.7%, p = 0.06), the third diameter orthogonal to the plane defined by the previous two (transverse diameter) (28.7-55%, p = 0.001), and at least two of those three diameters (18.7-38.7%, p = 0.015). The smallest clinically relevant differences were observed with volume measurements (range of differences, 6.2-13.7%, p = 0.51). Volume measurement technique was associated with the least variations, whereas distance measurements, which are used routinely, were associated with unacceptable rates of clinically relevant variations. © 2016 Wiley Periodicals, Inc. J Clin Ultrasound 45:252-260, 2017. © 2017 Wiley Periodicals, Inc.
Hill, Shirley Y.; Wang, Shuhui; Carter, Howard; Tessner, Kevin; Holmes, Brian; McDermott, Michael; Zezza, Nicholas; Stiffler, Scott
2012-01-01
Offspring from families with multiple cases of alcohol dependence have a greater likelihood of developing alcohol dependence (AD) and related substance use disorders. Greater susceptibility for developing these disorders may be related to structural differences in brain circuits that influence the salience of rewards or modify the efficiency of information processing and AD susceptibility. We examined the cerebellum of 71 adolescent/young adult high-risk (HR) offspring from families with multiple cases of alcohol dependence (multiplex families), and 60 low-risk (LR) controls with no family history of alcohol or drug dependence who were matched for age, gender, socioeconomic status and IQ, with attention given to possible effects of personal use of substances and maternal use during pregnancy. Magnetic resonance images were acquired on a General Electric 1.5-Tesla scanner and manually traced (BRAINS2) blind to clinical information. GABRA2 and BDNF variation were tested for their association with cerebellar volumes. High-risk offspring from multiplex AD families showed greater total volume of the cerebellum and total gray matter (GM), in comparison with LR controls. An interaction between allelic variation in GABRA2 and BDNF genes was associated with GM volumes, suggesting that inherited variation in these genes may promote early developmental differences in neuronal proliferation of the cerebellum. PMID:22047728
In vivo verification of proton beam path by using post-treatment PET/CT imaging.
Hsi, Wen C; Indelicato, Daniel J; Vargas, Carlos; Duvvuri, Srividya; Li, Zuofeng; Palta, Jatinder
2009-09-01
The purpose of this study is to establish the in vivo verification of proton beam path by using proton-activated positron emission distributions. A total of 50 PET/CT imaging studies were performed on ten prostate cancer patients immediately after daily proton therapy treatment through a single lateral portal. The PET/CT and planning CT were registered by matching the pelvic bones, and the beam path of delivered protons was defined in vivo by the positron emission distribution seen only within the pelvic bones, referred to as the PET-defined beam path. Because of the patient position correction at each fraction, the marker-defined beam path, determined by the centroid of implanted markers seen in the posttreatment (post-Tx) CT, is used for the planned beam path. The angular variation and discordance between the PET- and marker-defined paths were derived to investigate the intrafraction prostate motion. For studies with large discordance, the relative location between the centroid and pelvic bones seen in the post-Tx CT was examined. The PET/CT studies are categorized for distinguishing the prostate motion that occurred before or after beam delivery. The post-PET CT was acquired after PET imaging to investigate prostate motion due to physiological changes during the extended PET acquisition. The less than 2 degrees of angular variation indicates that the patient roll was minimal within the immobilization device. Thirty of the 50 studies with small discordance, referred as good cases, show a consistent alignment between the field edges and the positron emission distributions from the entrance to the distal edge. For those good cases, average displacements are 0.6 and 1.3 mm along the anterior-posterior (D(AP)) and superior-inferior (D(SI)) directions, respectively, with 1.6 mm standard deviations in both directions. For the remaining 20 studies demonstrating a large discordance (more than 6 mm in either D(AP) or D(SI)), 13 studies, referred as motion-after-Tx cases, also show large misalignment between the field edge and the positron emission distribution in lipomatous tissues around the prostate. These motion-after-Tx cases correspond to patients with large changes in volume of rectal gas between the post-Tx and the post-PET CTs. The standard deviations for D(AP) and D(SI) are 5.0 and 3.0 mm, respectively, for these motion-after-Tx cases. The final seven studies, referred to as position-error cases, which had a large discordance but no misalignment, were found to have deviations of 4.6 and 3.6 mm in D(AP) and D(SI), respectively. The position-error cases correspond to a large discrepancy on the relative location between the centroid and pelvic bones seen in post-Tx CT and recorded x-ray radiographs. Systematic analyses of proton-activated positron emission distributions provide patient-specific information on prostate motion (sigmaM) and patient position variability (sigmap) during daily proton beam delivery. The less than 2 mm of displacement variations in the good cases indicates that population-based values of sigmap and sigmaM, used in margin algorithms for treatment planning at the authors' institution are valid for the majority of cases. However, a small fraction of PET/CT studies (approximately 14%) with -4 mm displacement variations may require different margins. Such data are useful in establishing patient-specific planning target volume margins.
SU-E-I-96: A Study About the Influence of ROI Variation On Tumor Segmentation in PET
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, L; Tan, S; Lu, W
2014-06-01
Purpose: To study the influence of different regions of interest (ROI) on tumor segmentation in PET. Methods: The experiments were conducted on a cylindrical phantom. Six spheres with different volumes (0.5ml, 1ml, 6ml, 12ml, 16ml and 20 ml) were placed inside a cylindrical container to mimic tumors of different sizes. The spheres were filled with 11C solution as sources and the cylindrical container was filled with 18F-FDG solution as the background. The phantom was continuously scanned in a Biograph-40 True Point/True View PET/CT scanner, and 42 images were reconstructed with source-to-background ratio (SBR) ranging from 16:1 to 1.8:1. We tookmore » a large and a small ROI for each sphere, both of which contain the whole sphere and does not contain any other spheres. Six other ROIs of different sizes were then taken between the large and the small ROI. For each ROI, all images were segmented by eitht thresholding methods and eight advanced methods, respectively. The segmentation results were evaluated by dice similarity index (DSI), classification error (CE) and volume error (VE). The robustness of different methods to ROI variation was quantified using the interrun variation and a generalized Cohen's kappa. Results: With the change of ROI, the segmentation results of all tested methods changed more or less. Compared with all advanced methods, thresholding methods were less affected by the ROI change. In addition, most of the thresholding methods got more accurate segmentation results for all sphere sizes. Conclusion: The results showed that the segmentation performance of all tested methods was affected by the change of ROI. Thresholding methods were more robust to this change and they can segment the PET image more accurately. This work was supported in part by National Natural Science Foundation of China (NNSFC), under Grant Nos. 60971112 and 61375018, and Fundamental Research Funds for the Central Universities, under Grant No. 2012QN086. Wei Lu was supported in part by the National Institutes of Health (NIH) Grant No. R01 CA172638.« less
Sun, Shou-jia; Meng, Ping; Zhang, Jin-song; Shu, Jian-hua; Zheng, Ning
2015-10-01
The off-axis integrated cavity output spectroscopy technique was used to measure air CO2 concentration, stable carbon (δ13C) and oxygen (δ18C) isotope ratios on the Fourth Ring Road (FRR) and in the green space system of Beijing Institute of Landscape Architecture (BILA) in summer and winter seasons. The variations of CO2 concentration, δ13C value, δ18C value and the differences of them between the FRR and the BILA, which were correlated with traffic volume and meteorological factors, were analyzed at half-hour timescale. The results showed that traffic volume on the FRR was large both in summer and winter with obvious morning and evening rush hours, and more than 150 thousands vehicles were observed everyday during the observation periods. Diurnal variation of the CO2 concentration showed a two-peak curve both on the FRR and in the green space system of the BILA. In contrast, diurnal variation of δ13C value was a two-trough curve while diurnal variation of δ18O value was a single-trough curve. The differences of CO2 concentration, δ13C value and δ18O value between the FRR and the green space system of BILA in summer were greater than those in winter. The carbon isotope partitioning results showed that in summer vehicle exhaust contributed 64.9% to total atmospheric CO2 of the FRR during measurement time, while heterotrophic respiration contributed 56.3% to total atmospheric CO2 of the green space system in BILA. However, in winter atmospheric CO2 from both the FRR and green space system mostly came from vehicle exhaust. Stepwise regression analysis indicated that differences of CO2 concentration between the FRR and green space system were significantly related to vehicle volume and solar radiation at half-hour timescale, while solar radiation and relative humidity were the main meteorological factors causing δ13 and δ18O differences between the FRR and green space system. Plants in the green space system strongly assimilated CO2 from fossil fuel burning by photosynthesis to maintain carbon and oxygen balance of urban area in the growing season, which played an important role in improving urban ecological environment.
Comerci, M; Elefante, A; Strianese, D; Senese, R; Bonavolontà, P; Alfano, B; Bonavolontà, B; Brunetti, A
2013-08-01
This study was designed to validate a novel semi-automated segmentation method to measure regional intra-orbital fat tissue volume in Graves' ophthalmopathy. Twenty-four orbits from 12 patients with Graves' ophthalmopathy, 24 orbits from 12 controls, ten orbits from five MRI study simulations and two orbits from a digital model were used. Following manual region of interest definition of the orbital volumes performed by two operators with different levels of expertise, an automated procedure calculated intra-orbital fat tissue volumes (global and regional, with automated definition of four quadrants). In patients with Graves' disease, clinical activity score and degree of exophthalmos were measured and correlated with intra-orbital fat volumes. Operator performance was evaluated and statistical analysis of the measurements was performed. Accurate intra-orbital fat volume measurements were obtained with coefficients of variation below 5%. The mean operator difference in total fat volume measurements was 0.56%. Patients had significantly higher intra-orbital fat volumes than controls (p<0.001 using Student's t test). Fat volumes and clinical score were significantly correlated (p<0.001). The semi-automated method described here can provide accurate, reproducible intra-orbital fat measurements with low inter-operator variation and good correlation with clinical data.
Temporal variation in plankton assemblages and physicochemistry of Devils Lake, North Dakota
Leland, H.V.; Berkas, W.R.
1998-01-01
Seasonal and annual variation in biomass and structure of algal assemblages of hyposaline Devils Lake were examined in relation to turbidity, ambient concentrations of major ions, trace elements and nutrients, and the standing crop of herbivores. Lake level declined during the early years of study, but rose markedly in subsequent years as historically large volumes of water flowed into this hydrologically-closed basin. Winter algal assemblages were dominated (in biomass) most years by small, non-motile chlorophytes ( Choricystis minor, Kirchneriella lunaris or Dunaliella sp.), or Euglena sp. in the most saline sub-basin. Spring assemblages were dominated by diatoms (Stephanodiscus cf. minutulus, Surirella peisonis, Cyclotella meneghiniana and Entomoneis paludosa were especially prominent) or chlorophytes ( C. minor) until the lake level rose. C. minor abundances then declined in spring assemblages and diatoms ( Stephanodiscus cf. agassizensis and S. niagarae; E. paludosa in the more saline sub-basins) dominated. The potential for nitrogen-deficient conditions for phytoplankton growth was evidenced most summers and early autumns by consistently high concentrations of reactive-P relative to inorganic-N and blooms of the N-fixing cyanophyte Aphanizomenon flos-aquae; Microcystis aeruginosa typically was a co-dominant (>30% of biomass) in these assemblages. Pulses of diatoms ( S. cf. agassizensis and C. meneghiniana) occurred in summers following unusually prolonged periods of calm weather or large water inflows. Physical (irradiance, turbulence) and chemical (major nutrients) variables were the primary factors associated with phytoplankton growth. Transparency and major nutrient concentrations accounted for more of the annual variation in phytoplankton structure than did salinity. Seasonal abundance patterns of the dominant zooplankton (the copepod Diaptomus sicilis; the cladocerans Ceriodaphnia quadrangula, Chydorus sphaericus, Daphnia pulex and Diaphanosoma birgei; and the rotifers Brachionus spp., Filinia longiseta, Keratella cochlearis and K. quadrata) also indicated variation in algal populations related to grazing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, W; Sheng, Y; Shahnazi, K
2016-06-15
Purpose: Investigate the factors which affect the doses of organs at risk (OARs) for head and neck carbon ion therapy. Methods: Ten locally recurrent nasopharyngeal carcinoma cases with similar prescriptions were selected. All patients’ organs at risk (OARs) as well as CTVs were contoured by an experienced physician. Carbon ion treatment plans were created using a Syngo treatment planning system (Siemens, Germany). The CTVs were expanded to make optimized target volumes (OTVs) by considering treatment uncertainties and OAR protections. All plans were reviewed by this physician to be clinically acceptable. The OTV was expanded an additional 3mm to define themore » volume where beam spots could be put. A volume was also drawn 6 mm around the OTV to approximate the 50 % dose volume. The volumes where the OARs overlapped the OTV + 3 mm and OTV + 6 mm volumes, termed residual volumes, were then calculated. Results: The residual volumes within OTV + 3 mm were directly related to the OAR maximum dose. The percentage of the residual volume within the OTV + 6 mm with respect to the OAR volume was strongly related to the OAR mean doses. OAR mean doses also were affected by the beam setups. For example, if the OARs were in the beam entrance, the superior beams would sharply decrease the mean doses of the OARs hit by the lateral beams while increasing the mean doses of the OARs hit by the superior beam; the mean dose of the OARs which were hit by higher weight beams would be higher than the OARs hit by lower weight beams. Conclusion: Physicians should be cautious when contouring OARs, especially those close to CTVs and sensitive to large doses. Planners should set the OTV and beam parameters properly in order to save the OARs.« less
Tang, Yuqing; Liu, Chaojie; Zhang, Xinping
2017-02-01
The low availability of essential medicines is a worldwide issue of concern. In 2009, China introduced a National Essential Medicines List (NEML), with NEML medicines being purchased in bulk at contracted prices established by tenders conducted at the provincial level. The availability of essential medicines in the public sector largely relies on commercial supply chains. The objectives of this paper were to analyze the delivery performance of essential medicines under NEML provincial procurement arrangements, and to determine whether the procurement volume and price of medicines are associated with the delivery performance of suppliers. We reviewed 9390 recorded orders of 1099 essential medicines in Hubei province from August 2011 to April 2012. The reliability of medicine delivery in-full and on-time (DIFOT) was considered the performance indicator, and we used Spearman correlation analyses to explore whether there were any associations between DIFOT and procurement price and volume. Quantile regressions were performed to determine such associations. The DIFOT had positive correlations with procurement price and volume. The Spearman rank correlation coefficients between price and DIFOT were 0.114, 0.34 and 0.25 for medicines with low one-third, middle one-third and high one-third procurement volumes, respectively. The quantile regression analysis revealed a positive association between price and DIFOT across all quantiles of DIFOT, and although significant positive associations between volume and DIFOT were only found at the 25th percentile of DIFOT, volume showed significant interactions with price for both the 25th and 50th percentiles of DIFOT. Higher procurement price is associated with better delivery performance of essential medicines; however, it is important to link procurement price with procurement volume. Increasing procurement volume may alleviate the negative effect of low price on delivery performance. Variation in volumes of repeated orders imposes uncertainties and may jeopardize the delivery of essential medicines.
NASA Astrophysics Data System (ADS)
Weaver, P. P. E.
2003-03-01
ODP drill sites in the Madeira Abyssal Plain reveal sequences of organic-rich turbidites derived from the northwest African margin, in which each turbidite has a volume of tens to hundreds of cubic kilometers. The frequency of turbidite emplacement has been combined with core and seismic data to show the volume of redeposited sediment. The basin began to fill about 22 Ma with numerous small turbidites, up to 100 per million years, each with volumes of a few cubic kilometers. The total volume of turbidites deposited increased between 16 and 11 Ma, as did their individual volumes, and then declined to 7 Ma. At 7 Ma, there was a dramatic increase in the amount of turbidite input to 768 km3/Myr and a rise in the average volume of each unit to 59 km3. These high values have been maintained to the present day. The variations in the amount of redeposited sediment most likely reflect the rates of sedimentation on the northwest African margin since high sedimentation leads to oversteepening of the slopes and eventual mass wasting. The dramatic changes at about 7 Ma may be due to a large increase in upwelling off northwest Africa caused by circulation changes associated with increased glaciation of the poles. Up to 20% of sediment may be remobilized by landslides, with each event leaving a hiatus. Each of these hiatuses extends over an average area of ˜4800 km2 and represents removal of sediment layers several tens of meters thick and of several hundred thousand years duration.
Renaud, Guillaume; Bosch, Johan G; Van Der Steen, Antonius F W; De Jong, Nico
2014-06-01
Contrast-enhanced ultrasound imaging is based on the detection of non-linear vibrational responses of a contrast agent after its intravenous administration. Improving contrast-enhanced images requires an accurate understanding of the vibrational response to ultrasound of the lipid-coated gas microbubbles that constitute most ultrasound contrast agents. Variations in the volume of microbubbles provide the most efficient radiation of ultrasound and, therefore, are the most important bubble vibrations for medical diagnostic ultrasound imaging. We developed an "acoustical camera" that measures the dynamic volume change of individual microbubbles when excited by a pressure wave. In the work described here, the technique was applied to the characterization of low-amplitude non-linear behaviors of BR14 microbubbles (Bracco Research, Geneva, Switzerland). The amplitude dependence of the resonance frequency and the damping, the prevalence of efficient subharmonic and ultraharmonic vibrations and the amplitude dependence of the response at the fundamental frequency and at the second harmonic frequency were investigated. Because of the large number of measurements, we provide a statistical characterization of the low-amplitude non-linear properties of the contrast agent. Copyright © 2014 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
Robust hepatic vessel segmentation using multi deep convolution network
NASA Astrophysics Data System (ADS)
Kitrungrotsakul, Titinunt; Han, Xian-Hua; Iwamoto, Yutaro; Foruzan, Amir Hossein; Lin, Lanfen; Chen, Yen-Wei
2017-03-01
Extraction of blood vessels of the organ is a challenging task in the area of medical image processing. It is really difficult to get accurate vessel segmentation results even with manually labeling by human being. The difficulty of vessels segmentation is the complicated structure of blood vessels and its large variations that make them hard to recognize. In this paper, we present deep artificial neural network architecture to automatically segment the hepatic vessels from computed tomography (CT) image. We proposed novel deep neural network (DNN) architecture for vessel segmentation from a medical CT volume, which consists of three deep convolution neural networks to extract features from difference planes of CT data. The three networks have share features at the first convolution layer but will separately learn their own features in the second layer. All three networks will join again at the top layer. To validate effectiveness and efficiency of our proposed method, we conduct experiments on 12 CT volumes which training data are randomly generate from 5 CT volumes and 7 using for test. Our network can yield an average dice coefficient 0.830, while 3D deep convolution neural network can yield around 0.7 and multi-scale can yield only 0.6.
Operational considerations in monitoring oxygen levels at the National Transonic Facility
NASA Technical Reports Server (NTRS)
Zalenski, M. A.; Rowe, E. L.; Mcphee, J. R.
1985-01-01
Laboratory monitoring of the level of oxygen in sample gas mixtures is a process which can be performed with accurate and repeatable results. Operations at the National Transonic Facility require the storage and pumping of large volumes of liquid nitrogen. To protect against the possibility of a fault resulting in a localized oxygen deficient atmosphere, the facility is equipped with a monitoring system with an array of sensors. During the early operational stages, the system produced recurrent alarms, none of which could be traced to a true oxygen deficiency. A thorough analysis of the system was undertaken with primary emphasis placed on the sensor units. These units sense the partial pressure of oxygen which, after signal conditioning, is presented as a % by volume indication at the system output. It was determined that many of the problems experienced were due to a lack of proper accounting for the partial pressure/% by volume relationship, with a secondary cause being premature sensor failure. Procedures were established to consider atmospherically induced partial pressure variations. Sensor rebuilding techniques were examined, and those elements contributing to premature sensor failure were identified. The system now operates with a high degree of confidence and reliability.
NASA Astrophysics Data System (ADS)
Guo, Changbao; Zhang, Yongshuang; Montgomery, David R.; Du, Yuben; Zhang, Guangze; Wang, Shifeng
2016-04-01
In the Tibetan Plateau, active tectonic deformation triggers frequent earthquakes, and giant landslides associated with active faults produce serious consequences. A study of the characteristics and mechanism of a historical long-runout landslide in Luanshibao (LSB), Tibetan Plateau, China, finds a maximum sliding distance (L) of 3.83 km with an elevation drop (H) of 820 m. The landslide volume (V) was ~ 0.64-0.94 × 108 m3, and it produced a long-runout (H/L = 0.21). Recent surface offset along the sinistral strike-slip Litang-Dewu fault passes through the middle part of the landslide, which initiated on the hanging wall of the fault. Geological mapping, geophysical prospecting, trenching, and 14C dating together indicate that the LSB landslide occurred in jointed granite ca. 1980 ± 30 YBP, probably triggered by a large earthquake. Compilation of volume and runout distance data for this landslide and other previously published data for volcanic and nonvolcanic long-runout landslides yields a composite runout length-volume relation (L = 12.52V0.37) that closely predicts runout of the LSB landslide, although substantial variation is noted in runout length around the central tendency.
Thermodynamics with pressure and volume under charged particle absorption
NASA Astrophysics Data System (ADS)
Gwak, Bogeun
2017-11-01
We investigate the variation of the charged anti-de Sitter black hole under charged particle absorption by considering thermodynamic volume. When the energy of the particle is considered to contribute to the internal energy of the black hole, the variation exactly corresponds to the prediction of the first law of thermodynamics. Nevertheless, we find the decrease of the Bekenstein-Hawking entropy for extremal and near-extremal black holes under the absorption, which is an irreversible process. This violation of the second law of thermodynamics is only found when considering thermodynamic volume. We test the weak cosmic censorship conjecture affected by the violation. Fortunately, the conjecture is still valid, but extremal and near-extremal black holes do not change their configurations when any particle enters the black hole. This result is quite different from the case in which thermodynamic volume is not considered.
Heesch, Kristiann C; Langdon, Michael
2016-02-01
Issue addressed A key strategy to increase active travel is the construction of bicycle infrastructure. Tools to evaluate this strategy are limited. This study assessed the usefulness of a smartphone GPS tracking system for evaluating the impact of this strategy on cycling behaviour. Methods Cycling usage data were collected from Queenslanders who used a GPS tracking app on their smartphone from 2013-2014. 'Heat' and volume maps of the data were reviewed, and GPS bicycle counts were compared with surveillance data and bicycle counts from automatic traffic-monitoring devices. Results Heat maps broadly indicated that changes in cycling occurred near infrastructure improvements. Volume maps provided changes in counts of cyclists due to these improvements although errors were noted in geographic information system (GIS) geo-coding of some GPS data. Large variations were evident in the number of cyclists using the app in different locations. These variations limited the usefulness of GPS data for assessing differences in cycling across locations. Conclusion Smartphone GPS data are useful in evaluating the impact of improved bicycle infrastructure in one location. Using GPS data to evaluate differential changes in cycling across multiple locations is problematic when there is insufficient traffic-monitoring devices available to triangulate GPS data with bicycle traffic count data. So what? The use of smartphone GPS data with other data sources is recommended for assessing how infrastructure improvements influence cycling behaviour.
Uncovering the true nature of deformation microstructures using 3D analysis methods
NASA Astrophysics Data System (ADS)
Ferry, M.; Quadir, M. Z.; Afrin, N.; Xu, W.; Loeb, A.; Soe, B.; McMahon, C.; George, C.; Bassman, L.
2015-08-01
Three-dimensional electron backscatter diffraction (3D EBSD) has emerged as a powerful technique for generating 3D crystallographic information in reasonably large volumes of a microstructure. The technique uses a focused ion beam (FIB) as a high precision serial sectioning device for generating consecutive ion milled surfaces of a material, with each milled surface subsequently mapped by EBSD. The successive EBSD maps are combined using a suitable post-processing method to generate a crystallographic volume of the microstructure. The first part of this paper shows the usefulness of 3D EBSD for understanding the origin of various structural features associated with the plastic deformation of metals. The second part describes a new method for automatically identifying the various types of low and high angle boundaries found in deformed and annealed metals, particularly those associated with grains exhibiting subtle and gradual variations in orientation. We have adapted a 2D image segmentation technique, fast multiscale clustering, to 3D EBSD data using a novel variance function to accommodate quaternion data. This adaptation is capable of segmenting based on subtle and gradual variation as well as on sharp boundaries within the data. We demonstrate the excellent capabilities of this technique with application to 3D EBSD data sets generated from a range of cold rolled and annealed metals described in the paper.
Biais, Matthieu; Ehrmann, Stephan; Mari, Arnaud; Conte, Benjamin; Mahjoub, Yazine; Desebbe, Olivier; Pottecher, Julien; Lakhal, Karim; Benzekri-Lefevre, Dalila; Molinari, Nicolas; Boulain, Thierry; Lefrant, Jean-Yves; Muller, Laurent
2014-11-04
Pulse pressure variation (PPV) has been shown to predict fluid responsiveness in ventilated intensive care unit (ICU) patients. The present study was aimed at assessing the diagnostic accuracy of PPV for prediction of fluid responsiveness by using the grey zone approach in a large population. The study pooled data of 556 patients from nine French ICUs. Hemodynamic (PPV, central venous pressure (CVP) and cardiac output) and ventilator variables were recorded. Responders were defined as patients increasing their stroke volume more than or equal to 15% after fluid challenge. The receiver operating characteristic (ROC) curve and grey zone were defined for PPV. The grey zone was evaluated according to the risk of fluid infusion in hypoxemic patients. Fluid challenge led to increased stroke volume more than or equal to 15% in 267 patients (48%). The areas under the ROC curve of PPV and CVP were 0.73 (95% confidence interval (CI): 0.68 to 0.77) and 0.64 (95% CI 0.59 to 0.70), respectively (P<0.001). A grey zone of 4 to 17% (62% of patients) was found for PPV. A tidal volume more than or equal to 8 ml.kg(-1) and a driving pressure (plateau pressure - PEEP) more than 20 cmH2O significantly improved the area under the ROC curve for PPV. When taking into account the risk of fluid infusion, the grey zone for PPV was 2 to 13%. In ventilated ICU patients, PPV values between 4 and 17%, encountered in 62% patients exhibiting validity prerequisites, did not predict fluid responsiveness.
Zanoletti, Miriam; Marti, Alessandra; Marengo, Mauro; Iametti, Stefania; Pagani, M Ambrogina; Renzetti, Stefano
2017-12-01
A molecular and material science approach is used to describe the influence of coarse and fine buckwheat bran on wheat dough properties and bread textural quality. Focus is given on (i) gluten solvation and structural arrangements in presence of bran as studied by front-face fluorescence; (ii) thermo-mechanical behavior of dough during heating studied by dynamic mechanical thermal analysis and (iii) texture of bread crumb analyzed in terms of a cellular solid. The thermo-mechanical behavior of dough was found to be largely related to starch phase transitions during heating. The use of thermodynamic approaches to biopolymer melting revealed that key transitions such as the onset of starch gelatinization were function of the interplay of water and bran volume fractions in the dough. Front-face fluorescence studies in wheat dough revealed that gluten solvation and structural arrangements were delayed by increasing bran addition level and reduction in particle size, as indicated by the drastic decrease in the protein surface hydrophobicity index. Variations in gluten structure could be strongly related to dough baking performance, i.e. specific volume. With regards to texture, the approach revealed that crumb texture was controlled by variations in density, moisture and bran volume fractions. Overall, this study elucidates a number of physical mechanisms describing the influence of buckwheat bran addition to dough and bread quality. These mechanisms strongly pointed at the influence of bran on water partitioning among the main polymeric components. In the future, these mechanisms should be investigated with bran material of varying source, composition and structure. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Tarff, R.; Day, S. J.; Downes, H.; Seghedi, I.
2015-12-01
Groundwater heating and pressurization of aquifers trapped between dikes in ocean island volcanoes has been proposed as a mechanism for destabilizing and triggering large-volume flank collapses. Previous modelling has indicated that heat transfer from sustained magma flow through dikes during eruption has the potential to produce destabilizing levels of pressure on time scales of 4 to 400 days, if the aquifers remain confined. Here we revisit this proposal from a different perspective. We examine evidence for pressure variations in dike-confined aquifers during eruptions at high elevation vents on ocean island volcanoes. Initially magmatic, these eruptions change to mostly small-volume explosive phreatomagmatic activity. A recent example is the 1949 eruption on La Palma, Canary Islands. Some such eruptions involve sequences of larger-volume explosive phases or cycles, including production of voluminous low-temperature, pyroclastic density currents (PDC). Here we present and interpret data from the Cova de Paul crater eruption (Santo Antao, Cape Verde Islands). The phreatomagmatic part of this eruption formed two cycles, each culminating with eruption of PDCs. Compositional and textural variations in the products of both cycles indicate that the diatreme fill began as coarse-grained and permeable which allowed gas to escape. During the eruption, the fill evolved to a finer grained, poorly sorted, less permeable material, in which pore fluid pressures built up to produce violent explosive phases. This implies that aquifers adjacent to the feeder intrusion were not simply depressurized at the onset of phreatomagmatic explosivity but experienced fluctuations in pressure throughout the eruption as the vent repeatedly choked and emptied. In combination with fluctuations in magma supply rate, driving of aquifer pressurization by cyclical vent choking will further complicate the prediction of flank destabilization during comparable eruptions on ocean island volcanoes.
Xu, Bing; Jia, Tianye; Macare, Christine; Banaschewski, Tobias; Bokde, Arun L W; Bromberg, Uli; Büchel, Christian; Cattrell, Anna; Conrod, Patricia J; Flor, Herta; Frouin, Vincent; Gallinat, Jürgen; Garavan, Hugh; Gowland, Penny; Heinz, Andreas; Ittermann, Bernd; Martinot, Jean-Luc; Paillère Martinot, Marie-Laure; Nees, Frauke; Orfanos, Dimitri Papadopoulos; Paus, Tomáš; Poustka, Luise; Smolka, Michael N; Walter, Henrik; Whelan, Robert; Schumann, Gunter; Desrivières, Sylvane
2017-05-01
In a recent genomewide association study of subcortical brain volumes, a common genetic variation at rs945270 was identified as having the strongest effect on putamen volume, a brain measurement linked to familial risk for attention-deficit/hyperactivity disorder (ADHD). To determine whether rs945270 might be a genetic determinant of ADHD, its effects on ADHD-related symptoms and neural mechanisms of ADHD, such as response inhibition and reward sensitivity, were explored. A large population sample of 1,834 14-year-old adolescents was used to test the effects of rs945270 on ADHD symptoms assessed through the Strengths and Difficulties Questionnaire and region-of-interest analyses of putamen activation by functional magnetic resonance imaging using the stop signal and monetary incentive delay tasks, assessing response inhibition and reward sensitivity, respectively. There was a significant link between rs945270 and ADHD symptom scores, with the C allele associated with lower symptom scores, most notably hyperactivity. In addition, there were sex-specific effects of this variant on the brain. In boys, the C allele was associated with lower putamen activity during successful response inhibition, a brain response that was not associated with ADHD symptoms. In girls, putamen activation during reward anticipation increased with the number of C alleles, most significantly in the right putamen. Remarkably, right putamen activation during reward anticipation tended to negatively correlate with ADHD symptoms. These results indicate that rs945270 might contribute to the genetic risk of ADHD partly through its effects on hyperactivity and reward processing in girls. Copyright © 2017 American Academy of Child and Adolescent Psychiatry. All rights reserved.
Geo- and Biogeochemical Processes in a Heliothermal Hypersaline Lake
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zachara, John M.; Moran, James J.; Resch, Charles T.
Water chemical variations were investigated over three annual hydrologic cycles in hypersaline, heliothermal, meromictic Hot Lake in north-central Washington State, USA. The lake, originally studied by Anderson (1958), contains diverse biota with dramatic zonation related to salinity and redox state. Water samples were collected at 10 cm depth intervals through the shallow lake (2.4 m) at a consistent location during 2012-2014, with comprehensive monitoring performed in 2013. Inorganic salt species, total dissolved solids (TDS), dissolved carbon forms (DOC, DIC), oxygen, sulfide, and methane were analyzed in lake water samples. Depth sonde measurements of pH and temperature were also performed tomore » track their seasonal variations. A bathymetric survey of the lake was conducted to enable lake water volume and solute inventory calculations. Sediment cores were collected at low water and analyzed by x-ray diffraction to investigate sediment mineralogy. The primary dissolved salt in Hot Lake water was Mg2+-SO42- while sediments were dominated by gypsum (CaSO4•2H2O). Lake water concentrations increased with depth to reach saturation with epsomite that was exposed at lake bottom. At maximum volume in spring, Hot Lake exhibited a relatively dilute mixolimnion containing phyto- and zooplankton; a lower saline metalimnion with stratified oxygenic and anoxygenic photosynthetic microbiologic communities; and a stable, hypersaline monimolimnion, separated from above layers by a chemocline, containing high levels of sulfide and methane. The thickness of the mixolimnion regulates a heliothermal effect which creates temperatures in excess of 60 oC in the underlying metalimnion and monimolimnion. The mixolimnion was dynamic and actively mixed. It displayed large pH variations, in-situ calcium carbonate precipitation, and large evaporative volume losses. The depletion of this ephemeral layer by fall allowed deeper mixing into the volume-stable lower mixolimnion, more rapid heat exchange, and lower winter lake temperatures. Solubility calculations indicated seasonal biogenic and thermogenic aragonite precipitation in the upper and lower mixolimnion, but the absence of calcareous sediments at depth suggested dissolution and recycling during winter months. Carbon concentrations were high in Hot Lake (e.g., 0 to 450 mg/L for both DOC and DIC) and increased with depth. DIC concentrations were variable and influenced by calcium carbonate precipitation, but DOC concentrations remained constant except in the monimolimnion where mass loss by anaerobic microbial processes was implied. Biogenic reduced solutes originating in monimolimnion (H2S and CH4) appeared to be biologically oxidized in the metalimnion as they were not observed in more shallow lake waters. Multi-year solute inventory calculations indicated that Hot Lake is a stable, albeit seasonally and annually dynamic feature, with inorganic solutes cycled between lake waters and sediments depending on annual recharge, temperature, and lake water dilution state. Hot Lake with its extreme geochemical and thermal regime functions as analogue of early earth and extraterrestrial life environments.« less
Geo- and biogeochemical processes in a heliothermal hypersaline lake
NASA Astrophysics Data System (ADS)
Zachara, John M.; Moran, James J.; Resch, Charles T.; Lindemann, Stephen R.; Felmy, Andrew R.; Bowden, Mark E.; Cory, Alexandra B.; Fredrickson, James K.
2016-05-01
Water chemical variations were investigated over three annual hydrologic cycles in hypersaline, heliothermal, meromictic Hot Lake in north-central Washington State, USA. The lake contains diverse biota with dramatic zonation related to salinity and redox state. Water samples were collected at 10-cm depth intervals through the shallow lake (2.4 m) during 2012-2014, with comprehensive monitoring performed in 2013. Inorganic salt species, dissolved carbon forms (DOC, DIC), oxygen, sulfide, and methane were analyzed in lake water samples. Depth sonde measurements of pH and temperature were also performed to track their seasonal variations. A bathymetric survey of the lake was conducted to enable lake water volume and solute inventory calculations. Sediment cores were collected at low water and analyzed by X-ray diffraction to investigate sediment mineralogy. The primary dissolved salt in Hot Lake water was Mg2+-SO42- whereas sediments were dominated by gypsum (CaSO4·2H2O). Lake water concentrations increased with depth, reaching saturation with epsomite (MgSO4·7H2O) that was exposed at lake bottom. At maximum volume in spring, Hot Lake exhibited a relatively dilute mixolimnion; a lower saline metalimnion with stratified oxygenic and anoxygenic photosynthetic microbiological communities; and a stable, hypersaline monimolimnion, separated from above layers by a chemocline, containing high levels of sulfide and methane. The thickness of the mixolimnion regulates a heliothermal effect that creates temperatures in excess of 60 °C in the underlying metalimnion and monimolimnion. The mixolimnion was dynamic in volume and actively mixed. It displayed large pH variations, in-situ calcium carbonate precipitation, and large evaporative volume losses. The depletion of this layer by fall allowed deeper mixing into the metalimnion, more rapid heat exchange, and lower winter lake temperatures. Solubility calculations indicate seasonal biogenic and thermogenic aragonite precipitation in the mixolimnion and metalimnion, but the absence of calcareous sediments at depth suggests dissolution and recycling during winter months. Dissolved carbon concentrations [dissolved organic carbon (DOC) and dissolved inorganic carbon (DIC)] increased with depth, reaching ∼0.04 mol/L at the metalimnion-monimolimnion boundary. DIC concentrations were seasonally variable in the mixolimnion and metalimnion, and were influenced by calcium carbonate precipitation. DOC concentrations mimicked those of conservative salts (e.g., Na+-Cl-) in the mixolimnion and metalimnion, but decreased in the monimolimnion where mass loss by anaerobic microbial processes is implied. Biogenic reduced solutes originating in monimolimnion (H2S and CH4) were biologically oxidized in the metalimnion as they were not observed in more shallow lake waters. Multi-year solute inventory calculations indicated that Hot Lake is a stable, albeit seasonally and annually dynamic feature, with inorganic solutes cycled between lake waters and sediments depending on annual recharge, temperature, and lake water dilution state. With its extreme geochemical and thermal regime, Hot Lake functions as analog of early earth and extraterrestrial life environments.
Benes, Jan; Giglio, Mariateresa; Brienza, Nicola; Michard, Frederic
2014-10-28
Dynamic predictors of fluid responsiveness, namely systolic pressure variation, pulse pressure variation, stroke volume variation and pleth variability index have been shown to be useful to identify in advance patients who will respond to a fluid load by a significant increase in stroke volume and cardiac output. As a result, they are increasingly used to guide fluid therapy. Several randomized controlled trials have tested the ability of goal-directed fluid therapy (GDFT) based on dynamic parameters (GDFTdyn) to improve post-surgical outcome. These studies have yielded conflicting results. Therefore, we performed this meta-analysis to investigate whether the use of GDFTdyn is associated with a decrease in post-surgical morbidity. A systematic literature review, using MEDLINE, EMBASE, and The Cochrane Library databases through September 2013 was conducted. Data synthesis was obtained by using odds ratio (OR) and weighted mean difference (WMD) with 95% confidence interval (CI) by random-effects model. In total, 14 studies met the inclusion criteria (961 participants). Post-operative morbidity was reduced by GDFTdyn (OR 0.51; CI 0.34 to 0.75; P <0.001). This effect was related to a significant reduction in infectious (OR 0.45; CI 0.27 to 0.74; P = 0.002), cardiovascular (OR 0.55; CI 0.36 to 0.82; P = 0.004) and abdominal (OR 0.56; CI 0.37 to 0.86; P = 0.008) complications. It was associated with a significant decrease in ICU length of stay (WMD -0.75 days; CI -1.37 to -0.12; P = 0.02). In surgical patients, we found that GDFTdyn decreased post-surgical morbidity and ICU length of stay. Because of the heterogeneity of studies analyzed, large prospective clinical trials would be useful to confirm our findings.
Variation in orbitofrontal cortex volume: relation to sex, emotion regulation and affect.
Welborn, B Locke; Papademetris, Xenophon; Reis, Deidre L; Rajeevan, Nallakkandi; Bloise, Suzanne M; Gray, Jeremy R
2009-12-01
Sex differences in brain structure have been examined extensively but are not completely understood, especially in relation to possible functional correlates. Our two aims in this study were to investigate sex differences in brain structure, and to investigate a possible relation between orbitofrontal cortex subregions and affective individual differences. We used tensor-based morphometry to estimate local brain volume from MPRAGE images in 117 healthy right-handed adults (58 female), age 18-40 years. We entered estimates of local brain volume as the dependent variable in a GLM, controlling for age, intelligence and whole-brain volume. Men had larger left planum temporale. Women had larger ventromedial prefrontal cortex (vmPFC), right lateral orbitofrontal (rlOFC), cerebellum, and bilateral basal ganglia and nearby white matter. vmPFC but not rlOFC volume covaried with self-reported emotion regulation strategies (reappraisal, suppression), expressivity of positive emotions (but not of negative), strength of emotional impulses, and cognitive but not somatic anxiety. vmPFC volume statistically mediated sex differences in emotion suppression. The results confirm prior reports of sex differences in orbitofrontal cortex structure, and are the first to show that normal variation in vmPFC volume is systematically related to emotion regulation and affective individual differences.
Incubator weaning in preterm infants and associated practice variation.
Schneiderman, R; Kirkby, S; Turenne, W; Greenspan, J
2009-08-01
To evaluate the relationship of weight of preterm infants when first placed into an open crib with days to full oral feedings, growth velocity and length of stay (LOS), and to identify unwarranted variation in incubator weaning after adjusting for severity indices. A retrospective study using the ParadigmHealth neonatal database from 2003 to 2006 reviewed incubator weaning to an open crib in appropriate-for-gestational-age (AGA) infants from 22 to weeks gestation. Primary outcome measurements included days to full oral (PO) feeding, weight gain from open crib to discharge and length of stay. Models were severity adjusted. To understand hospital practice variation, we also used a regression model to estimate the weight at open crib for the top 10 volume hospitals. In all 2908 infants met the inclusion criteria for the study. Their mean weight at open crib was 1850 g. On average every additional 100 g an infant weighed at the open crib was associated with increased time to full PO feeding by 0.8 days, decreased weight gained per day by 1 gram and increased LOS by 0.9 days. For the top 10 volume hospitals, severity variables alone accounted for 9% of the variation in weight at open crib, whereas the hospital in which the baby was treated accounted for an additional 19% of the variation. Even after controlling for severity, significant practice variation exists in weaning to an open crib, leading to potential delays in achieving full-volume oral feeds, decreased growth velocity and prolonged LOS.
Identifying with fictive characters: structural brain correlates of the personality trait 'fantasy'.
Cheetham, Marcus; Hänggi, Jürgen; Jancke, Lutz
2014-11-01
The perception of oneself as absorbed in the thoughts, feelings and happenings of a fictive character (e.g. in a novel or film) as if the character's experiences were one's own is referred to as identification. We investigated whether individual variation in the personality trait of identification is associated with individual variation in the structure of specific brain regions, using surface and volume-based morphometry. The hypothesized regions of interest were selected on the basis of their functional role in subserving the cognitive processing domains considered important for identification (i.e. mental imagery, empathy, theory of mind and merging) and for the immersive experience called 'presence'. Controlling for age, sex, whole-brain volume and other traits, identification covaried significantly with the left hippocampal volume, cortical thickness in the right anterior insula and the left dorsal medial prefrontal cortex, and with gray matter volume in the dorsolateral prefrontal cortex. These findings show that trait identification is associated with structural variation in specific brain regions. The findings are discussed in relation to the potential functional contribution of these regions to identification. © The Author (2014). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Singh, Alka; Seitz, Florian; Schwatke, Christian; Guentner, Andreas
2013-04-01
Freshwater lakes and reservoirs account for 74.5% of continental water storage in surface water bodies and only 1.8% resides in rivers. Lakes and reservoirs are a key component of the continental hydrological cycle but in-situ monitoring networks are very limited either because of sparse spatial distribution of gauges or national data policy. Monitoring and predicting extreme events is very challenging in that case. In this study we demonstrate the use of optical remote sensing, satellite altimetry and the GRACE gravity field mission to monitor the lake water storage variations in the Aral Sea. Aral Sea is one of the most unfortunate examples of a large anthropogenic catastrophe. The 4th largest lake of 1960s has been decertified for more than 75% of its area due to the diversion of its primary rivers for irrigation purposes. Our study is focused on the time frame of the GRACE mission; therefore we consider changes from 2002 onwards. Continuous monthly time series of water masks from Landsat satellite data and water level from altimetry missions were derived. Monthly volumetric variations of the lake water storage were computed by intersecting a digital elevation model of the lake with respective water mask and altimetry water level. With this approach we obtained volume from two independent remote sensing methods to reduce the error in the estimated volume through least square adjustment. The resultant variations were then compared with mass variability observed by GRACE. In addition, GARCE estimates of water storage variations were compared with simulation results of the Water Gap Hydrology Model (WGHM). The different observations from all missions agree that the lake reached an absolute minimum in autumn 2009. A marked reversal of the negative trend occured in 2010 but water storage in the lake decreased again afterwards. The results reveal that water storage variations in the Aral Sea are indeed the principal, but not the only contributor to the GRACE signal of mass variations in this region; this is also verified by WGHM simulations. An important implication of this finding is the possibility of GRACE to analyses storage changes in other hydrological compartments (soil moisture, snow and groundwater) once the signal has been reduced for surface water storage changes. Therefore the congruent use of multi-sensor satellite data for hydrological studies proves to be a great source of information for assessing terrestrial water storage variations.
Kawabata, Yoshinori
2012-01-01
FOLFOX6 and FOLFIRI regimens are often selected as the first- or second-line treatment for advanced or recurrent colorectal cancer. Patients are now able to undergo at-home treatment by using a portable disposable infusion pump (SUREFUSER(®)A) for continuous intravenous infusion of 5-fluorouracil (5-FU). The duration of continuous 5-FU infusion is normally set at an average of 46 h, but large variations in the duration of infusion are observed. The relationship between the total volume of the drug solution in SUREFUSER(®)A and the duration of infusion was analyzed by regression analysis. In addition, multiple regression analysis of the total volume of the drug solution, dummy variables for temperature, and duration of infusion was carried out. The duration of infusion was affected by the coefficient of viscosity of the drug solution and the ambient temperature. The composition of the drug solutions and the ambient temperature must be considered to ensure correct duration of continuous infusion.
Variations and asymmetries in regional brain surface in the genus Homo.
Balzeau, Antoine; Holloway, Ralph L; Grimaud-Hervé, Dominique
2012-06-01
Paleoneurology is an important field of research within human evolution studies. Variations in size and shape of an endocast help to differentiate among fossil hominin species whereas endocranial asymmetries are related to behavior and cognitive function. Here we analyse variations of the surface of the frontal, parieto-temporal and occipital lobes among different species of Homo, including 39 fossil hominins, ten fossil anatomically modern Homo sapiens and 100 endocasts of extant modern humans. We also test for the possible asymmetries of these features in a large sample of modern humans and observe individual particularities in the fossil specimens. This study contributes important new information about the brain evolution in the genus Homo. Our results show that the general pattern of surface asymmetry for the different regional brain surfaces in fossil species of Homo does not seem to be different from the pattern described in a large sample of anatomically modern H. sapiens, i.e., the right hemisphere has a larger surface than the left, as do the right frontal, the right parieto-temporal and the left occipital lobes compared with the contra-lateral side. It also appears that Asian Homo erectus specimens are discriminated from all other samples of Homo, including African and Georgian specimens that are also sometimes included in that taxon. The Asian fossils show a significantly smaller relative size of the parietal and temporal lobes. Neandertals and anatomically modern H. sapiens, who share the largest endocranial volume of all hominins, show differences when considering the relative contribution of the frontal, parieto-temporal and occipital lobes. These results illustrate an original variation in the pattern of brain organization in hominins independent of variations in total size. The globularization of the brain and the enlargement of the parietal lobes could be considered derived features observed uniquely in anatomically modern H. sapiens. Copyright © 2012 Elsevier Ltd. All rights reserved.
Comparative evaluation of saliva collection methods for proteome analysis.
Golatowski, Claas; Salazar, Manuela Gesell; Dhople, Vishnu Mukund; Hammer, Elke; Kocher, Thomas; Jehmlich, Nico; Völker, Uwe
2013-04-18
Saliva collection devices are widely used for large-scale screening approaches. This study was designed to compare the suitability of three different whole-saliva collection approaches for subsequent proteome analyses. From 9 young healthy volunteers (4 women and 5 men) saliva samples were collected either unstimulated by passive drooling or stimulated using a paraffin gum or Salivette® (cotton swab). Saliva volume, protein concentration and salivary protein patterns were analyzed comparatively. Samples collected using paraffin gum showed the highest saliva volume (4.1±1.5 ml) followed by Salivette® collection (1.8±0.4 ml) and drooling (1.0±0.4 ml). Saliva protein concentrations (average 1145 μg/ml) showed no significant differences between the three sampling schemes. Each collection approach facilitated the identification of about 160 proteins (≥2 distinct peptides) per subject, but collection-method dependent variations in protein composition were observed. Passive drooling, paraffin gum and Salivette® each allows similar coverage of the whole saliva proteome, but the specific proteins observed depended on the collection approach. Thus, only one type of collection device should be used for quantitative proteome analysis in one experiment, especially when performing large-scale cross-sectional or multi-centric studies. Copyright © 2013 Elsevier B.V. All rights reserved.
Prior, Phil; Chen, Xinfeng; Gore, Elizabeth; Johnstone, Candice; Li, X Allen
2017-07-01
MRI-based treatment planning in radiation therapy (RT) is prohibitive, in part, due to the lack of electron density (ED) information within the image. The dosimetric differences between MRI- and CT-based planning for intensity modulated RT (IMRT) of lung cancer were investigated to assess the appropriateness of bulk ED assignment. Planning CTs acquired for six representative lung cancer patients were used to generate bulk ED IMRT plans. To avoid the effect of anatomic differences between CT and MRI, "simulated MRI-based plans" were generated by forcing the relative ED (rED) to water on CT-delineated structures using organ specific values from the ICRU Report 46 and using the mean rED value of the internal target volume (ITV) from the planning CT. The "simulated MRI-based plans" were generated using a research planning system (Monaco v5.09.07a, Elekta, AB) and employing Monte Carlo dose calculation. The following dose-volume-parameters (DVPs) were collected from both the "simulated MRI-based plans" and the original planning CT: D 95 , the dose delivered to 95% of the ITV & planning target volume (PTV), D 5 and V 5 , the volume of normal lung irradiated ≥5 Gy. The percent point difference and relative dose difference were used for comparison with the CT based plan for V 5 and D 95 respectively. A total of five plans per patient were generated; three with the ITV rED (rED ITV ) = 1.06, 1.0 and the mean value from the planning CT while the lung rED (rED lung ) was fixed at the ICRU value of 0.26 and two with rED lung = 0.1 and 0.5 while the rED ITV was fixed to the mean value from the planning CT. Noticeable differences in the ITV and PTV DVPs were observed. Variations of the normal lung V 5 can be as large as 9.6%. In some instances, varying the rED ITV between rED mean and 1.06 resulted in D 95 increases ranging from 3.9% to 6.3%. Bulk rED assignment on normal lung affected the DVPs of the ITV and PTV by 4.0-9.8% and 0.3-19.6% respectively. Dose volume histograms were presented for representative cases where the variations in the DVPs were found to be very large or very small. The commonly used bulk rED assignment in MRI-only based planning may not be appropriate for lung cancer. A voxel based method, e.g., synthetic CT generated from MRI data, is likely required for dosimetrically accurate MR-based planning for lung cancer. © 2017 American Association of Physicists in Medicine.
NASA Astrophysics Data System (ADS)
Söderberg, Per G.; Sandberg-Melin, Camilla
2018-02-01
The present study aimed to elucidate the angular distribution of the Pigment epithelium central limit-Inner limit of the retina Minimal Distance measured over 2π radians in the frontal plane (PIMD-2π) in young healthy eyes. Both healthy eyes of 16 subjects aged [20;30[ years were included. In each eye, a volume of the optical nerve head (ONH) was captured three times with a TOPCON DRI OCT Triton (Japan). Each volume renders a representation of the ONH 2.8 mm along the sagittal axis resolved in 993 steps, 6 mm long the frontal axis resolved in 512 steps and 6 x mm along the longitudinal axis resolved in 256 steps. The captured volumes were transferred to a custom made software for semiautomatic segmentation of PIMD around the circumference of the ONH. The phases of iterated volumes were calibrated with cross correlation. It was found that PIMD-2π expresses a double hump with a small maximum superiorly, a larger maximum inferiorly, and minima in between. The measurements indicated that there is no difference of PIMD-2π between genders nor between dominant and not dominant eye within subject. The variation between eyes within subject is of the same order as the variation among subjects. The variation among volumes within eye is substantially lower.
Genetic and environmental influences on mean diffusivity and volume in subcortical brain regions.
Gillespie, Nathan A; Neale, Michael C; Hagler, Donald J; Eyler, Lisa T; Fennema-Notestine, Christine; Franz, Carol E; Lyons, Michael J; McEvoy, Linda K; Dale, Anders M; Panizzon, Matthew S; Kremen, William S
2017-05-01
Increased mean diffusivity (MD) is hypothesized to reflect tissue degeneration and may provide subtle indicators of neuropathology as well as age-related brain changes in the absence of volumetric differences. Our aim was to determine the degree to which genetic and environmental variation in subcortical MD is distinct from variation in subcortical volume. Data were derived from a sample of 387 male twins (83 MZ twin pairs, 55 DZ twin pairs, and 111 incomplete twin pairs) who were MRI scanned as part of the Vietnam Era Twin Study of Aging. Quantitative estimates of MD and volume for 7 subcortical regions were obtained: thalamus, caudate nucleus, putamen, pallidum, hippocampus, amygdala, and nucleus accumbens. After adjusting for covariates, bivariate twin models were fitted to estimate the size and significance of phenotypic, genotypic, and environmental correlations between MD and volume at each subcortical region. With the exception of the amygdala, familial aggregation in MD was entirely explained by additive genetic factors across all subcortical regions with estimates ranging from 46 to 84%. Based on bivariate twin modeling, variation in subcortical MD appears to be both genetically and environmentally unrelated to individual differences in subcortical volume. Therefore, subcortical MD may be an alternative biomarker of brain morphology for complex traits worthy of future investigation. Hum Brain Mapp 38:2589-2598, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
SU-E-J-12: A New Stereological Method for Tumor Volume Evaluation for Esophageal Cancer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feng, Y; Tianjin Medical University Cancer Institute and Hospital; East Carolina University
2014-06-01
Purpose: Stereological method used to obtain three dimensional quantitative information from two dimensional images is a widely used tool in the study of cells and pathology. But the feasibility of the method for quantitative evaluation of volumes with 3D image data sets for radiotherapy clinical application has not been explored. On the other hand, a quick, easy-to-use and reliable method is highly desired in image-guided-radiotherapy(IGRT) for tumor volume measurement for the assessment of response to treatment. To meet this need, a stereological method for evaluating tumor volumes for esophageal cancer is presented in this abstract. Methods: The stereology method wasmore » optimized by selecting the appropriate grid point distances and sample types. 7 patients with esophageal cancer were selected retrospectively for this study, each having pre and post treatment computed tomography (CT) scans. Stereological measurements were performed for evaluating the gross tumor volume (GTV) changes after radiotherapy and the results was compared with the ones by planimetric measurements. Two independent observers evaluated the reproducibility for volume measurement using the new stereological technique. Results: The intraobserver variation in the GTV volume estimation was 3.42±1.68cm3 (the Wilcoxon matched-pairs test Resultwas Z=−1.726,P=0.084>0.05); the interobserver variation in the GTV volume estimation was 22.40±7.23 cm3 (Z=−3.296,P=0.083>0.05), which showed the consistency in GTV volume calculation with the new method for the same and different users. The agreement level between the results from the two techniques was also evaluated. Difference between the measured GTVs was 20.10±5.35 cm3 (Z=−3.101,P=0.089>0.05). Variation of the measurement results using the two techniques was low and clinically acceptable. Conclusion: The good agreement between stereological and planimetric techniques proves the reliability of the stereological tumor volume estimations. The optimized stereological technique described in this abstract may provide a quick, unbiased and reproducible tool for tumor volume estimation for treatment response assessment. Supported by NSFC (#81041107, #81171342 and #31000784)« less
The impact of nonclinical factors on repeat cesarean section.
Stafford, R S
1991-01-02
Nonclinical factors, including the setting in which health care takes place, influence clinical decisions. This research measures the independent effects of organizational and socioeconomic factors on repeat cesarean section use in California. Of 45,425 births to women with previous cesarean sections in 1986, vaginal birth after cesarean section occurred in 10.9%. Sizable nonclinical variations were noted. By hospital ownership, rates ranged from 4.9% (for-profit hospitals) to 29.2% (University of California). Variations also existed by hospital teaching level (nonteaching hospitals, 7.0%, vs formalized teaching hospitals, 23.3%); payment source (private insurance, 8.1%, vs indigent services, 25.2%); and obstetric volume (low-volume hospitals, 5.4%, vs high-volume hospitals, 16.6%). Multiple logistic regression demonstrated that these variables had independent effects after accounting for their overlapping influences and the effects of patient characteristics. The observed variations demonstrate the prominence of nonclinical factors in decision making and question the clinical appropriateness of current practice patterns.
Oxymetazoline and hypertensive crisis in a child: can we prevent it?
Latham, Gregory J; Jardine, David S
2013-10-01
Oxymetazoline nasal spray is not FDA approved for use in children less than 6 years; however, its safety and efficacy are widely accepted, and it is in widespread use in children prior to procedures that may lead to epistaxis. We report a case of intraoperative oxymetazoline toxicity in a 4-year-old boy that led to a hypertensive crisis. While examining the possible causes for this problem, we became aware that the method of drug delivery led to an unanticipated overdose. The position in which the bottle is held causes pronounced variation in the quantity of oxymetazoline dispensed. To examine the impact that bottle position has on the volume delivered, we measured the volume of oxymetazoline dispensed with the bottle in the upright and inverted position. We also measured the volume of a drop of oxymetazoline dispensed from the bottle. Because an additional source of oxymetazoline exposure is from packing the nares with surgical pledgets, we analyzed the volume of oxymetazoline absorbed by each pledget. Squeezing the bottle in the upright position results in a fine spray of fluid that averaged 28.9 ± 6.8 μl and was largely independent of effort. This volume is nearly identical to the measured volume of a drop of oxymetazoline, which was 30 μl. However, squeezing the bottle in the inverted position resulted in a steady stream of fluid, and the volume administered was completely effort dependent. Multiple tests in the inverted position demonstrated an average volume of 1037 ± 527 μl, with a range of 473-2196 μl. Lastly, the volume of oxymetazoline absorbed by each surgical pledget was 1511 ± 184 μl. Our testing indicates that bottle position during oxymetazoline administration can cause up to a 75-fold increase in intended drug administration. © 2013 John Wiley & Sons Ltd.
van Noort, Kim; Schuurmann, Richte Cl; Wermelink, Bryan; Slump, Cornelis H; Kuijpers, Karel C; de Vries, Jean-Paul Pm
2017-10-01
Objectives The results after aneurysm repair with an endovascular aneurysm sealing (EVAS) system are dependent on the stability of the aneurysm sac and particularly the intraluminal abdominal aortic thrombus (ILT). The postprocedural ILT volume is decreased compared with preprocedural ILT volume in aortic aneurysm patients treated with EVAS. We hypothesize that ILT is not stable in all patients and pressurization of the ILT may result in displacement of fluids from the ILT, no differently than serum is displaced from whole blood when it settles. To date, the mechanism and quantification of fluid displacement from ILT are unknown. Methods The study included 21 patients who underwent elective open abdominal aortic aneurysm repair. The ILT was harvested as a routine procedure during the operation. After excision of a histologic sample of the ILT specimen in four patients, ILT volume was measured and the ILT was compressed in a dedicated compression setup designed to apply uniform compression of 200 mmHg for 5 min. After compression, the volumes of the remaining thrombus and the displaced fluid were measured. Results The median (interquartile-range) of ILT volume before compression was 60 (66) mL, and a median of 5.7 (8.4) mL of fluid was displaced from the ILT after compression, resulting in a median thrombus volume decrease of 11% (10%). Fluid components can be up to 31% of the entire ILT volume. Histologic examination of four ILT specimens showed a reduction of the medial layer of the ILT after compression, which was the result of compression of fluid-containing canaliculi. Conclusions Applying pressure of 200 mmHg to abdominal aortic aneurysm ILT resulted in the displacement of fluid, with a large variation among patients. Fluid displacement may result in decrease of ILT volume during and after EVAS, which might have implications on pre-EVAS volume planning and on stability of the endobags during follow-up which may lead to migration, endoleak or both.
Amini, Reza; Kaczka, David W.
2013-01-01
To determine the impact of ventilation frequency, lung volume, and parenchymal stiffness on ventilation distribution, we developed an anatomically-based computational model of the canine lung. Each lobe of the model consists of an asymmetric branching airway network subtended by terminal, viscoelastic acinar units. The model allows for empiric dependencies of airway segment dimensions and parenchymal stiffness on transpulmonary pressure. We simulated the effects of lung volume and parenchymal recoil on global lung impedance and ventilation distribution from 0.1 to 100 Hz, with mean transpulmonary pressures from 5 to 25 cmH2O. With increasing lung volume, the distribution of acinar flows narrowed and became more synchronous for frequencies below resonance. At higher frequencies, large variations in acinar flow were observed. Maximum acinar flow occurred at first antiresonance frequency, where lung impedance achieved a local maximum. The distribution of acinar pressures became very heterogeneous and amplified relative to tracheal pressure at the resonant frequency. These data demonstrate the important interaction between frequency and lung tissue stiffness on the distribution of acinar flows and pressures. These simulations provide useful information for the optimization of frequency, lung volume, and mean airway pressure during conventional ventilation or high frequency oscillation (HFOV). Moreover our model indicates that an optimal HFOV bandwidth exists between the resonant and antiresonant frequencies, for which interregional gas mixing is maximized. PMID:23872936
Hruschka, Daniel J.; Hadley, Craig; Brewis, Alexandra A.; Stojanowski, Christopher M.
2015-01-01
Contemporary human populations conform to ecogeographic predictions that animals will become more compact in cooler climates and less compact in warmer ones. However, it remains unclear to what extent this pattern reflects plastic responses to current environments or genetic differences among populations. Analyzing anthropometric surveys of 232,684 children and adults from across 80 ethnolinguistic groups in sub-Saharan Africa, Asia and the Americas, we confirm that body surface-to-volume correlates with contemporary temperature at magnitudes found in more latitudinally diverse samples (Adj. R2 = 0.14-0.28). However, far more variation in body surface-to-volume is attributable to genetic population structure (Adj. R2 = 0.50-0.74). Moreover, genetic population structure accounts for nearly all of the observed relationship between contemporary temperature and body surface-to-volume among children and adults. Indeed, after controlling for population structure, contemporary temperature accounts for no more than 4% of the variance in body form in these groups. This effect of genetic affinity on body form is also independent of other ecological variables, such as dominant mode of subsistence and household wealth per capita. These findings suggest that the observed fit of human body surface-to-volume with current climate in this sample reflects relatively large effects of existing genetic population structure of contemporary humans compared to plastic response to current environments. PMID:25816235
Hruschka, Daniel J; Hadley, Craig; Brewis, Alexandra A; Stojanowski, Christopher M
2015-01-01
Contemporary human populations conform to ecogeographic predictions that animals will become more compact in cooler climates and less compact in warmer ones. However, it remains unclear to what extent this pattern reflects plastic responses to current environments or genetic differences among populations. Analyzing anthropometric surveys of 232,684 children and adults from across 80 ethnolinguistic groups in sub-Saharan Africa, Asia and the Americas, we confirm that body surface-to-volume correlates with contemporary temperature at magnitudes found in more latitudinally diverse samples (Adj. R2 = 0.14-0.28). However, far more variation in body surface-to-volume is attributable to genetic population structure (Adj. R2 = 0.50-0.74). Moreover, genetic population structure accounts for nearly all of the observed relationship between contemporary temperature and body surface-to-volume among children and adults. Indeed, after controlling for population structure, contemporary temperature accounts for no more than 4% of the variance in body form in these groups. This effect of genetic affinity on body form is also independent of other ecological variables, such as dominant mode of subsistence and household wealth per capita. These findings suggest that the observed fit of human body surface-to-volume with current climate in this sample reflects relatively large effects of existing genetic population structure of contemporary humans compared to plastic response to current environments.
Colonic transit time and pressure based on Bernoulli's principle.
Uno, Yoshiharu
2018-01-01
Variations in the caliber of human large intestinal tract causes changes in pressure and the velocity of its contents, depending on flow volume, gravity, and density, which are all variables of Bernoulli's principle. Therefore, it was hypothesized that constipation and diarrhea can occur due to changes in the colonic transit time (CTT), according to Bernoulli's principle. In addition, it was hypothesized that high amplitude peristaltic contractions (HAPC), which are considered to be involved in defecation in healthy subjects, occur because of cecum pressure based on Bernoulli's principle. A virtual healthy model (VHM), a virtual constipation model and a virtual diarrhea model were set up. For each model, the CTT was decided according to the length of each part of the colon, and then calculating the velocity due to the cecum inflow volume. In the VHM, the pressure change was calculated, then its consistency with HAPC was verified. The CTT changed according to the difference between the cecum inflow volume and the caliber of the intestinal tract, and was inversely proportional to the cecum inflow volume. Compared with VHM, the CTT was prolonged in the virtual constipation model, and shortened in the virtual diarrhea model. The calculated pressure of the VHM and the gradient of the interlocked graph were similar to that of HAPC. The CTT and HAPC can be explained by Bernoulli's principle, and constipation and diarrhea may be fundamentally influenced by flow dynamics.
Variations of intrathoracic amount of blood as a reason of ECG voltage changes.
Saltykova, Marina; Capderou, Andre; Atkov, Oleg; Gusakov, Victor; Konovalov, Gennagiy; Voronin, Leonid; Kaspranskiy, Rustem; Morgun, Valeriy; Bailliart, Olivier; Cermack, Milan; Vaïda, Pierre
2003-10-01
It is known that electroconduction of intrathoracic organs and tissues significantly influences the ECG voltage. It changes during therapy or exercise test due to redistribution and/or volume variations of blood and body fluids and their electroconductivity variations. This fact must be taken into consideration during interpretation of corresponding ECG. But there are no quantitative estimations of this influence on human ECG. The goals of this study were to estimate the influence of variations of thoracic electroconduction, and heart volume on QRS voltage in humans, due to gravity change. ECGs of 26 healthy volunteers were analyzed in upright and supine position. Experimental conditions-acute change of gravity--are created in a special aircraft flying on Kepler's parabola trajectory. Each parabola includes phases of normo-, hypergravity (blood shifts in caudal direction), and microgravity (blood redistributes in cranial direction). Amplitude of QRS in Frank leads in all phases has been analyzed. 2-D echo studies for six subjects were used for estimation of heart volume change. In an upright position during hypergravity the amplitude of R wave in Z increases in 95% of cases (mean 0.19 mV). During microgravity amplitude of R wave in Z decreases in 95% (mean 0.24 mV). In supine position changes of QRS voltage are not significantly. Blood redistribution during gravity change leads to changes of QRS voltage, which is more expressed and steady on R in Z lead: an average near 0.2 mV. It is due to the balance between two factors: (a). changes of degree of short circuiting by variations in the amount of blood in thorax (b). changes of distance between heart and electrodes as a result of change in the position, form, and volume of the heart.
Learning Supervised Topic Models for Classification and Regression from Crowds.
Rodrigues, Filipe; Lourenco, Mariana; Ribeiro, Bernardete; Pereira, Francisco C
2017-12-01
The growing need to analyze large collections of documents has led to great developments in topic modeling. Since documents are frequently associated with other related variables, such as labels or ratings, much interest has been placed on supervised topic models. However, the nature of most annotation tasks, prone to ambiguity and noise, often with high volumes of documents, deem learning under a single-annotator assumption unrealistic or unpractical for most real-world applications. In this article, we propose two supervised topic models, one for classification and another for regression problems, which account for the heterogeneity and biases among different annotators that are encountered in practice when learning from crowds. We develop an efficient stochastic variational inference algorithm that is able to scale to very large datasets, and we empirically demonstrate the advantages of the proposed model over state-of-the-art approaches.
Brown, Philip J; Mannava, Sandeep; Seyler, Thorsten M; Plate, Johannes F; Van Sikes, Charles; Stitzel, Joel D; Lang, Jason E
2016-10-26
Femoral head core decompression is an efficacious joint-preserving procedure for treatment of early stage avascular necrosis. However, postoperative fractures have been described which may be related to the decompression technique used. Femoral head decompressions were performed on 12 matched human cadaveric femora comparing large 8mm single bore versus multiple 3mm small drilling techniques. Ultimate failure strength of the femora was tested using a servo-hydraulic material testing system. Ultimate load to failure was compared between the different decompression techniques using two paired ANCOVA linear regression models. Prior to biomechanical testing and after the intervention, volumetric bone mineral density was determined using quantitative computed tomography to account for variation between cadaveric samples and to assess the amount of bone disruption by the core decompression. Core decompression, using the small diameter bore and multiple drilling technique, withstood significantly greater load prior to failure compared with the single large bore technique after adjustment for bone mineral density (p< 0.05). The 8mm single bore technique removed a significantly larger volume of bone compared to the 3mm multiple drilling technique (p< 0.001). However, total fracture energy was similar between the two core decompression techniques. When considering core decompression for the treatment of early stage avascular necrosis, the multiple small bore technique removed less bone volume, thereby potentially leading to higher load to failure.
How far does the CO2 travel beyond a leaky point?
NASA Astrophysics Data System (ADS)
Kong, X.; Delshad, M.; Wheeler, M.
2012-12-01
Xianhui Kong, Mojdeh Delshad, Mary F. Wheeler The University of Texas at Austin Numerous research studies have been carried out to investigate the long term feasibility of safe storage of large volumes of CO2 in subsurface saline aquifers. The injected CO2 will undergo complex petrophysical and geochemical processes. During these processes, part of CO2 will be trapped while some will remain as a mobile phase, causing a leakage risk. The comprehensive and accurate characterizations of the trapping and leakage mechanisms are critical for accessing the safety of sequestration, and are challenges in this research area. We have studied different leakage scenarios using realistic aquifer properties including heterogeneity and put forward a comprehensive trapping model for CO2 in deep saline aquifer. The reservoir models include several geological layers and caprocks up to the near surface. Leakage scenarios, such as fracture, high permeability pathways, abandoned wells, are studied. In order to accurately model the fractures, very fine grids are needed near the fracture. Considering that the aquifer usually has a large volume and reservoir model needs large number of grid blocks, simulation would be computational expensive. To deal with this challenge, we carried out the simulations using our in-house parallel reservoir simulator. Our study shows the significance of capillary pressure and permeability-porosity variations on CO2 trapping and leakage. The improved understanding on trapping and leakage will provide confidence in future implementation of sequestration projects.
Factors affecting the remotely sensed response of coniferous forest plantations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Danson, F.M.; Curran, P.J.
1993-01-01
Remote sensing of forest biophysical properties has concentrated upon forest sites with a wide range of green vegetation amount and thereby leaf area index and canopy cover. However, coniferous forest plantations, an important forest type in Europe, are managed to maintain a large amount of green vegetation with little spatial variation. Therefore, the strength of the remotely sensed signal will, it is hypothesized, be determined more by the structure of this forest than by its cover. Airborne Thematic Mapper (ATM) and SPOT-1 HRV data were used to determine the effects of this structural variation on the remotely sensed response ofmore » a coniferous forest plantation in the United Kingdom. Red and near infrared radiance were strongly and negatively correlated with a range of structural properties and with the age of the stands but weakly correlated with canopy cover. A composite variable, related to the volume of the canopy, accounted for over 75% of the variation in near infrared radiance. A simple model that related forest structural variables to the remotely sensed response was used to understand and explain this response from a coniferous forest plantation.« less
Ashbrook, David G; Williams, Robert W; Lu, Lu; Stein, Jason L; Hibar, Derrek P; Nichols, Thomas E; Medland, Sarah E; Thompson, Paul M; Hager, Reinmar
2014-10-03
Variation in hippocampal volume has been linked to significant differences in memory, behavior, and cognition among individuals. To identify genetic variants underlying such differences and associated disease phenotypes, multinational consortia such as ENIGMA have used large magnetic resonance imaging (MRI) data sets in human GWAS studies. In addition, mapping studies in mouse model systems have identified genetic variants for brain structure variation with great power. A key challenge is to understand how genetically based differences in brain structure lead to the propensity to develop specific neurological disorders. We combine the largest human GWAS of brain structure with the largest mammalian model system, the BXD recombinant inbred mouse population, to identify novel genetic targets influencing brain structure variation that are linked to increased risk for neurological disorders. We first use a novel cross-species, comparative analysis using mouse and human genetic data to identify a candidate gene, MGST3, associated with adult hippocampus size in both systems. We then establish the coregulation and function of this gene in a comprehensive systems-analysis. We find that MGST3 is associated with hippocampus size and is linked to a group of neurodegenerative disorders, such as Alzheimer's.
Korman, Josh; Martell, Steven J.D.; Walters, Carl J.; Makinster, Andrew S.; Coggins, Lewis G.; Yard, Michael D.; Persons, William R.
2012-01-01
We used an integrated assessment model to examine effects of flow from Glen Canyon Dam, Arizona, USA, on recruitment of nonnative rainbow trout (Oncorhynchus mykiss) in the Colorado River and to estimate downstream migration from Glen Canyon to Marble Canyon, a reach used by endangered native fish. Over a 20-year period, recruitment of rainbow trout in Glen Canyon increased with the annual flow volume and when hourly flow variation was reduced and after two of three controlled floods. The model predicted that approximately 16 000 trout·year–1 emigrated to Marble Canyon and that the majority of trout in this reach originate from Glen Canyon. For most models that were examined, over 70% of the variation in emigration rates was explained by variation in recruitment in Glen Canyon, suggesting that flow from the dam controls in large part the extent of potential negative interactions between rainbow trout and native fish. Controlled floods and steadier flows, which were originally aimed at partially restoring conditions before the dam (greater native fish abundance and larger sand bars), appear to have been more beneficial to nonnative rainbow trout than to native fish.
A Comparative Study of Pituitary Volume Variations in MRI in Acute Onset of Psychiatric Conditions.
Soni, Brijesh Kumar; Joish, Upendra Kumar; Sahni, Hirdesh; George, Raju A; Sivasankar, Rajeev; Aggarwal, Rohit
2017-02-01
The growing belief that endocrine abnormalities may underlie many mental conditions has led to increased use of imaging and hormonal assays in patients attending to psychiatric OPDs. People who are in an acute phase of a psychiatric disorder show Hypothalamic Pituitary Adrenal (HPA) axis hyperactivity, but the precise underlying central mechanisms are unclear. To assess the pituitary gland volume variations in patients presenting with new onset acute psychiatric illness in comparison with age and gender matched controls by using MRI. The study included 50 patients, with symptoms of acute psychiatric illness presenting within one month of onset of illness and 50 age and gender matched healthy controls. Both patients and controls were made to undergo MRI of the Brain. A 0.9 mm slices of entire brain were obtained by 3 dimensional T1 weighted sequence. Pituitary gland was traced in all sagittal slices. Anterior pituitary and posterior pituitary bright spot were measured separately in each slice. Volume of the pituitary (in cubic centimetre- cm 3 ) was calculated by summing areas. Significance of variations in pituitary gland volumes was compared between the cases and controls using Analysis of Covariance (ANOVA). There were significantly larger pituitary gland volumes in the cases than the controls, irrespective of psychiatric diagnosis (ANOVA, f=15.56; p=0.0002). Pituitary volumes in cases were 15.36% (0.73 cm 3 ) higher than in controls. There is a strong likelihood of HPA axis overactivity during initial phase of all mental disorders along with increased pituitary gland volumes. Further studies including hormonal assays and correlation with imaging are likely to provide further insight into neuroanatomical and pathological basis of psychiatric disorders.
NASA Technical Reports Server (NTRS)
Benepe, D. B.; Cunningham, A. M., Jr.; Dunmyer, W. D.
1978-01-01
Volume 2 of this three volume report is presented. This volume presents plotted variations of power spectral density data with frequency for each structural response item for each data sampled and analyzed during the course of the investigation. Some of the information contained in Volume 1 are repeated to allow the reader to identify the specific conditions appropriate to each plot presented and to interpret the data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Knybel, Lukas; VŠB-Technical University of Ostrava, Ostrava; Cvek, Jakub, E-mail: Jakub.cvek@fno.cz
Purpose/Objective: To evaluate lung tumor motion during respiration and to describe factors affecting the range and variability of motion in patients treated with stereotactic ablative radiation therapy. Methods and Materials: Log file analysis from online respiratory tumor tracking was performed in 145 patients. Geometric tumor location in the lungs, tumor volume and origin (primary or metastatic), sex, and tumor motion amplitudes in the superior-inferior (SI), latero-lateral (LL), and anterior-posterior (AP) directions were recorded. Tumor motion variability during treatment was described using intrafraction/interfraction amplitude variability and tumor motion baseline changes. Tumor movement dependent on the tumor volume, position and origin, andmore » sex were evaluated using statistical regression and correlation analysis. Results: After analysis of >500 hours of data, the highest rates of motion amplitudes, intrafraction/interfraction variation, and tumor baseline changes were in the SI direction (6.0 ± 2.2 mm, 2.2 ± 1.8 mm, 1.1 ± 0.9 mm, and −0.1 ± 2.6 mm). The mean motion amplitudes in the lower/upper geometric halves of the lungs were significantly different (P<.001). Motion amplitudes >15 mm were observed only in the lower geometric quarter of the lungs. Higher tumor motion amplitudes generated higher intrafraction variations (R=.86, P<.001). Interfraction variations and baseline changes >3 mm indicated tumors contacting mediastinal structures or parietal pleura. On univariate analysis, neither sex nor tumor origin (primary vs metastatic) was an independent predictive factor of different movement patterns. Metastatic lesions in women, but not men, showed significantly higher mean amplitudes (P=.03) and variability (primary, 2.7 mm; metastatic, 4.9 mm; P=.002) than primary tumors. Conclusion: Online tracking showed significant irregularities in lung tumor movement during respiration. Motion amplitude was significantly lower in upper lobe tumors; higher interfraction amplitude variability indicated tumors in contact with mediastinal structures, although adhesion to parietal pleura did not necessarily reduce tumor motion amplitudes. The most variable lung tumors were metastatic lesions in women.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qi, X; Yang, Y; Yang, L
Purpose: To report our initial experience of systematic monitoring treatment response using longitudinal diffusion MR images on a Co-60 MRI-guided radiotherapy system. Methods: Four patients, including 2 head-and-necks, 1 sarcoma and 1 GBM treated on a 0.35 Tesla MRI-guided treatment system, were analyzed. For each patient, 3D TrueFISP MRIs were acquired during CT simulation and before each treatment for treatment planning and patient setup purposes respectively. Additionally, 2D diffusion-weighted MR images (DWI) were acquired weekly throughout the treatment course. The gross target volume (GTV) and brainstem (as a reference structure) were delineated on weekly 3D TrueFISP MRIs to monitor anatomymore » changes, the contours were then transferred onto the corresponding DWI images after fusing with the weekly TrueFISP images. The patient-specific temporal and spatial variations during the entire treatment course, such as anatomic changes, target apparent diffusion coefficient (ADC) distribution were evaluated in a longitudinal pattern. Results: Routine MRI revealed progressive soft-tissue GTV volume changes (up to 53%) for the H&N cases during the treatment course of 5–7 weeks. Within the GTV, the mean ADC values varied from −44% (ADC decrease) to +26% (ADC increase) in a week. The gradual increase of ADC value was inversely associated with target volume variation for one H&N case. The maximal changes of mean ADC values within the brainstem were 5.3% for the H&N cases. For the large size sarcoma and GBM tumors, spatial heterogeneity and temporal variations were observed through longitudinal ADC analysis. Conclusion: In addition to the superior soft-tissue visualization, the 0.35T MR system on ViewRay showed the potential to quantitatively measure the ADC values for both tumor and normal tissues. For normal tissue that is minimally affected by radiation, its ADC values are reproducible. Tumor ADC values show temporal and spatial fluctuation that can be exploited for personalized adaptive therapy.« less
Ribeiro, Rhayssa; Brandão, Daniella; Noronha, Jéssica; Lima, Cibelle; Fregonezi, Guilherme; Resqueti, Vanessa; Dornelas de Andrade, Arméle
2018-05-01
Patients with Parkinson's disease often exhibit respiratory disorders and there are no Respiratory Therapy protocols which are suggested as interventions in Parkinson's patients. The aim of this study is to evaluate the effects of Breathing-Stacking (BS) and incentive spirometer (IS) techniques in volume variations of the chest wall in patients with Parkinson's Disease (PD). 14 patients with mild-moderate PD were included in this randomized cross-over study. Volume variations of the chest wall were assessed before, immediately after, then 15 and 30 min after BS and IS performance by optoelectronic plethysmography. Tidal volume (VT) and minute ventilation (MV) significantly increased after BS and IS techniques (p < 0.05). There was greater involvement of pulmonary and abdominal compartments after IS. The results suggest that these re-expansion techniques can be performed to immediately improve volume. Copyright © 2018 Elsevier B.V. All rights reserved.
Howe, M S; McGowan, R S
2009-11-01
An analysis is made of the nonlinear interactions between flow in the subglottal vocal tract and glottis, sound waves in the subglottal system and a mechanical model of the vocal folds. The mean flow through the system is produced by a nominally steady contraction of the lungs, and mechanical experiments frequently involve a 'lung cavity' coupled to an experimental subglottal tube of arbitrary or ill-defined effective length L, on the basis that the actual value of L has little or no influence on excitation of the vocal folds. A simple, self-exciting single mass mathematical model of the vocal folds is used to investigate the sound generated within the subglottal domain and the unsteady volume flux from the glottis for experiments where it is required to suppress feedback of sound from the supraglottal vocal tract. In experiments where the assumed absorption of sound within the sponge-like interior of the lungs is small, the influence of changes in L can be very significant: when the subglottal tube behaves as an open-ended resonator (when L is as large as half the acoustic wavelength) there is predicted to be a mild increase in volume flux magnitude and a small change in waveform. However, the strong appearance of second harmonics of the acoustic field is predicted at intermediate lengths, when L is roughly one quarter of the acoustic wavelength. In cases of large lung damping, however, only modest changes in the volume flux are predicted to occur with variations in L.
NASA Technical Reports Server (NTRS)
Ricks, Trenton M.; Lacy, Jr., Thomas E.; Bednarcyk, Brett A.; Arnold, Steven M.
2013-01-01
Continuous fiber unidirectional polymer matrix composites (PMCs) can exhibit significant local variations in fiber volume fraction as a result of processing conditions that can lead to further local differences in material properties and failure behavior. In this work, the coupled effects of both local variations in fiber volume fraction and the empirically-based statistical distribution of fiber strengths on the predicted longitudinal modulus and local tensile strength of a unidirectional AS4 carbon fiber/ Hercules 3502 epoxy composite were investigated using the special purpose NASA Micromechanics Analysis Code with Generalized Method of Cells (MAC/GMC); local effective composite properties were obtained by homogenizing the material behavior over repeating units cells (RUCs). The predicted effective longitudinal modulus was relatively insensitive to small (8%) variations in local fiber volume fraction. The composite tensile strength, however, was highly dependent on the local distribution in fiber strengths. The RUC-averaged constitutive response can be used to characterize lower length scale material behavior within a multiscale analysis framework that couples the NASA code FEAMAC and the ABAQUS finite element solver. Such an approach can be effectively used to analyze the progressive failure of PMC structures whose failure initiates at the RUC level. Consideration of the effect of local variations in constituent properties and morphologies on progressive failure of PMCs is a central aspect of the application of Integrated Computational Materials Engineering (ICME) principles for composite materials.
NASA Astrophysics Data System (ADS)
Tsujimura, Maki; Yano, Shinjiro; Abe, Yutaka; Matsumoto, Takehiro; Yoshizawa, Ayumi; Watanabe, Ysuhito; Ikeda, Koichi
2015-04-01
Headwater catchments in mountainous region are the most important recharge area for surface and subsurface waters, additionally time and stock information of the water is principal to understand hydrological processes in the catchments. However, there have been few researches to evaluate variation of residence time and storage volume of subsurface water in time and space at the mountainous headwaters especially with steep slope. We performed an investigation on age dating and estimation of storage volume using simple water budget model in subsurface water with tracing of hydrological flow processes in mountainous catchments underlain by granite, Paleozoic and Tertiary, Yamanashi and Tsukuba, central Japan. We conducted hydrometric measurements and sampling of spring, stream and ground waters in high-flow and low-flow seasons from 2008 through 2012 in the catchments, and CFCs, stable isotopic ratios of oxygen-18 and deuterium, inorganic solute constituent concentrations were determined on all water samples. Residence time of subsurface water ranged from 11 to 60 years in the granite catchments, from 17 to 32 years in the Paleozoic catchments, from 13 to 26 years in the Tertiary catchments, and showed a younger age during the high-flow season, whereas it showed an older age in the low-flow season. Storage volume of subsurface water was estimated to be ranging from 10 ^ 4 to 10 ^ 6 m3 in the granite catchments, from 10 ^ 5 to 10 ^ 7 m3 in the Paleozoic catchments, from 10 ^ 4 to 10 ^ 6 m3 in the Tertiary catchments. In addition, seasonal change of storage volume in the granite catchments was the highest as compared with those of the Paleozoic and the Tertiary catchments. The results suggest that dynamic change of hydrological process seems to cause a larger variation of the residence time and storage volume of subsurface water in time and space in the granite catchments, whereas higher groundwater recharge rate due to frequent fissures or cracks seems to cause larger storage volume of the subsurface water in the Paleozoic catchments though the variation is not so considerable. Also, numerical simulation results support these findings.
Carrier velocity effect on carbon nanotube Schottky contact
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fathi, Amir, E-mail: fathi.amir@hotmail.com; Ahmadi, M. T., E-mail: mt.ahmadi@urmia.ac.ir; Ismail, Razali, E-mail: Razali@fke.utm.my
One of the most important drawbacks which caused the silicon based technologies to their technical limitations is the instability of their products at nano-level. On the other side, carbon based materials such as carbon nanotube (CNT) as alternative materials have been involved in scientific efforts. Some of the important advantages of CNTs over silicon components are high mechanical strength, high sensing capability and large surface-to-volume ratio. In this article, the model of CNT Schottky transistor current which is under exterior applied voltage is employed. This model shows that its current has a weak dependence on thermal velocity corresponding to themore » small applied voltage. The conditions are quite different for high bias voltages which are independent of temperature. Our results indicate that the current is increased by Fermi velocity, but the I–V curves will not have considerable changes with the variations in number of carriers. It means that the current doesn’t increase sharply by voltage variations over different number of carriers.« less
NASA Technical Reports Server (NTRS)
Thronson, Harley A., Jr.; Latter, William B.; Black, John H.; Bally, John; Hacking, Perry
1987-01-01
A large sample of evolved carbon-rich and oxygen-rich objects has been studied using data from the IRAS Point Source Catalog. The number density of infrared-emitting 'carbon' stars shows no variation with Galactocentric radius, while the evolved 'oxygen' star volume density can be well fitted by a given law. A law is given for the number of carbon stars; a total is found in the Galaxy of 48,000 highly evolved oxygen stars. The mass-return rate for all evolved stars is found to be 0.35 solar mass/yr, with a small percentage contribution from carbon stars. The mass-loss rates for both types of stars are dominated by the small number of objects with the smallest rates. A mean lifetime of about 200,000 yr is obtained for both carbon and oxygen stars. Main-sequence stars in the mass range of three to five solar masses are the probable precursors of the carbon stars.
Survivability and molecular variation in Vibrio cholerae from epidemic sites in China.
Li, X Q; Wang, M; Deng, Z A; Shen, J C; Zhang, X Q; Liu, Y F; Cai, Y S; Wu, X W; DI, B
2015-01-01
The survival behaviour of Vibrio cholerae in cholera epidemics, together with its attributes of virulence-associated genes and molecular fingerprints, are significant for managing cholera epidemics. Here, we selected five strains representative of V. cholerae O1 and O139 involved in cholera events, examined their survival capacity in large volumes of water sampled from epidemic sites of a 2005 cholera outbreak, and determined virulence-associated genes and molecular subtype changes of the surviving isolates recovered. The five strains exhibited different survival capacities varying from 17 to 38 days. The virulence-associated genes of the surviving isolates remained unchanged, while their pulsotypes underwent slight variation. In particular, one waterway-isolated strain maintained virulence-associated genes and evolved to share the same pulsotype as patient strains, highlighting its role in the cholera outbreak. The strong survival capacity and molecular attributes of V. cholerae might account for its persistence in environmental waters and the long duration of the cholera outbreak, allowing effective control measures.
Zhao, Yunlong; Feng, Jiangang; Liu, Xue; Wang, Fengchao; Wang, Lifen; Shi, Changwei; Huang, Lei; Feng, Xi; Chen, Xiyuan; Xu, Lin; Yan, Mengyu; Zhang, Qingjie; Bai, Xuedong; Wu, Hengan; Mai, Liqiang
2014-08-01
High-energy lithium battery materials based on conversion/alloying reactions have tremendous potential applications in new generation energy storage devices. However, these applications are limited by inherent large volume variations and sluggish kinetics. Here we report a self-adaptive strain-relaxed electrode through crumpling of graphene to serve as high-stretchy protective shells on metal framework, to overcome these limitations. The graphene sheets are self-assembled and deeply crumpled into pinecone-like structure through a contraction-strain-driven crumpling method. The as-prepared electrode exhibits high specific capacity (2,165 mAh g(-1)), fast charge-discharge rate (20 A g(-1)) with no capacity fading in 1,000 cycles. This kind of crumpled graphene has self-adaptive behaviour of spontaneous unfolding-folding synchronized with cyclic expansion-contraction volumetric variation of core materials, which can release strain and maintain good electric contact simultaneously. It is expected that such findings will facilitate the applications of crumpled graphene and the self-adaptive materials.
A Nationwide Analysis of Cost Variation for Autologous Free Flap Breast Reconstruction.
Billig, Jessica I; Lu, Yiwen; Momoh, Adeyiza O; Chung, Kevin C
2017-11-01
Cost variation among hospitals has been demonstrated for surgical procedures. Uncovering these differences has helped guide measures taken to reduce health care spending. To date, the fiscal consequence of hospital variation for autologous free flap breast reconstruction is unknown. To investigate factors that influence cost variation for autologous free flap breast reconstruction. A secondary cross-sectional analysis was performed using the Healthcare Cost and Utilization Project National Inpatient Sample database from 2008 to 2010. The dates of analysis were September 2016 to February 2017. The setting was a stratified sample of all US community hospitals. Participants were female patients who were diagnosed as having breast cancer or were at high risk for breast cancer and underwent autologous free flap breast reconstruction. Variables of interest included demographic data, hospital characteristics, length of stay, complications (surgical and systemic), and inpatient cost. The study used univariate and generalized linear mixed models to examine associations between patient and hospital characteristics and cost. A total of 3302 patients were included in the study, with a median age of 50 years (interquartile range, 44-57 years). The mean cost for autologous free flap breast reconstruction was $22 677 (interquartile range, $14 907-$33 391). Flap reconstructions performed at high-volume hospitals were significantly more costly than those performed at low-volume hospitals ($24 360 vs $18 918, P < .001). Logistic regression demonstrated that hospital volume correlated with increased cost (Exp[β], 1.06; 95% CI, 1.02-1.11; P = .003). Fewer surgical complications (16.4% [169 of 1029] vs 23.7% [278 of 1174], P < .001) and systemic complications (24.2% [249 of 1029] vs 31.2% [366 of 1174], P < .001) were experienced in high-volume hospitals compared with low-volume hospitals. Flap procedures performed in the West were the most expensive ($28 289), with a greater odds of increased expenditure (Exp[β], 1.53; 95% CI, 1.46-1.61; P < .001) compared with the Northeast. A significant difference in length of stay was found between the West and Northeast (odds ratio, 1.25; 95% CI, 1.17-1.33). There is significant cost variation among patients undergoing autologous free flap breast reconstruction. Experience, as measured by a hospital's volume, provides quality health care with fewer complications but is more costly. Longer length of stay contributed to regional cost variation and may be a target for decreasing expenditure, without compromising care. In the era of bundled health care payment, strategies should be implemented to eliminate cost variation to condense spending while still providing quality care.
Nikolov, S; Fabritius, H; Petrov, M; Friák, M; Lymperakis, L; Sachs, C; Raabe, D; Neugebauer, J
2011-02-01
Recently, we proposed a hierarchical model for the elastic properties of mineralized lobster cuticle using (i) ab initio calculations for the chitin properties and (ii) hierarchical homogenization performed in a bottom-up order through all length scales. It has been found that the cuticle possesses nearly extremal, excellent mechanical properties in terms of stiffness that strongly depend on the overall mineral content and the specific microstructure of the mineral-protein matrix. In this study, we investigated how the overall cuticle properties changed when there are significant variations in the properties of the constituents (chitin, amorphous calcium carbonate (ACC), proteins), and the volume fractions of key structural elements such as chitin-protein fibers. It was found that the cuticle performance is very robust with respect to variations in the elastic properties of chitin and fiber proteins at a lower hierarchy level. At higher structural levels, variations of design parameters such as the volume fraction of the chitin-protein fibers have a significant influence on the cuticle performance. Furthermore, we observed that among the possible variations in the cuticle ingredients and volume fractions, the experimental data reflect an optimal use of the structural variations regarding the best possible performance for a given composition due to the smart hierarchical organization of the cuticle design. Copyright © 2011. Elsevier Ltd. All rights reserved.
Balanoff, Amy M; Smaers, Jeroen B; Turner, Alan H
2016-08-01
Living birds constitute the only vertebrate group whose brain volume relative to body size approaches the uniquely expanded values expressed by mammals. The broad suite of complex behaviors exhibited by crown-group birds, including sociality, vocal learning, parental care, and flying, suggests the origins of their encephalization was likely driven by a mosaic of selective pressures. If true, the historical pattern of brain expansion may be more complex than either a gradual expansion, as proposed by early studies of the avian brain, or a sudden expansion correlating with the appearance of flight. The origins of modern avian neuroanatomy are obscured by the more than 100 million years of evolution along their phylogenetic stem (from the origin of the modern radiation in the Middle Jurassic to the split from crocodile-line archosaurs). Here we use phylogenetic comparative approaches to explore which evolutionary scenarios best explain variation in measured volumes of digitally partitioned endocasts of modern birds and their non-avian ancestors. Our analyses suggest that variation in the relative volumes of the endocranium and cerebrum explain most of the structural variation in this lineage. Generalized multi-regime Ornstein-Uhlenbeck (OU) models suggest that powered flight does not appear to be a driver of observed variation, reinforcing the hypothesis that the deep history of the avian brain is complex, with nuances still to be discovered. © 2015 Anatomical Society.
NASA Astrophysics Data System (ADS)
Söderberg, Per G.; Malmberg, Filip; Sandberg-Melin, Camilla
2016-03-01
The present study aimed to analyze the clinical usefulness of the thinnest cross section of the nerve fibers in the optic nerve head averaged over the circumference of the optic nerve head. 3D volumes of the optic nerve head of the same eye was captured at two different visits spaced in time by 1-4 weeks, in 13 subjects diagnosed with early to moderate glaucoma. At each visit 3 volumes containing the optic nerve head were captured independently with a Topcon OCT- 2000 system. In each volume, the average shortest distance between the inner surface of the retina and the central limit of the pigment epithelium around the optic nerve head circumference, PIMD-Average [02π], was determined semiautomatically. The measurements were analyzed with an analysis of variance for estimation of the variance components for subjects, visits, volumes and semi-automatic measurements of PIMD-Average [0;2π]. It was found that the variance for subjects was on the order of five times the variance for visits, and the variance for visits was on the order of 5 times higher than the variance for volumes. The variance for semi-automatic measurements of PIMD-Average [02π] was 3 orders of magnitude lower than the variance for volumes. A 95 % confidence interval for mean PIMD-Average [02π] was estimated to 1.00 +/-0.13 mm (D.f. = 12). The variance estimates indicate that PIMD-Average [02π] is not suitable for comparison between a onetime estimate in a subject and a population reference interval. Cross-sectional independent group comparisons of PIMD-Average [02π] averaged over subjects will require inconveniently large sample sizes. However, cross-sectional independent group comparison of averages of within subject difference between baseline and follow-up can be made with reasonable sample sizes. Assuming a loss rate of 0.1 PIMD-Average [02π] per year and 4 visits per year it was found that approximately 18 months follow up is required before a significant change of PIMDAverage [02π] can be observed with a power of 0.8. This is shorter than what has been observed both for HRT measurements and automated perimetry measurements with a similar observation rate. It is concluded that PIMDAverage [02π] has the potential to detect deterioration of glaucoma quicker than currently available primary diagnostic instruments. To increase the efficiency of PIMD-Average [02π] further, the variation among visits within subject has to be reduced.
Reid, Beth; Ho, Shirley; Padmanabhan, Nikhil; ...
2015-11-17
The Baryon Oscillation Spectroscopic Survey (BOSS), part of the Sloan Digital Sky Survey (SDSS) III project, has provided the largest survey of galaxy redshifts available to date, in terms of both the number of galaxy redshifts measured by a single survey, and the effective cosmological volume covered. Key to analysing the clustering of these data to provide cosmological measurements is understanding the detailed properties of this sample. Potential issues include variations in the target catalogue caused by changes either in the targeting algorithm or properties of the data used, the pattern of spectroscopic observations, the spatial distribution of targets formore » which redshifts were not obtained, and variations in the target sky density due to observational systematics. We document here the target selection algorithms used to create the galaxy samples that comprise BOSS. We also present the algorithms used to create large-scale structure catalogues for the final Data Release (DR12) samples and the associated random catalogues that quantify the survey mask. The algorithms are an evolution of those used by the BOSS team to construct catalogues from earlier data, and have been designed to accurately quantify the galaxy sample. Furthermore, the code used, designated mksample, is released with this paper.« less
Probe pressure effects on human skin diffuse reflectance and fluorescence spectroscopy measurements
Lim, Liang; Nichols, Brandon; Rajaram, Narasimhan; Tunnell, James W.
2011-01-01
Diffuse reflectance and fluorescence spectroscopy are popular research techniques for noninvasive disease diagnostics. Most systems include an optical fiber probe that transmits and collects optical spectra in contact with the suspected lesion. The purpose of this study is to investigate probe pressure effects on human skin spectroscopic measurements. We conduct an in-vivo experiment on human skin tissue to study the short-term (<2 s) and long-term (>30 s) effects of probe pressure on diffuse reflectance and fluorescence measurements. Short-term light probe pressure (P0 < 9 mN∕mm2) effects are within 0 ± 10% on all physiological properties extracted from diffuse reflectance and fluorescence measurements, and less than 0 ± 5% for diagnostically significant physiological properties. Absorption decreases with site-specific variations due to blood being compressed out of the sampled volume. Reduced scattering coefficient variation is site specific. Intrinsic fluorescence shows a large standard error, although no specific pressure-related trend is observed. Differences in tissue structure and morphology contribute to site-specific probe pressure effects. Therefore, the effects of pressure can be minimized when the pressure is small and applied for a short amount of time; however, long-term and large pressures induce significant distortions in measured spectra. PMID:21280899
Variation in the costs of delivering routine immunization services in Peru.
Walker, D; Mosqueira, N R; Penny, M E; Lanata, C F; Clark, A D; Sanderson, C F B; Fox-Rushby, J A
2004-09-01
Estimates of vaccination costs usually provide only point estimates at national level with no information on cost variation. In practice, however, such information is necessary for programme managers. This paper presents information on the variations in costs of delivering routine immunization services in three diverse districts of Peru: Ayacucho (a mountainous area), San Martin (a jungle area) and Lima (a coastal area). We consider the impact of variability on predictions of cost and reflect on the likely impact on expected cost-effectiveness ratios, policy decisions and future research practice. All costs are in 2002 prices in US dollars and include the costs of providing vaccination services incurred by 19 government health facilities during the January-December 2002 financial year. Vaccine wastage rates have been estimated using stock records. The cost per fully vaccinated child ranged from 16.63-24.52 U.S. Dollars in Ayacucho, 21.79-36.69 U.S. Dollars in San Martin and 9.58-20.31 U.S. Dollars in Lima. The volume of vaccines administered and wastage rates are determinants of the variation in costs of delivering routine immunization services. This study shows there is considerable variation in the costs of providing vaccines across geographical regions and different types of facilities. Information on how costs vary can be used as a basis from which to generalize to other settings and provide more accurate estimates for decision-makers who do not have disaggregated data on local costs. Future studies should include sufficiently large sample sizes and ensure that regions are carefully selected in order to maximize the interpretation of cost variation.
NASA Astrophysics Data System (ADS)
Söderberg, Per G.; Malmberg, Filip; Sandberg-Melin, Camilla
2017-02-01
The present study aimed to elucidate if comparison of angular segments of Pigment epithelium central limit- Inner limit of the retina Minimal Distance, measured over 2π radians in the frontal plane (PIMD-2π) between visits of a patient, renders sufficient precision for detection of loss of nerve fibers in the optic nerve head. An optic nerve head raster scanned cube was captured with a TOPCON 3D OCT 2000 (Topcon, Japan) device in one early to moderate stage glaucoma eye of each of 13 patients. All eyes were recorded at two visits less than 1 month apart. At each visit, 3 volumes were captured. Each volume was extracted from the OCT device for analysis. Then, angular PIMD was segmented three times over 2π radians in the frontal plane, resolved with a semi-automatic algorithm in 500 equally separated steps, PIMD-2π. It was found that individual segmentations within volumes, within visits, within subjects can be phase adjusted to each other in the frontal plane using cross-correlation. Cross correlation was also used to phase adjust volumes within visits within subjects and visits to each other within subjects. Then, PIMD-2π for each subject was split into 250 bundles of 2 adjacent PIMDs. Finally, the sources of variation for estimates of segments of PIMD-2π were derived with analysis of variance assuming a mixed model. The variation among adjacent PIMDS was found very small in relation to the variation among segmentations. The variation among visits was found insignificant in relation to the variation among volumes and the variance for segmentations was found to be on the order of 20 % of that for volumes. The estimated variances imply that, if 3 segmentations are averaged within a volume and at least 10 volumes are averaged within a visit, it is possible to estimate around a 10 % reduction of a PIMD-2π segment from baseline to a subsequent visit as significant. Considering a loss rate for a PIMD-2π segment of 23 μm/yr., 4 visits per year, and averaging 3 segmentations per volume and 3 volumes per visit, a significant reduction from baseline can be detected with a power of 80 % in about 18 months. At higher loss rate for a PIMD-2π segment, a significant difference from baseline can be detected earlier. Averaging over more volumes per visit considerably decreases the time for detection of a significant reduction of a segment of PIMD-2π. Increasing the number of segmentations averaged per visit only slightly reduces the time for detection of a significant reduction. It is concluded that phase adjustment in the frontal plane with cross correlation allows high precision estimates of a segment of PIMD-2π that imply substantially shorter followup time for detection of a significant change than mean deviation (MD) in a visual field estimated with the Humphrey perimeter or neural rim area (NRA) estimated with the Heidelberg retinal tomograph.
Monson, John R T; Probst, Christian P; Wexner, Steven D; Remzi, Feza H; Fleshman, James W; Garcia-Aguilar, Julio; Chang, George J; Dietz, David W
2014-10-01
This study examines recent adherence to recommended neoadjuvant chemoradiotherapy guidelines for patients with rectal cancer across geographic regions and institution volume and assesses trends over time. A recent report by the Institute of Medicine described US cancer care as chaotic. Cited deficiencies included wide variation in adherence to evidence-based guidelines even where clear consensus exists. Patients operated on for clinical stage II and III rectal cancer were selected from the 2006-2011 National Cancer Data Base. Multivariable logistic regressions were used to assess variation in chemotherapy and radiation use by cancer center type, geographical location, and hospital volume. The analysis controlled for patient age at diagnosis, sex, race/ethnicity, primary payer, average household income, average education, urban/rural classification of patient residence, comorbidity, and oncologic stage. There were 30,994 patients who met the inclusion criteria. Use of neoadjuvant radiation therapy and chemotherapy varied significantly by type of cancer center. The highest rates of adherence were observed in high-volume centers compared with low-volume centers (78% vs 69%; adjusted odds ratio = 1.46; P < 0.001). This variation is mirrored by hospital geographic location. Primary payer and year of diagnosis were not predictive of rates of neoadjuvant chemoradiotherapy. Adherence to evidence-based treatment guidelines in rectal cancer is suboptimal in the United States, with significant differences based on hospital volume and geographic regions. Little improvement has occurred in the last 5 years. These results support the implementation of standardized care pathways and a Centers of Excellence program for US patients with rectal cancer.
Berger, Thomas; Petersen, Jørgen Breede Baltzer; Lindegaard, Jacob Christian; Fokdal, Lars Ulrik; Tanderup, Kari
2017-11-01
Density changes occurring during fractionated radiotherapy in the pelvic region may degrade proton dose distributions. The aim of the study was to quantify the dosimetric impact of gas cavities and body outline variations. Seven patients with locally advanced cervical cancer (LACC) were analyzed through a total of 175 daily cone beam computed tomography (CBCT) scans. Four-beams intensity-modulated proton therapy (IMPT) dose plans were generated targeting the internal target volume (ITV) composed of: primary tumor, elective and pathological nodes. The planned dose was 45 Gy [Relative-Biological-Effectiveness-weighted (RBE)] in 25 fractions and simultaneously integrated boosts of pathologic lymph nodes were 55-57.5 Gy (RBE). In total, 475 modified CTs were generated to evaluate the effect of: 1/gas cavities, 2/outline variations and 3/the two combined. The anatomy of each fraction was simulated by propagating gas cavities contours and body outlines from each daily CBCT to the pCT. Hounsfield units corresponding to gas and fat were assigned to the propagated contours. D98 (least dose received by the hottest 98% of the volume) and D99.9 for targets and V43Gy(RBE) (volume receiving ≥43 Gy(RBE)) for organs at risk (OARs) were recalculated on each modified CT, and total dose was evaluated through dose volume histogram (DVH) addition across all fractions. Weight changes during radiotherapy were between -3.1% and 1.2%. Gas cavities and outline variations induced a median [range] dose degradation for ITV45 of 1.0% [0.5-3.5%] for D98 and 2.1% [0.8-6.4%] for D99.9. Outline variations had larger dosimetric impact than gas cavities. Worst nodal dose degradation was 2.0% for D98 and 2.3% for D99.9. The impact on bladder, bowel and rectum was limited with V43Gy(RBE) variations ≤3.5 cm 3 . Bowel gas cavities and outline variations had minor impact on accumulated dose in targets and OAR of four-field IMPT in a LACC population of moderate weight changes.
Cheniclet, Catherine; Rong, Wen Ying; Causse, Mathilde; Frangne, Nathalie; Bolling, Laurence; Carde, Jean-Pierre; Renaudin, Jean-Pierre
2005-01-01
Postanthesis growth of tomato (Solanum lycopersicon) as of many types of fruit relies on cell division and cell expansion, so that some of the largest cells to be found in plants occur in fleshy fruit. Endoreduplication is known to occur in such materials, which suggests its involvement in cell expansion, although no data have demonstrated this hypothesis as yet. We have analyzed pattern formation, cell size, and ploidy in tomato fruit pericarp. A first set of data was collected in one cherry tomato line throughout fruit development. A second set of data was obtained from 20 tomato lines displaying a large weight range in fruit, which were compared as ovaries at anthesis and as fully grown fruit at breaker stage. A remarkable conservation of pericarp pattern, including cell layer number and cell size, is observed in all of the 20 tomato lines at anthesis, whereas large variations of growth occur afterward. A strong, positive correlation, combining development and genetic diversity, is demonstrated between mean cell size and ploidy, which holds for mean cell diameters from 10 to 350 μm (i.e. a 32,000-times volume variation) and for mean ploidy levels from 3 to 80 C. Fruit weight appears also significantly correlated with cell size and ploidy. These data provide a framework of pericarp patterning and growth. They strongly suggest the quantitative importance of polyploidy-associated cell expansion as a determinant of fruit weight in tomato. PMID:16306145
Gravel road paving guidelines.
DOT National Transportation Integrated Search
2016-11-01
The percentage of gravel roads in rural areas in Kansas is higher than most states. A wide variation of traffic volumes : across different regions and variations of local conditions and scenarios present a great challenge for local agencies to determ...
Evidence for the timing of sea-level events during MIS 3
NASA Astrophysics Data System (ADS)
Siddall, M.
2005-12-01
Four large sea-level peaks of millennial-scale duration occur during MIS 3. In addition smaller peaks may exist close to the sensitivity of existing methods to derive sea level during these periods. Millennial-scale changes in temperature during MIS 3 are well documented across much of the planet and are linked in some unknown, yet fundamental way to changes in ice volume / sea level. It is therefore highly likely that the timing of the sea level events during MIS 3 will prove to be a `Rosetta Stone' for understanding millennial scale climate variability. I will review observational and mechanistic arguments for the variation of sea level on Antarctic, Greenland and absolute time scales.
Discretization effects in the topological susceptibility in lattice QCD
NASA Astrophysics Data System (ADS)
Hart, A.
2004-04-01
We study the topological susceptibility χ in QCD with two quark flavors using lattice field configurations that have been produced with an O(a)-improved clover quark action. We find clear evidence for the expected suppression at a small quark mass mq and examine the variation of χ with this mass and the lattice spacing a. A joint continuum and chiral extrapolation yields good agreement with theoretical expectations as a,mq→0. A moderate increase in autocorrelation is observed on the more chiral ensembles, but within large statistical errors. Finite volume effects are negligible for the Leutwyler-Smilga parameter xLS≳10, and no evidence for a nearby phase transition is observed.
Effect of L-ornithine 8-vasopressin on blood loss during liposuction.
Lalinde, E; Sanz, J; Ballesteros, A; Elejabeitia, J; Mesa, F; Bazán, A; Paloma, V
1995-06-01
In this comparative study, we carried out liposuction on 20 patients randomly divided in two groups to find an alternative medication to epinephrine that would not result in secondary effects at the cardiovascular level but would offer a similar vasoconstricting capacity. Also, a variation of the wet technique is described that decreases blood loss secondary to liposuction. The area to undergo liposuction is infiltrated with a cannula of our own design. Epinephrine is not used as a vasoconstrictor but rather L-ornithine 8-vasopressin at a concentration of 0.01 IU/ml chilled saline. With this new technique, the amount of blood removed is minimal, even in the case of extraction of large volumes of fat.
Inception and variability of the Antarctic ice sheet across the Eocene-Oligocene transition
NASA Astrophysics Data System (ADS)
Stocchi, Paolo; Galeotti, Simone; Ladant, Jan-Baptiste; DeConto, Robert; Vermeersen, Bert; Rugenstein, Maria
2014-05-01
Climate cooling throughout middle to late Eocene (~48 - 34 Million years ago, Ma) triggered the transition from hot-house to ice-house conditions. Based on deep-sea marine δ18O values, a continental-scale Antarctic Ice Sheet (AIS) rapidly developed across the Eocene-Oligocene transition (EOT) in two ~200 kyr-spaced phases between 34.0 - 33.5 Ma. Regardless of the geographical configuration of southern ocean gateways, geochemical data and ice-sheet modelling show that AIS glaciation initiated as atmospheric CO2 fell below ~2.5 times pre-industrial values. AIS likely reached or even exceeded present-day dimensions. Quantifying the magnitude and timing of AIS volume variations by means of δ18O records is hampered by the fact that the latter reflect a coupled signal of temperature and ice-sheet volume. Besides, bathymetric variations based on marine geologic sections are affected by large uncertainties and, most importantly, reflect the local response of relative sea level (rsl) to ice volume fluctuations rather than the global eustatic signal. AIS proximal and Northern Hemisphere (NH) marine settings show an opposite trend of rsl change across the EOT. In fact, consistently with central values based on δ18O records, an 60 ± 20m rsl drop is estimated from NH low-latitude shallow marine sequences. Conversely, sedimentary facies from shallow shelfal areas in the proximity of the AIS witness an 50 - 150m rsl rise across the EOT. Accounting for ice-load-induced crustal and geoidal deformations and for the mutual gravitational attraction between the growing AIS and the ocean water is a necessary requirement to reconcile near- and far-field rsl sites, regardless of tectonics and of any other possible local contamination. In this work we investigate the AIS inception and variability across the EOT by combining the observed rsl changes with predictions based on numerical modeling of Glacial Isostatic Adjustment (GIA). We solve the gravitationally self-consistent Sea Level Equation for two different and independent AIS models both driven by atmospheric CO2 variations and evolving on different Antarctic topographies. In particular, minimum and maximum AIS volumes, respectively of ~55m and ~70m equivalent sea level (esl), stem from a smaller and a larger Antarctic topography. Minimum and maximum GIA predictions at the NH rsl sites respectively correspond to the lower limit and central value of the EOT rsl drop inferred from geological data. For both GIA models, the departures from the eustatic trend significantly increase southward toward Antarctica, where the AIS growth is accompanied by a rsl rise. Accordingly, the cyclochronological record of sedimentary cycles retrieved from Cape Roberts Project Drillcore CRP-3 (Victoria Land Basin) witness a deepening across the EOT. Most importantly, CRP-3 record shows that full glacial conditions consistent with the maximum AIS model dimensions were reached only at ~32.8 Ma, while ice-sheet volumes fluctuations around the minimum AIS model volume persisted during the first million years of glaciation.
Magnuson, William J; Urban, Erich; Bayliss, R Adam; Harari, Paul M
2015-06-01
There is considerable practice variation in treatment of the node negative (N0) contralateral neck in patients with head and neck cancer. In this study, we examined the impact of N0 neck target delineation volume on radiation dose to the contralateral parotid gland. Following institutional review board approval, 12 patients with head and neck cancer were studied. All had indications for treatment of the N0 neck, such as midline base of tongue or soft palate extension or advanced ipsilateral nodal disease. The N0 neck volumes were created using the Radiation Therapy Oncology Group head and neck contouring atlas. The physician-drawn N0 neck clinical target volume (CTV) was expanded by 25% to 200% to generate volume variation, followed by a 3-mm planning target volume (PTV) expansion. Surrounding organs at risk were contoured and complete intensity-modulated radiation therapy plans were generated for each N0 volume expansion. The median N0 target volume drawn by the radiation oncologist measured 93 cm(3) (range 71-145). Volumetric expansion of the N0 CTV by 25% to 200% increased the resultant mean dose to the contralateral parotid gland by 1.4 to 8.5 Gray (Gy). For example, a 4.1-mm increase in the N0 neck CTV translated to a 2.0-Gy dose increase to the parotid, 7.4 mm to a 4.5 Gy dose increase, and 12.5 mm to an 8.5 Gy dose increase, respectively. The treatment volume designated for the N0 neck has profound impact on resultant dose to the contralateral parotid gland. Variations of up to 15 mm are routine across physicians in target contouring, reflecting individual preference and training expertise. Depending on the availability of immobilization and image guidance techniques, experts commonly recommend 3 to 10 mm margin expansions to generate the PTV. Careful attention to the original volume of the N0 neck CTV, as well as expansion margins, is important in achieving effective contralateral gland sparing to reduce the resultant xerostomia and dysguesia that may ensue after radiotherapy. © The Author(s) 2014.
CT volumetry of the skeletal tissues
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brindle, James M.; Alexandre Trindade, A.; Pichardo, Jose C.
2006-10-15
Computed tomography (CT) is an important and widely used modality in the diagnosis and treatment of various cancers. In the field of molecular radiotherapy, the use of spongiosa volume (combined tissues of the bone marrow and bone trabeculae) has been suggested as a means to improve the patient-specificity of bone marrow dose estimates. The noninvasive estimation of an organ volume comes with some degree of error or variation from the true organ volume. The present study explores the ability to obtain estimates of spongiosa volume or its surrogate via manual image segmentation. The variation among different segmentation raters was exploredmore » and found not to be statistically significant (p value >0.05). Accuracy was assessed by having several raters manually segment a polyvinyl chloride (PVC) pipe with known volumes. Segmentation of the outer region of the PVC pipe resulted in mean percent errors as great as 15% while segmentation of the pipe's inner region resulted in mean percent errors within {approx}5%. Differences between volumes estimated with the high-resolution CT data set (typical of ex vivo skeletal scans) and the low-resolution CT data set (typical of in vivo skeletal scans) were also explored using both patient CT images and a PVC pipe phantom. While a statistically significant difference (p value <0.002) between the high-resolution and low-resolution data sets was observed with excised femoral heads obtained following total hip arthroplasty, the mean difference between high-resolution and low-resolution data sets was found to be only 1.24 and 2.18 cm{sup 3} for spongiosa and cortical bone, respectively. With respect to differences observed with the PVC pipe, the variation between the high-resolution and low-resolution mean percent errors was a high as {approx}20% for the outer region volume estimates and only as high as {approx}6% for the inner region volume estimates. The findings from this study suggest that manual segmentation is a reasonably accurate and reliable means for the in vivo estimation of spongiosa volume. This work also provides a foundation for future studies where spongiosa volumes are estimated by various raters in more comprehensive CT data sets.« less
Configuration optimization of space structures
NASA Technical Reports Server (NTRS)
Felippa, Carlos; Crivelli, Luis A.; Vandenbelt, David
1991-01-01
The objective is to develop a computer aid for the conceptual/initial design of aerospace structures, allowing configurations and shape to be apriori design variables. The topics are presented in viewgraph form and include the following: Kikuchi's homogenization method; a classical shape design problem; homogenization method steps; a 3D mechanical component design example; forming a homogenized finite element; a 2D optimization problem; treatment of volume inequality constraint; algorithms for the volume inequality constraint; object function derivatives--taking advantage of design locality; stiffness variations; variations of potential; and schematics of the optimization problem.
Interobserver delineation variation in lung tumour stereotactic body radiotherapy
Persson, G F; Nygaard, D E; Hollensen, C; Munck af Rosenschöld, P; Mouritsen, L S; Due, A K; Berthelsen, A K; Nyman, J; Markova, E; Roed, A P; Roed, H; Korreman, S; Specht, L
2012-01-01
Objectives In radiotherapy, delineation uncertainties are important as they contribute to systematic errors and can lead to geographical miss of the target. For margin computation, standard deviations (SDs) of all uncertainties must be included as SDs. The aim of this study was to quantify the interobserver delineation variation for stereotactic body radiotherapy (SBRT) of peripheral lung tumours using a cross-sectional study design. Methods 22 consecutive patients with 26 tumours were included. Positron emission tomography/CT scans were acquired for planning of SBRT. Three oncologists and three radiologists independently delineated the gross tumour volume. The interobserver variation was calculated as a mean of multiple SDs of distances to a reference contour, and calculated for the transversal plane (SDtrans) and craniocaudal (CC) direction (SDcc) separately. Concordance indexes and volume deviations were also calculated. Results Median tumour volume was 13.0 cm3, ranging from 0.3 to 60.4 cm3. The mean SDtrans was 0.15 cm (SD 0.08 cm) and the overall mean SDcc was 0.26 cm (SD 0.15 cm). Tumours with pleural contact had a significantly larger SDtrans than tumours surrounded by lung tissue. Conclusions The interobserver delineation variation was very small in this systematic cross-sectional analysis, although significantly larger in the CC direction than in the transversal plane, stressing that anisotropic margins should be applied. This study is the first to make a systematic cross-sectional analysis of delineation variation for peripheral lung tumours referred for SBRT, establishing the evidence that interobserver variation is very small for these tumours. PMID:22919015
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pogson, Elise M.; Liverpool and Macarthur Cancer Therapy Centres, Liverpool; Ingham Institute for Applied Medical Research, Liverpool
2016-11-15
Purpose: To determine whether T2-weighted MRI improves seroma cavity (SC) and whole breast (WB) interobserver conformity for radiation therapy purposes, compared with the gold standard of CT, both in the prone and supine positions. Methods and Materials: Eleven observers (2 radiologists and 9 radiation oncologists) delineated SC and WB clinical target volumes (CTVs) on T2-weighted MRI and CT supine and prone scans (4 scans per patient) for 33 patient datasets. Individual observer's volumes were compared using the Dice similarity coefficient, volume overlap index, center of mass shift, and Hausdorff distances. An average cavity visualization score was also determined. Results: Imaging modalitymore » did not affect interobserver variation for WB CTVs. Prone WB CTVs were larger in volume and more conformal than supine CTVs (on both MRI and CT). Seroma cavity volumes were larger on CT than on MRI. Seroma cavity volumes proved to be comparable in interobserver conformity in both modalities (volume overlap index of 0.57 (95% Confidence Interval (CI) 0.54-0.60) for CT supine and 0.52 (95% CI 0.48-0.56) for MRI supine, 0.56 (95% CI 0.53-0.59) for CT prone and 0.55 (95% CI 0.51-0.59) for MRI prone); however, after registering modalities together the intermodality variation (Dice similarity coefficient of 0.41 (95% CI 0.36-0.46) for supine and 0.38 (0.34-0.42) for prone) was larger than the interobserver variability for SC, despite the location typically remaining constant. Conclusions: Magnetic resonance imaging interobserver variation was comparable to CT for the WB CTV and SC delineation, in both prone and supine positions. Although the cavity visualization score and interobserver concordance was not significantly higher for MRI than for CT, the SCs were smaller on MRI, potentially owing to clearer SC definition, especially on T2-weighted MR images.« less
Buehrer, Sabin; Hanke, Ursula; Klaghofer, Richard; Fruehauf, Melanie; Weiss, Markus; Schmitz, Achim
2014-03-01
A rating scale for thirst and hunger was evaluated as a noninvasive, simple and commonly available tool to estimate preanesthetic gastric volume, a surrogate parameter for the risk of perioperative pulmonary aspiration, in healthy volunteer school age children. Numeric scales with scores from 0 to 10 combined with smileys to rate thirst and hunger were analyzed and compared with residual gastric volumes as measured by magnetic resonance imaging and fasting times in three settings: before and for 2 h after drinking clear fluid (group A, 7 ml/kg), before and for 4 vs 6 h after a light breakfast followed by clear fluid (7 ml/kg) after 2 vs 4 h (crossover, group B), and before and for 1 h after drinking clear fluid (crossover, group C, 7 vs 3 ml/kg). In 30 children aged 6.4-12.8 (median 9.8) years, participating on 1-5 (median two) study days, 496 sets of scores and gastric volumes were determined. Large inter- and intra-individual variations were seen at baseline and in response to fluid and food intake. Significant correlations were found between hunger and thirst ratings in all groups, with children generally being more hungry than thirsty. Correlations between scores and duration of fasting or gastric residual volumes were poor to moderate. Receiver operating characteristic (ROC) analysis revealed that thirst and hunger rating scales cannot predict gastric content. Hunger and thirst scores vary considerably inter- and intra-individually and cannot predict gastric volume, nor do they correlate with fasting times in school age children. © 2013 John Wiley & Sons Ltd.
Johansen, S; Reinertsen, K V; Knutstad, K; Olsen, D R; Fosså, S D
2011-06-09
To relate the development of post-treatment hypothyroidism with the dose distribution within the thyroid gland in breast cancer (BC) patients treated with loco-regional radiotherapy (RT). In two groups of BC patients postoperatively irradiated by computer tomography (CT)-based RT, the individual dose distributions in the thyroid gland were compared with each other; Cases developed post-treatment hypothyroidism after multimodal treatment including 4-field RT technique. Matched patients in Controls remained free for hypothyroidism. Based on each patient's dose volume histogram (DVH) the volume percentages of the thyroid absorbing respectively 20, 30, 40 and 50 Gy were then estimated (V20, V30, V40 and V50) together with the individual mean thyroid dose over the whole gland (MeanTotGy). The mean and median thyroid dose for the included patients was about 30 Gy, subsequently the total volume of the thyroid gland (VolTotGy) and the absolute volumes (cm3) receiving respectively <30 Gy and ≥30 Gy were calculated (Vol<30 and Vol≥30) and analyzed. No statistically significant inter-group differences were found between V20, V30, V40 and V50Gy or the median of MeanTotGy. The median VolTotGy in Controls was 2.3 times above VolTotGy in Cases (ρ=0.003), with large inter-individual variations in both groups. The volume of the thyroid gland receiving<30 Gy in Controls was almost 2.5 times greater than the comparable figure in Cases. We concluded that in patients with small thyroid glands after loco-radiotherapy of BC, the risk of post-treatment hypothyroidism depends on the volume of the thyroid gland.
Large Volume, Behaviorally-relevant Illumination for Optogenetics in Non-human Primates.
Acker, Leah C; Pino, Erica N; Boyden, Edward S; Desimone, Robert
2017-10-03
This protocol describes a large-volume illuminator, which was developed for optogenetic manipulations in the non-human primate brain. The illuminator is a modified plastic optical fiber with etched tip, such that the light emitting surface area is > 100x that of a conventional fiber. In addition to describing the construction of the large-volume illuminator, this protocol details the quality-control calibration used to ensure even light distribution. Further, this protocol describes techniques for inserting and removing the large volume illuminator. Both superficial and deep structures may be illuminated. This large volume illuminator does not need to be physically coupled to an electrode, and because the illuminator is made of plastic, not glass, it will simply bend in circumstances when traditional optical fibers would shatter. Because this illuminator delivers light over behaviorally-relevant tissue volumes (≈ 10 mm 3 ) with no greater penetration damage than a conventional optical fiber, it facilitates behavioral studies using optogenetics in non-human primates.
Ronald E. McRoberts; Paolo Moser; Laio Zimermann Oliveira; Alexander C. Vibrans
2015-01-01
Forest inventory estimates of tree volume for large areas are typically calculated by adding the model predictions of volumes for individual trees at the plot level, calculating the mean over plots, and expressing the result on a per unit area basis. The uncertainty in the model predictions is generally ignored, with the result that the precision of the large-area...
The persistence of the large volumes in black holes
NASA Astrophysics Data System (ADS)
Ong, Yen Chin
2015-08-01
Classically, black holes admit maximal interior volumes that grow asymptotically linearly in time. We show that such volumes remain large when Hawking evaporation is taken into account. Even if a charged black hole approaches the extremal limit during this evolution, its volume continues to grow; although an exactly extremal black hole does not have a "large interior". We clarify this point and discuss the implications of our results to the information loss and firewall paradoxes.
NASA Astrophysics Data System (ADS)
Reynolds, Steven; Bucur, Adriana; Port, Michael; Alizadeh, Tooba; Kazan, Samira M.; Tozer, Gillian M.; Paley, Martyn N. J.
2014-02-01
Over recent years hyperpolarization by dissolution dynamic nuclear polarization has become an established technique for studying metabolism in vivo in animal models. Temporal signal plots obtained from the injected metabolite and daughter products, e.g. pyruvate and lactate, can be fitted to compartmental models to estimate kinetic rate constants. Modeling and physiological parameter estimation can be made more robust by consistent and reproducible injections through automation. An injection system previously developed by us was limited in the injectable volume to between 0.6 and 2.4 ml and injection was delayed due to a required syringe filling step. An improved MR-compatible injector system has been developed that measures the pH of injected substrate, uses flow control to reduce dead volume within the injection cannula and can be operated over a larger volume range. The delay time to injection has been minimized by removing the syringe filling step by use of a peristaltic pump. For 100 μl to 10.000 ml, the volume range typically used for mice to rabbits, the average delivered volume was 97.8% of the demand volume. The standard deviation of delivered volumes was 7 μl for 100 μl and 20 μl for 10.000 ml demand volumes (mean S.D. was 9 ul in this range). In three repeat injections through a fixed 0.96 mm O.D. tube the coefficient of variation for the area under the curve was 2%. For in vivo injections of hyperpolarized pyruvate in tumor-bearing rats, signal was first detected in the input femoral vein cannula at 3-4 s post-injection trigger signal and at 9-12 s in tumor tissue. The pH of the injected pyruvate was 7.1 ± 0.3 (mean ± S.D., n = 10). For small injection volumes, e.g. less than 100 μl, the internal diameter of the tubing contained within the peristaltic pump could be reduced to improve accuracy. Larger injection volumes are limited only by the size of the receiving vessel connected to the pump.
ERIC Educational Resources Information Center
Hughes, Stephen W.
2005-01-01
A little-known method of measuring the volume of small objects based on Archimedes' principle is described, which involves suspending an object in a water-filled container placed on electronic scales. The suspension technique is a variation on the hydrostatic weighing technique used for measuring volume. The suspension method was compared with two…
Gravel road paving guidelines, technical summary.
DOT National Transportation Integrated Search
2016-11-01
The percentage of gravel roads in rural areas in Kansas is higher than most states. A wide variation of traffic volumes across different regions and variations of local conditions and scenarios present a great challenge for local agencies to determin...
Individual differences in posterior cortical volume correlate with proneness to pride and gratitude
Zahn, Roland; Garrido, Griselda; Moll, Jorge
2014-01-01
Proneness to specific moral sentiments (e.g. pride, gratitude, guilt, indignation) has been linked with individual variations in functional MRI (fMRI) response within anterior brain regions whose lesion leads to inappropriate behaviour. However, the role of structural anatomical differences in rendering individuals prone to particular moral sentiments relative to others is unknown. Here, we investigated grey matter volumes (VBM8) and proneness to specific moral sentiments on a well-controlled experimental task in healthy individuals. Individuals with smaller cuneus, and precuneus volumes were more pride-prone, whereas those with larger right inferior temporal volumes experienced gratitude more readily. Although the primary analysis detected no associations with guilt- or indignation-proneness, subgenual cingulate fMRI responses to guilt were negatively correlated with grey matter volumes in the left superior temporal sulcus and anterior dorsolateral prefrontal cortices (right >left). This shows that individual variations in functional activations within critical areas for moral sentiments were not due to grey matter volume differences in the same areas. Grey matter volume differences between healthy individuals may nevertheless play an important role by affecting posterior cortical brain systems that are non-critical but supportive for the experience of specific moral sentiments. This may be of particular relevance when their experience depends on visuo-spatial elaboration. PMID:24106333
Evaluation of molecular volume change of block copolymer depending on temperature: A SANS study
Kim, Tae-Hwan; Do, Changwoo; Han, Young-Soo
2017-12-24
Amphiphilic Pluronic triblock copolymers form various self-assembled structures such as sphere, cylinder, lamellae and so on, depending on temperature, leading to the increase of hydrophobicity of block copolymers. However, the effective molecular volume change of the block copolymer has not been fully exploited yet, when temperature increases. Here in this paper, we have investigated the effective molecular volume change of the block copolymer upon heating by using the contrast variation small angle neutron scattering. The scattering length densities (SLDs) of the block copolymer were experimentally obtained from the neutron scattering contrast variation method between the solvent and the block copolymermore » at varying temperature. Even though the SLD, which is the intrinsic property of the material, should not be changed by temperature elevation, it was dependent on temperature, indicating that the molecular volume is changed. Therefore, we obtained the increase rate of the molecular volume change of the block copolymer (the effective molecular volume change) from the comparison of the calculated SLD and the standard SLD, which is evaluated by plotting the SANS intensity at the first order Bragg peak as the function of temperature at each volume fraction of D 2O and H 2O that is about 25.5%–51.3% depending on temperature.« less
Evaluation of molecular volume change of block copolymer depending on temperature: A SANS study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Tae-Hwan; Do, Changwoo; Han, Young-Soo
Amphiphilic Pluronic triblock copolymers form various self-assembled structures such as sphere, cylinder, lamellae and so on, depending on temperature, leading to the increase of hydrophobicity of block copolymers. However, the effective molecular volume change of the block copolymer has not been fully exploited yet, when temperature increases. Here in this paper, we have investigated the effective molecular volume change of the block copolymer upon heating by using the contrast variation small angle neutron scattering. The scattering length densities (SLDs) of the block copolymer were experimentally obtained from the neutron scattering contrast variation method between the solvent and the block copolymermore » at varying temperature. Even though the SLD, which is the intrinsic property of the material, should not be changed by temperature elevation, it was dependent on temperature, indicating that the molecular volume is changed. Therefore, we obtained the increase rate of the molecular volume change of the block copolymer (the effective molecular volume change) from the comparison of the calculated SLD and the standard SLD, which is evaluated by plotting the SANS intensity at the first order Bragg peak as the function of temperature at each volume fraction of D 2O and H 2O that is about 25.5%–51.3% depending on temperature.« less
Seasonal variations in urinary risk factors among patients with nephrolithiasis
NASA Technical Reports Server (NTRS)
Hill, K.; Poindexter, J.; Pak, C. Y.
1991-01-01
Twenty-four hour urine specimens from 5,677 stone-forming patients throughout the United States were analyzed for seasonal variations in urinary risk factors for nephrolithiasis. Determinations were performed for urine volume, pH, calcium, oxalate, phosphorus, sodium, magnesium, citrate, sulfate, uric acid, and the relative supersaturation (RS) of calcium oxalate, brushite, monosodium urate, and uric acid. Criteria for significant seasonal variation included a significant difference in monthly means of risk factors, seasonal grouping of the data by the Student-Newman-Keuls multiple range test, consistent year-to-year trends and a physiologically significant range. Minimum urine volume of 1.54 +/- 0.70 SD L/day occurred in October while a maximum urine volume of 1.76 +/- 0.78 SD L/day was observed during February. Minimum urine pH of 5.94 +/- 0.64 SD was observed during July and August while a maximum pH of 6.18 +/- 0.61 SD was observed during February. Daily urinary excretion of sodium was lowest during August, 158 +/- 74 SD mEq/day and highest during February 177 +/- 70 SD mEq/day. The RS of brushite and uric acid were found to display significant pH-dependent seasonal variation with a maximum RS of uric acid 2.26 +/- 1.98 SD in June and a low of 1.48 +/- 1.30 SD in February. Maximum RS of brushite 2.75 +/- 2.58 was observed during February. Minimum RS of brushite 1.93 +/- 1.70 SD was observed in June. Phosphorus excretion displayed seasonal variation about a spring-fall axis with a maximum value 1042 +/- 373 SD mg/day in April and a minimum value of 895 +/- 289 SD mg/day. Urine volume, sodium, and pH were significantly lower during the summer (June, July, August) than in the winter (December, January, February). The RS of uric acid was higher, but that of brushite and monosodium urate was lower in the summer than in the winter. The seasonal changes observed in urine volume, pH, sodium, and the RS of brushite and uric acid are consistent with summertime sweating and increased physical activity. Seasonal variations in phosphorus excretion are probably dietary in origin. The summertime was characterized by an increased propensity for the crystallization of uric acid but not of calcium oxalate or calcium phosphate.
Multi-observation PET image analysis for patient follow-up quantitation and therapy assessment
NASA Astrophysics Data System (ADS)
David, S.; Visvikis, D.; Roux, C.; Hatt, M.
2011-09-01
In positron emission tomography (PET) imaging, an early therapeutic response is usually characterized by variations of semi-quantitative parameters restricted to maximum SUV measured in PET scans during the treatment. Such measurements do not reflect overall tumor volume and radiotracer uptake variations. The proposed approach is based on multi-observation image analysis for merging several PET acquisitions to assess tumor metabolic volume and uptake variations. The fusion algorithm is based on iterative estimation using a stochastic expectation maximization (SEM) algorithm. The proposed method was applied to simulated and clinical follow-up PET images. We compared the multi-observation fusion performance to threshold-based methods, proposed for the assessment of the therapeutic response based on functional volumes. On simulated datasets the adaptive threshold applied independently on both images led to higher errors than the ASEM fusion and on clinical datasets it failed to provide coherent measurements for four patients out of seven due to aberrant delineations. The ASEM method demonstrated improved and more robust estimation of the evaluation leading to more pertinent measurements. Future work will consist in extending the methodology and applying it to clinical multi-tracer datasets in order to evaluate its potential impact on the biological tumor volume definition for radiotherapy applications.
Remote Sensing Analysis of Volume in Taihu Lake: Application for Icesat/hydroweb and Landsat Data
NASA Astrophysics Data System (ADS)
Liu, Y.; Li, Y.; Lu, Y.; Yue, H.
2018-04-01
In order to evaluate the fluctuation of Taihui Lake, ICESat/Hydroweb and Landsat data recorded from 1975 to 2015 were used to examine changes in lake level and area, derived from Normalized Difference Water Index (NDWI) and Modified Normalized Difference Water Index (MNDWI), which are combined to indirectly evaluate water volume variations and water balance of Taihu Lake. The results show that the time series of lake area and volume variations of Taihu Lake exhibit a gradually increasing trend from 1975 to 2015 and the value rose from 2320.07 km2 and -0.0470 km3, respectively in 1975 to 2341.06 km2 and 0.2759 km3, respectively in 2015. The water level of Taihu Lake demonstrates a fluctuating trend during 1975-2015 and the value changed from 0.9826 m in 1975 to 1.1359 m in 2015. There was a moderate correlation for Taihu Lake (R2 ≈ 0.65) between water level and surface area. The water volume changes was in very good agreement for lake level changes and surface area variations (R2 > 0.85). Combining with lake level and area changes, water balance of Taihu Lake was acquired and it shows a positive water budgets of 0.0092 km3 during past 40 years.
Evaluation of the pulse-contour method of determining stroke volume in man.
NASA Technical Reports Server (NTRS)
Alderman, E. L.; Branzi, A.; Sanders, W.; Brown, B. W.; Harrison, D. C.
1972-01-01
The pulse-contour method for determining stroke volume has been employed as a continuous rapid method of monitoring the cardiovascular status of patients. Twenty-one patients with ischemic heart disease and 21 patients with mitral valve disease were subjected to a variety of hemodynamic interventions. The pulse-contour estimations, using three different formulas derived by Warner, Kouchoukos, and Herd, were compared with indicator-dilution outputs. A comparison of the results of the two methods for determining stroke volume yielded correlation coefficients ranging from 0.59 to 0.84. The better performing Warner formula yielded a coefficient of variation of about 20%. The type of hemodynamic interventions employed did not significantly affect the results using the pulse-contour method. Although the correlation of the pulse-contour and indicator-dilution stroke volumes is high, the coefficient of variation is such that small changes in stroke volume cannot be accurately assessed by the pulse-contour method. However, the simplicity and rapidity of this method compared to determination of cardiac output by Fick or indicator-dilution methods makes it a potentially useful adjunct for monitoring critically ill patients.
Mushet, David M.; Goldhaber, Martin B.; Mills, Christopher T.; McLean, Kyle I.; Aparicio, Vanessa M.; McCleskey, R. Blaine; Holloway, JoAnn M.; Stockwell, Craig A.
2015-09-28
The climate of the prairie pothole region of North America is known for variability that results in significant interannual changes in water depths and volumes of prairie lakes and wetlands; however, beginning in July 1993, the climate of the region shifted to an extended period of increased precipitation that has likely been unequaled in the preceding 500 years. Associated changing water volumes also affect water chemical characteristics, with potential effects on fish and wildlife populations. To explore the effect of changing climate patterns, in 2012 and 2013, the U.S. Geological Survey revisited 167 of 178 prairie lakes and large wetlands of south-central North Dakota that were originally sampled in the mid-1960s to mid-1970s. During the earlier sampling period, these lakes and wetlands displayed a great range of chemical characteristics (for example, specific conductance ranged from 365 microsiemens per centimeter at 25 degrees Celsius to 70,300 microsiemens per centimeter at 25 degrees Celsius); however, increased water volumes have resulted in greatly reduced variation among lakes and wetlands and a more homogeneous set of chemical conditions defined by pH, specific conductance, and concentrations of major cations and anions. High concentrations of dissolved solids previously limited fish occurrence in many of the lakes and wetlands sampled; however, freshening of these lakes and large wetlands has allowed fish to populate and flourish where they were previously absent. Conversely, the freshening of previously saline lakes and wetlands has resulted in concurrent shifts away from invertebrate species adapted to live in these highly saline environments. A shift in the regional climate has changed a highly diverse landscape of wetlands (fresh to highly saline) to a markedly more homogeneous landscape that has reshaped the fish and wildlife communities of this ecologically and economically important region.
Geographic variation in marine invasions among large estuaries: effects of ships and time.
Ruiz, Gregory M; Fofonoff, Paul W; Ashton, Gail; Minton, Mark S; Miller, A Whitman
2013-03-01
Coastal regions exhibit strong geographic patterns of nonnative species richness. Most invasions in marine ecosystems are known from bays and estuaries, where ship-mediated transfers (on hulls or in ballasted materials) have been a dominant vector of species introductions. Conspicuous spatial differences in nonnative species richness exist among bays, but the quantitative relationship between invasion magnitude and shipping activity across sites is largely unexplored. Using data on marine invasions (for invertebrates and algae) and commercial shipping across 16 large bays in the United States, we estimated (1) geographic variation in nonnative species richness attributed to ships, controlling for effects of salinity and other vectors, (2) changes through time in geographic variation of these ship-mediated invasions, and (3) effects of commercial ship traffic and ballast water discharge magnitude on nonnative species richness. For all nonnative species together (regardless of vector, salinity, or time period), species richness differed among U.S. coasts, being significantly greater for Pacific Coast bays than Atlantic or Gulf Coast bays. This difference also existed when considering only species attributed to shipping (or ballast water), controlling for time and salinity. Variation in nonnative species richness among Pacific Coast bays was strongly affected by these same criteria. San Francisco Bay, California, had over 200 documented nonnative species, more than twice that reported for other bays, but many species were associated with other (non-shipping) vectors or the extensive low-salinity habitats (unavailable in some bays). When considering only ship- or ballast-mediated introductions in high-salinity waters, the rate of newly detected invasions in San Francisco Bay has converged increasingly through time on that for other Pacific Coast bays, appearing no different since 1982. Considering all 16 bays together, there was no relationship between either (1) number of ship arrivals (from foreign ports) and number of introductions attributed to ships since 1982 or (2) volume of foreign ballast water discharge and number of species attributed to ballast water since 1982. These shipping measures are likely poor proxies for propagule supply, although they are sometimes used as such, highlighting a fundamental gap in data needed to evaluate invasion dynamics and management strategies.
Grattapaglia, D.; Bertolucci, FLG.; Penchel, R.; Sederoff, R. R.
1996-01-01
Quantitative trait loci (QTL) mapping of forest productivity traits was performed using an open pollinated half-sib family of Eucalyptus grandis. For volume growth, a sequential QTL mapping approach was applied using bulk segregant analysis (BSA), selective genotyping (SG) and cosegregation analysis (CSA). Despite the low heritability of this trait and the heterogeneous genetic background employed for mapping. BSA detected one putative QTL and SG two out of the three later found by CSA. The three putative QTL for volume growth were found to control 13.7% of the phenotypic variation, corresponding to an estimated 43.7% of the genetic variation. For wood specific gravity five QTL were identified controlling 24.7% of the phenotypic variation corresponding to 49% of the genetic variation. Overlapping QTL for CBH, WSG and percentage dry weight of bark were observed. A significant case of digenic epistasis was found, involving unlinked QTL for volume. Our results demonstrate the applicability of the within half-sib design for QTL mapping in forest trees and indicate the existence of major genes involved in the expression of economically important traits related to forest productivity in Eucalyptus grandis. These findings have important implications for marker-assisted tree breeding. PMID:8913761
Improving performance with clinical decision support.
Brailer, D J; Goldfarb, S; Horgan, M; Katz, F; Paulus, R A; Zakrewski, K
1996-07-01
CADU/CIS (Clinical and Administrative Decision-support Utility and Clinical Information System) is a clinical decision-support workstation that allows large volumes of clinical information systems data to be analyzed in a timely and user-friendly fashion. CARE PROCESS MEASUREMENT: For any given disease, subgroups of patients are identified, and automated, customized "clinical pathways" are generated. For each subgroup, the best practice norms for use of test and therapies are identified. Practice style variations are then compared to outcomes to focus inquiry on decisions that significantly affect outcomes. INTESTINAL OBSTRUCTION: Graduate Health Systems, a multisite integrated provider in the Philadelphia area, has used CADU/CIS to improve quality problems, reduce treatment-intensity variations, and improve clinical participation in care process evaluation and decision making. A task force selected intestinal obstruction without hernia as its first study because of the related high-volume and high-morbidity complications. Use of a ten-step method for clinical performance improvement showed that the intravenous administration of unnecessary fluids to 104 patients with intestinal obstruction induced congestive heart failure (CHF) in 5 patients. Task force members and other practicing physicians are now developing guidelines and other interventions aimed at fluid use. Indeed, the task force used CADU/CIS to identify an additional 250 patients in one year whose conditions were complicated by CHF. A clinical decision support tool can be instrumental in detecting problems with important clinical and economic implications, identifying their important underlying causes, tracking the associated tests and therapies, and monitoring interventions.
A potential mechanism for allometric trabecular bone scaling in terrestrial mammals.
Christen, Patrik; Ito, Keita; van Rietbergen, Bert
2015-03-01
Trabecular bone microstructural parameters, including trabecular thickness, spacing, and number, have been reported to scale with animal size with negative allometry, whereas bone volume fraction is animal size-invariant in terrestrial mammals. As for the majority of scaling patterns described in animals, its underlying mechanism is unknown. However, it has also been found that osteocyte density is inversely related to animal size, possibly adapted to metabolic rate, which shows a negative relationship as well. In addition, the signalling reach of osteocytes is limited by the extent of the lacuno-canalicular network, depending on trabecular dimensions and thus also on animal size. Here we propose animal size-dependent variations in osteocyte density and their signalling influence distance as a potential mechanism for negative allometric trabecular bone scaling in terrestrial mammals. Using an established and tested computational model of bone modelling and remodelling, we run simulations with different osteocyte densities and influence distances mimicking six terrestrial mammals covering a large range of body masses. Simulated trabecular structures revealed negative allometric scaling for trabecular thickness, spacing, and number, constant bone volume fraction, and bone turnover rates inversely related to animal size. These results are in agreement with previous observations supporting our proposal of osteocyte density and influence distance variation as a potential mechanism for negative allometric trabecular bone scaling in terrestrial mammals. The inverse relationship between bone turnover rates and animal size further indicates that trabecular bone scaling may be linked to metabolic rather than mechanical adaptations. © 2015 Anatomical Society.
Validation of ultrasonography of the thyroid gland for epidemiological purposes.
Knudsen, N; Bols, B; Bülow, I; Jørgensen, T; Perrild, H; Ovesen, L; Laurberg, P
1999-11-01
Ultrasonography of the thyroid is often used in epidemiological surveys, thus thorough characterization of the interobserver variation of the different parameters obtained is important. Various methods have been used for measuring thyroid volume, and different formulas have been used for calculation of thyroid volume from the measured dimensions. In this article, two principles of thyroid volume measurement are described in detail: the wellknown method based on the three axes of each lobe and a new principle based on planimetry in two planes. The interobserver variation of the examination and the measuring procedure in itself were tested on 25 participants in a population study. A comparison of postmortem ultrasonography of the thyroid and results of an autopsy was performed. Good correlation and agreement between observers was found for thyroid volume (r = 0.98) and prevalence of thyroid nodules (kappa = 0.72), whereas echogenecity and echopattern showed little agreement. The correlation of thyroid volume by ultrasonography to autopsy results was satisfactory (r = 0.93), but the volume tended to be slightly underestimated even when using the formula pi/6(= 0.52)*length*width*depth. No major differences were found between the performance of the two principles of volume calculation. We conclude that when the measuring procedure is well defined, results of ultrasonography are comparable between observers for thyroid volume and prevalence of thyroid nodules, but not for echogenecity or echopattern. The formula of length*depth*width*pi/6 is suitable for thyroid volume measurement.
Larabell, Carolyn A.; Le Gros, Mark A.; McQueen, David M.; Peskin, Charles S.
2014-01-01
In this work, we examine how volume exclusion caused by regions of high chromatin density might influence the time required for proteins to find specific DNA binding sites. The spatial variation of chromatin density within mouse olfactory sensory neurons is determined from soft X-ray tomography reconstructions of five nuclei. We show that there is a division of the nuclear space into regions of low-density euchromatin and high-density heterochromatin. Volume exclusion experienced by a diffusing protein caused by this varying density of chromatin is modeled by a repulsive potential. The value of the potential at a given point in space is chosen to be proportional to the density of chromatin at that location. The constant of proportionality, called the volume exclusivity, provides a model parameter that determines the strength of volume exclusion. Numerical simulations demonstrate that the mean time for a protein to locate a binding site localized in euchromatin is minimized for a finite, nonzero volume exclusivity. For binding sites in heterochromatin, the mean time is minimized when the volume exclusivity is zero (the protein experiences no volume exclusion). An analytical theory is developed to explain these results. The theory suggests that for binding sites in euchromatin there is an optimal level of volume exclusivity that balances a reduction in the volume searched in finding the binding site, with the height of effective potential barriers the protein must cross during the search process. PMID:23955281
Automated lung volumetry from routine thoracic CT scans: how reliable is the result?
Haas, Matthias; Hamm, Bernd; Niehues, Stefan M
2014-05-01
Today, lung volumes can be easily calculated from chest computed tomography (CT) scans. Modern postprocessing workstations allow automated volume measurement of data sets acquired. However, there are challenges in the use of lung volume as an indicator of pulmonary disease when it is obtained from routine CT. Intra-individual variation and methodologic aspects have to be considered. Our goal was to assess the reliability of volumetric measurements in routine CT lung scans. Forty adult cancer patients whose lungs were unaffected by the disease underwent routine chest CT scans in 3-month intervals, resulting in a total number of 302 chest CT scans. Lung volume was calculated by automatic volumetry software. On average of 7.2 CT scans were successfully evaluable per patient (range 2-15). Intra-individual changes were assessed. In the set of patients investigated, lung volume was approximately normally distributed, with a mean of 5283 cm(3) (standard deviation = 947 cm(3), skewness = -0.34, and curtosis = 0.16). Between different scans in one and the same patient the median intra-individual standard deviation in lung volume was 853 cm(3) (16% of the mean lung volume). Automatic lung segmentation of routine chest CT scans allows a technically stable estimation of lung volume. However, substantial intra-individual variations have to be considered. A median intra-individual deviation of 16% in lung volume between different routine scans was found. Copyright © 2014 AUR. Published by Elsevier Inc. All rights reserved.
The physics of large eruptions
NASA Astrophysics Data System (ADS)
Gudmundsson, Agust
2015-04-01
Based on eruptive volumes, eruptions can be classified as follows: small if the volumes are from less than 0.001 km3 to 0.1 km3, moderate if the volumes are from 0.1 to 10 km3, and large if the volumes are from 10 km3 to 1000 km3 or larger. The largest known explosive and effusive eruptions have eruptive volumes of 4000-5000 km3. The physics of small to moderate eruptions is reasonably well understood. For a typical mafic magma chamber in a crust that behaves as elastic, about 0.1% of the magma leaves the chamber (erupted and injected as a dyke) during rupture and eruption. Similarly, for a typical felsic magma chamber, the eruptive/injected volume during rupture and eruption is about 4%. To provide small to moderate eruptions, chamber volumes of the order of several tens to several hundred cubic kilometres would be needed. Shallow crustal chambers of these sizes are common, and deep-crustal and upper-mantle reservoirs of thousands of cubic kilometres exist. Thus, elastic and poro-elastic chambers of typical volumes can account for small to moderate eruptive volumes. When the eruptions become large, with volumes of tens or hundreds of cubic kilometres or more, an ordinary poro-elastic mechanism can no longer explain the eruptive volumes. The required sizes of the magma chambers and reservoirs to explain such volumes are simply too large to be plausible. Here I propose that the mechanics of large eruptions is fundamentally different from that of small to moderate eruptions. More specifically, I suggest that all large eruptions derive their magmas from chambers and reservoirs whose total cavity-volumes are mechanically reduced very much during the eruption. There are two mechanisms by which chamber/reservoir cavity-volumes can be reduced rapidly so as to squeeze out much of, or all, their magmas. One is piston-like caldera collapse. The other is graben subsidence. During large slip on the ring-faults/graben-faults the associated chamber/reservoir shrinks in volume, thereby maintaining the excess magmatic pressure much longer than is possible in the ordinary poro-elastic mechanism. Here the physics of caldera subsidence and graben subsidence is regarded as basically the same. The geometric difference in the surface expression is simply a reflection of the horizontal cross-sectional shape of the underlying magma body. In this new mechanism, the large eruption is the consequence -- not the cause -- of the caldera/graben subsidence. Thus, once the conditions for large-scale subsidence of a caldera/graben during an unrest period are established, then the likelihood of large to very large eruptions can be assessed and used in reliable forecasting. Gudmundsson, A., 2012. Strengths and strain energies of volcanic edifices: implications for eruptions, collapse calderas and landslides. Nat. Hazards Earth Syst. Sci., 12, 2241-2258. Gudmundsson, A., 2014. Energy release in great earthquakes and eruptions. Front. Earth Science 2:10. doi: 10.3389/feart.2014.00010 Gudmundsson, A., Acocella, V., 2015.Volcanotectonics: Understanding the Structure, Deformation, and Dynamics of Volcanoes. Cambridge University Press (published 2015).
Belcher, Claire M.; Punyasena, Surangi W.; Sivaguru, Mayandi
2013-01-01
Variations in the abundance of fossil charcoals between rocks and sediments are assumed to reflect changes in fire activity in Earth’s past. These variations in fire activity are often considered to be in response to environmental, ecological or climatic changes. The role that fire plays in feedbacks to such changes is becoming increasingly important to understand and highlights the need to create robust estimates of variations in fossil charcoal abundance. The majority of charcoal based fire reconstructions quantify the abundance of charcoal particles and do not consider the changes in the morphology of the individual particles that may have occurred due to fragmentation as part of their transport history. We have developed a novel application of confocal laser scanning microscopy coupled to image processing that enables the 3-dimensional reconstruction of individual charcoal particles. This method is able to measure the volume of both microfossil and mesofossil charcoal particles and allows the abundance of charcoal in a sample to be expressed as total volume of charcoal. The method further measures particle surface area and shape allowing both relationships between different size and shape metrics to be analysed and full consideration of variations in particle size and size sorting between different samples to be studied. We believe application of this new imaging approach could allow significant improvement in our ability to estimate variations in past fire activity using fossil charcoals. PMID:23977267
Christensen, Neil I; Forrest, Lisa J; White, Pamela J; Henzler, Margaret; Turek, Michelle M
2016-11-01
Contouring variability is a significant barrier to the accurate delivery and reporting of radiation therapy. The aim of this descriptive study was to determine the variation in contouring radiation targets and organs at risk by participants within our institution. Further, we also aimed to determine if all individuals contoured the same normal tissues. Two canine nasal tumor datasets were selected and contoured by two ACVR-certified radiation oncologists and two radiation oncology residents from the same institution. Eight structures were consistently contoured including the right and left eye, the right and left lens, brain, the gross tumor volume (GTV), clinical target volume (CTV), and planning target volume (PTV). Spinal cord, hard and soft palate, and bulla were contoured on 50% of datasets. Variation in contouring occurred in both targets and normal tissues at risk and was particularly significant for the GTV, CTV, and PTV. The mean metric score and dice similarity coefficient were below the threshold criteria in 37.5-50% and 12.5-50% of structures, respectively, quantitatively indicating contouring variation. This study refutes our hypothesis that minimal variation in target and normal tissue delineation occurs. The variation in contouring may contribute to different tumor response and toxicity for any given patient. Our results also highlight the difficulty associated with replication of published radiation protocols or treatments, as even with replete contouring description the outcome of treatment is still fundamentally influenced by the individual contouring the patient. © 2016 American College of Veterinary Radiology.
Growth of the eye lens: II. Allometric studies
2014-01-01
Purpose The purpose of this study was to examine the ontogeny and phylogeny of lens growth in a variety of species using allometry. Methods Data on the accumulation of wet and/or dry lens weight as a function of bodyweight were obtained for 40 species and subjected to allometric analysis to examine ontogenic growth and compaction. Allometric analysis was also used to compare the maximum adult lens weights for 147 species with the maximum adult bodyweight and to compare lens volumes calculated from wet and dry weights with eye volumes calculated from axial length. Results Linear allometric relationships were obtained for the comparison of ontogenic lens and bodyweight accumulation. The body mass exponent (BME) decreased with increasing animal size from around 1.0 in small rodents to 0.4 in large ungulates for both wet and dry weights. Compaction constants for the ontogenic growth ranged from 1.00 in birds and reptiles up to 1.30 in mammals. Allometric comparison of maximum lens wet and dry weights with maximum bodyweights also yielded linear plots with a BME of 0.504 for all warm blooded species except primates which had a BME of 0.25. When lens volumes were compared with eye volumes, all species yielded a scaling constant of 0.75 but the proportionality constants for primates and birds were lower. Conclusions Ontogenic lens growth is fastest, relative to body growth, in small animals and slowest in large animals. Fiber cell compaction takes place throughout life in most species, but not in birds and reptiles. Maximum adult lens size scales with eye size with the same exponent in all species, but birds and primates have smaller lenses relative to eye size than other species. Optical properties of the lens are generated through the combination of variations in the rate of growth, rate of compaction, shape and size. PMID:24715759
Case mix-adjusted cost of colectomy at low-, middle-, and high-volume academic centers.
Chang, Alex L; Kim, Young; Ertel, Audrey E; Hoehn, Richard S; Wima, Koffi; Abbott, Daniel E; Shah, Shimul A
2017-05-01
Efforts to regionalize surgery based on thresholds in procedure volume may have consequences on the cost of health care delivery. This study aims to delineate the relationship between hospital volume, case mix, and variability in the cost of operative intervention using colectomy as the model. All patients undergoing colectomy (n = 90,583) at 183 academic hospitals from 2009-2012 in The University HealthSystems Consortium Database were studied. Patient and procedure details were used to generate a case mix-adjusted predictive model of total direct costs. Observed to expected costs for each center were evaluated between centers based on overall procedure volume. Patient and procedure characteristics were significantly different between volume tertiles. Observed costs at high-volume centers were less than at middle- and low-volume centers. According to our predictive model, high-volume centers cared for a less expensive case mix than middle- and low-volume centers ($12,786 vs $13,236 and $14,497, P < .01). Our predictive model accounted for 44% of the variation in costs. Overall efficiency (standardized observed to expected costs) was greatest at high-volume centers compared to middle- and low-volume tertiles (z score -0.16 vs 0.02 and -0.07, P < .01). Hospital costs and cost efficiency after an elective colectomy varies significantly between centers and may be attributed partially to the patient differences at those centers. These data demonstrate that a significant proportion of the cost variation is due to a distinct case mix at low-volume centers, which may lead to perceived poor performance at these centers. Copyright © 2016 Elsevier Inc. All rights reserved.
Diurnal Changes in Volume and Specific Tissue Weight of Crassulacean Acid Metabolism Plants 1
Chen, Sheng-Shu; Black, Clanton C.
1983-01-01
The diurnal variations in volume and in specific weight were determined for green stems and leaves of Crassulacen acid metabolism (CAM) plants. Volume changes were measured by a water displacement method. Diurnal variations occurred in the volume of green CAM tissues. Their volume increased early in the light period reaching a maximum about mid-day, then the volume decreased to a minimum near midnight. The maximum volume increase each day was about 2.7% of the total volume. Control leaves of C3 and C4 plants exhibited reverse diurnal volume changes of 0.2 to 0.4%. The hypothesis is presented and supported that green CAM tissues should exhibit a diurnal increase in volume due to the increase of internal gas pressure from CO2 and O2 when their stomata are closed. Conversely, the volume should decrease when the gas pressure is decreased. The second hypothesis presented and supported was that the specific weight (milligrams of dry weight per square centimeter of green surface area) of green CAM tissues should increase at night due to the net fixation of CO2. Green CAM tissues increased their specific weight at night in contrast to control C3 and C4 leaves which decreased their specific weight at night. With Kalanchoë daigremontiana leaves, the calculated increase in specific leaf weight at night based on estimates of carbohydrate available for net CO2 fixation was near 6% and the measured increase in specific leaf weight was 6%. Diurnal measurements of CAM tissue water content were neither coincident nor reciprocal with their diurnal patterns of either volume or specific weight changes. PMID:16662833
A solution algorithm for fluid–particle flows across all flow regimes
Kong, Bo; Fox, Rodney O.
2017-05-12
Many fluid–particle flows occurring in nature and in technological applications exhibit large variations in the local particle volume fraction. For example, in circulating fluidized beds there are regions where the particles are closepacked as well as very dilute regions where particle–particle collisions are rare. Thus, in order to simulate such fluid–particle systems, it is necessary to design a flow solver that can accurately treat all flow regimes occurring simultaneously in the same flow domain. In this work, a solution algorithm is proposed for this purpose. The algorithm is based on splitting the free-transport flux solver dynamically and locally in themore » flow. In close-packed to moderately dense regions, a hydrodynamic solver is employed, while in dilute to very dilute regions a kinetic-based finite-volume solver is used in conjunction with quadrature-based moment methods. To illustrate the accuracy and robustness of the proposed solution algorithm, it is implemented in OpenFOAM for particle velocity moments up to second order, and applied to simulate gravity-driven, gas–particle flows exhibiting cluster-induced turbulence. By varying the average particle volume fraction in the flow domain, it is demonstrated that the flow solver can handle seamlessly all flow regimes present in fluid–particle flows.« less
A solution algorithm for fluid-particle flows across all flow regimes
NASA Astrophysics Data System (ADS)
Kong, Bo; Fox, Rodney O.
2017-09-01
Many fluid-particle flows occurring in nature and in technological applications exhibit large variations in the local particle volume fraction. For example, in circulating fluidized beds there are regions where the particles are close-packed as well as very dilute regions where particle-particle collisions are rare. Thus, in order to simulate such fluid-particle systems, it is necessary to design a flow solver that can accurately treat all flow regimes occurring simultaneously in the same flow domain. In this work, a solution algorithm is proposed for this purpose. The algorithm is based on splitting the free-transport flux solver dynamically and locally in the flow. In close-packed to moderately dense regions, a hydrodynamic solver is employed, while in dilute to very dilute regions a kinetic-based finite-volume solver is used in conjunction with quadrature-based moment methods. To illustrate the accuracy and robustness of the proposed solution algorithm, it is implemented in OpenFOAM for particle velocity moments up to second order, and applied to simulate gravity-driven, gas-particle flows exhibiting cluster-induced turbulence. By varying the average particle volume fraction in the flow domain, it is demonstrated that the flow solver can handle seamlessly all flow regimes present in fluid-particle flows.
A solution algorithm for fluid–particle flows across all flow regimes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kong, Bo; Fox, Rodney O.
Many fluid–particle flows occurring in nature and in technological applications exhibit large variations in the local particle volume fraction. For example, in circulating fluidized beds there are regions where the particles are closepacked as well as very dilute regions where particle–particle collisions are rare. Thus, in order to simulate such fluid–particle systems, it is necessary to design a flow solver that can accurately treat all flow regimes occurring simultaneously in the same flow domain. In this work, a solution algorithm is proposed for this purpose. The algorithm is based on splitting the free-transport flux solver dynamically and locally in themore » flow. In close-packed to moderately dense regions, a hydrodynamic solver is employed, while in dilute to very dilute regions a kinetic-based finite-volume solver is used in conjunction with quadrature-based moment methods. To illustrate the accuracy and robustness of the proposed solution algorithm, it is implemented in OpenFOAM for particle velocity moments up to second order, and applied to simulate gravity-driven, gas–particle flows exhibiting cluster-induced turbulence. By varying the average particle volume fraction in the flow domain, it is demonstrated that the flow solver can handle seamlessly all flow regimes present in fluid–particle flows.« less
Kondo Effect of U Impurities in Dilute (YU)2Zn17
NASA Astrophysics Data System (ADS)
Takagi, Shigeru; Suzuki, Hiroyuki; Anzai, Kousuke
2001-10-01
Extending previous work on single-site properties of U ions in (LaU)2Zn17, we have investigated, from ρ(T), χ(T) and Cp(T) on single crystals, (Y1-xUx)2Zn17 with x=0.025 and 0.050, which has almost the same unit-cell volume as an antiferromagnetic heavy-electron compound U2Zn17. Remarkable features in the dilute-impurity limit have been clarified, which include Kondo behavior of ρ(T), large and almost isotropic χimp(T), and strongly enhanced Cimp(T)/T with gigantic γimp=2.02 2.05 J/K2·mole-U as T→0 due to a low characteristic energy-scale of the system. It is shown that gross features of the data are explained in terms of the conventional Kondo effect in the presence of the crystal field with the U3+ \\varGamma6 doublet ground state. It is also shown that the variation of γ with the unit-cell volume in related systems is not explained as a volume effect on TK and that even the behavior of fictitious “paramagnetic” U2Zn17 is not described as a collection of U impurities in dilute (YU)2Zn17.
A monolithic mass tracking formulation for bubbles in incompressible flow
NASA Astrophysics Data System (ADS)
Aanjaneya, Mridul; Patkar, Saket; Fedkiw, Ronald
2013-08-01
We devise a novel method for treating bubbles in incompressible flow that relies on the conservative advection of bubble mass and an associated equation of state in order to determine pressure boundary conditions inside each bubble. We show that executing this algorithm in a traditional manner leads to stability issues similar to those seen for partitioned methods for solid-fluid coupling. Therefore, we reformulate the problem monolithically. This is accomplished by first proposing a new fully monolithic approach to coupling incompressible flow to fully nonlinear compressible flow including the effects of shocks and rarefactions, and then subsequently making a number of simplifying assumptions on the air flow removing not only the nonlinearities but also the spatial variations of both the density and the pressure. The resulting algorithm is quite robust, has been shown to converge to known solutions for test problems, and has been shown to be quite effective on more realistic problems including those with multiple bubbles, merging and pinching, etc. Notably, this approach departs from a standard two-phase incompressible flow model where the air flow preserves its volume despite potentially large forces and pressure differentials in the surrounding incompressible fluid that should change its volume. Our bubbles readily change volume according to an isothermal equation of state.
Postglacial eruptive history of the Western Volcanic Zone, Iceland
NASA Astrophysics Data System (ADS)
Sinton, John; GröNvold, Karl; SæMundsson, KristjáN.
2005-12-01
New field observations, age constraints, and extensive chemical analyses define the complete postglacial eruptive history of the 170-km-long Western Volcanic Zone (WVZ) of Iceland, the ultraslow-spreading western boundary of the south Iceland microplate. We have identified 44 separate eruptive units, 10 of which are small-volume eruptions associated with the flanking Grímsnes system. Overall chemical variations are consistent with very simplified models of melting of a source approximating primitive mantle composition. The 17 eruptions in the first 3000 years of postglacial time account for about 64% of the total postglacial production and are incompatible-element depleted compared to younger units, consistent with enhanced melting as a consequence of rebound immediately following deglaciation. Steadily declining eruption rates for the last 9000 years also correlate with changes in average incompatible element ratios that appear to reflect continued decline in melting extents to the present day. This result is not restricted to the WVZ, however, and may herald a decline in melting throughout all of western Iceland during later postglacial time. Lavas from the northern part of the WVZ are depleted in incompatible elements relative to those farther south at all times, indicating either a long-wavelength gradient in mantle source composition or variations in the melting process along axis. We find no evidence in the postglacial volcanic record for current failure of the WVZ, despite evidence for continued propagation of the eastern margin of the microplate. The dominance of lava shields in the eruptive history of the WVZ contrasts with the higher number of fissure eruptions in other Icelandic volcanic zones. WVZ shields represent long-duration, low-effusion rate eruptions fed by recharge magma arising out of the mantle. Average effusion rate is the key variable distinguishing shield and fissure eruptions, both within the WVZ and between different volcanic zones. High effusion rate, large-volume eruptions require the presence of large crustal magma reservoirs, which have been rare or absent in the WVZ throughout postglacial time.
Smart nanogels at the air/water interface: structural studies by neutron reflectivity
NASA Astrophysics Data System (ADS)
Zielińska, Katarzyna; Sun, Huihui; Campbell, Richard A.; Zarbakhsh, Ali; Resmini, Marina
2016-02-01
The development of effective transdermal drug delivery systems based on nanosized polymers requires a better understanding of the behaviour of such nanomaterials at interfaces. N-Isopropylacrylamide-based nanogels synthesized with different percentages of N,N'-methylenebisacrylamide as cross-linker, ranging from 10 to 30%, were characterized at physiological temperature at the air/water interface, using neutron reflectivity (NR), with isotopic contrast variation, and surface tension measurements; this allowed us to resolve the adsorbed amount and the volume fraction of nanogels at the interface. A large conformational change for the nanogels results in strong deformations at the interface. As the percentage of cross-linker incorporated in the nanogels becomes higher, more rigid matrices are obtained, although less deformed, and the amount of adsorbed nanogels is increased. The data provide the first experimental evidence of structural changes of nanogels as a function of the degree of cross-linking at the air/water interface.The development of effective transdermal drug delivery systems based on nanosized polymers requires a better understanding of the behaviour of such nanomaterials at interfaces. N-Isopropylacrylamide-based nanogels synthesized with different percentages of N,N'-methylenebisacrylamide as cross-linker, ranging from 10 to 30%, were characterized at physiological temperature at the air/water interface, using neutron reflectivity (NR), with isotopic contrast variation, and surface tension measurements; this allowed us to resolve the adsorbed amount and the volume fraction of nanogels at the interface. A large conformational change for the nanogels results in strong deformations at the interface. As the percentage of cross-linker incorporated in the nanogels becomes higher, more rigid matrices are obtained, although less deformed, and the amount of adsorbed nanogels is increased. The data provide the first experimental evidence of structural changes of nanogels as a function of the degree of cross-linking at the air/water interface. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr07538f
NASA Astrophysics Data System (ADS)
Seamon, E.; Gessler, P. E.; Flathers, E.
2015-12-01
The creation and use of large amounts of data in scientific investigations has become common practice. Data collection and analysis for large scientific computing efforts are not only increasing in volume as well as number, the methods and analysis procedures are evolving toward greater complexity (Bell, 2009, Clarke, 2009, Maimon, 2010). In addition, the growth of diverse data-intensive scientific computing efforts (Soni, 2011, Turner, 2014, Wu, 2008) has demonstrated the value of supporting scientific data integration. Efforts to bridge this gap between the above perspectives have been attempted, in varying degrees, with modular scientific computing analysis regimes implemented with a modest amount of success (Perez, 2009). This constellation of effects - 1) an increasing growth in the volume and amount of data, 2) a growing data-intensive science base that has challenging needs, and 3) disparate data organization and integration efforts - has created a critical gap. Namely, systems of scientific data organization and management typically do not effectively enable integrated data collaboration or data-intensive science-based communications. Our research efforts attempt to address this gap by developing a modular technology framework for data science integration efforts - with climate variation as the focus. The intention is that this model, if successful, could be generalized to other application areas. Our research aim focused on the design and implementation of a modular, deployable technology architecture for data integration. Developed using aspects of R, interactive python, SciDB, THREDDS, Javascript, and varied data mining and machine learning techniques, the Modular Data Response Framework (MDRF) was implemented to explore case scenarios for bio-climatic variation as they relate to pacific northwest ecosystem regions. Our preliminary results, using historical NETCDF climate data for calibration purposes across the inland pacific northwest region (Abatzoglou, Brown, 2011), show clear ecosystems shifting over a ten-year period (2001-2011), based on multiple supervised classifier methods for bioclimatic indicators.
ICU telemedicine and critical care mortality: a national effectiveness study
Kahn, Jeremy M; Le, Tri Q.; Barnato, Amber E.; Hravnak, Marilyn; Kuza, Courtney C.; Pike, Francis; Angus, Derek C.
2015-01-01
Background Intensive care unit (ICU) telemedicine is an increasingly common strategy for improving the outcome of critical care, but its overall impact is uncertain. Objectives To determine the effectiveness of ICU telemedicine in a national sample of hospitals and quantify variation in effectiveness across hospitals. Research design We performed a multi-center retrospective case-control study using 2001–2010 Medicare claims data linked to a national survey identifying United States hospitals adopting ICU telemedicine. We matched each adopting hospital (cases) to up to 3 non-adopting hospitals (controls) based on size, case-mix and geographic proximity during the year of adoption. Using ICU admissions from 2 years before and after the adoption date, we compared outcomes between case and control hospitals using a difference-in-differences approach. Results 132 adopting case hospitals were matched to 389 similar non-adopting control hospitals. The pre- and post-adoption unadjusted 90-day mortality was similar in both case hospitals (24.0% vs. 24.3%, p=0.07) and control hospitals (23.5% vs. 23.7%, p<0.01). In the difference-in-differences analysis, ICU telemedicine adoption was associated with a small relative reduction in 90-day mortality (ratio of odds ratios: 0.96, 95% CI = 0.95–0.98, p<0.001). However, there was wide variation in the ICU telemedicine effect across individual hospitals (median ratio of odds ratios: 1.01; interquartile range 0.85–1.12; range 0.45–2.54). Only 16 case hospitals (12.2%) experienced statistically significant mortality reductions post-adoption. Hospitals with a significant mortality reduction were more likely to have large annual admission volumes (p<0.001) and be located in urban areas (p=0.04) compared to other hospitals. Conclusions Although ICU telemedicine adoption resulted in a small relative overall mortality reduction, there was heterogeneity in effect across adopting hospitals, with large-volume urban hospitals experiencing the greatest mortality reductions. PMID:26765148
Noro, Takahiko; Nakamoto, Kenji; Sato, Makoto; Yasuda, Noriko; Ito, Yoshinori; Ogawa, Shumpei; Nakano, Tadashi; Tsuneoka, Hiroshi
2014-10-01
We retrospectively examined intraocular pressure variations after visual field examination in primary open angle glaucoma (POAG), together with its influencing factors and its association with 24-hour intraocular pressure variations. Subjects were 94 eyes (52 POAG patients) subjected to measurements of 24-hour intraocular pressure and of changes in intraocular pressure after visual field examination using a Humphrey Visual Field Analyzer. Subjects were classified into three groups according to the magnitude of variation (large, intermediate and small), and 24-hour intraocular pressure variations were compared among the three groups. Factors influencing intraocular pressure variations after visual field examination and those associated with the large variation group were investigated. Average intraocular pressure variation after visual field examination was -0.28 ± 1.90 (range - 6.0(-) + 5.0) mmHg. No significant influencing factors were identified. The intraocular pressure at 3 a.m. was significantly higher in the large variation group than other two groups (p < 0.001). Central corneal thickness was correlated with the large variation group (odds ratio = 1.04; 95% confidence interval, 1.01-1.07 ; p = 0.02). No particular tendencies in intraocular pressure variations were found after visual field examination. Increases in intraocular pressure during the night might be associated with large intraocular pressure variations after visual field examination.
Assessing and Projecting Greenhouse Gas Release due to Abrupt Permafrost Degradation
NASA Astrophysics Data System (ADS)
Saito, K.; Ohno, H.; Yokohata, T.; Iwahana, G.; Machiya, H.
2017-12-01
Permafrost is a large reservoir of frozen soil organic carbon (SOC; about half of all the terrestrial storage). Therefore, its degradation (i.e., thawing) under global warming may lead to a substantial amount of additional greenhouse gas (GHG) release. However, understanding of the processes, geographical distribution of such hazards, and implementation of the relevant processes in the advanced climate models are insufficient yet so that variations in permafrost remains one of the large source of uncertainty in climatic and biogeochemical assessment and projections. Thermokarst, induced by melting of ground ice in ice-rich permafrost, leads to dynamic surface subsidence up to 60 m, which further affects local and regional societies and eco-systems in the Arctic. It can also accelerate a large-scale warming process through a positive feedback between released GHGs (especially methane), atmospheric warming and permafrost degradation. This three-year research project (2-1605, Environment Research and Technology Development Fund of the Ministry of the Environment, Japan) aims to assess and project the impacts of GHG release through dynamic permafrost degradation through in-situ and remote (e.g., satellite and airborn) observations, lab analysis of sampled ice and soil cores, and numerical modeling, by demonstrating the vulnerability distribution and relative impacts between large-scale degradation and such dynamic degradation. Our preliminary laboratory analysis of ice and soil cores sampled in 2016 at the Alaskan and Siberian sites largely underlain by ice-rich permafrost, shows that, although gas volumes trapped in unit mass are more or less homogenous among sites both for ice and soil cores, large variations are found in the methane concentration in the trapped gases, ranging from a few ppm (similar to that of the atmosphere) to hundreds of thousands ppm We will also present our numerical approach to evaluate relative impacts of GHGs released through dynamic permafrost degradations, by implementing conceptual modeling to assess and project distribution and affected amount of ground ice and SOC.
Geometry of a large-scale, low-angle, midcrustal thrust (Woodroffe Thrust, central Australia)
NASA Astrophysics Data System (ADS)
Wex, S.; Mancktelow, N. S.; Hawemann, F.; Camacho, A.; Pennacchioni, G.
2017-11-01
The Musgrave Block in central Australia exposes numerous large-scale mylonitic shear zones developed during the intracontinental Petermann Orogeny around 560-520 Ma. The most prominent structure is the crustal-scale, over 600 km long, E-W trending Woodroffe Thrust, which is broadly undulate but generally dips shallowly to moderately to the south and shows an approximately top-to-north sense of movement. The estimated metamorphic conditions of mylonitization indicate a regional variation from predominantly midcrustal (circa 520-620°C and 0.8-1.1 GPa) to lower crustal ( 650°C and 1.0-1.3 GPa) levels in the direction of thrusting, which is also reflected in the distribution of preserved deformation microstructures. This variation in metamorphic conditions is consistent with a south dipping thrust plane but is only small, implying that a ≥60 km long N-S segment of the Woodroffe Thrust was originally shallowly dipping at an average estimated angle of ≤6°. The reconstructed geometry suggests that basement-cored, thick-skinned, midcrustal thrusts can be very shallowly dipping on a scale of many tens of kilometers in the direction of movement. Such a geometry would require the rocks along the thrust to be weak, but field observations (e.g., large volumes of syntectonic pseudotachylyte) argue for a strong behavior, at least transiently. Localization on a low-angle, near-planar structure that crosscuts lithological layers requires a weak precursor, such as a seismic rupture in the middle to lower crust. If this was a single event, the intracontinental earthquake must have been large, with the rupture extending laterally over hundreds of kilometers.
Comparison of logging residue from lump sum and log scale timber sales.
James O Howard; Donald J. DeMars
1985-01-01
Data from 1973 and 1980 logging residues studies were used to compare the volume of residue from lump sum and log scale timber sales. Covariance analysis was used to adjust the mean volume for each data set for potential variation resulting from differences in stand conditions. Mean residue volumes from the two sale types were significantly different at the 5-percent...
ERIC Educational Resources Information Center
McGregor, Donna; Sweeney, William V.; Mills, Pamela
2012-01-01
A simple and inexpensive mercury-free apparatus to measure the change in volume of a gas as a function of pressure at different temperatures is described. The apparatus is simpler than many found in the literature and can be used to study variations in pressure, volume, and temperature. (Contains 1 table and 7 figures.)
Is Dose Deformation–Invariance Hypothesis Verified in Prostate IGRT?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simon, Antoine, E-mail: antoine.simon@univ-rennes1.fr; Laboratoire Traitement du Signal et de l'Image, Université de Rennes 1, 35000 Rennes; Le Maitre, Amandine
Purpose: To assess dose uncertainties resulting from the dose deformation–invariance hypothesis in prostate cone beam computed tomography (CT)–based image guided radiation therapy (IGRT), namely to evaluate whether rigidly propagated planned dose distribution enables good estimation of fraction dose distributions. Methods and Materials: Twenty patients underwent a CT scan for planning intensity modulated radiation therapy–IGRT delivering 80 Gy to the prostate, followed by weekly CT scans. Two methods were used to obtain the dose distributions on the weekly CT scans: (1) recalculating the dose using the original treatment plan; and (2) rigidly propagating the planned dose distribution. The cumulative doses were then estimatedmore » in the organs at risk for each dose distribution by deformable image registration. The differences between recalculated and propagated doses were finally calculated for the fraction and the cumulative dose distributions, by use of per-voxel and dose-volume histogram (DVH) metrics. Results: For the fraction dose, the mean per-voxel absolute dose difference was <1 Gy for 98% and 95% of the fractions for the rectum and bladder, respectively. The maximum dose difference within 1 voxel reached, however, 7.4 Gy in the bladder and 8.0 Gy in the rectum. The mean dose differences were correlated with gas volume for the rectum and patient external contour variations for the bladder. The mean absolute differences for the considered volume receiving greater than or equal to dose x (V{sub x}) of the DVH were between 0.37% and 0.70% for the rectum and between 0.53% and 1.22% for the bladder. For the cumulative dose, the mean differences in the DVH were between 0.23% and 1.11% for the rectum and between 0.55% and 1.66% for the bladder. The largest dose difference was 6.86%, for bladder V{sub 80Gy}. The mean dose differences were <1.1 Gy for the rectum and <1 Gy for the bladder. Conclusions: The deformation–invariance hypothesis was corroborated for the organs at risk in prostate IGRT except in cases of a large disappearance or appearance of rectal gas for the rectum and large external contour variations for the bladder.« less
The influence of high viscosity slabs on post-glacial sea-level change: the case of Barbados
NASA Astrophysics Data System (ADS)
Austermann, Jacqueline; Mitrovica, Jerry X.; Latychev, Konstantin
2013-04-01
The coral record at Barbados is one of the best available measures of relative sea level during the last glacial cycle and has been widely used to reconstruct ice volume (or, equivalently, eustatic sea-level, ESL) changes during the last deglaciation phase of the ice age. However, to estimate ESL variations from the local relative sea level (RSL) history at Barbados, one has to account for the contaminating effect of glacial isostatic adjustment (GIA). In previous work, the GIA signal at this site has been corrected for by assuming a spherically symmetric (i.e., 1-D) viscoelastic Earth. Since Barbados is located at the margin of the South American - Caribbean subduction zone, this assumption may introduce a significant error in inferences of ice volumes. To address this issue, we use a finite-volume numerical code to model GIA in the Caribbean region including the effects of a lithosphere with variable elastic thickness, plate boundaries, lateral variations in lower mantle viscosity, and a high viscosity slab within the upper mantle. The geometry of the subducted slab is inferred from local seismicity. We find that predictions of relative sea-level change since the Last Glacial Maximum (LGM) in the Caribbean region are diminished by ~10 m, relative to 1-D calculations, which suggests that previous studies have underestimated post-LGM ESL change by the same amount. This perturbation, which largely reflects the impact of the high viscosity slab, is nearly twice the total GIA-induced departure from eustasy predicted at Barbados using the 1-D Earth model. Our calculations imply an excess ice-volume equivalent to ~130 m ESL at the LGM, which brings the Barbados-based estimate into agreement with inferences based on other far-field RSL histories, such as at Bonaparte Gulf. This inference, together with recent studies that have substantially lowered estimates of Antarctic Ice Sheet mass at LGM, suggest that a significant amount of ice remains unaccounted for in sea-level based ice sheet reconstructions. In addition, we conclude that inference of ice age ice volumes derived from RSL histories at sites in proximity to subduction zones must incorporate slab structure into the numerical predictions of the GIA process.
NASA Astrophysics Data System (ADS)
Garcia Rios, Maria; Luquot, Linda; Soler, Josep M.; Cama, Jordi
2017-04-01
In this study we compare the hydrogeochemical response of two fractured reservoir rocks (limestone composed of 100 wt.% calcite and sandstone composed of 66 wt.% calcite, 28 wt.% quartz and 6 wt.% microcline) in contact with CO2-rich sulfate solutions. Flow-through percolation experiments were performed using artificially fractured limestone and sandstone cores and injecting a CO2-rich sulfate solution under a constant volumetric flow rate (from 0.2 to 60 mL/h) at P = 150 bar and T = 60 °C. Measurements of the pressure difference between the inlet and the outlet of the samples and of the aqueous chemistry enabled the determination of fracture permeability changes and net reaction rates. Additionally, X-ray computed microtomography (XCMT) was used to characterize and localized changes in fracture volume induced by dissolution and precipitation reactions. In all reacted cores an increase in fracture permeability and in fracture volume was always produced even when gypsum precipitation happened. The presence of inert silicate grains in sandstone samples favored the occurrence of largely distributed dissolution structures in contrast to localized dissolution in limestone samples. This phenomenon promoted greater dissolution and smaller precipitation in sandstone than in limestone experiments. As a result, in sandstone reservoirs, the larger increase in fracture volume as well as the more extended distribution of the created volume would favor the CO2 storage capacity. The different distribution of created volume between limestone and sandstone experiments led to a different variation in fracture permeability. The progressive stepped permeability increase for sandstone would be preferred to the sharp permeability increase for limestone to minimize risks related to CO2 injection, favor capillary trapping and reduce energetic storage costs. 2D reactive transport simulations that reproduce the variation in aqueous chemistry and the fracture geometry (dissolution pattern) were performed using CrunchFlow. The calcite reactive surface area had to be diminished with respect to the geometric surface area in order to account for the transport control of the calcite dissolution reaction at pH < 5. The fitted reactive surface area was higher under faster flow conditions, reflecting a decrease in transport control and a more distributed reaction in sandstone compared to limestone.
Large volume continuous counterflow dialyzer has high efficiency
NASA Technical Reports Server (NTRS)
Mandeles, S.; Woods, E. C.
1967-01-01
Dialyzer separates macromolecules from small molecules in large volumes of solution. It takes advantage of the high area/volume ratio in commercially available 1/4-inch dialysis tubing and maintains a high concentration gradient at the dialyzing surface by counterflow.
Castillo, Javier Malda; Jivraj, Stephen; Ng Fat, Linda
2017-01-01
Alcohol consumption frequency and volume are known to be related to health problems among drinkers. Most of the existing literature that analyses regional variation in drinking behaviour uses measures of consumption that relate only to volume, such as 'binge drinking'. This study compares the regional association of alcohol consumption using measures of drinking frequency (daily drinking) and volume (binge drinking) using a nationally representative sample of residents using the Health Survey for England, 2011-2013. Results suggest the presence of two differentiated drinking patterns with relevant policy implications. We find that people in northern regions are more likely to binge drink, whereas people in southern regions are more likely to drink on most days. Regression analysis shows that regional variation in binge drinking remains strong when taking into account individual and neighbourhood level controls. The findings provide support for regional targeting of interventions that aim to reduce the frequency as well as volume of drinking. Copyright © 2016 Elsevier Ltd. All rights reserved.
Individual-based analyses reveal limited functional overlap in a coral reef fish community.
Brandl, Simon J; Bellwood, David R
2014-05-01
Detailed knowledge of a species' functional niche is crucial for the study of ecological communities and processes. The extent of niche overlap, functional redundancy and functional complementarity is of particular importance if we are to understand ecosystem processes and their vulnerability to disturbances. Coral reefs are among the most threatened marine systems, and anthropogenic activity is changing the functional composition of reefs. The loss of herbivorous fishes is particularly concerning as the removal of algae is crucial for the growth and survival of corals. Yet, the foraging patterns of the various herbivorous fish species are poorly understood. Using a multidimensional framework, we present novel individual-based analyses of species' realized functional niches, which we apply to a herbivorous coral reef fish community. In calculating niche volumes for 21 species, based on their microhabitat utilization patterns during foraging, and computing functional overlaps, we provide a measurement of functional redundancy or complementarity. Complementarity is the inverse of redundancy and is defined as less than 50% overlap in niche volumes. The analyses reveal extensive complementarity with an average functional overlap of just 15.2%. Furthermore, the analyses divide herbivorous reef fishes into two broad groups. The first group (predominantly surgeonfishes and parrotfishes) comprises species feeding on exposed surfaces and predominantly open reef matrix or sandy substrata, resulting in small niche volumes and extensive complementarity. In contrast, the second group consists of species (predominantly rabbitfishes) that feed over a wider range of microhabitats, penetrating the reef matrix to exploit concealed surfaces of various substratum types. These species show high variation among individuals, leading to large niche volumes, more overlap and less complementarity. These results may have crucial consequences for our understanding of herbivorous processes on coral reefs, as algal removal appears to depend strongly on species-specific microhabitat utilization patterns of herbivores. Furthermore, the results emphasize the capacity of the individual-based analyses to reveal variation in the functional niches of species, even in high-diversity systems such as coral reefs, demonstrating its potential applicability to other high-diversity ecosystems. © 2013 The Authors. Journal of Animal Ecology © 2013 British Ecological Society.
Colonic transit time and pressure based on Bernoulli’s principle
Uno, Yoshiharu
2018-01-01
Purpose Variations in the caliber of human large intestinal tract causes changes in pressure and the velocity of its contents, depending on flow volume, gravity, and density, which are all variables of Bernoulli’s principle. Therefore, it was hypothesized that constipation and diarrhea can occur due to changes in the colonic transit time (CTT), according to Bernoulli’s principle. In addition, it was hypothesized that high amplitude peristaltic contractions (HAPC), which are considered to be involved in defecation in healthy subjects, occur because of cecum pressure based on Bernoulli’s principle. Methods A virtual healthy model (VHM), a virtual constipation model and a virtual diarrhea model were set up. For each model, the CTT was decided according to the length of each part of the colon, and then calculating the velocity due to the cecum inflow volume. In the VHM, the pressure change was calculated, then its consistency with HAPC was verified. Results The CTT changed according to the difference between the cecum inflow volume and the caliber of the intestinal tract, and was inversely proportional to the cecum inflow volume. Compared with VHM, the CTT was prolonged in the virtual constipation model, and shortened in the virtual diarrhea model. The calculated pressure of the VHM and the gradient of the interlocked graph were similar to that of HAPC. Conclusion The CTT and HAPC can be explained by Bernoulli’s principle, and constipation and diarrhea may be fundamentally influenced by flow dynamics. PMID:29670388
Poor sleep quality is associated with increased cortical atrophy in community-dwelling adults.
Sexton, Claire E; Storsve, Andreas B; Walhovd, Kristine B; Johansen-Berg, Heidi; Fjell, Anders M
2014-09-09
To examine the relationship between sleep quality and cortical and hippocampal volume and atrophy within a community-based sample, explore the influence of age on results, and assess the possible confounding effects of physical activity levels, body mass index (BMI), and blood pressure. In 147 community-dwelling adults (92 female; age 53.9 ± 15.5 years), sleep quality was measured using the Pittsburgh Sleep Quality Index and correlated with cross-sectional measures of volume and longitudinal measures of atrophy derived from MRI scans separated by an average of 3.5 years. Exploratory post hoc analysis compared correlations between different age groups and included physical activity, BMI, and blood pressure as additional covariates. Poor sleep quality was associated with reduced volume within the right superior frontal cortex in cross-sectional analyses, and an increased rate of atrophy within widespread frontal, temporal, and parietal regions in longitudinal analyses. Results were largely driven by correlations within adults over the age of 60, and could not be explained by variation in physical activity, BMI, or blood pressure. Sleep quality was not associated with hippocampal volume or atrophy. We found that longitudinal measures of cortical atrophy were widely correlated with sleep quality. Poor sleep quality may be a cause or a consequence of brain atrophy, and future studies examining the effect of interventions that improve sleep quality on rates of atrophy may hold key insights into the direction of this relationship. © 2014 American Academy of Neurology.
Coevolution of cultural intelligence, extended life history, sociality, and brain size in primates
Street, Sally E.; Navarrete, Ana F.; Laland, Kevin N.
2017-01-01
Explanations for primate brain expansion and the evolution of human cognition and culture remain contentious despite extensive research. While multiple comparative analyses have investigated variation in brain size across primate species, very few have addressed why primates vary in how much they use social learning. Here, we evaluate the hypothesis that the enhanced reliance on socially transmitted behavior observed in some primates has coevolved with enlarged brains, complex sociality, and extended lifespans. Using recently developed phylogenetic comparative methods we show that, across primate species, a measure of social learning proclivity increases with absolute and relative brain volume, longevity (specifically reproductive lifespan), and social group size, correcting for research effort. We also confirm relationships of absolute and relative brain volume with longevity (both juvenile period and reproductive lifespan) and social group size, although longevity is generally the stronger predictor. Relationships between social learning, brain volume, and longevity remain when controlling for maternal investment and are therefore not simply explained as a by-product of the generally slower life history expected for larger brained species. Our findings suggest that both brain expansion and high reliance on culturally transmitted behavior coevolved with sociality and extended lifespan in primates. This coevolution is consistent with the hypothesis that the evolution of large brains, sociality, and long lifespans has promoted reliance on culture, with reliance on culture in turn driving further increases in brain volume, cognitive abilities, and lifespans in some primate lineages. PMID:28739950
Lee, Ji-Hyun; Yang, Seungman; Park, Jonghyun; Kim, Hee Chan; Kim, Eun-Hee; Jang, Young-Eun; Kim, Jin-Tae; Kim, Hee-Soo
2018-06-19
Respiratory variations in photoplethysmography amplitude enable volume status assessment. However, the contact force between the measurement site and sensor can affect photoplethysmography waveforms. We aimed to evaluate contact force effects on respiratory variations in photoplethysmography waveforms in children under general anesthesia. Children aged 3-5 years were enrolled. After anesthetic induction, mechanical ventilation commenced at a tidal volume of 10 mL/kg. Photoplethysmographic signals were obtained in the supine position from the index finger using a force sensor-integrated clip-type photoplethysmography sensor that increased the contact force from 0-1.4 N for 20 respiratory cycles at each force. The AC amplitude (pulsatile component), DC amplitude (nonpulsatile component), AC/DC ratio, and respiratory variations in photoplethysmography amplitude were calculated. Data from 34 children were analyzed. Seven contact forces at 0.2-N increments were evaluated for each patient. The normalized AC amplitude increased maximally at a contact force of 0.4-0.6 N and decreased with increasing contact force. However, the normalized DC amplitude increased with a contact force exceeding 0.4 N. ΔPOP decreased slightly and increased from the point when the AC amplitude started to decrease as contact force increased. In a 0.2-1.2 N contact force range, significant changes in the normalized AC amplitude, normalized DC amplitude, AC/DC ratio, and respiratory variations in photoplethysmography amplitude were observed. Respiratory variations in photoplethysmography amplitude changed according to variable contact forces; therefore, these measurements may not reflect respiration-induced stroke volume variations. Clinicians should consider contact force bias when interpreting morphological data from photoplethysmography signals. © 2018 John Wiley & Sons Ltd.
van Lieverloo, J Hein M; Hoogenboezem, Wim; Veenendaal, Gerrit; van der Kooij, Dick
2012-10-15
A survey of invertebrates in drinking water from treatment works, internal taps and hydrants on mains was carried out by almost all water companies in the Netherlands from September 1993 to August 1995. Aquatic sow bugs (Asellidae, 1-12 mm) and oligochaeta worms (Oligochaeta, 1-100 mm), both known to have caused rare though embarrassing consumer complaints, were found to form 98% of the mean biomass in water flushed from mains. Their numbers in the mains water ranged up to 1500 (mean 37) Asellidae m(-3) and up to 9900 (mean 135) Oligochaeta m(-3). Smaller crustaceans (0.5-2 mm) dominated the numbers in water from mains. e.g. water fleas (Cladocera and Copepoda up to 14,000 m(-3)). Common invertebrates in treated water and in tap water were Rotifera (<1 mm) and nematode worms (Nematoda, <2 mm). No Asellidae, large Oligochaeta (>5 mm) or other large invertebrates were found in 1560 samples of 200 l treated water or tap water. Large variations in invertebrate abundance were found within and between distribution systems. Of the variability of mean biomass in mains per system, 55%, 60% and 63% could statistically be explained by differences in the Biofilm Formation Rate, non-particulate organic matter and the permanganate index of the treated water of the treatment works respectively. A similar correlation was found between mean invertebrate biomass and mean sediment volumes in the distribution systems (R(2) = 52%). Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Nakamura, Yuki; Ashi, Juichiro; Morita, Sumito
2016-04-01
To clarify timing and scale of past submarine landslides is important to understand formation processes of the landslides. The study area is in a part of continental slope of the Japan Trench, where a number of large-scale submarine landslide (slump) deposits have been identified in Pliocene and Quaternary formations by analysing METI's 3D seismic data "Sanrikuoki 3D" off Shimokita Peninsula (Morita et al., 2011). As structural features, swarm of parallel dikes which are likely dewatering paths formed accompanying the slumping deformation, and slip directions are basically perpendicular to the parallel dikes. Therefore, parallel dikes are good indicator for estimation of slip directions. Slip direction of each slide was determined one kilometre grid in the survey area of 40 km x 20 km. The remarkable slip direction varies from Pliocene to Quaternary in the survey area. Parallel dike structure is also available for the distinguishment of the slump deposit and normal deposit on time slice images. By tracing outline of slump deposits at each depth, we identified general morphology of the overall slump deposits, and calculated the volume of the extracted slump deposits so as to estimate the scale of each event. We investigated temporal and spatial variation of depositional pattern of the slump deposits. Calculating the generation interval of the slumps, some periodicity is likely recognized, especially large slump do not occur in succession. Additionally, examining the relationship of the cumulative volume and the generation interval, certain correlation is observed in Pliocene and Quaternary. Key words: submarine landslides, 3D seismic data, Shimokita Peninsula
Jaffrin, M Y; Maasrani, M; Le Gourrier, A; Boudailliez, B
1997-05-01
A method is presented for monitoring the relative variation of extracellular and intracellular fluid volumes using a multifrequency impedance meter and the Cole-Cole extrapolation technique. It is found that this extrapolation is necessary to obtain reliable data for the resistance of the intracellular fluid. The extracellular and intracellular resistances can be approached using frequencies of, respectively, 5 kHz and 1000 kHz, but the use of 100 kHz leads to unacceptable errors. In the conventional treatment the overall relative variation of intracellular resistance is found to be relatively small.
The structural studies of vanadium substituted lithium-bismuth-boro-tellurite glass
NASA Astrophysics Data System (ADS)
Madhu, A.; Eraiah, B.
2018-05-01
The structural studies of vanadium substituted lithium-bismuth-boro-tellurite glass is successfully prepared and certain analysis like XRD,FTIR,DTA/TGA with density, molar volume are done. The amorphous phase has been identified based on X-ray diffraction analysis. The vanadium oxide plays the role as a glass-modifier and influences on BO3 ↔ BO4 conversion. The observed nonlinear variation in Tg with vanadium oxide increase, it reflects structural changes. The nonlinear variation of density and molar volume can be attributed to vanadium oxide incorporation have increased the number of Non-bridging oxygen (NBO'S).
NASA Astrophysics Data System (ADS)
Landaeta, Mauricio F.; Castro, Leonardo R.
2012-01-01
Variability in Chilean hake reproductive tactics off central Chile was assessed by analyzing ichthyoplankton samples from nine oceanographic cruises (1996-2005) and through experimental trials with early life stages (eggs, yolk-sac larvae) during the main (austral spring) and secondary (late summer-early autumn) spawning seasons. Abundant eggs in the plankton (1300-2000 eggs per 10 m 2) and historical adult reproductive data showed the highest reproductive activity in austral spring, with large egg aggregations near shelf break (50-100 m depth). Large, recently spawned eggs (1.15-1.20 mm diameter) were advected nearshore by coastward subsurface flows in the spring upwelling season. Experimental trials indicated that recently hatched larvae (3.4-3.5 mm) consumed their yolk-sac (0.17-0.41 mm 3) in 3-4 days at 10-12 °C; plankton sampling indicated that larval hake remained at mid-depth (50-100 m) without showing daily vertical migrations until completing their caudal fin formation (∼15 mm). During the secondary reproductive peak, hake spawned nearshore, when smaller eggs (0.95-1.13 mm) and recently hatched larvae (2.2-2.6 mm notochord length) occurred in surface waters (0-10 m depth). Their relatively large yolk-sac volumes (0.57 ± 0.11 mm 3) provided endogenous nourishment for at least 5 days at 10 °C, according to experiments. In the field, preflexion larvae occurred mainly in the mixed layer (0-25 m) and started ontogenetic daily vertical migrations at 7 mm. A strong decline occurred after 2002 in the adult Chilean hake biomass (estimated by hydroacoustic surveys) and body size, coinciding with variations in spawning locations (more coastward in early spring 2004 and 2005) and decline in egg size. Thus, recent variations in Chilean hake reproductive tactics may reflect an indirect effect of declines in the parental population size.
NASA Technical Reports Server (NTRS)
Welker, Jean E.; Au, Andrew Y.
2003-01-01
As part of a larger analysis of country systems described elsewhere, named a Crop Country Inventory, CCI, large variations in annual crop yield for selected climate sensitive agricultural regions or sub-regions within a country have been studied over extended periods in decades. These climate sensitive regions, principally responsible for large annual variations in an entire country s crop production, generally are characterized by distinctive patterns of atmospheric circulation and synoptic processes that result in large seasonal fluctuations in temperature, precipitation and soil moisture as well as other climate properties. The immediate region of interest is drought prone Kazakhstan in Central Asia, part of the Former Soviet Union, FSU. As a partial validation test in a dry southern region of Kazakhstan, the Almati Oblast was chosen. The Almati Oblast, a sub-region of Kazakhstan located in its southeast corner, is one of 14 oblasts within the Republic of Kazahstan. The climate data set used to characterize this region was taken from the results of the current maturely developed Global Climate Model, GCM. In this paper, the GCM results have been compared to the meteorological station data at the station locations, over various periods. If the empirical correlation of the data sets from both the GCM and station data is sufficiently significant, this would validate the use of the superior GCM profile mapping and integration for the climatic characterization of a sub-region. Precipitation values interpolated from NCEP Reanalysis II data, a global climate database spanning over 5 decades since 1949, have been statistically correlated with monthly-averaged station data from 1949 through 1993, and with daily station data from April through August, 1990 for the Almati Oblast in Kazakhstan. The resultant correlation is significant, which implies that the methodology may be extended to different regions globally for Crop Country Inventory studies.
Rajeev, K R; Menon, Smrithy S; Beena, K; Holla, Raghavendra; Kumar, R Rajaneesh; Dinesh, M
2014-01-01
A prospective study was undertaken to evaluate the influence of patient positioning on the set up variations to determine the planning target volume (PTV) margins and to evaluate the clinical relevance volume assessment of the small bowel (SB) within the irradiated volume. During the period of months from December 2011 to April 2012, a computed tomography (CT) scan was done either in supine position or in prone position using a belly board (BB) for 20 consecutive patients. All the patients had histologically proven rectal cancer and received either post- or pre-operative pelvic irradiation. Using a three-dimensional planning system, the dose-volume histogram for SB was defined in each axial CT slice. Total dose was 46-50 Gy (2 Gy/fraction), delivered using the 4-field box technique. The set up variation of the study group was assessed from the data received from the electronic portal imaging device in the linear accelerator. The shift along X, Y, and Z directions were noted. Both systematic and random errors were calculated and using both these values the PTV margin was calculated. The systematic errors of patients treated in the supine position were 0.87 (X-mm), 0.66 (Y-mm), 1.6 (Z-mm) and in the prone position were 1.3 (X-mm), 0.59 (Y-mm), 1.17 (Z-mm). The random errors of patients treated in the supine positions were 1.81 (X-mm), 1.73 (Y-mm), 1.83 (Z-mm) and in prone position were 2.02 (X-mm), 1.21 (Y-mm), 3.05 (Z-mm). The calculated PTV margins in the supine position were 3.45 (X-mm), 2.87 (Y-mm), 5.31 (Z-mm) and in the prone position were 4.91 (X-mm), 2.32 (Y-mm), 5.08 (Z-mm). The mean volume of the peritoneal cavity was 648.65 cm 3 in the prone position and 1197.37 cm 3 in the supine position. The prone position using BB device was more effective in reducing irradiated SB volume in rectal cancer patients. There were no significant variations in the daily set up for patients treated in both supine and prone positions.
Belli, Maria Luisa; Scalco, Elisa; Sanguineti, Giuseppe; Fiorino, Claudio; Broggi, Sara; Dinapoli, Nicola; Ricchetti, Francesco; Valentini, Vincenzo; Rizzo, Giovanna; Cattaneo, Giovanni Mauro
2014-10-01
To quantitatively assess the predictive power of early variations of parotid gland volume and density on final changes at the end of therapy and, possibly, on acute xerostomia during IMRT for head-neck cancer. Data of 92 parotids (46 patients) were available. Kinetics of the changes during treatment were described by the daily rate of density (rΔρ) and volume (rΔvol) variation based on weekly diagnostic kVCT images. Correlation between early and final changes was investigated as well as the correlation with prospective toxicity data (CTCAEv3.0) collected weekly during treatment for 24/46 patients. A higher rΔρ was observed during the first compared to last week of treatment (-0,50 vs -0,05HU, p-value = 0.0001). Based on early variations, a good estimation of the final changes may be obtained (Δρ: AUC = 0.82, p = 0.0001; Δvol: AUC = 0.77, p = 0.0001). Both early rΔρ and rΔvol predict a higher "mean" acute xerostomia score (≥ median value, 1.57; p-value = 0.01). Median early density rate changes for patients with mean xerostomia score ≥ / < 1.57 were -0.98 vs -0.22 HU/day respectively (p = 0.05). Early density and volume variations accurately predict final changes of parotid glands. A higher longitudinally assessed score of acute xerostomia is well predicted by higher rΔρ and rΔvol in the first two weeks of treatment: best cut-off values were -0.50 HU/day and -380 mm(3)/day for rΔρ and rΔvol respectively. Further studies are necessary to definitively assess the potential of early density/volume changes in identifying more sensitive patients at higher risk of experiencing xerostomia.
Online Visualization and Value Added Services of MERRA-2 Data at GES DISC
NASA Technical Reports Server (NTRS)
Shen, Suhung; Ostrenga, Dana M.; Vollmer, Bruce E.; Hegde, Mahabaleshwa S.; Wei, Jennifer C.; Bosilovich, Michael G.
2017-01-01
NASA climate reanalysis datasets from MERRA-2, distributed at the Goddard Earth Sciences Data and Information Services Center (GES DISC), have been used in broad research areas, such as climate variations, extreme weather, agriculture, renewable energy, and air quality, etc. The datasets contain numerous variables for atmosphere, land, and ocean, grouped into 95 products. The total archived volume is approximately 337 TB ( approximately 562K files) at the end of October 2017. Due to the large number of products and files, and large data volumes, it may be a challenge for a user to find and download the data of interest. The support team at GES DISC, working closely with the MERRA-2 science team, has created and is continuing to work on value added data services to best meet the needs of a broad user community. This presentation, using aerosol over Asia Monsoon as an example, provides an overview of the MERRA-2 data services at GES DISC, including: How to find the data? How many data access methods are provided? What are the best data access methods for me? How do download the subsetted (parameter, spatial, temporal) data and save in preferred spatial resolution and data format? How to visualize and explore the data online? In addition, we introduce a future online analytic tool designed for supporting application research, focusing on long-term hourly time-series data access and analysis.
Liu, Yihang; Zhang, Anyi; Shen, Chenfei; Liu, Qingzhou; Cao, Xuan; Ma, Yuqiang; Chen, Liang; Lau, Christian; Chen, Tian-Chi; Wei, Fei; Zhou, Chongwu
2017-06-27
Sodium-ion batteries offer an attractive option for potential low cost and large scale energy storage due to the earth abundance of sodium. Red phosphorus is considered as a high capacity anode for sodium-ion batteries with a theoretical capacity of 2596 mAh/g. However, similar to silicon in lithium-ion batteries, several limitations, such as large volume expansion upon sodiation/desodiation and low electronic conductance, have severely limited the performance of red phosphorus anodes. In order to address the above challenges, we have developed a method to deposit red phosphorus nanodots densely and uniformly onto reduced graphene oxide sheets (P@RGO) to minimize the sodium ion diffusion length and the sodiation/desodiation stresses, and the RGO network also serves as electron pathway and creates free space to accommodate the volume variation of phosphorus particles. The resulted P@RGO flexible anode achieved 1165.4, 510.6, and 135.3 mAh/g specific charge capacity at 159.4, 31878.9, and 47818.3 mA/g charge/discharge current density in rate capability test, and a 914 mAh/g capacity after 300 deep cycles in cycling stability test at 1593.9 mA/g current density, which marks a significant performance improvement for red phosphorus anodes for sodium-ion chemistry and flexible power sources for wearable electronics.
Variation in the costs of delivering routine immunization services in Peru.
Walker, D.; Mosqueira, N. R.; Penny, M. E.; Lanata, C. F.; Clark, A. D.; Sanderson, C. F. B.; Fox-Rushby, J. A.
2004-01-01
OBJECTIVE: Estimates of vaccination costs usually provide only point estimates at national level with no information on cost variation. In practice, however, such information is necessary for programme managers. This paper presents information on the variations in costs of delivering routine immunization services in three diverse districts of Peru: Ayacucho (a mountainous area), San Martin (a jungle area) and Lima (a coastal area). METHODS: We consider the impact of variability on predictions of cost and reflect on the likely impact on expected cost-effectiveness ratios, policy decisions and future research practice. All costs are in 2002 prices in US dollars and include the costs of providing vaccination services incurred by 19 government health facilities during the January-December 2002 financial year. Vaccine wastage rates have been estimated using stock records. FINDINGS: The cost per fully vaccinated child ranged from 16.63-24.52 U.S. Dollars in Ayacucho, 21.79-36.69 U.S. Dollars in San Martin and 9.58-20.31 U.S. Dollars in Lima. The volume of vaccines administered and wastage rates are determinants of the variation in costs of delivering routine immunization services. CONCLUSION: This study shows there is considerable variation in the costs of providing vaccines across geographical regions and different types of facilities. Information on how costs vary can be used as a basis from which to generalize to other settings and provide more accurate estimates for decision-makers who do not have disaggregated data on local costs. Future studies should include sufficiently large sample sizes and ensure that regions are carefully selected in order to maximize the interpretation of cost variation. PMID:15628205
NASA Astrophysics Data System (ADS)
Annor, Frank; van de Giesen, Nick; Bogaard, Thom; Eilander, Dirk
2013-04-01
Small water reservoirs for water resources management have as important socio-economic advantage that they bring water close to villages and households. This proximity allows for many water uses in addition to irrigation, such as fisheries, household water, building materials (loam, reeds), tourism and recreation, and cattle watering. These positive aspects are offset by the relatively large evaporative losses in comparison to larger reservoirs, although, it is not exactly known how large these losses are. For decision makers, investors and donors, the decision to construct a small reservoir should be multifactored; and based on economic, socio-cultural and environmental factors. For the latter, getting the water balance and the energy budget of small reservoirs right is key for any environmental impact analyses. For Northern Ghana, the relation between volume of a small reservoir and its' surface area has been established in a robust equation as: Volume = 0.00857Area1.4367 with the surface area explaining more than 95% of the variation in water volume of the reservoirs. This allows the use of remote sensing observations for estimating water volume of small reservoirs in northern Ghana. Hydrological analyses of time series of small reservoir areas comprises estimates of evaporation fluxes and cumulative surface runoff curves. Once the reservoirs are full, spillage will occur and volumes and surface areas remain stable at their maximum extents. This implies that the time series of reservoir surface area contains information concerning the on-set of downstream surface runoff. This on-set does not coincide with the on-set of the rainy season but largely depends on the distribution of rainfall events and storage capacity in the subsurface. The main requirement for this analysis is that the reservoir has negligible seepage losses or water influx from the underlying subsurface. In our research, we carried out a time series analysis of surface area extent for about 45 small reservoirs in the Upper East Region of Ghana. Reservoirs without obvious large seepage losses (field survey) were selected. To verify this, stable water isotopic samples are collected from groundwater upstream and downstream from the reservoir. By looking at possible enrichment of downstream groundwater, a good estimate of seepage can be made in addition to estimates on evaporation. We estimated the evaporative losses and compared those with field measurements using eddy correlation measurements. Lastly, we determined the cumulative surface runoff curves for the small reservoirs .We will present this analytical framework for extracting hydrological information from time series of small reservoirs and show the first results for our study region of northern Ghana.
NASA Astrophysics Data System (ADS)
Matthews, N. E.; Pyle, D. M.; Wilson, C. J.
2009-12-01
Chemical zoning of crystals provides an important archive of information that allows for the reconstruction of complex thermal histories and changes in melt composition of the magma reservoir during crystallization. Here we investigate cathodoluminescence (CL) and Ti zonation in quartz crystals extracted from pumices from the Whakamaru and Rangitaiki ignimbrite units (part of the large-volume Whakamaru Group Ignimbrites), New Zealand, to reconstruct the thermal history of the parent magma chamber(s). CL intensity images are taken as a proxy for Ti content and temperature variation during crystal growth, and direct estimates of temperature are made using the TitaniQ geothermometer (Wark & Watson 2006 Cont. Min. Pet.) based on Ti concentration in quartz. These results are reviewed in comparison with temperatures from Fe-Ti oxide geothermometry. Quartz zoning is also compared to zonation in feldspars (using BSE imaging) from the same pumice clasts in order to establish the degree to which different crystal species record similar or contrasting magmatic histories. Quartz crystals in Whakamaru pumice display a variety of CL zoning patterns and resorption boundaries. Overgrowths typically appear to truncate CL growth zoning within the crystal core, indicating periods of resorption and subsequent re-growth - consistent with magma recharge causing a marked change in conditions (temperature and/or volatile saturation) and multi-stage crystallisation. Crystals typically display a dark (lower Ti) resorbed core, with an abrupt change to a CL-bright rim, although irregular textures and complex variations between crystals are observed. Core-to-rim profiles of Ti concentration in analysed quartz crystals show Ti variations within the range 50-225 ppm, corresponding to crystallisation temperatures of 733-935°C (assuming TiO2 activity in the melt of 0.6), with the lowest values recorded in the crystal core, increasing in a step-wise pattern towards the rim. These values are consistent with Fe-Ti oxide temperature data for the same pumice clasts which provide a temperature range of 660-933°C. It is inferred that the major steps in Ti content (and thus CL brightness) represent short-term temperature fluctuations due to magma chamber recharge and rejuvenation of a crystal mush, while rim temperatures are likely to record the magma temperature at the time of eruption.
Wide variation in hospital and physician payment rates evidence of provider market power.
Ginsburg, Paul B
2010-11-01
Wide variation in private insurer payment rates to hospitals and physicians across and within local markets suggests that some providers, particularly hospitals, have significant market power to negotiate higher-than-competitive prices, according to a new study by the Center for Studying Health System Change (HSC). Looking across eight health care markets--Cleveland; Indianapolis; Los Angeles; Miami; Milwaukee; Richmond, Va.; San Francisco; and rural Wisconsin--average inpatient hospital payment rates of four large national insurers ranged from 147 percent of Medicare in Miami to 210 percent in San Francisco. In extreme cases, some hospitals command almost five times what Medicare pays for inpatient services and more than seven times what Medicare pays for outpatient care. Variation within markets was just as dramatic. For example, the hospital with prices at the 25th percentile of Los Angeles hospitals received 84 percent of Medicare rates for inpatient care, while the hospital with prices at the 75th percentile received 184 percent of Medicare rates. The highest-priced Los Angeles hospital with substantial inpatient claims volume received 418 percent of Medicare. While not as pronounced, significant variation in physician payment rates also exists across and within markets and by specialty. Few would characterize the variation in hospital and physician payment rates found in this study to be consistent with a highly competitive market. Purchasers and public policy makers can address provider market power, or the ability to negotiate higher-than-competitive prices, through two distinct approaches. One is to pursue market approaches to strengthen competitive forces, while the other is to constrain payment rates through regulation.
Variation and Linguistic Theory.
ERIC Educational Resources Information Center
Bailey, Charles-James N.
This volume presents principles and models for describing language variation, and introduces a time-based, dynamic framework for linguistic description. The book first summarizes some of the problems of grammatical description encountered from Saussure through the present and then outlines possibilities for new descriptions of language which take…
Satellite-based empirical models linking river plume dynamics with hypoxic area andvolume
Satellite-based empirical models explaining hypoxic area and volume variation were developed for the seasonally hypoxic (O2 < 2 mg L−1) northern Gulf of Mexico adjacent to the Mississippi River. Annual variations in midsummer hypoxic area and ...
Individual differences in posterior cortical volume correlate with proneness to pride and gratitude.
Zahn, Roland; Garrido, Griselda; Moll, Jorge; Grafman, Jordan
2014-11-01
Proneness to specific moral sentiments (e.g. pride, gratitude, guilt, indignation) has been linked with individual variations in functional MRI (fMRI) response within anterior brain regions whose lesion leads to inappropriate behaviour. However, the role of structural anatomical differences in rendering individuals prone to particular moral sentiments relative to others is unknown. Here, we investigated grey matter volumes (VBM8) and proneness to specific moral sentiments on a well-controlled experimental task in healthy individuals. Individuals with smaller cuneus, and precuneus volumes were more pride-prone, whereas those with larger right inferior temporal volumes experienced gratitude more readily. Although the primary analysis detected no associations with guilt- or indignation-proneness, subgenual cingulate fMRI responses to guilt were negatively correlated with grey matter volumes in the left superior temporal sulcus and anterior dorsolateral prefrontal cortices (right >left). This shows that individual variations in functional activations within critical areas for moral sentiments were not due to grey matter volume differences in the same areas. Grey matter volume differences between healthy individuals may nevertheless play an important role by affecting posterior cortical brain systems that are non-critical but supportive for the experience of specific moral sentiments. This may be of particular relevance when their experience depends on visuo-spatial elaboration. Published by Oxford University Press 2013. This work is written by US Government employees and is in the public domain in the US.
Rayarao, Geetha; Biederman, Robert W W; Williams, Ronald B; Yamrozik, June A; Lombardi, Richard; Doyle, Mark
2018-01-01
To establish the clinical validity and accuracy of automatic thresholding and manual trimming (ATMT) by comparing the method with the conventional contouring method for in vivo cardiac volume measurements. CMR was performed on 40 subjects (30 patients and 10 controls) using steady-state free precession cine sequences with slices oriented in the short-axis and acquired contiguously from base to apex. Left ventricular (LV) volumes, end-diastolic volume, end-systolic volume, and stroke volume (SV) were obtained with ATMT and with the conventional contouring method. Additionally, SV was measured independently using CMR phase velocity mapping (PVM) of the aorta for validation. Three methods of calculating SV were compared by applying Bland-Altman analysis. The Bland-Altman standard deviation of variation (SD) and offset bias for LV SV for the three sets of data were: ATMT-PVM (7.65, [Formula: see text]), ATMT-contours (7.85, [Formula: see text]), and contour-PVM (11.01, 4.97), respectively. Equating the observed range to the error contribution of each approach, the error magnitude of ATMT:PVM:contours was in the ratio 1:2.4:2.5. Use of ATMT for measuring ventricular volumes accommodates trabeculae and papillary structures more intuitively than contemporary contouring methods. This results in lower variation when analyzing cardiac structure and function and consequently improved accuracy in assessing chamber volumes.
Free volume dependent fluorescence property of PMMA composite: Positron annihilation studies
NASA Astrophysics Data System (ADS)
Ravindrachary, V.; Praveena, S. D.; Bhajantri, R. F.; Ismayil, Crasta, Vincent
2013-02-01
The free volume related fluorescence properties of chalcone chromophore [1-(4-methylphenyl)-3-(4-N, N, dimethylaminophenyl)-2-propen-1-one doped Poly(methyl methacrylate) have been studied using fluorescence spectroscopy and Positron Annihilation lifetime spectroscopy techniques. The fluorescence spectra show that the fluorescence behavior depends on the free volume dependent polymer microstructure and varies with dopant concentration with in the composite. The origin and variation of fluorescence is understood by twisted internal charge transfer state as well as free volume. The Positron annihilation study shows that the free volume related microstructure of the composite is vary with doping level.
Higher Education: Handbook of Theory and Research. Volume XI.
ERIC Educational Resources Information Center
Smart, John C., Ed.
This volume contains 10 papers on higher education theory and research. "Variation Among Academic Disciplines: Analytical Frameworks and Research" (John M. Braxton and Lowell L. Hargens) reviews work on disciplinary differences and proposed conceptual schemes for explaining these differences. "Public Policy and Public Trust: The Use…
Technical Note: Stored grain volume measurement using a low density point cloud
USDA-ARS?s Scientific Manuscript database
The mass of stored grain is often determined from volume measurements by crop insurers, government auditors, and stored grain managers conducting inventories. Recent increases in bin size have accentuated the difficulty of accounting for irregularities and variations in surface conditions in calcula...
Zhu, Liangjia; Gao, Yi; Appia, Vikram; Yezzi, Anthony; Arepalli, Chesnal; Faber, Tracy; Stillman, Arthur; Tannenbaum, Allen
2014-01-01
Prognosis and diagnosis of cardiac diseases frequently require quantitative evaluation of the ventricle volume, mass, and ejection fraction. The delineation of the myocardial wall is involved in all of these evaluations, which is a challenging task due to large variations in myocardial shapes and image quality. In this work, we present an automatic method for extracting the myocardial wall of the left and right ventricles from cardiac CT images. In the method, the left and right ventricles are located sequentially, in which each ventricle is detected by first identifying the endocardium and then segmenting the epicardium. To this end, the endocardium is localized by utilizing its geometric features obtained on-line from a CT image. After that, a variational region-growing model is employed to extract the epicardium of the ventricles. In particular, the location of the endocardium of the left ventricle is determined via using an active contour model on the blood-pool surface. To localize the right ventricle, the active contour model is applied on a heart surface extracted based on the left ventricle segmentation result. The robustness and accuracy of the proposed approach is demonstrated by experimental results from 33 human and 12 pig CT images. PMID:23744658
Geminal embedding scheme for optimal atomic basis set construction in correlated calculations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sorella, S., E-mail: sorella@sissa.it; Devaux, N.; Dagrada, M., E-mail: mario.dagrada@impmc.upmc.fr
2015-12-28
We introduce an efficient method to construct optimal and system adaptive basis sets for use in electronic structure and quantum Monte Carlo calculations. The method is based on an embedding scheme in which a reference atom is singled out from its environment, while the entire system (atom and environment) is described by a Slater determinant or its antisymmetrized geminal power (AGP) extension. The embedding procedure described here allows for the systematic and consistent contraction of the primitive basis set into geminal embedded orbitals (GEOs), with a dramatic reduction of the number of variational parameters necessary to represent the many-body wavemore » function, for a chosen target accuracy. Within the variational Monte Carlo method, the Slater or AGP part is determined by a variational minimization of the energy of the whole system in presence of a flexible and accurate Jastrow factor, representing most of the dynamical electronic correlation. The resulting GEO basis set opens the way for a fully controlled optimization of many-body wave functions in electronic structure calculation of bulk materials, namely, containing a large number of electrons and atoms. We present applications on the water molecule, the volume collapse transition in cerium, and the high-pressure liquid hydrogen.« less
Venus mesospheric sulfur dioxide measurement retrieved from SOIR on board Venus Express
NASA Astrophysics Data System (ADS)
Mahieux, A.; Vandaele, A. C.; Robert, S.; Wilquet, V.; Drummond, R.; Chamberlain, S.; Belyaev, D.; Bertaux, J. L.
2015-08-01
SOIR on board Venus Express sounds the Venus upper atmosphere using the solar occultation technique. It detects the signature from many Venus atmosphere species, including those of SO2 and CO2. SO2 has a weak absorption structure at 4 μm, from which number density profiles are regularly inferred. SO2 volume mixing ratios (VMR) are calculated from the total number density that are also derived from the SOIR measurements. This work is an update of the previous work by Belyaev et al. (2012), considering the SO2 profiles on a broader altitude range, from 65 to 85 km. Positive detection VMR profiles are presented. In 68% of the occultation spectral datasets, SO2 is detected. The SO2 VMR profiles show a large variability up to two orders of magnitude, on a short term time scales. We present mean VMR profiles for various bins of latitudes, and study the latitudinal variations; the mean latitude variations are much smaller than the short term temporal variations. A permanent minimum showing a weak latitudinal structure is observed. Long term temporal trends are also considered and discussed. The trend observed by Marcq et al. (2013) is not observed in this dataset. Our results are compared to literature data and generally show a good agreement.
Reproducible MRI Measurement of Adipose Tissue Volumes in Genetic and Dietary Rodent Obesity Models
Johnson, David H.; Flask, Chris A.; Ernsberger, Paul R.; Wong, Wilbur C. K.; Wilson, David L.
2010-01-01
Purpose To develop ratio MRI [lipid/(lipid+water)] methods for assessing lipid depots and compare measurement variability to biological differences in lean controls (spontaneously hypertensive rats, SHRs), dietary obese (SHR-DO), and genetic/dietary obese (SHROBs) animals. Materials and Methods Images with and without CHESS water-suppression were processed using a semi-automatic method accounting for relaxometry, chemical shift, receive coil sensitivity, and partial volume. Results Partial volume correction improved results by 10–15%. Over six operators, volume variation was reduced to 1.9 ml from 30.6 ml for single-image-analysis with intensity inhomogeneity. For three acquisitions on the same animal, volume reproducibility was <1%. SHROBs had 6X visceral and 8X subcutaneous adipose tissue than SHRs. SHR-DOs had enlarged visceral depots (3X SHRs). SHROB had significantly more subcutaneous adipose tissue, indicating a strong genetic component to this fat depot. Liver ratios in SHR-DO and SHROB were higher than SHR, indicating elevated fat content. Among SHROBs, evidence suggested a phenotype SHROB* having elevated liver ratios and visceral adipose tissue volumes. Conclusion Effects of diet and genetics on obesity were significantly larger than variations due to image acquisition and analysis, indicating that these methods can be used to assess accumulation/depletion of lipid depots in animal models of obesity. PMID:18821617
Cella, Laura; Liuzzi, Raffaele; Conson, Manuel; D'Avino, Vittoria; Salvatore, Marco; Pacelli, Roberto
2012-12-27
Hypothyroidism is a frequent late side effect of radiation therapy of the cervical region. Purpose of this work is to develop multivariate normal tissue complication probability (NTCP) models for radiation-induced hypothyroidism (RHT) and to compare them with already existing NTCP models for RHT. Fifty-three patients treated with sequential chemo-radiotherapy for Hodgkin's lymphoma (HL) were retrospectively reviewed for RHT events. Clinical information along with thyroid gland dose distribution parameters were collected and their correlation to RHT was analyzed by Spearman's rank correlation coefficient (Rs). Multivariate logistic regression method using resampling methods (bootstrapping) was applied to select model order and parameters for NTCP modeling. Model performance was evaluated through the area under the receiver operating characteristic curve (AUC). Models were tested against external published data on RHT and compared with other published NTCP models. If we express the thyroid volume exceeding X Gy as a percentage (Vx(%)), a two-variable NTCP model including V30(%) and gender resulted to be the optimal predictive model for RHT (Rs = 0.615, p < 0.001. AUC = 0.87). Conversely, if absolute thyroid volume exceeding X Gy (Vx(cc)) was analyzed, an NTCP model based on 3 variables including V30(cc), thyroid gland volume and gender was selected as the most predictive model (Rs = 0.630, p < 0.001. AUC = 0.85). The three-variable model performs better when tested on an external cohort characterized by large inter-individuals variation in thyroid volumes (AUC = 0.914, 95% CI 0.760-0.984). A comparable performance was found between our model and that proposed in the literature based on thyroid gland mean dose and volume (p = 0.264). The absolute volume of thyroid gland exceeding 30 Gy in combination with thyroid gland volume and gender provide an NTCP model for RHT with improved prediction capability not only within our patient population but also in an external cohort.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stemkens, B; Glitzner, M; Kontaxis, C
Purpose: To assess the dose deposition in simulated single-fraction MR-Linac treatments of renal cell carcinoma, when inter-cycle respiratory motion variation is taken into account using online MRI. Methods: Three motion characterization methods, with increasing complexity, were compared to evaluate the effect of inter-cycle motion variation and drifts on the accumulated dose for an SBRT kidney MR-Linac treatment: 1) STATIC, in which static anatomy was assumed, 2) AVG-RESP, in which 4D-MRI phase-volumes were time-weighted, based on the respiratory phase and 3) PCA, in which 3D volumes were generated using a PCA-model, enabling the detection of inter-cycle variations and drifts. An experimentalmore » ITV-based kidney treatment was simulated in a 1.5T magnetic field on three volunteer datasets. For each volunteer a retrospectively sorted 4D-MRI (ten respiratory phases) and fast 2D cine-MR images (temporal resolution = 476ms) were acquired to simulate MR-imaging during radiation. For each method, the high spatio-temporal resolution 3D volumes were non-rigidly registered to obtain deformation vector fields (DVFs). Using the DVFs, pseudo-CTs (generated from the 4D-MRI) were deformed and the dose was accumulated for the entire treatment. The accuracies of all methods were independently determined using an additional, orthogonal 2D-MRI slice. Results: Motion was most accurately estimated using the PCA method, which correctly estimated drifts and inter-cycle variations (RMSE=3.2, 2.2, 1.1mm on average for STATIC, AVG-RESP and PCA, compared to the 2DMRI slice). Dose-volume parameters on the ITV showed moderate changes (D99=35.2, 32.5, 33.8Gy for STATIC, AVG-RESP and PCA). AVG-RESP showed distinct hot/cold spots outside the ITV margin, which were more distributed for the PCA scenario, since inter-cycle variations were not modeled by the AVG-RESP method. Conclusion: Dose differences were observed when inter-cycle variations were taken into account. The increased inter-cycle randomness in motion as captured by the PCA model mitigates the local (erroneous) hotspots estimated by the AVG-RESP method.« less
Neural mechanisms of genetic risk for impulsivity and violence in humans.
Meyer-Lindenberg, Andreas; Buckholtz, Joshua W; Kolachana, Bhaskar; R Hariri, Ahmad; Pezawas, Lukas; Blasi, Giuseppe; Wabnitz, Ashley; Honea, Robyn; Verchinski, Beth; Callicott, Joseph H; Egan, Michael; Mattay, Venkata; Weinberger, Daniel R
2006-04-18
Neurobiological factors contributing to violence in humans remain poorly understood. One approach to this question is examining allelic variation in the X-linked monoamine oxidase A (MAOA) gene, previously associated with impulsive aggression in animals and humans. Here, we have studied the impact of a common functional polymorphism in MAOA on brain structure and function assessed with MRI in a large sample of healthy human volunteers. We show that the low expression variant, associated with increased risk of violent behavior, predicted pronounced limbic volume reductions and hyperresponsive amygdala during emotional arousal, with diminished reactivity of regulatory prefrontal regions, compared with the high expression allele. In men, the low expression allele is also associated with changes in orbitofrontal volume, amygdala and hippocampus hyperreactivity during aversive recall, and impaired cingulate activation during cognitive inhibition. Our data identify differences in limbic circuitry for emotion regulation and cognitive control that may be involved in the association of MAOA with impulsive aggression, suggest neural systems-level effects of X-inactivation in human brain, and point toward potential targets for a biological approach toward violence.
Calculation of airborne radioactivity in a Technegas lung ventilation unit.
López Medina, A; Miñano, J A; Terrón, J A; Bullejos, J A; Guerrero, R; Arroyo, T; Ramírez, A; Llamas, J M
1999-12-01
Airborne contamination by 99Tcm has been monitored in the Nuclear Medicine Department in our hospital to assess the risk of internal contamination to occupational workers exposed to Technegas studies. An air sampler fitted with a membrane filter was used. The optimum time for air absorption for obtaining the maximum activity in the filter was calculated. Maximum activity in the membrane filter ensures minimum uncertainty, which is especially important when low-level activities are being measured. The optimum time depends on air absorption velocity, room volume and filter efficiency for isotope collection. It tends to 1/lambda (lambda = disintegration constant for 99Tcm) for large volume and low velocity. Room activity with the air pump switched on was related to filter activity, and its variation with time was studied. Free activity in air for each study was approximately 7 x 10(-4) the activity used, and the effective half-life of the isotope in the room was 13.9 min (decay and diffusion). For a typical study (630 MBq), the effective dose to staff was 0.01 microSv when in the room for 10 min.
Mouse Embryo Cryopreservation by Rapid Cooling.
Shaw, Jillian
2018-05-01
Embryo cryopreservation has been used to archive mouse strains. Protocols have evolved over this time and now vary considerably in terms of cryoprotectant solution, cooling and warming rates, methods to add and remove cryoprotectant, container or carrier type, volume of cryoprotectant, the stage of preimplantation development, and the use of additional treatments such as blastocyst puncture and microinjection. The rapid cooling methods use concentrated solutions of cryoprotectants to reduce the water content of the cell before cooling commences, thus preventing the formation of ice crystals. Embryos are equilibrated with the cryoprotectants, loaded into a carrier, and then rapidly cooled (e.g., by being plunged directly into LN 2 or onto a surface cooled in LN 2 ). The rapid cooling methods eliminate the need for controlled-rate freezers and seeding procedures. However, they are much more sensitive to minor variations when performing the steps. The rapid-cooling protocol described here is suitable for use with plastic insemination straws. Because it uses relatively large volumes, it is less technically demanding than some other methods that use minivolume devices. © 2018 Cold Spring Harbor Laboratory Press.
Post-seismic relaxation theory on laterally heterogeneous viscoelastic model
Pollitz, F.F.
2003-01-01
Investigation was carried out into the problem of relaxation of a laterally heterogeneous viscoelastic Earth following an impulsive moment release event. The formal solution utilizes a semi-analytic solution for post-seismic deformation on a laterally homogeneous Earth constructed from viscoelastic normal modes, followed by application of mode coupling theory to derive the response on the aspherical Earth. The solution is constructed in the Laplace transform domain using the correspondence principle and is valid for any linear constitutive relationship between stress and strain. The specific implementation described in this paper is a semi-analytic discretization method which assumes isotropic elastic structure and a Maxwell constitutive relation. It accounts for viscoelastic-gravitational coupling under lateral variations in elastic parameters and viscosity. For a given viscoelastic structure and minimum wavelength scale, the computational effort involved with the numerical algorithm is proportional to the volume of the laterally heterogeneous region. Examples are presented of the calculation of post-seismic relaxation with a shallow, laterally heterogeneous volume following synthetic impulsive seismic events, and they illustrate the potentially large effect of regional 3-D heterogeneities on regional deformation patterns.
Technologies for imaging neural activity in large volumes
Ji, Na; Freeman, Jeremy; Smith, Spencer L.
2017-01-01
Neural circuitry has evolved to form distributed networks that act dynamically across large volumes. Collecting data from individual planes, conventional microscopy cannot sample circuitry across large volumes at the temporal resolution relevant to neural circuit function and behaviors. Here, we review emerging technologies for rapid volume imaging of neural circuitry. We focus on two critical challenges: the inertia of optical systems, which limits image speed, and aberrations, which restrict the image volume. Optical sampling time must be long enough to ensure high-fidelity measurements, but optimized sampling strategies and point spread function engineering can facilitate rapid volume imaging of neural activity within this constraint. We also discuss new computational strategies for the processing and analysis of volume imaging data of increasing size and complexity. Together, optical and computational advances are providing a broader view of neural circuit dynamics, and help elucidate how brain regions work in concert to support behavior. PMID:27571194
van der Wees, Philip J.; Wammes, Joost J.G.; Westert, Gert P.; Jeurissen, Patrick P.T.
2016-01-01
Background: Both rising healthcare costs and the global financial crisis have fueled a search for policy tools in order to avoid unsustainable future financing of essential health benefits. The scope of essential health benefits (the range of services covered) and depth of coverage (the proportion of costs of the covered benefits that is covered publicly) are corresponding variables in determining the benefits package. We hypothesized that a more comprehensive health benefit package may increase user cost-sharing charges. Methods: We conducted a desktop research study to assess the interrelationship between the scope of covered health benefits and the height of statutory spending in a sample of 8 European countries: Belgium, England, France, Germany, the Netherlands, Scotland, Sweden, and Switzerland. We conducted a targeted literature search to identify characteristics of the healthcare systems in our sample of countries. We analyzed similarities and differences based on the dimensions of publicly financed healthcare as published by the European Observatory on Health Care Systems. Results: We found that the scope of services is comparable and comprehensive across our sample, with only marginal differences. Cost-sharing arrangements show the most variation. In general, we found no direct interrelationship in this sample between the ranges of services covered in the health benefits package and the height of public spending on healthcare. With regard to specific services (dental care, physical therapy), we found indications of an association between coverage of services and cost-sharing arrangements. Strong variations in the volume and price of healthcare services between the 8 countries were found for services with large practice variations. Conclusion: Although reducing the scope of the benefit package as well as increasing user charges may contribute to the financial sustainability of healthcare, variations in the volume and price of care seem to have a much larger impact on financial sustainability. Policy-makers should focus on a variety of measures within an integrated approach. There is no silver bullet for addressing the sustainability of healthcare. PMID:26673645
Carbon - Bulk Density Relationships for Highly Weathered Soils of the Americas
NASA Astrophysics Data System (ADS)
Nave, L. E.
2014-12-01
Soils are dynamic natural bodies composed of mineral and organic materials. As a result of this mixed composition, essential properties of soils such as their apparent density, organic and mineral contents are typically correlated. Negative relationships between bulk density (Db) and organic matter concentration provide well-known examples across a broad range of soils, and such quantitative relationships among soil properties are useful for a variety of applications. First, gap-filling or data interpolation often are necessary to develop large soil carbon (C) datasets; furthermore, limitations of access to analytical instruments may preclude C determinations for every soil sample. In such cases, equations to derive soil C concentrations from basic measures of soil mass, volume, and density offer significant potential for purposes of soil C stock estimation. To facilitate estimation of soil C stocks on highly weathered soils of the Americas, I used observations from the International Soil Carbon Network (ISCN) database to develop carbon - bulk density prediction equations for Oxisols and Ultisols. Within a small sample set of georeferenced Oxisols (n=89), 29% of the variation in A horizon C concentrations can be predicted from Db. Including the A-horizon sand content improves predictive capacity to 35%. B horizon C concentrations (n=285) were best predicted by Db and clay content, but were more variable than A-horizons (only 10% of variation explained by linear regression). Among Ultisols, a larger sample set allowed investigation of specific horizons of interest. For example, C concentrations of plowed A (Ap) horizons are predictable based on Db, sand and silt contents (n=804, r2=0.38); gleyed argillic (Btg) horizon concentrations are predictable from Db, sand and clay contents (n=190, r2=0.23). Because soil C stock estimates are more sensitive to variation in soil mass and volume determinations than to variation in C concentration, prediction equations such as these may be used on carefully collected samples to constrain soil C stocks. The geo-referenced ISCN database allows users the opportunity to derive similar predictive relationships among measured soil parameters; continued input of new datasets from highly weathered soils of the Americas will improve the precision of these prediction equations.
van der Wees, Philip J; Wammes, Joost J G; Westert, Gert P; Jeurissen, Patrick P T
2015-09-12
Both rising healthcare costs and the global financial crisis have fueled a search for policy tools in order to avoid unsustainable future financing of essential health benefits. The scope of essential health benefits (the range of services covered) and depth of coverage (the proportion of costs of the covered benefits that is covered publicly) are corresponding variables in determining the benefits package. We hypothesized that a more comprehensive health benefit package may increase user cost-sharing charges. We conducted a desktop research study to assess the interrelationship between the scope of covered health benefits and the height of statutory spending in a sample of 8 European countries: Belgium, England, France, Germany, the Netherlands, Scotland, Sweden, and Switzerland. We conducted a targeted literature search to identify characteristics of the healthcare systems in our sample of countries. We analyzed similarities and differences based on the dimensions of publicly financed healthcare as published by the European Observatory on Health Care Systems. We found that the scope of services is comparable and comprehensive across our sample, with only marginal differences. Cost-sharing arrangements show the most variation. In general, we found no direct interrelationship in this sample between the ranges of services covered in the health benefits package and the height of public spending on healthcare. With regard to specific services (dental care, physical therapy), we found indications of an association between coverage of services and cost-sharing arrangements. Strong variations in the volume and price of healthcare services between the 8 countries were found for services with large practice variations. Although reducing the scope of the benefit package as well as increasing user charges may contribute to the financial sustainability of healthcare, variations in the volume and price of care seem to have a much larger impact on financial sustainability. Policy-makers should focus on a variety of measures within an integrated approach. There is no silver bullet for addressing the sustainability of healthcare. © 2016 by Kerman University of Medical Sciences.
Anatomical Coupling between Distinct Metacognitive Systems for Memory and Visual Perception
McCurdy, Li Yan; Maniscalco, Brian; Metcalfe, Janet; Liu, Ka Yuet; de Lange, Floris P.; Lau, Hakwan
2015-01-01
A recent study found that, across individuals, gray matter volume in the frontal polar region was correlated with visual metacognition capacity (i.e., how well one’s confidence ratings distinguish between correct and incorrect judgments). A question arises as to whether the putative metacognitive mechanisms in this region are also used in other metacognitive tasks involving, for example, memory. A novel psychophysical measure allowed us to assess metacognitive efficiency separately in a visual and a memory task, while taking variations in basic task performance capacity into account. We found that, across individuals, metacognitive efficiencies positively correlated between the two tasks. However, voxel-based morphometry analysis revealed distinct brain structures for the two kinds of metacognition. Replicating a previous finding, variation in visual metacognitive efficiency was correlated with volume of frontal polar regions. However, variation in memory metacognitive efficiency was correlated with volume of the precuneus. There was also a weak correlation between visual metacognitive efficiency and precuneus volume, which may account for the behavioral correlation between visual and memory metacognition (i.e., the precuneus may contain common mechanisms for both types of metacognition). However, we also found that gray matter volumes of the frontal polar and precuneus regions themselves correlated across individuals, and a formal model comparison analysis suggested that this structural covariation was sufficient to account for the behavioral correlation of metacognition in the two tasks. These results highlight the importance of the precuneus in higher-order memory processing and suggest that there may be functionally distinct metacognitive systems in the human brain. PMID:23365229
Shared Predisposition in the Association Between Cannabis Use and Subcortical Brain Structure.
Pagliaccio, David; Barch, Deanna M; Bogdan, Ryan; Wood, Phillip K; Lynskey, Michael T; Heath, Andrew C; Agrawal, Arpana
2015-10-01
Prior neuroimaging studies have suggested that alterations in brain structure may be a consequence of cannabis use. Siblings discordant for cannabis use offer an opportunity to use cross-sectional data to disentangle such causal hypotheses from shared effects of genetics and familial environment on brain structure and cannabis use. To determine whether cannabis use is associated with differences in brain structure in a large sample of twins/siblings and to examine sibling pairs discordant for cannabis use to separate potential causal and predispositional factors linking lifetime cannabis exposure to volumetric alterations. Cross-sectional diagnostic interview, behavioral, and neuroimaging data were collected from community sampling and established family registries from August 2012 to September 2014. This study included data from 483 participants (22-35 years old) enrolled in the ongoing Human Connectome Project, with 262 participants reporting cannabis exposure (ie, ever used cannabis in their lifetime). Cannabis exposure was measured with the Semi-Structured Assessment for the Genetics of Alcoholism. Whole-brain, hippocampus, amygdala, ventral striatum, and orbitofrontal cortex volumes were related to lifetime cannabis use (ever used, age at onset, and frequency of use) using linear regressions. Genetic (ρg) and environmental (ρe) correlations between cannabis use and brain volumes were estimated. Linear mixed models were used to examine volume differences in sex-matched concordant unexposed (n = 71 pairs), exposed (n = 81 pairs), or exposure discordant (n = 89 pairs) sibling pairs. Among 483 study participants, cannabis exposure was related to smaller left amygdala (approximately 2.3%; P = .007) and right ventral striatum (approximately 3.5%; P < .005) volumes. These volumetric differences were within the range of normal variation. The association between left amygdala volume and cannabis use was largely owing to shared genetic factors (ρg = -0.43; P = .004), while the origin of the association with right ventral striatum volumes was unclear. Importantly, brain volumes did not differ between sex-matched siblings discordant for use (fixed effect = -7.43; t = -0.93, P = .35). Both the exposed and unexposed siblings in pairs discordant for cannabis exposure showed reduced amygdala volumes relative to members of concordant unexposed pairs (fixed effect = 12.56; t = 2.97; P = .003). In this study, differences in amygdala volume in cannabis users were attributable to common predispositional factors, genetic or environmental in origin, with little support for causal influences. Causal influences, in isolation or in conjunction with predispositional factors, may exist for other brain regions (eg, ventral striatum) or at more severe levels of cannabis involvement and deserve further study.
NASA Astrophysics Data System (ADS)
Celebonovic, V.
1986-01-01
The origin of Triton, based on the theory of materials under high pressure by Savic and Kasanin (1962, 1965), is described. The mean molecular weight (A) and the volume of one gram mole of Triton's material (V) are evaluated using its values of mass and radius; it is calculated that A = 67 + or - 2 and V = 3 + or - 2. These values are compared with Celebonovic's (1983) model of Neptune; it is observed that the mean molecular weight of Triton is ten times larger than Neptune's. The cause of this large variation in chemical composition is investigated. It is hypothesized that Triton and Neptune formed in different regions of the solar system, and that Triton was ejected from its primordial orbit and was later captured by Neptune.
NASA Technical Reports Server (NTRS)
Nalepka, R. F. (Principal Investigator); Sadowski, F. G.; Malila, W. A.
1977-01-01
The author has identified the following significant results. Effects of vegetation density on overall canopy reflectance differed dramatically, depending on spectral band, base material, and vegetation type. For example, reflectance changes caused by variations in vegetation density were hardly apparant for a simulated burned surface in LANDSAT band 5, while large changes occurred in band 7. When increasing densities of tree overstory were placed over understories, intermediate to dense overstories effectively masked the understories and dominated the spectral signatures. Dramatic changes in reflectance occurred for canopies placed on a number of varying topographic positions. Such changes were seen to result in the spectral overlap of some nonforested with densely forested situations.
Cassidy, Brittany S.; Gutchess, Angela H.
2012-01-01
Research has shown that lesions to regions involved in social and emotional cognition disrupt socioemotional processing and memory. We investigated how structural variation of regions involved in socioemotional memory [ventromedial prefrontal cortex (vmPFC), amygdala], as opposed to a region implicated in explicit memory (hippocampus), affected memory for impressions in young and older adults. Anatomical MRI scans for 15 young and 15 older adults were obtained and reconstructed to gather information about cortical thickness and subcortical volume. Young adults had greater amygdala and hippocampus volumes than old, and thicker left vmPFC than old, although right vmPFC thickness did not differ across the age groups. Participants formed behavior-based impressions and responded to interpersonally meaningful, social but interpersonally irrelevant, or non-social prompts, and completed a memory test. Results showed that greater left amygdala volume predicted enhanced overall memory for impressions in older but not younger adults. Increased right vmPFC thickness in older, but not younger, adults correlated with enhanced memory for impressions formed in the interpersonally meaningful context. Hippocampal volume was not predictive of social memory in young or older adults. These findings demonstrate the importance of structural variation in regions linked to socioemotional processing in the retention of impressions with age, and suggest that the amygdala and vmPFC play integral roles when encoding and retrieving social information. PMID:22973250
Theoretical modelling on thermal expansion of Al, Ag and Cu nanomaterials
NASA Astrophysics Data System (ADS)
Manu, Mehul; Dubey, Vikash
2018-05-01
A simple theoretical model is developed for the calculating the coefficient of volume thermal expansion (CTE) and volume thermal expansion (VTE) of Al, Ag and Cu nanomaterials by considering the cubo-octahedral structure with the change of temperature and the cluster size. At the room temperature, the coefficient of volume thermal expansion decreases sharply below 20-25 nm and the decrement of the coefficient of volume thermal expansion becomes slower above 20-25 nm. We also saw a variation in the volume thermal expansion with the variation of temperature and cluster size. At a fixed cluster size, the volume thermal expansion increases with an increase of temperature at below the melting temperature and show a linear relation of volume thermal expansion with the temperature. At a constant temperature, the volume thermal expansion decreases rapidly with an increase in cluster size below 20-25 nm and after 20-25 nm the decrement of volume thermal expansion becomes slower with the increase of the size of the cluster. Thermal expansion is due to the anharmonicity of the atom interaction. As the temperature rises the amplitude of crystal lattice vibration increases, but the equilibrium distance shifts as the atom spend more time at distance greater than the original spacing due as the repulsion at short distance greater than the corresponding attraction at farther distance. In considering the cubo- octahedral structure with the cluster order, the model prediction on the CTE and the VTE are in good agreement with the available experimental data which demonstrate the validity of our work.
Numerical Cerebrospinal System Modeling in Fluid-Structure Interaction.
Garnotel, Simon; Salmon, Stéphanie; Balédent, Olivier
2018-01-01
Cerebrospinal fluid (CSF) stroke volume in the aqueduct is widely used to evaluate CSF dynamics disorders. In a healthy population, aqueduct stroke volume represents around 10% of the spinal stroke volume while intracranial subarachnoid space stroke volume represents 90%. The amplitude of the CSF oscillations through the different compartments of the cerebrospinal system is a function of the geometry and the compliances of each compartment, but we suspect that it could also be impacted be the cardiac cycle frequency. To study this CSF distribution, we have developed a numerical model of the cerebrospinal system taking into account cerebral ventricles, intracranial subarachnoid spaces, spinal canal and brain tissue in fluid-structure interactions. A numerical fluid-structure interaction model is implemented using a finite-element method library to model the cerebrospinal system and its interaction with the brain based on fluid mechanics equations and linear elasticity equations coupled in a monolithic formulation. The model geometry, simplified in a first approach, is designed in accordance with realistic volume ratios of the different compartments: a thin tube is used to mimic the high flow resistance of the aqueduct. CSF velocity and pressure and brain displacements are obtained as simulation results, and CSF flow and stroke volume are calculated from these results. Simulation results show a significant variability of aqueduct stroke volume and intracranial subarachnoid space stroke volume in the physiological range of cardiac frequencies. Fluid-structure interactions are numerous in the cerebrospinal system and difficult to understand in the rigid skull. The presented model highlights significant variations of stroke volumes under cardiac frequency variations only.
Preliminary map showing the thickness of glacial deposits in Ohio
Soller, D.R.
1986-01-01
In contrast to the extreme variations in drift thickness encountered in the vicinity of buried channels, drift on the upland arcus is generally thinner and the variations in thickness are much less pronounced. Worthy of note, however, are three large areas where the drift sheet is relatively thick. In northwestern Ohio, a large volume of drift was deposited along the flanks of the Erie ice lobe (fig. 2) near the interlobate position with the Saginaw lobe to the northwest; drift thickness there exceeds 200 ft. Thick drift was also deposited in a roughly cast-west band across the Miami lobe. The mechanism that produced this band of thick drift is not obvious, but it may have been influenced in part by bedrock topography. Bedrock control of drift thickness is more clearly indicated to the cast of Columbus, along the eastern flank of the Scioto lobe, where ice slow was resisted by rocks of the Allegheny plateau. The edge of the plateau, or the Allegheny escarpment, is obscured by glacial deposits but its likely position (Fenneman, 1938; Stout and others, 1913; Dove, 1960; and Root and others, 1961) is shown on the map. Southward from the ice margin's reentrant position in southern Richland County, ice flowing eastward from the Scioto lobe encountered the topographically higher plateau, which constrained the ice and caused drift to accumulate in significant thicknesses just to the west of the escarpment.
2013-01-01
Objective To investigate the anatomic and dosimetric variations of volumetric modulated arc therapy (VMAT) in the treatment of nasopharyngeal cancer (NPC) patients based on weekly cone beam CT (CBCT). Materials and methods Ten NPC patients treated by VMAT with weekly CBCT for setup corrections were reviewed retrospectively. Deformed volumes of targets and organs at risk (OARs) in the CBCT were compared with those in the planning CT. Delivered doses were recalculated based on weekly CBCT and compared with the planned doses. Results No significant volumetric changes on targets, brainstem, and spinal cord were observed. The average volumes of right and left parotid measured from the fifth CBCT were about 4.4 and 4.5 cm3 less than those from the first CBCT, respectively. There were no significant dose differences between average planned and delivered doses for targets, brainstem and spinal cord. For right parotid, the delivered mean dose was 10.5 cGy higher (p = 0.004) than the planned value per fraction, and the V26 and V32 increased by 7.5% (p = 0.002) and 7.4% (p = 0.01), respectively. For the left parotid, the D50 (dose to the 50% volume) was 8.8 cGy higher (p = 0.03) than the planned values per fraction, and the V26 increased by 8.8% (p = 0.002). Conclusion Weekly CBCTs were applied directly to study the continuous volume changes and resulting dosimetric variations of targets and OARs for NPC patients undergoing VMAT. Significant volumetric and dosimetric variations were observed for parotids. Replanning after 30 Gy will benefit the protection on parotids. PMID:24289312
Dean, Christopher; Kirkpatrick, Jamie B; Osborn, Jon; Doyle, Richard B; Fitzgerald, Nicholas B; Roxburgh, Stephen H
2018-01-01
Abstract There is high uncertainty in the contribution of land-use change to anthropogenic climate change, especially pertaining to below-ground carbon loss resulting from conversion of primary-to-secondary forest. Soil organic carbon (SOC) and coarse roots are concentrated close to tree trunks, a region usually unmeasured during soil carbon sampling. Soil carbon estimates and their variation with land-use change have not been correspondingly adjusted. Our aim was to deduce allometric equations that will allow improvement of SOC estimates and tree trunk carbon estimates, for primary forest stands that include large trees in rugged terrain. Terrestrial digital photography, photogrammetry and GIS software were used to produce 3D models of the buttresses, roots and humus mounds of large trees in primary forests dominated by Eucalyptus regnans in Tasmania. Models of 29, in situ eucalypts were made and analysed. 3D models of example eucalypt roots, logging debris, rainforest tree species, fallen trees, branches, root and trunk slices, and soil profiles were also derived. Measurements in 2D, from earlier work, of three buttress ‘logs’ were added to the data set. The 3D models had high spatial resolution. The modelling allowed checking and correction of field measurements. Tree anatomical detail was formulated, such as buttress shape, humus volume, root volume in the under-sampled zone and trunk hollow area. The allometric relationships developed link diameter at breast height and ground slope, to SOC and tree trunk carbon, the latter including a correction for senescence. These formulae can be applied to stand-level carbon accounting. The formulae allow the typically measured, inter-tree SOC to be corrected for not sampling near large trees. The 3D models developed are irreplaceable, being for increasingly rare, large trees, and they could be useful to other scientific endeavours. PMID:29593855
Dean, Christopher; Kirkpatrick, Jamie B; Osborn, Jon; Doyle, Richard B; Fitzgerald, Nicholas B; Roxburgh, Stephen H
2018-03-01
There is high uncertainty in the contribution of land-use change to anthropogenic climate change, especially pertaining to below-ground carbon loss resulting from conversion of primary-to-secondary forest. Soil organic carbon (SOC) and coarse roots are concentrated close to tree trunks, a region usually unmeasured during soil carbon sampling. Soil carbon estimates and their variation with land-use change have not been correspondingly adjusted. Our aim was to deduce allometric equations that will allow improvement of SOC estimates and tree trunk carbon estimates, for primary forest stands that include large trees in rugged terrain. Terrestrial digital photography, photogrammetry and GIS software were used to produce 3D models of the buttresses, roots and humus mounds of large trees in primary forests dominated by Eucalyptus regnans in Tasmania. Models of 29, in situ eucalypts were made and analysed. 3D models of example eucalypt roots, logging debris, rainforest tree species, fallen trees, branches, root and trunk slices, and soil profiles were also derived. Measurements in 2D, from earlier work, of three buttress 'logs' were added to the data set. The 3D models had high spatial resolution. The modelling allowed checking and correction of field measurements. Tree anatomical detail was formulated, such as buttress shape, humus volume, root volume in the under-sampled zone and trunk hollow area. The allometric relationships developed link diameter at breast height and ground slope, to SOC and tree trunk carbon, the latter including a correction for senescence. These formulae can be applied to stand-level carbon accounting. The formulae allow the typically measured, inter-tree SOC to be corrected for not sampling near large trees. The 3D models developed are irreplaceable, being for increasingly rare, large trees, and they could be useful to other scientific endeavours.
SU-F-T-437: 3 Field VMAT Technique for Irradiation of Large Pelvic Tumors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stakhursky, V
2016-06-15
Purpose: VMAT treatment planning for large pelvic volume irradiation could be suboptimal due to inability of Varian linac to split MLC carriage during VMAT delivery for fields larger than 14.5cm in X direction (direction of leaf motion). We compare the dosimetry between 3 VMAT planning techniques, two 2-arc field techniques and a 3-arc field technique: a) two small in X direction (less than 14.5cm) arc fields, complementing each other to cover the whole lateral extent of target during gantry rotation, b) two large arc fields, each covering the targets completely during the rotation, c) a 3 field technique with 2more » small in X direction arcs and 1 large field covering whole target. Methods: 5 GYN cancer patients were selected to evaluate the 3 VMAT planning techniques. Treatment plans were generated using Varian Eclipse (ver. 11) TPS. Dose painting technique was used to deliver 5300 cGy to primary target and 4500 cGy to pelvic/abdominal node target. All the plans were normalized so that the prescription dose of 5300 cGy covered 95% of primary target volume. PTV and critical structures DVH curves were compared to evaluate all 3 planning techniques. Results: The dosimetric differences between the two 2-arc techniques were minor. The small field 2-arc technique showed a colder hot spot (0.4% averaged), while variations in maximum doses to critical structures were statistically nonsignificant (under 1.3%). In comparison, the 3-field technique demonstrated a colder hot spot (1.1% less, 105.8% averaged), and better sparing of critical structures. The maximum doses to larger bowel, small bowel and gluteal fold were 3% less, cord/cauda sparing was 4.2% better, and bladder maximum dose was 4.6% less. The differences in maximum doses to stomach and rectum were statistically nonsignificant. Conclusion: 3-arc VMAT technique for large field irradiation of pelvis demonstrates dosimetric advantages compared to 2-arc VMAT techniques.« less
Zygmunt, Arkadiusz; Adamczewski, Zbigniew; Zygmunt, Agnieszka; Karbownik-Lewinska, Malgorzata; Lewinski, Andrzej
2017-01-01
Goitre incidence in school-aged children evaluated using ultrasonography is one of the essential indicators of iodine intake in a given area. The aim of the study was to examine what the difference is between the volume of the thyroid gland measured in the supine and sitting position and to determine the intra-observer, inter-observer, and inter-position variations. The survey was conducted among 87 children (56 girls and 31 boys aged 7-13 years, mean age 10.44 ± 1.72 years). The thyroid volume measured in a sitting position was significantly lower than that measured in the supine position. The intra-observer variations for the total thyroid volume equalled 9.56-9.65%. The inter-observer variations were significantly higher and amounted to 34.5-35.7%. The way in which ultrasound evaluation is performed is important for the analysis of the results. It is crucial to aim for the smallest inter-observer variation, which can be achieved by strictly defining the methods of the thyroid measurement and comparing one's measuring techniques with the reference method. The use of standards in ultrasound evaluation performed in the supine position, as well as the use of standards without a strict determination of the study method, can lead to erro-neous conclusions. © 2017 S. Karger AG, Basel.
Lee, G H; Hur, W; Bremmon, C E; Flickinger, M C
1996-03-20
A simulation was developed based on experimental data obtained in a 14-L reactor to predict the growth and L-lysine accumulation kinetics, and change in volume of a large-scale (250-m(3)) Bacillus methanolicus methanol-based process. Homoserine auxotrophs of B. methanolicus MGA3 are unique methylotrophs because of the ability to secrete lysine during aerobic growth and threonine starvation at 50 degrees C. Dissolved methanol (100 mM), pH, dissolved oxygen tension (0.063 atm), and threonine levels were controlled to obtain threonine-limited conditions and high-cell density (25 g dry cell weight/L) in a 14-L reactor. As a fed-batch process, the additions of neat methanol (fed on demand), threonine, and other nutrients cause the volume of the fermentation to increase and the final lysine concentration to decrease. In addition, water produced as a result of methanol metabolism contributes to the increase in the volume of the reactor. A three-phase approach was used to predict the rate of change of culture volume based on carbon dioxide production and methanol consumption. This model was used for the evaluation of volume control strategies to optimize lysine productivity. A constant volume reactor process with variable feeding and continuous removal of broth and cells (VF(cstr)) resulted in higher lysine productivity than a fed-batch process without volume control. This model predicts the variation in productivity of lysine with changes in growth and in specific lysine productivity. Simple modifications of the model allows one to investigate other high-lysine-secreting strains with different growth and lysine productivity characteristics. Strain NOA2#13A5-2 which secretes lysine and other end-products were modeled using both growth and non-growth-associated lysine productivity. A modified version of this model was used to simulate the change in culture volume of another L-lysine producing mutant (NOA2#13A52-8A66) with reduced secretion of end-products. The modified simulation indicated that growth-associated production dominates in strain NOA2#13A52-8A66. (c) 1996 John Wiley & Sons, Inc.
NASA Astrophysics Data System (ADS)
Macorps, Elodie; Charbonnier, Sylvain J.; Varley, Nick R.; Capra, Lucia; Atlas, Zachary; Cabré, Josep
2018-01-01
The July 2015 block-and-ash flow (BAF) events represent the first documented series of large-volume and long-runout BAFs generated from sustained dome collapses at Volcán de Colima. This eruption is particularly exceptional at this volcano due to (1) the large volume of BAF material emplaced (0.0077 ± 0.001 km3), (2) the long runout reached by the associated BAFs (max. 10 km), and (3) the short period ( 18 h) over which two main long-sustained dome collapse events occurred (on 10 and 11 July, respectively). Stratigraphy and sedimentology of the 2015 BAF deposits exposed in the southern flank of the volcano based on lithofacies description, grain size measurements and clast componentry allowed the recognition of three main deposit facies (i.e., valley-confined, overbank and ash-cloud surge deposits). Correlations and lithofacies variations inside three main flow units from both the valley-confined and overbank deposits left from the emplacement of the second series of BAFs on 11 July provide detailed information about: (1) the distribution, volumes and sedimentological characteristics of the different units; (2) flow parameters (i.e., velocity and dynamic pressure) and mobility metrics as inferred from associated deposits; and (3) changes in the dynamics of the different flows and their material during emplacement. These data were coupled with geomorphic analyses to assess the role of the topography in controlling the behaviour and impacts of the successive BAF pulses on the volcano flanks. Finally, these findings are used to propose a conceptual model for transport and deposition mechanisms of the July 2015 BAFs at Volcán de Colima. In this model, deposition occurs by rapid stepwise aggradation of successive BAF pulses. Flow confinement in a narrow and sinuous channel enhance the mobility and runout of individual channelized BAF pulses. When these conditions occur, the progressive valley infilling from successive sustained dome-collapse events promote the overspill and lateral spreading of the upper and marginal regions of the main flow body, generating highly mobile overbank flows that travel outside of the main valley. Volume- and distance-dependent critical channel capacities for the generation of overbank flows are used to better estimate the inundation area of these hazardous unconfined pyroclastic flows. These results highlight the importance of including and correctly assessing the hazards posed by large volume and long runout BAFs associated with frequent, small VEI, sustained dome-collapse eruptions.
Harnessing Linguistic Variation to Improve Education. Rethinking Education. Volume 5
ERIC Educational Resources Information Center
Yiakoumetti, Androula, Ed.
2012-01-01
This volume brings together research carried out in a variety of geographic and linguistic contexts including Africa, Asia, Australia, Canada, the Caribbean, Europe and the United States and explores efforts to incorporate linguistic diversity into education and to "harness" this diversity for learners' benefit. It challenges the largely…
Gender and Education. An Encyclopedia. Volume I
ERIC Educational Resources Information Center
Bank, Barbara J., Ed.
2007-01-01
In this two volume set, educators explore the intersection of gender and education. Their entries deal with educational theories, research, curricula, practices, personnel, and policies, but also with variations in the gendering of education across historical and cultural contexts. The various contributors discuss gender as a social construction.…
VARIATION OF LUNG DEPOSITION OF MICRON SIZE PARTICLES WITH LUNG VOLUME AND BREATHING PATTERN
Lung volume and breathing pattern are the source of inter-and intra-subject variability of lung deposition of inhaled particles. Controlling these factors may help optimize delivery of aerosol medicine to the target site within the lung. In the present study we measured total lu...
Measurement variability error for estimates of volume change
James A. Westfall; Paul L. Patterson
2007-01-01
Using quality assurance data, measurement variability distributions were developed for attributes that affect tree volume prediction. Random deviations from the measurement variability distributions were applied to 19381 remeasured sample trees in Maine. The additional error due to measurement variation and measurement bias was estimated via a simulation study for...
Coupled Structural, Thermal, Phase-Change and Electromagnetic Analysis for Superconductors. Volume 1
NASA Technical Reports Server (NTRS)
Felippa, C. A.; Farhat, C.; Park, K. C.; Militello, C.; Schuler, J. J.
1996-01-01
Described are the theoretical development and computer implementation of reliable and efficient methods for the analysis of coupled mechanical problems that involve the interaction of mechanical, thermal, phase-change and electromagnetic subproblems. The focus application has been the modeling of superconductivity and associated quantum-state phase-change phenomena. In support of this objective the work has addressed the following issues: (1) development of variational principles for finite elements, (2) finite element modeling of the electromagnetic problem, (3) coupling of thermal and mechanical effects, and (4) computer implementation and solution of the superconductivity transition problem. The main accomplishments have been: (1) the development of the theory of parametrized and gauged variational principles, (2) the application of those principled to the construction of electromagnetic, thermal and mechanical finite elements, and (3) the coupling of electromagnetic finite elements with thermal and superconducting effects, and (4) the first detailed finite element simulations of bulk superconductors, in particular the Meissner effect and the nature of the normal conducting boundary layer. The theoretical development is described in two volumes. This volume, Volume 1, describes mostly formulations for specific problems. Volume 2 describes generalization of those formulations.