The Tropical Western Hemisphere Warm Pool
NASA Astrophysics Data System (ADS)
Wang, C.; Enfield, D. B.
2002-12-01
The paper describes and examines variability of the tropical Western Hemisphere warm pool (WHWP) of water warmer than 28.5oC. The WHWP is the second-largest tropical warm pool on Earth. Unlike the Eastern Hemisphere warm pool in the western Pacific, which straddles the equator, the WHWP is entirely north of the equator. At various stages of development the WHWP extends over parts of the eastern North Pacific, the Gulf of Mexico, the Caribbean, and the western tropical North Atlantic. It has a large seasonal cycle and its interannual fluctuations of area and intensity are significant. Surface heat fluxes warm the WHWP through the boreal spring to an annual maximum of SST and WHWP area in the late summer/early fall, associated with eastern North Pacific and Atlantic hurricane activities and rainfall from northern South America to the southern tier of the United States. Observations suggest that a positive ocean-atmosphere feedback operating through longwave radiation and associated cloudiness seems to operate in the WHWP. During winter preceding large warm pool, there is an alteration of the Walker and Hadley circulation cells that serves as a "tropospheric bridge" for transferring Pacific ENSO effects to the Atlantic sector and inducing initial warming of warm pool. Associated with the warm SST anomalies is a decrease in sea level pressure anomalies and an anomalous increase in atmospheric convection and cloudiness. The increase in convective activity and cloudiness results in less net longwave radiation loss from the sea surface, which then reinforces SST anomalies.
Impacts of Large-Scale Circulation on Convection: A 2-D Cloud Resolving Model Study
NASA Technical Reports Server (NTRS)
Li, X; Sui, C.-H.; Lau, K.-M.
1999-01-01
Studies of impacts of large-scale circulation on convection, and the roles of convection in heat and water balances over tropical region are fundamentally important for understanding global climate changes. Heat and water budgets over warm pool (SST=29.5 C) and cold pool (SST=26 C) were analyzed based on simulations of the two-dimensional cloud resolving model. Here the sensitivity of heat and water budgets to different sizes of warm and cold pools is examined.
A Regulation of Tropical Climate by Radiative Cooling as Simulated in a Cumulus Ensemble Model
NASA Technical Reports Server (NTRS)
Sui, Chung-Hsiung; Lau, K.-M.; Li, X.; Chou, M.-D.; Einaudi, Franco (Technical Monitor)
2000-01-01
Responses of tropical atmosphere to low-boundary forcing are investigated in a 2-D cumulus ensemble model (CEM) with an imposed warm-pool and cold-pool SST contrast (deltaSST). The domain-mean vertical motion is constrained to produce heat sink and moisture source as in the observed tropical climate. In a series of experiments, the warm pool SST is specified at different values while the cold pool SST is specified at 26 C. The strength of the circulation increases with increasing deltaSST until deltaSST reaches 3.5 C, and remains unchanged as deltaSST exceeds 3.5 C. The regulation of tropical convection by zonal SST gradient is constrained by the radiative cooling over the cold pool. For deltaSST less than 3.5 C, an enhanced subsidence warming is balanced by a reduced condensation heating over the cold pool. For deltaSST greater than 3.5 C, the subsidence regime expands over the entire cold pool where no condensation heating exist so that a further enhanced subsidence warming can no longer be sustained. The above regulation mechanism is also evident in the change of energy at the top of the atmosphere (TOA) that is dominated by cloud and water vapor greenhouse effect (c (sub LW)) and G (sub clear). The change in shortwave radiation at TOA is largely cancelled between the warm pool and cold pool, likely due to the same imposed vertical motion in our experiments. For deltaSST less than 3.5 C, an increase of deltaSST is associated with a large increase in c (sub Lw) due to increased total clouds in response to enhanced SST-induced circulation. For deltaSST greater than 3.5 C, clouds over the warm pool decrease with increasing SST, and the change in c (sub LW) is much smaller. In both dSST regimes, the change in CLW is larger than the change in G(sub clear) which is slightly negative. However, in the case of uniform warming (deltaSST=0), DeltaG(sub clear), is positive, approximately 5 W per square meters per degree change of SST.
Permafrost degradation stimulates carbon loss from experimentally warmed tundra
S.M. Natali; E.A.G. Schuur; E. Webb; C.E. Hicks Pries; K.G. Crummer
2014-01-01
A large pool of organic carbon (C) has been accumulating in the Arctic for thousands of years because cold and waterlogged conditions have protected soil organic material from microbial decomposition. As the climate warms this vast and frozen C pool is at risk of being thawed, decomposed, and released to the atmosphere as greenhouse gasses. At the same time, some C...
Maintenance and Variations of Atmospheric Subsidence in the Southeast Pacific
NASA Astrophysics Data System (ADS)
Wang, C.; Lee, S.; Mechoso, C. R.; Enfield, D. B.
2010-12-01
The southeastern tropical Pacific (SEP) is characterized by large-scale subsidence, extensive and persistent stratocumulus cloud, and cold SST. The subtropical high in the South Pacific and subsidence over the SEP during the austral summer are related to the monsoonal heating over South America. Previous studies demonstrate that during the austral summer, Rossby wave response to heating associated with the South American monsoon system interacting with the midlatitude westerlies produces descending motion to the west of the South American heating, i.e., over the SEP. The Sverdrup balance demands the existence of equatorward flow beneath the region of descent, closing off the South Pacific subtropical anticyclone on its eastern flank. During seasons other than the austral summer, when convective activity over South America is weaker, other processes must be responsible for maintaining and varying the subsidence over the SEP. This paper shows that the Atlantic warm pool (AWP) is responsible for the subsidence in the SEP during the austral winter and spring. The AWP is a large body of warm water comprising the Gulf of Mexico, the Caribbean Sea, and the western tropical North Atlantic. AWP variability occurs on seasonal, interannual, and multidecadal timescales. The AWP reaches its maximum size in the boreal late summer and early fall, with large AWPs being almost three times larger than small ones. The warm pool alternates with South America as the seasonal heating source for the Hadley circulation in the Western Hemisphere. During the boreal summer and fall, a strong Hadley circulation emanates from the AWP and forks into the subsidence region of the SEP. The anomalous warm pool index is positively correlated with rainfall anomalies over the SEP where the drizzle under the stratus cloud deck appears. Large (small) warm pools strengthen (weaken) the summer Hadley circulation that emanates from the region of the warm pool into the SEP. This will change the subsidence over the SEP and thus the stratus cloud and drizzle. Atmospheric GCM and simple models are further used to demonstrate the remote and inter-hemispheric response of the AWP to the SEP; that is, the AWP contributes to sinking over the SEP and hence the stratus cloud in the region.
Return of warm conditions in the southeastern Bering Sea: Phytoplankton - Fish.
Duffy-Anderson, Janet T; Stabeno, Phyllis J; Siddon, Elizabeth C; Andrews, Alex G; Cooper, Daniel W; Eisner, Lisa B; Farley, Edward V; Harpold, Colleen E; Heintz, Ron A; Kimmel, David G; Sewall, Fletcher F; Spear, Adam H; Yasumishii, Ellen C
2017-01-01
In 2014, the Bering Sea shifted back to warmer ocean temperatures (+2 oC above average), bringing concern for the potential for a new warm stanza and broad biological and ecological cascading effects. In 2015 and 2016 dedicated surveys were executed to study the progression of ocean heating and ecosystem response. We describe ecosystem response to multiple, consecutive years of ocean warming and offer perspective on the broader impacts. Ecosystem changes observed include reduced spring phytoplankton biomass over the southeast Bering Sea shelf relative to the north, lower abundances of large-bodied crustacean zooplankton taxa, and degraded feeding and body condition of age-0 walleye pollock. This suggests poor ecosystem conditions for young pollock production and the risk of significant decline in the number of pollock available to the pollock fishery in 2-3 years. However, we also noted that high quality prey, large copepods and euphausiids, and lower temperatures in the north may have provided a refuge from poor conditions over the southern shelf, potentially buffering the impact of a sequential-year warm stanza on the Bering Sea pollock population. We offer the hypothesis that juvenile (age-0, age-1) pollock may buffer deleterious warm stanza effects by either utilizing high productivity waters associated with the strong, northerly Cold Pool, as a refuge from the warm, low production areas of the southern shelf, or by exploiting alternative prey over the southern shelf. We show that in 2015, the ocean waters influenced by spring sea ice (the Cold Pool) supported robust phytoplankton biomass (spring) comprised of centric diatom chains, a crustacean copepod community comprised of large-bodied taxa (spring, summer), and a large aggregation of midwater fishes, potentially young pollock. In this manner, the Cold Pool may have acted as a trophic refuge in that year. The few age-0 pollock occurring over the southeast shelf consumed high numbers of euphausiids which may have provided a high quality alternate prey. In 2016 a retracted Cold Pool precluded significant refuging in the north, though pollock foraging on available euphausiids over the southern shelf may have mitigated the effect of warm waters and reduced large availability of large copepods. This work presents the hypothesis that, in the short term, juvenile pollock can mitigate the drastic impacts of sustained warming. This short-term buffering, combined with recent observations (2017) of renewed sea ice presence over southeast Bering Sea shelf and a potential return to average or at least cooler ecosystem conditions, suggests that recent warm year stanza (2014-2016) effects to the pollock population and fishery may be mitigated.
Return of warm conditions in the southeastern Bering Sea: Phytoplankton - Fish
Stabeno, Phyllis J.; Siddon, Elizabeth C.; Andrews, Alex G.; Cooper, Daniel W.; Eisner, Lisa B.; Farley, Edward V.; Harpold, Colleen E.; Heintz, Ron A.; Kimmel, David G.; Sewall, Fletcher F.; Spear, Adam H.; Yasumishii, Ellen C.
2017-01-01
In 2014, the Bering Sea shifted back to warmer ocean temperatures (+2 oC above average), bringing concern for the potential for a new warm stanza and broad biological and ecological cascading effects. In 2015 and 2016 dedicated surveys were executed to study the progression of ocean heating and ecosystem response. We describe ecosystem response to multiple, consecutive years of ocean warming and offer perspective on the broader impacts. Ecosystem changes observed include reduced spring phytoplankton biomass over the southeast Bering Sea shelf relative to the north, lower abundances of large-bodied crustacean zooplankton taxa, and degraded feeding and body condition of age-0 walleye pollock. This suggests poor ecosystem conditions for young pollock production and the risk of significant decline in the number of pollock available to the pollock fishery in 2–3 years. However, we also noted that high quality prey, large copepods and euphausiids, and lower temperatures in the north may have provided a refuge from poor conditions over the southern shelf, potentially buffering the impact of a sequential-year warm stanza on the Bering Sea pollock population. We offer the hypothesis that juvenile (age-0, age-1) pollock may buffer deleterious warm stanza effects by either utilizing high productivity waters associated with the strong, northerly Cold Pool, as a refuge from the warm, low production areas of the southern shelf, or by exploiting alternative prey over the southern shelf. We show that in 2015, the ocean waters influenced by spring sea ice (the Cold Pool) supported robust phytoplankton biomass (spring) comprised of centric diatom chains, a crustacean copepod community comprised of large-bodied taxa (spring, summer), and a large aggregation of midwater fishes, potentially young pollock. In this manner, the Cold Pool may have acted as a trophic refuge in that year. The few age-0 pollock occurring over the southeast shelf consumed high numbers of euphausiids which may have provided a high quality alternate prey. In 2016 a retracted Cold Pool precluded significant refuging in the north, though pollock foraging on available euphausiids over the southern shelf may have mitigated the effect of warm waters and reduced large availability of large copepods. This work presents the hypothesis that, in the short term, juvenile pollock can mitigate the drastic impacts of sustained warming. This short-term buffering, combined with recent observations (2017) of renewed sea ice presence over southeast Bering Sea shelf and a potential return to average or at least cooler ecosystem conditions, suggests that recent warm year stanza (2014–2016) effects to the pollock population and fishery may be mitigated. PMID:28658253
The Indo-Pacific Warm Pool: critical to world oceanography and world climate
NASA Astrophysics Data System (ADS)
De Deckker, Patrick
2016-12-01
The Indo-Pacific Warm Pool holds a unique place on the globe. It is a large area [>30 × 106 km2] that is characterised by permanent surface temperature >28 °C and is therefore called the `heat engine' of the globe. High convective clouds which can reach altitudes up to 15 km generate much latent heat in the process of convection and this area is therefore called the `steam engine' of the world. Seasonal and contrasting monsoonal activity over the region is the cause for a broad seasonal change of surface salinities, and since the area lies along the path of the Great Ocean Conveyor Belt, it is coined the `dilution' basin due to the high incidence of tropical rain and, away from the equator, tropical cyclones contribute to a significant drop in sea water salinity. Discussion about what may happen in the future of the Warm Pool under global warming is presented together with a description of the Warm Pool during the past, such as the Last Glacial Maximum when sea levels had dropped by ~125 m. A call for urgent monitoring of the IPWP area is justified on the grounds of the significance of this area for global oceanographic and climatological processes, but also because of the concerned threats to human population living there.
On the Regulation of the Pacific Warm Pool Temperature
NASA Technical Reports Server (NTRS)
Chou, Ming-Dah; Chou, Sue-Hsien; Chan, Pui-King; Lau, William K. M. (Technical Monitor)
2002-01-01
In the tropical western Pacific, regions of the highest sea surface temperature (SST) and the largest cloud cover are found to have the largest surface heating, primarily due to the weak evaporative cooling associated with weak winds. This situation is in variance with the suggestions that the temperature in the Pacific warm pool is regulated either by the reduced solar heating due to an enhanced cloudiness or by the enhanced evaporative cooling due to an elevated SST. It is clear that an enhanced surface heating in an enhanced convection region is not sustainable and must be interrupted by variations in large-scale atmospheric circulation. As the deep convective regions shift away from regions of high SST due primarily to seasonal variation and secondarily to interannual variation of the large-scale atmospheric and oceanic circulation, both trade wind and evaporative cooling in the high SST region increase, leading to a reduction in SST. We conclude that the evaporative cooling associated with the seasonal and interannual variations of trade winds in the primary factor that prevent the warm pool SST from increasing to a value much higher than what is observed.
Experimental whole-stream warming alters community size structure.
Nelson, Daniel; Benstead, Jonathan P; Huryn, Alexander D; Cross, Wyatt F; Hood, James M; Johnson, Philip W; Junker, James R; Gíslason, Gísli M; Ólafsson, Jón S
2017-07-01
How ecological communities respond to predicted increases in temperature will determine the extent to which Earth's biodiversity and ecosystem functioning can be maintained into a warmer future. Warming is predicted to alter the structure of natural communities, but robust tests of such predictions require appropriate large-scale manipulations of intact, natural habitat that is open to dispersal processes via exchange with regional species pools. Here, we report results of a two-year whole-stream warming experiment that shifted invertebrate assemblage structure via unanticipated mechanisms, while still conforming to community-level metabolic theory. While warming by 3.8 °C decreased invertebrate abundance in the experimental stream by 60% relative to a reference stream, total invertebrate biomass was unchanged. Associated shifts in invertebrate assemblage structure were driven by the arrival of new taxa and a higher proportion of large, warm-adapted species (i.e., snails and predatory dipterans) relative to small-bodied, cold-adapted taxa (e.g., chironomids and oligochaetes). Experimental warming consequently shifted assemblage size spectra in ways that were unexpected, but consistent with thermal optima of taxa in the regional species pool. Higher temperatures increased community-level energy demand, which was presumably satisfied by higher primary production after warming. Our experiment demonstrates how warming reassembles communities within the constraints of energy supply via regional exchange of species that differ in thermal physiological traits. Similar responses will likely mediate impacts of anthropogenic warming on biodiversity and ecosystem function across all ecological communities. © 2016 John Wiley & Sons Ltd.
Feng, Zhe; Hagos, Samson; Rowe, Angela K.; ...
2015-04-03
This paper investigates the mechanisms of convective cloud organization by precipitation-driven cold pools over the warm tropical Indian Ocean during the 2011 Atmospheric Radiation Measurement (ARM) Madden-Julian Oscillation (MJO) Investigation Experiment / Dynamics of the MJO (AMIE/DYNAMO) field campaign. A high-resolution regional model simulation is performed using the Weather Research and Forecasting model during the transition from suppressed to active phases of the November 2011 MJO. The simulated cold pool lifetimes, spatial extent and thermodynamic properties agree well with the radar and ship-borne observations from the field campaign. The thermodynamic and dynamic structures of the outflow boundaries of isolated andmore » intersecting cold pools in the simulation and the associated secondary cloud populations are examined. Intersecting cold pools last more than twice as long, are twice as large, 41% more intense (measured by buoyancy), and 62% deeper than isolated cold pools. Consequently, intersecting cold pools trigger 73% more convective clouds than isolated ones. This is possibly due to stronger outflows that enhance secondary updraft velocities by up to 45%. However, cold pool-triggered convective clouds grow into deep convection not because of the stronger secondary updrafts at cloud base, but rather due to closer spacing (aggregation) between clouds and larger cloud clusters that formed along the cold pool boundaries when they intersect. The close spacing of large clouds moistens the local environment and reduces entrainment drying, allowing the clouds to further develop into deep convection. Implications to the design of future convective parameterization with cold pool-modulated entrainment rates are discussed.« less
Lin, Li; Zhu, Biao; Chen, Chengrong; Zhang, Zhenhua; Wang, Qi-Bing; He, Jin-Sheng
2016-08-16
Soils in the alpine grassland store a large amount of nitrogen (N) due to slow decomposition. However, the decomposition could be affected by climate change, which has profound impacts on soil N cycling. We investigated the changes of soil total N and five labile N stocks in the topsoil, the subsoil and the entire soil profile in response to three years of experimental warming and altered precipitation in a Tibetan alpine grassland. We found that warming significantly increased soil nitrate N stock and decreased microbial biomass N (MBN) stock. Increased precipitation reduced nitrate N, dissolved organic N and amino acid N stocks, but increased MBN stock in the topsoil. No change in soil total N was detected under warming and altered precipitation regimes. Redundancy analysis further revealed that soil moisture (26.3%) overrode soil temperature (10.4%) in explaining the variations of soil N stocks across the treatments. Our results suggest that precipitation exerted stronger influence than warming on soil N pools in this mesic and high-elevation grassland ecosystem. This indicates that the projected rise in future precipitation may lead to a significant loss of dissolved soil N pools by stimulating the biogeochemical processes in this alpine grassland.
Lin, Li; Zhu, Biao; Chen, Chengrong; Zhang, Zhenhua; Wang, Qi-Bing; He, Jin-Sheng
2016-01-01
Soils in the alpine grassland store a large amount of nitrogen (N) due to slow decomposition. However, the decomposition could be affected by climate change, which has profound impacts on soil N cycling. We investigated the changes of soil total N and five labile N stocks in the topsoil, the subsoil and the entire soil profile in response to three years of experimental warming and altered precipitation in a Tibetan alpine grassland. We found that warming significantly increased soil nitrate N stock and decreased microbial biomass N (MBN) stock. Increased precipitation reduced nitrate N, dissolved organic N and amino acid N stocks, but increased MBN stock in the topsoil. No change in soil total N was detected under warming and altered precipitation regimes. Redundancy analysis further revealed that soil moisture (26.3%) overrode soil temperature (10.4%) in explaining the variations of soil N stocks across the treatments. Our results suggest that precipitation exerted stronger influence than warming on soil N pools in this mesic and high-elevation grassland ecosystem. This indicates that the projected rise in future precipitation may lead to a significant loss of dissolved soil N pools by stimulating the biogeochemical processes in this alpine grassland. PMID:27527683
Determination and impact of surface radiative processes for TOGA COARE
NASA Technical Reports Server (NTRS)
Curry, Judith A.; Ackerman, Thomas; Rossow, William B.; Webster, Peter J.
1991-01-01
Experiments using atmospheric general circulation models have shown that the atmospheric circulation is very sensitive to small changes in sea surface temperature in the tropical western Pacific Ocean warm pool region. The mutual sensitivity of the ocean and the atmosphere in the warm pool region places stringent requirements on models of the coupled ocean atmosphere system. At present, the situation is such that diagnostic studies using available data sets have been unable to balance the surface energy budget in the warm pool region to better than 50 to 80 W/sq m. The Tropical Ocean Global Atmosphere (TOGA) Coupled Ocean Atmosphere Response Experiment (COARE) is an observation and modelling program that aims specifically at the elucidation of the physical process which determine the mean and transient state of the warm pool region and the manner in which the warm pool interacts with the global ocean and atmosphere. This project focuses on one very important aspect of the ocean atmosphere interface component of TOGA COARE, namely the temporal and spatial variability of surface radiative fluxes in the warm pool region.
El Nino Southern Oscillation and Tuna in the Western Pacific
NASA Technical Reports Server (NTRS)
Lehodey, P.; Bertignac, M.; Hampton, J.; Lewis, A.; Picaut, J.
1997-01-01
Nearly 70% of the world's annual tuna harvest, currently 3.2 million tonnes, comes from the Pacific Ocean. Skipjack tuna (Katsuwonus pelamis) dominate the catch. Although skipjack are distributed in the surface mixed layer throughout the equatorial and subtropical Pacific, catches are highest in the western equatorial Pacific warm pool, a region characterized by low primary productivity rates that has the warmest surface waters of the world's oceans. Assessments of tuna stocks indicate that recent western Pacific skipjack catches approaching one million tonnes annually are sustainable. The warm pool, which is fundamental to the El Nino Southern Oscillation (ENSO) and the Earth's climate in general, must therefore also provide a habitat capable of supporting this highly productive tuna population. Here we show that apparent spatial shifts in the skipjack population are linked to large zonal displacements of the warm pool that occur during ENSO events. This relationship can be used to predict (several months in advance) the region of highest skipjack abundance, within a fishing ground extending over 6,000 km along the Equator.
The Tropical Western Hemisphere Warm Pool
NASA Astrophysics Data System (ADS)
Wang, Chunzai; Enfield, David B.
The Western Hemisphere warm pool (WHWP) of water warmer than 28.5°C extends from the eastern North Pacific to the Gulf of Mexico and the Caribbean, and at its peak, overlaps with the tropical North Atlantic. It has a large seasonal cycle and its interannual fluctuations of area and intensity are significant. Surface heat fluxes warm the WHWP through the boreal spring to an annual maximum of SST and areal extent in the late summer/early fall, associated with eastern North Pacific and Atlantic hurricane activities and rainfall from northern South America to the southern tier of the United States. SST and area anomalies occur at high temperatures where small changes can have a large impact on tropical convection. Observations suggest that a positive ocean-atmosphere feedback operating through longwave radiation and associated cloudiness is responsible for the WHWP SST anomalies. Associated with an increase in SST anomalies is a decrease in atmospheric sea level pressure anomalies and an anomalous increase in atmospheric convection and cloudiness. The increase in convective activity and cloudiness results in less longwave radiation loss from the surface, which then reinforces SST anomalies.
Rapid changes in the permafrost soil carbon pool in response to warming
NASA Astrophysics Data System (ADS)
Schuur, E.; Plaza, C.; Pegoraro, E.; Bracho, R. G.; Celis, G.; Crummer, K. G.; Hutchings, J. A.; Hicks Pries, C.; Mauritz, M.; Natali, S.; Salmon, V. G.; Schaedel, C.; Webb, E.
2017-12-01
Current evidence suggests that 5 to 15% of the vast pool of soil carbon stored in northern permafrost zone ecosystems could be emitted as greenhouse gases by 2100 under the current path of global warming. Despite this forecasted release of billions of tons of additional carbon to the atmosphere that would accelerate climate change, direct measurements of change in soil carbon remain scarce and are not typically part of planned Arctic research and observation networks. This is largely because of ground subsidence that occurs as high-ice permafrost (perennially-frozen) soils begin to thaw. Profound physical alterations to the soil profile confound the application of traditional methods for quantifying carbon pool changes to fixed depths or using soil horizons. These issues can be overcome if carbon is quantified in relation to a fixed ash content, which uses the relatively stable mineral component of soil as a metric for pool comparisons through time. Here we apply this approach and show a 26% (95% confidence interval: 12, 39) loss in soil carbon over five years across both experimentally warmed and ambient tundra ecosystems at a site in Alaska where permafrost is degrading due to climate change. Losses were primarily concentrated in the middle of the soil profile, whereas any soil carbon losses from the surface were likely replaced with new carbon inputs from increased plant productivity. These surprisingly large losses overwhelmed increased plant biomass carbon uptake and were not fully detected by measurements of ecosystem-atmosphere carbon dioxide exchange. This research highlights the potential to directly detect changes in the soil carbon pool of this rapidly transforming landscape, and that current methodologies for quantifying ecosystem carbon dynamics may be underestimating soil losses. It also points to the need to make repeat soil carbon pool measurements at sentinel sites across permafrost regions, as this feedback to climate change may be occurring faster than previously thought.
Temperature and size variabilities of the Western Pacific Warm Pool
NASA Technical Reports Server (NTRS)
Yan, Xiao-Hai; Ho, Chung-Ru; Zheng, Quanan; Klemas, Vic
1992-01-01
Variabilities in sea-surface temperature and size of the Western Pacific Warm Pool were tracked with 10 years of satellite multichannel sea-surface temperature observations from 1982 to 1991. The results show that both annual mean sea-surface temperature and the size of the warm pool increased from 1983 to 1987 and fluctuated after 1987. Possible causes of these variations include solar irradiance variabilities, El Nino-Southern Oscillaton events, volcanic activities, and global warming.
TOPEX/El Nino Watch - El Nino Warm Water Pool Decreasing, Jan, 08, 1998
NASA Technical Reports Server (NTRS)
1998-01-01
This image of the Pacific Ocean was produced using sea surface height measurements taken by the U.S.-French TOPEX/Poseidon satellite. The image shows sea surface height relative to normal ocean conditions on Jan. 8, 1998, and sea surface height is an indicator of the heat content of the ocean. The volume of the warm water pool related to the El Nino has decreased by about 40 percent since its maximum in early November, but the area of the warm water pool is still about one and a half times the size of the continental United States. The volume measurements are computed as the sum of all the sea surface height changes as compared to normal ocean conditions. In addition, the maximum water temperature in the eastern tropical Pacific, as measured by the National Oceanic and Atmospheric Administration (NOAA), is still higher than normal. Until these high temperatures diminish, the El Nino warm water pool still has great potential to disrupt global weather because the high water temperatures directly influence the atmosphere. Oceanographers believe the recent decrease in the size of the warm water pool is a normal part of El Nino's natural rhythm. TOPEX/Poseidon has been tracking these fluctuations of the El Nino warm pool since it began in early 1997. These sea surface height measurements have provided scientists with their first detailed view of how El Nino's warm pool behaves because the TOPEX/Poseidon satellite measures the changing sea surface height with unprecedented precision. In this image, the white and red areas indicate unusual patterns of heat storage; in the white areas, the sea surface is between 14 and 32 centimeters (6 to 13 inches) above normal; in the red areas, it's about 10 centimeters (4 inches) above normal. The green areas indicate normal conditions, while purple (the western Pacific) means at least 18 centimeters (7 inches) below normal sea level.
The El Nino phenomenon is thought to be triggered when the steady westward blowing trade winds weaken and even reverse direction. This change in the winds allows a large mass of warm water (the red and white area) that is normally located near Australia to move eastward along the equator until it reaches the coast of South America. The displacement of so much warm water affects evaporation, where rain clouds form and, consequently, alters the typical atmospheric jet stream patterns around the world. Using these global data, limited regional measurements from buoys and ships, and a forecasting model of the ocean-atmosphere system, the National Centers for Environmental Prediction (NCEP) of the National Oceanic and Atmospheric Administration, (NOAA), has issued an advisory indicating the presence of a strong El Nino condition throughout the winter.For more information, please visit the TOPEX/Poseidon project web page at http://topex-www.jpl.nasa.govImpact of ocean acidification and warming on the productivity of a rock pool community.
Legrand, Erwann; Riera, Pascal; Bohner, Olivier; Coudret, Jérôme; Schlicklin, Ferdinand; Derrien, Marie; Martin, Sophie
2018-05-01
This study examined experimentally the combined effect of ocean acidification and warming on the productivity of rock pool multi-specific assemblages, composed of coralline algae, fleshy algae, and grazers. Natural rock pool communities experience high environmental fluctuations. This may confer physiological advantage to rock pool communities when facing predicted acidification and warming. The effect of ocean acidification and warming have been assessed at both individual and assemblage level to examine the importance of species interactions in the response of assemblages. We hypothesized that rock pool assemblages have physiological advantage when facing predicted ocean acidification and warming. Species exhibited species-specific responses to increased temperature and pCO 2 . Increased temperature and pCO 2 have no effect on assemblage photosynthesis, which was mostly influenced by fleshy algal primary production. The response of coralline algae to ocean acidification and warming depended on the season, which evidenced the importance of physiological adaptations to their environment in their response to climate change. We suggest that rock pool assemblages are relatively robust to changes in temperature and pCO 2 , in terms of primary production. Copyright © 2018 Elsevier Ltd. All rights reserved.
Seasonal warming of the Middle Atlantic Bight Cold Pool
NASA Astrophysics Data System (ADS)
Lentz, S. J.
2017-02-01
The Cold Pool is a 20-60 m thick band of cold, near-bottom water that persists from spring to fall over the midshelf and outer shelf of the Middle Atlantic Bight (MAB) and Southern Flank of Georges Bank. The Cold Pool is remnant winter water bounded above by the seasonal thermocline and offshore by warmer slope water. Historical temperature profiles are used to characterize the average annual evolution and spatial structure of the Cold Pool. The Cold Pool gradually warms from spring to summer at a rate of order 1°C month-1. The warming rate is faster in shallower water where the Cold Pool is thinner, consistent with a vertical turbulent heat flux from the thermocline to the Cold Pool. The Cold Pool warming rate also varies along the shelf; it is larger over Georges Bank and smaller in the southern MAB. The mean turbulent diffusivities at the top of the Cold Pool, estimated from the spring to summer mean heat balance, are an order of magnitude larger over Georges Bank than in the southern MAB, consistent with much stronger tidal mixing over Georges Bank than in the southern MAB. The stronger tidal mixing causes the Cold Pool to warm more rapidly over Georges Bank and the eastern New England shelf than in the New York Bight or southern MAB. Consequently, the coldest Cold Pool water is located in the New York Bight from late spring to summer.
NASA Astrophysics Data System (ADS)
van Gestel, N.; Shi, Z.; van Groenigen, K. J.; Osenberg, C. W.; Andresen, L. C.; Dukes, J. S.; Hovenden, M. J.; Michelsen, A.; Pendall, E.; Reich, P.; Schuur, E.; Hungate, B. A.
2017-12-01
Minor changes in soil C dynamics in response to warming can strongly modulate climate change. Approaches to estimate long-term changes in soil carbon stocks from shorter-term warming experiments should consider temporal trends in soil carbon dynamics. Here we used data assimilation to take into account the soil carbon time series data collected from the upper soil layer (<15 cm) in 70 field warming experiments located worldwide. We used a soil carbon model with two pools, representing fast- and slow-decaying materials. We show that on average experimental warming enhanced fluxes of incoming and outgoing carbon with no change in predicted equilibrium stocks of carbon. Experimental warming increased the decomposition rates of the fast soil carbon pools by 10.7% on average, but also increased soil carbon input by 8.1%. When projecting the carbon pools to equilibrium stocks we found that warming decreased the size of the fast pool (-3.7%), but did not affect the slow or total carbon pools. We demonstrate that warming increases carbon throughput without an overall effect on total equilibrium carbon stocks. Hence, our findings do not support a generalizable soil carbon-climate feedback for soil carbon in the upper soil layer.
Late Miocene - Pliocene Evolution of the Pacific Warm Pool and Cold Tongue: Implications for El Niño
NASA Astrophysics Data System (ADS)
Zhang, Y.; Pagani, M.
2011-12-01
The Western Pacific Warm Pool of the tropical Pacific Ocean retains the largest and warmest sea surface water body on Earth, while the eastern equatorial Pacific is characterized by strong upwelling of cold, nutrient-rich deep waters, termed the Pacific cold tongue. Evolution of the Pacific warm pool and cold tongue are important because they control the circum-Pacific climate and impact the globe via El Niño - Southern Oscillation (ENSO) teleconnections. Sea surface temperature (SST) reconstructions using a single site from the warm pool (ODP 806) and two sites from the cold tongue (ODP 846, 847) suggest that the temperature of the warm pool was "stable" throughout the Plio-Pleistocene, whereas the cold tongue was much warmer in the Pliocene and subsequently cooled. The absence of an east-west Pacific temperature gradient during the early Pliocene is the basis for the "permanent El Niño" hypothesis. However, annually-resolved fossil coral and evaporite records found 3-7 years climate variability during the Pliocene warm period and late Miocene, challenging a "permanent" or invariant climate state. Here we present a multi-proxy (TEX86, UK37, Mg/Ca), multi-site reconstruction of the late Miocene - Pliocene (ca. 12 Ma - 3 Ma) SST in the Pacific warm pool (ODP 806, ODP 769 in the Sulu Sea, ODP 1143 in the South China Sea) and the cold tongue (ODP 850, 849, 846). Our results show that the cold tongue was even warmer in the late Miocene than the Pliocene, and that the warm pool cooled 2-3°C from the late Miocene into the Pliocene - in contrast to the invariant character previously assumed. Temperature comparison between different sites suggests that the warm pool may have expanded in size in the late Miocene. Although eastern and western ends of the tropical Pacific were warmer, a persistent, but low east-west temperature gradient (~3°C) is apparent. This agrees with recent studies which have shown ENSO-related frequency of climate change in the late Miocene and early Pliocene.
NorTropical Warm Pool variability and its effects on the climate of Colombia
NASA Astrophysics Data System (ADS)
Ricaurte Villota, Constanza; Romero-Rodriguez, Deisy; Coca-Domínguez, Oswaldo
2015-04-01
Much has been said about the effects of El Niño Southern Oscillation (ENSO) on oceanographic and climatic conditions in Colombia, but little is known about the influence of the Atlantic Warm Pool (AWP), which includes the gulf of Mexico, the Caribbean and the western tropical North Atlantic. The AWP has been identified by some authors as an area that influences the Earth's climate, associated with anomalous summer rainfall and hurricane activity in the Atlantic. The aim of this study was to understand the variation in the AWP and its effects on the climate of Colombia. An annual average of sea surface temperature (SST) was obtained from the composition of monthly images of the Spectroradiometer Moderate Resolution Imaging Spectroradiometer (MODIS), with resolution of 4 km, for one area that comprises the marine territory of Colombia, Panama, Costa Rica both the Pacific and the Caribbean, and parts of the Caribbean coast of Nicaragua, for the period between 2007 and 2013. The results suggest that warm pool is not restricted to the Caribbean, but it also covers a strip Pacific bordering Central America and the northern part of the Colombian coast, so it should be called the Nor-Tropical Warm pool (NTWP). Within the NTWP higher SST correspond to a marine area extending about 1 degree north and south of Central and out of the Colombian Caribbean coast. The NTWP also showed large interannual variability, with the years 2008 and 2009 with lower SST in average, while 2010, 2011 and 2013 years with warmer conditions, matching with greater precipitation. It was also noted that during warmer conditions (high amplitude NTWP) the cold tongue from the south Pacific has less penetration on Colombian coast. Finally, the results suggest a strong influence of NTWP in climatic conditions in Colombia.
Current Warm-Up Practices and Contemporary Issues Faced by Elite Swimming Coaches.
McGowan, Courtney J; Pyne, David B; Raglin, John S; Thompson, Kevin G; Rattray, Ben
2016-12-01
McGowan, CJ, Pyne, DB, Raglin, JS, Thompson, KG, and Rattray, B. Current warm-up practices and contemporary issues faced by elite swimming coaches. J Strength Cond Res 30(12): 3471-3480, 2016-A better understanding of current swimming warm-up strategies is needed to improve their effectiveness. The purpose of this study was to describe current precompetition warm-up practices and identify contemporary issues faced by elite swimming coaches during competition. Forty-six state-international level swimming coaches provided information through a questionnaire on their prescription of volume, intensity, and recovery within their pool and dryland-based competition warm-ups, and challenges faced during the final stages of event preparation. Coaches identified four key objectives of the precompetition warm-up: physiological (elevate body temperature and increase muscle activation), kinesthetic (tactile preparation, increase "feel" of the water), tactical (race-pace rehearsal), and mental (improve focus, reduce anxiety). Pool warm-up volume ranged from ∼1300 to 2100 m, beginning with 400-1000 m of continuous, low-intensity (∼50-70% of perceived maximal exertion) swimming, followed by 200-600 m of stroke drills and 1-2 sets (100-400 m in length) of increasing intensity (∼60-90%) swimming, concluding with 3-4 race or near race-pace efforts (25-100 m; ∼90-100%) and 100-400 m easy swimming. Dryland-based warm-up exercises, involving stretch cords and skipping, were also commonly prescribed. Coaches preferred swimmers complete their warm-up 20-30 minutes before race start. Lengthy marshalling periods (15-20+ minutes) and the time required to don racing suits (>10 minutes) were identified as complicating issues. Coaches believed that the pool warm-up affords athletes the opportunity to gain a tactile feel for the water and surrounding pool environment. The combination of dryland-based activation exercises followed by pool-based warm-up routines seems to be the preferred approach taken by elite swimming coaches preparing their athletes for competition.
The Madden-Julian Oscillation and the Indo-Pacific Warm Pool
NASA Astrophysics Data System (ADS)
Raymond, David J.; Fuchs, Željka
2018-04-01
A minimal model of the interaction of the Madden-Julian oscillation (MJO) with the Indo-Pacific warm pool is presented. This model is based on the linear superposition of the flow associated with a highly simplified treatment of the MJO plus the flow induced by the warm pool itself. Both of these components parameterize rainfall as proportional to the column water vapor, which in turn is governed by a linearized moisture equation in which WISHE (wind induced surface heat exchange) plays a governing role. The MJO component has maximum growth rate for planetary wavenumber 1 and is equatorially trapped with purely zonal winds. The warm pool component exhibits a complex flow pattern, differing significantly from the classical Gill model as a result of the mean easterly flow. The combination of the two produce a flow that reproduces many aspects of the observed global flow associated with the MJO.
TOPEX/El Nino Watch - Warm Water Pool is Thinning, Feb, 5, 1998
NASA Technical Reports Server (NTRS)
1998-01-01
This image of the Pacific Ocean was produced using sea surface height measurements taken by the U.S.-French TOPEX/Poseidon satellite. The image shows sea surface height relative to normal ocean conditions on Feb. 5, 1998 and sea surface height is an indicator of the heat content of the ocean. The area and volume of the El Nino warm water pool that is affecting global weather patterns remains extremely large, but the pool has thinned along the equator and near the coast of South America. This 'thinning' means that the warm water is not as deep as it was a few months ago. Oceanographers indicate this is a classic pattern, typical of a mature El Nino condition that they would expect to see during the ocean's gradual transition back to normal sea level. In this image, the white and red areas indicate unusual patterns of heat storage; in the white areas, the sea surface is between 14 and 32 centimeters (6 to 13 inches) above normal; in the red areas, it's about 10 centimeters (4 inches) above normal. The green areas indicate normal conditions, while purple (the western Pacific) means at least 18 centimeters (7 inches) below normal sea level. The El Nino phenomenon is thought to be triggered when the steady westward blowing trade winds weaken and even reverse direction. This change in the winds allows a large mass of warm water (the red and white area) that is normally located near Australia to move eastward along the equator until it reaches the coast of South America. The displacement of so much warm water affects evaporation, where rain clouds form and, consequently, alters the typical atmospheric jet stream patterns around the world. Using satellite imagery, buoy and ship data, and a forecasting model of the ocean-atmosphere system, the National Oceanic and Atmospheric Administration, (NOAA), has continued to issue an advisory indicating the so-called El Nino weather conditions that have impacted much of the United States and the world are expected to remain through the spring.
For more information, please visit the TOPEX/Poseidon project web page at http://topex-www.jpl.nasa.govThe permafrost carbon inventory on the Tibetan Plateau: a new evaluation using deep sediment cores
NASA Astrophysics Data System (ADS)
Yang, Y.; Ding, J.; Li, F.; Yang, G.; Chen, L.
2016-12-01
The permafrost organic carbon (OC) stock is of global significance because of its large pool size and potential positive feedback to climate warming. However, due to the lack of systematic field observations and appropriate upscaling methodologies, substantial uncertainties exist in the permafrost OC budget, which limits our understanding on the fate of frozen carbon in a warming world. In particular, the lack of comprehensive estimation of OC stock across alpine permafrost means that the current knowledge on this issue remains incomplete. Here we evaluated the pool size and spatial variations of permafrost OC stock to 3 meters depth on the Tibetan Plateau by combining systematic measurements from a substantial number of pedons (i.e., 342 three-meter-deep cores and 177 50-cm-deep pits) with a machine learning technique (i.e., support vector machine, SVM). We also quantified uncertainties in permafrost carbon budget by conducting Monte Carlo simulation. Our results revealed that the combination of systematic measurements with the SVM model allowed spatially explicit estimates. The OC density (OC amount per unit area, OCD) exhibited a decreasing trend from the southeastern to the northwestern plateau, with the exception that OCD in the swamp meadow was substantially higher than that in surrounding regions. Our results also demonstrated that Tibetan permafrost stored a large amount of OC in the top 3 meters, with the median OC pool size being 15.31 Pg C (interquartile range: 13.03-17.77 Pg C). Of them, 44% occurred in deep layers (i.e., 100-300 cm), close to the proportion observed across the northern circumpolar permafrost region. The large carbon pool size, together with significant permafrost thawing implies a risk of carbon emissions and positive climate feedback across the Tibetan alpine permafrost region.
Human-caused Indo-Pacific warm pool expansion
Weller, Evan; Min, Seung-Ki; Cai, Wenju; Zwiers, Francis W.; Kim, Yeon-Hee; Lee, Donghyun
2016-01-01
The Indo-Pacific warm pool (IPWP) has warmed and grown substantially during the past century. The IPWP is Earth’s largest region of warm sea surface temperatures (SSTs), has the highest rainfall, and is fundamental to global atmospheric circulation and hydrological cycle. The region has also experienced the world’s highest rates of sea-level rise in recent decades, indicating large increases in ocean heat content and leading to substantial impacts on small island states in the region. Previous studies have considered mechanisms for the basin-scale ocean warming, but not the causes of the observed IPWP expansion, where expansion in the Indian Ocean has far exceeded that in the Pacific Ocean. We identify human and natural contributions to the observed IPWP changes since the 1950s by comparing observations with climate model simulations using an optimal fingerprinting technique. Greenhouse gas forcing is found to be the dominant cause of the observed increases in IPWP intensity and size, whereas natural fluctuations associated with the Pacific Decadal Oscillation have played a smaller yet significant role. Further, we show that the shape and impact of human-induced IPWP growth could be asymmetric between the Indian and Pacific basins, the causes of which remain uncertain. Human-induced changes in the IPWP have important implications for understanding and projecting related changes in monsoonal rainfall, and frequency or intensity of tropical storms, which have profound socioeconomic consequences. PMID:27419228
Human-caused Indo-Pacific warm pool expansion.
Weller, Evan; Min, Seung-Ki; Cai, Wenju; Zwiers, Francis W; Kim, Yeon-Hee; Lee, Donghyun
2016-07-01
The Indo-Pacific warm pool (IPWP) has warmed and grown substantially during the past century. The IPWP is Earth's largest region of warm sea surface temperatures (SSTs), has the highest rainfall, and is fundamental to global atmospheric circulation and hydrological cycle. The region has also experienced the world's highest rates of sea-level rise in recent decades, indicating large increases in ocean heat content and leading to substantial impacts on small island states in the region. Previous studies have considered mechanisms for the basin-scale ocean warming, but not the causes of the observed IPWP expansion, where expansion in the Indian Ocean has far exceeded that in the Pacific Ocean. We identify human and natural contributions to the observed IPWP changes since the 1950s by comparing observations with climate model simulations using an optimal fingerprinting technique. Greenhouse gas forcing is found to be the dominant cause of the observed increases in IPWP intensity and size, whereas natural fluctuations associated with the Pacific Decadal Oscillation have played a smaller yet significant role. Further, we show that the shape and impact of human-induced IPWP growth could be asymmetric between the Indian and Pacific basins, the causes of which remain uncertain. Human-induced changes in the IPWP have important implications for understanding and projecting related changes in monsoonal rainfall, and frequency or intensity of tropical storms, which have profound socioeconomic consequences.
The influence of the Atlantic Warm Pool on the Florida panhandle sea breeze
Misra, Vasubandhu; Moeller, Lauren; Stefanova, Lydia; Chan, Steven; O'Brien, James J.; Smith, Thomas J.; Plant, Nathaniel
2011-01-01
In this paper we examine the variations of the boreal summer season sea breeze circulation along the Florida panhandle coast from relatively high resolution (10 km) regional climate model integrations. The 23 year climatology (1979–2001) of the multidecadal dynamically downscaled simulations forced by the National Centers for Environmental Prediction–Department of Energy (NCEP-DOE) Reanalysis II at the lateral boundaries verify quite well with the observed climatology. The variations at diurnal and interannual time scales are also well simulated with respect to the observations. We show from composite analyses made from these downscaled simulations that sea breezes in northwestern Florida are associated with changes in the size of the Atlantic Warm Pool (AWP) on interannual time scales. In large AWP years when the North Atlantic Subtropical High becomes weaker and moves further eastward relative to the small AWP years, a large part of the southeast U.S. including Florida comes under the influence of relatively strong anomalous low-level northerly flow and large-scale subsidence consistent with the theory of the Sverdrup balance. This tends to suppress the diurnal convection over the Florida panhandle coast in large AWP years. This study is also an illustration of the benefit of dynamic downscaling in understanding the low-frequency variations of the sea breeze.
Surface Heat Budgets and Sea Surface Temperature in the Pacific Warm Pool During TOGA COARE
NASA Technical Reports Server (NTRS)
Chou, Shu-Hsien; Zhao, Wenzhong; Chou, Ming-Dah
1998-01-01
The daily mean heat and momentum fluxes at the surface derived from the SSM/I and Japan's GMS radiance measurements are used to study the temporal and spatial variability of the surface energy budgets and their relationship to the sea surface temperature during the COARE intensive observing period (IOP). For the three time legs observed during the IOP, the retrieved surface fluxes compare reasonably well with those from the IMET buoy, RV Moana Wave, and RV Wecoma. The characteristics of surface heat and momentum fluxes are very different between the southern and northern warm pool. In the southern warm pool, the net surface heat flux is dominated by solar radiation which is, in turn, modulated by the two Madden-Julian oscillations. The surface winds are generally weak, leading to a shallow ocean mixed layer. The solar radiation penetrating through the bottom of the mixed layer is significant, and the change in the sea surface temperature during the IOP does not follow the net surface heat flux. In the northern warm pool, the northeasterly trade wind is strong and undergoes strong seasonal variation. The variation of the net surface heat flux is dominated by evaporation. The two westerly wind bursts associated with the Madden-Julian oscillations seem to have little effect on the net surface heat flux. The ocean mixed layer is deep, and the solar radiation penetrating through the bottom of the mixed layer is small. As opposed to the southern warm pool, the trend of the sea surface temperature in the northern warm pool during the IOP is in agreement with the variation of the net heat flux at the surface.
NASA Astrophysics Data System (ADS)
Huang, Yi-Chih; Wang, Pao K.
2017-01-01
Numerical modeling is conducted to study the hydrometeor partitioning and microphysical source and sink processes during a quasi-steady state of thunderstorms over the Pacific Warm Pool by utilizing the microphysical model WISCDYMM to simulate selected storm cases. The results show that liquid-phase hydrometeors dominate thunderstorm evolution over the Pacific Warm Pool. The ratio of ice-phase mass to liquid-phase mass is about 41%: 59%, indicating that ice-phase water is not as significant over the Pacific Warm Pool as the liquid water compared to the larger than 50% in the subtropics and 80% in the US High Plains in a previous study. Sensitivity tests support the dominance of liquid-phase hydrometeors over the Pacific Warm Pool. The major rain sources are the key hail sinks: melting of hail and shedding from hail; whereas the crucial rain sinks are evaporation and accretion by hail. The major snow sources are Bergeron-Findeisen process, transfer of cloud ice to snow and accretion of cloud water; whereas the foremost sink of snow is accretion by hail. The essential hail sources are accretions of rain, cloud water, and snow; whereas the critical hail sinks are melting of hail and shedding from hail. The contribution and ranking of sources and sinks of these precipitates are compared with the previous study. Hydrometeors have their own special microphysical processes in the development and depletion over the Pacific Warm Pool. Microphysical budgets depend on atmospheric dynamical and thermodynamical conditions which determine the partitioning of hydrometeors. This knowledge would benefit the microphysics parameterization in cloud models and cumulus parameterization in global circulation models.
Fossil organic matter characteristics in permafrost deposits of the northeast Siberian Arctic
Lutz Schirrmeister; Guido Grosse; Sebastian Wetterich; Pier Paul Overduin; Jens Straub; Edward A.G. Schuur; Hans-Wolfgang Hubberton
2011-01-01
Permafrost deposits constitute a large organic carbon pool highly vulnerable to degradation and potential carbon release due to global warming. Permafrost sections along coastal and river bank exposures in NE Siberia were studied for organic matter (OM) characteristics and ice content. OM stored in Quaternary permafrost grew, accumulated, froze, partly decomposed, and...
Role of Western Hemisphere Warm Pool in Rapid Climate Changes over the Western North Pacific
NASA Astrophysics Data System (ADS)
Kug, Jong-Seong; Park, Jae-Heung; An, Soon-Il
2017-04-01
Oceanic states over the western North Pacific (WNP), which is surrounded by heavily populated countries, are closely tied to the lives of the people in East Asia in regards to both climate and socioeconomics. As global warming continues, remarkable increases in sea surface temperature (SST) and sea surface height (SSH) have been observed in the WNP in recent decades. Here, we show that the SST increase in the western hemisphere warm pool (WHWP), which is the second largest warm pool on the globe, has contributed considerably to the rapid surface warming and sea level rise in the WNP via its remote teleconnection along the Pacific Intertropical Convergence Zone (ITCZ). State-of-the-art climate models strongly support the role of the WHWP not only on interannual time sales but also in long-term climate projections. We expect that understanding the processes initiated by the WHWP-SST could permit better forecasts of western North Pacific climate and the further development of the socioeconomics of East Asia.
Schnecker, Jörg; Borken, Werner; Schindlbacher, Andreas; Wanek, Wolfgang
2016-12-01
Rising temperatures enhance microbial decomposition of soil organic matter (SOM) and thereby increase the soil CO 2 efflux. Elevated decomposition rates might differently affect distinct SOM pools, depending on their stability and accessibility. Soil fractions derived from density fractionation have been suggested to represent SOM pools with different turnover times and stability against microbial decomposition. To investigate the effect of soil warming on functionally different soil organic matter pools, we here investigated the chemical and isotopic composition of bulk soil and three density fractions (free particulate organic matter, fPOM; occluded particulate organic matter, oPOM; and mineral associated organic matter, MaOM) of a C-rich soil from a long-term warming experiment in a spruce forest in the Austrian Alps. At the time of sampling, the soil in this experiment had been warmed during the snow-free period for seven consecutive years. During that time no thermal adaptation of the microbial community could be identified and CO 2 release from the soil continued to be elevated by the warming treatment. Our results, which included organic carbon content, total nitrogen content, δ 13 C, Δ 14 C, δ 15 N and the chemical composition, identified by pyrolysis-GC/MS, showed no significant differences in bulk soil between warming treatment and control. Surprisingly, the differences in the three density fractions were mostly small and the direction of warming induced change was variable with fraction and soil depth. Warming led to reduced N content in topsoil oPOM and subsoil fPOM and to reduced relative abundance of N-bearing compounds in subsoil MaOM. Further, warming increased the δ 13 C of MaOM at both sampling depths, reduced the relative abundance of carbohydrates while it increased the relative abundance of lignins in subsoil oPOM. As the size of the functionally different SOM pools did not significantly change, we assume that the few and small modifications in SOM chemistry result from an interplay of enhanced microbial decomposition of SOM and increased root litter input in the warmed plots. Overall, stable functional SOM pool sizes indicate that soil warming had similarly affected easily decomposable and stabilized SOM of this C-rich forest soil.
Salmon, Verity G; Soucy, Patrick; Mauritz, Marguerite; Celis, Gerardo; Natali, Susan M; Mack, Michelle C; Schuur, Edward A G
2016-05-01
Perennially frozen soil in high latitude ecosystems (permafrost) currently stores 1330-1580 Pg of carbon (C). As these ecosystems warm, the thaw and decomposition of permafrost is expected to release large amounts of C to the atmosphere. Fortunately, losses from the permafrost C pool will be partially offset by increased plant productivity. The degree to which plants are able to sequester C, however, will be determined by changing nitrogen (N) availability in these thawing soil profiles. N availability currently limits plant productivity in tundra ecosystems but plant access to N is expected improve as decomposition increases in speed and extends to deeper soil horizons. To evaluate the relationship between permafrost thaw and N availability, we monitored N cycling during 5 years of experimentally induced permafrost thaw at the Carbon in Permafrost Experimental Heating Research (CiPEHR) project. Inorganic N availability increased significantly in response to deeper thaw and greater soil moisture induced by Soil warming. This treatment also prompted a 23% increase in aboveground biomass and a 49% increase in foliar N pools. The sedge Eriophorum vaginatum responded most strongly to warming: this species explained 91% of the change in aboveground biomass during the 5 year period. Air warming had little impact when applied alone, but when applied in combination with Soil warming, growing season soil inorganic N availability was significantly reduced. These results demonstrate that there is a strong positive relationship between the depth of permafrost thaw and N availability in tundra ecosystems but that this relationship can be diminished by interactions between increased thaw, warmer air temperatures, and higher levels of soil moisture. Within 5 years of permafrost thaw, plants actively incorporate newly available N into biomass but C storage in live vascular plant biomass is unlikely to be greater than losses from deep soil C pools. © 2015 John Wiley & Sons Ltd.
Climate warming and the carbon cycle in the permafrost zone of the former Soviet Union
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kolchugina, T.P.; Vinson, T.S.
1993-01-01
The continuous permafrost zone of the former Soviet Union occupies 5% of the land surface area of the earth and stores a significant amount of carbon. Climate warming could disrupt the balance between carbon (C) accumulation and decomposition processes within the permafrost zone. Increased temperatures may accelerate the rate of organic matter decomposition. At the same time, the productivity of vegetation may increase in response to warming. To assess the future carbon cycle within the permafrost zone under a climate-warming scenario, it is necessary to quantify present carbon pools and fluxes. The present carbon cycle was assessed on the basismore » of an ecosystem/ecoregion approach. Under the present climate, the phytomass carbon pool was estimated at 17.0 Giga tons. The mortmass (coarse woody debris) carbon pool was estimated at 16.1 Giga tons. The soil carbon pool, including peatlands, was 139.4 Giga tons. The present rate of carbon turnover was 1.6 Giga tons/yr. (Copyright (c) 1993 by John Wiley and Sons, Ltd.)« less
The influence of the Atlantic Warm Pool on the Florida panhandle sea breeze
Misra, V.; Moeller, L.; Stefanova, L.; Chan, S.; O'Brien, J. J.; Smith, T.J.; Plant, N.
2011-01-01
In this paper we examine the variations of the boreal summer season sea breeze circulation along the Florida panhandle coast from relatively high resolution (10 km) regional climate model integrations. The 23 year climatology (1979-2001) of the multidecadal dynamically downscaled simulations forced by the National Centers for Environmental Prediction-Department of Energy (NCEP-DOE) Reanalysis II at the lateral boundaries verify quite well with the observed climatology. The variations at diurnal and interannual time scales are also well simulated with respect to the observations. We show from composite analyses made from these downscaled simulations that sea breezes in northwestern Florida are associated with changes in the size of the Atlantic Warm Pool (AWP) on interannual time scales. In large AWP years when the North Atlantic Subtropical High becomes weaker and moves further eastward relative to the small AWP years, a large part of the southeast U.S. including Florida comes under the influence of relatively strong anomalous low-level northerly flow and large-scale subsidence consistent with the theory of the Sverdrup balance. This tends to suppress the diurnal convection over the Florida panhandle coast in large AWP years. This study is also an illustration of the benefit of dynamic downscaling in understanding the low-frequency variations of the sea breeze. Copyright 2011 by the American Geophysical Union.
Explicit Convection over the Western Pacific Warm Pool in the Community Atmospheric Model.
NASA Astrophysics Data System (ADS)
Ziemiaski, Micha Z.; Grabowski, Wojciech W.; Moncrieff, Mitchell W.
2005-05-01
This paper reports on the application of the cloud-resolving convection parameterization (CRCP) to the Community Atmospheric Model (CAM), the atmospheric component of the Community Climate System Model (CCSM). The cornerstone of CRCP is the use of a two-dimensional zonally oriented cloud-system-resolving model to represent processes on mesoscales at the subgrid scale of a climate model. Herein, CRCP is applied at each climate model column over the tropical western Pacific warm pool, in a domain spanning 10°S-10°N, 150°-170°E. Results from the CRCP simulation are compared with CAM in its standard configuration.The CRCP simulation shows significant improvements of the warm pool climate. The cloud condensate distribution is much improved as well as the bias of the tropopause height. More realistic structure of the intertropical convergence zone (ITCZ) during the boreal winter and better representation of the variability of convection are evident. In particular, the diurnal cycle of precipitation has phase and amplitude in good agreement with observations. Also improved is the large-scale organization of the tropical convection, especially superclusters associated with Madden-Julian oscillation (MJO)-like systems. Location and propagation characteristics, as well as lower-tropospheric cyclonic and upper-tropospheric anticyclonic gyres, are more realistic than in the standard CAM. Finally, the simulations support an analytic theory of dynamical coupling between organized convection and equatorial beta-plane vorticity dynamics associated with MJO-like systems.
NASA Technical Reports Server (NTRS)
Ose, Tomoaki; Mechoso, Carlos; Halpern, David
1994-01-01
Simulations with the UCLA atmospheric general circulation model (AGCM) using two different global sea surface temperature (SST) datasets for January 1979 are compared. One of these datasets is based on Comprehensive Ocean-Atmosphere Data Set (COADS) (SSTs) at locations where there are ship reports, and climatology elsewhere; the other is derived from measurements by instruments onboard NOAA satellites. In the former dataset (COADS SST), data are concentrated along shipping routes in the Northern Hemisphere; in the latter dataset High Resolution Infrared Sounder (HIRS SST), data cover the global domain. Ensembles of five 30-day mean fields are obtained from integrations performed in the perpetual-January mode. The results are presented as anomalies, that is, departures of each ensemble mean from that produced in a control simulation with climatological SSTs. Large differences are found between the anomalies obtained using COADS and HIRS SSTs, even in the Northern Hemisphere where the datasets are most similar to each other. The internal variability of the circulation in the control simulation and the simulated atmospheric response to anomalous forcings appear to be linked in that the pattern of geopotential height anomalies obtained using COADS SSTs resembles the first empirical orthogonal function (EOF 1) in the control simulation. The corresponding pattern obtained using HIRS SSTs is substantially different and somewhat resembles EOF 2 in the sector from central North America to central Asia. To gain insight into the reasons for these results, three additional simulations are carried out with SST anomalies confined to regions where COADS SSTs are substantially warmer than HIRS SSTs. The regions correspond to warm pools in the northwest and northeast Pacific, and the northwest Atlantic. These warm pools tend to produce positive geopotential height anomalies in the northeastern part of the corresponding oceans. Both warm pools in the Pacific produce large-scale circulation anomalies with a pattern that resembles that obtained using COADS SSTs as well as EOF 1 of the control simulation; the warm pool in the Atlantic does not. These results suggest that the differences obtained with COADS SSTs and HIRS SSTs are mostly due to the differences in the datasets over the northern Pacific. There was a blocking episode near Greenland in late January 1979. Both simulations with warm SST anomalies over the northwest and northeast Pacific show a tendency toward increased incidence of North Atlantic blocking; the simulation with warm SST anomalies over the northwest Atlantic shows a tendency toward decreased incidence. These results suggest that features in both SST datasets that do not have a counterpart in the other dataset contribute signficantly to the differences between the simulated and observed fields. The results of this study imply that uncertainties in current SST distributions for the world oceans can be as important as the SST anomalies themselves in terms of their impact on the atmospheric circulation. Caution should be exercised, therefore, when linking anomalous circulation and SST patterns, especially in long-range prediction.
Five Years of Experimental Warming Increases the Biodiversity and Productivity of Phytoplankton
Yvon-Durocher, Gabriel; Allen, Andrew P.; Cellamare, Maria; Dossena, Matteo; Gaston, Kevin J.; Leitao, Maria; Montoya, José M.; Reuman, Daniel C.; Woodward, Guy; Trimmer, Mark
2015-01-01
Phytoplankton are key components of aquatic ecosystems, fixing CO2 from the atmosphere through photosynthesis and supporting secondary production, yet relatively little is known about how future global warming might alter their biodiversity and associated ecosystem functioning. Here, we explore how the structure, function, and biodiversity of a planktonic metacommunity was altered after five years of experimental warming. Our outdoor mesocosm experiment was open to natural dispersal from the regional species pool, allowing us to explore the effects of experimental warming in the context of metacommunity dynamics. Warming of 4°C led to a 67% increase in the species richness of the phytoplankton, more evenly-distributed abundance, and higher rates of gross primary productivity. Warming elevated productivity indirectly, by increasing the biodiversity and biomass of the local phytoplankton communities. Warming also systematically shifted the taxonomic and functional trait composition of the phytoplankton, favoring large, colonial, inedible phytoplankton taxa, suggesting stronger top-down control, mediated by zooplankton grazing played an important role. Overall, our findings suggest that temperature can modulate species coexistence, and through such mechanisms, global warming could, in some cases, increase the species richness and productivity of phytoplankton communities. PMID:26680314
Radiocarbon Evidence That Millennial and Fast-Cycling Soil Carbon are Equally Sensitive to Warming
NASA Astrophysics Data System (ADS)
Vaughn, L. S.; Torn, M. S.; Porras, R. C.
2017-12-01
Within the century, the Arctic is expected to shift from a sink to a source of atmospheric CO2 due to climate-induced increases in soil carbon mineralization. The magnitude of this effect remains uncertain, due in large part to unknown temperature sensitivities of organic matter decomposition. In particular, the distribution of temperature sensitivities across soil carbon pools remains unknown. New experimental approaches are needed, because studies that fit multi-pool models to CO2 flux measurements may be sensitive to model assumptions, statistical effects, and non-steady-state changes in substrate availability or microbial activity. In this study, we developed a new methodology using natural abundance radiocarbon to evaluate temperature sensitivities across soil carbon pools. In two incubation experiments with soils from Barrow, AK, we (1) evaluated soil carbon age and decomposability, (2) disentangled the effects of temperature and substrate depletion on carbon mineralization, and (3) compared the temperature sensitivities of fast- and slow-cycling soil carbon pools. From a long-term incubation, both respired CO2 and the remaining soil organic matter were highly depleted in radiocarbon. At 20 cm depth, median Δ14C values were -167‰ in respired CO2 and -377‰ in soil organic matter, corresponding to turnover times of 1800 and 4800 years, respectively. Such negative Δ14C values indicate both storage and decomposition of old, stabilized carbon, while radiocarbon differences between the mineralized and non-mineralized fractions suggest that decomposability varies along a turnover time gradient. Applying a new analytical method combining CO2 flux and Δ14C, we found that fast- and slow-cycling carbon pools were equally sensitive to temperature, with a Q10 of 2 irrespective of turnover time. We conclude that in these Arctic soils, ancient soil carbon is vulnerable to warming under thawed, aerobic conditions. In contrast to many previous studies, we found no difference in temperature sensitivity of decomposition between fast- and slow-cycling pools. These findings suggest that in these soils, carbon stabilization mechanisms other than chemical recalcitrance mediate temperature sensitivities, and even old SOC will be readily decomposable as climate warms.
The permafrost carbon inventory on the Tibetan Plateau: a new evaluation using deep sediment cores.
Ding, Jinzhi; Li, Fei; Yang, Guibiao; Chen, Leiyi; Zhang, Beibei; Liu, Li; Fang, Kai; Qin, Shuqi; Chen, Yongliang; Peng, Yunfeng; Ji, Chengjun; He, Honglin; Smith, Pete; Yang, Yuanhe
2016-08-01
The permafrost organic carbon (OC) stock is of global significance because of its large pool size and the potential positive feedback to climate warming. However, due to the lack of systematic field observations and appropriate upscaling methodologies, substantial uncertainties exist in the permafrost OC budget, which limits our understanding of the fate of frozen carbon in a warming world. In particular, the lack of comprehensive estimates of OC stocks across alpine permafrost means that current knowledge on this issue remains incomplete. Here, we evaluated the pool size and spatial variations of permafrost OC stock to 3 m depth on the Tibetan Plateau by combining systematic measurements from a substantial number of pedons (i.e. 342 three-metre-deep cores and 177 50-cm-deep pits) with a machine learning technique (i.e. support vector machine, SVM). We also quantified uncertainties in permafrost carbon budget by conducting Monte Carlo simulations. Our results revealed that the combination of systematic measurements with the SVM model allowed spatially explicit estimates to be made. The OC density (OC amount per unit area, OCD) exhibited a decreasing trend from the south-eastern to the north-western plateau, with the exception that OCD in the swamp meadow was substantially higher than that in surrounding regions. Our results also demonstrated that Tibetan permafrost stored a large amount of OC in the top 3 m, with the median OC pool size being 15.31 Pg C (interquartile range: 13.03-17.77 Pg C). 44% of OC occurred in deep layers (i.e. 100-300 cm), close to the proportion observed across the northern circumpolar permafrost region. The large carbon pool size together with significant permafrost thawing suggests a risk of carbon emissions and positive climate feedback across the Tibetan alpine permafrost region. © 2016 John Wiley & Sons Ltd.
Benjamin W Abbott; Jeremy B Jones; Edward A G Schuur; F Stuart Chapin III; William B Bowden; M Syndonia Bret-Harte; Howard E Epstein; Michael D Flannigan; Tamara K Harms; Teresa N Hollingsworth; Michelle C Mack; A David McGuire; Susan M Natali; Adrian V Rocha; Suzanne E Tank; Merritt R Turetsky; Jorien E Vonk; Kimberly P Wickland; George R Aiken; Heather D Alexander; Rainer M W Amon; Brian W Benscoter; Yves Bergeron; Kevin Bishop; Olivier Blarquez; Amy L Breen; Ishi Buffam; Yihua Cai; Christopher Carcaillet; Sean K Carey; Jing M Chen; Han Y H Chen; Torben R Christensen; Lee W Cooper; J Hans C Cornelissen; William J de Groot; Thomas H DeLuca; Ellen Dorrepaal; Ned Fetcher; Jacques C Finlay; Bruce C Forbes; Nancy H F French; Sylvie Gauthier; Martin P Girardin; Scott J Goetz; Johann G Goldammer; Laura Gough; Paul Grogan; Laodong Guo; Philip E Higuera; Larry Hinzman; Feng Sheng Hu; Gustaf Hugelius; Elchin E Jafarov; Randi Jandt; Jill F Johnstone; Eric S Kasischke; Gerhard Kattner; Ryan Kelly; Frida Keuper; George W Kling; Pirkko Kortelainen; Jari Kouki; Peter Kuhry; Hjalmar Laudon; Isabelle Laurion; Robie W Macdonald; Paul J Mann; Pertti J Martikainen; James W McClelland; Ulf Molau; Steven F Oberbauer; David Olefeldt; David Par??; Marc-Andr?? Parisien; Serge Payette; Changhui Peng; Oleg S Pokrovsky; Edward B Rastetter; Peter A Raymond; Martha K Raynolds; Guillermo Rein; James F Reynolds; Martin Robards; Brendan M Rogers; Christina Sch??del; Kevin Schaefer; Inger K Schmidt; Anatoly Shvidenko; Jasper Sky; Robert G M Spencer; Gregory Starr; Robert G Striegl; Roman Teisserenc; Lars J Tranvik; Tarmo Virtanen; Jeffrey M Welker; Sergei Zimov
2016-01-01
As the permafrost region warms, its large organic carbon pool will be increasingly vulnerable to decomposition, combustion, and hydrologic export. Models predict that some portion of this release will be offset by increased production of Arctic and boreal biomass; however, the lack of robust estimates of net carbon balance increases the risk of further overshooting...
Vulnerability of high-latitude soil organic carbon in North America to disturbance
Grosse, Guido; Harden, Jennifer W.; Turetsky, Merritt; McGuire, A. David; Camill, Philip; Tarnocai, Charles; Frolking, Steve; Schuur, Edward A.G.; Jorgenson, Torre; Marchenko, Sergei; Romanovsky, Vladimir; Wickland, Kimberly P.; French, Nancy; Waldrop, Mark P.; Bourgeau-Chavez, Laura L.; Striegl, Robert G.
2011-01-01
This synthesis addresses the vulnerability of the North American high-latitude soil organic carbon (SOC) pool to climate change. Disturbances caused by climate warming in arctic, subarctic, and boreal environments can result in significant redistribution of C among major reservoirs with potential global impacts. We divide the current northern high-latitude SOC pools into (1) near-surface soils where SOC is affected by seasonal freeze-thaw processes and changes in moisture status, and (2) deeper permafrost and peatland strata down to several tens of meters depth where SOC is usually not affected by short-term changes. We address key factors (permafrost, vegetation, hydrology, paleoenvironmental history) and processes (C input, storage, decomposition, and output) responsible for the formation of the large high-latitude SOC pool in North America and highlight how climate-related disturbances could alter this pool's character and size. Press disturbances of relatively slow but persistent nature such as top-down thawing of permafrost, and changes in hydrology, microbiological communities, pedological processes, and vegetation types, as well as pulse disturbances of relatively rapid and local nature such as wildfires and thermokarst, could substantially impact SOC stocks. Ongoing climate warming in the North American high-latitude region could result in crossing environmental thresholds, thereby accelerating press disturbances and increasingly triggering pulse disturbances and eventually affecting the C source/sink net character of northern high-latitude soils. Finally, we assess postdisturbance feedbacks, models, and predictions for the northern high-latitude SOC pool, and discuss data and research gaps to be addressed by future research.
Warming and Elevated CO2 Interact to Drive Rapid Shifts in Marine Community Production.
Sorte, Cascade J B; Bracken, Matthew E S
2015-01-01
Predicting the outcome of future climate change requires an understanding of how alterations in multiple environmental factors manifest in natural communities and affect ecosystem functioning. We conducted an in situ, fully factorial field manipulation of CO2 and temperature on a rocky shoreline in southeastern Alaska, USA. Warming strongly impacted functioning of tide pool systems within one month, with the rate of net community production (NCP) more than doubling in warmed pools under ambient CO2 levels relative to initial NCP values. However, in pools with added CO2, NCP was unaffected by warming. Productivity responses paralleled changes in the carbon-to-nitrogen ratio of a red alga, the most abundant primary producer species in the system, highlighting the direct link between physiology and ecosystem functioning. These observed changes in algal physiology and community productivity in response to our manipulations indicate the potential for natural systems to shift rapidly in response to changing climatic conditions and for multiple environmental factors to act antagonistically.
Warming and Elevated CO2 Interact to Drive Rapid Shifts in Marine Community Production
Sorte, Cascade J. B.; Bracken, Matthew E. S.
2015-01-01
Predicting the outcome of future climate change requires an understanding of how alterations in multiple environmental factors manifest in natural communities and affect ecosystem functioning. We conducted an in situ, fully factorial field manipulation of CO2 and temperature on a rocky shoreline in southeastern Alaska, USA. Warming strongly impacted functioning of tide pool systems within one month, with the rate of net community production (NCP) more than doubling in warmed pools under ambient CO2 levels relative to initial NCP values. However, in pools with added CO2, NCP was unaffected by warming. Productivity responses paralleled changes in the carbon-to-nitrogen ratio of a red alga, the most abundant primary producer species in the system, highlighting the direct link between physiology and ecosystem functioning. These observed changes in algal physiology and community productivity in response to our manipulations indicate the potential for natural systems to shift rapidly in response to changing climatic conditions and for multiple environmental factors to act antagonistically. PMID:26714167
Northern Hemisphere Glaciation during the Globally Warm Early Late Pliocene
De Schepper, Stijn; Groeneveld, Jeroen; Naafs, B. David A; Van Renterghem, Cédéric; Hennissen, Jan; Head, Martin J.; Louwye, Stephen; Fabian, Karl
2013-01-01
The early Late Pliocene (3.6 to ∼3.0 million years ago) is the last extended interval in Earth's history when atmospheric CO2 concentrations were comparable to today's and global climate was warmer. Yet a severe global glaciation during marine isotope stage (MIS) M2 interrupted this phase of global warmth ∼3.30 million years ago, and is seen as a premature attempt of the climate system to establish an ice-age world. Here we propose a conceptual model for the glaciation and deglaciation of MIS M2 based on geochemical and palynological records from five marine sediment cores along a Caribbean to eastern North Atlantic transect. Our records show that increased Pacific-to-Atlantic flow via the Central American Seaway weakened the North Atlantic Current and attendant northward heat transport prior to MIS M2. The consequent cooling of the northern high latitude oceans permitted expansion of the continental ice sheets during MIS M2, despite near-modern atmospheric CO2 concentrations. Sea level drop during this glaciation halted the inflow of Pacific water to the Atlantic via the Central American Seaway, allowing the build-up of a Caribbean Warm Pool. Once this warm pool was large enough, the Gulf Stream–North Atlantic Current system was reinvigorated, leading to significant northward heat transport that terminated the glaciation. Before and after MIS M2, heat transport via the North Atlantic Current was crucial in maintaining warm climates comparable to those predicted for the end of this century. PMID:24349081
Wet-to-dry shift over Southwest China in 1994 tied to the warming of tropical warm pool
NASA Astrophysics Data System (ADS)
Wang, Lin; Huang, Gang; Chen, Wen; Zhou, Wen; Wang, Weiqiang
2018-01-01
The autumn climate in Southwest China (SWC) experienced a notable wet-to-dry shift in 1994. Associated with this change in precipitation, decadal signatures of large-scale atmospheric circulation and SST identify a likely dynamical origin: the tropical warm pool (TWP) consisting of tropical northwest Pacific (TNWP, 3°S-12°N and 110°E-150°E) sector and tropical east Indian Ocean (TEI, 10°S-3°N and 80°E-110°E) sector. A cold-to-warm phase switch of TWP SST occurred in 1994, coinciding exactly with the timing of the regime transition of SWC precipitation. During post-1994 period, warm states in the TNWP and TEI sectors plays in a synergistic fashion to invoke dry decades in SWC. On the one side, warm SST over the TNWP sector excites an anomalous cyclone centered on the South China Sea directed opposite to the climatological moisture transport and strengthened zonal wind to its west accompanied by a weakening of the poleward flux; on the other side, warm SST over the TEI sector acts to intensify inflow into TEI with less concurrent transfer of moisture to SWC and to steer moisture to the northern Arabic Sea and away from the SWC-oriented track. Meanwhile, the troposphere over SWC is capped by subsidence, which is jointly contributed by TNWP and TEI. It then follows a reduced moisture supply, suppressed convective activity, and anomalous divergence in SWC, bringing a precipitation deficit there. In contrast, cold TWP SST during 1961-1994 favors wet conditions in SWC, given a perfectly symmetrical circulation pattern. Further, the dominant role of TWP is confirmed, because the modeled response to TWP SST forcing alone bears a great resemblance to the observed evidence. Finally, it is also found that the teleconnected influence induced by TWP is stronger in southern SWC than in northern SWC, which explains the south-north gradient of interdecadal signal of SWC precipitation.
Warming enhances old organic carbon decomposition through altering functional microbial communities
Cheng, Lei; Zhang, Naifang; Yuan, Mengting; ...
2017-04-21
Soil organic matter (SOM) stocks contain nearly three times as much carbon (C) as the atmosphere and changes in soil C stocks may have a major impact on future atmospheric carbon dioxide concentrations and climate. Over the past two decades, much research has been devoted to examining the influence of warming on SOM decomposition in topsoil. Most SOM, however, is old and stored in subsoil. The fate of subsoil SOM under future warming remains highly uncertain. Here, by combining a long-term field warming experiment and a meta-analysis study, we showed that warming significantly increased SOM decomposition in subsoil. We alsomore » showed that a decade of warming promoted decomposition of subsoil SOM with turnover times of decades to millennia in a tall grass prairie and this effect was largely associated with shifts in the functional gene structure of microbial communities. By coupling stable isotope probing with metagenomics, we found that microbial communities in warmed soils possessed a higher relative abundance of key functional genes involved in the degradation of organic materials with varying recalcitrance than those in control soils. These findings suggest warming may considerably alter the stability of the vast pool of old SOM in subsoil, contributing to the long-term positive feedback between the C cycle and climate.« less
Warming enhances old organic carbon decomposition through altering functional microbial communities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, Lei; Zhang, Naifang; Yuan, Mengting
Soil organic matter (SOM) stocks contain nearly three times as much carbon (C) as the atmosphere and changes in soil C stocks may have a major impact on future atmospheric carbon dioxide concentrations and climate. Over the past two decades, much research has been devoted to examining the influence of warming on SOM decomposition in topsoil. Most SOM, however, is old and stored in subsoil. The fate of subsoil SOM under future warming remains highly uncertain. Here, by combining a long-term field warming experiment and a meta-analysis study, we showed that warming significantly increased SOM decomposition in subsoil. We alsomore » showed that a decade of warming promoted decomposition of subsoil SOM with turnover times of decades to millennia in a tall grass prairie and this effect was largely associated with shifts in the functional gene structure of microbial communities. By coupling stable isotope probing with metagenomics, we found that microbial communities in warmed soils possessed a higher relative abundance of key functional genes involved in the degradation of organic materials with varying recalcitrance than those in control soils. These findings suggest warming may considerably alter the stability of the vast pool of old SOM in subsoil, contributing to the long-term positive feedback between the C cycle and climate.« less
Warming enhances old organic carbon decomposition through altering functional microbial communities
Cheng, Lei; Zhang, Naifang; Yuan, Mengting; Xiao, Jing; Qin, Yujia; Deng, Ye; Tu, Qichao; Xue, Kai; Van Nostrand, Joy D; Wu, Liyou; He, Zhili; Zhou, Xuhui; Leigh, Mary Beth; Konstantinidis, Konstantinos T; Schuur, Edward AG; Luo, Yiqi; Tiedje, James M; Zhou, Jizhong
2017-01-01
Soil organic matter (SOM) stocks contain nearly three times as much carbon (C) as the atmosphere and changes in soil C stocks may have a major impact on future atmospheric carbon dioxide concentrations and climate. Over the past two decades, much research has been devoted to examining the influence of warming on SOM decomposition in topsoil. Most SOM, however, is old and stored in subsoil. The fate of subsoil SOM under future warming remains highly uncertain. Here, by combining a long-term field warming experiment and a meta-analysis study, we showed that warming significantly increased SOM decomposition in subsoil. We also showed that a decade of warming promoted decomposition of subsoil SOM with turnover times of decades to millennia in a tall grass prairie and this effect was largely associated with shifts in the functional gene structure of microbial communities. By coupling stable isotope probing with metagenomics, we found that microbial communities in warmed soils possessed a higher relative abundance of key functional genes involved in the degradation of organic materials with varying recalcitrance than those in control soils. These findings suggest warming may considerably alter the stability of the vast pool of old SOM in subsoil, contributing to the long-term positive feedback between the C cycle and climate. PMID:28430189
Warming enhances old organic carbon decomposition through altering functional microbial communities.
Cheng, Lei; Zhang, Naifang; Yuan, Mengting; Xiao, Jing; Qin, Yujia; Deng, Ye; Tu, Qichao; Xue, Kai; Van Nostrand, Joy D; Wu, Liyou; He, Zhili; Zhou, Xuhui; Leigh, Mary Beth; Konstantinidis, Konstantinos T; Schuur, Edward Ag; Luo, Yiqi; Tiedje, James M; Zhou, Jizhong
2017-08-01
Soil organic matter (SOM) stocks contain nearly three times as much carbon (C) as the atmosphere and changes in soil C stocks may have a major impact on future atmospheric carbon dioxide concentrations and climate. Over the past two decades, much research has been devoted to examining the influence of warming on SOM decomposition in topsoil. Most SOM, however, is old and stored in subsoil. The fate of subsoil SOM under future warming remains highly uncertain. Here, by combining a long-term field warming experiment and a meta-analysis study, we showed that warming significantly increased SOM decomposition in subsoil. We also showed that a decade of warming promoted decomposition of subsoil SOM with turnover times of decades to millennia in a tall grass prairie and this effect was largely associated with shifts in the functional gene structure of microbial communities. By coupling stable isotope probing with metagenomics, we found that microbial communities in warmed soils possessed a higher relative abundance of key functional genes involved in the degradation of organic materials with varying recalcitrance than those in control soils. These findings suggest warming may considerably alter the stability of the vast pool of old SOM in subsoil, contributing to the long-term positive feedback between the C cycle and climate.
NASA Astrophysics Data System (ADS)
Reed, S.; Cavaleri, M. A.; Alonso-Rodríguez, A. M.; Kimball, B. A.; Wood, T. E.
2016-12-01
Tropical forests represent one of the planet's most active biogeochemical engines. They account for the dominant proportion of Earth's live terrestrial plant biomass, nearly one-third of all soil carbon, and exchange more CO2 with the atmosphere than any other biome. In the coming decades, the tropics will experience extraordinary changes in temperature, and our understanding of how this warming will affect biogeochemical cycling remains notably poor. Given the large amounts of carbon tropical forests store and cycle, it is no surprise that our limited ability to characterize tropical forest responses to climate change may represent the largest hurdle in accurately predicting Earth's future climate. Here we describe initial results from the world's first tropical forest field warming experiment, where forest understory plants and soils are being warmed 4 °C above ambient temperatures. This Tropical Responses to Altered Climate Experiment (TRACE) was established in a rain forest in Puerto Rico to investigate the effects of increased temperature on key biological processes that control tropical forest carbon cycling, and to establish the steps that need to be taken to resolve the uncertainties surrounding tropical forest responses to warming. In this talk we will describe the experimental design, as well as the wide range of measurements being conducted. We will also present results from the initial phase of warming, including data on how increased temperatures from infrared lamp warming affected soil moisture, soil respiration rates, a suite of carbon pools, soil microbial biomass, nutrient availability, and the exchange of elements between leaf litter and soil. These data represent a first look into tropical rain forest responses to an experimentally-warmed climate in the field, and provide exciting insight into the non-linear ways tropical biogeochemical cycles respond to change. Overall, we strive to improve Earth System Model parameterization of the pools and fluxes of water, carbon, and nutrients in tropical forested ecosystems and the data shown will highlight how these cycles are coupled and independently altered by warming.
... of warm freshwater, such as lakes and rivers Geothermal (naturally hot) water, such as hot springs Warm water discharge from industrial plants Geothermal (naturally hot) drinking water sources Swimming pools that ...
NASA Astrophysics Data System (ADS)
Bracho, R. G.; Schuur, E. A.; Pegoraro, E.; Crummer, K. G.; Natali, S.; Zhou, J.; Wu, L.; Luo, Y.; Tiedje, J. M.; Konstantinidis, K.
2013-12-01
Permafrost soils contain approximately1700 Pg of carbon (C), twice the amount of C in the atmosphere. Temperatures in higher latitudes are increasing, inducing permafrost thaw and subsequent microbial decomposition of previously frozen C. This process is one of the most likely positive feedbacks to climate change. Understanding the temperature sensitivity (Q10) and dynamics of SOM decomposition under warming is essential to predict the future state of the earth - climate system. Alaskan tundra soils were exposed to two winter warming (WW) seasons in the field, which warmed the soils by 4°C to 40 cm depth. Soils were obtained from three depths (0 - 15, 15 - 25 and 45 - 55 cm) and differed in initial amounts of labile and recalcitrant C. Soils were incubated in the lab under aerobic conditions, at 15 and 25°C over 365 days. Q10 was estimated at 14, 100 & 280 days of incubation (DOI); C fluxes were measured periodically and dynamics of SOM decomposition (C pool sizes and decay rates) were estimated by fitting a two pool C model to cumulative respired C (Ccum, mgC/ginitialC). After two WW seasons, initial C content tended to decrease through the soil profile and C:N ratio was significantly decreased in the top 15 cm. After one year of incubation, Ccum was twice as high at 25°C as at 15°C and significantly decreased with depth. No significant WW field treatment was detected, although Ccum tended to be lower in warmed soils. Labile C accounted for up to 5% of initial soil C content in the top 15 cm and decreased with depth. Soils exposed to WW had smaller labile C pools, and higher labile C decay rates in the top 25 cm. Q10 significantly decreased with time and depth as labile pool decreased, especially for WW. This decrease with time indicates a lower temperature sensitivity of the most recalcitrant C pool. The deepest WW soil layer, where warming was more pronounced, had significantly lower Q10 compared to control soils at the same depth. After two seasons, the warming treatment affected decomposition by reducing labile C pools and increasing its decay rates. Warming also reduced temperature sensitivity, showing acclimation of the most recalcitrant C pool in the tundra ecosystem.
Influence of Transient Atmospheric Circulation on the Surface Heating of the Pacific Warm Pool
NASA Technical Reports Server (NTRS)
Chou, Ming-Dah; Chou, Shu-Hsien; Chan, Pui-King
2003-01-01
Analyses of data on clouds, winds, and surface heat fluxes show that the transient behavior of basin-wide large-scale circulation has a significant influence on the warm pool sea surface temperature (SST). Trade winds converge to regions of the highest SST in the equatorial western Pacific. These regions have the largest cloud cover and smallest wind speed. Both surface solar heating and evaporative cooling are weak. The reduced evaporative cooling due to weakened winds exceeds the reduced solar heating due to enhanced cloudiness. The result is a maximum surface heating in the strong convective and high SST regions. Data also show that the maximum surface heating in strong convective regions is interrupted by transient atmospheric and oceanic circulation. Due to the seasonal variation of the insolation at the top of the atmosphere, trade winds and clouds also experience seasonal variations. Regions of high SST and low-level convergence follow the Sun, where the surface heating is a maximum. As the Sun moves away from a convective region, the strong trade winds set in, and the evaporative cooling enhances, resulting in a net cooling of the surface. During an El Nino, the maximum SST and convective region shifts eastward from the maritime continent to the equatorial central Pacific. Following the eastward shift of the maximum SST, the region of maximum cloudiness and surface heating also shift eastward. As the atmospheric and oceanic circulation returns to normal situations, the trade winds increase and the surface heating decreases. We conclude that the evaporative cooling associated with the seasonal and interannual variations of trade winds is one of the major factors that modulate the SST distribution of the Pacific warm pool.
Randall K. Kolka; Brian R. Sturtevant; Jessica R. Miesel; Aditya Singh; Peter T. Wolter; Shawn Fraver; Thomas M. DeSutter; Phil A. Townsend
2017-01-01
Forest fires cause large emissions of C (carbon), N (nitrogen) and Hg (mercury) to the atmosphere and thus have important implications for global warming (e.g. via CO2 and N2O emissions), anthropogenic fertilisation of natural ecosystems (e.g. via N deposition), and bioaccumulation of harmful metals in aquatic and...
NASA Astrophysics Data System (ADS)
Receveur, A.; Simon, N.; Menkes, C.; Tremblay-Boyer, L.; Senina, I.; Lehodey, P.
2016-12-01
El Niño Southern Oscillation (ENSO) drives global climate on inter-annual scales and impacts the ecosystem structure in the warm-pool and cold-tongue of the Pacific Ocean. During the El Niño phase of ENSO, the warm-pool can stretch from the western equatorial Pacific to the eastern Pacific allowing species associated with the warm-pool to correspondingly spread eastwards. Conversely, during the la Niña phase the warm-pool is pushed to the far western equatorial Pacific by the cold-tongue allowing species associated with this ecosystem to spread westwards. Consequently, ENSO dynamics are likely to be critical for understanding the ecological processes supporting fisheries in the equatorial Pacific Ocean. Surface inhabiting tuna, such as skipjack, are thought to track the convergence of the warm-pool and cold-tongue with fishing vessels tracking this tuna behavior. Given the reliance of Pacific Island economies on tuna fisheries, knowing when tunas are more likely to be present in high density in their territorial waters is beneficial for harvest control policies such as effort trading between nations. We use the SEAPODYM model to investigate the response of bigeye and skipjack tuna species to the phases of ENSO. SEAPODYM is an age structured model that integrates fisheries dependent and independent data with environmental data. We analyze the outputs of SEAPODYM using wavelets to assess the impact of environmental and biotic variables on the abundance and distribution of adult and juvenile age classes and to study time series cycle and temporal lags to ENSO. The main result for skipjack is the eastward or westward movement of the biomass pattern which is significantly lagged with the warm pool ENSO displacement. That lag ranges from 8 months for juvenile up to 18 months for adults. Such delayed response, can be traced in the model. Higher temperature in the central Pacific during El Niño leads to better recruitment which leads to lagged increase of juvenile biomass and lagged increase of adults. This suggest that previous analysis showing a phase displacement between El Niño and skipjack CPUE are biased by the effort movements of the fleet and may not accurately represent the tuna biomass movements.
Peng, Fei; Xue, Xian; You, Quangang; Xu, Manhou; Chen, Xiang; Guo, Jian; Wang, Tao
2016-12-01
Nitrogen (N) availability is projected to increase in a warming climate. But whether the more available N is immobilized by microbes (thus stimulates soil carbon (C) decomposition), or is absorbed by plants (thus intensifies C uptake) remains unknown in the alpine meadow ecosystem. Infrared heaters were used to simulate climate warming with a paired experimental design. Soil ammonification, nitrification, and net mineralization were obtained by in situ incubation in a permafrost region of the Qinghai-Tibet Plateau (QTP). Available N significantly increased due to the stimulation of net nitrification and mineralization in 0-30 cm soil layer. Microbes immobilized N in the end of growing season in both warming and control plots. The magnitude of immobilized N was lower in the warming plots. The root N concentration significantly reduced, but root N pool intensified due to the significant increase in root biomass in the warming treatment. Our results suggest that a warming-induced increase in biomass is the major N sink and will continue to stimulate plant growth until plant N saturation, which could sustain the positive warming effect on ecosystem productivity.
Soil warming opens the nitrogen cycle at the alpine treeline.
Dawes, Melissa A; Schleppi, Patrick; Hättenschwiler, Stephan; Rixen, Christian; Hagedorn, Frank
2017-01-01
Climate warming may alter ecosystem nitrogen (N) cycling by accelerating N transformations in the soil, and changes may be especially pronounced in cold regions characterized by N-poor ecosystems. We investigated N dynamics across the plant-soil continuum during 6 years of experimental soil warming (2007-2012; +4 °C) at a Swiss high-elevation treeline site (Stillberg, Davos; 2180 m a.s.l.) featuring Larix decidua and Pinus uncinata. In the soil, we observed considerable increases in the NH4+ pool size in the first years of warming (by >50%), but this effect declined over time. In contrast, dissolved organic nitrogen (DON) concentrations in soil solutions from the organic layer increased under warming, especially in later years (maximum of +45% in 2012), suggesting enhanced DON leaching from the main rooting zone. Throughout the experimental period, foliar N concentrations showed species-specific but small warming effects, whereas δ 15 N values showed a sustained increase in warmed plots that was consistent for all species analysed. The estimated total plant N pool size at the end of the study was greater (+17%) in warmed plots with Pinus but not in those containing Larix, with responses driven by trees. Irrespective of plot tree species identity, warming led to an enhanced N pool size of Vaccinium dwarf shrubs, no change in that of Empetrum hermaphroditum (dwarf shrub) and forbs, and a reduction in that of grasses, nonvascular plants, and fine roots. In combination, higher foliar δ 15 N values and the transient response in soil inorganic N indicate a persistent increase in plant-available N and greater cumulative plant N uptake in warmer soils. Overall, greater N availability and increased DON concentrations suggest an opening of the N cycle with global warming, which might contribute to growth stimulation of some plant species while simultaneously leading to greater N losses from treeline ecosystems and possibly other cold biomes. © 2016 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Ignacio Vilchis, L.; Ballance, Lisa T.; Watson, William
2009-01-01
Considerable evidence exists, showing an accelerated warming trend on earth during the past 40-50 years, attributed mainly to anthropogenic factors. Much of this excess heat is stored in the world's oceans, likely resulting in increased environmental variability felt by marine ecosystems. The long-term effects of this phenomenon on oceanic tropical ecosystems are largely unknown, and our understanding of its effects could be facilitated by long-term studies of how species compositions change with time. Ichthyoplankton, in particular, can integrate physical, environmental and ecological factors making them excellent model taxa to address this question. While on eight (1987-1990, 1992 and 1998-2000) NOAA Fisheries cruises to the eastern Pacific warm pool, we characterized the thermal and phytoplankton pigment structure of the water column, as well as the neustonic ichthyoplankton community using CTD casts and Manta (surface) net tows. Over the 13-year period, 852 CTD and Manta tow stations were completed. We divided the study area into three regions based on regional oceanography, thermocline depth and productivity, as well as a longitudinal gradient in species composition among stations. We then analyzed temporal trends of ichthyoplankton species composition within each region by pooling stations by region and year and making pairwise comparisons of community similarity between all combinations of the eight cruises within each region. We also identified environment-specific species assemblages and station groupings using hierarchical clustering and non-metric multi-dimensional scaling (MDS). Our analyses revealed a longitudinal gradient in community structure and temporal stability of ichthyoplankton species composition. Over the 13 years ichthyoplankton assemblages in the two westernmost regions varied less than in the eastern region. MDS and cluster analyses identified five ichthyoplankton assemblages that corresponded to oceanographic habitats and a gradient in community composition. We hypothesize that the changes in thermocline depth during the El Niños of 1987-1988, 1997-1998 and the extended period of warmth during 1990-1994 altered productivity sufficiently to cause a shift in the abundances of foundation species of the upwelling systems of the eastern Pacific warm pool. Our study suggests that ichthyoplankton assemblages in oligotrophic waters are more resilient to changes in the thermocline than assemblages in upwelling regions; or that oligotrophic regions simply have less physical variation compared to upwelling regions.
Projected climate changes threaten ancient refugia of kelp forests in the North Atlantic.
Assis, Jorge; Araújo, Miguel B; Serrão, Ester A
2018-01-01
Intraspecific genetic variability is critical for species adaptation and evolution and yet it is generally overlooked in projections of the biological consequences of climate change. We ask whether ongoing climate changes can cause the loss of important gene pools from North Atlantic relict kelp forests that persisted over glacial-interglacial cycles. We use ecological niche modelling to predict genetic diversity hotspots for eight species of large brown algae with different thermal tolerances (Arctic to warm temperate), estimated as regions of persistence throughout the Last Glacial Maximum (20,000 YBP), the warmer Mid-Holocene (6,000 YBP), and the present. Changes in the genetic diversity within ancient refugia were projected for the future (year 2100) under two contrasting climate change scenarios (RCP2.6 and RCP8.5). Models predicted distributions that matched empirical distributions in cross-validation, and identified distinct refugia at the low latitude ranges, which largely coincide among species with similar ecological niches. Transferred models into the future projected polewards expansions and substantial range losses in lower latitudes, where richer gene pools are expected (in Nova Scotia and Iberia for cold affinity species and Gibraltar, Alboran, and Morocco for warm-temperate species). These effects were projected for both scenarios but were intensified under the extreme RCP8.5 scenario, with the complete borealization (circum-Arctic colonization) of kelp forests, the redistribution of the biogeographical transitional zones of the North Atlantic, and the erosion of global gene pools across all species. As the geographic distribution of genetic variability is unknown for most marine species, our results represent a baseline for identification of locations potentially rich in unique phylogeographic lineages that are also climatic relics in threat of disappearing. © 2017 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Befort, Daniel J.; Leckebusch, Gregor C.; Cubasch, Ulrich
2016-04-01
Proxy-based studies confirmed that the Indian Summer Monsoon (ISM) shows large variations during the Holocene. These changes might be explained by changes in orbital conditions and solar insolation but are also thought to be associated to changes in oceanic conditions, e.g. over the Indo-Pacific-Warm-Pool region. However, due to the nature of these (proxy-based) analyses no conclusion about atmospheric circulation changes during dry and wet epochs are possible. Here, a fully-coupled global climate simulation (AOGCM) covering the past 6000 years is analysed regarding ISM variability. Several dry and wet epochs are found, the most striking around 2ka BP (dry) and 1.7ka BP (wet). As only orbital parameters change during integration, we expect these "shorter-term" changes to be associated with changes in oceanic conditions. During 1.7ka BP the sea surface temperatures (SST) over the Northern Arabian Sea (NARAB) are significantly warmer compared to 2ka BP, whereas cooler conditions are found over the western Pacific Ocean. Additionally, significant differences are found over large parts of the North Atlantic. To explain in how far these different ocean basins are responsible for anomalous conditions during 1.7ka BP, several sensitivity experiments with changed SST/SIC conditions are carried out. It is found that neither the SST's in the Pacific nor in the Indian Ocean are able to reproduce the anomalous rainfall and atmospheric circulation patterns during 1.7ka on its own. Instead, anomalous dry conditions during 2ka BP and wet conditions during 1.7ka BP are associated with a shift of the Indo-Pacific-Warm-Pool (IPWP) and simultaneous anomalous sea-surface temperatures over the NARAB region. Eventually, it is tested in how far this hypothesis holds true for other dry and wet events in the AOGCM data during the whole 6000 years. In general, a shift of the IPWP without anomalous SST conditions over the NARAB region (and vice versa) is not sufficient to cause long-lasting rainfall variations over India on a centennial time-scale.
Jonathan A. O' Donnell; Jennifer W. Harden; A. David McGuire; Mikhail Z. Kanevskiy; M. Torre Jorgenson; Xiaomei Xu
2010-01-01
High-latitude regions store large amounts of organic carbon (OC) in active-layer soils and permafrost, accounting for nearly half of the global belowground OC pool. In the boreal region, recent warming has promoted changes in the fire regime, which may exacerbate rates of permafrost thaw and alter soil OC dynamics in both organic and mineral soil. We examined how...
Enhanced Pacific Ocean Sea Surface Temperature and Its Relation to Typhoon Haiyan
NASA Technical Reports Server (NTRS)
Comiso, Josefino C.; Perez, Gay Jane P.; Stock, Larry V.
2015-01-01
Typhoon Haiyan, which devastated the Visayan Islands in the Philippines on November 8, 2013 was recorded as the strongest typhoon ever-observed using satellite data. Typhoons in the region usually originate from the mid-Pacific region that includes the Warm Pool, which is regarded as the warmest ocean surface region globally. Two study areas were considered: one in the Warm Pool Region and the other in the West Pacific Region near the Philippines. Among the most important factors that affect the strength of a typhoon are sea surface temperature (SST) and water vapor. It is remarkable that in November 2013 the average SST in the Warm Pool Region was the highest observed during the 1981 to 2014 period while that of the West Pacific Region was among the highest as well. Moreover, the increasing trend in SST was around 0.20C per decade in the warm pool region and even higher at 0.23C per decade in the West Pacific region. The yearly minimum SST has also been increasing suggesting that the temperature of the ocean mixed layer is also increasing. Further analysis indicated that water vapor, clouds, winds and sea level pressure for the same period did not reveal strong signals associated with the 2013 event. The SST is shown to be well-correlated with wind strength of historically strong typhoons in the country and the observed trends in SST suggest that extremely destructive typhoons like Haiyan are likely to occur in the future.
Funk, Christopher C.; Peterson, Thomas C.; Stott, Peter A.; Herring, Stephanie
2012-01-01
In 2011, East Africa faced a tragic food crisis that led to famine conditions in parts of Somalia and severe food shortages in parts of Ethiopia and Somalia. While many nonclimatic factors contributed to this crisis (high global food prices, political instability, and chronic poverty, among others) failed rains in both the boreal winter of 2010/11 and the boreal spring of 2011 played a critical role. The back-to-back failures of these rains, which were linked to the dominant La Niña climate and warm SSTs in the central and southeastern Indian Ocean, were particularly problematic since they followed poor rainfall during the spring and summer of 2008 and 2009. In fact, in parts of East Africa, in recent years, there has been a substantial increase in the number of below-normal rainy seasons, which may be related to the warming of the western Pacific and Indian Oceans (for more details, see Funk et al. 2008; Williams and Funk 2011; Williams et al. 2011; Lyon and DeWitt 2012). The basic argument of this work is that recent warming in the Indian–Pacific warm pool (IPWP) enhances the export of geopotential height energy from the warm pool, which tends to produce subsidence across eastern Africa and reduce onshore moisture transports. The general pattern of this disruption has been supported by canonical correlation analyzes and numerical experiments with the Community Atmosphere Model (Funk et al. 2008), diagnostic evaluations of reanalysis data (Williams and Funk 2011; Williams et al. 2011), and SST-driven experiments with ECHAM4.5, ECHAM5, and the Community Climate Model version 3 (CCM3.6) (Lyon and DeWitt 2012).
TOPEX/El Nino Watch - El Nino Warm Water Pool Returns to Near Normal State, Mar, 14, 1998
NASA Technical Reports Server (NTRS)
1998-01-01
This image of the Pacific Ocean was produced using sea surface height measurements taken by the U.S.-French TOPEX/Poseidon satellite. The image shows sea surface height relative to normal ocean conditions on Mar. 14, 1998 and sea surface height is an indicator of the heat content of the ocean. The image shows that the sea surface height along the central equatorial Pacific has returned to a near normal state. Oceanographers indicate this is a classic pattern, typical of a mature El Nino condition. Remnants of the El Nino warm water pool, shown in red and white, are situated to the north and south of the equator. These sea surface height measurements have provided scientists with a detailed view of how the 1997-98 El Nino's warm pool behaves because the TOPEX/Poseidon satellite measures the changing sea surface height with unprecedented precision. In this image, the white and red areas indicate unusual patterns of heat storage; in the white areas, the sea surface is between 14 and 32 centimeters (6 to 13 inches) above normal; in the red areas, it's about 10 centimeters (4 inches) above normal. The green areas indicate normal conditions, while purple (the western Pacific) means at least 18 centimeters (7 inches) below normal sea level. The El Nino phenomenon is thought to be triggered when the steady westward blowing trade winds weaken and even reverse direction. This change in the winds allows a large mass of warm water (the red and white area) that is normally located near Australia to move eastward along the equator until it reaches the coast of South America. The displacement of so much warm water affects evaporation, where rain clouds form and, consequently, alters the typical atmospheric jet stream patterns around the world. Using satellite imagery, buoy and ship data, and a forecasting model of the ocean-atmosphere system, the National Oceanic and Atmospheric Administration, (NOAA), has continued to issue an advisory indicating the so-called El Nino weather conditions that have impacted much of the United States and the world are expected to remain through the spring.
For more information, please visit the TOPEX/Poseidon project web page at http://topex-www.jpl.nasa.govAn aftereffect of global warming on tropical Pacific decadal variability
NASA Astrophysics Data System (ADS)
Zheng, Jian; Liu, Qinyu; Wang, Chuanyang
2018-03-01
Studies have shown that global warming over the past six decades can weaken the tropical Pacific Walker circulation and maintain the positive phase of the Interdecadal Pacific Oscillation (IPO). Based on observations and model simulations, another aftereffect of global warming on IPO is found. After removing linear trends (global warming signals) from observations, however, the tropical Pacific climate still exhibited some obvious differences between two IPO negative phases. The boreal winter (DJF) equatorial central-eastern Pacific sea surface temperature (SST) was colder during the 1999-2014 period (P2) than that during 1961-1976 (P1). This difference may have been a result of global warming nonlinear modulation of precipitation; i.e., in the climatological rainy region, the core area of the tropical Indo-western Pacific warm pool receives more precipitation through the "wet-get-wetter" mechanism. Positive precipitation anomalies in the warm pool during P2 are much stronger than those during P1, even after subtracting the linear trend. Corresponding to the differences of precipitation, the Pacific Walker circulation is stronger in P2 than in P1. Consequent easterly winds over the equatorial Pacific led to a colder equatorial eastern-central Pacific during P2. Therefore, tropical Pacific climate differences between the two negative IPO phases are aftereffects of global warming. These aftereffects are supported by the results of coupled climate model experiments, with and without global warming.
Observations of cross-Saharan transport of water vapour via cycle of cold pools and moist convection
NASA Astrophysics Data System (ADS)
Trzeciak, Tomasz; Garcia-Carreras, Luis; Marsham, John H.
2017-04-01
Very limited observational data has previously limited our ability to study meteorological processes in the Sahara. The Sahara is a key component of the West African monsoon and the world's largest dust source, but its representation is a major uncertainty in global models. Past studies have shown that there is a persistent warm and dry model bias throughout the Sahara, and this has been attributed to the lack of convectively-generated cold pools in the model, which can ventilate the central Sahara from its margins. Here we present an observed case from June 2012 which explains how cold pools are able to transport water vapour across a large area of the Sahara over a period of several days. A daily cycle is found to occur, where deep convection in the evening generates moist cold pools that then feed the next day's convection; the new convection in turn generates new cold pools, providing a vertical recycling of moisture. Trajectories driven by analyses can capture the general direction of transport, but not its full extent, especially at night when cold pools are most active, highlighting the difficulties for models to capture these processes. These results show the importance of cold pools for moisture transport, dust and clouds in the region, and demonstrate the need to include these processes in models to improve the representation of the Saharan atmosphere.
Solar radiation, phytoplankton pigments and the radiant heating of the equatorial Pacific warm pool
NASA Technical Reports Server (NTRS)
Siegel, David A.; Ohlmann, J. Carter; Washburn, Libe; Bidigare, Robert R.; Nosse, Craig T.; Fields, Erik; Zhou, Yimei
1995-01-01
Recent optical, physical, and biological oceanographic observations are used to assess the magnitude and variability of the penetrating flux of solar radiation through the mixed layer of the warm water pool (WWP) of the western equatorial Pacific Ocean. Typical values for the penetrative solar flux at the climatological mean mixed layer depth for the WWP (30 m) are approx. 23 W/sq m and are a large fraction of the climatological mean net air-sea heat flux (approx. 40 W/sq m). The penetrating solar flux can vary significantly on synoptic timescales. Following a sustained westerly wind burst in situ solar fluxes were reduced in response to a near tripling of mixed layer phytoplankton pigment concentrations. This results in a reduction in the penetrative flux at depth (5.6 W/sq m at 30 m) and corresponds to a biogeochemically mediated increase in the mixed layer radiant heating rate of 0.13 C per month. These observations demonstrate a significant role of biogeochemical processes on WWP thermal climate. We speculate that this biogeochemically mediated feedback process may play an important role in enhancing the rate at which the WWP climate system returns to normal conditions following a westerly wind burst event.
Response of the Antarctic Stratosphere to Warm Pool EI Nino Events in the GEOS CCM
NASA Technical Reports Server (NTRS)
Hurwitz, Margaret M.; Song, In-Sun; Oman, Luke D.; Newman, Paul A.; Molod, Andrea M.; Frith, Stacey M.; Nielsen, J. Eric
2011-01-01
A new type of EI Nino event has been identified in the last decade. During "warm pool" EI Nino (WPEN) events, sea surface temperatures (SSTs) in the central equatorial Pacific are warmer than average. The EI Nino signal propagates poleward and upward as large-scale atmospheric waves, causing unusual weather patterns and warming the polar stratosphere. In austral summer, observations show that the Antarctic lower stratosphere is several degrees (K) warmer during WPEN events than during the neutral phase of EI Nino/Southern Oscillation (ENSO). Furthermore, the stratospheric response to WPEN events depends of the direction of tropical stratospheric winds: the Antarctic warming is largest when WPEN events are coincident with westward winds in the tropical lower and middle stratosphere i.e., the westward phase of the quasi-biennial oscillation (QBO). Westward winds are associated with enhanced convection in the subtropics, and with increased poleward wave activity. In this paper, a new formulation of the Goddard Earth Observing System Chemistry-Climate Model, Version 2 (GEOS V2 CCM) is used to substantiate the observed stratospheric response to WPEN events. One simulation is driven by SSTs typical of a WPEN event, while another simulation is driven by ENSO neutral SSTs; both represent a present-day climate. Differences between the two simulations can be directly attributed to the anomalous WPEN SSTs. During WPEN events, relative to ENSO neutral, the model simulates the observed increase in poleward planetary wave activity in the South Pacific during austral spring, as well as the relative warming of the Antarctic lower stratosphere in austral summer. However, the modeled response to WPEN does not depend on the phase of the QBO. The modeled tropical wind oscillation does not extend far enough into the lower stratosphere and upper troposphere, likely explaining the model's insensitivity to the phase of the QBO during WPEN events.
NASA Astrophysics Data System (ADS)
Litton, C. M.; Giardina, C. P.; Selmants, P.
2014-12-01
Terrestrial ecosystem carbon (C) storage exceeds that in the atmosphere by a factor of four, and represents a dynamic balance among C input, allocation, and loss. This balance is likely being altered by climate change, but the response of terrestrial C cycling to warming remains poorly quantified, particularly in tropical forests which play a disproportionately large role in the global C cycle. Over the past five years, we have quantified above- and belowground C pools and fluxes in nine permanent plots spanning a 5.2°C mean annual temperature (MAT) gradient (13-18.2°C) in Hawaiian tropical montane wet forest. This elevation gradient is unique in that substrate type and age, soil type, soil water balance, canopy vegetation, and disturbance history are constant, allowing us to isolate the impact of long-term, whole ecosystem warming on C input, allocation, loss and storage. Across the gradient, soil respiration, litterfall, litter decomposition, total belowground C flux, aboveground net primary productivity, and estimates of gross primary production (GPP) all increase linearly and positively with MAT. Carbon partitioning is dynamic, shifting from below- to aboveground with warming, likely in response to a warming-induced increase in the cycling and availability of soil nutrients. In contrast to observed patterns in C flux, live biomass C, soil C, and total ecosystem C pools remained remarkably constant with MAT. There was also no difference in soil bacterial taxon richness, phylogenetic diversity, or community composition with MAT. Taken together these results indicate that in tropical montane wet forests, increased temperatures in the absence of water limitation or disturbance will accelerate C cycling, will not alter ecosystem C storage, and will shift the products of photosynthesis from below- to aboveground. These results agree with an increasing number of studies, and collectively provide a unique insight into anticipated warming-induced changes in tropical forest C cycling.
Effects of Fire on Understory Vegetation Communities in Siberian Boreal Forests and Alaskan Tundra
NASA Astrophysics Data System (ADS)
Pena, H., III; Alexander, H. D.; Natali, S.; Loranty, M. M.; Holmes, R. M.; Mack, M. C.; Schade, J. D.; Mann, P. J.; Davydov, S. P.; Frey, B.; Zimov, N.; Jardine, L. E.
2017-12-01
Fire is an important disturbance in Arctic ecosystems that is increasing in frequency and severity as a result of climate warming. Fire alters the landscape, changes soil conditions, and influences vegetation regrowth, favoring early-successional plants and those with well-established root systems capable of surviving fire. Post-fire vegetation establishment contributes to the recovery of the soil organic layer (SOL), which insulates the soil and protects soil and permafrost carbon pools. In order to better understand successional dynamics following fire in the Arctic we assessed the short-(years) and long-(decades) term effects of fire on vegetation communities, SOL depth, and thaw depth across fire-affected sites located in two regions of the Arctic- a 76-year old fire scar in a larch forest in Siberia near Cherskiy, Russia, and a 2-year old fire scar in tundra in the Yukon-Kuskokwim Delta, Alaska. We measured species diversity, plant carbon (C) pools, SOL conditions and NDVI at both study areas. As expected, there was a decline in vegetation C pools following fire in Alaskan tundra, and as a result of higher severity fire in Siberian boreal forests. Two years following fire in Alaskan tundra, vegetation C pools decreased six-fold from 600 g C m-2 at unburned areas, to 100 g C m-2 at the 2015 burn areas. In larch forests, understory C pools were three-times lower in stands with high intensity fires (135 g C m-2) compared to those with low intensity fires (415 g C m-2), due to the absence of dwarf birch (Betula nana). Our results illustrate how fire influences vegetation at both early and later stages of succession, which can have cascading effects on SOL development and permafrost integrity, with the potential for release of large C stocks that may further exacerbate climate warming.
Habitat restoration as a means of controlling non-native fish in a Mojave desert Oasis
Scoppettone, G.G.; Rissler, P.H.; Gourley, C.; Martinez, C.
2005-01-01
Non-native fish generally cause native fish decline, and once non-natives are established, control or elimination is usually problematic. Because non-native fish colonization has been greatest in anthropogenically altered habitats, restoring habitat similar to predisturbance conditions may offer a viable means of non-native fish control. In this investigation we identified habitats favoring native over non-native fish in a Mojave Desert oasis (Ash Meadows) and used this information to restore one of its major warm water spring systems (Kings Pool Spring). Prior to restoration, native fishes predominated in warm water (25-32??C) stream and spring-pool habitat, whereas non-natives predominated in cool water (???23??C) spring-pool and marsh/slack water habitat. Native Amargosa pupfish (Cyprinodon nevadensis) and Ash Meadows speckled dace (Rhinichthys osculus nevadensis) inhabited significantly faster mean water column velocities (MWCV) and greater total depth (TD) than non-native Sailfin molly (Poecilia latipinna) and Mosquitofish (Gambusia affinis) in warm water stream habitat, and Ash Meadows speckled dace inhabited significantly faster water than non-natives in cool water stream habitat. Modification of the outflow of Kings Pool Spring from marsh to warm water stream, with MWCV, TD, and temperature favoring native fish, changed the fish composition from predominantly non-native Sailfin molly and Mosquitofish to predominantly Ash Meadows pupfish. This result supports the hypothesis that restoring spring systems to a semblance of predisturbance conditions would promote recolonization of native fishes and deter non-native fish invasion and proliferation. ?? 2005 Society for Ecological Restoration International.
Alkali metal pool boiler life tests for a 25 kWe advanced Stirling conversion system
NASA Technical Reports Server (NTRS)
Anderson, W. G.; Rosenfeld, J. H.; Noble, J.
1991-01-01
The overall operating temperature and efficiency of solar-powered Stirling engines can be improved by adding an alkali metal pool boiler heat transport system to supply heat more uniformly to the heater head tubes. One issue with liquid metal pool boilers is unstable boiling. Stable boiling is obtained with an enhanced boiling surface containing nucleation sites that promote continuous boiling. Over longer time periods, it is possible that the boiling behavior of the system will change. An 800-h life test was conducted to verify that pool boiling with the chosen fluid/surface combination remains stable as the system ages. The apparatus uses NaK boiling on a - 100 + 140 stainless steel sintered porous layer, with the addition of a small amount of xenon. Pool boiling remained stable to the end of life test. The pool boiler life test included a total of 82 cold starts, to simulate startup each morning, and 60 warm restarts, to simulate cloud cover transients. The behavior of the cold and warm starts showed no significant changes during the life test. In the experiments, the fluid/surface combination provided stable, high-performance boiling at the operating temperature of 700 C. Based on these experiments, a pool boiler was designed for a full-scale 25-kWe Stirling system.
Microbial community dynamics in the forefield of glaciers.
Bradley, James A; Singarayer, Joy S; Anesio, Alexandre M
2014-11-22
Retreating ice fronts (as a result of a warming climate) expose large expanses of deglaciated forefield, which become colonized by microbes and plants. There has been increasing interest in characterizing the biogeochemical development of these ecosystems using a chronosequence approach. Prior to the establishment of plants, microbes use autochthonously produced and allochthonously delivered nutrients for growth. The microbial community composition is largely made up of heterotrophic microbes (both bacteria and fungi), autotrophic microbes and nitrogen-fixing diazotrophs. Microbial activity is thought to be responsible for the initial build-up of labile nutrient pools, facilitating the growth of higher order plant life in developed soils. However, it is unclear to what extent these ecosystems rely on external sources of nutrients such as ancient carbon pools and periodic nitrogen deposition. Furthermore, the seasonal variation of chronosequence dynamics and the effect of winter are largely unexplored. Modelling this ecosystem will provide a quantitative evaluation of the key processes and could guide the focus of future research. Year-round datasets combined with novel metagenomic techniques will help answer some of the pressing questions in this relatively new but rapidly expanding field, which is of growing interest in the context of future large-scale ice retreat.
Microbial community dynamics in the forefield of glaciers
Bradley, James A.; Singarayer, Joy S.; Anesio, Alexandre M.
2014-01-01
Retreating ice fronts (as a result of a warming climate) expose large expanses of deglaciated forefield, which become colonized by microbes and plants. There has been increasing interest in characterizing the biogeochemical development of these ecosystems using a chronosequence approach. Prior to the establishment of plants, microbes use autochthonously produced and allochthonously delivered nutrients for growth. The microbial community composition is largely made up of heterotrophic microbes (both bacteria and fungi), autotrophic microbes and nitrogen-fixing diazotrophs. Microbial activity is thought to be responsible for the initial build-up of labile nutrient pools, facilitating the growth of higher order plant life in developed soils. However, it is unclear to what extent these ecosystems rely on external sources of nutrients such as ancient carbon pools and periodic nitrogen deposition. Furthermore, the seasonal variation of chronosequence dynamics and the effect of winter are largely unexplored. Modelling this ecosystem will provide a quantitative evaluation of the key processes and could guide the focus of future research. Year-round datasets combined with novel metagenomic techniques will help answer some of the pressing questions in this relatively new but rapidly expanding field, which is of growing interest in the context of future large-scale ice retreat. PMID:25274358
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schuur, Edward
2015-06-11
The major research goal of this project was to understand and quantify the fate of carbon stored in permafrost ecosystems using a combination of field and laboratory experiments to measure isotope ratios and C fluxes in a tundra ecosystem exposed to experimental warming. Field measurements centered on the establishment of a two-factor experimental warming using a snow fence and open top chambers to increase winter and summer temperatures alone, and in combination, at a tundra field site at the Eight Mile Lake watershed near Healy, Alaska. The objective of this experimental warming was to significantly raise air and deep soilmore » temperatures and increase the depth of thaw beyond that of previous warming experiments. Detecting the loss and fate of the old permafrost C pool remains a major challenge. Because soil C has been accumulating in these ecosystems over the past 10,000 years, there is a strong difference between the radiocarbon isotopic composition of C deep in the soil profile and permafrost compared to that near the soil surface. This large range of isotopic variability is unique to radiocarbon and provides a valuable and sensitive fingerprint for detecting the loss of old soil C as permafrost thaws.« less
Response of the Antarctic Stratosphere to Two Types of El Nino Events
NASA Technical Reports Server (NTRS)
Hurwitz, M. M.; Newman, P. A.; Oman, L. D.; Molod, A. M.
2010-01-01
This study is the first to identify a robust El Nino/Southern Oscillation (ENSO) signal in the Antarctic stratosphere. El Nino events are classified as either conventional "cold tongue" events (positive SST anomalies in the Nino 3 region) or "warm pool" events (positive SST anomalies in the Nino 4 region). The ERA-40, NCEP and MERRA meteorological reanalyses are used to show that the Southern Hemisphere stratosphere responds differently to these two types of El Nino events. Consistent with previous studies, "cold tongue" events do not impact temperatures in the Antarctic stratosphere. During "warm pool" El Nino events, the poleward extension and increased strength of the South Pacific Convergence Zone (SPCZ) favor an enhancement of planetary wave activity during the SON season. On average, these conditions lead to higher polar stratospheric temperatures and a weakening of the Antarctic polar jet in November and December, as compared with neutral ENSO years. The phase of the quasi-biennial oscillation (QBO) modulates the stratospheric response to "warm pool" El Nino events: the strongest planetary wave driving events are coincident with the easterly phase of the QBO.
Blok, Daan; Faucherre, Samuel; Banyasz, Imre; Rinnan, Riikka; Michelsen, Anders; Elberling, Bo
2018-06-01
Tundra regions are projected to warm rapidly during the coming decades. The tundra biome holds the largest terrestrial carbon pool, largely contained in frozen permafrost soils. With warming, these permafrost soils may thaw and become available for microbial decomposition, potentially providing a positive feedback to global warming. Warming may directly stimulate microbial metabolism but may also indirectly stimulate organic matter turnover through increased plant productivity by soil priming from root exudates and accelerated litter turnover rates. Here, we assess the impacts of experimental warming on turnover rates of leaf litter, active layer soil and thawed permafrost sediment in two high-arctic tundra heath sites in NE-Greenland, either dominated by evergreen or deciduous shrubs. We incubated shrub leaf litter on the surface of control and warmed plots for 1 and 2 years. Active layer soil was collected from the plots to assess the effects of 8 years of field warming on soil carbon stocks. Finally, we incubated open cores filled with newly thawed permafrost soil for 2 years in the active layer of the same plots. After field incubation, we measured basal respiration rates of recovered thawed permafrost cores in the lab. Warming significantly reduced litter mass loss by 26% after 1 year incubation, but differences in litter mass loss among treatments disappeared after 2 years incubation. Warming also reduced litter nitrogen mineralization and decreased the litter carbon to nitrogen ratio. Active layer soil carbon stocks were reduced 15% by warming, while soil dissolved nitrogen was reduced by half in warmed plots. Warming had a positive legacy effect on carbon turnover rates in thawed permafrost cores, with 10% higher respiration rates measured in cores from warmed plots. These results demonstrate that warming may have contrasting effects on above- and belowground tundra carbon turnover, possibly governed by microbial resource availability. © 2017 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Song, Xiangzhou; Yu, Lisan
2017-05-01
This study provides an analysis of the Mediterranean Sea surface energy budget using nine surface heat flux climatologies. The ensemble mean estimation shows that the net downward shortwave radiation (192 ± 19 W m-2) is balanced by latent heat flux (-98 ± 10 W m-2), followed by net longwave radiation (-78 ± 13 W m-2) and sensible heat flux (-13 ± 4 W m-2). The resulting net heat budget (Qnet) is 2 ± 12 W m-2 into the ocean, which appears to be warm biased. The annual-mean Qnet should be -5.6 ± 1.6 W m-2 when estimated from the observed net transport through the Strait of Gibraltar. To diagnose the uncertainty in nine Qnet climatologies, we constructed Qnet from the heat budget equation by using historic hydrological observations to determine the heat content changes and advective heat flux. We also used the Qnet from a data-assimilated global ocean state estimation as an additional reference. By comparing with the two reference Qnet estimates, we found that seven products (NCEP 1, NCEP 2, CFSR, ERA-Interim, MERRA, NOCSv2.0, and OAFlux+ISCCP) overestimate Qnet, with magnitude ranging from 6 to 27 W m-2, while two products underestimate Qnet by -6 W m-2 (JRA55) and -14 W m-2 (CORE.2). Together with the previous warm pool work of Song and Yu (2013), we show that CFSR, MERRA, NOCSv2.0, and OAFlux+ISCCP are warm-biased not only in the western Pacific warm pool but also in the Mediterranean Sea, while CORE.2 is cold-biased in both regions. The NCEP 1, 2, and ERA-Interim are cold-biased over the warm pool but warm-biased in the Mediterranean Sea.
NASA Technical Reports Server (NTRS)
Garfinkel, C. I.; Waugh, D. W.; Oman, L. D.; Wang, L.; Hurwitz, M. M.
2013-01-01
Satellite observations and chemistry-climate model experiments are used to understand the zonal structure of tropical lower stratospheric temperature, water vapor, and ozone trends. The warming in the tropical upper troposphere over the past 30 years is strongest near the Indo-Pacific warm pool, while the warming trend in the western and central Pacific is much weaker. In the lower stratosphere, these trends are reversed: the historical cooling trend is strongest over the Indo-Pacific warm pool and is weakest in the western and central Pacific. These zonal variations are stronger than the zonal-mean response in boreal winter. Targeted experiments with a chemistry-climate model are used to demonstrate that sea surface temperature (hereafter SST) trends are driving the zonal asymmetry in upper tropospheric and lower stratospheric tropical temperature trends. Warming SSTs in the Indian Ocean and in the warm pool region have led to enhanced moist heating in the upper troposphere, and in turn to a Gill-like response that extends into the lower stratosphere. The anomalous circulation has led to zonal structure in the ozone and water vapor trends near the tropopause, and subsequently to less water vapor entering the stratosphere. The radiative impact of these changes in trace gases is smaller than the direct impact of the moist heating. Projected future SSTs appear to drive a temperature and water vapor response whose zonal structure is similar to the historical response. In the lower stratosphere, the changes in water vapor and temperature due to projected future SSTs are of similar strength to, though slightly weaker than, that due directly to projected future CO2, ozone, and methane.
Coral reconstruction of Holocene oscillations in the extent of the Indo-Pacific Warm Pool
NASA Astrophysics Data System (ADS)
Abram, Nerilie; McGregor, Helen; Gagan, Michael
2010-05-01
The Indo-Pacific Warm Pool (IPWP) plays a key role in the propagation and amplification of climate changes through its influence on the global distribution of heat and water vapour. However, little is known about past changes in the size and position of the IPWP. We use a total of 48 modern and fossil coral records from the Mentawai Islands (Sumatra, Indonesia) and Muschu/Koil Islands (Papua New Guinea) to reconstruct oscillations in the extent of the IPWP since the mid-Holocene. We firstly show that reliable estimates of mean sea surface temperature (SST) can be obtained from fossil corals by using low-resolution Sr/Ca analysis of a suite of corals to overcome the large uncertainties associated with mean Sr/Ca-SST estimates from individual coral colonies. The coral records indicate that the southeastern and southwestern margins of the IPWP were predominantly 1.2oC ± 0.3oC cooler than present during the mid-Holocene, and we suggest that this was due to a contraction of the southern margins of the IPWP associated with the more northerly position of the ITCZ. Comparison with speleothem records of Asian monsoon rainfall further indicates that short-lived shifts to warmer than present SSTs at the coral sites during the mid-Holocene coincide with intervals of abrupt monsoon weakening (and southward displacements of the ITCZ). Examination of our coral reconstruction alongside the Kilimanjaro ice core record suggests that the Indian Ocean Dipole also adopted a more positive mean state during the mid-Holocene when the southern margins of the IPWP contracted. These results suggest that the Asian monsoon-IOD interaction that exists at interannual time scales also persists over centennial to millennial scales. The dynamic and inter-connected behaviour of the IPWP with tropical climate systems during the mid-Holocene highlights the fundamental importance of the warm pool region for understanding climate change throughout the tropics and beyond.
Contrasting Effects of Central Pacific and Eastern Pacific El Nino on Stratospheric Water Vapor
NASA Technical Reports Server (NTRS)
Garfinkel, Chaim I.; Hurwitz, Margaret M.; Oman, Luke D.; Waugh, Darryn W.
2013-01-01
Targeted experiments with a comprehensive chemistry-climate model are used to demonstrate that seasonality and the location of the peak warming of sea surface temperatures dictate the response of stratospheric water vapor to El Nino. In spring, El Nino events in which sea surface temperature anomalies peak in the eastern Pacific lead to a warming at the tropopause above the warm pool region, and subsequently to more stratospheric water vapor (consistent with previous work). However, in fall and in early winter, and also during El Nino events in which the sea surface temperature anomaly is found mainly in the central Pacific, the response is qualitatively different: temperature changes in the warm pool region are nonuniform and less water vapor enters the stratosphere. The difference in water vapor in the lower stratosphere between the two variants of El Nino approaches 0.3 ppmv, while the difference between the winter and spring responses exceeds 0.5 ppmv.
NASA Technical Reports Server (NTRS)
Prabhakara, C.; Yoo, J.-M.; Dalu, G.; Kratz, P.
1991-01-01
Over the convectively active tropical ocean regions, the measurement made from space in the IR and visible spectrum have revealed the presence of optically thin cirrus clouds, which are quite transparent in the visible and nearly opaque in the IR. The Nimbus-4 IR Interferometer Spectrometer (IRIS), which has a field of view (FOV) of approximately 100 km, was utilized to examine the IR optical characteristics of these cirrus clouds. From the IRIS data, it was observed that these optically thin cirrus clouds prevail extensively over the warm pool region of the equatorial western Pacific, surrounding Indonesia. It is found that the seasonal cloud cover caused by these thin cirrus clouds exceeds 50 percent near the central regions of the warm pool. For most of these clouds, the optical thickness in the IR is less than or = 2. It is deduced that the dense cold anvil clouds associated with deep convection spread extensively and are responsible for the formation of the thin cirrus clouds. This is supported by the observation that the coverage of the dense anvil clouds is an order of magnitude less than that of the thin cirrus clouds. From these observations, together with a simple radiative-convective model, it is inferred that the optically thin cirrus can provide a greenhouse effect, which can be a significant factor in maintaining the warm pool. In the absence of fluid transports, it is found that these cirrus clouds could lead to a runaway greenhouse effect. The presence of fluid transport processes, however, act to moderate this effect. Thus, if a modest 20 W/sq m energy input is considered to be available to warm the ocean, then it is found that the ocean mixed-layer of a 50-m depth will be heated by approximately 1 C in 100 days.
Nelson, Daniel; Benstead, Jonathan P; Huryn, Alexander D; Cross, Wyatt F; Hood, James M; Johnson, Philip W; Junker, James R; Gíslason, Gísli M; Ólafsson, Jón S
2017-07-01
A central question at the interface of food-web and climate change research is how secondary production, or the formation of heterotroph biomass over time, will respond to rising temperatures. The metabolic theory of ecology (MTE) hypothesizes the temperature-invariance of secondary production, driven by matched and opposed forces that reduce biomass of heterotrophs while increasing their biomass turnover rate (production : biomass, or P:B) with warming. To test this prediction at the whole community level, we used a geothermal heat exchanger to experimentally warm a stream in southwest Iceland by 3.8°C for two years. We quantified invertebrate community biomass, production, and P : B in the experimental stream and a reference stream for one year prior to warming and two years during warming. As predicted, warming had a neutral effect on community production, but this result was not driven by opposing effects on community biomass and P:B. Instead, warming had a positive effect on both the biomass and production of larger-bodied, slower-growing taxa (e.g., larval black flies, dipteran predators, snails) and a negative effect on small-bodied taxa with relatively high growth rates (e.g., ostracods, larval chironomids). We attribute these divergent responses to differences in thermal preference between small- vs. large-bodied taxa. Although metabolic demand vs. resource supply must ultimately constrain community production, our results highlight the potential for idiosyncratic community responses to warming, driven by variation in thermal preference and body size within regional species pools. © 2017 by the Ecological Society of America.
NASA Astrophysics Data System (ADS)
Arp, C. D.; Whitman, M.; Jones, B. M.; Grosse, G.
2009-12-01
Throughout the Arctic Coastal Plain (ACP), streams with many deep pools form drainage networks set in continuous permafrost. Their morphology consist of regularly spaced pools separated by narrow runs, resembling beads on a string, and thus termed beaded streams. These channels appear to have evolved in thawing ice-wedge networks of polygonized tundra and often initiate from thaw lakes. Interest in these fluvial systems relates to how they interact with watershed runoff and permafrost soils, and how they function as fish habitat and passage. In this study, we focus on the physical form and functions of five beaded streams in a location scheduled for petroleum development to gain a better understanding of how sensitive these headwaters are to changes in temperature and moisture prior to any land use effects. The catchments of these streams ranged from 3 to 54 km2 with evenly sloping channels varying among sites from 0.001 to 0.004 m/m. Aerial and reach-scale topographic and thaw-depth surveys were conducted and compared to thermokarst conditions to try identifying relative ages or evolutionary stages among streams to better predict how ecosystems functions may shift with a changing climate. The maximum depth of pools averaged per site ranged from 0.9-m to 2.0-m and mid-July thaw depths rarely exceeded 1-m below pool beds. The clearest sign of the degree of channel change by thermokarst degradation is the proportion of coalesced pools compared to individual large and small beads, which ranged from 17% to 65% among streams and potentially indicate a chronosequence of channel ages or varying response to climate change. This hypothesized chronosequence was unrelated to drainage area and pool depth, but did correspond to decreasing channel gradient (r=-0.79, p<0.05), lake area (r=-0.89, p<0.05), and baseflow runoff (r=-0.64, p<0.05). Conversely, peak runoff rates during snowmelt were positively correlated with the proportion of coalesced beads in each stream (r=+0.62, p<0.05), potentially a result of greater snow capture from larger and deeper gulches. Pool bed and surface temperature monitoring through the winter at each site indicate a large snowpack covering these beads results in warm ice temperatures (>-2.0°C) and unfrozen beds, potentially providing overwintering fish habitat. Comparison of summer thermal regimes between a deep pool (3-m) with a shallow pool (1.5-m) showed higher surface water temperatures in the deeper pool, yet stronger and longer periods of stratification. This interaction between channel morphology and climate potentially creates a negative feedback that limits thermal erosion of sediments, while also providing thermal refugia for fish during warm summer days when surface water temperatures can exceed 20°C. The role and dynamics of beaded stream morphology on the ACP may be hard to model without understanding such processes, which create positive and negative feedbacks potentially enhancing or limiting channel evolution in a rapidly changing arctic climate.
WARM SPRINGS CREEK GEOTHERMAL STUDY, BLAIN COUNTY IDAHO, 1987
In the Warm Springs Creek drainage near Ketchum, Idaho (17040219), a leaking pipeline coveys geothermal water through the valley to heat nearby homes as well as to supply a resorts swimming pool. Several domestic wells in close proximity to this line have exhibited increasing fl...
Simulating Pliocene warmth and a permanent El Niño-like state: The role of cloud albedo
Burls, N. J.; Fedorov, A. V.
2014-09-13
We present that available evidence suggests that during the early Pliocene (4–5 Ma) the mean east-west sea surface temperature (SST) gradient in the equatorial Pacific Ocean was significantly smaller than today, possibly reaching only 1–2°C. The meridional SST gradients were also substantially weaker, implying an expanded ocean warm pool in low latitudes. Subsequent global cooling led to the establishment of the stronger, modern temperature gradients. Given our understanding of the physical processes that maintain the present-day cold tongue in the east, warm pool in the west and hence sharp temperature contrasts, determining the key factors that maintained early Pliocene climatemore » still presents a challenge for climate theories and models. This study demonstrates how different cloud properties could provide a solution. We show that a reduction in the meridional gradient in cloud albedo can sustain reduced meridional and zonal SST gradients, an expanded warm pool and warmer thermal stratification in the ocean, and weaker Hadley and Walker circulations in the atmosphere. Having conducted a range of hypothetical modified cloud albedo experiments, we arrive at our Pliocene simulation, which shows good agreement with proxy SST data from major equatorial and coastal upwelling regions, the tropical warm pool, middle and high latitudes, and available subsurface temperature data. As suggested by the observations, the simulated Pliocene-like climate sustains a robust El Niño-Southern Oscillation despite the reduced mean east-west SST gradient. In conclusion, our results demonstrate that cloud albedo changes may be a critical element of Pliocene climate and that simulating the meridional SST gradient correctly is central to replicating the geographical patterns of Pliocene warmth.« less
Vinagre, Catarina; Mendonça, Vanessa; Cereja, Rui; Abreu-Afonso, Francisca; Dias, Marta; Mizrahi, Damián; Flores, Augusto A V
2018-01-01
Mortality of fish has been reported in tide pools during warm days. That means that tide pools are potential ecological traps for coastal organisms, which happen when environmental changes cause maladaptive habitat selection. Heat-waves are predicted to increase in intensity, duration and frequency, making it relevant to investigate the role of tide pools as traps for coastal organisms. However, heat waves can also lead to acclimatization. If organisms undergo acclimatization prior to being trapped in tide pools, their survival chances may increase. Common tide pool species (46 species in total) were collected at a tropical and a temperate area and their upper thermal limits estimated. They were maintained for 10 days at their mean summer sea surface temperature +3°C, mimicking a heat-wave. Their upper thermal limits were estimated again, after this acclimation period, to calculate each species' acclimation response. The upper thermal limits of the organisms were compared to the temperatures attained by tide pool waters to investigate if 1) tide pools could be considered ecological traps and 2) if the increase in upper thermal limits elicited by the acclimation period could make the organisms less vulnerable to this threat. Tropical tide pools were found to be ecological traps for an important number of common coastal species, given that they can attain temperatures higher than the upper thermal limits of most of those species. Tide pools are not ecological traps in temperate zones. Tropical species have higher thermal limits than temperate species, but lower acclimation response, that does not allow them to survive the maximum habitat temperature of tropical tide pools. This way, tropical coastal organisms seem to be, not only more vulnerable to climate warming per se, but also to an increase in the ecological trap effect of tide pools.
Carbon Pool Dynamics in the Lower Fraser Basin from 1827 to 1990
Boyle; Lavkulich
1997-05-01
/ To understand the total impact of humans on the carbon cycle, themodeling and quantifying of the transfer of carbon from terrestrial pools tothe atmosphere is becoming more critical. Using previously published data,this research sought to assess the change in carbon pools caused by humans inthe Lower Fraser Basin (LFB) in British Columbia, Canada, since 1827 anddefine the long-term, regional contribution of carbon to the atmosphere. Theresults indicate that there has been a transfer of 270 Mt of carbon frombiomass pools in the LFB to other pools, primarily the atmosphere. The majorlosses of biomass carbon have been from logged forests (42%), wetlands(14%), and soils (43%). Approximately 48% of the forestbiomass, almost 20% of the carbon of the LFB, lies within old-growthforest, which covers only 19% of the study area. Landfills are nowbecoming a major sink of carbon, containing 5% of the biomass carbonin the LFB, while biomass carbon in buildings, urban vegetation, mammals, andagriculture is negligible. Approximately 26% of logged forest biomasswould still be in a terrestrial biomass pool, leaving 238 Mt of carbon thathas been released to the atmosphere. On an area basis, this is 29 times theaverage global emissions of carbon, providing an indication of the pastcontributions of developed countries such as Canada to global warming andpossible contributions from further clearing of rainforest in both tropicaland temperate regions.KEY WORDS: Carbon pools; Global warming; Carbon release to atmosphere;Greenhouse effect
Global Variability of Mesoscale Convective System Anvil Structure from A-Train Satellite Data
NASA Technical Reports Server (NTRS)
Yuan, Jian; Houze, Robert A.
2010-01-01
Mesoscale convective systems (MCSs) in the tropics produce extensive anvil clouds, which significantly affect the transfer of radiation. This study develops an objective method to identify MCSs and their anvils by combining data from three A-train satellite instruments: Moderate Resolution Imaging Spectroradiometer (MODIS) for cloud-top size and coldness, Advanced Microwave Scanning Radiometer for Earth Observing System (AMSR-E) for rain area size and intensity, and CloudSat for horizontal and vertical dimensions of anvils. The authors distinguish three types of MCSs: small and large separated MCSs and connected MCSs. The latter are MCSs sharing a contiguous rain area. Mapping of the objectively identified MCSs shows patterns of MCSs that are consistent with previous studies of tropical convection, with separated MCSs dominant over Africa and the Amazon regions and connected MCSs favored over the warm pool of the Indian and west Pacific Oceans. By separating the anvil from the raining regions of MCSs, this study leads to quantitative global maps of anvil coverage. These maps are consistent with the MCS analysis, and they lay the foundation for estimating the global radiative effects of anvil clouds. CloudSat radar data show that the modal thickness of MCS anvils is about 4-5 km. Anvils are mostly confined to within 1.5-2 times the equivalent radii of the primary rain areas of the MCSs. Over the warm pool, they may extend out to about 5 times the rain area radii. The warm ocean MCSs tend to have thicker non-raining and lightly raining anvils near the edges
A meta-analysis of soil exoenzyme responses to simulated climate change
NASA Astrophysics Data System (ADS)
Gebhardt, M.; Espinosa, N. J.; Blankinship, J. C.; Gallery, R. E.
2017-12-01
Microorganisms produce extracellular enzymes to decompose plant matter and drive biogeochemical transformations in soils. Climate change factors, such as warming and altered precipitation patterns, can impact enzyme activity through both direct and indirect mechanisms. Although many individual studies have examined how soil exoenzyme activities respond to climate change manipulations, there is disagreement surrounding the direction of these responses. We performed a synthesis of published studies to examine the influence of warming and altered precipitation on microbial exoenzyme activity. We found that warming increased enzyme activity with a more pronounced effect for oxidative relative to hydrolytic enzymes. Reduced precipitation consistently decreased exoenzyme activity. These responses, however, varied by season, biome, and enzyme type. The majority of studies fitting our criteria (e.g., experiments lasting a minimum of one growing season, paired treatments and controls) were located in North America and Europe. Inferences from this analysis therefore exclude many important ecosystems such as hyper-arid, wetlands, and artic systems. Carbon degrading enzyme activities were less sensitive to climate change manipulations when compared to phosphorus and nitrogen degrading enzyme activities. Linking enzyme activity to biogeochemical processes requires concomitant measurements of organic and inorganic carbon pools, mineralogy, nutrients, microbial biomass and community structure, and heterotrophic respiration within individual studies. Furthermore, linking these parameters to climate and environmental factors will require a comprehensive and consistent inclusion of biotic and abiotic variables among researchers and experiments. Globally, soils contain the largest carbon pools. Understanding the impacts of large-scale perturbations on soil enzyme activity will help to constrain predictions on the fate of biogeochemical transformations and improve model projections.
Impact of the Extreme Warming of 2012 on Shelfbreak Frontal Structure North of Cape Hatteras
NASA Astrophysics Data System (ADS)
Gawarkiewickz, G.
2014-12-01
Continental shelf circulation north of Cape Hatteras is complex, with southward flowing Middle Atlantic Bight shelf water intersecting the Gulf Stream and subducting offshore into the Gulf Stream. In May, 2012, a cruise was conducted in order to study the shelf circulation and acoustic propagation through fish schools in the area. An important aspect of the study was to use Autonomous Underwater Vehicles to map fish schools with a sidescan sonar. High-resolution hydrographic surveys to map the continental shelf water masses and shelfbreak frontal structure were sampled to relate oceanographic conditions to the fish school distributions. The cold pool water mass over the continental shelf in May 2012 was extremely warm, with temperature anomalies of up to 5 Degrees C relative to observations from the same area in May, 1996. The normal cross-shelf temperature gradients within the shelfbreak front were not present because of the warming. As a result, the shelf density field was much more buoyant than usual, which led to an accelerated shelfbreak jet. Moored velocity measurements at the 60 m isobath recorded alongshelf flow of as much as 0.6 m/s. The anticipated fish species were not observed over the continental shelf. Some comments on the forcing leading to the large scale warming will be presented, along with a brief discussion of the impact of the warming on the marine ecosystem in the northeast U.S.
Mid-Piacenzian sea surface temperature record from ODP Site 1115 in the western equatorial Pacific
Stoll, Danielle
2010-01-01
Planktic foraminifer assemblages and alkenone unsaturation ratios have been analyzed for the mid-Piacen-zian (3.3 to 2.9 Ma) section of Ocean Drilling Program (ODP) Site 1115B, located in the western equatorial Pacific off the coast of New Guinea. Cold and warm season sea surface temperature (SST) estimates were determined using a modern analog technique. ODP Site 1115 is located just south of the transition between the planktic foraminifer tropical and subtropical faunal provinces and approximates the southern boundary of the western equatorial Pacific (WEP) warm pool. Comparison of the faunal and alkenone SST estimates (presented here) with an existing nannofossil climate proxy shows similar trends. Results of this analysis show increased seasonal variability during the middle of the sampled section (3.22 to 3.10 Ma), suggesting a possible northward migration of both the subtropical faunal province and the southern boundary of the WEP warm pool.
Coral-Derived Western Pacific Tropical Sea Surface Temperatures During the Last Millennium
NASA Astrophysics Data System (ADS)
Chen, Tianran; Cobb, Kim M.; Roff, George; Zhao, Jianxin; Yang, Hongqiang; Hu, Minhang; Zhao, Kuan
2018-04-01
Reconstructions of ocean temperatures prior to the industrial era serve to constrain natural climate variability on decadal to centennial timescales, yet relatively few such observations are available from the west Pacific Warm Pool. Here we present multiple coral-based sea surface temperature reconstructions from Yongle Atoll, in the South China Sea over the last 1,250 years (762-2013 Common Era [CE]). Reconstructed coral Sr/Ca-sea surface temperatures indicate that the "Little Ice Age (1711-1817 CE)" period was 0.7°C cooler than the "Medieval Climate Anomaly (913-1132 CE)" and that late 20th century warming of the western Pacific is likely unprecedented over the past millennium. Our findings suggest that the Western Pacific Warm Pool may have expanded (contracted) during the Medieval Climate Anomaly (Little Ice Age), leading to a strengthening (weakening) of the Asian summer monsoon, as recorded in Chinese stalagmites.
The climate response of the Indo-Pacific warm pool to glacial sea level
NASA Astrophysics Data System (ADS)
Di Nezio, Pedro N.; Timmermann, Axel; Tierney, Jessica E.; Jin, Fei-Fei; Otto-Bliesner, Bette; Rosenbloom, Nan; Mapes, Brian; Neale, Rich; Ivanovic, Ruza F.; Montenegro, Alvaro
2016-06-01
Growing climate proxy evidence suggests that changes in sea level are important drivers of tropical climate change on glacial-interglacial timescales. These paleodata suggest that rainfall patterns over the Indo-Pacific warm pool (IPWP) are highly sensitive to the landmass configuration of the Maritime Continent and that lowered sea level contributed to large-scale drying during the Last Glacial Maximum (LGM, approximately 21,000 years B.P.). Using the Community Earth System Model Version 1.2 (CESM1), we investigate the mechanisms by which lowered sea level influenced the climate of the IPWP during the LGM. The CESM1 simulations show that, in agreement with previous hypotheses, changes in atmospheric circulation are initiated by the exposure of the Sunda and Sahul shelves. Ocean dynamical processes amplify the changes in atmospheric circulation by increasing the east-west sea surface temperature (SST) gradient along the equatorial Indian Ocean. The coupled mechanism driving this response is akin to the Bjerknes feedback and results in a large-scale climatic reorganization over the Indian Ocean with impacts extending from east Africa to the western tropical Pacific. Unlike exposure of the Sunda shelf, exposure of Sahul shelf and the associated changes in surface albedo play a key role because of the positive feedback. This mechanism could explain the pattern of dry (wet) eastern (western) Indian Ocean identified in climate proxies and LGM simulations. However, this response also requires a strengthened SST gradient along the equatorial Indian Ocean, a pattern that is not evident in marine paleoreconstructions. Strategies to resolve this issue are discussed.
Effect of Radiative Cooling on Cloud-SST Relationship within the Tropical Pacific Region
NASA Technical Reports Server (NTRS)
Sui, Chung-Hsiung; Ho, Chang-Hoi; Chou, Ming-Dah; Lau, Ka-Ming; Li, Xiao-Fan; Einaudi, Franco (Technical Monitor)
2000-01-01
A recent analysis found a negative correlation between the area-mean cloud amount and the corresponding mean Sea Surface Temperature (SST) within the cloudy areas. The SST-cloud relation becomes more evident when the SST contrast between warm pool and surrounding cold pool (DSST) in the tropical Pacific is stronger than normal. The above feature is related to the finding that the strength of subsidence over the cold pool is limited by radiative cooling because of its small variability. As a result, the area of radiatively-driven subsidence must expand in response to enhanced low-boundary forcing due to SST warming or enhanced basin-scale DSST. This leads to more cloud free regions and less cloudy regions. The increased ratio of cloud-free areas to cloudy areas leads to more high SST areas (>29.50C) due to enhanced solar radiation.
NASA Astrophysics Data System (ADS)
Mathien-Blard, Elise; Bassinot, Franck
2009-12-01
Mg/Ca in foraminiferal calcite has recently been extensively used to estimate past oceanic temperatures. Here we show, however, that the Mg/Ca temperature relationship of the planktonic species Globigerinoides ruber is significantly affected by seawater salinity, with a +1 psu change in salinity resulting in a +1.6°C bias in Mg/Ca temperature calculations. If not accounted for, such a bias could lead, for instance, to systematic overestimations of Mg/Ca temperatures during glacial periods, when global ocean salinity had significantly increased compared to today. We present here a correction procedure to derive unbiased sea surface temperatures (SST) and δ18Osw from G. ruber TMg/Ca and δ18Of measurements. This correction procedure was applied to a sedimentary record to reconstruct hydrographic changes since the Last Glacial Maximum (LGM) in the Western Pacific Warm Pool. While uncorrected TMg/Ca data indicate a 3°C warming of the Western Pacific Warm Pool since the LGM, the salinity-corrected SST result in a stronger warming of 4°C.
Funk, Christopher C.; Williams, A. Park
2011-01-01
Observations and simulations link anthropogenic greenhouse and aerosol emissions with rapidly increasing Indian Ocean sea surface temperatures (SSTs). Over the past 60 years, the Indian Ocean warmed two to three times faster than the central tropical Pacific, extending the tropical warm pool to the west by ~40° longitude (>4,000 km). This propensity toward rapid warming in the Indian Ocean has been the dominant mode of interannual variability among SSTs throughout the tropical Indian and Pacific Oceans (55°E–140°W) since at least 1948, explaining more variance than anomalies associated with the El Niño-Southern Oscillation (ENSO). In the atmosphere, the primary mode of variability has been a corresponding trend toward greatly increased convection and precipitation over the tropical Indian Ocean. The temperature and rainfall increases in this region have produced a westward extension of the western, ascending branch of the atmospheric Walker circulation. Diabatic heating due to increased mid-tropospheric water vapor condensation elicits a westward atmospheric response that sends an easterly flow of dry air aloft toward eastern Africa. In recent decades (1980–2009), this response has suppressed convection over tropical eastern Africa, decreasing precipitation during the ‘long-rains’ season of March–June. This trend toward drought contrasts with projections of increased rainfall in eastern Africa and more ‘El Niño-like’ conditions globally by the Intergovernmental Panel on Climate Change. Increased Indian Ocean SSTs appear likely to continue to strongly modulate the Warm Pool circulation, reducing precipitation in eastern Africa, regardless of whether the projected trend in ENSO is realized. These results have important food security implications, informing agricultural development, environmental conservation, and water resource planning.
Williams, A. Park; Funk, Christopher C.
2011-01-01
Observations and simulations link anthropogenic greenhouse and aerosol emissions with rapidly increasing Indian Ocean sea surface temperatures (SSTs). Over the past 60 years, the Indian Ocean warmed two to three times faster than the central tropical Pacific, extending the tropical warm pool to the west by ~40° longitude (>4,000 km). This propensity toward rapid warming in the Indian Ocean has been the dominant mode of interannual variability among SSTs throughout the tropical Indian and Pacific Oceans (55°E–140°W) since at least 1948, explaining more variance than anomalies associated with the El Niño-Southern Oscillation (ENSO). In the atmosphere, the primary mode of variability has been a corresponding trend toward greatly increased convection and precipitation over the tropical Indian Ocean. The temperature and rainfall increases in this region have produced a westward extension of the western, ascending branch of the atmospheric Walker circulation. Diabatic heating due to increased mid-tropospheric water vapor condensation elicits a westward atmospheric response that sends an easterly flow of dry air aloft toward eastern Africa. In recent decades (1980–2009), this response has suppressed convection over tropical eastern Africa, decreasing precipitation during the ‘long-rains’ season of March–June. This trend toward drought contrasts with projections of increased rainfall in eastern Africa and more ‘El Niño-like’ conditions globally by the Intergovernmental Panel on Climate Change. Increased Indian Ocean SSTs appear likely to continue to strongly modulate the Warm Pool circulation, reducing precipitation in eastern Africa, regardless of whether the projected trend in ENSO is realized. These results have important food security implications, informing agricultural development, environmental conservation, and water resource planning.
Wang, Hang; He, Zhili; Lu, Zhenmei; Zhou, Jizhong; Van Nostrand, Joy D.; Xu, Xinhua
2012-01-01
Rising climate temperatures in the future are predicted to accelerate the microbial decomposition of soil organic matter. A field microcosm experiment was carried out to examine the impact of soil warming in freshwater wetlands on different organic carbon (C) pools and associated microbial functional responses. GeoChip 4.0, a functional gene microarray, was used to determine microbial gene diversity and functional potential for C degradation. Experimental warming significantly increased soil pore water dissolved organic C and phosphorus (P) concentrations, leading to a higher potential for C emission and P export. Such losses of total organic C stored in soil could be traced back to the decomposition of recalcitrant organic C. Warming preferentially stimulated genes for degrading recalcitrant C over labile C. This was especially true for genes encoding cellobiase and mnp for cellulose and lignin degradation, respectively. We confirmed this with warming-enhanced polyphenol oxidase and peroxidase activities for recalcitrant C acquisition and greater increases in recalcitrant C use efficiency than in labile C use efficiency (average percentage increases of 48% versus 28%, respectively). The relative abundance of lignin-degrading genes increased by 15% under warming; meanwhile, soil fungi, as the primary decomposers of lignin, were greater in abundance by 27%. This work suggests that future warming may enhance the potential for accelerated fungal decomposition of lignin-like compounds, leading to greater microbially mediated C losses than previously estimated in freshwater wetlands. PMID:22923398
Ni, Xiangyin; Yang, Wanqin; Qi, Zemin; Liao, Shu; Xu, Zhenfeng; Tan, Bo; Wang, Bin; Wu, Qinggui; Fu, Changkun; You, Chengming; Wu, Fuzhong
2017-08-01
Experiments and models have led to a consensus that there is positive feedback between carbon (C) fluxes and climate warming. However, the effect of warming may be altered by regional and global changes in nitrogen (N) and rainfall levels, but the current understanding is limited. Through synthesizing global data on soil C pool, input and loss from experiments simulating N deposition, drought and increased precipitation, we quantified the responses of soil C fluxes and equilibrium to the three single factors and their interactions with warming. We found that warming slightly increased the soil C input and loss by 5% and 9%, respectively, but had no significant effect on the soil C pool. Nitrogen deposition alone increased the soil C input (+20%), but the interaction of warming and N deposition greatly increased the soil C input by 49%. Drought alone decreased the soil C input by 17%, while the interaction of warming and drought decreased the soil C input to a greater extent (-22%). Increased precipitation stimulated the soil C input by 15%, but the interaction of warming and increased precipitation had no significant effect on the soil C input. However, the soil C loss was not significantly affected by any of the interactions, although it was constrained by drought (-18%). These results implied that the positive C fluxes-climate warming feedback was modulated by the changing N and rainfall regimes. Further, we found that the additive effects of [warming × N deposition] and [warming × drought] on the soil C input and of [warming × increased precipitation] on the soil C loss were greater than their interactions, suggesting that simple additive simulation using single-factor manipulations may overestimate the effects on soil C fluxes in the real world. Therefore, we propose that more multifactorial experiments should be considered in studying Earth systems. © 2016 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Jiang, Jiang; Huang, Yuanyuan; Ma, Shuang; Stacy, Mark; Shi, Zheng; Ricciuto, Daniel M.; Hanson, Paul J.; Luo, Yiqi
2018-03-01
The ability to forecast ecological carbon cycling is imperative to land management in a world where past carbon fluxes are no longer a clear guide in the Anthropocene. However, carbon-flux forecasting has not been practiced routinely like numerical weather prediction. This study explored (1) the relative contributions of model forcing data and parameters to uncertainty in forecasting flux- versus pool-based carbon cycle variables and (2) the time points when temperature and CO2 treatments may cause statistically detectable differences in those variables. We developed an online forecasting workflow (Ecological Platform for Assimilation of Data (EcoPAD)), which facilitates iterative data-model integration. EcoPAD automates data transfer from sensor networks, data assimilation, and ecological forecasting. We used the Spruce and Peatland Responses Under Changing Experiments data collected from 2011 to 2014 to constrain the parameters in the Terrestrial Ecosystem Model, forecast carbon cycle responses to elevated CO2 and a gradient of warming from 2015 to 2024, and specify uncertainties in the model output. Our results showed that data assimilation substantially reduces forecasting uncertainties. Interestingly, we found that the stochasticity of future external forcing contributed more to the uncertainty of forecasting future dynamics of C flux-related variables than model parameters. However, the parameter uncertainty primarily contributes to the uncertainty in forecasting C pool-related response variables. Given the uncertainties in forecasting carbon fluxes and pools, our analysis showed that statistically different responses of fast-turnover pools to various CO2 and warming treatments were observed sooner than slow-turnover pools. Our study has identified the sources of uncertainties in model prediction and thus leads to improve ecological carbon cycling forecasts in the future.
Long-term sensitivity of soil carbon turnover to warming.
Knorr, W; Prentice, I C; House, J I; Holland, E A
2005-01-20
The sensitivity of soil carbon to warming is a major uncertainty in projections of carbon dioxide concentration and climate. Experimental studies overwhelmingly indicate increased soil organic carbon (SOC) decomposition at higher temperatures, resulting in increased carbon dioxide emissions from soils. However, recent findings have been cited as evidence against increased soil carbon emissions in a warmer world. In soil warming experiments, the initially increased carbon dioxide efflux returns to pre-warming rates within one to three years, and apparent carbon pool turnover times are insensitive to temperature. It has already been suggested that the apparent lack of temperature dependence could be an artefact due to neglecting the extreme heterogeneity of soil carbon, but no explicit model has yet been presented that can reconcile all the above findings. Here we present a simple three-pool model that partitions SOC into components with different intrinsic turnover rates. Using this model, we show that the results of all the soil-warming experiments are compatible with long-term temperature sensitivity of SOC turnover: they can be explained by rapid depletion of labile SOC combined with the negligible response of non-labile SOC on experimental timescales. Furthermore, we present evidence that non-labile SOC is more sensitive to temperature than labile SOC, implying that the long-term positive feedback of soil decomposition in a warming world may be even stronger than predicted by global models.
Llewellyn, Lyndon E
2010-10-01
The most detailed dataset of ciguatera intensity is that produced by the South Pacific Epidemiological and Health Information Service (SPEHIS) of the Secretariat of the Pacific Community. The SPEHIS fish poisoning database has been previously analysed yielding statistically significant correlations between the Southern Oscillation Index (SOI) and ciguatera case numbers in several countries raising concerns this affliction will increase as oceans warm. Mapping of the SPEHIS records and other data hints at ciguatera not only being restricted to warm waters but that the Indo-Pacific Warm Pool, a body of water that remains hot throughout much of the year, may inhibit ciguatera prevalence. A qualitative assessment of ciguatera intensity and sea surface temperature (SST) behaviour within the EEZ of selected South Pacific nations supported the notion that ciguatera intensity was highest when SST was between an upper and lower limit. Many more climate and SST indices beyond the SOI are now available, including some that measure the abovementioned phenomenon of oceanic warm pools. Statistically significant, positive and negative cross-correlations were obtained between time series of annual ciguatera case rates from the SPEHIS dataset and the Pacific Warm Pool Index and several ENSO related indices which had been lagged for up to 2 years before the ciguatera time series. This further supports the possibility that when considering the impact of climate change on ciguatera, one has to consider two thresholds, namely waters that remain warm enough for a long enough period can lead to ciguatera and that extended periods where the water remains too hot may depress ciguatera case rates. Such a model would complicate projections of the effects of climate change upon ciguatera beyond that of a simple relationship where increased SST may cause more ciguatera. Crown Copyright 2009. Published by Elsevier Ltd. All rights reserved.
Zonal structure and variability of the Western Pacific dynamic warm pool edge in CMIP5
NASA Astrophysics Data System (ADS)
Brown, Jaclyn N.; Langlais, Clothilde; Maes, Christophe
2014-06-01
The equatorial edge of the Western Pacific Warm Pool is operationally identified by one isotherm ranging between 28° and 29 °C, chosen to align with the interannual variability of strong zonal salinity gradients and the convergence of zonal ocean currents. The simulation of this edge is examined in 19 models from the World Climate Research Program Coupled Model Intercomparison Project Phase 5 (CMIP5), over the historical period from 1950 to 2000. The dynamic warm pool edge (DWPE), where the zonal currents converge, is difficult to determine from limited observations and biased models. A new analysis technique is introduced where a proxy for DWPE is determined by the isotherm that most closely correlates with the movements of the strong salinity gradient. It can therefore be a different isotherm in each model. The DWPE is simulated much closer to observations than if a direct temperature-only comparison is made. Aspects of the DWPE remain difficult for coupled models to simulate including the mean longitude, the interannual excursions, and the zonal convergence of ocean currents. Some models have only very weak salinity gradients trapped to the western side of the basin making it difficult to even identify a DWPE. The model's DWPE are generally 1-2 °C cooler than observed. In line with theory, the magnitude of the zonal migrations of the DWPE are strongly related to the amplitudes of the Nino3.4 SST index. Nevertheless, a better simulation of the mean location of the DWPE does not necessarily improve the amplitude of a model's ENSO. It is also found that in a few models (CSIROMk3.6, inmcm and inmcm4-esm) the warm pool displacements result from a net heating or cooling rather than a zonal advection of warm water. The simulation of the DWPE has implications for ENSO dynamics when considering ENSO paradigms such as the delayed action oscillator mechanism, the Advective-Reflective oscillator, and the zonal-advective feedback. These are also discussed in the context of the CMIP5 simulations.
Vulnerability of high-latitude soil organic carbon in North America to disturbance
Guido Grosse; Jennifer Harden; Merritt Turetsky; A. David McGuire; Philip Camill; Charles Tarnocai; Steve Frolking; Edward Schuur; Torre Jorgenson; Sergei Marchenko; Vladimir Romanovsky; Kimberly P. Wickland; Nancy French; Mark Waldrop; Laura Bourgeau-Chavez; Robert G. Streigl
2011-01-01
This synthesis addresses the vulnerability of the North American high-latitude soil organic carbon (SOC) pool to climate change. Disturbances caused by climate warming in arctic, subarctic, and boreal environments can result in significant redistribution of C among major reservoirs with potential global impacts. We divide the current northern high-latitude SOC pools...
Mendonça, Vanessa; Cereja, Rui; Abreu-Afonso, Francisca; Dias, Marta; Mizrahi, Damián; Flores, Augusto A. V.
2018-01-01
Mortality of fish has been reported in tide pools during warm days. That means that tide pools are potential ecological traps for coastal organisms, which happen when environmental changes cause maladaptive habitat selection. Heat-waves are predicted to increase in intensity, duration and frequency, making it relevant to investigate the role of tide pools as traps for coastal organisms. However, heat waves can also lead to acclimatization. If organisms undergo acclimatization prior to being trapped in tide pools, their survival chances may increase. Common tide pool species (46 species in total) were collected at a tropical and a temperate area and their upper thermal limits estimated. They were maintained for 10 days at their mean summer sea surface temperature +3°C, mimicking a heat-wave. Their upper thermal limits were estimated again, after this acclimation period, to calculate each species’ acclimation response. The upper thermal limits of the organisms were compared to the temperatures attained by tide pool waters to investigate if 1) tide pools could be considered ecological traps and 2) if the increase in upper thermal limits elicited by the acclimation period could make the organisms less vulnerable to this threat. Tropical tide pools were found to be ecological traps for an important number of common coastal species, given that they can attain temperatures higher than the upper thermal limits of most of those species. Tide pools are not ecological traps in temperate zones. Tropical species have higher thermal limits than temperate species, but lower acclimation response, that does not allow them to survive the maximum habitat temperature of tropical tide pools. This way, tropical coastal organisms seem to be, not only more vulnerable to climate warming per se, but also to an increase in the ecological trap effect of tide pools. PMID:29420657
Purdy, Sarah J.; Bussell, John D.; Nunn, Christopher P.; Smith, Steven M.
2013-01-01
Background Arabidopsis plants accumulate maltose from starch breakdown during cold acclimation. The Arabidopsis mutant, maltose excess1-1, accumulates large amounts of maltose in the plastid even in the warm, due to a deficient plastid envelope maltose transporter. We therefore investigated whether the elevated maltose level in mex1-1 in the warm could result in changes in metabolism and physiology typical of WT plants grown in the cold. Principal Findings Grown at 21 °C, mex1-1 plants were much smaller, with fewer leaves, and elevated carbohydrates and amino acids compared to WT. However, after transfer to 4 °C the total soluble sugar pool and amino acid concentration was in equal abundance in both genotypes, although the most abundant sugar in mex1-1 was still maltose whereas sucrose was in greatest abundance in WT. The chlorophyll a/b ratio in WT was much lower in the cold than in the warm, but in mex1-1 it was low in both warm and cold. After prolonged growth at 4 °C, the shoot biomass, rosette diameter and number of leaves at bolting were similar in mex1-1 and WT. Conclusions The mex1-1 mutation in warm-grown plants confers aspects of cold acclimation, including elevated levels of sugars and amino acids and low chlorophyll a/b ratio. This may in turn compromise growth of mex1-1 in the warm relative to WT. We suggest that elevated maltose in the plastid could be responsible for key aspects of cold acclimation. PMID:24223944
Ekman pumping mechanism driving precipitation anomalies in response to equatorial heating
NASA Astrophysics Data System (ADS)
Hamouda, Mostafa E.; Kucharski, Fred
2018-03-01
In this paper some basic mechanisms for rainfall teleconnections to a localized tropical sea surface temperature anomaly are re-visited using idealized AGCM aqua-planet simulations. The dynamical response is generally in good agreement with the Gill-Matsuno theory. The mechanisms analyzed are (1) the stabilization of the tropical troposphere outside the heating region, (2) the Walker circulation modification and (3) Ekman pumping induced by the low-level circulation responses. It is demonstrated that all three mechanisms, and in particular (2) and (3), contribute to the remote rainfall teleconnections. However, mechanism (3) best coincides with the overall horizontal structure of rainfall responses. It is shown by using the models boundary layer parameterization that low-level vertical velocities are indeed caused by Ekman pumping and that this induces vertical velocities in the whole tropospheric column through convective feedbacks. Also the modification of the responses due to the presence of idealized warm pools is investigated. It is shown that warm pools modify the speed of the tropical waves, consistent with Doppler shifts and are thus able to modify the Walker circulation adjustments and remote rainfall responses. The sensitivity of the responses, and in particular the importance of the Ekman pumping mechanism, to large variations in the drag coefficient is also tested, and it is shown that the Ekman pumping mechanism is robust for a wide range of values.
Alvarez, Gaël; Shahzad, Tanvir; Andanson, Laurence; Bahn, Michael; Wallenstein, Matthew D; Fontaine, Sébastien
2018-04-23
Most current models of soil C dynamics predict that climate warming will accelerate soil C mineralization, resulting in a long-term CO 2 release and positive feedback to global warming. However, ecosystem warming experiments show that CO 2 loss from warmed soils declines to control levels within a few years. Here, we explore the temperature dependence of enzymatic conversion of polymerized soil organic C (SOC) into assimilable compounds, which is presumed the rate-limiting step of SOC mineralization. Combining literature review, modelling and enzyme assays, we studied the effect of temperature on activity of enzymes considering their thermal inactivation and catalytic activity. We defined the catalytic power of enzymes (E power ) as the cumulative amount of degraded substrate by one unit of enzyme until its complete inactivation. We show a universal pattern of enzyme's thermodynamic properties: activation energy of catalytic activity (EA cat ) < activation energy of thermal inactivation (EA inact ). By investing in stable enzymes (high EA inact ) having high catalytic activity (low EA cat ), microorganisms may maximize the E power of their enzymes. The counterpart of such EAs' hierarchical pattern is the higher relative temperature sensitivity of enzyme inactivation than catalysis, resulting in a reduction in E power under warming. Our findings could explain the decrease with temperature in soil enzyme pools, microbial biomass (MB) and carbon use efficiency (CUE) reported in some warming experiments and studies monitoring the seasonal variation in soil enzymes. They also suggest that a decrease in soil enzyme pools due to their faster inactivation under warming contributes to the observed attenuation of warming effect on soil C mineralization. This testable theory predicts that the ultimate response of SOC degradation to warming can be positive or negative depending on the relative temperature response of E power and microbial production of enzymes. © 2018 John Wiley & Sons Ltd.
Vaquer-Sunyer, Raquel; Conley, Daniel J; Muthusamy, Saraladevi; Lindh, Markus V; Pinhassi, Jarone; Kritzberg, Emma S
2015-10-06
Increased anthropogenic pressures on coastal marine ecosystems in the last century are threatening their biodiversity and functioning. Global warming and increases in nutrient loadings are two major stressors affecting these systems. Global warming is expected to increase both atmospheric and water temperatures and increase precipitation and terrestrial runoff, further increasing organic matter and nutrient inputs to coastal areas. Dissolved organic nitrogen (DON) concentrations frequently exceed those of dissolved inorganic nitrogen in aquatic systems. Many components of the DON pool have been shown to supply nitrogen nutrition to phytoplankton and bacteria. Predictions of how global warming and eutrophication will affect metabolic rates and dissolved oxygen dynamics in the future are needed to elucidate their impacts on biodiversity and ecosystem functioning. Here, we experimentally determine the effects of simultaneous DON additions and warming on planktonic community metabolism in the Baltic Sea, the largest coastal area suffering from eutrophication-driven hypoxia. Both bacterioplankton community composition and metabolic rates changed in relation to temperature. DON additions from wastewater treatment plant effluents significantly increased the activation energies for community respiration and gross primary production. Activation energies for community respiration were higher than those for gross primary production. Results support the prediction that warming of the Baltic Sea will enhance planktonic respiration rates faster than it will for planktonic primary production. Higher increases in respiration rates than in production may lead to the depletion of the oxygen pool, further aggravating hypoxia in the Baltic Sea.
The effects of the Indo-Pacific warm pool on the stratosphere
NASA Astrophysics Data System (ADS)
Zhou, Xin; Li, Jianping; Xie, Fei; Ding, Ruiqiang; Li, Yanjie; Zhao, Sen; Zhang, Jiankai; Li, Yang
2017-03-01
Sea surface temperature (SST) in the Indo-Pacific warm pool (IPWP) plays a key role in influencing East Asian climate, and even affects global-scale climate change. This study defines IPWP Niño and IPWP Niña events to represent the warm and cold phases of IPWP SST anomalies, respectively, and investigates the effects of these events on stratospheric circulation and temperature. Results from simulations forced by observed SST anomalies during IPWP Niño and Niña events show that the tropical lower stratosphere tends to cool during IPWP Niño events and warm during IPWP Niña events. The responses of the northern and southern polar vortices to IPWP Niño events are fairly symmetric, as both vortices are significantly warmed and weakened. However, the responses of the two polar vortices to IPWP Niña events are of opposite sign: the northern polar vortex is warmed and weakened, but the southern polar vortex is cooled and strengthened. These features are further confirmed by composite analysis using reanalysis data. A possible dynamical mechanism connecting IPWP SST to the stratosphere is suggested, in which IPWP Niño and Niña events excite teleconnections, one similar to the Pacific-North America pattern in the Northern Hemisphere and a Rossby wave train in the Southern Hemisphere, which project onto the climatological wave in the mid-high latitudes, intensifying the upward propagation of planetary waves into the stratosphere and, in turn, affecting the polar vortex.
NASA Astrophysics Data System (ADS)
Schumacher, R. S.; Peters, J. M.
2015-12-01
Mesoscale convective systems (MCSs) are responsible for a large fraction of warm-season extreme rainfall events over the continental United States, as well as other midlatitude regions globally. The rainfall production in these MCSs is determined by numerous factors, including the large-scale forcing for ascent, the organization of the convection, cloud microphysical processes, and the surrounding thermodynamic and kinematic environment. Furthermore, heavy-rain-producing MCSs are most common at night, which means that well-studied mechanisms for MCS maintenance and organization such as cold pools (gravity currents) are not always at work. In this study, we use numerical model simulations and recent field observations to investigate the sensitivity of low-level MCS structures, and their influences on rainfall, to the details of the thermodynamic environment. In particular, small alterations to the initial conditions in idealized and semi-idealized simulations result in comparatively large precipitation changes, both in terms of the intensity and the spatial distribution. The uncertainties in the thermodynamic enviroments in the model simulations will be compared with high-resolution observations from the Plains Elevated Convection At Night (PECAN) field experiment in 2015. The results have implications for the paradigms of "surface-based" versus "elevated" convection, as well as for the predictability of warm-season convective rainfall.
NASA Technical Reports Server (NTRS)
Kim, Seung-Bum; Lee, Tong; Fukumori, Ichiro
2007-01-01
The present study examines processes governing the interannual variation of MLT in the eastern equatorial Pacific.Processes controlling the interannual variation of mixed layer temperature (MLT) averaged over the Nino-3 domain (5 deg N-5 deg S, 150 deg-90 deg W) are studied using an ocean data assimilation product that covers the period of 1993-2003. The overall balance is such that surface heat flux opposes the MLT change but horizontal advection and subsurface processes assist the change. Advective tendencies are estimated here as the temperature fluxes through the domain's boundaries, with the boundary temperature referenced to the domain-averaged temperature to remove the dependence on temperature scale. This allows the authors to characterize external advective processes that warm or cool the water within the domain as a whole. The zonal advective tendency is caused primarily by large-scale advection of warm-pool water through the western boundary of the domain. The meridional advective tendency is contributed to mostly by Ekman current advecting large-scale temperature anomalies through the southern boundary of the domain. Unlike many previous studies, the subsurface processes that consist of vertical mixing and entrainment are explicitly evaluated. In particular, a rigorous method to estimate entrainment allows an exact budget closure. The vertical mixing across the mixed layer (ML) base has a contribution in phase with the MLT change. The entrainment tendency due to the temporal change in ML depth is negligible compared to other subsurface processes. The entrainment tendency by vertical advection across the ML base is dominated by large-scale changes in upwelling and the temperature of upwelling water. Tropical instability waves (TIWs) result in smaller-scale vertical advection that warms the domain during La Nina cooling events. However, such a warming tendency is overwhelmed by the cooling tendency associated with the large-scale upwelling by a factor of 2. In summary, all the balance terms are important in the MLT budget except the entrainment due to lateral induction and temporal variation in ML depth. All three advective tendencies are primarily caused by large-scale and low-frequency processes, and they assist the Nino-3 MLT change.
Varying Influence of Different Forcings on the Indo-Pacific Warm Pool Climate
NASA Astrophysics Data System (ADS)
Mohtadi, M.; Huang, E.; Hollstein, M.; Chen, Y.; Schefuß, E.; Rosenthal, Y.; Prange, M.; Oppo, D.; Liu, J.; Steinke, S.; Martinez-Mendez, G.; Tian, J.; Moffa-Sanchez, P.; Lückge, A.
2017-12-01
Proxy records of rainfall in marine archives from the eastern and western parts of the Indo-Pacific Warm Pool (IPWP) vary at precessional band and suggest a dominant role of orbital forcing by modulating monsoon rainfall and the position of the Inter Tropical Convergence Zone. Rainfall changes recorded in marine archives from the northern South China Sea reveal a more complex history. They are largely consistent with those recorded in the Chinese cave speleothems during glacial periods, but show opposite changes during interglacial peaks that coincide with strong Northern Hemisphere summer insolation maxima. During glacial periods, the establishment of massive Northern Hemisphere ice sheets and the exposure of broad continental shelves in East and Southeast Asia alter the large-scale routes and amounts of water vapor transport onto land relative to interglacials. Precipitation over China during glacials varies at precessional band and is dominated by water vapor transport from the nearby tropical and northwest Pacific, resulting in consistent changes in precipitation over large areas. In the absence of ice forcing during peak interglacials with a strong summer insolation, the low-level southerly monsoonal winds mainly of the Indian Ocean origin penetrate further landward and rainout along their path over China. Subsurface temperatures from the IPWP lack changes on glacial-interglacial timescales but follow the obliquity cycle, and suggest that obliquity-paced climate variations at mid-latitudes remotely control subsurface temperatures in the IPWP. Temperature and rainfall in the IPWP respond primarily to abrupt climate changes in the North Atlantic on millennial timescales, and to ENSO and solar forcing on interannual to decadal timescales. In summary, results from marine records reveal that the IPWP climate is sensitive to changes in spatial and temporal distribution of heat by many types of forcing, the influence of which seems to vary in time and space.
NASA Technical Reports Server (NTRS)
Tao, Wei-Kuo; Einaudi, Franco (Technical Monitor)
2001-01-01
The Goddard Cumulus Ensemble (GCE) model was utilized in two and three dimensions in order to examine the behavior and response of simulated deep tropical cloud systems occurred in west Pacific warm pool region and Atlantic ocean. The periods chosen for simulation were convectively active period over the TOGA-COARE IFA (19-27 December 1992) and GATE (September 1 to 7, 1974). The TOGA COARE IFA period was also in the framework of the GEWEX Cloud System Study (GCSS) WG4 case 2. We will examine the differences between the microphysics (warm rain and ice processes, evaporation/sublimation and condensation/deposition), Q1 (Temperature) and Q2 (Water vapor) budgets between these two convective events occurred in different large-scale environments. The contribution of stratiform precipitation and its relationship to the vertical shear of the large-scale horizontal wind will also be examined. The results from GCSS model intercomparsion will be presented. The new improvements (i.e., microphysics, cloud radiation interaction, surface processes and numerical advection scheme) of the GCE model as well as their sensitivity to the model results will be discussed.
S.M. Natali; E.A.G. Schuur; R.L. Rubin
2012-01-01
The response of northern tundra plant communities to warming temperatures is of critical concern because permafrost ecosystems play a key role in global carbon (C) storage, and climate-induced ecological shifts in the plant community will affect the transfer of carbon-dioxide between biological and atmospheric pools. This study, which focuses on the response of tundra...
Yuan, F M; Yi, S H; McGuire, A D; Johnson, K D; Liang, J; Harden, J W; Kasischke, E S; Kurz, W A
2012-12-01
Carbon (C) dynamics of boreal forest ecosystems have substantial implications for efforts to mitigate the rise of atmospheric CO2 and may be substantially influenced by warming and changing wildfire regimes. In this study we applied a large-scale ecosystem model that included dynamics of organic soil horizons and soil organic matter characteristics of multiple pools to assess forest C stock changes of the Yukon River Basin (YRB) in Alaska, USA, and Canada from 1960 through 2006, a period characterized by substantial climate warming and increases in wildfire. The model was calibrated for major forests with data from long-term research sites and evaluated using a forest inventory database. The regional assessment indicates that forest vegetation C storage increased by 46 Tg C, but that total soil C storage did not change appreciably during this period. However, further analysis suggests that C has been continuously lost from the mineral soil horizon since warming began in the 1970s, but has increased in the amorphous organic soil horizon. Based on a factorial experiment, soil C stocks would have increased by 158 Tg C if the YRB had not undergone warming and changes in fire regime. The analysis also identified that warming and changes in fire regime were approximately equivalent in their effects on soil C storage, and interactions between these two suggests that the loss of organic horizon thickness associated with increases in wildfire made deeper soil C stocks more vulnerable to loss via decomposition. Subbasin analyses indicate that C stock changes were primarily sensitive to the fraction of burned forest area within each subbasin and that boreal forest ecosystems in the YRB are currently transitioning from being sinks to sources at -0.7% annual area burned. We conclude that it is important for international mitigation efforts focused on controlling atmospheric CO2 to consider how climate warming and changes in fire regime may concurrently affect the CO2 sink strength of boreal forests. It is also important for large-scale biogeochemical and earth system models to include organic soil dynamics in applications to assess regional C dynamics of boreal forests responding to warming and changes in fire regime.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yuan, Fengming; Yi, Shuhua; McGuire, A. David
2012-01-01
Carbon (C) dynamics of boreal forest ecosystems have substantial implications for efforts to mitigate the rise of atmospheric CO2 and may be substantially influenced by warming and changing wildfire regimes. In this study we applied a large-scale ecosystem model that included dynamics of organic soil horizons and soil organic matter characteristics of multiple pools to assess forest C stock changes of the Yukon River Basin (YRB) in Alaska, USA, and Canada from 1960 through 2006, a period characterized by substantial climate warming and increases in wildfire. The model was calibrated for major forests with data from long-term research sites andmore » evaluated using a forest inventory database. The regional assessment indicates that forest vegetation C storage increased by 46 Tg C, but that total soil C storage did not change appreciably during this period. However, further analysis suggests that C has been continuously lost from the mineral soil horizon since warming began in the 1970s, but has increased in the amorphous organic soil horizon. Based on a factorial experiment, soil C stocks would have increased by 158 Tg C if the YRB had not undergone warming and changes in fire regime. The analysis also identified that warming and changes in fire regime were approximately equivalent in their effects on soil C storage, and interactions between these two suggests that the loss of organic horizon thickness associated with increases in wildfire made deeper soil C stocks more vulnerable to loss via decomposition. Subbasin analyses indicate that C stock changes were primarily sensitive to the fraction of burned forest area within each subbasin and that boreal forest ecosystems in the YRB are currently transitioning from being sinks to sources at ;0.7% annual area burned. We conclude that it is important for international mitigation efforts focused on controlling atmospheric CO2 to consider how climate warming and changes in fire regime may concurrently affect the CO2 sink strength of boreal forests. It is also important for large-scale biogeochemical and earth system models to include organic soil dynamics in applications to assess regional C dynamics of boreal forests responding to warming and changes in fire regime.« less
Yuan, F.M.; Yi, S.H.; McGuire, A.D.; Johnson, K.D.; Liang, J.; Harden, J.W.; Kasischke, E.S.; Kurz, W.A.
2012-01-01
Carbon (C) dynamics of boreal forest ecosystems have substantial implications for efforts to mitigate the rise of atmospheric CO2 and may be substantially influenced by warming and changing wildfire regimes. In this study we applied a large-scale ecosystem model that included dynamics of organic soil horizons and soil organic matter characteristics of multiple pools to assess forest C stock changes of the Yukon River Basin (YRB) in Alaska, USA, and Canada from 1960 through 2006, a period characterized by substantial climate warming and increases in wildfire. The model was calibrated for major forests with data from long-term research sites and evaluated using a forest inventory database. The regional assessment indicates that forest vegetation C storage increased by 46 Tg C, but that total soil C storage did not change appreciably during this period. However, further analysis suggests that C has been continuously lost from the mineral soil horizon since warming began in the 1970s, but has increased in the amorphous organic soil horizon. Based on a factorial experiment, soil C stocks would have increased by 158 Tg C if the YRB had not undergone warming and changes in fire regime. The analysis also identified that warming and changes in fire regime were approximately equivalent in their effects on soil C storage, and interactions between these two suggests that the loss of organic horizon thickness associated with increases in wildfire made deeper soil C stocks more vulnerable to loss via decomposition. Subbasin analyses indicate that C stock changes were primarily sensitive to the fraction of burned forest area within each subbasin and that boreal forest ecosystems in the YRB are currently transitioning from being sinks to sources at ∼0.7% annual area burned. We conclude that it is important for international mitigation efforts focused on controlling atmospheric CO2 to consider how climate warming and changes in fire regime may concurrently affect the CO2 sink strength of boreal forests. It is also important for large-scale biogeochemical and earth system models to include organic soil dynamics in applications to assess regional C dynamics of boreal forests responding to warming and changes in fire regime.
Lou, Xue-Dong; Zhai, Sheng-Qiang; Kang, Bing; Hu, Ya-Lin; Hu, Li-Le
2014-01-01
A large portion of the global carbon pool is stored in peatlands, which are sensitive to a changing environment conditions. The hydrological loss of dissolved organic carbon (DOC) is believed to play a key role in determining the carbon balance in peatlands. Zoige peatland, the largest peat store in China, is experiencing climatic warming and drying as well as experiencing severe artificial drainage. Using a fully crossed factorial design, we experimentally manipulated temperature and controlled the water tables in large mesocosms containing intact peat monoliths. Specifically, we determined the impact of warming and water table position on the hydrological loss of DOC, the exported amounts, concentrations and qualities of DOC, and the discharge volume in Zoige peatland. Our results revealed that of the water table position had a greater impact on DOC export than the warming treatment, which showed no interactive effects with the water table treatment. Both DOC concentration and discharge volume were significantly increased when water table drawdown, while only the DOC concentration was significantly promoted by warming treatment. Annual DOC export was increased by 69% and 102% when the water table, controlled at 0 cm, was experimentally lowered by −10 cm and −20 cm. Increases in colored and aromatic constituents of DOC (measured by Abs254 nm, SUVA254 nm, Abs400 nm, and SUVA400 nm) were observed under the lower water tables and at the higher peat temperature. Our results provide an indication of the potential impacts of climatic change and anthropogenic drainage on the carbon cycle and/or water storage in a peatland and simultaneously imply the likelihood of potential damage to downstream ecosystems. Furthermore, our results highlight the need for local protection and sustainable development, as well as suggest that more research is required to better understand the impacts of climatic change and artificial disturbances on peatland degradation. PMID:25369065
Lou, Xue-Dong; Zhai, Sheng-Qiang; Kang, Bing; Hu, Ya-Lin; Hu, Li-Le
2014-01-01
A large portion of the global carbon pool is stored in peatlands, which are sensitive to a changing environment conditions. The hydrological loss of dissolved organic carbon (DOC) is believed to play a key role in determining the carbon balance in peatlands. Zoige peatland, the largest peat store in China, is experiencing climatic warming and drying as well as experiencing severe artificial drainage. Using a fully crossed factorial design, we experimentally manipulated temperature and controlled the water tables in large mesocosms containing intact peat monoliths. Specifically, we determined the impact of warming and water table position on the hydrological loss of DOC, the exported amounts, concentrations and qualities of DOC, and the discharge volume in Zoige peatland. Our results revealed that of the water table position had a greater impact on DOC export than the warming treatment, which showed no interactive effects with the water table treatment. Both DOC concentration and discharge volume were significantly increased when water table drawdown, while only the DOC concentration was significantly promoted by warming treatment. Annual DOC export was increased by 69% and 102% when the water table, controlled at 0 cm, was experimentally lowered by -10 cm and -20 cm. Increases in colored and aromatic constituents of DOC (measured by Abs(254 nm), SUVA(254 nm), Abs(400 nm), and SUVA(400 nm)) were observed under the lower water tables and at the higher peat temperature. Our results provide an indication of the potential impacts of climatic change and anthropogenic drainage on the carbon cycle and/or water storage in a peatland and simultaneously imply the likelihood of potential damage to downstream ecosystems. Furthermore, our results highlight the need for local protection and sustainable development, as well as suggest that more research is required to better understand the impacts of climatic change and artificial disturbances on peatland degradation.
Chen, Xiaopeng; Wang, Genxu; Zhang, Tao; Mao, Tianxu; Wei, Da; Song, Chunlin; Hu, Zhaoyong; Huang, Kewei
2017-12-01
Uncertainties in the seasonal changes of greenhouse gases (GHG) fluxes in wetlands limit our accurate understanding of the responses of permafrost ecosystems to future warming and increased nitrogen (N) deposition. Therefore, in an alpine swamp meadow in the hinterland of the Qinghai-Tibet Plateau, a simulated warming with N fertilization experiment was conducted to investigate the key GHG fluxes (ecosystem respiration [Re], CH 4 and N 2 O) in the early (EG), mid (MG) and late (LG) growing seasons. Results showed that warming (6.2 °C) increased the average seasonal Re by 30.9% and transformed the alpine swamp meadow from a N 2 O sink to a source, whereas CH 4 flux was not significantly affected. N fertilization (4 g N m -2 a -1 ) alone had no significant effect on the fluxes of GHGs. The interaction of warming and N fertilization increased CH 4 uptake by 69.6% and N 2 O emissions by 26.2% compared with warming, whereas the Re was not significantly affected. During the EG, although the soil temperature sensitivity of the Re was the highest, the effect of warming on the Re was the weakest. The primary driving factor for Re was soil surface temperature, whereas soil moisture controlled CH 4 flux, and the N 2 O flux was primarily affected by rain events. The results indicated: (i) increasing N deposition has both positive and negative feedbacks on GHG fluxes in response to climate warming; (ii) during soil thawing process at active layer, low temperature of deep frozen soils have a negative contribution to Re in alpine ecosystems; and (iii) although these alpine wetland ecosystems are buffers against increased temperature, their feedbacks on climate change cannot be ignored because of the large soil organic carbon pool and high temperature sensitivity of the Re. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Lough, J. M.
2012-09-01
Changes in tropical sea surface temperature (SST) are examined over the period 1950-2011 during which global average temperature warmed by 0.4°C. Average tropical SST is warming about 70% of the global average rate. Spatially, significant warming between the two time periods, 1950-1980 and 1981-2011, has occurred across 65% of the tropical oceans. Coral reef ecosystems occupy 10% of the tropical oceans, typically in regions of warmer (+1.8°C) and less variable SST (80% of months within 3.3°C range) compared to non-reef areas (80% of months within 7.0°C range). SST is a primary controlling factor of coral reef distribution and coral reef organisms have already shown their sensitivity to the relatively small amount of warming observed so far through, for example, more frequent coral bleaching events and outbreaks of coral disease. Experimental evidence is also emerging of possible thermal thresholds in the range 30°C-32°C for some physiological processes of coral reef organisms. Relatively small changes in SST have already resulted in quite large differences in SST distribution with a maximum ‘hot spot’ of change in the near-equatorial Indo-Pacific which encompasses both the Indo-Pacific warm pools and the center of coral reef biodiversity. Identification of this hot spot of SST change is not new but this study highlights its significance with respect to tropical coral reef ecosystems. Given the modest amount of warming to date, changes in SST distribution are of particular concern for coral reefs given additional local anthropogenic stresses on many reefs and ongoing ocean acidification likely to increasingly compromise coral reef processes.
NASA Science Flights Target Melting Arctic Sea Ice
2017-12-08
This summer, with sea ice across the Arctic Ocean shrinking to below-average levels, a NASA airborne survey of polar ice just completed its first flights. Its target: aquamarine pools of melt water on the ice surface that may be accelerating the overall sea ice retreat. NASA’s Operation IceBridge completed the first research flight of its new 2016 Arctic summer campaign on July 13. The science flights, which continue through July 25, are collecting data on sea ice in a year following a record-warm winter in the Arctic. Read more: go.nasa.gov/29T6mxc Caption: A large pool of melt water over sea ice, as seen from an Operation IceBridge flight over the Beaufort Sea on July 14, 2016. During this summer campaign, IceBridge will map the extent, frequency and depth of melt ponds like these to help scientists forecast the Arctic sea ice yearly minimum extent in September. Credit: NASA/Operation IceBridge
NASA Astrophysics Data System (ADS)
Alexander, H. D.; Loranty, M. M.; Natali, S.; Pena, H., III; Ludwig, S.; Spektor, V.; Davydov, S. P.; Zimov, N.; Mack, M. C.
2017-12-01
Fire severity is increasing in larch forests of the Siberian Arctic as climate warms, and initial fire impacts on tree demographic processes could be an especially important determinant of long-term forest structure and carbon (C) dynamics. We hypothesized that (1) larch forest regrowth post-fire is largely determined by residual soil organic layer (SOL) depth because of the SOL's role as a seedbed and thermal regulator, and (2) changes in post-fire larch recruitment impact C accumulation through stand density impacts on understory microclimate and permafrost thaw. We tested these hypotheses by (1) experimentally creating a soil burn severity gradient in a Cajander larch (Larix cajanderi Mayr.) forest near Cherskiy, Russia and (2) quantifying C pools across a stand density gradient within a 75-year old fire scar. From 2012-2015, we added larch seeds to plots burned at different severities and monitored recruitment along with permafrost and active layer (i.e., subject to annual freeze-thaw) conditions (SOL depth, temperature, moisture, and thaw depth). Across the density gradient, we inventoried larch trees and harvested ground-layer vegetation to estimate aboveground contribution to C pools. We quantified woody debris C pools and sampled belowground C pools (soil, fine roots, and coarse roots) in the organic + upper (0-10 cm) mineral soil. Larch recruits were rare in unburned and low severity plots, but a total of 6 new germinants m-2 were tallied in moderate and high severity plots during the study. Seedling survival for > 1 year was only 40 and 25% on moderate and high severity treatments, respectively, but yielded net larch recruitment of 2 seedlings m-2, compared to 0.3 seedlings m-2 on low severity plots. Density of both total and established recruits increased with decreasing residual SOL depth, which correlated with increased soil temperature, moisture, and thaw depth. At 75-year post-fire, total C pools increased with increased larch density, largely due to increased tree aboveground C pools and decreased ground-layer vegetation C pools, which corresponded to higher canopy cover, cooler soils, and shallower active layer depths. Our findings highlight the potential for a climate-driven increase in fire severity to alter tree recruitment, successional dynamics, and C cycling in Siberian larch forests.
New perspectives of the interannual variability of the Asian-Australian monsoon
NASA Astrophysics Data System (ADS)
Wang, B.
2003-04-01
What is the dominant mode of the interannual variability of the Asian-Australian monsoon? Our analysis reveals two off-equatorial surface anticyclones (or cyclones) dominating the evolving A-AM anomalies. One anomalous anticyclone is located over the South Indian Ocean (SIO) during the El Niño developing year and the other occurs over the western North Pacific (WNP), which attains maximum intensity during El Niño mature and persists through the subsequent spring and summer. What mechanisms are responsible for this dominant mode? It has been a prevailing perspective that El Niño/La Niña and warm-pool SST anomalies primarily force the A-AM anomalies. In contrasting to this traditional view, we demonstrate that El Niño forcing alone can explain neither the amplification of the SIO anticyclone nor the maintenance of the WNP anticyclone; the warm pool SST anomalies are largely a result of the anomalous monsoon. We propose that the dominant A-AM mode is attributed to the combined effect of remote El Niño forcing, local monsoon-warm ocean interaction, and the annual cycle of background circulation. The local atmosphere-warm ocean interaction contributes considerably to these monsoon anomalies. The atmosphere-ocean conditions in the SIO and WNP are similar, namely, an east-west anomalous SST dipole with cold water to the east and warm water to the west of the anticyclone center. These coherent conditions result from a positive feedback between the anomalous descending Rossby waves and SST dipole, which intensifies the SIO anticyclone during El Niño growth and maintains the WNP anticyclone during its decay. The atmosphere-ocean interaction in the two regions share common wind-evaporation/entrainment and cloud/radiation feedbacks but differ in the roles of oceanic dynamics in SST variability. The annual cycle of the atmospheric background circulation, on one hand, controls the nature of the local atmosphere-warm ocean interaction; on the other hand, considerably modifies the atmospheric response to remote El Niño forcing. During the summer of El Niño development, a tilted anticyclonic ridge originating from the maritime continent and extending to south India exhibits considerable equatorial asymmetry, which results from the effects of easterly vertical shear on Rossby waves. The extended SVD results also reveal a prominent biennial tendency of the A-AM anomalies, suggesting that the tropospheric biennial oscillation (TBO) is essentially a phenomenon concurring with the turnabout of El Niño and La Niña events. The understanding obtained in this study leads to a new paradigm for TBO.
TOPEX/El Nino Watch - Satellite shows El Nino-related Sea Surface Height, Mar, 14, 1998
NASA Technical Reports Server (NTRS)
1998-01-01
This image of the Pacific Ocean was produced using sea surface height measurements taken by the U.S.-French TOPEX/Poseidon satellite. The image shows sea surface height relative to normal ocean conditions on Mar. 14, 1998 and sea surface height is an indicator of the heat content of the ocean. The image shows that the sea surface height along the central equatorial Pacific has returned to a near normal state. Oceanographers indicate this is a classic pattern, typical of a mature El Nino condition. Remnants of the El Nino warm water pool, shown in red and white, are situated to the north and south of the equator. These sea surface height measurements have provided scientists with a detailed view of how the 1997-98 El Nino's warm pool behaves because the TOPEX/Poseidon satellite measures the changing sea surface height with unprecedented precision. In this image, the white and red areas indicate unusual patterns of heat storage; in the white areas, the sea surface is between 14 and 32 centimeters (6 to 13 inches) above normal; in the red areas, it's about 10 centimeters (4 inches) above normal. The green areas indicate normal conditions, while purple (the western Pacific) means at least 18 centimeters (7 inches) below normal sea level. The El Nino phenomenon is thought to be triggered when the steady westward blowing trade winds weaken and even reverse direction. This change in the winds allows a large mass of warm water (the red and white area) that is normally located near Australia to move eastward along the equator until it reaches the coast of South America. The displacement of so much warm water affects evaporation, where rain clouds form and, consequently, alters the typical atmospheric jet stream patterns around the world. Using satellite imagery, buoy and ship data, and a forecasting model of the ocean-atmosphere system, the National Oceanic and Atmospheric Administration, (NOAA), has continued to issue an advisory indicating the so-called El Nino weather conditions that have impacted much of the United States and the world are expected to remain through the spring.
TOPEX/El Nino Watch - October 23, 1997
NASA Technical Reports Server (NTRS)
1997-01-01
This image of the Pacific Ocean was produced using sea surface height measurements taken by the U.S./French TOPEX/POSEIDON satellite. The image shows sea surface height relative to normal ocean conditions on Oct. 23, 1997 as the warm water associated with El Nino (in white) spreads northward along the entire coast of North America from the equator all the way to Alaska. The warm water pool associated with the El Nino has returned to the volume it was in mid-September after dropping to a temporary low at the beginning of October. The sea surface elevation just north of the El Nino warm pool continues to drop (purple area), enhancing the eastward flowing North Equatorial Counter Current. The intensification of this current is another tell-tale sign of the El Nino phenomenon. This flow contributes to the rise in sea level along the western coasts of the Americas that will progress towards both the north and south poles over the next several months. The white and red areas indicate unusual patterns of heat storage; in the white areas, the sea surface is between 14 and 32 centimeters (6 to 13 inches) above normal; in the red areas, it's about 10 centimeters (4 inches) above normal. The surface area covered by the warm water mass is about one and one-half times the size of the continental United States. The added amount of oceanic warm water near the Americas, with a temperature between 21-30 degrees Celsius (70- 85 degrees Fahrenheit), is about 30 times the volume of water in all the U.S. Great Lakes combined. The green areas indicate normal conditions, while purple (the western Pacific) means at least 18 centimeters (7 inches) below normal sea level.
The El Nino phenomenon is thought to be triggered when the steady westward blowing trade winds weaken and even reverse direction. This change in the winds allows a large mass of warm water (the red and white area) that is normally located near Australia to move eastward along the equator until it reaches the coast of South America. The displacement of so much warm water affects evaporation, where rain clouds form and, consequently, alters the typical atmospheric jet stream patterns around the world. Using these global data, limited regional measurements from buoys and ships, and a forecasting model of the ocean-atmosphere system, the National Centers for Environmental Prediction (NCEP) of the National Oceanic and Atmospheric Administration, (NOAA), has issued an advisory indicating the presence of a strong El Nino condition throughout the winter.For more information, please visit the TOPEX/Poseidon project web page at http://topex-www.jpl.nasa.gov/A&M. TAN607 floor plans. Shows three floor levels of pool, ...
A&M. TAN-607 floor plans. Shows three floor levels of pool, hot shop, and warm shop. Includes view of pool vestibule, personnel labyrinth, location of floor rails, and room numbers of office areas, labs, instrument rooms, and stairways. This drawing was re-drawn to show as-built features in 1993. Ralph M. Parsons 902-3-ANP-607-A 96. Date of original: December 1952. Approved by INEEL Classification Office for public release. INEEL index code no. 034-0607-00-693-106748 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID
Permafrost Meta-Omics and Climate Change
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mackelprang, Rachel; Saleska, Scott R.; Jacobsen, Carsten Suhr
2016-06-29
Permafrost (i.e., soil that has been frozen for at least 2 consecutive years) represents a habitat for microbial life at subzero temperatures (Gilichinsky et al. 2008). Approximately one quarter of the Earth’s surface is underlain by permafrost, which contains 25-50% of the total global soil carbon pool (Schuur et al. 2008, Tarnocai et al. 2009). This carbon is largely protected from microbial decomposition by reduced microbial activity in frozen conditions, but climate change is threatening to induce large-scale permafrost thaw thus exposing it to degradation. The resulting emissions of greenhouse gasses (GHGs) can produce a positive feedback loop and significantlymore » amplify the effects of global warming. Increasing temperatures at high latitudes, changes in precipitation patterns, and frequent fire events have already initiated a widespread degradation of permafrost (Schuur et al. 2015).« less
Soil warming response: field experiments to Earth system models
NASA Astrophysics Data System (ADS)
Todd-Brown, K. E.; Bradford, M.; Wieder, W. R.; Crowther, T. W.
2017-12-01
The soil carbon response to climate change is extremely uncertain at the global scale, in part because of the uncertainty in the magnitude of the temperature response. To address this uncertainty we collected data from 48 soil warming manipulations studies and examined the temperature response using two different methods. First, we constructed a mixed effects model and extrapolated the effect of soil warming on soil carbon stocks under anticipated shifts in surface temperature during the 21st century. We saw significant vulnerability of soil carbon stocks, especially in high carbon soils. To place this effect in the context of anticipated changes in carbon inputs and moisture shifts, we applied a one pool decay model with temperature sensitivities to the field data and imposed a post-hoc correction on the Earth system model simulations to integrate the field with the simulated temperature response. We found that there was a slight elevation in the overall soil carbon losses, but that the field uncertainty of the temperature sensitivity parameter was as large as the variation in the among model soil carbon projections. This implies that model-data integration is unlikely to constrain soil carbon simulations and highlights the importance of representing parameter uncertainty in these Earth system models to inform emissions targets.
2009-10-29
Pools of warm water known as Kelvin waves can be seen traveling eastward along the equator black line in this image from the NASA/French Space Agency Ocean Surface Topography Mission/Jason-2 satellite.
Regionally coherent Little Ice Age cooling in the Atlantic Warm Pool
Richey, J.N.; Poore, R.Z.; Flower, B.P.; Quinn, T.M.; Hollander, D.J.
2009-01-01
We present 2 new decadal-resolution foraminiferal Mg/Ca-SST records covering the past 6-8 centuries from the northern Gulf of Mexico (GOM). These records provide evidence for a Little Ice Age (LIA) cooling of 2??C, consistent with a published Mg/Ca record from Pigmy Basin. Comparison of these 3 records with existing SST proxy records from the GOM-Caribbean region show that the magnitude of LIA cooling in the Atlantic Warm Pool (AWP) was significantly larger than the mean hemispheric cooling of <1??C. We propose that a reduction in the intensity and spatial extent of the AWP during the LIA, combined with associated changes in atmospheric circulation may account for the regional SST patterns observed in the GOM-Caribbean region during the LIA. Copyright 2009 by the American Geophysical Union.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gagan, M.K.; Chivas, A.R.
1995-05-01
The authors report a 12 year record study of oxygen 18 isotope signals in a coral (Ningaloo Reef), which is situated so as to give an ideal measure of the sea-surface temperature variation of the local Leeuwin Current. This record consists of nearly weekly readings from 1981 to 1993, and brackets the period following the June 1991 eruption of Mt. Pinatubo. Extended study shows a strong correlation of sea-surface temperature on this coral with changes in the Western Pacific Warm Pool (WPWP), with a lag of 2.5 years. A distinct cooling signal was seen in the inferred sea-surface temperatures frommore » coral measurements, in 1992 and 1993, which suggests the WPWP was cooled roughly 0.5{degrees}C by aerosol induced effects.« less
NASA Technical Reports Server (NTRS)
Tierney, J.E.; Oppo, D. W.; LeGrande, A. N.; Huang, Y.; Rosenthal, Y.; Linsley, B. K.
2012-01-01
Existing paleoclimate data suggest a complex evolution of hydroclimate within the Indo-Pacific Warm Pool (IPWP) during the Holocene epoch. Here we introduce a new leaf wax isotope record from Sulawesi, Indonesia and compare proxy water isotope data with ocean-atmosphere general circulation model (OAGCM) simulations to identify mechanisms influencing Holocene IPWP hydroclimate. Modeling simulations suggest that orbital forcing causes heterogenous changes in precipitation across the IPWP on a seasonal basis that may account for the differences in time-evolution of the proxy data at respective sites. Both the proxies and simulations suggest that precipitation variability during the September-November (SON) season is important for hydroclimate in Borneo. The preeminence of the SON season suggests that a seasonally lagged relationship between the Indian monsoon and Indian Ocean Walker circulation influences IPWP hydroclimatic variability during the Holocene.
E.S. Kane; J.G. Vogel
2009-01-01
To understand how carbon (C) pools in boreal ecosystems may change with warming, we measured above- and belowground C pools and C increment along a soil temperature gradient across 16 mature upland black spruce (Picea mariana Mill. [Bâ¢S.P]) forests in interior Alaska. Total spruce C stocks (stand and root C) increased from 1.3 to 8.5 kg C m
Vertical Transport by Coastal Mesoscale Convective Systems
NASA Astrophysics Data System (ADS)
Lombardo, K.; Kading, T.
2016-12-01
This work is part of an ongoing investigation of coastal mesoscale convective systems (MCSs), including changes in vertical transport of boundary layer air by storms moving from inland to offshore. The density of a storm's cold pool versus that of the offshore marine atmospheric boundary layer (MABL), in part, determines the ability of the storm to successfully cross the coast, the mechanism driving storm propagation, and the ability of the storm to lift air from the boundary layer aloft. The ability of an MCS to overturn boundary layer air can be especially important over the eastern US seaboard, where warm season coastal MCSs are relatively common and where large coastal population centers generate concentrated regions of pollution. Recent work numerically simulating idealized MCSs in a coastal environment has provided some insight into the physical mechanisms governing MCS coastal crossing success and the impact on vertical transport of boundary layer air. Storms are simulated using a cloud resolving model initialized with atmospheric conditions representative of a Mid-Atlantic environment. Simulations are run in 2-D at 250 m horizontal resolution with a vertical resolution stretched from 100 m in the boundary layer to 250 m aloft. The left half of the 800 km domain is configured to represent land, while the right half is assigned as water. Sensitivity experiments are conducted to quantify the influence of varying MABL structure on MCS coastal crossing success and air transport, with MABL values representative of those observed over the western Mid-Atlantic during warm season. Preliminary results indicate that when the density of the cold pool is much greater than the MABL, the storm successfully crosses the coastline, with lifting of surface parcels, which ascend through the troposphere. When the density of the cold pool is similar to that of the MABL, parcels within the MABL remain at low levels, though parcels above the MABL ascend through the troposphere.
NASA Astrophysics Data System (ADS)
Bastos, Ana; Peregon, Anna; Gani, Érico A.; Khudyaev, Sergey; Yue, Chao; Li, Wei; Gouveia, Célia M.; Ciais, Philippe
2018-06-01
While the global carbon budget (GCB) is relatively well constrained over the last decades of the 20th century [1], observations and reconstructions of atmospheric CO2 growth rate present large discrepancies during the earlier periods [2]. The large uncertainty in GCB has been attributed to the land biosphere, although it is not clear whether the gaps between observations and reconstructions are mainly because land-surface models (LSMs) underestimate inter-annual to decadal variability in natural ecosystems, or due to inaccuracies in land-use change reconstructions. As Eurasia encompasses about 15% of the terrestrial surface, 20% of the global soil organic carbon pool and constitutes a large CO2 sink, we evaluate the potential contribution of natural and human-driven processes to induce large anomalies in the biospheric CO2 fluxes in the early 20th century. We use an LSM specifically developed for high-latitudes, that correctly simulates Eurasian C-stocks and fluxes from observational records [3], in order to evaluate the sensitivity of the Eurasian sink to the strong high-latitude warming occurring between 1930 and 1950. We show that the LSM with improved high-latitude phenology, hydrology and soil processes, contrary to the group of LSMs in [2], is able to represent enhanced vegetation growth linked to boreal spring warming, consistent with tree-ring time-series [4]. By compiling a dataset of annual agricultural area in the Former Soviet Union that better reflects changes in cropland area linked with socio-economic fluctuations during the early 20th century, we show that land-abadonment during periods of crisis and war may result in reduced CO2 emissions from land-use change (44%–78% lower) detectable at decadal time-scales. Our study points to key processes that may need to be improved in LSMs and LUC datasets in order to better represent decadal variability in the land CO2 sink, and to better constrain the GCB during the pre-observational record.
NASA Astrophysics Data System (ADS)
Hopkins, F. M.; Trumbore, S.
2011-12-01
The role of substrate availability on soil carbon turnover is a critical unknown in predicting future soil carbon stocks. Substrate composition and availability can be altered by land cover change, warming, and nitrogen deposition, which can in turn affect soil carbon stocks through the priming effect. In particular, little is understood about the interaction between warming and changing substrate concentration. We examined the interactions between global change factors and the priming effect using sucrose addition to incubations of soils from two forest Free Air CO2 Enrichment (FACE) sites (Duke and Aspen). In addition to the in situ global change manipulations conducted at these sites, the CO2 fertilization procedure over the decade-long experiment labeled soil carbon pools with fossil-derived carbon (depleted in 14C relative to the background isotope content of soil carbon), allowing us to determine the effect of priming on respiration of soil carbon substrates of different ages. Thus, we used the carbon-13 signature of sucrose-derived CO2 to account for losses of substrate C, and the carbon-14 signature to partition fluxes of soil-derived CO2 between pre-FACE (> 10 y) and FACE derived (< 10 y) carbon sources. At both sites, we observed a positive priming effect-an increase in the rate of soil carbon derived respiration due to sucrose addition. However, the effect of substrate addition on respiratory source pools, as measured by 14C of respiration, varied greatly. At Duke FACE, we observed an increase in 14C content of CO2 of primed soil carbon, whereas at Aspen, we observed no difference. The amount of CO2 released by priming increased with temperature, but was proportionally similar to the amount of increase in basal respiration rates (no differences in Q10). At Duke, both warming and priming served to increase the 14C of respiration, whereas only warming changed 14C of respiration at Aspen. Despite similar overall carbon stocks, differences in the source of the priming effect between the two sites may be due to inherent differences in the relative role of stabilization factors within the soil carbon stock.
NASA Astrophysics Data System (ADS)
Lo, L.; Chuang, C. K.; Wei, K. Y.; Shen, C. C.; Mii, H. S.; Chang, Y. P.
2017-12-01
In this study, we reconstruct surface and upper thermocline seawater temperatures by using planktonic foraminifera Globigerinoides sacculifer and Neogloboquadrina deutertrei in the southern Western Pacific Warm Pool (S-WPWP, ODP Site 1115B, 9o11'S, 151o34'E, water depth 1149 m) during past 2.2-1.1 million years (Ma). Significant S-WPWP surface warming in both glacial and interglacial periods during 1.86-1.55 Ma is accompanied with gradual upper thermocline cooling. S-WPWP sea surface temperature dropped 2.1oC from 1.50-1.21 Ma but upper thermocline temperature further decreased 1.1oC at this time period. WPWP expansion event is also supported by vertical foraminiferal Mg/Ca-derived temperature profile records in the central WPWP (ODP Site 806, Ford et al. 2015). Although foraminiferal Mg/Ca-derived temperature records from Eastern Equatorial Pacific suggests long-term cooling trend (Wara et al. 2005), alkenone undersaturation index (UK'37)-inferred surface temperature records suggest 1oC warming during 2.0-1.5 Ma (Fedorov et al. 2013). We argue that seasonal expansion of WPWP may be attributable to the meridional thermocline gradient increasing (Martinez-Garcia et al. 2010) during 2.0-1.5 Ma. Long-term extent variability of WPWP could have impact on cross-equatorial energy transportation and meridional precipitation belt movements (Lo et al., 2014).
Cooperative fish-rearing programs in Hanford Site excess facilities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Herborn, D.I.; Anderson, B.N.
1994-05-01
In, 1993, two successful fish-rearing pilot projects were conducted in Hanford Site 100 K Area water treatment pools (K Pools) that are excess to the US Department of Energy needs. Beginning this spring, two larger cooperative fish programs will be undertaken in the K Pools. One program will involve the Yakama Indian Nation, which will rear, acclimate, and release 500,000 fall chinook salmon. The other program involves the Washington Department of Fish and Wildlife, which will rear warm-water specie (walleye and channel catfish) for planting in state lakes. Renewed economic vitality is the goal expected from these and follow-on fishmore » programs.« less
Prager, Case M; Naeem, Shahid; Boelman, Natalie T; Eitel, Jan U H; Greaves, Heather E; Heskel, Mary A; Magney, Troy S; Menge, Duncan N L; Vierling, Lee A; Griffin, Kevin L
2017-04-01
Rapid environmental change at high latitudes is predicted to greatly alter the diversity, structure, and function of plant communities, resulting in changes in the pools and fluxes of nutrients. In Arctic tundra, increased nitrogen (N) and phosphorus (P) availability accompanying warming is known to impact plant diversity and ecosystem function; however, to date, most studies examining Arctic nutrient enrichment focus on the impact of relatively large (>25x estimated naturally occurring N enrichment) doses of nutrients on plant community composition and net primary productivity. To understand the impacts of Arctic nutrient enrichment, we examined plant community composition and the capacity for ecosystem function (net ecosystem exchange, ecosystem respiration, and gross primary production) across a gradient of experimental N and P addition expected to more closely approximate warming-induced fertilization. In addition, we compared our measured ecosystem CO 2 flux data to a widely used Arctic ecosystem exchange model to investigate the ability to predict the capacity for CO 2 exchange with nutrient addition. We observed declines in abundance-weighted plant diversity at low levels of nutrient enrichment, but species richness and the capacity for ecosystem carbon uptake did not change until the highest level of fertilization. When we compared our measured data to the model, we found that the model explained roughly 30%-50% of the variance in the observed data, depending on the flux variable, and the relationship weakened at high levels of enrichment. Our results suggest that while a relatively small amount of nutrient enrichment impacts plant diversity, only relatively large levels of fertilization-over an order of magnitude or more than warming-induced rates-significantly alter the capacity for tundra CO 2 exchange. Overall, our findings highlight the value of measuring and modeling the impacts of a nutrient enrichment gradient, as warming-related nutrient availability may impact ecosystems differently than single-level fertilization experiments.
NASA Astrophysics Data System (ADS)
Pendall, E.; Carrillo, Y.; Dijkstra, F. A.
2017-12-01
Future climate will include warmer conditions but impacts on soil C cycling remain uncertain and so are the potential warming-driven feedbacks. Net impacts will depend on the balance of effects on microbial activity and plant inputs. Soil depth is likely to be a critical factor driving this balance as it integrates gradients in belowground biomass, microbial activity and environmental variables. Most empirical studies focus on one soil layer and soil C forecasting relies on broad assumptions about effects of depth. Our limited understanding of the use of available C by soil microbes under climate change across depths is a critical source of uncertainty. Long-term labelling of plant biomass with C isotopic tracers in intact systems allows us to follow the dynamics of different soil C pools including the net accumulation of newly fixed C and the net loss of native C. These can be combined with concurrent observations of microbial use of C pools to explore the impacts of depth on the relationships between plant inputs and microbial C use. We evaluated belowground biomass, in-situ root decomposition and incorporation of plant-derived C into soil C and microbial C at 0-5 cm and 5-15 cmover 7 years at the Prairie Heating And CO2 Enrichment experiment. PHACE was a factorial manipulation of CO2 and warming in a native mixed grass prairie in Wyoming, USA. We used the continuous fumigation with labelled CO2 in the elevated CO2 treatments to study the C dynamics under unwarmed and warmed conditions. Shallower soils had three times the density of biomass as deeper soils. Warming increased biomass in both depths but this effect was weaker in deeper soils. Root litter mass loss in deeper soil was one third that of the shallow and was not affected by warming. Consistent with biomass distribution, incorporation of plant-derived C into soil and microbial C was lower in deeper soils and higher with warming. However, in contrast to the effect of warming on biomass, the effect of warming on incorporation of plant derived C into microbes was stronger in deeper soils. Thus, warming made microbes incorporate relatively more plant inputs in deeper soils, where biomass was less stimulated. This dependency on depth of impacts of warming on microbial C cycling should have important implications for forecasting potential feedbacks of soil C to climate change.
Recent climate extremes associated with the West Pacific Warming Mode
Funk, Chris; Hoell, Andrew
2017-01-01
Here we analyze empirical orthogonal functions (EOFs) of observations and a 30 member ensemble of Community Earth System Model version 1 (CESM1) simulations, and suggest that precipitation declines in the Greater Horn of Africa (GHA) and the northern Middle East/Southwestern Asia (NME/SWE: Iran, Iraq, Kuwait, Syria, Saudi Arabia north of 25°N, Israel, Jordan, and Lebanon) may be interpreted as an interaction between La Niña-like decadal variability and the West Pacific Warming Mode (WPWM). While they exhibit different SST patterns, warming of the Pacific cold tongue (ENSO) and warming of the western Pacific (WPWM) produce similar warm pool diabatic forcing, Walker circulation anomalies, and terrestrial teleconnections. CESM1 SST EOFs indicate that both La Niña-like WPWM warming and El Niño-like east Pacific warming will be produced by climate change. The temporal frequency of these changes, however, are distinct. WPWM varies decadally, while ENSO is dominated by interannual variability. Future WPWM and ENSO warming may manifest as a tendency toward warm West Pacific SST, punctuated by extreme warm East Pacific events. WPWM EOFs from Global Precipitation Climatology Project (GPCP) precipitation also identify dramatic WPWM-related declines in the Greater Horn of Africa and NME/SWE.
Holocene ITCZ and ENSO-driven climate variability from the Panama isthmus
NASA Astrophysics Data System (ADS)
Urrego, D. H.; Aronson, R. B.; Bush, M. B.
2009-12-01
Holocene climate has previously been considered relatively stable compared to Pleistocene fluctuations. Recent paleoclimatic reconstructions have shown, however, that Holocene climatic variability is large and that the key to understanding and predicting responses to current climate change could lie in Holocene climatic history. In tropical regions, one of the most important oceanic-atmospheric systems regulating present and past interannual climatic fluctuations is the InterTropical Convergence Zone (ITCZ). Several hypotheses have been postulated to explain Holocene climate oscillations and their impacts in Northern South America. One of these hypotheses is that reduced precipitation during the mid-Holocene in the Caribbean and off the coast of Venezuela resulted from a southward migration of the ITCZ’s mean annual position (1, 2). In turn, this southward movement was associated with changes in the location of warm pools and insolation maxima regions in the tropical Atlantic. However, oscillations in Pacific warm pools should be expected to influence the annual ITCZ cycle as well. The latitudinal positions of these warm pools in the Pacific are directly influenced by ENSO (El Niño Southern Oscillation), and are predicted to move south during El Niño (warm-ENSO) years. A mid-Holocene increase in the frequency of warm ENSO events is reported in the eastern Pacific after 6 ka (3, 4), and although this change occurred more than a thousand years earlier than the southward migrations of the ITCZ reconstructed from tropical Atlantic systems, we hypothesize that there must be a link between these two apparently separate events. Reconciling the roles of Atlantic versus Pacific ocean-atmosphere interactions, and the effect of Pacific phenomena like ENSO on the annual position of the ITCZ are therefore crucial to understand climatic variability in tropical America. Lago La Yeguada is located in the Isthmus of Panama and its climate is determined mainly by the ITCZ, ENSO, and the effects of trade-wind-driven moisture exchanges between the Atlantic and Pacific oceans on the position of the ITCZ. A finely laminated sediment core from La Yeguada represents one of the most detailed Holocene climatic archives for the Isthmus. The pollen and charcoal records from La Yeguada were previously published (5) but detailed paleolimnological analyses were not conducted. Results from high-resolution x-ray fluorescence analyses of conspicuous changes in lamination patterns appear to correlate with mid-Holocene changes in ITCZ and ENSO systems recorded in the Cariaco Basin (2) and the eastern Pacific (3). A third climatic forcing associated with changes in upwelling in the Panama Bight was also observed. We conclude that mid-Holocene changes in ITCZ and ENSO systems had significant effects in both terrestrial and marine communities, as evidenced in the pollen record of La Yeguada and unpublished coral reef records from the Panama Bay. References: (1) Hodell, DA et al (1991) Nature, 352, 790-793; (2) Haug, GH et al (2001) Science, 293, 1304-1308; (3) Moy, CM et al (2002) Nature 420: 162-165; (4) Riedinger, MA et al (2002) Journal of Paleolimnology 27: 1-7; (5) Bush, MB et al (1990) Journal of Vegetation Science 1:105-118.
The 2014-2015 Warming Anomaly in the Southern California Current System: Glider Observations
NASA Astrophysics Data System (ADS)
Zaba, K. D.; Rudnick, D. L.
2016-02-01
During 2014-2015, basin-wide patterns of oceanic and atmospheric anomalies affected surface waters throughout the North Pacific Ocean. We present regional physical and biological effects of the warming, as observed by our autonomous underwater gliders in the southern California Current System (SCCS). Established in 2006, the California Glider Network provides sustained subsurface observations for monitoring the coastal effects of large-scale climate variability. Along repeat sections that extend to 350-500 km in offshore distance and 500 m in depth, Spray gliders have continuously occupied CalCOFI lines 66.7, 80, and 90 for nearly nine years. Following a sawtooth trajectory, the gliders complete each dive in approximately 3 hours and over 3 km. Measured variables include pressure, temperature, salinity, chlorophyll fluorescence, and velocity. For each of the three lines, a comprehensive climatology has been constructed from the multiyear timeseries. The ongoing surface-intensified warming anomaly, which began locally in early 2014 and persists through present, is unprecedented in the glider climatology. Reaching up to 5°C, positive temperature anomalies have been generally confined to the upper 50 m and persistent for over 20 months. The timing of the warming was in phase along each glider line but out of phase with equatorial SST anomalies, suggesting a decoupling of tropical and mid-latitude dynamics. Concurrent physical oceanographic anomalies included a depressed thermocline and high stratification. An induced biological response was apparent in the deepening of the subsurface chlorophyll fluorescence maximum. Ancillary atmospheric data from the NCEP North American Mesoscale (NAM) model indicate that a combination of surface forcing anomalies, namely high downward heat flux and weak wind stress magnitude, caused the unusual warm, downwelling conditions. With a strong El Niño event in the forecast for winter 2015-2016, our sustained glider network will continue to measure the evolution of the shallow warm pool in the SCCS and its potential interaction with ENSO-related anomalies.
Song, Bing; Niu, Shuli; Zhang, Zhe; Yang, Haijun; Li, Linghao; Wan, Shiqiang
2012-01-01
Soil is one of the most important carbon (C) and nitrogen (N) pools and plays a crucial role in ecosystem C and N cycling. Climate change profoundly affects soil C and N storage via changing C and N inputs and outputs. However, the influences of climate warming and changing precipitation regime on labile and recalcitrant fractions of soil organic C and N remain unclear. Here, we investigated soil labile and recalcitrant C and N under 6 years' treatments of experimental warming and increased precipitation in a temperate steppe in Northern China. We measured soil light fraction C (LFC) and N (LFN), microbial biomass C (MBC) and N (MBN), dissolved organic C (DOC) and heavy fraction C (HFC) and N (HFN). The results showed that increased precipitation significantly stimulated soil LFC and LFN by 16.1% and 18.5%, respectively, and increased LFC:HFC ratio and LFN:HFN ratio, suggesting that increased precipitation transferred more soil organic carbon into the quick-decayed carbon pool. Experimental warming reduced soil labile C (LFC, MBC, and DOC). In contrast, soil heavy fraction C and N, and total C and N were not significantly impacted by increased precipitation or warming. Soil labile C significantly correlated with gross ecosystem productivity, ecosystem respiration and soil respiration, but not with soil moisture and temperature, suggesting that biotic processes rather than abiotic factors determine variations in soil labile C. Our results indicate that certain soil carbon fraction is sensitive to climate change in the temperate steppe, which may in turn impact ecosystem carbon fluxes in response and feedback to climate change.
Song, Bing; Niu, Shuli; Zhang, Zhe; Yang, Haijun; Li, Linghao; Wan, Shiqiang
2012-01-01
Soil is one of the most important carbon (C) and nitrogen (N) pools and plays a crucial role in ecosystem C and N cycling. Climate change profoundly affects soil C and N storage via changing C and N inputs and outputs. However, the influences of climate warming and changing precipitation regime on labile and recalcitrant fractions of soil organic C and N remain unclear. Here, we investigated soil labile and recalcitrant C and N under 6 years' treatments of experimental warming and increased precipitation in a temperate steppe in Northern China. We measured soil light fraction C (LFC) and N (LFN), microbial biomass C (MBC) and N (MBN), dissolved organic C (DOC) and heavy fraction C (HFC) and N (HFN). The results showed that increased precipitation significantly stimulated soil LFC and LFN by 16.1% and 18.5%, respectively, and increased LFC∶HFC ratio and LFN∶HFN ratio, suggesting that increased precipitation transferred more soil organic carbon into the quick-decayed carbon pool. Experimental warming reduced soil labile C (LFC, MBC, and DOC). In contrast, soil heavy fraction C and N, and total C and N were not significantly impacted by increased precipitation or warming. Soil labile C significantly correlated with gross ecosystem productivity, ecosystem respiration and soil respiration, but not with soil moisture and temperature, suggesting that biotic processes rather than abiotic factors determine variations in soil labile C. Our results indicate that certain soil carbon fraction is sensitive to climate change in the temperate steppe, which may in turn impact ecosystem carbon fluxes in response and feedback to climate change. PMID:22479373
NASA Technical Reports Server (NTRS)
Gutzler, D. S.; Kiladis, G. N.; Meehl, G. A.; Weickmann, K. M.; Wheeler, M.
1994-01-01
Recently, scientists from more than a dozen countries carried out the field phase of a project called the Coupled-Atmosphere Response Experiment (COARE), devoted to describing the ocean-atmosphere system of the western Pacific near-equatorial warm pool. The project was conceived, organized, and funded under the auspices of the International Tropical Ocean Global Atmosphere (TOGA) Program. Although COARE consisted of several field phases, including a year-long atmospheric enhanced monitoring period (1 July 1992 -- 30 June 1993), the heart of COARE was its four-month Intensive Observation Period (IOP) extending from 1 Nov. 1992 through 28 Feb. 1993. An overview of large-scale variability during COARE is presented. The weather and climate observed in the IOP is placed into context with regard to large-scale, low-frequency fluctuations of the ocean-atmosphere system. Aspects of tropical variability beginning in Aug. 1992 and extending through Mar. 1993, with some sounding data for Apr. 1993 are considered. Variability over the large-scale sounding array (LSA) and the intensive flux array (IFA) is emphasized.
Propagation Dynamics of Successive, Circumnavigating MJO Events in MERRA2 Reanalysis
NASA Astrophysics Data System (ADS)
Powell, Scott
2017-04-01
Propagation speeds of strong circumnavigating successive MJO events are investigated in MERRA2 reanalysis. Coherent, statistically significant circumnavigating signals in parameterized latent heating and modeled adiabatic cooling associated with large-scale vertical motion are detected and tracked. The signals appear to be associated with propagation of a first baroclinic Kelvin wave, but they obviously moved at a rate much slower than the theoretical phase speed for a dry first baroclinic Kelvin wave. ( 45-50 m/s). The goal is to determine what factors primarily control the variable propagation speed of the MJO signal as a function of longitude. Following theory of Neelin and Held (1987) and Emanuel et al. (1994), the climatological offset (i.e. cancellation) between column integrated diabatic heating and adiabatic cooling in MERRA2 is used to the estimate the wave propagation speed if a reduction of "effective static stability" governed the phase speed. The offset is robust from year to year at all longitudes. A first baroclinic mode based on applying the theory to reanalysis output would propagate between 20-25 m/s over much of the Western Hemisphere, between 20-35 m/s over the eastern Atlantic and Africa, and between 5-20 m/s over the tropical warm pool. The theoretically predicted velocities closely match the propagation speed of the circumnavigating convective signal seen in reanalysis over regions of the tropics where the weak temperature gradient (WTG) approximation is apparently inapplicable (i.e. where deep convection is not prevalent and the offset between diabatic heating and adiabatic cooling is small enough to allow a non-negligible temperature tendency). However, in places where deep convection is prevalent and the offset is large (greater than about 0.9), such as over the warm pool, the theory greatly overestimates propagation speed of the MJO signal. Rather, the moisture wave theory of Adames and Kim (2016), which assumes a WTG, accurately predicts the speed of the MJO signal. Thus, two distinct dynamic regimes, one in which gravity waves dominate and another in which moisture wave dynamics are more applicable, govern MJO propagation depending on where the signal is located. In the East Pacific, the offset has seasonal dependence. It is small (about 0.7) during boreal winter, and a reduction of effective static stability adequately describes propagation of the MJO signal. During boreal summer, the offset approaches 0.9, meaning that the WTG dynamic regime is prevalent like over the warm pool. However, no known theory for MJO propagation can explain the propagation speed of the signal, 8-9 m/s. In the East Pacific, convection tends to have a second baroclinic vertical structure, and it is centered off the equator. This highlights the need for extension of moisture wave/moisture mode theories to incorporate the second convective vertical mode and convection that is not centered latitudinally at the equator.
The effect of fire on soil organic matter--a review.
González-Pérez, José A; González-Vila, Francisco J; Almendros, Gonzalo; Knicker, Heike
2004-08-01
The extent of the soil organic carbon pool doubles that present in the atmosphere and is about two to three times greater than that accumulated in living organisms in all Earth's terrestrial ecosystems. In such a scenario, one of the several ecological and environmental impacts of fires is that biomass burning is a significant source of greenhouse gases responsible for global warming. Nevertheless, the oxidation of biomass is usually incomplete and a range of pyrolysis compounds and particulate organic matter (OM) in aerosols are produced simultaneously to the thermal modification of pre-existing C forms in soil. These changes lead to the evolution of the OM to "pyromorphic humus", composed by rearranged macromolecular substances of weak colloidal properties and an enhanced resistance against chemical and biological degradation. Hence the occurrence of fires in both undisturbed and agricultural ecosystems may produce long-lasting effects on soils' OM composition and dynamics. Due to the large extent of the C pool in soils, small deviations in the different C forms may also have a significant effect in the global C balance and consequently on climate change. This paper reviews the effect of forest fires on the quantity and quality of soils' OM. It is focused mainly on the most stable pool of soil C; i.e., that having a large residence time, composed of free lipids, colloidal fractions, including humic acids (HA) and fulvic acids (FA), and other resilient forms. The main transformations exerted by fire on soil humus include the accumulation of new particulate C forms highly resistant to oxidation and biological degradation including the so-called "black carbon" (BC). Controversial environmental implications of such processes, specifically in the stabilisation of C in soil and their bearing on the global C cycle are discussed.
TOPEX/El Niño Watch - Warm Water Pool is Increasing, Nov. 10, 1997
1997-11-20
This image of the Pacific Ocean was produced using sea surface height measurements taken by the U.S./French TOPEX/Poseidon satellite. The image shows sea surface height relative to normal ocean conditions on Nov. 10, 1997.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koven, C. D.; Chambers, J. Q.; Georgiou, K.
To better understand sources of uncertainty in projections of terrestrial carbon cycle feedbacks, we present an approach to separate the controls on modeled carbon changes. We separate carbon changes into four categories using a linearized, equilibrium approach: those arising from changed inputs (productivity-driven changes), and outputs (turnover-driven changes), of both the live and dead carbon pools. Using Coupled Model Intercomparison Project Phase 5 (CMIP5) simulations for five models, we find that changes to the live pools are primarily explained by productivity-driven changes, with only one model showing large compensating changes to live carbon turnover times. For dead carbon pools, themore » situation is more complex as all models predict a large reduction in turnover times in response to increases in productivity. This response arises from the common representation of a broad spectrum of decomposition turnover times via a multi-pool approach, in which flux-weighted turnover times are faster than mass-weighted turnover times. This leads to a shift in the distribution of carbon among dead pools in response to changes in inputs, and therefore a transient but long-lived reduction in turnover times. Since this behavior, a reduction in inferred turnover times resulting from an increase in inputs, is superficially similar to priming processes, but occurring without the mechanisms responsible for priming, we call the phenomenon "false priming", and show that it masks much of the intrinsic changes to dead carbon turnover times as a result of changing climate. These patterns hold across the fully coupled, biogeochemically coupled, and radiatively coupled 1 % yr −1 increasing CO 2 experiments. We disaggregate inter-model uncertainty in the globally integrated equilibrium carbon responses to initial turnover times, initial productivity, fractional changes in turnover, and fractional changes in productivity. For both the live and dead carbon pools, inter-model spread in carbon changes arising from initial conditions is dominated by model disagreement on turnover times, whereas inter-model spread in carbon changes from fractional changes to these terms is dominated by model disagreement on changes to productivity in response to both warming and CO 2 fertilization. However, the lack of changing turnover time control on carbon responses, for both live and dead carbon pools, in response to the imposed forcings may arise from a common lack of process representation behind changing turnover times (e.g., allocation and mortality for live carbon; permafrost, microbial dynamics, and mineral stabilization for dead carbon), rather than a true estimate of the importance of these processes.« less
Koven, C. D.; Chambers, J. Q.; Georgiou, K.; ...
2015-09-07
To better understand sources of uncertainty in projections of terrestrial carbon cycle feedbacks, we present an approach to separate the controls on modeled carbon changes. We separate carbon changes into four categories using a linearized, equilibrium approach: those arising from changed inputs (productivity-driven changes), and outputs (turnover-driven changes), of both the live and dead carbon pools. Using Coupled Model Intercomparison Project Phase 5 (CMIP5) simulations for five models, we find that changes to the live pools are primarily explained by productivity-driven changes, with only one model showing large compensating changes to live carbon turnover times. For dead carbon pools, themore » situation is more complex as all models predict a large reduction in turnover times in response to increases in productivity. This response arises from the common representation of a broad spectrum of decomposition turnover times via a multi-pool approach, in which flux-weighted turnover times are faster than mass-weighted turnover times. This leads to a shift in the distribution of carbon among dead pools in response to changes in inputs, and therefore a transient but long-lived reduction in turnover times. Since this behavior, a reduction in inferred turnover times resulting from an increase in inputs, is superficially similar to priming processes, but occurring without the mechanisms responsible for priming, we call the phenomenon "false priming", and show that it masks much of the intrinsic changes to dead carbon turnover times as a result of changing climate. These patterns hold across the fully coupled, biogeochemically coupled, and radiatively coupled 1 % yr −1 increasing CO 2 experiments. We disaggregate inter-model uncertainty in the globally integrated equilibrium carbon responses to initial turnover times, initial productivity, fractional changes in turnover, and fractional changes in productivity. For both the live and dead carbon pools, inter-model spread in carbon changes arising from initial conditions is dominated by model disagreement on turnover times, whereas inter-model spread in carbon changes from fractional changes to these terms is dominated by model disagreement on changes to productivity in response to both warming and CO 2 fertilization. However, the lack of changing turnover time control on carbon responses, for both live and dead carbon pools, in response to the imposed forcings may arise from a common lack of process representation behind changing turnover times (e.g., allocation and mortality for live carbon; permafrost, microbial dynamics, and mineral stabilization for dead carbon), rather than a true estimate of the importance of these processes.« less
NASA Technical Reports Server (NTRS)
Yang, Fanglin; Lau, K.-M.
2004-01-01
Observational records in the past 50 years show an upward trend of boreal-summer precipitation over central eastern China and a downward trend over northern China. During boreal spring, the trend is upward over southeastern China and downward over central eastern China. This study explores the forcing mechanism of these trends in association with the global sea-surface temperature (SST) variations on the interannual and inter-decadal timescales. Results based on Singular Value Decomposition analyses (SVD) show that the interannual variability of China precipitation in boreal spring and summer can be well defined by two centers of actions for each season, which are co-varying with two interannual modes of SSTs. The first SVD modes of precipitation in spring and summer, which are centered in southeastern China and northern China, respectively, are linked to an ENSO-like mode of SSTs. The second SVD modes of precipitation in both seasons are confined to central eastern China, and are primarily linked to SST variations over the warm pool and Indian Ocean. Features of the anomalous 850-hPa winds and 700-Wa geopotential height corresponding to these modes support a physical mechanism that explains the causal links between the modal variations of precipitation and SSTs. On the decadal and longer timescale, similar causal links are found between the same modes of precipitation and SSTs, except for the case of springtime precipitation over central eastern China. For this case, while the interannual mode of precipitation is positively correlated with the interannual variations of SSTs over the warm pool and Indian Ocean; the inter-decadal mode is negatively correlated with a different SST mode, the North Pacific mode. The later is responsible for the observed downward trend of springtime precipitation over central eastern China. For all other cases, both the interannual and inter-decadal variations of precipitation can be explained by the same mode of SSTs. The upward trend of springtime precipitation over southeastern China and downward trend of summertime precipitation over northern China are attributable to the warming trend of the ENSO-like mode. The recent frequent summertime floods over central eastern China are linked to the warming trend of SSTs over the warm pool and Indian Ocean.
Phylogenetic analysis of Archaea in the deep-sea sediments of west Pacific Warm Pool.
Wang, Peng; Xiao, Xiang; Wang, Fengping
2005-06-01
Archaea are known to play important roles in carbon cycling in marine sediments. The main compositions of archaeal community in five deep-sea sediment samples collected from west Pacific Warm Pool area (WP-0, WP-1, WP-2, WP-3, WP-4), and in five sediment layers (1 cm-, 3 cm-, 6 cm-, 10 cm-, 12 cm- layer) of the 12 cm sediment core of WP-0 were checked and compared by denaturing gradient gel electrophoresis and 16 S rRNA gene sequencing. It was revealed that all the deep-sea sediment samples checked contained members of non-thermophilic marine group I crenarchaeota as the predominant archaeal group. To further detect groups of archaea possibly relating with C1 metabolism, PCR amplification was carried out using primers targeting methane-oxidizing archaea. Although no methane-oxidizing archaea was detected, a group of novel archaea (named as WPA) was instead identified from all these five WP samples by clone analysis. They could be placed in the euryarchaeota kingdom, separated into two distinct groups, the main group was peripherally related with methanogens, the other group related with Thermoplasma. The vertical distributions of WPA, archaea and bacteria along the WP-0 sediment column were determined by quantitative-PCR. It was found that bacteria dominated at all depths, the numbers of bacteria were 10-10(4) times more than those of archaea. The proportion of archaea versus bacteria had a depth related increasing tendency, it was lowest at the first layer (0.01%), reached highest at the 12 cm- layer (10%). WPA only constituted a small proportion of the archaeal community (0.05% to 5%) of west Pacific Warm Pool sediment.
NASA Astrophysics Data System (ADS)
Natali, S.; Mauritz, M.; Pegoraro, E.; Schuur, E.
2015-12-01
Climate warming in arctic tundra has been associated with increased plant productivity and a shift in plant community composition, specifically an increase in shrub cover, which can impact soil organic matter through changes in the size and composition of the leaf litter pool. Shifts in litter quantity and quality will in turn interact with changes in the soil environment as the climate continues to warm. We examined the effects of permafrost thaw, soil moisture changes, and plant community composition on leaf litter decomposition in an upland tundra ecosystem in Interior Alaska. We present warming and drying effects on decomposition rates of graminoid-dominated and shrub-dominated leaf litter mixtures over three years (2 cm depth), and annual decomposition of a common cellulose substrate (0-10 cm and 10-20 cm) over five years at a permafrost thaw and soil drying experiment. We expected that warming and drying would increase decomposition, and that decomposition would be greater in the shrub litter than in the graminoid litter mix. Decomposition of Betula nana, the dominant shrub, was 50% greater in the shrub-dominated litter mix compared to the graminoid-dominated litter. Surprisingly, there was no significant difference in total litter mass loss between graminoid and shrub litter mixtures, despite significant differences in decomposition rates of the dominant plant species when decomposed alone and in community mixtures. Drying decreased decomposition of B. nana and of the shrub community litter overall, but after two years there was no detected warming effect on shrub-community decomposition. In contrast to leaf litter decomposition, both warming and drying increased decomposition of the common substrate. Warming caused an almost twofold increase in cellulose decomposition in surface soil (0-10cm), and drying caused a twofold increase in cellulose decomposition from deeper organic layer soils (10-20cm). These results demonstrate the importance of interactions among temperature, moisture and vegetation changes on organic matter decomposition, and the potential for increased plant productivity and vegetation changes to alter the size and composition of the soil organic matter pool.
Forced-Air Warming Discontinued: Periprosthetic Joint Infection Rates Drop.
Augustine, Scott D
2017-06-23
Several studies have shown that the waste heat from forced-air warming (FAW) escapes near the floor and warms the contaminated air resident near the floor. The waste heat then forms into convection currents that rise up and contaminate the sterile field above the surgical table. It has been shown that a single airborne bacterium can cause a periprosthetic joint infection (PJI) following joint replacement surgery. We retrospectively compared PJI rates during a period of FAW to a period of air-free conductive fabric electric warming (CFW) at three hospitals. Surgical and antibiotic protocols were held constant. The pooled multicenter data showed a decreased PJI rate of 78% following the discontinuation of FAW and a switch to air-free CFW (n=2034; P=0.002). The 78% reduction in joint implant infections observed when FAW was discontinued suggests that there is a link between the waste FAW heat and PJIs.
Forced-Air Warming Discontinued: Periprosthetic Joint Infection Rates Drop
Augustine, Scott D.
2017-01-01
Several studies have shown that the waste heat from forced-air warming (FAW) escapes near the floor and warms the contaminated air resident near the floor. The waste heat then forms into convection currents that rise up and contaminate the sterile field above the surgical table. It has been shown that a single airborne bacterium can cause a periprosthetic joint infection (PJI) following joint replacement surgery. We retrospectively compared PJI rates during a period of FAW to a period of air-free conductive fabric electric warming (CFW) at three hospitals. Surgical and antibiotic protocols were held constant. The pooled multicenter data showed a decreased PJI rate of 78% following the discontinuation of FAW and a switch to air-free CFW (n=2034; P=0.002). The 78% reduction in joint implant infections observed when FAW was discontinued suggests that there is a link between the waste FAW heat and PJIs. PMID:28713524
NASA Technical Reports Server (NTRS)
Chou, Ming-Dah; Chou, Shu-Hsien; Zhao, Wenzhong
1999-01-01
The energy budget of the tropical western Pacific (TWP) is particularly important because this is one of the most energetic convection regions on the Earth. Nearly half of the solar radiation incident at the top of atmosphere is absorbed at the surface and only about 22% absorbed in the atmosphere. A large portion of the excess heat absorbed at the surface is transferred to the atmosphere through evaporation, which provides energy and water for convection and precipitation. The western equatorial Pacific is characterized by the highest sea surface temperature (SST) and heaviest rainfall in the world ocean. A small variation of SST associated with the eastward shift of the warm pool during El-Nino/Souther Oscillation changes the atmospheric circulation pattern and affects the global climate. In a study of the TWP surface heat and momentum fluxes during the Tropical Ocean and Global Atmosphere Coupled Ocean-Atmosphere Response Experiment (TOGA COARE) Intensive observing period (IOP) from November 1992 to February have found that the solar radiation is the most important component of the surface energy budget, which undergoes significant temporal and spatial variation. The variations are influenced by the two 40-50 days Madden Julian Oscillations (MJOs) which propagated eastward from the Indian Ocean to the Central Pacific during the IOP. The TWP surface solar radiation during the COARE IOP was investigated by a number of studies. In addition, the effects of clouds on the solar heating of the atmosphere in the TWP was studied using energy budget analysis. In this study, we present some results of the TWP surface solar shortwave or SW radiation budget and the effect of clouds on the atmospheric solar heating using the surface radiation measurements and Japan's Geostationary Meteorological Satellite 4 radiance measurements during COARE IOP.
Regional gene pools for restoration, conservation, and genetic improvement of prairie grasses
USDA-ARS?s Scientific Manuscript database
Switchgrass (Panicum virgatum), big bluestem (Andropogon gerardii), and Indiangrass (Sorghastrum nutans) are native warm-season grasses that have been identified as potential cellulosic bioenergy feedstock crops due to their potential for high yields, perennial life habit, and nutrient use efficienc...
Warm-up and performance in competitive swimming.
Neiva, Henrique P; Marques, Mário C; Barbosa, Tiago M; Izquierdo, Mikel; Marinho, Daniel A
2014-03-01
Warm-up before physical activity is commonly accepted to be fundamental, and any priming practices are usually thought to optimize performance. However, specifically in swimming, studies on the effects of warm-up are scarce, which may be due to the swimming pool environment, which has a high temperature and humidity, and to the complexity of warm-up procedures. The purpose of this study is to review and summarize the different studies on how warming up affects swimming performance, and to develop recommendations for improving the efficiency of warm-up before competition. Most of the main proposed effects of warm-up, such as elevated core and muscular temperatures, increased blood flow and oxygen delivery to muscle cells and higher efficiency of muscle contractions, support the hypothesis that warm-up enhances performance. However, while many researchers have reported improvements in performance after warm-up, others have found no benefits to warm-up. This lack of consensus emphasizes the need to evaluate the real effects of warm-up and optimize its design. Little is known about the effectiveness of warm-up in competitive swimming, and the variety of warm-up methods and swimming events studied makes it difficult to compare the published conclusions about the role of warm-up in swimming. Recent findings have shown that warm-up has a positive effect on the swimmer's performance, especially for distances greater than 200 m. We recommend that swimmers warm-up for a relatively moderate distance (between 1,000 and 1,500 m) with a proper intensity (a brief approach to race pace velocity) and recovery time sufficient to prevent the early onset of fatigue and to allow the restoration of energy reserves (8-20 min).
What Would Happen to Superstorm Sandy Under the Influence of a Substantially Warmer Atlantic Ocean?
NASA Technical Reports Server (NTRS)
Lau, William K. M.; Shi, J. J.; Tao, W. K.; Kim, K. M.
2016-01-01
Based on ensemble numerical simulations, we find that possible responses of Sandy-like superstorms under the influence of a substantially warmer Atlantic Ocean bifurcate into two groups. In the first group, storms are similar to present-day Sandy from genesis to extratropical transition, except they are much stronger, with peak Power Destructive Index (PDI) increased by 50-80%, heavy rain by 30-50%, and maximum storm size (MSS) approximately doubled. In the second group, storms amplify substantially over the interior of the Atlantic warm pool, with peak PDI increased by 100-160%, heavy rain by 70-180%, and MSS more than tripled compared to present-day Superstorm Sandy. These storms when exiting the warm pool, recurve northeastward out to sea, subsequently interact with the developing midlatitude storm by mutual counterclockwise rotation around each other and eventually amplify into a severe Northeastern coastal storm, making landfall over the extreme northeastern regions from Maine to Nova Scotia.
Xie, Fei; Li, Jianping; Tian, Wenshou; Li, Yanjie; Feng, Juan
2014-01-01
The tropical cold-point tropopause temperature (CPTT), a potentially important indicator of global climate change, is of particular importance for understanding changes in stratospheric water vapor levels. Since the 1980s, the tropical CPTT has shown not only interannual variations, but also a decreasing trend. However, the factors controlling the variations in the tropical CPTT since the 1980s remain elusive. The present study reveals that the continuous expansion of the area of the Indo-Pacific warm pool (IPWP) since the 1980s represents an increase in the total heat energy of the IPWP available to heat the tropospheric air, which is likely to expand as a result. This process lifts the tropical cold-point tropopause height (CPTH) and leads to the observed long-term cooling trend of the tropical CPTT. In addition, our analysis shows that Modoki activity is an important factor in modulating the interannual variations of the tropical CPTT through significant effects on overshooting convection. PMID:24686481
Carbon Pools in a Temperate Heathland Resist Changes in a Future Climate
NASA Astrophysics Data System (ADS)
Ambus, P.; Reinsch, S.; Nielsen, P. L.; Michelsen, A.; Schmidt, I. K.; Mikkelsen, T. N.
2014-12-01
The fate of recently plant assimilated carbon was followed into ecosystem carbon pools and fluxes in a temperate heathland after a 13CO2 pulse in the early growing season in a 6-year long multi-factorial climate change experiment. Eight days after the pulse, recently assimilated carbon was significantly higher in storage organs (rhizomes) of the grass Deschampsia flexuosa under elevated atmospheric CO2 concentration. Experimental drought induced a pronounced utilization of recently assimilated carbon belowground (roots, microbes, dissolved organic carbon) potentially counterbalancing limited nutrient availability. The fate of recently assimilated carbon was not affected by moderate warming. The full factorial combination of elevated CO2, warming and drought simulating future climatic conditions as expected for Denmark in 2075 did not change short-term carbon turnover significantly compared to ambient conditions. Overall, climate factors interacted in an unexpected way resulting in strong resilience of the heathland in terms of short-term carbon turnover in a future climate.
Self-consistency tests of large-scale dynamics parameterizations for single-column modeling
Edman, Jacob P.; Romps, David M.
2015-03-18
Large-scale dynamics parameterizations are tested numerically in cloud-resolving simulations, including a new version of the weak-pressure-gradient approximation (WPG) introduced by Edman and Romps (2014), the weak-temperature-gradient approximation (WTG), and a prior implementation of WPG. We perform a series of self-consistency tests with each large-scale dynamics parameterization, in which we compare the result of a cloud-resolving simulation coupled to WTG or WPG with an otherwise identical simulation with prescribed large-scale convergence. In self-consistency tests based on radiative-convective equilibrium (RCE; i.e., no large-scale convergence), we find that simulations either weakly coupled or strongly coupled to either WPG or WTG are self-consistent, butmore » WPG-coupled simulations exhibit a nonmonotonic behavior as the strength of the coupling to WPG is varied. We also perform self-consistency tests based on observed forcings from two observational campaigns: the Tropical Warm Pool International Cloud Experiment (TWP-ICE) and the ARM Southern Great Plains (SGP) Summer 1995 IOP. In these tests, we show that the new version of WPG improves upon prior versions of WPG by eliminating a potentially troublesome gravity-wave resonance.« less
The Nitrogen Inventory of the Yedoma Permafrost Domain
NASA Astrophysics Data System (ADS)
Strauss, J.; Abbott, B. W.; Biasi, C.; Grosse, G.; Horn, M. A.; Liebner, S.; Sanders, T.; Schirrmeister, L.; Schneider von Deimling, T.; Wetterich, S.; Winkel, M.; Zubrzycki, S.
2016-12-01
Fossil organic matter (OM) stored in permafrost is an important subject in climate research. Such OM represents a huge reservoir of carbon (C). Multiple studies suggest its source potential for C release into the active C cycle through permafrost thaw and subsequent microbial turnover in a warming Arctic. However, net ecosystem OM balance in the permafrost region depends on more than just carbon. The abundance and availability of nitrogen (N) following permafrost thaw will influence plant growth, nutrient delivery to aquatic and estuarine ecosystems, and N oxide (N2O) emissions. Despite its central importance to predicting permafrost impacts and feedbacks to climate change, relatively little is known about permafrost N stocks and composition. In this study, we present the most extensive dataset to date of permafrost N in the Siberian and Alaskan Yedoma domain. The Yedoma domain comprises decameter thick ice-rich silts intersected by syngenetic ice wedges, which formed in late Pleistocene tundra-steppe environments, as well as other deposits resulting from permafrost degradation during the Holocene. Together, the deposits in this region constitute a large C inventory storing several hundred Gt C, but are also known to be nutrient-rich due to rapid burial and freezing of plant remains. Hitherto, the total organic C pool of the Yedoma region was quantified, while the total N inventory is lacking so far. Based on the most comprehensive data set of N content in permafrost to date, our study aims to estimate the present pool of N stored in the different stratigraphic units of the Yedoma domain: 1) late Pleistocene Yedoma deposits, 2) in-situ thawed and diagenetically altered Yedoma deposits (taberite), 3) Holocene thermokarst deposits, 4) Holocene cover deposits on top of Yedoma, and 5) the modern active layer of soils. To quantify measurement uncertainty, we estimated nitrogen stocks with bootstrapping techniques. We show that the deposits of the Yedoma region store a substantial pool of N that is expected to get mobilized after thaw and, at least partially, affecting biogeochemical budgets of thawing warming permafrost ecosystems.
NASA Astrophysics Data System (ADS)
Gu, B.; Yang, Z.; Lu, X.; Liang, L.; Graham, D. E.; Wullschleger, S. D.
2016-12-01
Climate warming increases microbial activity and stimulates the degradation of stored soil organic carbon (SOC) in Arctic tundra. Studies have shown that the rates of SOC degradation are affected by the substrate quality or chemical composition of SOC, but it remains unclear which pools of SOC are the most vulnerable to rapid breakdown and what mechanisms are involved. Additionally, little is known concerning the effects of warming on microbial mercury methylation and how it is coupled to SOC degradation. Using a suite of analytical techniques, we examined the dynamic consumption and production of labile SOC compounds, including reducing sugars, alcohols, and low-molecular-weight organic acids during an 8-month anoxic incubation with a high-centered polygon trough tundra soil from Barrow, Alaska. We show that reducing sugars and alcohols in thawed permafrost largely account for the initial rapid release of CO2 and CH4 through anaerobic fermentation, whereas the fermentation products such as acetate and formate are subsequently utilized as primary substrates for methanogenesis. Degradation of labile SOC is also found to rapidly fueling the biosynthesis of methylmercury, a potent neurotoxin in tundra soil. Mercury methylation is positively correlated to the production of CH4 and ferrous ion, suggesting the linkages among microbial pathways of methanogenesis, iron reduction, and mercury methylation. Additionally, we found that freshly amended mercury is more bioavailable and susceptible to microbial methylation than preexisting Hg, particularly in the deep mineral soil. These observations suggest that climate warming and permafrost thaw not only impact on the decomposition of stored SOC and emission of greenhouse gases but also increase production of toxic methylmercury in Arctic tundra.
NASA Astrophysics Data System (ADS)
Manola, Iris; Selten, F. M.; de Ruijter, W. P. M.; Hazeleger, W.
2015-08-01
In the Indian Ocean basin the sea surface temperatures (SSTs) are most sensitive to changes in the oceanic depth of the thermocline in the region of the Seychelles Dome. Observational studies have suggested that the strong SST variations in this region influence the atmospheric evolution around the basin, while its impact could extend far into the Pacific and the extra-tropics. Here we study the adjustments of the coupled atmosphere-ocean system to a winter shallow doming event using dedicated ensemble simulations with the state-of-the-art EC-Earth climate model. The doming creates an equatorial Kelvin wave and a pair of westward moving Rossby waves, leading to higher SST 1-2 months later in the Western equatorial Indian Ocean. Atmospheric convection is strengthened and the Walker circulation responds with reduced convection over Indonesia and cooling of the SST in that region. The Pacific warm pool convection shifts eastward and an oceanic Kelvin wave is triggered at thermocline depth. The wave leads to an SST warming in the East Equatorial Pacific 5-6 months after the initiation of the Seychelles Dome event. The atmosphere responds to this warming with weak anomalous atmospheric convection. The changes in the upper tropospheric divergence in this sequence of events create large-scale Rossby waves that propagate away from the tropics along the atmospheric waveguides. We suggest to repeat these types of experiments with other models to test the robustness of the results. We also suggest to create the doming event in June so that the East-Pacific warming occurs in November when the atmosphere is most sensitive to SST anomalies and El Niño could possibly be triggered by the doming event under suitable conditions.
Decadally cycling soil carbon is more sensitive to warming than faster-cycling soil carbon.
Lin, Junjie; Zhu, Biao; Cheng, Weixin
2015-12-01
The response of soil organic carbon (SOC) pools to globally rising surface temperature crucially determines the feedback between climate change and the global carbon cycle. However, there is a lack of studies investigating the temperature sensitivity of decomposition for decadally cycling SOC which is the main component of total soil carbon stock and the most relevant to global change. We tackled this issue using two decadally (13) C-labeled soils and a much improved measuring system in a long-term incubation experiment. Results indicated that the temperature sensitivity of decomposition for decadally cycling SOC (>23 years in one soil and >55 years in the other soil) was significantly greater than that for faster-cycling SOC (<23 or 55 years) or for the entire SOC stock. Moreover, decadally cycling SOC contributed substantially (35-59%) to the total CO2 loss during the 360-day incubation. Overall, these results indicate that the decomposition of decadally cycling SOC is highly sensitive to temperature change, which will likely make this large SOC stock vulnerable to loss by global warming in the 21st century and beyond. © 2015 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Koven, C. D.; Schuur, E.; Schaedel, C.; Bohn, T. J.; Burke, E.; Chen, G.; Chen, X.; Ciais, P.; Grosse, G.; Harden, J. W.; Hayes, D. J.; Hugelius, G.; Jafarov, E. E.; Krinner, G.; Kuhry, P.; Lawrence, D. M.; MacDougall, A.; Marchenko, S. S.; McGuire, A. D.; Natali, S.; Nicolsky, D.; Olefeldt, D.; Peng, S.; Romanovsky, V. E.; Schaefer, K. M.; Strauss, J.; Treat, C. C.; Turetsky, M. R.
2015-12-01
We present an approach to estimate the feedback from large-scale thawing of permafrost soils using a simplified, data-constrained model that combines three elements: soil carbon (C) maps and profiles to identify the distribution and type of C in permafrost soils; incubation experiments to quantify the rates of C lost after thaw; and models of soil thermal dynamics in response to climate warming. We call the approach the Permafrost Carbon Network Incubation-Panarctic Thermal scaling approach (PInc-PanTher). The approach assumes that C stocks do not decompose at all when frozen, but once thawed follow set decomposition trajectories as a function of soil temperature. The trajectories are determined according to a 3-pool decomposition model fitted to incubation data using parameters specific to soil horizon types. We calculate litterfall C inputs required to maintain steady-state C balance for the current climate, and hold those inputs constant. Soil temperatures are taken from the soil thermal modules of ecosystem model simulations forced by a common set of future climate change anomalies under two warming scenarios over the period 2010 to 2100.
Contrast water therapy and exercise induced muscle damage: a systematic review and meta-analysis.
Bieuzen, François; Bleakley, Chris M; Costello, Joseph Thomas
2013-01-01
The aim of this systematic review was to examine the effect of Contrast Water Therapy (CWT) on recovery following exercise induced muscle damage. Controlled trials were identified from computerized literature searching and citation tracking performed up to February 2013. Eighteen trials met the inclusion criteria; all had a high risk of bias. Pooled data from 13 studies showed that CWT resulted in significantly greater improvements in muscle soreness at the five follow-up time points (<6, 24, 48, 72 and 96 hours) in comparison to passive recovery. Pooled data also showed that CWT significantly reduced muscle strength loss at each follow-up time (<6, 24, 48, 72 and 96 hours) in comparison to passive recovery. Despite comparing CWT to a large number of other recovery interventions, including cold water immersion, warm water immersion, compression, active recovery and stretching, there was little evidence for a superior treatment intervention. The current evidence base shows that CWT is superior to using passive recovery or rest after exercise; the magnitudes of these effects may be most relevant to an elite sporting population. There seems to be little difference in recovery outcome between CWT and other popular recovery interventions.
Contrast Water Therapy and Exercise Induced Muscle Damage: A Systematic Review and Meta-Analysis
Bieuzen, François; Bleakley, Chris M.; Costello, Joseph Thomas
2013-01-01
The aim of this systematic review was to examine the effect of Contrast Water Therapy (CWT) on recovery following exercise induced muscle damage. Controlled trials were identified from computerized literature searching and citation tracking performed up to February 2013. Eighteen trials met the inclusion criteria; all had a high risk of bias. Pooled data from 13 studies showed that CWT resulted in significantly greater improvements in muscle soreness at the five follow-up time points (<6, 24, 48, 72 and 96 hours) in comparison to passive recovery. Pooled data also showed that CWT significantly reduced muscle strength loss at each follow-up time (<6, 24, 48, 72 and 96 hours) in comparison to passive recovery. Despite comparing CWT to a large number of other recovery interventions, including cold water immersion, warm water immersion, compression, active recovery and stretching, there was little evidence for a superior treatment intervention. The current evidence base shows that CWT is superior to using passive recovery or rest after exercise; the magnitudes of these effects may be most relevant to an elite sporting population. There seems to be little difference in recovery outcome between CWT and other popular recovery interventions. PMID:23626806
A simplified, data-constrained approach to estimate the permafrost carbon-climate feedback.
Koven, C D; Schuur, E A G; Schädel, C; Bohn, T J; Burke, E J; Chen, G; Chen, X; Ciais, P; Grosse, G; Harden, J W; Hayes, D J; Hugelius, G; Jafarov, E E; Krinner, G; Kuhry, P; Lawrence, D M; MacDougall, A H; Marchenko, S S; McGuire, A D; Natali, S M; Nicolsky, D J; Olefeldt, D; Peng, S; Romanovsky, V E; Schaefer, K M; Strauss, J; Treat, C C; Turetsky, M
2015-11-13
We present an approach to estimate the feedback from large-scale thawing of permafrost soils using a simplified, data-constrained model that combines three elements: soil carbon (C) maps and profiles to identify the distribution and type of C in permafrost soils; incubation experiments to quantify the rates of C lost after thaw; and models of soil thermal dynamics in response to climate warming. We call the approach the Permafrost Carbon Network Incubation-Panarctic Thermal scaling approach (PInc-PanTher). The approach assumes that C stocks do not decompose at all when frozen, but once thawed follow set decomposition trajectories as a function of soil temperature. The trajectories are determined according to a three-pool decomposition model fitted to incubation data using parameters specific to soil horizon types. We calculate litterfall C inputs required to maintain steady-state C balance for the current climate, and hold those inputs constant. Soil temperatures are taken from the soil thermal modules of ecosystem model simulations forced by a common set of future climate change anomalies under two warming scenarios over the period 2010 to 2100. Under a medium warming scenario (RCP4.5), the approach projects permafrost soil C losses of 12.2-33.4 Pg C; under a high warming scenario (RCP8.5), the approach projects C losses of 27.9-112.6 Pg C. Projected C losses are roughly linearly proportional to global temperature changes across the two scenarios. These results indicate a global sensitivity of frozen soil C to climate change (γ sensitivity) of -14 to -19 Pg C °C(-1) on a 100 year time scale. For CH4 emissions, our approach assumes a fixed saturated area and that increases in CH4 emissions are related to increased heterotrophic respiration in anoxic soil, yielding CH4 emission increases of 7% and 35% for the RCP4.5 and RCP8.5 scenarios, respectively, which add an additional greenhouse gas forcing of approximately 10-18%. The simplified approach presented here neglects many important processes that may amplify or mitigate C release from permafrost soils, but serves as a data-constrained estimate on the forced, large-scale permafrost C response to warming. © 2015 The Authors.
A simplified, data-constrained approach to estimate the permafrost carbon–climate feedback
Koven, C. D.; Schuur, E. A. G.; Schädel, C.; Bohn, T. J.; Burke, E. J.; Chen, G.; Chen, X.; Ciais, P.; Grosse, G.; Harden, J. W.; Hayes, D. J.; Hugelius, G.; Jafarov, E. E.; Krinner, G.; Kuhry, P.; Lawrence, D. M.; MacDougall, A. H.; Marchenko, S. S.; McGuire, A. D.; Natali, S. M.; Nicolsky, D. J.; Olefeldt, D.; Peng, S.; Romanovsky, V. E.; Schaefer, K. M.; Strauss, J.; Treat, C. C.; Turetsky, M.
2015-01-01
We present an approach to estimate the feedback from large-scale thawing of permafrost soils using a simplified, data-constrained model that combines three elements: soil carbon (C) maps and profiles to identify the distribution and type of C in permafrost soils; incubation experiments to quantify the rates of C lost after thaw; and models of soil thermal dynamics in response to climate warming. We call the approach the Permafrost Carbon Network Incubation–Panarctic Thermal scaling approach (PInc-PanTher). The approach assumes that C stocks do not decompose at all when frozen, but once thawed follow set decomposition trajectories as a function of soil temperature. The trajectories are determined according to a three-pool decomposition model fitted to incubation data using parameters specific to soil horizon types. We calculate litterfall C inputs required to maintain steady-state C balance for the current climate, and hold those inputs constant. Soil temperatures are taken from the soil thermal modules of ecosystem model simulations forced by a common set of future climate change anomalies under two warming scenarios over the period 2010 to 2100. Under a medium warming scenario (RCP4.5), the approach projects permafrost soil C losses of 12.2–33.4 Pg C; under a high warming scenario (RCP8.5), the approach projects C losses of 27.9–112.6 Pg C. Projected C losses are roughly linearly proportional to global temperature changes across the two scenarios. These results indicate a global sensitivity of frozen soil C to climate change (γ sensitivity) of −14 to −19 Pg C °C−1 on a 100 year time scale. For CH4 emissions, our approach assumes a fixed saturated area and that increases in CH4 emissions are related to increased heterotrophic respiration in anoxic soil, yielding CH4 emission increases of 7% and 35% for the RCP4.5 and RCP8.5 scenarios, respectively, which add an additional greenhouse gas forcing of approximately 10–18%. The simplified approach presented here neglects many important processes that may amplify or mitigate C release from permafrost soils, but serves as a data-constrained estimate on the forced, large-scale permafrost C response to warming. PMID:26438276
A simplified, data-constrained approach to estimate the permafrost carbon–climate feedback
Koven, C. D.; Schuur, E. A. G.; Schadel, C.; ...
2015-10-05
We present an approach to estimate the feedback from large-scale thawing of permafrost soils using a simplified, data-constrained model that combines three elements: soil carbon (C) maps and profiles to identify the distribution and type of C in permafrost soils; incubation experiments to quantify the rates of C lost after thaw; and models of soil thermal dynamics in response to climate warming. We call the approach the Permafrost Carbon Network Incubation–Panarctic Thermal scaling approach (PInc-PanTher). The approach assumes that C stocks do not decompose at all when frozen, but once thawed follow set decomposition trajectories as a function of soilmore » temperature. The trajectories are determined according to a three-pool decomposition model fitted to incubation data using parameters specific to soil horizon types. We calculate litterfall C inputs required to maintain steady-state C balance for the current climate, and hold those inputs constant. Soil temperatures are taken from the soil thermal modules of ecosystem model simulations forced by a common set of future climate change anomalies under two warming scenarios over the period 2010 to 2100. Under a medium warming scenario (RCP4.5), the approach projects permafrost soil C losses of 12.2–33.4 Pg C; under a high warming scenario (RCP8.5), the approach projects C losses of 27.9–112.6 Pg C. Projected C losses are roughly linearly proportional to global temperature changes across the two scenarios. These results indicate a global sensitivity of frozen soil C to climate change (γ sensitivity) of –14 to –19 Pg C °C–1 on a 100 year time scale. For CH 4 emissions, our approach assumes a fixed saturated area and that increases in CH 4 emissions are related to increased heterotrophic respiration in anoxic soil, yielding CH 4 emission increases of 7% and 35% for the RCP4.5 and RCP8.5 scenarios, respectively, which add an additional greenhouse gas forcing of approximately 10–18%. In conclusion, the simplified approach presented here neglects many important processes that may amplify or mitigate C release from permafrost soils, but serves as a data-constrained estimate on the forced, large-scale permafrost C response to warming.« less
A simplified, data-constrained approach to estimate the permafrost carbon–climate feedback
Koven, C.D.; Schuur, E.A.G.; Schädel, C.; Bohn, T. J.; Burke, E. J.; Chen, G.; Chen, X.; Ciais, P.; Grosse, G.; Harden, J.W.; Hayes, D.J.; Hugelius, G.; Jafarov, Elchin E.; Krinner, G.; Kuhry, P.; Lawrence, D.M.; MacDougall, A. H.; Marchenko, Sergey S.; McGuire, A. David; Natali, Susan M.; Nicolsky, D.J.; Olefeldt, David; Peng, S.; Romanovsky, V.E.; Schaefer, Kevin M.; Strauss, J.; Treat, C.C.; Turetsky, M.
2015-01-01
We present an approach to estimate the feedback from large-scale thawing of permafrost soils using a simplified, data-constrained model that combines three elements: soil carbon (C) maps and profiles to identify the distribution and type of C in permafrost soils; incubation experiments to quantify the rates of C lost after thaw; and models of soil thermal dynamics in response to climate warming. We call the approach the Permafrost Carbon Network Incubation–Panarctic Thermal scaling approach (PInc-PanTher). The approach assumes that C stocks do not decompose at all when frozen, but once thawed follow set decomposition trajectories as a function of soil temperature. The trajectories are determined according to a three-pool decomposition model fitted to incubation data using parameters specific to soil horizon types. We calculate litterfall C inputs required to maintain steady-state C balance for the current climate, and hold those inputs constant. Soil temperatures are taken from the soil thermal modules of ecosystem model simulations forced by a common set of future climate change anomalies under two warming scenarios over the period 2010 to 2100. Under a medium warming scenario (RCP4.5), the approach projects permafrost soil C losses of 12.2–33.4 Pg C; under a high warming scenario (RCP8.5), the approach projects C losses of 27.9–112.6 Pg C. Projected C losses are roughly linearly proportional to global temperature changes across the two scenarios. These results indicate a global sensitivity of frozen soil C to climate change (γ sensitivity) of −14 to −19 Pg C °C−1 on a 100 year time scale. For CH4 emissions, our approach assumes a fixed saturated area and that increases in CH4 emissions are related to increased heterotrophic respiration in anoxic soil, yielding CH4 emission increases of 7% and 35% for the RCP4.5 and RCP8.5 scenarios, respectively, which add an additional greenhouse gas forcing of approximately 10–18%. The simplified approach presented here neglects many important processes that may amplify or mitigate C release from permafrost soils, but serves as a data-constrained estimate on the forced, large-scale permafrost C response to warming.
USDA-ARS?s Scientific Manuscript database
Abstract: Despite the fact that permafrost soils contain up to half of the carbon (C) in terrestrial pools, we have a poor understanding of the controls on decomposition in thawed permafrost. Global climate models assume that decomposition increases linearly with temperature, yet decomposition in th...
Projecting the release of carbon from permafrost soils using a perturbed physics ensemble
NASA Astrophysics Data System (ADS)
MacDougall, A. H.; Knutti, R.
2015-12-01
The soils of the Northern Hemisphere permafrost region are estimated to contain 1100 to 1500 Pg of carbon (Pg C). A substantial fraction of this carbon has been frozen and therefore protected from microbial decay for millennia. As anthropogenic climate warming progresses much of this permafrost is expected to thaw. Here we conduct perturbed physics experiments on a climate model of intermediate complexity, with an improved permafrost carbon module, to estimate with formal uncertainty bounds the release of carbon from permafrost soils by year 2100 and 2300. We estimate that by 2100 the permafrost region may release between 56 (13 to 118) Pg C under Representative Concentration Pathway (RCP) 2.6 and 102 (27 to 199) Pg C under RCP 8.5, with substantially more to be released under each scenario by year 2300. A subset of 25 model variants were projected 8000 years into the future under continued RCP 4.5 and 8.5 forcing. Under the high forcing scenario the permafrost carbon pool decays away over several thousand years. Under the moderate scenario forcing a remnant near-surface permafrost region persists in the high Arctic which develops a large permafrost carbon pool, leading to global recovery of the pool beginning in mid third millennium of the common era (CE). Overall our simulations suggest that the permafrost carbon cycle feedback to climate change will make a significant but not cataclysmic contribution to climate change over the next centuries and millennia.
NASA Astrophysics Data System (ADS)
MacDougall, Andrew; Knutti, Reto
2016-04-01
The soils of the northern hemisphere permafrost region are estimated to contain 1100 to 1500 Pg of carbon. A substantial fraction of this carbon has been frozen and therefore protected from microbial decay for millennia. As anthropogenic climate warming progresses permafrost soils are expected to thaw. Here we conduct perturbed physics experiments on a climate model of intermediate complexity, with an improved permafrost carbon module, to estimate with formal uncertainty bounds the release of carbon from permafrost soils by year 2100 and 2300. We estimate that by year 2100 the permafrost region may release between 56 (13 to 118)Pg C under Representative Concentration Pathway (RCP) 2.6 and 102 (27 to 199) Pg C under RCP 8.5, with substantially more to be released under each scenario by 2300. A subset of 25 model variants is projected 8000 years into the future under continued RCP 4.5 and 8.5 forcing. Under the high forcing scenario the permafrost carbon pool decays away over several thousand years. Under the moderate forcing scenario a remnant near-surface permafrost region persists in the High-Arctic, which develops a large permafrost carbon pool, leading to a global recovery of the pool beginning in mid third millennium of the common era. Overall our simulations suggest that the permafrost carbon cycle feedback to climate change will make a significant but not cataclysmic contribution to climate change over the next centuries and millennia.
NASA Astrophysics Data System (ADS)
Alster, Charlotte J.; Koyama, Akihiro; Johnson, Nels G.; Wallenstein, Matthew D.; von Fischer, Joseph C.
2016-06-01
There is compelling evidence that microbial communities vary widely in their temperature sensitivity and may adapt to warming through time. To date, this sensitivity has been largely characterized using a range of models relying on versions of the Arrhenius equation, which predicts an exponential increase in reaction rate with temperature. However, there is growing evidence from laboratory and field studies that observe nonmonotonic responses of reaction rates to variation in temperature, indicating that Arrhenius is not an appropriate model for quantitatively characterizing temperature sensitivity. Recently, Hobbs et al. (2013) developed macromolecular rate theory (MMRT), which incorporates thermodynamic temperature optima as arising from heat capacity differences between isoenzymes. We applied MMRT to measurements of respiration from soils incubated at different temperatures. These soils were collected from three grassland sites across the U.S. Great Plains and reciprocally transplanted, allowing us to isolate the effects of microbial community type from edaphic factors. We found that microbial community type explained roughly 30% of the variation in the CO2 production rate from the labile C pool but that temperature and soil type were most important in explaining variation in labile and recalcitrant C pool size. For six out of the nine soil × inoculum combinations, MMRT was superior to Arrhenius. The MMRT analysis revealed that microbial communities have distinct heat capacity values and temperature sensitivities sometimes independent of soil type. These results challenge the current paradigm for modeling temperature sensitivity of soil C pools and understanding of microbial enzyme dynamics.
Climate-mediated changes in zooplankton community structure for the eastern Bering Sea
NASA Astrophysics Data System (ADS)
Eisner, Lisa B.; Napp, Jeffrey M.; Mier, Kathryn L.; Pinchuk, Alexei I.; Andrews, Alexander G.
2014-11-01
Zooplankton are critical to energy transfer between higher and lower trophic levels in the eastern Bering Sea ecosystem. Previous studies from the southeastern Bering Sea shelf documented substantial differences in zooplankton taxa in the Middle and Inner Shelf Domains between warm and cold years. Our investigation expands this analysis into the northern Bering Sea and the south Outer Domain, looking at zooplankton community structure during a period of climate-mediated, large-scale change. Elevated air temperatures in the early 2000s resulted in regional warming and low sea-ice extent in the southern shelf whereas the late 2000s were characterized by cold winters, extensive spring sea ice, and a well-developed pool of cold water over the entire Middle Domain. The abundance of large zooplankton taxa such as Calanus spp. (C. marshallae and C. glacialis), and Parasagitta elegans, increased from warm to cold periods, while the abundance of gelatinous zooplankton (Cnidaria) and small taxa decreased. Biomass followed the same trends as abundance, except that the biomass of small taxa in the southeastern Bering Sea remained constant due to changes in abundance of small copepod taxa (increases in Acartia spp. and Pseudocalanus spp. and decreases in Oithona spp.). Statistically significant changes in zooplankton community structure and individual species were greatest in the Middle Domain, but were evident in all shelf domains, and in both the northern and southern portions of the eastern shelf. Changes in community structure did not occur abruptly during the transition from warm to cold, but seemed to begin gradually and build as the influence of the sea ice and cold water temperatures persisted. The change occurred one year earlier in the northern than the southern Middle Shelf. These and previous observations demonstrate that lower trophic levels within the eastern Bering Sea respond to climate-mediated changes on a variety of time scales, including those shorter than the commonly accepted quasi-decadal time periods. This lack of resilience or inertia at the lowest trophic levels affects production at higher trophic levels and must be considered in management strategy evaluations of living marine resources.
TOPEX/El Nino Watch - October 3, 1997
NASA Technical Reports Server (NTRS)
1997-01-01
This image of the Pacific Ocean was produced using sea surface height measurements taken by the U.S./French TOPEX/Poseidon satellite. The image shows sea surface height relative to normal ocean conditions on Oct. 3, 1997 as the warm water associated with El Nino (in white) spreads northward along the entire coast of North America from the equator all the way to Alaska. The warm water pool in tropical Pacific resulting from El Nino seems to have stabilized. The white and red areas indicate unusual patterns of heat storage; in the white areas, the sea surface is between 14 and 32 centimeters (6 to 13 inches) above normal; in the red areas, it's about 10 centimeters (4 inches) above normal. The surface area covered by the warm water mass is about one and one-half times the size of the continental United States. The added amount of oceanic warm water near the Americas, with a temperature between 21 and 30 C (70 to 85 F), carries the amount of heat equal to 100 times the amount of fossil fuel energy consumed by the entire U.S. population during one year. The green areas indicate normal conditions, while purple (the western Pacific) means at least 18 centimeters (7 inches) below normal sea level.
The El Nino phenomenon is thought to be triggered when the steady westward blowing trade winds weaken and even reverse direction. This change in the winds allows a large mass of warm water (the red and white area) that is normally located near Australia to move eastward along the equator until it reaches the coast of South America. The displacement of so much warm water affects evaporation, where rain clouds form and, consequently, alters the typical atmospheric jet stream patterns around the world. Using these global data, limited regional measurements from buoys and ships, and a forecasting model of the ocean-atmosphere system, the National Centers for Environmental Prediction (NCEP) of the National Oceanic and Atmospheric Administration (NOAA) has issued an advisory indicating the presence of a strong El Nino condition throughout the coming winter.For more information, please visit the TOPEX/Poseidon project web page at http://topex-www.jpl.nasa.gov/Tapolyai, Mihály B; Faludi, Mária; Berta, Klára; Szarvas, Tibor; Lengvárszky, Zsolt; Molnar, Miklos Z; Dossabhoy, Neville R; Fülöp, Tibor
2016-07-01
Interdialytic weight gain (IDWG) is both a measure of dietary compliance and a well-established predictor of future adverse outcomes in dialysis patients. The impact of environmental conditions on IDWG in end-stage renal disease is little studied to date. We retrospectively reviewed IDWG for 100 consenting chronic end-stage renal disease patients undergoing thrice weekly in-center hemodiafiltration under three different climatic conditions in a Central European city: Weekend_1 was humid (93 %) and warm (24 °C); Weekend_2 was dry (38 %) and hot (33 °C); and Weekend_3 was dry (30 %) and warm (24 °C). The cohort's mean age was 60.9 ± 14.7 years, all were Eastern European, and 56 % were men. Residual urine output measured 100 [25-75 % quartiles: 0, 612] mL/day, single-pool Kt/V 1.4 ± 0.25, and albumin 40.1 ± 3.9 g/L. Mean IDWGs measured as follows: Weekend_1 ("humid-warm"): 2973 ± 1386 mL; Weekend_2 ("dry-hot"): 2685 ± 1368 mL and Weekend_3 ("dry-warm"): 2926 ± 1311 mL. Paired-samples testing for difference showed higher fluid gains on the humid-warm (239 mL; 95 % CI 21-458 mL; p = 0.032) and on the dry-warm weekends (222 mL; 95 % CI -8 to 453 mL, p = 0.059), when compared to the dry-hot weekend. Under the latter, dry-hot climatic condition, residual urine output lost its significance to impact IDWG during multiple regression analysis. While excess temperature may impact IDWG to a small degree, air humidity does not; the least weight gains occurred on the dry-hot weekend. However, the effects of both were minimal under continental summer conditions and are unlikely to explain large excesses of individual session-to-session variations.
The Impact of Warm Pool El Nino Events on Antarctic Ozone
NASA Technical Reports Server (NTRS)
Hurwitz, Margaret M.; Newman, P. A.; Song, In-Sun; Frith, Stacey M.
2011-01-01
Warm pool El Nino (WPEN) events are characterized by positive sea surface temperature (SST) anomalies in the central equatorial Pacific in austral spring and summer. Previous work found an enhancement in planetary wave activity in the South Pacific in austral spring, and a warming of 3-5 K in the Antarctic lower stratosphere during austral summer, in WPEN events as compared with ENSO neutral. In this presentation, we show that weakening of the Antarctic vortex during WPEN affects the structure and magnitude of high-latitude total ozone. We use total ozone data from TOMS and OMI, as well as station data from Argentina and Antarctica, to identify shifts in the longitudinal location of the springtime ozone minimum from its climatological position. In addition, we examine the sensitivity of the WPEN-related ozone response to the phase of the quasi-biennial oscillation (QBO). We then compare the observed response to WPEN events with Goddard Earth Observing System chemistry-climate model, version 2 (GEOS V2 CCM) simulations. Two, 50-year time-slice simulations are forced by annually repeating SST and sea ice climatologies, one set representing observed WPEN events and the second set representing neutral ENSO events, in a present-day climate. By comparing the two simulations, we isolate the impact of WPEN events on lower stratospheric ozone, and furthermore, examine the sensitivity of the WPEN ozone response to the phase of the QBO.
Two decades of warming increases diversity of a potentially lignolytic bacterial community
Pold, Grace; Melillo, Jerry M.; DeAngelis, Kristen M.
2015-01-01
As Earth's climate warms, the massive stores of carbon found in soil are predicted to become depleted, and leave behind a smaller carbon pool that is less accessible to microbes. At a long-term forest soil-warming experiment in central Massachusetts, soil respiration and bacterial diversity have increased, while fungal biomass and microbially-accessible soil carbon have decreased. Here, we evaluate how warming has affected the microbial community's capability to degrade chemically-complex soil carbon using lignin-amended BioSep beads. We profiled the bacterial and fungal communities using PCR-based methods and completed extracellular enzyme assays as a proxy for potential community function. We found that lignin-amended beads selected for a distinct community containing bacterial taxa closely related to known lignin degraders, as well as members of many genera not previously noted as capable of degrading lignin. Warming tended to drive bacterial community structure more strongly in the lignin beads, while the effect on the fungal community was limited to unamended beads. Of those bacterial operational taxonomic units (OTUs) enriched by the warming treatment, many were enriched uniquely on lignin-amended beads. These taxa may be contributing to enhanced soil respiration under warming despite reduced readily available C availability. In aggregate, these results suggest that there is genetic potential for chemically complex soil carbon degradation that may lead to extended elevated soil respiration with long-term warming. PMID:26042112
Prediction of early summer rainfall over South China by a physical-empirical model
NASA Astrophysics Data System (ADS)
Yim, So-Young; Wang, Bin; Xing, Wen
2014-10-01
In early summer (May-June, MJ) the strongest rainfall belt of the northern hemisphere occurs over the East Asian (EA) subtropical front. During this period the South China (SC) rainfall reaches its annual peak and represents the maximum rainfall variability over EA. Hence we establish an SC rainfall index, which is the MJ mean precipitation averaged over 72 stations over SC (south of 28°N and east of 110°E) and represents superbly the leading empirical orthogonal function mode of MJ precipitation variability over EA. In order to predict SC rainfall, we established a physical-empirical model. Analysis of 34-year observations (1979-2012) reveals three physically consequential predictors. A plentiful SC rainfall is preceded in the previous winter by (a) a dipole sea surface temperature (SST) tendency in the Indo-Pacific warm pool, (b) a tripolar SST tendency in North Atlantic Ocean, and (c) a warming tendency in northern Asia. These precursors foreshadow enhanced Philippine Sea subtropical High and Okhotsk High in early summer, which are controlling factors for enhanced subtropical frontal rainfall. The physical empirical model built on these predictors achieves a cross-validated forecast correlation skill of 0.75 for 1979-2012. Surprisingly, this skill is substantially higher than four-dynamical models' ensemble prediction for 1979-2010 period (0.15). The results here suggest that the low prediction skill of current dynamical models is largely due to models' deficiency and the dynamical prediction has large room to improve.
Koyama, Akihiro; Wallenstein, Matthew D.; Simpson, Rodney T.; Moore, John C.
2014-01-01
The pool of soil organic carbon (SOC) in the Arctic is disproportionally large compared to those in other biomes. This large quantity of SOC accumulated over millennia due to slow rates of decomposition relative to net primary productivity. Decomposition is constrained by low temperatures and nutrient concentrations, which limit soil microbial activity. We investigated how nutrients limit bacterial and fungal biomass and community composition in organic and mineral soils within moist acidic tussock tundra ecosystems. We sampled two experimental arrays of moist acidic tussock tundra that included fertilized and non-fertilized control plots. One array included plots that had been fertilized annually since 1989 and the other since 2006. Fertilization significantly altered overall bacterial community composition and reduced evenness, to a greater degree in organic than mineral soils, and in the 1989 compared to the 2006 site. The relative abundance of copiotrophic α-Proteobacteria and β-Proteobacteria was higher in fertilized than control soils, and oligotrophic Acidobacteria were less abundant in fertilized than control soils at the 1989 site. Fungal community composition was less sensitive to increased nutrient availability, and fungal responses to fertilization were not consistent between soil horizons and sites. We detected two ectomycorrhizal genera, Russula and Cortinarius spp., associated with shrubs. Their relative abundance was not affected by fertilization despite increased dominance of their host plants in the fertilized plots. Our results indicate that fertilization, which has been commonly used to simulate warming in Arctic tundra, has limited applicability for investigating fungal dynamics under warming. PMID:25324836
NASA Technical Reports Server (NTRS)
Tao, W.-K.; Wang, Y.; Lang, S.; Ferrier, B.; Simpson, J.; Einaudi, Franco (Technical Monitor)
2000-01-01
The 3D Goddard Cumulus Ensemble (GCE) model was utilized to examine the behavior and response of simulated deep tropical cloud systems that occurred over the west Pacific warm pool region, the Atlantic ocean and the central United States. The periods chosen for simulation were convectively active periods during TOGA-COARE (February 22 1993, December 11-17, 1992; December 19-28, February 9-13, 1993), GATE (September 4, 1974), LBA (January 26 and February 23, 1998), ARM (1997 IOP) and PRESTORM (June 11, 1985). We will examine differences in the microphysics for both warm rain and ice processes (evaporation /sublimation and condensation/ deposition), Q1 (Temperature), Q2 (Water vapor) and Q3 (momentum both U and V) budgets for these three convective events from different large-scale environments. The contribution of stratiform precipitation and its relationship to the vertical shear of the large-scale horizontal wind will also be examined. New improvements to the GCE model (i.e., microphysics: 4ICE two moments and 3ICE one moment; advection schemes) as well as their sensitivity to the model results will be discussed. Preliminary results indicated that various microphysical schemes could have a major impact on stratiform formation as well as the size of convective systems. However, they do not change the major characteristics of the convective systems, such as: arc shape, strong rotational circulation on both ends of system, heavy precipitation along the leading edge of systems.
NASA Astrophysics Data System (ADS)
Coniglio, Michael Charles
Common large-scale environments associated with the development of derecho-producing convective systems from a large number of events are identified using statistical clustering of the 500-mb geopotential heights as guidance. The majority of the events (72%) fall into three main patterns that include a well-defined upstream trough (40%), a ridge (20%), and a zonal, low-amplitude flow (12%), which is defined as an additional warm-season pattern that is not identified in past studies of derecho environments. Through an analysis of proximity soundings, discrepancies are found in both low-level and deep-tropospheric shear parameters between observations and the shear profiles considered favorable for strong, long-lived convective systems in idealized simulations. To explore the role of upper-level shear in derecho environments, a set of two-dimensional simulations of density currents within a dry, neutrally stable environment are used to examine the ability of a cold pool to lift environmental air within a vertically sheared flow. The results confirm that the addition of upper-level shear to a wind profile with weak to moderate low-level shear increases the vertical displacement of low-level parcels despite a decrease in the vertical velocity along the cold pool interface, as suggested by previous studies. Parcels that are elevated above the surface (1-2 km) overturn and are responsible for the deep lifting in the deep-shear environments. This deep overturning caused by the upper-level shear helps to maintain the tilt of the convective systems in more complex two-dimensional and three dimensional simulations. The overturning also is shown to greatly increase the size of the convective systems in the three-dimensional simulations by facilitating the initiation and maintenance of convective cells along the cold pool. When combined with estimates of the cold pool motion and the storm-relative hodograph, these results may best be used for the prediction of the demise of strong, linear mesoscale convective systems (MCSs) and may provide a conceptual model for the persistence of strong MCSs above a surface nocturnal inversion in situations that are not forced by a low-level jet.
Convective Systems Over the South China Sea: Cloud-Resolving Model Simulations
NASA Technical Reports Server (NTRS)
Tao, Wei-Kuo; Shie, C.-L.; Johnson, D.; Simpson, J.; Braun, S.; Johnson, R.; Ciesielski, P. E.; Starr, David OC. (Technical Monitor)
2002-01-01
The South China Sea Monsoon Experiment (SCSMEX) was conducted in May-June 1998. One of its major objectives is to better understand the key physical processes for the onset and evolution of the summer monsoon over Southeast Asia and southern China. Multiple observation platforms (e.g., upper-air soundings, Doppler radar, ships, wind profilers, radiometers, etc.) during SCSMEX provided a first attempt at investigating the detailed characteristics of convective storms and air pattern changes associated with monsoons over the South China Sea region. SCSMEX also provided rainfall estimates which allows for comparisons with those obtained from the Tropical Rainfall Measuring Mission (TRMM), a low earth orbit satellite designed to measure rainfall from space. The Goddard Cumulus Ensemble (GCE) model (with 1-km grid size) is used to understand and quantify the precipitation processes associated with the summer monsoon over the South China Sea. This is the first (loud-resolving model used to simulate precipitation processes in this particular region. The GCE-model results captured many of the observed precipitation characteristics because it used a fine grid size. For example, the temporal variation of the simulated rainfall compares quite well to the sounding-estimated rainfall variation. The time and domain-averaged temperature (heating/cooling) and water vapor (drying/ moistening) budgets are in good agreement with observations. The GCE-model-simulated rainfall amount also agrees well with TRMM rainfall data. The results show there is more evaporation from the ocean surface prior to the onset of the monsoon than after the on-et of monsoon when rainfall increases. Forcing due to net radiation (solar heating minus longwave cooling) is responsible for about 25% of the precipitation in SCSMEX The transfer of heat from the ocean into the atmosphere does not contribute significantly to the rainfall in SCSMEX. Model sensitivity tests indicated that total rain production is reduced 17-18% in runs neglecting the ice phase. The SCSMEX results are compared to other GCE-model-simulated weather systems that developed during other field campaigns (i.e., west Pacific warm pool region, eastern Atlantic region and central USA). Large-scale forcing vie temperature and water vapor tendency, is the major energy source for net condensation in the tropical cases. The effects of large-scale cooling exceed that of large-scale moistening in the west pacific warm pool region and eastern Atlantic region. For SCSMEX, however, the effects of large-scale moistening predominate. Net radiation and sensible and latent hc,it fluxes play a much more important role in the central USA.
Long-term pattern and magnitude of soil carbon feedback to the climate system in a warming world.
Melillo, J M; Frey, S D; DeAngelis, K M; Werner, W J; Bernard, M J; Bowles, F P; Pold, G; Knorr, M A; Grandy, A S
2017-10-06
In a 26-year soil warming experiment in a mid-latitude hardwood forest, we documented changes in soil carbon cycling to investigate the potential consequences for the climate system. We found that soil warming results in a four-phase pattern of soil organic matter decay and carbon dioxide fluxes to the atmosphere, with phases of substantial soil carbon loss alternating with phases of no detectable loss. Several factors combine to affect the timing, magnitude, and thermal acclimation of soil carbon loss. These include depletion of microbially accessible carbon pools, reductions in microbial biomass, a shift in microbial carbon use efficiency, and changes in microbial community composition. Our results support projections of a long-term, self-reinforcing carbon feedback from mid-latitude forests to the climate system as the world warms. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
Responses of two nonlinear microbial models to warming and increased carbon input
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Y. P.; Jiang, J.; Chen-Charpentier, Benito
A number of nonlinear microbial models of soil carbon decomposition have been developed. Some of them have been applied globally but have yet to be shown to realistically represent soil carbon dynamics in the field. A thorough analysis of their key differences is needed to inform future model developments. In this paper, we compare two nonlinear microbial models of soil carbon decomposition: one based on reverse Michaelis–Menten kinetics (model A) and the other on regular Michaelis–Menten kinetics (model B). Using analytic approximations and numerical solutions, we find that the oscillatory responses of carbon pools to a small perturbation in theirmore » initial pool sizes dampen faster in model A than in model B. Soil warming always decreases carbon storage in model A, but in model B it predominantly decreases carbon storage in cool regions and increases carbon storage in warm regions. For both models, the CO 2 efflux from soil carbon decomposition reaches a maximum value some time after increased carbon input (as in priming experiments). This maximum CO 2 efflux (F max) decreases with an increase in soil temperature in both models. However, the sensitivity of F max to the increased amount of carbon input increases with soil temperature in model A but decreases monotonically with an increase in soil temperature in model B. These differences in the responses to soil warming and carbon input between the two nonlinear models can be used to discern which model is more realistic when compared to results from field or laboratory experiments. Lastly, these insights will contribute to an improved understanding of the significance of soil microbial processes in soil carbon responses to future climate change.« less
Responses of two nonlinear microbial models to warming and increased carbon input
Wang, Y. P.; Jiang, J.; Chen-Charpentier, Benito; ...
2016-02-18
A number of nonlinear microbial models of soil carbon decomposition have been developed. Some of them have been applied globally but have yet to be shown to realistically represent soil carbon dynamics in the field. A thorough analysis of their key differences is needed to inform future model developments. In this paper, we compare two nonlinear microbial models of soil carbon decomposition: one based on reverse Michaelis–Menten kinetics (model A) and the other on regular Michaelis–Menten kinetics (model B). Using analytic approximations and numerical solutions, we find that the oscillatory responses of carbon pools to a small perturbation in theirmore » initial pool sizes dampen faster in model A than in model B. Soil warming always decreases carbon storage in model A, but in model B it predominantly decreases carbon storage in cool regions and increases carbon storage in warm regions. For both models, the CO 2 efflux from soil carbon decomposition reaches a maximum value some time after increased carbon input (as in priming experiments). This maximum CO 2 efflux (F max) decreases with an increase in soil temperature in both models. However, the sensitivity of F max to the increased amount of carbon input increases with soil temperature in model A but decreases monotonically with an increase in soil temperature in model B. These differences in the responses to soil warming and carbon input between the two nonlinear models can be used to discern which model is more realistic when compared to results from field or laboratory experiments. Lastly, these insights will contribute to an improved understanding of the significance of soil microbial processes in soil carbon responses to future climate change.« less
'USS Arizona' and 'USS California' tropical hibiscus (Hibiscus rosa-sinensis L.)
USDA-ARS?s Scientific Manuscript database
Both ‘USS Arizona’ and ‘USS California’ were selected for use as accent plants for patios, pools or other outside areas in climates with warm summers or as perennial flowering landscape shrubs in USDA hardiness zones 9 and 10. The cultivars were selected for their exceptional vibrant flowers, well-b...
Fréchette, Emmanuelle; Chang, Christine Yao-Yun; Ensminger, Ingo
2016-01-01
The photochemical reflectance index (PRI) is a proxy for the activity of the photoprotective xanthophyll cycle and photosynthetic light use efficiency (LUE) in plants. Evergreen conifers downregulate photosynthesis in autumn in response to low temperature and shorter photoperiod, and the dynamic xanthophyll cycle-mediated non-photochemical quenching (NPQ) is replaced by sustained NPQ. We hypothesized that this shift in xanthophyll cycle-dependent energy partitioning during the autumn is the cause for variations in the PRI–LUE relationship. In order to test our hypothesis, we characterized energy partitioning and pigment composition during a simulated summer–autumn transition in a conifer and assessed the effects of temperature and photoperiod on the PRI–LUE relationship. We measured gas exchange, chlorophyll fluorescence and leaf reflectance during the photosynthetic downregulation in Pinus strobus L. seedlings exposed to low temperature/short photoperiod or elevated temperature/short photoperiod conditions. Shifts in energy partitioning during simulated autumn were observed when the pools of chlorophylls decreased and pools of photoprotective carotenoids increased. On a seasonal timescale, PRI was controlled by carotenoid pool sizes rather than xanthophyll cycle dynamics. Photochemical reflectance index variation under cold autumn conditions mainly reflected long-term pigment pool adjustments associated with sustained NPQ, which impaired the PRI–LUE relationship. Exposure to warm autumn conditions prevented the induction of sustained NPQ but still impaired the PRI–LUE relationship. We therefore conclude that alternative zeaxanthin-independent NPQ mechanisms, which remain undetected by the PRI, are present under both cold and warm autumn conditions, contributing to the discrepancy in the PRI–LUE relationship during autumn. PMID:26846980
Fréchette, Emmanuelle; Chang, Christine Yao-Yun; Ensminger, Ingo
2016-03-01
The photochemical reflectance index (PRI) is a proxy for the activity of the photoprotective xanthophyll cycle and photosynthetic light use efficiency (LUE) in plants. Evergreen conifers downregulate photosynthesis in autumn in response to low temperature and shorter photoperiod, and the dynamic xanthophyll cycle-mediated non-photochemical quenching (NPQ) is replaced by sustained NPQ. We hypothesized that this shift in xanthophyll cycle-dependent energy partitioning during the autumn is the cause for variations in the PRI-LUE relationship. In order to test our hypothesis, we characterized energy partitioning and pigment composition during a simulated summer-autumn transition in a conifer and assessed the effects of temperature and photoperiod on the PRI-LUE relationship. We measured gas exchange, chlorophyll fluorescence and leaf reflectance during the photosynthetic downregulation in Pinus strobus L. seedlings exposed to low temperature/short photoperiod or elevated temperature/short photoperiod conditions. Shifts in energy partitioning during simulated autumn were observed when the pools of chlorophylls decreased and pools of photoprotective carotenoids increased. On a seasonal timescale, PRI was controlled by carotenoid pool sizes rather than xanthophyll cycle dynamics. Photochemical reflectance index variation under cold autumn conditions mainly reflected long-term pigment pool adjustments associated with sustained NPQ, which impaired the PRI-LUE relationship. Exposure to warm autumn conditions prevented the induction of sustained NPQ but still impaired the PRI-LUE relationship. We therefore conclude that alternative zeaxanthin-independent NPQ mechanisms, which remain undetected by the PRI, are present under both cold and warm autumn conditions, contributing to the discrepancy in the PRI-LUE relationship during autumn. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Effect of tree line advance on carbon storage in NW Alaska
Wilmking, M.; Harden, J.; Tape, K.
2006-01-01
We investigated the size, distribution, and temporal dynamics of ecosystem carbon (C) pools in an area of recent tree line advance, northwest Alaska. Repeat aerial photographs show forest cover increased ???10% in our study area since 1949. We sampled C pools of four principal ecosystem types, tussock tundra, shrub tundra, woodland, and forest, all located on a 600-800 year old river terrace. Significant differences between ecosystem C pools, both above ground and below ground existed. Tundra sites store >22.2 kg C/m2, shrub tundra sites and woodland sites store 9.7 kg C/m2 and 14.3 kg C/m2, respectively, and forest sites store 14.4 kg C/m2. Landscape variation of total ecosystem C was primarily due to organic soil C and was secondarily due to C stored in trees. Soil C/N profiles of shrub tundra sites and woodland sites showed similarities with forest site soils at surface and tundra site soils at depth. We hypothesize that tundra systems transformed to forest systems in this area under a progression of permafrost degradation and enhanced drainage. On the basis of C pool estimates for the different ecosystem types, conversion of tundra sites to forest may have resulted in a net loss of > 7.8 kg C/m2, since aboveground C gains were more than offset by belowground C losses to decomposition in the tundra sites. Tree line advance therefore might not increase C storage in high-latitude ecosystems and thus might not, as previously suggested, act as a negative feedback to warming. Key to this hypothesis and to its projection to future climate response is the fate of soil carbon upon warming and permafrost drainage. Copyright 2006 by the American Geophysical Union.
Insights from intercomparison of microbial and conventional soil models
NASA Astrophysics Data System (ADS)
Allison, S. D.; Li, J.; Luo, Y.; Mayes, M. A.; Wang, G.
2014-12-01
Changing the structure of soil biogeochemical models to represent coupling between microbial biomass and carbon substrate pools could improve predictions of carbon-climate feedbacks. So-called "microbial models" with this structure make very different predictions from conventional models based on first-order decay of carbon substrate pools. Still, the value of microbial models is uncertain because microbial physiological parameters are poorly constrained and model behaviors have not been fully explored. To address these issues, we developed an approach for inter-comparing microbial and conventional models. We initially focused on soil carbon responses to microbial carbon use efficiency (CUE) and temperature. Three scenarios were implemented in all models at a common reference temperature (20°C): constant CUE (held at 0.31), varied CUE (-0.016°C-1), and 50% acclimated CUE (-0.008°C-1). Whereas the conventional model always showed soil carbon losses with increasing temperature, the microbial models each predicted a temperature threshold above which warming led to soil carbon gain. The location of this threshold depended on CUE scenario, with higher temperature thresholds under the acclimated and constant scenarios. This result suggests that the temperature sensitivity of CUE and the structure of the soil carbon model together regulate the long-term soil carbon response to warming. Compared to the conventional model, all microbial models showed oscillatory behavior in response to perturbations and were much less sensitive to changing inputs. Oscillations were weakest in the most complex model with explicit enzyme pools, suggesting that multi-pool coupling might be a more realistic representation of the soil system. This study suggests that model structure and CUE parameterization should be carefully evaluated when scaling up microbial models to ecosystems and the globe.
Thermal Impact of Gas Flares on the Biological Activity of Soils
NASA Astrophysics Data System (ADS)
Yevdokimov, I. V.; Yusupov, I. A.; Larionova, A. A.; Bykhovets, S. S.; Glagolev, M. V.; Shavnin, S. A.
2017-12-01
Global warming can lead to a significant transformation of the structure of terrestrial ecosystems and changes in the mode of functioning of their components. In this connection, studies of soil respiration, particularly of the biological activity of soils under forest exposed to warm impact of flaring flare are of scientific and practical interests. A long-term experimental plot was established in a lichen pine forest on the Albic Podzols (Arenic) (Khanty-Mansi Autonomous Area-Yugra). Sampling and measurements were carried out in the areas at the distances of 70, 90, and 130 m from the flare with the strong, moderate, and weak heating effects, respectively. In the zone of the maximum heating effect, the soil temperature was by 1.3°C higher, and the rate of CO2 emission from the surface in situ was greater by 18% compared to the zone with weak impact of the flare. Along with increasing CO2 emissions, organic matter accumulated due to increasing the stable pool. The parameters of the microbial biomass, basal respiration, and the input of labile organic matter pool increased with the distance from the flare.
Variability of the western Pacific warm pool structure associated with El Niño
NASA Astrophysics Data System (ADS)
Hu, Shijian; Hu, Dunxin; Guan, Cong; Xing, Nan; Li, Jianping; Feng, Junqiao
2017-10-01
Sea surface temperature (SST) structure inside the western Pacific warm pool (WPWP) is usually overlooked because of its distinct homogeneity, but in fact it possesses a clear meridional high-low-high pattern. Here we show that the SST low in the WPWP is significantly intensified in July-October of El Niño years (especially extreme El Niño years) and splits the 28.5 °C-isotherm-defined WPWP (WPWP split for simplification). Composite analysis and heat budget analysis indicate that the enhanced upwelling due to positive wind stress curl anomaly and western propagating upwelling Rossby waves account for the WPWP split. Zonal advection at the eastern edge of split region plays a secondary role in the formation of the WPWP split. Composite analysis and results from a Matsuno-Gill model with an asymmetric cooling forcing imply that the WPWP split seems to give rise to significant anomalous westerly winds and intensify the following El Niño event. Lead-lag correlation shows that the WPWP split slightly leads the Niño 3.4 index.
NASA Astrophysics Data System (ADS)
Liang, Dan; Liu, Chuanlian
2016-06-01
Using a coccolith weight analytic software (Particle Analyser), we analyze most abundant coccolith species in a sediment core from the central Western Pacific Warm Pool (WPWP) and calculate coccolith size and weight variations over the last 200 ka. These variations are compared with the trends of sea surface temperature (SST), primary productivity (PP), sea surface salinity (SSS), and insolation. Our results demonstrate that the size and weight of the coccoliths varied in response to variations of these factors, and their average total weight is primarily related to the relative abundance of the dominant species GEO ( Gephyrocapsa oceanica). The variation in weight of EMI ( Emiliania huxleyi) and GEE ( Gephyrocapsa ericsonii) are mainly influenced by nutrients, and the variation of GEM ( G. muellerae conformis) and GEO ( G. oceanica) weight are mainly influenced by SST. For all of the taxa weight, PP and SST present apparent precession or semi-precession cycles, we consider that the mono-coccolith weight of the Equatorial Western Pacific is primarily affected by precession drived thermocline and nutricline variation.
Warming Alters Expressions of Microbial Functional Genes Important to Ecosystem Functioning
Xue, Kai; Xie, Jianping; Zhou, Aifen; ...
2016-05-06
Soil microbial communities play critical roles in ecosystem functioning and are likely altered by climate warming. However, so far, little is known about effects of warming on microbial functional gene expressions. Here, we applied functional gene array (GeoChip 3.0) to analyze cDNA reversely transcribed from total RNA to assess expressed functional genes in active soil microbial communities after nine years of experimental warming in a tallgrass prairie. Our results showed that warming significantly altered the community wide gene expressions. Specifically, expressed genes for degrading more recalcitrant carbon were stimulated by warming, likely linked to the plant community shift toward moremore » C 4 species under warming and to decrease the long-term soil carbon stability. In addition, warming changed expressed genes in labile C degradation and N cycling in different directions (increase and decrease), possibly reflecting the dynamics of labile C and available N pools during sampling. However, the average abundances of expressed genes in phosphorus and sulfur cycling were all increased by warming, implying a stable trend of accelerated P and S processes which might be a mechanism to sustain higher plant growth. Furthermore, the expressed gene composition was closely related to both dynamic (e.g., soil moisture) and stable environmental attributes (e.g., C 4 leaf C or N content), indicating that RNA analyses could also capture certain stable trends in the long-term treatment. Overall, this study revealed the importance of elucidating functional gene expressions of soil microbial community in enhancing our understanding of ecosystem responses to warming.« less
Warming Alters Expressions of Microbial Functional Genes Important to Ecosystem Functioning
Xue, Kai; Xie, Jianping; Zhou, Aifen; Liu, Feifei; Li, Dejun; Wu, Liyou; Deng, Ye; He, Zhili; Van Nostrand, Joy D.; Luo, Yiqi; Zhou, Jizhong
2016-01-01
Soil microbial communities play critical roles in ecosystem functioning and are likely altered by climate warming. However, so far, little is known about effects of warming on microbial functional gene expressions. Here, we applied functional gene array (GeoChip 3.0) to analyze cDNA reversely transcribed from total RNA to assess expressed functional genes in active soil microbial communities after nine years of experimental warming in a tallgrass prairie. Our results showed that warming significantly altered the community wide gene expressions. Specifically, expressed genes for degrading more recalcitrant carbon were stimulated by warming, likely linked to the plant community shift toward more C4 species under warming and to decrease the long-term soil carbon stability. In addition, warming changed expressed genes in labile C degradation and N cycling in different directions (increase and decrease), possibly reflecting the dynamics of labile C and available N pools during sampling. However, the average abundances of expressed genes in phosphorus and sulfur cycling were all increased by warming, implying a stable trend of accelerated P and S processes which might be a mechanism to sustain higher plant growth. Furthermore, the expressed gene composition was closely related to both dynamic (e.g., soil moisture) and stable environmental attributes (e.g., C4 leaf C or N content), indicating that RNA analyses could also capture certain stable trends in the long-term treatment. Overall, this study revealed the importance of elucidating functional gene expressions of soil microbial community in enhancing our understanding of ecosystem responses to warming. PMID:27199978
Warming Alters Expressions of Microbial Functional Genes Important to Ecosystem Functioning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xue, Kai; Xie, Jianping; Zhou, Aifen
Soil microbial communities play critical roles in ecosystem functioning and are likely altered by climate warming. However, so far, little is known about effects of warming on microbial functional gene expressions. Here, we applied functional gene array (GeoChip 3.0) to analyze cDNA reversely transcribed from total RNA to assess expressed functional genes in active soil microbial communities after nine years of experimental warming in a tallgrass prairie. Our results showed that warming significantly altered the community wide gene expressions. Specifically, expressed genes for degrading more recalcitrant carbon were stimulated by warming, likely linked to the plant community shift toward moremore » C 4 species under warming and to decrease the long-term soil carbon stability. In addition, warming changed expressed genes in labile C degradation and N cycling in different directions (increase and decrease), possibly reflecting the dynamics of labile C and available N pools during sampling. However, the average abundances of expressed genes in phosphorus and sulfur cycling were all increased by warming, implying a stable trend of accelerated P and S processes which might be a mechanism to sustain higher plant growth. Furthermore, the expressed gene composition was closely related to both dynamic (e.g., soil moisture) and stable environmental attributes (e.g., C 4 leaf C or N content), indicating that RNA analyses could also capture certain stable trends in the long-term treatment. Overall, this study revealed the importance of elucidating functional gene expressions of soil microbial community in enhancing our understanding of ecosystem responses to warming.« less
Carbon Mineralization and Nitrogen Transformation During a Long Term Permafrost Incubation
NASA Astrophysics Data System (ADS)
Salmon, V. G.; Mack, M. C.; Schuur, E. A. G.
2014-12-01
As the limiting nutrient in warming high latitude ecosystems, nitrogen (N) is expected to play a key role in determining the future balance between permafrost carbon (C) losses and increased C sequestration by plants. During decomposition, nitrogen previously locked in soil organic matter is released into the soil solution in the form of dissolved organic molecules following depolymerization by extracellular enzymes. These dissolved organic forms of N can be consumed by the soil microbial community and incorporated in their biomass or mineralized if they are in excess of microbial demand. Once mineralized and released into the soil solutions, N can be lost from the soil system via denitrification. In well drained, low N tussock tundra, however, this pathway is unlikely. Dissolved inorganic N (DIN) and dissolved organic N (DON) are both biologically available to arctic plants. Understanding how the size of these pools changes with depth and continuing decomposition is therefore crucial to projecting the C balance of high latitude systems in a warmer future. N transformations associated with decomposition may differ greatly in surface soils, where a large labile C pool is present and soil has a high C:N ratio, versus deep soils that have a relatively small labile C pool and a lower C:N ratio. In this experiment, the relationship between N availability and C release from permafrost soils was addressed with a 225 day soil incubation performed at 15°C. Seven soil cores were collected from undisturbed, well drained tussock tundra and were partitioned into ten centimeter depth intervals to a depth of 80 cm. Carbon dioxide (CO2) fluxes were measured throughout the incubation period and were used to assess cumulative carbon losses and determine the size of the labile C pool. Destructive harvests at days 16,34,55,83, 143 and 225 were performed and pools of plant available DON and DIN were measured using 2M KCl extractions. At day 225 the microbial biomass N pool was also measured. Permafrost soils at 55-85cm depths exhibited higher initial (4.4 mg N/gN) and late stage DIN pools (6.9 mg/gN at day 143) than active layer soils at 0-55cm depths (0.4 mgN/gN initial DIN, 2.4 mgN/gN at day 143). The size of the labile C pool decreased with depth, and larger labile N pools delayed the release of plant available N forms from the SOM.
Greenhouse gas measurements from aircraft during CARVE
NASA Astrophysics Data System (ADS)
Chang, R. Y.; Miller, C. E.; Dinardo, S. J.; Karion, A.; Sweeney, C.; Daube, B.; Pittman, J. V.; Miller, J. B.; Budney, J. W.; Gottlieb, E. W.; Santoni, G. W.; Kort, E. A.; Wofsy, S. C.
2012-12-01
Permafrost in the Arctic contain large carbon pools that are currently non-labile. As the polar regions warm, these carbon reserves can be released into the atmosphere and impact the greenhouse gas budget. In order to predict future climate scenarios, we need to understand the emissions of these greenhouse gases under varying environmental conditions. This study presents aircraft measurements made as a part of the Carbon in Arctic Reservoirs Vulnerability Experiment (CARVE) which flew over Alaska from May to September 2012 and captured seasonal and spatial variations. Results from in situ cavity ring down spectroscopy measurements of CO2, CH4 and CO will be discussed and compared with aircraft measurements made during the summer of 1988 as a part of the Arctic Boundary Layer Expedition as well as relevant measurements from the HIAPER Pole-to-Pole Observations experiments (2009-2011).
Constraining estimates of methane emissions from Arctic permafrost regions with CARVE
NASA Astrophysics Data System (ADS)
Chang, R. Y.; Karion, A.; Sweeney, C.; Henderson, J.; Mountain, M.; Eluszkiewicz, J.; Luus, K. A.; Lin, J. C.; Dinardo, S.; Miller, C. E.; Wofsy, S. C.
2013-12-01
Permafrost in the Arctic contains large carbon pools that are currently non-labile, but can be released to the atmosphere as polar regions warm. In order to predict future climate scenarios, we need to understand the emissions of these greenhouse gases under varying environmental conditions. This study presents in-situ measurements of methane made on board an aircraft during the Carbon in Arctic Reservoirs Vulnerability Experiment (CARVE), which sampled over the permafrost regions of Alaska. Using measurements from May to September 2012, seasonal emission rate estimates of methane from tundra are constrained using the Stochastic Time-Inverted Lagrangian Transport model, a Lagrangian particle dispersion model driven by custom polar-WRF fields. Preliminary results suggest that methane emission rates have not greatly increased since the Arctic Boundary Layer Experiment conducted in southwest Alaska in 1988.
NASA Astrophysics Data System (ADS)
Sihi, D.; Gerber, S.; Inglett, K. S.; Inglett, P.
2014-12-01
Recent development in modeling soil organic carbon (SOC) decomposition includes the explicit incorporation of enzyme and microbial dynamics. A characteristic of these models is a feedback between substrate and consumers which is absent in traditional first order decay models. Second, microbial decomposition models incorporate carbon use efficiency (CUE) as a function of temperature which proved to be critical to prediction of SOC with warming. Our main goal is to explore microbial decomposition models with respect to responses of microbes to enzyme activity, costs to enzyme production, and to incorporation of growth vs. maintenance respiration. In order to simplify the modeling setup we assumed quick adjustment of enzyme activity and depolymerized carbon to microbial and SOC pools. Enzyme activity plays an important role to decomposition if its production is scaled to microbial biomass. In fact if microbes are allowed to optimize enzyme productivity the microbial enzyme model becomes unstable. Thus if the assumption of enzyme productivity is relaxed, other limiting factors must come into play. To stabilize the model, we account for two feedbacks that include cost of enzyme production and diminishing return of depolymerization with increasing enzyme concentration and activity. These feedback mechanisms caused the model to behave in a similar way to traditional, first order decay models. Most importantly, we found, that under warming, the changes in SOC carbon were more severe in enzyme synthesis is costly. In turn, carbon use efficiency (CUE) and its dynamical response to temperature is mainly determined by 1) the rate of turnover of microbes 2) the partitioning of dead microbial matter into different quality pools, and 3) and whether growth, maintenance respiration and microbial death rate have distinct responses to changes in temperature. Abbreviations: p: decay of enzyme, g: coefficient for growth respiration, : fraction of material from microbial turnover that enters the DOC pool, loss of C scaled to microbial mass, half saturation constant.
The Surface Radiation Budget over Oceans and Continents.
NASA Astrophysics Data System (ADS)
Garratt, J. R.; Prata, A. J.; Rotstayn, L. D.; McAvaney, B. J.; Cusack, S.
1998-08-01
An updated evaluation of the surface radiation budget in climate models (1994-96 versions; seven datasets available, with and without aerosols) and in two new satellite-based global datasets (with aerosols) is presented. All nine datasets capture the broad mean monthly zonal variations in the flux components and in the net radiation, with maximum differences of some 100 W m2 occurring in the downwelling fluxes at specific latitudes. Using long-term surface observations, both from land stations and the Pacific warm pool (with typical uncertainties in the annual values varying between ±5 and 20 W m2), excess net radiation (RN) and downwelling shortwave flux density (So) are found in all datasets, consistent with results from earlier studies [for global land, excesses of 15%-20% (12 W m2) in RN and about 12% (20 W m2) in So]. For the nine datasets combined, the spread in annual fluxes is significant: for RN, it is 15 (50) W m2 over global land (Pacific warm pool) in an observed annual mean of 65 (135) W m2; for So, it is 25 (60) W m2 over land (warm pool) in an annual mean of 176 (197) W m2.The effects of aerosols are included in three of the authors' datasets, based on simple aerosol climatologies and assumptions regarding aerosol optical properties. They offer guidance on the broad impact of aerosols on climate, suggesting that the inclusion of aerosols in models would reduce the annual So by 15-20 W m2 over land and 5-10 W m2 over the oceans. Model differences in cloud cover contribute to differences in So between datasets; for global land, this is most clearly demonstrated through the effects of cloud cover on the surface shortwave cloud forcing. The tendency for most datasets to underestimate cloudiness, particularly over global land, and possibly to underestimate atmospheric water vapor absorption, probably contributes to the excess downwelling shortwave flux at the surface.
D'Angelo, Vincent S.; Muhlfeld, Clint C.
2013-01-01
The widespread declines of native bull trout (Salvelinus confluentus) and westslope cutthroat trout (Oncorhynchus clarkii lewisi) populations prompted researchers to investigate factors influencing their distribution and status in western Glacier National Park, Montana. We evaluated the association of a suite of abiotic factors (stream width, elevation, gradient, large woody debris density, pool density, August mean stream temperature, reach surface area) with the occurrence (presence or absence) of bull trout and westslope cutthroat trout in 79 stream reaches in five sub-drainages containing glacial lakes. We modeled the occurrence of each species using logistic regression and evaluated competing models using an information theoretic approach. Westslope cutthroat trout were widely distributed (47 of 79 reaches), and there appeared to be no restrictions on their distribution other than physical barriers. Westslope cutthroat trout were most commonly found in relatively warm reaches downstream of lakes and in headwater reaches with large amounts of large woody debris and abundant pools. By contrast, bull trout were infrequently detected (10 of 79 reaches), with 7 of the 10 (70%) detections in sub-drainages that have not been compromised by non-native lake trout (S. namaycush). Bull trout were most often found in cold, low-gradient reaches upstream of glacial lakes. Our results indicate that complex stream habitats in sub-drainages free of non-native species are important to the persistence of native salmonids in western Glacier National Park. Results from this study may help managers monitor and protect important habitats and populations, inform conservation and recovery programs, and guide non-native species suppression efforts in Glacier National Park and elsewhere.
Scoppettone, G. Gary; Rissler, Peter; Johnson, Danielle; Hereford, Mark
2011-01-01
This study provides baseline data of native and non-native fish populations in Ash Meadows National Wildlife Refuge (NWR), Nye County, Nevada, that can serve as a gauge in native fish enhancement efforts. In support of Carson Slough restoration, comprehensive surveys of Ash Meadows NWR fishes were conducted seasonally from fall 2007 through summer 2008. A total of 853 sampling stations were created using Geographic Information Systems and National Agricultural Imagery Program. In four seasons of sampling, Amargosa pupfish (genus Cyprinodon) was captured at 388 of 659 stations. The number of captured Amargosa pupfish ranged from 5,815 (winter 2008) to 8,346 (summer 2008). The greatest success in capturing Amargosa pupfish was in warm water spring-pools with temperature greater than 25 degrees C, headwaters of warm water spring systems, and shallow (depths less than 10 centimeters) grassy marshes. In four seasons of sampling, Ash Meadows speckled dace (Rhinichthys osculus nevadesis) was captured at 96 of 659 stations. The number of captured Ash Meadows speckled dace ranged from 1,009 (summer 2008) to 1,552 (winter 2008). The greatest success in capturing Ash Meadows speckled dace was in cool water spring-pools with temperature less than 20 degrees C and in the high flowing water outflows. Among 659 sampling stations within the range of Amargosa pupfish, red swamp crayfish (Procambarus clarkii) was collected at 458 stations, western mosquitofish (Gambusia affinis) at 374 stations, and sailfin molly (Poecilia latipinna) at 128 stations. School Springs was restored during the course of this study. Prior to restoration of School Springs, maximum Warm Springs Amargosa pupfish (Cyprinodon nevadensis pectoralis) captured from the six springs of the Warm Springs Complex was 765 (fall 2007). In four seasons of sampling, Warm Springs Amargosa pupfish were captured at 85 of 177 stations. The greatest success in capturing Warm Springs Amargosa pupfish when co-occurring with red swamp crayfish and western mosquitofish was in water with temperature greater than 26 degrees C near the springhead, and in shallow (depths less than 10 centimeters) grassy marshes. Among 177 sampling stations within the range of Warm Springs Amargosa pupfish, red swamp crayfish were collected at 96 stations and western mosquitofish were collected at 49 stations. Removal of convict cichlid (Amatitlania nigrofasciata) from Fairbanks Spring was followed by a substantial increase in Ash Meadows Amargosa pupfish (Cyprinodon nevadensis mionectes) captures from 910 pre-removal to 3,056 post-removal. Red swamp crayfish was continually removed from Bradford 1 Spring, which seemed to cause an increase in the speckled dace population. Restoration of Kings Pool and Jackrabbit Springs promoted the success of native fishes with the greatest densities in restored reaches. Ongoing restoration of Carson Slough and its tributaries, as well as control and elimination of invasive species, is expected to increase abundance and distribution of Ash Meadows' native fish populations. Further analysis of data from this study will help determine the habitat characteristic(s) that promote native species and curtail non-native species.
NASA Astrophysics Data System (ADS)
Lara, M. J.; McGuire, A. D.; Euskirchen, E. S.; Genet, H.; Sloan, V. L.; Iversen, C. M.; Norby, R. J.; Zhang, Y.; Yuan, F.
2014-12-01
Northern permafrost regions are estimated to cover 16% of the global soil area and account for approximately 50% of the global belowground organic carbon pool. However, there are considerable uncertainties regarding the fate of this soil carbon pool with projected climate warming over the next century. In northern Alaska, nearly 65% of the terrestrial surface is composed of polygonal tundra, where geomorphic land cover types such as high-, flat-, and low-center polygons influence local surface hydrology, plant community composition, nutrient and biogeochemical cycling, over small spatial scales. Due to the lack of representation of these fine-scale geomorphic types and ecosystem processes, in large-scale terrestrial ecosystem models, future uncertainties are large for this tundra region. In this study, we use a new version of the terrestrial ecosystem model (TEM), that couples a dynamic vegetation model (in which plant functional types compete for water, nitrogen, and light) with a dynamic soil organic model (in which temperature, moisture, and associated organic/inorganic carbon and nitrogen pools/fluxes vary together in vertically resolved layers) to simulate ecosystem carbon balance. We parameterized and calibrated this model using data specific to the local climate, vegetation, and soil associated with tundra geomorphic types. We extrapolate model results at a 1km2 resolution across the ~1800 km2 Barrow Peninsula using a tundra geomorphology map, describing ten dominant geomorphic tundra types (Lara et al. submitted), to estimate the likely change in landscape-level carbon balance between 1970 and 2100 in response to projected climate change. Preliminary model runs for this region indicated temporal variability in carbon and active layer dynamics, specific to tundra geomorphic type over time. Overall, results suggest that it is important to consider small-scale discrete polygonal tundra geomorphic types that control local structure and function in regional estimates of carbon balance in northern Alaska.
Do Southern Ocean Cloud Feedbacks Matter for 21st Century Warming?
NASA Astrophysics Data System (ADS)
Frey, W. R.; Maroon, E. A.; Pendergrass, A. G.; Kay, J. E.
2017-12-01
Cloud phase improvements in a state-of-the-art climate model produce a large 1.5 K increase in equilibrium climate sensitivity (ECS, the surface warming in response to instantaneously doubled CO2) via extratropical shortwave cloud feedbacks. Here we show that the same model improvements produce only a small surface warming increase in a realistic 21st century emissions scenario. The small 21st century warming increase is attributed to extratropical ocean heat uptake. Southern Ocean mean-state circulation takes up heat while a slowdown in North Atlantic circulation acts as a feedback to slow surface warming. Persistent heat uptake by extratropical oceans implies that extratropical cloud biases may not be as important to 21st century warming as biases in other regions. Observational constraints on cloud phase and shortwave radiation that produce a large ECS increase do not imply large changes in 21st century warming.
Human disturbance and upward expansion of plants in a warming climate
NASA Astrophysics Data System (ADS)
Dainese, Matteo; Aikio, Sami; Hulme, Philip E.; Bertolli, Alessio; Prosser, Filippo; Marini, Lorenzo
2017-08-01
Climate change is expected to trigger an upward expansion of plants in mountain regions and, although there is strong evidence that many native species have already shifted their distributions to higher elevations, little is known regarding how fast non-native species might respond to climate change. By analysing 131,394 occurrence records of 1,334 plant species collected over 20 years in the European Alps, we found that non-natives are spreading upwards approximately twice as fast as natives. Whereas the spread of natives was enhanced by traits favouring longer dispersal distances, this was not the case for non-natives. This was due to the non-native species pool already being strongly biased towards species that had traits facilitating spread. A large proportion of native and non-native species seemed to be able to spread upwards faster than the current velocity of climate change. In particular, long-distance dispersal events and proximity to roads proved to be key drivers for the observed rapid spread. Our findings highlight that invasions by non-native species into native alpine communities are a potentially significant additional pressure on these vulnerable ecosystems that are already likely to suffer dramatic vegetation changes with ongoing warming and increasing human activity in mountain regions.
Nawrot, Rafał; Albano, Paolo G; Chattopadhyay, Devapriya; Zuschin, Martin
2017-08-16
Body size is a synthetic functional trait determining many key ecosystem properties. Reduction in average body size has been suggested as one of the universal responses to global warming in aquatic ecosystems. Climate change, however, coincides with human-enhanced dispersal of alien species and can facilitate their establishment. We address effects of species introductions on the size structure of recipient communities using data on Red Sea bivalves entering the Mediterranean Sea through the Suez Canal. We show that the invasion leads to increase in median body size of the Mediterranean assemblage. Alien species are significantly larger than native Mediterranean bivalves, even though they represent a random subset of the Red Sea species with respect to body size. The observed patterns result primarily from the differences in the taxonomic composition and body-size distributions of the source and recipient species pools. In contrast to the expectations based on the general temperature-size relationships in marine ectotherms, continued warming of the Mediterranean Sea indirectly leads to an increase in the proportion of large-bodied species in bivalve assemblages by accelerating the entry and spread of tropical aliens. These results underscore complex interactions between changing climate and species invasions in driving functional shifts in marine ecosystems. © 2017 The Author(s).
Statistical structure of intrinsic climate variability under global warming
NASA Astrophysics Data System (ADS)
Zhu, Xiuhua; Bye, John; Fraedrich, Klaus
2017-04-01
Climate variability is often studied in terms of fluctuations with respect to the mean state, whereas the dependence between the mean and variability is rarely discussed. We propose a new climate metric to measure the relationship between means and standard deviations of annual surface temperature computed over non-overlapping 100-year segments. This metric is analyzed based on equilibrium simulations of the Max Planck Institute-Earth System Model (MPI-ESM): the last millennium climate (800-1799), the future climate projection following the A1B scenario (2100-2199), and the 3100-year unforced control simulation. A linear relationship is globally observed in the control simulation and thus termed intrinsic climate variability, which is most pronounced in the tropical region with negative regression slopes over the Pacific warm pool and positive slopes in the eastern tropical Pacific. It relates to asymmetric changes in temperature extremes and associates fluctuating climate means with increase or decrease in intensity and occurrence of both El Niño and La Niña events. In the future scenario period, the linear regression slopes largely retain their spatial structure with appreciable changes in intensity and geographical locations. Since intrinsic climate variability describes the internal rhythm of the climate system, it may serve as guidance for interpreting climate variability and climate change signals in the past and the future.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abbott, Benjamin; Jones, Jeremy B.; Schuur, Edward A.
As the permafrost region warms, its large organic carbon pool will be increasingly vulnerable to decomposition, combustion, and hydrologic export. Models predict that some portion of this release will be offset by increased production of Arctic and boreal biomass; however, the lack of robust estimates of net carbon balance increases the risk of further overshooting international emissions targets. Precise empirical or model-based assessments of the critical factors driving carbon balance are unlikely in the near future, so to address this gap, we present estimates from 98 permafrost-region experts of the response of biomass, wildfire, and hydrologic carbon flux to climatemore » change. Results suggest that contrary to model projections, total permafrost-region biomass could decrease due to water stress and disturbance, factors that are not adequately incorporated in current models. Assessments indicate that end-of-the-century organic carbon release from Arctic rivers and collapsing coastlines could increase by 75% while carbon loss via burning could increase four-fold. Experts identified water balance, shifts in vegetation community, and permafrost degradation as the key sources of uncertainty in predicting future system response. In combination with previous findings, results suggest the permafrost region will become a carbon source to the atmosphere by 2100 regardless of warming scenario but that 65%–85% of permafrost carbon release can still be avoided if human emissions are actively reduced.« less
Mapping Soil Carbon in the Yukon Kuskokwim River Delta Alaska
NASA Astrophysics Data System (ADS)
Natali, S.; Fiske, G.; Schade, J. D.; Mann, P. J.; Holmes, R. M.; Ludwig, S.; Melton, S.; Sae-lim, N.; Jardine, L. E.; Navarro-Perez, E.
2017-12-01
Arctic river deltas are hotspots for carbon storage, occupying <1% of the pan-Arctic watershed but containing >10% of carbon stored in arctic permafrost. The Yukon Kuskokwim (YK) Delta, Alaska is located in the lower latitudinal range of the northern permafrost region in an area of relatively warm permafrost that is particularly vulnerable to warming climate. Active layer depths range from 50 cm on peat plateaus to >100 cm in wetland and aquatic ecosystems. The size of the soil organic carbon pool and vulnerability of the carbon in the YK Delta is a major unknown and is critically important as climate warming and increasing fire frequency may make this carbon vulnerable to transport to aquatic and marine systems and the atmosphere. To characterize the size and distribution of soil carbon pools in the YK Delta, we mapped the land cover of a 1910 km2 watershed located in a region of the YK Delta that was impacted by fire in 2015. The map product was the result of an unsupervised classification using the Weka K Means clustering algorithm implemented in Google's Earth Engine. Inputs to the classification were Worldview2 resolution optical imagery (1m), Arctic DEM (5m), and Sentinel 2 level 1C multispectral imagery, including NDVI, (10 m). We collected 100 soil cores (0-30 cm) from sites of different land cover and landscape position, including moist and dry peat plateaus, high and low intensity burned plateaus, fens, and drained lakes; 13 lake sediment cores (0-50 cm); and 20 surface permafrost cores (to 100 cm) from burned and unburned peat plateaus. Active layer and permafrost soils were analyzed for organic matter content, soil moisture content, and carbon and nitrogen pools (30 and 100 cm). Soil carbon content varied across the landscape; average carbon content values for lake sediments were 12% (5- 17% range), fens 26% (9-44%), unburned peat plateaus 41% (34-44%), burned peat plateaus 19% (7-34%). These values will be used to estimate soil carbon pools, which will be applied to the spatial extent of each landcover class in our map, yielding a watershed-wide and spatially explicit map of soil carbon in the YK Delta. This map will provide the basis for understanding where carbon is stored in the watershed and the vulnerability of that carbon to climate change and fire.
Smith, Holly N; Boodhwani, Munir; Ouzounian, Maral; Saczkowski, Richard; Gregory, Alexander J; Herget, Eric J; Appoo, Jehangir J
2017-03-01
Distal extent of repair in patients undergoing surgery for acute Type A aortic dissection (ATAAD) is controversial. Emerging hybrid techniques involving open and endovascular surgery have been reported in small numbers by select individual centres. A systematic review and meta-analysis was performed to investigate the outcomes following extended arch repair for ATAAD. A classification system is proposed of the different techniques to facilitate discussion and further investigation. Using Ovid MEDLINE, 38 studies were identified reporting outcomes for 2140 patients. Studies were categorized into four groups on the basis of extent of surgical aortic resection and the method of descending thoracic aortic stent graft deployment; during circulatory arrest (frozen stented elephant trunk) or with normothermic perfusion and use of fluoroscopy (warm stent graft): (I) surgical total arch replacement, (II) total arch and frozen stented elephant trunk, (III) hemiarch and frozen stented elephant trunk and (IV) total arch and warm stent graft. Perioperative event rates were obtained for each of the four groups and the entire cohort using pooled summary estimates. Linearized rates of late mortality and reoperation were calculated. Overall pooled hospital mortality for extended arch techniques was 8.6% (95% CI 7.2-10.0). Pooled data categorized by surgical technique resulted in hospital mortality of 11.9% for total arch, 8.6% total arch and frozen stented elephant trunk, 6.3% hemiarch and frozen stented elephant trunk and 5.5% total arch and 'warm stent graft'. Overall incidence of stroke for the entire cohort was 5.7% (95% CI 3.6-8.2). Rate of spinal cord ischaemia was 2.0% (95% CI 1.2-3.0). Pooled linearized rate of late mortality was 1.66%/pt-yr (95% CI 1.34-2.07) with linearized rate of re-operation of 1.62%/pt-yr (95% CI 1.24-2.05). Perioperative results of extended arch procedures are encouraging. Further follow-up is required to see if long-term complications are reduced with these emerging techniques. The proposed classification system will facilitate future comparison of short- and long-term results of different techniques of extended arch repair for ATAAD. © The Author 2016. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.
NASA Astrophysics Data System (ADS)
Lamentowicz, M.; Buttler, A.; Mitchell, E. A. D.; Chojnicki, B.; Słowińska, S.; Słowiński, M.
2012-04-01
Northern peatlands represent a globally significant pool of carbon and are subject to the highest rates of climate warming, and most of these peatlands are in continental settings. However, it is unclear if how fast peatlands respond to past and present changes in temperature and surface moisture in continental vs. oceanic climate settings. The CLIMPEAT project brings together scientists from Poland and Switzerland. Our goal is to assess the past and present vulnerability to climate change of Sphagnum peatland plant and microbial communities, peat organic matter transformations and carbon sequestration using a combination of field and mesocosm experiments simulating warming and water table changes and palaeoecological studies. Warming will be achieved using ITEX-type "Open-Top Chambers". The field studies are conducted in Poland, at the limit between oceanic and continental climates, and are part of a network of projects also including field experiments in the French Jura (sub-oceanic) and in Siberia (continental). We will calibrate the response of key biological (plants, testate amoebae) and geochemical (isotopic composition of organic compounds, organic matter changes) proxies to warming and water table changes and use these proxies to reconstruct climate changes during the last 1000 years.
Long-Term Warming Alters Carbohydrate Degradation Potential in Temperate Forest Soils
Pold, Grace; Billings, Andrew F.; Blanchard, Jeff L.; ...
2016-09-02
As Earth's climate warms, soil carbon pools and the microbial communities that process them may change, altering the way in which carbon is recycled in soil. In this study, we used a combination of metagenomics and bacterial cultivation to evaluate the hypothesis that experimentally raising soil temperatures by 5°C for 5, 8, or 20 years increased the potential for temperate forest soil microbial communities to degrade carbohydrates. Warming decreased the proportion of carbohydrate-degrading genes in the organic horizon derived from eukaryotes and increased the fraction of genes in the mineral soil associated with Actinobacteria in all studies. Genes associated withmore » carbohydrate degradation increased in the organic horizon after 5 years of warming but had decreased in the organic horizon after warming the soil continuously for 20 years. However, a greater proportion of the 295 bacteria from 6 phyla (10 classes, 14 orders, and 34 families) isolated from heated plots in the 20-year experiment were able to depolymerize cellulose and xylan than bacterial isolates from control soils. Together, these findings indicate that the enrichment of bacteria capable of degrading carbohydrates could be important for accelerated carbon cycling in a warmer world.« less
Formation of the southern Bay of Bengal cold pool
NASA Astrophysics Data System (ADS)
Das, Umasankar; Vinayachandran, P. N.; Behara, Ambica
2016-09-01
A pool of relatively cooler water, called here as the southern Bay of Bengal cold pool, exists around Sri Lanka and southern tip of India during the summer monsoon. This cold pool is enveloped by the larger Indian Ocean warm pool and is believed to affect the intraseasonal variations of summer monsoon rainfall. In this study, we have investigated the mechanisms responsible for the formation of the cold pool using a combination of both satellite data sets and a general circulation model of the Indian Ocean. Sea surface temperature (SST) within the cold pool, after the steady increase during the February-April period, decreases first during a pre-monsoon spell in April and then with the monsoon onset during May. The onset cooling is stronger (~1.8°C) than the pre-monsoon cooling (~0.8°C) and culminates in the formation of the cold pool. Analysis of the model temperature equation shows that SST decrease during both events is primarily due to a decrease in incoming solar radiation and an increase in latent heat loss. These changes in the net heat flux are brought about by the arrival of cloud bands above the cold pool during both periods. During the pre-monsoon period, a cloud band originates in the western equatorial Indian Ocean and subsequently arrives above the cold pool. Similarly, during the monsoon onset, a band of clouds originating in the eastern equatorial Indian Ocean comes over the cold pool region. A lead-lag correlation calculation between daily SST and rainfall anomalies suggest that cooling in SST occurs in response to rainfall events with a lag of 5 days. These sequence of events occur every year with certain amount of interannual variability.
NASA Technical Reports Server (NTRS)
Hurwitz, M. M.; Song, I.-S.; Oman, L. D.; Newman, P. A.; Molod, A. M.; Frith, S. M.; Nielsen, J. E.
2010-01-01
"Warm pool" (WP) El Nino events are characterized by positive sea surface temperature (SST) anomalies in the central equatorial Pacific. During austral spring. WP El Nino events are associated with an enhancement of convective activity in the South Pacific Convergence Zone, provoking a tropospheric planetary wave response and thus increasing planetary wave driving of the Southern Hemisphere stratosphere. These conditions lead to higher polar stratospheric temperatures and to a weaker polar jet during austral summer, as compared with neutral ENSO years. Furthermore, this response is sensitive to the phase of the quasi-biennial oscillation (QBO): a stronger warming is seen in WP El Nino events coincident with the easterly phase of the quasi-biennial oscillation (QBO) as compared with WP El Nino events coincident with a westerly or neutral QBO. The Goddard Earth Observing System (GEOS) chemistry-climate model (CCM) is used to further explore the atmospheric response to ENSO. Time-slice simulations are forced by composited SSTs from observed WP El Nino and neutral ENSO events. The modeled eddy heat flux, temperature and wind responses to WP El Nino events are compared with observations. A new gravity wave drag scheme has been implemented in the GEOS CCM, enabling the model to produce a realistic, internally generated QBO. By repeating the above time-slice simulations with this new model version, the sensitivity of the WP El Nino response to the phase of the quasi-biennial oscillation QBO is estimated.
NASA Technical Reports Server (NTRS)
Hurwitz, M. M.; Song, I.-S.; Oman, L. D.; Newman, P. A.; Molod, A. M.; Frith, S. M.; Nielsen, J. E.
2011-01-01
"Warm pool" (WP) El Nino events are characterized by positive sea surface temperature (SST) anomalies in the central equatorial Pacific. During austral spring, WP El Nino events are associated with an enhancement of convective activity in the South Pacific Convergence Zone, provoking a tropospheric planetary wave response and thus increasing planetary wave driving of the Southern Hemisphere stratosphere. These conditions lead to higher polar stratospheric temperatures and to a weaker polar jet during austral summer, as compared with neutral ENSO years. Furthermore, this response is sensitive to the phase of the quasi-biennial oscillation (QBO): a stronger warming is seen in WP El Nino events coincident with the easterly phase of the quasi-biennial oscillation (QBO) as compared with WP El Nino events coincident with a westerly or neutral QBO. The Goddard Earth Observing System (GEOS) chemistry-climate model (CCM) is used to further explore the atmospheric response to ENSO. Time-slice simulations are forced by composited SSTs from observed NP El Nino and neutral ENSO events. The modeled eddy heat flux, temperature and wind responses to WP El Nino events are compared with observations. A new gravity wave drag scheme has been implemented in the GEOS CCM, enabling the model to produce e realistic, internally generated QBO. By repeating the above time-slice simulations with this new model version, the sensitivity of the WP El Nino response to the phase of the quasi-biennial oscillation QBO is estimated.
Vertical Distribution of Temperature in Transitional Season II and West Monsoon in Western Pacific
NASA Astrophysics Data System (ADS)
Pranoto, Hikari A. H.; Kunarso; Soeyanto, Endro
2018-02-01
Western Pacific is the water mass intersection from both the Northern Pacific and Southern Pacific ocean. The Western Pacific ocean is warm pool area which formed by several warm surface currents. As a warm pool area and also the water mass intersection, western Pacific ocean becomes an interesting study area. The object of this study is to describe the temperature vertical distribution by mooring buoy and temporally in transitional season II (September - November 2014) and west monsoon (December 2014 - February 2015) in Western Pacific. Vertical temperature and wind speed data that was used in this study was recorded by INA-TRITON mooring instrument and obtained from Laboratory of Marine Survey, BPPT. Supporting data of this study was wind vector data from ECMWF to observe the relation between temperature distribution and monsoon. The quantitative approach was used in this study by processing temperature and wind data from INA-TRITON and interpreted graphically. In the area of study, it was found that in transitional season II the range of sea surface temperature to 500-meter depth was about 8.29 - 29.90 °C while in west monsoon was 8.12 - 29.45 °C. According to the research result, the sea SST of western Pacific ocean was related to monsoonal change with SST and wind speed correlation coefficient was 0.78. While the deep layer temperature was affected by water mass flow which passes through the western Pacific Ocean.
Analysis of Terrestrial Carbon Stocks in a Small Catchment of Northeastern Siberia
NASA Astrophysics Data System (ADS)
Heard, K.; Natali, S.; Bunn, A. G.; Loranty, M. M.; Kholodov, A. L.; Schade, J. D.; Berner, L. T.; Spektor, V.; Zimov, N.; Alexander, H. D.
2015-12-01
As arctic terrestrial ecosystems comprise about one-third of the global terrestrial ecosystem carbon total, understanding arctic carbon cycling and the feedback of terrestrial carbon pools to accelerated warming is an issue of global concern. For this research, we examined above- and belowground carbon stocks in a larch-dominated catchment underlain by yedoma and located within the Kolyma River watershed in northeastern Siberia. We quantified carbon stocks in vegetation, active layer, and permafrost, and we assessed the correlation between plant and active layer carbon pools and four environmental correlates — slope, solar insolation, canopy density, and leaf area index — at 20 sites. Carbon in the active layer was approximately four times greater than aboveground carbon pools (972 g C m-2), and belowground carbon to 1 m depth was approximately 18 times greater than aboveground carbon pools. Canopy density and slope had a robust positive association with aboveground carbon pools, and soil moisture was positively related to %C in organic, thawed mineral and permafrost soil. Thaw depth was negatively correlated with moss cover and larch biomass, highlighting the importance of vegetation and surface characteristics on permafrost carbon vulnerability. These data suggest that landscape and ecosystem characteristics affect carbon accumulation and storage, but they also play an important role in stabilizing permafrost carbon pools.
Representing Northern Peatland Hydrology and Biogeochemistry with ALM Land Surface Model
NASA Astrophysics Data System (ADS)
Shi, X.; Ricciuto, D. M.; Thornton, P. E.; Hanson, P. J.; Xu, X.; Mao, J.; Warren, J.; Yuan, F.; Norby, R. J.; Sebestyen, S.; Griffiths, N.; Weston, D. J.; Walker, A.
2017-12-01
Northern peatlands are likely to be important in future carbon cycle-climate feedbacks due to their large carbon pool and vulnerability to hydrological change. Predictive understanding of northern peatland hydrology is a necessary precursor to understanding the fate of massive carbon stores in these systems under the influence of present and future climate change. Current models have begun to address microtopographic controls on peatland hydrology, but none have included a prognostic calculation of peatland water table depth for a vegetated wetland, independent of prescribed regional water tables. Firstly, we introduce a new configuration of the land model (ALM) of Accelerated Climate model for Energy (ACME), which includes a fully prognostic water table calculation for a vegetated peatland. Secondly, we couple our new hydrology treatment with vertically structured soil organic matter pool, and the addition of components from methane biogeochemistry. Thirdly, we introduce a new PFT for mosses and implement the water content dynamics and physiology of mosses. We inform and test our model based on SPRUCE experiment to get the reasonable results for the seasonal dynamics water table depths, water content dynamics and physiology of mosses, and correct soil carbon profiles. Then, we use our new model structure to test the how the water table depth and CH4 emission will respond to elevated CO2 and different warming scenarios.
NASA Astrophysics Data System (ADS)
Douglas, A. V.; Englehart, P. J.
2007-05-01
A dipole in tropical cyclone development between the Caribbean and the eastern tropical Pacific will be examined relative to its affect on southern Mexican rainfall. With the change over in the AMO and PDO in 1994 and 1998, respectively, tropical storm genesis has been increasing in the Caribbean while declining in the tropical east Pacific. This dipole in tropical cyclone development appears to be related to changes in the pre storm season heat content of the two ocean basins (data Scripps Institution of Oceanography). Preliminary work indicates that if the Caribbean is warmer than the Pacific by late May the dipole will be accentuated with a pronounced decrease in tropical storms in the east Pacific with an early and prolonged season in the Caribbean. In recent years there appears to have been an increase in the intensity and duration of midsummer drought (Canicula) in Mexico associated with changes in the PDO and AMO. These long term ocean oscillations appear to control the dipole in the strength of the Caribbean and East Pacific warm pools. Mid summer drought is a normal occurrence in much of Mexico and Central America, but the intensified droughts of the recent period have stressed the agricultural community of the region. Based on preliminary work, it appears that the recent increased frequency of midsummer drought can be linked to a shift in the warmest pool from the East Pacific to the Caribbean.
Xu, Deke; Lu, Houyuan; Wu, Naiqin; Liu, Zhenxia; Li, Tiegang; Shen, Caiming; Wang, Luo
2013-06-11
A high-resolution multiproxy record, including pollen, foraminifera, and alkenone paleothermometry, obtained from a single core (DG9603) from the Okinawa Trough, East China Sea (ECS), provided unambiguous evidence for asynchronous climate change between the land and ocean over the past 40 ka. On land, the deglacial stage was characterized by rapid warming, as reflected by paleovegetation, and it began ca. 15 kaBP, consistent with the timing of the last deglacial warming in Greenland. However, sea surface temperature estimates from foraminifera and alkenone paleothermometry increased around 20-19 kaBP, as in the Western Pacific Warm Pool (WPWP). Sea surface temperatures in the Okinawa Trough were influenced mainly by heat transport from the tropical western Pacific Ocean by the Kuroshio Current, but the epicontinental vegetation of the ECS was influenced by atmospheric circulation linked to the northern high-latitude climate. Asynchronous terrestrial and marine signals of the last deglacial warming in East Asia were thus clearly related to ocean currents and atmospheric circulation. We argue that (i) early warming seawater of the WPWP, driven by low-latitude insolation and trade winds, moved northward via the Kuroshio Current and triggered marine warming along the ECS around 20-19 kaBP similar to that in the WPWP, and (ii) an almost complete shutdown of the Atlantic Meridional Overturning Circulation ca. 18-15 kaBP was associated with cold Heinrich stadial-1 and delayed terrestrial warming during the last deglacial warming until ca. 15 kaBP at northern high latitudes, and hence in East Asia. Terrestrial deglacial warming therefore lagged behind marine changes by ca. 3-4 ka.
Xu, Deke; Lu, Houyuan; Wu, Naiqin; Liu, Zhenxia; Li, Tiegang; Shen, Caiming; Wang, Luo
2013-01-01
A high-resolution multiproxy record, including pollen, foraminifera, and alkenone paleothermometry, obtained from a single core (DG9603) from the Okinawa Trough, East China Sea (ECS), provided unambiguous evidence for asynchronous climate change between the land and ocean over the past 40 ka. On land, the deglacial stage was characterized by rapid warming, as reflected by paleovegetation, and it began ca. 15 kaBP, consistent with the timing of the last deglacial warming in Greenland. However, sea surface temperature estimates from foraminifera and alkenone paleothermometry increased around 20–19 kaBP, as in the Western Pacific Warm Pool (WPWP). Sea surface temperatures in the Okinawa Trough were influenced mainly by heat transport from the tropical western Pacific Ocean by the Kuroshio Current, but the epicontinental vegetation of the ECS was influenced by atmospheric circulation linked to the northern high-latitude climate. Asynchronous terrestrial and marine signals of the last deglacial warming in East Asia were thus clearly related to ocean currents and atmospheric circulation. We argue that (i) early warming seawater of the WPWP, driven by low-latitude insolation and trade winds, moved northward via the Kuroshio Current and triggered marine warming along the ECS around 20–19 kaBP similar to that in the WPWP, and (ii) an almost complete shutdown of the Atlantic Meridional Overturning Circulation ca. 18–15 kaBP was associated with cold Heinrich stadial-1 and delayed terrestrial warming during the last deglacial warming until ca. 15 kaBP at northern high latitudes, and hence in East Asia. Terrestrial deglacial warming therefore lagged behind marine changes by ca. 3–4 ka. PMID:23720306
Yvon-Durocher, Gabriel; Schaum, Charlotte-Elisa; Trimmer, Mark
2017-01-01
The elemental composition of phytoplankton (C:N:P stoichiometry) is a critical factor regulating nutrient cycling, primary production and energy transfer through planktonic food webs. Our understanding of the multiple direct and indirect mechanisms through which temperature controls phytoplankton stoichiometry is however incomplete, increasing uncertainty in the impacts of global warming on the biogeochemical functioning of aquatic ecosystems. Here, we use a decade-long warming experiment in outdoor freshwater ponds to investigate how temperature-driven turnover in species composition and shifts in stoichiometric traits within species through local thermal adaptation contribute to the effects of warming on seston stoichiometry. We found that experimental warming increased seston C:P and N:P ratios, while the C:N ratio was unaffected by warming. Temperature was also the dominant driver of seasonal variation in seston stoichiometry, correlating positively with both C:P and N:P ratios. The taxonomic composition of the phytoplankton community differed substantially between the warmed and ambient treatments indicating that warming resulted in differential sorting of species from the regional pool. Furthermore, taxonomic composition also changed markedly over the year within each of the warmed and ambient treatments, highlighting substantial temporal turnover in species. To investigate whether local adaptation also played an important role in shaping the effects of warming on seston stoichiometry, we isolated multiple strains of the cosmopolitan alga, Chlamydomonas reinhardtii from across the warmed and ambient mesocosms. We found that warmed isolates had higher C:P and N:P ratios, shifts that were comparable in direction and magnitude to the effects of warming on seston stoichiometry. Our results suggest that both species sorting and local adaptation are likely to play important roles in shaping the effects of warming on bulk phytoplankton stoichiometry and indicate that major shifts in aquatic biogeochemistry should be expected in a warmer world. PMID:29109703
Martins, Madlles Q.; Rodrigues, Weverton P.; Fortunato, Ana S.; Leitão, António E.; Rodrigues, Ana P.; Pais, Isabel P.; Martins, Lima D.; Silva, Maria J.; Reboredo, Fernando H.; Partelli, Fábio L.; Campostrini, Eliemar; Tomaz, Marcelo A.; Scotti-Campos, Paula; Ribeiro-Barros, Ana I.; Lidon, Fernando J. C.; DaMatta, Fábio M.; Ramalho, José C.
2016-01-01
Modeling studies have predicted that coffee crop will be endangered by future global warming, but recent reports highlighted that high [CO2] can mitigate heat impacts on coffee. This work aimed at identifying heat protective mechanisms promoted by CO2 in Coffea arabica (cv. Icatu and IPR108) and Coffea canephora cv. Conilon CL153. Plants were grown at 25/20°C (day/night), under 380 or 700 μL CO2 L−1, and then gradually submitted to 31/25, 37/30, and 42/34°C. Relevant heat tolerance up to 37/30°C for both [CO2] and all coffee genotypes was observed, likely supported by the maintenance or increase of the pools of several protective molecules (neoxanthin, lutein, carotenes, α-tocopherol, HSP70, raffinose), activities of antioxidant enzymes, such as superoxide dismutase (SOD), ascorbate peroxidase (APX), glutathione reductase (GR), catalase (CAT), and the upregulated expression of some genes (ELIP, Chaperonin 20). However, at 42/34°C a tolerance threshold was reached, mostly in the 380-plants and Icatu. Adjustments in raffinose, lutein, β-carotene, α-tocopherol and HSP70 pools, and the upregulated expression of genes related to protective (ELIPS, HSP70, Chape 20, and 60) and antioxidant (CAT, CuSOD2, APX Cyt, APX Chl) proteins were largely driven by temperature. However, enhanced [CO2] maintained higher activities of GR (Icatu) and CAT (Icatu and IPR108), kept (or even increased) the Cu,Zn-SOD, APX, and CAT activities, and promoted a greater upregulation of those enzyme genes, as well as those related to HSP70, ELIPs, Chaperonins in CL153, and Icatu. These changes likely favored the maintenance of reactive oxygen species (ROS) at controlled levels and contributed to mitigate of photosystem II photoinhibition at the highest temperature. Overall, our results highlighted the important role of enhanced [CO2] on the coffee crop acclimation and sustainability under predicted future global warming scenarios. PMID:27446174
Manifestation of remote response over the equatorial Pacific in a climate model
NASA Astrophysics Data System (ADS)
Misra, Vasubandhu; Marx, L.
2007-10-01
In this paper we examine the simulations over the tropical Pacific Ocean from long-term simulations of two different versions of the Center for Ocean-Land-Atmosphere Studies (COLA) coupled climate model that have a different global distribution of the inversion clouds. We find that subtle changes made to the numerics of an empirical parameterization of the inversion clouds can result in a significant change in the coupled climate of the equatorial Pacific Ocean. In one coupled simulation of this study we enforce a simple linear spatial filtering of the diagnostic inversion clouds to ameliorate its spatial incoherency (as a result of the Gibbs effect) while in the other we conduct no such filtering. It is found from the comparison of these two simulations that changing the distribution of the shallow inversion clouds prevalent in the subsidence region of the subtropical high over the eastern oceans in this manner has a direct bearing on the surface wind stress through surface pressure modifications. The SST in the warm pool region responds to this modulation of the wind stress, thus affecting the convective activity over the warm pool region and also the large-scale Walker and Hadley circulation. The interannual variability of SST in the eastern equatorial Pacific Ocean is also modulated by this change to the inversion clouds. Consequently, this sensitivity has a bearing on the midlatitude height response. The same set of two experiments were conducted with the respective versions of the atmosphere general circulation model uncoupled to the ocean general circulation model but forced with observed SST to demonstrate that this sensitivity of the mean climate of the equatorial Pacific Ocean is unique to the coupled climate model where atmosphere, ocean and land interact. Therefore a strong case is made for adopting coupled ocean-land-atmosphere framework to develop climate models as against the usual practice of developing component models independent of each other.
Testing the Millennial-Scale Holocene Solar-Climate Connection in the Indo-Pacific Warm Pool
NASA Astrophysics Data System (ADS)
Khider, D.; Emile-Geay, J.; McKay, N.; Jackson, C. S.; Routson, C.
2016-12-01
The existence of 1000 and 2500-year periodicities found in reconstructions of total solar irradiance (TSI) and a number of Holocene climate records has led to the hypothesis of a causal relationship. However, attributing Holocene millennial-scale variability to solar forcing requires a mechanism by which small changes in total irradiance can influence a global climate response. One possible amplifier within the climate system is the ocean. If this is the case, then we need to know more about where and how this may be occurring. On the other hand, the similarity in spectral peaks could be merely coincidental, and this should be made apparent by a lack of coherence in how that power and phasing are distributed in time and space. The plausibility of the solar forcing hypothesis is assessed through a Bayesian model of the age uncertainties affecting marine sedimentary records that is propagated through spectral analysis of the climate and forcing signals at key frequencies. Preliminary work on Mg/Ca and alkenone records from the Indo-Pacific Warm Pool suggests that despite large uncertainties in the location of the spectral peaks within each individual record arising from age model uncertainty, sea surface variability on timescales of 1025±36 years and 2427±133 years (±standard error of the mean of the median periodicity in each record) are present in at least 95% and 70% of the ensemble spectra, respectively. However, we find a long phase delay between the peak in forcing and the maximum response in at least one of the records, challenging the solar forcing hypothesis and requiring further investigation between low- and high-latitude signals. Remarkably, all records suggest a periodicity near 1470±85 years, reminiscent of the cycles characteristic of Marine Isotope Stage 3; these cycles are absent from existing records of TSI, further questioning the millennial solar-climate connection.
Martins, Madlles Q; Rodrigues, Weverton P; Fortunato, Ana S; Leitão, António E; Rodrigues, Ana P; Pais, Isabel P; Martins, Lima D; Silva, Maria J; Reboredo, Fernando H; Partelli, Fábio L; Campostrini, Eliemar; Tomaz, Marcelo A; Scotti-Campos, Paula; Ribeiro-Barros, Ana I; Lidon, Fernando J C; DaMatta, Fábio M; Ramalho, José C
2016-01-01
Modeling studies have predicted that coffee crop will be endangered by future global warming, but recent reports highlighted that high [CO2] can mitigate heat impacts on coffee. This work aimed at identifying heat protective mechanisms promoted by CO2 in Coffea arabica (cv. Icatu and IPR108) and Coffea canephora cv. Conilon CL153. Plants were grown at 25/20°C (day/night), under 380 or 700 μL CO2 L(-1), and then gradually submitted to 31/25, 37/30, and 42/34°C. Relevant heat tolerance up to 37/30°C for both [CO2] and all coffee genotypes was observed, likely supported by the maintenance or increase of the pools of several protective molecules (neoxanthin, lutein, carotenes, α-tocopherol, HSP70, raffinose), activities of antioxidant enzymes, such as superoxide dismutase (SOD), ascorbate peroxidase (APX), glutathione reductase (GR), catalase (CAT), and the upregulated expression of some genes (ELIP, Chaperonin 20). However, at 42/34°C a tolerance threshold was reached, mostly in the 380-plants and Icatu. Adjustments in raffinose, lutein, β-carotene, α-tocopherol and HSP70 pools, and the upregulated expression of genes related to protective (ELIPS, HSP70, Chape 20, and 60) and antioxidant (CAT, CuSOD2, APX Cyt, APX Chl) proteins were largely driven by temperature. However, enhanced [CO2] maintained higher activities of GR (Icatu) and CAT (Icatu and IPR108), kept (or even increased) the Cu,Zn-SOD, APX, and CAT activities, and promoted a greater upregulation of those enzyme genes, as well as those related to HSP70, ELIPs, Chaperonins in CL153, and Icatu. These changes likely favored the maintenance of reactive oxygen species (ROS) at controlled levels and contributed to mitigate of photosystem II photoinhibition at the highest temperature. Overall, our results highlighted the important role of enhanced [CO2] on the coffee crop acclimation and sustainability under predicted future global warming scenarios.
Activation of old carbon by erosion of coastal and subsea permafrost in Arctic Siberia.
Vonk, J E; Sánchez-García, L; van Dongen, B E; Alling, V; Kosmach, D; Charkin, A; Semiletov, I P; Dudarev, O V; Shakhova, N; Roos, P; Eglinton, T I; Andersson, A; Gustafsson, O
2012-09-06
The future trajectory of greenhouse gas concentrations depends on interactions between climate and the biogeosphere. Thawing of Arctic permafrost could release significant amounts of carbon into the atmosphere in this century. Ancient Ice Complex deposits outcropping along the ~7,000-kilometre-long coastline of the East Siberian Arctic Shelf (ESAS), and associated shallow subsea permafrost, are two large pools of permafrost carbon, yet their vulnerabilities towards thawing and decomposition are largely unknown. Recent Arctic warming is stronger than has been predicted by several degrees, and is particularly pronounced over the coastal ESAS region. There is thus a pressing need to improve our understanding of the links between permafrost carbon and climate in this relatively inaccessible region. Here we show that extensive release of carbon from these Ice Complex deposits dominates (57 ± 2 per cent) the sedimentary carbon budget of the ESAS, the world’s largest continental shelf, overwhelming the marine and topsoil terrestrial components. Inverse modelling of the dual-carbon isotope composition of organic carbon accumulating in ESAS surface sediments, using Monte Carlo simulations to account for uncertainties, suggests that 44 ± 10 teragrams of old carbon is activated annually from Ice Complex permafrost, an order of magnitude more than has been suggested by previous studies. We estimate that about two-thirds (66 ± 16 per cent) of this old carbon escapes to the atmosphere as carbon dioxide, with the remainder being re-buried in shelf sediments. Thermal collapse and erosion of these carbon-rich Pleistocene coastline and seafloor deposits may accelerate with Arctic amplification of climate warming.
NASA Astrophysics Data System (ADS)
Brenner, L. D.; Linsley, B. K.; Potts, D. C.; Felis, T.; Mcgregor, H. V.; Gagan, M. K.; Inoue, M.; Tudhope, A. W.; Esat, T. M.; Thompson, W. G.; Tiwari, M.; Fallon, S.; Humblet, M.; Yokoyama, Y.; Webster, J.
2016-12-01
Isopora (Acroporidae) are sub-massive to massive corals found on most modern and fossil Indo-Pacific reefs. Despite their abundance, they are largely absent from the paleoceanographic literature but have the potential to provide proxy data where other commonly used corals, such as Porites, are sparse. The retrieval of Isopora fossils during International Ocean Discovery Program Leg 325 in the Great Barrier Reef (GBR) signaled the need to evaluate their possible paleoceanographic utility. We developed modern skeletal Sr/Ca- and δ18O-sea surface temperature (SST) calibrations for six modern Isopora colonies collected at Heron Island in the southern GBR. Pairing the coral Sr/Ca record with monthly SST data yielded Reduced Major Axis Sr/Ca- and δ18O-SST sensitivities of -0.054 mmol/mol/°C and -0.152 ‰/°C, respectively, falling within the range of published Porites values. We applied our Isopora-based regressions and previously published sensitivities from other species to a suite (n=37) of fossil samples collected from IODP 32. The calibrations produced a range of 3-7°C of warming, averaging 5°C, in the GBR from 22 ka to modern climate. This SST change is similar or slightly larger than other coral studies and larger than planktonic foraminifera Mg/Ca records. The planktonic Mg/Ca records from the Indonesian and Western Pacific Warm Pools indicate a warming of 3-3.5°C since 23ka (Linsley et al., 2010) while a fossil coral record from Tahiti indicates a warming of 3.2°C from 9.5ka to present (DeLong et al., 2010) and western Pacific coral records suggest a cooling of 5-6°C (Gagan et al., 2010; Guilderson et al., 1994: Beck et al., 1997), although these value might require rescaling (Gagan et al., 2012) resulting in slightly warmer temperature calculations. Our Isopora fossils from the GBR speak to the spatial heterogeneity of warming since the LGM and the continued need to develop more records for a more comprehensive understanding of the deglaciation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guest, Geoffrey, E-mail: geoffrey.guest@ntnu.no; Bright, Ryan M., E-mail: ryan.m.bright@ntnu.no; Cherubini, Francesco, E-mail: francesco.cherubini@ntnu.no
2013-11-15
Temporary and permanent carbon storage from biogenic sources is seen as a way to mitigate climate change. The aim of this work is to illustrate the need to harmonize the quantification of such mitigation across all possible storage pools in the bio- and anthroposphere. We investigate nine alternative storage cases and a wide array of bio-resource pools: from annual crops, short rotation woody crops, medium rotation temperate forests, and long rotation boreal forests. For each feedstock type and biogenic carbon storage pool, we quantify the carbon cycle climate impact due to the skewed time distribution between emission and sequestration fluxesmore » in the bio- and anthroposphere. Additional consideration of the climate impact from albedo changes in forests is also illustrated for the boreal forest case. When characterizing climate impact with global warming potentials (GWP), we find a large variance in results which is attributed to different combinations of biomass storage and feedstock systems. The storage of biogenic carbon in any storage pool does not always confer climate benefits: even when biogenic carbon is stored long-term in durable product pools, the climate outcome may still be undesirable when the carbon is sourced from slow-growing biomass feedstock. For example, when biogenic carbon from Norway Spruce from Norway is stored in furniture with a mean life time of 43 years, a climate change impact of 0.08 kg CO{sub 2}eq per kg CO{sub 2} stored (100 year time horizon (TH)) would result. It was also found that when biogenic carbon is stored in a pool with negligible leakage to the atmosphere, the resulting GWP factor is not necessarily − 1 CO{sub 2}eq per kg CO{sub 2} stored. As an example, when biogenic CO{sub 2} from Norway Spruce biomass is stored in geological reservoirs with no leakage, we estimate a GWP of − 0.56 kg CO{sub 2}eq per kg CO{sub 2} stored (100 year TH) when albedo effects are also included. The large variance in GWPs across the range of resource and carbon storage options considered indicates that more accurate accounting will require case-specific factors derived following the methodological guidelines provided in this and recent manuscripts. -- Highlights: • Climate impacts of stored biogenic carbon (bio-C) are consistently quantified. • Temporary storage of bio-C does not always equate to a climate cooling impact. • 1 unit of bio-C stored over a time horizon does not always equate to − 1 unit CO{sub 2}eq. • Discrepancies of climate change impact quantification in literature are clarified.« less
Tropical Cyclones Feed More Heavy Rain in a Warmer Climate
NASA Technical Reports Server (NTRS)
Lau, K.-M.; Zhou, Y. P.; Wu, H.-T.
2007-01-01
The possible linkage of tropical cyclones (TC) to global warming is a hotly debated scientific topic, with immense societal impacts. Most of the debate has been focused on the issue of uncertainty in the use of non-research quality data for long-term trend analyses, especially with regard to TC intensity provided by TC forecasting centers. On the other hand, it is well known that TCs are associated with heavy rain during the processes of genesis and intensification, and that there are growing evidences that rainfall characteristics (not total rainfall) are most likely to be affected by global warming. Yet, satellite rainfall data have not been exploited in any recent studies of linkage between tropical cyclones (TC) and global warming. This is mostly due to the large uncertainties associated with detection of long-term trend in satellite rainfall estimates over the ocean. This problem, as we demonstrate in this paper, can be alleviated by examining rainfall distribution, rather than rainfall total. This paper is the first to use research-quality, satellite-derived rainfall from TRMM and GPCP over the tropical oceans to estimate shift in rainfall distribution during the TC season, and its relationships with TCs, and sea surface temperature (SST) in the two major ocean basins, the northern Atlantic and the northern Pacific for 1979-2005. From the rainfall distribution, we derive the TC contributions to rainfall in various extreme rainfall categories as a function to time. Our results show a definitive trend indicating that TCs are contributing increasingly to heavier rain events, i.e., intense TC's are more frequent in the last 27 years. The TC contribution to top 5% heavy rain has nearly doubled in the last two decades in the North Atlantic, and has increased by about 10% in the North Pacific. The different rate of increase in TC contribution to heavy rain may be related to the different rates of different rate of expansion of the warm pool (SST >2S0 C) area in the two oceans.
Tropical Intraseasonal Air-Sea Exchanges during the 1997 Pacific Warming
NASA Technical Reports Server (NTRS)
Sui, C.-H.; Lau, K.-M.; Chou, S.-H.; Wang, Zihou
1999-01-01
The Madden Julian Oscillations (MJO) and associated westerly wind (WW) events account for much of the tropical intraseasonal variability (TISV). The TISV has been suggested as an important stochastic forcing that may be one of the underlying causes for the observed irregularities of the El Nino-Southern Oscillation (ENSO). Recent observational studies and theories of interannual to interdecadal-scale variability suggest that ENSO may arise from different mechanisms depending on the basic states. The Pacific warming event of 1997, being associated with a period of strong MJO and WW events, serves as a natural experiment for studying the possible role of TISV in triggering an ENSO event. We have performed a combined statistical and composite analysis of surface WW events based on the assimilated surface wind and sea level pressure for the period of 1980-1993, the SSM/I wind for the period of 1988-1997, and OLR. Results indicates that extratropical forcing contribute significantly to the evolution of MJO and establishment of WW events over the Pacific warm pool. Following the major WW events, there appeared an eastward extension of equatorial warm SST anomalies from the western Pacific warm pool. Such tropical-extratropical interaction is particularly clear in the winter of 96-97 that leads to the recent warming event in 1997/98. From the above discussion, our current study on this subject is based on the hypothesis that 1) there is an enhanced air-sea interaction associated with TISV and the northerly surges from the extratropics in the initial phase of the 97/98 warming event, and 2) the relevant mechanisms are functions of the basic state of the coupled system (in terms of SST distribution and atmospheric mean circulation) that varies at the interannual and interdecadal time scale. We are analyzing the space-time structure of the northerly surges, their association with air-sea fluxes and upper ocean responses during the period of September 1996 to June 1997. The estimate of daily values of latent heat fluxes is based on NSCAT wind, SST, and ECMWF surface air temperature and SSM/I water vapor data (Chou et al. 1997). To understand the relevant mechanisms, we will analyze the origin of the northerly surges in terms of atmospheric instability associated with the extratropical circulation, and the mutual influence between the tropical heating and the extratropical circulation. In this meeting, we will report the analysis addressing the first part of the above hypothesis.
Hou, Ruixing; Ouyang, Zhu; Han, Daorui; Wilson, Glenn V
2018-03-01
Despite the obvious importance of roots to agro-ecosystem functioning, few studies have attempted to examine the effects of warming on root biomass and distribution, especially under different tillage systems. In this study, we performed a field warming experiment using infrared heaters on winter wheat, in long-term conventional tillage and no-tillage plots, to determine the responses of root biomass and distribution to warming. Soil monoliths were collected from three soil depths (0-10, 10-20, and 20-30 cm). Results showed that root biomass was noticeably increased under both till and no-till tillage systems (12.1% and 12.9% in 2011, and 9.9% and 14.5% in 2013, in the two tillage systems, respectively) in the 0-30 cm depth, associated with a similar increase in shoot biomass. However, warming-induced root biomass increases occurred in the deeper soil layers (i.e., 10-20 and 20-30 cm) in till, while the increase in no-till was focused in the surface layer (0-10 cm). Differences in the warming-induced increases in root biomass between till and no-till were positively correlated with the differences in soil total nitrogen ( R 2 = .863, p < .001) and soil bulk density ( R 2 = .853, p < .001). Knowledge of the distribution of wheat root in response to warming should help manage nutrient application and cycling of soil C-N pools under anticipated climate change conditions.
TOPEX/El Nino Watch - Warm Water Pool is Increasing, Nov. 10, 1997
NASA Technical Reports Server (NTRS)
1997-01-01
This image of the Pacific Ocean was produced using sea surface height measurements taken by the U.S./French TOPEX/Poseidon satellite. The image shows sea surface height relative to normal ocean conditions on Nov. 10, 1997. The volume of extra warm surface water (shown in white) in the core of the El Nino continues to increase, especially in the area between 15 degrees south latitude and 15 degrees north latitude in the eastern Pacific Ocean. The area of low sea level (shown in purple) has decreased somewhat from late October. The white and red areas indicate unusual patterns of heat storage; in the white areas, the sea surface is between 14 centimeters and 32 cm (6 inches to 13 inches) above normal; in the red areas, it is about 10 centimeters (4 inches) above normal. The surface area covered by the warm water mass is about one-and-one-half times the size of the continental United States. The added amount of oceanic warm water near the Americas, with a temperature between 21 to 30 degrees Celsius (70 to 85 degrees Fahrenheit), is about 30 times the volume of water in all the U.S. Great Lakes combined. The green areas indicate normal conditions, while purple (the western Pacific) means at least 18 centimeters (7 inches) below normal sea level.
The El Nino phenomenon is thought to be triggered when the steady westward blowing trade winds weaken and even reverse direction. This change in the winds allows a large mass of warm water (the red and white areas) that is normally located near Australia to move eastward along the equator until it reaches the coast of South America. The displacement of so much warm water affects evaporation, where rain clouds form and, consequently, alters the typical atmospheric jet stream patterns around the world. Using these global data, limited regional measurements from buoys and ships, and a forecasting model of the ocean-atmospheric system, the National Centers for Environmental Prediction (NCEP) of the National Oceanic and Atmospheric Administration (NOAA) has issued an advisory indicating the presence of a strong El Nino condition throughout the winter.For more information, please visit the TOPEX/Poseidon project web page at http://topex-www.jpl.nasa.gov/M.P. Waldrop; K.P. Wickland; R. White; A.A. Berhe; J.W. Harden; V.E. Romanovsky
2010-01-01
The fate of carbon (C) contained within permafrost in boreal forest environments is an important consideration for the current and future carbon cycle as soils warm in northern latitudes. Currently, little is known about the microbiology or chemistry of permafrost soils that may affect its decomposition once soils thaw. We tested the hypothesis that low microbial...
Daniel M. Kashian; William H. Romme; Daniel B. Tinker; Monica G. Turner; Michael G. Ryan
2013-01-01
A warming climate may increase the frequency and severity of stand-replacing wildfires, reducing carbon (C) storage in forest ecosystems. Understanding the variability of postfire C cycling on heterogeneous landscapes is critical for predicting changes in C storage with more frequent disturbance. We measured C pools and fluxes for 77 lodgepole pine (Pinus contorta...
NASA Astrophysics Data System (ADS)
Liang, Dan; Liu, Chuanlian
2018-06-01
Coccolith assemblages in two gravity cores (KX21-2 and KX12-1) from the central Western Pacific Warm Pool (WPWP) have been analyzed with SYRACO. The variations of nutricline and primary productivity ( PP) have been reconstructed based on these assemblages. The results show that the coccolith assemblages were dominated by Florisphaera profunda, Gephyrocapsa and Emiliania huxleyi over the last 380 kyr. Variations of nutricline and primary productivity can be divided into three intervals. Interval I (about 380-300 kyr): PP was high and nutricline was shallow; Interval II (about 300-160 kyr): PP decreased dramatically for a short time after the acme of G. caribbeanica in Mid-Brunhes while nutricline became deeper; Interval III (about 160 kyr-present): PP fluctuated at low levels and nutricline was deep. Variations of each coccolith taxon and PP were highly correlated in the two cores, which means that the geological environment is similar in the two cores. Spectrum analysis is performed for all coccolith taxons and PP, and the 19-kyr cycle is the most prominent. It means that the production of coccolithophores in the WPWP is mainly controlled by precession.
NASA Astrophysics Data System (ADS)
Yi, Shuhua; Wang, Xiaoyun; Qin, Yu; Xiang, Bo; Ding, Yongjian
2014-07-01
Permafrost plays a critical role in soil hydrology. Thus, the degradation of permafrost under warming climate conditions may affect the alpine grassland ecosystem on the Qinghai-Tibetan Plateau. Previous space-for-time studies using plot and basin scales have reached contradictory conclusions. In this study, we applied a process-based ecosystem model (DOS-TEM) with a state-of-the-art permafrost hydrology scheme to examine this issue. Our results showed that 1) the DOS-TEM model could properly simulate the responses of soil thermal and hydrological dynamics and of ecosystem dynamics to climate warming and spatial differences in precipitation; 2) the simulated results were consistent with plot-scale studies showing that warming caused an increase in maximum unfrozen thickness, a reduction in vegetation and soil carbon pools as a whole, and decreases in soil water content, net primary production, and heterotrophic respiration; and 3) the simulated results were also consistent with basin-scale studies showing that the ecosystem responses to warming were different in regions with different combinations of water and energy constraints. Permafrost prevents water from draining into water reservoirs. However, the degradation of permafrost in response to warming is a long-term process that also enhances evapotranspiration. Thus, the degradation of the alpine grassland ecosystem on the Qinghai-Tibetan Plateau (releasing carbon) cannot be mainly attributed to the disappearing waterproofing function of permafrost.
Carbon pool densities and a first estimate of the total carbon pool in the Mongolian forest-steppe.
Dulamsuren, Choimaa; Klinge, Michael; Degener, Jan; Khishigjargal, Mookhor; Chenlemuge, Tselmeg; Bat-Enerel, Banzragch; Yeruult, Yolk; Saindovdon, Davaadorj; Ganbaatar, Kherlenchimeg; Tsogtbaatar, Jamsran; Leuschner, Christoph; Hauck, Markus
2016-02-01
The boreal forest biome represents one of the most important terrestrial carbon stores, which gave reason to intensive research on carbon stock densities. However, such an analysis does not yet exist for the southernmost Eurosiberian boreal forests in Inner Asia. Most of these forests are located in the Mongolian forest-steppe, which is largely dominated by Larix sibirica. We quantified the carbon stock density and total carbon pool of Mongolia's boreal forests and adjacent grasslands and draw conclusions on possible future change. Mean aboveground carbon stock density in the interior of L. sibirica forests was 66 Mg C ha(-1) , which is in the upper range of values reported from boreal forests and probably due to the comparably long growing season. The density of soil organic carbon (SOC, 108 Mg C ha(-1) ) and total belowground carbon density (149 Mg C ha(-1) ) are at the lower end of the range known from boreal forests, which might be the result of higher soil temperatures and a thinner permafrost layer than in the central and northern boreal forest belt. Land use effects are especially relevant at forest edges, where mean carbon stock density was 188 Mg C ha(-1) , compared with 215 Mg C ha(-1) in the forest interior. Carbon stock density in grasslands was 144 Mg C ha(-1) . Analysis of satellite imagery of the highly fragmented forest area in the forest-steppe zone showed that Mongolia's total boreal forest area is currently 73 818 km(2) , and 22% of this area refers to forest edges (defined as the first 30 m from the edge). The total forest carbon pool of Mongolia was estimated at ~ 1.5-1.7 Pg C, a value which is likely to decrease in future with increasing deforestation and fire frequency, and global warming. © 2015 John Wiley & Sons Ltd.
Senior, Lisa A.; Gyves, Matthew C.
2010-01-01
Time-of-travel, dispersion characteristics, and oxygen reaeration coefficients were determined by use of dye and gas tracing for a 2-mile reach of Tacony/Frankford Creek in Philadelphia, southeastern Pennsylvania. The reach frequently has concentrations of dissolved oxygen (DO) below the water-quality standard of 4 milligrams per liter during warm months. Several large combined sewer overflows (CSOs), including one of the largest in Philadelphia (former Wingohocking Creek), discharge to the study reach in this urbanized watershed, affecting water quality and the timing and magnitude of storm peaks. In addition, a dam that commonly results in backwater conditions and reduced natural reaeration is present a few hundred feet from the end of the study reach. Time-of-travel and reaeration data were collected under base-flow conditions in August and September 2009 for three sub-reaches from Roosevelt Boulevard (U.S. Route 1) to Castor Avenue. Determination of traveltimes to the centroid of the dye cloud were needed for calculation of the reaeration coefficients. Results of the dye study in Tacony/Frankford Creek indicate that traveltimes were affected by the presence of man-made structures, such as the large scour hole and pool developed at the outfall of the T14 CSO and the dam, both of which reduce stream velocities. Mean stream velocities during the dye-tracer tests ranged from a maximum of 0.44 to 0.04 foot per second through a large pool. The dispersion efficiency of the stream was determined from relations between normalized unit concentrations to time to peak for use in water-quality modeling. Oxygen reaeration coefficients determined by a constant rate-injection method using propane as the tracer gas were as low as 0.04 unit per hour in a long pool affected by backwater conditions behind a dam. The highest reaeration coefficient was 2.29 units per hour for a steep-gradient reach with multiple winding channels through gravel deposits, just downstream of a large scour pool developed at the outlet of the T14 CSO. Reaeration coefficients determined from the field tracer-gas method were compared to values calculated by two other methods, one that is based on theoretical equations using physical properties of the stream as variables and the other that is based on equations using the timing of measured daily maximum DO concentrations in the stream. Reaeration coefficients from the two alternate methods were most similar to values determined from the field tracer-gas method for the upstream portion of the study reach, characterized by free-flowing riffle and pools. Values of reaeration coefficients determined by the tracer-gas method were 2 to 10 times higher than values determined by 2 alternate methods for most subreaches hydraulically affected by man-made structures. In addition to the tracer gas, propane, the gas analysis also included methane, ethane, and ethene, of which only methane was measured in concentrations above a few micrograms per liter. Methane, thought to occur naturally or because of ongoing processes in the stream, was measured in concentrations ranging from 6.6 to 78 micrograms per liter; the concentrations were greatest in sub-reaches dominated by pools.
Cool pool development. Quarterly technical report No. 1, April-June 1979
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crowther, K.
1979-10-15
The Cool Pool is a passive cooling system consisting of a shaded, evaporating roof pond which thermosiphons cool water into water-filled, metal columns (culvert pipes) located within the building living space. The water in the roof pond is cooled by evaporation, convection and radiation. Because the water in the pool and downcomer is colder and denser than the water in the column a pressure difference is created and the cold water flows from the pool, through the downcomer and into the bottom of the column. The warm column water rises and flows through a connecting pipe into the pool. Itmore » is then cooled and the cycle repeats itself. The system requires no pumps. The water column absorbs heat from the building interior primarily by convection and radiation. Since the column is radiating at a significantly lower temperature than the interior walls it plays a double role in human comfort. Not only does it cool the air by convection but it provides a heat sink to which people can radiate. Since thermal radiation is important to the cooling of people, the cold water column contributes substantially to their feelings of comfort. Research on the Cool Pool system includes the following major tasks: control of biological organisms and debris in the roof pond and water cylinders; development of a heat exchanger; experimental investigation of the system's thermal performance; and development of a predictive computer simulation of the Cool Pool. Progress in these tasks is reported.« less
Tropical Oceanic Precipitation Processes over Warm Pool: 2D and 3D Cloud Resolving Model Simulations
NASA Technical Reports Server (NTRS)
Tao, W.- K.; Johnson, D.
1998-01-01
Rainfall is a key link in the hydrologic cycle as well as the primary heat source for the atmosphere, The vertical distribution of convective latent-heat release modulates the large-scale circulations of the tropics, Furthermore, changes in the moisture distribution at middle and upper levels of the troposphere can affect cloud distributions and cloud liquid water and ice contents. How the incoming solar and outgoing longwave radiation respond to these changes in clouds is a major factor in assessing climate change. Present large-scale weather and climate models simulate cloud processes only crudely, reducing confidence in their predictions on both global and regional scales. One of the most promising methods to test physical parameterizations used in General Circulation Models (GCMS) and climate models is to use field observations together with Cloud Resolving Models (CRMs). The CRMs use more sophisticated and physically realistic parameterizations of cloud microphysical processes, and allow for their complex interactions with solar and infrared radiative transfer processes. The CRMs can reasonably well resolve the evolution, structure, and life cycles of individual clouds and cloud systems, The major objective of this paper is to investigate the latent heating, moisture and momenti,im budgets associated with several convective systems developed during the TOGA COARE IFA - westerly wind burst event (late December, 1992). The tool for this study is the Goddard Cumulus Ensemble (CCE) model which includes a 3-class ice-phase microphysical scheme, The model domain contains 256 x 256 grid points (using 2 km resolution) in the horizontal and 38 grid points (to a depth of 22 km depth) in the vertical, The 2D domain has 1024 grid points. The simulations are performed over a 7 day time period. We will examine (1) the precipitation processes (i.e., condensation/evaporation) and their interaction with warm pool; (2) the heating and moisture budgets in the convective and stratiform regions; (3) the cloud (upward-downward) mass fluxes in convective and stratiform regions; (4) characteristics of clouds (such as cloud size, updraft intensity and cloud lifetime) and the comparison of clouds with Radar observations. Differences and similarities in organization of convection between simulated 2D and 3D cloud systems. Preliminary results indicated that there is major differences between 2D and 3D simulated stratiform rainfall amount and convective updraft and downdraft mass fluxes.
Morgado, Luis N; Semenova, Tatiana A; Welker, Jeffrey M; Walker, Marilyn D; Smets, Erik; Geml, József
2015-02-01
Arctic regions are experiencing the greatest rates of climate warming on the planet and marked changes have already been observed in terrestrial arctic ecosystems. While most studies have focused on the effects of warming on arctic vegetation and nutrient cycling, little is known about how belowground communities, such as fungi root-associated, respond to warming. Here, we investigate how long-term summer warming affects ectomycorrhizal (ECM) fungal communities. We used Ion Torrent sequencing of the rDNA internal transcribed spacer 2 (ITS2) region to compare ECM fungal communities in plots with and without long-term experimental warming in both dry and moist tussock tundra. Cortinarius was the most OTU-rich genus in the moist tundra, while the most diverse genus in the dry tundra was Tomentella. On the diversity level, in the moist tundra we found significant differences in community composition, and a sharp decrease in the richness of ECM fungi due to warming. On the functional level, our results indicate that warming induces shifts in the extramatrical properties of the communities, where the species with medium-distance exploration type seem to be favored with potential implications for the mobilization of different nutrient pools in the soil. In the dry tundra, neither community richness nor community composition was significantly altered by warming, similar to what had been observed in ECM host plants. There was, however, a marginally significant increase in OTUs identified as ECM fungi with the medium-distance exploration type in the warmed plots. Linking our findings of decreasing richness with previous results of increasing ECM fungal biomass suggests that certain ECM species are favored by warming and may become more abundant, while many other species may go locally extinct due to direct or indirect effects of warming. Such compositional shifts in the community might affect nutrient cycling and soil organic C storage. © 2014 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.
Morgado, Luis N; Semenova, Tatiana A; Welker, Jeffrey M; Walker, Marilyn D; Smets, Erik; Geml, József
2015-01-01
Arctic regions are experiencing the greatest rates of climate warming on the planet and marked changes have already been observed in terrestrial arctic ecosystems. While most studies have focused on the effects of warming on arctic vegetation and nutrient cycling, little is known about how belowground communities, such as fungi root-associated, respond to warming. Here, we investigate how long-term summer warming affects ectomycorrhizal (ECM) fungal communities. We used Ion Torrent sequencing of the rDNA internal transcribed spacer 2 (ITS2) region to compare ECM fungal communities in plots with and without long-term experimental warming in both dry and moist tussock tundra. Cortinarius was the most OTU-rich genus in the moist tundra, while the most diverse genus in the dry tundra was Tomentella. On the diversity level, in the moist tundra we found significant differences in community composition, and a sharp decrease in the richness of ECM fungi due to warming. On the functional level, our results indicate that warming induces shifts in the extramatrical properties of the communities, where the species with medium-distance exploration type seem to be favored with potential implications for the mobilization of different nutrient pools in the soil. In the dry tundra, neither community richness nor community composition was significantly altered by warming, similar to what had been observed in ECM host plants. There was, however, a marginally significant increase in OTUs identified as ECM fungi with the medium-distance exploration type in the warmed plots. Linking our findings of decreasing richness with previous results of increasing ECM fungal biomass suggests that certain ECM species are favored by warming and may become more abundant, while many other species may go locally extinct due to direct or indirect effects of warming. Such compositional shifts in the community might affect nutrient cycling and soil organic C storage. PMID:25156129
Thompson, Patrick L; Shurin, Jonathan B
2012-01-01
1. Climate change and other human-driven environmental perturbations are causing reductions in biodiversity and impacting the functioning of ecosystems on a global scale. Metacommunity theory suggests that ecosystem connectivity may reduce the magnitude of these impacts if the regional species pool contains functionally redundant species that differ in their environmental tolerances. Dispersal may increase the resistance of local ecosystems to environmental stress by providing regional species with traits adapted to novel conditions. 2. We tested this theory by subjecting freshwater zooplankton communities in mesocosms that were either connected to or isolated from the larger regional species pool to a factorial manipulation of experimental warming and increased salinity. 3. Compensation by regional taxa depended on the source of stress. Warming tolerant regional taxa partially compensated for reductions in heat sensitive local taxa but similar compensation did not occur under increased salinity. 4. Dispersal-mediated species invasions dampened the effects of warming on summer net ecosystem productivity. However, this buffering effect did not occur in the fall or for periphyton growth, the only other ecosystem function affected by the stress treatments. 5. The results indicate that regional biodiversity can provide insurance in a dynamic environment but that the buffering capacity is limited to some ecosystem processes and sources of stress. Maintaining regional biodiversity and habitat connectivity may therefore provide some limited insurance for local ecosystems in changing environments, but is unable to impart resistance against all sources of environmental stress. © 2011 The Authors. Journal of Animal Ecology © 2011 British Ecological Society.
O'Donnell, Jonathan A.; Harden, Jennifer W.; Manies, Kristen L.; Jorgenson, M. Torre; Kanevskiy, Mikhail; Xu, Xiaomei
2013-01-01
Soils of the Northern Circumpolar Permafrost region harbor 1,672 petagrams (Pg) (1 Pg = 1,000,000,000 kilograms) of organic carbon (OC), nearly 50 percent of the global belowground OC pool (Tarnocai and others, 2009). Of that soil OC, nearly 88 percent is presently stored in perennially frozen ground. Recent climate warming at northern latitudes has resulted in warming and thawing of permafrost in many regions (Osterkamp, 2007), which might mobilize OC stocks from associated soil reservoirs via decomposition, leaching, or erosion. Warming also has increased the magnitude and severity of wildfires in the boreal region (Turetsky and others, 2011), which might exacerbate rates of permafrost degradation relative to warming alone. Given the size and vulnerability of the soil OC pool in permafrost soils, permafrost thaw will likely function as a strong positive feedback to the climate system (Koven and others, 2011; Schaefer and others, 2011). In this report, we report soil OC inventories from two upland fire chronosequences located near Hess Creek and Tok in Interior Alaska. We sampled organic and mineral soils in the top 2 meters (m) across a range of stand ages to evaluate the effects of wildfire and permafrost thaw on soil C dynamics. These data were used to parameterize a simple process-based fire-permafrost-carbon model, which is described in detail by O’Donnell and others (2011a, b). Model simulations examine long-term changes in soil OC storage in response to fire, permafrost thaw, and climate change. These data also have been used in other papers, including Harden and others (2012), which examines C recovery post-fire, and Johnson and others (2011), which synthesizes data within the Alaska Soil Carbon Database. Findings from these studies highlight the importance of climate and disturbance (wildfire, permafrost thaw) on soil C storage, and loss of soil C from high-latitude ecosystems.
NASA Astrophysics Data System (ADS)
Stapel, Janina G.; Schwamborn, Georg; Schirrmeister, Lutz; Horsfield, Brian; Mangelsdorf, Kai
2018-04-01
In this study the organic matter (OM) in several permafrost cores from Bol'shoy Lyakhovsky Island in NE Siberia was investigated. In the context of the observed global warming the aim was to evaluate the potential of freeze-locked OM from different depositional ages to act as a substrate provider for microbial production of greenhouse gases from thawing permafrost. To assess this potential, the concentrations of free and bound acetate, which form an appropriate substrate for methanogenesis, were determined. The largest free-acetate (in pore water) and bound-acetate (organic-matrix-linked) substrate pools were present in interstadial marine isotope stage (MIS) 3 and stadial MIS 4 Yedoma permafrost deposits. In contrast, deposits from the last interglacial MIS 5e (Eemian) contained only a small pool of substrates. The Holocene (MIS 1) deposits revealed a significant bound-acetate pool, representing a future substrate potential upon release during OM degradation. Additionally, pyrolysis experiments on the OM allocated an increased aliphatic character to the MIS 3 and 4 Late Pleistocene deposits, which might indicate less decomposed and presumably more easily degradable OM. Biomarkers for past microbial communities, including those for methanogenic archaea, also showed the highest abundance during MIS 3 and 4, which indicated OM-stimulated microbial degradation and presumably greenhouse gas production during time of deposition. On a broader perspective, Arctic warming will increase and deepen permafrost thaw and favor substrate availability from older freeze-locked permafrost deposits. Thus, the Yedoma deposits especially showed a high potential for providing substrates relevant for microbial greenhouse gas production.
An increase in aerosol burden due to the land-sea warming contrast
NASA Astrophysics Data System (ADS)
Hassan, T.; Allen, R.; Randles, C. A.
2017-12-01
Climate models simulate an increase in most aerosol species in response to warming, particularly over the tropics and Northern Hemisphere midlatitudes. This increase in aerosol burden is related to a decrease in wet removal, primarily due to reduced large-scale precipitation. Here, we show that the increase in aerosol burden, and the decrease in large-scale precipitation, is related to a robust climate change phenomenon—the land/sea warming contrast. Idealized simulations with two state of the art climate models, the National Center for Atmospheric Research Community Atmosphere Model version 5 (NCAR CAM5) and the Geophysical Fluid Dynamics Laboratory Atmospheric Model 3 (GFDL AM3), show that muting the land-sea warming contrast negates the increase in aerosol burden under warming. This is related to smaller decreases in near-surface relative humidity over land, and in turn, smaller decreases in large-scale precipitation over land—especially in the NH midlatitudes. Furthermore, additional idealized simulations with an enhanced land/sea warming contrast lead to the opposite result—larger decreases in relative humidity over land, larger decreases in large-scale precipitation, and larger increases in aerosol burden. Our results, which relate the increase in aerosol burden to the robust climate projection of enhanced land warming, adds confidence that a warmer world will be associated with a larger aerosol burden.
Biotic responses buffer warming-induced soil organic carbon loss in Arctic tundra.
Liang, Junyi; Xia, Jiangyang; Shi, Zheng; Jiang, Lifen; Ma, Shuang; Lu, Xingjie; Mauritz, Marguerite; Natali, Susan M; Pegoraro, Elaine; Penton, C Ryan; Plaza, César; Salmon, Verity G; Celis, Gerardo; Cole, James R; Konstantinidis, Konstantinos T; Tiedje, James M; Zhou, Jizhong; Schuur, Edward A G; Luo, Yiqi
2018-05-26
Climate warming can result in both abiotic (e.g., permafrost thaw) and biotic (e.g., microbial functional genes) changes in Arctic tundra. Recent research has incorporated dynamic permafrost thaw in Earth system models (ESMs) and indicates that Arctic tundra could be a significant future carbon (C) source due to the enhanced decomposition of thawed deep soil C. However, warming-induced biotic changes may influence biologically related parameters and the consequent projections in ESMs. How model parameters associated with biotic responses will change under warming and to what extent these changes affect projected C budgets have not been carefully examined. In this study, we synthesized six data sets over five years from a soil warming experiment at the Eight Mile Lake, Alaska, into the Terrestrial ECOsystem (TECO) model with a probabilistic inversion approach. The TECO model used multiple soil layers to track dynamics of thawed soil under different treatments. Our results show that warming increased light use efficiency of vegetation photosynthesis but decreased baseline (i.e., environment-corrected) turnover rates of SOC in both the fast and slow pools in comparison with those under control. Moreover, the parameter changes generally amplified over time, suggesting processes of gradual physiological acclimation and functional gene shifts of both plants and microbes. The TECO model predicted that field warming from 2009 to 2013 resulted in cumulative C losses of 224 or 87 g m -2 , respectively, without or with changes in those parameters. Thus, warming-induced parameter changes reduced predicted soil C loss by 61%. Our study suggests that it is critical to incorporate biotic changes in ESMs to improve the model performance in predicting C dynamics in permafrost regions. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Is ENSO part of an Indo-Pacific phenomenon?
NASA Astrophysics Data System (ADS)
Wieners, Claudia; de Ruijter, Wilhelmus; Dijkstra, Henk
2015-04-01
The Seychelles Dome (SD) - a thermocline ridge in the West Indian Ocean - is a dynamically active region with a strong Sea Surface Temperature (SST)-atmosphere coupling and located at the origin of the Madden-Julian Oscillation. Analysis of observational data suggests that it might influence El Niño occurrence and evolution at a lead time of 1.5 years. We find a negative correlation between SD SST in boreal summer and Nino3.4 SST about 18 months later. Such a correlation might be a mere side-effect of the fact that ENSO has influence on the SD - El Niño (La Niña) is followed by a warm (cool) SD after about 3-6 months - and of the cyclicity of ENSO with a preferred period of about 4 years. However, we find the correlation to be significantly stronger than one would expect in that case, implying that the SD contains information linearly independent from ENSO. A Multi-channel Singular Spectrum analysis (MSSA) on tropical SST, zonal wind and zonal wind variability reveals three significant oscillations. All of these show ENSO-like behaviour in the Pacific Ocean, with East Pacific SST anomalies being followed by anomalies of the same sign in the SD region after 3-5 months. Wind patterns propagate from the Indian to the Pacific Ocean. These findings suggest that the Indian and Pacific Oceans act as a unified system. The slower two oscillations, with periods around 4 years, have the strongest ENSO signal in the East Pacific (like a `Cold Tongue El Niño'). Compared to them, the fastest oscillation, with a period of 2.5 years, has a stronger signal in the Central Pacific (more resembling a `Warm Pool El Niño'). Because of the short period of the fastest mode, the time elapsed between an SD anomaly and the following ENSO anomaly (of opposite sign) is only 11 months - much less than the 18 months lag at which the correlation between SD and ENSO is minimal. This suggests that while the Cold Tongue El Niño's tend to be preceded by a cool SD event at a lead time suitable for SD-ENSO influence, Warm Pool El Niño's are not. From the MSSA and a composite analysis we find evidence for two (possibly interrelated) physical mechanisms by which the SD might influence ENSO. In the first one, there is subsidence above the cool SD, leading to westerly winds in the Indian Ocean and inducing enhanced convection above Indonesia. The resulting inflow from the West Pacific (an easterly wind) favours the creation of a large Pacific Warm Water Volume that can be released into the East Pacific in boreal spring/summer following the cool SD event. In the second mechanism, the cool SD favours a strong zonal wind variability above the West Pacific on intraseasonal time scales, part of which can be attributed to SD influence on the Madden-Julian oscillation. This intraseasonal variability (westerly wind bursts...) can trigger warm Kelvin waves that might initiate El Niño.
Benjamin W. Abbott,; Jeremy B. Jones,; Edward A.G. Schuur,; F.S. Chapin, III; Bowden, William B.; M. Syndonia Bret-Harte,; Howard E. Epstein,; Michael D. Flannigan,; Tamara K. Harms,; Teresa N. Hollingsworth,; Mack, Michelle C.; McGuire, A. David; Susan M. Natali,; Adrian V. Rocha,; Tank, Suzanne E.; Merrit R. Turetsky,; Jorien E. Vonk,; Wickland, Kimberly P.; Aiken, George R.
2016-01-01
As the permafrost region warms, its large organic carbon pool will be increasingly vulnerable to decomposition, combustion, and hydrologic export. Models predict that some portion of this release will be offset by increased production of Arctic and boreal biomass; however, the lack of robust estimates of net carbon balance increases the risk of further overshooting international emissions targets. Precise empirical or model-based assessments of the critical factors driving carbon balance are unlikely in the near future, so to address this gap, we present estimates from 98 permafrost-region experts of the response of biomass, wildfire, and hydrologic carbon flux to climate change. Results suggest that contrary to model projections, total permafrost-region biomass could decrease due to water stress and disturbance, factors that are not adequately incorporated in current models. Assessments indicate that end-of-the-century organic carbon release from Arctic rivers and collapsing coastlines could increase by 75% while carbon loss via burning could increase four-fold. Experts identified water balance, shifts in vegetation community, and permafrost degradation as the key sources of uncertainty in predicting future system response. In combination with previous findings, results suggest the permafrost region will become a carbon source to the atmosphere by 2100 regardless of warming scenario but that 65%–85% of permafrost carbon release can still be avoided if human emissions are actively reduced.
Funk, Christopher C.; Hoell, Andrew; Shukla, Shraddhanand; Blade, Ileana; Liebmann, Brant; Roberts, Jason B.; Robertson, Franklin R.
2014-01-01
In southern Ethiopia, Eastern Kenya, and southern Somalia poor boreal spring rains in 1999, 2000, 2004, 2007, 2008, 2009 and 2011 contributed to severe food insecurity and high levels of malnutrition. Predicting rainfall deficits in this region on seasonal and decadal time frames can help decision makers support disaster risk reduction while guiding climate-smart adaptation and agricultural development. Building on recent research that links more frequent droughts to a stronger Walker Circulation, warming in the Indo-Pacific warm pool, and an increased western Pacific sea surface temperature (SST) gradient, we explore the dominant modes of East African rainfall variability, links between these modes and sea surface temperatures, and a simple index-based monitoring-prediction system suitable for drought early warning.
Bret C. Harvey
1998-01-01
Abstract - Over 4 months and about 1 year, coastal cutthroat trout (Oncorhynchus clarki clarki) ≥age-1 in Little Jones Creek, California, remained at similar rates in pools with and without large woody debris. This result was based on attempts in July and November 1995 to collect and tag all fish in 22 pools and three collections of fish from the same pools...
Pool spacing in forest channels
David R. Montgomery; John M. Buffington; Richard D. Smith; Kevin M. Schmidt; George Pess
1995-01-01
Field surveys of stream channels in forested mountain drainage basins in southeast Alaska and Washington reveal that pool spacing depends on large woody debris (LWD) loading and channel type, slope, and width. Mean pool spacing in pool-riffle, plane-bed, and forced pool-riffle channels systematically decreases from greater than 13 channel widths per pool to less than 1...
He, Y.; Zhuang, Q.; Harden, Jennifer W.; McGuire, A. David; Fan, Z.; Liu, Y.; Wickland, Kimberly P.
2014-01-01
The large amount of soil carbon in boreal forest ecosystems has the potential to influence the climate system if released in large quantities in response to warming. Thus, there is a need to better understand and represent the environmental sensitivity of soil carbon decomposition. Most soil carbon decomposition models rely on empirical relationships omitting key biogeochemical mechanisms and their response to climate change is highly uncertain. In this study, we developed a multi-layer microbial explicit soil decomposition model framework for boreal forest ecosystems. A thorough sensitivity analysis was conducted to identify dominating biogeochemical processes and to highlight structural limitations. Our results indicate that substrate availability (limited by soil water diffusion and substrate quality) is likely to be a major constraint on soil decomposition in the fibrous horizon (40–60% of soil organic carbon (SOC) pool size variation), while energy limited microbial activity in the amorphous horizon exerts a predominant control on soil decomposition (>70% of SOC pool size variation). Elevated temperature alleviated the energy constraint of microbial activity most notably in amorphous soils, whereas moisture only exhibited a marginal effect on dissolved substrate supply and microbial activity. Our study highlights the different decomposition properties and underlying mechanisms of soil dynamics between fibrous and amorphous soil horizons. Soil decomposition models should consider explicitly representing different boreal soil horizons and soil–microbial interactions to better characterize biogeochemical processes in boreal forest ecosystems. A more comprehensive representation of critical biogeochemical mechanisms of soil moisture effects may be required to improve the performance of the soil model we analyzed in this study.
Glacial changes in warm pool climate dominated by shelf exposure and ice sheet albedo
NASA Astrophysics Data System (ADS)
Di Nezio, P. N.; Tierney, J. E.; Otto-Bliesner, B. L.; Timmermann, A.; Bhattacharya, T.; Brady, E. C.; Rosenbloom, N. A.
2017-12-01
The mechanisms driving glacial-interglacial changes in the climate of the Indo-Pacific warm pool (IPWP) are unclear. We addressed this issue combining model simulations and paleoclimate reconstructions of the Last Glacial Maximum (LGM). Two drivers - the exposure of tropical shelves due to lower sea level and a monsoonal response to ice sheet albedo - explain the proxy-inferred patterns of hydroclimate change. Shelf exposure influences IPWP climate by weakening the ascending branch of the Walker circulation. This response is amplified by coupled interactions akin to the Bjerknes feedback involving a stronger sea-surface temperature (SST) gradient along the equatorial Indian Ocean (IO). Ice sheet albedo enhances the import of cold, dry air into the tropics, weakening the Afro-Asian monsoon system. This "ventilation" mechanism alters temperature contrasts between the Arabian Sea and surrounding land leading to further monsoon weakening. Additional simulations show that the altered SST patterns associated with these responses are essential for explaining the proxy-inferred changes. Together our results show that ice sheets are a first order driver of tropical climate on glacial-interglacial timescales. While glacial climates are not a straightforward analogue for the future, our finding of an active Bjerknes feedback deserves further attention in the context of future climate projections.
Carbon cycling in high-latitude ecosystems
NASA Technical Reports Server (NTRS)
Townsend, Alan; Frolking, Stephen; Holland, Elizabeth
1992-01-01
The carbon-rich soils and peatlands of high-latitude ecosystems could substantially influence atmospheric concentrations of CO2 and CH4 in a changing climate. Currently, cold, often waterlogged conditions retard decomposition, and release of carbon back to the atmosphere may be further slowed by physical protection of organic matter in permafrost. As a result, many northern ecosystems accumulate carbon over time (Billings et al., 1982; Poole and Miller, 1982), and although such rates of accumulation are low, thousands of years of development have left Arctic ecosystems with an extremely high soil carbon content; Schlesinger's (1984) average value of 20.4 kg C/m(sup 2) leads to a global estimate of 163 x 10(exp 15) g C. All GCM simulations of a doubled CO2 climate predict the greatest warming to occur in the polar regions (Dickinson, 1986; Mitchell, 1989). Given the extensive northern carbon pools and the strong sensitivity of decomposition processes to temperature, even a slight warming of the soil could dramatically alter the carbon balance of Arctic ecosystems. If warming accelerates rates of decomposition more than rates of primary production, a sizeable additional accumulation of CO2 in the atmosphere could occur. Furthermore, CH4 produced in anaerobic soils and peatlands of the Arctic already composes a good percentage of the global efflux (Cicerone and Oremlund, 1988); if northern soils become warmer and wetter as a whole, CH4 emissions could dramatically rise. A robust understanding of the primary controls of carbon fluxes in Arctic ecosystems is critical. As a framework for a systematic examination of these controls, we discussed a conceptual model of regional-scale Arctic carbon turnover, including CH4 production, and based upon the Century soil organic matter model.
Hydrological Cycle in the Western Equatorial Warm Pool over the Past 220 k years
NASA Astrophysics Data System (ADS)
Tachikawa, K.; Cartapanis, O.; Vidal, L.; Beaufort, L.; Bard, E.
2008-12-01
The Western Pacific Warm Pool is a major source of heat and moisture to extra-tropical regions, and its condition could have great impact on global climate response to various forcing factors. We reconstructed the rainfall pattern over Papua New Guinea (PNG) for the past 220 kyr using terrigenous elemental contents (Ti, Fe, K and Si) and calcareous productivity (Ca) recorded in a marine sediment core MD05-2920 (2°51.48S, 144°32.04E) from 100 km off the Sepik River mouth in Northern PNG. The core chronostratigraphy is established by 14C dating and benthic foraminiferal oxygen isotopes. The Sepik and Ramu river system forms one of the highest sediment discharge zones in the world because of high rainfall rates, warm and humid climate, steep topography and erodible volcanic rocks in the draining basin. At present, the rainfall over this area is under the influence of both Asia-Australian monsoon and El Niño Southern Oscillation (ENSO). The results obtained by an XRF core scanner indicate that for the whole record major sediment components are of terrigenous river-born nature and biogenic CaCO3. Spectral analysis reveals that dominant peaks for Ti are precession and obliquity periods whereas Ca variability is rather dominated by obliquity. The wet periods appear during maximum local insolation, which is in phase with minimum East Asian summer monsoon strength recorded by Chinese speleothems. Modeled past ENSO activity cannot explain the reconstructed rainfall and productivity patterns. Taken together, the fresh water cycle over New Guinea is better explained by latitudinal shifts of the Intertropical Convergence Zone rather than ENSO-type variability on orbital time scales. The variability of calcareous productivity is likely related to general changes in nutricline depth of the tropical Pacific band.
Does the projected pathway to global warming targets matter?
NASA Astrophysics Data System (ADS)
Bärring, Lars; Strandberg, Gustav
2018-02-01
Since the ‘Paris agreement’ in 2015 there has been much focus on what a +1.5 °C or +2 °C warmer world would look like. Since the focus lies on policy relevant global warming targets, or specific warming levels (SWLs), rather than a specific point in time, projections are pooled together to form SWL ensembles based on the target temperature rather than emission scenario. This study uses an ensemble of CMIP5 global model projections to analyse how well SWL ensembles represent the stabilized climate of global warming targets. The results show that the SWL ensembles exhibit significant trends that reflect the transient nature of the RCP scenarios. These trends have clear effect on the timing and clustering of monthly cold and hot extremes, even though the effect on the temperature of the extreme months is less visible. In many regions there is a link between choice of RCP scenario used in the SWL ensemble and climate change signal in the highest monthly temperatures. In other regions there is no such clear-cut link. From this we conclude that comprehensive analyses of what prospects the different global warming targets bring about will require stabilization scenarios. Awaiting such targeted scenarios we suggest that prudent use of SWL scenarios, taking their characteristics and limitations into account, may serve as reasonable proxies in many situations.
Selmants, Paul C; Litton, Creighton M; Giardina, Christian P; Asner, Gregory P
2014-09-01
Theory and experiment agree that climate warming will increase carbon fluxes between terrestrial ecosystems and the atmosphere. The effect of this increased exchange on terrestrial carbon storage is less predictable, with important implications for potential feedbacks to the climate system. We quantified how increased mean annual temperature (MAT) affects ecosystem carbon storage in above- and belowground live biomass and detritus across a well-constrained 5.2 °C MAT gradient in tropical montane wet forests on the Island of Hawaii. This gradient does not systematically vary in biotic or abiotic factors other than MAT (i.e. dominant vegetation, substrate type and age, soil water balance, and disturbance history), allowing us to isolate the impact of MAT on ecosystem carbon storage. Live biomass carbon did not vary predictably as a function of MAT, while detrital carbon declined by ~14 Mg of carbon ha(-1) for each 1 °C rise in temperature - a trend driven entirely by coarse woody debris and litter. The largest detrital pool, soil organic carbon, was the most stable with MAT and averaged 48% of total ecosystem carbon across the MAT gradient. Total ecosystem carbon did not vary significantly with MAT, and the distribution of ecosystem carbon between live biomass and detritus remained relatively constant across the MAT gradient at ~44% and ~56%, respectively. These findings suggest that in the absence of alterations to precipitation or disturbance regimes, the size and distribution of carbon pools in tropical montane wet forests will be less sensitive to rising MAT than predicted by ecosystem models. This article also provides needed detail on how individual carbon pools and ecosystem-level carbon storage will respond to future warming. © 2014 John Wiley & Sons Ltd.
Temperature Responses of Soil Organic Matter Components With Varying Recalcitrance
NASA Astrophysics Data System (ADS)
Simpson, M. J.; Feng, X.
2007-12-01
The response of soil organic matter (SOM) to global warming remains unclear partly due to the chemical heterogeneity of SOM composition. In this study, the decomposition of SOM from two grassland soils was investigated in a one-year laboratory incubation at six different temperatures. SOM was separated into solvent- extractable compounds, suberin- and cutin-derived compounds, and lignin monomers by solvent extraction, base hydrolysis, and CuO oxidation, respectively. These SOM components had distinct chemical structures and recalcitrance, and their decomposition was fitted by a two-pool exponential decay model. The stability of SOM components was assessed using geochemical parameters and kinetic parameters derived from model fitting. Lignin monomers exhibited much lower decay rates than solvent-extractable compounds and a relatively low percentage of lignin monomers partitioned into the labile SOM pool, which confirmed the generally accepted recalcitrance of lignin compounds. Suberin- and cutin-derived compounds had a poor fitting for the exponential decay model, and their recalcitrance was shown by the geochemical degradation parameter which stabilized during the incubation. The aliphatic components of suberin degraded faster than cutin-derived compounds, suggesting that cutin-derived compounds in the soil may be at a higher stage of degradation than suberin- derived compounds. The temperature sensitivity of decomposition, expressed as Q10, was derived from the relationship between temperature and SOM decay rates. SOM components exhibited varying temperature responses and the decomposition of the recalcitrant lignin monomers had much higher Q10 values than soil respiration or the solvent-extractable compounds decomposition. Our study shows that the decomposition of recalcitrant SOM is highly sensitive to temperature, more so than bulk soil mineralization. This observation suggests a potential acceleration in the degradation of the recalcitrant SOM pool with global warming.
Large impacts of climatic warming on growth of boreal forests since 1960.
Kauppi, Pekka E; Posch, Maximilian; Pirinen, Pentti
2014-01-01
Boreal forests are sensitive to climatic warming, because low temperatures hold back ecosystem processes, such as the mobilization of nitrogen in soils. A greening of the boreal landscape has been observed using remote sensing, and the seasonal amplitude of CO2 in the northern hemisphere has increased, indicating warming effects on ecosystem productivity. However, field observations on responses of ecosystem productivity have been lacking on a large sub-biome scale. Here we report a significant increase in the annual growth of boreal forests in Finland in response to climatic warming, especially since 1990. This finding is obtained by linking meteorological records and forest inventory data on an area between 60° and 70° northern latitude. An additional increase in growth has occurred in response to changes in other drivers, such as forest management, nitrogen deposition and/or CO2 concentration. A similar warming impact can be expected in the entire boreal zone, where warming takes place. Given the large size of the boreal biome - more than ten million km2- important climate feedbacks are at stake, such as the future carbon balance, transpiration and albedo.
Circumpolar dynamics of a marine top-predator track ocean warming rates.
Descamps, Sébastien; Anker-Nilssen, Tycho; Barrett, Robert T; Irons, David B; Merkel, Flemming; Robertson, Gregory J; Yoccoz, Nigel G; Mallory, Mark L; Montevecchi, William A; Boertmann, David; Artukhin, Yuri; Christensen-Dalsgaard, Signe; Erikstad, Kjell-Einar; Gilchrist, H Grant; Labansen, Aili L; Lorentsen, Svein-Håkon; Mosbech, Anders; Olsen, Bergur; Petersen, Aevar; Rail, Jean-Francois; Renner, Heather M; Strøm, Hallvard; Systad, Geir H; Wilhelm, Sabina I; Zelenskaya, Larisa
2017-09-01
Global warming is a nonlinear process, and temperature may increase in a stepwise manner. Periods of abrupt warming can trigger persistent changes in the state of ecosystems, also called regime shifts. The responses of organisms to abrupt warming and associated regime shifts can be unlike responses to periods of slow or moderate change. Understanding of nonlinearity in the biological responses to climate warming is needed to assess the consequences of ongoing climate change. Here, we demonstrate that the population dynamics of a long-lived, wide-ranging marine predator are associated with changes in the rate of ocean warming. Data from 556 colonies of black-legged kittiwakes Rissa tridactyla distributed throughout its breeding range revealed that an abrupt warming of sea-surface temperature in the 1990s coincided with steep kittiwake population decline. Periods of moderate warming in sea temperatures did not seem to affect kittiwake dynamics. The rapid warming observed in the 1990s may have driven large-scale, circumpolar marine ecosystem shifts that strongly affected kittiwakes through bottom-up effects. Our study sheds light on the nonlinear response of a circumpolar seabird to large-scale changes in oceanographic conditions and indicates that marine top predators may be more sensitive to the rate of ocean warming rather than to warming itself. © 2017 John Wiley & Sons Ltd.
David George Lonzarich; Melvin L. Warren; Mary Ruth Elger Lonzrich
1998-01-01
The authors removed fish from pools in two Arkansas streams to determine recolonization rates and the effects of isolation (i.e., riffle length, riffle depth, distance to large source pools, and location), pool area, and assemblage size on recovery. To determine pool-specific recovery rates, the authors repeatedly snorkeled 12 pools over a 40-day recovery period....
Galbraith, Andy; Willmott, Aimee
2018-03-01
Effective warm-ups are attributed to several temperature-related mechanisms. Strategies during the transition phase, preceding swimming competition, have been shown to prolong temperature-related warm-up effects. The purpose of this study was to evaluate the effects of two different clothing strategies during the transition phase, on subsequent 100-m maximal swimming performance. Nine competitive swimmers (3 female, 21 ± 3 yrs; 6 male 20 ± 2 yrs, mean performance standard 702 FINA Points, mean 100-m seasons best time 61.54 s) completed their own 30-min individual pool warm-up, followed by 7-min changing time and a 30-min transition phase, straight into a 100-m maximal effort time-trial. During the transition phase, swimmers remained seated, either wearing warm or limited clothing. Swimmers returned 1 week later, where clothing conditions were alternated. Post-transition phase skin and core temperature remained higher in the warm clothing condition compared to the limited clothing condition (Mean Core: 36.90 ± 0.17°C, 36.61 ± 0.15°C, P < .01; Mean Skin: 33.49 ± 0.59°C, 31.94 ± 0.59°C, P < .01). One hundred-metre finish times were 0.6% faster in the warm clothing condition compared to the limited clothing condition (62.63 ± 7.69 s, 63.00 ± 7.75 s, P < .01). Wearing warm clothing during a 30-min transition phase improved swimming performance by 0.6%, compared to limited clothing.
Utilization of ancient permafrost carbon in headwaters of Arctic fluvial networks.
Mann, Paul J; Eglinton, Timothy I; McIntyre, Cameron P; Zimov, Nikita; Davydova, Anna; Vonk, Jorien E; Holmes, Robert M; Spencer, Robert G M
2015-07-24
Northern high-latitude rivers are major conduits of carbon from land to coastal seas and the Arctic Ocean. Arctic warming is promoting terrestrial permafrost thaw and shifting hydrologic flowpaths, leading to fluvial mobilization of ancient carbon stores. Here we describe (14)C and (13)C characteristics of dissolved organic carbon from fluvial networks across the Kolyma River Basin (Siberia), and isotopic changes during bioincubation experiments. Microbial communities utilized ancient carbon (11,300 to >50,000 (14)C years) in permafrost thaw waters and millennial-aged carbon (up to 10,000 (14)C years) across headwater streams. Microbial demand was supported by progressively younger ((14)C-enriched) carbon downstream through the network, with predominantly modern carbon pools subsidizing microorganisms in large rivers and main-stem waters. Permafrost acts as a significant and preferentially degradable source of bioavailable carbon in Arctic freshwaters, which is likely to increase as permafrost thaw intensifies causing positive climate feedbacks in response to on-going climate change.
Zinke, J.; Hoell, A.; Lough, J. M.; Feng, M.; Kuret, A. J.; Clarke, H.; Ricca, V.; Rankenburg, K.; McCulloch, M. T.
2015-01-01
Increasing intensity of marine heatwaves has caused widespread mass coral bleaching events, threatening the integrity and functional diversity of coral reefs. Here we demonstrate the role of inter-ocean coupling in amplifying thermal stress on reefs in the poorly studied southeast Indian Ocean (SEIO), through a robust 215-year (1795–2010) geochemical coral proxy sea surface temperature (SST) record. We show that marine heatwaves affecting the SEIO are linked to the behaviour of the Western Pacific Warm Pool on decadal to centennial timescales, and are most pronounced when an anomalously strong zonal SST gradient between the western and central Pacific co-occurs with strong La Niña's. This SST gradient forces large-scale changes in heat flux that exacerbate SEIO heatwaves. Better understanding of the zonal SST gradient in the Western Pacific is expected to improve projections of the frequency of extreme SEIO heatwaves and their ecological impacts on the important coral reef ecosystems off Western Australia. PMID:26493738
Zinke, J; Hoell, A; Lough, J M; Feng, M; Kuret, A J; Clarke, H; Ricca, V; Rankenburg, K; McCulloch, M T
2015-10-23
Increasing intensity of marine heatwaves has caused widespread mass coral bleaching events, threatening the integrity and functional diversity of coral reefs. Here we demonstrate the role of inter-ocean coupling in amplifying thermal stress on reefs in the poorly studied southeast Indian Ocean (SEIO), through a robust 215-year (1795-2010) geochemical coral proxy sea surface temperature (SST) record. We show that marine heatwaves affecting the SEIO are linked to the behaviour of the Western Pacific Warm Pool on decadal to centennial timescales, and are most pronounced when an anomalously strong zonal SST gradient between the western and central Pacific co-occurs with strong La Niña's. This SST gradient forces large-scale changes in heat flux that exacerbate SEIO heatwaves. Better understanding of the zonal SST gradient in the Western Pacific is expected to improve projections of the frequency of extreme SEIO heatwaves and their ecological impacts on the important coral reef ecosystems off Western Australia.
Fire control method and analytical model for large liquid hydrocarbon pool fires
NASA Technical Reports Server (NTRS)
Fenton, D. L.
1986-01-01
The dominate parameter governing the behavior of a liquid hydrocarbon (JP-5) pool fire is wind speed. The most effective method of controlling wind speed in the vicinity of a large circular (10 m dia.) pool fire is a set of concentric screens located outside the perimeter. Because detailed behavior of the pool fire structure within one pool fire diameter is unknown, an analytical model supported by careful experiments is under development. As a first step toward this development, a regional pool fire model was constructed for the no-wind condition consisting of three zones -- liquid fuel, combustion, and plume -- where the predicted variables are mass burning rate and characteristic temperatures of the combustion and plume zones. This zone pool fire model can be modified to incorporate plume bending by wind, radiation absorption by soot particles, and a different ambient air flow entrainment rate. Results from the zone model are given for a pool diameter of 1.3 m and are found to reproduce values in the literature.
Zhou, Xiaoqi; Chen, Chengrong; Wang, Yanfen; Smaill, Simeon; Clinton, Peter
2013-01-01
Improved understanding of changes in soil recalcitrant organic carbon (C) in response to global warming is critical for predicting changes in soil organic C (SOC) storage. Here, we took advantage of a long-term field experiment with increased temperature and precipitation to investigate the effects of warming, increased precipitation and their interactions on SOC fraction in a semiarid Inner Mongolian grassland of northern China since April 2005. We quantified labile SOC, recalcitrant SOC and stable SOC at 0–10 and 10–20 cm depths. Results showed that neither warming nor increased precipitation affected total SOC and stable SOC at either depth. Increased precipitation significantly increased labile SOC at the 0–10 cm depth. Warming decreased labile SOC (P = 0.038) and marginally but significantly increased recalcitrant SOC at the 10–20 cm depth (P = 0.082). In addition, there were significant interactive effects of warming and increased precipitation on labile SOC and recalcitrant SOC at the 0–10 cm depth (both P<0.05), indicating that that results from single factor experiments should be treated with caution because of multi-factor interactions. Given that the absolute increase of SOC in the recalcitrant SOC pool was much greater than the decrease in labile SOC, and that the mean residence time of recalcitrant SOC is much greater, our results suggest that soil C storage at 10–20 cm depth may increase with increasing temperature in this semiarid grassland. PMID:23341995
NASA Astrophysics Data System (ADS)
Longo, W. M.; Huang, Y.; Russell, J. M.; Giblin, A. E.; McNichol, A. P.; Xu, L.; Daniels, W.
2016-12-01
Earth's permafrost carbon (C) reservoir is more than twice as large as global atmospheric C and its vulnerability to warming makes it a significant potential feedback to climate change. Predicted rates of warming could result in the release of 5 to 15% of permafrost C to the atmosphere by 2100 (Schuur et al., 2015); however the uncertainty around this estimate hinders our ability to quantify the arctic temperature-carbon feedback. To elucidate the long-term response of terrestrial C to warming in regions underlain by continuous permafrost, we present geologic records of changes in temperature and terrestrial C cycling dynamics from sediment cores from two contrasting lake catchments in arctic Alaska. The sediment records feature independent chronologies, biomarker-based temperature reconstructions, and geochemical measurements of vascular plant biomarkers (lignin phenols) that provide insight into terrestrial carbon quality, its release from permafrost soils and its transit time on the landscape. Our results indicate that both abrupt and sustained increases in temperature over the past 20,000 years resulted in increased carbon normalized yields of lignin phenols (Λ8, Λ6), which indicate increased mobilization of terrestrial organic carbon from permafrost soils. Lignin phenol indicators of terrestrial carbon quality (Ad:Al(s), Ad:Al(v)), indicated that carbon quality decreased with increasing temperature. These results demonstrate covariation between temperature and both the decay of terrestrial organic matter and lignin alteration resulting from dissolution and sorption processes. Compound specific radiocarbon analyses of lignin phenols and their offsets from depositional ages quantify transit times of terrestrial carbon on the landscape. These measurements revealed the presence of a persistent "pre-aged" terrestrial organic carbon pool, which is likely sourced from degrading permafrost. We also observe different responses of terrestrial organic carbon cycling to temperature that depend on landscape characteristics. C cycling responses are pronounced in the low-relief, Pleistocene-aged catchment of lake E5, and more muted in Lake Fog 2, which exists in a higher-relief and younger catchment. Mechanisms differentiating the responses of these catchments are discussed.
NASA Astrophysics Data System (ADS)
Shakil, S.; Tank, S. E.; Kokelj, S.
2016-12-01
Rapid arctic climate warming has contributed to a significant intensification in the rate and occurrence of thermokarst features which can cause large quantities of frozen organic carbon to suddenly become an active part of the contemporary carbon cycle. Mobilized organic carbon becomes susceptible to bacterial decomposition to CO2, which can then act as a significant positive feedback to climate change. Increasingly, studies are showing dissolved organic carbon (DOC) released from thawing permafrost is highly biodegradable, however, we know little about the biodegradability of permafrost-derived particulate organic carbon (POC). On the Peel Plateau, NWT, Canada, where a warming and wetting climate has intensified the activity of massive retrogressive thaw slumps (RTS), and where some of the Arctic's largest RTS features occur, POC can be more than an order of magnitude greater in streams impacted by an RTS feature when compared to upstream, un-impacted locations, and this mobilization causes POC concentrations to be more than 200 times greater than DOC downstream of slumps. Furthermore, POC released from RTS features can be 6,000 to 13,000 years older than POC in un-impacted streams, indicating a significant mobilization of permafrost carbon in the particulate form. To determine the biodegradability of RTS-released POC in this region, incubations using water samples collected upstream, at, and downstream of RTS sites were conducted during the summer of 2015. Dissolved oxygen measurements were taken 1-2 times per day, and samples for POC and DOC concentration, SUVA254, and bacterial abundance were collected at 0 days, 7 days, and 11 days. Treatments containing a spike of RTS-runoff in filtered water declined in oxygen at a rate as much as 10 times greater than treatments containing filtered DOC controls and unfiltered upstream water indicating that the released of RTS-derived POC substantially increases carbon mineralization in impacted streams. This pool of organic carbon could therefore substantially contribute to the transfer of organic carbon from permafrost soils to the atmospheric carbon pool. Ongoing work is examining the balance between POC decomposition during downstream transport and re-sequestration into streambed sediments.
Corstjens, Paul L A M; Hoekstra, Pytsje T; de Dood, Claudia J; van Dam, Govert J
2017-11-01
Methodological applications of the high sensitivity genus-specific Schistosoma CAA strip test, allowing detection of single worm active infections (ultimate sensitivity), are discussed for efficient utilization in sample pooling strategies. Besides relevant cost reduction, pooling of samples rather than individual testing can provide valuable data for large scale mapping, surveillance, and monitoring. The laboratory-based CAA strip test utilizes luminescent quantitative up-converting phosphor (UCP) reporter particles and a rapid user-friendly lateral flow (LF) assay format. The test includes a sample preparation step that permits virtually unlimited sample concentration with urine, reaching ultimate sensitivity (single worm detection) at 100% specificity. This facilitates testing large urine pools from many individuals with minimal loss of sensitivity and specificity. The test determines the average CAA level of the individuals in the pool thus indicating overall worm burden and prevalence. When requiring test results at the individual level, smaller pools need to be analysed with the pool-size based on expected prevalence or when unknown, on the average CAA level of a larger group; CAA negative pools do not require individual test results and thus reduce the number of tests. Straightforward pooling strategies indicate that at sub-population level the CAA strip test is an efficient assay for general mapping, identification of hotspots, determination of stratified infection levels, and accurate monitoring of mass drug administrations (MDA). At the individual level, the number of tests can be reduced i.e. in low endemic settings as the pool size can be increased as opposed to prevalence decrease. At the sub-population level, average CAA concentrations determined in urine pools can be an appropriate measure indicating worm burden. Pooling strategies allowing this type of large scale testing are feasible with the various CAA strip test formats and do not affect sensitivity and specificity. It allows cost efficient stratified testing and monitoring of worm burden at the sub-population level, ideally for large-scale surveillance generating hard data for performance of MDA programs and strategic planning when moving towards transmission-stop and elimination.
NASA Astrophysics Data System (ADS)
Wang, Chunzai; Wang, Xidong; Weisberg, Robert H.; Black, Michael L.
2017-12-01
The paper uses observational data from 1950 to 2014 to investigate rapid intensification (RI) variability of tropical cyclones (TCs) in the North Atlantic and its relationships with large-scale climate variations. RI is defined as a TC intensity increase of at least 15.4 m/s (30 knots) in 24 h. The seasonal RI distribution follows the seasonal TC distribution, with the highest number in September. Although an RI event can occur anywhere over the tropical North Atlantic (TNA), there are three regions of maximum RI occurrence: (1) the western TNA of 12°N-18°N and 60°W-45°W, (2) the Gulf of Mexico and the western Caribbean Sea, and (3) the open ocean southeast and east of Florida. RI events also show a minimum value in the eastern Caribbean Sea north of South America—a place called a hurricane graveyard due to atmospheric divergence and subsidence. On longer time scales, RI displays both interannual and multidecadal variability, but RI does not show a long-term trend due to global warming. The top three climate indices showing high correlations with RI are the June-November ENSO and Atlantic warm pool indices, and the January-March North Atlantic oscillation index. It is found that variabilities of vertical wind shear and TC heat potential are important for TC RI in the hurricane main development region, whereas relative humidity at 500 hPa is the main factor responsible for TC RI in the eastern TNA. However, the large-scale oceanic and atmospheric variables analyzed in this study do not show an important role in TC RI in the Gulf of Mexico and the open ocean southeast and east of Florida. This suggests that other factors such as small-scale changes of oceanic and atmospheric variables or TC internal processes may be responsible for TC RI in these two regions. Additionally, the analyses indicate that large-scale atmospheric and oceanic variables are not critical to TC genesis and formation; however, once a tropical depression forms, large-scale climate variations play a role in TC intensification.
The role of clouds in early Pliocene warmth
NASA Astrophysics Data System (ADS)
Burls, N.; Fedorov, A. V.
2013-12-01
The climate of the early Pliocene (4-5 million years ago) presents a challenging puzzle to climate scientists - although the Earth experienced atmospheric CO2 concentrations similar to the elevated levels seen today, many climate characteristics in both low to high latitudes were very different. In particular, a salient feature of the modern climate, the pronounced cold tongues on the eastern sides of the Pacific and Atlantic equatorial basins, were much weaker. At the same time the ocean meridional (equator-to-pole) temperature gradient was also reduced. However, state-of-the-art coupled general circulation models forced with elevated CO2 concentrations and reconstructed Pliocene boundary conditions fail to capture the full extent of warming in the equatorial cold tongues and high-latitude regions relative to present-day conditions, and hence the corresponding reduction in meridional and zonal sea surface temperature gradients suggested by paleoclimatic evidence (as reviewed by Fedorov et al., 2013, Nature 496). A number of physical processes unresolved or underestimated by these models have been proposed as a contributing factor or a potential driving force resulting in these differences. Amongst the proposed hypotheses is the idea that different cloud properties might be the key to the Pliocene puzzle. In this study we demonstrate how a modified spatial distribution in cloud albedo could have been responsible for sustaining Pliocene climate. In particular, we show that a reduction in the meridional gradient in cloud albedo can sustain reduced meridional and zonal gradients in sea surface temperature, an expanded warm pool in the ocean, weaker Hadley and Walker circulations in the atmosphere, and amplified high-latitude warming. Having conducted a range of modified cloud albedo experiments, we arrive at our Pliocene simulation, which shows an excellent agreement with proxy sea surface temperature data from the major equatorial and coastal upwelling regions, the tropical warm pool, and the mid- and high- latitudes. A good agreement is also achieved with available subsurface temperature data. Within this simulated early Pliocene state, we explore the major climatic features such as ENSO and the Atlantic meridional overturning circulation (AMOC).
NASA Astrophysics Data System (ADS)
Qu, D.; Gagan, M. K.; Dunbar, G. B.; Hantoro, W. S.; Suwargadi, B. W.; Mortimer, G. E.; McCulloch, M. T.
2005-12-01
Ocean-atmosphere interactions in the tropical Indo-Pacific Warm Pool are fundamental drivers of the global meridional Hadley and zonal Walker circulations. Recent research indicates that changes in sea surface temperatures and atmospheric convection in this region play important roles in modulating global climate on interannual, decadal, millennial, and even glacial-interglacial time-scales. Knowing the natural bounds of past ocean-atmosphere variability in the Warm Pool region will enhance our ability to predict the climate in the future. Massive, long-lived corals are one of the only paleoclimate archives capable of providing high resolution records (weekly to monthly) for periods when climate boundary conditions were different from those of the present day. Here we report a 35-year-long high resolution 18O/16O record for a sea-level highstand during the penultimate deglaciation reconstructed from a massive Porites coral from the Mondu raised reefs, located southwest of Cape Laundi on the island of Sumba, eastern Indonesia. Topographic surveys and stratigraphic analysis of the Mondu raised reefs indicate that the highstand reef developed between MIS 6e and 5e, when the sea level was about 15 meters lower than it is today. U/Th dating shows that the well preserved massive Porites coral we analyzed grew 136 ± 1.5 thousand years ago. Based on this age, and previous studies, it is likely that the coral grew during a highstand period of the penultimate deglaciation when the sea level peaked at this height for only a short period of time before it dropped 60 to 80 meters at about 130 thousand years ago and finally rose again up to a few meters higher than its present level at the Last Interglacial Maximum. The average 18O/16O for the fossil coral is -4.4‰, which is 0.6‰ higher than the average value for mid-late Holocene corals on the Mondu reefs. Taking into account the ice volume effect, and assuming constant surface salinity, the shift in 18O indicates that the SST during this period of the penultimate deglaciation at 130 ± 1.5 ka was 2°C cooler than that in mid-late Holocene and today. The high resolution coral 18O/16O record shows excellent preservation of annual cycles and, in some years, a double peak indicating the seasonal development of the wet/warm summer monsoon. The double peak reflects the cross-equatorial movement of the Inter-Tropical Convergence Zone, presumably during years when monsoon rainfall is strong. The record also shows that the frequency of cooler/drier years, indicative of El Nino events, was lower than today.
Ecosystem resilience despite large-scale altered hydro climatic conditions
USDA-ARS?s Scientific Manuscript database
Climate change is predicted to increase both drought frequency and duration, and when coupled with substantial warming, will establish a new hydroclimatological paradigm for many regions. Large-scale, warm droughts have recently impacted North America, Africa, Europe, Amazonia, and Australia result...
Observational Evidence for Desert Amplification Using Multiple Satellite Datasets.
Wei, Nan; Zhou, Liming; Dai, Yongjiu; Xia, Geng; Hua, Wenjian
2017-05-17
Desert amplification identified in recent studies has large uncertainties due to data paucity over remote deserts. Here we present observational evidence using multiple satellite-derived datasets that desert amplification is a real large-scale pattern of warming mode in near surface and low-tropospheric temperatures. Trend analyses of three long-term temperature products consistently confirm that near-surface warming is generally strongest over the driest climate regions and this spatial pattern of warming maximizes near the surface, gradually decays with height, and disappears in the upper troposphere. Short-term anomaly analyses show a strong spatial and temporal coupling of changes in temperatures, water vapor and downward longwave radiation (DLR), indicating that the large increase in DLR drives primarily near surface warming and is tightly associated with increasing water vapor over deserts. Atmospheric soundings of temperature and water vapor anomalies support the results of the long-term temperature trend analysis and suggest that desert amplification is due to comparable warming and moistening effects of the troposphere. Likely, desert amplification results from the strongest water vapor feedbacks near the surface over the driest deserts, where the air is very sensitive to changes in water vapor and thus efficient in enhancing the longwave greenhouse effect in a warming climate.
Large Impacts of Climatic Warming on Growth of Boreal Forests since 1960
Kauppi, Pekka E.; Posch, Maximilian; Pirinen, Pentti
2014-01-01
Boreal forests are sensitive to climatic warming, because low temperatures hold back ecosystem processes, such as the mobilization of nitrogen in soils. A greening of the boreal landscape has been observed using remote sensing, and the seasonal amplitude of CO2 in the northern hemisphere has increased, indicating warming effects on ecosystem productivity. However, field observations on responses of ecosystem productivity have been lacking on a large sub-biome scale. Here we report a significant increase in the annual growth of boreal forests in Finland in response to climatic warming, especially since 1990. This finding is obtained by linking meteorological records and forest inventory data on an area between 60° and 70° northern latitude. An additional increase in growth has occurred in response to changes in other drivers, such as forest management, nitrogen deposition and/or CO2 concentration. A similar warming impact can be expected in the entire boreal zone, where warming takes place. Given the large size of the boreal biome – more than ten million km2– important climate feedbacks are at stake, such as the future carbon balance, transpiration and albedo. PMID:25383552
NASA Astrophysics Data System (ADS)
Jastrow, J. D.; Burke, V. J.; Vugteveen, T. W.; Fan, Z.; Hofmann, S. M.; Lederhouse, J. S.; Matamala, R.; Michaelson, G. J.; Mishra, U.; Ping, C. L.
2015-12-01
The decomposability of soil organic carbon (SOC) in permafrost regions is a key uncertainty in efforts to predict carbon release from thawing permafrost and its impacts. The cold and often wet environment is the dominant factor limiting decomposer activity, and soil organic matter is often preserved in a relatively undecomposed and uncomplexed state. Thus, the impacts of soil warming and permafrost thaw are likely to depend at least initially on the genesis and past history of organic matter degradation before its stabilization in permafrost. We compared the bioavailability and relative degradation state of SOC in active layer and permafrost soils from Arctic tundra in Alaska. To assess readily bioavailable SOC, we quantified salt (0.5 M K2SO4) extractable organic matter (SEOM), which correlates well with carbon mineralization rates in short-term soil incubations. To assess the relative degradation state of SOC, we used particle size fractionation to isolate fibric (coarse) from more degraded (fine) particulate organic matter (POM) and separated mineral-associated organic matter into silt- and clay-sized fractions. On average, bulk SOC concentrations in permafrost were lower than in comparable active layer horizons. Although SEOM represented a very small proportion of the bulk SOC, this proportion was greater in permafrost than in comparable active layer soils. A large proportion of bulk SOC was found in POM for all horizons. Even for mineral soils, about 40% of bulk SOC was in POM pools, indicating that organic matter in both active layer and permafrost mineral soils was relatively undecomposed compared to typical temperate soils. Not surprisingly, organic soils had a greater proportion of POM and mineral soils had greater silt- and clay-sized carbon pools, while cryoturbated soils were intermediate. For organic horizons, permafrost organic matter was generally more degraded than in comparable active layer horizons. However, in mineral and cryoturbated horizons, the presence of permafrost appeared to have little effect on SOC distribution among size fractions. Future studies will investigate the utility of using organic matter pools defined by SEOM and particle size to predict the bioavailable pools characterized through more time-consuming long-term incubation studies of permafrost region soils.
Response of salt-marsh carbon accumulation to climate change.
Kirwan, Matthew L; Mudd, Simon M
2012-09-27
About half of annual marine carbon burial takes place in shallow water ecosystems where geomorphic and ecological stability is driven by interactions between the flow of water, vegetation growth and sediment transport. Although the sensitivity of terrestrial and deep marine carbon pools to climate change has been studied for decades, there is little understanding of how coastal carbon accumulation rates will change and potentially feed back on climate. Here we develop a numerical model of salt marsh evolution, informed by recent measurements of productivity and decomposition, and demonstrate that competition between mineral sediment deposition and organic-matter accumulation determines the net impact of climate change on carbon accumulation in intertidal wetlands. We find that the direct impact of warming on soil carbon accumulation rates is more subtle than the impact of warming-driven sea level rise, although the impact of warming increases with increasing rates of sea level rise. Our simulations suggest that the net impact of climate change will be to increase carbon burial rates in the first half of the twenty-first century, but that carbon-climate feedbacks are likely to diminish over time.
NASA Astrophysics Data System (ADS)
Tesi, Tommaso; Semiletov, Igor; Dudarev, Oleg; Gustafsson, Örjan
2013-04-01
Recent studies suggest that the present hydrological regime increase observed in the Arctic rivers is mainly the consequence of the changes in permafrost conditions as a result of climate warming. Given the enormous amount of carbon stored in coastal and terrestrial permafrost the potentially increased supply from this large carbon pool to the coastal Arctic Ocean, possibly associated with a translocated release to the atmosphere as CO2, is considered a plausible scenario in a warming climate. However, there is not sufficient information regarding the reactivity of terrigenous material once supplied to the Arctic Ocean. In this study, we address this critical issue by examining the organic composition of surface sediments collected over extensive scales on the East Siberian Arctic Shelf (ESAS) as part of the International Siberian Shelf Study (ISSS). The ESAS represents by far the largest shelf of the Arctic Ocean. Samples were collected from the inner- to the outer-shelf following the sediment transport pathway in a region between the Lena and the Kolyma rivers. The analytical approach includes the characterization of marine and land-derived carbon using a large number of molecular biomarkers obtained by alkaline CuO oxidation such as lignin-phenols, cutin-derived products, p-hydroxy benzenes, benzoic acids, fatty acids, and dicarboxylic acids. Our results indicated high concentrations of terrigenous material in shallow sediments and a marked decrease of terrestrial biomarkers with increasing distance from the coastline. In parallel, lignin-based degradation proxies suggested highly altered terrigenous carbon in mid- and outer-shelf sediments compared to coastal sediments. Furthermore, the ratio of cutin-derived products over lignin significantly increased along the sediment transport pathway. Considering that cutin is considered to be intrinsically more reactive compared to lignin, high values of this ratio off the coastal region were interpreted as selective transport of fine sediments relatively rich in cutin. Finally, in addition to degradation and sorting processes, our results indicated dilution of land-derived material with marine phytodetritus with increasing distance from the shore. Results from our study indicate that the benthic sediment transport system in the ESAS is quite dynamic and acts as an efficient incinerator of terrigenous material as observed in mid-latitude settings. Therefore, considering the mega-pool of terrigenous carbon susceptible to remobilization because of climate-induced changes, our results suggest future limited burial of this material in mid- and outer-shelf deposits.
Gonzalez, Rosalinda; Dunham, Jason B.; Lightcap, Scott W.; McEnroe, Jeffery R.
2017-01-01
The influences of large wood on Pacific salmon are well-studied, but studies of nonsalmonid species such as lampreys are uncommon. To address this need, we evaluated the potential effects of large wood on larval lampreys (Pacific Lamprey, Entosphenus tridentatus; and potentially Western Brook Lamprey Lampetra richardsoni), as well as juvenile Coho Salmon Oncorhynchus kisutch, in a small coastal Oregon stream. Our objectives were to 1) identify in-stream habitat characteristics associated with the presence of larval lampreys and abundance of juvenile Coho Salmon; and 2) evaluate how these characteristics were associated with in-stream wood. To address habitat use, we quantified presence of larval lampreys in 92 pools and abundance of juvenile Coho Salmon in 44 pools during summer low flows. We focused on a study reach where large wood was introduced into the stream between 2008 and 2009. Results indicated that presence of larval lampreys was significantly associated with availability of fine sediment and deeper substrate. The abundance of juvenile Coho Salmon (fish/pool) was strongly associated with pool surface area and to a weaker extent with the proportion of cobble and boulder substrates in pools. Pools with wood, regardless of whether they were formed by wood, had significantly greater coverage of fine sediment, deeper substrate, and greater pool surface area. Taken together, these results suggest that in-stream wood can provide habitat associated with presence of larval lampreys and greater abundance of juvenile Coho Salmon.
NASA Astrophysics Data System (ADS)
Andersen, A.; Reardon, P. N.; Chacon, S. S.; Qafoku, N. P.; Washton, N.; Kleber, M.
2015-12-01
With the increased attention on climate change and the role of increasing atmospheric CO2 levels in global warming, the need for an accurate depiction of the carbon cycling processes involved in the Earth's three major carbon pools, i.e., atmosphere, terrestrial systems, and oceans has never been greater. Within the terrestrial system, soil organic matter (SOM) represents an important carbon sub-pool. Complexation of SOM with mineral interfaces and particles is believed to protect SOM from possible biotic and abiotic transformation and mineralization to carbon dioxide. However, obtaining a molecular scale picture of the interactions of the various types of SOM with a variety of soil minerals is a challenging endeavor, especially for experimental techniques. Molecular scale simulations techniques can be applied to study the atomistic, molecular, and nanoscale aspects of SOM-mineral associations, and, therefore, and aid in filling current knowledge gaps in the potential fate and stability of SOM in soil systems. Here, we will discuss our recent results from large-scale molecular dynamics simulation of protein, GB1, and its interaction with clay and oxide/hydroxide minerals (i.e., kaolinite, Na+-MMT, Ca2+-MMT, goethite, and birnessite) including a comparison of structural changes of the protein by, protein orientation with respect to, degree of protein binding to, and mobility on the mineral surfaces. Our molecular simulations indicate that these mineral surfaces, with the exception of birnessite, potentially preserve the physical properties of the GB1 protein.
Climatic role of terrestrial ecosystem under elevated CO2 : a bottom-up greenhouse gases budget.
Liu, Shuwei; Ji, Cheng; Wang, Cong; Chen, Jie; Jin, Yaguo; Zou, Ziheng; Li, Shuqing; Niu, Shuli; Zou, Jianwen
2018-05-07
The net balance of greenhouse gas (GHG) exchanges between terrestrial ecosystems and the atmosphere under elevated atmospheric carbon dioxide (CO 2 ) remains poorly understood. Here, we synthesise 1655 measurements from 169 published studies to assess GHGs budget of terrestrial ecosystems under elevated CO 2 . We show that elevated CO 2 significantly stimulates plant C pool (NPP) by 20%, soil CO 2 fluxes by 24%, and methane (CH 4 ) fluxes by 34% from rice paddies and by 12% from natural wetlands, while it slightly decreases CH 4 uptake of upland soils by 3.8%. Elevated CO 2 causes insignificant increases in soil nitrous oxide (N 2 O) fluxes (4.6%), soil organic C (4.3%) and N (3.6%) pools. The elevated CO 2 -induced increase in GHG emissions may decline with CO 2 enrichment levels. An elevated CO 2 -induced rise in soil CH 4 and N 2 O emissions (2.76 Pg CO 2 -equivalent year -1 ) could negate soil C enrichment (2.42 Pg CO 2 year -1 ) or reduce mitigation potential of terrestrial net ecosystem production by as much as 69% (NEP, 3.99 Pg CO 2 year -1 ) under elevated CO 2 . Our analysis highlights that the capacity of terrestrial ecosystems to act as a sink to slow climate warming under elevated CO 2 might have been largely offset by its induced increases in soil GHGs source strength. © 2018 John Wiley & Sons Ltd/CNRS.
NASA Astrophysics Data System (ADS)
Garcia-Franco, Noelia; Kühnel, Anna; Wiesmeier, Martin; Kiese, Ralf; Dannenmann, Michael; Wolf, Benjamin; Brandhuber, Robert; Treisch, Melanie; Kögel-Knabner, Ingrid
2017-04-01
The storage of carbon (C) in grassland soils is affected by two principal controlling factors: management practices and climate change. In particular, mountainous grassland soils may become a source of greenhouse gas emissions under global warming due to large amounts of labile C. In this regard, aggregate-occluded and mineral associated C may play a key role in the mitigation of climate change. Nevertheless, few studies have focused on different soil organic matter (SOM) pools and their main controlling factors in mountainous grassland soils. We analyzed the C development of long-term (1986-2012) monitoring grassland sites in Bavaria using Random Forest models. Sites with low initial C contents showed an increase of C, whereas the opposite trend was observed for sites with high initial C contents. Different controlling factors were related with the two main C trends. In addition, we determined the principal mechanisms involved in the build-up and stabilization of different C pools using a promising physical fractionation method. This method enables the separation of five different SOM fractions by density, ultrasonication and sieving separation: fine particulate organic matter (fPOM), occluded particulate organic matter (oPOM>20µm and oPOM<20µm) and mineral associated organic matter (sand and coarse silt, > 20 µm; medium + fine silt and clay, < 20 µm). The final aim is the determination of a diagnostic fraction that can be used as an indicator for future C changes in mountainous grassland soils.
Blanketing effect of expansion foam on liquefied natural gas (LNG) spillage pool.
Zhang, Bin; Liu, Yi; Olewski, Tomasz; Vechot, Luc; Mannan, M Sam
2014-09-15
With increasing consumption of natural gas, the safety of liquefied natural gas (LNG) utilization has become an issue that requires a comprehensive study on the risk of LNG spillage in facilities with mitigation measures. The immediate hazard associated with an LNG spill is the vapor hazard, i.e., a flammable vapor cloud at the ground level, due to rapid vaporization and dense gas behavior. It was believed that high expansion foam mitigated LNG vapor hazard through warming effect (raising vapor buoyancy), but the boil-off effect increased vaporization rate due to the heat from water drainage of foam. This work reveals the existence of blocking effect (blocking convection and radiation to the pool) to reduce vaporization rate. The blanketing effect on source term (vaporization rate) is a combination of boil-off and blocking effect, which was quantitatively studied through seven tests conducted in a wind tunnel with liquid nitrogen. Since the blocking effect reduces more heat to the pool than the boil-off effect adds, the blanketing effect contributes to the net reduction of heat convection and radiation to the pool by 70%. Water drainage rate of high expansion foam is essential to determine the effectiveness of blanketing effect, since water provides the boil-off effect. Copyright © 2014 Elsevier B.V. All rights reserved.
Commentary: Urgent need for large-scale warming manipulation experiments in tropical forests
NASA Astrophysics Data System (ADS)
Cavaleri, M. A.; Wood, T. E.; Reed, S.
2013-12-01
Tropical forests represent the largest fluxes of carbon into and out of the atmosphere of any terrestrial ecosystem type on earth. Despite their clear biogeochemical importance, responses of tropical forests to global warming are more uncertain than for any other biome. This uncertainty stems primarily from a lack of mechanistic data, in part because warming manipulation field experiments have been located almost exclusively in higher latitude systems. As a result of the large fluxes, lack of data, and high uncertainty, recent studies have highlighted the tropics as a 'high priority region' for future climate change research. We argue that warming manipulation experiments are urgently needed in tropical forests that are: 1) single-factor, 2) large-scale, and 3) long-term. The emergence of a novel heat regime is predicted for the tropics within the next two decades, and tropical forest trees may be more susceptible to warming than previously thought. Over a decade of Free Air CO2 Enrichment experiments have shown that single-factor studies that integrate above- and belowground function can be the most informative and efficient means of informing models, which can then be used to determine interactive effects of multiple factors. Warming both above- and below-ground parts of an ecosystem would be fundamental to the understanding of whole-ecosystem and net carbon responses because of the multiple feedbacks between tree canopy, root, and soil function. Finally, evidence from high-latitude warming experiments highlight the importance of long-term studies by suggesting that key processes related to carbon cycling, like soil respiration, could acclimate with extended warming. Despite the fact that there has never been a long-term ecosystem-level warming experiment in any forest, the technology is available, and momentum is gathering. In order to study the effects of warming on tropical forests, which contribute disproportionately to global carbon balance, full-scale ecosystem warming experiments are imperative.
Casatti, L
2004-11-01
In this study the fish assemblages of the silted Aguas Claras stream (AC) was compared with that of a reference, the São Carlos stream (SC), so as to identify potential fish indicators of integrity or degradation. Both streams, located about 5 km from one another, are part of the Upper Paraná river basin, Brazil, and present similar physiographical features. Twenty-one species were collected in AC (1,271 specimens) and 18 in SC (940 specimens). In AC, dominant species e.g., Corydoras aeneus (sandy pools), Serrapinnus notomelas, and Pyrrhulina australis (warm marginal shallow pools) were those favored by new microhabitats linked to siltation and removal of the riparian vegetation. Changes in the composition of the marginal vegetation resulted in dominance of species such as Hisonotus francirochai (marginal grasses). In SC the dominant species was Phalloceros caudimacultus, abundant in marginal shallow pools, and Trichomycterus diabolus. and Hypostomus nigromaculatus, exclusively riffle-dwelling species, which were absent in AC. Fish assemblage monitoring is recommended for use in riparian management programs in order to evaluate negative instream sedimentation effects.
Ocean Heat Uptake Slows 21st Century Surface Warming Driven by Extratropical Cloud Feedbacks
NASA Astrophysics Data System (ADS)
Frey, W.; Maroon, E.; Pendergrass, A. G.; Kay, J. E.
2017-12-01
Equilibrium climate sensitivity (ECS), the warming in response to instantaneously doubled CO2, has long been used to compare climate models. In many models, ECS is well correlated with warming produced by transient forcing experiments. Modifications to cloud phase at high latitudes in a state-of-the-art climate model, the Community Earth System Model (CESM), produce a large increase in ECS (1.5 K) via extratropical cloud feedbacks. However, only a small surface warming increase occurs in a realistic 21st century simulation including a full-depth dynamic ocean and the "business as usual" RCP8.5 emissions scenario. In fact, the increase in surface warming is only barely above the internal variability-generated range in the CESM Large Ensemble. The small change in 21st century warming is attributed to subpolar ocean heat uptake in both hemispheres. In the Southern Ocean, the mean-state circulation takes up heat while in the North Atlantic a slowdown in circulation acts as a feedback to slow surface warming. These results show the importance of subpolar ocean heat uptake in controlling the pace of warming and demonstrate that ECS cannot be used to reliably infer transient warming when it is driven by extratropical feedbacks.
Reduced efficiency of biological pump in the western tropical Pacific
NASA Astrophysics Data System (ADS)
Kim, D.
2016-02-01
The western Pacific warm pool (WPWP) area has recently extended, which may influence considerably the marine ecosystems in the tropical Pacific. Here, we show the long-term trends in particle fluxes associated with the marine ecosystem changes in WPWP area. Total mass and biogenic fluxes have an annually decreasing trend from 2009 to 2014, which is mainly derived by the decrease in the biomass of N2 fixing cyanobacteria during summer. In the western tropical Pacific, the decrease in the biomass of N2 fixing cyanobacteria is attributed to the decrease of phosphate concentration associated with the shoaling of the winter mixed layer depth. The efficiency of biological pump has recently reduced in the western tropical Pacific, which might suppress the oceanic sequestration of atmospheric CO2 and thereby accelerate the global warming in the future.
Global Warming: Its Implications for U.S. National Security Policy
2009-03-19
The approach to this topic will be to look at the science behind anthropogenic global warming . Is man largely responsible for causing global warming due...paper will then investigate the nexus between global warming and U.S. national security policy. It will address the challenges facing U.S. leaders and...policy makers as they tackle the issue of global warming and its implications for U.S. policy. Finally it will conclude with recommendations for those
Fay, J A
2006-08-21
A two zone entrainment model of pool fires is proposed to depict the fluid flow and flame properties of the fire. Consisting of combustion and plume zones, it provides a consistent scheme for developing non-dimensional scaling parameters for correlating and extrapolating pool fire visible flame length, flame tilt, surface emissive power, and fuel evaporation rate. The model is extended to include grey gas thermal radiation from soot particles in the flame zone, accounting for emission and absorption in both optically thin and thick regions. A model of convective heat transfer from the combustion zone to the liquid fuel pool, and from a water substrate to cryogenic fuel pools spreading on water, provides evaporation rates for both adiabatic and non-adiabatic fires. The model is tested against field measurements of large scale pool fires, principally of LNG, and is generally in agreement with experimental values of all variables.
Biophysical Interactions within Step-Pool Mountain Streams Following Wildfire
NASA Astrophysics Data System (ADS)
Parker, A.; Chin, A.; O'Dowd, A. P.
2014-12-01
Recovery of riverine ecosystems following disturbance is driven by a variety of interacting processes. Wildfires pose increasing disturbances to riverine landscapes, with rising frequencies and magnitudes owing to warming climates and increased fuel loads. The effects of wildfire include loss of vegetation, elevated runoff and flash floods, erosion and deposition, and changing biological habitats and communities. Understanding process interactions in post-fire landscapes is increasingly urgent for successful management and restoration of affected ecosystems. In steep channels, steps and pools provide prominent habitats for organisms and structural integrity in high energy environments. Step-pools are typically stable, responding to extreme events with recurrence intervals often exceeding 50 years. Once wildfire occurs, however, intensification of post-fire flood events can potentially overpower the inherent stability of these systems, with significant consequences for aquatic life and human well-being downstream. This study examined the short-term response of step-pool streams following the 2012 Waldo Canyon Fire in Colorado. We explored interacting feedbacks among geomorphology, hydrology, and ecology in the post-fire environment. At selected sites with varying burn severity, we established baseline conditions immediately after the fire with channel surveys, biological assessment using benthic macroinvertebrates, sediment analysis including pebble counts, and precipitation gauging. Repeat measurements after major storm events over several years enabled analysis of the interacting feedbacks among post-fire processes. We found that channels able to retain the step-pool structure changed less and facilitated recovery more readily. Step habitats maintained higher percentages of sensitive macroinvertebrate taxa compared to pools through post-fire floods. Sites burned with high severity experienced greater reduction in the percentage of sensitive taxa. The decimation of macroinvertebrates closely coincides with the physical destruction of the step-pool morphology. The role that step-pools play in enhancing the ecological quality of fluvial systems, therefore, provides a key focus for effective management and restoration of aquatic resources following wildfires.
A Single Column Model Ensemble Approach Applied to the TWP-ICE Experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davies, Laura; Jakob, Christian; Cheung, K.
2013-06-27
Single column models (SCM) are useful testbeds for investigating the parameterisation schemes of numerical weather prediction and climate models. The usefulness of SCM simulations are limited, however, by the accuracy of the best-estimate large-scale data prescribed. One method to address this uncertainty is to perform ensemble simulations of the SCM. This study first derives an ensemble of large-scale data for the Tropical Warm Pool International Cloud Experiment (TWP-ICE) based on an estimate of a possible source of error in the best-estimate product. This data is then used to carry out simulations with 11 SCM and 2 cloud-resolving models (CRM). Best-estimatemore » simulations are also performed. All models show that moisture related variables are close to observations and there are limited differences between the best-estimate and ensemble mean values. The models, however, show different sensitivities to changes in the forcing particularly when weakly forced. The ensemble simulations highlight important differences in the moisture budget between the SCM and CRM. Systematic differences are also apparent in the ensemble mean vertical structure of cloud variables. The ensemble is further used to investigate relations between cloud variables and precipitation identifying large differences between CRM and SCM. This study highlights that additional information can be gained by performing ensemble simulations enhancing the information derived from models using the more traditional single best-estimate simulation.« less
Non-stationary Drainage Flows and Cold Pools in Gentle Terrain
NASA Astrophysics Data System (ADS)
Mahrt, L.
2015-12-01
Previous studies have concentrated on organized topography with well-defined slopes or valleys in an effort to understand the flow dynamics. However, most of the Earth's land surface consists of gentle terrain that is quasi three dimensional. Different scenarios are briefly classified. A network of measurements are analyzed to examine shallow cold pools and drainage flow down the valley which develop for weak ambient wind and relatively clear skies. However, transient modes constantly modulate or intermittently eliminate the cold pool, which makes extraction and analysis of the horizontal structure of the cold pool difficult with traditional analysis methods. Singular value decomposition successfully isolates the effects of large-scale flow from local down-valley cold air drainage within the cold pool in spite of the intermittent nature of this local flow. The traditional concept of a cold pool must be generalized to include cold pool intermittency, complex variation of temperature related to some three-dimensionality and a diffuse cold pool top. Different types of cold pools are classified in terms of the stratification and gradient of potential temperature along the slope. The strength of the cold pool is related to a forcing temperature scale proportional to the net radiative cooling divided by the wind speed above the valley. The scatter is large partly due to nonstationarity of the marginal cold pool in this shallow valley
Kim, Dockyu; Park, Ha Ju; Kim, Jung Ho; Youn, Ui Joung; Yang, Yung Hun; Casanova-Katny, Angélica; Vargas, Cristina Muñoz; Venegas, Erick Zagal; Park, Hyun; Hong, Soon Gyu
2018-06-01
Although the maritime Antarctic has undergone rapid warming, the effects on indigenous soil-inhabiting microorganisms are not well known. Passive warming experiments using open-top chamber (OTC) have been performed on the Fildes Peninsula in the maritime Antarctic since 2008. When the soil temperature was measured at a depth of 2-5 cm during the 2013-2015 summer seasons, the mean temperature inside OTC (OTC-In) increased by approximately 0.8 °C compared with outside OTC (OTC-Out), while soil chemical and physical characteristics did not change. Soils (2015 summer) from OTC-In and OTC-Out were subjected to analysis for change in microbial community and degradation rate of humic substances (HS, the largest pool of recalcitrant organic carbon in soil). Archaeal and bacterial communities in OTC-In were minimally affected by warming compared with those in OTC-Out, with archaeal methanogenic Thermoplasmata slightly increased in abundance. The abundance of heterotrophic fungi Ascomycota was significantly altered in OTC-In. Total bacterial and fungal biomass in OTC-In increased by 20% compared to OTC-Out, indicating that this may be due to increased microbial degradation activity for soil organic matter (SOM) including HS, which would result in the release of more low-molecular-weight growth substrates from SOM. Despite the effects of warming on the microbial community over the 8-years-experiments warming did not induce any detectable change in content or structure of polymeric HS. These results suggest that increased temperature may have significant and direct effects on soil microbial communities inhabiting maritime Antarctic and that soil microbes would subsequently provide more available carbon sources for other indigenous microbes. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
The warming effect of the flare of natural gas on soil biological activity
NASA Astrophysics Data System (ADS)
Yevdokimov, Ilya; Yusupov, Irek; Shavnin, Sergey
2017-04-01
Simulation of global warming is one of the key issues of international efforts to study climatic changes. A number of manipulation experiments with soil warming have been established throughout the world in the last decades. We used warming with natural gas flare near the pine forest as a kind of manipulation experiment to assess the synergistic effect of drying and warming on plant-soil-microbial interactions. The experimental area is situated in a pine forest subzone of the forest zone of the Western Siberia near Pokachi, Yugra (61o73'N, 75o49'E). The experimental plots were established in a young Scotch pine forest on sandy podzolic soil at three distances of 70, 90 and 130 m from the flare of natural gas, with trees exposed to strong (S) moderate (M), and weak (W) impact, respectively. Increase of soil temperature in summer time were moderate: on average 0.7oC and 1.3oC for the plots M and S, respectively, compared to the plot W. The plot S demonstrated increase in CO2 efflux from the soil surface, mainly due to intensifying plant root respiration, by 18% compared to the plot W as well as increase in SOM content by 31%, with intensive accumulation of recalcitrant humus. By contrast, microbial biomass, labile SOM pool and basal respiration were higher in soil with weak flaring impact by 74%, 33% and 24%, respectively. Thus, three trends in plant-soil-microbe system exposed to warming and drying were revealed: i) SOM accumulation, ii) suppression of microbial activity, and iii) stimulation of root respiration. The research was supported by the Russian Science Foundation and Russian Foundation for Basic Researches.
NASA Technical Reports Server (NTRS)
Yang, Shu-Chih; Rienecker, Michele; Keppenne, Christian
2010-01-01
This study investigates the impact of four different ocean analyses on coupled forecasts of the 2006 El Nino event. Forecasts initialized in June 2006 using ocean analyses from an assimilation that uses flow-dependent background error covariances are compared with those using static error covariances that are not flow dependent. The flow-dependent error covariances reflect the error structures related to the background ENSO instability and are generated by the coupled breeding method. The ocean analyses used in this study result from the assimilation of temperature and salinity, with the salinity data available from Argo floats. Of the analyses, the one using information from the coupled bred vectors (BV) replicates the observed equatorial long wave propagation best and exhibits more warming features leading to the 2006 El Nino event. The forecasts initialized from the BV-based analysis agree best with the observations in terms of the growth of the warm anomaly through two warming phases. This better performance is related to the impact of the salinity analysis on the state evolution in the equatorial thermocline. The early warming is traced back to salinity differences in the upper ocean of the equatorial central Pacific, while the second warming, corresponding to the mature phase, is associated with the effect of the salinity assimilation on the depth of the thermocline in the western equatorial Pacific. The series of forecast experiments conducted here show that the structure of the salinity in the initial conditions is important to the forecasts of the extension of the warm pool and the evolution of the 2006 El Ni o event.
Vascular plants promote ancient peatland carbon loss with climate warming.
Walker, Tom N; Garnett, Mark H; Ward, Susan E; Oakley, Simon; Bardgett, Richard D; Ostle, Nicholas J
2016-05-01
Northern peatlands have accumulated one third of the Earth's soil carbon stock since the last Ice Age. Rapid warming across northern biomes threatens to accelerate rates of peatland ecosystem respiration. Despite compensatory increases in net primary production, greater ecosystem respiration could signal the release of ancient, century- to millennia-old carbon from the peatland organic matter stock. Warming has already been shown to promote ancient peatland carbon release, but, despite the key role of vegetation in carbon dynamics, little is known about how plants influence the source of peatland ecosystem respiration. Here, we address this issue using in situ (14)C measurements of ecosystem respiration on an established peatland warming and vegetation manipulation experiment. Results show that warming of approximately 1 °C promotes respiration of ancient peatland carbon (up to 2100 years old) when dwarf-shrubs or graminoids are present, an effect not observed when only bryophytes are present. We demonstrate that warming likely promotes ancient peatland carbon release via its control over organic inputs from vascular plants. Our findings suggest that dwarf-shrubs and graminoids prime microbial decomposition of previously 'locked-up' organic matter from potentially deep in the peat profile, facilitating liberation of ancient carbon as CO2. Furthermore, such plant-induced peat respiration could contribute up to 40% of ecosystem CO2 emissions. If consistent across other subarctic and arctic ecosystems, this represents a considerable fraction of ecosystem respiration that is currently not acknowledged by global carbon cycle models. Ultimately, greater contribution of ancient carbon to ecosystem respiration may signal the loss of a previously stable peatland carbon pool, creating potential feedbacks to future climate change. © 2016 John Wiley & Sons Ltd.
Hammami, Amri; Zois, James; Slimani, Maamer; Russel, Mark; Bouhlel, Ezdine
2018-01-01
This review aimed 1) to evaluate the current research that examines the efficacy of warm-up (WU) and re-warm-up (RWU) on physical performance; and 2) to highlight the WU and RWU characteristics that optimise subsequent performance in soccer players. A computerized search was performed in the PubMed, ScienceDirect and Google Scholar (from 1995 to December 2015) for English-language, peer-reviewed investigations using the terms "soccer" OR "football" AND "warm-up" OR "stretching" OR "post-activation potentiation" OR "pre-activity" OR "re-warm-up" AND "performance" OR "jump" OR "sprint" OR "running". Twenty seven articles were retrieved. Particularly, 22 articles examined the effects of WU on soccer performance and 5 articles focused on the effects of RWU. Clear evidence exists supporting the inclusion of dynamic stretching or postactivation potentiation-based exercises within a WU as acute performance enhancements were reported (pooled estimate changes of +3.46% and +4.21%, respectively). The FIFA 11+ WU also significantly increases strength, jump, speed and explosive performances (changes from 1% to 20%). At half-time, active RWU protocols including postactivation potentiation practices and multidirectional speed drills attenuate temperature and performance reductions induced by habitual practice. The data obtained in the present review showed that the level of play did not moderate the effectiveness of WU and RWU on soccer performance. This review demonstrated that a static stretching WU reduced acute subsequent performance, while WU activities that include dynamic stretching, PAP-based exercises, and the FIFA 11+ can elicit positive effects in soccer players. The efficacy of an active RWU during half-time is also justified.
NASA Astrophysics Data System (ADS)
Reynolds, L. L.; Lajtha, K.; Bowden, R.; Johnson, B. R.; Bridgham, S. D.
2013-12-01
The decomposition of soil organic matter is expected to increase with global warming and has been commonly described by kinetic models with at least two pools with differing turnover times. Pools characterized by rapid turnover are thought to consist of labile substrates. Meanwhile, slower turnover is attributed, in part, to greater chemical complexity and a necessarily higher activation energy which should in turn lead to a higher sensitivity (Q10) to temperature and a proportionally larger response to warming. Experimental tests of the relative Q10 of these pools have been inconclusive and contradictory in part due the fact that all pools are decomposing simultaneously and soils kept under differing conditions over long periods of time diverge in more than the Q10 response making them less comparable over time. We present here a test of the temperature response on soils from a 20 yr litter manipulation experiment incubated under an experimental regime that minimizes divergence among the soils. We hypothesize that 1) if exclusion of inputs has depleted labile substrates and 2) the remaining carbon is more chemically complex, then the input exclusion treatments should show a higher Q10 compared to the ambient or increased input treatments. The soils are taken from the Detritus Input and Removal Treatment (DIRT) plots in the Bousson Forest, Pennsylvania, US. The DIRT treatments consist of litter and root exclusion (no inputs = NI), no roots (NR), no litter (NL), double litter (DL), and ambient conditions (C). Soils were incubated at 25oC for 525 days. Periodically, replicate sets were rotated into 15oC, 35oC or remained at 25oC for 24 hr. The headspace CO2 concentration was measured before and after the 24 hr temperature treatments, and then all replicate sets were returned to 25oC. Twenty years of input exclusion decreased respiration rate, with NI < NR = NL < C = DL, and total carbon content, and thus, we conclude, labile substrates. The respiration rate at 25oC was the same for all replicate sets throughout, indicating no divergence due to the temperature rotations. Contrary to our hypothesis, our data indicates that Q10 was similar among the DIRT treatments, despite the clear differences in their carbon pools. Similar studies have examined the temperature response due to depletion labile substrate through laboratory incubation, rather beginning with presumably very different initial labile pools. Our results would suggest that soils with differing soil carbon content and presumably differing carbon quality have the same relative temperature responses. Recent studies have questioned the putative importance of chemical recalcitrance in soils, which would explain our results relative to the predictions of enzymatic kinetic theory.
NASA Astrophysics Data System (ADS)
Hill, V. J.; Steele, M.; Light, B.
2016-02-01
As part of the Arctic Observing Network, a new ice-tethered buoy has been developed for monitoring the role of sunlight in regulating ocean temperature, phytoplankton growth, and carbon cycling. A 20 or 50 m string (depending on local bathymetry) supports sensors both within and below the ice for the hourly measurement of downwelling irradiance, temperature, Chlorophyll a, light backscattering, and dissolved organic material (DOM). Two buoys were deployed in March 2014 and two in March 2015. Because the buoys are engineered to survive melting out of first year ice, they have successfully provided complete seasonal records of water column warming, phytoplankton abundance and photo-oxidation patterns in the Pacific Arctic Region. The data collected will be used to determine whether reduced ice extent and thinner ice are driving increases in under ice warming, accelerating bottom ice ablation, increasing available photosynthetic radiation to support large under ice blooms, and to quantify photo-oxidation of the DOM pool. Observations so far have revealed strong under ice daily warming as high as ±0.5 °C driven by local solar radiation. Water column absorption was dominated by colored dissolved organic material which served to trap solar radiation in the upper water column. Chlorophyll concentrations observed in June and July indicated high phytoplankton abundance beneath the ice. Light intensity at this time was not sufficient to support growth rates high enough to produce the 8 to 10 mg m-3 of chlorophyll observed. We hypothesize that phytoplankton were advected under the ice from the ice edge. However, once there phytoplankton were able to sustain low growth rates leading to nutrient limitation before open water status was reached. Strong daily cycles of photo-oxidation have also been observed in the late summer that indicate the fast cycling of highly labile DOM in the open waters of the Pacific Arctic Region.
NASA Astrophysics Data System (ADS)
Liu, Q.; Fu, C.; Zhou, T.
2017-12-01
This study investigates the relationship between Western Pacific Subtropical High (WPSH) and summer heatwaves over Eastern China in interannual scale during the period of 1959-2016. Based on surface daily maximum temperature of 654 monitoring stations over China and meteorological variables in reanalysis data, we calculate the number of heatwave days (NHD) (one heatwave day was defined as one day with its daily maximum temperature greater than 35 degrees centigrade) as well as WPSH index and then examine their interannual relationship. Although the high-NHD-related 850hPa horizontal wind structure was shared by that of high WPSH and decaying El Niño summer, a decadal oscillation emerges for the correlation between interannual WPSH and NHD after removing their interdecadal variability by Ensemble Empirical Mode Decomposition (EEMD) method. The correlation coefficient can reach up to as high as 0.69 and as low as 0.17 and assembles the Pacific Decadal Oscillation (PDO) pretty well. Compositing analysis demonstrates that unstable WPSH-NHD relationship is mainly attributed to the spatial structure distinction of WPSH and surface warming in the El Niño decaying summer of different PDO phases. In the El Niño decaying summer of positive PDO phases, remarkable enhanced warming over majority of Southeastern China matches well with the noticeable westward extension of WPSH, which seems to be forced by the cyclonic circulation anomaly over Japan. The warmer Pacific-Indian Ocean Warm Pool intensifies the Matsuno-Gill pattern over Maritime Continent, stimulating this cyclonic circulation anomaly via the northward propagation of Rossby wave. In the El Niño decaying summer of negative PDO phases, the cooler East China Sea enhances WPSH in North China and South China Sea, and thereby leads to a local cyclonic circulation anomaly over Eastern China, which would cause a large scope of cooling and out-of-phase WPSH-NHD relationship.
Yang, Liu; Tan, Jing-Yu; Ma, Haili; Zhao, Hongjia; Lai, Jinghui; Chen, Jin-Xiu; Suen, Lorna K P
2018-03-22
Spasticity is a common post-stroke complication, and it results in substantial deterioration in the quality of life of patients. Although potential positive effects of warm-needle moxibustion on spasticity after stroke have been observed, evidence on its definitive effect remains uncertain. This study aimed to summarize clinical evidence pertaining to therapeutic effects and safety of warm-needle moxibustion for treating spasticity after stroke. Randomized controlled trials were reviewed systematically on the basis of the Cochrane Handbook for Systematic Reviews of Interventions. The report follows the PRISMA statement. Ten electronic databases (PubMed, CENTRAL, EMBASE, AMED, CINAHL, Web of Science, CBM, CNKI, WanFang, and VIP) were explored, and articles were retrieved manually from two Chinese journals (The Journal of Traditional Chinese Medicine and Zhong Guo Zhen Jiu) through retrospective search. Randomized controlled trials with warm-needle moxibustion as treatment intervention for patients with limb spasm after stroke were included in this review. The risk of bias assessment tool was utilized in accordance with Cochrane Handbook 5.1.0. All included studies reported spasm effect as primary outcome. Effect size was estimated using relative risk, standardized mean difference, or mean difference with a corresponding 95% confidence interval. Review Manager 5.3 was utilized for meta-analysis. Twelve randomized controlled trials with certain methodological flaws and risk of bias were included, and they involved a total of 878 participants. Warm-needle moxibustion was found to be superior to electroacupuncture or acupuncture in reducing spasm and in promoting motor function and daily living activities. Pooled results for spasm effect and motor function were significant when warm-needle moxibustion was compared with electroacupuncture or acupuncture. A comparison of daily living activities indicated significant differences between warm-needle moxibustion and electroacupuncture. However, no difference was observed between warm-needle moxibustion and acupuncture. Warm-needle moxibustion may be a promising intervention to reduce limb spasm as well as improve motor function and daily living activities for stroke patients with spasticity. However, evidence was not conclusive. Rigorously designed randomized controlled trials with sample sizes larger than that in the included trials should be conducted for verification. Copyright © 2018 Elsevier Ltd. All rights reserved.
Artificial warming of arctic meadow under pollution stress: Experimental design
USDA-ARS?s Scientific Manuscript database
Boreal and arctic terrestrial ecosystems are central to the climate change debate, notably because future warming is expected to be disproportionate as compared to world averages. Likewise, greenhouse gas (GHG) release from terrestrial ecosystems exposed to climate warming is expected to be the larg...
Changes in extremes due to half a degree warming in observations and models
NASA Astrophysics Data System (ADS)
Fischer, E. M.; Schleussner, C. F.; Pfleiderer, P.
2017-12-01
Assessing the climate impacts of half-a-degree warming increments is high on the post-Paris science agenda. Discriminating those effects is particularly challenging for climate extremes such as heavy precipitation and heat extremes for which model uncertainties are generally large, and for which internal variability is so important that it can easily offset or strongly amplify the forced local changes induced by half a degree warming. Despite these challenges we provide evidence for large-scale changes in the intensity and frequency of climate extremes due to half a degree warming. We first assess the difference in extreme climate indicators in observational data for the 1960s and 1970s versus the recent past, two periods differ by half a degree. We identify distinct differences for the global and continental-scale occurrence of heat and heavy precipitation extremes. We show that those observed changes in heavy precipitation and heat extremes broadly agree with simulated historical differences and are informative for the projected differences between 1.5 and 2°C warming despite different radiative forcings. We therefore argue that evidence from the observational record can inform the debate about discernible climate impacts in the light of model uncertainty by providing a conservative estimate of the implications of 0.5°C warming. A limitation of using the observational record arises from potential non-linearities in the response of climate extremes to a certain level of warming. We test for potential non-linearities in the response of heat and heavy precipitation extremes in a large ensemble of transient climate simulations. We further quantify differences between a time-window approach in a coupled model large ensemble vs. time-slice experiments using prescribed SST experiments performed in the context of the HAPPI-MIP project. Thereby we provide different lines of evidence that half a degree warming leads to substantial changes in the expected occurrence of heat and heavy precipitation extremes.
Implications of Warm Rain in Shallow Cumulus and Congestus Clouds for Large-Scale Circulations
NASA Astrophysics Data System (ADS)
Nuijens, Louise; Emanuel, Kerry; Masunaga, Hirohiko; L'Ecuyer, Tristan
2017-11-01
Space-borne observations reveal that 20-40% of marine convective clouds below the freezing level produce rain. In this paper we speculate what the prevalence of warm rain might imply for convection and large-scale circulations over tropical oceans. We present results using a two-column radiative-convective model of hydrostatic, nonlinear flow on a non-rotating sphere, with parameterized convection and radiation, and review ongoing efforts in high-resolution modeling and observations of warm rain. The model experiments investigate the response of convection and circulation to sea surface temperature (SST) gradients between the columns and to changes in a parameter that controls the conversion of cloud condensate to rain. Convection over the cold ocean collapses to a shallow mode with tops near 850 hPa, but a congestus mode with tops near 600 hPa can develop at small SST differences when warm rain formation is more efficient. Here, interactive radiation and the response of the circulation are crucial: along with congestus a deeper moist layer develops, which leads to less low-level radiative cooling, a smaller buoyancy gradient between the columns, and therefore a weaker circulation and less subsidence over the cold ocean. The congestus mode is accompanied with more surface precipitation in the subsiding column and less surface precipitation in the deep convecting column. For the shallow mode over colder oceans, circulations also weaken with more efficient warm rain formation, but only marginally. Here, more warm rain reduces convective tops and the boundary layer depth—similar to Large-Eddy Simulation (LES) studies—which reduces the integrated buoyancy gradient. Elucidating the impact of warm rain can benefit from large-domain high-resolution simulations and observations. Parameterizations of warm rain may be constrained through collocated cloud and rain profiling from ground, and concurrent changes in convection and rain in subsiding and convecting branches of circulations may be revealed from a collocation of space-borne sensors, including the Global Precipitation Measurement (GPM) and upcoming Aeolus missions.
Final Technical Report to DOE for the Award DE-SC0004601
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Jizhong
Understanding the responses, adaptations and feedback mechanisms of biological communities to climate change is critical to project future state of earth and climate systems. Although significant amount of knowledge is available on the feedback responses of aboveground communities to climate change, little is known about the responses of belowground microbial communities due to the challenges in analyzing soil microbial community structure. Thus the goal overall goal of this study is to provide system-level, predictive mechanistic understanding of the temperature sensitivity of soil carbon (C) decomposition to climate warming by using cutting-edge integrated metagenomic technologies. Towards this goal, the following fourmore » objectives will be pursued: (i) To determine phylogenetic composition and metabolic diversity of microbial communities in the temperate grassland and tundra ecosystems; (ii) To delineate the responses of microbial community structure, functions and activities to climate change in the temperate grassland and tundra ecosystems; (iii) To determine the temperature sensitivity of microbial respiration in soils with different mixtures of labile versus recalcitrant C, and the underlying microbiological basis for temperature sensitivity of these pools; and (iv) To synthesize all experimental data for revealing microbial control of ecosystem carbon processes in responses to climate change. We have achieved our goals for all four proposed objectives. First, we determined the phylogenetic composition and metabolic diversity of microbial communities in the temperate grassland and tundra ecosystems. For this objective, we have developed a novel phasing amplicon sequencing (PAS) approach for MiSeq sequencing of amplicons. This approach has been used for sequencing various phylogenetic and functional genes related to ecosystem functioning. A comprehensive functional gene array (e.g., GeoChip 5.0) has also been developed and used for soil microbial community analysis in this study. In addition, shot-gun metagenome sequencing along with the above approaches have been used to understand the phylogenetic and functional diversity, composition, and structure of soil microbial communities in both temperature grassland and tundra ecosystems. Second, we determined the response of soil microbial communities to climate warming in both temperate grassland and tundra ecosystems using various methods. Our major findings are: (i) Microorganisms are very rapid to respond to climate warming in the tundra ecosystem, AK, which is vulnerable, too. (ii) Climate warming also significantly shifted the metabolic diversity, composition and structure of microbial communities, and key metabolic pathways related to carbon turnover, such as cellulose degradation (~13%) and CO2 production (~10%), and to nitrogen cycling, including denitrification (~12%) were enriched by warming. (iii) Warming also altered the expression patterns of microbial functional genes important to ecosystem functioning and stability through GeoChip and metatranscriptomic analysis of soil microbial communities at the OK site. Third, we analyzed temperature sensitivity of C decomposition to climate warming for both AK and OK soils through laboratory incubations. Key results include: (i) Alaska tundra soils showed that after one year of incubation, CT in the top 15 cm could be as high as 25% and 15% of the initial soil C content at 25°C and 15°C incubations, respectively. (ii) analysis of 456 incubated soil samples with 16S rRNA gene, ITS and GeoChip hybridization showed that warming shifted the phylogenretic and functional diversity, composition, structure and metabolic potential of soil microbial communities, and at different stages of incubation, key populations and functional genes significantly changed along with soil substrate changes. Functional gene diversity and functional genes for degrading labile C components decrease along incubation when labile C components are exhausting, but the genes related to degrading recalcitrant C increase. These molecular data will be directly used for modeling. Fourth, we have developed novel approaches to integrate and model experimental data to understand microbial control of ecosystem C processes in response to climate change. We compared different methods to calculate Q10 for estimating temperature sensitivity, and new approaches for Q10 calculation and molecular ecological network analysis were also developed. Using those newly developed approaches, our result indicated that Q10s increased with the recalcitrance of C pools, suggesting that longer incubation studies are needed in order to assess the temperature sensitivity of slower C pools, especially at low temperature regimes. This project has been very productive, resulting in 42 papers published or in press, 4 submitted, and 13 in preparation.« less
Cellulosic ethanol production from warm-season perennial grasses
USDA-ARS?s Scientific Manuscript database
Warm-season (C4) perennial grasses are able to produce large quantities of biomass, and will play a key role in bioenergy production, particularly in areas with long warm growing seasons. Several different grass species have been studied as candidate bioenergy crops for the Southeast USA, and each ...
Bret C. Harvey; Rodney J. Nakamoto; Jason L. White
1999-01-01
Abstract - To improve understanding of the significance of large woody debris to stream fishes, we examined the influence of woody debris on fall and winter movement by adult coastal cutthroat trout (Oncorhynchus clarki) using radiotelemetry. Fish captured in stream pools containing large woody debris moved less than fish captured in pools lacking large woody debris or...
Controls on the size and occurrence of pools in coarse-grained forest rivers
John M. Buffington; Thomas E. Lisle; Richard D. Woodsmith; Sue Hilton
2002-01-01
Controls on pool formation are examined in gravel- and cobble-bed rivers in forest mountain drainage basins of northern California, southern Oregon, and southeastern Alaska. We demonstrate that the majority of pools at our study sites are formed by flow obstructions and that pool geometry and frequency largely depend on obstruction characteristics (size, type, and...
NASA Astrophysics Data System (ADS)
Potts, K. A.
2017-12-01
ENSO events are the most significant perturbation of the climate system. Previous attempts to link ENSO with volcanic eruptions typically failed because only large eruptions across the globe which eject tephra into the stratosphere were considered. I analyse all volcanic eruptions in South Eastern (SE) Asia (10ºS to 10ºN and from 90ºE to 160ºE) the most volcanically active area in the world with over 23% of all eruptions in the Global Volcanism Program database occurring here and with 5 volcanoes stated to have erupted nearly continuously for 30 years. SE Asia is also the region where the convective arm of the thermally direct Walker Circulation occurs driven by the intense equatorial solar radiation which creates the high surface temperature. The volcanic tephra plume intercepts some of the solar radiation by absorption/reflection which cools the surface and heats the atmosphere creating a temperature inversion compared to periods without the plume. This reduces convection and causes the Walker Cell and Trade Winds to weaken. This reduced wind speed causes the central Pacific Ocean to warm which creates convection there which further weakens the Walker Cell. With the reduced wind stress the western Pacific warm pool migrates east. This creates an ENSO event which continues until the tephra plume reduces, typically when the SE Asian monsoon commences, and convection is re-established over SE Asia and the Pacific warm pool migrates back to the west. Correlations of SE Asian tephra and the ENSO indices are typically over 0.80 at p < 0.01 In recent decades the anthropogenic SE Asian aerosol Plume (SEAP) has intensified the volcanic plume in some years from August to November. Using NASA satellite data from 1978 and the NASA MERRA 2 reanalysis dataset I show correlation coefficients typically over 0.70 and up to 0.97 at p < 0.01 between the aerosol optical depth or index and the ENSO indices. If two events A and B correlate 5 options are available: 1. A causes B; 2. B causes A; 3. C, another event, causes A &B simultaneously; 4. It's a coincidence; and 5. The relationship is complex with feedback. The volcanic correlations only allow options 1 or 4 as ENSO cannot cause volcanoes to erupt and are backed up by several independent satellite datasets. I conclude volcanic and anthropogenic aerosols over SE Asia are the sole cause of all ENSO events.
Huang, Qunfang; Lu, Yuqi
2015-07-27
The Yangtze River Delta (YRD) has experienced rapid urbanization and dramatic economic development since 1978 and the Yangtze River Delta urban agglomeration (YRDUA) has been one of the three largest urban agglomerations in China. We present evidence of a significant urban heat island (UHI) effect on climate warming based on an analysis of the impacts of the urbanization rate, urban population, and land use changes on the warming rate of the daily average, minimal (nighttime) and maximal (daytime) air temperature in the YRDUA using 41 meteorological stations observation data. The effect of the UHI on climate warming shows a large spatial variability. The average warming rates of average air temperature of huge cities, megalopolises, large cities, medium-sized cities, and small cities are 0.483, 0.314 ± 0.030, 0.282 ± 0.042, 0.225 ± 0.044 and 0.179 ± 0.046 °C/decade during the period of 1957-2013, respectively. The average warming rates of huge cities and megalopolises are significantly higher than those of medium-sized cities and small cities, indicating that the UHI has a significant effect on climate warming (t-test, p < 0.05). Significantly positive correlations are found between the urbanization rate, population, built-up area and warming rate of average air temperature (p < 0.001). The average warming rate of average air temperature attributable to urbanization is 0.124 ± 0.074 °C/decade in the YRDUA. Urbanization has a measurable effect on the observed climate warming in the YRD aggravating the global climate warming.
Huang, Qunfang; Lu, Yuqi
2015-01-01
The Yangtze River Delta (YRD) has experienced rapid urbanization and dramatic economic development since 1978 and the Yangtze River Delta urban agglomeration (YRDUA) has been one of the three largest urban agglomerations in China. We present evidence of a significant urban heat island (UHI) effect on climate warming based on an analysis of the impacts of the urbanization rate, urban population, and land use changes on the warming rate of the daily average, minimal (nighttime) and maximal (daytime) air temperature in the YRDUA using 41 meteorological stations observation data. The effect of the UHI on climate warming shows a large spatial variability. The average warming rates of average air temperature of huge cities, megalopolises, large cities, medium-sized cities, and small cities are 0.483, 0.314 ± 0.030, 0.282 ± 0.042, 0.225 ± 0.044 and 0.179 ± 0.046 °C/decade during the period of 1957–2013, respectively. The average warming rates of huge cities and megalopolises are significantly higher than those of medium-sized cities and small cities, indicating that the UHI has a significant effect on climate warming (t-test, p < 0.05). Significantly positive correlations are found between the urbanization rate, population, built-up area and warming rate of average air temperature (p < 0.001). The average warming rate of average air temperature attributable to urbanization is 0.124 ± 0.074 °C/decade in the YRDUA. Urbanization has a measurable effect on the observed climate warming in the YRD aggravating the global climate warming. PMID:26225986
The whole-soil carbon flux in response to warming
NASA Astrophysics Data System (ADS)
Hicks Pries, Caitlin E.; Castanha, C.; Porras, R. C.; Torn, M. S.
2017-03-01
Soil organic carbon harbors three times as much carbon as Earth’s atmosphere, and its decomposition is a potentially large climate change feedback and major source of uncertainty in climate projections. The response of whole-soil profiles to warming has not been tested in situ. In a deep warming experiment in mineral soil, we found that CO2 production from all soil depths increased with 4°C warming; annual soil respiration increased by 34 to 37%. All depths responded to warming with similar temperature sensitivities, driven by decomposition of decadal-aged carbon. Whole-soil warming reveals a larger soil respiration response than many in situ experiments (most of which only warm the surface soil) and models.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Griffin, Brian M.; Larson, Vincent E.
Microphysical processes, such as the formation, growth, and evaporation of precipitation, interact with variability and covariances (e.g., fluxes) in moisture and heat content. For instance, evaporation of rain may produce cold pools, which in turn may trigger fresh convection and precipitation. These effects are usually omitted or else crudely parameterized at subgrid scales in weather and climate models.A more formal approach is pursued here, based on predictive, horizontally averaged equations for the variances, covariances, and fluxes of moisture and heat content. These higher-order moment equations contain microphysical source terms. The microphysics terms can be integrated analytically, given a suitably simplemore » warm-rain microphysics scheme and an approximate assumption about the multivariate distribution of cloud-related and precipitation-related variables. Performing the integrations provides exact expressions within an idealized context.A large-eddy simulation (LES) of a shallow precipitating cumulus case is performed here, and it indicates that the microphysical effects on (co)variances and fluxes can be large. In some budgets and altitude ranges, they are dominant terms. The analytic expressions for the integrals are implemented in a single-column, higher-order closure model. Interactive single-column simulations agree qualitatively with the LES. The analytic integrations form a parameterization of microphysical effects in their own right, and they also serve as benchmark solutions that can be compared to non-analytic integration methods.« less
Prototype Mcs Parameterization for Global Climate Models
NASA Astrophysics Data System (ADS)
Moncrieff, M. W.
2017-12-01
Excellent progress has been made with observational, numerical and theoretical studies of MCS processes but the parameterization of those processes remain in a dire state and are missing from GCMs. The perceived complexity of the distribution, type, and intensity of organized precipitation systems has arguably daunted attention and stifled the development of adequate parameterizations. TRMM observations imply links between convective organization and large-scale meteorological features in the tropics and subtropics that are inadequately treated by GCMs. This calls for improved physical-dynamical treatment of organized convection to enable the next-generation of GCMs to reliably address a slew of challenges. The multiscale coherent structure parameterization (MCSP) paradigm is based on the fluid-dynamical concept of coherent structures in turbulent environments. The effects of vertical shear on MCS dynamics implemented as 2nd baroclinic convective heating and convective momentum transport is based on Lagrangian conservation principles, nonlinear dynamical models, and self-similarity. The prototype MCS parameterization, a minimalist proof-of-concept, is applied in the NCAR Community Climate Model, Version 5.5 (CAM 5.5). The MCSP generates convectively coupled tropical waves and large-scale precipitation features notably in the Indo-Pacific warm-pool and Maritime Continent region, a center-of-action for weather and climate variability around the globe.
Soil Carbon Response to Soil Warming and Nitrogen Deposition in a Temperate Deciduous Forest
NASA Astrophysics Data System (ADS)
Parton, W. J.; Savage, K. E.; Davidson, E. A.; Trumbore, S.; Frey, S. D.
2011-12-01
While estimates of global soil C stocks vary widely, it is clear that soils store several times more C than is present in the atmosphere as CO2, and a significant fraction of soil C stocks are potentially subject to faster rates of decomposition in a warmer world. We address, through field based studies and modeling efforts, whether manipulations of soil temperature and nitrogen supply affect the magnitude and relative age of soil C substrates that are respired from a temperate deciduous forest located at Harvard Forest, MA. A soil warming and nitrogen addition experiment was initiated at the Harvard Forest in 2006. The experiment consists of six replicates of four treatments, control, heated, nitrogen, and heat+nitrogen addition. Soil temperatures in the heated plots are continuously elevated 5 oC above ambient and for the fertilized plots an aqueous solution of NH4NO3 is applied at a rate of 5 g m-2 yr-1. Soil C efflux from these plots was measured (n=24, 6 per treatment) biweekly throughout the year, while 14CO2 was measured (3 samples per treatment) several times during the summer months from 2006-2010. Following treatment, observed rates of annual C efflux increased under heating and nitrogen additions with heating treatments showing the greatest increase in respired C. The difference between control and treatments was greatest during the initial year following treatment; however this difference decreased in the subsequent 3 years of measurement. The plots designated for heating had a higher 14C signature from CO2 efflux prior to the heating (presumably due to spatial heterogeneity). However, because of the high spatial heterogeneity in measured 14C among treatments, no significant difference among treatments was observed from 2006 through 2010. Long term datasets (1995 through 2010) of soil C stocks, radiocarbon content, and CO2 efflux were used to parameterize the ForCent model for Harvard forest. The model was then run with the same treatment parameters as the field experiment for comparison of soil C efflux and 14C. Model results show increased annual C efflux for heated, nitrogen and nitrogen+heat plots with the largest increase in respired C from heated treatments. However there was little difference in simulated 14C respired from any treatment plots. While heating speeds up decomposition of all soil C pools in the model, the absolute amount of increased decomposition from the older pools (with higher 14C) was not large enough to make a difference in 14C composition of respired C, even as the more labile pool with lower 14C was gradually depleted. These results demonstrate that experiments conducted over several years do not provide great insight into the dynamics of slowly cycling soil C.
Hakeem, Abdul R; Birks, Theodore; Azeem, Qasim; Di Franco, Filippo; Gergely, Szabolcs; Harris, Adrian M
2016-06-01
There is conflicting evidence for the use of warmed, humidified carbon dioxide (CO2) for creating pneumoperitoneum during laparoscopic cholecystectomy. Few studies have reported less post-operative pain and analgesic requirement when warmed CO2 was used. This systematic review and meta-analysis aims to analyse the literature on the use of warmed CO2 in comparison to standard temperature CO2 during laparoscopic cholecystectomy. Systematic review and meta-analysis carried out in line with the PRISMA guidelines. Primary outcomes of interest were post-operative pain at 6 h, day 1 and day 2 following laparoscopic cholecystectomy. Secondary outcomes were analgesic usage and drop in intra-operative core body temperature. Standard Mean Difference (SMD) was calculated for continuous variables. Six randomised controlled trials (RCTs) met the inclusion criteria (n = 369). There was no significant difference in post-operative pain at 6 h [3 RCTs; SMD = -0.66 (-1.33, 0.02) (Z = 1.89) (P = 0.06)], day 1 [4 RCTs; SMD = -0.51 (-1.47, 0.44) (Z = 1.05) (P = 0.29)] and day 2 [2 RCTs; SMD = -0.96 (-2.30, 0.37) (Z = 1.42) (P = 0.16)] between the warmed CO2 and standard CO2 group. There was no difference in analgesic usage between the two groups, but pooled analysis was not possible. Two RCTs reported significant drop in intra-operative core body temperature, but there were no adverse events related to this. This review showed no difference in post-operative pain and analgesic requirements between the warmed and standard CO2 insufflation during laparoscopic cholecystectomy. Currently there is not enough high quality evidence to suggest routine usage of warmed CO2 for creating pneumoperitoneum during laparoscopic cholecystectomy. Copyright © 2015 Royal College of Surgeons of Edinburgh (Scottish charity number SC005317) and Royal College of Surgeons in Ireland. Published by Elsevier Ltd. All rights reserved.
Long-Term Warming Alters Carbohydrate Degradation Potential in Temperate Forest Soils
Billings, Andrew F.; Blanchard, Jeff L.; Burkhardt, Daniel B.; Frey, Serita D.; Melillo, Jerry M.; Schnabel, Julia; van Diepen, Linda T. A.
2016-01-01
ABSTRACT As Earth's climate warms, soil carbon pools and the microbial communities that process them may change, altering the way in which carbon is recycled in soil. In this study, we used a combination of metagenomics and bacterial cultivation to evaluate the hypothesis that experimentally raising soil temperatures by 5°C for 5, 8, or 20 years increased the potential for temperate forest soil microbial communities to degrade carbohydrates. Warming decreased the proportion of carbohydrate-degrading genes in the organic horizon derived from eukaryotes and increased the fraction of genes in the mineral soil associated with Actinobacteria in all studies. Genes associated with carbohydrate degradation increased in the organic horizon after 5 years of warming but had decreased in the organic horizon after warming the soil continuously for 20 years. However, a greater proportion of the 295 bacteria from 6 phyla (10 classes, 14 orders, and 34 families) isolated from heated plots in the 20-year experiment were able to depolymerize cellulose and xylan than bacterial isolates from control soils. Together, these findings indicate that the enrichment of bacteria capable of degrading carbohydrates could be important for accelerated carbon cycling in a warmer world. IMPORTANCE The massive carbon stocks currently held in soils have been built up over millennia, and while numerous lines of evidence indicate that climate change will accelerate the processing of this carbon, it is unclear whether the genetic repertoire of the microbes responsible for this elevated activity will also change. In this study, we showed that bacteria isolated from plots subject to 20 years of 5°C of warming were more likely to depolymerize the plant polymers xylan and cellulose, but that carbohydrate degradation capacity is not uniformly enriched by warming treatment in the metagenomes of soil microbial communities. This study illustrates the utility of combining culture-dependent and culture-independent surveys of microbial communities to improve our understanding of the role changing microbial communities may play in soil carbon cycling under climate change. PMID:27590813
Mercury concentration in phytoplankton in response to warming of an autumn - winter season.
Bełdowska, Magdalena; Kobos, Justyna
2016-08-01
Among other climate changes in the southern Baltic, there is a tendency towards warming, especially in autumn-winter. As a result, the ice cover on the coastal zone often fails to occur. This is conducive to the thriving of phytoplankton, in which metals, including mercury, can be accumulated. The dry deposition of atmospheric Hg during heating seasons is more intense than in non-heating seasons, owing to the combustion of fossil fuels for heating purposes. This has resulted in studies into the role of phytoplankton in the introduction of Hg into the first link of trophic chain, as a function of autumn and winter warming in the coastal zone of the lagoon. The studies were conducted at two stations in the coastal zone of the southern Baltic, in the Puck Lagoon, between December 2011 and May 2013. The obtained results show that, in the estuary region, the lack of ice cover can lead to a 30% increase and during an "extremely warm" autumn and winter an increase of up to three-fold in the mean annual Hg pool in phytoplankton (mass of Hg in phytoplankton per liter of seawater). The Hg content in phytoplankton was higher when Mesodinium rubrum was prevalent in the biomass, while the proportion of dinoflagellates was small. Copyright © 2016 Elsevier Ltd. All rights reserved.
The microbe-mediated mechanisms affecting topsoil carbon stock in Tibetan grasslands
Yue, Haowei; Wang, Mengmeng; Wang, Shiping; ...
2015-02-17
Warming has been shown to cause soil carbon (C) loss in northern grasslands owing to accelerated microbial decomposition that offsets increased grass productivity. Yet, a multi-decadal survey indicated that the surface soil C stock in Tibetan alpine grasslands remained relatively stable. To investigate this inconsistency, we analyzed the feedback responses of soil microbial communities to simulated warming by soil transplant in Tibetan grasslands. Microbial functional diversity decreased in response to warming, whereas microbial community structure did not correlate with changes in temperature. The relative abundance of catabolic genes associated with nitrogen (N) and C cycling decreased with warming, most notablymore » in genes encoding enzymes associated with more recalcitrant C substrates. By contrast, genes associated with C fixation increased in relative abundance. The relative abundance of genes associated with urease, glutamate dehydrogenase and ammonia monoxygenase ( ureC, gdh and amoA) were significantly correlated with N 2O efflux. These results suggest that unlike arid/semiarid grasslands, Tibetan grasslands maintain negative feedback mechanisms that preserve terrestrial C and N pools. To examine whether these trends were applicable to the whole plateau, we included these measurements in a model and verified that topsoil C stocks remained relatively stable. Thus, by establishing linkages between microbial metabolic potential and soil biogeochemical processes, we conclude that long-term C loss in Tibetan grasslands is ameliorated by a reduction in microbial decomposition of recalcitrant C substrates.« less
Arctic shrubification mediates the impacts of warming climate on changes to tundra vegetation
NASA Astrophysics Data System (ADS)
Mod, Heidi K.; Luoto, Miska
2016-12-01
Climate change has been observed to expand distributions of woody plants in many areas of arctic and alpine environments—a phenomenon called shrubification. New spatial arrangements of shrubs cause further changes in vegetation via changing dynamics of biotic interactions. However, the mediating influence of shrubification is rarely acknowledged in predictions of tundra vegetation change. Here, we examine possible warming-induced landscape-level vegetation changes in a high-latitude environment using species distribution modelling (SDM), specifically concentrating on the impacts of shrubification on ambient vegetation. First, we produced estimates of current shrub and tree cover and forecasts of their expansion under climate change scenarios to be incorporated to SDMs of 116 vascular plants. Second, the predictions of vegetation change based on the models including only abiotic predictors and the models including abiotic, shrub and tree predictors were compared in a representative test area. Based on our model predictions, abundance of woody plants will expand, thus decreasing predicted species richness, amplifying species turnover and increasing the local extinction risk for ambient vegetation. However, the spatial variation demonstrated in our predictions highlights that tundra vegetation can be expected to show a wide variety of different responses to the combined effects of warming and shrubification, depending on the original plant species pool and environmental conditions. We conclude that realistic forecasts of the future require acknowledging the role of shrubification in warming-induced tundra vegetation change.
How does climate warming affect plant-pollinator interactions?
Hegland, Stein Joar; Nielsen, Anders; Lázaro, Amparo; Bjerknes, Anne-Line; Totland, Ørjan
2009-02-01
Climate warming affects the phenology, local abundance and large-scale distribution of plants and pollinators. Despite this, there is still limited knowledge of how elevated temperatures affect plant-pollinator mutualisms and how changed availability of mutualistic partners influences the persistence of interacting species. Here we review the evidence of climate warming effects on plants and pollinators and discuss how their interactions may be affected by increased temperatures. The onset of flowering in plants and first appearance dates of pollinators in several cases appear to advance linearly in response to recent temperature increases. Phenological responses to climate warming may therefore occur at parallel magnitudes in plants and pollinators, although considerable variation in responses across species should be expected. Despite the overall similarities in responses, a few studies have shown that climate warming may generate temporal mismatches among the mutualistic partners. Mismatches in pollination interactions are still rarely explored and their demographic consequences are largely unknown. Studies on multi-species plant-pollinator assemblages indicate that the overall structure of pollination networks probably are robust against perturbations caused by climate warming. We suggest potential ways of studying warming-caused mismatches and their consequences for plant-pollinator interactions, and highlight the strengths and limitations of such approaches.
Large-eddy simulations of a Salt Lake Valley cold-air pool
NASA Astrophysics Data System (ADS)
Crosman, Erik T.; Horel, John D.
2017-09-01
Persistent cold-air pools are often poorly forecast by mesoscale numerical weather prediction models, in part due to inadequate parameterization of planetary boundary-layer physics in stable atmospheric conditions, and also because of errors in the initialization and treatment of the model surface state. In this study, an improved numerical simulation of the 27-30 January 2011 cold-air pool in Utah's Great Salt Lake Basin is obtained using a large-eddy simulation with more realistic surface state characterization. Compared to a Weather Research and Forecasting model configuration run as a mesoscale model with a planetary boundary-layer scheme where turbulence is highly parameterized, the large-eddy simulation more accurately captured turbulent interactions between the stable boundary-layer and flow aloft. The simulations were also found to be sensitive to variations in the Great Salt Lake temperature and Salt Lake Valley snow cover, illustrating the importance of land surface state in modelling cold-air pools.
Direct Contribution of the Stratosphere to Recent West Antarctic Warming in Austral Spring
NASA Astrophysics Data System (ADS)
Nicolas, J. P.; Bromwich, D. H.
2015-12-01
The causes of the rapid warming of West Antarctica in recent decades are not yet fully understood. Thus far, investigations of the phenomenon have emphasized the role of tropospheric teleconnections originating from the Tropics in austral winter, but have had less success in explaining the strong warming in austral spring (SON). Here, we further explore the mechanisms behind the SON warming by focusing on September, the month during which atmospheric temperature and circulation trends in and around West Antarctica largely account for the 3-month average SON trends. We show that the tropospheric trends toward lower pressures/heights (more cyclonic) over the South Pacific sector of the Southern Ocean previously reported extend vertically well into the stratosphere. In the lower troposphere, these circulation changes, by steering more warm air toward West Antarctica, have likely contributed to the warming of the region. In the stratosphere, we provide evidence that the cyclonic trends are associated with a very prominent stratospheric warming in the Australian sector, believed to be the result of increased tropically-forced planetary wave activity and wave breaking. Through thermal wind balance, this regional stratospheric warming has led to a poleward displacement of the polar-night jet south of Australia, leading to enhanced cyclonic motion and potential vorticity (PV) downwind over the Amundsen Sea region. Finally, we establish, through the PV inversion framework, a causal link between stratospheric and tropospheric changes, whereby large PV anomalies in the stratosphere induce consistent geopotential height anomalies down in the troposphere. Our results highlight not only the important and largely overlooked role played by the stratosphere in recent West Antarctic climate change, but also a new pathway for tropical climate variability to influence Antarctic climate.
Williams, A. Park; Funk, Christopher C.
2010-01-01
An estimated 14.3 million people are currently (July 2010) food insecure in Kenya and Ethiopia, and the U.S. government has spent more than $972 million on food aid in these two countries since 2009 (USAID, 2010). This insecurity stems from recent drought and rapid population growth that has outpaced agricultural development (Funk and others, 2008; Funk and Brown, 2009). Previous work by Funk and others (2005, 2008) and Verdin and others (2005) has linked drought conditions in Kenya and Ethiopia with warm sea surface temperatures (SSTs) in the Indian Ocean. Recent work has shown that Indian Ocean SSTs substantially affect rainfall in this region from March through June (Funk and others, 2008; Funk and Verdin, 2009). This season is known as the 'long rains' in Kenya and the 'Belg' rains in Ethiopia.
Eutrophication and Warming Boost Cyanobacterial Biomass and Microcystins.
Lürling, Miquel; van Oosterhout, Frank; Faassen, Elisabeth
2017-02-11
Eutrophication and warming are key drivers of cyanobacterial blooms, but their combined effects on microcystin (MC) concentrations are less studied. We tested the hypothesis that warming promotes cyanobacterial abundance in a natural plankton community and that eutrophication enhances cyanobacterial biomass and MC concentrations. We incubated natural seston from a eutrophic pond under normal, high, and extreme temperatures (i.e., 20, 25, and 30 °C) with and without additional nutrients added (eutrophication) mimicking a pulse as could be expected from projected summer storms under climate change. Eutrophication increased algal- and cyanobacterial biomass by 26 and 8 times, respectively, and led to 24 times higher MC concentrations. This effect was augmented with higher temperatures leading to 45 times higher MC concentrations at 25 °C, with 11 times more cyanobacterial chlorophyll- a and 25 times more eukaryote algal chlorophyll- a . At 30 °C, MC concentrations were 42 times higher, with cyanobacterial chlorophyll- a being 17 times and eukaryote algal chlorophyll- a being 24 times higher. In contrast, warming alone did not yield more cyanobacteria or MCs, because the in situ community had already depleted the available nutrient pool. MC per potential MC producing cell declined at higher temperatures under nutrient enrichments, which was confirmed by a controlled experiment with two laboratory strains of Microcystis aeruginosa. Nevertheless, MC concentrations were much higher at the increased temperature and nutrient treatment than under warming alone due to strongly promoted biomass, lifting N-imitation and promotion of potential MC producers like Microcystis . This study exemplifies the vulnerability of eutrophic urban waters to predicted future summer climate change effects that might aggravate cyanobacterial nuisance.
Using physiology to predict the responses of ants to climatic warming.
Diamond, Sarah E; Penick, Clint A; Pelini, Shannon L; Ellison, Aaron M; Gotelli, Nicholas J; Sanders, Nathan J; Dunn, Robert R
2013-12-01
Physiological intolerance of high temperatures places limits on organismal responses to the temperature increases associated with global climatic change. Because ants are geographically widespread, ecologically diverse, and thermophilic, they are an ideal system for exploring the extent to which physiological tolerance can predict responses to environmental change. Here, we expand on simple models that use thermal tolerance to predict the responses of ants to climatic warming. We investigated the degree to which changes in the abundance of ants under warming reflect reductions in the thermal niche space for their foraging. In an eastern deciduous forest system in the United States with approximately 40 ant species, we found that for some species, the loss of thermal niche space for foraging was related to decreases in abundance with increasing experimental climatic warming. However, many ant species exhibited no loss of thermal niche space. For one well-studied species, Temnothorax curvispinosus, we examined both survival of workers and growth of colonies (a correlate of reproductive output) as functions of temperature in the laboratory, and found that the range of thermal tolerances for colony growth was much narrower than for survival of workers. We evaluated these functions in the context of experimental climatic warming and found that the difference in the responses of these two attributes to temperature generates differences in the means and especially the variances of expected fitness under warming. The expected mean growth of colonies was optimized at intermediate levels of warming (2-4°C above ambient); yet, the expected variance monotonically increased with warming. In contrast, the expected mean and variance of the survival of workers decreased when warming exceeded 4°C above ambient. Together, these results for T. curvispinosus emphasize the importance of measuring reproduction (colony growth) in the context of climatic change: indeed, our examination of the loss of thermal niche space with the larger species pool could be missing much of the warming impact due to these analyses being based on survival rather than reproduction. We suggest that while physiological tolerance of temperature can be a useful predictive tool for modeling responses to climatic change, future efforts should be devoted to understanding the causes and consequences of variability in models of tolerance calibrated with different metrics of performance and fitness.
Formation and maintenance of a forced pool-riffle couplet following loading of large wood
NASA Astrophysics Data System (ADS)
Thompson, D. M.; Fixler, S. A.
2017-11-01
Pool-riffle maintenance has been documented in numerous studies, but it has been almost impossible to characterize detailed natural pool-riffle formation mechanisms because of the lack of baseline data prior to pool establishment. In 2013, a study was conducted on the Blackledge River in Connecticut to document the formation of a new pool-riffle couplet on a section of river that had previously been studied from 1999 to 2001. In 2001, the study reach contained a scour hole with a residual depth of 0.08 ± 0.09 m downstream of a 1930s paired deflector with no identifiable riffle immediately downstream. At this time, a large, severely undercut, hemlock tree was noted along the left bank. Sometime between fall 2001 and 2004, the tree fell perpendicular to flow across the channel and formed a large wood (LW) jam and new pool-riffle couplet several meters downstream of the old scour hole. Pool spacing along the reach decreased from 4.47 bankfull widths (BFW) in 1999 to 3.83 BFW after the new pool-riffle couplet formed. The new pool has a residual depth, the water depth of the streambed depression below the elevation of the immediate downstream hydraulic control, of 1.36 ± 0.075 to 1.59 ± 0.075 m, which resulted from a combination of 1.32 ± 0.09 m or less of incision below the old scour hole (95.6% or less of the depth increase) and up to 0.18 ± 0.09 m of downstream deposition and associated backwater formation (13.2% or less of the depth increase). To assess dynamic stability of the pool-riffle couplet over several flood cycles, surficial fine-sediment and organic material along the reach were quantified. The 23-m-long pool stores 25.7% of the surficial fine grained sediments and 15.4% of organic material along a 214-m-long reach that includes one additional artificially created pool. An adjacent 50-m-long secondary channel impacted by the LW jam stores 65.3% of the surficial fine-grained sediments and 54.8% of organic material along the full reach.
NASA Astrophysics Data System (ADS)
Sinclair, D. J.; Sherrell, R. M.; Rowe, H. D.; Wright, J. D.; Mortlock, R. A.; Hellstrom, J. C.; Cheng, H.; Min, A.; Edwards, R. L.
2014-12-01
The South Pacific Convergence Zone (SPCZ) is the largest component of the Intertropical Convergence Zone (ITCZ), and its impact on global climate rivals that of the deep convection at the heart of the Western Pacific Warm Pool. Rapid glacial climate fluctuations, such as Dansgaard-Oeschger (D-O) Events, would have triggered a reorganization of tropical systems such as the SPCZ, manifesting as significantly altered rainfall across the tropical south Pacific. However, a critical lack of high-resolution glacial records from this region means the dynamics of the SPCZ are largely unknown. We present a decade-resolution, absolute-dated speleothem rainfall record from the Island of Niue in the southern Tropical Pacific spanning 25-45 ka. Sr, Mg, δ18O and δ13C variations show that Niue experienced large, rapid fluctuations in rainfall lasting up to 1200 years. Between 40 and 45 ka, these show a remarkable concordance with the timing, duration and shape of D-O events 9-11. Rapid warming in Greenland was accompanied by a sudden increase in rainfall in Niue, implying that the SPCZ was strongly coupled with climate in the high Northern latitudes. These changes are not consistent with a wholesale northward shift in the SPCZ, which would have resulted in drying in Niue, and instead imply that the SPCZ underwent a more complex reorganization, perhaps rotating around its western edge in a manner analogous to modern-day extreme ENSO events. The speleothem record between 25-40 ka also shows large changes in rainfall, with D-O events identifiable. However, these changes are less well matched to Greenland, and include events not captured by the ice cores. It is clear that the SPCZ response to global climate change is complex: while it can closely couple with high-northern latitude climate for periods, this coupling may not be stationary with time. We speculate that this might result from changing precession, influencing which teleconnections dominate climate changes in the south tropical Pacific.
NASA Astrophysics Data System (ADS)
Bosse, Anthony; Fer, Ilker
2017-04-01
Located in the northern Norwegian Sea at high latitude between 68°N and 73°N, the Lofoten basin is one of the world's most energetic areas regarding the ocean dynamics. It hosts the largest and deepest pool of warm Atlantic Waters in the Nordic Seas, thus leading to very intense air-sea energy fluxes and deep convection in winter. Understanding the physical processes involved in the water mass transformations of this very productive area is thus of crucial interest in a climate perspective, as well as for the fishery economics. The ProVoLo project aims at quantifying the energy pathways from the large-scale circulation to the (sub-)mesoscale, and eventually to the dissipation scale. To this end, the project is largely devoted to in situ observations involving R/V cruises (CTD, LADCP, microstructure), mooring lines, gliders (CTD and microstructure) and RAFOS floats. Collecting data with gliders in such a dynamical environment is a challenge. We present results from two completed Seaglider missions of 8-months duration each, started in May 2016, as well as from three ongoing missions. The observations enable the description of two key features of the Lofoten basin circulation: 1 - The Lofoten Basin eddy, which is permanent anticyclonic vortex that has been regularly detected in the center of the basin over the last decades. The vortex has very intense subsurface peak velocities exceeding 0.7 m/s and a small radius of about 15 km. The collected data also enable a description of the seasonal variability associated with the vortex, and give insight into its interaction with higher frequency flows. 2 - The frontal region situated along the Mohn ridge. The front is characterized by a narrow ( 15 km) and intense baroclinic jet separating the warm Atlantic waters from the cold waters coming from the Arctic. The observations from intensive sampling of this front, testify an important variability, at both seasonal time scale and from meso to submesoscale.
O'Donnell, J. A.; Harden, J.W.; McGuire, A.D.; Kanevskiy, M.Z.; Jorgenson, M.T.; Xu, X.
2011-01-01
High-latitude regions store large amounts of organic carbon (OC) in active-layer soils and permafrost, accounting for nearly half of the global belowground OC pool. In the boreal region, recent warming has promoted changes in the fire regime, which may exacerbate rates of permafrost thaw and alter soil OC dynamics in both organic and mineral soil. We examined how interactions between fire and permafrost govern rates of soil OC accumulation in organic horizons, mineral soil of the active layer, and near-surface permafrost in a black spruce ecosystem of interior Alaska. To estimate OC accumulation rates, we used chronosequence, radiocarbon, and modeling approaches. We also developed a simple model to track long-term changes in soil OC stocks over past fire cycles and to evaluate the response of OC stocks to future changes in the fire regime. Our chronosequence and radiocarbon data indicate that OC turnover varies with soil depth, with fastest turnover occurring in shallow organic horizons (~60 years) and slowest turnover in near-surface permafrost (>3000 years). Modeling analysis indicates that OC accumulation in organic horizons was strongly governed by carbon losses via combustion and burial of charred remains in deep organic horizons. OC accumulation in mineral soil was influenced by active layer depth, which determined the proportion of mineral OC in a thawed or frozen state and thus, determined loss rates via decomposition. Our model results suggest that future changes in fire regime will result in substantial reductions in OC stocks, largely from the deep organic horizon. Additional OC losses will result from fire-induced thawing of near-surface permafrost. From these findings, we conclude that the vulnerability of deep OC stocks to future warming is closely linked to the sensitivity of permafrost to wildfire disturbance. ?? 2010 Blackwell Publishing Ltd.
NASA Astrophysics Data System (ADS)
de Mello, Juliana Lolli Malagoli; Berton, Mariana Piatto; de Cassia Dourado, Rita; Giampietro-Ganeco, Aline; de Souza, Rodrigo Alves; Ferrari, Fábio Borba; de Souza, Pedro Alves; Borba, Hirasilva
2017-10-01
The aim of this study was to evaluate the effect of ambient temperature on the physical and chemical characteristics of the longissimus dorsi muscle by comparing the quality of meat from pigs reared in a controlled and in an uncontrolled environment, the latter provided with a shallow pool. Twenty castrated male pigs of the Topigs line were randomly allotted to two treatments: a controlled environment, with constant temperature (22 °C) and relative humidity (70%); and an uncontrolled environment in a conventional shed for rearing pigs equipped with a shallow pool, where pigs were subject to climatic variations. Meat from pigs kept in the controlled environment showed a greater capacity to retain intracellular water, higher tenderness, and lower cholesterol levels than meat from pigs reared in the uncontrolled environment, but displayed higher lipid oxidation and a lower concentration of DHA. Treatments had no effect on color, pH, chemical composition, or fatty acid profile (except DHA concentration). Rearing pigs in sheds equipped with a shallow pool minimizes the effects of environmental heat on meat quality, allowing the production of high-quality meat in warm climate regions without expensive investments. Animals reared in an uncontrolled environment equipped with a shallow pool are able to produce meat with characteristics within the quality standards and with similar quality to that of meat from animals raised in controlled environment.
de Mello, Juliana Lolli Malagoli; Berton, Mariana Piatto; de Cassia Dourado, Rita; Giampietro-Ganeco, Aline; de Souza, Rodrigo Alves; Ferrari, Fábio Borba; de Souza, Pedro Alves; Borba, Hirasilva
2017-10-01
The aim of this study was to evaluate the effect of ambient temperature on the physical and chemical characteristics of the longissimus dorsi muscle by comparing the quality of meat from pigs reared in a controlled and in an uncontrolled environment, the latter provided with a shallow pool. Twenty castrated male pigs of the Topigs line were randomly allotted to two treatments: a controlled environment, with constant temperature (22 °C) and relative humidity (70%); and an uncontrolled environment in a conventional shed for rearing pigs equipped with a shallow pool, where pigs were subject to climatic variations. Meat from pigs kept in the controlled environment showed a greater capacity to retain intracellular water, higher tenderness, and lower cholesterol levels than meat from pigs reared in the uncontrolled environment, but displayed higher lipid oxidation and a lower concentration of DHA. Treatments had no effect on color, pH, chemical composition, or fatty acid profile (except DHA concentration). Rearing pigs in sheds equipped with a shallow pool minimizes the effects of environmental heat on meat quality, allowing the production of high-quality meat in warm climate regions without expensive investments. Animals reared in an uncontrolled environment equipped with a shallow pool are able to produce meat with characteristics within the quality standards and with similar quality to that of meat from animals raised in controlled environment.
ERIC Educational Resources Information Center
Lester, Benjamin T.; Ma, Li; Lee, Okhee; Lambert, Julie
2006-01-01
As part of a large-scale instructional intervention research, this study examined elementary students' science knowledge and awareness of social activism with regard to an increased greenhouse effect and global warming. The study involved fifth-grade students from five elementary schools of varying demographic makeup in a large urban school…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pyun, J.J.; Majumdar, D.
The paper describes TEMPEST, a simple computer program for the temperature and pressure estimation of a boiling fuel-steel pool in an LMFBR core. The time scale of interest of this program is large, of the order of ten seconds. Further, the vigorous boiling in the pool will generate a large contact, and hence a large heat transfer between fuel and steel. The pool is assumed to be a uniform mixture of fuel and steel, and consequently vapor production is also assumed to be uniform throughout the pool. The pool is allowed to expand in volume if there is steel meltingmore » at the walls. In this program, the total mass of liquid and vapor fuel is always kept constant, but the total steel mass in the pool may change by steel wall melting. Because of a lack of clear understanding of the physical phenomena associated with the progression of a fuel-steel mixture at high temperature, various input options have been built-in to enable one to perform parametric studies. For example, the heat transfer from the pool to the surrounding steel structure may be controlled by input values for the heat transfer coefficients, or, the heat transfer may be calculated by a correlation obtained from the literature. Similarly, condensation of vapor on the top wall can be specified by input values of the condensation coefficient; the program can otherwise calculate condensation according to the non-equilibrium model predictions. Meltthrough rates of the surrounding steel walls can be specified by a fixed melt-rate or can be determined by a fraction of the heat loss that goes to steel-melting. The melted steel is raised to the pool temperature before it is joined with the pool material. Several applications of this program to various fuel-steel pools in the FFTF and the CRBR cores are discussed.« less
Boehm, J T; Waldman, John; Robinson, John D; Hickerson, Michael J
2015-01-01
Understanding population structure and areas of demographic persistence and transients is critical for effective species management. However, direct observational evidence to address the geographic scale and delineation of ephemeral or persistent populations for many marine fishes is limited. The Lined seahorse (Hippocampus erectus) can be commonly found in three western Atlantic zoogeographic provinces, though inhabitants of the temperate northern Virginia Province are often considered tropical vagrants that only arrive during warm seasons from the southern provinces and perish as temperatures decline. Although genetics can locate regions of historical population persistence and isolation, previous evidence of Virginia Province persistence is only provisional due to limited genetic sampling (i.e., mitochondrial DNA and five nuclear loci). To test alternative hypotheses of historical persistence versus the ephemerality of a northern Virginia Province population we used a RADseq generated dataset consisting of 11,708 single nucleotide polymorphisms (SNP) sampled from individuals collected from the eastern Gulf of Mexico to Long Island, NY. Concordant results from genomic analyses all infer three genetically divergent subpopulations, and strongly support Virginia Province inhabitants as a genetically diverged and a historically persistent ancestral gene pool. These results suggest that individuals that emerge in coastal areas during the warm season can be considered "local" and supports offshore migration during the colder months. This research demonstrates how a large number of genes sampled across a geographical range can capture the diversity of coalescent histories (across loci) while inferring population history. Moreover, these results clearly demonstrate the utility of population genomic data to infer peripheral subpopulation persistence in difficult-to-observe species.
NASA Astrophysics Data System (ADS)
Kalu, J. U.; Aliagha, G. U.; Buang, A.
2016-02-01
Global warming has consequences on the environment and economy; this led to the establishment of United Nation Framework Convention on Climate Change (UNFCCC) and the Kyoto Protocol. These two agreements were to reduce greenhouse gases (GHG) emissions which are responsible for climate change and global warming. Developing countries under the protocol are not obligated to reduce or disclosure GHG emission, so their participation in the protocol is on voluntary mitigation bases. This study intends to examine economic factors that influence voluntary carbon disclosure in the property sub-sector of developing countries based on annual report of listed property companies in Malaysia. Signaling theory addresses the problem of information asymmetry in the society. Disclosure is an effective tool to overcome information imbalance among different market participants. The study hypothesizes that the economic factors that influence voluntary carbon information disclosure in developing countries are: [1] the company's size; this is because a large-sized company have more resources to cover the cost of reducing pollution. [2] The company's gearing status; where there is no sufficient information disclosure in a highly geared company will result to an increased agency cost. [3] Profitability; profits grants companies a pool of resources for mitigation activities and environmental reporting. Also, carbon disclosure acts as a means for achieving public confidence and legitimacy. [4] Liquidity: Companies that are highly liquid will disclosure more information to distinguish themselves from other companies that are less liquidity. This is correlated to environmental disclosure. [5] Financial slack affects companies’ ability to participate in green technology projects that enable a reduction in emission.
Regional consequences of a biotic interchange: insights from the Lessepsian invasion
NASA Astrophysics Data System (ADS)
Nawrot, Rafal; Albano, Paolo G.; Chattopadhyay, Devapriya; Zuschin, Martin
2016-04-01
The fossil record provides ample evidence of large-scale biotic interchanges and their pervasive effects on regional biotas, but mechanisms controlling such events are difficult to decipher in deep time. Massive invasion of Indo-Pacific species into the Mediterranean Sea triggered by the opening of the Suez Canal offers a unique opportunity to examine the ecological consequences of breaking down biogeographic barriers. We developed an extensive database of taxonomic composition, body size and ecological characteristics of the Red Sea and Mediterranean bivalve fauna in order to link biotic selectivity of the invasion process with its effects on the recipient biota. Shallow-water occurrence and presence outside the tropical zone in other regions are the strongest predictors of the successful transition through the Suez Canal. Subsequent establishment of alien species in the Mediterranean Sea correlates with early arrival and preference for hard substrates. Finally, large-bodied species and hard-bottom dwellers are over-represented among the invasive aliens that have reached the spread stage and impose a strong impact on native communities. Although body size is important only at the last invasion stage, alien species are significantly larger compared to native Mediterranean bivalves. This reflects biogeographic difference in the body-size distributions of the source and recipient species pools related to the recent geological history of the Mediterranean Sea. Contrary to the general expectations on the effects of temperature on average body size, continued warming of the Mediterranean Sea accelerates the entry of tropical aliens and thus indirectly leads to increase in the proportion of large-bodied species in local communities and the regional biota. Invasion-driven shifts in species composition are stronger in hard-substrate communities, which host a smaller pool of incumbent species and are more susceptible to the establishment of newcomers. Analogous differences between habitats and body-size classes in the invasion levels have been observed in some marine biotic interchanges documented in the fossil record. Further quantitative studies of past invasion events are necessary to test generality of these patterns.
Evaluating Arctic warming mechanisms in CMIP5 models
NASA Astrophysics Data System (ADS)
Franzke, Christian L. E.; Lee, Sukyoung; Feldstein, Steven B.
2017-05-01
Arctic warming is one of the most striking signals of global warming. The Arctic is one of the fastest warming regions on Earth and constitutes, thus, a good test bed to evaluate the ability of climate models to reproduce the physics and dynamics involved in Arctic warming. Different physical and dynamical mechanisms have been proposed to explain Arctic amplification. These mechanisms include the surface albedo feedback and poleward sensible and latent heat transport processes. During the winter season when Arctic amplification is most pronounced, the first mechanism relies on an enhancement in upward surface heat flux, while the second mechanism does not. In these mechanisms, it has been proposed that downward infrared radiation (IR) plays a role to a varying degree. Here, we show that the current generation of CMIP5 climate models all reproduce Arctic warming and there are high pattern correlations—typically greater than 0.9—between the surface air temperature (SAT) trend and the downward IR trend. However, we find that there are two groups of CMIP5 models: one with small pattern correlations between the Arctic SAT trend and the surface vertical heat flux trend (Group 1), and the other with large correlations (Group 2) between the same two variables. The Group 1 models exhibit higher pattern correlations between Arctic SAT and 500 hPa geopotential height trends, than do the Group 2 models. These findings suggest that Arctic warming in Group 1 models is more closely related to changes in the large-scale atmospheric circulation, whereas in Group 2, the albedo feedback effect plays a more important role. Interestingly, while Group 1 models have a warm or weak bias in their Arctic SAT, Group 2 models show large cold biases. This stark difference in model bias leads us to hypothesize that for a given model, the dominant Arctic warming mechanism and trend may be dependent on the bias of the model mean state.
Indonesian vegetation response to changes in rainfall seasonality over the past 25,000 years
NASA Astrophysics Data System (ADS)
Dubois, Nathalie; Oppo, Delia W.; Galy, Valier V.; Mohtadi, Mahyar; van der Kaars, Sander; Tierney, Jessica E.; Rosenthal, Yair; Eglinton, Timothy I.; Lückge, Andreas; Linsley, Braddock K.
2014-07-01
The hydrologic response to climate forcing in the Indo-Pacific warm pool region has varied spatially over the past 25,000 years. For example, drier conditions are inferred on Java and Borneo for the period following the end of the Last Glacial Maximum, whereas wetter conditions are reconstructed for northwest Australia. The response of vegetation to these past rainfall variations is poorly constrained. Using a suite of 30 surface marine sediment samples from throughout the Indo-Pacific warm pool, we demonstrate that today the stable isotopic composition of vascular plant fatty acids (δ13CFA) reflects the regional vegetation composition. This in turn is controlled by the seasonality of rainfall consistent with dry season water stress. Applying this proxy in a sediment core from offshore northeast Borneo, we show broadly similar vegetation cover during the Last Glacial Maximum and the Holocene, suggesting that, despite generally drier glacial conditions, there was no pronounced dry season. In contrast, δ13CFA and pollen data from a core off the coast of Sumba indicate an expansion of C4 herbs during the most recent glaciation, implying enhanced aridity and water stress during the dry season. Holocene vegetation trends are also consistent with a response to dry season water stress. We therefore conclude that vegetation in tropical monsoon regions is susceptible to increases in water stress arising from an enhanced seasonality of rainfall, as has occurred in past decades.
Have Tropical Cyclones Been Feeding More Extreme Rainfall?
NASA Technical Reports Server (NTRS)
Lau, K.-M.; Zhou, Y. P.; Wu, H.-T.
2008-01-01
We have conducted a study of the relationship between tropical cyclone (TC) and extreme rain events using GPCP and TRMM rainfall data, and storm track data for July through November (JASON) in the North Atlantic (NAT) and the western North Pacific (WNP). Extreme rain events are defined in terms of percentile rainrate, and TC-rain by rainfall associated with a named TC. Results show that climatologically, 8% of rain events and 17% of the total rain amount in NAT are accounted by TCs, compared to 9% of rain events and 21% of rain amount in WNP. The fractional contribution of accumulated TC-rain to total rain, Omega, increases nearly linearly as a function of rainrate. Extending the analyses using GPCP pentad data for 1979-2005, and for the post-SSM/I period (1988-2005), we find that while there is no significant trend in the total JASON rainfall over NAT or WNP, there is a positive significant trend in heavy rain over both basins for the 1979-2005 period, but not for the post-SSM/I period. Trend analyses of Omega for both periods indicate that TCs have been feeding increasingly more to rainfall extremes in NAT, where the expansion of the warm pool area can explain slight more than 50% of the change in observed trend in total TC rainfall. In WNP, trend signals for Omega are mixed, and the long-term relationship between TC rain and warm pool areas are strongly influenced by interannual and interdecadal variability.
Theories on formation of an anomalous anticyclone in western North Pacific during El Niño: A review
NASA Astrophysics Data System (ADS)
Li, Tim; Wang, Bin; Wu, Bo; Zhou, Tianjun; Chang, Chih-Pei; Zhang, Renhe
2017-12-01
The western North Pacific anomalous anticyclone (WNPAC) is an important atmospheric circulation system that conveys El Niño impact on East Asian climate. In this review paper, various theories on the formation and maintenance of the WNPAC, including warm pool atmosphere-ocean interaction, Indian Ocean capacitor, a combination mode that emphasizes nonlinear interaction between ENSO and annual cycle, moist enthalpy advection/Rossby wave modulation, and central Pacific SST forcing, are discussed. It is concluded that local atmosphere-ocean interaction and moist enthalpy advection/Rossby wave modulation mechanisms are essential for the initial development and maintenance of the WNPAC during El Niño mature winter and subsequent spring. The Indian Ocean capacitor mechanism does not contribute to the earlier development but helps maintain the WNPAC in El Niño decaying summer. The cold SST anomaly in the western North Pacific, although damped in the summer, also plays a role. An interbasin atmosphere-ocean interaction across the Indo-Pacific warm pool emerges as a new mechanism in summer. In addition, the central Pacific cold SST anomaly may induce the WNPAC during rapid El Niño decaying/La Niña developing or La Niña persisting summer. The near-annual periods predicted by the combination mode theory are hardly detected from observations and thus do not contribute to the formation of the WNPAC. The tropical Atlantic may have a capacitor effect similar to the tropical Indian Ocean.
Contrasting ENSO types with novel satellite derived ocean phytoplankton biomass
NASA Astrophysics Data System (ADS)
Sharma, P.; Singh, A. M.; Marinov, I.; Kostadinov, T. S.
2016-12-01
Observed variations in community structure and biogeochemical processes in the tropics and the North Atlantic have been linked, in the first order, to the El Niño Southern Oscillation phenomenon (e.g., Bates, 2001; Karl et al., 2001; Di Lorenzo et al., 2010; Di Lorenzo et al., 2013). Current significant technical advances have allowed for the retrieval of biological data from the optical properties of the water via satellite ocean color remote sensing, providing an opportunity for quantifying the relationships between biological and climate indices. Studies have focused in-depth on contrasting flavors of the ENSO types with various physical (e.g., Singh et al. 2011; Turk et al. 2011) and biological (e.g., Radenac et al. 2012) indices. Here, we analyze the impact of different ENSO types on biology via analysis of recently-derived backscattering-based biomass separated into size-groups (Kostadinov et al. 2010, 2016) over the 17-year (1997-2013). We further contrast the responses of biomass with those of chlorophyll (Chl) and particulate inorganic carbon (PIC). We analyze the complex spatial differences in both physical (SST, mixed layer depth, winds) and biological (Chl, total and size-partitioned biomass) variability across the Pacific warm pool and equatorial tongue via simple EOF, combined regression-EOF and Agglomerative Hierarchical Clustering (AHC) analysis. The interannual variability in the physical and biological fields show clear signatures of the Niño cold-tongue (NCT) and Niño warm pool (NWP). Possible mechanisms responsible for these signatures are discussed.
Fast online deconvolution of calcium imaging data
Zhou, Pengcheng; Paninski, Liam
2017-01-01
Fluorescent calcium indicators are a popular means for observing the spiking activity of large neuronal populations, but extracting the activity of each neuron from raw fluorescence calcium imaging data is a nontrivial problem. We present a fast online active set method to solve this sparse non-negative deconvolution problem. Importantly, the algorithm 3progresses through each time series sequentially from beginning to end, thus enabling real-time online estimation of neural activity during the imaging session. Our algorithm is a generalization of the pool adjacent violators algorithm (PAVA) for isotonic regression and inherits its linear-time computational complexity. We gain remarkable increases in processing speed: more than one order of magnitude compared to currently employed state of the art convex solvers relying on interior point methods. Unlike these approaches, our method can exploit warm starts; therefore optimizing model hyperparameters only requires a handful of passes through the data. A minor modification can further improve the quality of activity inference by imposing a constraint on the minimum spike size. The algorithm enables real-time simultaneous deconvolution of O(105) traces of whole-brain larval zebrafish imaging data on a laptop. PMID:28291787
Can Hail and Rain Nucleate Cloud Droplets?
NASA Astrophysics Data System (ADS)
Weiss, S.; Prabhakaran, P.; Krekhov, A.; Pumir, A.; Bodenschatz, E.
2017-12-01
We present results from a laboratory scale moist convection experiment composed of a mixture of pressurized sulphur hexafluoride (SF6 - liquid and vapor phase) and helium (He - gas phase) to mimic the wet (saturated water vapor) and dry components (nitrogen, oxygen etc.) of the earth's atmosphere. We operate the experiments close to critical conditions to allow for homogeneous nucleation of sulphur hexafluoride droplets. The liquid SF6 pool is heated from below and the warm SF6 vapor from the liquid-vapor interface rise and condense underneath the cold top plate. We observe the nucleation of microdroplets in the wake of cold drops falling through the SF6-He atmosphere. Using classical nucleation theory, we show that the nucleation is caused by isobaric cooling of SF6 vapor in the wake of the cold drop. Furthermore, we argue that in an atmospheric cloud, falling hail and large cold raindrops may induce heterogeneous nucleation of microdroplets in their wake. We also observe that under appropriate conditions these microdroplets form a stable horizontal layer, thus separating regions of super and sub-critical saturation.
Can hail and rain nucleate cloud droplets?
NASA Astrophysics Data System (ADS)
Prabhakaran, Prasanth; Weiss, Stephan; Krekhov, Alexei; Pumir, Alain; Bodenschatz, Eberhard
2017-11-01
We present results from a laboratory scale moist convection experiment composed of a mixture of pressurized sulphur hexafluoride (SF6 - liquid and vapor phase) and helium (He - gas phase) to mimic the wet (saturated water vapor) and dry components (nitrogen, oxygen etc.) of the earth's atmosphere. We operate the experiments close to critical conditions to allow for homogeneous nucleation of sulphur hexafluoride droplets. The liquid SF6 pool is heated from below and the warm SF6 vapor from the liquid-vapor interface rise and condense underneath the cold top plate. We observe the nucleation of microdroplets in the wake of cold drops falling through the SF6-He atmosphere. Using classical nucleation theory, we show that the nucleation is caused by isobaric cooling of SF6 vapor in the wake of the cold drop. Furthermore, we argue that in an atmospheric cloud, falling hail and large cold raindrops may induce heterogeneous nucleation of microdroplets in their wake. We also observe that under appropriate conditions these microdroplets form a stable horizontal layer, thus separating regions of super and sub-critical saturation.
Origin of seasonal predictability for summer climate over the Northwestern Pacific
Kosaka, Yu; Xie, Shang-Ping; Lau, Ngar-Cheung; Vecchi, Gabriel A.
2013-01-01
Summer climate in the Northwestern Pacific (NWP) displays large year-to-year variability, affecting densely populated Southeast and East Asia by impacting precipitation, temperature, and tropical cyclones. The Pacific–Japan (PJ) teleconnection pattern provides a crucial link of high predictability from the tropics to East Asia. Using coupled climate model experiments, we show that the PJ pattern is the atmospheric manifestation of an air–sea coupled mode spanning the Indo-NWP warm pool. The PJ pattern forces the Indian Ocean (IO) via a westward propagating atmospheric Rossby wave. In response, IO sea surface temperature feeds back and reinforces the PJ pattern via a tropospheric Kelvin wave. Ocean coupling increases both the amplitude and temporal persistence of the PJ pattern. Cross-correlation of ocean–atmospheric anomalies confirms the coupled nature of this PJIO mode. The ocean–atmosphere feedback explains why the last echoes of El Niño–Southern Oscillation are found in the IO-NWP in the form of the PJIO mode. We demonstrate that the PJIO mode is indeed highly predictable; a characteristic that can enable benefits to society. PMID:23610388
Temperature-Induced Viral Resistance in Emiliania huxleyi (Prymnesiophyceae)
Kendrick, B. Jacob; DiTullio, Giacomo R.; Cyronak, Tyler J.; Fulton, James M.; Van Mooy, Benjamin A. S.; Bidle, Kay D.
2014-01-01
Annual Emiliania huxleyi blooms (along with other coccolithophorid species) play important roles in the global carbon and sulfur cycles. E. huxleyi blooms are routinely terminated by large, host-specific dsDNA viruses, (Emiliania huxleyi Viruses; EhVs), making these host-virus interactions a driving force behind their potential impact on global biogeochemical cycles. Given projected increases in sea surface temperature due to climate change, it is imperative to understand the effects of temperature on E. huxleyi’s susceptibility to viral infection and its production of climatically active dimethylated sulfur species (DSS). Here we demonstrate that a 3°C increase in temperature induces EhV-resistant phenotypes in three E. huxleyi strains and that successful virus infection impacts DSS pool sizes. We also examined cellular polar lipids, given their documented roles in regulating host-virus interactions in this system, and propose that alterations to membrane-bound surface receptors are responsible for the observed temperature-induced resistance. Our findings have potential implications for global biogeochemical cycles in a warming climate and for deciphering the particular mechanism(s) by which some E. huxleyi strains exhibit viral resistance. PMID:25405345
Temperature-induced viral resistance in Emiliania huxleyi (Prymnesiophyceae).
Kendrick, B Jacob; DiTullio, Giacomo R; Cyronak, Tyler J; Fulton, James M; Van Mooy, Benjamin A S; Bidle, Kay D
2014-01-01
Annual Emiliania huxleyi blooms (along with other coccolithophorid species) play important roles in the global carbon and sulfur cycles. E. huxleyi blooms are routinely terminated by large, host-specific dsDNA viruses, (Emiliania huxleyi Viruses; EhVs), making these host-virus interactions a driving force behind their potential impact on global biogeochemical cycles. Given projected increases in sea surface temperature due to climate change, it is imperative to understand the effects of temperature on E. huxleyi's susceptibility to viral infection and its production of climatically active dimethylated sulfur species (DSS). Here we demonstrate that a 3°C increase in temperature induces EhV-resistant phenotypes in three E. huxleyi strains and that successful virus infection impacts DSS pool sizes. We also examined cellular polar lipids, given their documented roles in regulating host-virus interactions in this system, and propose that alterations to membrane-bound surface receptors are responsible for the observed temperature-induced resistance. Our findings have potential implications for global biogeochemical cycles in a warming climate and for deciphering the particular mechanism(s) by which some E. huxleyi strains exhibit viral resistance.
Large woody debris and flow resistance in step-pool channels, Cascade Range, Washington
Curran, Janet H.; Wohl, Ellen E.
2003-01-01
Total flow resistance, measured as Darcy-Weisbach f, in 20 step-pool channels with large woody debris (LWD) in Washington, ranged from 5 to 380 during summer low flows. Step risers in the study streams consist of either (1) large and relatively immobile woody debris, bedrock, or roots that form fixed, or “forced,” steps, or (2) smaller and relatively mobile wood or clasts, or a mixture of both, arranged across the channel by the stream. Flow resistance in step-pool channels may be partitioned into grain, form, and spill resistance. Grain resistance is calculated as a function of particle size, and form resistance is calculated as large woody debris drag. Combined, grain and form resistance account for less than 10% of the total flow resistance. We initially assumed that the substantial remaining portion is spill resistance attributable to steps. However, measured step characteristics could not explain between-reach variations in flow resistance. This suggests that other factors may be significant; the coefficient of variation of the hydraulic radius explained 43% of the variation in friction factors between streams, for example. Large woody debris generates form resistance on step treads and spill resistance at step risers. Because the form resistance of step-pool channels is relatively minor compared to spill resistance and because wood in steps accentuates spill resistance by increasing step height, we suggest that wood in step risers influences channel hydraulics more than wood elsewhere in the channel. Hence, the distribution and function, not just abundance, of large woody debris is critical in steep, step-pool channels.
ERIC Educational Resources Information Center
Lee, HyeSun; Geisinger, Kurt F.
2016-01-01
The current study investigated the impact of matching criterion purification on the accuracy of differential item functioning (DIF) detection in large-scale assessments. The three matching approaches for DIF analyses (block-level matching, pooled booklet matching, and equated pooled booklet matching) were employed with the Mantel-Haenszel…
Evolution in a Test Tube: Exploring the Structure and Function of RNA Probes
2008-05-02
Bartel, D.P. and Szostak, J.W. (1993) Isolation of New Ribozymes from a Large Pool of Random Sequences. Science, New Series 261, 1141-1418. 24...Szostak, J.W. (1993) Isolation of New Ribozymes from a Large Pool of Random Sequences. Science, New Series 261, 1141-1418. Chen, Ying; Carlini
Relationships Between Global Warming and Tropical Cyclone Activity in the Western North Pacific
2007-09-01
In this work, we investigate the relationships between global warming and tropical cyclone activity in the Western North Pacific (WNP). Our...hypothesis is that global warming impacts on TC activity occur through changes in the large scale environmental factors (LSEFs) known to be important in...averages. Using a least squares fit, we identify global warming signals in both the SST and vertical wind shear data across the WNP. These signals vary
Extreme Warming Challenges Sentinel Status of Kelp Forests as Indicators of Climate Change
NASA Astrophysics Data System (ADS)
Miller, R. J.; Reed, D.; Washburn, L.; Rassweiler, A.; Bell, T. W.; Harrer, S.
2016-12-01
The ecological effects of global warming are expected to be large, but are proving difficult and costly to measure. This has led to a growing interest in using sentinel species as early warning indicators of impending climate change effects on entire ecosystems, raising awareness of the importance of verifying that such conservation shortcuts have sound biological foundations. A recent large-scale warming event in the North Pacific Ocean of unprecedented magnitude and duration allowed us to evaluate the sentinel status of giant kelp, a coastal foundation species that thrives in cold, nutrient-rich waters and considered sensitive to warming. Here we show that giant kelp did not presage ecosystem effects of extreme warming off southern California despite its expected vulnerability. Fluctuations in the biomass of giant kelp, understory algae, invertebrates and fish remained within historical ranges despite 34 months of above average temperatures and below average nutrients. Sea stars and sea urchins were exceptions, plummeting due to disease outbreaks linked to the warming. Our results challenge the IPCC predictions about the vulnerability of kelp-dominated systems to extreme warming events and question their use as early indicators of climate change. The resilience of giant kelp to unprecedented warming not only questions our understanding of kelp ecology, but exposes the risk of relying on supposed sentinel species that are assumed to be very sensitive to climate change.
NASA Astrophysics Data System (ADS)
Petrenko, V. V.; Severinghaus, J. P.; Smith, A.; Riedel, K.; Brook, E.; Schaefer, H.; Baggenstos, D.; Harth, C. M.; Hua, Q.; Buizert, C.; Schilt, A.; Fain, X.; Mitchell, L.; Bauska, T. K.; Orsi, A. J.; Weiss, R. F.
2016-12-01
Marine methane hydrate destabilization has been proposed as a potentially large source of methane to the atmosphere in response to both past and future warming. We present new measurements of 14C of paleoatmospheric methane (CH4) over the Younger Dryas - Preboreal (YD - PB) abrupt warming event (≈11,600 years ago) from ancient ice outcropping at Taylor Glacier, Antarctica. The YD - PB abrupt warming was centered in the North Atlantic, occurred partway through the global warming of last deglaciation and was associated with a ≈ 50% increase in atmospheric CH4 concentrations. 14C can unambiguously identify CH4 emissions from "old carbon" sources, such as CH4 hydrates. All samples from before, during and after the abrupt warming and associated CH4 increase yielded 14CH4 values that are consistent with 14C of atmospheric CO2 at that time, indicating a purely contemporaneous methane source. Our results show that neither the abrupt regional warming nor the gradual global warming that preceded it resulted in detectable CH4 release to the atmosphere from CH4 hydrates during the YD - PB transition. Our results are thus consistent with the hypothesis that the vast majority of CH4 that is released from dissociating hydrates or other old-carbon seafloor CH4 sources is oxidized prior to reaching the atmosphere.
Wang, Jingwen; Skoog, Tiina; Einarsdottir, Elisabet; Kaartokallio, Tea; Laivuori, Hannele; Grauers, Anna; Gerdhem, Paul; Hytönen, Marjo; Lohi, Hannes; Kere, Juha; Jiao, Hong
2016-01-01
High-throughput sequencing using pooled DNA samples can facilitate genome-wide studies on rare and low-frequency variants in a large population. Some major questions concerning the pooling sequencing strategy are whether rare and low-frequency variants can be detected reliably, and whether estimated minor allele frequencies (MAFs) can represent the actual values obtained from individually genotyped samples. In this study, we evaluated MAF estimates using three variant detection tools with two sets of pooled whole exome sequencing (WES) and one set of pooled whole genome sequencing (WGS) data. Both GATK and Freebayes displayed high sensitivity, specificity and accuracy when detecting rare or low-frequency variants. For the WGS study, 56% of the low-frequency variants in Illumina array have identical MAFs and 26% have one allele difference between sequencing and individual genotyping data. The MAF estimates from WGS correlated well (r = 0.94) with those from Illumina arrays. The MAFs from the pooled WES data also showed high concordance (r = 0.88) with those from the individual genotyping data. In conclusion, the MAFs estimated from pooled DNA sequencing data reflect the MAFs in individually genotyped samples well. The pooling strategy can thus be a rapid and cost-effective approach for the initial screening in large-scale association studies. PMID:27633116
Sihi, Debjani; Inglett, Patrick W; Gerber, Stefan; Inglett, Kanika S
2018-01-01
Temperature sensitivity of anaerobic carbon mineralization in wetlands remains poorly represented in most climate models and is especially unconstrained for warmer subtropical and tropical systems which account for a large proportion of global methane emissions. Several studies of experimental warming have documented thermal acclimation of soil respiration involving adjustments in microbial physiology or carbon use efficiency (CUE), with an initial decline in CUE with warming followed by a partial recovery in CUE at a later stage. The variable CUE implies that the rate of warming may impact microbial acclimation and the rate of carbon-dioxide (CO 2 ) and methane (CH 4 ) production. Here, we assessed the effects of warming rate on the decomposition of subtropical peats, by applying either a large single-step (10°C within a day) or a slow ramping (0.1°C/day for 100 days) temperature increase. The extent of thermal acclimation was tested by monitoring CO 2 and CH 4 production, CUE, and microbial biomass. Total gaseous C loss, CUE, and MBC were greater in the slow (ramp) warming treatment. However, greater values of CH 4 -C:CO 2 -C ratios lead to a greater global warming potential in the fast (step) warming treatment. The effect of gradual warming on decomposition was more pronounced in recalcitrant and nutrient-limited soils. Stable carbon isotopes of CH 4 and CO 2 further indicated the possibility of different carbon processing pathways under the contrasting warming rates. Different responses in fast vs. slow warming treatment combined with different endpoints may indicate alternate pathways with long-term consequences. Incorporations of experimental results into organic matter decomposition models suggest that parameter uncertainties in CUE and CH 4 -C:CO 2 -C ratios have a larger impact on long-term soil organic carbon and global warming potential than uncertainty in model structure, and shows that particular rates of warming are central to understand the response of wetland soils to global climate change. © 2017 John Wiley & Sons Ltd.
Large-eddy simulation of dust-uplift by a haboob density current
NASA Astrophysics Data System (ADS)
Huang, Qian; Marsham, John H.; Tian, Wenshou; Parker, Douglas J.; Garcia-Carreras, Luis
2018-04-01
Cold pool outflows have been shown from both observations and convection-permitting models to be a dominant source of dust emissions ("haboobs") in the summertime Sahel and Sahara, and to cause dust uplift over deserts across the world. In this paper Met Office Large Eddy Model (LEM) simulations, which resolve the turbulence within the cold-pools much better than previous studies of haboobs with convection-permitting models, are used to investigate the winds that uplift dust in cold pools, and the resultant dust transport. In order to simulate the cold pool outflow, an idealized cooling is added in the model during the first 2 h of 5.7 h run time. Given the short duration of the runs, dust is treated as a passive tracer. Dust uplift largely occurs in the "head" of the density current, consistent with the few existing observations. In the modeled density current dust is largely restricted to the lowest, coldest and well mixed layers of the cold pool outflow (below around 400 m), except above the "head" of the cold pool where some dust reaches 2.5 km. This rapid transport to above 2 km will contribute to long atmospheric lifetimes of large dust particles from haboobs. Decreasing the model horizontal grid-spacing from 1.0 km to 100 m resolves more turbulence, locally increasing winds, increasing mixing and reducing the propagation speed of the density current. Total accumulated dust uplift is approximately twice as large in 1.0 km runs compared with 100 m runs, suggesting that for studying haboobs in convection-permitting runs the representation of turbulence and mixing is significant. Simulations with surface sensible heat fluxes representative of those from a desert region during daytime show that increasing surface fluxes slows the density current due to increased mixing, but increase dust uplift rates, due to increased downward transport of momentum to the surface.
Metz, Patricia A.
2016-09-27
Warm Mineral Springs, located in southern Sarasota County, Florida, is a warm, highly mineralized, inland spring. Since 1946, a bathing spa has been in operation at the spring, attracting vacationers and health enthusiasts. During the winter months, the warm water attracts manatees to the adjoining spring run and provides vital habitat for these mammals. Well-preserved late Pleistocene to early Holocene-age human and animal bones, artifacts, and plant remains have been found in and around the spring, and indicate the surrounding sinkhole formed more than 12,000 years ago. The spring is a multiuse resource of hydrologic importance, ecological and archeological significance, and economic value to the community.The pool of Warm Mineral Springs has a circular shape that reflects its origin as a sinkhole. The pool measures about 240 feet in diameter at the surface and has a maximum depth of about 205 feet. The sinkhole developed in the sand, clay, and dolostone of the Arcadia Formation of the Miocene-age to Oligocene-age Hawthorn Group. Underlying the Hawthorn Group are Oligocene-age to Eocene-age limestones and dolostones, including the Suwannee Limestone, Ocala Limestone, and Avon Park Formation. Mineralized groundwater, under artesian pressure in the underlying aquifers, fills the remnant sink, and the overflow discharges into Warm Mineral Springs Creek, to Salt Creek, and subsequently into the Myakka River. Aquifers described in the vicinity of Warm Mineral Springs include the surficial aquifer system, the intermediate aquifer system within the Hawthorn Group, and the Upper Floridan aquifer in the Suwannee Limestone, Ocala Limestone, and Avon Park Formation. The Hawthorn Group acts as an upper confining unit of the Upper Floridan aquifer.Groundwater flow paths are inferred from the configuration of the potentiometric surface of the Upper Floridan aquifer for September 2010. Groundwater flow models indicate the downward flow of water into the Upper Floridan aquifer in inland areas, and upward flow toward the surface in coastal areas, such as at Warm Mineral Springs. Warm Mineral Springs is located in a discharge area. Changes in water use in the region have affected the potentiometric surface of the Upper Floridan aquifer. Historical increase in groundwater withdrawals resulted in a 10- to 20-foot regional decline in the potentiometric surface of the Upper Floridan aquifer by May 1975 relative to predevelopment levels and remained at approximately that level in May 2007 in the area of Warm Mineral Springs. Discharge measurements at Warm Mineral Springs (1942–2014) decreased from about 11–12 cubic feet per second in the 1940s to about 6–9 cubic feet per second in the 1970s and remained at about that level for the remainder of the period of record. Similarity of changes in regional water use and discharge at Warm Mineral Springs indicates that basin-scale changes to the groundwater system have affected discharge at Warm Mineral Springs. Water temperature had no significant trend in temperature over the period of record, 1943–2015, and outliers were identified in the data that might indicate inconsistencies in measurement methods or locations.Within the regional groundwater basin, Warm Mineral Springs is influenced by deep Upper Floridan aquifer flow paths that discharge toward the coast. Associated with these flow paths, the groundwater temperatures increase with depth and toward the coast. Multiple lines of evidence indicate that a source of warm groundwater to Warm Mineral Springs is likely the permeable zone of the Avon Park Formation within the Upper Floridan aquifer at a depth of about 1,400 to 1,600 feet, or deeper sources. The permeable zone contains saline groundwater with water temperatures of at least 95 degrees Fahrenheit.The water quality of Warm Mineral Springs, when compared with other springs in Florida had the highest temperature and the greatest mineralized content. Warm Mineral Springs water is characterized by a slight-green color, with varying water clarity, low dissolved oxygen (indicative of deep groundwater), and a hydrogen sulfide odor. Water-quality samples detected ammonium-nitrogen and nitrates, but at low concentrations. The drinking water standard for nitrate adopted by the U.S. Environmental Protection Agency is 10 milligrams per liter, measured as nitrogen. Water samples collected at spring vents by divers on April 29, 2015, had concentrations of 0.9 milligram per liter nitrate-nitrogen at vent A and 0.04–0.05 milligram per liter at vents B, C, and D. Typically, the water clarity is highest in the morning (about 30 feet Secchi depth) and often decreases throughout the day.Analysis of existing data provided some insight into the hydrologic processes affecting Warm Mineral Springs; however, data have been sparsely and discontinuously collected since the 1940s. Continuous monitoring of hydrologic characteristics such as discharge, water temperature, specific conductance, and water-quality indicators, such as nitrate and turbidity (water clarity), would be valuable for monitoring and development of models of spring discharge and water quality. In addition, water samples could be analyzed for isotopic tracers, such as strontium, and the results used to identify and quantify the sources of groundwater that discharge at Warm Mineral Springs. Groundwater flow/transport models could be used to evaluate the sensitivity of the quality and quantity of water flowing from Warm Mineral Springs to changes in climate, aquifer levels, and water use.
NASA Astrophysics Data System (ADS)
Llasat, M.-C.; Martín, F.; Barrera, A.
2007-04-01
Over the last 25 years the term “cold pool” has come to be used in many spheres as a synonym for floods. This has given rise to a major confusion that has even moved into international scientific and technical circles. In this paper we analyse how the concept of “cold air pool” has evolved from when it was defined at the beginning of the 20th century down to the present day, in which the Spanish term “DANA” (similar to a cut-off low) has been introduced in order to avoid existing confusions. In the course of the paper we take account of cold air pool genesis and their thermal and dynamic characteristics, and we discuss the factors that have led to them being identified (erroneously) with heavy rainfall events. The study takes as its basis a systematic analysis of all the cold air pools recorded in Europe, and particularly in the Iberian Peninsula, over the period 1974-1983, as well as in studies of the floods recorded in eastern Spain since 1950 until nowadays. The discussion done on the basis of this accurate analysis leads to the identification of a cold air pool as a type cut-off low (COL) and justifying the use of this more generic term when a structure like this is present in a heavy rainfall event. For a better illustration of the previous discussion and understanding of the role of COLs in intense rainfall events, we present the episode of September 1971 in Catalonia, in which over 400 mm were recorded. The analysis was carried out with the MM5 initialised with the ERA-40 re-analyses. The results show that the role of COLs in the heavy rainfall episodes recorded in Spain is mainly dynamic, both in terms of the circulation they create at low levels and the potential vorticity anomaly generated. This circulation draws in very warm, moist and potentially unstable air perpendicularly to the coast and the littoral mountain chains. The factor of thermal instability, owing to the presence of cold air at medium and higher levels, shows itself to be more important in zones where this warm moist advection at low levels is not as significant as in the Mediterranean zone.
Tropical warming and the dynamics of endangered primates.
Wiederholt, Ruscena; Post, Eric
2010-04-23
Many primate species are severely threatened, but little is known about the effects of global warming and the associated intensification of El Niño events on primate populations. Here, we document the influences of the El Niño southern oscillation (ENSO) and hemispheric climatic variability on the population dynamics of four genera of ateline (neotropical, large-bodied) primates. All ateline genera experienced either an immediate or a lagged negative effect of El Niño events. ENSO events were also found to influence primate resource levels through neotropical arboreal phenology. Furthermore, frugivorous primates showed a high degree of interspecific population synchrony over large scales across Central and South America attributable to the recent trends in large-scale climate. These results highlight the role of large-scale climatic variation and trends in ateline primate population dynamics, and emphasize that global warming could pose additional threats to the persistence of multiple species of endangered primates.
NASA Astrophysics Data System (ADS)
Kröner, Nico; Kotlarski, Sven; Fischer, Erich; Lüthi, Daniel; Zubler, Elias; Schär, Christoph
2017-05-01
Climate models robustly project a strong overall summer warming across Europe showing a characteristic north-south gradient with enhanced warming and drying in southern Europe. However, the processes that are responsible for this pattern are not fully understood. We here employ an extended surrogate or pseudo-warming approach to disentangle the contribution of different mechanisms to this response pattern. The basic idea of the surrogate technique is to use a regional climate model and apply a large-scale warming to the lateral boundary conditions of a present-day reference simulation, while maintaining the relative humidity (and thus implicitly increasing the specific moisture content). In comparison to previous studies, our approach includes two important extensions: first, different vertical warming profiles are applied in order to separate the effects of a mean warming from lapse-rate effects. Second, a twin-design is used, in which the climate change signals are not only added to present-day conditions, but also subtracted from a scenario experiment. We demonstrate that these extensions provide an elegant way to separate the full climate change signal into contributions from large-scale thermodynamic (TD), lapse-rate (LR), and circulation and other remaining effects (CO). The latter in particular include changes in land-ocean contrast and spatial variations of the SST warming patterns. We find that the TD effect yields a large-scale warming across Europe with no distinct latitudinal gradient. The LR effect, which is quantified for the first time in our study, leads to a stronger warming and some drying in southern Europe. It explains about 50 % of the warming amplification over the Iberian Peninsula, thus demonstrating the important role of lapse-rate changes. The effect is linked to an extending Hadley circulation. The CO effect as inherited from the driving GCM is shown to further amplify the north-south temperature change gradient. In terms of mean summer precipitation the TD effect leads to a significant overall increase in precipitation all across Europe, which is compensated and regionally reversed by the LR and CO effects in particular in southern Europe.
NASA Astrophysics Data System (ADS)
Parhi, P.; Giannini, A.; Lall, U.; Gentine, P.
2016-12-01
Assessing and managing risks posed by climate variability and change is challenging in the tropics, from both a socio-economic and a scientific perspective. Most of the vulnerable countries with a limited climate adaptation capability are in the tropics. However, climate projections, particularly of extreme precipitation, are highly uncertain there. The CMIP5 (Coupled Model Inter- comparison Project - Phase 5) inter-model range of extreme precipitation sensitivity to the global temperature under climate change is much larger in the tropics as compared to the extra-tropics. It ranges from nearly 0% to greater than 30% across models (O'Gorman 2012). The uncertainty is also large in historical gauge or satellite based observational records. These large uncertainties in the sensitivity of tropical precipitation extremes highlight the need to better understand how tropical precipitation extremes respond to warming. We hypothesize that one of the factors explaining the large uncertainty is due to differing sensitivities during different phases of warming. We consider the `growth' and `mature' phases of warming under climate variability case- typically associated with an El Niño event. In the remote tropics (away from tropical Pacific Ocean), the response of the precipitation extremes during the two phases can be through different pathways: i) a direct and fast changing radiative forcing in an atmospheric column, acting top-down due to the tropospheric warming, and/or ii) an indirect effect via changes in surface temperatures, acting bottom-up through surface water and energy fluxes. We also speculate that the insights gained here might be useful in interpreting the large sensitivity under climate change scenarios, since the physical mechanisms during the two warming phases under climate variability case, have some correspondence with an increasing and stabilized green house gas emission scenarios.
Recent and future warm extreme events and high-mountain slope stability.
Huggel, C; Salzmann, N; Allen, S; Caplan-Auerbach, J; Fischer, L; Haeberli, W; Larsen, C; Schneider, D; Wessels, R
2010-05-28
The number of large slope failures in some high-mountain regions such as the European Alps has increased during the past two to three decades. There is concern that recent climate change is driving this increase in slope failures, thus possibly further exacerbating the hazard in the future. Although the effects of a gradual temperature rise on glaciers and permafrost have been extensively studied, the impacts of short-term, unusually warm temperature increases on slope stability in high mountains remain largely unexplored. We describe several large slope failures in rock and ice in recent years in Alaska, New Zealand and the European Alps, and analyse weather patterns in the days and weeks before the failures. Although we did not find one general temperature pattern, all the failures were preceded by unusually warm periods; some happened immediately after temperatures suddenly dropped to freezing. We assessed the frequency of warm extremes in the future by analysing eight regional climate models from the recently completed European Union programme ENSEMBLES for the central Swiss Alps. The models show an increase in the higher frequency of high-temperature events for the period 2001-2050 compared with a 1951-2000 reference period. Warm events lasting 5, 10 and 30 days are projected to increase by about 1.5-4 times by 2050 and in some models by up to 10 times. Warm extremes can trigger large landslides in temperature-sensitive high mountains by enhancing the production of water by melt of snow and ice, and by rapid thaw. Although these processes reduce slope strength, they must be considered within the local geological, glaciological and topographic context of a slope.
Jorien E. Vonk,; Tank, Suzanne E.; Paul J. Mann,; Robert G.M. Spencer,; Treat, Claire C.; Striegl, Robert G.; Benjamin W. Abbott,; Wickland, Kimberly P.
2015-01-01
As Arctic regions warm and frozen soils thaw, the large organic carbon pool stored in permafrost becomes increasingly vulnerable to decomposition or transport. The transfer of newly mobilized carbon to the atmosphere and its potential influence upon climate change will largely depend on the degradability of carbon delivered to aquatic ecosystems. Dissolved organic carbon (DOC) is a key regulator of aquatic metabolism, yet knowledge of the mechanistic controls on DOC biodegradability is currently poor due to a scarcity of long-term data sets, limited spatial coverage of available data, and methodological diversity. Here, we performed parallel biodegradable DOC (BDOC) experiments at six Arctic sites (16 experiments) using a standardized incubation protocol to examine the effect of methodological differences commonly used in the literature. We also synthesized results from 14 aquatic and soil leachate BDOC studies from across the circum-arctic permafrost region to examine pan-arctic trends in BDOC.An increasing extent of permafrost across the landscape resulted in higher DOC losses in both soil and aquatic systems. We hypothesize that the unique composition of (yedoma) permafrost-derived DOC combined with limited prior microbial processing due to low soil temperature and relatively short flow path lengths and transport times, contributed to a higher overall terrestrial and freshwater DOC loss. Additionally, we found that the fraction of BDOC decreased moving down the fluvial network in continuous permafrost regions, i.e. from streams to large rivers, suggesting that highly biodegradable DOC is lost in headwater streams. We also observed a seasonal (January–December) decrease in BDOC in large streams and rivers, but saw no apparent change in smaller streams or soil leachates. We attribute this seasonal change to a combination of factors including shifts in carbon source, changing DOC residence time related to increasing thaw-depth, increasing water temperatures later in the summer, as well as decreasing hydrologic connectivity between soils and surface water as the thaw season progresses. Our results suggest that future climate warming-induced shifts of continuous permafrost into discontinuous permafrost regions could affect the degradation potential of thaw-released DOC, the amount of BDOC, as well as its variability throughout the Arctic summer. We lastly recommend a standardized BDOC protocol to facilitate the comparison of future work and improve our knowledge of processing and transport of DOC in a changing Arctic.
NASA Astrophysics Data System (ADS)
Vonk, J. E.; Tank, S. E.; Mann, P. J.; Spencer, R. G. M.; Treat, C. C.; Striegl, R. G.; Abbott, B. W.; Wickland, K. P.
2015-12-01
As Arctic regions warm and frozen soils thaw, the large organic carbon pool stored in permafrost becomes increasingly vulnerable to decomposition or transport. The transfer of newly mobilized carbon to the atmosphere and its potential influence upon climate change will largely depend on the degradability of carbon delivered to aquatic ecosystems. Dissolved organic carbon (DOC) is a key regulator of aquatic metabolism, yet knowledge of the mechanistic controls on DOC biodegradability is currently poor due to a scarcity of long-term data sets, limited spatial coverage of available data, and methodological diversity. Here, we performed parallel biodegradable DOC (BDOC) experiments at six Arctic sites (16 experiments) using a standardized incubation protocol to examine the effect of methodological differences commonly used in the literature. We also synthesized results from 14 aquatic and soil leachate BDOC studies from across the circum-arctic permafrost region to examine pan-arctic trends in BDOC. An increasing extent of permafrost across the landscape resulted in higher DOC losses in both soil and aquatic systems. We hypothesize that the unique composition of (yedoma) permafrost-derived DOC combined with limited prior microbial processing due to low soil temperature and relatively short flow path lengths and transport times, contributed to a higher overall terrestrial and freshwater DOC loss. Additionally, we found that the fraction of BDOC decreased moving down the fluvial network in continuous permafrost regions, i.e. from streams to large rivers, suggesting that highly biodegradable DOC is lost in headwater streams. We also observed a seasonal (January-December) decrease in BDOC in large streams and rivers, but saw no apparent change in smaller streams or soil leachates. We attribute this seasonal change to a combination of factors including shifts in carbon source, changing DOC residence time related to increasing thaw-depth, increasing water temperatures later in the summer, as well as decreasing hydrologic connectivity between soils and surface water as the thaw season progresses. Our results suggest that future climate warming-induced shifts of continuous permafrost into discontinuous permafrost regions could affect the degradation potential of thaw-released DOC, the amount of BDOC, as well as its variability throughout the Arctic summer. We lastly recommend a standardized BDOC protocol to facilitate the comparison of future work and improve our knowledge of processing and transport of DOC in a changing Arctic.
A High-Resolution WRF Tropical Channel Simulation Driven by a Global Reanalysis
NASA Astrophysics Data System (ADS)
Holland, G.; Leung, L.; Kuo, Y.; Hurrell, J.
2006-12-01
Since 2003, NCAR has invested in the development and application of Nested Regional Climate Model (NRCM) based on the Weather Research and Forecasting (WRF) model and the Community Climate System Model, as a key component of the Prediction Across Scales Initiative. A prototype tropical channel model has been developed to investigate scale interactions and the influence of tropical convection on large scale circulation and tropical modes. The model was developed based on the NCAR Weather Research and Forecasting Model (WRF), configured as a tropical channel between 30 ° S and 45 ° N, wide enough to allow teleconnection effects over the mid-latitudes. Compared to the limited area domain that WRF is typically applied over, the channel mode alleviates issues with reflection of tropical modes that could result from imposing east/west boundaries. Using a large amount of available computing resources on a supercomputer (Blue Vista) during its bedding in period, a simulation has been completed with the tropical channel applied at 36 km horizontal resolution for 5 years from 1996 to 2000, with large scale circulation provided by the NCEP/NCAR global reanalysis at the north/south boundaries. Shorter simulations of 2 years and 6 months have also been performed to include two-way nests at 12 km and 4 km resolution, respectively, over the western Pacific warm pool, to explicitly resolve tropical convection in the Maritime Continent. The simulations realistically captured the large-scale circulation including the trade winds over the tropical Pacific and Atlantic, the Australian and Asian monsoon circulation, and hurricane statistics. Preliminary analysis and evaluation of the simulations will be presented.
Computational Flame Characterization of New Large Aircraft Immersed in Hydrocarbon Pool Fires
2013-08-01
hydrocarbon liquid pool fires, their interaction with engulfed bodies, along with a brief overview of pool fire modeling. An industry-accepted...two-dimensional (2-D) horizontal liquid , heavy hydrocarbon fuel surface. A heavy hydrocarbon is characterized by properties consistent with aviation... jet fuels representing common diesel derivatives, such as Jet A and JP-8. Pool diameters are assumed to be much greater than 1 m to coincide with
NASA Astrophysics Data System (ADS)
Krall, G. M.; Cottom, W. R.
2012-01-01
Observational and model evidence suggest that a 2008 Western Pacific typhoon (NURI) ingested elevated concentrations of aerosol as it neared the Chinese coast. This study uses a regional model with two-moment bin-emulating microphysics to simulate the typhoon as it enters the field of elevated aerosol concentrations. A clean maritime field of cloud condensation nuclei (CCN) was prescribed as marine background CCN concentrations and then based on satellite and global aerosol model output, increased to pollution levels and further enhanced in sensitivity tests. The typhoon was simulated for 96 h beginning 17 August 2008. During the final 60 h CCN concentrations were enhanced as it neared the Philippines and coastal China. The model was initialized with both global reanalysis model data and irregularly spaced dropsonde data from the 2008 T-PARC observational campaign using an objective analysis routine. At 36 h, the internal nudging of the model was switched off and allowed to freely evolve on its own. As the typhoon encountered the elevated CCN in the sensitivity tests, a significant perturbation of windspeed, convective fluxes, and hydrometeor species behavior was simulated. Early during the ingestion of enhanced CCN, precipitation was reduced due to suppressed collision and coalescence, and storm winds increased in strength. Subsequently, owing to reduced fall speeds of the smaller drops, greater amounts of condensate were thrust into supercooled levels where the drops froze releasing greater amounts of latent heat of freezing. Convection thereby intensified which resulted in enhanced rainfall and more vigorous convectively-produced downdrafts. As the convection intensified in the outer rainbands the storm drifted over the developing cold-pools. The enhanced cold-pools blocked the inflow of warm, moist air into the core of the typhoon which led to a weakening of the typhoon with significantly reduced low level wind speeds. The very high amounts of pollution aerosols resulted in large amounts of condensate being thrust into the storm anvil which weakened convective downdrafts and cold-pools, yet the system did show reductions in windspeed (although weaker) compared with the clean control run. This study suggests that ingestion of elevated amounts of CCN into a tropical cyclone (TC) can appreciably alter the intensity of the storm. This implies that intensity prediction of TCs would be improved by including indirect aerosol affects. However, the pollution aerosols have very little impact on the storm track.
IRT Item Parameter Scaling for Developing New Item Pools
ERIC Educational Resources Information Center
Kang, Hyeon-Ah; Lu, Ying; Chang, Hua-Hua
2017-01-01
Increasing use of item pools in large-scale educational assessments calls for an appropriate scaling procedure to achieve a common metric among field-tested items. The present study examines scaling procedures for developing a new item pool under a spiraled block linking design. The three scaling procedures are considered: (a) concurrent…
Analysis of the Interactions of Planetary Waves with the Mean Flow of the Stratosphere
NASA Technical Reports Server (NTRS)
Newman, Paul A.
2007-01-01
During the winter period, large scale waves (planetary waves) are observed to propagate from the troposphere into the stratosphere. Such wave events have been recognized since the 1 950s. The very largest wave events result in major stratospheric warmings. These large scale wave events have typical durations of a few days to 2 weeks. The wave events deposit easterly momentum in the stratosphere, decelerating the polar night jet and warming the polar region. In this presentation we show the typical characteristics of these events via a compositing analysis. We will show the typical periods and scales of motion and the associated decelerations and warmings. We will illustrate some of the differences between major and minor warming wave events. We will further illustrate the feedback by the mean flow on subsequent wave events.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Breshears, D. D.; Ebinger, M. H.; Unkefer, P. J.
Photosynthesis and respiration are the largest fluxes into and out of the biosphere (Molles 1999). Consequently, small changes in these fluxes can potentially produce large changes in the storage of carbon in the biosphere. Terrestrial carbon fluxes account for more than half of the carbon transferred between the atmosphere and the earth's surface (about 120 GigaTons/year), and current stores of carbon in terrestrial ecosystem are estimated at 2060 GigaTons. Increasing attention is being focused on the role of managing and sequestering carbon in the terrestrial biosphere as a means for addressing global climate change (IGBP, 1998; U.S. Department of Energy,more » 1999). Terrestrial ecosystems are widely recognized as a major biological scrubber for atmosphereic CO{sub 2} and their ability to finction as such can be increased significantly over the next 25 years through careful manipulation. The potential for terrestrial carbon gains has been the subject of much attention (Dixon et al., 1994; Masera et al. 1997; Cao and Woodward, 1998; DeLucia et al. 1999). In contrast to other strategies for reducing net carbon emissions, terrestrial sequestration has the potential for rapid implementation. Strategies that focus on soil carbon are likely to be effective because in addition to being a storage pool of carbon, soil carbon also improves site productivity through improving soil quality (e.g., water retention and nutrient availability). The carbon pool in soils is immense and highly dynamic. The flux of carbon into and out of soils is one of the largest uncertainties in the total mass balance of global carbon (NRC, 1999; La1 et al., 1998; Cambardella, 1998). Reducing these uncertainties is key to developing carbon sequestration strategies. Soil carbon pools have been greatly depleted over recent centuries, and there is potential to increase storage of carbon in these soils through effective land management. Whereas carbon in vegetation can be managed directly through land use, carbon in soils generally must be managed indirectly through manipulation of vegetation and nutrients. Land management as well as climate changes have the potential to increase soil carbon, but also could trigger large soil carbon losses. Recently, the importance of accounting for countervailing losses in assessing potential amounts of terrestrial carbon that can be sequestered has been highlighted (Schlesinger, 1999; Walker et al., 1999). Realistic assessment of terrestrial carbon sequestration strategies must consider net results of an applied strategy, not simply projected carbon gains. In addition, large, rapid losses of carbon resulting from carbon management strategies could exacerbate the global warming rather than mitigating it. Such potential losses include rapid loss of carbon in vegetation due to fire and rapid loss of soil carbon triggered by reductions in ground cover (e.g., fire, drought). Therefore, strategies for terrestrial carbon sequestration must determine how to increase terrestrial carbon while minimizing the risk of large-scale catastrophic losses. Our objectives in this paper are to (1) highlight approaches that are being considered in terms of terrestrial carbon sequestration, (2) highlight case studies for which large losses of carbon may occur, and (3) suggest future directions and application for terrestrial carbon sequestration.« less
NASA Astrophysics Data System (ADS)
Soucemarianadin, Laure; Erhagen, Björn; Öquist, Mats; Nilsson, Mats; Schleucher, Jürgen
2015-04-01
Soil organic matter (SOM) represents a huge carbon pool, specifically in boreal ecosystems. Warming-induced release of large amounts of CO2 from the soil carbon pool might become a significant exacerbating feedback to global warming, if decomposition rates of boreal soils were more sensitive to increased temperatures. Despite a large number of studies dedicated to the topic, it has proven difficult to elucidate how the organo-chemical composition of SOM influences its decomposition, or its quality as a substrate for microbial metabolism. A great part of this challenge results from our inability to achieve a detailed characterization of the complex composition of SOM on the level of molecular structural moieties. 13C nuclear magnetic resonance (NMR) spectroscopy is a common tool to characterize SOM. However, SOM is a very complex mixture and the chemical shift regions distinguished in the 13C NMR spectra often represent many different molecular fragments. For example, in the carbohydrates region, signals of all monosaccharides present in many different polymers overlap. This overlap thwarts attempts to identify molecular moieties, resulting in insufficient information to characterize SOM composition. We applied two-dimensional (2D) NMR to characterize SOM with highly increased resolution. We directly dissolved finely ground litters and forest floors'fibric and humic horizons'of both coniferous and deciduous boreal forests in dimethyl sulfoxide and analyzed the resulting solution with a 2D 1H-13C NMR experiment. In the 2D planes of these spectra, signals of CH groups can be resolved based on their 13C and 1H chemical shifts, hence the resolving power and information content of these NMR spectra is hugely increased. The 2D spectra indeed resolved overlaps observed in 1D 13C spectra, so that hundreds of distinct CH groups could be observed and many molecular fragments could be identified. For instance, in the aromatics region, signals from individual lignin units could be recognized. It was hence possible to follow the fate of specific structural moieties in soils. We observed differences between litter and soil samples, and were able to relate them to the decomposition of identifiable moieties. Using multivariate data analysis, we aimed at linking the detailed chemical fingerprints of SOM to turnover rates in a soil incubation experiment. With the multivariate models, we were able to relate signal patterns in the 2D spectra and intensities of identifiable molecular moieties to variability in the temperature response of organic matter decomposition, as assessed by Q10. In conclusion, the characterization of SOM composition at the molecular level by solution-state 2D NMR spectroscopy is highly promising; it offers unprecedented possibilities to link SOM molecular composition to ecosystem processes, and their responses to environmental changes.
Methane Cycling in a Warming Wetland
NASA Astrophysics Data System (ADS)
Noyce, G. L.; Megonigal, P.; Rich, R.; Kirwan, M. L.; Herbert, E. R.
2017-12-01
Coastal wetlands are global hotspots of carbon (C) storage, but the future of these systems is uncertain. In June 2016, we initiated an in-situ, active, whole-ecosystem warming experiment in the Smithsonian's Global Change Research Wetland to quantify how warming and elevated CO2 affect the stability of coastal wetland soil C pools and contemporary rates of C sequestration. Transects are located in two plant communities, dominated by C3 sedges or C4 grasses. The experiment has a gradient design with air and soil warming treatments ranging from ambient to +5.1 °C and heated plots consistently maintain their target temperature year-round. In April 2017, an elevated CO2 treatment was crossed with temperature in the C3community. Ongoing measurements include soil elevation, C fluxes, porewater chemistry and redox potential, and above- and below-ground growth and biomass. In both years, warming increased methane (CH4) emissions (measured at 3-4 week intervals) from spring through fall at the C3 site, but had little effect on emissions from the C4 site. Winter (Dec-Mar) emissions showed no treatment effect. Stable isotope analysis of dissolved CH4 and DIC also indicated that warming had differing effects on CH4 pathways in the two vegetation communities. To better understand temperature effects on rates of CH4 production and oxidation, 1 m soil cores were collected from control areas of the marsh in summer 2017 and incubated at temperatures ranging from 4 °C to 35 °C. Warming increased CH4 production and oxidation rates in surface samples and oxidation rates in the rooting zone samples from both sites, but temperature responses in deep (1 m) soil samples were minimal. In the surface and rooting zone samples, production rates were also consistently higher in C3 soils compared to C4 soils, but, contrary to our expectations, the temperature response was stronger in the C4 soils. However, oxidation in C3 rooting zone samples did have a strong temperature response. The ratio of CO2:CH4 decreased with increasing temperature in surface samples from both sites, indicating that anaerobic respiration in surface soil may become increasingly methanogenic with warming. In contrast, the rooting zone and deep soil samples showed the opposite trend, again suggesting that the soil profile will not respond consistently to warming.
Recent warming leads to a rapid borealization of fish communities in the Arctic
NASA Astrophysics Data System (ADS)
Fossheim, Maria; Primicerio, Raul; Johannesen, Edda; Ingvaldsen, Randi B.; Aschan, Michaela M.; Dolgov, Andrey V.
2015-07-01
Arctic marine ecosystems are warming twice as fast as the global average. As a consequence of warming, many incoming species experience increasing abundances and expanding distribution ranges in the Arctic. The Arctic is expected to have the largest species turnover with regard to invading and locally extinct species, with a modelled invasion intensity of five times the global average. Studies in this region might therefore give valuable insights into community-wide shifts of species driven by climate warming. We found that the recent warming in the Barents Sea has led to a change in spatial distribution of fish communities, with boreal communities expanding northwards at a pace reflecting the local climate velocities. Increased abundance and distribution areas of large, migratory fish predators explain the observed community-wide distributional shifts. These shifts change the ecological interactions experienced by Arctic fish species. The Arctic shelf fish community retracted northwards to deeper areas bordering the deep polar basin. Depth might limit further retraction of some of the fish species in the Arctic shelf community. We conclude that climate warming is inducing structural change over large spatial scales at high latitudes, leading to a borealization of fish communities in the Arctic.
2012-02-01
proxy is required. The G. ruber Mg/Ca results suggest that the...interpretations, indicating further work on this proxy is required. The G. ruber Mg/Ca results suggest that...the ITCZ would lose some of its northward bias. Our hydrologic proxies show exactly that. Our
Urgent Virtual Machine Eviction with Enlightened Post-Copy
2015-12-01
memory is in use, almost all of which is by Memcached. MySQL : The VMs run MySQL 5.6, and the clients execute OLTPBenchmark [3] using the Twitter...workload with scale factor of 960. The VMs are each allocated 16 cores and 30 GB of memory, and MySQL is configured with a 16 GB buffer pool in memory. The...operation mix for 5 minutes as a warm-up. At the time of migration, MySQL uses approximately 17 GB of memory, and almost all of the 30 GB memory is
Warm up I: potential mechanisms and the effects of passive warm up on exercise performance.
Bishop, David
2003-01-01
Despite limited scientific evidence supporting their effectiveness, warm-up routines prior to exercise are a well-accepted practice. The majority of the effects of warm up have been attributed to temperature-related mechanisms (e.g. decreased stiffness, increased nerve-conduction rate, altered force-velocity relationship, increased anaerobic energy provision and increased thermoregulatory strain), although non-temperature-related mechanisms have also been proposed (e.g. effects of acidaemia, elevation of baseline oxygen consumption (.VO(2)) and increased postactivation potentiation). It has also been hypothesised that warm up may have a number of psychological effects (e.g. increased preparedness). Warm-up techniques can be broadly classified into two major categories: passive warm up or active warm up. Passive warm up involves raising muscle or core temperature by some external means, while active warm up utilises exercise. Passive heating allows one to obtain the increase in muscle or core temperature achieved by active warm up without depleting energy substrates. Passive warm up, although not practical for most athletes, also allows one to test the hypothesis that many of the performance changes associated with active warm up can be largely attributed to temperature-related mechanisms.
Boreal and temperate trees show strong acclimation of respiration to warming.
Reich, Peter B; Sendall, Kerrie M; Stefanski, Artur; Wei, Xiaorong; Rich, Roy L; Montgomery, Rebecca A
2016-03-31
Plant respiration results in an annual flux of carbon dioxide (CO2) to the atmosphere that is six times as large as that due to the emissions from fossil fuel burning, so changes in either will impact future climate. As plant respiration responds positively to temperature, a warming world may result in additional respiratory CO2 release, and hence further atmospheric warming. Plant respiration can acclimate to altered temperatures, however, weakening the positive feedback of plant respiration to rising global air temperature, but a lack of evidence on long-term (weeks to years) acclimation to climate warming in field settings currently hinders realistic predictions of respiratory release of CO2 under future climatic conditions. Here we demonstrate strong acclimation of leaf respiration to both experimental warming and seasonal temperature variation for juveniles of ten North American tree species growing for several years in forest conditions. Plants grown and measured at 3.4 °C above ambient temperature increased leaf respiration by an average of 5% compared to plants grown and measured at ambient temperature; without acclimation, these increases would have been 23%. Thus, acclimation eliminated 80% of the expected increase in leaf respiration of non-acclimated plants. Acclimation of leaf respiration per degree temperature change was similar for experimental warming and seasonal temperature variation. Moreover, the observed increase in leaf respiration per degree increase in temperature was less than half as large as the average reported for previous studies, which were conducted largely over shorter time scales in laboratory settings. If such dampening effects of leaf thermal acclimation occur generally, the increase in respiration rates of terrestrial plants in response to climate warming may be less than predicted, and thus may not raise atmospheric CO2 concentrations as much as anticipated.
NASA Astrophysics Data System (ADS)
Goodwin, Philip; Brown, Sally; Haigh, Ivan David; Nicholls, Robert James; Matter, Juerg M.
2018-03-01
To avoid the most dangerous consequences of anthropogenic climate change, the Paris Agreement provides a clear and agreed climate mitigation target of stabilizing global surface warming to under 2.0°C above preindustrial, and preferably closer to 1.5°C. However, policy makers do not currently know exactly what carbon emissions pathways to follow to stabilize warming below these agreed targets, because there is large uncertainty in future temperature rise for any given pathway. This large uncertainty makes it difficult for a cautious policy maker to avoid either: (1) allowing warming to exceed the agreed target or (2) cutting global emissions more than is required to satisfy the agreed target, and their associated societal costs. This study presents a novel Adjusting Mitigation Pathway (AMP) approach to restrict future warming to policy-driven targets, in which future emissions reductions are not fully determined now but respond to future surface warming each decade in a self-adjusting manner. A large ensemble of Earth system model simulations, constrained by geological and historical observations of past climate change, demonstrates our self-adjusting mitigation approach for a range of climate stabilization targets ranging from 1.5°C to 4.5°C, and generates AMP scenarios up to year 2300 for surface warming, carbon emissions, atmospheric CO2, global mean sea level, and surface ocean acidification. We find that lower 21st century warming targets will significantly reduce ocean acidification this century, and will avoid up to 4 m of sea-level rise by year 2300 relative to a high-end scenario.
The Vitamin D Pooling Project of Rarer Cancers brought together investigators from 10 cohorts to conduct a large prospective epidemiologic study of the association between vitamin D status and seven rarer cancers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Diefenderfer, Heida L.; Montgomery, David R.
2008-10-09
Tidal forested wetlands have sustained substantial areal losses, and restoration practitioners lack a description of many ecosystem structures associated with these late-successional systems in which surface water is a significant controlling factor on the flora and fauna. The roles of large woody debris in terrestrial and riverine ecosystems have been well described compared to functions in tidal areas. This study documents the role of large wood in forcing channel morphology in Picea-sitchensis (Sitka spruce) dominated freshwater tidal wetlands in the floodplain of the Columbia River, U.S.A. near the Pacific coast. The average pool spacing documented in channel surveys of threemore » freshwater tidal forested wetlands near Grays Bay were 2.2 ± 1.3, 2.3 ± 1.2, and 2.5 ± 1.5. There were significantly greater numbers of pools on tidal forested wetland channels than on a nearby restoration site. On the basis of pool spacing and the observed sequences of log jams and pools, the tidal forested wetland channels were classified consistent with a forced step-pool class. Tidal systems, with bidirectional flow, have not previously been classified in this way. The classification provides a useful basis for restoration project design and planning in historically forested tidal freshwater areas, particularly in regard to the use of large wood in restoration actions and the development of pool habitats for aquatic species. Significant modifications by beaver on these sites warrant further investigation to explore the interactions between these animals and restoration actions affecting hydraulics and channel structure in tidal areas.« less
Microbial responses to multi-factor climate change: effects on soil enzymes.
Steinweg, J Megan; Dukes, Jeffrey S; Paul, Eldor A; Wallenstein, Matthew D
2013-01-01
The activities of extracellular enzymes, the proximate agents of decomposition in soils, are known to depend strongly on temperature, but less is known about how they respond to changes in precipitation patterns, and the interaction of these two components of climate change. Both enzyme production and turnover can be affected by changes in temperature and soil moisture, thus it is difficult to predict how enzyme pool size may respond to altered climate. Soils from the Boston-Area Climate Experiment (BACE), which is located in an old field (on abandoned farmland), were used to examine how climate variables affect enzyme activities and microbial biomass carbon (MBC) in different seasons and in soils exposed to a combination of three levels of precipitation treatments (ambient, 150% of ambient during growing season, and 50% of ambient year-round) and four levels of warming treatments (unwarmed to ~4°C above ambient) over the course of a year. Warming, precipitation and season had very little effect on potential enzyme activity. Most models assume that enzyme dynamics follow microbial biomass, because enzyme production should be directly controlled by the size and activity of microbial biomass. We observed differences among seasons and treatments in mass-specific potential enzyme activity, suggesting that this assumption is invalid. In June 2009, mass-specific potential enzyme activity, using chloroform fumigation-extraction MBC, increased with temperature, peaking under medium warming and then declining under the highest warming. This finding suggests that either enzyme production increased with temperature or turnover rates decreased. Increased maintenance costs associated with warming may have resulted in increased mass-specific enzyme activities due to increased nutrient demand. Our research suggests that allocation of resources to enzyme production could be affected by climate-induced changes in microbial efficiency and maintenance costs.
NASA Astrophysics Data System (ADS)
Welker, J. M.; Sullivan, P.; Rogers, M.; Sharp, E. D.; Sletten, R.; Burnham, J. L.; Hallet, B.; Hagedorn, B.; Czimiczk, C.
2009-12-01
Greenland is experiencing some of the fastest rates of climate warming across the Arctic including warmer summers and increases in snow fall. The effects of these new states of Greenland are however, uncertain especially for carbon, nitrogen and water biogeochemical processes, soil traits, vegetation growth patterns, mineral nutrition and plant ecophysiological processes. Since 2003 we have conducted a suite of observational and experimental measurements that have been designed to understand the fundamental nature of polar desert, polar semi-desert and fen landscapes in NW Greenland. In addition, we have established a suite of experiments to ascertain ecosystem responses to warming at multiple levels (~2030 and 2050), in conjunction with added summer rain; the consequences of added snow fall (ambient, intermediate and deep) and the effects of increases in nutrient additions (added N, P and N+P), which represent extreme warming conditions. We find that: a) the soil C pools are 6-fold larger than previously measured, b) extremely old C (up to ~30k bp) which has been buried by frost cracking and frost heaving is reaching the modern atmosphere, but in only trace amounts as measured by respired 14CO2, c) warming that simulates 2030, has only a small effect on net C sequestration but warming that simulates 2050 when combined with added summer rain, increases C sequestration by 300%, d) increases in N deposition almost immediately and completely changes the vegetation composition of polar semi-deserts shifting the NDVI values from 0.2 to 0.5 within 2 years. Our findings depict a system that is poised to contribute stronger feedbacks than previously expected as climates in NW Greenland change.
Vitrification of oocytes from endangered Mexican gray wolves (Canis lupus baileyi).
Boutelle, S; Lenahan, K; Krisher, R; Bauman, K L; Asa, C S; Silber, S
2011-03-01
Careful genetic management, including cryopreservation of genetic material, is central to conservation of the endangered Mexican gray wolf. We tested a technique, previously used to vitrify human and domestic animal oocytes, on oocytes from domestic dogs as a model and from the endangered Mexican wolf. This method provided a way to conserve oocytes from genetically valuable older female Mexican wolves as an alternative to embryos for preserving female genes. Oocytes were aspirated from ovaries of 36 female dogs in December and March (0 to 65 oocytes per female) and from six female wolves (4 to 73 per female) during their physiologic breeding season, or following stimulation with the GnRH agonist deslorelin. Oocytes from dogs were pooled; half were immediately tested for viability and the remainder vitrified, then warmed and tested for viability. All oocytes were vitrified by being moved through media of increasing cryoprotectant concentration, placed on Cryotops, and plunged into liquid nitrogen. There was no difference in viability (propidium iodide staining) between fresh and vitrified, warmed dog oocytes (65.7 and 61.0%, respectively, P = 0.27). Oocyte viability after warming was similarly assessed in a subset of wolves (4 to 15 oocytes from each of three females; total 29 oocytes). Of these, 57.1% of the post-thaw intact oocytes were viable, which was 41.4% of all oocytes warmed. These were the first oocytes from a canid or an endangered species demonstrated to have maintained viability after vitrification and warming. Furthermore, our results demonstrated that vitrification of oocytes with the Cryotop technique was an option for preserving female gametes from Mexican wolves for future use in captive breeding programs, although in vitro embryo production techniques must first be developed in canids for this technique to be used. Copyright © 2011 Elsevier Inc. All rights reserved.
Large eddy simulation of dust-uplift by haboob density currents
NASA Astrophysics Data System (ADS)
Huang, Q.
2017-12-01
Cold pool outflows have been shown from both observations and convection-permitting models to be a dominant source of dust uplift ("haboobs") in the summertime Sahel and Sahara, and to cause dust uplift over deserts across the world. In this paper large eddy model (LEM) simulations, which resolve the turbulence within the cold-pools much better than previous studies of haboobs which have used convection-permitting models, are used to investigate the winds that cause dust uplift in cold pools, and the resultant dust uplift and transport. Dust uplift largely occurs in the head of the density current, consistent with the few existing observations. In the modeled density current dust is largely restricted to the lowest coldest and well mixed layer of the cold pool outflow (below around 400 m), except above the head of the cold pool where some dust reaches 2.5 km. This rapid transport to high altitude will contribute to long atmospheric lifetimes of large dust particles from haboobs. Decreasing the model horizontal grid-spacing from 1.0 km to 100 m resolves more turbulence, locally increasing winds, increasing mixing and reducing the propagation speed of the density current. Total accumulated dust uplift is approximately twice as large in 1.0 km runs compared with 100 m runs, suggesting that for studying haboobs in convection-permitting runs the representation of turbulence and mixing is significant. Simulations with surface sensible heat fluxes representative of those from a desert region in daytime show that increasing surface fluxes slow the density current due to increased mixing, but increase dust uplift rates, due to increased downward transport of momentum to the surface.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Varble, A. C.; Zipser, Edward J.; Fridlind, Ann
2014-12-27
Ten 3D cloud-resolving model (CRM) simulations and four 3D limited area model (LAM) simulations of an intense mesoscale convective system observed on January 23-24, 2006 during the Tropical Warm Pool – International Cloud Experiment (TWP-ICE) are compared with each other and with observed radar reflectivity fields and dual-Doppler retrievals of vertical wind speeds in an attempt to explain published results showing a high bias in simulated convective radar reflectivity aloft. This high bias results from ice water content being large, which is a product of large, strong convective updrafts, although hydrometeor size distribution assumptions modulate the size of this bias.more » Snow reflectivity can exceed 40 dBZ in a two-moment scheme when a constant bulk density of 100 kg m-3 is used. Making snow mass more realistically proportional to area rather than volume should somewhat alleviate this problem. Graupel, unlike snow, produces high biased reflectivity in all simulations. This is associated with large amounts of liquid water above the freezing level in updraft cores. Peak vertical velocities in deep convective updrafts are greater than dual-Doppler retrieved values, especially in the upper troposphere. Freezing of large rainwater contents lofted above the freezing level in simulated updraft cores greatly contributes to these excessive upper tropospheric vertical velocities. Strong simulated updraft cores are nearly undiluted, with some showing supercell characteristics. Decreasing horizontal grid spacing from 900 meters to 100 meters weakens strong updrafts, but not enough to match observational retrievals. Therefore, overly intense simulated updrafts may partly be a product of interactions between convective dynamics, parameterized microphysics, and large-scale environmental biases that promote different convective modes and strengths than observed.« less
Xiang, J; Hansen, A; Liu, Q; Tong, M X; Liu, X; Sun, Y; Cameron, S; Hanson-Easey, S; Han, G S; Williams, C; Weinstein, P; Bi, P
2018-01-01
This study aims to investigate the climate-malaria associations in nine cities selected from malaria high-risk areas in China. Daily reports of malaria cases in Anhui, Henan, and Yunnan Provinces for 2005-2012 were obtained from the Chinese Center for Disease Control and Prevention. Generalized estimating equation models were used to quantify the city-specific climate-malaria associations. Multivariate random-effects meta-regression analyses were used to pool the city-specific effects. An inverted-U-shaped curve relationship was observed between temperatures, average relative humidity, and malaria. A 1 °C increase of maximum temperature (T max) resulted in 6·7% (95% CI 4·6-8·8%) to 15·8% (95% CI 14·1-17·4%) increase of malaria, with corresponding lags ranging from 7 to 45 days. For minimum temperature (T min), the effect estimates peaked at lag 0 to 40 days, ranging from 5·3% (95% CI 4·4-6·2%) to 17·9% (95% CI 15·6-20·1%). Malaria is more sensitive to T min in cool climates and T max in warm climates. The duration of lag effect in a cool climate zone is longer than that in a warm climate zone. Lagged effects did not vanish after an epidemic season but waned gradually in the following 2-3 warm seasons. A warming climate may potentially increase the risk of malaria resurgence in China.
McGuire, A.D.; Christensen, T.R.; Hayes, D.; Heroult, A.; Euskirchen, E.; Yi, Y.; Kimball, J.S.; Koven, C.; Lafleur, P.; Miller, P.A.; Oechel, W.; Peylin, P.; Williams, M.
2012-01-01
Although arctic tundra has been estimated to cover only 8% of the global land surface, the large and potentially labile carbon pools currently stored in tundra soils have the potential for large emissions of carbon (C) under a warming climate. These emissions as radiatively active greenhouse gases in the form of both CO2 and CH4 could amplify global warming. Given the potential sensitivity of these ecosystems to climate change and the expectation that the Arctic will experience appreciable warming over the next century, it is important to assess whether responses of C exchange in tundra regions are likely to enhance or mitigate warming. In this study we compared analyses of C exchange of Arctic tundra between 1990–1999 and 2000–2006 among observations, regional and global applications of process-based terrestrial biosphere models, and atmospheric inversion models. Syntheses of the compilation of flux observations and of inversion model results indicate that the annual exchange of CO2 between arctic tundra and the atmosphere has large uncertainties that cannot be distinguished from neutral balance. The mean estimate from an ensemble of process-based model simulations suggests that arctic tundra acted as a sink for atmospheric CO2 in recent decades, but based on the uncertainty estimates it cannot be determined with confidence whether these ecosystems represent a weak or a strong sink. Tundra was 0.6 °C warmer in the 2000s compared to the 1990s. The central estimates of the observations, process-based models, and inversion models each identify stronger sinks in the 2000s compared with the 1990s. Similarly, the observations and the applications of regional process-based models suggest that CH4 emissions from arctic tundra have increased from the 1990s to 2000s. Based on our analyses of the estimates from observations, process-based models, and inversion models, we estimate that arctic tundra was a sink for atmospheric CO2 of 110 Tg C yr-1 (uncertainty between a sink of 291 Tg C yr-1 and a source of 80 Tg C yr-1) and a source of CH4 to the atmosphere of 19 Tg C yr-1 (uncertainty between sources of 8 and 29 Tg C yr-1). The suite of analyses conducted in this study indicate that it is clearly important to reduce uncertainties in the observations, process-based models, and inversions in order to better understand the degree to which Arctic tundra is influencing atmospheric CO2 and CH4 concentrations. The reduction of uncertainties can be accomplished through (1) the strategic placement of more CO2 and CH4 monitoring stations to reduce uncertainties in inversions, (2) improved observation networks of ground-based measurements of CO2 and CH4 exchange to understand exchange in response to disturbance and across gradients of hydrological variability, and (3) the effective transfer of information from enhanced observation networks into process-based models to improve the simulation of CO2 and CH4 exchange from arctic tundra to the atmosphere.
Pool Formation in Boulder-Bed Streams: Implications From 1-D and 2-D Numerical Modeling
NASA Astrophysics Data System (ADS)
Harrison, L. R.; Keller, E. A.
2003-12-01
In mountain rivers of Southern California, boulder-large roughness elements strongly influence flow hydraulics and pool formation and maintenance. In these systems, boulders appear to control the stream morphology by converging flow and producing deep pools during channel forming discharges. Our research goal is to develop quantitative relationships between boulder roughness elements, temporal patterns of scour and fill, and geomorphic processes that are important in producing pool habitat. The longitudinal distribution of shear stress, unit stream power and velocity were estimated along a 48 m reach on Rattlesnake Creek, using the HEC-RAS v 3.0 and River 2-D numerical models. The reach has an average slope of 0.02 and consists of a pool-riffle sequence with a large boulder constriction directly above the pool. Model runs were performed for a range of stream discharges to test if scour and fill thresholds for pool and riffle environments could be identified. Results from the HEC-RAS simulations identified that thresholds in shear stress, unit stream power and mean velocity occur above a discharge of 5.0 cms. Results from the one-dimensional analysis suggest that the reversal in competency is likely due to changes in cross-sectional width at varying flows. River 2-D predictions indicated that strong transverse velocity gradients were present through the pool at higher modeled discharges. At a flow of 0.5 cms (roughly 1/10th bankfull discharge), velocities are estimated at 0.6 m/s and 1.3 m/s for the pool and riffle, respectively. During discharges of 5.15 cms (approximate bankfull discharge), the maximum velocity in the pool center increased to nearly 3.0 m/s, while the maximum velocity over the riffle is estimated at approximately 2.5 cms. These results are consistent with those predicted by HEC-RAS, though the reversal appears to be limited to a narrow jet that occurs through the pool head and pool center. Model predictions suggest that the velocity reversal is produced by a boulder-bedrock constriction that rapidly decreases the channel width above the pool by roughly 25 percent. The width constriction creates highly turbulent flow capable of scouring bed material through the pool. The high velocity core that is produced through the pool center appears to be enhanced by the formation of a large eddy directly below the boulder. Values of unit stream power and shear stress indicate that the pool exit is an area of deposition of bed material due to a decrease in tractive force. The presence of a strong transverse velocity gradient suggests that only a portion of the flow is responsible for scouring bed material. After we eliminate the dead water zone, the lowest five percent of the velocity range, patterns of effective width between pools and riffles begin to emerge. The ratio of flow width between adjacent pools and riffles is one measure of flow convergence. At a discharge of 0.5 cms, the ratio of effective width between pools and riffles is roughly 1:1, implying that there is uniform flow with little flow convergence. At a discharge of 5.15 cms the width ratio between the pool and riffle is about 1:3, demonstrating the strong convergent flow patterns at the pool head. The observed effective width relationship suggests that when considering restoration designs, boulders should be placed in areas that replicate natural convergence and divergence patterns in order to maximize pool area and depth.
Jin, Sheng Chih; Benitez, Bruno A; Deming, Yuetiva; Cruchaga, Carlos
2016-01-01
Analyses of genome-wide association studies (GWAS) for complex disorders usually identify common variants with a relatively small effect size that only explain a small proportion of phenotypic heritability. Several studies have suggested that a significant fraction of heritability may be explained by low-frequency (minor allele frequency (MAF) of 1-5 %) and rare-variants that are not contained in the commercial GWAS genotyping arrays (Schork et al., Curr Opin Genet Dev 19:212, 2009). Rare variants can also have relatively large effects on risk for developing human diseases or disease phenotype (Cruchaga et al., PLoS One 7:e31039, 2012). However, it is necessary to perform next-generation sequencing (NGS) studies in a large population (>4,000 samples) to detect a significant rare-variant association. Several NGS methods, such as custom capture sequencing and amplicon-based sequencing, are designed to screen a small proportion of the genome, but most of these methods are limited in the number of samples that can be multiplexed (i.e. most sequencing kits only provide 96 distinct index). Additionally, the sequencing library preparation for 4,000 samples remains expensive and thus conducting NGS studies with the aforementioned methods are not feasible for most research laboratories.The need for low-cost large scale rare-variant detection makes pooled-DNA sequencing an ideally efficient and cost-effective technique to identify rare variants in target regions by sequencing hundreds to thousands of samples. Our recent work has demonstrated that pooled-DNA sequencing can accurately detect rare variants in targeted regions in multiple DNA samples with high sensitivity and specificity (Jin et al., Alzheimers Res Ther 4:34, 2012). In these studies we used a well-established pooled-DNA sequencing approach and a computational package, SPLINTER (short indel prediction by large deviation inference and nonlinear true frequency estimation by recursion) (Vallania et al., Genome Res 20:1711, 2010), for accurate identification of rare variants in large DNA pools. Given an average sequencing coverage of 30× per haploid genome, SPLINTER can detect rare variants and short indels up to 4 base pairs (bp) with high sensitivity and specificity (up to 1 haploid allele in a pool as large as 500 individuals). Step-by-step instructions on how to conduct pooled-DNA sequencing experiments and data analyses are described in this chapter.
A Three-Pool Model Dissecting Readily Releasable Pool Replenishment at the Calyx of Held
Guo, Jun; Ge, Jian-long; Hao, Mei; Sun, Zhi-cheng; Wu, Xin-sheng; Zhu, Jian-bing; Wang, Wei; Yao, Pan-tong; Lin, Wei; Xue, Lei
2015-01-01
Although vesicle replenishment is critical in maintaining exo-endocytosis recycling, the underlying mechanisms are not well understood. Previous studies have shown that both rapid and slow endocytosis recycle into a very large recycling pool instead of within the readily releasable pool (RRP), and the time course of RRP replenishment is slowed down by more intense stimulation. This finding contradicts the calcium/calmodulin-dependence of RRP replenishment. Here we address this issue and report a three-pool model for RRP replenishment at a central synapse. Both rapid and slow endocytosis provide vesicles to a large reserve pool (RP) ~42.3 times the RRP size. When moving from the RP to the RRP, vesicles entered an intermediate pool (IP) ~2.7 times the RRP size with slow RP-IP kinetics and fast IP-RRP kinetics, which was responsible for the well-established slow and rapid components of RRP replenishment. Depletion of the IP caused the slower RRP replenishment observed after intense stimulation. These results establish, for the first time, a realistic cycling model with all parameters measured, revealing the contribution of each cycling step in synaptic transmission. The results call for modification of the current view of the vesicle recycling steps and their roles. PMID:25825223
The Atmospheric Response to a Future Warming Deficit in North Atlantic SSTs
NASA Astrophysics Data System (ADS)
Gervais, M.; Shaman, J. L.; Kushnir, Y.
2017-12-01
As SSTs increase globally over the 21st century, global climate models project a significant deficit in warming within the subpolar gyre of the North Atlantic Ocean. This study investigates the impact of this warming deficit on atmosphere circulation. A series of large ensemble experiments are conducted using the Community Atmosphere Model 5 forced with specified sea ice and SSTs for the early (2010-2019), mid (2050-2059), and late (2090-2099) 21stcentury. SST and sea ice fields from the Community Earth System Model Large Ensemble experiment are used as boundary conditions for the control simulations. Experiments with either a filled or deepened warming hole are conducted by adding a SST perturbation field to these time-varying SST boundary conditions. Results from these experiments demonstrate that the warming hole has significant local and remote impacts on the atmosphere. Filling (deepening) the warming hole results in a local increase (decrease) in turbulent heat fluxes relative to the control run and consequentially an increase (decrease) in temperature in the overlying lower troposphere that spreads over Europe. There are significant impacts on the location and strength of both the North Atlantic and North Pacific jets as well as on the North Atlantic Oscillation. These impacts of the warming hole on both the mean state and variability of the atmosphere have important implications for sensible weather in the Northern Hemisphere and in particular over Europe.
A Massive Warm Baryonic Halo in the Coma Cluster
NASA Technical Reports Server (NTRS)
Bonamente, Massimiliano; Joy, Marshall K.; Lieu, Richard
2003-01-01
Several deep PSPC observations of the Coma Cluster reveal a very large scale halo of soft X-ray emission, substantially in excess of the well-known radiation from the hot intracluster medium. The excess emission, previously reported in the central region of the cluster using lower sensitivity Extreme Ultraviolet Explorer (EUVE) and ROSAT data, is now evident out to a radius of 2.6 Mpc, demonstrating that the soft excess radiation from clusters is a phenomenon of cosmological significance. The X-ray spectrum at these large radii cannot be modeled nonthermally but is consistent with the original scenario of thermal emission from warm gas at approx. 10(exp 6) K. The mass of the warm gas is on par with that of the hot X-ray-emitting plasma and significantly more massive if the warm gas resides in low-density filamentary structures. Thus, the data lend vital support to current theories of cosmic evolution, which predict that at low redshift approx. 30%-40% of the baryons reside in warm filaments converging at clusters of galaxies.
Long-Term Warming Alters Carbohydrate Degradation Potential in Temperate Forest Soils.
Pold, Grace; Billings, Andrew F; Blanchard, Jeff L; Burkhardt, Daniel B; Frey, Serita D; Melillo, Jerry M; Schnabel, Julia; van Diepen, Linda T A; DeAngelis, Kristen M
2016-11-15
As Earth's climate warms, soil carbon pools and the microbial communities that process them may change, altering the way in which carbon is recycled in soil. In this study, we used a combination of metagenomics and bacterial cultivation to evaluate the hypothesis that experimentally raising soil temperatures by 5°C for 5, 8, or 20 years increased the potential for temperate forest soil microbial communities to degrade carbohydrates. Warming decreased the proportion of carbohydrate-degrading genes in the organic horizon derived from eukaryotes and increased the fraction of genes in the mineral soil associated with Actinobacteria in all studies. Genes associated with carbohydrate degradation increased in the organic horizon after 5 years of warming but had decreased in the organic horizon after warming the soil continuously for 20 years. However, a greater proportion of the 295 bacteria from 6 phyla (10 classes, 14 orders, and 34 families) isolated from heated plots in the 20-year experiment were able to depolymerize cellulose and xylan than bacterial isolates from control soils. Together, these findings indicate that the enrichment of bacteria capable of degrading carbohydrates could be important for accelerated carbon cycling in a warmer world. The massive carbon stocks currently held in soils have been built up over millennia, and while numerous lines of evidence indicate that climate change will accelerate the processing of this carbon, it is unclear whether the genetic repertoire of the microbes responsible for this elevated activity will also change. In this study, we showed that bacteria isolated from plots subject to 20 years of 5°C of warming were more likely to depolymerize the plant polymers xylan and cellulose, but that carbohydrate degradation capacity is not uniformly enriched by warming treatment in the metagenomes of soil microbial communities. This study illustrates the utility of combining culture-dependent and culture-independent surveys of microbial communities to improve our understanding of the role changing microbial communities may play in soil carbon cycling under climate change. Copyright © 2016 Pold et al.
Kalenski, Julia; Mancina, Elina; Paschenda, Pascal; Beckers, Christian; Bleilevens, Christian; Tóthová, Ľubomíra; Boor, Peter; Gross, Dominik; Tolba, René H; Doorschodt, Benedict M
2016-01-01
The global shortage of donor organs for transplantation has necessitated the expansion of the organ pool through increased use of organs from less ideal donors. Venous systemic oxygen persufflation (VSOP) and oxygenated machine perfusion (OMP) have previously demonstrated beneficial results compared to cold storage (CS) in the preservation of warm-ischemia-damaged kidney grafts. The aim of this study was to compare the efficacy of VSOP and OMP for the preservation of warm-ischemia-damaged porcine kidneys using the recently introduced Ecosol preservation solution compared to CS using Ecosol or histidine-tryptophan-ketoglutarate solution (HTK). Kidneys from German Landrace pigs (n = 5/group) were retrieved and washed out with either Ecosol or HTK after 45 min of clamping of the renal pedicle. As controls, kidneys without warm ischemia, cold stored for 24 h in HTK, were employed. Following 24 h of preservation by VSOP, OMP, CS-Ecosol, or CS-HTK, renal function and damage were assessed during 1 h using the isolated perfused porcine kidney model. During reperfusion, urine production was significantly higher in the VSOP and OMP groups than in the CS-HTK group; however, only VSOP could demonstrate lower urine protein concentrations and fractional excretion of sodium, which did not differ from the non-warm-ischemia-damaged control group. VSOP, CS-Ecosol, and controls showed better maintenance of the acid-base balance than CS-HTK. Reduced lipid peroxidation, as reflected in postreperfusion tissue thiobarbituric acid-reactive substance levels, was observed in the VSOP group compared to the OMP group, and the VSOP and CS-Ecosol groups had concentrations similar to the controls. The ratio of reduced to oxidized glutathione was higher in the VSOP, OMP, and CS-Ecosol groups than in the CS-HTK group and controls, with a higher ratio in the VSOP than in the OMP group. VSOP was associated with mitigation of oxidative stress in comparison to OMP and CS. Preservation of warm-ischemia-damaged porcine kidneys by VSOP was improved compared to OMP and CS, and was comparable to preservation of non-warm-ischemia-damaged cold-stored kidneys. © 2016 S. Karger AG, Basel.
Donti, Olyvia; Tsolakis, Charilaos; Bogdanis, Gregory C.
2014-01-01
This study examined the effects of baseline flexibility and vertical jump ability on straight leg raise range of motion (ROM) and counter-movement jump performance (CMJ) following different volumes of stretching and potentiating exercises. ROM and CMJ were measured after two different warm-up protocols involving static stretching and potentiating exercises. Three groups of elite athletes (10 male, 14 female artistic gymnasts and 10 female rhythmic gymnasts) varying greatly in ROM and CMJ, performed two warm-up routines. One warm-up included short (15 s) static stretching followed by 5 tuck jumps, while the other included long static stretching (30 s) followed by 3x5 tuck jumps. ROM and CMJ were measured before, during and for 12 min after the two warm-up routines. Three-way ANOVA showed large differences between the three groups in baseline ROM and CMJ performance. A type of warm-up x time interaction was found for both ROM (p = 0.031) and CMJ (p = 0.016). However, all athletes, irrespective of group, responded in a similar fashion to the different warm-up protocols for both ROM and CMJ, as indicated from the lack of significant interactions for group (condition x group, time x group or condition x time x group). In the short warm-up protocol, ROM was not affected by stretching, while in the long warm-up protocol ROM increased by 5.9% ± 0.7% (p = 0.001) after stretching. Similarly, CMJ remained unchanged after the short warm-up protocol, but increased by 4.6 ± 0.9% (p = 0.012) 4 min after the long warm- up protocol, despite the increased ROM. It is concluded that the initial levels of flexibility and CMJ performance do not alter the responses of elite gymnasts to warm-up protocols differing in stretching and potentiating exercise volumes. Furthermore, 3 sets of 5 tuck jumps result in a relatively large increase in CMJ performance despite an increase in flexibility in these highly-trained athletes. Key Points The initial levels of flexibility and vertical jump ability have no effect on straight leg raise range of motion (ROM) and counter-movement jump performance (CMJ) of elite gymnasts following warm-up protocols differing in stretching and potentiating exercise volumes Stretching of the main leg muscle groups for only 15 s has no effect on ROM of elite gymnasts In these highly-trained athletes, one set of 5 tuck jumps during warm-up is not adequate to increase CMJ performance, while 3 sets of 5 tuck jumps result in a relatively large increase in CMJ performance (by 4.6% above baseline), despite a 5.9% increase in flexibility due to the 30 s stretching exercises PMID:24570613
NASA Astrophysics Data System (ADS)
Kulkarni, Devdatta; Chen, Edward; Ho, Mantak; Karmaker, Haran
For offshore large multi-megawatt direct drive wind generators, because of its ability to generate high flux fields, superconducting (SC) technology can offer significant size and mass reduction over traditional technologies. However, cryogenic cooling design remains as one of the major obstacles to overcome. Different cryogenic cooling designs, such as warm shaft and cold shaft rotor design, present different advantages and challenges technically and commercially. This paper presents the investigations on both designs for large SC generators from manufacturability and service perspectives.
Large-Scale Ocean Circulation-Cloud Interactions Reduce the Pace of Transient Climate Change
NASA Technical Reports Server (NTRS)
Trossman, D. S.; Palter, J. B.; Merlis, T. M.; Huang, Y.; Xia, Y.
2016-01-01
Changes to the large scale oceanic circulation are thought to slow the pace of transient climate change due, in part, to their influence on radiative feedbacks. Here we evaluate the interactions between CO2-forced perturbations to the large-scale ocean circulation and the radiative cloud feedback in a climate model. Both the change of the ocean circulation and the radiative cloud feedback strongly influence the magnitude and spatial pattern of surface and ocean warming. Changes in the ocean circulation reduce the amount of transient global warming caused by the radiative cloud feedback by helping to maintain low cloud coverage in the face of global warming. The radiative cloud feedback is key in affecting atmospheric meridional heat transport changes and is the dominant radiative feedback mechanism that responds to ocean circulation change. Uncertainty in the simulated ocean circulation changes due to CO2 forcing may contribute a large share of the spread in the radiative cloud feedback among climate models.
Easterly and westerly wind events in the equatorial Pacific ocean and their oceanic response
NASA Astrophysics Data System (ADS)
Puy, martin; Lengaigne, matthieu; Vialard, jerome; Guilyardi, eric
2014-05-01
Intraseasonal wind variability is known to influence the onset and evolution of the El Niño Southern Oscillation (ENSO), in particular through the occurrence of Westerly Wind Events (WWEs) in the western Equatorial Pacific. For predictability purposes, it is important to identify the large scale atmospheric controls of the occurrences of those WWEs. We hence carefully assess the link between equatorial WWEs and large-scale atmospheric waves. We find that WWEs preferably occur during convectively active phases associated to equatorial atmospheric Rossby waves (74% against 15% if the distribution was random) and to the MJO (60% against 15%). We also find that WWEs that occur in relation with those atmospheric waves tend to be stronger. The results also show that WWEs that occur in relation with the MJO tend to be longer than others, and tend to have a larger impact on SST, both on the eastern edge of the warm pool and in the eastern Pacific. We further show that the central and eastern equatorial Pacific is home to frequent easterly wind events (EWEs). These EWEs are further shown to be influenced by atmospheric Rossby waves and the MJO, but to a lesser extent than WWEs. We will discuss the potential influence of EWEs on the ENSO cycle, and propose a modeling strategy to test the influence of these EWEs / WWEs on the ENSO evolution.
Effects of late quaternary climate change on Palearctic shrews.
Prost, Stefan; Klietmann, Johannes; van Kolfschoten, Thijs; Guralnick, Robert P; Waltari, Eric; Vrieling, Klaas; Stiller, Mathias; Nagel, Doris; Rabeder, Gernot; Hofreiter, Michael; Sommer, Robert S
2013-06-01
The Late Quaternary was a time of rapid climatic oscillations and drastic environmental changes. In general, species can respond to such changes by behavioral accommodation, distributional shifts, ecophenotypic modifications (nongenetic), evolution (genetic) or ultimately face local extinction. How those responses manifested in the past is essential for properly predicting future ones especially as the current warm phase is further intensified by rising levels of atmospheric carbon dioxide. Here, we use ancient DNA (aDNA) and morphological features in combination with ecological niche modeling (ENM) to investigate genetic and nongenetic responses of Central European Palearctic shrews to past climatic change. We show that a giant form of shrew, previously described as an extinct Pleistocene Sorex species, represents a large ecomorph of the common shrew (Sorex araneus), which was replaced by populations from a different gene-pool and with different morphology after the Pleistocene Holocene transition. We also report the presence of the cold-adapted tundra shrew (S. tundrensis) in Central Europe. This species is currently restricted to Siberia and was hitherto unknown as an element of the Pleistocene fauna of Europe. Finally, we show that there is no clear correlation between climatic oscillations within the last 50 000 years and body size in shrews and conclude that a special nonanalogous situation with regard to biodiversity and food supply in the Late Glacial may have caused the observed large body size. © 2013 Blackwell Publishing Ltd.
NASA Technical Reports Server (NTRS)
Hurwitz, Margaret M.; Garfinkel, Chaim I.; Newman, Paul A.; Oman, Luke D.
2013-01-01
Warm pool El Nino (WPEN) events are characterized by positive sea surface temperature (SST) anomalies in the central equatorial Pacific. Under present-day climate conditions, WPEN events generate poleward propagating wavetrains and enhance midlatitude planetary wave activity, weakening the stratospheric polar vortices. The late 21st century extratropical atmospheric response to WPEN events is investigated using the Goddard Earth Observing System Chemistry-Climate Model (GEOSCCM), version 2. GEOSCCM simulations are forced by projected late 21st century concentrations of greenhouse gases (GHGs) and ozone-depleting substances (ODSs) and by SSTs and sea ice concentrations from an existing ocean-atmosphere simulation. Despite known ocean-atmosphere model biases, the prescribed SST fields represent a best estimate of the structure of late 21st century WPEN events. The future Arctic vortex response is qualitatively similar to that observed in recent decades but is weaker in late winter. This response reflects the weaker SST forcing in the Nino 3.4 region and subsequently weaker Northern Hemisphere tropospheric teleconnections. The Antarctic stratosphere does not respond to WPEN events in a future climate, reflecting a change in tropospheric teleconnections: The meridional wavetrain weakens while a more zonal wavetrain originates near Australia. Sensitivity simulations show that a strong poleward wavetrain response to WPEN requires a strengthening and southeastward extension of the South Pacific Convergence Zone; this feature is not captured by the late 21st century modeled SSTs. Expected future increases in GHGs and decreases in ODSs do not affect the polar stratospheric responses to WPEN.
Hydroclimate of the western Indo-Pacific Warm Pool during the past 24,000 years
Niedermeyer, Eva M.; Sessions, Alex L.; Feakins, Sarah J.; Mohtadi, Mahyar
2014-01-01
The Indo-Pacific Warm Pool (IPWP) is a key site for the global hydrologic cycle, and modern observations indicate that both the Indian Ocean Zonal Mode (IOZM) and the El Niño Southern Oscillation exert strong influence on its regional hydrologic characteristics. Detailed insight into the natural range of IPWP dynamics and underlying climate mechanisms is, however, limited by the spatial and temporal coverage of climate data. In particular, long-term (multimillennial) precipitation patterns of the western IPWP, a key location for IOZM dynamics, are poorly understood. To help rectify this, we have reconstructed rainfall changes over Northwest Sumatra (western IPWP, Indian Ocean) throughout the past 24,000 y based on the stable hydrogen and carbon isotopic compositions (δD and δ13C, respectively) of terrestrial plant waxes. As a general feature of western IPWP hydrology, our data suggest similar rainfall amounts during the Last Glacial Maximum and the Holocene, contradicting previous claims that precipitation increased across the IPWP in response to deglacial changes in sea level and/or the position of the Intertropical Convergence Zone. We attribute this discrepancy to regional differences in topography and different responses to glacioeustatically forced changes in coastline position within the continental IPWP. During the Holocene, our data indicate considerable variations in rainfall amount. Comparison of our isotope time series to paleoclimate records from the Indian Ocean realm reveals previously unrecognized fluctuations of the Indian Ocean precipitation dipole during the Holocene, indicating that oscillations of the IOZM mean state have been a constituent of western IPWP rainfall over the past ten thousand years. PMID:24979768
NASA Astrophysics Data System (ADS)
Turetsky, M. R.
2015-12-01
Fire is increasingly appreciated as a threat to peatlands and their carbon stocks. The global peatland carbon pool exceeds that of global vegetation and is similar to the current atmospheric carbon pool. Under pristine conditions, most of the peat carbon stock is protected from burning, and resistance to fire has increased peat carbon storage in high latitude regions over long time scales. This, in part, is due to the high porosity and storage coefficient of surface peat, which minimizes water table variability and maintains wet conditions even during drought. However, higher levels of disturbance associated with warming and increasing human activities are triggering state changes and the loss of resiliency in some peatland systems. This presentation will summarize information on burn area and severity in peatlands under undisturbed scenarios of hydrologic self-regulation, and will assess the consequences of warming and drying on peatland vegetation and wildfire behaviour. Our goal is to predict where and when peatlands will become more vulnerable to deep smouldering, given the importance of deep peat layers to global carbon cycling, permafrost stability, and a variety of other ecosystem services in northern regions. Results from two major wildfire seasons (2004 in Alaska and 2014 in the Northwest Territories) show that biomass burning in peatlands releases similar amounts of carbon to the atmosphere as patterns of burning in upland forests, but that peatlands are less vulnerable to severe burning that tends to occur in boreal forests during late season fire activity.
NASA Astrophysics Data System (ADS)
Galy, V.; Oppo, D.; Dubois, N.; Arbuszewski, J. A.; Mohtadi, M.; Schefuss, E.; Rosenthal, Y.; Linsley, B. K.
2016-12-01
There is ample evidence suggesting that rainfall distribution across the Indo-Pacific Warm Pool (IPWP) - a key component of the global climate system - has substantially varied over the last deglaciation. Yet, the precise nature of these hydroclimate changes remains to be elucidated. In particular, the relative importance of variations in precipitation seasonality versus annual precipitation amount is essentially unknown. Here we use a set of surface sediments from the IPWP covering a wide range of modern hydroclimate conditions to evaluate how plant wax stable isotope composition records rainfall distribution in the area. We focus on long chain fatty acids, which are exclusively produced by vascular plants living on nearby land and delivered to the ocean by rivers. We relate the C (δ13C) and H (δD) isotope composition of long chain fatty acids preserved in surface sediments to modern precipitation distribution and stable isotope composition in their respective source area. We show that: 1) δ13C values reflect vegetation distribution (in particular the relative abundance of C3 and C4 plants) and are primarily recording precipitation seasonality (Dubois et al., 2014) and, 2) once corrected for plant fractionation effects, δD values reflect the amount-weighted average stable isotope composition of precipitation and are primarily recording annual precipitation amounts. We propose that combining the C and H isotope composition of long chain fatty acids thus allows independent reconstructions of precipitation seasonality and annual amounts in the IPWP. The practical implications for reconstructing past hydroclimate in the IPWP will be discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dong, Subo; Katz, Boaz; Socrates, Aristotle
2014-01-20
We propose a stringent observational test on the formation of warm Jupiters (gas-giant planets with 10 days ≲ P ≲ 100 days) by high-eccentricity (high-e) migration mechanisms. Unlike hot Jupiters, the majority of observed warm Jupiters have pericenter distances too large to allow efficient tidal dissipation to induce migration. To access the close pericenter required for migration during a Kozai-Lidov cycle, they must be accompanied by a strong enough perturber to overcome the precession caused by general relativity, placing a strong upper limit on the perturber's separation. For a warm Jupiter at a ∼ 0.2 AU, a Jupiter-mass (solar-mass) perturbermore » is required to be ≲ 3 AU (≲ 30 AU) and can be identified observationally. Among warm Jupiters detected by radial velocities (RVs), ≳ 50% (5 out of 9) with large eccentricities (e ≳ 0.4) have known Jovian companions satisfying this necessary condition for high-e migration. In contrast, ≲ 20% (3 out of 17) of the low-e (e ≲ 0.2) warm Jupiters have detected additional Jovian companions, suggesting that high-e migration with planetary perturbers may not be the dominant formation channel. Complete, long-term RV follow-ups of the warm-Jupiter population will allow a firm upper limit to be put on the fraction of these planets formed by high-e migration. Transiting warm Jupiters showing spin-orbit misalignments will be interesting to apply our test. If the misalignments are solely due to high-e migration as commonly suggested, we expect that the majority of warm Jupiters with low-e (e ≲ 0.2) are not misaligned, in contrast with low-e hot Jupiters.« less
Xu, Jin; Casas-Ferreira, Ana M; Ma, Yun; Sen, Arundhuti; Kim, Min; Proitsi, Petroula; Shkodra, Maltina; Tena, Maria; Srinivasan, Parthi; Heaton, Nigel; Jassem, Wayel; Legido-Quigley, Cristina
2015-12-04
Finding specific biomarkers of liver damage in clinical evaluations could increase the pool of available organs for transplantation. Lipids are key regulators in cell necrosis and hence this study hypothesised that lipid levels could be altered in organs suffering severe ischemia. Matched pre- and post-transplant biopsies from donation after circulatory death (DCD, n = 36, mean warm ischemia time = 2 min) and donation after brain death (DBD, n = 76, warm ischemia time = none) were collected. Lipidomic discovery and multivariate analysis (MVA) were applied. Afterwards, univariate analysis and clinical associations were conducted for selected lipids differentiating between these two groups. MVA grouped DCD vs. DBD (p = 6.20 × 10(-12)) and 12 phospholipids were selected for intact lipid measurements. Two lysophosphatidylcholines, LysoPC (16:0) and LysoPC (18:0), showed higher levels in DCD at pre-transplantation (q < 0.01). Lysophosphatidylcholines were associated with aspartate aminotransferase (AST) 14-day post-transplantation (q < 0.05) and were more abundant in recipients undergoing early allograft dysfunction (EAD) (p < 0.05). A receiver-operating characteristics (ROC) curve combining both lipid levels predicted EAD with 82% accuracy. These findings suggest that LysoPC (16:0) and LysoPC (18:0) might have a role in signalling liver tissue damage due to warm ischemia before transplantation.
Quantifying aboveground forest carbon pools and fluxes from repeat LiDAR surveys
Andrew T. Hudak; Eva K. Strand; Lee A. Vierling; John C. Byrne; Jan U. H. Eitel; Sebastian Martinuzzi; Michael J. Falkowski
2012-01-01
Sound forest policy and management decisions to mitigate rising atmospheric CO2 depend upon accurate methodologies to quantify forest carbon pools and fluxes over large tracts of land. LiDAR remote sensing is a rapidly evolving technology for quantifying aboveground biomass and thereby carbon pools; however, little work has evaluated the efficacy of repeat LiDAR...
Estimating haplotype frequencies by combining data from large DNA pools with database information.
Gasbarra, Dario; Kulathinal, Sangita; Pirinen, Matti; Sillanpää, Mikko J
2011-01-01
We assume that allele frequency data have been extracted from several large DNA pools, each containing genetic material of up to hundreds of sampled individuals. Our goal is to estimate the haplotype frequencies among the sampled individuals by combining the pooled allele frequency data with prior knowledge about the set of possible haplotypes. Such prior information can be obtained, for example, from a database such as HapMap. We present a Bayesian haplotyping method for pooled DNA based on a continuous approximation of the multinomial distribution. The proposed method is applicable when the sizes of the DNA pools and/or the number of considered loci exceed the limits of several earlier methods. In the example analyses, the proposed model clearly outperforms a deterministic greedy algorithm on real data from the HapMap database. With a small number of loci, the performance of the proposed method is similar to that of an EM-algorithm, which uses a multinormal approximation for the pooled allele frequencies, but which does not utilize prior information about the haplotypes. The method has been implemented using Matlab and the code is available upon request from the authors.
NASA Astrophysics Data System (ADS)
Sasaki, Tatsuya; Uchida, Satoshi; Chen, Xiaojie
2015-03-01
Punishment is a popular tool when governing commons in situations where free riders would otherwise take over. It is well known that sanctioning systems, such as the police and courts, are costly and thus can suffer from those who free ride on other's efforts to maintain the sanctioning systems (second-order free riders). Previous game-theory studies showed that if populations are very large, pool punishment rarely emerges in public good games, even when participation is optional, because of second-order free riders. Here we show that a matching fund for rewarding cooperation leads to the emergence of pool punishment, despite the presence of second-order free riders. We demonstrate that reward funds can pave the way for a transition from a population of free riders to a population of pool punishers. A key factor in promoting the transition is also to reward those who contribute to pool punishment, yet not abstaining from participation. Reward funds eventually vanish in raising pool punishment, which is sustainable by punishing the second-order free riders. This suggests that considering the interdependence of reward and punishment may help to better understand the origins and transitions of social norms and institutions.
Sasaki, Tatsuya; Uchida, Satoshi; Chen, Xiaojie
2015-03-10
Punishment is a popular tool when governing commons in situations where free riders would otherwise take over. It is well known that sanctioning systems, such as the police and courts, are costly and thus can suffer from those who free ride on other's efforts to maintain the sanctioning systems (second-order free riders). Previous game-theory studies showed that if populations are very large, pool punishment rarely emerges in public good games, even when participation is optional, because of second-order free riders. Here we show that a matching fund for rewarding cooperation leads to the emergence of pool punishment, despite the presence of second-order free riders. We demonstrate that reward funds can pave the way for a transition from a population of free riders to a population of pool punishers. A key factor in promoting the transition is also to reward those who contribute to pool punishment, yet not abstaining from participation. Reward funds eventually vanish in raising pool punishment, which is sustainable by punishing the second-order free riders. This suggests that considering the interdependence of reward and punishment may help to better understand the origins and transitions of social norms and institutions.
NASA Astrophysics Data System (ADS)
Wild, B.; Keuper, F.; Kummu, M.; Beer, C.; Blume-Werry, G.; Fontaine, S.; Gavazov, K.; Gentsch, N.; Guggenberger, G.; Hugelius, G.; Jalava, M.; Koven, C.; Krab, E. J.; Kuhry, P.; Monteux, S.; Richter, A.; Shazhad, T.; Dorrepaal, E.
2017-12-01
Predictions of soil organic carbon (SOC) losses in the northern circumpolar permafrost area converge around 15% (± 3% standard error) of the initial C pool by 2100 under the RCP 8.5 warming scenario. Yet, none of these estimates consider plant-soil interactions such as the rhizosphere priming effect (RPE). While laboratory experiments have shown that the input of plant-derived compounds can stimulate SOC losses by up to 1200%, the magnitude of RPE in natural ecosystems is unknown and no methods for upscaling exist so far. We here present the first spatial and depth explicit RPE model that allows estimates of RPE on a large scale (PrimeSCale). We combine available spatial data (SOC, C/N, GPP, ALT and ecosystem type) and new ecological insights to assess the importance of the RPE at the circumpolar scale. We use a positive saturating relationship between the RPE and belowground C allocation and two ALT-dependent rooting-depth distribution functions (for tundra and boreal forest) to proportionally assign belowground C allocation and RPE to individual soil depth increments. The model permits to take into account reasonable limiting factors on additional SOC losses by RPE including interactions between spatial and/or depth variation in GPP, plant root density, SOC stocks and ALT. We estimate potential RPE-induced SOC losses at 9.7 Pg C (5 - 95% CI: 1.5 - 23.2 Pg C) by 2100 (RCP 8.5). This corresponds to an increase of the current permafrost SOC-loss estimate from 15% of the initial C pool to about 16%. If we apply an additional molar C/N threshold of 20 to account for microbial C limitation as a requirement for the RPE, SOC losses by RPE are further reduced to 6.5 Pg C (5 - 95% CI: 1.0 - 16.8 Pg C) by 2100 (RCP 8.5). Although our results show that current estimates of permafrost soil C losses are robust without taking into account the RPE, our model also highlights high-RPE risk in Siberian lowland areas and Alaska north of the Brooks Range. The small overall impact of the RPE is largely explained by the interaction between belowground plant C allocation and SOC depth distribution. Our findings thus highlight the importance of fine scale interactions between plant and soil properties for large scale carbon fluxes and we provide a first model that bridges this gap and permits the quantification of RPE across a large area.
Global Warming: A Reduced Threat?.
NASA Astrophysics Data System (ADS)
Michaels, Patrick J.; Stooksbury, David E.
1992-10-01
One popular and apocalyptic vision of the world influenced by increasing concentrations of infrared-absorbing trace gases is that of ecological disaster brought about by rapidly rising temperatures, sea level, and evaporation rates. This vision developed from a suite of climate models that have since considerably changed in both their dynamics and their estimates of prospective warming. Observed temperatures indicate that much more warming should already have taken place than predicted by earlier models in the Northern Hemisphere, and that night, rather than day, readings in that hemisphere show a relative warming. A high-latitude polar-night warming or a general night warming could be either benign or beneficial. A large number of plant species show both increased growth and greater water-use efficiency under enhanced carbon dioxide.An extensive body of evidence now indicates that anthropo-generated sulfate emissions are mitigating some of the warming, and that increased cloudiness as a result of these emissions will further enhance night, rather than day, warming. The sulfate emissions, though, are not sufficient to explain all of the night warming. However, the sensitivity of climate to anthropogenerated aerosols, and the general lack of previously predicted warming, could drastically alter the debate on global warming in favor of less expensive policies.
Mechanism of non-appearance of hiatus in Tibetan Plateau.
Ma, Jieru; Guan, Xiaodan; Guo, Ruixia; Gan, Zewen; Xie, Yongkun
2017-06-30
In the recent decade, hiatus is the hottest issue in the community of climate change. As the area of great importance, the Tibetan Plateau (TP), however, did not appear to have any warming stoppage in the hiatus period. In fact, the TP showed a continuous warming in the recent decade. To explore why the TP did not show hiatus, we divide the surface air temperature into dynamically-induced temperature (DIT) and radiatively-forced temperature (RFT) by applying the dynamical adjustment method. Our results show that DIT displayed a relatively uniform warming background in the TP, with no obvious correlations with dynamic factors. Meanwhile, as the major contribution to warming, the RFT effect over the TP played the dominant role. The warming role is illustrated using the temperature change between perturbed and control simulation responses to CO 2 or black carbon (BC) forcing via Community Earth System Model (CESM). It shows that an obvious warming in the TP is induced by the CO 2 warming effect, and BC exhibits an amplifying effect on the warming. Therefore, the continuous warming in the TP was a result of uniform DIT warming over a large scale and enhanced RFT warming at a regional scale.
NASA Astrophysics Data System (ADS)
Zubrzycki, S.
2015-12-01
Permafrost-affected soils of the northern hemisphere have accumulated large pools of soil organic carbon (SOC) since continuous low temperatures in the permafrost prevented organic matter (OM) decomposition. According to recent estimates these soils contain 1300 ± 200 Pg of SOC, or about twice as much the carbon within the global vegetation. Rising arctic temperatures will likely result in increased permafrost thawing with the consequence of increased mobilization and degradation of formerly frozen OM. This degradation process will presumably result in an increased formation of trace gases such as methane and carbon dioxide which can be released to the atmosphere. Rising trace gas concentrations due to permafrost thawing would thereby induce a positive feedback on climate warming. CarboPerm, is a joint German-Russian research project funded by the German Federal Ministry of Education and Research. It comprises multi-disciplinary investigations on the formation, turnover and release of SOC in Siberian permafrost. It aims to gain increased understanding of how permafrost-affected landscapes will respond to global warming and how this response will influence the local, regional and global trace gas balance. CarboPerm strengthens permafrost research in underrepresented areas which are hardly accessible to international researchers. The obtained results improve our understanding of the future development of the sensitive and economically relevant arctic permafrost regions. With this contribution we want to inform the interested community about the new knowledge resulting from results of all scientific work packages: (i) the origin, properties, and dynamics of fossil carbon, (ii) the age and quality of organic matter, (iii) the recent carbon dynamics in permafrost landscapes, (iv) the microbial transformation of organic carbon in permafrost, and (v) process-driven modeling of soil carbon dynamics in permafrost areas.
Some effects of mirex on two warm-water fishes
Van Valin, Charles C.; Andrews, Austin K.; Eller, Lafayette L.
1968-01-01
The effects of mirex on two species of warm-water fishes were studied in three experiments in which the fish were exposed either by feeding a mirex-treated diet, or by treating the holding ponds with a mirex formulation. Bluegills were used in the feeding experiment, where three different levels of mirex were incorporated into the diet and fed to fish held in plastic pools, and in the first pond-exposure experiment, in which the fish were held in earthen ponds treated once with a mirex-corncob grit formulation. The third experiment used goldfish held in earthen ponds which also were treated once with the mirex-corncob grit formulation. In general, higher rates of exposure produced higher whole-body residues of mirex in the fish, and, except in bluegills from the lower-treatment ponds of the first contact experiment and in control fish, whole-body residues increased throughout the terms of these experiments. Soil, water, and vegetation samples from the two contact experiments, although subject to large differences between individual samples, contained relatively unchanging mirex concentrations, illustrating that this chemical is highly resistant to degradation or removal. No mortality or tissue pathology in the bluegills could be ascribed to mirex exposure, but the gills and kidneys of mirex-exposed goldfish showed reactions beginning with the samples taken 56 days after treatment, and the numbers of these fish surviving until termination of this experiment were inversely related to treatment level. Total serum protein and hematocrit percentages had no apparent relationship to treatment levels, nor was mirex exposure a demonstrable factor in growth rates in the contact experiments. However, growth of the bluegills in the highest treatment groups of the feeding experiment was adversely affected. Invertebrate populations seemed not to be affected by the mirex treatment in either of the earthen pond experiments.
NASA Astrophysics Data System (ADS)
Burke, Eleanor J.; Chadburn, Sarah E.; Huntingford, Chris; Jones, Chris D.
2018-02-01
Large amounts of carbon are stored in the permafrost of the northern high latitude land. As permafrost degrades under a warming climate, some of this carbon will decompose and be released to the atmosphere. This positive climate-carbon feedback will reduce the natural carbon sinks and thus lower anthropogenic CO2 emissions compatible with the goals of the Paris Agreement. Simulations using an ensemble of the JULES-IMOGEN intermediate complexity climate model (including climate response and process uncertainty) and a stabilization target of 2 °C, show that including the permafrost carbon pool in the model increases the land carbon emissions at stabilization by between 0.09 and 0.19 Gt C year-1 (10th to 90th percentile). These emissions are only slightly reduced to between 0.08 and 0.16 Gt C year-1 (10th to 90th percentile) when considering 1.5 °C stabilization targets. This suggests that uncertainties caused by the differences in stabilization target are small compared with those associated with model parameterisation uncertainty. Inertia means that permafrost carbon loss may continue for many years after anthropogenic emissions have stabilized. Simulations suggest that between 225 and 345 Gt C (10th to 90th percentile) are in thawed permafrost and may eventually be released to the atmosphere for stabilization target of 2 °C. This value is 60-100 Gt C less for a 1.5 °C target. The inclusion of permafrost carbon will add to the demands on negative emission technologies which are already present in most low emissions scenarios.
NASA Astrophysics Data System (ADS)
Zhan, Ruifen; Chen, Baode; Ding, Yihui
2018-01-01
This study investigated the impact of sea surface temperature (SST) in several important areas of the Indian-Pacific basin on tropical cyclone (TC) activity over the western North Pacific (WNP) during the developing years of three super El Niño events (1982, 1997, and 2015) based on observations and numerical simulations. During the super El Niño years, TC intensity was enhanced considerably, TC days increased, TC tracks mostly recurved along the coasts, and fewer TCs made landfall in China. These characteristics are similar to the strong ENSO-TC relationship but further above the climatological means than in strong El Niño years. It indicates that super El Niño events play a dominant role in the intensities and tracks of WNP TCs. However, there were clear differences in both numbers and positions of TC genesis among the different super El Niño years. These features could be attributed to the collective impact of SST anomalies (SSTAs) in the tropical central-eastern Pacific and East Indian Ocean (EIO) and the SST gradient (SSTG) between the southwestern Pacific and the western Pacific warm pool. During 2015, the EIO SSTA was extremely warm and the anomalous anticyclone in the western WNP was enhanced, resulting in fewer TCs than normal. In 1982, the EIO SSTA and spring SSTG showed negative anomalies, followed by an increased anomalous cyclone in the western WNP and equatorial vertical wind shear. This intensified the conversion of eddy kinetic energy from large-scale flows, favorable for the westward shift of TC genesis. Consequently, anomalous TC activities during the super El Niño years resulted mainly from combined SSTA impacts of different key areas over the Indian-Pacific basin.
Boehm, J. T.; Waldman, John; Robinson, John D.; Hickerson, Michael J.
2015-01-01
Understanding population structure and areas of demographic persistence and transients is critical for effective species management. However, direct observational evidence to address the geographic scale and delineation of ephemeral or persistent populations for many marine fishes is limited. The Lined seahorse (Hippocampus erectus) can be commonly found in three western Atlantic zoogeographic provinces, though inhabitants of the temperate northern Virginia Province are often considered tropical vagrants that only arrive during warm seasons from the southern provinces and perish as temperatures decline. Although genetics can locate regions of historical population persistence and isolation, previous evidence of Virginia Province persistence is only provisional due to limited genetic sampling (i.e., mitochondrial DNA and five nuclear loci). To test alternative hypotheses of historical persistence versus the ephemerality of a northern Virginia Province population we used a RADseq generated dataset consisting of 11,708 single nucleotide polymorphisms (SNP) sampled from individuals collected from the eastern Gulf of Mexico to Long Island, NY. Concordant results from genomic analyses all infer three genetically divergent subpopulations, and strongly support Virginia Province inhabitants as a genetically diverged and a historically persistent ancestral gene pool. These results suggest that individuals that emerge in coastal areas during the warm season can be considered “local” and supports offshore migration during the colder months. This research demonstrates how a large number of genes sampled across a geographical range can capture the diversity of coalescent histories (across loci) while inferring population history. Moreover, these results clearly demonstrate the utility of population genomic data to infer peripheral subpopulation persistence in difficult-to-observe species. PMID:25629166
NASA Astrophysics Data System (ADS)
Schneider von Deimling, T.; Grosse, G.; Strauss, J.; Schirrmeister, L.; Morgenstern, A.; Schaphoff, S.; Meinshausen, M.; Boike, J.
2015-06-01
High-latitude soils store vast amounts of perennially frozen and therefore inert organic matter. With rising global temperatures and consequent permafrost degradation, a part of this carbon stock will become available for microbial decay and eventual release to the atmosphere. We have developed a simplified, two-dimensional multi-pool model to estimate the strength and timing of future carbon dioxide (CO2) and methane (CH4) fluxes from newly thawed permafrost carbon (i.e. carbon thawed when temperatures rise above pre-industrial levels). We have especially simulated carbon release from deep deposits in Yedoma regions by describing abrupt thaw under newly formed thermokarst lakes. The computational efficiency of our model allowed us to run large, multi-centennial ensembles under various scenarios of future warming to express uncertainty inherent to simulations of the permafrost carbon feedback. Under moderate warming of the representative concentration pathway (RCP) 2.6 scenario, cumulated CO2 fluxes from newly thawed permafrost carbon amount to 20 to 58 petagrams of carbon (Pg-C) (68% range) by the year 2100 and reach 40 to 98 Pg-C in 2300. The much larger permafrost degradation under strong warming (RCP8.5) results in cumulated CO2 release of 42 to 141 Pg-C and 157 to 313 Pg-C (68% ranges) in the years 2100 and 2300, respectively. Our estimates only consider fluxes from newly thawed permafrost, not from soils already part of the seasonally thawed active layer under pre-industrial climate. Our simulated CH4 fluxes contribute a few percent to total permafrost carbon release yet they can cause up to 40% of total permafrost-affected radiative forcing in the 21st century (upper 68% range). We infer largest CH4 emission rates of about 50 Tg-CH4 per year around the middle of the 21st century when simulated thermokarst lake extent is at its maximum and when abrupt thaw under thermokarst lakes is taken into account. CH4 release from newly thawed carbon in wetland-affected deposits is only discernible in the 22nd and 23rd century because of the absence of abrupt thaw processes. We further show that release from organic matter stored in deep deposits of Yedoma regions crucially affects our simulated circumpolar CH4 fluxes. The additional warming through the release from newly thawed permafrost carbon proved only slightly dependent on the pathway of anthropogenic emission and amounts to about 0.03-0.14 °C (68% ranges) by end of the century. The warming increased further in the 22nd and 23rd century and was most pronounced under the RCP6.0 scenario, adding 0.16 to 0.39 °C (68% range) to simulated global mean surface air temperatures in the year 2300.
NASA Astrophysics Data System (ADS)
Schneider von Deimling, T.; Grosse, G.; Strauss, J.; Schirrmeister, L.; Morgenstern, A.; Schaphoff, S.; Meinshausen, M.; Boike, J.
2014-12-01
High-latitude soils store vast amounts of perennially frozen and therefore inert organic matter. With rising global temperatures and consequent permafrost degradation, a part of this carbon store will become available for microbial decay and eventual release to the atmosphere. We have developed a simplified, two-dimensional multi-pool model to estimate the strength and timing of future carbon dioxide (CO2) and methane (CH4) fluxes from newly thawed permafrost carbon (i.e. carbon thawed when temperatures rise above pre-industrial levels). We have especially simulated carbon release from deep deposits in Yedoma regions by describing abrupt thaw under thermokarst lakes. The computational efficiency of our model allowed us to run large, multi-centennial ensembles under various scenarios of future warming to express uncertainty inherent to simulations of the permafrost-carbon feedback. Under moderate warming of the representative concentration pathway (RCP) 2.6 scenario, cumulated CO2 fluxes from newly thawed permafrost carbon amount to 20 to 58 petagrammes of carbon (Pg-C) (68% range) by the year 2100 and reach 40 to 98 Pg-C in 2300. The much larger permafrost degradation under strong warming (RCP8.5) results in cumulated CO2 release of 42-141 and 157-313 Pg-C (68% ranges) in the years 2100 and 2300, respectively. Our estimates do only consider fluxes from newly thawed permafrost but not from soils already part of the seasonally thawed active layer under preindustrial climate. Our simulated methane fluxes contribute a few percent to total permafrost carbon release yet they can cause up to 40% of total permafrost-affected radiative forcing in the 21st century (upper 68% range). We infer largest methane emission rates of about 50 Tg-CH4 year-1 around the mid of the 21st century when simulated thermokarst lake extent is at its maximum and when abrupt thaw under thermokarst lakes is accounted for. CH4 release from newly thawed carbon in wetland-affected deposits is only discernible in the 22nd and 23rd century because of the absence of abrupt thaw processes. We further show that release from organic matter stored in deep deposits of Yedoma regions does crucially affect our simulated circumpolar methane fluxes. The additional warming through the release from newly thawed permafrost carbon proved only slightly dependent on the pathway of anthropogenic emission and amounts about 0.03-0.14 °C (68% ranges) by end of the century. The warming increased further in the 22nd and 23rd century and was most pronounced under the RCP6.0 scenario with adding 0.16-0.39 °C (68% range) to simulated global mean surface air temperatures in the year 2300.
What happens during vocal warm-up?
Elliot, N; Sundberg, J; Gramming, P
1995-03-01
Most singers prefer to warm up their voices before performing. Although the subjective effect is often considerable, the underlying physiological effects are largely unknown. Because warm-up tends to increase blood flow in muscles, it seems likely that vocal warm-up might induce decreased viscosity in the vocal folds. According to the theory of vocal-fold vibration, such a decrease should lead to a lower phonation threshold pressure. In this investigation the effect of vocal warm-up on the phonation threshold pressure was examined in a group of male and female singers. The effect varied considerably between subjects, presumably because the vocal-fold viscosity was not a dominating factor for the phonation-threshold pressure.
Yuan, Xiaochun; Si, Youtao; Lin, Weisheng; Yang, Jingqing; Wang, Zheng; Zhang, Qiufang; Qian, Wei; Chen, Yuehmin; Yang, Yusheng
2018-01-01
Increasing temperature and nitrogen (N) deposition are two large-scale changes projected to occur over the coming decades. The effects of these changes on dissolved organic matter (DOM) are largely unknown. This study aimed to assess the effects of warming and N addition on the quantity and quality of DOM from a subtropical Cunninghamia lanceolata plantation. Between 2014 and 2016, soil solutions were collected from 0-15, 15-30, and 30-60 cm depths by using a negative pressure sampling method. The quantity and quality of DOM were measured under six different treatments. The spectra showed that the DOM of the forest soil solution mainly consisted of aromatic protein-like components, microbial degradation products, and negligible amounts of humic-like substances. Warming, N addition, and warming + N addition significantly inhibited the concentration of dissolved organic carbon (DOC) in the surface (0-15 cm) soil solution. Our results suggested that warming reduced the amount of DOM originating from microbes. The decrease in protein and carboxylic acid contents was mostly attributed to the reduction of DOC following N addition. The warming + N addition treatment showed an interactive effect rather than an additive effect. Thus, short-term warming and warming + N addition decreased the quantity of DOM and facilitated the migration of nutrients to deeper soils. Further, N addition increased the complexity of the DOM structure. Hence, the loss of soil nutrients and the rational application of N need to be considered in order to prevent the accumulation of N compounds in soil.
Sherman, Kenneth; Belkin, Igor M; Friedland, Kevin D; O'Reilly, John; Hyde, Kimberly
2009-06-01
Information on the effects of global climate change on trends in global fisheries biomass yields has been limited in spatial and temporal scale. Results are presented of a global study of the impact of sea surface temperature (SST) changes over the last 25 years on the fisheries yields of 63 large marine ecosystems (LMEs) that annually produce 80% of the world's marine fisheries catches. Warming trends were observed in 61 LMEs around the globe. In 18 of the LMEs, rates of SST warming were two to four times faster during the past 25 years than the globally averaged rates of SST warming reported by the Intergovernmental Panel on Climate Change in 2007. Effects of warming on fisheries biomass yields were greatest in the fast-warming northern Northeast Atlantic LMEs, where increasing trends in fisheries biomass yields were related to zooplankton biomass increases. In contrast, fisheries biomass yields of LMEs in the fast-warming, more southerly reaches of the Northeast Atlantic were declining in response to decreases in zooplankton abundance. The LMEs around the margins of the Indian Ocean, where SSTs were among the world's slowest warming, revealed a consistent pattern of fisheries biomass increases during the past 25 years, driven principally by human need for food security from fisheries resources. As a precautionary approach toward more sustainable fisheries utilization, management measures to limit the total allowable catch through a cap-and-sustain approach are suggested for the developing nations recently fishing heavily on resources of the Agulhas Current, Somali Current, Arabian Sea, and Bay of Bengal LMEs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Y.; Ramanathan, V.; Washington, W. M.
Himalayan mountain glaciers and the snowpack over the Tibetan Plateau provide the headwater of several major rivers in Asia. In situ observations of snow cover extent since the 1960s suggest that the snowpack in the region have retreated significantly, accompanied by a surface warming of 2–2.5°C observed over the peak altitudes (5000 m). Using a high-resolution ocean–atmosphere global climate model and an observationally constrained black carbon (BC) aerosol forcing, we attribute the observed altitude dependence of the warming trends as well as the spatial pattern of reductions in snow depths and snow cover extent to various anthropogenic factors. At themore » Tibetan Plateau altitudes, the increase in atmospheric CO 2 concentration exerted a warming of 1.7°C, BC 1.3°C where as cooling aerosols cause about 0.7°C cooling, bringing the net simulated warming consistent with the anomalously large observed warming. We therefore conclude that BC together with CO 2 has contributed to the snow retreat trends. In particular, BC increase is the major factor in the strong elevation dependence of the observed surface warming. The atmospheric warming by BC as well as its surface darkening of snow is coupled with the positive snow albedo feedbacks to account for the disproportionately large role of BC in high-elevation regions. Here, these findings reveal that BC impact needs to be properly accounted for in future regional climate projections, in particular on high-altitude cryosphere.« less
Xu, Y.; Ramanathan, V.; Washington, W. M.
2016-02-05
Himalayan mountain glaciers and the snowpack over the Tibetan Plateau provide the headwater of several major rivers in Asia. In situ observations of snow cover extent since the 1960s suggest that the snowpack in the region have retreated significantly, accompanied by a surface warming of 2–2.5°C observed over the peak altitudes (5000 m). Using a high-resolution ocean–atmosphere global climate model and an observationally constrained black carbon (BC) aerosol forcing, we attribute the observed altitude dependence of the warming trends as well as the spatial pattern of reductions in snow depths and snow cover extent to various anthropogenic factors. At themore » Tibetan Plateau altitudes, the increase in atmospheric CO 2 concentration exerted a warming of 1.7°C, BC 1.3°C where as cooling aerosols cause about 0.7°C cooling, bringing the net simulated warming consistent with the anomalously large observed warming. We therefore conclude that BC together with CO 2 has contributed to the snow retreat trends. In particular, BC increase is the major factor in the strong elevation dependence of the observed surface warming. The atmospheric warming by BC as well as its surface darkening of snow is coupled with the positive snow albedo feedbacks to account for the disproportionately large role of BC in high-elevation regions. Here, these findings reveal that BC impact needs to be properly accounted for in future regional climate projections, in particular on high-altitude cryosphere.« less
Yuan, Xiaochun; Si, Youtao; Lin, Weisheng; Yang, Jingqing; Wang, Zheng; Zhang, Qiufang; Qian, Wei; Yang, Yusheng
2018-01-01
Increasing temperature and nitrogen (N) deposition are two large-scale changes projected to occur over the coming decades. The effects of these changes on dissolved organic matter (DOM) are largely unknown. This study aimed to assess the effects of warming and N addition on the quantity and quality of DOM from a subtropical Cunninghamia lanceolata plantation. Between 2014 and 2016, soil solutions were collected from 0–15, 15–30, and 30–60 cm depths by using a negative pressure sampling method. The quantity and quality of DOM were measured under six different treatments. The spectra showed that the DOM of the forest soil solution mainly consisted of aromatic protein-like components, microbial degradation products, and negligible amounts of humic-like substances. Warming, N addition, and warming + N addition significantly inhibited the concentration of dissolved organic carbon (DOC) in the surface (0–15 cm) soil solution. Our results suggested that warming reduced the amount of DOM originating from microbes. The decrease in protein and carboxylic acid contents was mostly attributed to the reduction of DOC following N addition. The warming + N addition treatment showed an interactive effect rather than an additive effect. Thus, short-term warming and warming + N addition decreased the quantity of DOM and facilitated the migration of nutrients to deeper soils. Further, N addition increased the complexity of the DOM structure. Hence, the loss of soil nutrients and the rational application of N need to be considered in order to prevent the accumulation of N compounds in soil. PMID:29360853
NASA Astrophysics Data System (ADS)
Dessens, O.
2017-12-01
Within the last IPCC AR5 a large and systematic sensitivity study around available technologies and timing of policies applied in IAMs to achieve the 2°C target has been conducted. However the simple climate representations included in IAMs are generally tuned to the results of ensemble means. This may result in hiding within the ensemble mean results possible challenging mitigation pathways for the economy or the technology future scenarios. This work provides new insights on the sensitivity of the socio-economic response to different climate factors under a 2°C climate change target in order to help guide future efforts to reduce uncertainty in the climate mitigation decisions. The main objective is to understand and bring new insights on how future global warming will affect the natural biochemical feedbacks on the climate system and what could be the consequences of these feedbacks on the anthropogenic emission pathways with a specific focus on the energy-economy system. It specifically focuses on three issues of the climate representation affecting the energy system transformation and GHG emissions pathways: 1- Impacts of the climate sensitivity (or TCR); 2- Impacts of warming on the radiative forcing (cloudiness,...); 3- Impacts of warming on the carbon cycle (carbon cycle feedback). We use the integrated assessment model TIAM-UCL to examine the mitigation pathways compatible with the 2C target depending on assumptions regarding the 3 issues of the climate representation introduced above. The following key conclusions drawn from this study are that mitigation to 2°C is still possible under strong climate sensitivity (TCR), strong carbon cycle amplification or positive radiative forcing feedback. However, this level of climate mitigation will require a significant transformation in the way we produce and consume energy. Carbon capture and sequestration on electricity generation, industry and biomass is part of the technology pool needed to achieve this level of decarbonisation. In extreme condition (positive correlation between the 3 issues discussed) the integrated assessment model TIAM-UCL creates pathways requiring additional negative emission technologies at the end of this century to keep temperature change well below 2°C.
TOPEX/El Niño Watch - La Niña Barely Has a Pulse, June 18, 1999
1999-08-23
Lingering just a month ago in the eastern Pacific Ocean, the La Niña phenomenon, with its large volume of chilly water, barely has a pulse this month, according to new satellite data from NASA U.S.-French TOPEX/Poseidon mission. The data, taken during a 10-day cycle of data collection ending June 18, show that the equatorial Pacific Ocean is warming up and returning to normal (green) as La Niña all but vanishes. The warming trend is most apparent in the equatorial Pacific Ocean, where only a few patches of cooler, low sea levels (seen in blue and purple) remain. The blue areas are between 5 and 13 centimeters (2 and 5 inches) below normal, whereas the purple areas range from 14 to 18 centimeters (6 to 7 inches) below normal. Like its counterpart, El Niño, a La Niña condition will influence global climate and weather until it has completely subsided. As summer begins in the northern hemisphere, lower-than-normal sea surface levels and cool ocean temperatures persist in the northeastern Gulf of Alaska and along the western coast of North America. In contrast, the trend is the opposite over most of the Pacific, where above-normal sea surface heights and warmer ocean temperatures (indicated by the red and white areas) appear to be increasing and dominating the overall Pacific Ocean. Red areas are about 10 centimeters (4 inches) above normal; white areas show the sea surface height is between 14 and 32 centimeters (6 and 13 inches) above normal. Scientists are not ready to administer last rites to La Niña, though. In the last 12 months, the pool of unusually cold water in the Pacific has shrunk (warmed) several times before cooling (expanding) again. This summer's altimeter data will help them determine whether La Niña has truly dissipated or whether they will see another resurgence of cool water in the Pacific. http://photojournal.jpl.nasa.gov/catalog/PIA01586
NASA Astrophysics Data System (ADS)
Perner, Kerstin; Moros, Matthias; De Deckker, Patrick; Blanz, Thomas; Wacker, Lukas; Telford, Richard; Siegel, Herbert; Schneider, Ralph; Jansen, Eystein
2018-01-01
The Leeuwin Current (LC), an eastern boundary current, transports tropical waters from the Indo-Pacific Warm Pool (IPWP) towards southern latitudes and modulates oceanic conditions offshore southern Australia. New, high-resolution planktic foraminifer assemblage data and alkenone-derived sea surface temperatures (SST) provide an in-depth view on LC variability and mechanisms driving the current's properties during the mid to late Holocene (last c. 7.4 ka BP). Our marine reconstructions highlight a longer-term mid to late Holocene reduction of tropical heat export from the IPWP area into the LC. Mid Holocene (c. 7.4 to 3.5 ka BP) occurrence of high SSTs (>19.5 °C), tropical planktic foraminifera and a well-stratified water column document an enhanced heat export from the tropics. From c. 3.5 ka BP onwards, a weaker LC and a notably reduced tropical heat export cause oceanic cooling offshore southern Australia. The observed mid to late Holocene trends likely result from large-scale changes in the IPWP's heat storage linked to the El Niño-Southern Oscillation (ENSO) phenomenon. We propose that a strong and warm LC occurs in response to a La Niña-like state of ENSO during the mid Holocene. The late Holocene LC cooling, however, results from a shift towards an El Niño-like state and a more variable ENSO system that causes cooling of the IPWP. Superimposed on these longer-term trends we find evidence of distinct late Holocene millennial-scale phases of enhanced El Niño/La Niña development, which appear synchronous with northern hemispheric climatic variability. Phases of dominant El Niño-like states occur parallel to North Atlantic cold phases: the '2800 years BP cooling event', the 'Dark Ages' and the 'Little Ice Age', whereas the 'Roman Warm Period' and the 'Medieval Climate Anomaly' parallel periods of a predominant La Niña-like state. Our findings provide further evidence of coherent interhemispheric climatic and oceanic conditions during the mid to late Holocene, suggesting ENSO as a potential mediator.
Differential mobilization of terrestrial carbon pools in Eurasian Arctic river basins.
Feng, Xiaojuan; Vonk, Jorien E; van Dongen, Bart E; Gustafsson, Örjan; Semiletov, Igor P; Dudarev, Oleg V; Wang, Zhiheng; Montluçon, Daniel B; Wacker, Lukas; Eglinton, Timothy I
2013-08-27
Mobilization of Arctic permafrost carbon is expected to increase with warming-induced thawing. However, this effect is challenging to assess due to the diverse processes controlling the release of various organic carbon (OC) pools from heterogeneous Arctic landscapes. Here, by radiocarbon dating various terrestrial OC components in fluvially and coastally integrated estuarine sediments, we present a unique framework for deconvoluting the contrasting mobilization mechanisms of surface vs. deep (permafrost) carbon pools across the climosequence of the Eurasian Arctic. Vascular plant-derived lignin phenol (14)C contents reveal significant inputs of young carbon from surface sources whose delivery is dominantly controlled by river runoff. In contrast, plant wax lipids predominantly trace ancient (permafrost) OC that is preferentially mobilized from discontinuous permafrost regions, where hydrological conduits penetrate deeper into soils and thermokarst erosion occurs more frequently. Because river runoff has significantly increased across the Eurasian Arctic in recent decades, we estimate from an isotopic mixing model that, in tandem with an increased transfer of young surface carbon, the proportion of mobilized terrestrial OC accounted for by ancient carbon has increased by 3-6% between 1985 and 2004. These findings suggest that although partly masked by surface carbon export, climate change-induced mobilization of old permafrost carbon is well underway in the Arctic.
Paula, Andreia S; Matos, João T V; Duarte, Regina M B O; Duarte, Armando C
2016-02-01
The chemical and light-absorption dynamics of organic aerosols (OAs), a master variable in the atmosphere, have yet to be resolved. This study uses a comprehensive multidimensional analysis approach for exploiting simultaneously the compositional changes over a molecular size continuum and associated light-absorption (ultraviolet absorbance and fluorescence) properties of two chemically distinct pools of urban OAs chromophores. Up to 45% of aerosol organic carbon (OC) is soluble in water and consists of a complex mixture of fluorescent and UV-absorbing constituents, with diverse relative abundances, hydrophobic, and molecular weight (Mw) characteristics between warm and cold periods. In contrast, the refractory alkaline-soluble OC pool (up to 18%) is represented along a similar Mw and light-absorption continuum throughout the different seasons. Results suggest that these alkaline-soluble chromophores may actually originate from primary OAs sources in the urban site. This work shows that the comprehensive multidimensional analysis method is a powerful and complementary tool for the characterization of OAs fractions. The great diversity in the chemical composition and optical properties of OAs chromophores, including both water-soluble and alkaline-soluble OC, may be an important contribution to explain the contrasting photo-reactivity and atmospheric behavior of OAs. Copyright © 2015 Elsevier Ltd. All rights reserved.
Kenow, Kevin P.; Gretchen Benjamin,; Tim Schlagenhaft,; Ruth Nissen,; Mary Stefanski,; Gary Wege,; Scott A. Jutila,; Newton, Teresa J.
2016-01-01
The Upper Mississippi River (UMR) has been developed and subsequently managed for commercial navigation by the U.S. Army Corps of Engineers (USACE). The navigation pools created by a series of lock and dams initially provided a complex of aquatic habitats that supported a variety of fish and wildlife. However, biological productivity declined as the pools aged. The River Resources Forum, an advisory body to the St. Paul District of the USACE, established a multiagency Water Level Management Task Force (WLMTF) to evaluate the potential of water level management to improve ecological function and restore the distribution and abundance of fish and wildlife habitat. The WLMTF identified several water level management options and concluded that summer growing season drawdowns at the pool scale offered the greatest potential to provide habitat benefits over a large area. Here we summarize the process followed to plan and implement pool-wide drawdowns on the UMR, including involvement of stakeholders in decision making, addressing requirements to modify reservoir operating plans, development and evaluation of drawdown alternatives, pool selection, establishment of a monitoring plan, interagency coordination, and a public information campaign. Three pool-wide drawdowns were implemented within the St. Paul District and deemed successful in providing ecological benefits without adversely affecting commercial navigation and recreational use of the pools. Insights are provided based on more than 17 years of experience in planning and implementing drawdowns on the UMR.
Lubin, Jay H; De Stefani, Eduardo; Abnet, Christian C; Acosta, Gisele; Boffetta, Paolo; Victora, Cesar; Graubard, Barry I; Muñoz, Nubia; Deneo-Pellegrini, Hugo; Franceschi, Silvia; Castellsagué, Xavier; Ronco, Alvaro L; Dawsey, Sanford M
2014-01-01
Maté tea is a nonalcoholic infusion widely consumed in southern South America, and may increase risk of esophageal squamous cell carcinoma (ESCC) and other cancers due to polycyclic aromatic hydrocarbons (PAH) and/or thermal injury. We pooled two case-control studies: a 1988 to 2005 Uruguay study and a 1986 to 1992 multinational study in Argentina, Brazil, Paraguay, and Uruguay, including 1,400 cases and 3,229 controls. We computed ORs and fitted a linear excess OR (EOR) model for cumulative maté consumption in liters/day-year (LPDY). The adjusted OR for ESCC with 95% confidence interval (CI) by ever compared with never use of maté was 1.60 (1.2-2.2). ORs increased linearly with LPDY (test of nonlinearity; P = 0.69). The estimate of slope (EOR/LPDY) was 0.009 (0.005-0.014) and did not vary with daily intake, indicating maté intensity did not influence the strength of association. EOR/LPDY estimates for consumption at warm, hot, and very hot beverage temperatures were 0.004 (-0.002-0.013), 0.007 (0.003-0.013), and 0.016 (0.009-0.027), respectively, and differed significantly (P < 0.01). EOR/LPDY estimates were increased in younger (<65) individuals and never alcohol drinkers, but these evaluations were post hoc, and were homogeneous by sex. ORs for ESCC increased linearly with cumulative maté consumption and were unrelated to intensity, so greater daily consumption for shorter duration or lesser daily consumption for longer duration resulted in comparable ORs. The strength of association increased with higher maté temperatures. Increased understanding of cancer risks with maté consumption enhances the understanding of the public health consequences given its purported health benefits.
Septuagenarian and octogenarian donors provide excellent liver grafts for transplantation.
Darius, T; Monbaliu, D; Jochmans, I; Meurisse, N; Desschans, B; Coosemans, W; Komuta, M; Roskams, T; Cassiman, D; van der Merwe, S; Van Steenbergen, W; Verslype, C; Laleman, W; Aerts, R; Nevens, F; Pirenne, J
2012-11-01
Wider utilization of liver grafts from donors ≥ 70 years old could substantially expand the organ pool, but their use remains limited by fear of poorer outcomes. We examined the results at our center of liver transplantation (OLT) using livers from donors ≥ 70 years old. From February 2003 to August 2010, we performed 450 OLT including 58 (13%) using donors ≥ 70 whose outcomes were compared with those using donors <70 years old. Cerebrovascular causes of death predominated among donors ≥ 70 (85% vs 47% in donors <70; P < .001). In contrast, traumatic causes of death predominated among donors <70 (36% vs 14% in donors ≥ 70; P = .002). Unlike grafts from donors <70 years old, grafts from older individuals had no additional risk factors (steatosis, high sodium, or hemodynamic instability). Both groups were comparable for cold and warm ischemia times. No difference was noted in posttransplant peak transaminases, incidence of primary nonfunction, hepatic artery thrombosis, biliary strictures, or retransplantation rates between groups. The 1- and 5-year patient survivals were 88% and 82% in recipients of livers <70 versus 90% and 84% in those from ≥ 70 years old (P = .705). Recipients of older grafts, who were 6 years older than recipients of younger grafts (P < .001), tended to have a lower laboratory Model for End-Stage Liver Disease score (P = .074). Short and mid-term survival following OLT using donors ≥ 70 yo can be excellent provided that there is adequate donor and recipient selection. Septuagenarians and octogenarians with cerebrovascular ischemic and bleeding accidents represent a large pool of potential donors whose wider use could substantially reduce mortality on the OLT waiting list. Copyright © 2012 Elsevier Inc. All rights reserved.
Tax credits and purchasing pools: will this marriage work?
Trude, S; Ginsburg, P B
2001-04-01
Bipartisan interest is growing in Congress for using federal tax credits to help low-income families buy health insurance. Regardless of the approach taken, tax credit policies must address risk selection issues to ensure coverage for the chronically ill. Proposals that link tax credits to purchasing pools would avoid risk selection by grouping risks similar to the way large employers do. Voluntary purchasing pools have had only limited success, however. This Issue Brief discusses linking tax credits to purchasing pools. It uses information from the Center for Studying Health System Change's (HSC) site visits to 12 communities as well as other research to assess the role of purchasing pools nationwide and the key issues and implications of linking tax credits and pools.
Nighttime warming enhances drought resistance of plant communities in a temperate steppe
NASA Astrophysics Data System (ADS)
Yang, Zhongling; Jiang, Lin; Su, Fanglong; Zhang, Qian; Xia, Jianyang; Wan, Shiqiang
2016-03-01
Drought events could have profound influence on plant community structure and ecosystem function, and have subsequent impacts on community stability, but we know little about how different climate warming scenarios affect community resistance and resilience to drought. Combining a daytime and nighttime warming experiment in the temperate steppe of north China with a natural drought event during the study period, we tested how daytime and nighttime warming influences drought resistance and resilience. Our results showed that the semi-arid steppe in north China was resistant to both daytime and nighttime warming, but vulnerable to drought. Nighttime warming, but not daytime warming, enhanced community resistance to drought via stimulating carbon sequestration, whereas neither daytime nor nighttime warming affected community resilience to drought. Large decline in plant community cover, primarily caused by the reduction in the cover of dominant and rare species rather than subordinate species during drought, did not preclude rapid ecosystem recovery. These findings suggest that nighttime warming may facilitate ecosystem sustainability and highlight the need to assess the effects of climate extremes on ecosystem functions at finer temporal resolutions than based on diurnal mean temperature.
Spread of large LNG pools on the sea.
Fay, J A
2007-02-20
A review of the standard model of LNG pool spreading on water, comparing it with the model and experiments on oil pool spread from which the LNG model is extrapolated, raises questions about the validity of the former as applied to spills from marine tankers. These questions arise from the difference in fluid density ratios, in the multi-dimensional flow at the pool edge, in the effects of LNG pool boiling at the LNG-water interface, and in the model and experimental initial conditions compared with the inflow conditions from a marine tanker spill. An alternate supercritical flow model is proposed that avoids these difficulties; it predicts significant increase in the maximum pool radius compared with the standard model and is partially corroborated by tests of LNG pool fires on water. Wind driven ocean wave interaction has little effect on either spread model.
Sea Surface Temperatures in the Indo-Pacific Warm Pool During the Early Pliocene Warm Period
NASA Astrophysics Data System (ADS)
Dekens, P. S.; Ravelo, A. C.; Griffith, E. M.
2010-12-01
The Indo-Pacific warm pool (IPWP) plays an important role in both regional and global climate, but the response of this region to anthropogenic climate change is not well understood. While the early Pliocene is not a perfect analogue for anthropogenic climate change, it is the most recent time in Earth history when global temperatures were warmer than they are today for a sustained period of time. SST in the eastern equatorial Pacific was 2-4○C warmer in the early Pliocene compared to today. A Mg/Ca SST at ODP site 806 in the western equatorial Pacific indicates that SST were stable through the last 5Ma (Wara et al., 2005). We generated a G. sacculifer Mg/Ca record in the Indian Ocean (ODP sit 758) for the last 5 Ma, which also shows that IPWP SST has remained relatively stable through the last 5 Ma and was not warmer in the early Pliocene compared today. A recent paper suggests that the Mg/Ca of seawater may have varied through the last 5 Ma and significantly affected Mg/Ca SST estimates (Medina-Elizalde et al., 2008). However, there is considerable uncertainty in the estimates of seawater Mg/Ca variations through time. We will present a detailed examination of these uncertainties to examine the possible range of seawater Mg/Ca through the last 5 Ma. Due to the lack of culturing work of foraminifera at different Mg/Ca ratios in the growth water there is also uncertainty in how changes in seawater Mg/Ca will affect the temperatures signal in the proxy. We will explore how uncertainties in the record of seawater Mg/Ca variations through time and its effect on the Mg/Ca SST proxy potentially influence the interpretation of the Mg/Ca SST records at ODP sites 806 and 758 in the IPWP, and ODP site 847 in the eastern equatorial Pacific. We will also explore how adjustment of the Mg/Ca SST estimates (due to reconstructed Mg/Ca seawater variations) affects the δ18O of water when adjusted Mg/Ca SST estimates are paired with δ18O measurements of the same samples.
NASA Astrophysics Data System (ADS)
Hou, Xueyan; Dong, Qing; Xue, Cunjin; Wu, Shuchao
2016-06-01
Based on long-term satellite-derived ocean data sets and methods of empirical orthogonal function and singular value decomposition, we investigated the spatiotemporal variability of the chlorophyll-a concentration (CHL) on seasonal and interannual timescales in the western tropical Pacific associated with physical ocean variables of sea surface temperature (SST), sea level anomaly (SLA) and sea surface wind (SSW), and the El Niño Southern Oscillation (ENSO) index. The bio-physical synchronous variation on interannual timescale was also confirmed in terms of the scales of variability and oscillation periods in the time-frequency space using the methods of Fourier transform, Morlet wavelet transform, and wavelet coherence analysis. On a seasonal timescale, the first two modes of the monthly mean CHL fields described the consecutive spatiotemporal variation in CHL in the western tropical Pacific. CHL reached the maximum during late winter-early spring and minimum during summer-early autumn with the exception of the northeast of Papua New Guinea and the Solomon Islands. The CHL bloom in boreal winter-spring was closely associated with cold SST, high sea level along the North Equatorial Countercurrent meanders, and strong wind. On an interannual timescale, the variability of CHL exhibited a close correlation with SST, SLA, SSW, and ENSO. During El Niño, CHL increased in the oligotrophic western basin of the warm pool associated with cold SST, low SLA, and strong westerly winds but decreased in the mesotrophic eastern basin of the warm pool in association with warm SST, high SLA, and weak easterly trade winds. There may exist time-lag for the bio-physical covariation, i.e., CHL and SST varied simultaneously within 1 month, and CHL variations led SLA by approximately 0-3 months but lagged wind speed by about 1 month. In the time-frequency domain, the interannual variability in CHL and physical ocean variables had high common power, indicating that the variability scales and oscillation periods of CHL were significantly related to these of SST, SLA, and ENSO index. The significant anti-phase relationships were also shown between CHL and SST, CHL and SLA, and CHL and multivariate ENSO index through the wavelet coherence analysis.
NASA Astrophysics Data System (ADS)
McDowell, P. F.
2016-12-01
The Middle Fork John Day River at Oxbow Conservation Area, northeastern Oregon, experienced heavy cattle grazing for a number of decades and was dredge mined for gold in the 1930s-50s. As a result of dredging, flow was divided between the original meandering channel on the southern part of the floodplain and a straight dredged channel on the northern part of the floodplain. The Confederated Tribes of the Warm Springs acquired this property and began planning floodplain and instream restoration focused primarily on anadromous and resident salmonids. In 2000, cattle grazing in the riparian zone was eliminated, resulting in expansion of sedges and other plants on banks, bars and the channel bed. In 2003, riparian planting of woody vegetation began. In 2011, log structures were constructed in the south channel. The overarching goals of the log structure project were: 1) to add bank protection and roughness to accommodate the planned increase in discharge, and 2) to provide fish cover, pools, and channel complexity. In 2013, the north channel was closed and all flow was put in the south channel. This paper examines channel morphological response to these multiple actions. Channel adjustment was monitored through repeated channel cross-section surveys, longitudinal profile surveys, and analysis of planform change using high-resolution aerial imagery. I hypothesized that channel adjustment would be greatest where banks were less protected, and where bed materials were more mobile due to smaller size or local hydraulic factors such as bend curvature. The results indicate that there has been significant reorganization of riffle-pool structure in the longitudinal profile, but less change in cross-sections and planform. Cross-sections, both at log structures and not at structures, show limited bar aggradation and bank erosion. Some modest erosion occurred on banks protected by log structures. There is no increase in pool depth. The hypothesized relationship between channel change and hydraulic factors is not supported. With healthy riparian vegetation and log structures, this reach is relatively resistant to change, yet it continues to have an active and mobile gravel-cobble bed, even in years with modest floods.
The changing effects of Alaska’s boreal forests on the climate system
Euskirchen, E.S.; McGuire, A. David; Chapin, F.S.; Rupp, T.S.
2010-01-01
In the boreal forests of Alaska, recent changes in climate have influenced the exchange of trace gases, water, and energy between these forests and the atmosphere. These changes in the structure and function of boreal forests can then feed back to impact regional and global climates. In this manuscript, we examine the type and magnitude of the climate feedbacks from boreal forests in Alaska. Research generally suggests that the net effect of a warming climate is a positive regional feedback to warming. Currently, the primary positive climate feedbacks are likely related to decreases in surface albedo due to decreases in snow cover. Fewer negative feedbacks have been identified, and they may not be large enough to counterbalance the large positive feedbacks. These positive feedbacks are most pronounced at the regional scale and reduce the resilience of the boreal vegetation – climate system by amplifying the rate of regional warming. Given the recent warming in this region, the large variety of associated mechanisms that can alter terrestrial ecosystems and influence the climate system, and a reduction in the boreal forest resilience, there is a strong need to continue to quantify and evaluate the feedback pathways.
A swimming pool array for ultra high energy showers
NASA Astrophysics Data System (ADS)
Yodh, Gaurang B.; Shoup, Anthony; Barwick, Steve; Goodman, Jordan A.
1992-11-01
A very preliminary design concept for an array using water Cherenkov counters, built out of commercially available backyard swimming pools, to sample the electromagnetic and muonic components of ultra high energy showers at large lateral distances is presented. The expected performance of the pools is estimated using the observed lateral distributions by scintillator and water Cherenkov arrays at energies above 1019 eV and simulations.
Leveraging Resources to Address Transportation Needs: Transportation Pooled Fund Program
DOT National Transportation Integrated Search
2004-05-28
This brochure describes the Transportation Pooled Fund (TPF) Program. The objectives of the TPF Program are to leverage resources, avoid duplication of effort, undertake large-scale projects, obtain greater input on project definition, achieve broade...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heiple, C.R.; Burgardt, P.
1990-01-01
The size and shape of the weld bead produced in GTA welding depends on the magnitude and distribution of the energy incident on the workpiece surfaces as well as the dissipation of that energy in the workpiece. The input energy is largely controllable through the welding parameters selected, however the dissipation of that energy in the workpiece is less subject to control. Changes in energy dissipation can produce large changes in weld shape or penetration. Heat transport away from the weld pool is almost entirely by conduction, but heat transport in the weld pool is more complicated. Heat conduction throughmore » the liquid is an important component, but heat transport by convection (mass transport) is often the dominant mechanism. Convective heat transport is directional and changes the weld pool shape from that produced by conduction alone. Surface tension gradients are often the dominant forces driving fluid flow in GTA weld pools. These gradients are sensitive functions of weld pool chemistry and the energy input distribution to the weld. Experimental and theoretical work conducted primarily in the past decade has greatly enhanced our understanding of weld pool fluid flow, the forces which drive it, and its effects on weld pool shape. This work is reviewed here. While less common, changes in energy dissipation through the unmelted portion of the workpiece can also affect fusion zone shape or penetration. These effects are also described. 41 refs., 9 figs.« less
Transformation kinetics of corn and clover residues in mineral substrates of different composition
NASA Astrophysics Data System (ADS)
Pinskii, D. L.; Maltseva, A. N.; Zolotareva, B. N.; Dmitrieva, E. D.
2017-06-01
Mineralization kinetics of corn and clover residues in quartz sand, loam, sand + 15% bentonite, and sand + 30% kaolinite have been studied. A scheme has been proposed for the transformation of plant residues in mineral substrates. Kinetic parameters of mineralization have been calculated with the use of a first-order two-term exponential polynomial. It has been shown that the share of labile organic carbon pool in the clover biomass is higher (57-63%) than in the corn biomass (47-49%), which is related to the biochemical composition of plant residues. The mineralization constants of clover residues generally significantly exceed those of corn because of the stronger stabilization of the decomposition products of corn residues. The turnover time of the labile clover pool (4-9 days) in all substrates and that of the labile corn pool (8-10 days) in sands and substrates containing kaolinites and bentonite are typical for organic acids, amino acids, and simple sugars. In the loamy substrate, the turnover time of labile corn pool is about 46 days due to the stronger stabilization of components of the labile pool containing large amounts of organic acids. The turnover time of the stable clover pool (0.95 years) is significantly lower than that of the stable corn pool (1.60 years) and largely corresponds to the turnover time of plant biomass.
Scott Carroll; E. George Robison
2007-01-01
Several studies have shown that large wood has a prominent role in habitat quality, however there is little research on the role of wood on pool characteristics and other habitat components in low gradient streams (channel slopes less than one percent). Longitudinal profiles are used to analyze general residual pool characteristics of three approximately 1000-meter...
NASA Astrophysics Data System (ADS)
Senff, C. J.; Langford, A. O.; Banta, R. M.; Alvarez, R. J.; Weickmann, A.; Sandberg, S.; Marchbanks, R. D.; Brewer, A.; Hardesty, R. M.
2013-12-01
The Uintah Basin in northeast Utah has been experiencing extended periods of poor air quality in the winter months including very high levels of surface ozone. To investigate the causes of these wintertime ozone pollution episodes, two comprehensive studies were undertaken in January/February of 2012 and 2013. As part of these Uintah Basin Ozone Studies (UBOS), NOAA deployed its ground-based, scanning Tunable Optical Profiler for Aerosol and oZone (TOPAZ) lidar to document the vertical structure of ozone and aerosol backscatter from near the surface up to about 3 km above ground level (AGL). TOPAZ, along with a comprehensive set of chemistry and meteorological measurements, was situated in both years at the Horse Pool site at the northern edge of a large concentration of gas producing wells in the eastern part of the Uintah Basin. The 2012 study was characterized by unusually warm and snow-free condition and the TOPAZ lidar observed deep boundary layers (BL) and mostly well-mixed vertical ozone profiles at or slightly above tropospheric background levels. During UBOS 2013, winter weather conditions in the Uintah Basin were more typical with snow-covered ground and a persistent, shallow cold-pool layer. The TOPAZ lidar characterized with great temporal and spatial detail the evolution of multiple high-ozone episodes as well as cleanout events caused by the passage of synoptic-scale storm systems. Despite the snow cover, the TOPAZ observations show well-mixed afternoon ozone and aerosol profiles up to about 100 m AGL. After several days of pollutant buildup, BL ozone values reached 120-150 ppbv. Above the mixed layer, ozone values gradually decreased to tropospheric background values of around 50 ppbv throughout the several-hundred-meter-deep cold-pool layer and then stayed constant above that up to about 3 km AGL. During the ozone episodes, the lidar observations show no indication of either vertical or horizontal transport of high ozone levels to the surface, thus supporting the notion that ozone is locally produced in the Uintah Basin. In both winters, TOPAZ occasionally observed ozone titration as the NOx-rich plume from the nearby Bonanza power plant was advected over the Horse Pool site. In 2012, low ozone values due to titration were observed at the surface and throughout the well-mixed BL, while in 2013 low ozone values were confined to the upper part of the cold-pool layer above the BL. This suggests that power plant NOx was very likely not part of the precursor mix that led to the high surface ozone values observed in 2013.
Convection and Easterly Wave Structure Observed in the Eastern Pacific Warm-Pool during EPIC-2001
NASA Technical Reports Server (NTRS)
Peterson, Walter A.; Cifelli, R.; Boccippio, D.; Rutledge, S. A.; Fairall, C. W.; Arnold, James E. (Technical Monitor)
2002-01-01
During September-October 2001, the East Pacific Investigation of Climate Processes in the Coupled Ocean-Atmosphere System (EPIC-2001) ITCZ field campaign focused on studies of deep convection in the warm-pool region of the East Pacific. In addition to the TAO mooring array, observational platforms deployed during the field phase included the NOAA ship RN Ronald H. Brown, the NSF ship RN Horizon, and the NOAA P-3 and NCAR C-130 aircraft. This study combines C-band Doppler radar, rawinsonde, and surface heat flux data collected aboard the RN Brown to describe ITCZ convective structure and rainfall statistics in the eastern Pacific as a function of 3-5 day easterly wave phase. Three distinct easterly wave passages occurred during EPIC-2001. Wind and thermodynamic data reveal that the wave trough axes exhibited positively correlated U and V winds and a slight westward phase tilt with height. A relatively strong (weak) northeasterly deep tropospheric shear followed the trough (ridge) axis. Temperature and humidity perturbations exhibited mid-to upper level cooling (warming) and drying (moistening) in the northerly (trough and southerly) phase. At low levels warming (cooling) occurred in the northerly (southerly) phase with little change in the relative humidity, though mixed layer mixing ratios were larger during the northerly phase. When composited, radar, sounding, lightning and surface heat flux observations suggest the following systematic behavior as a function of wave phase: approximately zero to one quarter wavelength ahead of (behind) the wave trough in northerly (southerly) flow, larger (smaller) CAPE, lower (higher) CIN, weaker (stronger) tropospheric shear, higher (lower) conditional mean rain rates, higher (lower) lightning flash densities, and more (less) robust convective vertical structure occurred. Latent and sensible heat fluxes reached a minimum in the northerly phase and then increased through the trough, reaching a peak during the ridge phase (leading the peak in CAPE). From a radar echo coverage perspective, larger areas of light rain and slightly larger (10%) area averaged rain rates occurred in the vicinity of, and just behind, the trough axes in southerly flow. Importantly, the transition in convective structure observed across the trough axis when considered with the relatively small change in area mean rain rates suggests the presence of a transition in the vertical structure of diabatic heating across the easterly waves examined. The inferred transition in heating structure is supported by radar diagnosed divergence profiles that exhibit convective (stratiform) characteristics ahead of (behind) the trough.
Abrupt release of terrigenous organic carbon to the Laptev Sea at termination of the Younger Dryas
NASA Astrophysics Data System (ADS)
Tesi, T.; Muschitiello, F.; Smittenberg, R.; Jakobsson, M.; Vonk, J.; Hill, P.; Dudarev, O.; Semiletov, I. P.; Kirchner, N.; Noormets, R.; Andersson, A.; Gustafsson, O.
2015-12-01
Based on analysis of a piston core collected in 2014 from the Lena River paleo delta, now Laptev Sea, we show that rapid and massive organic carbon (OC) deposition took place into the marine system at the termination of the Younger Dryas when the Arctic region experienced a large and extremely fast climate change. The highly laminated strata with absence of bioturbation further confirm the rapid event-driven emplacement of this deposit which was largely dominated by terrigenous OC as indicated by depleted δ13C values and high concentrations of terrestrial fossil biomarkers (lignin phenols and cutin-derived products). Moreover, the hydrogen isotopic composition (δ2H) of HMW n-alkanes indicates that this terrestrially-derived translocated OC was produced in the watershed during a relatively cold period. The OC appears to be a few thousand years old at time of deposition (ca. 4-5000 radiocarbon years; reservoir age corrected), consistent with the radiocarbon age of pre-aged OC currently supplied by the Lena river. Altogether our results indicate that fast climate warming exerts first-order control on large-scale carbon redistribution. Because the Younger Dryas-Preboreal transition occurred within a few decades, we infer that the abrupt and large release of terrigenous OC was essentially driven by rapid changes in the permafrost stability (i.e., thermal collapse/thawing) and increase in precipitation over the Siberian watershed. Interestingly, only surface and sub-surface carbon pools (i.e., active layer) were remobilized while deep and old sources (radiocarbon dead) did not seem to have substantially contributed to the total land-to-ocean flux during the Younger Dryas-Preboreal transition.
Garcia-Robledo, Emilio; Bohorquez, Julio; Corzo, Alfonso; Jimenez-Arias, Juan L.; Papaspyrou, Sokratis
2016-01-01
The study of inorganic nutrients dynamics in shallow sediments usually focuses on two main pools: porewater (PW) nutrients and exchangeable (EX) ammonium and phosphate. Recently, it has been found that microphytobenthos (MPB) and other microorganisms can accumulate large amounts of nutrients intracellularly (IC), highlighting the biogeochemical importance of this nutrient pool. Storing nutrients could support the growth of autotrophs when nutrients are not available, and could also provide alternative electron acceptors for dissimilatory processes such as nitrate reduction. Here, we studied the magnitude and relative importance of these three nutrient pools (PW, IC, and EX) and their relation to chlorophylls (used as a proxy for MPB abundance) and organic matter (OM) contents in an intertidal mudflat of Cadiz Bay (Spain). MPB was localized in the first 4 mm of the sediment and showed a clear seasonal pattern; highest chlorophylls content was found during autumn and lowest during spring-summer. The temporal and spatial distribution of nutrients pools and MPB were largely correlated. Ammonium was higher in the IC and EX fractions, representing on average 59 and 37% of the total ammonium pool, respectively. Similarly, phosphate in the IC and EX fractions accounted on average for 40 and 31% of the total phosphate pool, respectively. Nitrate in the PW was low, suggesting low nitrification activity and rapid consumption. Nitrate accumulated in the IC pool during periods of moderate MPB abundance, being up to 66% of the total nitrate pool, whereas it decreased when chlorophyll concentration peaked likely due to a high nitrogen demand. EX-Nitrate accounted for the largest fraction of total sediment nitrate, 66% on average. The distribution of EX-Nitrate was significantly correlated with chlorophyll and OM, which probably indicates a relation of this pool to an increased availability of sites for ionic adsorption. This EX-Nitrate pool could represent an alternative nitrate source with significant concentrations available to the microbial community, deeper in the sediment below the oxic layer. PMID:27303370
Garcia-Robledo, Emilio; Bohorquez, Julio; Corzo, Alfonso; Jimenez-Arias, Juan L; Papaspyrou, Sokratis
2016-01-01
The study of inorganic nutrients dynamics in shallow sediments usually focuses on two main pools: porewater (PW) nutrients and exchangeable (EX) ammonium and phosphate. Recently, it has been found that microphytobenthos (MPB) and other microorganisms can accumulate large amounts of nutrients intracellularly (IC), highlighting the biogeochemical importance of this nutrient pool. Storing nutrients could support the growth of autotrophs when nutrients are not available, and could also provide alternative electron acceptors for dissimilatory processes such as nitrate reduction. Here, we studied the magnitude and relative importance of these three nutrient pools (PW, IC, and EX) and their relation to chlorophylls (used as a proxy for MPB abundance) and organic matter (OM) contents in an intertidal mudflat of Cadiz Bay (Spain). MPB was localized in the first 4 mm of the sediment and showed a clear seasonal pattern; highest chlorophylls content was found during autumn and lowest during spring-summer. The temporal and spatial distribution of nutrients pools and MPB were largely correlated. Ammonium was higher in the IC and EX fractions, representing on average 59 and 37% of the total ammonium pool, respectively. Similarly, phosphate in the IC and EX fractions accounted on average for 40 and 31% of the total phosphate pool, respectively. Nitrate in the PW was low, suggesting low nitrification activity and rapid consumption. Nitrate accumulated in the IC pool during periods of moderate MPB abundance, being up to 66% of the total nitrate pool, whereas it decreased when chlorophyll concentration peaked likely due to a high nitrogen demand. EX-Nitrate accounted for the largest fraction of total sediment nitrate, 66% on average. The distribution of EX-Nitrate was significantly correlated with chlorophyll and OM, which probably indicates a relation of this pool to an increased availability of sites for ionic adsorption. This EX-Nitrate pool could represent an alternative nitrate source with significant concentrations available to the microbial community, deeper in the sediment below the oxic layer.
Mixing processes following the final stratospheric warming
NASA Technical Reports Server (NTRS)
Hess, Peter G.
1991-01-01
An investigation is made of the dynamics responsible for the mixing and dissolution of the polar vortex during the final stratospheric warmings. The dynamics and transport during a Northern Hemisphere final stratospheric warming are simulated via a GCM and an associated offline N2O transport model. The results are compared with those obtained from LIMS data for the final warming of 1979, with emphasis on the potential vorticity evolution in the two datasets, the modeled N2O evolution, and the observed O3 evolution. Following each warming, the remnants of the originally intact vortex are found to gradually homogenize with the atmosphere at large. Two processes leading to this homogenization are identified following the final warmings, namely, the potential vorticity field becomes decorrelated from that of the chemical tracer, and the vortex remnants begin to tilt dramatically in a vertical direction.
Effects of predators on fish and crayfish survival in intermittent streams
Dekar, Matthew P.; Magoulick, Daniel D.
2013-01-01
Predation from aquatic and terrestrial predators arc important factors structuring the size and depth distribution of aquatic prey. We conducted mesocosm and tethering experiments on Little Mulberry Creek in northwest Arkansas during low flows to examine the effects of predators on fish and crayfish survival in intermittent streams Using shallow artificial pools (10 cm deep) and predator exclusions, we tested the hypothesis that large-bodied fish are at greater risk from terrestrial predators in shallow habitats compared to small-bodied individuals. Twenty-four circular pools (12 open top. 12 closed top) were stocked with two size classes of Campostoma anomalum (Central Stonerller) and deployed systematically in a single stream pool. In addition, we used a crayfish tethering experiment to test the hypothesis that the survival of small and large crayfish is greater in shallow and deep habitats, respectively. We tethered two size classes of Orconectes meeki meeki (Meek's Crayfish) along shallow and deep transects in two adjacent stream pools and measured survival for 15 days. During both experiments, we monitored the presence or absence of predators by visual observation and from scat surveys. We demonstrated a negative effect of terrestrial predators on Central Stonerller survival in the artificial pools, and larger individuals were more susceptible to predation. In contrast, small crayfish experienced low survival at all depths and large crayfish were preyed upon much less intensively during the tethering study, particularly in the pool with larger substrate. More studies are needed to understand how stream drying and environmental heterogeneity influence the complex interactions between predator and prey populations in intermittent streams.
NASA Astrophysics Data System (ADS)
Hand, Ralf; Keenlyside, Noel; Omrani, Nour-Eddine; Greatbatch, Richard; Bader, Jürgen
2017-04-01
Climate change simulations robustly show a warming hole in the sub-polar North Atlantic that results from slowing of the AMOC countering the global warming signal. Here we investigate how the distinct SST spatial structures, which include a sharpening of the Gulf Stream SST gradients, influence climate change in the NA sector in winter. For this we analyse the RCP8.5 scenario simulation of the MPI Earth System Model. Additional sensitivity experiments with the atmospheric model component, ECHAM5, are performed to deconstruct the effect of the local spatial structure of the SST change from those arising from large-scale warming of the ocean, remote SST pattern changes and changed radiative forcings. The MPI model simulation shows a signifcant decrease in precipitation to the south of the GS extension region in the future, despite a strong increase in underlying SST. While directly to the north there is a significant increase in precipitation. These distinct features in the precipitation response over the North Atlantic result from the local SST. Over the Gulf Stream, the differential structure of the precipitation changes reflects the changes of the local SST gradients there. Over the subpolar gyre the increase in precipitation is partly suppressed. In this region the Subpolar Gyre the weakened AMOC causes a SST warming, that is much weaker than the warming other regions of the ocean show at the same latitude. The large-scale response, which includes the overall increase in precipitation over the NA is due to the overall warming, remote SSTs and/or directly connected to the radiative forcing.
Multi-model ensemble simulations of low flows in Europe under a 1.5, 2, and 3 degree global warming
NASA Astrophysics Data System (ADS)
Marx, A.; Kumar, R.; Thober, S.; Zink, M.; Wanders, N.; Wood, E. F.; Pan, M.; Sheffield, J.; Samaniego, L. E.
2017-12-01
There is growing evidence that climate change will alter water availability in Europe. Here, we investigate how hydrological low flows are affected under different levels of future global warming (i.e., 1.5, 2 and 3 K). The analysis is based on a multi-model ensemble of 45 hydrological simulations based on three RCPs (rcp2p6, rcp6p0, rcp8p5), five CMIP5 GCMs (GFDL-ESM2M, HadGEM2-ES, IPSL-CM5A-LR, MIROC-ESM-CHEM, NorESM1-M) and three state-of-the-art hydrological models (HMs: mHM, Noah-MP, and PCR-GLOBWB). High resolution model results are available at the unprecedented spatial resolution of 5 km across the pan-European domain at daily temporal resolution. Low river flow is described as the percentile of daily streamflow that is exceeded 90% of the time. It is determined separately for each GCM/HM combinations and the warming scenarios. The results show that the change signal amplifies with increasing warming levels. Low flows decrease in the Mediterranean, while they increase in the Alpine and Northern regions. In the Mediterranean, the level of warming amplifies the signal from -12% under 1.5 K to -35% under 3 K global warming largely due to the projected decreases in annual precipitation. In contrast, the signal is amplified from +22% (1.5 K) to +45% (3 K) because of the reduced snow melt contribution. The changes in low flows are significant for regions with relatively large change signals and under higher levels of warming. Nevertheless, it is not possible to distinguish climate induced differences in low flows between 1.5 and 2 K warming because of the large variability inherent in the multi-model ensemble. The contribution by the GCMs to the uncertainty in the Alpine and Northern region as well as the Mediterranean, the uncertainty contribution by the HMs is partly higher than those by the GCMs due to different representations of processes such as snow, soil moisture and evapotranspiration.
Transport across the tropical tropopause layer and convection
NASA Astrophysics Data System (ADS)
Tissier, Ann-Sophie; Legras, Bernard; Tzella, Alexandra
2015-04-01
We investigate how air parcels detrained from convective sources enter the TTL. The approach is based on the comparison of unidimensional trajectories and Lagrangian backward and forward trajectories, using TRACZILLA and ERA-Interim. Backward trajectories are launched at 380K and run until they hit a deep convective cloud. Forward trajectories are launched at the top of high convective clouds identified by brightness temperature from CLAUS dataset. 1D trajectories are computed using Gardiner's method. Results show that the warm pool region during winter and the Bay of Bengal / Sea of China during summer are the prevalent sources as already identified in many previous studies and we quantify the respective role of the various regions. We show that the 1D model explains qualitatively and often quantitatively the 3d results. We also show that in spite of generating very high convection, Africa is quite ineffective as providing air that remains in the TTL while on the opposite the Tibetan Plateau is the most effective region in this respect although its total contribution is minor. Finally, we compare ERA-Interim, JRA-55 and MERRA reanalysis and find large similarities between the two formers.
Tropical Convection and Climate Processes in a Cumulus Ensemble Model
NASA Technical Reports Server (NTRS)
Sui, Chung-Hsiung
1999-01-01
Local convective-radiative equilibrium states of the tropical atmosphere are determined by the following external forcing: 1) Insolation, 2) Surface heat and moisture exchanges (primarily radiation and evaporation), 3) Heating and moistening induced by large-scale circulation. Understanding the equilibrium states of the tropical atmosphere in different external forcing conditions is of vital importance for studying cumulus parameterization, climate feedbacks, and climate changes. We extend our previous study using the Goddard Cumulus Ensemble (GCE) Model which resolves convective-radiative processes more explicitly than global climate models do. Several experiments are carried out under fixed insolation and sea surface temperature. The prescribed SST consists of a uniform warm pool (29C) surrounded by uniform cold SST (26C). The model produces "Walker"-type circulation with the ascending branch of the model atmosphere more humid than the descending part, but the vertically integrated temperature does not show a horizontal gradient. The results are compared with satellite measured moisture by SSM/I (Special Sensor Microwave/Imager) and temperature by MSU in the ascending and descending tropical atmosphere. The vertically integrated temperature and humidity in the two model regimes are comparable to the observed values in the tropics.
Roiha, Toni; Peura, Sari; Cusson, Mathieu; Rautio, Milla
2016-01-01
In the subarctic region, climate warming and permafrost thaw are leading to emergence of ponds and to an increase in mobility of catchment carbon. As carbon of terrestrial origin is increasing in subarctic freshwaters the resource pool supporting their microbial communities and metabolism is changing, with consequences to overall aquatic productivity. By sampling different subarctic water bodies for a one complete year we show how terrestrial and algal carbon compounds vary in a range of freshwaters and how differential organic carbon quality is linked to bacterial metabolism and community composition. We show that terrestrial drainage and associated nutrients supported higher bacterial growth in ponds and river mouths that were influenced by fresh terrestrial carbon than in large lakes with carbon from algal production. Bacterial diversity, however, was lower at sites influenced by terrestrial carbon inputs. Bacterial community composition was highly variable among different water bodies and especially influenced by concentrations of dissolved organic carbon (DOC), fulvic acids, proteins and nutrients. Furthermore, a distinct preference was found for terrestrial vs. algal carbon among certain bacterial tribes. The results highlight the contribution of the numerous ponds to cycling of terrestrial carbon in the changing subarctic and arctic regions. PMID:27686416
Roiha, Toni; Peura, Sari; Cusson, Mathieu; Rautio, Milla
2016-09-30
In the subarctic region, climate warming and permafrost thaw are leading to emergence of ponds and to an increase in mobility of catchment carbon. As carbon of terrestrial origin is increasing in subarctic freshwaters the resource pool supporting their microbial communities and metabolism is changing, with consequences to overall aquatic productivity. By sampling different subarctic water bodies for a one complete year we show how terrestrial and algal carbon compounds vary in a range of freshwaters and how differential organic carbon quality is linked to bacterial metabolism and community composition. We show that terrestrial drainage and associated nutrients supported higher bacterial growth in ponds and river mouths that were influenced by fresh terrestrial carbon than in large lakes with carbon from algal production. Bacterial diversity, however, was lower at sites influenced by terrestrial carbon inputs. Bacterial community composition was highly variable among different water bodies and especially influenced by concentrations of dissolved organic carbon (DOC), fulvic acids, proteins and nutrients. Furthermore, a distinct preference was found for terrestrial vs. algal carbon among certain bacterial tribes. The results highlight the contribution of the numerous ponds to cycling of terrestrial carbon in the changing subarctic and arctic regions.
Knox, Matthew A; Andriuzzi, Walter S; Buelow, Heather N; Takacs-Vesbach, Cristina; Adams, Byron J; Wall, Diana H
2017-10-01
Altered temperature profiles resulting in increased warming and freeze-thaw cycle (FTC) frequency pose great ecological challenges to organisms in alpine and polar ecosystems. We performed a laboratory microcosm experiment to investigate how temperature variability affects soil bacterial cell numbers, and abundance and traits of soil microfauna (the microbivorous nematode Scottnema lindsayae) from McMurdo Dry Valleys, Antarctica. FTCs and constant freezing shifted nematode body size distribution towards large individuals, driven by higher mortality among smaller individuals. FTCs reduced both bacterial and nematode abundance, but bacterial cell numbers also declined under warming, demonstrating decoupled consumer-prey responses. We predict that higher occurrence of FTCs in cold ecosystems will select for large body size within soil microinvertebrates and overall reduce their abundance. In contrast, warm temperatures without FTCs could lead to divergent responses in soil bacteria and their microinvertebrate consumers, potentially affecting energy and nutrient transfer rates in soil food webs of cold ecosystems. © 2017 John Wiley & Sons Ltd/CNRS.
Hood, James M; Benstead, Jonathan P; Cross, Wyatt F; Huryn, Alexander D; Johnson, Philip W; Gíslason, Gísli M; Junker, James R; Nelson, Daniel; Ólafsson, Jón S; Tran, Chau
2018-03-01
Climate warming is affecting the structure and function of river ecosystems, including their role in transforming and transporting carbon (C), nitrogen (N), and phosphorus (P). Predicting how river ecosystems respond to warming has been hindered by a dearth of information about how otherwise well-studied physiological responses to temperature scale from organismal to ecosystem levels. We conducted an ecosystem-level temperature manipulation to quantify how coupling of stream ecosystem metabolism and nutrient uptake responded to a realistic warming scenario. A ~3.3°C increase in mean water temperature altered coupling of C, N, and P fluxes in ways inconsistent with single-species laboratory experiments. Net primary production tripled during the year of experimental warming, while whole-stream N and P uptake rates did not change, resulting in 289% and 281% increases in autotrophic dissolved inorganic N and P use efficiency (UE), respectively. Increased ecosystem production was a product of unexpectedly large increases in mass-specific net primary production and autotroph biomass, supported by (i) combined increases in resource availability (via N mineralization and N 2 fixation) and (ii) elevated resource use efficiency, the latter associated with changes in community structure. These large changes in C and nutrient cycling could not have been predicted from the physiological effects of temperature alone. Our experiment provides clear ecosystem-level evidence that warming can shift the balance between C and nutrient cycling in rivers, demonstrating that warming will alter the important role of in-stream processes in C, N, and P transformations. Moreover, our results reveal a key role for nutrient supply and use efficiency in mediating responses of primary producers to climate warming. © 2017 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Schaedel, C.; Koven, C.; Celis, G.; Hutchings, J.; Lawrence, D. M.; Mauritz, M.; Pegoraro, E.; Salmon, V. G.; Taylor, M.; Wieder, W. R.; Schuur, E.
2017-12-01
Warming over the Arctic in the last decades has been twice as high as for the rest of the globe and has exposed large amounts of organic carbon to microbial decomposition in permafrost ecosystems. Continued warming and associated changes in soil moisture conditions not only lead to enhanced microbial decomposition from permafrost soil but also enhanced plant carbon uptake. Both processes impact the overall contribution of permafrost carbon dynamics to the global carbon cycle, yet field and modeling studies show large uncertainties in regard to both uptake and release mechanisms. Here, we compare variables associated with ecosystem carbon exchange (GPP: gross primary production; Reco: ecosystem respiration; and NEE: net ecosystem exchange) from eight years of experimental soil warming in moist acidic tundra with the same variables derived from an experimental model (Community Land Model version 4.5: CLM4.5) that simulates the same degree of arctic warming. While soil temperatures and thaw depths exhibited comparable increases with warming between field and model variables, carbon exchange related parameters showed divergent patterns. In the field non-linear responses to experimentally induced permafrost thaw were observed in GPP, Reco, and NEE. Indirect effects of continued soil warming and thaw created changes in soil moisture conditions causing ground surface subsidence and suppressing ecosystem carbon exchange over time. In contrast, the model predicted linear increases in GPP, Reco, and NEE with every year of warming turning the ecosystem into a net annual carbon sink. The field experiment revealed the importance of hydrology in carbon flux responses to permafrost thaw, a complexity that the model may fail to predict. Further parameterization of variables that drive GPP, Reco, and NEE in the model will help to inform and refine future model development.
Assessing the Impacts of Mid-latitude Circulation Changes under +1.5ºC and +2ºC Warming
NASA Astrophysics Data System (ADS)
Michel, C.; Bethke, I.; Seland Graff, L.; Iversen, T.; Li, C.; Mitchell, D.; Zappa, G.
2017-12-01
Understanding the mid-latitude circulation and its response to global warming is critical for accurately assessing the ensuing regional impacts. Uncertainty in the response arises from uncertainty in emissions scenarios, the climate model used, and the large internal variability of the mid-latitudes. Here, we investigate the latter two sources of uncertainty in the forced response to weak warming using multi-model large ensembles. The experiments are part of the project "Half a degree Additional warming, Prognosis and Projected Implications" (HAPPI), following up on the Paris Agreement of 2015 (Mitchell et al., 2017). With 100 to 501 members from at least five state-of-the-art models, the experiment set allows us to estimate the regional impacts associated with robust responses of the mid-latitude circulation under +1.5ºC and +2ºC warming, and to partition the sources of uncertainty using an analysis of variance method (Samson et al., 2013). In the Northern Hemisphere, the upper-level and eddy-driven jets, as well as the storm track, shift in the warming experiments but the response can be nonlinear with warming. Robust stationary wave changes are seen in North Pacific and North America. Internal variability dominates the spread in the responses, although model spread contributes substantially over Europe, the North Atlantic, and the North Pacific jet entrance. We show how these responses impact temperature and precipitation in specific areas, such as western Europe and North America. Finally, we assess the changes in frequency and duration of blocking events. Results from this study will allow us to better quantify weather-related impacts and risks in a warming climate, and help evaluate how the projected changes may affect society on climatological time scales.
Role of the North Atlantic Oscillation in decadal temperature trends
NASA Astrophysics Data System (ADS)
Iles, Carley; Hegerl, Gabriele
2017-11-01
Global temperatures have undergone periods of enhanced warming and pauses over the last century, with greater variations at local scales due to internal variability of the climate system. Here we investigate the role of the North Atlantic Oscillation (NAO) in decadal temperature trends in the Northern Hemisphere for periods with large decadal NAO trends. Using a regression based technique we find a best estimate that trends in the NAO more than halved (reduced by 57%, 5%-95%: 47%-63%) the winter warming over the Northern Hemisphere extratropics (NH; 30N-90N) from 1920-1971 and account for 45% (±14%) of the warming there from 1963-1995, with larger impacts on regional scales. Over the period leading into the so-called warming hiatus, 1989-2013, the NAO reduced NH winter warming to around one quarter (24%; 19%-31%) of what it would have been, and caused large negative regional trends, for example, in Northern Eurasia. Warming is more spatially uniform across the Northern Hemisphere after removing the NAO influence in winter, and agreement with multi-model mean simulated trends improves. The impact of the summer NAO is much weaker, but still discernible over Europe, North America and Greenland, with the downward trend in the summer NAO from 1988-2012 reducing warming by about a third in Northern Europe and a half in North America. A composite analysis using CMIP5 control runs suggests that the ocean response to prolonged NAO trends may increase the influence of decadal NAO trends compared to estimates based on interannual regressions, particularly in the Arctic. Results imply that the long-term NAO trends over the 20th century alternately masked or enhanced anthropogenic warming, and will continue to temporarily offset or enhance its effects in the future.
ERIC Educational Resources Information Center
Herridge, Bart; Heil, Robert
2003-01-01
Predictive modeling has been a popular topic in higher education for the last few years. This case study shows an example of an effective use of modeling combined with market segmentation to strategically divide large, unmanageable prospect and inquiry pools and convert them into applicants, and eventually, enrolled students. (Contains 6 tables.)
Allometric Scaling of the Active Hematopoietic Stem Cell Pool across Mammals
Dingli, David; Pacheco, Jorge M.
2006-01-01
Background Many biological processes are characterized by allometric relations of the type Y = Y 0 Mb between an observable Y and body mass M, which pervade at multiple levels of organization. In what regards the hematopoietic stem cell pool, there is experimental evidence that the size of the hematopoietic stem cell pool is conserved in mammals. However, demands for blood cell formation vary across mammals and thus the size of the active stem cell compartment could vary across species. Methodology/Principle Findings Here we investigate the allometric scaling of the hematopoietic system in a large group of mammalian species using reticulocyte counts as a marker of the active stem cell pool. Our model predicts that the total number of active stem cells, in an adult mammal, scales with body mass with the exponent ¾. Conclusion/Significance The scaling predicted here provides an intuitive justification of the Hayflick hypothesis and supports the current view of a small active stem cell pool supported by a large, quiescent reserve. The present scaling shows excellent agreement with the available (indirect) data for smaller mammals. The small size of the active stem cell pool enhances the role of stochastic effects in the overall dynamics of the hematopoietic system. PMID:17183646
NREL-Led Efforts Help Bring Financing to Solar Projects - Continuum
public investment in solar power? "There's a large pool of money that does not invest in renewable Michael Mendelsohn. To help connect that pool of money with the solar projects that need low-cost
In vivo insertion pool sequencing identifies virulence factors in a complex fungal–host interaction
Uhse, Simon; Pflug, Florian G.; Stirnberg, Alexandra; Ehrlinger, Klaus; von Haeseler, Arndt
2018-01-01
Large-scale insertional mutagenesis screens can be powerful genome-wide tools if they are streamlined with efficient downstream analysis, which is a serious bottleneck in complex biological systems. A major impediment to the success of next-generation sequencing (NGS)-based screens for virulence factors is that the genetic material of pathogens is often underrepresented within the eukaryotic host, making detection extremely challenging. We therefore established insertion Pool-Sequencing (iPool-Seq) on maize infected with the biotrophic fungus U. maydis. iPool-Seq features tagmentation, unique molecular barcodes, and affinity purification of pathogen insertion mutant DNA from in vivo-infected tissues. In a proof of concept using iPool-Seq, we identified 28 virulence factors, including 23 that were previously uncharacterized, from an initial pool of 195 candidate effector mutants. Because of its sensitivity and quantitative nature, iPool-Seq can be applied to any insertional mutagenesis library and is especially suitable for genetically complex setups like pooled infections of eukaryotic hosts. PMID:29684023
NASA Astrophysics Data System (ADS)
Roberts, Alex; Knippertz, Peter
2013-04-01
This work focusses on the meteorology that produced a large Mesoscale Convective System (MCS) and the dynamics of its associated cold pool. The case occurred between 8th-10th June 2010 and was initiated over the Hoggar and Aïr Mountains in southern Algeria and northern Niger respectively. The dust plume created covered parts of Algeria, Mali and Mauritania and was later deformed the by background flow and transported over the Atlantic and Mediterranean. This study is based on: standard surface observations (where available), ERA-Interim reanalysis, Meteosat imagery, MODIS imagery, Tropical Rainfall Measuring Mission (TRMM) rainfall estimates, Cloud Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO), CloudSat and a high resolution (3.3km) limited area simulation using the Weather Research and Forecasting (WRF) model. A variety of different processes appear to be important for the generation of this MCS and the spreading of the associated dusty cold pool. These include: the presence of a trough on the subtropical jet, the production of a tropical cloud plume, disruption to the structure of the Saharan heat low and the production of a Libyan high. These features produced moistening of the boundary layer and a convergence zone over the region of MCS initiation. Another important factor appears to have been the production of a smaller MCS and cold pool on the evening of the 7th June. This elevated low-level moisture and encouraged convective initiation the following day. Once triggered on the 8th June some cells grew and merged into a single large system that propagated south westward and produced a large cold pool that emanated from its northern edge. The cells on the northern edge of the system over the Hoggar grew and collapsed producing a haboob that spread over a large area. Cells further south continued to develop into the MCS and actively produce a cold pool over the system's lifetime. This undercut the dusty air from the earlier cold pool and forced dust high into the atmosphere. As well as the expected behaviour of a gravity current there also seems to be a complex relationship between the cold pool and diurnal variation in boundary layer structure. These include: (1) the production of nocturnal low-level jet in the area previously covered by the cold pool allowing for further dust uplift the following morning, (2) the development of a bore on the nocturnal boundary layer travelling ahead of the cold pool and capable of deflating dust further into the desert and (3) the production of bores on the nocturnal boundary layer by the collision of fronts formed through the collapse of the well mixed daytime boundary layer and nocturnal frontogenesis. It is hoped that this work will add to the understanding of the production of large Saharan MCSs and the processes that can influence their formation. Also it shows the complex dynamical interactions that occur within the Saharan boundary layer and how these might impact our understanding of dust uplift processes associated with the passage of MCSs.
Suppressed midlatitude summer atmospheric warming by Arctic sea ice loss during 1979-2012
NASA Astrophysics Data System (ADS)
Wu, Qigang; Cheng, Luyao; Chan, Duo; Yao, Yonghong; Hu, Haibo; Yao, Ying
2016-03-01
Since the 1980s, rapid Arctic warming, sea ice decline, and weakening summer circulation have coincided with an increasing number of extreme heat waves and other destructive weather events in the Northern Hemisphere (NH) midlatitudes in summer. Recent papers disagree about whether such high-impact events are related to Arctic warming and/or ice loss. Here we use atmospheric model ensemble simulations to attribute effects of sea ice loss and other factors on observed summer climate trends during 1979-2012. The ongoing greenhouse gas buildup and resulting sea surface temperature warming outside the Arctic explains nearly all land warming and a significant portion of observed weakening zonal winds in the NH midlatitudes. However, sea ice loss has induced a negative Arctic Oscillation(AO)-type circulation with significant summer surface and tropospheric cooling trends over large portions of the NH midlatitudes, which reduce the warming and might reduce the probability of regional severe hot summers.
Increasing occurrence of cold and warm extremes during the recent global warming slowdown.
Johnson, Nathaniel C; Xie, Shang-Ping; Kosaka, Yu; Li, Xichen
2018-04-30
The recent levelling of global mean temperatures after the late 1990s, the so-called global warming hiatus or slowdown, ignited a surge of scientific interest into natural global mean surface temperature variability, observed temperature biases, and climate communication, but many questions remain about how these findings relate to variations in more societally relevant temperature extremes. Here we show that both summertime warm and wintertime cold extreme occurrences increased over land during the so-called hiatus period, and that these increases occurred for distinct reasons. The increase in cold extremes is associated with an atmospheric circulation pattern resembling the warm Arctic-cold continents pattern, whereas the increase in warm extremes is tied to a pattern of sea surface temperatures resembling the Atlantic Multidecadal Oscillation. These findings indicate that large-scale factors responsible for the most societally relevant temperature variations over continents are distinct from those of global mean surface temperature.
More losers than winners in a century of future Southern Ocean seafloor warming
NASA Astrophysics Data System (ADS)
Griffiths, Huw J.; Meijers, Andrew J. S.; Bracegirdle, Thomas J.
2017-10-01
The waters of the Southern Ocean are projected to warm over the coming century, with potential adverse consequences for native cold-adapted organisms. Warming waters have caused temperate marine species to shift their ranges poleward. The seafloor animals of the Southern Ocean shelf have long been isolated by the deep ocean surrounding Antarctica and the Antarctic Circumpolar Current, with little scope for southward migration. How these largely endemic species will react to future projected warming is unknown. By considering 963 invertebrate species, we show that within the current century, warming temperatures alone are unlikely to result in wholesale extinction or invasion affecting Antarctic seafloor life. However, 79% of Antarctica's endemic species do face a significant reduction in suitable temperature habitat (an average 12% reduction). Our findings highlight the species and regions most likely to respond significantly (negatively and positively) to warming and have important implications for future management of the region.
Soil warming, carbon–nitrogen interactions, and forest carbon budgets
Melillo, Jerry M.; Butler, Sarah; Johnson, Jennifer; Mohan, Jacqueline; Steudler, Paul; Lux, Heidi; Burrows, Elizabeth; Bowles, Francis; Smith, Rose; Scott, Lindsay; Vario, Chelsea; Hill, Troy; Burton, Andrew; Zhou, Yu-Mei; Tang, Jim
2011-01-01
Soil warming has the potential to alter both soil and plant processes that affect carbon storage in forest ecosystems. We have quantified these effects in a large, long-term (7-y) soil-warming study in a deciduous forest in New England. Soil warming has resulted in carbon losses from the soil and stimulated carbon gains in the woody tissue of trees. The warming-enhanced decay of soil organic matter also released enough additional inorganic nitrogen into the soil solution to support the observed increases in plant carbon storage. Although soil warming has resulted in a cumulative net loss of carbon from a New England forest relative to a control area over the 7-y study, the annual net losses generally decreased over time as plant carbon storage increased. In the seventh year, warming-induced soil carbon losses were almost totally compensated for by plant carbon gains in response to warming. We attribute the plant gains primarily to warming-induced increases in nitrogen availability. This study underscores the importance of incorporating carbon–nitrogen interactions in atmosphere–ocean–land earth system models to accurately simulate land feedbacks to the climate system. PMID:21606374
Nighttime warming enhances drought resistance of plant communities in a temperate steppe
Yang, Zhongling; Jiang, Lin; Su, Fanglong; Zhang, Qian; Xia, Jianyang; Wan, Shiqiang
2016-01-01
Drought events could have profound influence on plant community structure and ecosystem function, and have subsequent impacts on community stability, but we know little about how different climate warming scenarios affect community resistance and resilience to drought. Combining a daytime and nighttime warming experiment in the temperate steppe of north China with a natural drought event during the study period, we tested how daytime and nighttime warming influences drought resistance and resilience. Our results showed that the semi-arid steppe in north China was resistant to both daytime and nighttime warming, but vulnerable to drought. Nighttime warming, but not daytime warming, enhanced community resistance to drought via stimulating carbon sequestration, whereas neither daytime nor nighttime warming affected community resilience to drought. Large decline in plant community cover, primarily caused by the reduction in the cover of dominant and rare species rather than subordinate species during drought, did not preclude rapid ecosystem recovery. These findings suggest that nighttime warming may facilitate ecosystem sustainability and highlight the need to assess the effects of climate extremes on ecosystem functions at finer temporal resolutions than based on diurnal mean temperature. PMID:26987482
Liu, Yanchun; Liu, Shirong; Wan, Shiqiang; Wang, Jingxin; Wang, Hui; Liu, Kuan
2017-01-01
Fine root dynamics play a critical role in regulating carbon (C) cycling in terrestrial ecosystems. Examining responses of fine root biomass and its decomposition to altered precipitation pattern and climate warming is crucial to understand terrestrial C dynamics and its feedback to climate change. Fine root biomass and its decomposition rate were investigated in a warm temperate oak forest through a field manipulation experiment with throughfall reduction and soil warming conducted. Throughfall reduction significantly interacted with soil warming in affecting fine root biomass and its decomposition. Throughfall reduction substantially increased fine root biomass and its decomposition in unheated plots, but negative effects occurred in warmed plots. Soil warming significantly enhanced fine root biomass and its decomposition under ambient precipitation, but the opposite effects exhibited under throughfall reduction. Different responses in fine root biomass among different treatments could be largely attributed to soil total nitrogen (N), while fine root decomposition rate was more depended on microbial biomass C and N. Our observations indicate that decreased precipitation may offset the positive effect of soil warming on fine root biomass and decomposition. Copyright © 2016 Elsevier B.V. All rights reserved.
Marine nekton off Oregon and the 1997 98 El Nino
NASA Astrophysics Data System (ADS)
Pearcy, W. G.
2002-09-01
Several species of migratory, warm-water, oceanic fishes invaded Oregon waters during the summer of 1997. Also, the jumbo squid ( Dosidicus gigas), common in the eastern tropical Pacific, was reported for the first time in 1997 and was caught in large numbers. The occurrence of these oceanic nekton was associated with inshore advection of anomalously warm water. During 1998, after arrival of the main El Niño signal, some warm-water coastal fishes appeared off Oregon. However, unlike observations off California, fewer species of warm-water coastal fishes were noted during the 1997-98 El Niño than during the 1982-83 El Niño.
Spatial scales of carbon flow in a river food web
Finlay, J.C.; Khandwala, S.; Power, M.E.
2002-01-01
Spatial extents of food webs that support stream and river consumers are largely unknown, but such information is essential for basic understanding and management of lotic ecosystems. We used predictable variation in algal ??13C with water velocity, and measurements of consumer ??13C and ??15N to examine carbon flow and trophic structure in food webs of the South Fork Eel River in Northern California. Analyses of ??13C showed that the most abundant macroinvertebrate groups (collector-gatherers and scrapers) relied on algae from local sources within their riffle or shallow pool habitats. In contrast, filter-feeding invertebrates in riffles relied in part on algal production derived from upstream shallow pools. Riffle invertebrate predators also relied in part on consumers of pool-derived algal carbon. One abundant taxon drifting from shallow pools and riffles (baetid mayflies) relied on algal production derived from the habitats from which they dispersed. The trophic linkage from pool algae to riffle invertebrate predators was thus mediated through either predation on pool herbivores dispersing into riffles, or on filter feeders. Algal production in shallow pool habitats dominated the resource base of vertebrate predators in all habitats at the end of the summer. We could not distinguish between the trophic roles of riffle algae and terrestrial detritus, but both carbon sources appeared to play minor roles for vertebrate consumers. In shallow pools, small vertebrates, including three-spined stickleback (Gasterosteus aculeatus), roach (Hesperoleucas symmetricus), and rough-skinned newts (Taricha granulosa), relied on invertebrate prey derived from local pool habitats. During the most productive summer period, growth of all size classes of steelhead and resident rainbow trout (Oncorhynchus mykiss) in all habitats (shallow pools, riffles, and deep unproductive pools) was largely derived from algal production in shallow pools. Preliminary data suggest that the strong role of shallow pool algae in riffle steelhead growth during summer periods was due to drift of pool invertebrates to riffles, rather than movement of riffle trout. Data for ??15N showed that resident rainbow trout (25-33 cm standard length) in deep pools preyed upon small size classes of juvenile steelhead that were most often found in riffles or shallow pools. While many invertebrate consumers relied primarily on algal production derived from local habitats, our study shows that growth of top predators in the river is strongly linked to food webs in adjacent habitats. These results suggest a key role for emigration of aquatic prey in determining carbon flow to top predators.
Zhang, Naili; Liu, Weixing; Yang, Haijun; Yu, Xingjun; Gutknecht, Jessica L M; Zhang, Zhe; Wan, Shiqiang; Ma, Keping
2013-11-01
A better understanding of soil microbial ecology is critical to gaining an understanding of terrestrial carbon (C) cycle-climate change feedbacks. However, current knowledge limits our ability to predict microbial community dynamics in the face of multiple global change drivers and their implications for respiratory loss of soil carbon. Whether microorganisms will acclimate to climate warming and ameliorate predicted respiratory C losses is still debated. It also remains unclear how precipitation, another important climate change driver, will interact with warming to affect microorganisms and their regulation of respiratory C loss. We explore the dynamics of microorganisms and their contributions to respiratory C loss using a 4-year (2006-2009) field experiment in a semi-arid grassland with increased temperature and precipitation in a full factorial design. We found no response of mass-specific (per unit microbial biomass C) heterotrophic respiration to warming, suggesting that respiratory C loss is directly from microbial growth rather than total physiological respiratory responses to warming. Increased precipitation did stimulate both microbial biomass and mass-specific respiration, both of which make large contributions to respiratory loss of soil carbon. Taken together, these results suggest that, in semi-arid grasslands, soil moisture and related substrate availability may inhibit physiological respiratory responses to warming (where soil moisture was significantly lower), while they are not inhibited under elevated precipitation. Although we found no total physiological response to warming, warming increased bacterial C utilization (measured by BIOLOG EcoPlates) and increased bacterial oxidation of carbohydrates and phenols. Non-metric multidimensional scaling analysis as well as ANOVA testing showed that warming or increased precipitation did not change microbial community structure, which could suggest that microbial communities in semi-arid grasslands are already adapted to fluctuating climatic conditions. In summary, our results support the idea that microbial responses to climate change are multifaceted and, even with no large shifts in community structure, microbial mediation of soil carbon loss could still occur under future climate scenarios.
Heat and Freshwater Budgets in the Eastern Pacific Warm Pool
NASA Astrophysics Data System (ADS)
Wijesekera, H. W.; Rudnick, D.; Paulson, C. A.; Pierce, S.
2002-12-01
Heat and freshwater budgets of the upper ocean in the Eastern Equatorial Pacific warm pool at 10N, 95W are investigated for the 20-day R/V New Horizon survey made as a part of the EPIC-2001 program. We collected underway hydrographic data from a SeaBird CTD mounted on an undulating platform, SeaSoar, and horizontal velocity data from the ship mounted ADCP, along a butterfly pattern centered near 10N, 95W. The time of completion of a single butterfly pattern (146x146 km) at a speed of 8 knots was approximately 36 hours, which is about half an inertial period at 10N. The butterfly survey lasted from September 14 to October 03, 2001. During the 20-day period, temperature and salinity in the upper 20 m dropped by 1.5C and 0.5 psu, respectively, and most of these changes took place over two days of heavy rainfall between September 23 and 24. The near surface became strongly stratified during these rain events. The rainfall signature weakened and mixed down to the top of the pycnocline (~30-m depth) within a few days after the rainfall. The change in fresh water content of the upper 30 m which occurred during the 2-day period of heavy rainfall is equivalent to about 0.12 m of rainfall, which is significantly less than the rainfall observed on the New Horizon. The difference may be due to spatial inhomogeneity in the rainfall and to the neglect of advection. Estimates of advection are presented using ADCP velocities and SeaSoar hydrography. Heat and fresh water budgets are presented by combining surface fluxes, and advection and storage terms.
Sanciangco, Jonnell C.; Carpenter, Kent E.; Etnoyer, Peter J.; Moretzsohn, Fabio
2013-01-01
Range overlap patterns were observed in a dataset of 10,446 expert-derived marine species distribution maps, including 8,295 coastal fishes, 1,212 invertebrates (crustaceans and molluscs), 820 reef-building corals, 50 seagrasses, and 69 mangroves. Distributions of tropical Indo-Pacific shore fishes revealed a concentration of species richness in the northern apex and central region of the Coral Triangle epicenter of marine biodiversity. This pattern was supported by distributions of invertebrates and habitat-forming primary producers. Habitat availability, heterogeneity, and sea surface temperatures were highly correlated with species richness across spatial grains ranging from 23,000 to 5,100,000 km2 with and without correction for autocorrelation. The consistent retention of habitat variables in our predictive models supports the area of refuge hypothesis which posits reduced extinction rates in the Coral Triangle. This does not preclude support for a center of origin hypothesis that suggests increased speciation in the region may contribute to species richness. In addition, consistent retention of sea surface temperatures in models suggests that available kinetic energy may also be an important factor in shaping patterns of marine species richness. Kinetic energy may hasten rates of both extinction and speciation. The position of the Indo-Pacific Warm Pool to the east of the Coral Triangle in central Oceania and a pattern of increasing species richness from this region into the central and northern parts of the Coral Triangle suggests peripheral speciation with enhanced survival in the cooler parts of the Coral Triangle that also have highly concentrated available habitat. These results indicate that conservation of habitat availability and heterogeneity is important to reduce extinction of marine species and that changes in sea surface temperatures may influence the evolutionary potential of the region. PMID:23457533
Climate change will increase the naturalization risk from garden plants in Europe.
Dullinger, Iwona; Wessely, Johannes; Bossdorf, Oliver; Dawson, Wayne; Essl, Franz; Gattringer, Andreas; Klonner, Günther; Kreft, Holger; Kuttner, Michael; Moser, Dietmar; Pergl, Jan; Pyšek, Petr; Thuiller, Wilfried; van Kleunen, Mark; Weigelt, Patrick; Winter, Marten; Dullinger, Stefan; Beaumont, Linda
2017-01-01
Plant invasions often follow initial introduction with a considerable delay. The current non-native flora of a region may hence contain species that are not yet naturalized but may become so in the future, especially if climate change lifts limitations on species spread. In Europe, non-native garden plants represent a huge pool of potential future invaders. Here, we evaluate the naturalization risk from this species pool and how it may change under a warmer climate. Europe. We selected all species naturalized anywhere in the world but not yet in Europe from the set of non-native European garden plants. For this subset of 783 species, we used species distribution models to assess their potential European ranges under different scenarios of climate change. Moreover, we defined geographical hotspots of naturalization risk from those species by combining projections of climatic suitability with maps of the area available for ornamental plant cultivation. Under current climate, 165 species would already find suitable conditions in > 5% of Europe. Although climate change substantially increases the potential range of many species, there are also some that are predicted to lose climatically suitable area under a changing climate, particularly species native to boreal and Mediterranean biomes. Overall, hotspots of naturalization risk defined by climatic suitability alone, or by a combination of climatic suitability and appropriate land cover, are projected to increase by up to 102% or 64%, respectively. Our results suggest that the risk of naturalization of European garden plants will increase with warming climate, and thus it is very likely that the risk of negative impacts from invasion by these plants will also grow. It is therefore crucial to increase awareness of the possibility of biological invasions among horticulturalists, particularly in the face of a warming climate.
NASA Astrophysics Data System (ADS)
Fraser, Nicholas; Kuhnt, Wolfgang; Holbourn, Ann; Bolliet, Timothé; Andersen, Nils; Blanz, Thomas; Beaufort, Luc
2014-11-01
Proxy records of hydrologic variability in the West Pacific Warm Pool (WPWP) have revealed wide-scale changes in past convective activity in response to orbital and suborbital climate forcings. However, attributing proxy responses to regional changes in WPWP hydrology versus local variations in precipitation requires independent records linking the terrestrial and marine realms. We present high-resolution stable isotope, UK'37 sea surface temperature, X-ray fluorescence (XRF) core scanning, and coccolithophore-derived paleoproductivity records covering the past 120 ka from International Marine Global Change (IMAGES) Program Core MD06-3075 (6°29'N, 125°50'E, water depth 1878 m), situated in the Davao Gulf on the southern side of Mindanao. XRF-derived log(Fe/Ca) records provide a robust proxy for runoff-driven sedimentary discharge from Mindanao, while past changes in local productivity are associated with variable freshwater runoff and stratification of the surface layer. Significant precessional-scale variability in sedimentary discharge occurred during marine isotope stage (MIS) 5, with peaks in discharge contemporaneous with Northern Hemisphere summer insolation minima. We attribute these changes to the latitudinal migration of the Intertropical Convergence Zone (ITCZ) over the WPWP together with variability in the strength of the Walker circulation acting on precessional timescales. Between 60 and 15 ka sedimentary discharge at Mindanao was muted, displaying little orbital- or millennial-scale variability, likely in response to weakened precessional insolation forcing and lower sea level driving increased subsidence of air masses over the exposed Sunda Shelf. These results highlight the high degree of local variability in the precipitation response to past climate changes in the WPWP.