Science.gov

Sample records for large-aperture membrane active

  1. Large-Aperture Membrane Active Phased-Array Antennas

    NASA Technical Reports Server (NTRS)

    Karasik, Boris; McGrath, William; Leduc, Henry

    2009-01-01

    Large-aperture phased-array microwave antennas supported by membranes are being developed for use in spaceborne interferometric synthetic aperture radar systems. There may also be terrestrial uses for such antennas supported on stationary membranes, large balloons, and blimps. These antennas are expected to have areal mass densities of about 2 kg/sq m, satisfying a need for lightweight alternatives to conventional rigid phased-array antennas, which have typical areal mass densities between 8 and 15 kg/sq m. The differences in areal mass densities translate to substantial differences in total mass in contemplated applications involving aperture areas as large as 400 sq m. A membrane phased-array antenna includes patch antenna elements in a repeating pattern. All previously reported membrane antennas were passive antennas; this is the first active membrane antenna that includes transmitting/receiving (T/R) electronic circuits as integral parts. Other integral parts of the antenna include a network of radio-frequency (RF) feed lines (more specifically, a corporate feed network) and of bias and control lines, all in the form of flexible copper strip conductors on flexible polymeric membranes. Each unit cell of a prototype antenna (see Figure 1) contains a patch antenna element and a compact T/R module that is compatible with flexible membrane circuitry. There are two membrane layers separated by a 12.7-mm air gap. Each membrane layer is made from a commercially available flexible circuit material that, as supplied, comprises a 127-micron-thick polyimide dielectric layer clad on both sides with 17.5-micron-thick copper layers. The copper layers are patterned into RF, bias, and control conductors. The T/R module is located on the back side of the ground plane and is RF-coupled to the patch element via a slot. The T/R module is a hybrid multilayer module assembled and packaged independently and attached to the membrane array. At the time of reporting the information for

  2. Large-aperture active optical carbon fiber reinforced polymer mirror

    NASA Astrophysics Data System (ADS)

    Jungwirth, Matthew E. L.; Wilcox, Christopher C.; Wick, David V.; Baker, Michael S.; Hobart, Clinton G.; Milinazzo, Jared J.; Robichaud, Joseph; Romeo, Robert C.; Martin, Robert N.; Ballesta, Jerome; Lavergne, Emeric; Dereniak, Eustace L.

    2013-05-01

    An active reflective component can change its focal length by physically deforming its reflecting surface. Such elements exist at small apertures, but have yet to be fully realized at larger apertures. This paper presents the design and initial results of a large-aperture active mirror constructed of a composite material called carbon fiber reinforced polymer (CFRP). The active CFRP mirror uses a novel actuation method to change radius of curvature, where actuators press against two annular rings placed on the mirror's back. This method enables the radius of curvature to increase from 2000mm to 2010mm. Closed-loop control maintains good optical performance of 1.05 waves peak-to-valley (with respect to a HeNe laser) when the active CFRP mirror is used in conjunction with a commercial deformable mirror.

  3. Large aperture deformable mirror with a transferred single-crystal silicon membrane actuated using large-stroke PZT Unimorph Actuators

    NASA Technical Reports Server (NTRS)

    Hishinumat, Yoshikazu; Yang, Eui - Hyeok (EH)

    2005-01-01

    We have demonstrated a large aperture (50 mm x 50 mm) continuous membrane deformable mirror (DM) with a large-stroke piezoelectric unimorph actuator array. The DM consists of a continuous, large aperture, silicon membrane 'transferred' in its entirety onto a 20 x 20 piezoelectric unimorph actuator array. A PZT unimorph actuator, 2.5 mm in diameter with optimized PZT/Si thickness and design showed a deflection of 5.7 [m at 20V. An assembled DM showed an operating frequency bandwidth of 30 kHz and influence function of approximately 30%.

  4. Horizon: A Proposal for Large Aperture, Active Optics in Geosynchronous Orbit

    NASA Technical Reports Server (NTRS)

    Chesters, Dennis; Jenstrom, Del

    2000-01-01

    In 1999, NASA's New Millennium Program called for proposals to validate new technology in high-earth orbit for the Earth Observing-3 (NMP EO3) mission to fly in 2003. In response, we proposed to test a large aperture, active optics telescope in geosynchronous orbit. This would flight-qualify new technologies for both Earth and Space science: 1) a future instrument with LANDSAT image resolution and radiometric quality watching continuously from geosynchronous station, and 2) the Next Generation Space Telescope (NGST) for deep space imaging. Six enabling technologies were to be flight-qualified: 1) a 3-meter, lightweight segmented primary mirror, 2) mirror actuators and mechanisms, 3) a deformable mirror, 4) coarse phasing techniques, 5) phase retrieval for wavefront control during stellar viewing, and 6) phase diversity for wavefront control during Earth viewing. Three enhancing technologies were to be flight- validated: 1) mirror deployment and latching mechanisms, 2) an advanced microcontroller, and 3) GPS at GEO. In particular, two wavefront sensing algorithms, phase retrieval by JPL and phase diversity by ERIM International, were to sense optical system alignment and focus errors, and to correct them using high-precision mirror mechanisms. Active corrections based on Earth scenes are challenging because phase diversity images must be collected from extended, dynamically changing scenes. In addition, an Earth-facing telescope in GEO orbit is subject to a powerful diurnal thermal and radiometric cycle not experienced by deep-space astronomy. The Horizon proposal was a bare-bones design for a lightweight large-aperture, active optical system that is a practical blend of science requirements, emerging technologies, budget constraints, launch vehicle considerations, orbital mechanics, optical hardware, phase-determination algorithms, communication strategy, computational burdens, and first-rate cooperation among earth and space scientists, engineers and managers

  5. Laboratory demonstration of a primary active mirror for space with the LATT: large aperture telescope technology

    NASA Astrophysics Data System (ADS)

    Briguglio, Runa; Biasi, Roberto; Gallieni, Daniele; Vettore, Christian; d'Amato, Francesco; Xompero, Marco; Arcidiacono, Carmelo; Lisi, Franco; Riccardi, Armando; Patauner, Christian; Lazzarini, Paolo; Tintori, Matteo; Duò, Fabrizio; Pucci, Mauro; Zuccaro Marchi, Alessandro; Maresi, Luca

    2016-07-01

    The LATT project is an ESA contract under TRP programme to demonstrate the scalability of the technology from ground-based adaptive mirrors to space active primary mirrors. A prototype spherical mirror based on a 40 cm diameter 1 mm thin glass shell with 19 contactless, voice-coil actuators and co-located position sensors have been manufactured and integrated into a final unit with an areal density lower than 20 kg/m2. Laboratory tests demonstrated the controllability with very low power budget and the survival of the fragile glass shell exposed to launch accelerations, thanks to an electrostatic locking mechanism; such achievements pushes the technology readiness level toward 5. With this prototype, the LATT project explored the feasibility of using an active and lightweight primary for space telescopes. The concept is attractive for large segmented telescopes, with surface active control to shape and co-phase them once in flight. In this paper we will describe the findings of the technological advances and the results of the environmental and optical tests.

  6. Novel large aperture EBCCD

    NASA Astrophysics Data System (ADS)

    Suzuki, Atsumu; Aoki, Shigeki; Haba, Junji; Sakuda, Makoto; Suyama, Motohiro

    2011-02-01

    A novel large aperture electron bombardment charge coupled device (EBCCD) has been developed. The diameter of its photocathode is 10 cm and it is the first EBCCD with such a large aperture. Its gain shows good linearity as a function of applied voltage up to -12 kV, where the gain is 2400. The spatial resolution was measured using ladder pattern charts. It is better than 2 line pairs/mm, which corresponds to 3.5 times the CCD pixel size. The spatial resolution was also measured with a copper foil pattern on a fluorescent screen irradiated with X-rays (14 and 18 keV) and a 60 keV gamma-ray from an americium source. The result was consistent with the measurement using ladder pattern charts. The output signal as a function of input light intensity shows better linearity than that of image intensifier tubes (IIT) as expected. We could detect cosmic rays passing through a scintillating fiber block and a plastic scintillator as a demonstration for a practical use in particle physics experiments. This kind of large aperture EBCCD can, for example, be used as an image sensor for a detector with a large number of readout channels and is expected to be additionally applied to other physics experiments.

  7. Large aperture diffractive space telescope

    DOEpatents

    Hyde, Roderick A.

    2001-01-01

    A large (10's of meters) aperture space telescope including two separate spacecraft--an optical primary objective lens functioning as a magnifying glass and an optical secondary functioning as an eyepiece. The spacecraft are spaced up to several kilometers apart with the eyepiece directly behind the magnifying glass "aiming" at an intended target with their relative orientation determining the optical axis of the telescope and hence the targets being observed. The objective lens includes a very large-aperture, very-thin-membrane, diffractive lens, e.g., a Fresnel lens, which intercepts incoming light over its full aperture and focuses it towards the eyepiece. The eyepiece has a much smaller, meter-scale aperture and is designed to move along the focal surface of the objective lens, gathering up the incoming light and converting it to high quality images. The positions of the two space craft are controlled both to maintain a good optical focus and to point at desired targets which may be either earth bound or celestial.

  8. Interdisciplinary science with large aperture detectors

    NASA Astrophysics Data System (ADS)

    Wiencke, Lawrence

    2013-06-01

    Large aperture detector systems to measure high energy cosmic rays also offer unique opportunities in other areas of science. Disciplines include geophysics such as seismic and volcanic activity, and atmospheric science ranging from clouds to lightning to aerosols to optical transients. This paper will discuss potential opportunities based on the ongoing experience of the Pierre Auger Observatory.

  9. Large aperture scanning airborne lidar

    NASA Technical Reports Server (NTRS)

    Smith, J.; Bindschadler, R.; Boers, R.; Bufton, J. L.; Clem, D.; Garvin, J.; Melfi, S. H.

    1988-01-01

    A large aperture scanning airborne lidar facility is being developed to provide important new capabilities for airborne lidar sensor systems. The proposed scanning mechanism allows for a large aperture telescope (25 in. diameter) in front of an elliptical flat (25 x 36 in.) turning mirror positioned at a 45 degree angle with respect to the telescope optical axis. The lidar scanning capability will provide opportunities for acquiring new data sets for atmospheric, earth resources, and oceans communities. This completed facility will also make available the opportunity to acquire simulated EOS lidar data on a near global basis. The design and construction of this unique scanning mechanism presents exciting technological challenges of maintaining the turning mirror optical flatness during scanning while exposed to extreme temperatures, ambient pressures, aircraft vibrations, etc.

  10. the Large Aperture GRB Observatory

    SciTech Connect

    Bertou, Xavier

    2009-04-30

    The Large Aperture GRB Observatory (LAGO) aims at the detection of high energy photons from Gamma Ray Bursts (GRB) using the single particle technique (SPT) in ground based water Cherenkov detectors (WCD). To reach a reasonable sensitivity, high altitude mountain sites have been selected in Mexico (Sierra Negra, 4550 m a.s.l.), Bolivia (Chacaltaya, 5300 m a.s.l.) and Venezuela (Merida, 4765 m a.s.l.). We report on the project progresses and the first operation at high altitude, search for bursts in 6 months of preliminary data, as well as search for signal at ground level when satellites report a burst.

  11. Very Large Aperture Diffractive Space Telescope

    SciTech Connect

    Hyde, Roderick Allen

    1998-04-20

    A very large (10's of meters) aperture space telescope including two separate spacecraft--an optical primary functioning as a magnifying glass and an optical secondary functioning as an eyepiece. The spacecraft are spaced up to several kilometers apart with the eyepiece directly behind the magnifying glass ''aiming'' at an intended target with their relative orientation determining the optical axis of the telescope and hence the targets being observed. The magnifying glass includes a very large-aperture, very-thin-membrane, diffractive lens, e.g., a Fresnel lens, which intercepts incoming light over its full aperture and focuses it towards the eyepiece. The eyepiece has a much smaller, meter-scale aperture and is designed to move along the focal surface of the magnifying glass, gathering up the incoming light and converting it to high quality images. The positions of the two space craft are controlled both to maintain a good optical focus and to point at desired targets.

  12. A review of large aperture Schlieren photography technique

    NASA Astrophysics Data System (ADS)

    Xu, Song-bo; Xie, Yong-jun; Chen, Lei

    2016-01-01

    Schlieren photography is a visual process to display the flow of fluids of varying density. It is widely used in wind tunnel tests to photograph the flow of air around objects. To achieve schlieren images with high sensitivity and high resolution, and satisfy the requirements of the large-scale wind tunnel tests, it is urgent to develop schlieren photographers with large aperture primary mirrors. However, the application of large aperture primary mirrors may bring many challenges in the design of the schlieren system. First, the surface figure of large aperture primary mirrors is difficult to control so that the support structure may need more strategical design. Second, because the schlieren system works under some severe environments of the wind tunnel test including the air disturbance, wind-induced ground vibration and high ambient pressure, it has to withstand serious instability risks to ensure a good schlieren image quality. In this work, the current status of the development in the large aperture schlieren systems is reviewed. Several advanced methods, for example, active damping control technique, focal spot monitoring technique, 18-points whilffletree support technique, etc.., are introduced to deal with the challenges of the large aperture schlieren system. This work aims at improving the technical development of large aperture schlieren photographer, which may contribute to the acquisition of the high sensitive and high resolution schlieren images and the improvement of the testing capability in wind tunnel experiments.

  13. Large aperture adaptive optics for intense lasers

    NASA Astrophysics Data System (ADS)

    Deneuville, François; Ropert, Laurent; Sauvageot, Paul; Theis, Sébastien

    2015-05-01

    ISP SYSTEM has developed a range of large aperture electro-mechanical deformable mirrors (DM) suitable for ultra short pulsed intense lasers. The design of the MD-AME deformable mirror is based on force application on numerous locations thanks to electromechanical actuators driven by stepper motors. DM design and assembly method have been adapted to large aperture beams and the performances were evaluated on a first application for a beam with a diameter of 250mm at 45° angle of incidence. A Strehl ratio above 0.9 was reached for this application. Simulations were correlated with measurements on optical bench and the design has been validated by calculation for very large aperture (up to Ø550mm). Optical aberrations up to Zernike order 5 can be corrected with a very low residual error as for actual MD-AME mirror. Amplitude can reach up to several hundreds of μm for low order corrections. Hysteresis is lower than 0.1% and linearity better than 99%. Contrary to piezo-electric actuators, the μ-AME actuators avoid print-through effects and they permit to keep the mirror shape stable even unpowered, providing a high resistance to electro-magnetic pulses. The MD-AME mirrors can be adapted to circular, square or elliptical beams and they are compatible with all dielectric or metallic coatings.

  14. The COronal Solar Magnetism Observatory (COSMO) Large Aperture Coronagraph

    NASA Astrophysics Data System (ADS)

    Tomczyk, Steve; Gallagher, Dennis; Wu, Zhen; Zhang, Haiying; Nelson, Pete; Burkepile, Joan; Kolinksi, Don; Sutherland, Lee

    2013-04-01

    The COSMO is a facility dedicated to observing coronal and chromospheric magnetic fields. It will be located on a mountaintop in the Hawaiian Islands and will replace the current Mauna Loa Solar Observatory (MLSO). COSMO will provide unique observations of the global coronal magnetic fields and its environment to enhance the value of data collected by other observatories on the ground (e.g. SOLIS, BBO NST, Gregor, ATST, EST, Chinese Giant Solar Telescope, NLST, FASR) and in space (e.g. SDO, Hinode, SOHO, GOES, STEREO, Solar-C, Solar Probe+, Solar Orbiter). COSMO will employ a fleet of instruments to cover many aspects of measuring magnetic fields in the solar atmosphere. The dynamics and energy flow in the corona are dominated by magnetic fields. To understand the formation of CMEs, their relation to other forms of solar activity, and their progression out into the solar wind requires measurements of coronal magnetic fields. The large aperture coronagraph, the Chromospheric and Prominence Magnetometer and the K-Coronagraph form the COSMO instrument suite to measure magnetic fields and the polarization brightness of the low corona used to infer electron density. The large aperture coronagraph will employ a 1.5 meter fuse silica singlet lens, birefringent filters, and a spectropolarimeter to cover fields of view of up to 1 degree. It will observe the corona over a wide range of emission lines from 530.3 nm through 1083.0 nm allowing for magnetic field measurements over a wide range of coronal temperatures (e.g. FeXIV at 530.3 nm, Fe X at 637.4 nm, Fe XIII at 1074.7 and 1079.8 nm. These lines are faint and require the very large aperture. NCAR and NSF have provided funding to bring the large aperture coronagraph to a preliminary design review state by the end of 2013. As with all data from Mauna Loa, the data products from COSMO will be available to the community via the Mauna Loa website: http://mlso.hao.ucar.edu

  15. Design of large aperture, low mass vacuum windows

    SciTech Connect

    Leonhardt, W.J.; Mapes, M.

    1993-01-01

    Large vacuum vessels are employed downstream of fixed targets in High Energy Physics experiments to provide a long path for particles to traverse without interacting with air molecules. These vessels generally have a large aperture opening known as a vacuum window which employs a thin membrane to preserve the vacuum environment yet allows the particles to pass through with a minimal effect on them. Several large windows have been built using a composite of Kevlar/Mylar including circular windows to a diameter of 96.5 cm and rectangular windows up to 193 cm x 86 cm. This paper describes the design, fabrication, testing and operating experience with these windows and relates the actual performance to theoretical predictions.

  16. Design of large aperture, low mass vacuum windows

    SciTech Connect

    Leonhardt, W.J.; Mapes, M.

    1993-07-01

    Large vacuum vessels are employed downstream of fixed targets in High Energy Physics experiments to provide a long path for particles to traverse without interacting with air molecules. These vessels generally have a large aperture opening known as a vacuum window which employs a thin membrane to preserve the vacuum environment yet allows the particles to pass through with a minimal effect on them. Several large windows have been built using a composite of Kevlar/Mylar including circular windows to a diameter of 96.5 cm and rectangular windows up to 193 cm x 86 cm. This paper describes the design, fabrication, testing and operating experience with these windows and relates the actual performance to theoretical predictions.

  17. Development of large aperture composite adaptive optics

    NASA Astrophysics Data System (ADS)

    Kmetik, Viliam; Vitovec, Bohumil; Jiran, Lukas; Nemcova, Sarka; Zicha, Josef; Inneman, Adolf; Mikulickova, Lenka; Pavlica, Richard

    2015-01-01

    Large aperture composite adaptive optics for laser applications is investigated in cooperation of Institute of Plasma Physic, Department of Instrumentation and Control Engineering FME CTU and 5M Ltd. We are exploring opportunity of a large-size high-power-laser deformable-mirror production using a lightweight bimorph actuated structure with a composite core. In order to produce a sufficiently large operational free aperture we are developing new technologies for production of flexible core, bimorph actuator and deformable mirror reflector. Full simulation of a deformable-mirrors structure was prepared and validated by complex testing. A deformable mirror actuation and a response of a complicated structure are investigated for an accurate control of the adaptive optics. An original adaptive optics control system and a bimorph deformable mirror driver were developed. Tests of material samples, components and sub-assemblies were completed. A subscale 120 mm bimorph deformable mirror prototype was designed, fabricated and thoroughly tested. A large-size 300 mm composite-core bimorph deformable mirror was simulated and optimized, fabrication of a prototype is carried on. A measurement and testing facility is modified to accommodate large sizes optics.

  18. Large aperture nanocomposite deformable mirror technology

    NASA Astrophysics Data System (ADS)

    Chen, Peter C.; Hale, Richard D.

    2007-12-01

    We report progress in the development of deformable mirrors (DM) using nanocomposite materials. For the extremely large telescopes (ELTs) currently being planned, a new generation of DMs with unprecedented performance is a critical path item. The DMs need to have large apertures (meters), continuous surfaces, and low microroughness. Most importantly, they must have excellent static optical figures and yet be sufficiently thin (1-2 mm) and flexible to function with small, low powered actuators. Carbon fiber reinforced plastics (CFRP) have the potential to fulfill these requirements. However, CFRP mirrors made using direct optical replication have encountered a number of problems. Firstly, it is difficult if not impossible for a CFRP mirror to maintain a good static optical figure if a small number of plies are used, but adding more plies to the laminate tends to make the substrate too thick and stiff. Secondly, direct optical replication requires precision mandrels, the costs of which become prohibitive at multi-meter apertures. We report development of a new approach. By using a combination of a novel support structure, selected fibers, and binding resins infused with nanoparticles, it is possible to make millimeter thick optical mirrors that can both maintain good static optical figures and yet still have the required flexibility for actuation. Development and refinement of a non-contact, deterministic process of fine figuring permits generation of accurate optical surfaces without the need for precision optical mandrels. We present data from tests that have been carried out to demonstrate these new processes. A number of flat DMs have been fabricated, as well as concave and convex DMs in spherical, parabolic, and other forms.

  19. A Future Large-Aperture UVOIR Space Observatory: Study Overview

    NASA Astrophysics Data System (ADS)

    Postman, Marc; Thronson, Harley A.; Feinberg, Lee; Redding, David; Stahl, H. Philip

    2015-01-01

    The scientific drivers for very high angular resolution coupled with very high sensitivity and wavefront stability in the UV and optical wavelength regime have been well established. These include characterization of exoplanets in the habitable zones of solar type stars, probing the physical properties of the circumgalactic medium around z < 2 galaxies, and resolving stellar populations across a broad range of galactic environments. The 2010 NRC Decadal Survey and the 2013 NASA Science Mission Directorate 30-Year Roadmap identified a large-aperture UVOIR observatory as a priority future space mission. Our joint NASA GSFC/JPL/MSFC/STScI team has extended several earlier studies of the technology and engineering requirements needed to design and build a single filled aperture 10-meter class space-based telescope that can enable these ambitious scientific observations. We present here an overview of our new technical work including a brief summary of the reference science drivers as well as in-depth investigations of the viable telescope architectures, the requirements on thermal control and active wavefront control systems, and the range of possible launch configurations.

  20. Eyeglass: A Very Large Aperture Diffractive Space Telescope

    SciTech Connect

    Hyde, R; Dixit, S; Weisberg, A; Rushford, M

    2002-07-29

    Eyeglass is a very large aperture (25-100 meter) space telescope consisting of two distinct spacecraft, separated in space by several kilometers. A diffractive lens provides the telescope's large aperture, and a separate, much smaller, space telescope serves as its mobile eyepiece. Use of a transmissive diffractive lens solves two basic problems associated with very large aperture space telescopes; it is inherently fieldable (lightweight and flat, hence packagable and deployable) and virtually eliminates the traditional, very tight, surface shape tolerances faced by reflecting apertures. The potential drawback to use of a diffractive primary (very narrow spectral bandwidth) is eliminated by corrective optics in the telescope's eyepiece. The Eyeglass can provide diffraction-limited imaging with either single-band, multiband, or continuous spectral coverage. Broadband diffractive telescopes have been built at LLNL and have demonstrated diffraction-limited performance over a 40% spectral bandwidth (0.48-0.72 {micro}m). As one approach to package a large aperture for launch, a foldable lens has been built and demonstrated. A 75 cm aperture diffractive lens was constructed from 6 panels of 1 m thick silica; it achieved diffraction-limited performance both before and after folding. This multiple panel, folding lens, approach is currently being scaled-up at LLNL. We are building a 5 meter aperture foldable lens, involving 72 panels of 700 {micro}m thick glass sheets, diffractively patterned to operate as coherent f/50 lens.

  1. Mission definition for a large-aperture microwave radiometer spacecraft

    NASA Technical Reports Server (NTRS)

    Keafer, L. S., Jr.

    1981-01-01

    An Earth-observation measurements mission is defined for a large-aperture microwave radiometer spacecraft. This mission is defined without regard to any particular spacecraft design concept. Space data application needs, the measurement selection rationale, and broad spacecraft design requirements and constraints are described. The effects of orbital parameters and image quality requirements on the spacecraft and mission performance are discussed. Over the land the primary measurand is soil moisture; over the coastal zones and the oceans important measurands are salinity, surface temperature, surface winds, oil spill dimensions and ice boundaries; and specific measurement requirements have been selected for each. Near-all-weather operation and good spatial resolution are assured by operating at low microwave frequencies using an extremely large aperture antenna in a low-Earth-orbit contiguous mapping mode.

  2. The Balloon-borne Large Aperture Submillimeter Telescope (BLAST)

    NASA Astrophysics Data System (ADS)

    Devlin, Mark J.; Ade, Peter A. R.; Aretxaga, Itziar; Bock, James J.; Chung, Jaspaul; Chapin, Edward; Dicker, Simon R.; Griffin, Matt; Gundersen, Joshua; Halpern, Mark; Hargrave, Peter; Hughes, David; Klein, Jeffrey; Marsden, Gaelen; Martin, Peter; Mauskopf, Philip D.; Netterfield, Barth; Olmi, Luca; Pascale, Enzo; Rex, Marie; Scott, Douglas; Semisch, Christopher; Truch, Matthew; Tucker, Carole; Tucker, Gregory; Turner, Anthony D.; Weibe, Donald

    2004-10-01

    Advances in bolometric detector technology over the past decade have allowed submillimeter wavelength measurements to contribute important data to some of the most challenging questions in observational cosmology. The availability of large format bolometer arrays will provide observations with unprecedented image fidelity. The Balloon-borne Large Aperture Submillimeter Telescope (BLAST) will be one of the first experiments to make full use of this new capability. The high altitude (~35$ km) of the balloon platform allows for high-sensitivity measurements in the 250, 350 and 500 micron bands with a total of 260 detectors.

  3. Metrology measurements for large-aperture VPH gratings

    NASA Astrophysics Data System (ADS)

    Zheng, Jessica R.; Gers, Luke; Heijmans, Jeroen

    2013-09-01

    The High Efficiency and Resolution Multi Element Spectrograph (HERMES) for the Australian Astronomical Observatory (AAO) uses four large aperture, high angle of incidence volume phase holographic gratings (VPHG) for high resolution `Galactic archaeology' spectroscopy. The large clear aperture, the high diffraction efficiency, the line frequency homogeneity, and mosaic alignment made manufacturing and testing challenging. We developed new metrology systems at the AAO to verify the performance of these VPH gratings. The measured diffraction efficiencies and line frequency of the VPH gratings received so far meet the vendor's provided data. The wavefront quality for the Blue VPH grating is good but the Green and Red VPH gratings need to be post polishing.

  4. Silicon Powder Filters for Large-Aperture Cryogenic Receivers

    NASA Astrophysics Data System (ADS)

    Boone, Fletcher; Essinger-Hileman, T.; Bennett, C. L.; Marriage, T.; Xu, Z.

    2014-01-01

    Upcoming experiments probing for the existence of B-mode polarization in the cosmic microwave background (CMB) will require large arrays of background-limited detectors. This will necessitate the use of cryogenic receivers with large-aperture vacuum windows and correspondingly large low-pass infrared-blocking filters to minimize thermal load. Large-diameter filters composed of absorptive dielectrics are difficult to conductively cool adequately, and thus tend to heat up and re-radiate towards the focal plane. Reflective metal-mesh filters are challenging to manufacture at such large apertures and with feature sizes small enough to effectively block 300K thermal radiation. In order to overcome these difficulties, we have developed a novel type of thermal filter that scatters, rather than reflects or absorbs, unwanted infrared radiation. Comprised of ultra-pure silicon powder distributed within a polymethylpentene (PMP) substrate, these filters are not absorptive in the infrared while being transparent to microwaves, and are comparatively straightforward to produce. By adjusting the size of the silicon particles, the frequency cut-off of these low-pass filters is fully tunable. Small scale (70mm diameter, 3mm thickness) prototypes have exhibited <10% transmission throughout the infrared spectrum and <1% transmission at the peak of the 300K blackbody spectrum, while maintaining an estimated 97% transmission in the microwave regime.

  5. Self-Referencing Hartmann Test for Large-Aperture Telescopes

    NASA Technical Reports Server (NTRS)

    Korechoff, Robert P.; Oseas, Jeffrey M.

    2010-01-01

    A method is proposed for end-to-end, full aperture testing of large-aperture telescopes using an innovative variation of a Hartmann mask. This technique is practical for telescopes with primary mirrors tens of meters in diameter and of any design. Furthermore, it is applicable to the entire optical band (near IR, visible, ultraviolet), relatively insensitive to environmental perturbations, and is suitable for ambient laboratory as well as thermal-vacuum environments. The only restriction is that the telescope optical axis must be parallel to the local gravity vector during testing. The standard Hartmann test utilizes an array of pencil beams that are cut out of a well-corrected wavefront using a mask. The pencil beam array is expanded to fill the full aperture of the telescope. The detector plane of the telescope is translated back and forth along the optical axis in the vicinity of the nominal focal plane, and the centroid of each pencil beam image is recorded. Standard analytical techniques are then used to reconstruct the telescope wavefront from the centroid data. The expansion of the array of pencil beams is usually accomplished by double passing the beams through the telescope under test. However, this requires a well-corrected, autocollimation flat, the diameter or which is approximately equal to that of the telescope aperture. Thus, the standard Hartmann method does not scale well because of the difficulty and expense of building and mounting a well-corrected, large aperture flat. The innovation in the testing method proposed here is to replace the large aperture, well-corrected, monolithic autocollimation flat with an array of small-aperture mirrors. In addition to eliminating the need for a large optic, the surface figure requirement for the small mirrors is relaxed compared to that required of the large autocollimation flat. The key point that allows this method to work is that the small mirrors need to operate as a monolithic flat only with regard to

  6. Large-aperture, high-damage-threshold optics for beamlet

    SciTech Connect

    Campbell, J.H.; Atherton, L.J.; DeYoreo, J.J.

    1996-06-01

    Beamlet serves as a test bed for the proposed National Ignition Facility (NIF) laser design and components. Therefore, its optics are similar in size and quality to those proposed for the NIF. In general, the optics in the main laser cavity and transport section of Beamlet are larger and have higher damage thresholds than the optics manufactured for any of the previous laser systems. In addition, the quality of the Beamlet optical materials is higher, leading to better wavefront quality, higher optical transmission, and lower-intensity modulation of the output laser beam than, for example, that typically achieved on Nova. In this article, the authors discuss the properties and characteristics of the large-aperture optics used on Beamlet.

  7. Bridgman growth of large-aperture yttrium calcium oxyborate crystal

    SciTech Connect

    Wu, Anhua; Jiang, Linwen; Qian, Guoxing; Zheng, Yanqing; Xu, Jun; Shi, Erwei

    2012-09-15

    Highlights: ► YCOB is a novel non-linear optical crystal possessing good thermal, mechanical and nonlinear optical properties. ► Large size crystal growth is key technology question for YCOB crystal. ► YCOB crystals 3 in. in diameter were grown with modified vertical Bridgman method. ► It is a more effective growth method to obtain large size and high quality YCOB crystal. -- Abstract: Large-aperture yttrium calcium oxyborate YCa{sub 4}O(BO{sub 3}){sub 3} (YCOB) crystals with 3 in. in diameter were grown with modified vertical Bridgman method, and the large crystal plate (63 mm × 68 mm × 20 mm) was harvested for high-average power frequency conversion system. The crack, facet growth and spiral growth can be effectively controlled in the as-grown crystal, and Bridgman method displays more effective in obtain large size and high quality YCOB crystal plate than Czochralski technique.

  8. A Future Large-Aperture UVOIR Space Observatory: Reference Designs

    NASA Technical Reports Server (NTRS)

    Thronson, Harley; Rioux, Norman; Feinberg, Lee; Stahl, H. Philip; Redding, Dave; Jones, Andrew; Sturm, James; Collins, Christine; Liu, Alice

    2015-01-01

    Our joint NASA GSFC/JPL/MSFC/STScI study team has used community-provided science goals to derive mission needs, requirements, and candidate mission architectures for a future large-aperture, non-cryogenic UVOIR space observatory. We describe the feasibility assessment of system thermal and dynamic stability for supporting coronagraphy. The observatory is in a Sun-Earth L2 orbit providing a stable thermal environment and excellent field of regard. Reference designs include a 36-segment 9.2 m aperture telescope that stows within a five meter diameter launch vehicle fairing. Performance needs developed under the study are traceable to a variety of reference designs including options for a monolithic primary mirror.

  9. Development of a large aperture Nb3Sn racetrack quadrupolemagnet

    SciTech Connect

    Ferracin, Paolo; Bartlett, Scott E.; Caspi, Shlomo; Dietderich,Daniel R.; Gourlay, Steven A.; Hannaford, Charles R.; Hafalia, AurelioR.; Lietzke, Alan F.; Mattafirri, Sara; McInturff, Alfred D.; Nyman,Mark; Sabbi, Gianluca

    2005-04-14

    The U.S. LHC Accelerator Research Program (LARP), a collaboration between BNL, FNAL, LBNL, and SLAC, has among its major objectives the development of advanced magnet technology for an LHC luminosity upgrade. The LBNL Superconducting Magnet Group supports this program with a broad effort involving design studies, Nb{sub 3}Sn conductor development, mechanical models, and basic prototypes. This paper describes the development of a large aperture Nb{sub 3}Sn racetrack quadrupole magnet using four racetrack coils from the LBNL Subscale Magnet (SM) Program. The magnet provides a gradient of 95 T/m in a 110 mm bore, with a peak field in the conductor of 11.2 T. The coils are prestressed by a mechanical structure based on a pre-tensioned aluminum shell, and axially supported with aluminum rods. The mechanical behavior has been monitored with strain gauges and the magnetic field has been measured. Results of the test are reported and analyzed.

  10. Advances in optical materials for large aperture lasers

    SciTech Connect

    Stokowski, S.E.; Lowdermilk, W.H.; Marchi, F.T.; Swain, J.E.; Wallerstein, E.P.; Wirtenson, G.R.

    1981-12-15

    Lawrence Livermore National Laboratory (LLNL) is using large aperture Nd: glass lasers to investigate the feasibility of inertial confinement fusion. In our experiments high power laser light is focussed onto a small (100 to 500 micron) target containing a deuterium-tritium fuel mixture. During the short (1 to 5 ns) laser pulse the fuel is compressed and heated, resulting in fusion reactions. The generation and control of the powerful laser pulses for these experiments is a challenging scientific and engineering task, which requires the development of new optical materials, fabrication techniques, and coatings. LLNL with the considerable cooperation and support from the optical industry, where most of the research and development and almost all the manufacturing is done, has successfully applied several new developments in these areas.

  11. Factors affecting the performance of large-aperture microphone arrays.

    PubMed

    Silverman, Harvey F; Patterson, William R; Sachar, Joshua

    2002-05-01

    Large arrays of microphones have been proposed and studied as a possible means of acquiring data in offices, conference rooms, and auditoria without requiring close-talking microphones. When such an array essentially surrounds all possible sources, it is said to have a large aperture. Large-aperture arrays have attractive properties of spatial resolution and signal-to-noise enhancement. This paper presents a careful comparison of theoretical and measured performance for an array of 256 microphones using simple delay-and-sum beamforming. This is the largest currently functional, all digital-signal-processing array that we know of. The array is wall-mounted in the moderately adverse environment of a general-purpose laboratory (8 m x 8 m x 3 m). The room has a T60 reverberation time of 550 ms. Reverberation effects in this room severely impact the array's performance. However, the width of the main lobe remains comparable to that of a simplified prediction. Broadband spatial resolution shows a single central peak with 10 dB gain about 0.4 m in diameter at the -3 dB level. Away from that peak, the response is approximately flat over most of the room. Optimal weighting for signal-to-noise enhancement degrades the spatial resolution minimally. Experimentally, we verify that signal-to-noise gain is less than proportional to the square root of the number of microphones probably due to the partial correlation of the noise between channels, to variation of signal intensity with polar angle about the source, and to imperfect correlation of the signal over the array caused by reverberations. We show measurements of the relative importance of each effect in our environment. PMID:12051434

  12. Factors affecting the performance of large-aperture microphone arrays.

    PubMed

    Silverman, Harvey F; Patterson, William R; Sachar, Joshua

    2002-05-01

    Large arrays of microphones have been proposed and studied as a possible means of acquiring data in offices, conference rooms, and auditoria without requiring close-talking microphones. When such an array essentially surrounds all possible sources, it is said to have a large aperture. Large-aperture arrays have attractive properties of spatial resolution and signal-to-noise enhancement. This paper presents a careful comparison of theoretical and measured performance for an array of 256 microphones using simple delay-and-sum beamforming. This is the largest currently functional, all digital-signal-processing array that we know of. The array is wall-mounted in the moderately adverse environment of a general-purpose laboratory (8 m x 8 m x 3 m). The room has a T60 reverberation time of 550 ms. Reverberation effects in this room severely impact the array's performance. However, the width of the main lobe remains comparable to that of a simplified prediction. Broadband spatial resolution shows a single central peak with 10 dB gain about 0.4 m in diameter at the -3 dB level. Away from that peak, the response is approximately flat over most of the room. Optimal weighting for signal-to-noise enhancement degrades the spatial resolution minimally. Experimentally, we verify that signal-to-noise gain is less than proportional to the square root of the number of microphones probably due to the partial correlation of the noise between channels, to variation of signal intensity with polar angle about the source, and to imperfect correlation of the signal over the array caused by reverberations. We show measurements of the relative importance of each effect in our environment.

  13. Factors affecting the performance of large-aperture microphone arrays

    NASA Astrophysics Data System (ADS)

    Silverman, Harvey F.; Patterson, William R.; Sachar, Joshua

    2002-05-01

    Large arrays of microphones have been proposed and studied as a possible means of acquiring data in offices, conference rooms, and auditoria without requiring close-talking microphones. When such an array essentially surrounds all possible sources, it is said to have a large aperture. Large-aperture arrays have attractive properties of spatial resolution and signal-to-noise enhancement. This paper presents a careful comparison of theoretical and measured performance for an array of 256 microphones using simple delay-and-sum beamforming. This is the largest currently functional, all digital-signal-processing array that we know of. The array is wall-mounted in the moderately adverse environment of a general-purpose laboratory (8 m×8 m×3 m). The room has a T60 reverberation time of 550 ms. Reverberation effects in this room severely impact the array's performance. However, the width of the main lobe remains comparable to that of a simplified prediction. Broadband spatial resolution shows a single central peak with 10 dB gain about 0.4 m in diameter at the -3 dB level. Away from that peak, the response is approximately flat over most of the room. Optimal weighting for signal-to-noise enhancement degrades the spatial resolution minimally. Experimentally, we verify that signal-to-noise gain is less than proportional to the square root of the number of microphones probably due to the partial correlation of the noise between channels, to variation of signal intensity with polar angle about the source, and to imperfect correlation of the signal over the array caused by reverberations. We show measurements of the relative importance of each effect in our environment.

  14. A feasibility study into the screening and imaging of hand luggage for threat items at 35 GHz using an active large aperture (1.6 m) security screening imager

    NASA Astrophysics Data System (ADS)

    Bowring, Nicholas J.; O'Reilly, Dean; Salmon, Neil A.; Andrews, David A.; Rezgui, Nacer-Ddine; Harmer, Stuart W.

    2013-10-01

    The feasibility of screening hand luggage for concealed threat items such as Person-Borne Improvised Explosive Devices (PBIED's) both metallic and non-metallic, together with handguns and at millimetre wavelengths is investigated. Previous studies by the authors and others indicate that hand baggage material and fabric is much more transmissive and has less scattering at lower millimetre wave frequencies and the ability to use K-band active imaging with high spatial resolution presents an opportunity to image and hence recognise concealed threats. For this feasibility study, a 1.6 m aperture, 35 GHz security screening imaging system with a spatial resolution of 2.5 cm and a depth of field of around 5 cm is employed, using spatially incoherent illuminating panels to enhance image contrast. In this study, realistic scenarios using backpacks containing a realistic range of threat and non-threat items are scanned, both carried and standalone. This range of items contains large vessels suitable for containing simulated home-made PBIED's and handguns. The comprehensive list of non-threat items includes laptops, bottles, clothing and power supplies. For this study, the range at which imaging data at standoff distances can be acquired is confined to that of the particular system in use, although parameters such as illumination and integration time are optimised. However, techniques for extrapolating towards effective standoff distances using aperture synthesis imagers are discussed. The transmission loss through fabrics and clothing that may form, or be contained in baggage, are reported over range of frequencies ranging from 26 to 110 GHz.

  15. Research on axial support technology of large aperture primary mirror

    NASA Astrophysics Data System (ADS)

    Yao, Hui

    2010-05-01

    In ground-based optical detection system, when large aperture primary mirror in a different pitch angle detection, the surface shape error of primary mirror is affected by its weight deformation, and the surface shape error of primary mirror is one of the key factors affecting imaging quality. The primary mirror support system, including axial support and radial support, and the axial support is main factor affecting the surface shape error of primary mirror, the position and number of axial support is very important for surface shape error of primary mirror. The support technology of Φ1.2m primary mirror was studied detailedly in this paper, the parameterized model of primary mirror was built based on ANSYS, the relationship between the surface shape error of primary mirror and the ratio of its diameter to thickness was analyzed, the axial support was optimized, and the support-ring number, support-ring radius and support point position of axial support were optimum designed. The result of analysis showed that the Root-Mean-Square (RMS) value of the surface shape error of primary mirror was 1.8 nm, when the primary mirror pointed to zenith, met to the design need of the optical system, and the axial support system was verified.

  16. Low mass large aperture vacuum window development at CEBAF

    SciTech Connect

    Keppel, C.

    1995-04-01

    Large aperture low mass vacuum windows are being developed for the HMS (High Momentum Spectrometer) and SOS (Short Orbit Spectrometer) spectrometers in Hall C at CEBAF. Because multiple scattering degrades the performance of a spectrometer it is important that the volume be evacuated and that the entrance and exit windows be as low mass as possible. The material used for such windows must be thin and light enough so as to have minimum effect of the beam, and at the same time, be thick and strong enough to operate reliably and safely. To achieve these goals, composite vacuum windows have been constructed of a thin sheet of Mylar with a reinforcing fabric. Reinforcing fabrics such as Kevlar and Spectra are available with tensile strengths significantly greater than that of Mylar. A thin layer of Myler remains necessary since the fabrics cannot achieve any sort of vacuum seal. The design, fabrication, testing, and operating experience with such composite windows for the Hall C spectrometers will be discussed.

  17. BLAST: The Balloon-Borne Large Aperture Submillimeter Telescope

    NASA Technical Reports Server (NTRS)

    Devlin, Mark; Ade, Peter; Bock, Jamie; Dicker, Simon; Griffin, Matt; Gunderson, Josh; Halpern, Mark; Hargrave, Peter; Hughes, David; Klein, Jeff

    2004-01-01

    BLAST is the Balloon-borne Large-Aperture Sub-millimeter Telescope. It will fly from a Long Duration Balloon (LDB) platform from Antarctica. The telescope design incorporates a 2 m primary mirror with large-format bolometer arrays operating at 250, 350 and 500 microns. By providing the first sensitive large-area (10 sq. deg.) sub-mm surveys at these wavelengths, BLAST will address some of the most important galactic and cosmological questions regarding the formation and evolution of stars, galaxies and clusters. Galactic and extragalactic BLAST surveys will: (1) identify large numbers of high-redshift galaxies; (2) measure photometric redshifts, rest-frame FIR luminosities and star formation rates thereby constraining the evolutionary history of the galaxies that produce the FIR and sub-mm background; (3) measure cold pre-stellar sources associated with the earliest stages of star and planet formation; (4) make high-resolution maps of diffuse galactic emission over a wide range of galactic latitudes. In addition to achieving the above scientific goals, the exciting legacy of the BLAST LDB experiment will be a catalogue of 3000-5000 extragalactic sub-mm sources and a 100 sq. deg. sub-mm galactic plane survey. Multi-frequency follow-up observations from SIRTF, ASTRO-F, and Herschel, together with spectroscopic observations and sub-arcsecond imaging from ALMA are essential to understand the physical nature of the BLAST sources.

  18. Error analysis of large aperture static interference imaging spectrometer

    NASA Astrophysics Data System (ADS)

    Li, Fan; Zhang, Guo

    2015-12-01

    Large Aperture Static Interference Imaging Spectrometer is a new type of spectrometer with light structure, high spectral linearity, high luminous flux and wide spectral range, etc ,which overcomes the contradiction between high flux and high stability so that enables important values in science studies and applications. However, there're different error laws in imaging process of LASIS due to its different imaging style from traditional imaging spectrometers, correspondingly, its data processing is complicated. In order to improve accuracy of spectrum detection and serve for quantitative analysis and monitoring of topographical surface feature, the error law of LASIS imaging is supposed to be learned. In this paper, the LASIS errors are classified as interferogram error, radiometric correction error and spectral inversion error, and each type of error is analyzed and studied. Finally, a case study of Yaogan-14 is proposed, in which the interferogram error of LASIS by time and space combined modulation is mainly experimented and analyzed, as well as the errors from process of radiometric correction and spectral inversion.

  19. A LARGE APERTURE NARROW QUADROUPOLE FOR THE SNS ACCUMULATOR RING.

    SciTech Connect

    TSOUPAS,N.; BRODOWSKI,J.; MENG,W.; WEI,J.; LEE,Y.Y.; TUOZZOLO,J.

    2002-06-03

    The accumulator ring of the Spallation Neutron Source (SNS) is designed to accept high-intensity H{sup -} beam of 1 GeV kinetic energy from the injecting LINAC, and to accumulate, in a time interval of 1 msec, 2 x 10{sup 14} protons in a single bunch of 700 nsec. In order to optimize the effective straight-section spaces for beam-injection, extraction and collimation, we have minimized the width of the large aperture quadrupoles which are located in the same straight sections of the accumulator ring with the injection and extraction systems. By minimizing the width of the quadrupoles to {+-}40.4 cm, the beam-injection and extraction angles are lowered to 8.75{sup o} and 16.8{sup o} respectively. Further optimization of the narrow quadrupole, minimizes the strength of the dodecapole multipole component of the quadrupole, thus reducing the width of the 12pole structure resonance and allowing a larger tune space for stability of the circulating beam. In this paper we present results derived from magnetic field calculations of 2D and 3D modeling, and discuss the method of optimizing the size of the quadrupole and minimizing its dodecapole multipole component.

  20. Hybrid Electrostatic/Flextensional Mirror for Lightweight, Large-Aperture, and Cryogenic Space Telescopes

    NASA Technical Reports Server (NTRS)

    Patrick, Brian; Moore, James; Hackenberger, Wesley; Jiang, Xiaoning

    2013-01-01

    A lightweight, cryogenically capable, scalable, deformable mirror has been developed for space telescopes. This innovation makes use of polymer-based membrane mirror technology to enable large-aperture mirrors that can be easily launched and deployed. The key component of this innovation is a lightweight, large-stroke, cryogenic actuator array that combines the high degree of mirror figure control needed with a large actuator influence function. The latter aspect of the innovation allows membrane mirror figure correction with a relatively low actuator density, preserving the lightweight attributes of the system. The principal components of this technology are lightweight, low-profile, high-stroke, cryogenic-capable piezoelectric actuators based on PMN-PT (piezoelectric lead magnesium niobate-lead titanate) single-crystal configured in a flextensional actuator format; high-quality, low-thermal-expansion polymer membrane mirror materials developed by NeXolve; and electrostatic coupling between the membrane mirror and the piezoelectric actuator assembly to minimize problems such as actuator print-through.

  1. NST: Thermal Modeling for a Large Aperture Solar Telescope

    NASA Astrophysics Data System (ADS)

    Coulter, Roy

    2011-05-01

    Late in the 1990s the Dutch Open Telescope demonstrated that internal seeing in open, large aperture solar telescopes can be controlled by flushing air across the primary mirror and other telescope structures exposed to sunlight. In that system natural wind provides a uniform air temperature throughout the imaging volume, while efficiently sweeping heated air away from the optics and mechanical structure. Big Bear Solar Observatory's New Solar Telescope (NST) was designed to realize that same performance in an enclosed system by using both natural wind through the dome and forced air circulation around the primary mirror to provide the uniform air temperatures required within the telescope volume. The NST is housed in a conventional, ventilated dome with a circular opening, in place of the standard dome slit, that allows sunlight to fall only on an aperture stop and the primary mirror. The primary mirror is housed deep inside a cylindrical cell with only minimal openings in the side at the level of the mirror. To date, the forced air and cooling systems designed for the NST primary mirror have not been implemented, yet the telescope regularly produces solar images indicative of the absence of mirror seeing. Computational Fluid Dynamics (CFD) analysis of the NST primary mirror system along with measurements of air flows within the dome, around the telescope structure, and internal to the mirror cell are used to explain the origin of this seemingly incongruent result. The CFD analysis is also extended to hypothetical systems of various scales. We will discuss the results of these investigations.

  2. The Balloon-Borne Large Aperture Submillimeter Telescope - BLAST

    NASA Astrophysics Data System (ADS)

    Devlin, Mark

    We are proposing a comprehensive program to study the link between Galactic magnetic fields and star formation. After decades of study, the physical processes regulating star formation still remain poorly understood. Large-scale observations of star forming regions provide counts of the number of dense clouds each of which will eventually evolve into tens to hundreds of stars. However, when simple models of gravitational collapse are applied to the clouds they yield a Galactic star formation rate (SFR) which is many times what is actually observed. Some process or combination of processes must be slowing the collapse of the clouds. The two prevailing theories involve turbulence which prevents the effective dissipation of energy and Galactic magnetic fields which are captured and squeezed by the collapsing cloud provide a mechanism for mechanical support. Understanding these effects fits very well the SMD 2010 Science Plan's Cosmic Origins program. The Balloon-borne Large Aperture Telecope BLASTPol and its planned successor, Super BLASTPol, are the first instruments to combine the sensitivity and mapping speed necessary to trace magnetic fields across entire clouds with the resolution to trace fields down into dense substructures, including cores and laments. Super BLAST-Pol will provide polarization at 250, 350 and 500 mm, with a diffraction limited beam FWHM of 22 arcmin at 250 mm. Super BLASTPol therefore provides the critical link between the PLANCK all-sky polarization maps with 5 arcmin resolution and ALMA s ultra-high resolution, but with only a 20-arcsec field of view. BLASTPol will use the PLANCK data to refine its target selection, then ALMA will utilize BLASTPol maps to zero in on areas of particular interest. Together, these three instruments will be able to probe the inner workings of star formation with previously unreachable resolution, sensitivity and scope.

  3. The balloon-borne large aperture submillimeter telescope

    NASA Astrophysics Data System (ADS)

    Truch, Matthew David Patey

    The Balloon-borne Large Aperture Submillimeter Telescope (BLAST) is designed to produce large (1-100 deg 2 ) maps of the sky at 250, 350, and 500 pm. The balloon platform lifts BLAST above most of the atmosphere, which is nearly opaque in the submillimeter, making BLAST significantly more sensitive than existing ground-based submillimeter telescopes. BLAST has had three successful flights on a high-altitude balloon. This thesis is in three parts. In the first part, the design, construction, and operation of BLAST is described in detail. Specifically, the submillimeter telescope and receiver, the cryogenic system, the various pointing sensors, and the command and control systems are covered. The processes of launching and landing the gondola are also discussed. In the second part, the analysis of BLAST data is discussed, and specifically data from the BLAST05 flight. The process of cleaning and preparing bolometer time-streams for map-making is discussed. The process of calibrating the data, flat-fielding the bolometer responsivity, removing time-varying changes in bolometer responsivity, and absolute flux calibration based on the fluxes of a known astronomical submillimeter source is detailed. Reconstructing the pointing solution from the data from the in-flight pointing sensors is discussed. Finally, combining the calibrated bolometer data with the reconstructed pointing solution to generate maps is described. In the third part, BLAST05 flight data and results are presented. Several compact sources were mapped, including solar system, Galactic, and extragalactic targets. These included Pallas and Saturn in the solar system, K3-50, W 75N, IRAS 20126+4104, CRL 2688, IRAS 21078+5211, LDN 1014, IRAS 21307+5049, IRAS 22134+5834, and IRAS 23011+6126 in the Galaxy, and the galaxies NGC 4565, Mrk 231, and Arp 220. Fluxes and spectral energy distributions (SEDs) of each of these sources at the BLAST wavelengths are presented, and these are compared with previous

  4. Experimental instrumentation system for the Phased Array Mirror Extendible Large Aperture (PAMELA) test program

    NASA Technical Reports Server (NTRS)

    Boykin, William H., Jr.

    1993-01-01

    Adaptive optics are used in telescopes for both viewing objects with minimum distortion and for transmitting laser beams with minimum beam divergence and dance. In order to test concepts on a smaller scale, NASA MSFC is in the process of setting up an adaptive optics test facility with precision (fraction of wavelengths) measurement equipment. The initial system under test is the adaptive optical telescope called PAMELA (Phased Array Mirror Extendible Large Aperture). Goals of this test are: assessment of test hardware specifications for PAMELA application and the determination of the sensitivities of instruments for measuring PAMELA (and other adaptive optical telescopes) imperfections; evaluation of the PAMELA system integration effort and test progress and recommended actions to enhance these activities; and development of concepts and prototypes of experimental apparatuses for PAMELA.

  5. Research on primary mirror lateral support structure of large-aperture telescope

    NASA Astrophysics Data System (ADS)

    Wang, Yang

    2010-05-01

    The primary mirror of large-aperture telescope is an important component of telescope system. The surface figure error of the primary mirror is a critical factor affecting the imaging quality of telescope system. With the augment of primary mirror aperture, the surface figure error of the primary mirror is affected by many factors, such as gravity, thermal deformation and so on. The factors that influence the surface figure error of the primary mirror are considered and analyzed roundly according to technical requirements of optical system. So the feasible project is researched on the lateral support structure of large-aperture telescope primary mirror. The primary mirror support system of large-aperture telescope is composed of axial support and lateral support. In traditional telescope, the contribution of lateral support to surface distortion is less than axial support. With increase of diameter to thickness ratio, lateral support is becoming more complicated and important than before. Lateral support is a key technology the same as axial support for the large-aperture telescope primary mirror. With the foundation of analysis, comparison and conclusion of related literature and monograph, according to primary mirror supporting principle of the large-aperture telescope. Lateral support methods, the influence of the primary mirror surface figure error due to primary mirror lateral support and lateral support structure of primary mirror are analyzed.

  6. APPLICATION OF LARGE APERTURE EMATS TO WELD INSPECTION

    SciTech Connect

    Maclauchlan, D. T.; Clark, S. P.; Hancock, J. W.

    2008-02-28

    One of the most significant developments in EMAT operation is the incorporation of phased array techniques. Phased array EMATs enable electronic beam steering and focusing while operating with temporally short pulses for good range resolution. Using phased array EMAT operation, multiple high powered pulsers are combined in the generation of the ultrasonic wave and multiple elements are combined in the reception of the ultrasonic wave, for improved sensitivity. EMATs make it practical to operate with shear horizontal (SH) waves and scan over a metal part's surface. An EMAT generated line force at the surface launches shear horizontal waves with uniform amplitude for beam angles from -90 deg. to 90 deg. Shear horizontal waves also reflect without mode conversion from surfaces that are parallel to the polarization of the shear wave displacements. The combination of these advantages makes phased array EMATs well suited for weld inspection. Recently, BWXT Services has developed a 32 active channel EMAT phased array system for operation up to 5 MHz. In addition, each element can be constructed with several sub-elements, alternating in polarity, to effectively multiply the number of active elements for a restricted range of beam angles. For example by using elements comprised of 4 sub elements, a 128 active element aperture designed for operation with a nominal 60 deg. beam angle provides good beam steering and focusing performance for 45 deg. to 70 deg. beam angles. The large active apertures allow the use of highly focused beams for good defect detection and high resolution imaging of weld defects. Application of this system to weld inspections has verified that good defect detection and imaging is possible. In addition, operation with SH waves has proven to provide improved detection of lack of fusion at the cap and root of the weld for certain weld geometries. The system has also been used to demonstrate the inspection of submerged metal arc welds while welding.

  7. Application of Large Aperture Emats to Weld Inspection

    NASA Astrophysics Data System (ADS)

    Maclauchlan, D. T.; Clark, S. P.; Hancock, J. W.

    2008-02-01

    One of the most significant developments in EMAT operation is the incorporation of phased array techniques. Phased array EMATs enable electronic beam steering and focusing while operating with temporally short pulses for good range resolution. Using phased array EMAT operation, multiple high powered pulsers are combined in the generation of the ultrasonic wave and multiple elements are combined in the reception of the ultrasonic wave, for improved sensitivity. EMATs make it practical to operate with shear horizontal (SH) waves and scan over a metal part's surface. An EMAT generated line force at the surface launches shear horizontal waves with uniform amplitude for beam angles from -90° to 90°. Shear horizontal waves also reflect without mode conversion from surfaces that are parallel to the polarization of the shear wave displacements. The combination of these advantages makes phased array EMATs well suited for weld inspection. Recently, BWXT Services has developed a 32 active channel EMAT phased array system for operation up to 5 MHz. In addition, each element can be constructed with several sub-elements, alternating in polarity, to effectively multiply the number of active elements for a restricted range of beam angles. For example by using elements comprised of 4 sub elements, a 128 active element aperture designed for operation with a nominal 60° beam angle provides good beam steering and focusing performance for 45° to 70° beam angles. The large active apertures allow the use of highly focused beams for good defect detection and high resolution imaging of weld defects. Application of this system to weld inspections has verified that good defect detection and imaging is possible. In addition, operation with SH waves has proven to provide improved detection of lack of fusion at the cap and root of the weld for certain weld geometries. The system has also been used to demonstrate the inspection of submerged metal arc welds while welding.

  8. Structural Feasibility Analysis of a Robotically Assembled Very Large Aperture Optical Space Telescope

    NASA Technical Reports Server (NTRS)

    Wilkie, William Keats; Williams, R. Brett; Agnes, Gregory S.; Wilcox, Brian H.

    2007-01-01

    This paper presents a feasibility study of robotically constructing a very large aperture optical space telescope on-orbit. Since the largest engineering challenges are likely to reside in the design and assembly of the 150-m diameter primary reflector, this preliminary study focuses on this component. The same technology developed for construction of the primary would then be readily used for the smaller optical structures (secondary, tertiary, etc.). A reasonable set of ground and on-orbit loading scenarios are compiled from the literature and used to define the structural performance requirements and size the primary reflector. A surface precision analysis shows that active adjustment of the primary structure is required in order to meet stringent optical surface requirements. Two potential actuation strategies are discussed along with potential actuation devices at the current state of the art. The finding of this research effort indicate that successful technology development combined with further analysis will likely enable such a telescope to be built in the future.

  9. MICRONERVA: A Novel Approach to Large Aperture Astronomical Spectroscopy

    NASA Astrophysics Data System (ADS)

    Hall, Ryan; Plavchan, Peter; Geneser, Claire; Giddens, Frank; Spangler, Sophia

    2016-06-01

    MICRONERVA (MICRO Novel Exoplanet Radial Velocity Array) is a project to measure precise spectroscopic radial velocities. The cost of telescopes are a strong function of diameter, and light gathering power as opposed to angular resolution is the fundamental driver for telescope design for many spectroscopic science applications. By sacrificing angular resolution, many multiple smaller fiber-fed telescopes can be combined to synthesize the light gathering power of a larger diameter telescope at a lower effective cost. For our MICRONERVA prototype, based upon the larger MINERVA project, we will attempt to demonstrate that an array of four 8-inch CPC Celestron telescopes can be automated with sufficient active guiding precision for robust nightly robotic operations. The light from each telescope is coupled into single mode fibers, which are conveniently matched to the point spread function of 8-inch telescopes, which can be diffraction limited at red wavelengths in typical seeing at good observing sites. Additionally, the output from an array of single mode fibers provides stable output illumination of a spectrograph, which is a critical requirement of future precise radial velocity instrumentation. All of the hardware from the system is automated using Python programs and ASCOM and MaxIm DL software drivers. We will present an overview of the current status of the project and plans for future work. The detection of exoplanets using the techniques of MICRONERVA could potentially enable cost reductions for many types of spectroscopic research.

  10. Active membrane phased array radar

    NASA Technical Reports Server (NTRS)

    Moussessian, Alina; Del Castillo, Linda; Huang, John; Sadowy, Greg; Hoffman, James; Smith, Phil; Hatake, Toshiro; Derksen, Chuck; Lopez, Bernardo; Caro, Ed

    2005-01-01

    We have developed the first membrane-based active phased array in L-band (1.26GHz). The array uses membrane compatible Transmit/Receive (T/R) modules (membrane T/R) for each antenna element. We use phase shifters within each T/R module for electronic beam steering. We will discuss the T/R module design and integration with the membrane, We will also present transmit and receive beam-steering results for the array.

  11. Imaging the midcontinent rift beneath Lake Superior using large aperture seismic data

    SciTech Connect

    Trehu, A.; Shay, J. ); Morel-a-l'Huissier, P.; Milkereit, B. ); Meyer, R.; Jefferson, T.; Shih, X.R. ); Karl, J. ); Mereu, R.; Epili, D. ); Sexton, J.; Wendling, S. ); Hajnal, Z.; Chan, W.K. ); Hutchison, D. )

    1991-04-01

    The authors present a detailed velocity model across the 1.1 billion year old Midcontinent Rift System (MRS) in central Lake Superior. The model was derived primarily from onshore-offshore large-aperture seismic and gravity data. High velocities obtained within a highly reflective half-graben that was imaged on coincident seismic reflection data demonstrate the dominantly magic composition of the graben fill and constrain its total thickness to be at least 30 km. Strong wide-angle reflections are observed from the lower crust and Moho, indicating that the crust is thickest (55-60 km) beneath the axis of the graben. The total crustal thickness decreases rapidly to about 40 km beneath the south shore of the lake and decreases more gradually to the north. Above the Moho is a high-velocity lower crust interpreted to result from syn-rift basaltic intrusion into and/or underplating beneath the Archean lower crust. The lower crust is thickest beneath the axis of the main rift half-graben. A second region of thick lower crust is found approximately 100 km north of the axis of the rift beneath a smaller half graben that is interpreted to reflect an earlier stage of rifting. The crustal model presented here resembles recent models of some passive continental margins and is in marked contrast to many models of both active and extinct Phanerozoic continental rift zones. It demonstrates that the Moho is a dynamic feature, since the pre-rift Moho is probably within or above the high-velocity lower crust, whereas the post-rift Moho is defined as the base of this layer. In the absence of major tectonic activity, however, the Moho is very stable, since the large, abrupt variations in crustal thickness beneath the MRS have been preserved for at least a billion years.

  12. Imaging the midcontinent rift beneath Lake Superior using large aperture seismic data

    USGS Publications Warehouse

    Trehu, Anne M.; Morel-a-l'Huissier, Patrick; Meyer, R.; Hajnal, Z.; Karl, J.; Mereu, R. F.; Sexton, J.; Shay, J.; Chan, W. K.; Epili, D.; Jefferson, T.; Shih, X. R.; Wendling, S.; Milkereit, B.; Green, A.; Hutchinson, Deborah R.

    1991-01-01

    We present a detailed velocity model across the 1.1 billion year old Midcontinent Rift System (MRS) in central Lake Superior. The model was derived primarily from onshore-offshore large-aperture seismic and gravity data. High velocities obtained within a highly reflective half-graben that was imaged on coincident seismic reflection data demonstrate the dominantly mafic composition of the graben fill and constrain its total thickness to be at least 30km. Strong wide-angle reflections are observed from the lower crust and Moho, indicating that the crust is thickest (55–60km) beneath the axis of the graben. The total crustal thickness decreases rapidly to about 40 km beneath the south shore of the lake and decreases more gradually to the north. Above the Moho is a high-velocity lower crust interpreted to result from syn-rift basaltic intrusion into and/or underplating beneath the Archean lower crust. The lower crust is thickest beneath the axis of the main rift half-graben. A second region of thick lower crust is found approximately 100km north of the axis of the rift beneath a smaller half graben that is interpreted to reflect an earlier stage of rifting. The crustal model presented here resembles recent models of some passive continental margins and is in marked contrast to many models of both active and extinct Phanerozoic continental rift zones. It demonstrates that the Moho is a dynamic feature, since the pre-rift Moho is probably within or above the high-velocity lower crust, whereas the post-rift Moho is defined as the base of this layer. In the absence of major tectonic activity, however, the Moho is very stable, since the large, abrupt variations in crustal thickness beneath the MRS have been preserved for at least a billion years.

  13. Thermal analysis of the Advanced Technology Large Aperture Space Telescope (ATLAST) 8-meter primary mirror

    NASA Astrophysics Data System (ADS)

    Hornsby, Linda; Hopkins, Randall C.; Stahl, H. Philip

    2010-07-01

    The Advanced Technology Large Aperture Space Telescope (ATLAST) preliminary design concept consists of an 8 meter diameter monolithic primary mirror enclosed in an insulated, optical tube with stray light baffles and a sunshade. ATLAST will be placed in orbit about the Sun-Earth L2 point and will experience constant exposure to the sun. The insulation on the optical tube and sunshade serve to cold bias the telescope which helps to minimize thermal gradients. The objective is to maintain the primary mirror at 280K with an active thermal control system. The geometric model of the primary mirror, optical tube, sun baffles, and sunshade was developed using Thermal Desktop®1. A detailed model of the primary mirror was required in order to characterize the static performance and thermal stability of the mirror during maneuvers. This is important because long exposure observations, such as extra-solar terrestrial planet finding and characterization, require a very stable observatory wave front. Steady state thermal analyses served to predict mirror temperatures for several different sun angles. Transient analyses were performed in order to predict thermal time constant of the primary mirror for a 20 degree slew and a 30 degree roll maneuver. This paper describes the thermal model and provides details of the geometry, thermo-optical properties, and the solar environment that influences the thermal performance. All assumptions that were used in the analysis are also documented. Estimates of mirror heater power requirements are reported. The thermal model is used to predict gradients across and through the primary mirror using an idealized boundary temperature on the back and sides of the mirror of 280 K.

  14. Thermal Analysis of the Advanced Technology Large Aperture Space Telescope (ATLAST) 8 Meter Primary Mirror

    NASA Technical Reports Server (NTRS)

    Hornsby, Linda; Stahl, H. Philip; Hopkins, Randall C.

    2010-01-01

    The Advanced Technology Large Aperture Space Telescope (ATLAST) preliminary design concept consists of an 8 meter diameter monolithic primary mirror enclosed in an insulated, optical tube with stray light baffles and a sunshade. ATLAST will be placed in orbit about the Sun-Earth L2 and will experience constant exposure to the sun. The insulation on the optical tube and sunshade serve to cold bias the telescope which helps to minimize thermal gradients. The primary mirror will be maintained at 280K with an active thermal control system. The geometric model of the primary mirror, optical tube, sun baffles, and sunshade was developed using Thermal Desktop(R) SINDA/FLUINT(R) was used for the thermal analysis and the radiation environment was analyzed using RADCAD(R). A XX node model was executed in order to characterize the static performance and thermal stability of the mirror during maneuvers. This is important because long exposure observations, such as extra-solar terrestrial planet finding and characterization, require a very stable observatory wave front. Steady state thermal analyses served to predict mirror temperatures for several different sun angles. Transient analyses were performed in order to predict thermal time constant of the primary mirror for a 20 degree slew or 30 degree roll maneuver. This paper describes the thermal model and provides details of the geometry, thermo-optical properties, and the environment which influences the thermal performance. All assumptions that were used in the analysis are also documented. Parametric analyses are summarized for design parameters including primary mirror coatings and sunshade configuration. Estimates of mirror heater power requirements are reported. The thermal model demonstrates results for the primary mirror heated from the back side and edges using a heater system with multiple independently controlled zones.

  15. ATLAST-9.2: A Deployable Large Aperture UVOIR Space Telescope

    NASA Astrophysics Data System (ADS)

    Oegerle, William R.; Feinberg, L.; Purves, L.; Hyde, T.; Thronson, H.; Townsend, J.; Postman, M.; Bolcar, M.; Budinoff, J.; Dean, B.; Clampin, M.; Ebbets, D.; Gong, Q.; Gull, T.; Howard, J.; Jones, A.; Lyon, R.; Pasquale, B.; Perrygo, C.; Smith, S.; Thompson, P.; Woodgate, B.

    2010-01-01

    We present the results of a study of a deployable version of the Advanced Technology Large Aperture Space Telescope (ATLAST) that could be launched on an Evolved Expendable Launch Vehicle (EELV). ATLAST is a concept for a next-generation UVOIR observatory to follow HST and JWST. The observatory retains significant heritage from JWST, thereby taking advantage of technologies and engineering already developed for that mission. At the same time, we have identified several design changes to the JWST architecture, some of which are required due to the demanding wavefront error requirements at visible wavelengths. The optical telescope assembly has a segmented 9.2-meter aperture and consists of 36 hexagonal glass mirrors, each of which is 1.315m in size (flat-to-flat). The telescope can be folded to fit in the 6.5m fairing on the planned upgrade to the Delta-IV heavy launch vehicle. Near-real time wavefront sensing and control is performed on-board the telescope using stars in the field of view to deliver diffraction limited imaging performance at 500nm wavelength. The optical design of the telescope provides an 8x20 arcmin FOV in which 4-5 instruments can be accommodated, plus fine guidance and wavefront sensors. Unlike JWST, the OTA sits at the end of a multi-gimbaled arm, allowing pitch and roll motion, and is isolated from the sunshield and spacecraft bus by an active isolation system. Our design permits servicing in order to extend the life of the observatory.

  16. Large-aperture YCOB crystal growth for frequency conversion in the high average power laser system

    NASA Astrophysics Data System (ADS)

    Fei, Yiting; Chai, Bruce H. T.; Ebbers, C. A.; Liao, Z. M.; Schaffers, K. I.; Thelin, P.

    2006-04-01

    Yttrium calcium oxyborate YCa4O(BO3)3 (YCOB) is a novel non-linear optical crystal possessing good thermal, mechanical and non-linear optical properties. Large-aperture YCOB crystals with 75 mm diameter were grown for high-average power frequency conversion on the mercury laser system. The growth morphology (included facet and spiral growth), cracking and inclusions in the as-grown crystal boule were discussed as the critical problem for large-aperture YCOB crystal growth. This can be minimized through modification of the growth program, including pulling rate, separation procedure, and cooling program. High-average power frequency conversion of the mercury laser using YCOB has been demonstrated, and experimental validation of YCOB material yields 50% conversion at 10 Hz has been achieved.

  17. The development of large-aperture test system of infrared camera and visible CCD camera

    NASA Astrophysics Data System (ADS)

    Li, Yingwen; Geng, Anbing; Wang, Bo; Wang, Haitao; Wu, Yanying

    2015-10-01

    Infrared camera and CCD camera dual-band imaging system is used in many equipment and application widely. If it is tested using the traditional infrared camera test system and visible CCD test system, 2 times of installation and alignment are needed in the test procedure. The large-aperture test system of infrared camera and visible CCD camera uses the common large-aperture reflection collimator, target wheel, frame-grabber, computer which reduces the cost and the time of installation and alignment. Multiple-frame averaging algorithm is used to reduce the influence of random noise. Athermal optical design is adopted to reduce the change of focal length location change of collimator when the environmental temperature is changing, and the image quality of the collimator of large field of view and test accuracy are also improved. Its performance is the same as that of the exotic congener and is much cheaper. It will have a good market.

  18. Initial technology assessment for the Large-Aperture UV-Optical-Infrared (LUVOIR) mission concept study

    NASA Astrophysics Data System (ADS)

    Bolcar, Matthew R.; Feinberg, Lee; France, Kevin; Rauscher, Bernard J.; Redding, David; Schiminovich, David

    2016-07-01

    The NASA Astrophysics Division's 30-Year Roadmap prioritized a future large-aperture space telescope operating in the ultra-violet/optical/infrared wavelength regime. The Association of Universities for Research in Astronomy envisioned a similar observatory, the High Definition Space Telescope. And a multi-institution group also studied the Advanced Technology Large Aperture Space Telescope. In all three cases, a broad science case is outlined, combining general astrophysics with the search for biosignatures via direct-imaging and spectroscopic characterization of habitable exoplanets. We present an initial technology assessment that enables such an observatory that is currently being studied for the 2020 Decadal Survey by the Large UV/Optical/Infrared (LUVOIR) surveyor Science and Technology Definition Team. We present here the technology prioritization for the 2016 technology cycle and define the required technology capabilities and current state-of-the-art performance. Current, planned, and recommended technology development efforts are also reported.

  19. Initial Technology Assessment for the Large-Aperture UV-Optical-Infrared (LUVOIR) Mission Concept Study

    NASA Technical Reports Server (NTRS)

    Bolcar, Matthew R.; Feinberg, Lee; France, Kevin; Rauscher, Bernard J.; Redding, David; Schiminovich, David

    2016-01-01

    The NASA Astrophysics Division's 30-Year Roadmap prioritized a future large-aperture space telescope operating in the ultra-violet/optical/infrared wavelength regime. The Association of Universities for Research in Astronomy envisioned a similar observatory, the High Definition Space Telescope. And a multi-institution group also studied the Advanced Technology Large Aperture Space Telescope. In all three cases, a broad science case is outlined, combining general astrophysics with the search for biosignatures via direct-imaging and spectroscopic characterization of habitable exoplanets. We present an initial technology assessment that enables such an observatory that is currently being studied for the 2020 Decadal Survey by the Large UV/Optical/Infrared (LUVOIR) surveyor Science and Technology Definition Team. We present here the technology prioritization for the 2016 technology cycle and define the required technology capabilities and current state-of-the-art performance. Current, planned, and recommended technology development efforts are also reported.

  20. Stray light analysis of large aperture optical telescope using TracePro

    NASA Astrophysics Data System (ADS)

    Sun, Cheng-ming; Zhao, Fei; Zhang, Ze

    2014-11-01

    In order to verify the effect of stray light elimination design, the detailed stray light analysis of one modified large aperture optical telescope using TracePro is described in this paper. Firstly, the sources of stray light in optical telescope and the influence of stray light on optical telescope are introduced. Then, the principle of stray light analysis using TracePro is presented. The solid model, surface properties and light paths of the modified large aperture optical telescope are determined. Ray splitting and importance sampling are adopted to ensure the calculation accuracy and reduce the time consumption. The Point Source Normalized Irradiance Transmittance (PSNIT) curve of the system is plotted. It shows the PSNITs are less than 10-12 when off-axis angles are larger than 30°, which satisfies the requirement of the system. Finally, the several special fields of stray light control are discussed.

  1. Large aperture solar optical telescope and instruments for the SOLAR-C mission

    NASA Astrophysics Data System (ADS)

    Suematsu, Y.; Katsukawa, Y.; Hara, H.; Kano, R.; Shimizu, T.; Ichimoto, K.

    2014-08-01

    A large aperture solar optical telescope and its instruments for the SOLAR-C mission are under study to provide the critical physical parameters in the lower solar atmosphere and to resolve the mechanism of magnetic dynamic events happening there and in the upper atmosphere as well. For the precise magnetic field measurements and high angular resolution in wide wavelength region, covering FOV of 3 arcmin x3 arcmin, an entrance aperture of 1.4 m Gregorian telescope is proposed. Filtergraphs are designed to realize high resolution imaging and pseudo 2D spectro-polarimetry in several magnetic sensitive lines of both photosphere and chromosphere. A full stokes polarimetry is carried out at three magnetic sensitive lines with a four-slit spectrograph of 2D image scanning mechanism. We present a progress in optical and structural design of SOLAR-C large aperture optical telescope and its observing instruments which fulfill science requirements.

  2. The Advanced Technology Large Aperture Space Telescope (ATLAST): Science Drivers and Technology Developments

    NASA Technical Reports Server (NTRS)

    Postman, Marc; Brown, Tom; Sembach, Kenneth; Giavalisco, Mauro; Traub, Wesley; Stapelfeldt, Karl; Calzetti, Daniela; Oegerle, William; Rich, R. Michael; Stahl, H. Phillip; Tumlinson, Jason; Mountain, Matt; Soummer, Remi; Hyde, Tupper

    2011-01-01

    The Advanced Technology Large-Aperture Space Telescope (ATLAST) is a concept for an 8-meter to 16-meter UVOIR space observatory for launch in the 2025-2030 era. ATLAST will allow astronomers to answer fundamental questions at the forefront of modern astrophysics, including "Is there life elsewhere in the Galaxy?" We present a range of science drivers and the resulting performance requirements for ATLAST (8 to 16 milliarcsecond angular resolution, diffraction limited imaging at 0.5 m wavelength, minimum collecting area of 45 square meters, high sensitivity to light wavelengths from 0.1 m to 2.4 m, high stability in wavefront sensing and control). We also discuss the priorities for technology development needed to enable the construction of ATLAST for a cost that is comparable to current generation observatory-class space missions. Keywords: Advanced Technology Large-Aperture Space Telescope (ATLAST); ultraviolet/optical space telescopes; astrophysics; astrobiology; technology development.

  3. Fabrication of large aperture kinoform phase plates in fused silica for smoothing focal plane intensity profiles

    SciTech Connect

    Rushford, M.; Dixit, S.; Thomas, I.; Perry, M.

    1996-04-26

    We have fabricated large aperture (40-cm) kinoform phase plates for producing super-Gaussian focal plane intensity profiles. The continuous phase screen, designed using a new iterative procedure, was fabricated in fused silica as a 16-level, one-wave deep rewrapped phase profile using a lithographic process and wet etching in buffered hydrofluoric acid. The observed far-field contains 94% of the incident energy inside the desired spot.

  4. Tracking marine mammals and ships with small and large-aperture hydrophone arrays

    NASA Astrophysics Data System (ADS)

    Gassmann, Martin

    Techniques for passive acoustic tracking in all three spatial dimensions of marine mammals and ships were developed for long-term acoustic datasets recorded continuously over months using custom-designed arrays of underwater microphones (hydrophones) with spacing ranging from meters to kilometers. From the three-dimensional tracks, the acoustical properties of toothed whales and ships, such as sound intensity and directionality, were estimated as they are needed for the passive acoustic abundance estimation of toothed whales and for a quantitative description of the contribution of ships to the underwater soundscape. In addition, the tracks of the toothed whales reveal their underwater movements and demonstrate the potential of the developed tracking techniques to investigate their natural behavior and responses to sound generated by human activity, such as from ships or military SONAR. To track the periodically emitted echolocation sounds of toothed whales in an acoustically refractive environment in the upper ocean, a propagation-model based technique was developed for a hydrophone array consisting of one vertical and two L-shaped subarrays deployed from the floating instrument platform R/P FLIP. The technique is illustrated by tracking a group of five shallow-diving killer whales showing coordinated behavior. The challenge of tracking the highly directional echolocation sounds of deep-diving (< 1 km) toothed whales, in particular Cuvier's beaked whales, was addressed by embedding volumetric small-aperture (≈ 1 m element spacing) arrays into a large-aperture (≈ 1 km element spacing) seafloor array to reduce the minimum number of required receivers from five to two. The capabilities of this technique are illustrated by tracking several groups of up to three individuals over time periods from 10 min to 33 min within an area of 20 km2 in the Southern California Bight. To track and measure the underwater radiated sound of ships, a frequency domain beamformer was

  5. An Engineering Design Reference Mission for a Future Large-Aperture UVOIR Space Observatory

    NASA Astrophysics Data System (ADS)

    Thronson, Harley A.; Bolcar, Matthew R.; Clampin, Mark; Crooke, Julie A.; Redding, David; Rioux, Norman; Stahl, H. Philip

    2016-01-01

    From the 2010 NRC Decadal Survey and the NASA Thirty-Year Roadmap, Enduring Quests, Daring Visions, to the recent AURA report, From Cosmic Birth to Living Earths, multiple community assessments have recommended development of a large-aperture UVOIR space observatory capable of achieving a broad range of compelling scientific goals. Of these priority science goals, the most technically challenging is the search for spectroscopic biomarkers in the atmospheres of exoplanets in the solar neighborhood. Here we present an engineering design reference mission (EDRM) for the Advanced Technology Large-Aperture Space Telescope (ATLAST), which was conceived from the start as capable of breakthrough science paired with an emphasis on cost control and cost effectiveness. An EDRM allows the engineering design trade space to be explored in depth to determine what are the most demanding requirements and where there are opportunities for margin against requirements. Our joint NASA GSFC/JPL/MSFC/STScI study team has used community-provided science goals to derive mission needs, requirements, and candidate mission architectures for a future large-aperture, non-cryogenic UVOIR space observatory. The ATLAST observatory is designed to operate at a Sun-Earth L2 orbit, which provides a stable thermal environment and excellent field of regard. Our reference designs have emphasized a serviceable 36-segment 9.2 m aperture telescope that stows within a five-meter diameter launch vehicle fairing. As part of our cost-management effort, this particular reference mission builds upon the engineering design for JWST. Moreover, it is scalable to a variety of launch vehicle fairings. Performance needs developed under the study are traceable to a variety of additional reference designs, including options for a monolithic primary mirror.

  6. Large aperture vibrating wire monitor with two mechanically coupled wires for beam halo measurements

    SciTech Connect

    Arutunian, S. G.; Avetisyan, A. E.; Davtyan, M. M.; Harutyunyan, G. S.; Vasiniuk, I. E.; Chung, M.; Scarpine, V.

    2014-03-01

    Development of a new type of Vibrating Wire Monitor (VWM), which has two mechanically coupled wires (vibrating and target), is presented. The new monitor has a much larger aperture size than the previous model of the VWM, and thus allows us to measure transverse beam halos more effectively. A prototype of such a large aperture VWM with a target wire length of 60 mm was designed, manufactured, and bench-tested. Initial beam measurements have been performed at the Fermilab High Intensity Neutrino Source (HINS) facility, and key results are presented.

  7. Spacecraft Conceptual Design for the 8-Meter Advanced Technology Large Aperture Space Telescope (ATLAST)

    NASA Technical Reports Server (NTRS)

    Hopkins, Randall C.; Capizzo, Peter; Fincher, Sharon; Hornsby, Linda S.; Jones, David

    2010-01-01

    The Advanced Concepts Office at Marshall Space Flight Center completed a brief spacecraft design study for the 8-meter monolithic Advanced Technology Large Aperture Space Telescope (ATLAST-8m). This spacecraft concept provides all power, communication, telemetry, avionics, guidance and control, and thermal control for the observatory, and inserts the observatory into a halo orbit about the second Sun-Earth Lagrange point. The multidisciplinary design team created a simple spacecraft design that enables component and science instrument servicing, employs articulating solar panels for help with momentum management, and provides precise pointing control while at the same time fast slewing for the observatory.

  8. End-to-End Assessment of a Large Aperture Segmented Ultraviolet Optical Infrared (UVOIR) Telescope Architecture

    NASA Technical Reports Server (NTRS)

    Feinberg, Lee; Bolcar, Matt; Liu, Alice; Guyon, Olivier; Stark,Chris; Arenberg, Jon

    2016-01-01

    Key challenges of a future large aperture, segmented Ultraviolet Optical Infrared (UVOIR) Telescope capable of performing a spectroscopic survey of hundreds of Exoplanets will be sufficient stability to achieve 10-10 contrast measurements and sufficient throughput and sensitivity for high yield Exo-Earth spectroscopic detection. Our team has collectively assessed an optimized end to end architecture including a high throughput coronagraph capable of working with a segmented telescope, a cost-effective and heritage based stable segmented telescope, a control architecture that minimizes the amount of new technologies, and an Exo-Earth yield assessment to evaluate potential performance.

  9. Development of an efficient large-aperture high damage-threshold sol-gel diffraction grating.

    SciTech Connect

    Ashley, Carol S.; Rambo, Patrick K.; Schwarz, Jens; Dunphy, Darren Robert; Branson, Eric D.; Smith, Ian Craig; Johnson, William Arthur; Reed, Scott T.; Cook, Adam W.

    2005-03-01

    In order to develop the next generation of high peak intensity lasers, new grating technology providing higher damage thresholds and large apertures is required. The current assumption is that this technical innovation will be multilayer dielectric gratings, wherein the uppermost layer of a thin film mirror is etched to create the desired binary phase grating. A variant of this is explored with the upper grating layer being a lower density gelatin-based volume phase grating in either sol-gel or dichromated gelatin. One key benefit is the elimination of the etching step.

  10. Modeling Electrically Active Viscoelastic Membranes

    PubMed Central

    Roy, Sitikantha; Brownell, William E.; Spector, Alexander A.

    2012-01-01

    The membrane protein prestin is native to the cochlear outer hair cell that is crucial to the ear's amplification and frequency selectivity throughout the whole acoustic frequency range. The outer hair cell exhibits interrelated dimensional changes, force generation, and electric charge transfer. Cells transfected with prestin acquire unique active properties similar to those in the native cell that have also been useful in understanding the process. Here we propose a model describing the major electromechanical features of such active membranes. The model derived from thermodynamic principles is in the form of integral relationships between the history of voltage and membrane resultants as independent variables and the charge density and strains as dependent variables. The proposed model is applied to the analysis of an active force produced by the outer hair cell in response to a harmonic electric field. Our analysis reveals the mechanism of the outer hair cell active (isometric) force having an almost constant amplitude and phase up to 80 kHz. We found that the frequency-invariance of the force is a result of interplay between the electrical filtering associated with prestin and power law viscoelasticity of the surrounding membrane. Paradoxically, the membrane viscoelasticity boosts the force balancing the electrical filtering effect. We also consider various modes of electromechanical coupling in membrane with prestin associated with mechanical perturbations in the cell. We consider pressure or strains applied step-wise or at a constant rate and compute the time course of the resulting electric charge. The results obtained here are important for the analysis of electromechanical properties of membranes, cells, and biological materials as well as for a better understanding of the mechanism of hearing and the role of the protein prestin in this mechanism. PMID:22701528

  11. Optimization analysis of primary mirror in large aperture telescope based on workbench

    NASA Astrophysics Data System (ADS)

    Feng, Zhengsen; Wang, Guomin

    2015-10-01

    With the diameter increasing for large aperture telescope primary mirror, the gravity caused by the increased of surface size will directly affect the quality of optical imaging, the adjustment of large aperture primary mirror will be frequent according to the requirement of observation. As the angle and the azimuth's transformation of primary mirror influences the surface shape accuracy immediately, the rational design of the primary mirror supporting structure is of crucial importance. Now the general method is to use ANSYS APDL programming, which is inconvenient and complex to fit for the different components, the calculation require much time and the analysis is lack of efficient. Taking the diameter of 1.12 m telescope primary mirror as the research objection, the paper combine the actual design parameters of SONG telescope, respectively using ANSYS WORKBENCH to employ the primary mirror axial and lateral support model in finite element method, the optimal solution is obtained by optimization design and the change rule of mirror surface deformation under inclined condition is studied. The optimization results according with the requirements of the primary mirror comprehensive error proves that the optimization analysis method is available and applicable.

  12. Designs for a large-aperture telescope to map the CMB 10× faster.

    PubMed

    Niemack, Michael D

    2016-03-01

    Current large-aperture cosmic microwave background (CMB) telescopes have nearly maximized the number of detectors that can be illuminated while maintaining diffraction-limited image quality. The polarization-sensitive detector arrays being deployed in these telescopes in the next few years will have roughly 10⁴ detectors. Increasing the mapping speed of future instruments by at least an order of magnitude is important to enable precise probes of the inflationary paradigm in the first fraction of a second after the big bang and provide strong constraints on cosmological parameters. The CMB community has begun planning a next generation "Stage IV" CMB project that will be comprised of multiple telescopes with between 10⁵-10⁶ detectors to pursue these goals. This paper introduces the new crossed Dragone telescope and receiver optics designs that increase the usable diffraction-limited field-of-view, and therefore the mapping speed, by an order of magnitude compared to the upcoming generation of large-aperture instruments. Polarization systematics and engineering considerations are presented, including a preliminary receiver model to demonstrate that these designs will enable high efficiency illumination of >10⁵ detectors in a next generation CMB telescope. PMID:26974631

  13. Eyeglass Large Aperture, Lightweight Space Optics FY2000 - FY2002 LDRD Strategic Initiative

    SciTech Connect

    Hyde, R

    2003-02-10

    A series of studies by the Air Force, the National Reconnaissance Office and NASA have identified the critical role played by large optics in fulfilling many of the space related missions of these agencies. Whether it is the Next Generation Space Telescope for NASA, high resolution imaging systems for NRO, or beam weaponry for the Air Force, the diameter of the primary optic is central to achieving high resolution (imaging) or a small spot size on target (lethality). While the detailed requirements differ for each application (high resolution imaging over the visible and near-infrared for earth observation, high damage threshold but single-wavelength operation for directed energy), the challenges of a large, lightweight primary optic which is space compatible and operates with high efficiency are the same. The advantage of such large optics to national surveillance applications is that it permits these observations to be carried-out with much greater effectiveness than with smaller optics. For laser weapons, the advantage is that it permits more tightly focused beams which can be leveraged into either greater effective range, reduced laser power, and/or smaller on-target spot-sizes; weapon systems can be made either much more effective or much less expensive. This application requires only single-wavelength capability, but places an emphasis upon robust, rapidly targetable optics. The advantages of large aperture optics to astronomy are that it increases the sensitivity and resolution with which we can view the universe. This can be utilized either for general purpose astronomy, allowing us to examine greater numbers of objects in more detail and at greater range, or it can enable the direct detection and detailed examination of extra-solar planets. This application requires large apertures (for both light-gathering and resolution reasons), with broad-band spectral capability, but does not emphasize either large fields-of-view or pointing agility. Despite

  14. Imprinting continuously varying topographical structure onto large-aperture optical surfaces using magnetorheological finishing

    SciTech Connect

    Menapace, J A; Davis, P J; Dixit, S; Campbell, J H; Golini, D; Hachkowski, M R; Nelson, A

    2007-03-07

    Over the past four years we have advanced Magnetorheological Finishing (MRF) techniques and tools to imprint complex continuously varying topographical structures onto large-aperture (430 x 430 mm) optical surfaces. These optics, known as continuous phase plates (CPPs), are important for high-power laser applications requiring precise manipulation and control of beam-shape, energy distribution, and wavefront profile. MRF's unique deterministic-sub-aperture polishing characteristics make it possible to imprint complex topographical information onto optical surfaces at spatial scale-lengths approaching 1 mm and surface peak-to-valleys as high as 22 {micro}m. During this discussion, we will present the evolution of the MRF imprinting technology and the MRF tools designed to manufacture large-aperture 430 x 430 mm CPPs. Our results will show how the MRF removal function impacts and limits imprint fidelity and what must be done to arrive at a high-quality surface. We also present several examples of this imprinting technology for fabrication of phase correction plates and CPPs for use in high-power laser applications.

  15. Recent Enhancements of the Phased Array Mirror Extendible Large Aperture (PAMELA) Telescope Testbed at MSFC

    NASA Technical Reports Server (NTRS)

    Rakoczy, John; Burdine, Robert (Technical Monitor)

    2001-01-01

    Recent incremental upgrades to the Phased Array Mirror Extendible Large Aperture (PAMELA) telescope testbed have enabled the demonstration of phasing (with a monochromatic source) of clusters of primary mirror segments down to the diffraction limit. PAMELA upgrades include in improved Shack-Hartmann wavefront sensor, passive viscoelastic damping treatments for the voice-coil actuators, mechanical improvement of mirror surface figures, and optical bench baffling. This report summarizes the recent PAMELA upgrades, discusses the lessons learned, and presents a status of this unique testbed for wavefront sensing and control. The Marshall Space Flight Center acquired the Phased Array Mirror Extendible Large Aperture (PAMELA) telescope in 1993 after Kaman Aerospace was unable to complete integration and testing under the limited SDIO and DARPA funding. The PAMELA is a 36-segment, half-meter aperture, adaptive telescope which utilizes a Shack-Hartmann wavefront sensor, inductive coil edge sensors, voice coil actuators, imaging CCD cameras and interferometry for figure alignment, wavefront sensing and control. MSFC originally obtained the PAMELA to supplement its research in the interactions of control systems with flexible structures. In August 1994, complete tip, tilt and piston control was successfully demonstrated using the Shack-Hartmann wavefront sensor and the inductive edge sensors.

  16. Designs for a large-aperture telescope to map the CMB 10× faster.

    PubMed

    Niemack, Michael D

    2016-03-01

    Current large-aperture cosmic microwave background (CMB) telescopes have nearly maximized the number of detectors that can be illuminated while maintaining diffraction-limited image quality. The polarization-sensitive detector arrays being deployed in these telescopes in the next few years will have roughly 10⁴ detectors. Increasing the mapping speed of future instruments by at least an order of magnitude is important to enable precise probes of the inflationary paradigm in the first fraction of a second after the big bang and provide strong constraints on cosmological parameters. The CMB community has begun planning a next generation "Stage IV" CMB project that will be comprised of multiple telescopes with between 10⁵-10⁶ detectors to pursue these goals. This paper introduces the new crossed Dragone telescope and receiver optics designs that increase the usable diffraction-limited field-of-view, and therefore the mapping speed, by an order of magnitude compared to the upcoming generation of large-aperture instruments. Polarization systematics and engineering considerations are presented, including a preliminary receiver model to demonstrate that these designs will enable high efficiency illumination of >10⁵ detectors in a next generation CMB telescope.

  17. Research on the support structure of the primary mirror of large-aperture telescope

    NASA Astrophysics Data System (ADS)

    Wang, Yang; Zhang, Jingxu

    2007-12-01

    Large-aperture telescope can be used in surveying battlefield, researching landform, searching object, real-time monitoring, imaging, detecting and identifying spatial targets and so on. A large-aperture telescope for achieving high resolution power is designed to monitor spatial target and image in real time. Real-time monitoring plays an important role in military conflicts. The orbit parameter of object, quantity, geometrical shape parameter and so on can be obtained by detect spatial target. With the development of optical technology, people require larger aperture in optics-electronic (O-E) system. By increasing optical aperture, the ability of collecting light and resolution power in the system can be enhanced. But the support structure of the primary mirror of large-aperture telescope will be a very difficult problem. With the increase of primary mirror aperture, the weight of the primary mirror will become larger than before. The root mean square (rms) of the primary mirror is affected by many factors, such as deadweight, deformation of heat, environment and so on. Due to the primary mirror of telescope is an important component of telescope system. By reducing the weight of primary mirror, precision of the system is ensured. During the designing phase, one can consider the supporting project of the primary mirror synthetically and analyze it roundly according to technical requirement of optical system and the effect factors. The final structural design can be reasonable. In an astronomical telescope, the surface of reflector is an important part for collecting dark radiation of celestial bodies. Its surface shape will have an effect on collecting efficiency of telescope radiant energy directly. So the rms must be very high. Optical system of large aperture, small wavelength and small focus can receive maximal light intensity. For ground-based optical astronomical telescope, the design proposed in the paper can satisfy the requirement of the possible

  18. A Large Aperture, High Energy Laser System for Optics and Optical Component Testing

    SciTech Connect

    Nostrand, M C; Weiland, T L; Luthi, R L; Vickers, J L; Sell, W D; Stanley, J A; Honig, J; Auerbach, J; Hackel, R P; Wegner, P J

    2003-11-01

    A large aperture, kJ-class, multi-wavelength Nd-glass laser system has been constructed at Lawrence Livermore National Lab which has unique capabilities for studying a wide variety of optical phenomena. The master-oscillator, power-amplifier (MOPA) configuration of this ''Optical Sciences Laser'' (OSL) produces 1053 nm radiation with shaped pulse lengths which are variable from 0.1-100 ns. The output can be frequency doubled or tripled with high conversion efficiency with a resultant 100 cm{sup 2} high quality output beam. This facility can accommodate prototype hardware for large-scale inertial confinement fusion lasers allowing for investigation of integrated system issues such as optical lifetime at high fluence, optics contamination, compatibility of non-optical materials, and laser diagnostics.

  19. Large aperture focus stacking with max-gradient flow by anchored rolling filtering.

    PubMed

    Yin, Xuanwu; Wang, Guijin; Li, Wentao; Liao, Qingmin

    2016-07-10

    Focus stacking is a computational technique to extend the depth of field through combining multiple images taken at various focus distances. However, in the large aperture case, there are always defects caused by the large blur scale, which, to the best of our knowledge, has not been well studied. In our work, we propose a max-gradient flow-based method to reduce artifacts and obtain a high-quality all-in-focus image by anchored rolling filtering. First, we define a max-gradient flow to describe the gradient propagation in the stack. The points are divided into trivial and source points with this flow. The source points are extracted as true edge points and are utilized as anchors to refine the depth map and the composited all-in-focus image iteratively. The experiments show that our method can effectively suppress the incorrect depth estimations and give a high-quality all-in-focus image. PMID:27409303

  20. End-to-end assessment of a large aperture segmented ultraviolet optical infrared (UVOIR) telescope architecture

    NASA Astrophysics Data System (ADS)

    Feinberg, Lee; Rioux, Norman; Bolcar, Matthew; Liu, Alice; Guyon, Olivier; Stark, Chris; Arenberg, Jon

    2016-07-01

    Key challenges of a future large aperture, segmented Ultraviolet Optical Infrared (UVOIR) Telescope capable of performing a spectroscopic survey of hundreds of Exoplanets will be sufficient stability to achieve 10^-10 contrast measurements and sufficient throughput and sensitivity for high yield exo-earth spectroscopic detection. Our team has collectively assessed an optimized end to end architecture including a high throughput coronagraph capable of working with a segmented telescope, a cost-effective and heritage based stable segmented telescope, a control architecture that minimizes the amount of new technologies, and an exo-earth yield assessment to evaluate potential performance. These efforts are combined through integrated modeling, coronagraph evaluations, and exo-earth yield calculations to assess the potential performance of the selected architecture. In addition, we discusses the scalability of this architecture to larger apertures and the technological tall poles to enabling these missions.

  1. Advanced Technology Large-Aperture Space Telescope: Science Drivers and Technology Developments

    NASA Technical Reports Server (NTRS)

    Postman, Marc; Brown, Tom; Sembach, Kenneth; Glavallsco, Mauro; Traub, Wesley; Stapelfeldt, Karl; Calzetti, Daniela; Oegerle, William; Rich, R. Michael; Stahl, H. Philip; Tumlinson, Jason; Mountain, Matt; Soummer, Remi; Hyde, Tupper

    2012-01-01

    The Advanced Technology Large-Aperture Space Telescope (ATLAST) is a concept for an 8- to 16-m ultraviolet optical near Infrared space observatory for launch in the 2025 to 2030 era. ATLAST will allow astronomers to answer fundamental questions at the forefront of modern astrophysics, including: Is there life elsewhere in the Galaxy? We present a range of science drivers and the resulting performance requirements for ATLAST (8- to 16-marcsec angular resolution, diffraction limited imaging at 0.5 micron wavelength, minimum collecting area of 45 sq m, high sensitivity to light wavelengths from 0.1 to 2.4 micron, high stability in wavefront sensing and control). We also discuss the priorities for technology development needed to enable the construction of ATLAST for a cost that is comparable to that of current generation observatory-class space missions.

  2. Data correction techniques for the airborne large-aperture static image spectrometer based on image registration

    NASA Astrophysics Data System (ADS)

    Zhang, Geng; Shi, Dalian; Wang, Shuang; Yu, Tao; Hu, Bingliang

    2015-01-01

    We propose an approach to correct the data of the airborne large-aperture static image spectrometer (LASIS). LASIS is a kind of stationary interferometer which compromises flux output and device stability. It acquires a series of interferograms to reconstruct the hyperspectral image cube. Reconstruction precision of the airborne LASIS data suffers from the instability of the plane platform. Usually, changes of plane attitudes, such as yaws, pitches, and rolls, can be precisely measured by the inertial measurement unit. However, the along-track and across-track translation errors are difficult to measure precisely. To solve this problem, we propose a co-optimization approach to compute the translation errors between the interferograms using an image registration technique which helps to correct the interferograms with subpixel precision. To demonstrate the effectiveness of our approach, experiments are run on real airborne LASIS data and our results are compared with those of the state-of-the-art approaches.

  3. The Balloon-borne Large Aperture Submillimeter Telescope (BLAST) 2005: Calibration and Targeted Sources

    NASA Astrophysics Data System (ADS)

    Truch, Matthew; BLAST Collaboration

    2007-12-01

    The Balloon-borne Large Aperture Submillimeter Telescope (BLAST) operated successfully during a 100-hour flight from northern Sweden in June 2005 (BLAST05). As part of the calibration and pointing procedures, several compact sources were mapped, including solar system, Galactic, and extragalactic targets, specifically Pallas, CRL 2688, LDN 1014, IRAS 20126+4104, IRAS 21078+5211, IRAS 21307+5049, IRAS 22134+5834, IRAS 23011+6126, K3-50, W 75N, Mrk 231, NGC 4565, and Arp 220 (this last source being our primary calibrator). The BLAST observations of each compact source are described, flux densities and spectral energy distributions are reported, and these are compared with previous measurements at other wavelengths. BLAST was particularly useful for constraining the slope of the submillimeter continuum.

  4. A conceptual design of a large aperture microwave radiometer geostationary platform

    NASA Technical Reports Server (NTRS)

    Garn, Paul A.; Garrison, James L.; Jasinski, Rachel

    1992-01-01

    A conceptual design of a Large Aperture Microwave Radiometer (LAMR) Platform has been developed and technology areas essential to the design and on-orbit viability of the platform have been defined. Those technologies that must be developed to the requirement stated here for the LAMR mission to be viable include: advanced radiation resistant solar cells, integrated complex structures, large segmented reflector panels, sub 3 kg/m(exp 2) areal density large antennas, and electric propulsion systems. Technology areas that require further development to enhance the capabilities of the LAMR platform (but are not essential for viability) include: electrical power storage, on-orbit assembly, and on-orbit systems checkout and correction.

  5. End-to-End Assessment of a Large Aperture Segmented Ultraviolet Optical Infrared (UVOIR) Telescope Architecture

    NASA Technical Reports Server (NTRS)

    Feinberg, Lee; Rioux, Norman; Bolcar, Matthew; Liu, Alice; Guyon, Oliver; Stark, Chris; Arenberg, Jon

    2016-01-01

    Key challenges of a future large aperture, segmented Ultraviolet Optical Infrared (UVOIR) Telescope capable of performing a spectroscopic survey of hundreds of Exoplanets will be sufficient stability to achieve 10^-10 contrast measurements and sufficient throughput and sensitivity for high yield Exo-Earth spectroscopic detection. Our team has collectively assessed an optimized end to end architecture including a high throughput coronagraph capable of working with a segmented telescope, a cost-effective and heritage based stable segmented telescope, a control architecture that minimizes the amount of new technologies, and an Exo-Earth yield assessment to evaluate potential performance. These efforts are combined through integrated modeling, coronagraph evaluations, and Exo-Earth yield calculations to assess the potential performance of the selected architecture. In addition, we discusses the scalability of this architecture to larger apertures and the technological tall poles to enabling it.

  6. Development of a Large Aperture Nb3Sn Racetrack Quadrupole Magnet

    SciTech Connect

    Ferracin, Paolo; Bartlett, Scott E.; Caspi, Shlomo; Dietderich, Daniel R.; Gourlay, Steve A.; Hannaford, Charles R.; Hafalia, Aurelio R.; Lietzke, Alan F.; Mattafirri, Sara; McInturff, Alfred D.; Nyman, Mark; Sabbi, Gianluca

    2005-06-01

    The U.S. LHC Accelerator Research Program (LARP), a collaboration between BNL, FNAL, LBNL, and SLAC, has among its major objectives the development of advanced magnet technology for an LHC luminosity upgrade. The LBNL Superconducting Magnet Group supports this program with a broad effort involving design studies, Nb{sub 3}Sn conductor development, mechanical models, and basic prototypes. This paper describes the development of a large aperture Nb{sub 3}Sn racetrack quadrupole magnet using four racetrack coils from the LBNL Subscale Magnet (SM) Program. The magnet provides a gradient of 95 T/m in a 110 mm bore, with a peak field in the conductor of 11.2 T. The coils are pre-stressed by a mechanical structure based on a pre-tensioned aluminum shell, and axially supported with aluminum rods. The mechanical behavior has been monitored with strain gauges and the magnetic field has been measured. Results of the test are reported and analyzed.

  7. Complex ray analysis of radiation from large apertures with tapered illumination

    NASA Astrophysics Data System (ADS)

    Ghione, G.; Felsen, L. B.; Montrosset, I.

    1984-07-01

    An attempt is made to model the initial distribution of radiation emitted by an antenna feed in terms of a building-block approach. Attention is given to both near and far field calculations for large apertures with tapered illumination. Generalized one-dimensional tapered profiles expressed in terms of the wavenumber and the aperture coordinate are used to handle profiles ranging from gaussian to rectangular. The analysis covers complex ray tracing from the aperture plane to the observer. The inclusion of all relevant rays is assured by a saddle point analysis of the exact field integral. The ray tracing procedure is demonstrated to be effective without reference to an aperture integral. Several field radiation patterns are calculated as examples.

  8. THE BALLOON-BORNE LARGE APERTURE SUBMILLIMETER TELESCOPE (BLAST) 2006: CALIBRATION AND FLIGHT PERFORMANCE

    SciTech Connect

    Truch, Matthew D. P.; Devlin, Mark J.; Dicker, Simon R.; Klein, Jeff; Ade, Peter A. R.; Griffin, Matthew; Hargrave, Peter C.; Mauskopf, Philip; Moncelsi, Lorenzo; Pascale, Enzo; Bock, James J.; Chapin, Edward L.; Halpern, Mark; Marsden, Gaelen; Gundersen, Joshua O.; Hughes, David H.; Martin, Peter G.; Netterfield, C. Barth; Olmi, Luca; Patanchon, Guillaume

    2009-12-20

    The Balloon-borne Large Aperture Submillimeter Telescope (BLAST) operated successfully during a 250 hr flight over Antarctica in 2006 December (BLAST06). As part of the calibration and pointing procedures, the red hypergiant star VY CMa was observed and used as the primary calibrator. Details of the overall BLAST06 calibration procedure are discussed. The 1sigma uncertainty on the absolute calibration is accurate to 9.5%, 8.7%, and 9.2% at the 250, 350, and 500 mum bands, respectively. The errors are highly correlated between bands resulting in much lower errors for the derived shape of the 250-500 mum continuum. The overall pointing error is < 5'' rms for the 36'', 42'', and 60'' beams. The performance of optics and pointing systems is discussed.

  9. ATLAST-9.2m: a Large-Aperture Deployable Space Telescope

    NASA Technical Reports Server (NTRS)

    Oergerle, William; Feinberg, Lee D.; Purves, Lloyd R.; Hyde, T. Tupper; Thronson, Harley A.; Townsend, Jacqueline A.; Postman, Marc; Bolear, Matthew R.; Budinoff, Jason G.; Dean, Bruce H.; Clampin, Mark C.; Ebbets, Dennis C.; Gong, Qian; Gull, Theodore R.; Howard, Joseph M.; Jones, Andrew L.; Lyon, Richard G.; Pasquale, Bert A.; Perrygo, Charles; Smith, Jeffrey S.; Thompson, Patrick L.; Woodgate, Bruce E.

    2010-01-01

    We present results of a study of a deployable version of the Advanced Technology Large-Aperture Space Telescope (ATLAST), designed to operate in a Sun-Earth L2 orbit. The primary mirror of the segmented 9.2-meter aperture has 36 hexagonal 1.315 m (flat to flat) glass mirrors. The architecture and folding of the telescope is similar to JWST, allowing it to fit into the 6.5 m fairing of a modest upgrade to the Delta-IV Heavy version of the Evolved Expendable Launch Vehicle (EELV). We discuss the overall observatory design, optical design, instruments, stray light, wavefront sensing and control, pointing and thermal control, and in-space servicing options.

  10. Topology optimization-based lightweight primary mirror design of a large-aperture space telescope.

    PubMed

    Liu, Shutian; Hu, Rui; Li, Quhao; Zhou, Ping; Dong, Zhigang; Kang, Renke

    2014-12-10

    For the large-aperture space telescope, the lightweight primary mirror design with a high-quality optical surface is a critical and challenging issue. This work presents a topology optimization-based design procedure for a lightweight primary mirror and a new mirror configuration of a large-aperture space telescope is obtained through the presented design procedure. Inspired by the topology optimization method considering cast constraints, an optimization model for the configuration design of the mirror back is proposed, through which the distribution and the heights of the stiffeners on the mirror back can be optimized simultaneously. For the purpose of minimizing the optical surface deviation due to self-weight and polishing pressure loadings, the objective function is selected as to maximize the mirror structural stiffness, which can be achieved by minimizing the structural compliance. The total mass of the primary mirror is assigned as the constraint. In the application example, results of the optimized design topology for two kinds of mass constraints are presented. Executing the design procedure for specific requirements and postprocessing the topology obtained of the structure, a new mirror configuration with tree-like stiffeners and a multiple-arch back in double directions is proposed. A verification model is constructed to evaluate the design results and the finite element method is used to calculate the displacement of the mirror surface. Then the RMS deviation can be obtained after fitting the deformed surface by Zernike polynomials. The proposed mirror is compared with two classical mirrors in the optical performance, and the comparison results demonstrate the superiority of the new mirror configuration. PMID:25608076

  11. Pulse power requirements for large aperture optical switches based on plasma electrode Pockels cells

    SciTech Connect

    Rhodes, M.A.; Taylor, J.

    1992-06-01

    We discuss very large-aperture optical switches (greater than 30 {times} 30 cm) as an enabling technology for inertial confinement fusion drivers based on multipass laser amplifiers. Large-scale laser fusion drivers such as the Nova laser have been based on single-pass amplifier designs in part because of the unavailability of a suitable large-aperture switch. We are developing an optical switch based on a Pockels cell employing plasma-electrodes. A plasma-electrode Pockels cell (PEPC) is a longitudinal-mode Pockels cell in which a plasma discharge is formed on each side of an electro-optic crystal (typically KDP or deuterated KDP, often designated KD*P). The plasmas formed on either side of the crystal act as transparent electrodes for a switching-pulse and are intended to allow uniform charging of the entire crystal. The switching-pulse is a nominally rectangular high-voltage pulse equal to the half-wave voltage V{sub x} ( 8 kV for KD*P or 17 kV for KDP) and is applied across the crystal via the plasma-electrodes. When the crystal is charged to V{sub x}, the polarization of an incoming, linearly polarized, laser beam is rotated by 90{degree}. When used in conjunction with an appropriate, passive polarizer, an optical switch is thus realized. A switch with a clear aperture of 37 {times} 37 cm is now in construction for the Beamlet laser which will serve as a test bed for this switch as well as other technologies required for an advanced NOVA laser design. In this paper, we discuss the unique power electronics requirements of PEPC optical switches.

  12. Pulse power requirements for large aperture optical switches based on plasma electrode Pockels cells

    SciTech Connect

    Rhodes, M.A.; Taylor, J.

    1992-06-01

    We discuss very large-aperture optical switches (greater than 30 [times] 30 cm) as an enabling technology for inertial confinement fusion drivers based on multipass laser amplifiers. Large-scale laser fusion drivers such as the Nova laser have been based on single-pass amplifier designs in part because of the unavailability of a suitable large-aperture switch. We are developing an optical switch based on a Pockels cell employing plasma-electrodes. A plasma-electrode Pockels cell (PEPC) is a longitudinal-mode Pockels cell in which a plasma discharge is formed on each side of an electro-optic crystal (typically KDP or deuterated KDP, often designated KD*P). The plasmas formed on either side of the crystal act as transparent electrodes for a switching-pulse and are intended to allow uniform charging of the entire crystal. The switching-pulse is a nominally rectangular high-voltage pulse equal to the half-wave voltage V[sub x] ( 8 kV for KD*P or 17 kV for KDP) and is applied across the crystal via the plasma-electrodes. When the crystal is charged to V[sub x], the polarization of an incoming, linearly polarized, laser beam is rotated by 90[degree]. When used in conjunction with an appropriate, passive polarizer, an optical switch is thus realized. A switch with a clear aperture of 37 [times] 37 cm is now in construction for the Beamlet laser which will serve as a test bed for this switch as well as other technologies required for an advanced NOVA laser design. In this paper, we discuss the unique power electronics requirements of PEPC optical switches.

  13. How Membrane-Active Peptides Get into Lipid Membranes.

    PubMed

    Sani, Marc-Antoine; Separovic, Frances

    2016-06-21

    The structure-function relationship for a family of antimicrobial peptides (AMPs) from the skin of Australian tree frogs is discussed and compared with that of peptide toxins from bee and Australian scorpion venoms. Although these membrane-active peptides induce a similar cellular fate by disrupting the lipid bilayer integrity, their lytic activity is achieved via different modes of action, which are investigated in relation to amino acid sequence, secondary structure, and membrane lipid composition. In order to better understand what structural features govern the interaction between peptides and lipid membranes, cell-penetrating peptides (CPPs), which translocate through the membrane without compromising its integrity, are also discussed. AMPs possess membrane lytic activities that are naturally designed to target the cellular membrane of pathogens or competitors. They are extremely diverse in amino acid composition and often show specificity against a particular strain of microbe. Since our antibiotic arsenal is declining precariously in the face of the rise in multiantibiotic resistance, AMPs increasingly are seen as a promising alternative. In an effort to understand their molecular mechanism, biophysical studies of a myriad of AMPs have been reported, yet no unifying mechanism has emerged, rendering difficult the rational design of drug leads. Similarly, a wide variety of cytotoxic peptides are found in venoms, the best known being melittin, yet again, predicting their activity based on a particular amino acid composition or secondary structure remains elusive. A common feature of these membrane-active peptides is their preference for the lipid environment. Indeed, they are mainly unstructured in solution and, in the presence of lipid membranes, quickly adsorb onto the surface, change their secondary structure, eventually insert into the hydrophobic core of the membrane bilayer, and finally disrupt the bilayer integrity. These steps define the molecular

  14. How Membrane-Active Peptides Get into Lipid Membranes.

    PubMed

    Sani, Marc-Antoine; Separovic, Frances

    2016-06-21

    The structure-function relationship for a family of antimicrobial peptides (AMPs) from the skin of Australian tree frogs is discussed and compared with that of peptide toxins from bee and Australian scorpion venoms. Although these membrane-active peptides induce a similar cellular fate by disrupting the lipid bilayer integrity, their lytic activity is achieved via different modes of action, which are investigated in relation to amino acid sequence, secondary structure, and membrane lipid composition. In order to better understand what structural features govern the interaction between peptides and lipid membranes, cell-penetrating peptides (CPPs), which translocate through the membrane without compromising its integrity, are also discussed. AMPs possess membrane lytic activities that are naturally designed to target the cellular membrane of pathogens or competitors. They are extremely diverse in amino acid composition and often show specificity against a particular strain of microbe. Since our antibiotic arsenal is declining precariously in the face of the rise in multiantibiotic resistance, AMPs increasingly are seen as a promising alternative. In an effort to understand their molecular mechanism, biophysical studies of a myriad of AMPs have been reported, yet no unifying mechanism has emerged, rendering difficult the rational design of drug leads. Similarly, a wide variety of cytotoxic peptides are found in venoms, the best known being melittin, yet again, predicting their activity based on a particular amino acid composition or secondary structure remains elusive. A common feature of these membrane-active peptides is their preference for the lipid environment. Indeed, they are mainly unstructured in solution and, in the presence of lipid membranes, quickly adsorb onto the surface, change their secondary structure, eventually insert into the hydrophobic core of the membrane bilayer, and finally disrupt the bilayer integrity. These steps define the molecular

  15. Fluid transport by active elastic membranes

    NASA Astrophysics Data System (ADS)

    Evans, Arthur A.; Lauga, Eric

    2011-09-01

    A flexible membrane deforming its shape in time can self-propel in a viscous fluid. Alternatively, if the membrane is anchored, its deformation will lead to fluid transport. Past work in this area focused on situations where the deformation kinematics of the membrane were prescribed. Here we consider models where the deformation of the membrane is not prescribed, but instead the membrane is internally forced. Both the time-varying membrane shape and the resulting fluid motion result then from a balance between prescribed internal active stresses, internal passive resistance, and external viscous stresses. We introduce two specific models for such active internal forcing: one where a distribution of active bending moments is prescribed, and one where active inclusions exert normal stresses on the membrane by pumping fluid through it. In each case, we asymptotically calculate the membrane shape and the fluid transport velocities for small forcing amplitudes, and recover our results using scaling analysis.

  16. Origins of high-frequency scattered waves near PKKP from large aperture seismic array data

    USGS Publications Warehouse

    Earle, P.S.

    2002-01-01

    This article identifies the likely origin of 1-Hz scattered waves in the vicinity of PKKP by comparing measurements of slowness and onset time to ray-theoretical predictions. The measurements are obtained from slant stacks of Large Aperture Seismic Array (LASA) data from 36 earthquakes and six explosions in the range 30??-116??. Three types of scattered waves explain the main features seen in the stacks, including: P scattered to PKP near the Earth's surface (P.PKP), PKKP scattered near its core-mantle-boundary (CMB) reflection point (PK.KP), and SKKP scattered near its CMB reflection point (SK.KP). The LASA stacks image the amplitude and slowness variations of the scattered waves with time. They also show where these waves can be detected and where they are free from contaminating arrivals. SK.KP waves rise above the noise approximately 100 sec before the onset time of the main SKKP arrival near 113??. Observations of PK.KP span 30??-100??. However, at distances greater than 50?? they suffer from P.PKP contamination. At distances less than 40?? the PK.KP last for about 280 sec. This is approximately 130 sec longer than the maximum ray-theoretical prediction for waves scattered at the CMB, indicating a possible combination of near-surface scattering and contributions from the overlying mantle.

  17. Large-aperture prism-array lens for high-energy X-ray focusing.

    PubMed

    Zhang, Weiwei; Liu, Jing; Chang, Guangcai; Shi, Zhan; Li, Ming; Ren, Yuqi; Zhang, Xiaowei; Yi, Futing; Liu, Peng; Sheng, Weifan

    2016-09-01

    A new prism-array lens for high-energy X-ray focusing has been constructed using an array of different prisms obtained from different parabolic structures by removal of passive parts of material leading to a multiple of 2π phase variation. Under the thin-lens approximation the phase changes caused by this lens for a plane wave are exactly the same as those caused by a parabolic lens without any additional corrections when they have the same focal length, which will provide good focusing; at the same time, the total transmission and effective aperture of this lens are both larger than those of a compound kinoform lens with the same focal length, geometrical aperture and feature size. This geometry can have a large aperture that is not limited by the feature size of the lens. Prototype nickel lenses with an aperture of 1.77 mm and focal length of 3 m were fabricated by LIGA technology, and were tested using CCD camera and knife-edge scan method at the X-ray Imaging and Biomedical Application Beamline BL13W1 at Shanghai Synchrotron Radiation Facility, and provided a focal width of 7.7 µm and a photon flux gain of 14 at an X-ray energy of 50 keV. PMID:27577761

  18. Intense THz Pulses with large ponderomotive potential generated from large aperture photoconductive antennas.

    PubMed

    Ropagnol, X; Khorasaninejad, M; Raeiszadeh, M; Safavi-Naeini, S; Bouvier, M; Côté, C Y; Laramée, A; Reid, M; Gauthier, M A; Ozaki, T

    2016-05-30

    We report the generation of free space terahertz (THz) pulses with energy up to 8.3 ± 0.2 µJ from an encapsulated interdigitated ZnSe Large Aperture Photo-Conductive Antenna (LAPCA). An aperture of 12.2 cm2 is illuminated using a 400 nm pump laser with multi-mJ energies at 10 Hz repetition rate. The calculated THz peak electric field is 331 ± 4 kV/cm with a spectrum characterized by a median frequency of 0.28 THz. Given its relatively low frequency, this THz field will accelerate charged particles efficiently having very large ponderomotive energy of 15 ± 1 eV for electrons in vacuum. The scaling of the emission is studied with respect to the dimensions of the antenna, and it is observed that the capacitance of the LAPCA leads to a severe decrease in and distortion of the biasing voltage pulse, fundamentally limiting the maximum applied bias field and consequently the maximum energy of the radiated THz pulses. In order to demonstrate the advantages of this source in the strong field regime, an open-aperture Z-scan experiment was performed on n-doped InGaAs, which showed significant absorption bleaching. PMID:27410061

  19. A support method of large aperture light weighted primary mirror manufacturing and testing

    NASA Astrophysics Data System (ADS)

    Zhao, Ye; Zhou, Yuming; Li, Chenxi

    2010-05-01

    With the resolution of space optical remote sensor getting higher, the aperture of the primary mirror has been becoming larger correlatively. The requirement of the plane precision has also become higher. The manufacturing and testing of space optical remote sensor primary mirror should be under more critical status which is different from the mirror on the ground, especially for the primary mirror aperture that is larger than 1 m. This paper compares the differences of testing and manufacturing status between the primary mirror on space optical remote sensor and on the ground. A support method of large aperture primary mirror manufacturing and testing has been released, which is to carry out multiplediscrete support on the back of the mirror by controlling the support stress. The results indicates that this method could reduce the plane error of the primary mirror brought by its self weight effectively by finite element simulation when the mirror is being polishing, so as to satisfy the design and use requirement of the primary mirror.

  20. A Future Large-Aperture UVOIR Space Observatory: Key Technologies and Capabilities

    NASA Technical Reports Server (NTRS)

    Bolcar, Matthew Ryan; Stahle, Carl M.; Balasubramaniam, Kunjithapatham; Clampin, Mark; Feinberg, Lee D.; Mosier, Gary E.; Quijada, Manuel A.; Rauscher, Bernard J.; Redding, David C.; Rioux, Norman M.; Shaklan, Stuart B.; Stahl, H. Philip; Thronson, Harley A.

    2015-01-01

    We present the key technologies and capabilities that will enable a future, large-aperture ultravioletopticalinfrared (UVOIR) space observatory. These include starlight suppression systems, vibration isolation and control systems, lightweight mirror segments, detector systems, and mirror coatings. These capabilities will provide major advances over current and near-future observatories for sensitivity, angular resolution, and starlight suppression. The goals adopted in our study for the starlight suppression system are 10-10 contrast with an inner working angle of 20 milliarcsec and broad bandpass. We estimate that a vibration and isolation control system that achieves a total system vibration isolation of 140 dB for a vibration-isolated mass of 5000 kg is required to achieve the high wavefront error stability needed for exoplanet coronagraphy. Technology challenges for lightweight mirror segments include diffraction-limited optical quality and high wavefront error stability as well as low cost, low mass, and rapid fabrication. Key challenges for the detector systems include visible-blind, high quantum efficiency UV arrays, photon counting visible and NIR arrays for coronagraphic spectroscopy and starlight wavefront sensing and control, and detectors with deep full wells with low persistence and radiation tolerance to enable transit imaging and spectroscopy at all wavelengths. Finally, mirror coatings with high reflectivity ( 90), high uniformity ( 1) and low polarization ( 1) that are scalable to large diameter mirror substrates will be essential for ensuring that both high throughput UV observations and high contrast observations can be performed by the same observatory.

  1. Large-Aperture Wide-Bandwidth Anti-Reflection-Coated Silicon Lenses for Millimeter Wavelengths

    NASA Technical Reports Server (NTRS)

    Datta, R.; Munson, C. D.; Niemack, M. D.; McMahon, J. J.; Britton, J.; Wollack, E. J.; Beall, J.; Devlin, M. J.; Fowler, J.; Gallardo, P.; Hubmayr, J.; Irwin, K.; Newburgh, L.; Nibarger, J. P.; Page, L.; Quijada, M. A.; Schmitt, B. L.; Staggs, S. T.; Thornton, R.; Zhang, L.

    2013-01-01

    The increasing scale of cryogenic detector arrays for sub-millimeter and millimeter wavelength astrophysics has led to the need for large aperture, high index of refraction, low loss, cryogenic refracting optics. Silicon with n = 3.4, low loss, and relatively high thermal conductivity is a nearly optimal material for these purposes, but requires an antireflection (AR) coating with broad bandwidth, low loss, low reflectance, and a matched coffecient of thermal expansion. We present an AR coating for curved silicon optics comprised of subwavelength features cut into the lens surface with a custom three axis silicon dicing saw. These features constitute a metamaterial that behaves as a simple dielectric coating. We have fabricated and coated silicon lenses as large as 33.4 cm in diameter with coatings optimized for use between 125-165 GHz. Our design reduces average reflections to a few tenths of a percent for angles of incidence up to 30 deg. with low cross-polarization. We describe the design, tolerance, manufacture, and measurements of these coatings and present measurements of the optical properties of silicon at millimeter wavelengths at cryogenic and room temperatures. This coating and lens fabrication approach is applicable from centimeter to sub-millimeter wavelengths and can be used to fabricate coatings with greater than octave bandwidth.

  2. Large-aperture Wide-bandwidth Antireflection-coated Silicon Lenses for Millimeter Wavelengths

    NASA Technical Reports Server (NTRS)

    Datta, R.; Munson, C. D.; Niemack, M. D.; McMahon, J. J.; Britton, J.; Wollack, Edward J.; Beall, J.; Devlin, M. J.; Fowler, J.; Gallardo, P.; Hubmayr, J.; Irwin, K.; Newburgh, L.; Nibarger, J. P.; Page, L.; Quijada, Manuel A.; Schmitt, B. L.; Staggs, S. T.; Thornton, R.; Zhang, L.

    2013-01-01

    The increasing scale of cryogenic detector arrays for submillimeter and millimeter wavelength astrophysics has led to the need for large aperture, high index of refraction, low loss, cryogenic refracting optics. Silicon with n 3.4, low loss, and high thermal conductivity is a nearly optimal material for these purposes but requires an antireflection (AR) coating with broad bandwidth, low loss, low reflectance, and a matched coefficient of thermal expansion. We present an AR coating for curved silicon optics comprised of subwavelength features cut into the lens surface with a custom three-axis silicon dicing saw. These features constitute a metamaterial that behaves as a simple dielectric coating.We have fabricated silicon lenses as large as 33.4 cm in diameter with micromachined layers optimized for use between 125 and 165 GHz. Our design reduces average reflections to a few tenths of a percent for angles of incidence up to 30deg with low cross polarization.We describe the design, tolerance, manufacture, and measurements of these coatings and present measurements of the optical properties of silicon at millimeter wavelengths at cryogenic and room temperatures. This coating and lens fabrication approach is applicable from centimeter to submillimeter wavelengths and can be used to fabricate coatings with greater than octave bandwidth.

  3. Design of large aperture superferric quadrupole magnets for an in-flight fragment separator

    NASA Astrophysics Data System (ADS)

    Zaghloul, Aziz; Kim, Dogyun; Kim, Jangyoul; Kim, Mijung; Kim, Myeongjin; Yun, Chongcheoul; Kim, Jongwon

    2014-01-01

    Superferric quadrupole magnets to be used for in-flight fragment separator have been designed. A quadrupole magnet triplet for beam focusing is placed in a cryostat together with superconducting correction coils. To maximize acceptance of rare isotope beams produced by projectile fragmentation, it is essential to use large-aperture quadrupole magnets. The pole tip radius is 17 cm in the current design, and we tried to enlarge the aperture with 3D analysis on magnetic fields. In the front end of the separator, where a target and beam dump are located, we plan to use two sets of quadrupole triplets made of high-Tc superconductor (HTS) operating at 20-50 K considering high radiation heat load. The HTS magnet will use warm iron poles. Both low-Tc and high-Tc superconductors are acquired for test winding, and two kinds of dewar and cryostat are under construction to perform the coil and magnet tests. The magnetic design of superferric quadrupole is mainly discussed.

  4. Assessing inter-sensor variability and sensible heat flux derivation accuracy for a large aperture scintillometer.

    PubMed

    Rambikur, Evan H; Chávez, José L

    2014-01-01

    The accuracy in determining sensible heat flux (H) of three Kipp and Zonen large aperture scintillometers (LAS) was evaluated with reference to an eddy covariance (EC) system over relatively flat and uniform grassland near Timpas (CO, USA). Other tests have revealed inherent variability between Kipp and Zonen LAS units and bias to overestimate H. Average H fluxes were compared between LAS units and between LAS and EC. Despite good correlation, inter-LAS biases in H were found between 6% and 13% in terms of the linear regression slope. Physical misalignment was observed to result in increased scatter and bias between H solutions of a well-aligned and poorly-aligned LAS unit. Comparison of LAS and EC H showed little bias for one LAS unit, while the other two units overestimated EC H by more than 10%. A detector alignment issue may have caused the inter-LAS variability, supported by the observation in this study of differing power requirements between LAS units. It is possible that the LAS physical misalignment may have caused edge-of-beam signal noise as well as vulnerability to signal noise from wind-induced vibrations, both having an impact on the solution of H. In addition, there were some uncertainties in the solutions of H from the LAS and EC instruments, including lack of energy balance closure with the EC unit. However, the results obtained do not show clear evidence of inherent bias for the Kipp and Zonen LAS to overestimate H as found in other studies.

  5. 8 Meter Advanced Technology Large-Aperture Space Telescope (ATLAST-8m)

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip

    2010-01-01

    ATLAST-8m (Advanced Technology Large Aperture Space Telescope) is a proposed 8-meter monolithic UV/optical/NIR space observatory (wavelength range 110 to 2500 nm) to be placed in orbit at Sun-Earth L2 by NASA's planned Ares V heavy lift vehicle. Given its very high angular resolution (15 mas @ 500 nm), sensitivity and performance stability, ATLAST-8m is capable of achieving breakthroughs in a broad range of astrophysics including: Is there life elsewhere in the Galaxy? An 8-meter UVOIR observatory has the performance required to detect habitability (H2O, atmospheric column density) and biosignatures (O2, O3, CH4) in terrestrial exoplanet atmospheres, to reveal the underlying physics that drives star formation, and to trace the complex interactions between dark matter, galaxies, and intergalactic medium. The ATLAST Astrophysics Strategic Mission Concept Study developed a detailed point design for an 8-m monolithic observatory including optical design; structural design/analysis including primary mirror support structure, sun shade and secondary mirror support structure; thermal analysis; spacecraft including structure, propulsion, GN&C, avionics, power systems and reaction wheels; mass and power budgets; and system cost. The results of which were submitted by invitation to NRC's 2010 Astronomy & Astrophysics Decadal Survey.

  6. The Balloon-borne Large Aperture Submillimeter Telescope (BLAST) 2005: Calibration and Targeted Sources

    NASA Astrophysics Data System (ADS)

    Truch, M. D. P.; Ade, P. A. R.; Bock, J. J.; Chapin, E. L.; Devlin, M. J.; Dicker, S.; Griffin, M.; Gundersen, J. O.; Halpern, M.; Hargrave, P. C.; Hughes, D. H.; Klein, J.; Marsden, G.; Martin, P. G.; Mauskopf, P.; Netterfield, C. B.; Olmi, L.; Pascale, E.; Patanchon, G.; Rex, M.; Scott, D.; Semisch, C.; Tucker, C.; Tucker, G. S.; Viero, M. P.; Wiebe, D. V.

    2008-07-01

    The Balloon-borne Large Aperture Submillimeter Telescope (BLAST) operated successfully during a 100 hr flight from northern Sweden in 2005 June (BLAST05). As part of the calibration and pointing procedures, several compact sources were mapped, including solar system, Galactic, and extragalactic targets, specifically Pallas, CRL 2688, LDN 1014, IRAS 20126+4104, IRAS 21078+5211, IRAS 21307+5049, IRAS 22134+5834, IRAS 23011+6126, K3-50, W75N, and Mrk 231. One additional source, Arp 220, was observed and used as our primary calibrator. Details of the overall BLAST05 calibration procedure are discussed here. The BLAST observations of each compact source are described, flux densities and spectral energy distributions are reported, and these are compared with previous measurements at other wavelengths. The 250, 350, and 500 μm BLAST data can provide useful constraints to the amplitude and slope of the submillimeter continuum, which in turn may be useful for the improved calibration of other submillimeter instruments.

  7. Key technology of data registration for large aperture aspheric surface measurement

    NASA Astrophysics Data System (ADS)

    Ren, Tongqun; Guo, Yinbiao; Ke, Xiaolong

    2010-10-01

    Large measuring range and high resolution are always contradictories in practical measurement for large aperture aspheric surface. They must be met simultaneously in high precision measurement. Stitching method based on data registration is an effective way to resolve this contradiction. Aiming at the problem of rapid searching corresponding points, a key problem in offset sampling point set registration under rectangular coordinate system, a complete and effective approach is described in this paper. The original and destination point sets are registered roughly according to initial transformation and then projected to x-y plane. The intersection of two planar point sets' minimal bounding rectangle is solved to reduce the original points to be matched. The convex boundary of destination point set is solved and then principle of connected graphs is employed to judge whether one original point lies in destination point set. Strategy of space separating is employed to accelerate the neighboring points searching process. For each original point, its neighboring points belonging to a small area are solved. Subsequently, quadratic surface fitting is performed based on these neighboring points. Then method of Point-to-(Tangent) Plane is used to calculate its corresponding point. An emulation experiment is performed and experimental results are presented to show the feasibility of the proposed methods. It can realize rapid corresponding points searching effectively and meet the high precision registration under the situation of offset sampling.

  8. A novel method of calculating far-field patterns of large aperture antennas

    NASA Technical Reports Server (NTRS)

    Bailey, M. C.

    1986-01-01

    A method is described for calculation of the radiation pattern of large aperture antennas. A piece-wise linear approximation of the aperture field using overlapping pyramidal basis functions allows the radiation pattern of an aperture antenna to be calculated as though it were a two-dimensional array. The calculation of radiation pattern data versus theta and phi, suitable for 3-D or contour plot algorithms, is achieved by locating the array in the yz-plane and performing a summation over the aperture field data sampled on a square grid. A FORTRAN subroutine is provided for performing radiation pattern calculations. Numerical results are included to demonstrate the accuracy and convergence of the method. These numerical results indicate that typical accuracies of + or - 0.1 dB for Directivity, + or - dB for the 1st Sidelobe Level, and + - 2dB for the 2nd Sidelobe Level can be obtained with an aperture grid of 45x45 points and requires approximately 0.02 seconds CPU time per far-field data point on a VAX 11/750 with a floating point accelerator.

  9. Study on the method to test large-aperture hyperboloid convex mirror

    NASA Astrophysics Data System (ADS)

    Meng, Xiaohui; Dong, Huiwen; Guo, Wen; Wang, Huijun

    2014-08-01

    There are numerous reflecting optical system designs that call for large-aperture convex surfaces, such as secondary mirror in on-axis three mirror anastigmatic (TMA). Several methods to test high accuracy hyperboloid convex surfaces are introduced separately in this paper. A kind of arrangement is chosen to test a surface with diameter of 420mm, radius of 1371mm, and conic K -2.1229. The CGH compensator for testing is designed, which is made up of illumination lens and hologram test plate with designed residual wavefront aberration less than 0.001λ (RMS). The second transmitted method that is equipped with a technical flat surface coating by Ag film in the bottom of surface mirror under test, which form an auto-collimation optical system to eliminate the aberration. The Hindle-Simpson test that requires a larger meniscus lens to compensate the optical aberration, and the designed result of optical test system is less than 0.0016λ. Contrasting the CGH compensator and the second transmitted method, the Hindle-Simpson testing method has the advantage of it is easily to manufacture and adjust; meanwhile the test result is stable and has been less affected by the environment. It has been found that the method is rational and reliable, and it can fulfill the requirement of manufacturing and testing process for hyperboloid convex mirrors.

  10. Intense THz Pulses with large ponderomotive potential generated from large aperture photoconductive antennas.

    PubMed

    Ropagnol, X; Khorasaninejad, M; Raeiszadeh, M; Safavi-Naeini, S; Bouvier, M; Côté, C Y; Laramée, A; Reid, M; Gauthier, M A; Ozaki, T

    2016-05-30

    We report the generation of free space terahertz (THz) pulses with energy up to 8.3 ± 0.2 µJ from an encapsulated interdigitated ZnSe Large Aperture Photo-Conductive Antenna (LAPCA). An aperture of 12.2 cm2 is illuminated using a 400 nm pump laser with multi-mJ energies at 10 Hz repetition rate. The calculated THz peak electric field is 331 ± 4 kV/cm with a spectrum characterized by a median frequency of 0.28 THz. Given its relatively low frequency, this THz field will accelerate charged particles efficiently having very large ponderomotive energy of 15 ± 1 eV for electrons in vacuum. The scaling of the emission is studied with respect to the dimensions of the antenna, and it is observed that the capacitance of the LAPCA leads to a severe decrease in and distortion of the biasing voltage pulse, fundamentally limiting the maximum applied bias field and consequently the maximum energy of the radiated THz pulses. In order to demonstrate the advantages of this source in the strong field regime, an open-aperture Z-scan experiment was performed on n-doped InGaAs, which showed significant absorption bleaching.

  11. [Manufacture tolerance analysis of solid Mach-Zehnder interferometer in large aperture static imaging spectrometer (LASIS)].

    PubMed

    Liu, Qing; Zhou, Jin-Song; Nie, Yun-Feng; Lü, Qun-Bo

    2014-07-01

    The principle and instrumental structure of large aperture static imaging spectrometer (LASIS) were briefly described in the present paper, the principle of the Mach-Zehnder imaging spectrometer was introduced, and the Mach-Zehnder interferometers' working way in the imaging spectrometer was illustrated. The structure of solid Mach-Zehnder interferometer was analyzed, and discussion was made based on the requirements of field of view (FOV) in image space and single sided interferogram with a small portion around zero path difference (ZPD). The additional optical path difference (OPD) created by manufacturing and matching tolerance of two asymmetrical pentagonal prisms will lead to the displacement of shearing and OPD nonlinearity. It was showed that the additional OPD from non-common optical path structure of solid Mach-Zehnder spectrometer implies more requirements on the manufacture of this element, compared with Sagnac interferometer, for the matching tolerance of two asymmetrical pentagonal prisms to br lower than 0.02 mm. The recovery spectrum error caused by the OPD nonlinearity is lower than 0.2% and can be ignored.

  12. Development of Large-Aperture, Light-Weight Fresnel Lenses for Gossamer Space Telescopes

    SciTech Connect

    Sham, D; Hyde, R; Weisberg, A; Early, J; Rushford, M; Britten, J

    2002-04-29

    In order to examine more distant astronomical objects, with higher resolution, future space telescopes require objectives with significantly larger aperture than presently available. NASA has identified a progression in size from the 2.4m aperture objective currently used in the HUBBLE space telescope[l,2], to 25m and greater in order to observe, e.g., extra-solar planets. Since weight is a crucial factor for any object sent into space, the relative weight of large optics over a given area must be reduced[3]. The areal mass density of the primary mirror for the Hubble space telescope is {approx}200 kg/m{sup 2}. This is expected to be reduced to around 15 kg/m{sup 2} for the successor to Hubble--the next generation space telescope (NGST)[4]. For future very large aperture telescopes needed for extra-solar planet detection, the areal mass density must be reduced even further. For example, the areal mass density goal for the Gossamer space telescopes is < 1 kg/m{sup 2}. The production of lightweight focusing optics at >10m size is also an enabling technology for many other applications such as Earth observation, power beaming, and optical communications.

  13. Acoustic performance of a large-aperture, seabed, fiber-optic hydrophone array

    NASA Astrophysics Data System (ADS)

    Cranch, G. A.; Crickmore, R.; Kirkendall, C. K.; Bautista, A.; Daley, K.; Motley, S.; Salzano, J.; Latchem, J.; Nash, P. J.

    2004-06-01

    A large-aperture, seabed mounted, fiber-optic hydrophone array has been constructed and characterized. The system is designed for use as a large area surveillance array for deployment in shallow water regions. The underwater portion comprises two arrays of 48 hydrophones separated by a 3 km fiber-optic link, which are connected to a shore station by 40 km of single-mode optical fiber. The hydrophone is based on a fiber-optic Michelson interferometer and the acoustic transduction mechanism is a fiber-wrapped mandrel design. No electrical power is required in the underwater portion. The performance of the system is described, characterized during laboratory measurements and during a recent sea trial. Specifically, measurements of the acoustic resolution, array shape, beam patterns, array gain, and target tracking capability of this array. The system demonstrates self-noise levels up to 20 dB (typically 10 dB) lower than the ambient acoustic noise experienced in the sea trial and array gains close to the theoretical maximum. The system telemetry and electronics have been designed to be expandable to accommodate several hundred hydrophones.

  14. Design of large aperture superferric quadrupole magnets for an in-flight fragment separator

    SciTech Connect

    Zaghloul, Aziz; Kim, Dogyun; Kim, Jangyoul; Kim, Mijung; Kim, Myeongjin; Yun, Chongcheoul; Kim, Jongwon

    2014-01-29

    Superferric quadrupole magnets to be used for in-flight fragment separator have been designed. A quadrupole magnet triplet for beam focusing is placed in a cryostat together with superconducting correction coils. To maximize acceptance of rare isotope beams produced by projectile fragmentation, it is essential to use large-aperture quadrupole magnets. The pole tip radius is 17 cm in the current design, and we tried to enlarge the aperture with 3D analysis on magnetic fields. In the front end of the separator, where a target and beam dump are located, we plan to use two sets of quadrupole triplets made of high-Tc superconductor (HTS) operating at 20-50 K considering high radiation heat load. The HTS magnet will use warm iron poles. Both low-Tc and high-Tc superconductors are acquired for test winding, and two kinds of dewar and cryostat are under construction to perform the coil and magnet tests. The magnetic design of superferric quadrupole is mainly discussed.

  15. Improving 351-nm Damage Performance of Large-Aperture Fused Silica and DKDP Optics

    SciTech Connect

    Burnham, A K; Hackel, L; Wegner, P; Parham, T; Hrubesh, L; Penetrante, B; Whitman, P; Demos, S; Menapace, J; Runkel, M; Fluss, M; Feit, M; Key, M; Biesiada, T

    2002-01-07

    A program to identify and eliminate the causes of UV laser-induced damage and growth in fused silica and DKDP has developed methods to extend optics lifetimes for large-aperture, high-peak-power, UV lasers such as the National Ignition Facility (NIF). Issues included polish-related surface damage initiation and growth on fused silica and DKDP, bulk inclusions in fused silica, pinpoint bulk damage in DKDP, and UV-induced surface degradation in fused silica and DKDP in a vacuum. Approaches included an understanding of the mechanism of the damage, incremental improvements to existing fabrication technology, and feasibility studies of non-traditional fabrication technologies. Status and success of these various approaches are reviewed. Improvements were made in reducing surface damage initiation and eliminating growth for fused silica by improved polishing and post-processing steps, and improved analytical techniques are providing insights into mechanisms of DKDP damage. The NIF final optics hardware has been designed to enable easy retrieval, surface-damage mitigation, and recycling of optics.

  16. Metrological characterization of a large aperture Fizeau for x-ray mirrors measurement

    NASA Astrophysics Data System (ADS)

    Vannoni, Maurizio; Freijo Martín, Idoia

    2015-06-01

    The European XFEL is a large facility under construction in Hamburg, Germany. It will provide a transversally fully coherent x-ray radiation with outstanding characteristics: high repetition rate (up to 2700 pulses with a 0.6 milliseconds long pulse train at 10Hz), short wavelength (down to 0.05 nm), short pulse (in the femtoseconds scale) and high average brilliance (1.61025 photons / s / mm2 / mrad2/ 0.1% bandwidth). Due to the very short wavelength and very high pulse energy, all the mirrors need to have high quality surface, to be very long, and at the same time to implement an effective cooling system. Matching these tight specifications and assessing them with high precision optical measurements is very challenging. In order to measure the mirrors and to characterize their interaction with the mechanical mounts, we equipped a Metrology Laboratory with a Large Aperture Fizeau. The system is a classical 100 mm diameter commercial Fizeau, with an additional expander providing a 300 mm diameter. Despite the commercial nature of the system, special care has been done in the polishing of the reference flats and in the expander quality. In this report, we show the preparation of the instrument, the calibration and the performance characterization, together with some preliminary results. We also describe the approach that we want to follow for the x-rays mirrors measurements. The final goal will be to characterize very long mirrors, almost 1 meter long, with nanometer accuracy.

  17. Determination of Turbulent Sensible Heat Flux over a Coastal Maritime Area Using a Large Aperture Scintillometer

    NASA Astrophysics Data System (ADS)

    Lee, Sang-Hyun

    2015-11-01

    Scintillometers have been widely used in estimating the surface-layer sensible heat flux (Q_H) over natural and urban surfaces, but their application over water bodies is rare. Here, a large aperture scintillometer (LAS) was deployed over a coastal maritime area (`a beach') with an optical path distance of 1 km to investigate LAS capability in estimating the sensible heat fluxes. The measurements were conducted for clear days in the cold season, characterized by a warmer sea surface than the overlying air throughout the studied days. The LAS-derived Q_H showed a significant diurnal variability of 10-150 W m^{-2} at the coastal site, and it was found that local thermal advection and tidal change at the site largely influenced the diurnal variability. A series of sensitivity tests indicated that the uncertainty in the LAS-derived Q_H was less than 11 %, except when De Bruin's similarity function was used. The overall results demonstrate that the LAS system can detect the magnitude and variability of the turbulent heat exchange at the coastal site with high temporal resolution, suggesting its usefulness for estimating Q_H in the coastal maritime environment.

  18. The Advanced Technology Large-Aperture Space Telescope (ATLAST) Technology Roadmap

    NASA Technical Reports Server (NTRS)

    Stahle, Carl; Balasubramanian, K.; Bolcar, M.; Clampin, M.; Feinberg, L.; Hartman, K.; Mosier, C.; Quijada, M.; Rauscher, B.; Redding, D.; Shaklan, S.; Stahl, P.; Thronson, H.

    2014-01-01

    We present the key technologies and capabilities that will enable a future, large-aperture ultravioletopticalinfrared (UVOIR) space observatory. These include starlight suppression systems, vibration isolation and control systems, lightweight mirror segments, detector systems, and mirror coatings. These capabilities will provide major advances over current and near-future observatories for sensitivity, angular resolution, and starlight suppression. The goals adopted in our study for the starlight suppression system are 10-10 contrast with an inner working angle of 40 milliarcsec and broad bandpass. We estimate that a vibration and isolation control system that achieves a total system vibration isolation of 140 dB for a vibration-isolated mass of 5000 kg is required to achieve the high wavefront error stability needed for exoplanet coronagraphy. Technology challenges for lightweight mirror segments include diffraction-limited optical quality and high wavefront error stability as well as low cost, low mass, and rapid fabrication. Key challenges for the detector systems include visible-blind, high quantum efficiency UV arrays, photon counting visible and NIR arrays for coronagraphic spectroscopy and starlight wavefront sensing and control, and detectors with deep full wells with low persistence and radiation tolerance to enable transit imaging and spectroscopy at all wavelengths. Finally, mirror coatings with high reflectivity ( 90), high uniformity ( 1) and low polarization ( 1) that are scalable to large diameter mirror substrates will be essential for ensuring that both high throughput UV observations and high contrast observations can be performed by the same observatory.

  19. Assessing Inter-Sensor Variability and Sensible Heat Flux Derivation Accuracy for a Large Aperture Scintillometer

    PubMed Central

    Rambikur, Evan H.; Chávez, José L.

    2014-01-01

    The accuracy in determining sensible heat flux (H) of three Kipp and Zonen large aperture scintillometers (LAS) was evaluated with reference to an eddy covariance (EC) system over relatively flat and uniform grassland near Timpas (CO, USA). Other tests have revealed inherent variability between Kipp and Zonen LAS units and bias to overestimate H. Average H fluxes were compared between LAS units and between LAS and EC. Despite good correlation, inter-LAS biases in H were found between 6% and 13% in terms of the linear regression slope. Physical misalignment was observed to result in increased scatter and bias between H solutions of a well-aligned and poorly-aligned LAS unit. Comparison of LAS and EC H showed little bias for one LAS unit, while the other two units overestimated EC H by more than 10%. A detector alignment issue may have caused the inter-LAS variability, supported by the observation in this study of differing power requirements between LAS units. It is possible that the LAS physical misalignment may have caused edge-of-beam signal noise as well as vulnerability to signal noise from wind-induced vibrations, both having an impact on the solution of H. In addition, there were some uncertainties in the solutions of H from the LAS and EC instruments, including lack of energy balance closure with the EC unit. However, the results obtained do not show clear evidence of inherent bias for the Kipp and Zonen LAS to overestimate H as found in other studies. PMID:24473285

  20. HI at z 20: The Large Aperture Experiment to Detect the Dark Ages

    NASA Astrophysics Data System (ADS)

    Greenhill, Lincoln J.; Werthimer, D.; Taylor, G.; Ellingson, S.; LEDA Collaboration

    2012-05-01

    When did the first stars form? Did supermassive black holes form at the same time, earlier, or later? One of the great challenges of cosmology today is the study of these first generation objects. The Large Aperture Experiment to Detect the Dark Ages (LEDA) project seeks to detect, in total-power, emission from neutral Hydrogen (21 cm rest wavelength) in the intergalactic medium about 100 million years after the Big Bang (redshifts 20). Detection would deliver the first observational constraints on models of structure formation and the first pockets of star and black holes formation in the Universe. LEDA will develop and integrate by 2013 signal processing instrumentation into the new first station of the Long Wavelength Array (LWA). This comprises a large-N correlator serving all 512 dipole antennas of the LWA1, leveraging a packetized CASPER architecture and combining FPGAs and GPUs for the F and X stages. Iterative calibration and imaging will rely on warped snapshot imaging and be drawn from a GPU-enabled library (cuWARP) that is designed specifically to support wide-field full polarization imaging with fixed dipole arrays. Calibration techniques will include peeling, correction for ionospheric refraction, direction dependent dipole gains, deconvolution via forward modeling, and exploration of pulsar data analysis to improve performance. Accurate calibration and imaging will be crucial requirements for LEDA, necessary to subtract the bright foreground sky and detect the faint neutral Hydrogen signal. From the computational standpoint, LEDA is a O(100) TeraFlop per second challenge that enables a scalable architecture looking toward development of radio arrays requiring power efficient 10 PetaFlop per second performance. Stage two of the Hydrogen Epoch of Reionization Array (HERA2) is one example.

  1. Tethered Formation Configurations: Meeting the Scientific Objectives of Large Aperture and Interferometric Science

    NASA Technical Reports Server (NTRS)

    Farley, Rodger E.; Quinn, David A.; Brodeur, Stephen J. (Technical Monitor)

    2001-01-01

    With the success of the Hubble Space Telescope, it has become apparent that new frontiers of science and discovery are made every time an improvement in imaging resolution is made. For the HST working primarily in the visible and near-visible spectrum, this meant designing, building, and launching a primary mirror approximately three meters in diameter. Conventional thinking tells us that accomplishing a comparable improvement in resolution at longer wavelengths for Earth and Space Science applications requires a corresponding increase in the size of the primary mirror. For wavelengths in the sub-millimeter range, a very large telescope with an effective aperture in excess of one kilometer in diameter would be needed to obtain high quality angular resolution. Realistically a single aperture this large is practically impossible. Fortunately such large apertures can be constructed synthetically. Possibly as few as three 34 meter diameter mirrors flying in precision formation could be used to collect light at these longer wavelengths permitting not only very large virtual aperture science to be carried out, but high-resolution interferometry as well. To ensure the longest possible mission duration, a system of tethered spacecraft will be needed to mitigate the need for a great deal of propellant. A spin-stabilized, tethered formation will likely meet these requirements. Several configurations have been proposed which possibly meet the needs of the Space Science community. This paper discusses two of them, weighing the relative pros and cons of each concept. The ultimate goal being to settle on a configuration which combines the best features of structure, tethers, and formation flying to meet the ambitious requirements necessary to make future large synthetic aperture and interferometric science missions successful.

  2. Tethered Formation Configurations: Meeting the Scientific Objectives of Large Aperture and Interferometric Science

    NASA Technical Reports Server (NTRS)

    Farley, Rodger E.; Quinn, David A.

    2004-01-01

    With the success of the Hubble Space Telescope, it has become apparent that new frontiers of science and discovery are made every time an improvement in imaging resolution is made. For the HST working primarily in the visible and near-visible spectrum, this meant designing, building and launching a primary mirror approximately three meters in diameter. Conventional thinking tells us that accomplishing a comparable improvement in resolution at longer wavelengths for Earth and Space Science applications requires a corresponding increase in the size of the primary mirror. For wavelengths in the sub-millimeter range, a very large telescope with an effective aperture in excess of one kilometer in diameter would be needed to obtain high quality angular resolution. Realistically a single aperture this large is practically impossible. Fortunately such large apertures can be constructed synthetically. Possibly as few as three 3 - 4 meter diameter mirrors flying in precision formation could be used to collect light at these longer wavelengths permitting not only very large virtual aperture science to be carried out, but high-resolution interferometry as well. To ensure the longest possible mission duration, a system of tethered spacecraft will be needed to mitigate the need for a great deal of propellant. A spin-stabilized, tethered formation will likely meet these requirements. Several configurations have been proposed which possibly meet the needs of the Space Science community. This paper discusses two of them, weighing the relative pros and cons of each concept. The ultimate goal being to settle on a configuration which combines the best features of structure, tethers and formation flying to meet the ambitious requirements necessary to make future large synthetic aperture and interferometric science missions successful.

  3. OASIS 1.0: Very Large-Aperture High-Power Lidar for Exploring Geospace

    NASA Astrophysics Data System (ADS)

    Chu, X.; Smith, J. A.; Chen, C.; Zhao, J.; Yu, Z.; Gardner, C. S.

    2015-12-01

    A new initiative, namely OASIS (the Observatory for Atmosphere Space Interaction Studies), has called for a very large-aperture high-power (VLAHP) lidar as its first step forward to acquire the unprecedented measurement capabilities for exploring the space-atmosphere interaction region (SAIR). Currently, there exists a serious observational gap of the Earth's neutral atmosphere above 100 km. Information on neutral winds and temperatures and on the plasma-neutral coupling in the SAIR, especially between 100 and 200 km, is either sparse or nonexistent. Fully exploring the SAIR requires measurements of the neutral atmosphere to complement radar observations of the plasma. Lidar measurements of neutral winds, temperatures and species can enable these explorations. Many of these topics will be addressed with the VLAHP lidar. Discoveries of thermospheric neutral Fe, Na and K layers up to nearly 200 km at McMurdo, Antarctica and other locations on Earth, have opened a new door to observing the neutral thermosphere with ground-based instruments. These neutral metal layers provide the tracers for resonance Doppler lidars to directly measure the neutral temperatures and winds in the thermosphere, thus enabling the VLAHP lidar dream! Because the thermospheric densities of these metal atoms are many times smaller than the layer peak densities near 90 km, high power-aperture product lidars, like the VLAHP lidar, are required to derive scientifically useful measurements. Furthermore, several key technical challenges for VLAHP lidar have been largely resolved in the last a few years through the successful development of Fe and Na Doppler lidars at Boulder. By combining Rayleigh and Raman with resonance lidar techniques and strategically operating the VLAHP lidar next to incoherent scatter radar and other complementary instruments, the VLAHP lidar will enable new cutting-edge exploration of the geospace. These new concepts and progresses will be introduced in this paper.

  4. Large-aperture, tapered fiber-coupled, 10-kHz particle-image velocimetry.

    PubMed

    Hsu, Paul S; Roy, Sukesh; Jiang, Naibo; Gord, James R

    2013-02-11

    We demonstrate the design and implementation of a fiber-optic beam-delivery system using a large-aperture, tapered step-index fiber for high-speed particle-image velocimetry (PIV) in turbulent combustion flows. The tapered fiber in conjunction with a diffractive-optical-element (DOE) fiber-optic coupler significantly increases the damage threshold of the fiber, enabling fiber-optic beam delivery of sufficient nanosecond, 532-nm, laser pulse energy for high-speed PIV measurements. The fiber successfully transmits 1-kHz and 10-kHz laser pulses with energies of 5.3 mJ and 2 mJ, respectively, for more than 25 min without any indication of damage. It is experimentally demonstrated that the tapered fiber possesses the high coupling efficiency (~80%) and moderate beam quality for PIV. Additionally, the nearly uniform output-beam profile exiting the fiber is ideal for PIV applications. Comparative PIV measurements are made using a conventionally (bulk-optic) delivered light sheet, and a similar order of measurement accuracy is obtained with and without fiber coupling. Effective use of fiber-coupled, 10-kHz PIV is demonstrated for instantaneous 2D velocity-field measurements in turbulent reacting flows. Proof-of-concept measurements show significant promise for the performance of fiber-coupled, high-speed PIV using a tapered optical fiber in harsh laser-diagnostic environments such as those encountered in gas-turbine test beds and the cylinder of a combustion engine. PMID:23481818

  5. Large-aperture, tapered fiber-coupled, 10-kHz particle-image velocimetry.

    PubMed

    Hsu, Paul S; Roy, Sukesh; Jiang, Naibo; Gord, James R

    2013-02-11

    We demonstrate the design and implementation of a fiber-optic beam-delivery system using a large-aperture, tapered step-index fiber for high-speed particle-image velocimetry (PIV) in turbulent combustion flows. The tapered fiber in conjunction with a diffractive-optical-element (DOE) fiber-optic coupler significantly increases the damage threshold of the fiber, enabling fiber-optic beam delivery of sufficient nanosecond, 532-nm, laser pulse energy for high-speed PIV measurements. The fiber successfully transmits 1-kHz and 10-kHz laser pulses with energies of 5.3 mJ and 2 mJ, respectively, for more than 25 min without any indication of damage. It is experimentally demonstrated that the tapered fiber possesses the high coupling efficiency (~80%) and moderate beam quality for PIV. Additionally, the nearly uniform output-beam profile exiting the fiber is ideal for PIV applications. Comparative PIV measurements are made using a conventionally (bulk-optic) delivered light sheet, and a similar order of measurement accuracy is obtained with and without fiber coupling. Effective use of fiber-coupled, 10-kHz PIV is demonstrated for instantaneous 2D velocity-field measurements in turbulent reacting flows. Proof-of-concept measurements show significant promise for the performance of fiber-coupled, high-speed PIV using a tapered optical fiber in harsh laser-diagnostic environments such as those encountered in gas-turbine test beds and the cylinder of a combustion engine.

  6. Preliminary results from a new large-aperture seismic and GPS array in southern Mexico

    NASA Astrophysics Data System (ADS)

    Cabral-Cano, E.; Demets, C.; Brudzinski, M.; Arciniega-Ceballos, A.; Diaz-Molina, O.; Correa-Mora, F.

    2006-12-01

    A multi-year deployment of a large aperture seismic and GPS array in southern Mexico, for the purpose of studying the Oaxaca segment of the Middle America subduction zone, entered its second development phase during the summer of 2006. The Oaxaca segment is one of the few places on earth where land-based geophysical observations can be used to study both the locked, seismogenic area of a subduction interface and region of deeper transitional slip, where episodic tremor and slip may originate. The newly expanded array, consisting of eight broad-band seismic and nine continuous GPS stations, measures deformation in the state of Oaxaca and adjacent areas. Important goals of the deployment are to better understand the spatial and temporal histories of episodic slip transients, and their role in either relieving or increasing strain accumulating along the seismogenic portion of a subduction interface. The combined GPS and seismic arrays will be a powerful tool for studying slow slip and non-volcanic tremor, as well as imaging spatial and temporal variations in frictional coupling along the locked and transitional zones beneath our network. Preliminary analysis of seismic data indicates that the seismic stations are uniformly characterized by low noise in the non-volcanic tremor passband of 1-5 Hz, accomplishing an important goal of our site selection. We attribute this to our use of a newly developed, on-site 'listening test' in which our seismic equipment was used to record 30-60 minutes of data before the vault was excavated at a potentially low noise site. The data were processed on site with newly developed software to determine whether the amplitude of the background noise within the frequency band of non-volcanic tremors was low enough to observe the amplitude of tremors previously recorded in Cascadia. Using this test, we confirmed in advance that our selected seismic sites had sufficiently low noise to observe non-volcanic tremor if it is similar to that in

  7. Determining suitability of Large Aperture Scintillometer for validating remote sensing based evapotranspiration maps

    NASA Astrophysics Data System (ADS)

    Paul, G.; Gowda, P. H.; Howell, T. A.; Basu, S.; Colaizzi, P. D.; Marek, T.

    2013-12-01

    Scintillation method is a relatively new technique for measuring the sensible heat and water fluxes over land surfaces. Path integrating capabilities of scintillometer over heterogeneous landscapes make it a potential tool for comparing the energy fluxes derived from remote sensing based energy balance algorithms. For this reason, scintillometer-derived evapotranspiration (ET) fluxes are being used to evaluate remote sensing based energy balance algorithms for their ability to estimate ET fluxes. However, LAS' (Large Aperture Scintillometer) ability to derive ET fluxes is not thoroughly tested. The objective of this study was to evaluate LAS- and Surface Energy Balance System (SEBS)-derived fluxes against lysimetric data to determine LAS' suitability for validating remote sensing based evapotranspiration (ET) maps. The study was conducted during the Bushland Evapotranspiration and Agricultural Remote sensing EXperiment - 2008 (BEAREX-08) at the USDA-ARS Conservation and Production Research Laboratory (CPRL), Bushland, Texas. SEBS was coded in a GIS environment to retrieve ET fluxes from the high resolution imageries acquired using airborne multispectral sensors. The CPRL has four large weighing lysimeters (3 m long x 3 m wide x 2.4 m deep), each located in the middle of approximately 5 ha fields, arranged in a block pattern. The two lysimeter fields located on the east (NE and SE) were managed under irrigated conditions, and the other two lysimeters on the west (NW and SW) were under dryland management. Each lysimeter field was equipped with an automated weather station that provided measurements for net radiation (Rn), Ts, soil heat flux (Go), Ta, relative humidity, and wind speed. During BEAREX08, the NE and SE fields were planted to cotton on May 21, and the NW and SW dryland lysimeters fields were planted to cotton on June 5. One LAS each was deployed across two large dryland lysimeter fields (NW and SW) and two large irrigated lysimeter fields (NE and SE). The

  8. A novel measurement scheme for the radial group delay of large-aperture ultra-short laser pulses

    NASA Astrophysics Data System (ADS)

    Wu, Fenxiang; Xu, Yi; Li, Zhaoyang; Li, Wenkai; Lu, Jun; Wang, Cheng; Li, Yanyan; Liu, Yanqi; Lu, Xiaoming; Peng, Yujie; Wang, Ding; Leng, Yuxin; Li, Ruxin

    2016-05-01

    In femtosecond high-peak-power laser system, the radial group delay (RGD) of the pulse front introduced by conventional lens-based beam expanders can significantly decrease the achievable focal intensity, especially when it is larger than the pulse duration. In order to quantitatively analyze and compensate the RGD, a novel measurement scheme based on self-reference and second-order cross-correlation technology is proposed and applied to measure the RGD of the large-aperture ultra-short laser pulses directly. The measured result of the RGD in a 200 TW Ti:sapphire laser system is in good agreement with the theoretical calculation. To our knowledge, it is the first time to realize the direct RGD measurement of large-aperture ultra-short laser pulses.

  9. Research of the application of low-precision large aperture nonimaging optics in free-space optical communication system

    NASA Astrophysics Data System (ADS)

    Wang, Jia; Yu, Xin

    2008-03-01

    A novel receiving antenna using low precision large aperture nonimaging optical apparatus in free-space optical (FSO) communication system has been proposed. The receiving optical antenna of FSO communication system is usually a conventional imaging optical system such as Newton system, Green system or Cassegrain system. It is ineffective to use a large aperture receiving antenna in FSO communication system because the precision imaging optical apparatus will be very expensive with aperture increase, so that, in order to reduce the difficulty of pointing and tracking between transmitter and receiver, the beam divergence has to be increased with the cost of lost part of the transmitted power. Since in the field of FSO communication system, the receiving optical antenna is used not to image but to concentrate optical signal as much as possible, the novel concept of using low precision large aperture nonimaging optical apparatus as receiving optical antenna to replace the conventional imaging optical system was proposed. Several nonimaging apparatus including spherical reflector, elliptical reflector, compound parabolic concentrator (CPC) and conical barrel concentrator are analyzed by ray tracing. Their gain and the transmission rate limitation due to wave-front aberrations are discussed, and their merit used in FSO communication system has been proved.

  10. An improved low-optical-power variable focus lens with a large aperture.

    PubMed

    Wang, Lihui; Oku, Hiromasa; Ishikawa, Masatoshi

    2014-08-11

    We report an improved method of fabricating a variable focus lens in which an in-plane pretension force is applied to a membrane. This method realized a lens with a large optical aperture and high performance in a low-optical-power region. The method was verified by comparing membranes in a simulation using the finite element method. A prototype with a 26 mm-diameter aperture was fabricated, and the wavefront behavior was measured by using a Shack-Hartmann sensor. Thanks to the in-plane pretension force, the lens achieved an infinite focal length with a wavefront error of 105.1 nm root mean square.

  11. Active Nuclear Import of Membrane Proteins Revisited.

    PubMed

    Laba, Justyna K; Steen, Anton; Popken, Petra; Chernova, Alina; Poolman, Bert; Veenhoff, Liesbeth M

    2015-01-01

    It is poorly understood how membrane proteins destined for the inner nuclear membrane pass the crowded environment of the Nuclear Pore Complex (NPC). For the Saccharomyces cerevisiae proteins Src1/Heh1 and Heh2, a transport mechanism was proposed where the transmembrane domains diffuse through the membrane while the extralumenal domains encoding a nuclear localization signal (NLS) and intrinsically disordered linker (L) are accompanied by transport factors and travel through the NPC. Here, we validate the proposed mechanism and explore and discuss alternative interpretations of the data. First, to disprove an interpretation where the membrane proteins become membrane embedded only after nuclear import, we present biochemical and localization data to support that the previously used, as well as newly designed reporter proteins are membrane-embedded irrespective of the presence of the sorting signals, the specific transmembrane domain (multipass or tail anchored), independent of GET, and also under conditions that the proteins are trapped in the NPC. Second, using the recently established size limit for passive diffusion of membrane proteins in yeast, and using an improved assay, we confirm active import of polytopic membrane protein with extralumenal soluble domains larger than those that can pass by diffusion on similar timescales. This reinforces that NLS-L dependent active transport is distinct from passive diffusion. Thirdly, we revisit the proposed route through the center of the NPC and conclude that the previously used trapping assay is, unfortunately, poorly suited to address the route through the NPC, and the route thus remains unresolved. Apart from the uncertainty about the route through the NPC, the data confirm active, transport factor dependent, nuclear transport of membrane-embedded mono- and polytopic membrane proteins in baker's yeast. PMID:26473931

  12. Active Nuclear Import of Membrane Proteins Revisited

    PubMed Central

    Laba, Justyna K.; Steen, Anton; Popken, Petra; Chernova, Alina; Poolman, Bert; Veenhoff, Liesbeth M.

    2015-01-01

    It is poorly understood how membrane proteins destined for the inner nuclear membrane pass the crowded environment of the Nuclear Pore Complex (NPC). For the Saccharomyces cerevisiae proteins Src1/Heh1 and Heh2, a transport mechanism was proposed where the transmembrane domains diffuse through the membrane while the extralumenal domains encoding a nuclear localization signal (NLS) and intrinsically disordered linker (L) are accompanied by transport factors and travel through the NPC. Here, we validate the proposed mechanism and explore and discuss alternative interpretations of the data. First, to disprove an interpretation where the membrane proteins become membrane embedded only after nuclear import, we present biochemical and localization data to support that the previously used, as well as newly designed reporter proteins are membrane-embedded irrespective of the presence of the sorting signals, the specific transmembrane domain (multipass or tail anchored), independent of GET, and also under conditions that the proteins are trapped in the NPC. Second, using the recently established size limit for passive diffusion of membrane proteins in yeast, and using an improved assay, we confirm active import of polytopic membrane protein with extralumenal soluble domains larger than those that can pass by diffusion on similar timescales. This reinforces that NLS-L dependent active transport is distinct from passive diffusion. Thirdly, we revisit the proposed route through the center of the NPC and conclude that the previously used trapping assay is, unfortunately, poorly suited to address the route through the NPC, and the route thus remains unresolved. Apart from the uncertainty about the route through the NPC, the data confirm active, transport factor dependent, nuclear transport of membrane-embedded mono- and polytopic membrane proteins in baker’s yeast. PMID:26473931

  13. Developing Magnetorheological Finishing (MRF) Technology for the Manufacture of Large-Aperture Optics in Megajoule Class Laser Systems

    SciTech Connect

    Menapace, J A

    2010-10-27

    Over the last eight years we have been developing advanced MRF tools and techniques to manufacture meter-scale optics for use in Megajoule class laser systems. These systems call for optics having unique characteristics that can complicate their fabrication using conventional polishing methods. First, exposure to the high-power nanosecond and sub-nanosecond pulsed laser environment in the infrared (>27 J/cm{sup 2} at 1053 nm), visible (>18 J/cm{sup 2} at 527 nm), and ultraviolet (>10 J/cm{sup 2} at 351 nm) demands ultra-precise control of optical figure and finish to avoid intensity modulation and scatter that can result in damage to the optics chain or system hardware. Second, the optics must be super-polished and virtually free of surface and subsurface flaws that can limit optic lifetime through laser-induced damage initiation and growth at the flaw sites, particularly at 351 nm. Lastly, ultra-precise optics for beam conditioning are required to control laser beam quality. These optics contain customized surface topographical structures that cannot be made using traditional fabrication processes. In this review, we will present the development and implementation of large-aperture MRF tools and techniques specifically designed to meet the demanding optical performance challenges required in large-aperture high-power laser systems. In particular, we will discuss the advances made by using MRF technology to expose and remove surface and subsurface flaws in optics during final polishing to yield optics with improve laser damage resistance, the novel application of MRF deterministic polishing to imprint complex topographical information and wavefront correction patterns onto optical surfaces, and our efforts to advance the technology to manufacture large-aperture damage resistant optics.

  14. A New Type of X-ray Condenser Lenses with Large Apertures Fabricated by Rolling of Structured Films

    SciTech Connect

    Simon, M.; Reznikova, E.; Nazmov, V.; Grund, T.; Last, A.

    2010-04-06

    In order to meet the demand for X-ray lenses with large apertures and, hence, photon flux, a new type of X-ray lenses has been developed: Rolled prismatic X-ray lenses feature a vast number of refracting surfaces to increase transparency and aperture, respectively. Prototypes of such lenses have been fabricated by molding and rolling of a structured polyimide film. In this work, rolled prismatic X-ray lenses are pictured, and results of first tests performed at the ANKA storage ring in Karlsruhe are presented.

  15. In-situ monitoring of surface post-processing in large aperture fused silica optics with Optical Coherence Tomography

    SciTech Connect

    Guss, G M; Bass, I l; Hackel, R P; Mailhiot, C; Demos, S G

    2008-02-08

    Optical Coherence Tomography is explored as a method to image laser-damage sites located on the surface of large aperture fused silica optics during post-processing via CO{sub 2} laser ablation. The signal analysis for image acquisition was adapted to meet the sensitivity requirements for this application. A long-working distance geometry was employed to allow imaging through the opposite surface of the 5-cm thick optic. The experimental results demonstrate the potential of OCT for remote monitoring of transparent material processing applications.

  16. A high-resolution detecting system based on machine vision for defects on large aperture and super-smooth surface

    NASA Astrophysics Data System (ADS)

    Yang, Yongying; Zhao, Limin; Wang, Shitong; Cao, Pin; Liu, Dong; Li, Lu; Yan, Lu; Li, Chen; Xie, Shibing; Li, Yang; Chen, Yangjie

    2015-02-01

    The high-resolution detecting system based on machine vision for defects on large aperture and super-smooth surface uses a novel ring telecentric lighting optical system detecting the defects on the sample all round and without blind spots. The scattering light induced by surface defects enters the adaptive and highly zoom microscopic scattering dark-field imaging system for defect detecting and then forms digital images. Sub-aperture microscopic scanning sampling and fast stitching on the surface is realized by using precise multi-axis shifting guided scanning system and a standard comparison board based upon binary optics is used to implement fast calibration of micron-dimension defects detected actually. The pattern recognition technology of digital image processing which can automatically output digitalized surface defects statements after scaling is established to comprehensively evaluate defects. This system which can reach micron-dimension defect resolution can achieve detections of large aperture components of 850 mm × 500 mm, solve the durable problem of subjective uncertainty brought in by human visual detection of defects and achieve quantitative detection of defects with machine vision.

  17. Organelle morphogenesis by active membrane remodeling

    NASA Astrophysics Data System (ADS)

    Ramakrishnan, N.; Ipsen, John H.; Rao, Madan; Kumar, P. B. Sunil

    Intracellular organelles are subject to a steady flux of lipids and proteins through active, energy consuming transport processes. Active fission and fusion are promoted by GTPases, e.g., Arf-Coatamer and the Rab-Snare complexes, which both sense and generate local membrane curvature. Here we investigate through Dynamical Triangulation Monte Carlo simulations, the role that these active processes play in determining the morphology and compositional segregation in closed membranes. Our results suggest that the ramified morphologies of organelles observed in-vivo are a consequence of driven nonequilibrium processes rather than equilibrium forces.

  18. Electro-Mechanical Simulation of a Large Aperture MOEMS Fabry-Perot Tunable Filter

    NASA Technical Reports Server (NTRS)

    Kuhn, Jonathan L.; Barclay, Richard B.; Greenhouse, Matthew A.; Mott, D. Brent; Satyapal, Shobita; Powers, Edward I. (Technical Monitor)

    2000-01-01

    We are developing a micro-machined electrostatically actuated Fabry-Perot tunable filter with a large clear aperture for application in high through-put wide-field imaging spectroscopy and lidar systems. In the first phase of this effort, we are developing key components based on coupled electro-mechanical simulations. In particular, the movable etalon plate design leverages high coating stresses to yield a flat surface in drum-head tension over a large diameter (12.5 mm). In this approach, the cylindrical silicon movable plate is back etched, resulting in an optically coated membrane that is suspended from a thick silicon support ring. Understanding the interaction between the support ring, suspended membrane, and coating is critical to developing surfaces that are flat to within stringent etalon requirements. In this work, we present the simulations used to develop the movable plate, spring suspension system, and electrostatic actuation mechanism. We also present results from tests of fabricated proof of concept components.

  19. Active membrane cholesterol as a physiological effector.

    PubMed

    Lange, Yvonne; Steck, Theodore L

    2016-09-01

    Sterols associate preferentially with plasma membrane sphingolipids and saturated phospholipids to form stoichiometric complexes. Cholesterol in molar excess of the capacity of these polar bilayer lipids has a high accessibility and fugacity; we call this fraction active cholesterol. This review first considers how active cholesterol serves as an upstream regulator of cellular sterol homeostasis. The mechanism appears to utilize the redistribution of active cholesterol down its diffusional gradient to the endoplasmic reticulum and mitochondria, where it binds multiple effectors and directs their feedback activity. We have also reviewed a broad literature in search of a role for active cholesterol (as opposed to bulk cholesterol or lipid domains such as rafts) in the activity of diverse membrane proteins. Several systems provide such evidence, implicating, in particular, caveolin-1, various kinds of ABC-type cholesterol transporters, solute transporters, receptors and ion channels. We suggest that this larger role for active cholesterol warrants close attention and can be tested easily.

  20. Large-aperture MOEMS Fabry-Perot interferometer for miniaturized spectral imagers

    NASA Astrophysics Data System (ADS)

    Rissanen, Anna; Langner, Andreas; Viherkanto, Kai; Mannila, Rami

    2015-02-01

    VTT's optical MEMS Fabry-Perot interferometers (FPIs) are tunable optical filters, which enable miniaturization of spectral imagers into small, mass producible hand-held sensors with versatile optical measurement capabilities. FPI technology has also created a basis for various hyperspectral imaging instruments, ranging from nanosatellites, environmental sensing and precision agriculture with UAVs to instruments for skin cancer detection. Until now, these application demonstrations have been mostly realized with piezo-actuated FPIs fabricated by non-monolithical assembly method, suitable for achieving very large optical apertures and with capacity to small-to-medium volumes; however large-volume production of MEMS manufacturing supports the potential for emerging spectral imaging applications also in large-volume applications, such as in consumer/mobile products. Previously reported optical apertures of MEMS FPIs in the visible range have been up to 2 mm in size; this paper presents the design, successful fabrication and characterization of MEMS FPIs for central wavelengths of λ = 500 nm and λ = 650 nm with optical apertures up to 4 mm in diameter. The mirror membranes of the FPI structures consist of ALD (atomic layer deposited) TiO2-Al2O3 λ/4- thin film Bragg reflectors, with the air gap formed by sacrificial polymer etching in O2 plasma. The entire fabrication process is conducted below 150 °C, which makes it possible to monolithically integrate the filter structures on other ICdevices such as detectors. The realized MEMS devices are aimed for nanosatellite space application as breadboard hyperspectral imager demonstrators.

  1. The Balloon-borne Large Aperture Submillimeter Telescope for Polarimetry (BLAST-Pol): Instrument and 2010 Science Campaign

    NASA Astrophysics Data System (ADS)

    Gandilo, Natalie; BLAST-Pol Collaboration

    2012-01-01

    The Balloon-borne Large Aperture Submillimeter Telescope for Polarimetry (BLAST-Pol) is a 1.8-m telescope that observes polarized dust emission with a resolution of 1'. BLAST-Pol images the sky onto a focal plane that consists of 270 feed-horn coupled bolometers at 250, 350, and 500 microns. In January 2011, BLAST-Pol completed a successful 9.5-day flight over Antarctica. Eight science targets were observed, and a second flight is planned for December 2012. I will give an overview of the instrument performance during the first science campaign and present preliminary maps. BLAST-Pol maps will provide an excellent dataset for studying the role of magnetic fields in star formation.

  2. Relationship between large-aperture optical components of striated surface shape and focal spot characteristics in the far-field

    NASA Astrophysics Data System (ADS)

    Lei, Zemin; Sun, Xiaoyan; Yin, Xianhua; Lv, Fengnian; Zhang, Zhen; Lu, Xingqiang; Fan, Dianyuan

    2015-07-01

    Surface shape of optical components is an essential factor of the laser beam quality. Different types of surface correspond to different characteristics of the laser focal spot. Striated surface shape is one of common and typical cases of optical component surfaces in laser facilities, which have attracted great attention. For learning the impact of the component on focal spot in the far-field, a model component with the similar features was introduced in the study. Intensity distributions of focal spot in the far-field was simulated after laser beam went through the model component. Effects of the modulation depth and the modulation period on spot morphology were presented. Furthermore, the relations between these optical specifications and focal spots with some requirements had been analyzed. The results can enhance our understanding about striae degrees of optical elements and have reference values to guide the processing and the use of large-aperture components correctly.

  3. The Advanced Technology Large Aperture Space Telescope (ATLAST): Science Drivers, Technology Developments, and Synergies with Other Future Facilities

    NASA Technical Reports Server (NTRS)

    Postman, Marc; Brown, Tom; Sembach, Kenneth; Giavalisco, Mauro; Traub, Wesley; Stapelfeldt, Karl; Calzetti, Daniela; Oegerle, William; Rich, R. Michael; Stahl, H. Philip; Tumlinson, Jason; Mountain, Matt; Soummer, Remi; Hyde, Tupper

    2011-01-01

    The Advanced Technology Large-Aperture Space Telescope (ATLAST) is a concept for an 8-meter to 16-meter UVOIR space observatory for launch in the 2025-2030 era. ATLAST will allow astronomers to answer fundamental questions at the forefront of modern astrophysics, including "Is there life elsewhere in the Galaxy?" We present a range of science drivers that define the main performance requirements for ATLAST (8 to 16 milliarcsec angular resolution, diffraction limited imaging at 0.5 m wavelength, minimum collecting area of 45 square meters, high sensitivity to light wavelengths from 0.1 m to 2.4 m, high stability in wavefront sensing and control). We will also discuss the synergy between ATLAST and other anticipated future facilities (e.g., TMT, EELT, ALMA) and the priorities for technology development that will enable the construction for a cost that is comparable to current generation observatory-class space missions.

  4. Design studies of large aperture, high-resolution Earth science microwave radiometers compatible with small launch vehicles

    NASA Technical Reports Server (NTRS)

    Schroeder, Lyle C.; Bailey, M. C.; Harrington, Richard F.; Kendall, Bruce M.; Campbell, Thomas G.

    1994-01-01

    High-spatial-resolution microwave radiometer sensing from space with reasonable swath widths and revisit times favors large aperture systems. However, with traditional precision antenna design, the size and weight requirements for such systems are in conflict with the need to emphasize small launch vehicles. This paper describes tradeoffs between the science requirements, basic operational parameters, and expected sensor performance for selected satellite radiometer concepts utilizing novel lightweight compactly packaged real apertures. Antenna, feed, and radiometer subsystem design and calibration are presented. Preliminary results show that novel lightweight real aperture coupled with state-of-the-art radiometer designs are compatible with small launch systems, and hold promise for high-resolution earth science measurements of sea ice, precipitation, soil moisture, sea surface temperature, and ocean wind speeds.

  5. Comparison of Turbulent Sensible Heat Flux Determined by Large-Aperture Scintillometer and Eddy Covariance over Urban and Suburban Areas

    NASA Astrophysics Data System (ADS)

    Zhang, He; Zhang, Hongsheng

    2015-01-01

    Field observations of the atmospheric boundary layer were made over urban and suburban areas in the Yangtze River Delta, China. Sensible heat fluxes were obtained by eddy-covariance (EC) systems and large-aperture scintillometers (LASs). The results indicated that (1) the sensible heat flux obtained by LAS was less noisy and slightly larger than that obtained by EC over both urban and suburban surfaces; (2) the values of were higher when the correlation coefficient of vertical wind speed and temperature () was smaller. Lower values of were due to low-frequency trends. The urban values of were smaller than suburban values at low values; (3) the sensible heat flux determined by LAS was improved by use of the Monin-Obukhov similarity theory of the temperature structure parameter over urban and suburban areas, and the improvement is more significant over urban surface areas.

  6. New technologies for the actuation and controls of large aperture lightweight quality mirrors

    NASA Technical Reports Server (NTRS)

    Lih, S. S.; Yang, E. H.; Gullapalli, S. N.; Flood, R.

    2003-01-01

    This paper presents a set of candidate components: MEMS based large stroke (>100 microns) ultra lightweight (0.01 gm) discrete inch worm actuator technology, and a distributed actuator technology, in the context of a novel lightweight active flexure-hinged substrate concept that uses the nanolaminate face sheet.

  7. Development of the Large Aperture Reflector/Boom Assembly for the SMAP Spacecraft

    NASA Technical Reports Server (NTRS)

    Mobrem, Mehran; Keay, Edward; Marks, Geoff; Slimko, Eric

    2012-01-01

    The Jet Propulsion Laboratory's (JPL) Soil Moisture Active/Passive (SMAP) mission is to measure and monitor global soil moisture dynamics and freeze/thaw states. The rotating Reflector and Boom Assembly (RBA) on SMAP presents significant design and development challenges. The payload configuration utilizes a common Radiometer and Radar feedhorn and a 6-meter deployable mesh reflector all spinning at 14.6 rpm. The evolution of the RBA system solution, development of the mass properties management approach and RBA dynamics are discussed.

  8. T/R module development for large aperture L-band phased array

    NASA Technical Reports Server (NTRS)

    Chamberlain, Neil; Andricos, Constantine; Kumley, Kendra; Berkun, Andrew; Hodges, Richard; Spitz, Suzanne

    2004-01-01

    This paper describes a transmit / receive (T/R) module for a large L-band space based radar active phased array being developed at JPL. Electrical performance and construction techniques are described, with emphasis on the former. The T/R modules have a bandwidth of more than 80 MHz centered at 1260MHz and support dual, switched polarizations. Phase and amplitude are controlled by a 6-bit phase shifter and a 6-bit attenuator, respectively. The transmitter power amplifier generates 2.4 W into a nominal 50 ohm load with 36% overall efficiency. The receiver noise figure is 4.4 dB including all front-end losses. The module weighs 32 g and has a footprint of 8 cm x 4.5 cm. Fourteen of these T/R modules were fabricated at the JPL Pick-and-Place Facility and were tested using a computer-controlled measurement facility developed at JPL. Calibrated performance of this set of T/R modules is presented and shows good agreement with design predictions.

  9. Microstrip patch antenna panel for large aperture L-band phased array

    NASA Technical Reports Server (NTRS)

    Chamberlain, Neil; Amaro, Luis; Oakes, Eric; Hodges, Richard; Spitz, Suzanne; Rosen, Paul A.

    2004-01-01

    This paper describes the design and development of a large, lightweight antenna panel for an active phased array operating at L-band. The panel was developed under a JPL program of technology development for space based radar. It utilizes dual-stacked patch elements that are interconnected with corporate feed manifold of striplines. This paper focuses on the electromagnetic design and performance of the radiating elements, with emphasis on scan performance, and also addresses mechanical and thermal aspects of the panel. The element in the array environment has a bandwidth of more than 80MHz centered at 1260MHz and is fed so that it can radiate orthogonal linear polarizations. The envisioned phased array, with a nominal aperture of 50m x 2m, is designed to scan +/-45 degrees in azimuth and +/-20 degrees in elevation. The panel of radiating elements has a mass density of 3.9 kg/m2, which represents approximately 50% of the target 8kg/m2 total panel mass density that includes T/R modules and feed manifolds.

  10. Large aperture kinoform phase plates in fused silica for spatial beam smoothing on Nova and the Beamlet Lasers

    SciTech Connect

    Rushford, M.C.; Dixit, S.N.; Thomas, I.M.; Martin, A.M.; Perry, M.D.

    1997-03-01

    It is now widely recognized that spatial beam smoothing (homogenization) is essential in coupling the laser energy to the inertial confinement fusion (ICF) targets. For the indirect drive approach to ICF, it is desirable to distribute the laser energy into a uniformly speckled profile that has a flat-top super-Gaussian envelope (8th power or higher) and contains greater than 95% of the energy inside the super-Gaussian profile. Spatial smoothing is easily achieved by introducing a binary random phase plate (RPP) in the beam. This produces a homogenized far-field pattern which consists of an overall envelope function determined by the RPP element superimposed with a fine scale speckle pattern arising due to the interference among the various RPP elements. Although easy to fabricate and currently in routine use in many fusion laboratories, the binary RPPs do not meet the ICF requirements stated above since the far-field intensity profile is restricted to essentially an Airy function containing only 84% (an upper limit) of the energy inside the central spot. Approaches using lenslet arrays (refractive or diffractive) have limited use since they operate in the quasi-far-field and have a short depth of focus. The limitations of the RPPs can be overcome by relaxing the binary phase constraint. We have recently presented 5 continuously varying phase screens for tailoring the focal plane irradiance profiles. Called kinoform phase plates (KPPs), these phase screens offer complete flexibility in tailoring the focal plane envelope and, at the same time, increasing the energy efficiency inside the focal spot. In this paper we discuss the design and fabrication of such kinoform phase plates in fused silica for spatial beam smoothing on the Nova and the Beamlet lasers. Since the phase plates are used at the end of the laser chain, KPPs on Nova and Beamlet have to be fabricated on large aperture optics (65-cm diameter and 40-cm square substrates respectively). The following

  11. Study on the Stressed Mirror Polishing with a Continuous Polishing Machine for Large Aperture Off-axis Aspheric Mirrors

    NASA Astrophysics Data System (ADS)

    Li, Xin-nan; Zhang, Hai-ying; Cui, Xiang-qun; Jiang, Zi-bo; Zheng, Yi; Liu, Xing-tao; Ni, Hou-kun

    2012-10-01

    A special stressed annular polishing technique is proposed to mill the off-axis aspheric sub-mirrors of a large segmented mirror with an annular polishing machine. Based on the basic principle of stressed annular polishing technique, a set of special stressing mechanisms are designed to convert milling the aspheric surfaces of sub-mirrors with different off-axis distances into milling the spherical surfaces with identical radii of curvature, so that they can be pol- ished simultaneously on a continuous polishing machine. It took about contin- uous 40 hours to polish a scaled-down mirror of the planning Chinese Future Giant Telescope (CFGT) using this technique. This mirror has the 330 mm di- ameter, 3.6 m off-axis distance, and the 21.6 m radius of curvature, and its max- imum asphericity is 16 micron. The experiment shows that this method has a high effciency, suits batch manufacturing, especially the batch manufacturing of aspheric sub-mirrors of the segmented primary mirror of an extremely large aperture telescope.

  12. A fundamental mode Nd:GdVO4 laser pumped by a large aperture 808 nm VCSEL

    NASA Astrophysics Data System (ADS)

    Hao, Y. Q.; Ma, J. L.; Yan, C. L.; Liu, G. J.; Ma, X. H.; Gong, J. F.; Feng, Y.; Wei, Z. P.; Wang, Y. X.; Zhao, Y. J.

    2013-05-01

    A fundamental mode Nd:GdVO4 laser pumped by a vertical cavity surface emitting laser (VCSEL) is experimentally demonstrated. The VCSEL has a circular output-beam which makes it easier for it to be directly coupled to a Nd:GdVO4 microcrystal. In our research, a large aperture 808 nm VCSEL, with a multi-ring-shaped aperture (MRSA) and an almost Gaussian-shaped far-field profile, is used as the pumping source. Experimental results for the Nd:GdVO4 laser pumped by the VCSEL are presented. The maximum output peak power of 0.754 W is obtained under a pump peak power of 1.3 W, and the corresponding opto-optic conversion efficiency is 58.1%. The average slope efficiency is 65.8% from the threshold pump power of 0.2 W to the pump power of 1.3 W. The laser beam quality factors are measured to be {M}x2=1.2 0 and {M}y2=1.1 5.

  13. Seasonal variability of turbulent fluxes over a vegetated subtropical coastal wetland measured by large aperture scintillometry and eddy covariance

    NASA Astrophysics Data System (ADS)

    Guyot, Adrien; Gray, Michael; Riesenkamp, Michiel; Lockington, David; McGowan, Hamish

    2016-04-01

    Subtropical coastal wetlands are particularly susceptible to the impacts of climate variability: their recharge rates strongly depend on rainfall, and the occurrence of prolonged droughts or wet periods have direct consequences for wetland health and bio-diversity. There is therefore a need to close the water budget of these ecosystems and this requires the quantification of rates of evaporation/evapotranspiration. However, few studies have documented land-atmosphere exchanges over wetlands for which water level varies considerably during a typical annual cycle. Here, we present a year of turbulent flux observations over a wetland on the subtropical coast of eastern Australia. Large Aperture Scintillometry and Eddy Covariance are used to derive sensible heat fluxes. Latent heat fluxes are also derived through an energy balance for both instruments' observations and also directly through Eddy Covariance. Careful sensitivity analysis of the instrumental footprints, seasonal variations of land surface parameters such as roughness length and displacement height are examined and subsequent uncertainties in the derived turbulent fluxes are discussed. Finally we show how these observations can also help better understand hydrological processes at the catchment scale.

  14. Lupus I Observations from the 2010 Flight of the Balloon-borne Large Aperture Submillimeter Telescope for Polarimetry

    NASA Astrophysics Data System (ADS)

    Matthews, Tristan G.; Ade, Peter A. R.; Angilè, Francesco E.; Benton, Steven J.; Chapin, Edward L.; Chapman, Nicholas L.; Devlin, Mark J.; Fissel, Laura M.; Fukui, Yasuo; Gandilo, Natalie N.; Gundersen, Joshua O.; Hargrave, Peter C.; Klein, Jeffrey; Korotkov, Andrei L.; Moncelsi, Lorenzo; Mroczkowski, Tony K.; Netterfield, Calvin B.; Novak, Giles; Nutter, David; Olmi, Luca; Pascale, Enzo; Poidevin, Frédérick; Savini, Giorgio; Scott, Douglas; Shariff, Jamil A.; Soler, Juan Diego; Tachihara, Kengo; Thomas, Nicholas E.; Truch, Matthew D. P.; Tucker, Carole E.; Tucker, Gregory S.; Ward-Thompson, Derek

    2014-04-01

    The Balloon-borne Large Aperture Submillimeter Telescope for Polarimetry (BLASTPol) was created by adding polarimetric capability to the BLAST experiment that was flown in 2003, 2005, and 2006. BLASTPol inherited BLAST's 1.8 m primary and its Herschel/SPIRE heritage focal plane that allows simultaneous observation at 250, 350, and 500 μm. We flew BLASTPol in 2010 and again in 2012. Both were long duration Antarctic flights. Here we present polarimetry of the nearby filamentary dark cloud Lupus I obtained during the 2010 flight. Despite limitations imposed by the effects of a damaged optical component, we were able to clearly detect submillimeter polarization on degree scales. We compare the resulting BLASTPol magnetic field map with a similar map made via optical polarimetry. (The optical data were published in 1998 by J. Rizzo and collaborators.) The two maps partially overlap and are reasonably consistent with one another. We compare these magnetic field maps to the orientations of filaments in Lupus I, and we find that the dominant filament in the cloud is approximately perpendicular to the large-scale field, while secondary filaments appear to run parallel to the magnetic fields in their vicinities. This is similar to what is observed in Serpens South via near-IR polarimetry, and consistent with what is seen in MHD simulations by F. Nakamura and Z. Li.

  15. LUPUS I observations from the 2010 flight of the Balloon-borne large aperture submillimeter telescope for polarimetry

    SciTech Connect

    Matthews, Tristan G.; Chapman, Nicholas L.; Novak, Giles; Ade, Peter A. R.; Hargrave, Peter C.; Nutter, David; Angilè, Francesco E.; Devlin, Mark J.; Klein, Jeffrey; Benton, Steven J.; Fissel, Laura M.; Gandilo, Natalie N.; Netterfield, Calvin B.; Chapin, Edward L.; Fukui, Yasuo; Gundersen, Joshua O.; Korotkov, Andrei L.; Moncelsi, Lorenzo; Mroczkowski, Tony K.; Olmi, Luca; and others

    2014-04-01

    The Balloon-borne Large Aperture Submillimeter Telescope for Polarimetry (BLASTPol) was created by adding polarimetric capability to the BLAST experiment that was flown in 2003, 2005, and 2006. BLASTPol inherited BLAST's 1.8 m primary and its Herschel/SPIRE heritage focal plane that allows simultaneous observation at 250, 350, and 500 μm. We flew BLASTPol in 2010 and again in 2012. Both were long duration Antarctic flights. Here we present polarimetry of the nearby filamentary dark cloud Lupus I obtained during the 2010 flight. Despite limitations imposed by the effects of a damaged optical component, we were able to clearly detect submillimeter polarization on degree scales. We compare the resulting BLASTPol magnetic field map with a similar map made via optical polarimetry. (The optical data were published in 1998 by J. Rizzo and collaborators.) The two maps partially overlap and are reasonably consistent with one another. We compare these magnetic field maps to the orientations of filaments in Lupus I, and we find that the dominant filament in the cloud is approximately perpendicular to the large-scale field, while secondary filaments appear to run parallel to the magnetic fields in their vicinities. This is similar to what is observed in Serpens South via near-IR polarimetry, and consistent with what is seen in MHD simulations by F. Nakamura and Z. Li.

  16. Cavity-excited Huygens' metasurface antennas for near-unity aperture illumination efficiency from arbitrarily large apertures

    NASA Astrophysics Data System (ADS)

    Epstein, Ariel; Wong, Joseph P. S.; Eleftheriades, George V.

    2016-01-01

    One of the long-standing problems in antenna engineering is the realization of highly directive beams using low-profile devices. In this paper, we provide a solution to this problem by means of Huygens' metasurfaces (HMSs), based on the equivalence principle. This principle states that a given excitation can be transformed to a desirable aperture field by inducing suitable electric and (equivalent) magnetic surface currents. Building on this concept, we propose and demonstrate cavity-excited HMS antennas, where the single-source-fed cavity is designed to optimize aperture illumination, while the HMS facilitates the current distribution that ensures phase purity of aperture fields. The HMS breaks the coupling between the excitation and radiation spectra typical to standard partially reflecting surfaces, allowing tailoring of the aperture properties to produce a desirable radiation pattern, without incurring edge-taper losses. The proposed low-profile design yields near-unity aperture illumination efficiencies from arbitrarily large apertures, offering new capabilities for microwave, terahertz and optical radiators.

  17. Cavity-excited Huygens' metasurface antennas for near-unity aperture illumination efficiency from arbitrarily large apertures

    PubMed Central

    Epstein, Ariel; Wong, Joseph P. S.; Eleftheriades, George V.

    2016-01-01

    One of the long-standing problems in antenna engineering is the realization of highly directive beams using low-profile devices. In this paper, we provide a solution to this problem by means of Huygens' metasurfaces (HMSs), based on the equivalence principle. This principle states that a given excitation can be transformed to a desirable aperture field by inducing suitable electric and (equivalent) magnetic surface currents. Building on this concept, we propose and demonstrate cavity-excited HMS antennas, where the single-source-fed cavity is designed to optimize aperture illumination, while the HMS facilitates the current distribution that ensures phase purity of aperture fields. The HMS breaks the coupling between the excitation and radiation spectra typical to standard partially reflecting surfaces, allowing tailoring of the aperture properties to produce a desirable radiation pattern, without incurring edge-taper losses. The proposed low-profile design yields near-unity aperture illumination efficiencies from arbitrarily large apertures, offering new capabilities for microwave, terahertz and optical radiators. PMID:26790605

  18. Cavity-excited Huygens' metasurface antennas for near-unity aperture illumination efficiency from arbitrarily large apertures.

    PubMed

    Epstein, Ariel; Wong, Joseph P S; Eleftheriades, George V

    2016-01-21

    One of the long-standing problems in antenna engineering is the realization of highly directive beams using low-profile devices. In this paper, we provide a solution to this problem by means of Huygens' metasurfaces (HMSs), based on the equivalence principle. This principle states that a given excitation can be transformed to a desirable aperture field by inducing suitable electric and (equivalent) magnetic surface currents. Building on this concept, we propose and demonstrate cavity-excited HMS antennas, where the single-source-fed cavity is designed to optimize aperture illumination, while the HMS facilitates the current distribution that ensures phase purity of aperture fields. The HMS breaks the coupling between the excitation and radiation spectra typical to standard partially reflecting surfaces, allowing tailoring of the aperture properties to produce a desirable radiation pattern, without incurring edge-taper losses. The proposed low-profile design yields near-unity aperture illumination efficiencies from arbitrarily large apertures, offering new capabilities for microwave, terahertz and optical radiators.

  19. Spaceborne Microwave Instrument for High Resolution Remote Sensing of the Earth's Surface Using a Large-Aperture Mesh Antenna

    NASA Technical Reports Server (NTRS)

    Njoku, E.; Wilson, W.; Yueh, S.; Freeland, R.; Helms, R.; Edelstein, W.; Sadowy, G.; Farra, D.; West, R.; Oxnevad, K.

    2001-01-01

    This report describes a two-year study of a large-aperture, lightweight, deployable mesh antenna system for radiometer and radar remote sensing of the Earth from space. The study focused specifically on an instrument to measure ocean salinity and Soil moisture. Measurements of ocean salinity and soil moisture are of critical . importance in improving knowledge and prediction of key ocean and land surface processes, but are not currently obtainable from space. A mission using this instrument would be the first demonstration of deployable mesh antenna technology for remote sensing and could lead to potential applications in other remote sensing disciplines that require high spatial resolution measurements. The study concept features a rotating 6-m-diameter deployable mesh antenna, with radiometer and radar sensors, to measure microwave emission and backscatter from the Earth's surface. The sensors operate at L and S bands, with multiple polarizations and a constant look angle, scanning across a wide swath. The study included detailed analyses of science requirements, reflector and feedhorn design and performance, microwave emissivity measurements of mesh samples, design and test of lightweight radar electronic., launch vehicle accommodations, rotational dynamics simulations, and an analysis of attitude control issues associated with the antenna and spacecraft, The goal of the study was to advance the technology readiness of the overall concept to a level appropriate for an Earth science emission.

  20. Cavity-excited Huygens' metasurface antennas for near-unity aperture illumination efficiency from arbitrarily large apertures.

    PubMed

    Epstein, Ariel; Wong, Joseph P S; Eleftheriades, George V

    2016-01-01

    One of the long-standing problems in antenna engineering is the realization of highly directive beams using low-profile devices. In this paper, we provide a solution to this problem by means of Huygens' metasurfaces (HMSs), based on the equivalence principle. This principle states that a given excitation can be transformed to a desirable aperture field by inducing suitable electric and (equivalent) magnetic surface currents. Building on this concept, we propose and demonstrate cavity-excited HMS antennas, where the single-source-fed cavity is designed to optimize aperture illumination, while the HMS facilitates the current distribution that ensures phase purity of aperture fields. The HMS breaks the coupling between the excitation and radiation spectra typical to standard partially reflecting surfaces, allowing tailoring of the aperture properties to produce a desirable radiation pattern, without incurring edge-taper losses. The proposed low-profile design yields near-unity aperture illumination efficiencies from arbitrarily large apertures, offering new capabilities for microwave, terahertz and optical radiators. PMID:26790605

  1. Performance of large aperture tapered fiber phase conjugate mirror with high pulse energy and 1-kHz repetition rate.

    PubMed

    Zhao, Zhigang; Dong, Yantao; Pan, Sunqiang; Liu, Chong; Chen, Jun; Tong, Lixin; Gao, Qingsong; Tang, Chun

    2012-01-16

    A large aperture fused silica tapered fiber phase conjugate mirror is presented with a maximum 70% stimulated Brillouin scattering (SBS) reflectivity, which is obtained with 1 kHz repetition rate, 15 ns pulse width and 38 mJ input pulse energy. To the best of our knowledge, this is the highest SBS reflectivity ever reported by using optical fiber as a phase conjugate mirror for such high pulse repetition rate (1 kHz) and several tens of millijoule (mJ) input pulse energy. The influences of fiber end surface quality and pump pulse widths on SBS reflectivity are investigated experimentally. The results show that finer fiber end surface quality and longer input pulse widths are preferred for obtaining higher SBS reflectivity with higher input pulse energy. Double passing amplification experiments are also performed. 52 mJ pulse energy is achieved at 1 kHz repetition rate, with a reflected SBS pulse width of 1.5 ns and a M(2) factor of 2.3. The corresponding peak power reaches 34.6 MW. Obvious beam quality improvement is observed. PMID:22274534

  2. Measurements of evapotranspiration from eddy-covariance systems and large aperture scintillometers in the Hai River Basin, China

    NASA Astrophysics Data System (ADS)

    Liu, S. M.; Xu, Z. W.; Zhu, Z. L.; Jia, Z. Z.; Zhu, M. J.

    2013-04-01

    SummaryEvapotranspiration (ET) observations were made for 3 years (2008-2010), using eddy covariance (EC) systems and large aperture scintillometers (LAS), in typical underlying surfaces across the Hai River Basin: orchards (Miyun, MY), cropland in the suburbs (Daxing, DX), and cropland in the plains (Guantao, GT). Reliable data were obtained after carefully data processing, and the seasonal and interannual variability in ET was quantitatively analyzed. The annual ET during 2008-2010 ranged from 510-730 mm for the EC measurements and 430-560 mm for the LAS measurements. The differences in ET among the years and sites were connected with differences in soil moisture and crop growing conditions. The difference in the source areas of EC and LAS measurements and the heterogeneity in their source areas are the primary causes of the discrepancy between EC and LAS measurements. The EC and LAS measurements are compared to the field water balance method calculation and MOD16 ET (the MODIS ET product from the MODIS Global Evapotranspiration Project), respectively. The average difference was 0.85% (mean relative error) and 33.80 mm (root mean square error) between the EC measurements and field water balance method calculations, and 7.72% and 47.08 mm between LAS measurements and MOD16 ET from 2008 to 2010 at the three sites. We found a decreasing tendency for ET in the past 15 years across the Hai River Basin, especially after the year of 2005.

  3. MRF Applications: On the Road to Making Large-Aperture Ultraviolet Laser Resistant Continuous Phase Plates for High-Power Lasers

    SciTech Connect

    Menapace, J A; Davis, P J; Steele, W A; Hachkowski, M R; Nelson, A; Xin, K

    2006-10-26

    Over the past two years we have developed MRF tools and procedures to manufacture large-aperture (430 X 430 mm) continuous phase plates (CPPs) that are capable of operating in the infrared portion (1053 nm) of high-power laser systems. This is accomplished by polishing prescribed patterns of continuously varying topographical features onto finished plano optics using MRF imprinting techniques. We have been successful in making, testing, and using large-aperture CPPs whose topography possesses spatial periods as low as 4 mm and surface peak-to-valleys as high as 8.6 {micro}m. Combining this application of MRF technology with advanced MRF finishing techniques that focus on ultraviolet laser damage resistance makes it potentially feasible to manufacture large-aperture CPPs that can operate in the ultraviolet (351 nm) without sustaining laser-induced damage. In this paper, we will discuss the CPP manufacturing process and the results of 351-nm/3-nsec equivalent laser performance experiments conducted on large-aperture CPPs manufactured using advanced MRF protocols.

  4. Determining meteoroid bulk densities using a plasma scattering model with high-power large-aperture radar data

    NASA Astrophysics Data System (ADS)

    Close, Sigrid; Volz, Ryan; Loveland, Rohan; Macdonell, Alex; Colestock, Patrick; Linscott, Ivan; Oppenheim, Meers

    2012-09-01

    We present an improved technique for calculating bulk densities of low-mass (<1 g) meteoroids using a scattering model applied to the high-density plasma formed around the meteoroid as it enters Earth’s atmosphere. These plasmas, referred to as head echoes, travel at or near the speed of the meteoroid, thereby allowing the determination of the ballistic coefficient (mass divided by physical cross-section), which depends upon speed and deceleration. Concurrently, we apply a scattering model to the returned signal strength of the head echo in order to correlate radar-cross-section (RCS) to plasma density and meteoroid mass. In this way, we can uniquely solve for the meteoroid mass, radius and bulk density independently. We have applied this new technique to head echo data collected in 2007 and 2008 simultaneously at VHF (160 MHz) and UHF (422 MHz) at ALTAIR, which is a high-power large-aperture radar located on the Kwajalein Atoll. These data include approximately 20,000 detections with dual-frequency, dual-polarization, and monopulse (i.e. angle) returns. From 2000 detections with the smallest monopulse errors, we find a mean meteoroid bulk density of 0.9 g/cm3 with observations spanning almost three orders of magnitude from 0.01 g/cm3 to 8 g/cm3. Our results show a clear dependence between meteoroid bulk density and altitude of head echo formation, as well as dependence between meteoroid bulk density and 3D speed. The highest bulk densities are detected at the lowest altitudes and lowest speeds. Additionally, we stipulate that the approximations used to derive the ballistic parameter, in addition to neglecting fragmentation, suggest that the traditional ballistic parameter must be used with caution when determining meteoroid parameters.

  5. Estimation of turbulent sensible heat and momentum fluxes over a heterogeneous urban area using a large aperture scintillometer

    NASA Astrophysics Data System (ADS)

    Lee, Sang-Hyun; Lee, Jun-Ho; Kim, Bo-Young

    2015-08-01

    The accurate determination of surface-layer turbulent fluxes over urban areas is critical to understanding urban boundary layer (UBL) evolution. In this study, a remote-sensing technique using a large aperture scintillometer (LAS) was investigated to estimate surface-layer turbulent fluxes over a highly heterogeneous urban area. The LAS system, with an optical path length of 2.1 km, was deployed in an urban area characterized by a complicated land-use mix (residential houses, water body, bare ground, etc.). The turbulent sensible heat ( Q H) and momentum fluxes (τ) were estimated from the scintillation measurements obtained from the LAS system during the cold season. Three-dimensional LAS footprint modeling was introduced to identify the source areas ("footprint") of the estimated turbulent fluxes. The analysis results showed that the LAS-derived turbulent fluxes for the highly heterogeneous urban area revealed reasonable temporal variation during daytime on clear days, in comparison to the land-surface process-resolving numerical modeling. A series of sensitivity tests indicated that the overall uncertainty in the LAS-derived daytime Q H was within 20%-30% in terms of the influence of input parameters and the nondimensional similarity function for the temperature structure function parameter, while the estimation errors in τ were less sensitive to the factors of influence, except aerodynamic roughness length. The 3D LAS footprint modeling characterized the source areas of the LAS-derived turbulent fluxes in the heterogeneous urban area, revealing that the representative spatial scales of the LAS system deployed with the 2.1 km optical path distance ranged from 0.2 to 2 km2 (a "micro- a scale"), depending on local meteorological conditions.

  6. Estimating Evapotranspiration over Heterogeneously Vegetated Surfaces using Large Aperture Scintillometer, LiDAR, and Airborne Multispectral Imagery

    NASA Astrophysics Data System (ADS)

    Geli, H. M.; Neale, C. M.; Pack, R. T.; Watts, D. R.; Osterberg, J.

    2011-12-01

    Estimates of evapotranspiration (ET) over heterogeneous areas is challenging especially in water-limited sparsely vegetated environments. New techniques such as airborne full-waveform LiDAR (Light Detection and Ranging) and high resolution multispectral and thermal imagery can provide enough detail of sparse canopies to improve energy balance model estimations as well as footprint analysis of scintillometer data. The objectives of this study were to estimate ET over such areas and develop methodologies for the use of these airborne data technologies. Because of the associated heterogeneity, this study was conducted over the Cibola National wildlife refuge, southern California on an area dominated with tamarisk (salt cedar) forest (90%) interspersed with arrowweed and bare soil (10%). A set of two large aperture scintillometers (LASs) were deployed over the area to provide estimates of sensible heat flux (HLAS). The LASs were distributed over the area in a way that allowed capturing different surface spatial heterogeneity. Bowen ratio systems were used to provide hydrometeorological variables and surface energy balance fluxes (SEBF) (i.e. Rn, G, H, and LE) measurements. Scintillometer-based estimates of HLAS were improved by considering the effect of the corresponding 3D footprint and the associated displacement height (d) and the roughness length (z0) following Geli et al. (2011). The LiDAR data were acquired using the LASSI Lidar developed at Utah State University (USU). The data was used to obtain 1-m spatial resolution DEM's and vegetation canopy height to improve the HLAS estimates. The BR measurements of Rn and G were combined with LAS estimates, HLAS, to provide estimates of LELASas a residual of the energy balance equation. A thermal remote sensing model namely the two source energy balance (TSEB) of Norman et al. (1995) was applied to provide spatial estimates of SEBF. Four airborne images at 1-4 meter spatial resolution acquired using the USU airborne

  7. Large-Aperture [O I] 6300 A Photometry of Comet Hale-Bopp: Implications for the Photochemistry of OH

    NASA Technical Reports Server (NTRS)

    Morgenthaler, Jeffrey P.; Harris, Walter M.; Scherb, Frank; Anderson, Christopher M.; Oliversen, Ronald J.; Doane, Nathaniel E.; Combi, Michael R.; Marconi, Maximus L.; Smyth, William H.

    2001-01-01

    Large-aperture photometric observations of comet Hale-Bopp (C/1995 O1) in the forbidden red line of neutral oxygen ([O I] 6300 angstroms) with the 150 mm dual-etalon Fabry-Perot spectrometer that comprises the Wisconsin H-alpha Mapper and a 50 mm dual-etalon Fabry-Perot spectrometer at the McMath-Pierce main telescope from 1997 late February to mid April yield a total metastable O((sup 1)D) production rate of (2.3-5.9) x 10(exp 30)/s. Applying the standard H2O and OH photodissociation branching ratios, we derive a water production rate, Q(H2O), of (2.6-6.1) x 10(exp 31)/s, which disagrees with Q(H2O = 1x10(exp 31)/s determined by independent H2O, OH, and H measurements. Furthermore, our own [O I] 6300 observations of the inner coma (< 30,000 km) using the 3.5 m Wisconsin-Indiana-Yale-NOAO telescope Hydra and Densepak multi-object spectrographs yield Q(H2O) = 1 x 10(exp 31)/s. Using our [O I] 6300 data, which cover spatial scales ranging from 2,000 to 1x10(exp 6) km, and a complementary set of wide-field ground-based OH images, we can constrain the sources of the apparent excess O((sup 1)D) emission to the outer coma, where photodissociation of OH is assumed to be the dominant O((sup 1)D) production mechanism. From production rates of other oxygen-bearing volatiles (e.g., CO and CO2), we can account for at most 30% of the observed excess O((sup 1)D) emission. Since even less O((sup 1)D) should be coming from other sources (e.g., electron excitation of neutral O and distributed nonnuclear sources of H2O), we hypothesize that the bulk of the excess O((sup 1)D) is likely coming from photodissociating OH. Using the experimental OH photo-dissociation cross section of Nee and Lee at Ly-alpha as a guide in modifying the theoretical OH cross sections of van Dishoeck and Dalgarno, we can account for approximately 60% of the observed O((sup 1)D) excess without requiring major modifications to the other OH branching ratios or the total OH photodissociation lifetime.

  8. Dynamics of a membrane interacting with an active wall.

    PubMed

    Yasuda, Kento; Komura, Shigeyuki; Okamoto, Ryuichi

    2016-05-01

    Active motions of a biological membrane can be induced by nonthermal fluctuations that occur in the outer environment of the membrane. We discuss the dynamics of a membrane interacting hydrodynamically with an active wall that exerts random velocities on the ambient fluid. Solving the hydrodynamic equations of a bound membrane, we first derive a dynamic equation for the membrane fluctuation amplitude in the presence of different types of walls. Membrane two-point correlation functions are calculated for three different cases: (i) a static wall, (ii) an active wall, and (iii) an active wall with an intrinsic time scale. We focus on the mean squared displacement (MSD) of a tagged membrane describing the Brownian motion of a membrane segment. For the static wall case, there are two asymptotic regimes of MSD (∼t^{2/3} and ∼t^{1/3}) when the hydrodynamic decay rate changes monotonically. In the case of an active wall, the MSD grows linearly in time (∼t) in the early stage, which is unusual for a membrane segment. This linear-growth region of the MSD is further extended when the active wall has a finite intrinsic time scale. PMID:27300924

  9. The Structural Basis of Cholesterol Activity in Membranes

    SciTech Connect

    Olsen, Brett N.; Bielska, Agata; Lee, Tiffany; Daily, Michael D.; Covey, Douglas F.; Schlesinger, Paul H.; Baker, Nathan A.; Ory, Daniel S.

    2013-10-15

    Although the majority of free cellular cholesterol is present in the plasma membrane, cholesterol homeostasis is principally regulated through sterol-sensing proteins that reside in the cholesterol-poor endoplasmic reticulum (ER). In response to acute cholesterol loading or depletion, there is rapid equilibration between the ER and plasma membrane cholesterol pools, suggesting a biophysical model in which the availability of plasma membrane cholesterol for trafficking to internal membranes modulates ER membrane behavior. Previous studies have predominantly examined cholesterol availability in terms of binding to extramembrane acceptors, but have provided limited insight into the structural changes underlying cholesterol activation. In this study, we use both molecular dynamics simulations and experimental membrane systems to examine the behavior of cholesterol in membrane bilayers. We find that cholesterol depth within the bilayer provides a reasonable structural metric for cholesterol availability and that this is correlated with cholesterol-acceptor binding. Further, the distribution of cholesterol availability in our simulations is continuous rather than divided into distinct available and unavailable pools. This data provide support for a revised cholesterol activation model in which activation is driven not by saturation of membrane-cholesterol interactions but rather by bulk membrane remodeling that reduces membrane-cholesterol affinity.

  10. Development of active-transport membrane devices

    SciTech Connect

    Laciak, D.V.

    1994-07-01

    This report introduces the concept of Air Products` AT membranes for the separation of NH{sub 3} and CO{sub 2} from process gas streams and presents results from the first year fabrication concept development studies.

  11. Active membrane having uniform physico-chemically functionalized ion channels

    DOEpatents

    Gerald, II, Rex E; Ruscic, Katarina J; Sears, Devin N; Smith, Luis J; Klingler, Robert J; Rathke, Jerome W

    2012-09-24

    The present invention relates to a physicochemically-active porous membrane for electrochemical cells that purports dual functions: an electronic insulator (separator) and a unidirectional ion-transporter (electrolyte). The electrochemical cell membrane is activated for the transport of ions by contiguous ion coordination sites on the interior two-dimensional surfaces of the trans-membrane unidirectional pores. One dimension of the pore surface has a macroscopic length (1 nm-1000 .mu.m) and is directed parallel to the direction of an electric field, which is produced between the cathode and the anode electrodes of an electrochemical cell. The membrane material is designed to have physicochemical interaction with ions. Control of the extent of the interactions between the ions and the interior pore walls of the membrane and other materials, chemicals, or structures contained within the pores provides adjustability of the ionic conductivity of the membrane.

  12. Membrane stretching triggers mechanosensitive Ca2+ channel activation in Chara.

    PubMed

    Kaneko, Toshiyuki; Takahashi, Naoya; Kikuyama, Munehiro

    2009-03-01

    In order to confirm that mechanosensitive Ca(2+) channels are activated by membrane stretching, we stretched or compressed the plasma membrane of Chara by applying osmotic shrinkage or swelling of the cell by varying the osmotic potential of the bathing medium. Aequorin studies revealed that treatments causing membrane stretching induced a transient but large increase in cytoplasmic concentration of Ca(2+) (Delta[Ca(2+)](c)). However, the observed Delta[Ca(2+)](c) decreased during the treatments, resulting in membrane compression. A second experiment was carried out to study the relationship between changes in membrane potential (DeltaE(m)) and stretching or compression of the plasma membrane. Significant DeltaE(m) values, often accompanied by an action potential, were observed during the initial exchange of the bathing medium from a hypotonic medium to a hypertonic one (plasmolysis). DeltaE(m) appears to be triggered by a partial stretching of the membrane as it was peeled from the cell wall. After plasmolysis, other exchanges from hypertonic to hypotonic media, with their accompanying membrane stretching, always induced large DeltaE(m) values and were often accompanied by an action potential. By contrast, action potentials were scarcely observed during other exchanges from hypotonic to hypertonic solutions (=membrane compression). Thus, we concluded that activation of the mechanosensitive channels is triggered by membrane stretching in Chara.

  13. Membrane stretching triggers mechanosensitive Ca2+ channel activation in Chara.

    PubMed

    Kaneko, Toshiyuki; Takahashi, Naoya; Kikuyama, Munehiro

    2009-03-01

    In order to confirm that mechanosensitive Ca(2+) channels are activated by membrane stretching, we stretched or compressed the plasma membrane of Chara by applying osmotic shrinkage or swelling of the cell by varying the osmotic potential of the bathing medium. Aequorin studies revealed that treatments causing membrane stretching induced a transient but large increase in cytoplasmic concentration of Ca(2+) (Delta[Ca(2+)](c)). However, the observed Delta[Ca(2+)](c) decreased during the treatments, resulting in membrane compression. A second experiment was carried out to study the relationship between changes in membrane potential (DeltaE(m)) and stretching or compression of the plasma membrane. Significant DeltaE(m) values, often accompanied by an action potential, were observed during the initial exchange of the bathing medium from a hypotonic medium to a hypertonic one (plasmolysis). DeltaE(m) appears to be triggered by a partial stretching of the membrane as it was peeled from the cell wall. After plasmolysis, other exchanges from hypertonic to hypotonic media, with their accompanying membrane stretching, always induced large DeltaE(m) values and were often accompanied by an action potential. By contrast, action potentials were scarcely observed during other exchanges from hypotonic to hypertonic solutions (=membrane compression). Thus, we concluded that activation of the mechanosensitive channels is triggered by membrane stretching in Chara. PMID:19234734

  14. Technology Development for the Advanced Technology Large Aperture Space Telescope (ATLAST) as a Candidate Large UV-Optical-Infrared (LUVOIR) Surveyor

    NASA Technical Reports Server (NTRS)

    Bolcar, Matthew R.; Balasubramanian, Kunjithapatha; Clampin, Mark; Crooke, Julie; Feinberg, Lee; Postman, Marc; Quijada, Manuel; Rauscher, Bernard; Redding, David; Rioux, Norman; Shaklan, Stuart; Stahl, H. Philip; Stahle, Carl; Thronson, Harley

    2015-01-01

    The Advanced Technology Large Aperture Space Telescope (ATLAST) team has identified five key technologies to enable candidate architectures for the future large-aperture ultraviolet/optical/infrared (LUVOIR) space observatory envisioned by the NASA Astrophysics 30-year roadmap, Enduring Quests, Daring Visions. The science goals of ATLAST address a broad range of astrophysical questions from early galaxy and star formation to the processes that contributed to the formation of life on Earth, combining general astrophysics with direct-imaging and spectroscopy of habitable exoplanets. The key technologies are: internal coronagraphs, starshades (or external occulters), ultra-stable large-aperture telescopes, detectors, and mirror coatings. Selected technology performance goals include: 1x10?10 raw contrast at an inner working angle of 35 milli-arcseconds, wavefront error stability on the order of 10 pm RMS per wavefront control step, autonomous on-board sensing & control, and zero-read-noise single-photon detectors spanning the exoplanet science bandpass between 400 nm and 1.8 µm. Development of these technologies will provide significant advances over current and planned observatories in terms of sensitivity, angular resolution, stability, and high-contrast imaging. The science goals of ATLAST are presented and flowed down to top-level telescope and instrument performance requirements in the context of a reference architecture: a 10-meter-class, segmented aperture telescope operating at room temperature (290 K) at the sun-Earth Lagrange-2 point. For each technology area, we define best estimates of required capabilities, current state-of-the-art performance, and current Technology Readiness Level (TRL) - thus identifying the current technology gap. We report on current, planned, or recommended efforts to develop each technology to TRL 5.

  15. Technology development for the Advanced Technology Large Aperture Space Telescope (ATLAST) as a candidate large UV-Optical-Infrared (LUVOIR) surveyor

    NASA Astrophysics Data System (ADS)

    Bolcar, Matthew R.; Balasubramanian, Kunjithapatham; Clampin, Mark; Crooke, Julie; Feinberg, Lee; Postman, Marc; Quijada, Manuel; Rauscher, Bernard; Redding, David; Rioux, Norman; Shaklan, Stuart; Stahl, H. Philip; Stahle, Carl; Thronson, Harley

    2015-09-01

    The Advanced Technology Large Aperture Space Telescope (ATLAST) team has identified five key technologies to enable candidate architectures for the future large-aperture ultraviolet/optical/infrared (LUVOIR) space observatory envisioned by the NASA Astrophysics 30-year roadmap, Enduring Quests, Daring Visions. The science goals of ATLAST address a broad range of astrophysical questions from early galaxy and star formation to the processes that contributed to the formation of life on Earth, combining general astrophysics with direct-imaging and spectroscopy of habitable exoplanets. The key technologies are: internal coronagraphs, starshades (or external occulters), ultra-stable large-aperture telescopes, detectors, and mirror coatings. Selected technology performance goals include: 1x10-10 raw contrast at an inner working angle of 35 milli-arcseconds, wavefront error stability on the order of 10 pm RMS per wavefront control step, autonomous on-board sensing and control, and zero-read-noise single-photon detectors spanning the exoplanet science bandpass between 400 nm and 1.8 μm. Development of these technologies will provide significant advances over current and planned observatories in terms of sensitivity, angular resolution, stability, and high-contrast imaging. The science goals of ATLAST are presented and flowed down to top-level telescope and instrument performance requirements in the context of a reference architecture: a 10-meter-class, segmented aperture telescope operating at room temperature (~290 K) at the sun-Earth Lagrange-2 point. For each technology area, we define best estimates of required capabilities, current state-of-the-art performance, and current Technology Readiness Level (TRL) - thus identifying the current technology gap. We report on current, planned, or recommended efforts to develop each technology to TRL 5.

  16. Visualizing active membrane protein complexes by electron cryotomography

    PubMed Central

    Gold, Vicki A.M.; Ieva, Raffaele; Walter, Andreas; Pfanner, Nikolaus; van der Laan, Martin; Kühlbrandt, Werner

    2014-01-01

    Unravelling the structural organization of membrane protein machines in their active state and native lipid environment is a major challenge in modern cell biology research. Here we develop the STAMP (Specifically TArgeted Membrane nanoParticle) technique as a strategy to localize protein complexes in situ by electron cryotomography (cryo-ET). STAMP selects active membrane protein complexes and marks them with quantum dots. Taking advantage of new electron detector technology that is currently revolutionizing cryotomography in terms of achievable resolution, this approach enables us to visualize the three-dimensional distribution and organization of protein import sites in mitochondria. We show that import sites cluster together in the vicinity of crista membranes, and we reveal unique details of the mitochondrial protein import machinery in action. STAMP can be used as a tool for site-specific labelling of a multitude of membrane proteins by cryo-ET in the future. PMID:24942077

  17. Silver-enhanced block copolymer membranes with biocidal activity.

    PubMed

    Madhavan, Poornima; Hong, Pei-Ying; Sougrat, Rachid; Nunes, Suzana P

    2014-01-01

    Silver nanoparticles were deposited on the surface and pore walls of block copolymer membranes with highly ordered pore structure. Pyridine blocks constitute the pore surfaces, complexing silver ions and promoting a homogeneous distribution. Nanoparticles were then formed by reduction with sodium borohydride. The morphology varied with the preparation conditions (pH and silver ion concentration), as confirmed by field emission scanning and transmission electron microscopy. Silver has a strong biocide activity, which for membranes can bring the advantage of minimizing the growth of bacteria and formation of biofilm. The membranes with nanoparticles prepared under different pH values and ion concentrations were incubated with Pseudomonas aeruginosa and compared with the control. The strongest biocidal activity was achieved with membranes containing membranes prepared under pH 9. Under these conditions, the best distribution with small particle size was observed by microscopy.

  18. An Extended Membrane System with Active Membranes to Solve Automatic Fuzzy Clustering Problems.

    PubMed

    Peng, Hong; Wang, Jun; Shi, Peng; Pérez-Jiménez, Mario J; Riscos-Núñez, Agustín

    2016-05-01

    This paper focuses on automatic fuzzy clustering problem and proposes a novel automatic fuzzy clustering method that employs an extended membrane system with active membranes that has been designed as its computing framework. The extended membrane system has a dynamic membrane structure; since membranes can evolve, it is particularly suitable for processing the automatic fuzzy clustering problem. A modification of a differential evolution (DE) mechanism was developed as evolution rules for objects according to membrane structure and object communication mechanisms. Under the control of both the object's evolution-communication mechanism and the membrane evolution mechanism, the extended membrane system can effectively determine the most appropriate number of clusters as well as the corresponding optimal cluster centers. The proposed method was evaluated over 13 benchmark problems and was compared with four state-of-the-art automatic clustering methods, two recently developed clustering methods and six classification techniques. The comparison results demonstrate the superiority of the proposed method in terms of effectiveness and robustness. PMID:26790484

  19. Structural model of active Bax at the membrane.

    PubMed

    Bleicken, Stephanie; Jeschke, Gunnar; Stegmueller, Carolin; Salvador-Gallego, Raquel; García-Sáez, Ana J; Bordignon, Enrica

    2014-11-20

    Bax plays a central role in the mitochondrial pathway of apoptosis. Upon activation, cytosolic Bax monomers oligomerize on the surface of mitochondria and change conformation concertedly to punch holes into the outer membrane. The subsequent release of cytochrome c initiates cell death. However, the structure of membrane-inserted Bax and its mechanism of action remain largely unknown. Here, we propose a 3D model of active Bax at the membrane based on double electron-electron resonance (DEER) spectroscopy in liposomes and isolated mitochondria. We show that active Bax is organized at the membrane as assemblies of dimers. In addition to a stable dimerization domain, each monomer contains a more flexible piercing domain involved in interdimer interactions and pore formation. The most important structural change during Bax activation is the opening of the hairpin formed by helices 5 and 6, which adopts a clamp-like conformation central to the mechanism of mitochondrial permeabilization. PMID:25458844

  20. Structural Model of Active Bax at the Membrane

    PubMed Central

    Bleicken, Stephanie; Jeschke, Gunnar; Stegmueller, Carolin; Salvador-Gallego, Raquel; García-Sáez, Ana J.; Bordignon, Enrica

    2016-01-01

    Bax plays a central role in the mitochondrial pathway of apoptosis. Upon activation, cytosolic Bax monomers oligomerize on the surface of mitochondria and change conformation concertedly to punch holes into the outer membrane. The subsequent release of cytochrome c initiates cell death. However, the structure of membrane-inserted Bax and its mechanism of action remain largely unknown. Here, we propose a 3D model of active Bax at the membrane based on double electron-electron resonance (DEER) spectroscopy in liposomes and isolated mitochondria. We show that active Bax is organized at the membrane as assemblies of dimers. In addition to a stable dimerization domain, each monomer contains a more flexible piercing domain involved in interdimer interactions and pore formation. The most important structural change during Bax activation is the opening of the hairpin formed by helices 5 and 6, which adopts a clamp-like conformation central to the mechanism of mitochondrial permeabilization. PMID:25458844

  1. Redistribution of Cholesterol in Model Lipid Membranes in Response to the Membrane-Active Peptide Alamethicin

    NASA Astrophysics Data System (ADS)

    Heller, William; Qian, Shuo

    2013-03-01

    The cellular membrane is a heterogeneous, dynamic mixture of molecules and macromolecules that self-assemble into a tightly-regulated functional unit that provides a semipermeable barrier between the cell and its environment. Among the many compositional differences between mammalian and bacterial cell membranes that impact its physical properties, one key difference is cholesterol content, which is more prevalent in mammals. Cholesterol is an amphiphile that associates with membranes and serves to maintain its fluidity and permeability. Membrane-active peptides, such as the alpha-helical peptide alamethicin, interact with membranes in a concentration- and composition-dependent manner to form transmembrane pores that are responsible for the lytic action of the peptide. Through the use of small-angle neutron scattering and deuterium labeling, it was possible to observe a redistribution of the lipid and cholesterol in unilamellar vesicles in response to the presence of alamethicin at a peptide-to-lipid ratio of 1/200. The results demonstrate that the membrane remodeling powers of alamethicin reach beyond the membrane thinning effect to altering the localization of specific components in the bilayer, complementing the accepted two-state mechanism of pore formation. Research was supported by U. S. DOE-OBER (CSMB; FWP ERKP291) and the U. S. DOE-BES Scientific User Facilities Division (ORNL's SNS and HFIR).

  2. Bilayer Membrane Modulation of Membrane Type 1 Matrix Metalloproteinase (MT1-MMP) Structure and Proteolytic Activity.

    PubMed

    Cerofolini, Linda; Amar, Sabrina; Lauer, Janelle L; Martelli, Tommaso; Fragai, Marco; Luchinat, Claudio; Fields, Gregg B

    2016-01-01

    Cell surface proteolysis is an integral yet poorly understood physiological process. The present study has examined how the pericellular collagenase membrane-type 1 matrix metalloproteinase (MT1-MMP) and membrane-mimicking environments interplay in substrate binding and processing. NMR derived structural models indicate that MT1-MMP transiently associates with bicelles and cells through distinct residues in blades III and IV of its hemopexin-like domain, while binding of collagen-like triple-helices occurs within blades I and II of this domain. Examination of simultaneous membrane interaction and triple-helix binding revealed a possible regulation of proteolysis due to steric effects of the membrane. At bicelle concentrations of 1%, enzymatic activity towards triple-helices was increased 1.5-fold. A single mutation in the putative membrane interaction region of MT1-MMP (Ser466Pro) resulted in lower enzyme activation by bicelles. An initial structural framework has thus been developed to define the role(s) of cell membranes in modulating proteolysis. PMID:27405411

  3. Bilayer Membrane Modulation of Membrane Type 1 Matrix Metalloproteinase (MT1-MMP) Structure and Proteolytic Activity

    PubMed Central

    Cerofolini, Linda; Amar, Sabrina; Lauer, Janelle L.; Martelli, Tommaso; Fragai, Marco; Luchinat, Claudio; Fields, Gregg B.

    2016-01-01

    Cell surface proteolysis is an integral yet poorly understood physiological process. The present study has examined how the pericellular collagenase membrane-type 1 matrix metalloproteinase (MT1-MMP) and membrane-mimicking environments interplay in substrate binding and processing. NMR derived structural models indicate that MT1-MMP transiently associates with bicelles and cells through distinct residues in blades III and IV of its hemopexin-like domain, while binding of collagen-like triple-helices occurs within blades I and II of this domain. Examination of simultaneous membrane interaction and triple-helix binding revealed a possible regulation of proteolysis due to steric effects of the membrane. At bicelle concentrations of 1%, enzymatic activity towards triple-helices was increased 1.5-fold. A single mutation in the putative membrane interaction region of MT1-MMP (Ser466Pro) resulted in lower enzyme activation by bicelles. An initial structural framework has thus been developed to define the role(s) of cell membranes in modulating proteolysis. PMID:27405411

  4. Modeling and vibration control of an active membrane mirror

    NASA Astrophysics Data System (ADS)

    Ruggiero, Eric J.; Inman, Daniel J.

    2009-09-01

    The future of space satellite technology lies in ultra-large mirrors and radar apertures for significant improvements in imaging and communication bandwidths. The availability of optical-quality membranes drives a parallel effort for structural models that can capture the dominant dynamics of large, ultra-flexible satellite payloads. Unfortunately, the inherent flexibility of membrane mirrors wreaks havoc with the payload's on-orbit stability and maneuverability. One possible means of controlling these undesirable dynamics is by embedding active piezoelectric ceramics near the boundary of the membrane mirror. In doing so, active feedback control can be used to eliminate detrimental vibration, perform static shape control, and evaluate the health of the structure. The overall motivation of the present work is to design a control system using distributed bimorph actuators to eliminate any detrimental vibration of the membrane mirror. As a basis for this study, a piezoceramic wafer was attached in a bimorph configuration near the boundary of a tensioned rectangular membrane sample. A finite element model of the system was developed to capture the relevant system dynamics from 0 to 300 Hz. The finite element model was compared against experimental results, and fair agreement found. Using the validated finite element models, structural control using linear quadratic regulator control techniques was then used to numerically demonstrate effective vibration control. Typical results show that less than 12 V of actuation voltage is required to eliminate detrimental vibration of the membrane samples in less than 15 ms. The functional gains of the active system are also derived and presented. These spatially descriptive control terms dictate favorable regions within the membrane domain for placing sensors and can be used as a design guideline for structural control applications. The results of the present work demonstrate that thin plate theory is an appropriate modeling

  5. ENaC-membrane interactions: regulation of channel activity by membrane order.

    PubMed

    Awayda, Mouhamed S; Shao, Weijian; Guo, Fengli; Zeidel, Mark; Hill, Warren G

    2004-06-01

    Recently, it was reported that the epithelial Na+ channel (ENaC) is regulated by temperature (Askwith, C.C., C.J. Benson, M.J. Welsh, and P.M. Snyder. 2001. Proc. Natl. Acad. Sci. USA. 98:6459-6463). As these changes of temperature affect membrane lipid order and lipid-protein interactions, we tested the hypothesis that ENaC activity can be modulated by membrane lipid interactions. Two approaches were used to modulate membrane anisotropy, a lipid order-dependent parameter. The nonpharmacological approach used temperature changes, while the pharmacological one used chlorpromazine (CPZ), an agent known to decrease membrane order, and Gd+3. Experiments used Xenopus oocytes expressing human ENaC. Methods of impedance analysis were used to determine whether the effects of changing lipid order indirectly altered ENaC conductance via changes of membrane area. These data were further corroborated with quantitative morphology on micrographs from oocytes membranes studied via electron microscopy. We report biphasic effects of cooling (stimulation followed by inhibition) on hENaC conductance. These effects were relatively slow (minutes) and were delayed from the actual bath temperature changes. Peak stimulation occurred at a calculated Tmax of 15.2. At temperatures below Tmax, ENaC conductance was inhibited with cooling. The effects of temperature on gNa were distinct from those observed on ion channels endogenous to Xenopus oocytes, where the membrane conductance decreased monoexponentially with temperature (t = 6.2 degrees C). Similar effects were also observed in oocytes with reduced intra- and extracellular [Na+], thereby ruling out effects of self or feedback inhibition. Addition of CPZ or the mechanosensitive channel blocker, Gd+3, caused inhibition of ENaC. The effects of Gd+3 were also attributed to its ability to partition into the outer membrane leaflet and to decrease anisotropy. None of the effects of temperature, CPZ, or Gd+3 were accompanied by changes of

  6. Polarization calibration with large apertures in full field of view for a full Stokes imaging polarimeter based on liquid-crystal variable retarders.

    PubMed

    Zhang, Ying; Zhao, Huijie; Li, Na

    2013-02-20

    Currently, polarization calibration for full Stokes imaging polarimeters is limited by the apertures of the retarders. In this paper, an improved polarization calibration with large apertures in full field of view for full Stokes imaging polarimeters based on liquid-crystal variable retarders is proposed and investigated theoretically and experimentally. The experimental precision of polarization calibration is 1.7% for linear polarization states and 8.8% for circular ones for an imaging polarimeter with a 100 mm aperture and 10° field of view. The feasibility for full Stokes polarization image is also confirmed in experiment for identifying objects due to degree of polarization and degree of circular polarization images. PMID:23435001

  7. Development and Testing of a Power Trough System Using a Structurally-Efficient, High-Performance, Large-Aperture Concentrator with Thin Glass Reflector and Focal Point Rotation

    SciTech Connect

    May, E. K.; Forristall, R.

    2005-11-01

    Industrial Solar Technology has assembled a team of experts to develop a large-aperture parabolic trough for the electric power market that moves beyond cost and operating limitations of 1980's designs based on sagged glass reflectors. IST's structurally efficient space frame design will require nearly 50% less material per square meter than a Solel LS-2 concentrator and the new trough will rotate around the focal point. This feature eliminates flexhoses that increase pump power, installation and maintenance costs. IST aims to deliver a concentrator module costing less than $100 per square meter that can produce temperatures up to 400 C. The IST concentrator is ideally suited for application of front surface film reflectors and ensures that US corporations will manufacture major components, except for the high temperature receivers.

  8. Experimental and numerical investigation of ADP square crystal with large aperture in the new Final Optics Assembly under the non-critical phase matching

    NASA Astrophysics Data System (ADS)

    Sun, Fuzhong; Zhang, Peng; Bai, Qingshun; Lu, Lihua; Xiang, Yong

    2016-04-01

    This paper presented a new Final Optics Assembly (FOA) of ammonium dihydrogen phosphate (ADP) square crystal with large aperture under the non-critical phase matching (NCPM), which controlled by the constant temperature water, and the temperature distribution was analyzed by simulation and experiment. Firstly, thermal analysis was carried out, as well as the temperature distribution of the cavity only heated under different velocities was analyzed. Then, the temperature distributions of ADP square crystal in the cavity were achieved using the Finite Volume Method (FVM), and this prediction was validated by the experiment results when the velocity is 0.1 m/s and 0.5 m/s. Finally, the optimal FHG conversion efficiency was obtained and the comparison of different heating methods was also highlighted.

  9. The effect of air flow on the temperature distribution and the harmonic conversion efficiency of the ADP crystal with large aperture in the temperature control scheme

    NASA Astrophysics Data System (ADS)

    Sun, Fuzhong; Zhang, Peng; Lu, Lihua; Xiang, Yong; Bai, Qingshun

    2016-03-01

    This paper presented a temperature control scheme for ammonium dihydrogen phosphate (ADP) crystal of V80 mm in diameter, and the influence of the air flow was also studied. This research aims to obtain the high energy, high frequency laser with large aperture under the non-critical phase matching (NCPM). Firstly, thermal analysis was carried out to investigate the air flow property in the cavity, as well as the effect of ambient temperature was analyzed. Secondly, the temperature distributions of air flow were achieved using the Finite Volume Method (FVM), and this prediction was validated by the experiment results. Finally, the effect of air flow in the cavity was obtained from the heating method, and the variation of harmonic conversion efficiency caused by the ambient temperature was also highlighted.

  10. Research on the Problem of High-Precision Deployment for Large-Aperture Space-Based Science Instruments

    NASA Technical Reports Server (NTRS)

    Lake, Mark S.; Peterson, Lee D.; Hachkowski, M. Roman; Hinkle, Jason D.; Hardaway, Lisa R.

    1998-01-01

    The present paper summarizes results from an ongoing research program conducted jointly by the University of Colorado and NASA Langley Research Center since 1994. This program has resulted in general guidelines for the design of high-precision deployment mechanisms, and tests of prototype deployable structures incorporating these mechanisms have shown microdynamically stable behavior (i.e., dimensional stability to parts per million). These advancements have resulted from the identification of numerous heretofore unknown microdynamic and micromechanical response phenomena, and the development of new test techniques and instrumentation systems to interrogate these phenomena. In addition, recent tests have begun to interrogate nanomechanical response of materials and joints and have been used to develop an understanding of nonlinear nanodynamic behavior in microdynamically stable structures. The ultimate goal of these efforts is to enable nano-precision active control of micro-precision deployable structures (i.e., active control to a resolution of parts per billion).

  11. Design and prototype tests of a large-aperture 37-53 MHz ferrite-tuned booster synchrotron cavity

    SciTech Connect

    Mark S. Champion et al.

    2001-07-12

    The Booster synchrotron at Fermilab employs eighteen 37-53 MHz ferrite-tuned double-gap coaxial radiofrequency cavities for acceleration of protons from 400 MeV to 8 GeV. The cavities have an aperture of 2.25 inches and operate at 55 kV per cavity. Future high duty factor operation of the Booster will be problematic due to unavoidable beam loss at the cavities resulting in excessive activation. The power amplifiers, high maintenance items, are mounted directly to the cavities in the tunnel. A proposed replacement for the Booster, the Proton Driver, will utilize the Booster radiofrequency cavities and requires not only a larger aperture, but also higher voltage. A research and development program is underway at Fermilab to modify the Booster cavities to provide a 5-inch aperture and a 20% voltage increase. A prototype has been constructed and high power tests have bee completed. The cavity design and test results is presented.

  12. Membrane Thinning and Thickening Induced by Membrane-Active Amphipathic Peptides.

    PubMed

    Grage, Stephan L; Afonin, Sergii; Kara, Sezgin; Buth, Gernot; Ulrich, Anne S

    2016-01-01

    Membrane thinning has been discussed as a fundamental mechanism by which antimicrobial peptides can perturb cellular membranes. To understand which factors play a role in this process, we compared several amphipathic peptides with different structures, sizes and functions in their influence on the lipid bilayer thickness. PGLa and magainin 2 from X. laevis were studied as typical representatives of antimicrobial cationic amphipathic α-helices. A 1:1 mixture of these peptides, which is known to possess synergistically enhanced activity, allowed us to evaluate whether and how this synergistic interaction correlates with changes in membrane thickness. Other systems investigated here include the α-helical stress-response peptide TisB from E. coli (which forms membrane-spanning dimers), as well as gramicidin S from A. migulanus (a natural antibiotic), and BP100 (designer-made antimicrobial and cell penetrating peptide). The latter two are very short, with a circular β-pleated and a compact α-helical structure, respectively. Solid-state (2)H-NMR and grazing incidence small angle X-ray scattering (GISAXS) on oriented phospholipid bilayers were used as complementary techniques to access the hydrophobic thickness as well as the bilayer-bilayer repeat distance including the water layer in between. This way, we found that magainin 2, gramicidin S, and BP100 induced membrane thinning, as expected for amphiphilic peptides residing in the polar/apolar interface of the bilayer. PGLa, on the other hand, decreased the hydrophobic thickness only at very high peptide:lipid ratios, and did not change the bilayer-bilayer repeat distance. TisB even caused an increase in the hydrophobic thickness and repeat distance. When reconstituted as a mixture, PGLa and magainin 2 showed a moderate thinning effect which was less than that of magainin 2 alone, hence their synergistically enhanced activity does not seem to correlate with a modulation of membrane thickness. Overall, the absence of

  13. Membrane Thinning and Thickening Induced by Membrane-Active Amphipathic Peptides

    PubMed Central

    Grage, Stephan L.; Afonin, Sergii; Kara, Sezgin; Buth, Gernot; Ulrich, Anne S.

    2016-01-01

    Membrane thinning has been discussed as a fundamental mechanism by which antimicrobial peptides can perturb cellular membranes. To understand which factors play a role in this process, we compared several amphipathic peptides with different structures, sizes and functions in their influence on the lipid bilayer thickness. PGLa and magainin 2 from X. laevis were studied as typical representatives of antimicrobial cationic amphipathic α-helices. A 1:1 mixture of these peptides, which is known to possess synergistically enhanced activity, allowed us to evaluate whether and how this synergistic interaction correlates with changes in membrane thickness. Other systems investigated here include the α-helical stress-response peptide TisB from E. coli (which forms membrane-spanning dimers), as well as gramicidin S from A. migulanus (a natural antibiotic), and BP100 (designer-made antimicrobial and cell penetrating peptide). The latter two are very short, with a circular β-pleated and a compact α-helical structure, respectively. Solid-state 2H-NMR and grazing incidence small angle X-ray scattering (GISAXS) on oriented phospholipid bilayers were used as complementary techniques to access the hydrophobic thickness as well as the bilayer-bilayer repeat distance including the water layer in between. This way, we found that magainin 2, gramicidin S, and BP100 induced membrane thinning, as expected for amphiphilic peptides residing in the polar/apolar interface of the bilayer. PGLa, on the other hand, decreased the hydrophobic thickness only at very high peptide:lipid ratios, and did not change the bilayer-bilayer repeat distance. TisB even caused an increase in the hydrophobic thickness and repeat distance. When reconstituted as a mixture, PGLa and magainin 2 showed a moderate thinning effect which was less than that of magainin 2 alone, hence their synergistically enhanced activity does not seem to correlate with a modulation of membrane thickness. Overall, the absence of a

  14. HI-CLASS on AEOS: a large-aperture laser radar for space surveillance/situational awareness investigations

    NASA Astrophysics Data System (ADS)

    Kovacs, Mark A.; Dryden, Gordon L.; Pohle, Richard H.; Ayers, Kirstie; Carreras, Richard A.; Crawford, Linda L.; Taft, Russell

    2001-12-01

    The Air Force Research Laboratory/Directed Energy Directorate (AFRL/DE) via the ALVA (Applications of Lidars for Vehicles with Analysis) program installed in late 2000 a wideband, 12 J 15 Hz CO2 laser radar (ladar) on the 3.67 meter aperture AEOS (Advanced Electro-Optics System) telescope. This system is part of the Maui Space Surveillance System (MSSS), on the summit of Haleakala, Maui, HI. This ladar adopts the technology successfully demonstrated by the first generation HI-CLASS (High Performance CO2) Ladar Surveillance Sensor) operating on the nearby 0.6 meter aperture Laser Beam Director (LBD) and developed under the Field Ladar Demonstration program, jointly sponsored by AFRL/DE and the Army's Space and Missile Defense Command. The moderate power (approximately 180 watts) HI-CLASS/AEOS system generates multiple, coherent waveforms for precision satellite tracking and characterization of space objects for 1 m2 targets at ranges out to 10,000 km. This system also will be used to track space objects smaller than30 cm at ranges to 2,000 km. A third application of this system is to provide data for developing satellite identification, characterization, health and status techniques. This paper will discuss the operating characteristics and innovative features of the new system. The paper will also review recent results in support of AF needs, demonstrations, experiments, as well as planned activities that directly support applications in the DoD, scientific, and commercial arenas.

  15. Simulation of P systems with active membranes on CUDA.

    PubMed

    Cecilia, José M; García, José M; Guerrero, Ginés D; Martínez-del-Amor, Miguel A; Pérez-Hurtado, Ignacio; Pérez-Jiménez, Mario J

    2010-05-01

    P systems or Membrane Systems provide a high-level computational modelling framework that combines the structure and dynamic aspects of biological systems in a relevant and understandable way. They are inherently parallel and non-deterministic computing devices. In this article, we discuss the motivation, design principles and key of the implementation of a simulator for the class of recognizer P systems with active membranes running on a (GPU). We compare our parallel simulator for GPUs to the simulator developed for a single central processing unit (CPU), showing that GPUs are better suited than CPUs to simulate P systems due to their highly parallel nature.

  16. Large Aperture Electrostatic Dust Detector

    SciTech Connect

    C.H. Skinner, R. Hensley, and A.L Roquemore

    2007-10-09

    Diagnosis and management of dust inventories generated in next-step magnetic fusion devices is necessary for their safe operation. A novel electrostatic dust detector, based on a fine grid of interlocking circuit traces biased to 30 or 50 ν has been developed for the detection of dust particles on remote surfaces in air and vacuum environments. Impinging dust particles create a temporary short circuit and the resulting current pulse is recorded by counting electronics. Up to 90% of the particles are ejected from the grid or vaporized suggesting the device may be useful for controlling dust inventories. We report measurements of the sensitivity of a large area (5x5 cm) detector to microgram quantities of dust particles and review its applications to contemporary tokamaks and ITER.

  17. Age related alterations of adrenoreceptor activity in erythrocyte membrane.

    PubMed

    Lomsadze, G; Khetsuriani, R; Arabuli, M; Intskirveli, N; Sanikidze, T

    2011-06-01

    The aim of the study was the investigation of age-related functional alterations of adrenoreceptors and the effect of agonist and antagonist drugs on age related adrenoreceptor activity in erythrocyte membrane. The impact of isopropanol and propanol on functional activity β- adrenergic receptors in red blood cell membrane were studied in 50 practically healthy men--volunteers. (I group--75-89 years old, II group--22-30 years old). The EPR signals S1 and S2 were registered in red blood cell membrane samples after incubation with isopropanol and propanol respectively. It was found that decreasing sensitivity (functional activity) of red blood cells membrane adrenoreceptors comes with aging (S1old

  18. Long-Term Evaluation of the Scintec Boundary-Layer Scintillometer and the Wageningen Large-Aperture Scintillometer: Implications for Scintillometer Users

    NASA Astrophysics Data System (ADS)

    Van Kesteren, B.; Beyrich, F.; Hartogensis, O. K.; Braam, M.

    2015-08-01

    We compare the structure parameter of the refractive index, , measured simultaneously with two large-aperture scintillometers: the WagLAS (Wageningen University, Wageningen, the Netherlands) and the BLS900 (Scintec, Rottenburg, Germany). A 3.5-year dataset shows a bias in of about 17 % between the instruments. Analysis of these data reveals firstly that the logarithmic amplifiers in the WagLAS exhibit a strong dependence on temperature, resulting in an overestimation of of up to 35 % for temperatures 0 . Secondly, high-pass filtering of the WagLAS and BLS900 intensity data artificially reduces for crosswinds 2 (error 25 and 5 % respectively). Thirdly, the BLS900 increasingly underestimates (up to 10-15 %) with increasing signal saturation. We demonstrate that Scintec's data processing relies too heavily on the assumption that the intensity data obey a log-normal distribution, which they do not in the case of saturation. Fourthly, both instruments ignore the dissipation range of the refractive-index spectrum, which leads to an overestimation of of up to 30 % for friction velocity 0.2 . Implications of these findings are discussed and placed into perspective for other scintillometer users. Furthermore, we present a tool for revealing saturation and other violations of Rytov theory for any given scintillometer type, including microwave scintillometers.

  19. Large aperture Fizeau interferometer commissioning and preliminary measurements of a long x-ray mirror at European X-ray Free Electron Laser.

    PubMed

    Vannoni, M; Freijo Martín, I

    2016-05-01

    The European XFEL (X-ray Free Electron Laser) is a large facility under construction in Hamburg, Germany. It will provide a transversally fully coherent x-ray radiation with outstanding characteristics: high repetition rate (up to 2700 pulses with a 0.6 ms long pulse train at 10 Hz), short wavelength (down to 0.05 nm), short pulse (in the femtoseconds scale), and high average brilliance (1.6 ⋅ 10(25) (photons s(-1) mm(-2) mrad(-2))/0.1% bandwidth). The beam has very high pulse energy; therefore, it has to be spread out on a relatively long mirror (about 1 m). Due to the very short wavelength, the mirrors need to have a high quality surface on their entire length, and this is considered very challenging even with the most advanced polishing methods. In order to measure the mirrors and to characterize their interaction with the mechanical mount, we equipped a metrology laboratory with a large aperture Fizeau interferometer. The system is a classical 100 mm diameter commercial Fizeau, with an additional expander providing a 300 mm diameter beam. Despite the commercial nature of the system, special care has been taken in the polishing of the reference flats and in the expander quality. We report the first commissioning of the instrument, its calibration, and performance characterization, together with some preliminary results with the measurement of a 950 mm silicon substrate. The intended application is to characterize the final XFEL mirrors with nanometer accuracy. PMID:27250373

  20. Large aperture Fizeau interferometer commissioning and preliminary measurements of a long x-ray mirror at European X-ray Free Electron Laser.

    PubMed

    Vannoni, M; Freijo Martín, I

    2016-05-01

    The European XFEL (X-ray Free Electron Laser) is a large facility under construction in Hamburg, Germany. It will provide a transversally fully coherent x-ray radiation with outstanding characteristics: high repetition rate (up to 2700 pulses with a 0.6 ms long pulse train at 10 Hz), short wavelength (down to 0.05 nm), short pulse (in the femtoseconds scale), and high average brilliance (1.6 ⋅ 10(25) (photons s(-1) mm(-2) mrad(-2))/0.1% bandwidth). The beam has very high pulse energy; therefore, it has to be spread out on a relatively long mirror (about 1 m). Due to the very short wavelength, the mirrors need to have a high quality surface on their entire length, and this is considered very challenging even with the most advanced polishing methods. In order to measure the mirrors and to characterize their interaction with the mechanical mount, we equipped a metrology laboratory with a large aperture Fizeau interferometer. The system is a classical 100 mm diameter commercial Fizeau, with an additional expander providing a 300 mm diameter beam. Despite the commercial nature of the system, special care has been taken in the polishing of the reference flats and in the expander quality. We report the first commissioning of the instrument, its calibration, and performance characterization, together with some preliminary results with the measurement of a 950 mm silicon substrate. The intended application is to characterize the final XFEL mirrors with nanometer accuracy.

  1. Large aperture Fizeau interferometer commissioning and preliminary measurements of a long x-ray mirror at European X-ray Free Electron Laser

    NASA Astrophysics Data System (ADS)

    Vannoni, M.; Freijo Martín, I.

    2016-05-01

    The European XFEL (X-ray Free Electron Laser) is a large facility under construction in Hamburg, Germany. It will provide a transversally fully coherent x-ray radiation with outstanding characteristics: high repetition rate (up to 2700 pulses with a 0.6 ms long pulse train at 10 Hz), short wavelength (down to 0.05 nm), short pulse (in the femtoseconds scale), and high average brilliance (1.6 ṡ 1025 (photons s-1 mm-2 mrad-2)/0.1% bandwidth). The beam has very high pulse energy; therefore, it has to be spread out on a relatively long mirror (about 1 m). Due to the very short wavelength, the mirrors need to have a high quality surface on their entire length, and this is considered very challenging even with the most advanced polishing methods. In order to measure the mirrors and to characterize their interaction with the mechanical mount, we equipped a metrology laboratory with a large aperture Fizeau interferometer. The system is a classical 100 mm diameter commercial Fizeau, with an additional expander providing a 300 mm diameter beam. Despite the commercial nature of the system, special care has been taken in the polishing of the reference flats and in the expander quality. We report the first commissioning of the instrument, its calibration, and performance characterization, together with some preliminary results with the measurement of a 950 mm silicon substrate. The intended application is to characterize the final XFEL mirrors with nanometer accuracy.

  2. Photodynamic activation of ion transport through lipid membranes and its correlation with an increased dielectric constant of the membrane.

    PubMed

    Killig, Frank; Stark, Günther

    2002-08-19

    Illumination of biological membranes with visible light in the presence of membrane-active sensitizers (e.g. rose bengal) is known to inactivate transport proteins such as ion channels and ion pumps. In some cases, however, illumination gives rise to an activation of transport. This is shown here for ion channels formed by alamethicin in lipid membranes, and for porin channels, which were isolated from the outer membrane of E. coli (OmpC) and from the outer membrane of mitochondria (VDAC) and were reconstituted in lipid membranes. An activation (in the form of an increased conductance) was also observed in the presence of the cation carriers valinomycin and nonactin. The activation phenomena were only present, if the membranes were made from lipids containing unsaturated double bonds. Activation was reduced in the presence of the antioxidant vitamin E. We suggest that the activation of the different transport systems has a common physical basis, namely an increase of the dielectric constant, epsilon(m), of the membrane interior by the presence of polar oxidation products of photodynamically induced lipid peroxidation. Experimental evidence for an enhanced dielectric constant was obtained from the finding of a light-induced increase of the membrane capacitance in the presence of rose bengal.

  3. Investigation of membrane active properties and antiradical activity of gossypol and its derivatives

    Technology Transfer Automated Retrieval System (TEKTRAN)

    New asymmetrical derivatives of gossypol were synthesized. The antioxidant activity of gossypol and these derivatives was studied. The interaction of these compounds with modeled lipid membranes was also studied. It was found that the antioxidant effects and ability to interact with membranes was...

  4. Membrane-Active Properties and Antiradical Activity of Gossypol and Its Derivatives

    Technology Transfer Automated Retrieval System (TEKTRAN)

    New asymmetrical derivatives of gossypol were synthesized. The antioxidant activity of gossypol and these derivatives was studied. The interaction of these compounds with modeled lipid membranes was also studied. It was found that the antioxidant effects and ability to interact with membranes was...

  5. Galactosyltransferase activities in mitochondria outer membrane: biosynthesis of galactosylated proteins.

    PubMed

    Gasnier, F; Louisot, P; Gateau, O

    1989-01-01

    1. Mitochondria outer membranes prepared from mouse livers were purified on a discontinuous sucrose gradient. Control in electron microscopy and marker enzymes assays confirmed purity and homogeneity of this fraction. 2. Purified mitochondria outer membranes exhibited significant UDP-galactose: glycoprotein galactosyltransferase activities when incubated with endogenous or exogenous glycoprotein acceptors in presence of detergent (Nonidet P40). 3. Some properties of two distinct mitochondrial galactosyltransferases, acting respectively on ovomucoid and ovine asialo-mucin were investigated. 4. Transfer of galactose on ovomucoid was maximal for a pH of 7.6 at 33 degrees C whereas asialo-mucin galactosyltransferase exhibited an optimum pH of 5.6 for an optimal temperature of 46 degrees C. 5. These two distinct membrane-bound enzymes were both inhibited by diacylglycerophospholipids whereas lysophospholipids modulated both enzymes in a different way: at 5 mM lysophosphatidylcholine, asialo-mucin galactosyltransferase was slightly stimulated while ovomucoid galactosyltransferase was markedly activated. 6. The most important activating effect on ovomucoid galactosyltransferase was obtained with a phospholipid containing a long aliphatic side chain linked by an ester bond in sn-1 of glycerol, an hydroxyl group or hydrogen atoms in sn-2 and a phosphorylcholine head group in sn-3. PMID:2501112

  6. OpTIIX: An ISS-Based Testbed Paving the Roadmap Toward a Next Generation Large Aperture UV/Optical Space Telescope

    NASA Technical Reports Server (NTRS)

    Carpenter, Kenneth G.; Etemad, Shar; Seery, Bernard D.; Thronson, Harley; Burdick, Gary M.; Coulter, Dan; Goullioud, Renaud; Green, Joseph J.; Liu, Fengchuan; Ess, Kim; Postman, Marc; Sparks, Williams

    2012-01-01

    The next generation large aperture UV/Optical space telescope will need a diameter substantially larger than even that of JWST in order to address some of the most compelling unanswered scientific quests. These quests include understanding the earliest phases of the Universe and detecting life on exo-planets by studying spectra of their atmospheres. Such 8-16 meter telescopes face severe challenges in terms of cost and complexity and are unlikely to be affordable unless a new paradigm is adopted for their design and construction. The conventional approach is to use monolithic or preassembled segmented mirrors requiring complicated and risky deployments and relying on future heavy-lift vehicles, large fairings and complex geometry. The new paradigm is to launch component modules on relatively small vehicles and then perform in-orbit robotic assembly of those modules. The Optical Testbed and Integration on ISS eXperiment (OpTIIX) is designed to demonstrate, at low cost by leveraging the infrastructure provided by ISS, telescope assembly technologies and end-to-end optical system technologies. The use of ISS as a testbed permits the concentration of resources on reducing the technical risks associated with robotically integrating the components. These include laser metrology and wavefront sensing and control (WFS&C) systems, an imaging instrument, lightweight, low-cost deformable primary mirror segments and the secondary mirror. These elements are then aligned to a diffraction-limited optical system in space. The capability to assemble the optical system and remove and replace components via the existing ISS robotic systems like the Special Purpose Dexterous Manipulator (SPDM), or by the ISS flight crew, allows for future experimentation, as well as repair.

  7. Source locations of teleseismic P, SV, and SH waves observed in microseisms recorded by a large aperture seismic array in China

    NASA Astrophysics Data System (ADS)

    Liu, Qiaoxia; Koper, Keith D.; Burlacu, Relu; Ni, Sidao; Wang, Fuyun; Zou, Changqiao; Wei, Yunhao; Gal, Martin; Reading, Anya M.

    2016-09-01

    Transversely polarized seismic waves are routinely observed in ambient seismic energy across a wide range of periods, however their origin is poorly understood because the corresponding source regions are either undefined or weakly constrained, and nearly all models of microseism generation incorporate a vertically oriented single force as the excitation mechanism. To better understand the origin of transversely polarized energy in the ambient seismic wavefield we make the first systematic attempt to locate the source regions of teleseismic SH waves observed in microseismic (2.5-20 s) noise. We focus on body waves instead of surface waves because the source regions can be constrained in both azimuth and distance using conventional array techniques. To locate microseismic sources of SH waves (as well as SV and P waves) we continuously backproject the vertical, radial, and transverse components of the ambient seismic wavefield recorded by a large-aperture array deployed in China during 2013-2014. As expected, persistent P wave sources are observed in the North Atlantic, North Pacific, and Indian Oceans, mainly at periods of 2.5-10 s, in regions with the strong ocean wave interactions needed to produce secondary microseisms. SV waves are commonly observed to originate from locations indistinguishable from the P wave sources, but with smaller signal-to-noise ratios. We also observe SH waves with about half or less the signal-to-noise ratio of SV waves. SH source regions are definitively located in deep water portions of the Pacific, away from the sloping continental shelves that are thought to be important for the generation of microseismic Love waves, but nearby regions that routinely generate teleseismic P waves. The excitation mechanism for the observed SH waves may therefore be related to the interaction of P waves with small-wavelength bathymetric features, such as seamounts and basins, through some sort of scattering process.

  8. Photosynthesis Activates Plasma Membrane H+-ATPase via Sugar Accumulation.

    PubMed

    Okumura, Masaki; Inoue, Shin-Ichiro; Kuwata, Keiko; Kinoshita, Toshinori

    2016-05-01

    Plant plasma membrane H(+)-ATPase acts as a primary transporter via proton pumping and regulates diverse physiological responses by controlling secondary solute transport, pH homeostasis, and membrane potential. Phosphorylation of the penultimate threonine and the subsequent binding of 14-3-3 proteins in the carboxyl terminus of the enzyme are required for H(+)-ATPase activation. We showed previously that photosynthesis induces phosphorylation of the penultimate threonine in the nonvascular bryophyte Marchantia polymorpha However, (1) whether this response is conserved in vascular plants and (2) the process by which photosynthesis regulates H(+)-ATPase phosphorylation at the plasma membrane remain unresolved issues. Here, we report that photosynthesis induced the phosphorylation and activation of H(+)-ATPase in Arabidopsis (Arabidopsis thaliana) leaves via sugar accumulation. Light reversibly phosphorylated leaf H(+)-ATPase, and this process was inhibited by pharmacological and genetic suppression of photosynthesis. Immunohistochemical and biochemical analyses indicated that light-induced phosphorylation of H(+)-ATPase occurred autonomously in mesophyll cells. We also show that the phosphorylation status of H(+)-ATPase and photosynthetic sugar accumulation in leaves were positively correlated and that sugar treatment promoted phosphorylation. Furthermore, light-induced phosphorylation of H(+)-ATPase was strongly suppressed in a double mutant defective in ADP-glucose pyrophosphorylase and triose phosphate/phosphate translocator (adg1-1 tpt-2); these mutations strongly inhibited endogenous sugar accumulation. Overall, we show that photosynthesis activated H(+)-ATPase via sugar production in the mesophyll cells of vascular plants. Our work provides new insight into signaling from chloroplasts to the plasma membrane ion transport mechanism. PMID:27016447

  9. The relation between membrane potential, membrane currents and activation of contraction in ventricular myocardial fibres

    PubMed Central

    Beeler, G. W.; Reuter, H.

    1970-01-01

    1. Membrane currents and contractile responses have been measured in ventricular myocardial preparations under voltage clamp conditions. 2. In Tyrode solution, steady-state contraction was obtained only after 5-8 depolarizations to a given potential level. The threshold of steady-state tension was identical to the potential where the calcium inward current, ICa, was activated (about -35 mV). Both thresholds were shifted in the same direction along the voltage axis and by the same amount by changing [Ca]o or [Na]o. Maximum tension was obtained at inside positive potentials. 3. The time courses of steady-state tension and of activation of ICa were different by more than one order of magnitude in Tyrode solution. But in order to achieve any appreciable steady-state tension, ICa had to flow during several identical depolarizations. Tension decreased again at potentials above ECa. This suggests that calcium inward current must flow in order to fill intracellular calcium stores from which calcium can be released by an unknown mechanism. 4. The ability of a fibre bundle to contract again after a preceding twitch is greatly dependent on the membrane potential between two equal depolarizations. In Tyrode solutions with 1·8 and 7·2 mM-CaCl2 half restoration of this ability occurred at -45 ± 3 mV (± S.E. of mean) and -23 ± 4 mV, respectively. 5. In sodium-free bathing solutions, steady-state tension was attained upon the first depolarization provided ICa was activated. Furthermore, at different potentials, the time courses of activation of tension and of activation of ICa were identical, i.e. tension reached its maximum when ICa was fully activated. This suggests that in sodium-free solutions the flow of calcium ions into the fibre directly activates contraction. PMID:5503873

  10. Calcium Modulation of Plant Plasma Membrane-Bound Atpase Activities

    NASA Technical Reports Server (NTRS)

    Caldwell, C.

    1983-01-01

    The kinetic properties of barley enzyme are discussed and compared with those of other plants. Possibilities for calcium transport in the plasma membrane by proton pump and ATPase-dependent calcium pumps are explored. Topics covered include the ph phase of the enzyme; high affinity of barley for calcium; temperature dependence, activation enthalpy, and the types of ATPase catalytic sites. Attention is given to lipids which are both screened and bound by calcium. Studies show that barley has a calmodulin activated ATPase that is found in the presence of magnesium and calcium.

  11. Chemical Modulation of the Biological Activity of Reutericyclin: a Membrane-Active Antibiotic from Lactobacillus reuteri

    PubMed Central

    Cherian, Philip T.; Wu, Xiaoqian; Maddox, Marcus M.; Singh, Aman P.; Lee, Richard E.; Hurdle, Julian G.

    2014-01-01

    Whilst the development of membrane-active antibiotics is now an attractive therapeutic concept, progress in this area is disadvantaged by poor knowledge of the structure-activity relationship (SAR) required for optimizing molecules to selectively target bacteria. This prompted us to explore the SAR of the Lactobacillus reuteri membrane-active antibiotic reutericyclin, modifying three key positions about its tetramic acid core. The SAR revealed that lipophilic analogs were generally more active against Gram-positive pathogens, but introduction of polar and charged substituents diminished their activity. This was confirmed by cytometric assays showing that inactive compounds failed to dissipate the membrane potential. Radiolabeled substrate assays indicated that dissipation of the membrane potential by active reutericyclins correlated with inhibition of macromolecular synthesis in cells. However, compounds with good antibacterial activities also showed cytotoxicity against Vero cells and hemolytic activity. Although this study highlights the challenge of optimizing membrane-active antibiotics, it shows that by increasing antibacterial potency the selectivity index could be widened, allowing use of lower non-cytotoxic doses. PMID:24739957

  12. Antiviral activity of squalamine: Role of electrostatic membrane binding

    NASA Astrophysics Data System (ADS)

    Beckerman, Bernard; Qu, Wei; Mishra, Abhijit; Zasloff, Michael; Wong, Gerard; Luijten, Erik

    2012-02-01

    Recent workootnotetextM. Zasloff et al., Proc. Nat. Acad. Sci. (USA) 108, 15978 (2011). has demonstrated that squalamine, a molecule found in the liver of sharks, exhibits broad-spectrum antiviral properties. It has been proposed that this activity results from the charge-density matching of squalamine and phospholipid membranes, causing squalamine to bind to membranes and displace proteins such as Rac1 that are crucial for the viral replication cycle. Here we investigate this hypothesis by numerical simulation of a coarse-grained model for the competition between Rac1 and squalamine in binding affinity to a flat lipid bilayer. We perform free-energy calculations to test the ability of squalamine to condense stacked bilayer systems and thereby displace bulkier Rac1 molecules. We directly compare our findings to small-angle x-ray scattering results for the same setup.

  13. Biological activities of Eikenella corrodens outer membrane and lipopolysaccharide.

    PubMed Central

    Progulske, A; Mishell, R; Trummel, C; Holt, S C

    1984-01-01

    Highly purified preparations of the outer membrane and lipopolysaccharide (LPS) of Eikenella corrodens strain ATCC 23834 and the outer membrane fraction (OMF) of strain 470 were tested in in vitro biological assays. The OMFs of both strains were found to be mitogenic for BDF and C3H/HeJ murine splenocytes. The E. corrodens LPS was mitogenic for BDF spleen cells; however, doses of LPS as high as 50 micrograms/ml failed to stimulate C3H/HeJ cells. When incubated with T-lymphocyte-depleted C3H/HeJ splenocytes, the strain 23834 OMF demonstrated significant mitogenic activity, indicating that the OMF is a B-cell mitogen by a mechanism other than that elicited by conventional LPS. The E. corrodens 23834 OMF and LPS were stimulators of bone resorption when tested in organ cultures of fetal rat long bones. In contrast, the strain 470 OMF was only weakly stimulatory. Both OMFs and LPSs demonstrated "endotoxic" activity, since as little as 0.062 micrograms of E. corrodens LPS and 0.015 micrograms of the OMFs induced gelation in the Limulus amebocyte clotting assay. Thus, despite having a "nonclassical" LPS biochemistry, the E. corrodens LPS elicits classical endotoxic activities. These results also indicate that the surface structures of E. corrodens have significant biological activities as measured in vitro. The expression of such activities in vivo may play an important role in the pathogenesis of periodontitis as well as other E. corrodens infections. PMID:6360893

  14. Activation of the glycosyl-phosphatidylinositol-anchored membrane dipeptidase upon release from pig kidney membranes by phospholipase C.

    PubMed

    Brewis, I A; Turner, A J; Hooper, N M

    1994-10-15

    Incubation of pig kidney microvillar membranes with Bacillus thuringiensis or Staphylococcus aureus phosphatidylinositol-specific phospholipase C (PI-PLC) resulted in the release of a number of glycosyl-phosphatidylinositol (GPI)-anchored hydrolases, including alkaline phosphatase (EC 3.1.3.1), amino-peptidase P (EC 3.4.11.9), membrane dipeptidase (EC 3.4.13.19), 5'-nucleotidase (EC 3.1.3.5) and trehalase (EC 3.2.1.28). Of these five ectoenzymes only for membrane dipeptidase was there a significant (approx. 100%) increase in enzymic activity upon release from the membrane. Maximal activation occurred at a PI-PLC concentration 10-fold less than that required for maximal release. In contrast solubilization of the membranes with n-octyl beta-D-glucopyranoside had no effect on the enzymic activity of membrane dipeptidase. A competitive e.l.i.s.a. with a polyclonal antiserum to membrane dipeptidase indicated that the increase in enzymic activity was not due to an increase in the amount of membrane dipeptidase protein. Although PI-PLC cleaved the GPI anchor of the affinity-purified amphipathic form of pig membrane dipeptidase there was no concurrent increase in enzymic activity. In the absence of PI-PLC, membrane dipeptidase in the microvillar membranes hydrolysed Gly-D-Phe with a Km of 0.77 mM and a Vmax. of 602 nmol/min per mg of protein. However, in the presence of a concentration of PI-PLC which caused maximal release from the membrane and maximal activation of membrane dipeptidase the Km was decreased to 0.07 mM while the Vmax. remained essentially unchanged at 624 nmol/min per mg of protein. Overall these results suggest that cleavage by PI-PLC of the GPI anchor on membrane dipeptidase may relax conformational constraints on the active site of the enzyme which exist when it is anchored in the lipid bilayer, thus resulting in an increase in the affinity of the active site for substrate.

  15. Modulation of Erythrocyte Plasma Membrane Redox System Activity by Curcumin

    PubMed Central

    Singh, Prabhakar; Kesharwani, Rajesh Kumar; Misra, Krishna; Rizvi, Syed Ibrahim

    2016-01-01

    Plasma membrane redox system (PMRS) is an electron transport chain system ubiquitously present throughout all cell types. It transfers electron from intracellular substrates to extracellular acceptors for regulation of redox status. Curcumin, isolated from Curcuma longa, has modulatory effects on cellular physiology due to its membrane interaction ability and antioxidant potential. The present study investigates the effect of curcumin on PMRS activity of erythrocytes isolated from Wistar rats in vitro and in vivo and validated through an in silico docking simulation study using Molegro Virtual Docker (MVD). Effects of curcumin were also evaluated on level of glutathione (GSH) and the oxidant potential of plasma measured in terms of plasma ferric equivalent oxidative potentials (PFEOP). Results show that curcumin significantly (p < 0.01) downregulated the PMRS activity in a dose-dependent manner. Molecular docking results suggest that curcumin interacts with amino acids at the active site cavity of cytochrome b5 reductase, a key constituent of PMRS. Curcumin also increased the GSH level in erythrocytes and plasma while simultaneously decreasing the oxidant potential (PFEOP) of plasma. Altered PMRS activity and redox status are associated with the pathophysiology of several health complications including aging and diabetes; hence, the above finding may explain part of the role of curcumin in health beneficial effects. PMID:26904287

  16. Modulation of Erythrocyte Plasma Membrane Redox System Activity by Curcumin.

    PubMed

    Singh, Prabhakar; Kesharwani, Rajesh Kumar; Misra, Krishna; Rizvi, Syed Ibrahim

    2016-01-01

    Plasma membrane redox system (PMRS) is an electron transport chain system ubiquitously present throughout all cell types. It transfers electron from intracellular substrates to extracellular acceptors for regulation of redox status. Curcumin, isolated from Curcuma longa, has modulatory effects on cellular physiology due to its membrane interaction ability and antioxidant potential. The present study investigates the effect of curcumin on PMRS activity of erythrocytes isolated from Wistar rats in vitro and in vivo and validated through an in silico docking simulation study using Molegro Virtual Docker (MVD). Effects of curcumin were also evaluated on level of glutathione (GSH) and the oxidant potential of plasma measured in terms of plasma ferric equivalent oxidative potentials (PFEOP). Results show that curcumin significantly (p < 0.01) downregulated the PMRS activity in a dose-dependent manner. Molecular docking results suggest that curcumin interacts with amino acids at the active site cavity of cytochrome b 5 reductase, a key constituent of PMRS. Curcumin also increased the GSH level in erythrocytes and plasma while simultaneously decreasing the oxidant potential (PFEOP) of plasma. Altered PMRS activity and redox status are associated with the pathophysiology of several health complications including aging and diabetes; hence, the above finding may explain part of the role of curcumin in health beneficial effects. PMID:26904287

  17. Membrane lipids regulate ganglioside GM2 catabolism and GM2 activator protein activity[S

    PubMed Central

    Anheuser, Susi; Breiden, Bernadette; Schwarzmann, Günter; Sandhoff, Konrad

    2015-01-01

    Ganglioside GM2 is the major lysosomal storage compound of Tay-Sachs disease. It also accumulates in Niemann-Pick disease types A and B with primary storage of SM and with cholesterol in type C. Reconstitution of GM2 catabolism with β-hexosaminidase A and GM2 activator protein (GM2AP) at uncharged liposomal surfaces carrying GM2 as substrate generated only a physiologically irrelevant catabolic rate, even at pH 4.2. However, incorporation of anionic phospholipids into the GM2 carrying liposomes stimulated GM2 hydrolysis more than 10-fold, while the incorporation of plasma membrane stabilizing lipids (SM and cholesterol) generated a strong inhibition of GM2 hydrolysis, even in the presence of anionic phospholipids. Mobilization of membrane lipids by GM2AP was also inhibited in the presence of cholesterol or SM, as revealed by surface plasmon resonance studies. These lipids also reduced the interliposomal transfer rate of 2-NBD-GM1 by GM2AP, as observed in assays using Förster resonance energy transfer. Our data raise major concerns about the usage of recombinant His-tagged GM2AP compared with untagged protein. The former binds more strongly to anionic GM2-carrying liposomal surfaces, increases GM2 hydrolysis, and accelerates intermembrane transfer of 2-NBD-GM1, but does not mobilize membrane lipids. PMID:26175473

  18. Photomodification of the electrical properties of the plasma membrane: a comparison between 6 different membrane-active photosensitizers.

    PubMed

    Killig, F; Kunz, L; Stark, G

    2001-05-01

    The present study deals with photomodification of the electrical properties of the plasma membrane of an epithelial cell line (opossum kidney (OK) cells). The effect of photofrin II (previously investigated) is compared with that of 5 other membrane-active sensitizers: sulfonated Zn-phthalocyanine, merocyanine 540, rose bengal, methylene blue and protoporphyrin IX (an endogenous sensitizer induced by addition of its biosynthetic precursor 5-aminolaevulinic acid). The study was performed in order to investigate whether photomodification of the ion transport properties of the plasma membrane by membrane-active sensitizers is a general and early event in cellular photosensitization. The changes in the electrical properties were monitored by application of the whole-cell and the inside-out configuration of the patch-clamp technique. Illumination in the presence of the compounds (apart from merocyanine 540) gave rise to similar changes of the electrical properties of the membrane: depolarization of the membrane potential, inactivation of a large-conductance, Ca2+-dependent K+-channel (maxi-KCa), and a strong increase of the leak conductance of the membrane. This similarity indicates the general character of the functional photomodifications by membrane-active sensitizers previously reported for photofrin II.

  19. An analysis on the influence of spatial scales on sensible heat fluxes in the north Tibetan Plateau based on Eddy covariance and large aperture scintillometer data

    NASA Astrophysics Data System (ADS)

    Sun, Genhou; Hu, Zeyong; Sun, Fanglin; Wang, Jiemin; Xie, Zhipeng; Lin, Yun; Huang, Fangfang

    2016-05-01

    The influence of spatial scales on surface fluxes is an interesting but not fully investigated question. This paper presents an analysis on the influence of spatial scales on surface fluxes in the north Tibetan Plateau based on eddy covariance (EC) and large aperture scintillometer (LAS) data at site Nagqu/BJ, combined with the land surface temperature (LST) and normalized difference vegetation index (NDVI) of moderate-resolution imaging spectroradiometer (MODIS). The analysis shows that sensible heat fluxes calculated with LAS data (H_LAS) agree reasonably well with sensible heat fluxes calculated with EC data (H_EC) in the rain and dry seasons. The difference in their footprints due to the wind direction is an important reason for the differences in H_EC and H_LAS. The H_LAS are statistically more consistent with H_EC when their footprints overlap than when their footprints do not. A detailed analysis on H_EC and H_LAS changes with net radiation and wind direction in rain and dry season indicates that the spatial heterogeneity in net radiation created by clouds contributes greatly to the differences in H_EC and H_LAS in short-term variations. A significant relationship between the difference in footprint-weighted averages of LST and difference in H_EC and H_LAS suggests that the spatial heterogeneity in LST at two spatial scales is a reason for the differences in H_EC and H_LAS and that LST has a positive correlation with the differences in H_EC and H_LAS. A significant relationship between the footprint-weighted averages of NDVI and the ratio of sensible heat fluxes at two spatial scales to net radiation (H/Rn) in the rain season supports the analysis that the spatial heterogeneity in canopy at two spatial scales is another reason for differences in H_EC and H_LAS and that canopy has a negative correlation with (H/Rn). An analysis on the influence of the difference in aerodynamic roughness lengths at two spatial scales on sensible heat fluxes shows that the

  20. An Upscaling Analysis on Aerodynamic Roughness Length in North Tibetan Plateau based on Eddy Covariance, Large Aperture Scitillometer Data and Remote Sensing Product

    NASA Astrophysics Data System (ADS)

    SUN, G.; Hu, Z.; Fanglin, S.

    2015-12-01

    Abstract: Aerodynamic roughness length (z0m) is a crucial parameter in quantifying momentum, sensible heat, and latent heat fluxes between atmosphere and land surface, and depends greatly on spatial scales. This paper presents a tentative study in upscaling of z0m in North Tibetan Plateau, based on ground measurement data of different spatial scales from eddy covariance (EC) and large aperture scintillometer (LAS) and NDVI products from MODIS with 250m and 2km spatial resolutions. The comparison of z0m calculated from EC and LAS data indicates that the z0m values at both scales have apparent seasonal variations, and are in good agreement with that of NDVI. However, z0m_LAS is higher than z0m_EC, which is attributed to the differences of roughness elements in their footprints. An upscaling relationship about z0m was established with z0m observations and NDVI products of MODIS.In addition, an altitude correction factor was introduced into vegetation height estimation with NDVI, because the low temperature environment in North Tibetan Plateau due to its high altitude has strong influence on vegetation heights.The z0m retrievals with NDVI products with 250m spatial resolutions from June to September are validated with ground z0m results of Naqu/Amdo, Naqu/MS3478 and Naqu/NewD66 and the agreement is acceptable. The spatial distribution of z0m at 250m spatial resolutions in North Tibetan Plateau from June to September shows that z0m values are below 0.015m in most area, except the area in the southeast part where z0m values reach 0.025m due to lower altitudes. The z0m retrievals at 2km spatial resolutions of the same period range from 0.015 to 0.065m, and high values appear in the area with lower altitudes.The z0m retrievals at both spatial scales are affected by altitude, indicating the uniqueness of Tibetan Plateau. Frequency statistics on z0m retrievals at both spatial resolutions from June to September, 2012 shows obvious typical monthly changes in monsoon season.

  1. Hydrodynamic collective effects of active proteins in biological membranes.

    PubMed

    Koyano, Yuki; Kitahata, Hiroyuki; Mikhailov, Alexander S

    2016-08-01

    Lipid bilayers forming biological membranes are known to behave as viscous two-dimensional fluids on submicrometer scales; usually they contain a large number of active protein inclusions. Recently, it was shown [A. S. Mikhailov and R. Kapral, Proc. Natl. Acad. Sci. USA 112, E3639 (2015)PNASA60027-842410.1073/pnas.1506825112] that such active proteins should induce nonthermal fluctuating lipid flows leading to diffusion enhancement and chemotaxislike drift for passive inclusions in biomembranes. Here, a detailed analytical and numerical investigation of such effects is performed. The attention is focused on the situations when proteins are concentrated within lipid rafts. We demonstrate that passive particles tend to become attracted by active rafts and are accumulated inside them. PMID:27627343

  2. Hydrodynamic collective effects of active proteins in biological membranes

    NASA Astrophysics Data System (ADS)

    Koyano, Yuki; Kitahata, Hiroyuki; Mikhailov, Alexander S.

    2016-08-01

    Lipid bilayers forming biological membranes are known to behave as viscous two-dimensional fluids on submicrometer scales; usually they contain a large number of active protein inclusions. Recently, it was shown [A. S. Mikhailov and R. Kapral, Proc. Natl. Acad. Sci. USA 112, E3639 (2015), 10.1073/pnas.1506825112] that such active proteins should induce nonthermal fluctuating lipid flows leading to diffusion enhancement and chemotaxislike drift for passive inclusions in biomembranes. Here, a detailed analytical and numerical investigation of such effects is performed. The attention is focused on the situations when proteins are concentrated within lipid rafts. We demonstrate that passive particles tend to become attracted by active rafts and are accumulated inside them.

  3. Lachesana tarabaevi, an expert in membrane-active toxins.

    PubMed

    Kuzmenkov, Alexey I; Sachkova, Maria Y; Kovalchuk, Sergey I; Grishin, Eugene V; Vassilevski, Alexander A

    2016-08-15

    In the present study, we show that venom of the ant spider Lachesana tarabaevi is unique in terms of molecular composition and toxicity. Whereas venom of most spiders studied is rich in disulfide-containing neurotoxic peptides, L. tarabaevi relies on the production of linear (no disulfide bridges) cytolytic polypeptides. We performed full-scale peptidomic examination of L. tarabaevi venom supported by cDNA library analysis. As a result, we identified several dozen components, and a majority (∼80% of total venom protein) exhibited membrane-active properties. In total, 33 membrane-interacting polypeptides (length of 18-79 amino acid residues) comprise five major groups: repetitive polypeptide elements (Rpe), latarcins (Ltc), met-lysines (MLys), cyto-insectotoxins (CIT) and latartoxins (LtTx). Rpe are short (18 residues) amphiphilic molecules that are encoded by the same genes as antimicrobial peptides Ltc 4a and 4b. Isolation of Rpe confirms the validity of the iPQM (inverted processing quadruplet motif) proposed to mark the cleavage sites in spider toxin precursors that are processed into several mature chains. MLys (51 residues) present 'idealized' amphiphilicity when modelled in a helical wheel projection with sharply demarcated sectors of hydrophobic, cationic and anionic residues. Four families of CIT (61-79 residues) are the primary weapon of the spider, accounting for its venom toxicity. Toxins from the CIT 1 and 2 families have a modular structure consisting of two shorter Ltc-like peptides. We demonstrate that in CIT 1a, these two parts act in synergy when they are covalently linked. This finding supports the assumption that CIT have evolved through the joining of two shorter membrane-active peptides into one larger molecule. PMID:27287558

  4. Plasma membrane calcium pump activity is affected by the membrane protein concentration. Evidence for the involvement of the actin cytoskeleton

    PubMed Central

    Vanagas, Laura; Rossi, Rolando C.; Caride, Ariel J.; Filoteo, Adelaida G.; Strehler, Emanuel E.; Rossi, Juan Pablo F.C.

    2007-01-01

    Plasma membrane calcium pumps (PMCAs) are integral membrane proteins that actively expel Ca2+ from the cell. Specific Ca2+-ATPase activity of erythrocyte membranes increased steeply up to 1.5–5 times when the membrane protein concentration decreased from 50 μg/ml to 1 μg/ml. The activation by dilution was also observed for ATP-dependent Ca2+ uptake into vesicles from Sf9 over-expressing the PMCA 4b isoform, confirming that it is a property of the PMCA. Dilution of the protein did not modify the activation by ATP, Ca2+ or Ca2+-calmodulin. Treatment with non-ionic detergents did not abolish the dilution effect, suggesting that it was not due to resealing of the membrane vesicles. Pre-incubation of erythrocyte membranes with Cytochalasin D under conditions that promote actin polymerization abolished the dilution effect. Highly-purified, micellar PMCA showed no dilution effect and was not affected by Cytochalasin D. Taken together, these results suggest that the concentration-dependent behavior of the PMCA activity was due to interactions with cytoskeletal proteins. The dilution effect was also observed with different PMCA isoforms, indicating that this is a general phenomenon for all PMCAs. PMID:17481573

  5. Aerodynamic Performance of Electro-Active Membrane Wings

    NASA Astrophysics Data System (ADS)

    Barbu, Ioan-Alexandru; de Kat, Roeland; Ganapathisubramani, Bharathram

    2014-11-01

    Electro-active polymers offer due to their multivariate compliant nature a great potential for integrating the lift producing system and the control system into one. This work presents the first step in describing both the mechanical and aerodynamic performance of such materials and focuses on both understanding their behaviour in aerodynamic applications and on analysing their aerodynamic performance. Photogrammetry and load measurements are conducted in a wind tunnel for both silicone-based and acrylic-based membranes at zero prestrain supported in a perimeter reinforced frame in electrically passive, active and pulsing conditions. A wide range of fixed voltages and pulsing frequencies are considered. Due to their hyper-viscoelastic nature, both short and long term hysteresis analysis are conducted in terms of aerodynamic performance. Along with these tests, analyses of the effects of the percentage electrode area and silicone content on aerodynamic performance are conducted.

  6. Effects of hydrostatic pressure on lipid bilayer membranes. I. Influence on membrane thickness and activation volumes of lipophilic ion transport.

    PubMed

    Benz, R; Conti, F

    1986-07-01

    Measurements of membrane capacitance, Cm, were performed on lipid bilayers of different lipidic composition (diphytanoyl phosphatidylcholine PPhPC, dioleoyl phosphatidylcholine DOPE, glycerylmonooleate GMO) and containing n-decane as solvent. In the same membranes, the absorption of the lipophilic ions dipicrylamine (DPA-) and tetraphenylborate (TPhB-), and the kinetics of their translocation between the two membrane faces have been studied. The data were obtained from charge pulse relaxation measurements. Upon increasing pressure the specific capacity Cm increased in a fully reversible and reproducible way reflecting a thinning of the membrane that is attributed to extrusion of n-decane from the black membrane area. High pressure decreased the rate constant, ki, for lipophilic ion translocation. After correcting for changes in the height of the energy barrier for translocation due to membrane thinning the pressure dependence of ki yields an apparent activation volume for translocation of approximately 14 cm3/mol both for DPA- and TPhB-. Changes in lipophilic ion absorption following a step of pressure developed with a rather slow time course due to diffusion limitations in solution. The stationary concentration of membrane absorbed lipophilic ions increased with pressure according to an apparent volume of absorption of about -10 cm3/mol. The relevance of the results for the interpretation of the effects of pressure on nerve membrane physiology is discussed.

  7. Cassava root membrane proteome reveals activities during storage root maturation.

    PubMed

    Naconsie, Maliwan; Lertpanyasampatha, Manassawe; Viboonjun, Unchera; Netrphan, Supatcharee; Kuwano, Masayoshi; Ogasawara, Naotake; Narangajavana, Jarunya

    2016-01-01

    Cassava (Manihot esculenta Crantz) is one of the most important crops of Thailand. Its storage roots are used as food, feed, starch production, and be the important source for biofuel and biodegradable plastic production. Despite the importance of cassava storage roots, little is known about the mechanisms involved in their formation. This present study has focused on comparison of the expression profiles of cassava root proteome at various developmental stages using two-dimensional gel electrophoresis and LC-MS/MS. Based on an anatomical study using Toluidine Blue, the secondary growth was confirmed to be essential during the development of cassava storage root. To investigate biochemical processes occurring during storage root maturation, soluble and membrane proteins were isolated from storage roots harvested from 3-, 6-, 9-, and 12-month-old cassava plants. The proteins with differential expression pattern were analysed and identified to be associated with 8 functional groups: protein folding and degradation, energy, metabolism, secondary metabolism, stress response, transport facilitation, cytoskeleton, and unclassified function. The expression profiling of membrane proteins revealed the proteins involved in protein folding and degradation, energy, and cell structure were highly expressed during early stages of development. Integration of these data along with the information available in genome and transcriptome databases is critical to expand knowledge obtained solely from the field of proteomics. Possible role of identified proteins were discussed in relation with the activities during storage root maturation in cassava.

  8. Functional, photochemically active, and chemically asymmetric membranes by interfacial polymerization of derivatized multifunctional prepolymers

    DOEpatents

    Lonsdale, Harold K.; Wamser, Carl C.

    1990-01-01

    The preparation of a novel class of thin film membranes by interfacial polymerization is disclosed, said membranes incorporating as part of their polymeric structure the functionality of monomeric or oligomeric precursors. Specific embodiments include porphyrin and phthalocyanine derivatives that are photochemically or electrochemically active, as well as chemically asymmetric membranes.

  9. Functional, photochemically active, and chemically asymmetric membranes by interfacial polymerization of derivatized multifunctional prepolymers

    DOEpatents

    Lonsdale, H.K.; Wamser, C.C.

    1990-04-17

    The preparation of a novel class of thin film membranes by interfacial polymerization is disclosed, said membranes incorporating as part of their polymeric structure the functionality of monomeric or oligomeric precursors. Specific embodiments include porphyrin and phthalocyanine derivatives that are photochemically or electrochemically active, as well as chemically asymmetric membranes.

  10. Red wine activates plasma membrane redox system in human erythrocytes.

    PubMed

    Tedesco, Idolo; Moccia, Stefania; Volpe, Silvestro; Alfieri, Giovanna; Strollo, Daniela; Bilotto, Stefania; Spagnuolo, Carmela; Di Renzo, Massimo; Aquino, Rita P; Russo, Gian Luigi

    2016-01-01

    In the present study, we report that polyphenols present in red wine obtained by a controlled microvinification process are able to protect human erythrocytes from oxidative stress and to activate Plasma Membrane Redox System (PMRS). Human plasma obtained from healthy subjects was incubated in the presence of whole red wine at a concentration corresponding to 9.13-73 μg/ml gallic acid equivalents to verify the capacity to protect against hypochlorous acid (HOCl)-induced plasma oxidation and to minimize chloramine formation. Red wine reduced hemolysis and chloramine formation induced by HOCl of 40 and 35%, respectively. PMRS present on human erythrocytes transfers electrons from intracellular molecules to extracellular electron acceptors. We demonstrated that whole red wine activated PMRS activity in human erythrocytes isolated from donors in a dose-dependent manner with a maximum at about 70-100 μg/ml gallic acid equivalents. We also showed that red wine increased glutathione (GSH) levels and erythrocytic antioxidant capacity, measured by 2,2-diphenyl-1-picrylhydrazyl (DPPH) quenching assay. Furthermore, we reported that GSH played a crucial role in regulating PMRS activity in erythrocytes. In fact, the effect of iodoacetamide, an alkylating agent that induces depletion of intracellular GSH, was completely counteracted by red wine. Bioactive compounds present in red wine, such as gallic acid, resveratrol, catechin, and quercetin were unable to activate PMRS when tested at the concentrations normally present in aged red wines. On the contrary, the increase of PMRS activity was associated with the anthocyanin fraction, suggesting the capacity of this class of compounds to positively modulate PMRS enzymatic activity.

  11. Phosphatidic acid phosphatase and phospholipdase A activities in plasma membranes from fusing muscle cells.

    PubMed

    Kent, C; Vagelos, P R

    1976-06-17

    Plasma membrane from fusing embryonic muscle cells were assayed for phospholipase A activity to determine if this enzyme plays a role in cell fusion. The membranes were assayed under a variety of conditions with phosphatidylcholine as the substrate and no phospholipase A activity was found. The plasma membranes did contain a phosphatidic acid phosphatase which was optimally active in the presence of Triton X-100 and glycerol. The enzyme activity was constant from pH 5.2 to 7.0, and did not require divalent cations. Over 97% of the phosphatidic acid phosphatase activity was in the particulate fraction. The subcellular distribution of the phosphatidic acid phosphatase was the same as the distributions of the plasma membrane markers, (Na+ + k+)-ATPase and the acetylcholine receptor, which indicates that this phosphatase is located exclusively in the plasma membranes. There was no detectable difference in the phosphatidic acid phosphatase activities of plasma membranes from fusing and non-fusing cells.

  12. Oscillations and multiple steady states in active membrane transport models.

    PubMed

    Vieira, F M; Bisch, P M

    1994-01-01

    The dynamic behavior of some non-linear extensions of the six-state alternating access model for active membrane transport is investigated. We use stoichio-metric network analysis to study the stability of steady states. The bifurcation analysis has been done through standard numerical methods. For the usual six-state model we have proved that there is only one steady state, which is globally asymptotically stable. When we added an autocatalytic step we found self-oscillations. For the competition between a monomer cycle and a dimer cycle, with steps of dimer formation, we have also found self-oscillations. We have also studied models involving the formation of a complex with other molecules. The addition of two steps for formation of a complex of the monomer with another molecule does not alter either the number or the stability of steady states of the basic six-state model. The model which combines the formation of a complex with an autocatalytic step shows both self-oscillations and multiple steady states. The results lead us to conclude that oscillations could be produced by active membrane transport systems if the transport cycle contains a sufficiently large number of steps (six in the present case) and is coupled to at least one autocatalytic reaction,. Oscillations are also predicted when the monomer cycle is coupled to a dimer cycle. In fact, the autocatalytic reaction can be seen as a simplification of the model involving competition between monomer and dimer cycles, which seems to be a more realistic description of biological systems. A self-regulation mechanism of the pumps, related to the multiple stationary states, is expected only for a combined effect of autocatalysis and formation of complexes with other molecules. Within the six-state model this model also leads to oscillation.

  13. Activation of TRPV1 channels inhibits mechanosensitive Piezo channel activity by depleting membrane phosphoinositides.

    PubMed

    Borbiro, Istvan; Badheka, Doreen; Rohacs, Tibor

    2015-02-10

    Capsaicin is an activator of the heat-sensitive TRPV1 (transient receptor potential vanilloid 1) ion channels and has been used as a local analgesic. We found that activation of TRPV1 channels with capsaicin either in dorsal root ganglion neurons or in a heterologous expression system inhibited the mechanosensitive Piezo1 and Piezo2 channels by depleting phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] and its precursor phosphatidylinositol 4-phosphate [PI(4)P] from the plasma membrane through Ca(2+)-induced phospholipase Cδ (PLCδ) activation. Experiments with chemically inducible phosphoinositide phosphatases and receptor-induced activation of PLCβ indicated that inhibition of Piezo channels required depletion of both PI(4)P and PI(4,5)P2. The mechanically activated current amplitudes decreased substantially in the excised inside-out configuration, where the membrane patch containing Piezo1 channels is removed from the cell. PI(4,5)P2 and PI(4)P applied to these excised patches inhibited this decrease. Thus, we concluded that Piezo channel activity requires the presence of phosphoinositides, and the combined depletion of PI(4,5)P2 and PI(4)P reduces channel activity. In addition to revealing a role for distinct membrane lipids in mechanosensitive ion channel regulation, these data suggest that inhibition of Piezo2 channels may contribute to the analgesic effect of capsaicin.

  14. NPA binding activity is peripheral to the plasma membrane and is associated with the cytoskeleton.

    PubMed Central

    Cox, D N; Muday, G K

    1994-01-01

    N-1-Naphthylphthalamic acid (NPA) binding activity is released into the supernatant when plasma membranes are subjected to high-salt treatment, indicating that this activity is peripherally associated with the membrane. Extraction of plasma membrane vesicles with Triton X-100 resulted in retention of NPA binding activity in the detergent-insoluble cytoskeletal pellet. Treatment of this pellet with KI released NPA binding activity, actin, and alpha-tubulin. Dialysis to remove KI led to the repolymerization of cytoskeletal elements and movement of NPA binding activity into an insoluble cytoskeletal pellet. NPA binding activity partitioned into the detergent-insoluble cytoskeletal pellet obtained from both zucchini and maize membranes and was released from these pellets by KI treatment. Treatment of a cytoskeletal pellet with cytochalasin B doubled NPA binding activity in the resulting supernatant. Together, these experiments indicate that NPA binding activity is peripherally associated with the plasma membrane and interacts with the cytoskeleton in vitro. PMID:11536654

  15. Neuronal firing sensitivity to morphologic and active membrane parameters.

    PubMed

    Weaver, Christina M; Wearne, Susan L

    2008-01-01

    Both the excitability of a neuron's membrane, driven by active ion channels, and dendritic morphology contribute to neuronal firing dynamics, but the relative importance and interactions between these features remain poorly understood. Recent modeling studies have shown that different combinations of active conductances can evoke similar firing patterns, but have neglected how morphology might contribute to homeostasis. Parameterizing the morphology of a cylindrical dendrite, we introduce a novel application of mathematical sensitivity analysis that quantifies how dendritic length, diameter, and surface area influence neuronal firing, and compares these effects directly against those of active parameters. The method was applied to a model of neurons from goldfish Area II. These neurons exhibit, and likely contribute to, persistent activity in eye velocity storage, a simple model of working memory. We introduce sensitivity landscapes, defined by local sensitivity analyses of firing rate and gain to each parameter, performed globally across the parameter space. Principal directions over which sensitivity to all parameters varied most revealed intrinsic currents that most controlled model output. We found domains where different groups of parameters had the highest sensitivities, suggesting that interactions within each group shaped firing behaviors within each specific domain. Application of our method, and its characterization of which models were sensitive to general morphologic features, will lead to advances in understanding how realistic morphology participates in functional homeostasis. Significantly, we can predict which active conductances, and how many of them, will compensate for a given age- or development-related structural change, or will offset a morphologic perturbation resulting from trauma or neurodegenerative disorder, to restore normal function. Our method can be adapted to analyze any computational model. Thus, sensitivity landscapes, and the

  16. Activation of mitogen-activated protein kinase by membrane-targeted Raf chimeras is independent of raft localization.

    PubMed

    Chen, X; Resh, M D

    2001-09-14

    Binding of proteins to the plasma membrane can be achieved with various membrane targeting motifs, including combinations of fatty acids, isoprenoids, and basic domains. In this study, we investigate whether attachment of different membrane targeting motifs influences the signaling capacity of membrane-bound signal transduction proteins by directing the proteins to different membrane microdomains. We used c-Raf-1 as a model for a signaling protein that is activated when membrane-bound. Three different membrane targeting motifs from K-Ras, Fyn, and Src proteins were fused to the N or C terminus of Raf-1. The ability of the modified Rafs to initiate MAPK signaling was then investigated. All three modified Raf-1 constructs activated MAPK to nearly equivalent levels. The extent of localization of the Raf-1 constructs to membrane microdomains known as rafts did not correlate with the level of MAPK activation. Moreover, treatment of cells with the raft disrupting drug methyl-beta-cyclodextrin (MbetaCD) caused activation of MAPK to levels equivalent to those achieved with membrane-targeted Raf constructs. The use of pharmacological agents as well as dominant negative mutants revealed that MAPK activation by MbetaCD proceeds via a phosphoinositide 3-kinase-dependent mechanism that is Ras/Raf-independent. We conclude that cholesterol depletion from the plasma membrane by MbetaCD constitutes an alternative pathway for activating MAPK.

  17. Efficient Multiple Object Tracking Using Mutually Repulsive Active Membranes

    PubMed Central

    Deng, Yi; Coen, Philip; Sun, Mingzhai; Shaevitz, Joshua W.

    2013-01-01

    Studies of social and group behavior in interacting organisms require high-throughput analysis of the motion of a large number of individual subjects. Computer vision techniques offer solutions to specific tracking problems, and allow automated and efficient tracking with minimal human intervention. In this work, we adopt the open active contour model to track the trajectories of moving objects at high density. We add repulsive interactions between open contours to the original model, treat the trajectories as an extrusion in the temporal dimension, and show applications to two tracking problems. The walking behavior of Drosophila is studied at different population density and gender composition. We demonstrate that individual male flies have distinct walking signatures, and that the social interaction between flies in a mixed gender arena is gender specific. We also apply our model to studies of trajectories of gliding Myxococcus xanthus bacteria at high density. We examine the individual gliding behavioral statistics in terms of the gliding speed distribution. Using these two examples at very distinctive spatial scales, we illustrate the use of our algorithm on tracking both short rigid bodies (Drosophila) and long flexible objects (Myxococcus xanthus). Our repulsive active membrane model reaches error rates better than per fly per second for Drosophila tracking and comparable results for Myxococcus xanthus. PMID:23799046

  18. Enzymatically active high-flux selectively gas-permeable membranes

    DOEpatents

    Jiang, Ying-Bing; Cecchi, Joseph L.; Rempe, Susan; FU, Yaqin; Brinker, C. Jeffrey

    2016-01-26

    An ultra-thin, catalyzed liquid transport medium-based membrane structure fabricated with a porous supporting substrate may be used for separating an object species such as a carbon dioxide object species. Carbon dioxide flux through this membrane structures may be several orders of magnitude higher than traditional polymer membranes with a high selectivity to carbon dioxide. Other gases such as molecular oxygen, molecular hydrogen, and other species including non-gaseous species, for example ionic materials, may be separated using variations to the membrane discussed.

  19. Fluidity-dependent Mg2(+)-ATPase activity in membranes from Leishmania donovani promastigotes.

    PubMed Central

    Dutta, M; Bandyopadhyay, R; Ghosh, C; Basu, M K

    1990-01-01

    The state of the lipid phase of the membrane plays a key role in the exposure of various receptors, antigens and enzymes on the membrane surface. The fluidity of membranes of Leishmania donovani promastigotes was monitored by two independent methods, i.e. influx of sterol from liposomes and removal of phospholipids by treatment with phospholipase C. The altered sterol/phospholipid ratio, in both cases, provided evidence that the activity of the functionally important membrane-bound enzyme Mg2(+)-ATPase is modulated by the state of the lipid phase of the membrane. PMID:2137691

  20. Detergent disruption of bacterial inner membranes and recovery of protein translocation activity

    SciTech Connect

    Cunningham, K.; Wickner, W.T. )

    1989-11-01

    Isolation of the integral membrane components of protein translocation requires methods for fractionation and functional reconstitution. The authors treated inner-membrane vesicles of Escherichia coli with mixtures of octyl {beta}-D-glucoside, phospholipids, and an integral membrane carrier protein under conditions that extract most of the membrane proteins into micellar solution. Upon dialysis, proteoliposomes were reconstituted that supported translocation of radiochemically pure ({sup 35}S)pro-OmpA (the precursor of outer membrane protein A). Translocation into these proteoliposomes required ATP hydrolysis and membrane proteins, indicating that the reaction is that of the inner membrane. The suspension of membranes in detergent was separated into supernatant and pellet fractions by ultracentrifugation. After reconstitution, translocation activity was observed in both fractions, but processing by leader peptidase of translocated pro-OmpA to OmpA was not detectable in the reconstituted pellet fraction. Processing activity was restored by addition of pure leader peptidase as long as this enzyme was added before detergent removal, indicating that the translocation activity is not associated with detergent-resistant membrane vesicles. These results show that protein translocation activity can be recovered from detergent-disrupted membrane vesicles, providing a first step towards the goal of isolating the solubilized components.

  1. Pneumolysin Activates Macrophage Lysosomal Membrane Permeabilization and Executes Apoptosis by Distinct Mechanisms without Membrane Pore Formation

    PubMed Central

    Bewley, Martin A.; Naughton, Michael; Preston, Julie; Mitchell, Andrea; Holmes, Ashleigh; Marriott, Helen M.; Read, Robert C.; Mitchell, Timothy J.; Whyte, Moira K. B.

    2014-01-01

    ABSTRACT Intracellular killing of Streptococcus pneumoniae is complemented by induction of macrophage apoptosis. Here, we show that the toxin pneumolysin (PLY) contributes both to lysosomal/phagolysosomal membrane permeabilization (LMP), an upstream event programing susceptibility to apoptosis, and to apoptosis execution via a mitochondrial pathway, through distinct mechanisms. PLY is necessary but not sufficient for the maximal induction of LMP and apoptosis. PLY’s ability to induce both LMP and apoptosis is independent of its ability to form cytolytic pores and requires only the first three domains of PLY. LMP involves TLR (Toll-like receptor) but not NLRP3/ASC (nucleotide-binding oligomerization domain [Nod]-like receptor family, pyrin domain-containing protein 3/apoptosis-associated speck-like protein containing a caspase recruitment domain) signaling and is part of a PLY-dependent but phagocytosis-independent host response that includes the production of cytokines, including interleukin-1 beta (IL-1β). LMP involves progressive and selective permeability to 40-kDa but not to 250-kDa fluorescein isothiocyanate (FITC)-labeled dextran, as PLY accumulates in the cytoplasm. In contrast, the PLY-dependent execution of apoptosis requires phagocytosis and is part of a host response to intracellular bacteria that also includes NO generation. In cells challenged with PLY-deficient bacteria, reconstitution of LMP using the lysomotrophic detergent LeuLeuOMe favored cell necrosis whereas PLY reconstituted apoptosis. The results suggest that PLY contributes to macrophage activation and cytokine production but also engages LMP. Following bacterial phagocytosis, PLY triggers apoptosis and prevents macrophage necrosis as a component of a broad-based antimicrobial strategy. This illustrates how a key virulence factor can become the focus of a multilayered and coordinated innate response by macrophages, optimizing pathogen clearance and limiting inflammation. PMID:25293758

  2. Salt stress in a membrane bioreactor: dynamics of sludge properties, membrane fouling and remediation through powdered activated carbon dosing.

    PubMed

    De Temmerman, L; Maere, T; Temmink, H; Zwijnenburg, A; Nopens, I

    2014-10-15

    Membrane bioreactors are a well-established technology for wastewater treatment. However, their efficiency is adversely impacted by membrane fouling, primarily inciting very conservative operations of installations that makes them less appealing from an economic perspective. This fouling propensity of the activated sludge is closely related to system disturbances. Therefore, improved insight into the impact of fouling is crucial towards increased membrane performance. In this work, the disturbance of a salt shock was investigated with respect to sludge composition and filterability in two parallel lab-scale membrane bioreactors. Several key sludge parameters (soluble microbial products, sludge-bound extracellular polymeric substances, supramicron particle size distributions (PSD), submicron particle concentrations) were intensively monitored prior to, during, and after a disturbance to investigate its impact as well as the potential governing mechanism. Upon salt addition, the supramicron PSD immediately shifted to smaller floc sizes, and the total fouling rate increased. Following a certain delay, an increase in submicron particles, supernatant proteins, and polysaccharides was observed as well as an increase in the irreversible membrane fouling rate. Recovery from the disturbance was evidenced with a simultaneous decrease in the above mentioned quantities. A similar experiment introducing powdered activated carbon (PAC) addition used for remediation resulted in either no or less significant changes in the above mentioned quantities, signifying its potential as a mitigation strategy.

  3. Salt stress in a membrane bioreactor: dynamics of sludge properties, membrane fouling and remediation through powdered activated carbon dosing.

    PubMed

    De Temmerman, L; Maere, T; Temmink, H; Zwijnenburg, A; Nopens, I

    2014-10-15

    Membrane bioreactors are a well-established technology for wastewater treatment. However, their efficiency is adversely impacted by membrane fouling, primarily inciting very conservative operations of installations that makes them less appealing from an economic perspective. This fouling propensity of the activated sludge is closely related to system disturbances. Therefore, improved insight into the impact of fouling is crucial towards increased membrane performance. In this work, the disturbance of a salt shock was investigated with respect to sludge composition and filterability in two parallel lab-scale membrane bioreactors. Several key sludge parameters (soluble microbial products, sludge-bound extracellular polymeric substances, supramicron particle size distributions (PSD), submicron particle concentrations) were intensively monitored prior to, during, and after a disturbance to investigate its impact as well as the potential governing mechanism. Upon salt addition, the supramicron PSD immediately shifted to smaller floc sizes, and the total fouling rate increased. Following a certain delay, an increase in submicron particles, supernatant proteins, and polysaccharides was observed as well as an increase in the irreversible membrane fouling rate. Recovery from the disturbance was evidenced with a simultaneous decrease in the above mentioned quantities. A similar experiment introducing powdered activated carbon (PAC) addition used for remediation resulted in either no or less significant changes in the above mentioned quantities, signifying its potential as a mitigation strategy. PMID:24999116

  4. Detection of focal adhesion kinase activation at membrane microdomains by fluorescence resonance energy transfer.

    PubMed

    Seong, Jihye; Ouyang, Mingxing; Kim, Taejin; Sun, Jie; Wen, Po-Chao; Lu, Shaoying; Zhuo, Yue; Llewellyn, Nicholas M; Schlaepfer, David D; Guan, Jun-Lin; Chien, Shu; Wang, Yingxiao

    2011-07-26

    Proper subcellular localization of focal adhesion kinase (FAK) is crucial for many cellular processes. It remains, however, unclear how FAK activity is regulated at subcellular compartments. To visualize the FAK activity at different membrane microdomains, we develop a fluorescence resonance energy transfer (FRET)-based FAK biosensor, and target it into or outside of detergent-resistant membrane (DRM) regions at the plasma membrane. Here we show that, on cell adhesion to extracellular matrix proteins or stimulation by platelet-derived growth factor (PDGF), the FRET responses of DRM-targeting FAK biosensor are stronger than that at non-DRM regions, suggesting that FAK activation can occur at DRM microdomains. Further experiments reveal that the PDGF-induced FAK activation is mediated and maintained by Src activity, whereas FAK activation on cell adhesion is independent of, and in fact essential for the Src activation. Therefore, FAK is activated at membrane microdomains with distinct activation mechanisms in response to different physiological stimuli.

  5. Circulating polymerase chain reaction chips utilizing multiple-membrane activation

    NASA Astrophysics Data System (ADS)

    Wang, Chih-Hao; Chen, Yi-Yu; Liao, Chia-Sheng; Hsieh, Tsung-Min; Luo, Ching-Hsing; Wu, Jiunn-Jong; Lee, Huei-Huang; Lee, Gwo-Bin

    2007-02-01

    This paper reports a new micromachined, circulating, polymerase chain reaction (PCR) chip for nucleic acid amplification. The PCR chip is comprised of a microthermal control module and a polydimethylsiloxane (PDMS)-based microfluidic control module. The microthermal control modules are formed with three individual heating and temperature-sensing sections, each modulating a specific set temperature for denaturation, annealing and extension processes, respectively. Micro-pneumatic valves and multiple-membrane activations are used to form the microfluidic control module to transport sample fluids through three reaction regions. Compared with other PCR chips, the new chip is more compact in size, requires less time for heating and cooling processes, and has the capability to randomly adjust time ratios and cycle numbers depending on the PCR process. Experimental results showed that detection genes for two pathogens, Streptococcus pyogenes (S. pyogenes, 777 bps) and Streptococcus pneumoniae (S. pneumoniae, 273 bps), can be successfully amplified using the new circulating PCR chip. The minimum number of thermal cycles to amplify the DNA-based S. pyogenes for slab gel electrophoresis is 20 cycles with an initial concentration of 42.5 pg µl-1. Experimental data also revealed that a high reproducibility up to 98% could be achieved if the initial template concentration of the S. pyogenes was higher than 4 pg µl-1. The preliminary results of the current paper were presented at the 19th IEEE International Conference on Micro Electro Mechanical Systems (IEEE MEMS 2006), Istanbul, Turkey, 22-26 January, 2006.

  6. Antimicrobial peptides: natural templates for synthetic membrane-active compounds.

    PubMed

    Giuliani, A; Pirri, G; Bozzi, A; Di Giulio, A; Aschi, M; Rinaldi, A C

    2008-08-01

    The innate immunity of multicellular organisms relies in large part on the action of antimicrobial peptides (AMPs) to resist microbial invasion. Crafted by evolution into an extremely diversified array of sequences and folds, AMPs do share a common amphiphilic 3-D arrangement. This feature is directly linked with a common mechanism of action that predominantly (although not exclusively) develops upon interaction of peptides with cell membranes of target cells. This minireview reports on current understanding of the modes of interaction of AMPs with biological and model membranes, especially focusing on recent insights into the folding and oligomerization requirements of peptides to bind and insert into lipid membranes and exert their antibiotic effects. Given the potential of AMPs to be developed into a new class of anti-infective agents, emphasis is placed on how the information on peptide-membrane interactions could direct the design and selection of improved biomimetic synthetic peptides with antibiotic properties.

  7. Electrospun nanofiber membranes for electrically activated shape memory nanocomposites

    NASA Astrophysics Data System (ADS)

    Zhang, Fenghua; Zhang, Zhichun; Liu, Yanju; Leng, Jinsong

    2014-06-01

    A novel shape memory nanocomposite system, consisting of a thermoplastic Nafion polymer and ultrathin electrospun polyacrylonitrile (PAN)-based carbonization nanofiber membranes, is successfully synthesized. PAN-based carbonization nanofiber networks that offer responses to deformations are considered to be an excellent actuation source. Significant improvement in the electrical conductivity of carbon nanofiber membranes is found by adjusting the applied voltage power in the electrospinning PAN process varying from 7.85 to 12.30 S cm-1. The porous structure of the carbon nanofiber membranes provides a large specific surface area and interfacial contact area when combined with the polymer matrix. Shape memory Nafion nanocomposites filled with interpenetrating non-woven electrospun PAN carbonization membranes can be actuated by applying 14 V electrical voltage within 5 s. The results, as demonstrated through morphology, electrical and thermal measurements and a shape recovery test, suggest a valuable route to producing soft nanocomposites.

  8. Thylakoid Membrane Maturation and PSII Activation Are Linked in Greening Synechocystis sp. PCC 6803 Cells1

    PubMed Central

    Barthel, Sandra; Bernát, Gábor; Seidel, Tobias; Rupprecht, Eva; Kahmann, Uwe; Schneider, Dirk

    2013-01-01

    Thylakoid membranes are typical and essential features of both chloroplasts and cyanobacteria. While they are crucial for phototrophic growth of cyanobacterial cells, biogenesis of thylakoid membranes is not well understood yet. Dark-grown Synechocystis sp. PCC 6803 cells contain only rudimentary thylakoid membranes but still a relatively high amount of phycobilisomes, inactive photosystem II and active photosystem I centers. After shifting dark-grown Synechocystis sp. PCC 6803 cells into the light, “greening” of Synechocystis sp. PCC 6803 cells, i.e. thylakoid membrane formation and recovery of photosynthetic electron transport reactions, was monitored. Complete restoration of a typical thylakoid membrane system was observed within 24 hours after an initial lag phase of 6 to 8 hours. Furthermore, activation of photosystem II complexes and restoration of a functional photosynthetic electron transport chain appears to be linked to the biogenesis of organized thylakoid membrane pairs. PMID:23922268

  9. Modification of trout sperm membranes associated with activation and cryopreservation. Implications for fertilizing potential.

    PubMed

    Purdy, P H; Barbosa, E A; Praamsma, C J; Schisler, G J

    2016-08-01

    We investigated the effects of two trout sperm activation solutions on sperm physiology and membrane organization prior to and following cryopreservation using flow cytometry and investigated their impact on in vitro fertility. Overall, frozen-thawed samples had greater phospholipid disorder when compared with fresh samples (high plasma membrane fluidity; P < 0.0001) and sperm activated with water also had high plasma membrane fluidity when compared to sperm activated with Lahnsteiner solution (LAS; P < 0.0001). Following cryopreservation water activated samples had membranes with greater membrane protein disorganization compared with LAS but the membrane protein organization of LAS samples was similar to samples prior to freezing (P < 0.0001). Post-thaw water activation resulted in significant increases in intracellular calcium compared to LAS (P < 0.002). In vitro fertility trials with frozen-thawed milt and LAS activation resulted in greater fertility (45%) compared to water activated samples (10%; P < 0.0001). Higher fertility rates correlated with lower intracellular calcium with water (R(2) = -0.9; P = 0.01) and LAS (R(2) = -0.85; P = 0.03) activation. Greater plasma membrane phospholipid (R(2) = -0.89; P = 0.02) and protein (R(2) = -0.84; P = 0.04) disorder correlated with lower water activation fertility rates. These membrane organization characteristics only approached significance with LAS activation in vitro fertility (P = 0.09, P = 0.06, respectively). Potentially the understanding of sperm membrane reorganizations and the physiology associated with activation following cryopreservation may enable users in a repository or hatchery setting to estimate the fertilizing potential of a sample and determine its value.

  10. Developmental changes in ANP-stimulated guanylyl cyclase activity enhanced by ATP in rat lung membrane fractions.

    PubMed Central

    Charoonroje, P; Tokumitsu, Y; Nomura, Y

    1994-01-01

    1. ANP (atrial natriuretic peptides)- or ANP/ATP-stimulated guanylyl cyclase activities were compared in adult (2 month old) and neonatal (5-7 day old) rat lung membrane fractions. 2. The enzyme activities of both membranes depended on the incubation time and ATP concentration: although the activities of both membranes were similar after a short incubation time (4 min), those in adult membranes were lower than those of neonatal membranes after longer incubation times (10 and 30 min) or at lower concentrations of ATP. 3. ANP/ATP gamma S-stimulated guanylyl cyclase activities, which were much higher than ANP/ATP-stimulated activities, were similar in both membranes. 4. ATPase activity of adult membranes was higher than that of neonatal membranes, suggesting that hydrolysis of ATP leads to a decrease of ANP/ATP-guanylyl cyclase activity in adult membranes. Triton X-100 enhanced and diminished ANP/ATP-stimulated guanylyl cyclase activities of adult and neonatal membranes, respectively, and thereby abolished the adult/neonatal difference in the membrane response to ATP. 5. ANP-stimulated activities of both membranes were much more activated by pre-incubation with ATP gamma S than those induced by simultaneous addition of ATP gamma S. The former activities were decreased to levels of the latter by Triton X-100. The latter activities were not affected by Triton X-100. 6. The present results suggested that conformation of lung plasma membranes is related to activation of the ANP receptor/guanylyl cyclase system. PMID:7834209

  11. Influence of the lipid membrane environment on structure and activity of the outer membrane protein Ail from Yersinia pestis.

    PubMed

    Ding, Yi; Fujimoto, L Miya; Yao, Yong; Plano, Gregory V; Marassi, Francesca M

    2015-02-01

    The surrounding environment has significant consequences for the structural and functional properties of membrane proteins. While native structure and function can be reconstituted in lipid bilayer membranes, the detergents used for protein solubilization are not always compatible with biological activity and, hence, not always appropriate for direct detection of ligand binding by NMR spectroscopy. Here we describe how the sample environment affects the activity of the outer membrane protein Ail (attachment invasion locus) from Yersinia pestis. Although Ail adopts the correct β-barrel fold in micelles, the high detergent concentrations required for NMR structural studies are not compatible with the ligand binding functionality of the protein. We also describe preparations of Ail embedded in phospholipid bilayer nanodiscs, optimized for NMR studies and ligand binding activity assays. Ail in nanodiscs is capable of binding its human ligand fibronectin and also yields high quality NMR spectra that reflect the proper fold. Binding activity assays, developed to be performed directly with the NMR samples, show that ligand binding involves the extracellular loops of Ail. The data show that even when detergent micelles support the protein fold, detergents can interfere with activity in subtle ways.

  12. Actomyosin dynamics drive local membrane component organization in an in vitro active composite layer

    PubMed Central

    Husain, Kabir; Iljazi, Elda; Bhat, Abrar; Bieling, Peter; Mullins, R. Dyche; Rao, Madan; Mayor, Satyajit

    2016-01-01

    The surface of a living cell provides a platform for receptor signaling, protein sorting, transport, and endocytosis, whose regulation requires the local control of membrane organization. Previous work has revealed a role for dynamic actomyosin in membrane protein and lipid organization, suggesting that the cell surface behaves as an active composite composed of a fluid bilayer and a thin film of active actomyosin. We reconstitute an analogous system in vitro that consists of a fluid lipid bilayer coupled via membrane-associated actin-binding proteins to dynamic actin filaments and myosin motors. Upon complete consumption of ATP, this system settles into distinct phases of actin organization, namely bundled filaments, linked apolar asters, and a lattice of polar asters. These depend on actin concentration, filament length, and actin/myosin ratio. During formation of the polar aster phase, advection of the self-organizing actomyosin network drives transient clustering of actin-associated membrane components. Regeneration of ATP supports a constitutively remodeling actomyosin state, which in turn drives active fluctuations of coupled membrane components, resembling those observed at the cell surface. In a multicomponent membrane bilayer, this remodeling actomyosin layer contributes to changes in the extent and dynamics of phase-segregating domains. These results show how local membrane composition can be driven by active processes arising from actomyosin, highlighting the fundamental basis of the active composite model of the cell surface, and indicate its relevance to the study of membrane organization. PMID:26929326

  13. Electric field strength of membrane lipids from vertebrate species: membrane lipid composition and Na+-K+-ATPase molecular activity.

    PubMed

    Starke-Peterkovic, Thomas; Turner, Nigel; Else, Paul L; Clarke, Ronald J

    2005-03-01

    Intramembrane electric field strength is a very likely determinant of the activity of ion-transporting membrane proteins in living cells. In the absence of any transmembrane electrical potential or surface potential, its magnitude is determined by the dipole potential of the membrane's lipid components and their associated water of hydration. Here we have used a fluorometric method to quantify the dipole potential of vesicles formed from lipids extracted from kidney and brain of 11 different animal species from four different vertebrate classes. The dipole potential was compared with the fatty acid composition and with the Na(+)-K(+)-ATPase molecular activity of each preparation. The magnitude of the dipole potential was found to be relatively constant across all animal species, i.e., 236-334 mV for vesicles prepared from the total membrane lipids and 223-256 mV for phospholipids alone. The significantly lower value for phospholipids alone is potentially related to the removal of cholesterol and/or other common soluble lipid molecules from the membrane. Surprisingly, no significant dependence of the dipole potential on fatty acid composition was found. This may, however, be due to concomitant compensatory variations in lipid head group composition. The molecular activity of the Na(+)-K(+)-ATPase was found to increase with increasing dipole potential. The fact that the dipole potential is maintained at a relatively constant value over a wide range of animal species suggests that it may play a fundamental role in ensuring correct ion pump conformation and function within the membrane.

  14. Comparison of microbial communities of activated sludge and membrane biofilm in 10 full-scale membrane bioreactors.

    PubMed

    Jo, Sung Jun; Kwon, Hyeokpil; Jeong, So-Yeon; Lee, Chung-Hak; Kim, Tae Gwan

    2016-09-15

    Operation of membrane bioreactors (MBRs) for wastewater treatment is hampered by the membrane biofouling resulting from microbial activities. However, the knowledge of the microbial ecology of both biofilm and activated sludge in MBRs has not been sufficient. In this study, we scrutinized microbial communities of biofilm and activated sludge from 10 full-scale MBR plants. Overall, Flavobacterium, Dechloromonas and Nitrospira were abundant in order of abundance in biofilm, whereas Dechloromonas, Flavobacterium and Haliscomenobacter in activated sludge. Community structure was analyzed in either biofilm or activated sludge. Among MBRs, as expected, not only diversity of microbial community but also its composition was different from one another (p < 0.05). Between the biofilm and activated sludge, community composition made significant difference, but its diversity measures (i.e., alpha diversity, e.g., richness, diversity and evenness) did not (p > 0.05). Effects of ten environmental factors on community change were investigated using Spearman correlation. MLSS, HRT, F/M ratio and SADm explained the variation of microbial composition in the biofilm, whereas only MLSS did in the activated sludge. Microbial networks were constructed with the 10 environmental factors. The network results revealed that there were different topological characteristics between the biofilm and activated sludge networks, in which each of the 4 factors had different associations with microbial nodes. These results indicated that the different microbial associations were responsible for the variation of community composition between the biofilm and activated sludge.

  15. Membrane Bound GSK-3 Activates Wnt Signaling through Disheveled and Arrow

    PubMed Central

    Mannava, Anirudh G.; Tolwinski, Nicholas S.

    2015-01-01

    Wnt ligands and their downstream pathway components coordinate many developmental and cellular processes. In adults, they regulate tissue homeostasis through regulation of stem cells. Mechanistically, signal transduction through this pathway is complicated by pathway components having both positive and negative roles in signal propagation. Here we examine the positive role of GSK-3/Zw3 in promoting signal transduction at the plasma membrane. We find that targeting GSK-3 to the plasma membrane activates signaling in Drosophila embryos. This activation requires the presence of the co-receptor Arrow-LRP5/6 and the pathway activating protein Disheveled. Our results provide genetic evidence for evolutionarily conserved, separable roles for GSK-3 at the membrane and in the cytosol, and are consistent with a model where the complex cycles from cytosol to membrane in order to promote signaling at the membrane and to prevent it in the cytosol. PMID:25848770

  16. Glucocorticoid hormones increase the activity of plasma membrane alkaline phosphodiesterase I in rat hepatoma cells.

    PubMed Central

    Rousseau, G G; Amar-Costesec, A; Verhaegen, M; Granner, D K

    1980-01-01

    In rat hepatoma cells the synthetic glucocorticoid dexamethasone causes a 3-fold increase in the activity of the plasma membrane enzyme alkaline phosphodiesterase I (oligonucleat 5'-nucleotidohydrolase, EC 3.1.4.1). The data are consistent with an induction phenomenon mediated by the glucocorticoid receptor involved in tyrosine aminotransferase induction. The effect on alkaline phosphodiesterase I is not a reflection of a general membrane effect of dexamethasone, because the activity of three other enzymes of the plasma membrane is unaffected. On the other hand, nucleoside diphosphatase (nucleoside diphosphate phosphohydrolase acting on ADP) activity is inhibited. Thus, two more enzymes sensitive to glucocorticoids have been identified in a cell line in which these hormones influence only very few gene products. This paper describes enzymatic changes in the plasma membrane of rat hepatoma cells in which glucocorticoids normalize a number of membrane-associated processes that are considered to be characteristic of transformed cells. PMID:6102383

  17. Influence of activating hormones on human platelet membrane Ca/sup 2 +/-ATPase activity

    SciTech Connect

    Resink, T.J.; Dimitrov, D.; Stucki, S.; Buehler, F.R.

    1986-07-16

    Intact platelets were pretreated with hormones and thereafter membranes were prepared and Ca/sup 2 +/-ATPase activity determined. Thrombin decreased the V/sub max/ of Ca/sup 2 +/-ATPase after pretreatment of intact platelets. Platelet activating factor, vasopressin and ADP also decreased Ca/sup 2 +/-ATPase activity. 12-O-tetradecanoylphorbol-13-acetate (TPA) or A23187 or ionomycin alone had no effect, while the simultaneous pretreatment with TPA and Ca/sup 2 +/-ionophore decreased Ca/sup 2 +/-ATPase activity. cAMP elevating agents prostaglandin E/sub 1/ (PGE/sub 1/) and forskolin had no influence per se on Ca/sup 2 +/-ATPase, but antagonized the inhibitory effect of thrombin. The data suggest a close connection between phosphoinositide metabolism and the Ca/sup 2 +/-ATPase system.

  18. One-way membrane trafficking of SOS in receptor-triggered Ras activation.

    PubMed

    Christensen, Sune M; Tu, Hsiung-Lin; Jun, Jesse E; Alvarez, Steven; Triplet, Meredith G; Iwig, Jeffrey S; Yadav, Kamlesh K; Bar-Sagi, Dafna; Roose, Jeroen P; Groves, Jay T

    2016-09-01

    SOS is a key activator of the small GTPase Ras. In cells, SOS-Ras signaling is thought to be initiated predominantly by membrane recruitment of SOS via the adaptor Grb2 and balanced by rapidly reversible Grb2-SOS binding kinetics. However, SOS has multiple protein and lipid interactions that provide linkage to the membrane. In reconstituted-membrane experiments, these Grb2-independent interactions were sufficient to retain human SOS on the membrane for many minutes, during which a single SOS molecule could processively activate thousands of Ras molecules. These observations raised questions concerning how receptors maintain control of SOS in cells and how membrane-recruited SOS is ultimately released. We addressed these questions in quantitative assays of reconstituted SOS-deficient chicken B-cell signaling systems combined with single-molecule measurements in supported membranes. These studies revealed an essentially one-way trafficking process in which membrane-recruited SOS remains trapped on the membrane and continuously activates Ras until being actively removed via endocytosis. PMID:27501536

  19. Functional, photochemically active, and chemically asymmetric membranes by interfacial polymerization of derivatized multifunctional prepolymers

    DOEpatents

    Lonsdale, Harold K.; Wamser, Carl C.

    1988-01-01

    The preparation of a novel class of thin film membranes by interfacial polymerization is disclosed, said membanes incorporating as part of their polymeric structure the functionality of monomeric or oligomeric precursors. Specific embodiments include porphyrin and phthalocyanime derivatives that are photochemically or electrochemically active, as well as chemically asymmetric membranes.

  20. One-way membrane trafficking of SOS in receptor-triggered Ras activation.

    PubMed

    Christensen, Sune M; Tu, Hsiung-Lin; Jun, Jesse E; Alvarez, Steven; Triplet, Meredith G; Iwig, Jeffrey S; Yadav, Kamlesh K; Bar-Sagi, Dafna; Roose, Jeroen P; Groves, Jay T

    2016-09-01

    SOS is a key activator of the small GTPase Ras. In cells, SOS-Ras signaling is thought to be initiated predominantly by membrane recruitment of SOS via the adaptor Grb2 and balanced by rapidly reversible Grb2-SOS binding kinetics. However, SOS has multiple protein and lipid interactions that provide linkage to the membrane. In reconstituted-membrane experiments, these Grb2-independent interactions were sufficient to retain human SOS on the membrane for many minutes, during which a single SOS molecule could processively activate thousands of Ras molecules. These observations raised questions concerning how receptors maintain control of SOS in cells and how membrane-recruited SOS is ultimately released. We addressed these questions in quantitative assays of reconstituted SOS-deficient chicken B-cell signaling systems combined with single-molecule measurements in supported membranes. These studies revealed an essentially one-way trafficking process in which membrane-recruited SOS remains trapped on the membrane and continuously activates Ras until being actively removed via endocytosis.

  1. Lipid composition and sensitivity of Prototheca wickerhamii to membrane-active antimicrobial agents.

    PubMed Central

    Sud, I J; Feingold, D S

    1979-01-01

    The lipid composition of Prototheca wickerhamii ATCC 16529 is presented and discussed in relation to the unique susceptibility of the organism to drugs of three membrane-active antimicrobial classes: the polyenes, the polymyxins, and the imidazoles. The presence of ergosterol in the neutral lipid fraction of the membrane is likely responsible for the exquisite susceptibility to amphotericin B. The presence of a large quantity of free fatty acids in the membrane appears responsible for imidazole susceptibility. The membrane determinants of polymyxin B susceptibility are less well defined. PMID:518077

  2. Active endocannabinoids are secreted on extracellular membrane vesicles.

    PubMed

    Gabrielli, Martina; Battista, Natalia; Riganti, Loredana; Prada, Ilaria; Antonucci, Flavia; Cantone, Laura; Matteoli, Michela; Maccarrone, Mauro; Verderio, Claudia

    2015-02-01

    Endocannabinoids primarily influence neuronal synaptic communication within the nervous system. To exert their function, endocannabinoids need to travel across the intercellular space. However, how hydrophobic endocannabinoids cross cell membranes and move extracellularly remains an unresolved problem. Here, we show that endocannabinoids are secreted through extracellular membrane vesicles produced by microglial cells. We demonstrate that microglial extracellular vesicles carry on their surface N-arachidonoylethanolamine (AEA), which is able to stimulate type-1 cannabinoid receptors (CB1), and inhibit presynaptic transmission, in target GABAergic neurons. This is the first demonstration of a functional role of extracellular vesicular transport of endocannabinoids.

  3. Aldosterone secretion, measurements of membrane potential and intracellular potassium activity in the isolated adrenal zone glomerulosa.

    PubMed

    Wiederholt, M; Hampel, J; Belkien, L; Oelkers, W

    1984-09-01

    Cell membrane potential and intracellular potassium activity (microelectrodes filled with ion-sensitive liquid ion exchanger) were measured in the zona glomerulosa of superfused hemi-adrenals of rats kept on different diets. Simultaneously, samples of the superfusate were collected and analyzed by radioimmunoassay for aldosterone content. Cell membrane potential and intracellular potassium activity were not influenced by high sodium, low sodium or high potassium diet. However, aldosterone secretion significantly changed. These results suggest that membrane potential and intracellular potassium activity per se may not be linked to changes in aldosterone secretion.

  4. Induction of active immunity with membrane fractions from Haemophilus influenzae type b.

    PubMed Central

    Burans, J P; Lynn, M; Solotorovsky, M

    1983-01-01

    Using Escherichia coli strain E-1 as a model, we developed procedures for the preparation of outer- and inner-membrane-enriched fractions as structural units. These procedures could be used to prepare relatively pure inner and outer membrane fractions as determined by succinate dehydrogenase activity, ketodeoxyoctonate levels, and polyacrylamide gradient gel electrophoresis. The use of these procedures to fractionate membrane components from Haemophilus influenzae type b strains H-2 and H-E led to good separation of outer- and inner-membrane-enriched fractions as determined by succinate dehydrogenase and ketodeoxyoctonate levels but incomplete separation as determined by polyacrylamide gradient gel electrophoresis. Although there were differences between the electrophoresis profiles of outer membrane fractions of strains H-2 and H-E, immunization with outer membrane of either strain led to the induction of a high degree of immunoprotection against challenge with the H-2 strain. Protection could also be elicited with inner membrane preparations, but such protection may be due to contamination with outer membrane. Extracted membrane protein induced levels of protection that were comparable to those induced by whole membrane fractions. Images PMID:6602769

  5. Uncoupling the Structure-Activity Relationships of β2 Adrenergic Receptor Ligands from Membrane Binding.

    PubMed

    Dickson, Callum J; Hornak, Viktor; Velez-Vega, Camilo; McKay, Daniel J J; Reilly, John; Sandham, David A; Shaw, Duncan; Fairhurst, Robin A; Charlton, Steven J; Sykes, David A; Pearlstein, Robert A; Duca, Jose S

    2016-06-23

    Ligand binding to membrane proteins may be significantly influenced by the interaction of ligands with the membrane. In particular, the microscopic ligand concentration within the membrane surface solvation layer may exceed that in bulk solvent, resulting in overestimation of the intrinsic protein-ligand binding contribution to the apparent/measured affinity. Using published binding data for a set of small molecules with the β2 adrenergic receptor, we demonstrate that deconvolution of membrane and protein binding contributions allows for improved structure-activity relationship analysis and structure-based drug design. Molecular dynamics simulations of ligand bound membrane protein complexes were used to validate binding poses, allowing analysis of key interactions and binding site solvation to develop structure-activity relationships of β2 ligand binding. The resulting relationships are consistent with intrinsic binding affinity (corrected for membrane interaction). The successful structure-based design of ligands targeting membrane proteins may require an assessment of membrane affinity to uncouple protein binding from membrane interactions. PMID:27239696

  6. Membrane lipids regulate ganglioside GM2 catabolism and GM2 activator protein activity.

    PubMed

    Anheuser, Susi; Breiden, Bernadette; Schwarzmann, Günter; Sandhoff, Konrad

    2015-09-01

    Ganglioside GM2 is the major lysosomal storage compound of Tay-Sachs disease. It also accumulates in Niemann-Pick disease types A and B with primary storage of SM and with cholesterol in type C. Reconstitution of GM2 catabolism with β-hexosaminidase A and GM2 activator protein (GM2AP) at uncharged liposomal surfaces carrying GM2 as substrate generated only a physiologically irrelevant catabolic rate, even at pH 4.2. However, incorporation of anionic phospholipids into the GM2 carrying liposomes stimulated GM2 hydrolysis more than 10-fold, while the incorporation of plasma membrane stabilizing lipids (SM and cholesterol) generated a strong inhibition of GM2 hydrolysis, even in the presence of anionic phospholipids. Mobilization of membrane lipids by GM2AP was also inhibited in the presence of cholesterol or SM, as revealed by surface plasmon resonance studies. These lipids also reduced the interliposomal transfer rate of 2-NBD-GM1 by GM2AP, as observed in assays using Förster resonance energy transfer. Our data raise major concerns about the usage of recombinant His-tagged GM2AP compared with untagged protein. The former binds more strongly to anionic GM2-carrying liposomal surfaces, increases GM2 hydrolysis, and accelerates intermembrane transfer of 2-NBD-GM1, but does not mobilize membrane lipids. PMID:26175473

  7. Membrane lipids regulate ganglioside GM2 catabolism and GM2 activator protein activity.

    PubMed

    Anheuser, Susi; Breiden, Bernadette; Schwarzmann, Günter; Sandhoff, Konrad

    2015-09-01

    Ganglioside GM2 is the major lysosomal storage compound of Tay-Sachs disease. It also accumulates in Niemann-Pick disease types A and B with primary storage of SM and with cholesterol in type C. Reconstitution of GM2 catabolism with β-hexosaminidase A and GM2 activator protein (GM2AP) at uncharged liposomal surfaces carrying GM2 as substrate generated only a physiologically irrelevant catabolic rate, even at pH 4.2. However, incorporation of anionic phospholipids into the GM2 carrying liposomes stimulated GM2 hydrolysis more than 10-fold, while the incorporation of plasma membrane stabilizing lipids (SM and cholesterol) generated a strong inhibition of GM2 hydrolysis, even in the presence of anionic phospholipids. Mobilization of membrane lipids by GM2AP was also inhibited in the presence of cholesterol or SM, as revealed by surface plasmon resonance studies. These lipids also reduced the interliposomal transfer rate of 2-NBD-GM1 by GM2AP, as observed in assays using Förster resonance energy transfer. Our data raise major concerns about the usage of recombinant His-tagged GM2AP compared with untagged protein. The former binds more strongly to anionic GM2-carrying liposomal surfaces, increases GM2 hydrolysis, and accelerates intermembrane transfer of 2-NBD-GM1, but does not mobilize membrane lipids.

  8. Presence of membranous vesicles in cat seminal plasma: ultrastructural characteristics, protein profile and enzymatic activity.

    PubMed

    Polisca, A; Troisi, A; Minelli, A; Bellezza, I; Fontbonne, A; Zelli, R

    2015-02-01

    This study sought to verify the presence of membranous vesicles in cat seminal plasma by means of transmission electron microscopy and to identify protein profile and some of the enzymatic activities associated with these particles. The transmission electron microscopy observations showed the existence of different sized vesicular membranous structures of more or less spherical shape. These vesicles were surrounded by single-, double- or multiple-layered laminar membranes. The vesicle diameters ranged from 16.3 to 387.4 nm, with a mean of 116.5 ± 70.7 nm. Enzyme activity determinations showed the presence of dipeptilpeptidase IV, aminopeptidase, alkaline and acid phosphatase. To our knowledge, this is the first report that identifies and characterizes the membranous vesicles in cat seminal plasma. However, further studies are necessary to identify the exact site of production of these membranous vesicles in the cat male genital tract and to determine their specific roles in the reproductive events of this species.

  9. Activated pathways for the directed insertion of patterned nanoparticles into polymer membranes.

    PubMed

    Ting, Christina L; Frischknecht, Amalie L

    2013-10-28

    We combine the string method with self-consistent field theory to compute the most probable transition pathway, i.e. the minimum free energy path, for the insertion of Janus and protein-like nanoparticles into a polymer membrane bilayer. The method makes no assumptions in the reaction coordinate and overcomes the long timescales challenge associated with simulating rare events. Our study suggests that one approach to building functional polymer–nanoparticle composite membranes with oriented nanoparticles is through electrostatic interactions. In particular, hydrophobic Janus nanoparticles with an asymmetric charge distribution can be made to directionally insert into charged membranes. This process is kinetically driven, and involves overcoming a thermally surmountable activation barrier, which requires favorable interactions between the nanoparticle and the hydrophilic block of the membrane. In contrast, the insertion of protein-like nanoparticles with alternating hydrophilic–hydrophobic–hydrophilic domains into polymer membranes does not occur as a thermally activated event. PMID:26029770

  10. Immobilization and activity assay of cytochrome P450 on patterned lipid membranes

    SciTech Connect

    Ueda, Yoshihiro; Morigaki, Kenichi . E-mail: morigaki-kenichi@aist.go.jp; Tatsu, Yoshiro; Yumoto, Noboru; Imaishi, Hiromasa . E-mail: himaish@kobe-u.ac.jp

    2007-04-20

    We report on a methodology for immobilizing cytochrome P450 on the surface of micropatterned lipid bilayer membranes and measuring the enzymatic activity. The patterned bilayer comprised a matrix of polymeric lipid bilayers and embedded fluid lipid bilayers. The polymeric lipid bilayer domains act as a barrier to confine fluid lipid bilayers in defined areas and as a framework to stabilize embedded membranes. The fluid bilayer domains, on the other hand, can contain lipid compositions that facilitate the fusion between lipid membranes, and are intended to be used as the binding agent of microsomes containing rat CYP1A1. By optimizing the membrane compositions of the fluid bilayers, we could selectively immobilize microsomal membranes on these domains. The enzymatic activity was significantly higher on lipid bilayer substrates compared with direct adsorption on glass. Furthermore, competitive assay experiment between two fluorogenic substrates demonstrated the feasibility of bioassays based on immobilized P450s.

  11. Killing of Staphylococci by θ-Defensins Involves Membrane Impairment and Activation of Autolytic Enzymes

    PubMed Central

    Wilmes, Miriam; Stockem, Marina; Bierbaum, Gabriele; Schlag, Martin; Götz, Friedrich; Tran, Dat Q.; Schaal, Justin B.; Ouellette, André J.; Selsted, Michael E.; Sahl, Hans-Georg

    2014-01-01

    θ-Defensins are cyclic antimicrobial peptides expressed in leukocytes of Old world monkeys. To get insight into their antibacterial mode of action, we studied the activity of RTDs (rhesus macaque θ-defensins) against staphylococci. We found that in contrast to other defensins, RTDs do not interfere with peptidoglycan biosynthesis, but rather induce bacterial lysis in staphylococci by interaction with the bacterial membrane and/or release of cell wall lytic enzymes. Potassium efflux experiments and membrane potential measurements revealed that the membrane impairment by RTDs strongly depends on the energization of the membrane. In addition, RTD treatment caused the release of Atl-derived cell wall lytic enzymes probably by interaction with membrane-bound lipoteichoic acid. Thus, the premature and uncontrolled activity of these enzymes contributes strongly to the overall killing by θ-defensins. Interestingly, a similar mode of action has been described for Pep5, an antimicrobial peptide of bacterial origin. PMID:25632351

  12. Fabrication, characterization, and enzymatic activity of fungal protease--nanogold membrane bioconjugate.

    PubMed

    Vinod, V P; Phadtare, S; Joshi, H M; Sastry, Murali; Rao, Mala

    2007-08-01

    This study describes the synthesis of a free-standing nanogold membrane by the spontaneous reduction of aqueous chloroaurate ions by the diamine molecule DAEE at a liquid-liquid interface. The free standing nanogold membrane, provides a biocompatible surface for the immobilization of proteins. F-Protease (F-Prot) was then bound to the nanogold membrane via interaction with the gold nanoparticles leading to a new class of biocatalyst. A highlight of the new biocatalyst wherein the enzyme is bound to the nanogold membrane is the ease with which separation from the reaction medium may be achieved by simple filtration. In relation to the free enzyme in solution, the F-Prot in the bioconjugate material exhibited a slightly higher biocatalytic activity and significantly enhanced pH and temperature stability. The F-Prot nanogold membrane bioconjugate material also exhibited excellent biocatalytic activity over ten successive reuse cycles.

  13. Preparation of polysaccharide loaded collagen membrane with anti-oxidative activity.

    PubMed

    Shu, Zibin; Ding, Shengli; He, Xiaohong; Dai, Xuemei; Xiao, Qian; Yang, Min; Leng, Xue; Ma, Yanshun; Yang, Hua

    2015-01-01

    The scavenging activity of polysaccharides from Lycium barbarum, Lentinus edodes and Ganoderma Lucidum Karst to DPPH free radicals was investigated. It was found that among the three polysaccharides, Lycium barbarum polysaccharides (LBP) exhibits the best scavenging activity. Polysaccharide loaded collagen membranes were prepared by mixing LBP with collagen, starch, glycerol, sodium carboxymethyl cellulose and glutaraldehyde. In vitro drug release from membranes was evaluated. With increasing the immersion time, the release rate first increases and then slows down. Meanwhile, the scavenging activity to DPPH radicals exhibits similar variation, in agreement with a good release effect of the membrane. The optimal formulation of collagen membrane and preparation parameters were obtained considering the overall properties and the scavenging activity to radicals. PMID:26406078

  14. Modification of trout sperm membranes associated with activation and cryopreservation. Implications for fertilizing potential

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Abstract We investigated the effects of two trout sperm activation solutions on sperm physiology and membrane organization prior to and following cryopreservation using flow cytometry and investigated their impact on in vitro fertility. Cryopreservation caused greater phospholipid disorder (high pl...

  15. Stimuli-Triggered Activity of Nanoreactors by Biomimetic Engineering Polymer Membranes.

    PubMed

    Einfalt, Tomaž; Goers, Roland; Dinu, Ionel Adrian; Najer, Adrian; Spulber, Mariana; Onaca-Fischer, Ozana; Palivan, Cornelia G

    2015-11-11

    The development of advanced stimuli-responsive systems for medicine, catalysis, or technology requires compartmentalized reaction spaces with triggered activity. Only very few stimuli-responsive systems preserve the compartment architecture, and none allows a triggered activity in situ. We present here a biomimetic strategy to molecular transmembrane transport by engineering synthetic membranes equipped with channel proteins so that they are stimuli-responsive. Nanoreactors with triggered activity were designed by simultaneously encapsulating an enzyme inside polymer compartments, and inserting protein "gates" in the membrane. The outer membrane protein F (OmpF) porin was chemically modified with a pH-responsive molecular cap to serve as "gate" producing pH-driven molecular flow through the membrane and control the in situ enzymatic activity. This strategy provides complex reaction spaces necessary in "smart" medicine and for biomimetic engineering of artificial cells.

  16. cBid, Bax and Bcl-xL exhibit opposite membrane remodeling activities

    PubMed Central

    Bleicken, S; Hofhaus, G; Ugarte-Uribe, B; Schröder, R; García-Sáez, A J

    2016-01-01

    The proteins of the Bcl-2 family have a crucial role in mitochondrial outer membrane permeabilization during apoptosis and in the regulation of mitochondrial dynamics. Current models consider that Bax forms toroidal pores at mitochondria that are responsible for the release of cytochrome c, whereas Bcl-xL inhibits pore formation. However, how Bcl-2 proteins regulate mitochondrial fission and fusion remains poorly understood. By using a systematic analysis at the single vesicle level, we found that cBid, Bax and Bcl-xL are able to remodel membranes in different ways. cBid and Bax induced a reduction in vesicle size likely related to membrane tethering, budding and fission, besides membrane permeabilization. Moreover, they are preferentially located at highly curved membranes. In contrast, Bcl-xL not only counterbalanced pore formation but also membrane budding and fission. Our findings support a mechanism of action by which cBid and Bax induce or stabilize highly curved membranes including non-lamellar structures. This molecular activity reduces the energy for membrane remodeling, which is a necessary step in toroidal pore formation, as well as membrane fission and fusion, and provides a common mechanism that links the two main functions of Bcl-2 proteins. PMID:26913610

  17. Daptomycin exerts rapid bactericidal activity against Bacillus anthracis without disrupting membrane integrity

    PubMed Central

    Xing, Yu-hua; Wang, Wei; Dai, Su-qin; Liu, Ti-yan; Tan, Jun-jie; Qu, Guo-long; Li, Yu-xia; Ling, Yan; Liu, Gang; Fu, Xue-qi; Chen, Hui-peng

    2014-01-01

    Aim: To examine whether the novel cyclic lipopeptide antibiotic daptomycin could be used to treat anthrax and to study the mechanisms underlying its bactericidal action against Bacillus anthracis. Methods: Spore-forming B anthracis AP422 was tested. MIC values of antibiotics were determined. Cell membrane potential was measured using flow cytometric assays with membrane potential-sensitive fluorescent dyes. Cell membrane integrity was detected using To-Pro-3 iodide staining and transmission electron microscopy. K+ efflux and Na+ influx were measured using the fluorescent probes PBFI and SBFI-AM, respectively. Results: Daptomycin exhibited rapid bactericidal activity against vegetative B anthracis with a MIC value of 0.78 μg/mL, which was comparable to those of ciprofloxacin and penicillin G. Furthermore, daptomycin prevented the germinated spores from growing into vegetative bacteria. Daptomycin concentration-dependently dissipated the membrane potential of B anthracis and caused K+ efflux and Na+ influx without disrupting membrane integrity. In contrast, both ciprofloxacin and penicillin G did not change the membrane potential of vegetative bacteria or spores. Penicillin G disrupted membrane integrity of B anthracis, whereas ciprofloxacin had no such effect. Conclusion: Daptomycin exerts rapid bactericidal action against B anthracis via reducing membrane potential without disrupting membrane integrity. This antibiotic can be used as an alternate therapy for B anthracis infections. PMID:24362329

  18. A membrane cytoskeleton from Dictyostelium discoideum. I. Identification and partial characterization of an actin-binding activity

    PubMed Central

    1981-01-01

    Dictyostelium discoideum plasma membranes isolated by each of three procedures bind F-actin. The interactions between these membranes and actin are examined by a novel application of falling ball viscometry. Treating the membranes as multivalent actin-binding particles analogous to divalent actin-gelation factors, we observe large increases in viscosity (actin cross-linking) when membranes of depleted actin and myosin are incubated with rabbit skeletal muscle F-actin. Pre- extraction of peripheral membrane proteins with chaotropes or the inclusion of Triton X-100 during the assay does not appreciably diminish this actin cross-linking activity. Lipid vesicles, heat- denatured membranes, proteolyzed membranes, or membranes containing endogenous actin show minimal actin cross-linking activity. Heat- denatured, but not proteolyzed, membranes regain activity when assayed in the presence of Triton X-100. Thus, integral membrane proteins appear to be responsible for some or all of the actin cross-linking activity of D. discoideum membranes. In the absence of MgATP, Triton X- 100 extraction of isolated D. discoideum membranes results in a Triton- insoluble residue composed of actin, myosin, and associated membrane proteins. The inclusion of MgATP before and during Triton extraction greatly diminishes the amount of protein in the Triton-insoluble residue without appreciably altering its composition. Our results suggest the existence of a protein complex stabilized by actin and/or myosin (membrane cytoskeleton) associated with the D. discoideum plasma membrane. PMID:6894148

  19. Dissociation of membrane binding and lytic activities of the lymphocyte pore-forming protein (perforin).

    PubMed

    Young, J D; Damiano, A; DiNome, M A; Leong, L G; Cohn, Z A

    1987-05-01

    Granules isolated from CTL and NK cells contain a cytolytic pore-forming protein (PFP/perforin). At low temperatures (on ice), PFP binds to erythrocyte membranes without producing hemolysis. Hemolysis occurs when the PFP-bound erythrocytes are warmed up to 37 degrees C, which defines a temperature-dependent, lytic (pore-formation) step distinct from the membrane-binding event. Ca2+ and neutral pH are required for both membrane binding and pore formation by PFP. Serum, LDL, HDL, and heparin inhibit the hemolytic activity of PFP by blocking its binding to lipid membranes. Lysis by PFP that has bound to erythrocyte membranes is no longer susceptible to the effect of these inhibitors. The hemolytic activities associated with intact granules and solubilized PFP show different requirements for Ca2+ and pH, indicating that cytolysis produced by isolated granules may involve an additional step, possibly fusion of granules with membranes. It is suggested that three distinct Ca2+- and pH-dependent events may be involved during cell killing by CTL and NK cells: fusion of cytoplasmic granules of effector cells with their plasma membrane, releasing PFP from cells; binding of the released PFP to target membranes; and insertion of monomers and the subsequent formation of lytic pores in the target membrane. The serum-mediated inhibition of membrane binding by PFP could prevent the accidental injury of bystander cells by cell-released PFP, but would allow cytolysis to proceed to completion once PFP has bound to the target membrane. PMID:3494808

  20. High-pressure stainless steel active membrane microvalves

    NASA Astrophysics Data System (ADS)

    Sharma, G.; Svensson, S.; Ogden, S.; Klintberg, L.; Hjort, K.

    2011-07-01

    In this work, high-pressure membrane microvalves have been designed, manufactured and evaluated. The valves were able to withstand back-pressures of 200 bar with a response time of less than 0.6 s. These stainless steel valves, manufactured with back-end batch production, utilize the large volume expansion coupled to the solid-liquid phase transition in paraffin wax. When membrane materials were evaluated, parylene coated stainless steel was found to be the best choice as compared to polydimethylsiloxane and polyimide. Also, the influence of the orifice placement and diameter is included in this work. If the orifice is placed too close to the rim of the membrane, the valve can stay sealed even after turning the power off, and the valve will not open until the pressure in the system is released. The developed steel valves, evaluated for both water and air, provide excellent properties in terms of mechanical stability, ease of fabrication, and low cost. Possible applications include sampling at high pressures, chemical microreactors, high performance liquid chromatography, pneumatics, and hydraulics.

  1. Composition and enzyme activities of Spiroplasma citri membranes.

    PubMed Central

    Mudd, J B; Ittig, M; Roy, B; Latrille, J; Bové, J M

    1977-01-01

    Spiroplasma citri was cultured in three different media that supplied cholesterol and fatty acids from: (i) horse serum, (ii) pleuropneumonia-like organism (PPLO) serum fraction, or (iii) bovine serum albumin-fatty acid-cholesterol. The ability of PPLO serum fraction to support growth varied by lot number. Neither PPLO serum fraction nor the bovine serum albumin medium supported growth as well as the horse serum medium. Analysis of cholesterol, lipid phosphorus, and membrane protein showed the horse serum- and PPLO-grown cells to be indistinguishable, but the bovine serum albumin-grown cells were deficient in lipid phosphorus. The three cultures did not show markedly different fatty acid compositions, but, in all cases, the cultures preferentially incorporated palmitic acid and discriminated against linoleic acid. Cultures grown for different times from logarithmic growth through a degenerative phase showed relatively constant ratios of cholesterol/protein and lipid phosphorus/protein. Fatty acid composition was also relatively constant at the different stages. Adenosine triphosphatase and p-nitrophenyl phosphatase were mainly associated with the membrane, whereas reduced nicotinamide adenine dinucleotide oxidase was either readily removed or not associated with the membrane. The reduced nicotinamide adenine dinucleotide oxidase was inactivated at temperatures above 35 degrees C. PMID:191432

  2. Estimating the magnitude of near-membrane PDE4 activity in living cells.

    PubMed

    Xin, Wenkuan; Feinstein, Wei P; Britain, Andrea L; Ochoa, Cristhiaan D; Zhu, Bing; Richter, Wito; Leavesley, Silas J; Rich, Thomas C

    2015-09-15

    Recent studies have demonstrated that functionally discrete pools of phosphodiesterase (PDE) activity regulate distinct cellular functions. While the importance of localized pools of enzyme activity has become apparent, few studies have estimated enzyme activity within discrete subcellular compartments. Here we present an approach to estimate near-membrane PDE activity. First, total PDE activity is measured using traditional PDE activity assays. Second, known cAMP concentrations are dialyzed into single cells and the spatial spread of cAMP is monitored using cyclic nucleotide-gated channels. Third, mathematical models are used to estimate the spatial distribution of PDE activity within cells. Using this three-tiered approach, we observed two pharmacologically distinct pools of PDE activity, a rolipram-sensitive pool and an 8-methoxymethyl IBMX (8MM-IBMX)-sensitive pool. We observed that the rolipram-sensitive PDE (PDE4) was primarily responsible for cAMP hydrolysis near the plasma membrane. Finally, we observed that PDE4 was capable of blunting cAMP levels near the plasma membrane even when 100 μM cAMP were introduced into the cell via a patch pipette. Two compartment models predict that PDE activity near the plasma membrane, near cyclic nucleotide-gated channels, was significantly lower than total cellular PDE activity and that a slow spatial spread of cAMP allowed PDE activity to effectively hydrolyze near-membrane cAMP. These results imply that cAMP levels near the plasma membrane are distinct from those in other subcellular compartments; PDE activity is not uniform within cells; and localized pools of AC and PDE activities are responsible for controlling cAMP levels within distinct subcellular compartments.

  3. Dialyzer membranes: effect of surface area and chemical modification of cellulose on complement and platelet activation.

    PubMed

    Mahiout, A; Meinhold, H; Kessel, M; Schulze, H; Baurmeister, U

    1987-04-01

    Using an ex vivo model, the effects of membrane composition and surface area on both the complement system (as reflected by plasma C3a levels) and platelets [as indicated by plasma concentrations of thromboxane B2 (TXB2) and platelet factor 4 (PF4)] were studied. In this model, polyacrylonitrile (PAN) was associated with less complement activation than cuprammonium cellulose (CC). A new "modified cellulose" (MC) membrane, in which a small number of the free hydroxyl groups on cellulose are substituted with a tertiary amino compound, was also associated with a low degree of complement activation, similar to that with PAN. However, the extent of hydroxyl group substitution in four MC membrane subtypes did not correlate with the reduction in complement activation. In studies using CC, the amount of generated C3a correlated with the membrane surface area, although the relationship was curvilinear. Plasma concentrations at the "dialyzer" outlet of TXB2 and PF4 were similar with CC, PAN, and MC. In studies with the MC subtypes, increasing the extent of hydroxyl group substitution paradoxically increased, albeit slightly, the amount of TXB2 generation. In studies with CC, a linear relationship between membrane surface area and TXB2 generation was found. The results suggest a dissociation between platelet and complement effects among different dialyzer membranes, and underline the importance of membrane surface area.

  4. Sodium pump molecular activity and membrane lipid composition in two disparate ectotherms, and comparison with endotherms.

    PubMed

    Turner, Nigel; Hulbert, A J; Else, Paul L

    2005-02-01

    Previous research has shown that the lower sodium pump molecular activity observed in tissues of ectotherms compared to endotherms, is largely related to the lower levels of polyunsaturates and higher levels of monounsaturates found in the cell membranes of ectotherms. Marine-based ectotherms, however, have very polyunsaturated membranes, and in the current study, we measured molecular activity and membrane lipid composition in tissues of two disparate ectothermic species, the octopus (Octopus vulgaris) and the bearded dragon lizard (Pogona vitticeps), to determine whether the high level of membrane polyunsaturation generally observed in marine-based ectotherms is associated with an increased sodium pump molecular activity relative to other ectotherms. Phospholipids from all tissues of the octopus were highly polyunsaturated and contained high concentrations of the omega-3 polyunsaturate, docosahexaenoic acid (22:6 (n-3)). In contrast, phospholipids from bearded dragon tissues contained higher proportions of monounsaturates and lower proportions of polyunsaturates. Sodium pump molecular activity was only moderately elevated in tissues of the octopus compared to the bearded dragon, despite the much greater level of polyunsaturation in octopus membranes. When the current data were combined with data for the ectothermic cane toad, a significant (P = 0.003) correlation was observed between sodium pump molecular activity and the content of 22:6 (n-3) in the surrounding membrane. These results are discussed in relation to recent work which shows a similar relationship in endotherms.

  5. The bile acid-sensitive ion channel (BASIC) is activated by alterations of its membrane environment.

    PubMed

    Schmidt, Axel; Lenzig, Pia; Oslender-Bujotzek, Adrienne; Kusch, Jana; Lucas, Susana Dias; Gründer, Stefan; Wiemuth, Dominik

    2014-01-01

    The bile acid-sensitive ion channel (BASIC) is a member of the DEG/ENaC family of ion channels. Channels of this family are characterized by a common structure, their physiological functions and modes of activation, however, are diverse. Rat BASIC is expressed in brain, liver and intestinal tract and activated by bile acids. The physiological function of BASIC and its mechanism of bile acid activation remain a puzzle. Here we addressed the question whether amphiphilic bile acids activate BASIC by directly binding to the channel or indirectly by altering the properties of the surrounding membrane. We show that membrane-active substances other than bile acids also affect the activity of BASIC and that activation by bile acids and other membrane-active substances is non-additive, suggesting that BASIC is sensitive for changes in its membrane environment. Furthermore based on results from chimeras between BASIC and ASIC1a, we show that the extracellular and the transmembrane domains are important for membrane sensitivity.

  6. Ral mediates activity-dependent growth of postsynaptic membranes via recruitment of the exocyst

    PubMed Central

    Teodoro, Rita O; Pekkurnaz, Gulçin; Nasser, Abdullah; Higashi-Kovtun, Misao E; Balakireva, Maria; McLachlan, Ian G; Camonis, Jacques; Schwarz, Thomas L

    2013-01-01

    Remodelling neuronal connections by synaptic activity requires membrane trafficking. We present evidence for a signalling pathway by which synaptic activity and its consequent Ca2+ influx activate the small GTPase Ral and thereby recruit exocyst proteins to postsynaptic zones. In accord with the ability of the exocyst to direct delivery of post-Golgi vesicles, constitutively active Ral expressed in Drosophila muscle causes the exocyst to be concentrated in the region surrounding synaptic boutons and consequently enlarges the membrane folds of the postsynaptic plasma membrane (the subsynaptic reticulum, SSR). SSR growth requires Ral and the exocyst component Sec5 and Ral-induced enlargement of these membrane folds does not occur in sec5−/− muscles. Chronic changes in synaptic activity influence the plastic growth of this membrane in a manner consistent with activity-dependent activation of Ral. Thus, Ral regulation of the exocyst represents a control point for postsynaptic plasticity. This pathway may also function in mammals as expression of activated RalA in hippocampal neurons increases dendritic spine density in an exocyst-dependent manner and increases Sec5 in spines. PMID:23812009

  7. Investigation of the pore structure and morphology of cellulose acetate membranes using small-angle neutron scattering. 1: Cellulose acetate active layer membranes

    SciTech Connect

    Kulkarni, S.; Krause, S. ); Wignall, G.D. . Solid State Div.); Hammouda, B. . Center for High Resolution Neutron Scattering)

    1994-11-07

    The structure of ultrathin cellulose acetate membranes, known as active layer membranes, has been investigated using small-angle neutron scattering. These membranes are known to have structural and functional similarity to the surface or skin layer in commercial reverse-osmosis (RO) membranes and hence are useful model systems for understanding the structure of the RO membrane skin layer. Active layer membranes were studied after swelling them with either D[sub 2]O or CD[sub 3]OD. The results in both cases clearly indicated the presence of very small (10--20 [angstrom]) porous structures in the membrane. The presence of such pores has been a subject of long-standing controversy in this area. The data were analyzed using a modified Debye-Bueche analysis and the resultant membrane structure was seen to agree well with structural information from electron microscopic studies. Finally, a possible explanation for the differences in scattering observed between the D[sub 2]O swollen membranes and the CD[sub 3]OD swollen membranes has been presented.

  8. The effect of aspartame metabolites on human erythrocyte membrane acetylcholinesterase activity.

    PubMed

    Tsakiris, Stylianos; Giannoulia-Karantana, Aglaia; Simintzi, Irene; Schulpis, Kleopatra H

    2006-01-01

    Studies have implicated aspartame (ASP) with neurological problems. The aim of this study was to evaluate acetylcholinesterase (AChE) activity in human erythrocyte membranes after incubation with the sum of ASP metabolites, phenylalanine (Phe), methanol (met) and aspartic acid (aspt), or with each one separately. Erythrocyte membranes were obtained from 12 healthy individuals and were incubated with ASP hydrolysis products for 1 h at 37 degrees C. AChE was measured spectrophotometrically. Incubation of membranes with ASP metabolites corresponding with 34 mg/kg, 150 mg/kg or 200 mg/kg of ASP consumption resulted in an enzyme activity reduction by -33%, -41%, and -57%, respectively. Met concentrations 0.14 mM, 0.60 mM, and 0.80 mM decreased the enzyme activity by -20%, -32% or -40%, respectively. Aspt concentrations 2.80 mM, 7.60 mM or 10.0 mM inhibited membrane AChE activity by -20%, -35%, and -47%, respectively. Phe concentrations 0.14 mM, 0.35 mM or 0.50mM reduced the enzyme activity by -11%, -33%, and -35%, respectively. Aspt or Phe concentrations 0.82 mM or 0.07 mM, respectively, did not alter the membrane AChE activity. It is concluded that low concentrations of ASP metabolites had no effect on the membrane enzyme activity, whereas high or toxic concentrations partially or remarkably decreased the membrane AChE activity, respectively. Additionally, neurological symptoms, including learning and memory processes, may be related to the high or toxic concentrations of the sweetener metabolites.

  9. Membrane permeability and the loss of germination factor from Neurospora crassa at low water activities

    NASA Technical Reports Server (NTRS)

    Charlang, G.; Horowitz, N. H.

    1974-01-01

    Neurospora crassa conidia incubating in buffer at low water activities release a germination-essential component as well as 260-nm absorbing and ninhydrin-positive materials, regardless of whether an electrolyte or nonelectrolyte is used to reduce water activity. Chloroform and antibiotics known to increase cell-membrane permeability have a similar effect. This suggests that membrane damage occurs in media of low water activity and that an increase in permeability is responsible for the release of cellular components. The damage caused in media of low water activity is nonlethal in most cases, and the conidia recover when transferred to nutrient medium.

  10. Powder Activated Carbon Pretreatment of a Microfiltration Membrane for the Treatment of Surface Water.

    PubMed

    Song, Yali; Dong, Bingzhi; Gao, Naiyun; Ma, Xiaoyan

    2015-09-01

    This study focused on the effect of powder activated carbon (PAC) adsorption on microfiltration (MF) membrane performance. The results showed that PAC pretreatment offered high organic matter removal rates for both dissolved organic carbon (DOC) and ultraviolet absorbance at 254 nm (UV254) during 10-200 mg/L PAC dosage. The removal efficiencies of organic matter by MF membrane filtration decreased with the increase of organic matter removal rate by PAC adsorption. PAC mainly removed organic matter of about 3 kDa molecular weight (MW). MF membrane maintained more than 5 kDa MW organic matter on the membrane after PAC adsorption. The results of membrane filtration indicated that PAC pretreatment slightly promoted membrane flux, regardless of PAC dosage. It seems that the organic matter fouling membrane was concentrated in more than 3 kDa MW. PAC removed markedly less than 3 kDa MW organic matter and had less effect on more than 3 kDa organic matter. Thus, PAC cannot reduce membrane fouling.

  11. Characterization of antibacterial polyethersulfone membranes using the Respiration Activity Monitoring System (RAMOS).

    PubMed

    Kochan, Jozef; Scheidle, Marco; van Erkel, Joost; Bikel, Matías; Büchs, Jochen; Wong, John Erik; Melin, Thomas; Wessling, Matthias

    2012-10-15

    Membranes with antibacterial properties were developed using surface modification of polyethersulfone ultrafiltration membranes. Three different modification strategies using polyelectrolyte layer-by-layer (LbL) technique are described. The first strategy relying on the intrinsic antibacterial properties of poly(diallyldimethylammonium chloride) (PDADMAC) and poly(ethylenimine) (PEI) exhibits only little antibacterial effects. The other two strategies contain silver in both ionic (Ag(+)) and metallic (Ag(0)) form. Ag(+) embedded into negatively charged poly(sodium 4-styrene sulfonate) (PSS) layers totally inhibits bacterial growth. Ag(0) nanoparticles were introduced to the membrane surface by LbL deposition of chitosan- and poly(methacrylic acid) - sodium salt (PMA)-capped silver nanoparticles and subsequent UV or heat treatment. Antibacterial properties of the modified membranes were quantified by a new method based on the Respiration Activity Monitoring System (RAMOS), whereby the oxygen transfer rates (OTR) of E. coli K12 cultures on the membranes were monitored online. As opposed to colony forming counting method RAMOS yields more quantitative and reliable data on the antibacterial effect of membrane modification. Ag-imprinted polyelectrolyte film composed of chitosan (Ag(0))/PMA(Ag(0))/chitosan(Ag(0)) was found to be the most promising among the tested membranes. Further investigation revealed that the concentration and equal distribution of silver in the membrane surface plays an important role in bacterial growth inhibition. PMID:22884245

  12. Powder Activated Carbon Pretreatment of a Microfiltration Membrane for the Treatment of Surface Water

    PubMed Central

    Song, Yali; Dong, Bingzhi; Gao, Naiyun; Ma, Xiaoyan

    2015-01-01

    This study focused on the effect of powder activated carbon (PAC) adsorption on microfiltration (MF) membrane performance. The results showed that PAC pretreatment offered high organic matter removal rates for both dissolved organic carbon (DOC) and ultraviolet absorbance at 254 nm (UV254) during 10–200 mg/L PAC dosage. The removal efficiencies of organic matter by MF membrane filtration decreased with the increase of organic matter removal rate by PAC adsorption. PAC mainly removed organic matter of about 3 kDa molecular weight (MW). MF membrane maintained more than 5 kDa MW organic matter on the membrane after PAC adsorption. The results of membrane filtration indicated that PAC pretreatment slightly promoted membrane flux, regardless of PAC dosage. It seems that the organic matter fouling membrane was concentrated in more than 3 kDa MW. PAC removed markedly less than 3 kDa MW organic matter and had less effect on more than 3 kDa organic matter. Thus, PAC cannot reduce membrane fouling. PMID:26378552

  13. Caffeine inhibits erythrocyte membrane derangement by antioxidant activity and by blocking caspase 3 activation.

    PubMed

    Tellone, Ester; Ficarra, Silvana; Russo, Annamaria; Bellocco, Ersilia; Barreca, Davide; Laganà, Giuseppina; Leuzzi, Ugo; Pirolli, Davide; De Rosa, Maria Cristina; Giardina, Bruno; Galtieri, Antonio

    2012-02-01

    The aim of this research was to investigate the effect of caffeine on band 3 (the anion exchanger protein), haemoglobin function, caspase 3 activation and glucose-6-phosphate metabolism during the oxygenation-deoxygenation cycle in human red blood cells. A particular attention has been given to the antioxidant activity by using in vitro antioxidant models. Caffeine crosses the erythrocyte membrane and interacts with the two extreme conformational states of haemoglobin (the T and the R-state within the framework of the simple two states allosteric model) with different binding affinities. By promoting the high affinity state (R-state), the caffeine-haemoglobin interaction does enhance the pentose phosphate pathway. This is of benefit for red blood cells since it leads to an increase of NADPH availability. Moreover, caffeine effect on band 3, mediated by haemoglobin, results in an extreme increase of the anion exchange, particularly in oxygenated erythrocytes. This enhances the transport of the endogenously produced CO(2) thereby avoiding the production of dangerous secondary radicals (carbonate and nitrogen dioxide) which are harmful to the cellular membrane. Furthermore caffeine destabilizes the haeme-protein interactions within the haemoglobin molecule and triggers the production of superoxide and met-haemoglobin. However this damaging effect is almost balanced by the surprising scavenger action of the alkaloid with respect to the hydroxyl radical. These experimental findings are supported by in silico docking and molecular dynamics studies and by what we may call the "caspase silence"; in fact, there is no evidence of any caspase 3 activity enhancement; this is likely due to the promotion of positive metabolic conditions which result in an increase of the cellular reducing power.

  14. Membrane-Active Sequences within gp41 Membrane Proximal External Region (MPER) Modulate MPER-Containing Peptidyl Fusion Inhibitor Activity and the Biosynthesis of HIV-1 Structural Proteins

    PubMed Central

    Zhang, Si Min; Jejcic, Alenka; Tam, James P.; Vahlne, Anders

    2015-01-01

    The membrane proximal external region (MPER) is a highly conserved membrane-active region located at the juxtamembrane positions within class I viral fusion glycoproteins and essential for membrane fusion events during viral entry. The MPER in the human immunodeficiency virus type I (HIV-1) envelope protein (Env) interacts with the lipid bilayers through a cluster of tryptophan (Trp) residues and a C-terminal cholesterol-interacting motif. The inclusion of the MPER N-terminal sequence contributes to the membrane reactivity and anti-viral efficacy of the first two anti-HIV peptidyl fusion inhibitors T20 and T1249. As a type I transmembrane protein, Env also interacts with the cellular membranes during its biosynthesis and trafficking. Here we investigated the roles of MPER membrane-active sequences during both viral entry and assembly, specifically, their roles in the design of peptidyl fusion inhibitors and the biosynthesis of viral structural proteins. We found that elimination of the membrane-active elements in MPER peptides, namely, penta Trp→alanine (Ala) substitutions and the disruption of the C-terminal cholesterol-interacting motif through deletion inhibited the anti-viral effect against the pseudotyped HIV-1. Furthermore, as compared to C-terminal dimerization, N-terminal dimerization of MPER peptides and N-terminal extension with five helix-forming residues enhanced their anti-viral efficacy substantially. The secondary structure study revealed that the penta-Trp→Ala substitutions also increased the helical content in the MPER sequence, which prompted us to study the biological relevance of such mutations in pre-fusion Env. We observed that Ala mutations of Trp664, Trp668 and Trp670 in MPER moderately lowered the intracellular and intraviral contents of Env while significantly elevating the content of another viral structural protein, p55/Gag and its derivative p24/capsid. The data suggest a role of the gp41 MPER in the membrane-reactive events during

  15. Phosphatidylinositol kinase is activated in membranes derived from cells treated with epidermal growth factor.

    PubMed Central

    Walker, D H; Pike, L J

    1987-01-01

    The ability of epidermal growth factor (EGF) to stimulate phosphatidylinositol (PtdIns) kinase activity in A431 cells was examined. The incorporation of 32P from [gamma-32P]ATP into PtdIns by A431 membranes was increased in membranes prepared from cells that had been pretreated with EGF. Demonstration of a stimulation of the PtdIns kinase activity by EGF required the use of subconfluent cultures and was dependent on the inclusion of protease inhibitors in the buffers used to prepare the membranes. Stimulation of the PtdIns kinase activity was rapid. The activation peaked 2 min after the addition of EGF and declined slowly thereafter. Half-maximal stimulation of the PtdIns kinase occurred at 7 nM EGF. Kinetic analyses of the reaction indicated that treatment of the cells with EGF resulted in a decrease in the Km for PtdIns with no change in the Vmax. The kinetic parameters for the utilization of ATP were unchanged in the EGF-treated membranes compared to the control membranes. Pretreatment of the cells with the phorbol ester phorbol 12-myristate 13-acetate blocked the ability of EGF to stimulate PtdIns kinase activity. These findings demonstrate that a PtdIns kinase activity in A431 cells is regulated by EGF and provide a good system for examining the mechanism by which EGF stimulates the activity of this intracellular enzyme. PMID:2823265

  16. Activation of Raf as a result of recruitment to the plasma membrane.

    PubMed

    Stokoe, D; Macdonald, S G; Cadwallader, K; Symons, M; Hancock, J F

    1994-06-01

    The small guanine nucleotide binding protein Ras participates in a growth promoting signal transduction pathway. The mechanism by which interaction of Ras with the protein kinase Raf leads to activation of Raf was studied. Raf was targeted to the plasma membrane by addition of the COOH-terminal localization signals of K-ras. This modified form of Raf (RafCAAX) was activated to the same extent as Raf coexpressed with oncogenic mutant Ras. Plasma membrane localization rather than farnesylation or the presence of the additional COOH-terminal sequence accounted for the activation of RafCAAX. The activation of RafCAAX was completely independent of Ras; it was neither potentiated by oncogenic mutant Ras nor abrogated by dominant negative Ras. Raf, once recruited to the plasma membrane, was not anchored there by Ras; most activated Raf in cells was associated with plasma membrane cytoskeletal elements, not the lipid bilayer. Thus, Ras functions in the activation of Raf by recruiting Raf to the plasma membrane where a separate, Ras-independent, activation of Raf occurs.

  17. The Effects of Thrombin on Adenyl Cyclase Activity and a Membrane Protein from Human Platelets

    PubMed Central

    Brodie, G. N.; Baenziger, Nancy Lewis; Chase, Lewis R.; Majerus, Philip W.

    1972-01-01

    Washed human platelets were incubated with 0.1-1.0 U/ml human thrombin and the effects on adenyl cyclase activity and on a platelet membrane protein (designated thrombin-sensitive protein) were studied. Adenyl cyclase activity was decreased 70-90% when intact platelets were incubated with thrombin. The T½ for loss of adenyl cyclase activity was less than 15 sec at 1 U/ml thrombin. There was no decrease of adenyl cyclase activity when sonicated platelets or isolated membranes were incubated with these concentrations of thrombin. Loss of adenyl cyclase activity was relatively specific since the activities of other platelet membrane enzymes were unaffected by thrombin. Prior incubation of platelets with dibutyryl cyclic adenosine monophosphate (AMP), prostaglandin E1, or theophylline protected adenyl cyclase from inhibition by thrombin. Incubation of intact but not disrupted platelets with thrombin resulted in the release of thrombin-sensitive protein from the platelet membrane. The rapid release of this protein (T½ < 15 sec) at low concentrations of thrombin suggested that removal of thrombin-sensitive protein from the platelet membrane is an integral part of the platelet release reaction. This hypothesis is supported by the parallel effects of thrombin on adenyl cyclase activity and thrombin-sensitive protein release in the presence of dibutyryl cyclic AMP, prostaglandin E1, and theophylline at varying concentrations of thrombin. Images PMID:4331802

  18. Activation of Endothelial Nitric Oxide (eNOS) Occurs through Different Membrane Domains in Endothelial Cells.

    PubMed

    Tran, Jason; Magenau, Astrid; Rodriguez, Macarena; Rentero, Carles; Royo, Teresa; Enrich, Carlos; Thomas, Shane R; Grewal, Thomas; Gaus, Katharina

    2016-01-01

    Endothelial cells respond to a large range of stimuli including circulating lipoproteins, growth factors and changes in haemodynamic mechanical forces to regulate the activity of endothelial nitric oxide synthase (eNOS) and maintain blood pressure. While many signalling pathways have been mapped, the identities of membrane domains through which these signals are transmitted are less well characterized. Here, we manipulated bovine aortic endothelial cells (BAEC) with cholesterol and the oxysterol 7-ketocholesterol (7KC). Using a range of microscopy techniques including confocal, 2-photon, super-resolution and electron microscopy, we found that sterol enrichment had differential effects on eNOS and caveolin-1 (Cav1) colocalisation, membrane order of the plasma membrane, caveolae numbers and Cav1 clustering. We found a correlation between cholesterol-induced condensation of the plasma membrane and enhanced high density lipoprotein (HDL)-induced eNOS activity and phosphorylation suggesting that cholesterol domains, but not individual caveolae, mediate HDL stimulation of eNOS. Vascular endothelial growth factor (VEGF)-induced and shear stress-induced eNOS activity was relatively independent of membrane order and may be predominantly controlled by the number of caveolae on the cell surface. Taken together, our data suggest that signals that activate and phosphorylate eNOS are transmitted through distinct membrane domains in endothelial cells.

  19. G-1-activated membrane estrogen receptors mediate increased contractility of the human myometrium.

    PubMed

    Maiti, K; Paul, J W; Read, M; Chan, E C; Riley, S C; Nahar, P; Smith, R

    2011-06-01

    Estrogens are key mediators of increased uterine contractility at labor. We sought to determine whether membrane-associated estrogen receptors, such as the recently described seven-transmembrane receptor G protein-coupled receptor 30 (GPR30), mediated some of this effect. Using human myometrium obtained at term cesarean section before or after the onset of labor, we demonstrated the presence of GPR30 mRNA and protein using quantitative RT-PCR and Western blotting. GPR30 receptor was localized to the cell membrane and often colocalized with calveolin-1. Using the specific estrogen membrane receptor agonist G-1 and myometrial explants, we showed that membrane receptor activation led to phosphorylation of MAPK and the actin-modifying small heat shock protein 27. Using myometrial strips incubated with G-1 or vehicle we demonstrated that estrogen membrane receptor activation increased the myometrial contractile response to oxytocin. These data suggest that activation of the plasma membrane estrogen receptor GPR30 likely participates in the physiology of the human myometrium during pregnancy and identifies it as a potential target to modify uterine activity. PMID:21427217

  20. Activation of Endothelial Nitric Oxide (eNOS) Occurs through Different Membrane Domains in Endothelial Cells.

    PubMed

    Tran, Jason; Magenau, Astrid; Rodriguez, Macarena; Rentero, Carles; Royo, Teresa; Enrich, Carlos; Thomas, Shane R; Grewal, Thomas; Gaus, Katharina

    2016-01-01

    Endothelial cells respond to a large range of stimuli including circulating lipoproteins, growth factors and changes in haemodynamic mechanical forces to regulate the activity of endothelial nitric oxide synthase (eNOS) and maintain blood pressure. While many signalling pathways have been mapped, the identities of membrane domains through which these signals are transmitted are less well characterized. Here, we manipulated bovine aortic endothelial cells (BAEC) with cholesterol and the oxysterol 7-ketocholesterol (7KC). Using a range of microscopy techniques including confocal, 2-photon, super-resolution and electron microscopy, we found that sterol enrichment had differential effects on eNOS and caveolin-1 (Cav1) colocalisation, membrane order of the plasma membrane, caveolae numbers and Cav1 clustering. We found a correlation between cholesterol-induced condensation of the plasma membrane and enhanced high density lipoprotein (HDL)-induced eNOS activity and phosphorylation suggesting that cholesterol domains, but not individual caveolae, mediate HDL stimulation of eNOS. Vascular endothelial growth factor (VEGF)-induced and shear stress-induced eNOS activity was relatively independent of membrane order and may be predominantly controlled by the number of caveolae on the cell surface. Taken together, our data suggest that signals that activate and phosphorylate eNOS are transmitted through distinct membrane domains in endothelial cells. PMID:26977592

  1. Structural basis for activation, assembly and membrane binding of ESCRT-III Snf7 filaments

    PubMed Central

    Tang, Shaogeng; Henne, W Mike; Borbat, Peter P; Buchkovich, Nicholas J; Freed, Jack H; Mao, Yuxin; Fromme, J Christopher; Emr, Scott D

    2015-01-01

    The endosomal sorting complexes required for transport (ESCRTs) constitute hetero-oligomeric machines that catalyze multiple topologically similar membrane-remodeling processes. Although ESCRT-III subunits polymerize into spirals, how individual ESCRT-III subunits are activated and assembled together into a membrane-deforming filament remains unknown. Here, we determine X-ray crystal structures of the most abundant ESCRT-III subunit Snf7 in its active conformation. Using pulsed dipolar electron spin resonance spectroscopy (PDS), we show that Snf7 activation requires a prominent conformational rearrangement to expose protein-membrane and protein-protein interfaces. This promotes the assembly of Snf7 arrays with ~30 Å periodicity into a membrane-sculpting filament. Using a combination of biochemical and genetic approaches, both in vitro and in vivo, we demonstrate that mutations on these protein interfaces halt Snf7 assembly and block ESCRT function. The architecture of the activated and membrane-bound Snf7 polymer provides crucial insights into the spatially unique ESCRT-III-mediated membrane remodeling. DOI: http://dx.doi.org/10.7554/eLife.12548.001 PMID:26670543

  2. Finding Large Aperture Fractures in Geothermal Resource Areas Using a Three-Component Long-Offset Surface Seismic Survey, PSInSAR and Kinematic Structural Analysis

    SciTech Connect

    Teplow, William J.; Warren, Ian

    2015-08-12

    The DOE cost-share program applied innovative and cutting edge seismic surveying and processing, permanent scatter interferometry-synthetic aperture radar (PSInSAR) and structural kinematics to the exploration problem of locating and mapping largeaperture fractures (LAFs) for the purpose of targeting geothermal production wells. The San Emidio geothermal resource area, which is under lease to USG, contains production wells that have encountered and currently produce from LAFs in the southern half of the resource area (Figure 2). The USG lease block, incorporating the northern extension of the San Emidio geothermal resource, extends 3 miles north of the operating wellfield. The northern lease block was known to contain shallow thermal waters but was previously unexplored by deep drilling. Results of the Phase 1 exploration program are described in detail in the Phase 1 Final Report (Teplow et al., 2011). The DOE cost shared program was completed as planned on September 30, 2014. This report summarizes results from all of Phase 1 and 2 activities.

  3. Enhancing the performance of nanofiltration membranes by modifying the active layer with aramide dendrimers.

    PubMed

    de Jubera, Ana M Saenz; Gao, Yuan; Moore, Jeffrey S; Cahill, David G; Mariñas, Benito J

    2012-09-01

    The fully aromatic polyamide active layer of a commercial nanofiltration membrane was modified with three generations (G1, G2, and G3) of aramide dendrimers, all with oligoethylene glycol chains on their peripheries. Permeation experiments revealed that the rejection of Rhodamine WT, used as a surrogate for organic contaminants, improved 1-2 orders of magnitude for membranes modified with G2 and G3 dendrimers at loadings of 0.7-3.5 μg/cm(2) (dendrimer layer thicknesses of ~1-6 nm) compared to the performance of unmodified membranes. In contrast, the corresponding water permeability of dendrimer-modified membranes decreased by only ~30%. Although an enhancement in the rejection of H(3)AsO(3), NaCl, and BaCl(2) was also observed for dendritic membranes, the effect was less pronounced than that for rhodamine WT. Characterization of membranes modified with 3.5 μg/cm(2) dendrimers G2 and G3 by Rutherford backscattering spectrometry with the aid of heavy ion probes (Ag(+) and Ba(2+)) revealed that accessibility of the larger Ba(2+) probe to carboxylate groups on the active layer decreased for the membranes modified with dendrimers.

  4. Vaccinia extracellular virions enter cells by macropinocytosis and acid-activated membrane rupture

    PubMed Central

    Schmidt, Florian Ingo; Bleck, Christopher Karl Ernst; Helenius, Ari; Mercer, Jason

    2011-01-01

    Vaccinia virus (VACV), the model poxvirus, produces two types of infectious particles: mature virions (MVs) and extracellular virions (EVs). EV particles possess two membranes and therefore require an unusual cellular entry mechanism. By a combination of fluorescence and electron microscopy as well as flow cytometry, we investigated the cellular processes that EVs required to infect HeLa cells. We found that EV particles were endocytosed, and that internalization and infection depended on actin rearrangements, activity of Na+/H+ exchangers, and signalling events typical for the macropinocytic mechanism of endocytosis. To promote their internalization, EVs were capable of actively triggering macropinocytosis. EV infection also required vacuolar acidification, and acid exposure in endocytic vacuoles was needed to disrupt the outer EV membrane. Once exposed, the underlying MV-like particle presumably fused its single membrane with the limiting vacuolar membrane. Release of the viral core into the host cell cytosol allowed for productive infection. PMID:21792173

  5. Vaccinia extracellular virions enter cells by macropinocytosis and acid-activated membrane rupture.

    PubMed

    Schmidt, Florian Ingo; Bleck, Christopher Karl Ernst; Helenius, Ari; Mercer, Jason

    2011-08-31

    Vaccinia virus (VACV), the model poxvirus, produces two types of infectious particles: mature virions (MVs) and extracellular virions (EVs). EV particles possess two membranes and therefore require an unusual cellular entry mechanism. By a combination of fluorescence and electron microscopy as well as flow cytometry, we investigated the cellular processes that EVs required to infect HeLa cells. We found that EV particles were endocytosed, and that internalization and infection depended on actin rearrangements, activity of Na(+)/H(+) exchangers, and signalling events typical for the macropinocytic mechanism of endocytosis. To promote their internalization, EVs were capable of actively triggering macropinocytosis. EV infection also required vacuolar acidification, and acid exposure in endocytic vacuoles was needed to disrupt the outer EV membrane. Once exposed, the underlying MV-like particle presumably fused its single membrane with the limiting vacuolar membrane. Release of the viral core into the host cell cytosol allowed for productive infection. PMID:21792173

  6. Trichoplaxin - a new membrane-active antimicrobial peptide from placozoan cDNA.

    PubMed

    Simunić, Juraj; Petrov, Dražen; Bouceba, Tahar; Kamech, Nédia; Benincasa, Monica; Juretić, Davor

    2014-05-01

    A method based on the use of signal peptide sequences from antimicrobial peptide (AMP) precursors was used to mine a placozoa expressed sequence tag database and identified a potential antimicrobial peptide from Trichoplax adhaerens. This peptide, with predicted sequence FFGRLKSVWSAVKHGWKAAKSR is the first AMP from a placozoan species, and was named trichoplaxin. It was chemically synthesized and its structural properties, biological activities and membrane selectivity were investigated. It adopts an α-helical structure in contact with membrane-like environments and is active against both Gram-negative and Gram-positive bacterial species (including MRSA), as well as yeasts from the Candida genus. The cytotoxic activity, as assessed by the haemolytic activity against rat erythrocytes, U937 cell permeabilization to propidium iodide and MCF7 cell mitochondrial activity, is significantly lower than the antimicrobial activity. In tests with membrane models, trichoplaxin shows high affinity for anionic prokaryote-like membranes with good fit in kinetic studies. Conversely, there is a low affinity for neutral eukaryote-like membranes and absence of a dose dependent response. With high selectivity for bacterial cells and no homologous sequence in the UniProt, trichoplaxin is a new potential lead compound for development of broad-spectrum antibacterial drugs.

  7. Biologically Inspired Photocatalytically Active Membranes for Water Treatment

    NASA Astrophysics Data System (ADS)

    Kinsinger, Nichola M.

    There is an alarming increase of a variety of new chemicals that are now being discharged into the wastewater system causing increased concern for public health and safety because many are not removed by typical wastewater treatment practices. Titanium Dioxide (TiO2) is a heterogeneous photocatalytic material that rapidly and completely mineralizing organics without harmful byproducts. TiO2 is synthesized by various methods, which lack the necessary control of crystal size, phase, and morphological features that yield optimized semiconductor materials. Mineralizing organisms demonstrate how nature can produce elegant structures at room temperature through controlled organic-mineral interactions. Here, we utilize biologically-inspired scaffolds to template the nucleation and growth of inorganic materials such as TiO2, which aid in controlling the size and phase of these particles and ultimately, their properties. Nanosized rutile and anatase particles were synthesized under solution conditions at relatively low temperatures and mild pH conditions. The effects of reaction conditions on phase and grain size were investigated and discussed from coordination chemistry and coarsening mechanisms. Photocatalytic characterization of TiO2 phase mixtures was performed to investigate their synergistic effect. The suspension conditions of these catalytic nanomaterials were modulated to optimize the degradation rate of organic analytes. Through the addition of an organic scaffold during the synthesis reaction, a mechanically robust (elastic) composite material containing TiO2 nanoparticles was produced. This composite was subsequently heat-treated to produce a porous, high surface area TiO2 nanoparticulate membrane. Processing conditions were investigated to characterize the growth and phase transformation of TiO2, which ultimately impacts photocatalytic performance. These bulk porous TiO2 structures can be fabricated and tailored to act as stand-alone photocatalytic membranes

  8. Specificity and mechanism of action of alpha-helical membrane-active peptides interacting with model and biological membranes by single-molecule force spectroscopy.

    PubMed

    Sun, Shiyu; Zhao, Guangxu; Huang, Yibing; Cai, Mingjun; Shan, Yuping; Wang, Hongda; Chen, Yuxin

    2016-01-01

    In this study, to systematically investigate the targeting specificity of membrane-active peptides on different types of cell membranes, we evaluated the effects of peptides on different large unilamellar vesicles mimicking prokaryotic, normal eukaryotic, and cancer cell membranes by single-molecule force spectroscopy and spectrum technology. We revealed that cationic membrane-active peptides can exclusively target negatively charged prokaryotic and cancer cell model membranes rather than normal eukaryotic cell model membranes. Using Acholeplasma laidlawii, 3T3-L1, and HeLa cells to represent prokaryotic cells, normal eukaryotic cells, and cancer cells in atomic force microscopy experiments, respectively, we further studied that the single-molecule targeting interaction between peptides and biological membranes. Antimicrobial and anticancer activities of peptides exhibited strong correlations with the interaction probability determined by single-molecule force spectroscopy, which illustrates strong correlations of peptide biological activities and peptide hydrophobicity and charge. Peptide specificity significantly depends on the lipid compositions of different cell membranes, which validates the de novo design of peptide therapeutics against bacteria and cancers. PMID:27363513

  9. Specificity and mechanism of action of alpha-helical membrane-active peptides interacting with model and biological membranes by single-molecule force spectroscopy.

    PubMed

    Sun, Shiyu; Zhao, Guangxu; Huang, Yibing; Cai, Mingjun; Shan, Yuping; Wang, Hongda; Chen, Yuxin

    2016-07-01

    In this study, to systematically investigate the targeting specificity of membrane-active peptides on different types of cell membranes, we evaluated the effects of peptides on different large unilamellar vesicles mimicking prokaryotic, normal eukaryotic, and cancer cell membranes by single-molecule force spectroscopy and spectrum technology. We revealed that cationic membrane-active peptides can exclusively target negatively charged prokaryotic and cancer cell model membranes rather than normal eukaryotic cell model membranes. Using Acholeplasma laidlawii, 3T3-L1, and HeLa cells to represent prokaryotic cells, normal eukaryotic cells, and cancer cells in atomic force microscopy experiments, respectively, we further studied that the single-molecule targeting interaction between peptides and biological membranes. Antimicrobial and anticancer activities of peptides exhibited strong correlations with the interaction probability determined by single-molecule force spectroscopy, which illustrates strong correlations of peptide biological activities and peptide hydrophobicity and charge. Peptide specificity significantly depends on the lipid compositions of different cell membranes, which validates the de novo design of peptide therapeutics against bacteria and cancers.

  10. Specificity and mechanism of action of alpha-helical membrane-active peptides interacting with model and biological membranes by single-molecule force spectroscopy

    PubMed Central

    Sun, Shiyu; Zhao, Guangxu; Huang, Yibing; Cai, Mingjun; Shan, Yuping; Wang, Hongda; Chen, Yuxin

    2016-01-01

    In this study, to systematically investigate the targeting specificity of membrane-active peptides on different types of cell membranes, we evaluated the effects of peptides on different large unilamellar vesicles mimicking prokaryotic, normal eukaryotic, and cancer cell membranes by single-molecule force spectroscopy and spectrum technology. We revealed that cationic membrane-active peptides can exclusively target negatively charged prokaryotic and cancer cell model membranes rather than normal eukaryotic cell model membranes. Using Acholeplasma laidlawii, 3T3-L1, and HeLa cells to represent prokaryotic cells, normal eukaryotic cells, and cancer cells in atomic force microscopy experiments, respectively, we further studied that the single-molecule targeting interaction between peptides and biological membranes. Antimicrobial and anticancer activities of peptides exhibited strong correlations with the interaction probability determined by single-molecule force spectroscopy, which illustrates strong correlations of peptide biological activities and peptide hydrophobicity and charge. Peptide specificity significantly depends on the lipid compositions of different cell membranes, which validates the de novo design of peptide therapeutics against bacteria and cancers. PMID:27363513

  11. Improved antibacterial activity of nanofiltration polysulfone membranes modified with silver nanoparticles.

    PubMed

    Andrade, Patricia Fernanda; de Faria, Andreia Fonseca; Oliveira, Silvana Ruella; Arruda, Marco Aurélio Zezzi; Gonçalves, Maria do Carmo

    2015-09-15

    Polysulfone membranes (PSf) containing silver nanoparticles were prepared by the wet phase-inversion process. Silver nanoparticles (AgNP) were dispersed into the polymer matrix using two different methodologies. In the first one, the AgNP were synthesized and further dispersed into the polymer solution (ex situ process). In the second method, the formation of the AgNP was performed in situ. The AgNP crystalline structure in the PSf membranes was confirmed by X-ray diffraction. Field emission scanning electron microscopy images showed that the addition of AgNP in PSf membranes caused no significant changes to the finger-like morphology. When the ex situ methodology was applied, 45 nm average size AgNP were uniformly distributed in the internal pores of the membranes. However, when the AgNP were formed through the in situ process, the AgNP were uniformly and preferentially distributed on the top and bottom surfaces of the membrane. In the last case, the AgNP showed cubic morphology when present in the bottom and top surfaces, however, when inside the membrane their morphology was spherical. The cubic-like nanoparticles displayed a 38 nm average edge length. The silver ion released from the membrane during water filtration was measured using inductively coupled plasma mass spectrometry, which showed a silver leaching of approximately 2 μg L(-1). The nanocomposite membranes prepared by the in situ method exhibited a better antibacterial activity, in comparison to those prepared by ex situ, and also a decrease in 90% Escherichia coli adhered cells compared to the pristine PSf membranes. In conclusion, the in situ procedure can be considered a feasible, simple, and reproducible methodology to prepare anti-biofouling polysulfone membranes containing AgNP.

  12. Tuning Liposome Membrane Permeability by Competitive Peptide Dimerization and Partitioning-Folding Interactions Regulated by Proteolytic Activity.

    PubMed

    Lim, Seng Koon; Sandén, Camilla; Selegård, Robert; Liedberg, Bo; Aili, Daniel

    2016-01-01

    Membrane active peptides are of large interest for development of drug delivery vehicles and therapeutics for treatment of multiple drug resistant infections. Lack of specificity can be detrimental and finding routes to tune specificity and activity of membrane active peptides is vital for improving their therapeutic efficacy and minimize harmful side effects. We describe a de novo designed membrane active peptide that partition into lipid membranes only when specifically and covalently anchored to the membrane, resulting in pore-formation. Dimerization with a complementary peptide efficiently inhibits formation of pores. The effect can be regulated by proteolytic digestion of the inhibitory peptide by the matrix metalloproteinase MMP-7, an enzyme upregulated in many malignant tumors. This system thus provides a precise and specific route for tuning the permeability of lipid membranes and a novel strategy for development of recognition based membrane active peptides and indirect enzymatically controlled release of liposomal cargo.

  13. Tuning Liposome Membrane Permeability by Competitive Peptide Dimerization and Partitioning-Folding Interactions Regulated by Proteolytic Activity

    NASA Astrophysics Data System (ADS)

    Lim, Seng Koon; Sandén, Camilla; Selegård, Robert; Liedberg, Bo; Aili, Daniel

    2016-02-01

    Membrane active peptides are of large interest for development of drug delivery vehicles and therapeutics for treatment of multiple drug resistant infections. Lack of specificity can be detrimental and finding routes to tune specificity and activity of membrane active peptides is vital for improving their therapeutic efficacy and minimize harmful side effects. We describe a de novo designed membrane active peptide that partition into lipid membranes only when specifically and covalently anchored to the membrane, resulting in pore-formation. Dimerization with a complementary peptide efficiently inhibits formation of pores. The effect can be regulated by proteolytic digestion of the inhibitory peptide by the matrix metalloproteinase MMP-7, an enzyme upregulated in many malignant tumors. This system thus provides a precise and specific route for tuning the permeability of lipid membranes and a novel strategy for development of recognition based membrane active peptides and indirect enzymatically controlled release of liposomal cargo.

  14. Tuning Liposome Membrane Permeability by Competitive Peptide Dimerization and Partitioning-Folding Interactions Regulated by Proteolytic Activity

    PubMed Central

    Lim, Seng Koon; Sandén, Camilla; Selegård, Robert; Liedberg, Bo; Aili, Daniel

    2016-01-01

    Membrane active peptides are of large interest for development of drug delivery vehicles and therapeutics for treatment of multiple drug resistant infections. Lack of specificity can be detrimental and finding routes to tune specificity and activity of membrane active peptides is vital for improving their therapeutic efficacy and minimize harmful side effects. We describe a de novo designed membrane active peptide that partition into lipid membranes only when specifically and covalently anchored to the membrane, resulting in pore-formation. Dimerization with a complementary peptide efficiently inhibits formation of pores. The effect can be regulated by proteolytic digestion of the inhibitory peptide by the matrix metalloproteinase MMP-7, an enzyme upregulated in many malignant tumors. This system thus provides a precise and specific route for tuning the permeability of lipid membranes and a novel strategy for development of recognition based membrane active peptides and indirect enzymatically controlled release of liposomal cargo. PMID:26892926

  15. One-dimensional potential of mean force underestimates activation barrier for transport across flexible lipid membranes

    NASA Astrophysics Data System (ADS)

    Kopelevich, Dmitry I.

    2013-10-01

    Transport of a fullerene-like nanoparticle across a lipid bilayer is investigated by coarse-grained molecular dynamics (MD) simulations. Potentials of mean force (PMF) acting on the nanoparticle in a flexible bilayer suspended in water and a bilayer restrained to a flat surface are computed by constrained MD simulations. The rate of the nanoparticle transport into the bilayer interior is predicted using one-dimensional Langevin models based on these PMFs. The predictions are compared with the transport rates obtained from a series of direct (unconstrained) MD simulations of the solute transport into the flexible bilayer. It is observed that the PMF acting on the solute in the flexible membrane underestimates the transport rate by more than an order of magnitude while the PMF acting on the solute in the restrained membrane yields an accurate estimate of the activation energy for transport into the flexible membrane. This paradox is explained by a coexistence of metastable membrane configurations for a range of the solute positions inside and near the flexible membrane. This leads to a significant reduction of the contribution of the transition state to the mean force acting on the solute. Restraining the membrane shape ensures that there is only one stable membrane configuration corresponding to each solute position and thus the transition state is adequately represented in the PMF. This mechanism is quite general and thus this phenomenon is expected to occur in a wide range of interfacial systems. A simple model for the free energy landscape of the coupled solute-membrane system is proposed and validated. This model explicitly accounts for effects of the membrane deformations on the solute transport and yields an accurate prediction of the activation energy for the solute transport.

  16. Sphingomyelinase D Activity in Model Membranes: Structural Effects of in situ Generation of Ceramide-1-Phosphate

    PubMed Central

    Stock, Roberto P.; Brewer, Jonathan; Wagner, Kerstin; Ramos-Cerrillo, Blanca; Duelund, Lars; Jernshøj, Kit Drescher; Olsen, Lars Folke; Bagatolli, Luis A.

    2012-01-01

    The toxicity of Loxosceles spider venom has been attributed to a rare enzyme, sphingomyelinase D, which transforms sphingomyelin to ceramide-1-phosphate. The bases of its inflammatory and dermonecrotic activity, however, remain unclear. In this work the effects of ceramide-1-phosphate on model membranes were studied both by in situ generation of this lipid using a recombinant sphingomyelinase D from the spider Loxosceles laeta and by pre-mixing it with sphingomyelin and cholesterol. The systems of choice were large unilamellar vesicles for bulk studies (enzyme kinetics, fluorescence spectroscopy and dynamic light scattering) and giant unilamellar vesicles for fluorescence microscopy examination using a variety of fluorescent probes. The influence of membrane lateral structure on the kinetics of enzyme activity and the consequences of enzyme activity on the structure of target membranes containing sphingomyelin were examined. The findings indicate that: 1) ceramide-1-phosphate (particularly lauroyl ceramide-1-phosphate) can be incorporated into sphingomyelin bilayers in a concentration-dependent manner and generates coexistence of liquid disordered/solid ordered domains, 2) the activity of sphingomyelinase D is clearly influenced by the supramolecular organization of its substrate in membranes and, 3) in situ ceramide-1-phosphate generation by enzymatic activity profoundly alters the lateral structure and morphology of the target membranes. PMID:22558302

  17. Single-Molecule Imaging Reveals the Activation Dynamics of Intracellular Protein Smad3 on Cell Membrane

    NASA Astrophysics Data System (ADS)

    Li, Nan; Yang, Yong; He, Kangmin; Zhang, Fayun; Zhao, Libo; Zhou, Wei; Yuan, Jinghe; Liang, Wei; Fang, Xiaohong

    2016-09-01

    Smad3 is an intracellular protein that plays a key role in propagating transforming growth factor β (TGF-β) signals from cell membrane to nucleus. However whether the transient process of Smad3 activation occurs on cell membrane and how it is regulated remains elusive. Using advanced live-cell single-molecule fluorescence microscopy to image and track fluorescent protein-labeled Smad3, we observed and quantified, for the first time, the dynamics of individual Smad3 molecules docking to and activation on the cell membrane. It was found that Smad3 docked to cell membrane in both unstimulated and stimulated cells, but with different diffusion rates and dissociation kinetics. The change in its membrane docking dynamics can be used to study the activation of Smad3. Our results reveal that Smad3 binds with type I TGF-β receptor (TRI) even in unstimulated cells. Its activation is regulated by TRI phosphorylation but independent of receptor endocytosis. This study offers new information on TGF-β/Smad signaling, as well as a new approach to investigate the activation of intracellular signaling proteins for a better understanding of their functions in signal transduction.

  18. Electrochemiluminescence imaging for parallel single-cell analysis of active membrane cholesterol.

    PubMed

    Zhou, Junyu; Ma, Guangzhong; Chen, Yun; Fang, Danjun; Jiang, Dechen; Chen, Hong-Yuan

    2015-08-18

    Luminol electrochemiluminescence (ECL) imaging was developed for the parallel measurement of active membrane cholesterol at single living cells, thus establishing a novel electrochemical detection technique for single cells with high analysis throughput and low detection limit. In our strategy, the luminescence generated from luminol and hydrogen peroxide upon the potential was recorded in one image so that hydrogen peroxide at the surface of multiple cells could be simultaneously analyzed. Compared with the classic microelectrode array for the parallel single-cell analysis, the plat electrode only was needed in our ECL imaging, avoiding the complexity of electrode fabrication. The optimized ECL imaging system showed that hydrogen peroxide as low as 10 μM was visible and the efflux of hydrogen peroxide from cells could be determined. Coupled with the reaction between active membrane cholesterol and cholesterol oxidase to generate hydrogen peroxide, active membrane cholesterol at cells on the electrode was analyzed at single-cell level. The luminescence intensity was correlated with the amount of active membrane cholesterol, validating our system for single-cell cholesterol analysis. The relative high standard deviation on the luminescence suggested high cellular heterogeneities on hydrogen peroxide efflux and active membrane cholesterol, which exhibited the significance of single-cell analysis. This success in ECL imaging for single-cell analysis opens a new field in the parallel measurement of surface molecules at single cells.

  19. Single-Molecule Imaging Reveals the Activation Dynamics of Intracellular Protein Smad3 on Cell Membrane.

    PubMed

    Li, Nan; Yang, Yong; He, Kangmin; Zhang, Fayun; Zhao, Libo; Zhou, Wei; Yuan, Jinghe; Liang, Wei; Fang, Xiaohong

    2016-01-01

    Smad3 is an intracellular protein that plays a key role in propagating transforming growth factor β (TGF-β) signals from cell membrane to nucleus. However whether the transient process of Smad3 activation occurs on cell membrane and how it is regulated remains elusive. Using advanced live-cell single-molecule fluorescence microscopy to image and track fluorescent protein-labeled Smad3, we observed and quantified, for the first time, the dynamics of individual Smad3 molecules docking to and activation on the cell membrane. It was found that Smad3 docked to cell membrane in both unstimulated and stimulated cells, but with different diffusion rates and dissociation kinetics. The change in its membrane docking dynamics can be used to study the activation of Smad3. Our results reveal that Smad3 binds with type I TGF-β receptor (TRI) even in unstimulated cells. Its activation is regulated by TRI phosphorylation but independent of receptor endocytosis. This study offers new information on TGF-β/Smad signaling, as well as a new approach to investigate the activation of intracellular signaling proteins for a better understanding of their functions in signal transduction. PMID:27641076

  20. Single-Molecule Imaging Reveals the Activation Dynamics of Intracellular Protein Smad3 on Cell Membrane

    PubMed Central

    Li, Nan; Yang, Yong; He, Kangmin; Zhang, Fayun; Zhao, Libo; Zhou, Wei; Yuan, Jinghe; Liang, Wei; Fang, Xiaohong

    2016-01-01

    Smad3 is an intracellular protein that plays a key role in propagating transforming growth factor β (TGF-β) signals from cell membrane to nucleus. However whether the transient process of Smad3 activation occurs on cell membrane and how it is regulated remains elusive. Using advanced live-cell single-molecule fluorescence microscopy to image and track fluorescent protein-labeled Smad3, we observed and quantified, for the first time, the dynamics of individual Smad3 molecules docking to and activation on the cell membrane. It was found that Smad3 docked to cell membrane in both unstimulated and stimulated cells, but with different diffusion rates and dissociation kinetics. The change in its membrane docking dynamics can be used to study the activation of Smad3. Our results reveal that Smad3 binds with type I TGF-β receptor (TRI) even in unstimulated cells. Its activation is regulated by TRI phosphorylation but independent of receptor endocytosis. This study offers new information on TGF-β/Smad signaling, as well as a new approach to investigate the activation of intracellular signaling proteins for a better understanding of their functions in signal transduction. PMID:27641076

  1. Aryl-alkyl-lysines: Membrane-Active Small Molecules Active against Murine Model of Burn Infection.

    PubMed

    Ghosh, Chandradhish; Manjunath, Goutham B; Konai, Mohini M; Uppu, Divakara S S M; Paramanandham, Krishnamoorthy; Shome, Bibek R; Ravikumar, Raju; Haldar, Jayanta

    2016-02-12

    Infections caused by drug-resistant Gram-negative pathogens continue to be significant contributors to human morbidity. The recent advent of New Delhi metallo-β-lactamase-1 (blaNDM-1) producing pathogens, against which few drugs remain active, has aggravated the problem even further. This paper shows that aryl-alkyl-lysines, membrane-active small molecules, are effective in treating infections caused by Gram-negative pathogens. One of the compounds of the study was effective in killing planktonic cells as well as dispersing biofilms of Gram-negative pathogens. The compound was extremely effective in disrupting preformed biofilms and did not select resistant bacteria in multiple passages. The compound retained activity in different physiological conditions and did not induce any toxic effect in female Balb/c mice until concentrations of 17.5 mg/kg. In a murine model of Acinetobacter baumannii burn infection, the compound was able to bring the bacterial burden down significantly upon topical application for 7 days. PMID:27624962

  2. Studies on the bivalent-cation-activated ATPase activities of highly purified human platelet surface and intracellular membranes.

    PubMed

    Hack, N; Croset, M; Crawford, N

    1986-02-01

    Membrane-bound Ca2+-ATPases are responsible for the energy-dependent transport of Ca2+ across membrane barriers against concentration gradients. Such enzymes have been identified in sarcoplasmic reticulum of muscle tissues and in non-muscle cells in both surface membranes and endoplasmic-reticulum-like intracellular membrane complexes. In a previous study using membrane fractionation by density-gradient and free-flow electrophoresis, we reported that the intracellular membranes of human blood platelets were a major storage site for Ca2+ and involved in maintaining low cytosol [Ca2+] in the unactivated cell. In the present report we demonstrated that the intracellular membranes also exhibit a high-affinity Ca2+-ATPase which appears to be kinetically associated with the Ca2+-sequestering process. We found that both the surface membrane and the intracellular membrane exhibited a basal Mg2+-ATPase activity, but Ca2+ activation of this enzyme was confined only to the intracellular membrane. Use of Ca2+-EGTA buffers to control the extravesicle [Ca2+] allowed a direct comparison of the Ca2+-ATPase and the Ca2+-uptake process over a Ca2+ range of 0.01 microM to 1.0 mM, and it was found that both properties were maximally expressed in the range of external [Ca2+] 1-50 microM, with concentrations greater than 100 microM showing substantial inhibition. Double-reciprocal plots for the Ca2+-ATPase activity and Ca2+ uptake gave apparent Km values for Ca2+ of 0.15 and 0.13 microM respectively. However, similar plots for ATP with the enzyme revealed a discontinuity (two affinity sites, with Km 20 and 145 microM), whereas plots for the Ca2+ uptake gave a single Km value for Ca2+, 1.1 microM. Phosphorylation studies during Ca2+ uptake using [gamma-32P]ATP revealed two components of 90 and 95 kDa phosphorylated at extravesicle [Ca2+] of 3 microM. The Ca2+-ATPase activity, Ca2+ uptake and phosphorylation were all almost completely inhibited in the presence of 500 microM-Ca2+. Similar

  3. Plasma Membrane Factor XIIIA Transglutaminase Activity Regulates Osteoblast Matrix Secretion and Deposition by Affecting Microtubule Dynamics

    PubMed Central

    Al-Jallad, Hadil F.; Myneni, Vamsee D.; Piercy-Kotb, Sarah A.; Chabot, Nicolas; Mulani, Amina; Keillor, Jeffrey W.; Kaartinen, Mari T.

    2011-01-01

    Transglutaminase activity, arising potentially from transglutaminase 2 (TG2) and Factor XIIIA (FXIIIA), has been linked to osteoblast differentiation where it is required for type I collagen and fibronectin matrix deposition. In this study we have used an irreversible TG-inhibitor to ‘block –and-track’ enzyme(s) targeted during osteoblast differentiation. We show that the irreversible TG-inhibitor is highly potent in inhibiting osteoblast differentiation and mineralization and reduces secretion of both fibronectin and type I collagen and their release from the cell surface. Tracking of the dansyl probe by Western blotting and immunofluorescence microscopy demonstrated that the inhibitor targets plasma membrane-associated FXIIIA. TG2 appears not to contribute to crosslinking activity on the osteoblast surface. Inhibition of FXIIIA with NC9 resulted in defective secretory vesicle delivery to the plasma membrane which was attributable to a disorganized microtubule network and decreased microtubule association with the plasma membrane. NC9 inhibition of FXIIIA resulted in destabilization of microtubules as assessed by cellular Glu-tubulin levels. Furthermore, NC9 blocked modification of Glu-tubulin into 150 kDa high-molecular weight Glu-tubulin form which was specifically localized to the plasma membrane. FXIIIA enzyme and its crosslinking activity were colocalized with plasma membrane-associated tubulin, and thus, it appears that FXIIIA crosslinking activity is directed towards stabilizing the interaction of microtubules with the plasma membrane. Our work provides the first mechanistic cues as to how transglutaminase activity could affect protein secretion and matrix deposition in osteoblasts and suggests a novel function for plasma membrane FXIIIA in microtubule dynamics. PMID:21283799

  4. Cognition Is Cool: Can Hemispheric Activation Be Assessed by Tympanic Membrane Thermometry?

    ERIC Educational Resources Information Center

    Cherbuin, Nicolas; Brinkman, Cobie

    2004-01-01

    Hemispheric activation during cognitive tasks using functional magnetic resonance imaging (fMRI) can be difficult to interpret, uncomfortable, and is not widely available. This study investigated whether tympanic membrane thermometry could be used as a broad measure of hemispheric activation. Infrared probes measured ear temperature continuously…

  5. [Effect of powdered activated carbon on the sludge mixed liquor characteristics and membrane fouling of MBR].

    PubMed

    Li, Shao-Feng; Gao, Yuan

    2011-02-01

    Effect of dosing powder activated carbon (PAC) on the characteristics of the sludge mixed liquor in membrane bioreactor (MBR) was investigated by parallel tests. And the reason that PAC mitigated membrane fouling was also explored. The results showed that PAC could decrease mixture viscosity and increase sludge particle size, which led to less trans-membrane pressure developing. Extracellular polymer substances (EPS) content, sludge specific resistance and cake layer resistance (R(c)) had a good correlation. Adding PAC could decrease EPS concentration, sludge specific resistance and then slow down the increase of R(c), which mitigated membrane fouling. Membrane pore blocking resistance (R(p)) increased exponentially with increasing of the soluble microbial products (SMP) concentration in the supernatant. Dosing PAC reduced the SMP concentration and slowed down the growth rate of R(p), which was helpful to mitigating membrane fouling. R(c) and R(p) increased along with the operation of MBRs and R(c)/R(f) (26.32% -63.16%) was always greater than R(p)/R(f) (7.89% -35.32%) which suggested the R(c) was the main factor in membrane fouling. Moreover, it was also found that controlling of dosing PAC on R(c) was better than it on R(p). PMID:21528575

  6. Comparing graphene, carbon nanotubes, and superfine powdered activated carbon as adsorptive coating materials for microfiltration membranes.

    PubMed

    Ellerie, Jaclyn R; Apul, Onur G; Karanfil, Tanju; Ladner, David A

    2013-10-15

    Multi-walled carbon nanotubes (MWCNTs), nano-graphene platelets (NGPs), and superfine powdered activated carbon (S-PAC) were comparatively evaluated for their applicability as adsorptive coatings on microfiltration membranes. The objective was to determine which materials were capable of contaminant removal while causing minimal flux reduction. Methylene blue and atrazine were the model contaminants. When applied as membrane coatings, MWCNTs had minimal retention capabilities for the model contaminants, and S-PAC had the fastest removal. The membrane coating approach was also compared with a stirred vessel configuration, in which the adsorbent was added to a stirred flask preceding the membrane cell. Direct application of the adsorbent to the membrane constituted a greater initial reduction in permeate concentrations of the model contaminants than with the stirred flask setup. All adsorbents except S-PAC showed flux reductions less than 5% after application as thin-layer membrane coatings, and flux recovery after membrane backwashing was greater than 90% for all materials and masses tested. PMID:23911830

  7. Large Aperture Systems: 2000-2004

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This custom bibliography from the NASA Scientific and Technical Information Program lists a sampling of records found in the NASA Aeronautics and Space Database. The scope of this topic includes technologies for next generation astronomical telescopes and detectors. This area of focus is one of the enabling technologies as defined by NASA s Report of the President s Commission on Implementation of United States Space Exploration Policy, published in June 2004.

  8. A modular approach toward extremely large apertures

    NASA Astrophysics Data System (ADS)

    Woods, A. A., Jr.

    1981-02-01

    Modular antenna construction can provide a significant increase in reflector aperture size over deployable reflectors. The modular approach allows reflective mesh surfaces to be supported by a minimum of structure. The kinematics of the selected deployable design approach were validated by the subscale demonstration model. Further design refinements on the module structural/joints and design optimization on intermodule joints are needed.

  9. Large aperture ac interferometer for optical testing.

    PubMed

    Moore, D T; Murray, R; Neves, F B

    1978-12-15

    A 20-cm clear aperture modified Twyman-Green interferometer is described. The system measures phase with an AC technique called phase-lock interferometry while scanning the aperture with a dual galvanometer scanning system. Position information and phase are stored in a minicomputer with disk storage. This information is manipulated with associated software, and the wavefront deformation due to a test component is graphically displayed in perspective and contour on a CRT terminal. PMID:20208642

  10. Large Aperture Multiplexed Diffractive Lidar Optics

    NASA Technical Reports Server (NTRS)

    Rallison, Richard D.; Schwemmer, Geary K. (Technical Monitor)

    1999-01-01

    We have delivered only 2 or 3 UV Holographic Optical Elements (HOEs) thus far and have fallen short of the intended goal in size and in dual wavelength function. Looking back, it has been fortuitous that we even made anything work in the UV region. It was our good fortune to discover that the material we work with daily was adequate for use at 355 nm, if well rinsed during processing. If we had stuck to our original plan of etching in small pieces of fused silica, we would still be trying to make the first small section in our ion mill, which is not yet operational. The original plan was far too ambitious and would take another 2 years to complete beginning where we left off this time. In order to make a HOE for the IR as well as the UV we will likely have to learn to sensitize some film to the 1064 line and we have obtained sensitizer that is reported to work in that region already. That work would also take an additional year to complete.

  11. Protein kinase and phosphatase activities of thylakoid membranes

    SciTech Connect

    Michel, H.; Shaw, E.K.; Bennett, J.

    1987-01-01

    Dephosphorylation of the 25 and 27 kDa light-harvesting Chl a/b proteins (LHCII) of the thylakoid membranes is catalyzed by a phosphatase which differs from previously reported thylakoid-bound phosphatases in having an alkaline pH optimum (9.0) and a requirement for Mg/sup 2 +/ ions. Dephosphorylation of the 8.3 kDa psb H gene product requires a Mg/sup 2 +/ ion concentration more than 200 fold higher than that for dephosphorylation of LHC II. The 8.3 kDa and 27 kDa proteins appear to be phosphorylated by two distinct kinases, which differ in substrate specificity and sensitivity to inhibitors. The plastoquinone antagonist 2,5-dibromo-3-methyl-6-isopropyl-benzoquinone (DBMIB) inhibits phosphorylation of the 27 kDa LHC II much more readily than phosphorylation of the 8.3 kDa protein. A similar pattern of inhibition is seen for two synthetic oligopeptides (MRKSATTKKAVC and ATQTLESSSRC) which are analogs of the phosphorylation sites of the two proteins. Possible modes of action of DBMIB are discussed. 45 refs., 7 figs., 3 tabs.

  12. Nonbonded interactions in membrane active cyclic biopolymers. IV - Cation dependence

    NASA Technical Reports Server (NTRS)

    Radhakrishnan, R.; Srinivasan, S.; Prasad, C. V.; Brinda, S. R.; Macelroy, R. D.; Sundaram, K.

    1980-01-01

    Interactions of valinomycin and form of its analogs in several conformations with the central ions Li(+), Na(+), K(+), Rb(+) and Cs(+) are investigated as part of a study of the specific preference of valinomycin for potassium and the mechanisms of carrier-mediated ion transport across membranes. Ion binding energies and conformational potential energies are calculated taking into account polarization energy formulas and repulsive energy between the central ion and the ligand atoms for conformations representing various stages in ion capture and release for each of the two ring chiralities of valinomycin and its analogs. Results allow the prediction of the chirality and conformation most likely to be observed for a given analog, and may be used to synthesize analogs with a desired rigidity or flexibility. The binding energies with the alkali metal cations are found to decrease with increasing ion size, and to be smaller than the corresponding ion hydration energies. It is pointed out that the observed potassium preference may be explainable in terms of differences between binding and hydration energies. Binding energies are also noted to depend on ligand conformation.

  13. Effect of various concentration of sulfuric acid for Nafion membrane activation on the performance of fuel cell

    NASA Astrophysics Data System (ADS)

    Pujiastuti, Sri; Onggo, Holia

    2016-02-01

    This work proposes an activation treatment to Nafion 117 membrane with sulfuric acid in various concentrations. The main goal of this study is to increase the Nafion 117 membrane performance, which is determined by proton number in the membrane and membrane performance in Polymer Electrolyte Membrane Fuel Cell (PEMFC). This work was developed using sulfuric acids in four different concentrations: 1, 2, 3, and 4 M. The surface morphology and functional groups of activated membranes were studied using Scanning Electron Microscope and Fourier Transform Infrared, respectively. The proton number absorbed in membranes was observed by gravimetric measurements. The performances of activated membranes in PEMFC were studied by single cell measurements with H2/O2 operation. The experimental results showed that activation of Nafion membrane did not change its surface morphology and functional groups. The proton number increased when the concentration of sulfuric acid is increased from 1 to 3 M and from 1 to 4 M. On the other hand, there is no significant increase when the concentration of sulfuric acid was increased from 1 to 2 M. Similar trends were observed when testing activated membrane performance in PEMFC, especially for current density at 0.6 V and maximum power. It is assumed that there is a correlation between the increase of sulfuric acid concentration in activation process with the increase of proton number in the membrane that are available for facilitating of transfer protons from the anode to the cathode.

  14. The active form of cytochrome c oxidase: effects of detergent, the intact membrane, and radiation inactivation

    SciTech Connect

    Thompson, D.A.; Suarez-Villafane, M.; Ferguson-Miller, S.

    1982-01-01

    Cytochrome oxidase is a multisubunit, intrinsic membrane protein with a complex function that includes oxidation of cytochrome c, reduction of oxygen and generation of a membrane potential. To clarify the relationship of its normal function to protein and membrane structure, we have examined the kinetic behavior of rat liver cytochrome oxidase in the intace inner mitochondrial membrane and in detergent solubilized states. Dissolution of rat liver mitochondrial membranes alters the kinetic parameters of the oxidase in a manner dependent in part on the dispersing agent, and characterized by a large increase in maximal activity which is not attributable to exposure of more oxidase or diminished affinity for cytochrome c. The most profound effect of solubilization of the membrane is seen on the low affinity reaction of cytochrome c, suggesting that the electron transfer pathway from this site to oxygen is sensitive to alterations in hydrophobic interactions within the oxidase. Purified rat liver and beef heart oxidase exists predominantly in a monodisperse, 300 kilodalton form in laurylmaltoside (Rosevear et al., 1980). However, a smaller, 130 kd species that exhibits high turnover rates equal to the 300 kd form is detected in some beef heart preparations, implying that the dimer may not be essential for high activity. Radiation inactivation studies on purified oxidase reveal a molecular weight for the functional unit of approx.70 kd. It is concluded that less than a complete set of subunits may be sufficient for both normal bindings of cytochrome c and rapid electron transfer to oxygen.

  15. Active form of cytochrome c oxidase: effects of detergent, the intact membrane, and radiation inactivation

    SciTech Connect

    Thompson, D.A.; Suarez-Villafane, M.; Ferguson-Miller, S.

    1982-01-01

    Cytochrome oxidase is a multisubunit, intrinsic membrane protein with a complex function that includes oxidation of cytochrome c, reduction of oxygen and generation of a membrane potential. To clarify the relationship of its normal function to protein and membrane structure, we have examined the kinetic behavior of rat liver cytochrome oxidase in the intact inner mitochondrial membrane and in detergent solubilized states. Dissolution of rat liver mitochondrial membranes alters the kinetic parameters of the oxidase in a manner dependent in part on the dispersing agent, and characterized by a large increase in maximal activity which is not attributable to exposure of more oxidase or diminished affinity for cytochrome c. The most profound effect of solubilization of the membrane is seen on the low affinity reaction of cytochrome c, suggesting that the electron transfer pathway from this site to oxygen is sensitive to alterations in hydrophobic interactions within the oxidase. Purified rat liver and beef heart oxidase exists predominantly in a monodisperse, 300 kilodalton form in laurylmaltoside (Rosevear et al., 1980). However, a smaller, 130 kd species that exhibits high turnover rates equal to the 300 kd form is detected in some beef heart preparations, implying that the dimer may not be essential for high activity. Radiation inactivation studies on purified oxidase reveal a molecular weight for the functional unit of approx.70 kd. It is concluded that less than a complete set of subunits may be sufficient for both normal binding of cytochrome c and rapid electron transfer to oxygen.

  16. Membrane-associated proteolytic activity in Escherichia coli that is stimulated by ATP

    SciTech Connect

    Klemes, Y.; Voellmy, R.W.; Goldberg, A.L.

    1986-05-01

    The degradation of proteins in bacteria requires metabolism energy. One important enzyme in this process is protease La, a soluble ATP-dependent protease encoded by the lon gene. However, lon mutants that lack a functional protease La still show some ATP-dependent protein breakdown. The authors have reported an ATP-stimulated endoproteolytic activity associated with the inner membrane of E. coli. This ATP-stimulated activity is found in normal levels in membranes derived from lon mutants, including strains carrying insertions in the lon gene. The membrane-bound activity hydrolyzes /sup 14/C-methylglobin at a linear rate for up to 3 hours. These fractions also contain appreciable proteolytic activity that is not affected by ATP. The stimulation by ATP requires the presence of Mg/sup 2 +/. Nonhydrolyzable ATP analogs (e.g. AMPPNP or ATP-..gamma..-S) and ADP do not enhance proteolysis. Unlike protease La, the membrane-associated enzyme does not degrade the fluorometric substrate, Glt-Ala-Ala-Phe-MNA, in an ATP-stimulated fashion, and its level is not influenced by high temperature of by the gene which regulates the heat-shock response. The enzyme is inhibited by dichloroisocoumarin and certain peptide chloromethyl ketones. They conclude that E. coli contain at least two ATP-dependent proteases with distinct specificities: one is soluble and the other is membrane-associated.

  17. Antifungal property of hibicuslide C and its membrane-active mechanism in Candida albicans.

    PubMed

    Hwang, Ji Hong; Jin, Qinglong; Woo, Eun-Rhan; Lee, Dong Gun

    2013-10-01

    In this study, the antifungal activity and mode of action(s) of hibicuslide C derived from Abutilon theophrasti were investigated. Antifungal susceptibility testing showed that hibicuslide C possessed potent activities toward various fungal strains and less hemolytic activity than amphotericin B. To understand the antifungal mechanism(s) of hibicuslide C in Candida albicans, flow cytometric analysis with propidium iodide was done. The results showed that hibicuslide C perturbed the plasma membrane of the C. albicans. The analysis of the transmembrane electrical potential with 3,3'-dipropylthiacarbocyanine iodide [DiSC3(5)] indicated that hibicuslide C induced membrane depolarization. Furthermore, model membrane studies were performed with calcein encapsulating large unilamellar vesicles (LUVs) and FITC-dextran (FD) loaded LUVs. These results demonstrated that the antifungal effects of hibicuslide C on the fungal plasma membrane were through the formation of pores with radii between 2.3 nm and 3.3 nm. Finally, in three dimensional flow cytometric contour plots, a reduced cell sizes by the pore-forming action of hibicuslide C were observed. Therefore, the present study suggests that hibicuslide C exerts its antifungal effect by membrane-active mechanism.

  18. Na+/H+ Exchange Activity in the Plasma Membrane of Arabidopsis1

    PubMed Central

    Qiu, Quan-Sheng; Barkla, Bronwyn J.; Vera-Estrella, Rosario; Zhu, Jian-Kang; Schumaker, Karen S.

    2003-01-01

    In plants, Na+/H+ exchangers in the plasma membrane are critical for growth in high levels of salt, removing toxic Na+ from the cytoplasm by transport out of the cell. The molecular identity of a plasma membrane Na+/H+ exchanger in Arabidopsis (SOS1) has recently been determined. In this study, immunological analysis provided evidence that SOS1 localizes to the plasma membrane of leaves and roots. To characterize the transport activity of this protein, purified plasma membrane vesicles were isolated from leaves of Arabidopsis. Na+/H+ exchange activity, monitored as the ability of Na to dissipate an established pH gradient, was absent in plants grown without salt. However, exchange activity was induced when plants were grown in 250 mm NaCl and increased with prolonged salt exposure up to 8 d. H+-coupled exchange was specific for Na, because chloride salts of other monovalent cations did not dissipate the pH gradient. Na+/H+ exchange activity was dependent on Na (substrate) concentration, and kinetic analysis indicated that the affinity (apparent Km) of the transporter for Na+ is 22.8 mm. Data from two experimental approaches supports electroneutral exchange (one Na+ exchanged for one proton): (a) no change in membrane potential was measured during the exchange reaction, and (b) Na+/H+ exchange was unaffected by the presence or absence of a membrane potential. Results from this research provide a framework for future studies into the regulation of the plant plasma membrane Na+/H+ exchanger and its relative contribution to the maintenance of cellular Na+ homeostasis during plant growth in salt. PMID:12805632

  19. Importance of Membrane Structural Integrity for RPE65 Retinoid Isomerization Activity

    SciTech Connect

    Golczak, Marcin; Kiser, Philip D.; Lodowski, David T.; Maeda, Akiko; Palczewski, Krzysztof

    2010-04-05

    Regeneration of visual chromophore in the vertebrate visual cycle involves the retinal pigment epithelium-specific protein RPE65, the key enzyme catalyzing the cleavage and isomerization of all-trans-retinyl fatty acid esters to 11-cis-retinol. Although RPE65 has no predicted membrane spanning domains, this protein predominantly associates with microsomal fractions isolated from bovine retinal pigment epithelium (RPE). We have re-examined the nature of RPE65 interactions with native microsomal membranes by using extraction and phase separation experiments. We observe that hydrophobic interactions are the dominant forces that promote RPE65 association with these membranes. These results are consistent with the crystallographic model of RPE65, which features a large lipophilic surface that surrounds the entrance to the catalytic site of this enzyme and likely interacts with the hydrophobic core of the endoplasmic reticulum membrane. Moreover, we report a critical role for phospholipid membranes in preserving the retinoid isomerization activity and physical properties of RPE65. Isomerase activity measured in bovine RPE was highly sensitive to phospholipase A{sup 2} treatment, but the observed decline in 11-cis-retinol production did not directly reflect inhibition by products of lipid hydrolysis. Instead, a direct correlation between the kinetics of phospholipid hydrolysis and retinoid isomerization suggests that the lipid membrane structure is critical for RPE65 enzymatic activity. We also provide evidence that RPE65 operates in a multiprotein complex with retinol dehydrogenase 5 and retinal G protein-coupled receptor in RPE microsomes. Modifications in the phospholipid environment affecting interactions with these protein components may be responsible for the alterations in retinoid metabolism observed in phospholipid-depleted RPE microsomes. Thus, our results indicate that the enzymatic activity of native RPE65 strongly depends on its membrane binding and

  20. Membrane composition influences the activity of in vitro refolded human vitamin K epoxide reductase.

    PubMed

    Jaenecke, Frank; Friedrich-Epler, Beatrice; Parthier, Christoph; Stubbs, Milton T

    2015-10-27

    Human vitamin K epoxide reductase (hVKOR) is an integral membrane protein responsible for the maintenance of reduced vitamin K pools, a prerequisite for the action of γ-glutamyl carboxylase and hence for hemostasis. Here we describe the recombinant expression of hVKOR as an insoluble fusion protein in Escherichia coli, followed by purification and chemical cleavage under denaturing conditions. In vitro renaturation and reconstitution of purified solubilized hVKOR in phospholipids could be established to yield active protein. Crucially, the renatured enzyme is inhibited by the powerful coumarin anticoagulant warfarin, and we demonstrate that enzyme activity depends on lipid composition. The completely synthetic system for protein production allows a rational investigation of the multiple variables in membrane protein folding and paves the way for the provision of pure, active membrane protein for structural studies.

  1. Clustering of T cell ligands on artificial APC membranes influences T cell activation and protein kinase C theta translocation to the T cell plasma membrane.

    PubMed

    Giannoni, Francesca; Barnett, Joellen; Bi, Kun; Samodal, Rodrigo; Lanza, Paola; Marchese, Patrizia; Billetta, Rosario; Vita, Randi; Klein, Mark R; Prakken, Berent; Kwok, William W; Sercarz, Eli; Altman, Amnon; Albani, Salvatore

    2005-03-15

    T cell activation is associated with active clustering of relevant molecules in membrane microdomains defined as the supramolecular activation cluster. The contact area between these regions on the surface of T cells and APC is defined as the immunological synapse. It has been recently shown that preclustering of MHC-peptide complexes in membrane microdomains on the APC surface affects the efficiency of immune synapse formation and the related T cell activation. Disruption of such clusters may reduce the efficiency of stimulation. We describe here an entirely artificial system for Ag-specific, ex vivo stimulation of human polyclonal T cells (artificial APC (aAPC)). aAPC are based on artificial membrane bilayers containing discrete membrane microdomains encompassing T cell ligands (i.e., appropriate MHC-peptide complexes in association with costimulatory molecules). We show here that preclustering of T cell ligands triggered a degree of T cell activation significantly higher than the one achieved when we used either soluble tetramers or aAPC in which MHC-peptide complexes were uniformly distributed within artificial bilayer membranes. This increased efficiency in stimulation was mirrored by increased translocation from the cytoplasm to the membrane of protein kinase theta, a T cell signaling molecule that colocalizes with the TCR within the supramolecular activation cluster, thus indicating efficient engagement of T cell activation pathways. Engineered aAPC may have immediate application for basic and clinical immunology studies pertaining to modulation of T cells ex vivo.

  2. Photosynthetic control of the plasma membrane H+-ATPase in Vallisneria leaves. I. Regulation of activity during light-induced membrane hyperpolarization.

    PubMed

    Harada, Akiko; Okazaki, Yoshiji; Takagi, Shingo

    2002-04-01

    In mesophyll cells of the aquatic angiosperm Vallisneria gigantea Graebner, red, blue, or blue plus far-red light induced a typical membrane hyperpolarization, whereas far-red light alone had little effect. Both N,N'-dicyclohexylcarbodiimide, a potent inhibitor of H+-ATPase, and carbonylcyanide m-chlorophenylhydrazone, an uncoupler, produced a considerable membrane depolarization in the dark-adapted cells and a complete suppression of the light-induced hyperpolarization. Although 3-(3',4'-dichlorophenyl)-1,1-dimethylurea (DCMU), an inhibitor of photosynthetic electron transport, did not affect the membrane potential in darkness, it completely inhibited the light-induced membrane hyperpolarization. In vivo illumination of the leaves with red light caused a substantial decrease in the Km for ATP, not only of the vanadate-sensitive ATP-hydrolyzing activity in leaf homogenate, but also of the ATP-dependent H+-transporting activity in plasma membrane (PM) vesicles isolated from the leaves by aqueous polymer two-phase partitioning methods. The effects of red light were negated by the presence of DCMU during illumination. In vivo illumination with far-red light had no effect on the Km for ATP of H+-transporting activity. These results strongly suggest that an electrogenic component in the membrane potential of the mesophyll cell is generated by the PM H+-ATPase, and that photosynthesis-dependent modulation of the enzymatic activity of the PM H+-ATPase is involved in the light-induced membrane hyperpolarization. PMID:11941462

  3. Membrane-active Compounds Activate the Transcription Factors Pdr1 and Pdr3 Connecting Pleiotropic Drug Resistance and Membrane Lipid Homeostasis in Saccharomyces cerevisiae

    PubMed Central

    Schüller, Christoph; Mamnun, Yasmine M.; Wolfger, Hubert; Rockwell, Nathan; Thorner, Jeremy

    2007-01-01

    The Saccharomyces cerevisiae zinc cluster transcription factors Pdr1 and Pdr3 mediate general drug resistance to many cytotoxic substances also known as pleiotropic drug resistance (PDR). The regulatory mechanisms that activate Pdr1 and Pdr3 in response to the various xenobiotics are poorly understood. In this study, we report that exposure of yeast cells to 2,4-dichlorophenol (DCP), benzyl alcohol, nonionic detergents, and lysophospholipids causes rapid activation of Pdr1 and Pdr3. Furthermore, Pdr1/Pdr3 target genes encoding the ATP-binding cassette proteins Pdr5 and Pdr15 confer resistance against these compounds. Genome-wide transcript analysis of wild-type and pdr1Δ pdr3Δ cells treated with DCP reveals most prominently the activation of the PDR response but also other stress response pathways. Polyoxyethylene-9-laurylether treatment produced a similar profile with regard to activation of Pdr1 and Pdr3, suggesting activation of these by detergents. The Pdr1/Pdr3 response element is sufficient to confer regulation to a reporter gene by these substances in a Pdr1/Pdr3-dependent manner. Our data indicate that compounds with potential membrane-damaging or -perturbing effects might function as an activating signal for Pdr1 and Pdr3, and they suggest a role for their target genes in membrane lipid organization or remodeling. PMID:17881724

  4. Sirtuin Activation: A Role for Plasma Membrane in the Cell Growth Puzzle

    PubMed Central

    2013-01-01

    For more than 20 years, the observation that impermeable oxidants can stimulate cell growth has not been satisfactorily explained. The discovery of sirtuins provides a logical answer to the puzzle. The NADH-dependent transplasma membrane electron transport system, which is stimulated by growth factors and interventions such as calorie restriction, can transfer electrons to external acceptors and protect against stress-induced apoptosis. We hypothesize that the activation of plasma membrane electron transport contributes to the cytosolic NAD+ pool required for sirtuin to activate transcription factors necessary for cell growth and survival. PMID:23033342

  5. Development of Endoplasmic Reticulum and Glyoxysomal Membrane Redox Activities during Castor Bean Germination 1

    PubMed Central

    Alani, Ali A.; Luster, Douglas G.; Donaldson, Robert P.

    1990-01-01

    Redox activities, NADH:ferricyanide reductase, NAD(P)H:cytochrome reductases, and NADH:ascorbate free-radical reductase, are present in endoplasmic reticulum (ER) and glyoxysomal membranes from the endosperm of germinating castor bean (Ricinus comminus L. var Hale). The development of these functions was followed in glyoxysomes and ER isolated on sucrose gradients from castor bean endosperm daily from 0 through 6 days of germination. On a per seed basis, glyoxysomal and ER protein, glyoxysomal and ER membrane redox enzyme activities, and glyoxylate cycle activities peaked at day 4 as did the ER membrane content of cytochrome P-450. NADH:ferricyanide reductase was present in glyoxysomes and ER isolated from dry seed. This activity increased only about twofold in glyoxysomes and threefold in ER during germination relative to the amount of protein in the respective fractions. The other reductases, NADH:cytochrome reductase and NADH:ascorbate free-radical reductase, increased about 10-fold in the ER relative to protein up to 4 to 5 days, then declined. NADPH:cytochrome reductase reached maximum activity relative to protein at day 2 in both organelles. The increases in redox activities during germination indicate that the membranes of the ER and glyoxysome are being enriched with redox proteins during their development. The development of redox functions in glyoxysomes was found to be coordinated with development of the glyoxylate cycle. Images Figure 6 PMID:16667925

  6. Selective regulation of maize plasma membrane aquaporin trafficking and activity by the SNARE SYP121.

    PubMed

    Besserer, Arnaud; Burnotte, Emeline; Bienert, Gerd Patrick; Chevalier, Adrien S; Errachid, Abdelmounaim; Grefen, Christopher; Blatt, Michael R; Chaumont, François

    2012-08-01

    Plasma membrane intrinsic proteins (PIPs) are aquaporins facilitating the diffusion of water through the cell membrane. We previously showed that the traffic of the maize (Zea mays) PIP2;5 to the plasma membrane is dependent on the endoplasmic reticulum diacidic export motif. Here, we report that the post-Golgi traffic and water channel activity of PIP2;5 are regulated by the SNARE (for soluble N-ethylmaleimide-sensitive factor protein attachment protein receptor) SYP121, a plasma membrane resident syntaxin involved in vesicle traffic, signaling, and regulation of K(+) channels. We demonstrate that the expression of the dominant-negative SYP121-Sp2 fragment in maize mesophyll protoplasts or epidermal cells leads to a decrease in the delivery of PIP2;5 to the plasma membrane. Protoplast and oocyte swelling assays showed that PIP2;5 water channel activity is negatively affected by SYP121-Sp2. A combination of in vitro (copurification assays) and in vivo (bimolecular fluorescence complementation, Förster resonance energy transfer, and yeast split-ubiquitin) approaches allowed us to demonstrate that SYP121 and PIP2;5 physically interact. Together with previous data demonstrating the role of SYP121 in regulating K(+) channel trafficking and activity, these results suggest that SYP121 SNARE contributes to the regulation of the cell osmotic homeostasis.

  7. Selective Regulation of Maize Plasma Membrane Aquaporin Trafficking and Activity by the SNARE SYP121[W

    PubMed Central

    Besserer, Arnaud; Burnotte, Emeline; Bienert, Gerd Patrick; Chevalier, Adrien S.; Errachid, Abdelmounaim; Grefen, Christopher; Blatt, Michael R.; Chaumont, François

    2012-01-01

    Plasma membrane intrinsic proteins (PIPs) are aquaporins facilitating the diffusion of water through the cell membrane. We previously showed that the traffic of the maize (Zea mays) PIP2;5 to the plasma membrane is dependent on the endoplasmic reticulum diacidic export motif. Here, we report that the post-Golgi traffic and water channel activity of PIP2;5 are regulated by the SNARE (for soluble N-ethylmaleimide-sensitive factor protein attachment protein receptor) SYP121, a plasma membrane resident syntaxin involved in vesicle traffic, signaling, and regulation of K+ channels. We demonstrate that the expression of the dominant-negative SYP121-Sp2 fragment in maize mesophyll protoplasts or epidermal cells leads to a decrease in the delivery of PIP2;5 to the plasma membrane. Protoplast and oocyte swelling assays showed that PIP2;5 water channel activity is negatively affected by SYP121-Sp2. A combination of in vitro (copurification assays) and in vivo (bimolecular fluorescence complementation, Förster resonance energy transfer, and yeast split-ubiquitin) approaches allowed us to demonstrate that SYP121 and PIP2;5 physically interact. Together with previous data demonstrating the role of SYP121 in regulating K+ channel trafficking and activity, these results suggest that SYP121 SNARE contributes to the regulation of the cell osmotic homeostasis. PMID:22942383

  8. Membrane-displayed peptide ligand activates the pheromone response pathway in Saccharomyces cerevisiae.

    PubMed

    Hara, Keisuke; Ono, Takuya; Kuroda, Kouichi; Ueda, Mitsuyoshi

    2012-05-01

    The budding yeast, Saccharomyces cerevisiae, is an attractive host for studying G protein-coupled receptors (GPCRs). We developed a system in which a peptide ligand specific for GPCR is displayed on yeast plasma membrane. The model system described here is based on yeast plasma membrane display of an analogue of α-factor, which is a peptide ligand for Ste2p, the GPCR that activates the yeast pheromone response pathway. α-Factor analogues, containing linkers of varying lengths and produced in yeast cells, became attached to the cell plasma membrane by linking to the glycosylphosphatidylinositol (GPI)-anchored plasma membrane protein Yps1p. We were able to demonstrate that an optimized α-factor analogue activated the pheromone response pathway in S. cerevisiae, as assessed by a fluorescent reporter assay. Furthermore, it was shown that linker length strongly influenced signalling pathway activation. To our knowledge, this is the first report documenting functional signalling by a plasma membrane-displayed ligand in S. cerevisiae.

  9. Membrane-Active Macromolecules Resensitize NDM-1 Gram-Negative Clinical Isolates to Tetracycline Antibiotics

    PubMed Central

    Uppu, Divakara S. S. M.; Manjunath, Goutham B.; Yarlagadda, Venkateswarlu; Kaviyil, Jyothi E.; Ravikumar, Raju; Paramanandham, Krishnamoorthy; Shome, Bibek R.; Haldar, Jayanta

    2015-01-01

    Gram-negative ‘superbugs’ such as New Delhi metallo-beta-lactamase-1 (blaNDM-1) producing pathogens have become world’s major public health threats. Development of molecular strategies that can rehabilitate the ‘old antibiotics’ and halt the antibiotic resistance is a promising approach to target them. We report membrane-active macromolecules (MAMs) that restore the antibacterial efficacy (enhancement by >80-1250 fold) of tetracycline antibiotics towards blaNDM-1 Klebsiella pneumonia and blaNDM-1 Escherichia coli clinical isolates. Organismic studies showed that bacteria had an increased and faster uptake of tetracycline in the presence of MAMs which is attributed to the mechanism of re-sensitization. Moreover, bacteria did not develop resistance to MAMs and MAMs stalled the development of bacterial resistance to tetracycline. MAMs displayed membrane-active properties such as dissipation of membrane potential and membrane-permeabilization that enabled higher uptake of tetracycline in bacteria. In-vivo toxicity studies displayed good safety profiles and preliminary in-vivo antibacterial efficacy studies showed that mice treated with MAMs in combination with antibiotics had significantly decreased bacterial burden compared to the untreated mice. This report of re-instating the efficacy of the antibiotics towards blaNDM-1 pathogens using membrane-active molecules advocates their potential for synergistic co-delivery of antibiotics to combat Gram-negative superbugs. PMID:25789871

  10. Selective regulation of maize plasma membrane aquaporin trafficking and activity by the SNARE SYP121.

    PubMed

    Besserer, Arnaud; Burnotte, Emeline; Bienert, Gerd Patrick; Chevalier, Adrien S; Errachid, Abdelmounaim; Grefen, Christopher; Blatt, Michael R; Chaumont, François

    2012-08-01

    Plasma membrane intrinsic proteins (PIPs) are aquaporins facilitating the diffusion of water through the cell membrane. We previously showed that the traffic of the maize (Zea mays) PIP2;5 to the plasma membrane is dependent on the endoplasmic reticulum diacidic export motif. Here, we report that the post-Golgi traffic and water channel activity of PIP2;5 are regulated by the SNARE (for soluble N-ethylmaleimide-sensitive factor protein attachment protein receptor) SYP121, a plasma membrane resident syntaxin involved in vesicle traffic, signaling, and regulation of K(+) channels. We demonstrate that the expression of the dominant-negative SYP121-Sp2 fragment in maize mesophyll protoplasts or epidermal cells leads to a decrease in the delivery of PIP2;5 to the plasma membrane. Protoplast and oocyte swelling assays showed that PIP2;5 water channel activity is negatively affected by SYP121-Sp2. A combination of in vitro (copurification assays) and in vivo (bimolecular fluorescence complementation, Förster resonance energy transfer, and yeast split-ubiquitin) approaches allowed us to demonstrate that SYP121 and PIP2;5 physically interact. Together with previous data demonstrating the role of SYP121 in regulating K(+) channel trafficking and activity, these results suggest that SYP121 SNARE contributes to the regulation of the cell osmotic homeostasis. PMID:22942383

  11. Ionophore-Based Voltammetric Ion Activity Sensing with Thin Layer Membranes.

    PubMed

    Cuartero, Maria; Crespo, Gaston A; Bakker, Eric

    2016-02-01

    As shown in recent work, thin layer ion-selective multi-ionophore membranes can be interrogated by cyclic voltammetry to detect the ion activity of multiple species simultaneously and selectively. Additional fundamental evidence is put forward on ion discrimination with thin multi-ionophore-based membranes with thicknesses of 200 ± 25 nm and backside contacted with poly-3-octylthiophene (POT). An anodic potential scan partially oxidizes the POT film (to POT(+)), thereby initiating the release of hydrophilic cations from the membrane phase to the sample solution at a characteristic potential. Varying concentration of added cation-exchanger demonstrates that it limits the ion transfer charge and not the deposited POT film. Voltammograms with multiple peaks are observed with each associated with the transfer of one type of ion (lithium, potassium, and sodium). Experimental conditions (thickness and composition of the membrane and concentration of the sample) are chosen that allow one to describe the system by a thermodynamic rather than kinetic model. As a consequence, apparent stability constants for sodium, potassium, and lithium (assuming 1:1 stoichiometry) with their respective ionophores are calculated and agree well with the values obtained by the potentiometric sandwich membrane technique. As an analytical application, a membrane containing three ionophores was used to determine lithium, sodium, and potassium in artificial samples at the same location and within a single voltammetric scan. Lithium and potassium were also determined in undiluted human plasma in the therapeutic concentration range. PMID:26712342

  12. Energy transfer in light-adapted photosynthetic membranes: from active to saturated photosynthesis.

    PubMed

    Fassioli, Francesca; Olaya-Castro, Alexandra; Scheuring, Simon; Sturgis, James N; Johnson, Neil F

    2009-11-01

    In bacterial photosynthesis light-harvesting complexes, LH2 and LH1 absorb sunlight energy and deliver it to reaction centers (RCs) with extraordinarily high efficiency. Submolecular resolution images have revealed that both the LH2:LH1 ratio, and the architecture of the photosynthetic membrane itself, adapt to light intensity. We investigate the functional implications of structural adaptations in the energy transfer performance in natural in vivo low- and high-light-adapted membrane architectures of Rhodospirillum photometricum. A model is presented to describe excitation migration across the full range of light intensities that cover states from active photosynthesis, where all RCs are available for charge separation, to saturated photosynthesis where all RCs are unavailable. Our study outlines three key findings. First, there is a critical light-energy density, below which the low-light adapted membrane is more efficient at absorbing photons and generating a charge separation at RCs, than the high-light-adapted membrane. Second, connectivity of core complexes is similar in both membranes, suggesting that, despite different growth conditions, a preferred transfer pathway is through core-core contacts. Third, there may be minimal subareas on the membrane which, containing the same LH2:LH1 ratio, behave as minimal functional units as far as excitation transfer efficiency is concerned.

  13. Antibiofilm activity of Bacillus pumilus SW9 against initial biofouling on microfiltration membranes.

    PubMed

    Zhang, Ying; Yu, Xin; Gong, Song; Ye, Chengsong; Fan, Zihong; Lin, Huirong

    2014-02-01

    Membrane biofouling, resulting from biofilm formation on the membrane, has become the main obstacle hindering wider application of membrane technology. Initial biofouling proves to be crucial which involves early stages of microbial adhesion and biofilm formation. Biological control of microbial attachment seems to be a promising strategy due to its high efficiency and eco-friendliness. The present study investigated the effects of a bacterium Bacillus pumilus SW9 on controlling the initial fouling formed by four target bacterial strains which were pioneer species responsible for biofouling in membrane bioreactors, using microfiltration membranes as the abiotic surfaces. The results suggested that strain SW9 exhibited excellent antibiofilm activity by decreasing the attached biomass of target strains. The production of extracellular polysaccharides and proteins by four target strains was also reduced. A distinct improvement of permeate flux in dead-end filtration systems was achieved when introducing strain SW9 to microfiltration experiments. Scanning electron microscopy and confocal laser scanning microscopy were performed to further ascertain significant changes of the biofouling layers. A link between biofilm inhibition and initial biofouling mitigation was thus provided, suggesting an alternatively potential way to control membrane biofouling through bacterial interactions.

  14. Antioxidant activities of bambara groundnut (Vigna subterranea) protein hydrolysates and their membrane ultrafiltration fractions.

    PubMed

    Arise, Abimbola K; Alashi, Adeola M; Nwachukwu, Ifeanyi D; Ijabadeniyi, Oluwatosin A; Aluko, Rotimi E; Amonsou, Eric O

    2016-05-18

    In this study, the bambara protein isolate (BPI) was digested with three proteases (alcalase, trypsin and pepsin), to produce bambara protein hydrolysates (BPHs). These hydrolysates were passed through ultrafiltration membranes to obtain peptide fractions of different sizes (<1, 1-3, 3-5 and 5-10 kDa). The hydrolysates and their peptide fractions were investigated for antioxidant activities. The membrane fractions showed that peptides with sizes <3 kDa had significantly (p < 0.05) reduced surface hydrophobicity when compared with peptides >3 kDa. This is in agreement with the result obtained for the ferric reducing power, metal chelating and hydroxyl radical scavenging activities where higher molecular weight peptides exhibited better activity (p < 0.05) when compared to low molecular weight peptide fractions. However, for all the hydrolysates, the low molecular weight peptides were more effective diphenyl-1-picrylhydrazyl (DPPH) radical scavengers but not superoxide radicals when compared to the bigger peptides. In comparison with glutathione (GSH), BPHs and their membrane fractions had better (p < 0.05) reducing power and ability to chelate metal ions except for the pepsin hydrolysate and its membrane fractions that did not show any metal chelating activity. However, the 5-10 kDa pepsin hydrolysate peptide fractions had greater (88%) hydroxyl scavenging activity than GSH, alcalase and trypsin hydrolysates (82%). These findings show the potential use of BPHs and their peptide fraction as antioxidants in reducing food spoilage or management of oxidative stress-related metabolic disorders. PMID:27156453

  15. Modulation of plasma membrane H+-ATPase activity differentially activates wound and pathogen defense responses in tomato plants.

    PubMed Central

    Schaller, A; Oecking, C

    1999-01-01

    Systemin is an important mediator of wound-induced defense gene activation in tomato plants, and it elicits a rapid alkalinization of the growth medium of cultured Lycopersicon peruvianum cells. A possible mechanistic link between proton fluxes across the plasma membrane and the induction of defense genes was investigated by modulating plasma membrane H+-ATPase activity. Inhibitors of H+-ATPase (erythrosin B, diethyl stilbestrol, and vanadate) were found to alkalinize the growth medium of L. peruvianum cell cultures and to induce wound response genes in whole tomato plants. Conversely, an activator of the H+-ATPase (fusicoccin) acidified the growth medium of L. peruvianum cell cultures and suppressed systemin-induced medium alkalinization. Likewise, in fusicoccin-treated tomato plants, the wound- and systemin-triggered accumulation of wound-responsive mRNAs was found to be suppressed. However, fusicoccin treatment of tomato plants led to the accumulation of salicylic acid and the expression of pathogenesis-related genes. Apparently, the wound and pathogen defense signaling pathways are differentially regulated by changes in the proton electrochemical gradient across the plasma membrane. In addition, alkalinization of the L. peruvianum cell culture medium was found to depend on the influx of Ca2+ and the activity of a protein kinase. Reversible protein phosphorylation was also shown to be involved in the induction of wound response genes. The plasma membrane H+-ATPase as a possible target of a Ca2+-activated protein kinase and its role in defense signaling are discussed. PMID:9927643

  16. Photodynamic activity and binding of sulfonated metallophthalocyanines to phospholipid membranes: contribution of metal-phosphate coordination.

    PubMed

    Pashkovskaya, Alina A; Sokolenko, Elena A; Sokolov, Valeri S; Kotova, Elena A; Antonenko, Yuri N

    2007-10-01

    Photosensitized efficacy of tetrasulfonated phthalocyanines of zinc, aluminum and nickel (ZnPcS(4), AlPcS(4) and NiPcS(4), respectively) as studied by gramicidin channel (gA) photoinactivation was compared with adsorption of the dyes on the surface of a bilayer lipid membrane as measured by the inner field compensation method. The adsorption of the negatively charged phthalocyanines on diphytanoylphosphatidylcholine (DPhPC) membranes led to formation of a negative boundary potential difference between the membrane/water interfaces. Good correlation was shown between the photodynamic activity and the membrane binding of the three metallophthalocyanines. ZnPcS(4) appeared to be the most potent of these photosensitizers, while NiPcS(4) was completely ineffective. All of these phthalocyanines displayed no binding and negligible gA photoinactivation with membranes formed of glycerol monooleate (GMO), whereas Rose Bengal exhibited significant binding and photodynamic efficacy with GMO membranes. Gramicidin photoinactivation in the presence of AlPcS(4), being insensitive to the ionic strength of the bathing solution, was inhibited by fluoride and attenuated by phosphate ions. A blue shift of the fluorescence peak position of ZnPcS(4) dissolved in ethanol was elicited by phosphate, similarly to fluoride, which was indicative of the coordination interaction of these ions with the central metal atom of the phthalocyanine macrocycle. This interaction was enhanced in the medium modeling the water-membrane interface. The results obtained imply that binding of tetrasulfonated metallophthalocyanines to phospholipid membranes is determined primarily by metal-phosphate coordination.

  17. Rotenone Activates Phagocyte NADPH Oxidase through Binding to Its Membrane Subunit gp91phox

    PubMed Central

    Zhou, Hui; Zhang, Feng; Chen, Shih-heng; Zhang, Dan; Wilson, Belinda; Hong, Jau-shyong; Gao, Hui-Ming

    2011-01-01

    Rotenone, a widely used pesticide, reproduces Parkinsonism in rodents and associates with increased risk for Parkinson’s disease. We previously reported rotenone increased superoxide production through stimulating microglial phagocyte NADPH oxidase (PHOX). The present study identified a novel mechanism by which rotenone activates PHOX. Ligand-binding assay revealed that rotenone directly bound to membrane gp91phox, the catalytic subunit of PHOX; such binding was inhibited by diphenyleneiodonium, a PHOX inhibitor with a binding site on gp91phox. Functional studies showed both membrane and cytosolic subunits were required for rotenone-induced superoxide production in cell-free systems, intact phagocytes, and COS7 cells transfected with membrane subunits (gp91phox/p22phox) and cytosolic subunits (p67phox and p47phox). Rotenone-elicited extracellular superoxide release in p47phox-deficient macrophages suggested rotenone enabled to activate PHOX through a p47phox-independent mechanism. Increased membrane translocation of p67phox, elevated binding of p67phox to rotenone-treated membrane fractions, and co-immunoprecipitation of p67phox and gp91phox in rotenone-treated wild-type and p47phox-deficient macrophages indicated p67phox played a critical role in rotenone-induced PHOX activation via its direct interaction with gp91phox. Rac1, a Rho-like small GTPase, enhanced p67phox-gp91phox interaction; Rac1 inhibition decreased rotenone-elicited superoxide release. In conclusion, rotenone directly interacted with gp91phox; such an interaction triggered membrane translocation of p67phox, leading to PHOX activation and superoxide production. PMID:22094225

  18. Active Trans-Plasma Membrane Water Cycling in Yeast Is Revealed by NMR

    PubMed Central

    Zhang, Yajie; Poirier-Quinot, Marie; Springer, Charles S.; Balschi, James A.

    2011-01-01

    Plasma membrane water transport is a crucial cellular phenomenon. Net water movement in response to an osmotic gradient changes cell volume. Steady-state exchange of water molecules, with no net flux or volume change, occurs by passive diffusion through the phospholipid bilayer and passage through membrane proteins. The hypothesis is tested that plasma membrane water exchange also correlates with ATP-driven membrane transport activity in yeast (Saccharomyces cerevisiae). Longitudinal 1H2O NMR relaxation time constant (T1) values were measured in yeast suspensions containing extracellular relaxation reagent. Two-site-exchange analysis quantified the reversible exchange kinetics as the mean intracellular water lifetime (τi), where τi−1 is the pseudo-first-order rate constant for water efflux. To modulate cellular ATP, yeast suspensions were bubbled with 95%O2/5%CO2 (O2) or 95%N2/5%CO2 (N2). ATP was high during O2, and τi−1 was 3.1 s−1 at 25°C. After changing to N2, ATP decreased and τi−1 was 1.8 s−1. The principal active yeast ion transport protein is the plasma membrane H+-ATPase. Studies using the H+-ATPase inhibitor ebselen or a yeast genetic strain with reduced H+-ATPase found reduced τi−1, notwithstanding high ATP. Steady-state water exchange correlates with H+-ATPase activity. At volume steady state, water is cycling across the plasma membrane in response to metabolic transport activity. PMID:22261073

  19. Trans-activity of Plasma Membrane-associated Ganglioside Sialyltransferase in Mammalian Cells*

    PubMed Central

    Vilcaes, Aldo A.; Demichelis, Vanina Torres; Daniotti, Jose L.

    2011-01-01

    Gangliosides are acidic glycosphingolipids that contain sialic acid residues and are expressed in nearly all vertebrate cells. They are synthesized at the Golgi complex by a combination of glycosyltransferase activities followed by vesicular delivery to the plasma membrane, where they participate in a variety of physiological as well as pathological processes. Recently, a number of enzymes of ganglioside anabolism and catabolism have been shown to be associated with the plasma membrane. In particular, it was observed that CMP-NeuAc:GM3 sialyltransferase (Sial-T2) is able to sialylate GM3 at the plasma membrane (cis-catalytic activity). In this work, we demonstrated that plasma membrane-integrated ecto-Sial-T2 also displays a trans-catalytic activity at the cell surface of epithelial and melanoma cells. By using a highly sensitive enzyme-linked immunosorbent assay combined with confocal fluorescence microscopy, we observed that ecto-Sial-T2 was able to sialylate hydrophobically or covalently immobilized GM3 onto a solid surface. More interestingly, we observed that ecto-Sial-T2 was able to sialylate GM3 exposed on the membrane of neighboring cells by using both the exogenous and endogenous donor substrate (CMP-N-acetylneuraminic acid) available at the extracellular milieu. In addition, the trans-activity of ecto-Sial-T2 was considerably reduced when the expression of the acceptor substrate was inhibited by using a specific inhibitor of biosynthesis of glycolipids, indicating the lipidic nature of the acceptor. Our findings provide the first direct evidence that an ecto-sialyltransferase is able to trans-sialylate substrates exposed in the plasma membrane from mammalian cells, which represents a novel insight into the molecular events that regulate the local glycosphingolipid composition. PMID:21768099

  20. Transportation and Accumulation of Redox Active Species at the Buried Interfaces of Plasticized Membrane Electrodes.

    PubMed

    Sohail, Manzar; De Marco, Roland; Jarolímová, Zdeňka; Pawlak, Marcin; Bakker, Eric; He, Ning; Latonen, Rose-Marie; Lindfors, Tom; Bobacka, Johan

    2015-09-29

    The transportation and accumulation of redox active species at the buried interface between glassy carbon electrodes and plasticized polymeric membranes have been studied using synchrotron radiation X-ray photoelectron spectroscopy (SR-XPS), near edge X-ray absorption fine structure (NEXAFS), in situ electrochemical Fourier transform infrared-attenuated total reflectance (FTIR-ATR) spectroscopy, cyclic voltammetry (CV), chronoamperometry (CA), and electrochemical impedance spectroscopy (EIS). Ferrocene tagged poly(vinyl chloride) [FcPVC], ferrocene (Fc), and its derivatives together with tetracyanoquinodimethane (TCNQ) doped plasticized polymeric membrane electrodes have been investigated, so as to extend the study of the mechanism of this reaction chemistry to different time scales (both small and large molecules with variable diffusion coefficients) using a range of complementary electrochemical and surface analysis techniques. This study also provides direct spectroscopic evidence for the transportation and electrochemical reactivity of redox active species, regardless of the size of the electrochemically reactive molecule, at the buried interface of the substrate electrode. With all redox dopants, when CA electrolysis was performed, redox active species were undetectable (<1 wt % of signature elements or below the detection limit of SR-XPS and NEXAFS) in the outermost surface layers of the membrane, while a high concentration of redox species was located at the electrode substrate as a consequence of the deposition of the reaction product (Fc(+)-anion complex) at the buried interface between the electrode and the membrane. This reaction chemistry for redox active species within plasticized polymeric membranes may be useful in the fashioning of multilayered polymeric devices (e.g., chemical sensors, organic electronic devices, protective laminates, etc.) based on an electrochemical tunable deposition of redox molecules at the buried substrate electrode beneath

  1. Allosteric activation of membrane-bound glutamate receptors using coordination chemistry within living cells

    NASA Astrophysics Data System (ADS)

    Kiyonaka, Shigeki; Kubota, Ryou; Michibata, Yukiko; Sakakura, Masayoshi; Takahashi, Hideo; Numata, Tomohiro; Inoue, Ryuji; Yuzaki, Michisuke; Hamachi, Itaru

    2016-10-01

    The controlled activation of proteins in living cells is an important goal in protein-design research, but to introduce an artificial activation switch into membrane proteins through rational design is a significant challenge because of the structural and functional complexity of such proteins. Here we report the allosteric activation of two types of membrane-bound neurotransmitter receptors, the ion-channel type and the G-protein-coupled glutamate receptors, using coordination chemistry in living cells. The high programmability of coordination chemistry enabled two His mutations, which act as an artificial allosteric site, to be semirationally incorporated in the vicinity of the ligand-binding pockets. Binding of Pd(2,2‧-bipyridine) at the allosteric site enabled the active conformations of the glutamate receptors to be stabilized. Using this approach, we were able to activate selectively a mutant glutamate receptor in live neurons, which initiated a subsequent signal-transduction pathway.

  2. Allosteric activation of membrane-bound glutamate receptors using coordination chemistry within living cells.

    PubMed

    Kiyonaka, Shigeki; Kubota, Ryou; Michibata, Yukiko; Sakakura, Masayoshi; Takahashi, Hideo; Numata, Tomohiro; Inoue, Ryuji; Yuzaki, Michisuke; Hamachi, Itaru

    2016-10-01

    The controlled activation of proteins in living cells is an important goal in protein-design research, but to introduce an artificial activation switch into membrane proteins through rational design is a significant challenge because of the structural and functional complexity of such proteins. Here we report the allosteric activation of two types of membrane-bound neurotransmitter receptors, the ion-channel type and the G-protein-coupled glutamate receptors, using coordination chemistry in living cells. The high programmability of coordination chemistry enabled two His mutations, which act as an artificial allosteric site, to be semirationally incorporated in the vicinity of the ligand-binding pockets. Binding of Pd(2,2'-bipyridine) at the allosteric site enabled the active conformations of the glutamate receptors to be stabilized. Using this approach, we were able to activate selectively a mutant glutamate receptor in live neurons, which initiated a subsequent signal-transduction pathway. PMID:27657873

  3. tBid Undergoes Multiple Conformational Changes at the Membrane Required for Bax Activation*

    PubMed Central

    Shamas-Din, Aisha; Bindner, Scott; Zhu, Weijia; Zaltsman, Yehudit; Campbell, Clinton; Gross, Atan; Leber, Brian; Andrews, David W.; Fradin, Cécile

    2013-01-01

    Bid is a Bcl-2 family protein that promotes apoptosis by activating Bax and eliciting mitochondrial outer membrane permeabilization (MOMP). Full-length Bid is cleaved in response to apoptotic stimuli into two fragments, p7 and tBid (p15), that are held together by strong hydrophobic interactions until the complex binds to membranes. The detailed mechanism(s) of fragment separation including tBid binding to membranes and release of the p7 fragment to the cytoplasm remain unclear. Using liposomes or isolated mitochondria with fluorescently labeled proteins at physiological concentrations as in vitro models, we report that the two components of the complex quickly separate upon interaction with a membrane. Once tBid binds to the membrane, it undergoes slow structural rearrangements that result in an equilibrium between two major tBid conformations on the membrane. The conformational change of tBid is a prerequisite for interaction with Bax and is, therefore, a novel step that can be modulated to promote or inhibit MOMP. Using automated high-throughput image analysis in cells, we show that down-regulation of Mtch2 causes a significant delay between tBid and Bax relocalization in cells. We propose that by promoting insertion of tBid via a conformational change at the mitochondrial outer membrane, Mtch2 accelerates tBid-mediated Bax activation and MOMP. Thus the interaction of Mtch2 and tBid is a potential target for therapeutic control of Bid initiated cell death. PMID:23744079

  4. Cholesterol-Enriched Domain Formation Induced by Viral-Encoded, Membrane-Active Amphipathic Peptide.

    PubMed

    Hanson, Joshua M; Gettel, Douglas L; Tabaei, Seyed R; Jackman, Joshua; Kim, Min Chul; Sasaki, Darryl Y; Groves, Jay T; Liedberg, Bo; Cho, Nam-Joon; Parikh, Atul N

    2016-01-01

    The α-helical (AH) domain of the hepatitis C virus nonstructural protein NS5A, anchored at the cytoplasmic leaflet of the endoplasmic reticulum, plays a role in viral replication. However, the peptides derived from this domain also exhibit remarkably broad-spectrum virocidal activity, raising questions about their modes of membrane association. Here, using giant lipid vesicles, we show that the AH peptide discriminates between membrane compositions. In cholesterol-containing membranes, peptide binding induces microdomain formation. By contrast, cholesterol-depleted membranes undergo global softening at elevated peptide concentrations. Furthermore, in mixed populations, the presence of ∼100 nm vesicles of viral dimensions suppresses these peptide-induced perturbations in giant unilamellar vesicles, suggesting size-dependent membrane association. These synergistic composition- and size-dependent interactions explain, in part, how the AH domain might on the one hand segregate molecules needed for viral assembly and on the other hand furnish peptides that exhibit broad-spectrum virocidal activity.

  5. Lipid raft-dependent plasma membrane repair interferes with the activation of B lymphocytes.

    PubMed

    Miller, Heather; Castro-Gomes, Thiago; Corrotte, Matthias; Tam, Christina; Maugel, Timothy K; Andrews, Norma W; Song, Wenxia

    2015-12-21

    Cells rapidly repair plasma membrane (PM) damage by a process requiring Ca(2+)-dependent lysosome exocytosis. Acid sphingomyelinase (ASM) released from lysosomes induces endocytosis of injured membrane through caveolae, membrane invaginations from lipid rafts. How B lymphocytes, lacking any known form of caveolin, repair membrane injury is unknown. Here we show that B lymphocytes repair PM wounds in a Ca(2+)-dependent manner. Wounding induces lysosome exocytosis and endocytosis of dextran and the raft-binding cholera toxin subunit B (CTB). Resealing is reduced by ASM inhibitors and ASM deficiency and enhanced or restored by extracellular exposure to sphingomyelinase. B cell activation via B cell receptors (BCRs), a process requiring lipid rafts, interferes with PM repair. Conversely, wounding inhibits BCR signaling and internalization by disrupting BCR-lipid raft coclustering and by inducing the endocytosis of raft-bound CTB separately from BCR into tubular invaginations. Thus, PM repair and B cell activation interfere with one another because of competition for lipid rafts, revealing how frequent membrane injury and repair can impair B lymphocyte-mediated immune responses.

  6. Effect of short-chain primary alcohols on fluidity and activity of sarcoplasmic reticulum membranes.

    PubMed

    Almeida, L M; Vaz, W L; Stümpel, J; Madeira, V M

    1986-08-26

    Intramolecular excimer formation with the fluorescent probe 1,3-di(1-pyrenyl)propane, differential scanning calorimetry, and X-ray diffraction were used to assess the effect of ethanol, 1-butanol, and 1-hexanol on the bilayer organization in model membranes, sarcoplasmic reticulum (SR) lipids and native SR membranes. These alcohols have fluidizing effects on membranes and lower the main transition temperature of dimyristoylphosphatidylcholine (DMPC), but only 1-hexanol alters the cooperativity of the phase transition and significantly increases the thickness of DMPC bilayers. The interaction of the three alcohols with the SR Ca2+ pump was also investigated. Hydrolysis of ATP and coupled Ca2+ uptake are differently sensitive to the three alcohols. Whereas ethanol and 1-butanol inhibited the Ca2+ uptake, 1-hexanol stimulated it. Nevertheless, the energetic efficiency of the pump (Ca2+/ATP) is not significantly affected by ethanol or 1-hexanol, but uncoupling was observed with 1-butanol at high concentrations. The different effects of alcohols on the activity of SR membranes rule out an unitary mechanism of action on the basis of fluidity changes induced in the lipid bilayer. Depending on the chain length, the alcohols interact with the SR membranes in different domains, perturbing differently the Ca2+-pump activity.

  7. Active Curved Polymers Form Vortex Patterns on Membranes

    NASA Astrophysics Data System (ADS)

    Denk, Jonas; Huber, Lorenz; Reithmann, Emanuel; Frey, Erwin

    2016-04-01

    Recent in vitro experiments with FtsZ polymers show self-organization into different dynamic patterns, including structures reminiscent of the bacterial Z ring. We model FtsZ polymers as active particles moving along chiral, circular paths by Brownian dynamics simulations and a Boltzmann approach. Our two conceptually different methods point to a generic phase behavior. At intermediate particle densities, we find self-organization into vortex structures including closed rings. Moreover, we show that the dynamics at the onset of pattern formation is described by a generalized complex Ginzburg-Landau equation.

  8. Active Curved Polymers Form Vortex Patterns on Membranes.

    PubMed

    Denk, Jonas; Huber, Lorenz; Reithmann, Emanuel; Frey, Erwin

    2016-04-29

    Recent in vitro experiments with FtsZ polymers show self-organization into different dynamic patterns, including structures reminiscent of the bacterial Z ring. We model FtsZ polymers as active particles moving along chiral, circular paths by Brownian dynamics simulations and a Boltzmann approach. Our two conceptually different methods point to a generic phase behavior. At intermediate particle densities, we find self-organization into vortex structures including closed rings. Moreover, we show that the dynamics at the onset of pattern formation is described by a generalized complex Ginzburg-Landau equation. PMID:27176542

  9. Active Curved Polymers Form Vortex Patterns on Membranes.

    PubMed

    Denk, Jonas; Huber, Lorenz; Reithmann, Emanuel; Frey, Erwin

    2016-04-29

    Recent in vitro experiments with FtsZ polymers show self-organization into different dynamic patterns, including structures reminiscent of the bacterial Z ring. We model FtsZ polymers as active particles moving along chiral, circular paths by Brownian dynamics simulations and a Boltzmann approach. Our two conceptually different methods point to a generic phase behavior. At intermediate particle densities, we find self-organization into vortex structures including closed rings. Moreover, we show that the dynamics at the onset of pattern formation is described by a generalized complex Ginzburg-Landau equation.

  10. In vivo antibacterial activity and pharmacological properties of the membrane-active glycopeptide antibiotic YV11455.

    PubMed

    Yarlagadda, Venkateswarlu; Konai, Mohini M; Manjunath, Goutham B; Prakash, Relekar G; Mani, Bhuvana; Paramanandham, Krishnamoorthy; Ranjan, Shome B; Ravikumar, Raju; Chakraborty, Subhankari P; Roy, Somenath; Haldar, Jayanta

    2015-06-01

    The membrane-active glycopeptide antibiotic YV11455 is a lipophilic cationic vancomycin analogue that demonstrates rapid and concentration-dependent killing of clinically relevant multidrug-resistant (MDR) Gram-positive bacteria in vitro. YV11455 was 2-fold and 54-270-fold more effective than vancomycin against clinical isolates of vancomycin-sensitive and vancomycin-resistant bacteria, respectively. In this study, the in vivo efficacy, pharmacodynamics, pharmacokinetics and acute toxicology of YV11455 were investigated. In vivo activity and pharmacodynamics were determined in the neutropenic mouse thigh infection model against meticillin-resistant Staphylococcus aureus (MRSA). YV11455 produced dose-dependent reductions in MRSA titres in thigh muscle. When administered intravenously, the 50% effective dose (ED(50)) for YV11455 against MRSA was found to be 3.3 mg/kg body weight, and titres were reduced by up to ca. 3log(10)CFU/g from pre-treatment values at a dosage of 12 mg/kg with single treatment. Single-dose pharmacokinetic studies demonstrated linear kinetics and a prolonged half-life, with an increase in drug exposure (area under the concentration-time curve) compared with vancomycin. The peak plasma concentration following an intravenous dose of 12 mg/kg was 543.5 μg/mL. Acute toxicology studies revealed that YV11455 did not cause any significant alterations in biochemical parameters or histological pictures related to major organs such as the liver and kidney at its pharmacodynamic endpoint (ED(3-log kill)). These findings collectively suggest that YV11455 could be used clinically for the treatment of infections caused by MDR Gram-positive bacteria.

  11. Combining phosphate and bacteria removal on chemically active filter membranes allows prolonged storage of drinking water.

    PubMed

    Rotzetter, A C C; Kellenberger, C R; Schumacher, C M; Mora, C; Grass, R N; Loepfe, M; Luechinger, N A; Stark, W J

    2013-11-13

    A chemically active filtration membrane with incorporated lanthanum oxide nanoparticles enables the removal of bacteria and phosphate at the same time and thus provides a simple device for preparation of drinking water and subsequent safe storage without using any kind of disinfectants.

  12. Antibacterial Activity of Shikimic Acid from Pine Needles of Cedrus deodara against Staphylococcus aureus through Damage to Cell Membrane

    PubMed Central

    Bai, Jinrong; Wu, Yanping; Liu, Xiaoyan; Zhong, Kai; Huang, Yina; Gao, Hong

    2015-01-01

    Shikimic acid (SA) has been reported to possess antibacterial activity against Staphylococcus aureus, whereas the mode of action of SA is still elusive. In this study, the antibacterial activity and mechanism of SA toward S. aureus by cell membrane damage was investigated. After SA treatment, massive K+ and nucleotide leakage from S. aureus, and a significant change in the membrane potential was observed, suggesting SA may act on the membrane by destroying the cell membrane permeability. Through transmission electron microscopic observations we further confirmed that SA can disrupt the cell membrane and membrane integrity. Meanwhile, SA was found to be capable of reducing the membrane fluidity of the S. aureus cell. Moreover, the fluorescence experiments indicated that SA could quench fluorescence of Phe residues of the membrane proteins, thus demonstrating that SA can bind to S. aureus membrane proteins. Therefore, these results showed the antibacterial activity of SA against S. aureus could be caused by the interactions of SA with S. aureus membrane proteins and lipids, resulting in causing cell membrane dysfunction and bacterial damage or even death. This study reveals the potential use of SA as an antibacterial agent. PMID:26580596

  13. T Lymphocyte Activation Threshold and Membrane Reorganization Perturbations in Unique Culture Model

    NASA Technical Reports Server (NTRS)

    Adams, C. L.; Sams, C. F.

    2000-01-01

    Quantitative activation thresholds and cellular membrane reorganization are mechanisms by which resting T cells modulate their response to activating stimuli. Here we demonstrate perturbations of these cellular processes in a unique culture system that non-invasively inhibits T lymphocyte activation. During clinorotation, the T cell activation threshold is increased 5-fold. This increased threshold involves a mechanism independent of TCR triggering. Recruitment of lipid rafts to the activation site is impaired during clinorotation but does occur with increased stimulation. This study describes a situation in which an individual cell senses a change in its physical environment and alters its cell biological behavior.

  14. Dielectric elastomer laminates for active membrane pump applications

    NASA Astrophysics Data System (ADS)

    Pope, Kimberly; Tews, Alyson; Frecker, Mary I.; Mockensturm, Eric; Goulbourne, Nakhiah C.; Snyder, Alan J.

    2004-07-01

    Previous research has demonstrated promise for the use of dielectric elastomer (DE) films in diaphragm pump applications. Because the films tend to be quite thin, single layers operate at very low pressures. To make this technology suitable for practical applications, the films may be organized into laminates which will operate at increased pressures. Radially stretched circular diaphragms of two materials were tested: 3M VHB 4905 polyacrylate and spin-cast Nusil CF19-2186 silicone. The diaphragms were stacked, each layer sharing an electrode with the adjacent layer. The stack was mounted on a sealed chamber and energized at varied electric fields while regulated pressure was applied to the interior chamber, displacing the diaphragm. The pressure-volume properties of the stacks were recorded for each activation state.

  15. Formulation and process optimization of multiparticulate pulsatile system delivered by osmotic pressure-activated rupturable membrane.

    PubMed

    Hung, Sheng-Feng; Hsieh, Chien-Ming; Chen, Ying-Chen; Lin, Cheng-Mao; Ho, Hsiu-O; Sheu, Ming-Thau

    2015-03-01

    In this study, a multiparticulate pulsatile drug delivery system activated by a rupturable controlled-release membrane (Eudragit(®) RS) via osmotic pressure (with NaCl as the osmogent) was developed and characterized for omeprazole, omeprazole sodium, and propranolol HCl which have different water solubilities. Multiparticulates in pellet form for incorporation with or without the osmogent were manufactured by three methods and then used to coat a polymeric membrane. Results demonstrated that drug/osmogent-containing pellets manufactured by the extrusion/spheronization method with incorporation of the osmogent were optimal. The lag time (tL) to initiate pulsatile release is regulated by tL=l(2)/(6×D), which is dependent on the coating levels (l(2)) and plasticizer content (D). The pulsatile release pattern was found to be dependent on the osmotic pressure (osmogent), drug solubility, and mechanical properties of the polymeric membrane (elasticity and toughness). Omeprazole with lower water solubility could not generate sufficient osmotic pressure to create a crack in the membrane to activate pulsatile release, whereas the two other model drugs with higher solubilities could. But adsorption of omeprazole sodium on Eudragit(®) RS via charge-charge interactions led the its incomplete release. Finally, with 4% osmogent of NaCl added, a lag time in a range from 0 to 12h proportionally regulated by varying both the membrane thickness and plasticizer level initiated the complete pulsatile release of propranolol HCl. In conclusion, a multiparticulate pulsatile drug delivery system activated by a rupturable controlled-release membrane via osmotic pressure was successfully developed, and clinical applications of chronotherapy with drugs like propranolol HCl are expected.

  16. Alterations in erythrocyte membrane fluidity and Na+/K+ -ATPase activity in chronic alcoholics.

    PubMed

    Maturu, Paramahamsa; Vaddi, Damodara Reddy; Pannuru, Padmavathi; Nallanchakravarthula, Varadacharyulu

    2010-06-01

    Ethanol disorders biological membranes causing perturbations in the bilayer and also by altering the physicochemical properties of membrane lipids. But, chronic alcohol consumption also increases nitric oxide (NO) production. There was no systemic study was done related to alcohol-induced production of NO and consequent formation of peroxynitrite mediated changes in biophysical and biochemical properties, structure, composition, integrity and function of erythrocyte membranes in chronic alcoholics. Hence, keeping all these conditions in mind the present study was undertaken to investigate the role of over produced nitric oxide on red cell membrane physicochemical properties in chronic alcoholics. Human male volunteers aged 44 +/- 6 years with similar dietary habits were divided into two groups, namely nonalcoholic controls and chronic alcoholics (~125 g of alcohol at least five times per week for the past 10-12 years). Elevated nitrite and nitrate levels in plasma and lysate, changes in erythrocyte membrane individual phospholipid composition, increased lipid peroxidation, protein carbonyls, cholesterol and phospholipids ratio (C/P ratio) and anisotropic value (gamma) with decreased sulfhydryl groups and Na(+)/K(+)-ATPase activity in alcoholics was evident from this study. RBC lysate NO was positively correlated with C/P ratio (r = 0.547) and anisotropic (gamma) value (r = 0.428), Na(+)/K(+)-ATPase activity was negatively correlated with RBC lysate NO (r = -0.372) and anisotropic (gamma) value (r = -0.624) in alcoholics. Alcohol-induced overproduction of nitric oxide reacts with superoxide radicals to produce peroxynitrite, which appears to be responsible for changes in erythrocyte membrane lipids and the activity of Na(+)/K(+)-ATPase.

  17. Dynamic assembly of a membrane signaling complex enables selective activation of NFAT by Orai1.

    PubMed

    Kar, Pulak; Samanta, Krishna; Kramer, Holger; Morris, Otto; Bakowski, Daniel; Parekh, Anant B

    2014-06-16

    NFAT-dependent gene expression is essential for the development and function of the nervous, immune, and cardiovascular systems and kidney, bone, and skeletal muscle. Most NFAT protein resides in the cytoplasm because of extensive phosphorylation, which masks a nuclear localization sequence. Dephosphorylation by the Ca(2+)-calmodulin-activated protein phosphatase calcineurin triggers NFAT migration into the nucleus. In some cell types, NFAT can be activated by Ca(2+) nanodomains near open store-operated Orai1 and voltage-gated Ca(2+) channels in the plasma membrane. How local Ca(2+) near Orai1 is detected and whether other Orai channels utilize a similar mechanism remain unclear. Here, we report that the paralog Orai3 fails to activate NFAT. Orai1 is effective in activating gene expression via Ca(2+) nanodomains because it participates in a membrane-delimited signaling complex that forms after store depletion and brings calcineurin, via the scaffolding protein AKAP79, to calmodulin tethered to Orai1. By contrast, Orai3 interacts less well with AKAP79 after store depletion, rendering it ineffective in activating NFAT. A channel chimera of Orai3 with the N terminus of Orai1 was able to couple local Ca(2+) entry to NFAT activation, identifying the N-terminal domain of Orai1 as central to Ca(2+) nanodomain-transcription coupling. The formation of a store-dependent signaling complex at the plasma membrane provides for selective activation of a fundamental downstream response by Orai1.

  18. Active Motion of Hair Bundles Coupled to the Otolithic Membrane in the Frog Sacculus

    NASA Astrophysics Data System (ADS)

    Strimbu, C. Elliott; Fredrickson-Hemsing, Lea; Bozovic, Dolores

    2011-11-01

    Active hair bundle motility has been proposed to provide the basis for the active process in the auditory organs of non-mammalian vertibrates, and has been extensively studied in mechanically decoupled or free-standing hair bundles from in vitro preparations of the frog sacculus. A number of studies have, however, suggested that cooperativity between hair cells plays an important role in the response of an intact organ. We use a semi-intact in vitro saccular preparation in which the hair cells are coupled and loaded by the otolithic membrane. While the hair bundles do not spontaneously oscillate beneath the membrane, they exhibit active movements in response to transient stimuli, demonstrating that the active process remains operant under these conditions. The coupled system however displays a striking decrease in frequency selectivity compared to freely oscillating bundles.

  19. Effect of low dosages of powdered activated carbon on membrane bioreactor performance.

    PubMed

    Remy, Maxime; Temmink, Hardy; Rulkens, Wim

    2012-01-01

    Previous research has demonstrated that powdered activated carbon (PAC), when applied at very low dosages and long SRTs, reduces membrane fouling in membrane bioreactors (MBRs). This effect was related to the formation of stronger sludge flocs, which are less sensitive to shear. In this contribution the long-term effect of PAC addition was studied by running two parallel MBRs on sewage. To one of these, PAC was dosed and a lower fouling tendency of the sludge was verified, with a 70% longer sustainable filtration time. Low PAC dosages showed additional advantages with regard to oxygen transfer and dewaterability, which may provide savings on operational costs. PMID:22339033

  20. Growth hormone activates phospholipase C in proximal tubular basolateral membranes from canine kidney

    SciTech Connect

    Rogers, S.A.; Hammerman, M.R. )

    1989-08-01

    To delineate pathways for signal transduction by growth hormone (GH) in proximal tubule, the authors incubated basolateral membranes isolated from canine kidney with human growth hormone (hGH) or human prolactin (hPrl) and measured levels of inositol trisphosphate (InsP{sub 3}) in suspensions and of diacylglycerol extractable from the membranes. Incubation with hGH, but not hPrl, increased levels of InsP{sub 3} and diacylglycerol in a concentration-dependent manner. Half-maximal effects occurred between 0.1 and 1 nM hGH. Increased levels of InsP{sub 3} were measured after as little as 5 sec of incubation with 1 nM hGH, and increase was maximal after 15 sec. Increases were no longer detectable after 60 sec because of dephosphorylation of InsP{sub 3} in membrane suspensions. hGH did not affect rates of dephosphorylation. hGH-stimulated increases in InsP{sub 3} were detectable in membranes suspended in 0, 0.1, and 0.2 {mu}M calcium but not in 0.3 or 1.0 {mu}M calcium. {sup 125}I-labeled hGH-receptor complexes with M{sub r} values of 66,000 and 140,000 were identified in isolated basolateral membranes. The findings establish that GH activates phospholipase C in isolated canine renal proximal tubular basolateral membranes, potentially after binding to a specific receptor. This process could mediate signal transmission by GH across the plasma membrane of the proximal tubular cell and elsewhere.

  1. Inflammasome-activated gasdermin D causes pyroptosis by forming membrane pores.

    PubMed

    Liu, Xing; Zhang, Zhibin; Ruan, Jianbin; Pan, Youdong; Magupalli, Venkat Giri; Wu, Hao; Lieberman, Judy

    2016-07-01

    Inflammatory caspases (caspases 1, 4, 5 and 11) are activated in response to microbial infection and danger signals. When activated, they cleave mouse and human gasdermin D (GSDMD) after Asp276 and Asp275, respectively, to generate an N-terminal cleavage product (GSDMD-NT) that triggers inflammatory death (pyroptosis) and release of inflammatory cytokines such as interleukin-1β. Cleavage removes the C-terminal fragment (GSDMD-CT), which is thought to fold back on GSDMD-NT to inhibit its activation. However, how GSDMD-NT causes cell death is unknown. Here we show that GSDMD-NT oligomerizes in membranes to form pores that are visible by electron microscopy. GSDMD-NT binds to phosphatidylinositol phosphates and phosphatidylserine (restricted to the cell membrane inner leaflet) and cardiolipin (present in the inner and outer leaflets of bacterial membranes). Mutation of four evolutionarily conserved basic residues blocks GSDMD-NT oligomerization, membrane binding, pore formation and pyroptosis. Because of its lipid-binding preferences, GSDMD-NT kills from within the cell, but does not harm neighbouring mammalian cells when it is released during pyroptosis. GSDMD-NT also kills cell-free bacteria in vitro and may have a direct bactericidal effect within the cytosol of host cells, but the importance of direct bacterial killing in controlling in vivo infection remains to be determined. PMID:27383986

  2. Inflammasome-activated gasdermin D causes pyroptosis by forming membrane pores.

    PubMed

    Liu, Xing; Zhang, Zhibin; Ruan, Jianbin; Pan, Youdong; Magupalli, Venkat Giri; Wu, Hao; Lieberman, Judy

    2016-07-06

    Inflammatory caspases (caspases 1, 4, 5 and 11) are activated in response to microbial infection and danger signals. When activated, they cleave mouse and human gasdermin D (GSDMD) after Asp276 and Asp275, respectively, to generate an N-terminal cleavage product (GSDMD-NT) that triggers inflammatory death (pyroptosis) and release of inflammatory cytokines such as interleukin-1β. Cleavage removes the C-terminal fragment (GSDMD-CT), which is thought to fold back on GSDMD-NT to inhibit its activation. However, how GSDMD-NT causes cell death is unknown. Here we show that GSDMD-NT oligomerizes in membranes to form pores that are visible by electron microscopy. GSDMD-NT binds to phosphatidylinositol phosphates and phosphatidylserine (restricted to the cell membrane inner leaflet) and cardiolipin (present in the inner and outer leaflets of bacterial membranes). Mutation of four evolutionarily conserved basic residues blocks GSDMD-NT oligomerization, membrane binding, pore formation and pyroptosis. Because of its lipid-binding preferences, GSDMD-NT kills from within the cell, but does not harm neighbouring mammalian cells when it is released during pyroptosis. GSDMD-NT also kills cell-free bacteria in vitro and may have a direct bactericidal effect within the cytosol of host cells, but the importance of direct bacterial killing in controlling in vivo infection remains to be determined.

  3. The effect of charged lipids on bacteriorhodopsin membrane reconstitution and its photochemical activities

    SciTech Connect

    Wang Zhen; Bai Jing; Xu Yuhong

    2008-07-11

    Bacteriorhodopsin (BR) was reconstituted into artificial lipid membrane containing various charged lipid compositions. The proton pumping activity of BR under flash and continuous illumination, proton permeability across membrane, as well as the decay kinetics of the photocycle intermediate M{sub 412} were studied. The results showed that lipid charges would significantly affect the orientation of BR inserted into lipid membranes. In liposomes containing anionic lipids, BRs were more likely to take natural orientation as in living cells. In neutral or positively charged liposomes, most BRs were reversely assembled, assuming an inside out orientation. Moreover, the lipids charges also affect BR's M intermediate kinetics, especially the slow component in M intermediate decay. The half-life M{sub 412s} increased significantly in BRs in liposomes containing cationic lipids, while decreased in those in anionic liposomes.

  4. Effect of powdered activated carbon on integrated submerged membrane bioreactor-nanofiltration process for wastewater reclamation.

    PubMed

    Woo, Yun Chul; Lee, Jeong Jun; Shim, Wang-Geun; Shon, Ho Kyong; Tijing, Leonard D; Yao, Minwei; Kim, Han-Seung

    2016-06-01

    The aim of this study was to determine the effect of powdered activated carbon (PAC) on the overall performance of a submerged membrane bioreactor (SMBR) system integrated with nanofiltration (NF) for wastewater reclamation. It was found that the trans-membrane pressure of SMBR increased continuously while that of the SMBR with PAC was more stable, mainly because water could still pass through the PACs and membrane even though foulants adhered on the PAC surface. The presence of PAC was able to mitigate fouling in SMBR as well as in NF. SMBR-NF with PAC obtained a higher flux of 8.1 LMH compared to that without PAC (6.6 LMH). In addition, better permeate quality was obtained with SMBR-NF integrated process added with PAC. The present results suggest that the addition of PAC in integrated SMBR-NF process could possibly lead to satisfying water quality and can be operated for a long-term duration.

  5. Treatment of coal gasification wastewater by membrane bioreactor hybrid powdered activated carbon (MBR–PAC) system.

    PubMed

    Jia, Shengyong; Han, Hongjun; Hou, Baolin; Zhuang, Haifeng; Fang, Fang; Zhao, Qian

    2014-12-01

    A laboratory-scale membrane bioreactor hybrid powdered activated carbon (MBR–PAC) system was developed to treat coal gasification wastewater to enhance the COD, total phenols (TPh), NH4+ removals and migrate the membrane fouling. Since the MBR–PAC system operated with PAC dosage of 4 g L−1, the maximum removal efficiencies of COD, TPh and NH4+ reached 93%, 99% and 63%, respectively with the corresponding influent concentrations of 2.27 g L−1, 497 mg L−1 and 164 mg N L−1; the PAC extraction efficiencies of COD, TPh and NH4+ were 6%, 3% and 13%, respectively; the transmembrane pressure decreased 34% with PAC after 50 d operation. The results demonstrate that PAC played a key role in the enhancement of biodegradability and mitigation of membrane fouling. PMID:25461944

  6. Depth heterogeneity of fully aromatic polyamide active layers in reverse osmosis and nanofiltration membranes.

    PubMed

    Coronell, Orlando; Mariñas, Benito J; Cahill, David G

    2011-05-15

    We studied the depth heterogeneity of fully aromatic polyamide (PA) active layers in commercial reverse osmosis (RO) and nanofiltration (NF) membranes by quantifying near-surface (i.e., top 6 nm) and volume-averaged properties of the active layers using X-ray photoelectron spectrometry (XPS) and Rutherford backscattering spectrometry (RBS), respectively. Some membranes (e.g., ESPA3 RO) had active layers that were depth homogeneous with respect to the concentration and pK(a) distribution of carboxylic groups, degree of polymer cross-linking, concentration of barium ion probe that associated with ionized carboxylic groups, and steric effects experienced by barium ion. Other membranes (e.g., NF90 NF) had active layers that were depth heterogeneous with respect to the same properties. Our results therefore support the existence of both depth-homogeneous and depth-heterogeneous active layers. It remains to be assessed whether the depth heterogeneity consists of gradually changing properties throughout the active layer depth or of distinct sublayers with different properties.

  7. PMCA activity and membrane tubulin affect deformability of erythrocytes from normal and hypertensive human subjects.

    PubMed

    Monesterolo, Noelia E; Nigra, Ayelen D; Campetelli, Alexis N; Santander, Verónica S; Rivelli, Juan F; Arce, Carlos A; Casale, Cesar H

    2015-11-01

    Our previous studies demonstrated formation of a complex between acetylated tubulin and brain plasma membrane Ca(2+)-ATPase (PMCA), and the effect of the lipid environment on structure of this complex and on PMCA activity. Deformability of erythrocytes from hypertensive human subjects was reduced by an increase in membrane tubulin content. In the present study, we examined the regulation of PMCA activity by tubulin in normotensive and hypertensive erythrocytes, and the effect of exogenously added diacylglycerol (DAG) and phosphatidic acid (PA) on erythrocyte deformability. Some of the key findings were that: (i) PMCA was associated with tubulin in normotensive and hypertensive erythrocytes, (ii) PMCA enzyme activity was directly correlated with erythrocyte deformability, and (iii) when tubulin was present in the erythrocyte membrane, treatment with DAG or PA led to increased deformability and associated PMCA activity. Taken together, our findings indicate that PMCA activity is involved in deformability of both normotensive and hypertensive erythrocytes. This rheological property of erythrocytes is affected by acetylated tubulin and its lipid environment because both regulate PMCA activity.

  8. PVDF-HFP/ether-modified polysiloxane membranes obtained via airbrush spraying as active separators for application in lithium ion batteries.

    PubMed

    Seidel, S M; Jeschke, S; Vettikuzha, P; Wiemhöfer, H-D

    2015-08-01

    Improved hybrid polymer electrolyte membranes are introduced based on ether-modified polysiloxanes and poly(vinylidene fluoride-co-hexafluoropropylene) yielding a safe separator membrane, which is able to be sprayed directly onto lithium ion battery active materials, with an active role for enhanced ion transport.

  9. Glucose-induced activation of the plasma membrane H(+)-ATPase in Fusarium oxysporum.

    PubMed

    Brandão, R L; Castro, I M; Passos, J B; Nicoli, J R; Thevelein, J M

    1992-08-01

    Addition of glucose and other sugars to derepressed cells of the fungus Fusarium oxysporum var. lini triggered activation of the plasma membrane H(+)-ATPase within 5 min. Glucose was the best activator while galactose and lactose had a lesser effect. The activation was not prevented by previous addition of cycloheximide and it was fully reversible when the glucose was removed. The activation process in vivo also caused changes in the kinetic properties of the enzyme. The non-activated enzyme had an apparent Km of about 3.2 mM for ATP whereas the activated enzyme showed an apparent Km of 0.26 mM. In addition, the pH optimum of the H(+)-ATPase changed from 6.0 to 7.5 upon activation. The activated enzyme was more sensitive to inhibition by vanadate. When F. oxysporum was cultivated in media containing glucose as the major carbon source, enhanced H(+)-ATPase activity was largely confined to the period corresponding to the lag phase, i.e. just before the start of acidification of the medium. This suggests that the activation process might play a role in the onset of extracellular acidification. Addition of glucose to F. oxysporum var. lini cells also caused an increase in the cAMP level. No reliable increase could be demonstrated for the other sugars. Addition of proton ionophores such as DNP and CCCP at pH 5.0 caused both a large increase in the intracellular level of cAMP and in the activity of the plasma membrane H(+)-ATPase. Inhibition of the DNP-induced increase in the cAMP level by acridine orange also resulted in inhibition of the activation of plasma membrane H(+)-ATPase.(ABSTRACT TRUNCATED AT 250 WORDS)

  10. Scolopendin 2, a cationic antimicrobial peptide from centipede, and its membrane-active mechanism.

    PubMed

    Lee, Heejeong; Hwang, Jae-Sam; Lee, Jaeho; Kim, Jae Il; Lee, Dong Gun

    2015-02-01

    Scolopendin 2 is a 16-mer peptide (AGLQFPVGRIGRLLRK) derived from the centipede Scolopendra subspinipes mutilans. We observed that this peptide exhibited antimicrobial activity in a salt-dependent manner against various fungal and bacterial pathogens and showed no hemolytic effect in the range of 1.6 μM to 100 μM. Circular dichroism analysis showed that the peptide has an α-helical properties. Furthermore, we determined the mechanism(s) of action using flow cytometry and by investigating the release of intracellular potassium. The results showed that the peptide permeabilized the membranes of Escherichia coli O157 and Candida albicans, resulting in loss of intracellular potassium ions. Additionally, bis-(1,3-dibutylbarbituric acid) trimethine oxonol and 3,3'-dipropylthiacarbocyanine iodide assays showed that the peptide caused membrane depolarization. Using giant unilamellar vesicles encapsulating calcein and large unilamellar vesicles containing fluorescein isothiocyanate-dextran, which were similar in composition to typical E. coli O157 and C. albicans membranes, we demonstrated that scolopendin 2 disrupts membranes, resulting in a pore size between 4.8 nm and 5.0 nm. Thus, we have demonstrated that a cationic antimicrobial peptide, scolopendin 2, exerts its broad-spectrum antimicrobial effects by forming pores in the cell membrane.

  11. Scolopendin 2, a cationic antimicrobial peptide from centipede, and its membrane-active mechanism.

    PubMed

    Lee, Heejeong; Hwang, Jae-Sam; Lee, Jaeho; Kim, Jae Il; Lee, Dong Gun

    2015-02-01

    Scolopendin 2 is a 16-mer peptide (AGLQFPVGRIGRLLRK) derived from the centipede Scolopendra subspinipes mutilans. We observed that this peptide exhibited antimicrobial activity in a salt-dependent manner against various fungal and bacterial pathogens and showed no hemolytic effect in the range of 1.6 μM to 100 μM. Circular dichroism analysis showed that the peptide has an α-helical properties. Furthermore, we determined the mechanism(s) of action using flow cytometry and by investigating the release of intracellular potassium. The results showed that the peptide permeabilized the membranes of Escherichia coli O157 and Candida albicans, resulting in loss of intracellular potassium ions. Additionally, bis-(1,3-dibutylbarbituric acid) trimethine oxonol and 3,3'-dipropylthiacarbocyanine iodide assays showed that the peptide caused membrane depolarization. Using giant unilamellar vesicles encapsulating calcein and large unilamellar vesicles containing fluorescein isothiocyanate-dextran, which were similar in composition to typical E. coli O157 and C. albicans membranes, we demonstrated that scolopendin 2 disrupts membranes, resulting in a pore size between 4.8 nm and 5.0 nm. Thus, we have demonstrated that a cationic antimicrobial peptide, scolopendin 2, exerts its broad-spectrum antimicrobial effects by forming pores in the cell membrane. PMID:25462167

  12. Receptor kinase-mediated control of primary active proton pumping at the plasma membrane.

    PubMed

    Fuglsang, Anja T; Kristensen, Astrid; Cuin, Tracey A; Schulze, Waltraud X; Persson, Jörgen; Thuesen, Kristina H; Ytting, Cecilie K; Oehlenschlæger, Christian B; Mahmood, Khalid; Sondergaard, Teis E; Shabala, Sergey; Palmgren, Michael G

    2014-12-01

    Acidification of the cell wall space outside the plasma membrane is required for plant growth and is the result of proton extrusion by the plasma membrane-localized H+-ATPases. Here we show that the major plasma membrane proton pumps in Arabidopsis, AHA1 and AHA2, interact directly in vitro and in planta with PSY1R, a receptor kinase of the plasma membrane that serves as a receptor for the peptide growth hormone PSY1. The intracellular protein kinase domain of PSY1R phosphorylates AHA2/AHA1 at Thr-881, situated in the autoinhibitory region I of the C-terminal domain. When expressed in a yeast heterologous expression system, the introduction of a negative charge at this position caused pump activation. Application of PSY1 to plant seedlings induced rapid in planta phosphorylation at Thr-881, concomitant with an instantaneous increase in proton efflux from roots. The direct interaction between AHA2 and PSY1R observed might provide a general paradigm for regulation of plasma membrane proton transport by receptor kinases.

  13. Correlating antimicrobial activity and model membrane leakage induced by nylon-3 polymers and detergents.

    PubMed

    Hovakeemian, Sara G; Liu, Runhui; Gellman, Samuel H; Heerklotz, Heiko

    2015-09-14

    Most antimicrobial peptides act upon target microorganisms by permeabilizing their membranes. The mode of action is often assessed by vesicle leakage experiments that use model membranes, with the assumption that biological activity correlates with the permeabilization of the lipid bilayer. The current work aims to extend the interpretation of vesicle leakage results and examine the correlation between vesicle leakage and antimicrobial activity. To this end, we used a lifetime-based leakage assay with calcein-loaded vesicles to study the membrane permeabilizing properties of a novel antifungal polymer poly-NM, two of its analogs, and a series of detergents. In conjunction, the biological activities of these compounds against Candida albicans were assessed and correlated with data from vesicle leakage. Poly-NM induces all-or-none leakage in polar yeast lipid vesicles at the polymer's MIC, 3 μg mL(-1). At this and higher concentrations, complete leakage after an initial lag time was observed. Concerted activity tests imply that this polymer acts independently of the detergent octyl glucoside (OG) for both vesicle leakage and activity against C. albicans spheroplasts. In addition, poly-NM was found to have negligible activity against zwitterionic vesicles and red blood cells. Our results provide a consistent, detailed picture of the mode of action of poly-NM: this polymer induces membrane leakage by electrostatic lipid clustering. In contrast, poly-MM:CO, a nylon-3 polymer comprised of both cationic and hydrophobic segments, seems to act by a different mechanism that involves membrane asymmetry stress. Vesicle leakage for this polymer is transient (limited to <100%) and graded, non-specific among zwitterionic and polar yeast lipid vesicles, additive with detergent action, and correlates poorly with biological activity. Based on these results, we conclude that comprehensive leakage experiments can provide a detailed description of the mode of action of membrane

  14. A capsid protein of nonenveloped Bluetongue virus exhibits membrane fusion activity.

    PubMed

    Forzan, Mario; Wirblich, Christoph; Roy, Polly

    2004-02-17

    The outer capsid layer of Bluetongue virus, a member of the nonenveloped Reoviridae family, is composed of two proteins, a receptor-binding protein, VP2, and a second protein, VP5, which shares structural features with class I fusion proteins of enveloped viruses. In the replication cycle of Bluetongue virus VP5 acts as a membrane permeabilization protein that mediates release of viral particles from endosomal compartments into the cytoplasm. Here, we show that VP5 can also act as a fusion protein and induce syncytium formation when it is fused to a transmembrane anchor and expressed on the cell surface. Fusion activity is strictly pH-dependent and is triggered by short exposure to low pH. No cell-cell fusion is observed at neutral pH. Deletion of the first 40 amino acids, which can fold into two amphipathic helices, abolishes fusion activity. Syncytium formation by VP5 is inhibited in the presence of VP2 when it is expressed in a membrane-anchored form. The data indicate an interaction between the outer capsid protein VP2 and VP5 and show that VP5 undergoes pH-dependent conformational changes that render it capable of interacting with cellular membranes. More importantly, our data show that a membrane permeabilization protein of a nonenveloped virus can evolve into a fusion protein by the addition of an appropriate transmembrane anchor. The results strongly suggest that the mechanism of membrane permeabilization by VP5 and membrane fusion by viral fusion proteins require similar structural features and conformational changes.

  15. Ionizing radiations increase the activity of the cell surface glycohydrolases and the plasma membrane ceramide content.

    PubMed

    Aureli, Massimo; Bassi, Rosaria; Prinetti, Alessandro; Chiricozzi, Elena; Pappalardi, Brigida; Chigorno, Vanna; Di Muzio, Nadia; Loberto, Nicoletta; Sonnino, Sandro

    2012-12-01

    We detected significant levels of β-glucosidase, β-galactosidase, sialidase Neu3 and sphingomyelinase activities associated with the plasma membrane of fibroblasts from normal and Niemann-Pick subjects and of cells from breast, ovary, colon and neuroblastoma tumors in culture. All of the cells subjected to ionizing radiations showed an increase of the activity of plasma membrane β-glucosidase, β-galactosidase and sialidase Neu3, in addition of the well known increase of activity of plasma membrane sphingomyelinase, under similar conditions. Human breast cancer cell line T47D was studied in detail. In these cells the increase of activity of β-glucosidase and β-galactosidase was parallel to the increase of irradiation dose up to 60 Gy and continued with time, at least up to 72 h from irradiation. β-glucosidase increased up to 17 times and β-galactosidase up to 40 times with respect to control. Sialidase Neu3 and sphingomyelinase increased about 2 times at a dose of 20 Gy but no further significant differences were observed with increase of radiation dose and time. After irradiation, we observed a reduction of cell proliferation, an increase of apoptotic cell death and an increase of plasma membrane ceramide up to 3 times, with respect to control cells. Tritiated GM3 ganglioside has been administered to T47D cells under conditions that prevented the lysosomal catabolism. GM3 became component of the plasma membranes and was transformed into LacCer, GlcCer and ceramide. The quantity of ceramide produced in irradiated cells was about two times that of control cells.

  16. Age characteristics of changes in invertase activity of the mucous membrane of the small intestine

    NASA Technical Reports Server (NTRS)

    Rakhimov, K. R.; Aleksandrova, N. V.

    1980-01-01

    Rats of varying ages were subjected to stress from heat, cold, and hydrocortisone injection. Invertase activity in homogenates of small intestine mucous membranes was studied following sacrifice. Invertase activity was low in young animals, but increased sharply in 30 day old ones, remaining at a relatively constant level until old age. The study concludes that the stress hormone (corticosteroids, etc.) levels in the blood, which affects the formation of enteric enzyme levels and activities, and that age related peculiarities in invertase activity are a consequence of altered hormone status and epitheliocyte sensitivity.

  17. Membrane-Targeting DCAP Analogues with Broad-Spectrum Antibiotic Activity against Pathogenic Bacteria.

    PubMed

    Hurley, Katherine A; Heinrich, Victoria A; Hershfield, Jeremy R; Demons, Samandra T; Weibel, Douglas B

    2015-04-01

    We performed a structure-activity relationship study of 2-((3-(3,6-dichloro-9H-carbazol-9-yl)-2-hydroxypropyl)amino)-2-(hydroxymethyl)propane-1,3-diol (DCAP), which is an antibacterial agent that disrupts the membrane potential and permeability of bacteria. The stereochemistry of DCAP had no effect on the biological activity of DCAP. The aromaticity and electronegativity of the chlorine-substituted carbazole was required for activity, suggesting that its planar and dipolar characteristics orient DCAP in membranes. Increasing the hydrophobicity of the tail region of DCAP enhanced its antibiotic activity. Two DCAP analogues displayed promising antibacterial activity against the BSL-3 pathogens Bacillus anthracis and Francisella tularensis. Codosing DCAP analogues with ampicillin or kanamycin increased their potency. These studies demonstrate that DCAP and its analogues may be a promising scaffold for developing chemotherapeutic agents that bind to bacterial membranes and kill strains of slow-growing or dormant bacteria that cause persistent infections. PMID:25941556

  18. [Study of antioxidant and membrane activity of rosmarinic acid using different model systems].

    PubMed

    Popov, A M; Osipov, A N; Korepanova, E A; Krivoshapko, O N; Artiukov, A A

    2013-01-01

    Rosmarinic acid is found in many species of different families of higher plants and its chemical structure is phenol propanoid with various biological activity. In this paper, we conducted a comparative study of antioxidant (radical-scavenging) properties of rosmarinic acid in systems of 2,2'-azo-bis(2-methylpropionamidin)dihydrochloride-luminol and hemoglobin-hydrogen peroxide-lu- minol, determined its protective potential in preventing peroxidation of linoleic acid, and evaluated the effect on the permeability of planar bilayer lipid membranes. Linoleic acid peroxidation was assessed by iron-thiocyanate method. In these studies, trolox was used as a reference antioxidant, and ascorbic acid, and dihydroquercetin were taken as standards. Rosmarinic acid is significantly superior to trolox, ascorbic acid and dihydroquercetin in the tests for antioxidant activity in the systems studied, as well as in inhibition of linoleic acid peroxidation. According to their activity the investigated substances can be arranged in the following order: rosmarinic acid > dihydroquercetin trolox > ascorbic acid. Rosmarinic acid does not cause significant changes in the permeability of planar bilayer membranes in a dose range of 0.5 to 10 mkg/mL. Antioxidant activity of rosmarinic acid is due to the neutralization of reactive oxygen species and/or luminol radicals generated in model systems. The observed features of the antioxidant and membrane activity of rosmarinic acid, which may underlie the previously mentioned pharmacological effects are discussed. PMID:25481945

  19. Amphiphilic cationic β(3R3)-peptides: membrane active peptidomimetics and their potential as antimicrobial agents.

    PubMed

    Mosca, Simone; Keller, Janos; Azzouz, Nahid; Wagner, Stefanie; Titz, Alexander; Seeberger, Peter H; Brezesinski, Gerald; Hartmann, Laura

    2014-05-12

    We introduce a novel class of membrane active peptidomimetics, the amphiphilic cationic β(3R3)-peptides, and evaluate their potential as antimicrobial agents. The design criteria, the building block and oligomer synthesis as well as a detailed structure-activity relationship (SAR) study are reported. Specifically, infrared reflection absorption spectroscopy (IRRAS) was employed to investigate structural features of amphiphilic cationic β(3R3)-peptide sequences at the hydrophobic/hydrophilic air/liquid interface. Furthermore, Langmuir monolayers of anionic and zwitterionic phospholipids have been used to model the interactions of amphiphilic cationic β(3R3)-peptides with prokaryotic and eukaryotic cellular membranes in order to predict their membrane selectivity and elucidate their mechanism of action. Lastly, antimicrobial activity was tested against Gram-positive M. luteus and S. aureus as well as against Gram-negative E. coli and P. aeruginosa bacteria along with testing hemolytic activity and cytotoxicity. We found that amphiphilic cationic β(3R3)-peptide sequences combine high and selective antimicrobial activity with exceptionally low cytotoxicity in comparison to values reported in the literature. Overall, this study provides further insights into the SAR of antimicrobial peptides and peptidomimetics and indicates that amphiphilic cationic β(3R3)-peptides are strong candidates for further development as antimicrobial agents with high therapeutic index.

  20. Shape-dependent bactericidal activity of copper oxide nanoparticle mediated by DNA and membrane damage

    SciTech Connect

    Laha, Dipranjan; Pramanik, Arindam; Laskar, Aparna; Jana, Madhurya; Pramanik, Panchanan; Karmakar, Parimal

    2014-11-15

    Highlights: • Spherical and sheet shaped copper oxide nanoparticles were synthesized. • Physical characterizations of these nanoparticles were done by TEM, DLS, XRD, FTIR. • They showed shape dependent antibacterial activity on different bacterial strain. • They induced both membrane damage and ROS mediated DNA damage in bacteria. - Abstract: In this work, we synthesized spherical and sheet shaped copper oxide nanoparticles and their physical characterizations were done by the X-ray diffraction, fourier transform infrared spectroscopy, transmission electron microscopy and dynamic light scattering. The antibacterial activity of these nanoparticles was determined on both gram positive and gram negative bacterial. Spherical shaped copper oxide nanoparticles showed more antibacterial property on gram positive bacteria where as sheet shaped copper oxide nanoparticles are more active on gram negative bacteria. We also demonstrated that copper oxide nanoparticles produced reactive oxygen species in both gram negative and gram positive bacteria. Furthermore, they induced membrane damage as determined by atomic force microscopy and scanning electron microscopy. Thus production of and membrane damage are major mechanisms of the bactericidal activity of these copper oxide nanoparticles. Finally it was concluded that antibacterial activity of nanoparticles depend on physicochemical properties of copper oxide nanoparticles and bacterial strain.

  1. pH regulation of amphotericin B channels activity in the bilayer lipid membrane

    PubMed Central

    Shahmoradi, Tahereh; Sepehry, Hamid; Ashrafpour, Manuchehr

    2016-01-01

    Background: Amphotericin B (AmB) is a polyene antibiotic frequently applied in the treatment of systemic fungal infections in spite of its secondary effects. The pH plays a crucial role in modulating biophysical features of ion channels in the bilayer lipid membranes. Aim: In this study, the role of pH in the regulation of AmB channel was assessed by single channel recording of ion channel incorporated in the artificial membrane. Materials and Methods: Bilayer lipid membrane was formed by phosphatidylcholine in a 350 μm diameter aperture between two chambers, cis and trans contained 200/50 mMKCl solutions, respectively; then AmB was incorporated into the bilayer lipid membrane. Single channel recordings were used to indicate the effects of pH changes on AmB channels activity. The records were analyzed by Clamp fit 10 software. Results: A kinetic analysis of single channel currents indicated a cation ion channel with 500 pS conductance and voltage-dependence of the open probability of the AmB channel (Po). A reduction of cis pH to 6 decreased Po and conductance. This effect was also voltage-dependent, being greater at a more positive above −40. The pH changes in the range of 6-8 had no effect on the reversal potential and ion selectivity. Conclusion: Our data indicated that extracellular acidity can reduce AmB activity. PMID:27003977

  2. Arrayed lipid bilayer chambers allow single-molecule analysis of membrane transporter activity.

    PubMed

    Watanabe, Rikiya; Soga, Naoki; Fujita, Daishi; Tabata, Kazuhito V; Yamauchi, Lisa; Hyeon Kim, Soo; Asanuma, Daisuke; Kamiya, Mako; Urano, Yasuteru; Suga, Hiroaki; Noji, Hiroyuki

    2014-07-24

    Nano- to micron-size reaction chamber arrays (femtolitre chamber arrays) have facilitated the development of sensitive and quantitative biological assays, such as single-molecule enzymatic assays, digital PCR and digital ELISA. However, the versatility of femtolitre chamber arrays is limited to reactions that occur in aqueous solutions. Here we report an arrayed lipid bilayer chamber system (ALBiC) that contains sub-million femtolitre chambers, each sealed with a stable 4-μm-diameter lipid bilayer membrane. When reconstituted with a limiting amount of the membrane transporter proteins α-hemolysin or F0F1-ATP synthase, the chambers within the ALBiC exhibit stochastic and quantized transporting activities. This demonstrates that the single-molecule analysis of passive and active membrane transport is achievable with the ALBiC system. This new platform broadens the versatility of femtolitre chamber arrays and paves the way for novel applications aimed at furthering our mechanistic understanding of membrane proteins' function.

  3. Thyroid hormones increase Na -H exchange activity in renal brush border membranes

    SciTech Connect

    Kinsella, J.; Sacktor, B.

    1985-06-01

    Na -H exchange activity, i.e., amiloride-sensitive Na and H flux, in renal proximal tubule brush border (luminal) membrane vesicles was increased in the hyperthyroid rat and decreased in the hypothyroid rat, relative to the euthyroid animal. A positive correlation was found between Na -H exchange activity and serum concentrations of thyroxine (T4) and triiodothyronine (T3). The thyroid status of the animal did not alter amiloride-insensitive Na uptake. The rate of passive pH gradient dissipation was higher in membrane vesicles from hyperthyroid rats compared to the rate in vesicles from hypothyroid animals, a result which would tend to limit the increase in Na uptake in vesicles from hyperthyroid animals. Na -dependent phosphate uptake was increased in membrane vesicles from hyperthyroid rats; Na -dependent D-glucose and L-proline uptakes were not changed by the thyroid status of the animal. The effect of thyroid hormones in increasing the uptake of Na in the brush border membrane vesicle is consistent with the action of the hormones in enhancing renal Na reabsorption.

  4. Arrayed lipid bilayer chambers allow single-molecule analysis of membrane transporter activity

    PubMed Central

    Watanabe, Rikiya; Soga, Naoki; Fujita, Daishi; Tabata, Kazuhito V.; Yamauchi, Lisa; Hyeon Kim, Soo; Asanuma, Daisuke; Kamiya, Mako; Urano, Yasuteru; Suga, Hiroaki; Noji, Hiroyuki

    2014-01-01

    Nano- to micron-size reaction chamber arrays (femtolitre chamber arrays) have facilitated the development of sensitive and quantitative biological assays, such as single-molecule enzymatic assays, digital PCR and digital ELISA. However, the versatility of femtolitre chamber arrays is limited to reactions that occur in aqueous solutions. Here we report an arrayed lipid bilayer chamber system (ALBiC) that contains sub-million femtolitre chambers, each sealed with a stable 4-μm-diameter lipid bilayer membrane. When reconstituted with a limiting amount of the membrane transporter proteins α-hemolysin or F0F1-ATP synthase, the chambers within the ALBiC exhibit stochastic and quantized transporting activities. This demonstrates that the single-molecule analysis of passive and active membrane transport is achievable with the ALBiC system. This new platform broadens the versatility of femtolitre chamber arrays and paves the way for novel applications aimed at furthering our mechanistic understanding of membrane proteins’ function. PMID:25058452

  5. Comparative Transport Activity of Intact Cells, Membrane Vesicles, and Mesosomes of Bacillus licheniformis

    PubMed Central

    MacLeod, Robert A.; Thurman, Paul; Rogers, H. J.

    1973-01-01

    Sodium ion was shown to stimulate strongly the transport of l-glutamic acid into cells of Bacillus licheniformis 6346 His−. Lithium ion had a slight capacity to replace Na+ in this capacity, but K+ was without effect. Three of five amino acids tested. l-glutamic acid, l-aspartic acid, and l-alanine, were concentrated against a gradient in the cells. Intracellular pools of these amino acids were extractable with 5% trichloroacetic acid. Pools of l-histidine and l-lysine could not be detected. No evidence of active transport of lysine into cells could be detected, and histidine was taken up in the absence of chloramphenicol but not in its presence. The uptake of glutamic acid by membrane vesicle preparations was strongly stimulated by reduced nicotinamide adenine dinucleotide (NADH) and to a lesser extent by succinate. The presence of phenazine methosulfate increased uptake in the presence of succinate. Either l- or d-lactate and adenosine triphosphate were without effect. None of these compounds stimulated the uptake of glutamic acid by mesosomes, although some mesosome preparations contained separable membrane which was very active. NADH strongly stimulated the uptake of aspartic acid and alanine by membrane vesicles but had only a slight effect on the uptake of histidine and lysine. No evidence of active transport of any of the amino acids into mesosomes could be detected either in the presence or absence of NADH. NADH stimulation of the uptake of glutamic acid by membrane vesicles was destroyed by exposure to light of 360 nm; this inactivation was reversible by vitamin K2(5) or K2(10). Sodium ion stimulated transport of glutamic acid by membrane vesicles. PMID:4347247

  6. Transferred nuclear Overhauser effect analyses of membrane-bound enkephalin analogues by sup 1 H nuclear magnetic resonance: Correlation between activities and membrane-bound conformations

    SciTech Connect

    Milon, Alain; Miyazawa, Tatsuo; Higashijima, Tsutomu )

    1990-01-09

    Leu-enkephalin, (D-Ala{sup 2})Leu-enkephalin, and (D-Ala{sup 2})Leu-enkephalinamide (agonists) and (L-Ala{sup 2})Leu-enkephalin (inactive analogue) bind to lipid bilayer consisting of phosphatidylcholine and phosphatidylserine. The conformations that these compounds assume, once bound to perdeuterated phospholipid bilayer, have been shown to be unique, as shown by the transferred nuclear Overhauser effect (TRNOE) of {sup 1}H NMR spectroscopy. In addition, their location in the bilayer was analyzed by TRNOE in the presence of spin-labeled phospholipids. These analyses showed a clear relationship between the activity and the peptide-membrane interaction. The three active peptides, when bound to membranes, adopt the same conformation, characterized by a type II{prime} {beta}-turn around Gly{sup 3}-Phe and a {gamma}-turn around Gly{sup 2} (or D-Ala{sup 2}). The inactive analogue, (L-Ala{sup 2})Leu-enkephalin, displayed a completely different TRNOE pattern corresponding to a different conformation in the membrane-bound state. The tyrosine residue of the active compounds is not inserted into the interior of membrane, but it is inserted into the bilayer for the L-Ala{sup 2} analogue. According to these results, (L-Ala{sup 2})Leu-enkephalin may be explained to be inactive because the mode of binding to the membranes is different from that of active compounds.

  7. Role of a Transbilayer pH Gradient in the Membrane Fusion Activity of the Influenza Virus Hemagglutinin: Use of the R18 Assay to Monitor Membrane Merging.

    PubMed

    Ramalho-Santos, João; Pedroso De Lima, Maria C.

    1999-03-16

    It had been suggested that influenza virus-mediated membrane fusion might be dependent on a pH gradient across a target membrane. We have designed experiments in which this issue could be addressed. Two populations of liposomes were prepared, both simulating the plasma membrane of target cells, but with the pH of the internal aqueous medium buffered either at pH 7.4 (physiological cytosol pH) or at pH 5.0 (endosomal pH at which influenza virus displays maximal fusion activity). By monitoring fusion using the R18 assay, we found that the internal pH of the target liposomes did not influence membrane merging as mediated by the influenza virus hemagglutinin, thus demonstrating that a transmembrane pH gradient is not required in this fusion process.

  8. Does Changing the Predicted Dynamics of a Phospholipase C Alter Activity and Membrane Binding?

    PubMed Central

    Cheng, Jiongjia; Karri, Sashank; Grauffel, Cédric; Wang, Fang; Reuter, Nathalie; Roberts, Mary F.; Wintrode, Patrick L.; Gershenson, Anne

    2013-01-01

    The enzymatic activity of secreted phosphatidylinositol-specific phospholipase C (PI-PLC) enzymes is associated with bacterial virulence. Although the PI-PLC active site has no obvious lid, molecular-dynamics simulations suggest that correlated loop motions may limit access to the active site, and two Pro residues, Pro245 and Pro254, are associated with these correlated motions. Whereas the region containing both Pro residues is quite variable among PI-PLCs, it shows high conservation in virulence-associated, secreted PI-PLCs that bind to the surface of cells. These regions of the protein are also associated with phosphatidylcholine binding, which enhances PI-PLC activity. In silico mutagenesis of Pro245 disrupts correlated motions between the two halves of Bacillus thuringiensis PI-PLC, and Pro245 variants show significantly reduced enzymatic activity in all assay systems. PC still enhanced activity, but not to the level of wild-type enzyme. Mutagenesis of Pro254 appears to stiffen the PI-PLC structure, but experimental mutations had minor effects on activity and membrane binding. With the exception of P245Y, reduced activity was not associated with reduced membrane affinity. This combination of simulations and experiments suggests that correlated motions between the two halves of PI-PLC may be more important for enzymatic activity than for vesicle binding. PMID:23332071

  9. Infrared Laser Activation of Soluble and Membrane Protein Assemblies in the Gas Phase.

    PubMed

    Mikhailov, Victor A; Liko, Idlir; Mize, Todd H; Bush, Matthew F; Benesch, Justin L P; Robinson, Carol V

    2016-07-19

    Collision-induced dissociation (CID) is the dominant method for probing intact macromolecular complexes in the gas phase by means of mass spectrometry (MS). The energy obtained from collisional activation is dependent on the charge state of the ion and the pressures and potentials within the instrument: these factors limit CID capability. Activation by infrared (IR) laser radiation offers an attractive alternative as the radiation energy absorbed by the ions is charge-state-independent and the intensity and time scale of activation is controlled by a laser source external to the mass spectrometer. Here we implement and apply IR activation, in different irradiation regimes, to study both soluble and membrane protein assemblies. We show that IR activation using high-intensity pulsed lasers is faster than collisional and radiative cooling and requires much lower energy than continuous IR irradiation. We demonstrate that IR activation is an effective means for studying membrane protein assemblies, and liberate an intact V-type ATPase complex from detergent micelles, a result that cannot be achieved by means of CID using standard collision energies. Notably, we find that IR activation can be sufficiently soft to retain specific lipids bound to the complex. We further demonstrate that, by applying a combination of collisional activation, mass selection, and IR activation of the liberated complex, we can elucidate subunit stoichiometry and the masses of specifically bound lipids in a single MS experiment.

  10. Activity of key enzymes in microsomal and mitochondrial membranes depends on the redox reactions involving lipid radicals.

    PubMed

    Dmitriev, L F

    2001-07-01

    The work reviews membrane processes, such as monooxygenase reaction and oxidative phosphorylation with special reference to hydroxylation of a xenobiotic benzo(a)pyrene and the effects of the radical scavenger propyl gallate and radical generator Fe2+ ions on the reaction kinetics. A possibility is discussed that tocopherol provides for the activity of the lipid-radical cycles involving cytochrome b5. The lipid-radical cycles protect membrane lipids from oxidation and control the kinetics of membrane processes. The NADPH oxidation energy is transformed into the energy of lipid pulsations and this energy is used for activation of membrane enzymes. To account for the role of lipid pulsations in membrane processes, a new parameter is introduced - the internal temperature. It is supposed that there should be the equilibrium between the pro- and antioxidant factors in the membranes, and the presence of exogenous antioxidants (propyl gallate etc.) should be considered as a negative factor. PMID:11699868

  11. Ca/sup 2 +/-CaM-ATPase activity after corticosterone binding to synaptosomal plasma membrane

    SciTech Connect

    Iqbal, Z.; Sze, P.Y.

    1986-03-01

    Studies conducted in the laboratory have demonstrated that corticosterone (CS) binds specifically to synaptosomal plasma membrane (SPM) and modify the cellular events in the synaptosomes. On an exposure of a rat brain synaptosomes to physiological concentrations (<1..mu..M) of CS, the uptake of /sup 45/Ca/sup 2 +/ into synaptosomes was increased by 40-50%. Similarly the binding of /sup 45/Ca/sup 2 +/ to isolated SPM was also enhanced by 50% in the presence of CS. However when intact synaptosomes were pre-incubated with CS, the capacity of membranes to bind /sup 45/Ca/sup 2 +/ was increased by 2-fold. After the incubation of intact synaptosomes with < ..mu..M CS, the activity of trifluoperazine sensitive and CaM dependent Ca/sup 2 +/-ATPase at 1..mu..M Ca/sup 2 +/ was found to be stimulated by 20-30% whereas the activity of Ca/sup 2 +/-ATPase at 1mM Ca/sup 2 +/ remained unaffected. Exposure of synaptosomes to CS was also effective in protecting the reduction of ouabain-sensitive ATPase (Na/sup +/-K/sup +/-ATPase) activity caused by 0.5% ethanol used as a solvent medium for CS. These findings suggest that one of the physiological actions of CS in synaptosomes, after binding to synaptosomal plasma membranes, is an enhancement of Ca/sup 2 +/ transport and an increase of Ca/sup 2 +/-CaM-ATPase activity.

  12. Plasma Membrane Intrinsic Proteins from Maize Cluster in Two Sequence Subgroups with Differential Aquaporin Activity1

    PubMed Central

    Chaumont, François; Barrieu, François; Jung, Rudolf; Chrispeels, Maarten J.

    2000-01-01

    The transport of water through membranes is regulated in part by aquaporins or water channel proteins. These proteins are members of the larger family of major intrinsic proteins (MIPs). Plant aquaporins are categorized as either tonoplast intrinsic proteins (TIPs) or plasma membrane intrinsic proteins (PIPs). Sequence analysis shows that PIPs form several subclasses. We report on the characterization of three maize (Zea mays) PIPs belonging to the PIP1 and PIP2 subfamilies (ZmPIP1a, ZmPIP1b, and ZmPIP2a). The ZmPIP2a clone has normal aquaporin activity in Xenopus laevis oocytes. ZmPIP1a and ZmPIP1b have no activity, and a review of the literature shows that most PIP1 proteins identified in other plants have no or very low activity in oocytes. Arabidopsis PIP1 proteins are the only exception. Control experiments show that this lack of activity of maize PIP1 proteins is not caused by their failure to arrive at the plasma membrane of the oocytes. ZmPIP1b also does not appear to facilitate the transport of any of the small solutes tried (glycerol, choline, ethanol, urea, and amino acids). These results are discussed in relationship to the function and regulation of the PIP family of aquaporins. PMID:10759498

  13. Nonpeptidic Amphiphilic Xanthone Derivatives: Structure-Activity Relationship and Membrane-Targeting Properties.

    PubMed

    Koh, Jun-Jie; Zou, Hanxun; Lin, Shuimu; Lin, Huifen; Soh, Rui Ting; Lim, Fang Hui; Koh, Wee Luan; Li, Jianguo; Lakshminarayanan, Rajamani; Verma, Chandra; Tan, Donald T H; Cao, Derong; Beuerman, Roger W; Liu, Shouping

    2016-01-14

    We recently reported the bioinspired synthesis of a highly potent nonpeptidic xanthone, 2c (AM-0016), with potent antibacterial activity against MRSA. Herein, we report a thorough structure-activity relationship (SAR) analysis of a series of nonpeptidic amphiphilic xanthone derivatives in an attempt to identify more potent compounds with lower hemolytic activity and greater membrane selectivity. Forty-six amphiphilic xanthone derivatives were analyzed in this study and structurally classified into four groups based on spacer length, cationic moieties, lipophilic chains, and triarm functionalization. We evaluated and explored the effects of the structures on their membrane-targeting properties. The SAR analysis successfully identified 3a with potent MICs (1.56-3.125 μ/mL) and lower hemolytic activity (80.2 μg/mL for 3a versus 19.7 μg/mL for 2c). Compound 3a displayed a membrane selectivity of 25.7-50.4. Thus, 3a with improved HC50 value and promising selectivity could be used as a lead compound for further structural optimization for the treatment of MRSA infection. PMID:26681070

  14. Impact of humic acid fouling on membrane performance and transport of pharmaceutically active compounds in forward osmosis.

    PubMed

    Xie, Ming; Nghiem, Long D; Price, William E; Elimelech, Menachem

    2013-09-01

    The impact of humic acid fouling on the membrane transport of two pharmaceutically active compounds (PhACs) - namely carbamazepine and sulfamethoxazole - in forward osmosis (FO) was investigated. Deposition of humic acid onto the membrane surface was promoted by the complexation with calcium ions in the feed solution and the increase in ionic strength at the membrane surface due to the reverse transport of NaCl draw solute. The increase in the humic acid deposition on the membrane surface led to a substantial decrease in the membrane salt (NaCl) permeability coefficient but did not result in a significant decrease in the membrane pure water permeability coefficient. As the deposition of humic acid increased, the permeation of carbamazepine and sulfamethoxazole decreased, which correlated well with the decrease in the membrane salt (NaCl) permeability coefficient. It is hypothesized that the hydrated humic acid fouling layer hindered solute diffusion through the membrane pore and enhanced solute rejection by steric hindrance, but not the permeation of water molecules. The membrane water and salt (NaCl) permeability coefficients were fully restored by physical cleaning of the membrane, suggesting that humic acid did not penetrate into the membrane pores.

  15. Impact of humic acid fouling on membrane performance and transport of pharmaceutically active compounds in forward osmosis.

    PubMed

    Xie, Ming; Nghiem, Long D; Price, William E; Elimelech, Menachem

    2013-09-01

    The impact of humic acid fouling on the membrane transport of two pharmaceutically active compounds (PhACs) - namely carbamazepine and sulfamethoxazole - in forward osmosis (FO) was investigated. Deposition of humic acid onto the membrane surface was promoted by the complexation with calcium ions in the feed solution and the increase in ionic strength at the membrane surface due to the reverse transport of NaCl draw solute. The increase in the humic acid deposition on the membrane surface led to a substantial decrease in the membrane salt (NaCl) permeability coefficient but did not result in a significant decrease in the membrane pure water permeability coefficient. As the deposition of humic acid increased, the permeation of carbamazepine and sulfamethoxazole decreased, which correlated well with the decrease in the membrane salt (NaCl) permeability coefficient. It is hypothesized that the hydrated humic acid fouling layer hindered solute diffusion through the membrane pore and enhanced solute rejection by steric hindrance, but not the permeation of water molecules. The membrane water and salt (NaCl) permeability coefficients were fully restored by physical cleaning of the membrane, suggesting that humic acid did not penetrate into the membrane pores. PMID:23764606

  16. Role of membrane oxidation in controlling the activity of human group IIa secretory phospholipase A(2) toward apoptotic lymphoma cells.

    PubMed

    Gibbons, Elizabeth; Nelson, Jennifer; Anderson, Lynn; Brewer, Kelly; Melchor, Stephanie; Judd, Allan M; Bell, John D

    2013-02-01

    The membranes of healthy lymphocytes normally resist hydrolysis by secretory phospholipase A(2). However, they become susceptible during the process of apoptosis. Previous experiments have demonstrated the importance of certain physical changes to the membrane during cell death such as a reduction in membrane lipid order and exposure of phosphatidylserine on the membrane surface. Nevertheless, those investigations also showed that at least one additional factor was required for rapid hydrolysis by the human group IIa phospholipase isozyme. This study was designed to test the possibility that oxidation of membrane lipids is the additional factor. Flow cytometry and confocal microscopy with a fluorescent probe of oxidative potential suggested that oxidation of the plasma membrane occurs during apoptosis stimulated by thapsigargin. When oxidative potential was high, the activity of human group IIa secretory phospholipase A(2) was enhanced 30- to 100-fold compared to that observed with conditions sufficient for maximal hydrolysis by other secretory phospholipase A(2) isoforms. Direct oxidation of cell membranes with either of two oxidizing agents also stimulated hydrolysis by secretory phospholipase A(2). Both oxidizers caused externalization of phosphatidylserine, but a change in lipid order did not always occur. These results demonstrated that membrane oxidation strongly stimulates human group IIa secretory phospholipase A(2) activity toward apoptotic cells. Interestingly, the change in membrane order, previously thought to be imperative for high rates of hydrolysis, was not required when membrane lipids were oxidized. Whether phosphatidylserine exposure is still necessary with oxidation remains unresolved since the two events could not be deconvoluted.

  17. Decoding the membrane activity of the cyclotide kalata B1: the importance of phosphatidylethanolamine phospholipids and lipid organization on hemolytic and anti-HIV activities.

    PubMed

    Henriques, Sónia Troeira; Huang, Yen-Hua; Rosengren, K Johan; Franquelim, Henri G; Carvalho, Filomena A; Johnson, Adam; Sonza, Secondo; Tachedjian, Gilda; Castanho, Miguel A R B; Daly, Norelle L; Craik, David J

    2011-07-01

    Cyclotides, a large family of cyclic peptides from plants, have a broad range of biological activities, including insecticidal, cytotoxic, and anti-HIV activities. In all of these activities, cell membranes seem likely to be the primary target for cyclotides. However, the mechanistic role of lipid membranes in the activity of cyclotides remains unclear. To determine the role of lipid organization in the activity of the prototypic cyclotide, kalata B1 (kB1), and synthetic analogs, their bioactivities and affinities for model membranes were evaluated. We found that the bioactivity of kB1 is dependent on the lipid composition of target cell membranes. In particular, the activity of kB1 requires specific interactions with phospholipids containing phosphatidylethanolamine (PE) headgroups but is further modulated by nonspecific peptide-lipid hydrophobic interactions, which are favored in raft-like membranes. Negatively charged phospholipids do not favor high kB1 affinity. This lipid selectivity explains trends in antimicrobial and hemolytic activities of kB1; it does not target bacterial cell walls, which are negatively charged and lacking PE-phospholipids but can insert in the membranes of red blood cells, which have a low PE content and raft domains in their outer layer. We further show that the anti-HIV activity of kB1 is the result of its ability to target and disrupt the membranes of HIV particles, which are raft-like membranes very rich in PE-phospholipids.

  18. Disruption of cell membranes via laser-activated, acoustically active, carbon nanoparticles

    NASA Astrophysics Data System (ADS)

    Holguin, Stefany; Prausnitz, Mark; Thadhani, Naresh

    2015-06-01

    Physical drug delivery methods provide an avenue to overcome the selectivity of the cell membrane via physical forces that disrupt cell membranes and drive drug molecules into the cytosol. When carbon black nanoparticles in suspension with cells and drug molecules are exposed to nanosecond-pulsed laser light, high uptake and cell viability are observed. This laser-carbon nanoparticle interaction causes thermal expansion and local vaporization that results in the release of acoustic waves into the surrounding medium. These combined energy transduction mechanisms, phenomena called transient nanoparticle energy transduction (TNET), are responsible for disruption of the cell membrane and subsequent efficient intracellular drug uptake while maintaining high cell viability. The overall objective of this work is to investigate TNET and the bioeffects associated with physical disruption of cell membranes for drug delivery via laser-carbon nanoparticle interactions. For example, varying and quantifying energy input to carbon nanoparticles by way of laser beam manipulation, assists in the understanding and assessment of subsequent bioeffects. Results of work performed to date will be presented. National Science Foundation Graduate Research Fellowship under Grant No. 0946809, Georgia Tech University Center of Exemplary Mentoring (UCEM) & the Alfred P. Sloan Foundation.

  19. A Rapid and Quantitative Flow Cytometry Method for the Analysis of Membrane Disruptive Antimicrobial Activity

    PubMed Central

    O’Brien-Simpson, Neil M.; Pantarat, Namfon; Attard, Troy J.; Walsh, Katrina A.; Reynolds, Eric C.

    2016-01-01

    We describe a microbial flow cytometry method that quantifies within 3 hours antimicrobial peptide (AMP) activity, termed Minimum Membrane Disruptive Concentration (MDC). Increasing peptide concentration positively correlates with the extent of bacterial membrane disruption and the calculated MDC is equivalent to its MBC. The activity of AMPs representing three different membranolytic modes of action could be determined for a range of Gram positive and negative bacteria, including the ESKAPE pathogens, E. coli and MRSA. By using the MDC50 concentration of the parent AMP, the method provides high-throughput, quantitative screening of AMP analogues. A unique feature of the MDC assay is that it directly measures peptide/bacteria interactions and lysed cell numbers rather than bacteria survival as with MIC and MBC assays. With the threat of multi-drug resistant bacteria, this high-throughput MDC assay has the potential to aid in the development of novel antimicrobials that target bacteria with improved efficacy. PMID:26986223

  20. Beyond apoptosis: The mechanism and function of phosphatidylserine asymmetry in the membrane of activating mast cells

    PubMed Central

    Rysavy, Noel M.; Shimoda, Lori M. N.; Dixon, Alyssa M.; Speck, Mark; Stokes, Alexander J.; Turner, Helen; Umemoto, Eric Y.

    2014-01-01

    Loss of plasma membrane asymmetry is a hallmark of apoptosis, but lipid bilayer asymmetry and loss of asymmetry can contribute to numerous cellular functions and responses that are independent of programmed cell death. Exofacial exposure of phosphatidylserine occurs in lymphocytes and mast cells after antigenic stimulation and in the absence of apoptosis, suggesting that there is a functional requirement for phosphatidylserine exposure in immunocytes. In this review we examine current ideas as to the nature of this functional role in mast cell activation. Mechanistically, there is controversy as to the candidate proteins responsible for phosphatidylserine translocation from the internal to external leaflet, and here we review the candidacies of mast cell PLSCR1 and TMEM16F. Finally we examine the potential relationship between functionally important mast cell membrane perturbations and phosphatidylserine exposure during activation. PMID:25759911

  1. A Rapid and Quantitative Flow Cytometry Method for the Analysis of Membrane Disruptive Antimicrobial Activity.

    PubMed

    O'Brien-Simpson, Neil M; Pantarat, Namfon; Attard, Troy J; Walsh, Katrina A; Reynolds, Eric C

    2016-01-01

    We describe a microbial flow cytometry method that quantifies within 3 hours antimicrobial peptide (AMP) activity, termed Minimum Membrane Disruptive Concentration (MDC). Increasing peptide concentration positively correlates with the extent of bacterial membrane disruption and the calculated MDC is equivalent to its MBC. The activity of AMPs representing three different membranolytic modes of action could be determined for a range of Gram positive and negative bacteria, including the ESKAPE pathogens, E. coli and MRSA. By using the MDC50 concentration of the parent AMP, the method provides high-throughput, quantitative screening of AMP analogues. A unique feature of the MDC assay is that it directly measures peptide/bacteria interactions and lysed cell numbers rather than bacteria survival as with MIC and MBC assays. With the threat of multi-drug resistant bacteria, this high-throughput MDC assay has the potential to aid in the development of novel antimicrobials that target bacteria with improved efficacy. PMID:26986223

  2. Membrane disruptive antimicrobial activities of human β-defensin-3 analogs.

    PubMed

    Sudheendra, U S; Dhople, Vishnu; Datta, Aritreyee; Kar, Rajiv K; Shelburne, Charles E; Bhunia, Anirban; Ramamoorthy, Ayyalusamy

    2015-02-16

    Human beta defensin-3 (HβD-3) is a host-defense protein exhibiting antibacterial activity towards both Gram-negative and Gram-positive bacteria. There is considerable interest in the function of this protein due to its increased salt tolerance and activity against Gram-positive Staphylococcus aureus. In this study, analogs of HβD-3 devoid of N and C terminal regions are investigated to determine the influence of specific structural motif on antimicrobial activity and selectivity between Gram-positive and Gram-negative bacteria. Circular dichroism, fluorescence and solid-state NMR experiments have been used to investigate the conformation and mode of action of HβD3 analogs with various model membranes to mimic bacterial inner and outer membranes and also mammalian membranes. Our studies specifically focused on determining four major characteristics: (i) interaction of HβD3 analogs with phospholipid vesicles composed of zwitterionic PC or anionic PE:PG vesicles and LPS; (ii) conformation of HβD3-peptide analogs in the presence of PC or PE:PG vesicles; (iii) ability of HβD3 analogs to permeate phospholipid vesicles composed of PC or PE:PG; and (iv) activities on bacteria cells and erythrocytes. Our results infer that the linear peptide L25P and its cyclic form C25P are more active than L21P and C21P analogs. However, they are less active than the parent peptide, thus pointing towards the importance of the N terminal domain in its biological activity. The variation in the activities of L21P/C21P and L25P/C25P also suggest the importance of the positively charged residues at the C terminus in providing selectivity particularly to Gram-negative bacteria.

  3. Changes of plasma membrane AtPase activity, membrane potential and transmembrane proton gradient in Kandelia candel and Avicennia marina seedlings with various salinities.

    PubMed

    Zhao, Zhong-Qiu; Zheng, Hai-Lei; Zhu, Yong-Guan

    2004-01-01

    The salt-secreting mangrove, Avicennia marina, and non-salt-secreting mangrove, Kandelia candel were cultivated in sand with various salinities(0 per thousand, 10 per thousand, 20 per thousand, 30 per thousand, 40 per thousand) for 60 d. Plasma membrane vesicles of high-purity in leaves and roots of A. marina and K. candel seedlings were obtained by two-phase partitioning. The function of the plasma membranes, the activity of ATPase, membrane potential and transmembrane proton gradient, at various salinities were investigated. The results showed that within a certain range of salinity (A. marina and roots of K. candel: 0-30 per thousand; leaves of K. candel: 0-20 per thousand), the activity of ATPase increased with increasing salinity, while high salinity (above 30 per thousand or 20 per thousand) inhibited ATPase activity. In comparison with A. marina, K. candel appeared to be more sensitive to salinity. The dynamics of membrane potential and transmembrane proton gradient in leaves and roots of A. marina and K. candel seedlings were similar to that of ATPase. When treated directly by NaCl all the indexes were inhibited markedly: there was a little increase within 0-10 per thousand (K. candel) or 0-20 per thousand (A. marina) followed by sharp declining. It indicated that the structure and function of plasma membrane was damaged severely.

  4. Electrostatics of cell membrane recognition: structure and activity of neutral and cationic rigid push-pull rods in isoelectric, anionic, and polarized lipid bilayer membranes.

    PubMed

    Sakai, N; Gerard, D; Matile, S

    2001-03-21

    Design, synthesis, and structural and functional studies of rigid-rod ionophores of different axial electrostatic asymmetry are reported. The employed design strategy emphasized presence of (a) a rigid scaffold to minimize the conformational complexity, (b) a unimolecular ion-conducting pathway to minimize the suprastructural complexity and monitor the function, (c) an extended fluorophore to monitor structure, (d) variable axial rod dipole, and (e) variable terminal charges to create axial asymmetry. Studies in isoelectric, anionic, and polarized bilayer membranes confirmed a general increase in activity of uncharged rigid push-pull rods in polarized bilayers. The similarly increased activity of cationic rigid push-pull rods with an electrostatic asymmetry comparable to that of alpha-helical bee toxin melittin (positive charge near negative axial dipole terminus) is shown by fluorescence-depth quenching experiments to originate from the stabilization of transmembrane rod orientation by the membrane potential. The reduced activity of rigid push-pull rods having an electrostatic asymmetry comparable to that in alpha-helical natural antibiotics (a positive charge near the positive axial dipole terminus) is shown by structural studies to originate from rod "ejection" by membrane potentials comparable to that found in mammalian plasma membranes. This structural evidence for cell membrane recognition by asymmetric rods is unprecedented and of possible practical importance with regard to antibiotic resistance.

  5. Auxin-activated NADH oxidase activity of soybean plasma membranes is distinct from the constitutive plasma membrane NADH oxidase and exhibits prion-like properties

    NASA Technical Reports Server (NTRS)

    Morre, D. James; Morre, Dorothy M.; Ternes, Philipp

    2003-01-01

    The hormone-stimulated and growth-related cell surface hydroquinone (NADH) oxidase activity of etiolated hypocotyls of soybeans oscillates with a period of about 24 min or 60 times per 24-h day. Plasma membranes of soybean hypocotyls contain two such NADH oxidase activities that have been resolved by purification on concanavalin A columns. One in the apparent molecular weight range of 14-17 kDa is stimulated by the auxin herbicide 2,4-dichlorophenoxyacetic acid (2,4-D). The other is larger and unaffected by 2,4-D. The 2,4-D-stimulated activity absolutely requires 2,4-D for activity and exhibits a period length of about 24 min. Also exhibiting 24-min oscillations is the rate of cell enlargement induced by the addition of 2,4-D or the natural auxin indole-3-acetic acid (IAA). Immediately following 2,4-D or IAA addition, a very complex pattern of oscillations is frequently observed. However, after several hours a dominant 24-min period emerges at the expense of the constitutive activity. A recruitment process analogous to that exhibited by prions is postulated to explain this behavior.

  6. Low temperature alters plasma membrane lipid composition and ATPase activity of pineapple fruit during blackheart development.

    PubMed

    Zhou, Yuchan; Pan, Xiaoping; Qu, Hongxia; Underhill, Steven J R

    2014-02-01

    Plasma membrane (PM) plays central role in triggering primary responses to chilling injury and sustaining cellular homeostasis. Characterising response of membrane lipids to low temperature can provide important information for identifying early causal factors contributing to chilling injury. To this end, PM lipid composition and ATPase activity were assessed in pineapple fruit (Ananas comosus) in relation to the effect of low temperature on the development of blackheart, a form of chilling injury. Chilling temperature at 10 °C induced blackheart development in concurrence with increase in electrolyte leakage. PM ATPase activity was decreased after 1 week at low temperature, followed by a further decrease after 2 weeks. The enzyme activity was not changed during 25 °C storage. Loss of total PM phospholipids was found during postharvest senescence, but more reduction was shown from storage at 10 °C. Phosphatidylcholine and phosphatidylethanolamine were the predominant PM phospholipid species. Low temperature increased the level of phosphatidic acid but decreased the level of phosphatidylinositol. Both phospholipid species were not changed during storage at 25 °C. Postharvest storage at both temperatures decreased the levels of C18:3 and C16:1, and increased level of C18:1. Low temperature decreased the level of C18:2 and increased the level of C14:0. Exogenous application of phosphatidic acid was found to inhibit the PM ATPase activity of pineapple fruit in vitro. Modification of membrane lipid composition and its effect on the functional property of plasma membrane at low temperature were discussed in correlation with their roles in blackheart development of pineapple fruit.

  7. Sensor-actuator coupled device for active tracheal tube using solid polymer electrolyte membrane

    NASA Astrophysics Data System (ADS)

    Ihara, Tadashi; Nakamura, Taro; Mukai, Toshiharu; Asaka, Kinji

    2007-04-01

    A sensor-actuator coupled device was developed using solid polymer electrolyte membrane (SPM) as an active tracheal tube for ventilator. Active tracheal tube is a novel type of tube for ventilator that removes patient's phlegm automatically upon sensing the narrowing of trachea by phlegm. This type of active tube is extremely useful in clinical settings as currently the sole measure to remove phlegm from patient's tube is to do it manually by a nurse every few hours. As SPM works both as a sensor and an actuator, an effective compact device was developed. SPM based sensor-actuator coupled device was fabricated with modified gold plating method. Prepared SPM was fixed as an array on a plastic pipe of diameter 22 mm and was connected to a ventilator circuit and driven by a ventilator with a volume control ventilation (VCV) mode. SPM was connected both to a sensing unit and an actuation unit. Generated voltage developed by the membrane with the setting of the maximum pressure from 5 cmH IIO to 20 cmH IIO was in order of several hundred μV. SPM sensor demonstrated a biphasic response to the ventilator flow. The sensor data showed nearly linearly proportional voltage development to the intra-tracheal pressure. The sensed signal was filtered and digitized with an A/D converting unit on a PC board. A real time operating program was used to detect the sensed signal that indicates the narrowing of trachea. The program then activated a driving signal to control the actuation of the membrane. The signal was sent to a D/A converting unit. The output of the D/A unit was sent to an amplifier and the galvanostat unit which drives the membrane with constant current regardless of the change in the load. It was demonstrated that the sensor-actuator unit detects the narrowing of trachea within several hundreds milli-seconds and responds by actuating the same membrane with the driving voltage of 3-4 V and driving current of several hundred milli-ampere for each membrane. SPM array

  8. Pretreatment with alum or powdered activated carbon reduces bacterial predation-associated irreversible fouling of membranes.

    PubMed

    Kim, Eun-Ho; Dwidar, Mohammed; Kwon, Young-Nam; Mitchell, Robert J

    2014-01-01

    This study evaluated the co-application of bacterial predation by Bdellovibrio bacteriovorus and either alum coagulation or powdered activated carbon adsorption to reduce fouling caused by Escherichia coli rich feed solutions in dead-end microfiltration tests. The flux increased when the samples were predated upon or treated with 100 ppm alum or PAC, but co-treatment with alum and predation gave the best flux results. The total membrane resistance caused by the predated sample was reduced six-fold when treated with 100 ppm PAC, from 11.8 to 1.98 × 10(11) m(-1), while irreversible fouling (Rp) was 2.7-fold lower. Treatment with 100 ppm alum reduced the total resistance 14.9-fold (11.8 to 0.79 × 10(11) m(-1)) while the Rp decreased 4.25-fold. SEM imaging confirmed this, with less obvious fouling of the membrane after the combined process. This study illustrates that the combination of bacterial predation and the subsequent removal of debris using coagulation or adsorption mitigates membrane biofouling and improves membrane performance. PMID:25410737

  9. Effect of ozone on the performance of a hybrid ceramic membrane-biological activated carbon process.

    PubMed

    Guo, Jianning; Hu, Jiangyong; Tao, Yi; Zhu, Jia; Zhang, Xihui

    2014-04-01

    Two hybrid processes including ozonation-ceramic membrane-biological activated carbon (BAC) (Process A) and ceramic membrane-BAC (Process B) were compared to treat polluted raw water. The performance of hybrid processes was evaluated with the removal efficiencies of turbidity, ammonia and organic matter. The results indicated that more than 99% of particle count was removed by both hybrid processes and ozonation had no significant effect on its removal. BAC filtration greatly improved the removal of ammonia. Increasing the dissolved oxygen to 30.0 mg/L could lead to a removal of ammonia with concentrations as high as 7.80 mg/L and 8.69 mg/L for Processes A and B, respectively. The average removal efficiencies of total organic carbon and ultraviolet absorbance at 254 nm (UV254, a parameter indicating organic matter with aromatic structure) were 49% and 52% for Process A, 51% and 48% for Process B, respectively. Some organic matter was oxidized by ozone and this resulted in reduced membrane fouling and increased membrane flux by 25%-30%. However, pre-ozonation altered the components of the raw water and affected the microorganisms in the BAC, which may impact the removals of organic matter and nitrite negatively.

  10. Particle counting as a tool to predict filterability in membrane bioreactors activated sludge?

    PubMed

    Lousada-Ferreira, M; Moreau, A; van Lier, J B; van der Graaf, J H J M

    2011-01-01

    Activated sludge quality is one of the major factors influencing flux decline in membrane bioreactors (MBRS). Sludge filterability is a recognized parameter to characterize the physical properties of activated sludge. Decrease in filterability is linked to a higher number of submicron particles. In our present research we studied whether particle counting techniques can be used to indicate deflocculation of the sludge suspended fraction to submicron particles, causing the aforementioned filterability decrease. A total number of 105 activated sludge samples were collected in four full scale municipal MBRS. Samples were tested for filterability and particle counting in the range 2-100 microm. In 88% of the membrane tank samples the filterability varied between good and poor, characterized by the deltaR20, being 0 < deltaR20 < 1. Filterability varied following the season of the year, stability of the MBR operation and recirculation ratio. The membrane tank filterability can be improved by applying low recirculation ratio between MBR tanks. The applied particle counting methodology generated reproducible and reliable results in the range 10-100 microm. Results show that differences in filterability cannot be explained by variations in particle size distribution in the range 10-100 microm. However, measurable deflocculation might be masked by the large numbers of particles present. Therefore, we cannot exclude the suspended particles as a possible source of submicron particles that are subsequently responsible for MBR sludge filterability deterioration.

  11. Membrane-active mechanism of LFchimera against Burkholderia pseudomallei and Burkholderia thailandensis.

    PubMed

    Kanthawong, Sakawrat; Puknun, Aekkalak; Bolscher, Jan G M; Nazmi, Kamran; van Marle, Jan; de Soet, Johannes J; Veerman, Enno C I; Wongratanacheewin, Surasakdi; Taweechaisupapong, Suwimol

    2014-10-01

    LFchimera, a construct combining two antimicrobial domains of bovine lactoferrin, lactoferrampin265-284 and lactoferricin17-30, possesses strong bactericidal activity. As yet, no experimental evidence was presented to evaluate the mechanisms of LFchimera against Burkholderia isolates. In this study we analyzed the killing activity of LFchimera on the category B pathogen Burkholderia pseudomallei in comparison to the lesser virulent Burkholderia thailandensis often used as a model for the highly virulent B. pseudomallei. Killing kinetics showed that B. thailandensis E264 was more susceptible for LFchimera than B. pseudomallei 1026b. Interestingly the bactericidal activity of LFchimera appeared highly pH dependent; B. thailandensis killing was completely abolished at and below pH 6.4. FITC-labeled LFchimera caused a rapid accumulation within 15 min in the cytoplasm of both bacterial species. Moreover, freeze-fracture electron microscopy demonstrated extreme effects on the membrane morphology of both bacterial species within 1 h of incubation, accompanied by altered membrane permeability monitored as leakage of nucleotides. These data indicate that the mechanism of action of LFchimera is similar for both species and encompasses disruption of the plasma membrane and subsequently leakage of intracellular nucleotides leading to cell dead.

  12. Subthreshold voltage noise due to channel fluctuations in active neuronal membranes.

    PubMed

    Steinmetz, P N; Manwani, A; Koch, C; London, M; Segev, I

    2000-01-01

    Voltage-gated ion channels in neuronal membranes fluctuate randomly between different conformational states due to thermal agitation. Fluctuations between conducting and nonconducting states give rise to noisy membrane currents and subthreshold voltage fluctuations and may contribute to variability in spike timing. Here we study subthreshold voltage fluctuations due to active voltage-gated Na+ and K+ channels as predicted by two commonly used kinetic schemes: the Mainen et al. (1995) (MJHS) kinetic scheme, which has been used to model dendritic channels in cortical neurons, and the classical Hodgkin-Huxley (1952) (HH) kinetic scheme for the squid giant axon. We compute the magnitudes, amplitude distributions, and power spectral densities of the voltage noise in isopotential membrane patches predicted by these kinetic schemes. For both schemes, noise magnitudes increase rapidly with depolarization from rest. Noise is larger for smaller patch areas but is smaller for increased model temperatures. We contrast the results from Monte Carlo simulations of the stochastic nonlinear kinetic schemes with analytical, closed-form expressions derived using passive and quasi-active linear approximations to the kinetic schemes. For all subthreshold voltage ranges, the quasi-active linearized approximation is accurate within 8% and may thus be used in large-scale simulations of realistic neuronal geometries.

  13. Effect of N-terminal truncation on antibacterial activity, cytotoxicity and membrane perturbation activity of Cc-CATH3.

    PubMed

    Jittikoon, Jiraphun; Ngamsaithong, Narumon; Pimthon, Jutarat; Vajragupta, Opa

    2015-10-01

    A series of amino-terminal truncated analogues of quail antimicrobial peptide Cc-CATH3(1-29) were created and examined antibacterial activity against Gram-positive bacteria, cytotoxicity against mouse fibroblast cell line, and membrane perturbation activity against various membrane models. Parent peptide Cc-CATH3(1-29) and the first four-residue truncated peptide Cc-CATH3(5-29) were active in all tested experiments. In contrast, the eight- and twelve-residue truncated variants Cc-CATH3(9-29) and Cc-CATH3(13-29) appeared to have lost activities. Cc-CATH3(1-29) and Cc-CATH3(5-29) possessed antibacterial activity with minimum inhibitory concentrations of 2-4 and 1-2 µM, respectively. For cytotoxicity, Cc-CATH3(1-29) and Cc-CATH3(5-29) displayed cytotoxicity with the IC50 values of 9.33 and 4.93 μM, respectively. Cc-CATH3(5-29) induced greater liposome membranes disruption than Cc-CATH3(1-29) regardless of lipid type and composition. The leakage results of Cc-CATH3(1-29) share a similar trend with that in Cc-CATH3(5-29); they exhibit no preferential binding to anionic phospholipids. In conclusion, the results suggested that the first four residues at the N-terminus "RVRR" is not essential for presenting all test activities. In contrast, residues five to eight of "FWPL" are necessary as the exclusion of this short motif in Cc-CATH3(9-29) and Cc-CATH3(13-29) leads to a loss of activities. This study will be beneficial for further design and development of Cc-CATH3 to be novel antibiotic.

  14. 3,6-O-[N-(2-Aminoethyl)-acetamide-yl]-chitosan exerts antibacterial activity by a membrane damage mechanism.

    PubMed

    Yan, Feilong; Dang, Qifeng; Liu, Chengsheng; Yan, Jingquan; Wang, Teng; Fan, Bing; Cha, Dongsu; Li, Xiaoli; Liang, Shengnan; Zhang, Zhenzhen

    2016-09-20

    A novel chitosan derivative, 3,6-O-[N-(2-aminoethyl)-acetamide-yl]-chitosan (AACS), was successfully prepared to improve water solubility and antibacterial activity of chitosan. AACS had good antibacterial activity, with minimum inhibitory concentrations of 0.25mg/mL, against Escherichia coli and Staphylococcus aureus. Cell membrane integrity, electric conductivity and NPN uptake tests showed that AACS caused quickly increasing the release of intracellular nucleic acids, the uptake of NPN, and the electric conductivity by damaging membrane integrity. On the other hand, hydrophobicity, cell viability and SDS-PAGE experiments indicated that AACS was able to reduce the surface hydrophobicity, the cell viability and the intracellular proteins through increasing membrane permeability. SEM observation further confirmed that AACS could kill bacteria via disrupting their membranes. All results above verified that AACS mainly exerted antibacterial activity by a membrane damage mechanism, and it was expected to be a new food preservative. PMID:27261735

  15. Design and synthesis of novel prodrugs of 2'-deoxy-2'-methylidenecytidine activated by membrane dipeptidase overexpressed in tumor tissues.

    PubMed

    Kohchi, Yasunori; Hattori, Kazuo; Oikawa, Nobuhiro; Mizuguchi, Eisaku; Isshiki, Yoshiaki; Aso, Kohsuke; Yoshinari, Kiyoshi; Shirai, Haruyoshi; Miwa, Masanori; Inagaki, Yukiko; Ura, Masako; Ogawa, Kotaroh; Okabe, Hisafumi; Ishitsuka, Hideo; Shimma, Nobuo

    2007-04-15

    DNA microarray analysis comparing human tumor tissues with normal tissues including hematopoietic progenitor cells resulted in identification of membrane dipeptidase as a prodrug activation enzyme. Novel prodrugs of 2'-deoxy-2'-methylidenecytidine (DMDC) including compound 23 that are activated by membrane dipeptidase (MDP) preferentially in tumor tissue were designed and synthesized to generate the active drug, DMDC, after hydrolysis of the dipeptide bond followed by spontaneous cyclization of the promoiety.

  16. Photosynthesis Activates Plasma Membrane H+-ATPase via Sugar Accumulation1[OPEN

    PubMed Central

    Okumura, Masaki; Inoue, Shin-ichiro; Kuwata, Keiko

    2016-01-01

    Plant plasma membrane H+-ATPase acts as a primary transporter via proton pumping and regulates diverse physiological responses by controlling secondary solute transport, pH homeostasis, and membrane potential. Phosphorylation of the penultimate threonine and the subsequent binding of 14-3-3 proteins in the carboxyl terminus of the enzyme are required for H+-ATPase activation. We showed previously that photosynthesis induces phosphorylation of the penultimate threonine in the nonvascular bryophyte Marchantia polymorpha. However, (1) whether this response is conserved in vascular plants and (2) the process by which photosynthesis regulates H+-ATPase phosphorylation at the plasma membrane remain unresolved issues. Here, we report that photosynthesis induced the phosphorylation and activation of H+-ATPase in Arabidopsis (Arabidopsis thaliana) leaves via sugar accumulation. Light reversibly phosphorylated leaf H+-ATPase, and this process was inhibited by pharmacological and genetic suppression of photosynthesis. Immunohistochemical and biochemical analyses indicated that light-induced phosphorylation of H+-ATPase occurred autonomously in mesophyll cells. We also show that the phosphorylation status of H+-ATPase and photosynthetic sugar accumulation in leaves were positively correlated and that sugar treatment promoted phosphorylation. Furthermore, light-induced phosphorylation of H+-ATPase was strongly suppressed in a double mutant defective in ADP-glucose pyrophosphorylase and triose phosphate/phosphate translocator (adg1-1 tpt-2); these mutations strongly inhibited endogenous sugar accumulation. Overall, we show that photosynthesis activated H+-ATPase via sugar production in the mesophyll cells of vascular plants. Our work provides new insight into signaling from chloroplasts to the plasma membrane ion transport mechanism. PMID:27016447

  17. Biological removal of antiandrogenic activity in gray wastewater and coking wastewater by membrane reactor process.

    PubMed

    Ma, Dehua; Chen, Lujun; Liu, Cong; Bao, Chenjun; Liu, Rui

    2015-07-01

    A recombinant human androgen receptor yeast assay was applied to investigate the occurrence of antiandrogens as well as the mechanism for their removal during gray wastewater and coking wastewater treatment. The membrane reactor (MBR) system for gray wastewater treatment could remove 88.0% of antiandrogenic activity exerted by weakly polar extracts and 97.3% of that by moderately strong polar extracts, but only 32.5% of that contributed by strong polar extracts. Biodegradation by microorganisms in the MBR contributed to 95.9% of the total removal. After the treatment, the concentration of antiandrogenic activity in the effluent was still 1.05 μg flutamide equivalence (FEQ)/L, 36.2% of which was due to strong polar extracts. In the anaerobic reactor, anoxic reactor, and membrane reactor system for coking wastewater treatment, the antiandrogenic activity of raw coking wastewater was 78.6 mg FEQ/L, and the effluent of the treatment system had only 0.34 mg FEQ/L. The antiandrogenic activity mainly existed in the medium strong polar and strong polar extracts. Biodegradation by microorganisms contributed to at least 89.2% of the total antiandrogenic activity removal in the system. Biodegradation was the main removal mechanism of antiandrogenic activity in both the wastewater treatment systems.

  18. Mg2+ is an essential activator of hydrolytic activity of membrane-bound pyrophosphatase of Rhodospirillum rubrum.

    PubMed Central

    Sosa, A; Ordaz, H; Romero, I; Celis, H

    1992-01-01

    The substrate for the hydrolytic activity of membrane-bound pyrophosphatase is the PP(i)-Mg2+ complex. The enzyme has no activity when the free Mg2+ concentration is lower than 10 microM (at 0.5 mM-PP(i)-Mg2+), and therefore free Mg2+ is an essential activator of the hydrolytic activity. The Km for the substrate changes in response to variation in free Mg2+ concentration, from 10.25 to 0.6 mM when free Mg2+ is increased from 0.03 to 1.0 mM respectively. The Km for Mg2+ depends on the substrate concentration: the Km decreases from 0.52 to 0.14 mM from 0.25 to 0.75 mM-PP(i)-Mg2+ respectively. The extrapolated Km for Mg2+ in the absence of the substrate is 0.73 mM. Imidodiphosphate-Mg2+ and free Ca2+ were used as competitive inhibitors of substrate and activator respectively. The equilibrium binding kinetics suggest an ordered mechanism for the activator and the substrate: Mg2+ ions bind the enzyme before PP(i)-Mg2+ in the formation of the catalytic complex, membrane-bound pyrophosphatase-(Mg2+)-(PP(i)-Mg2+). PMID:1315519

  19. Chloride channels activated by swell can regulate the NADPH oxidase generated membrane depolarisation in activated human neutrophils

    SciTech Connect

    Ahluwalia, Jatinder

    2008-01-11

    Chloride channels activated by swell have important functions in many physiological processes. The phagocyte NADPH oxidase is essential for host defence and it generates superoxide by transferring electrons from the donor NADPH to the acceptor O{sub 2}. This electron current, induces a depolarisation of the plasma membrane. In this study, I report that chloride channels activated by swell can counteract the depolarisation induced by the NADPH oxidase. When a chloride conductance was activated by swelling, its inhibition by either 50 {mu}M NPPB or removing external chloride, depolarised the plasma membrane potential to +26 mV {+-} 3.1 (n = 4) and +40 {+-} 1 mV (n = 4), respectively. These channels were partially inhibited by the NADPH oxidase inhibitor AEBSF (1 mM) and potently inhibited by ZnCl{sub 2} (3 mM). These currents were not activated by a phosphorylation step and elevations in intracellular calcium did not appear to activate chloride currents similar to those activated by swell.

  20. Listeriolysin O Membrane Damaging Activity Involves Arc Formation and Lineaction -- Implication for Listeria monocytogenes Escape from Phagocytic Vacuole

    PubMed Central

    Ruan, Yi; Rezelj, Saša; Bedina Zavec, Apolonija; Anderluh, Gregor; Scheuring, Simon

    2016-01-01

    Listeriolysin-O (LLO) plays a crucial role during infection by Listeria monocytogenes. It enables escape of bacteria from phagocytic vacuole, which is the basis for its spread to other cells and tissues. It is not clear how LLO acts at phagosomal membranes to allow bacterial escape. The mechanism of action of LLO remains poorly understood, probably due to unavailability of suitable experimental tools that could monitor LLO membrane disruptive activity in real time. Here, we used high-speed atomic force microscopy (HS-AFM) featuring high spatio-temporal resolution on model membranes and optical microscopy on giant unilamellar vesicles (GUVs) to investigate LLO activity. We analyze the assembly kinetics of toxin oligomers, the prepore-to-pore transition dynamics and the membrane disruption in real time. We reveal that LLO toxin efficiency and mode of action as a membrane-disrupting agent varies strongly depending on the membrane cholesterol concentration and the environmental pH. We discovered that LLO is able to form arc pores as well as damage lipid membranes as a lineactant, and this leads to large-scale membrane defects. These results altogether provide a mechanistic basis of how large-scale membrane disruption leads to release of Listeria from the phagocytic vacuole in the cellular context. PMID:27104344

  1. Fatty acid composition of plasma lipids and erythrocyte membranes during simulated extravehicular activity

    NASA Astrophysics Data System (ADS)

    Skedina, M. A.; Katuntsev, V. P.; Buravkova, L. B.; Naidina, V. P.

    Ten subjects (from 27 to 41 years) have been participated in 32 experiments. They were decompressed from ground level to 40-35 kPa in altitude chamber when breathed 100% oxygen by mask and performed repeated cycles of exercises (3.0 Kcal/min). The intervals between decompressions were 3-5 days. Plasma lipid and erythrocyte membrane fatty acid composition was evaluated in the fasting venous blood before and immediately after hypobaric exposure. There were 7 cases decompression sickness (DCS). Venous gas bubbles (GB) were detected in 27 cases (84.4%). Any significant changes in the fatty acid composition of erythrocyte membranes and plasma didn't practically induce after the first decompression. However, by the beginning of the second decompression the total lipid level in erythrocyte membranes decreased from 54.6 mg% to 40.4 mg% in group with DCS symptoms and from 51.2 mg% to 35.2 mg% (p < 0.05) without DCS symptoms. In group with DCS symptoms a tendency to increased level of saturated fatty acids in erythrocyte membranes (16:0, 18:0), the level of the polyunsaturated linoleic fatty acid (18:2) and arachidonic acid (20:4) tended to be decreased by the beginning of the second decompression. Insignificant changes in blood plasma fatty acid composition was observed in both groups. The obtained biochemical data that indicated the simulated extravehicular activity (EVA) condition is accompanied by the certain changes in the blood lipid metabolism, structural and functional state of erythrocyte membranes, which are reversible. The most pronounced changes are found in subjects with DCS symptoms.

  2. Fatty acid composition of plasma lipids and erythrocyte membranes during simulated extravehicular activity.

    PubMed

    Skedina, M A; Katuntsev, V P; Buravkova, L B; Naidina, V P

    1998-01-01

    Ten subjects (from 27 to 41 years) have been participated in 32 experiments. They were decompressed from ground level to 40-35 kPa in altitude chamber when breathed 100% oxygen by mask and performed repeated cycles of exercises (3.0 Kcal/min). The intervals between decompressions were 3-5 days. Plasma lipid and erythrocyte membrane fatty acid composition was evaluated in the fasting venous blood before and immediately after hypobaric exposure. There were 7 cases decompression sickness (DCS). Venous gas bubbles (GB) were detected in 27 cases (84.4%). Any significant changes in the fatty acid composition of erythrocyte membranes and plasma didn't practically induce after the first decompression. However, by the beginning of the second decompression the total lipid level in erythrocyte membranes decreased from 54.6 mg% to 40.4 mg% in group with DCS symptoms and from 51.2 mg% to 35.2 mg% (p<0.05) without DCS symptoms. In group with DCS symptoms a tendency to increased level of saturated fatty acids in erythrocyte membranes (16:0, 18:0), the level of the polyunsaturated linoleic fatty acid (18:2) and arachidonic acid (20:4) tended to be decreased by the beginning of the second decompression. Insignificant changes in blood plasma fatty acid composition was observed in both groups. The obtained biochemical data that indicated the simulated extravehicular activity (EVA) condition is accompanied by the certain changes in the blood lipid metabolism, structural and functional state of erythrocyte membranes, which are reversible. The most pronounced changes are found in subjects with DCS symptoms.

  3. The membrane remodeling protein Pex11p activates the GTPase Dnm1p during peroxisomal fission

    PubMed Central

    Opalinski, Lukasz; Landgraf, Christiane; Costello, Joseph; Schrader, Michael; Krikken, Arjen M.; Knoops, Kèvin; Kram, Anita M.; Volkmer, Rudolf; van der Klei, Ida J.

    2015-01-01

    The initial phase of peroxisomal fission requires the peroxisomal membrane protein Peroxin 11 (Pex11p), which remodels the membrane, resulting in organelle elongation. Here, we identify an additional function for Pex11p, demonstrating that Pex11p also plays a crucial role in the final step of peroxisomal fission: dynamin-like protein (DLP)-mediated membrane scission. First, we demonstrate that yeast Pex11p is necessary for the function of the GTPase Dynamin-related 1 (Dnm1p) in vivo. In addition, our data indicate that Pex11p physically interacts with Dnm1p and that inhibiting this interaction compromises peroxisomal fission. Finally, we demonstrate that Pex11p functions as a GTPase activating protein (GAP) for Dnm1p in vitro. Similar observations were made for mammalian Pex11β and the corresponding DLP Drp1, indicating that DLP activation by Pex11p is conserved. Our work identifies a previously unknown requirement for a GAP in DLP function. PMID:25941407

  4. Channel-forming activities of peroxisomal membrane proteins from the yeast Saccharomyces cerevisiae.

    PubMed

    Grunau, Silke; Mindthoff, Sabrina; Rottensteiner, Hanspeter; Sormunen, Raija T; Hiltunen, J Kalervo; Erdmann, Ralf; Antonenkov, Vasily D

    2009-03-01

    Highly-purified peroxisomes from the yeast Saccharomyces cerevisiae grown on oleic acid were investigated for the presence of channel (pore)-forming proteins in the membrane of these organelles. Solubilized membrane proteins were reconstituted in planar lipid bilayers and their pore-forming activity was studied by means of multiple-channel monitoring or single-channel analysis. Two abundant pore-forming activities were detected with an average conductance of 0.2 and 0.6 nS in 1.0 m KCl, respectively. The high-conductance pore (0.6 nS in 1.0 m KCl) is slightly selective to cations (P(K+)/P(Cl-) approximately 1.3) and showed an unusual flickering at elevated (> +/-40 mV) holding potentials directed upward relative to the open state of the channel. The data obtained for the properties of the low-conductance pore (0.2 nS in 1.0 m KCl) support the notion that the high-conductance channel represents a cluster of two low-conductance pores. The results lead to conclusion that the yeast peroxisomes contain membrane pore-forming proteins that may aid the transfer of small solutes between the peroxisomal lumen and cytoplasm.

  5. Human proximal tubule epithelial cells cultured on hollow fibers: living membranes that actively transport organic cations.

    PubMed

    Jansen, J; De Napoli, I E; Fedecostante, M; Schophuizen, C M S; Chevtchik, N V; Wilmer, M J; van Asbeck, A H; Croes, H J; Pertijs, J C; Wetzels, J F M; Hilbrands, L B; van den Heuvel, L P; Hoenderop, J G; Stamatialis, D; Masereeuw, R

    2015-11-16

    The bioartificial kidney (BAK) aims at improving dialysis by developing 'living membranes' for cells-aided removal of uremic metabolites. Here, unique human conditionally immortalized proximal tubule epithelial cell (ciPTEC) monolayers were cultured on biofunctionalized MicroPES (polyethersulfone) hollow fiber membranes (HFM) and functionally tested using microfluidics. Tight monolayer formation was demonstrated by abundant zonula occludens-1 (ZO-1) protein expression along the tight junctions of matured ciPTEC on HFM. A clear barrier function of the monolayer was confirmed by limited diffusion of FITC-inulin. The activity of the organic cation transporter 2 (OCT2) in ciPTEC was evaluated in real-time using a perfusion system by confocal microscopy using 4-(4-(dimethylamino)styryl)-N-methylpyridinium iodide (ASP(+)) as a fluorescent substrate. Initial ASP(+) uptake was inhibited by a cationic uremic metabolites mixture and by the histamine H2-receptor antagonist, cimetidine. In conclusion, a 'living membrane' of renal epithelial cells on MicroPES HFM with demonstrated active organic cation transport was successfully established as a first step in BAK engineering.

  6. Sweetness-induced activation of membrane dipole potential in STC-1 taste cells.

    PubMed

    Chen, Li-Chun; Xie, Ning-Ning; Deng, Shao-Ping

    2016-12-01

    The biological functions of cell membranes strongly influence the binding and transport of molecular species. We developed STC-1 cell line stably expressing the sweet taste receptor (T1R2/T1R3), and explored the possible correlation between sweeteners and membrane dipole potential of STC-1 cells. In this study, sweetener-induced dipole potential activation was elucidated using a fluorescence-based measurement technique, by monitoring the voltage sensitive probe Di-8-ANEPPS using a dual wavelength ratiometric approach. It indicated that the presence of sweeteners resulted in cell membrane dipole potential change, and interaction of artificial sweeteners with taste cells resulted in a greater reduction in potential compared with natural sweeteners. Our work presents a newly developed approach using a fluorescence-based measurement technique to study sweetener-induced dipole potential activation of STC-1 cells. This new approach could be used as a complementary tool to study the function of sweet taste receptors or other GPCRs and helps to understand the basis sweetness mechanism. PMID:27374594

  7. Leveraging electrokinetics for the active control of dendritic fullerene-1 release across a nanochannel membrane

    NASA Astrophysics Data System (ADS)

    Bruno, Giacomo; Geninatti, Thomas; Hood, R. Lyle; Fine, Daniel; Scorrano, Giovanni; Schmulen, Jeffrey; Hosali, Sharath; Ferrari, Mauro; Grattoni, Alessandro

    2015-03-01

    General adoption of advanced treatment protocols such as chronotherapy will hinge on progress in drug delivery technologies that provide precise temporal control of therapeutic release. Such innovation is also crucial to future medicine approaches such as telemedicine. Here we present a nanofluidic membrane technology capable of achieving active and tunable control of molecular transport through nanofluidic channels. Control was achieved through application of an electric field between two platinum electrodes positioned on either surface of a 5.7 nm nanochannel membrane designed for zero-order drug delivery. Two electrode configurations were tested: laser-cut foils and electron beam deposited thin-films, configurations capable of operating at low voltage (<=1.5 V), and power (100 nW). Temporal, reproducible tuning and interruption of dendritic fullerene 1 (DF-1) transport was demonstrated over multi-day release experiments. Conductance tests showed limiting currents in the low applied potential range, implying ionic concentration polarization (ICP) at the interface between the membrane's micro- and nanochannels, even in concentrated solutions (<=1 M NaCl). The ability of this nanotechnology platform to facilitate controlled delivery of molecules and particles has broad applicability to next-generation therapeutics for numerous pathologies, including autoimmune diseases, circadian dysfunction, pain, and stress, among others.General adoption of advanced treatment protocols such as chronotherapy will hinge on progress in drug delivery technologies that provide precise temporal control of therapeutic release. Such innovation is also crucial to future medicine approaches such as telemedicine. Here we present a nanofluidic membrane technology capable of achieving active and tunable control of molecular transport through nanofluidic channels. Control was achieved through application of an electric field between two platinum electrodes positioned on either surface of a 5

  8. Stratification structure of polysaccharides and proteins in activated sludge with different aeration in membrane bioreactor.

    PubMed

    Zhang, Haifeng; Yu, Haihuan; Zhang, Lanhe; Song, Lianfa

    2015-09-01

    The effect of distribution pattern of polysaccharides (PS) and proteins (PN) in activated sludge (AS) stratification with different aeration rates on membrane fouling and rejection efficiency were investigated. During high aeration, PN and PS concentrations increased in supernatant, the dominant fraction (84% of PN and 73% of PS) was small molecules (<1 kDa). Less slime and loose bound extracellular polymeric substances (LB-EPS), more tight bound EPS (TB-EPS) were observed compared with low aeration. The decrease in PN/PS ratio and Ca(2+) concentration within EPS deteriorated AS flocculation ability. At slow trans-membrane pressure (TMP) rise stage, fouling rate under high aeration was 41% lower than low aeration due to lower PN within EPS outer. Low PS rejection rate (about 23%) leaded to higher PS in effluent at this stage. High PS rejection rate (about 94%) at rapid TMP rise stage resulted in about 2.2-time higher fouling rate than that low aeration.

  9. Lipopeptaibol metabolites of tolypocladium geodes: total synthesis, preferred conformation, and membrane activity.

    PubMed

    Rainaldi, Mario; Moretto, Alessandro; Peggion, Cristina; Formaggio, Fernando; Mammi, Stefano; Peggion, Evaristo; Galvez, José Antonio; Díaz-de-Villegas, Maria Dolores; Cativiela, Carlos; Toniolo, Claudio

    2003-08-01

    We have synthesized by solution methods and characterized the lipopeptaibol metabolite LP237-F8 extracted from the fungus Tolypocladium geodes and five selected analogues with the Etn-->Aib or Etn-->Nva replacement at position 8 and/or a triple Gln-->Glu(OMe) replacement at positions 5, 6, and 9 (Etn=Calpha-ethylnorvaline, Aib=alpha-aminoisobutyric acid, Nva=norvaline). Conformation analysis, performed by FT-IR absorption, NMR, and CD techniques, strongly supports the view that the six terminally blocked decapeptides are highly helical in solution. Helix topology and amphiphilic character are responsible for their remarkable membrane activity. At position 8 the combination of high hydrophobicity and Calpha tetrasubstitution, as in the Etn-containing LP237-F8 metabolite, has a positive effect on membrane interaction.

  10. Study of FBAR response with variation in active area of membrane

    NASA Astrophysics Data System (ADS)

    Gill, Gurpreet Singh; Singh, Tarandip; Prasad, Mahanth

    2016-04-01

    In most of the communication devices such as filter, duplexer and oscillator, the need of acoustic resonator is the key part because of their small size and high performances. The design of a resonator based on three layers: (1) Bottom metal electrode such as Pt, Mo, Al and Au etc. (2) Piezoelectric layer such as ZnO, AlN and PZT etc. and (3) Top metal electrode. In this paper, the effects of active area on resonance frequency and impedance response of FBAR device have been studied. The FBAR devices having different membrane sizes, 150×150 µm2, 300×300 µm2, 450×450 µm2 and 600×600 µm2 were designed and simulated using COMSOL software Tool. The variation in resonance frequencies are found to be 2.62-2.65 GHz. Based on simulation results, one of the membrane having size, 300×300 µm2 has been fabricated for FBAR device.

  11. Antimicrobial activity of potato aspartic proteases (StAPs) involves membrane permeabilization.

    PubMed

    Mendieta, Julieta R; Pagano, Mariana R; Muñoz, Fernando F; Daleo, Gustavo R; Guevara, María G

    2006-07-01

    Solanum tuberosum aspartic proteases (StAPs) with antimicrobial activity are induced after abiotic and biotic stress. In this study the ability of StAPs to produce a direct antimicrobial effect was investigated. Viability assays demonstrated that StAPs are able to kill spores of Fusarium solani and Phytophthora infestans in a dose-dependent manner. Localization experiments with FITC-labelled StAPs proved that the proteins interact directly with the surface of spores and hyphae of F. solani and P. infestans. Moreover, incubation of spores and hyphae with StAPs resulted in membrane permeabilization, as shown by the uptake of the fluorescent dye SYTOX Green. It is concluded that the antimicrobial effect of StAPs against F. solani and P. infestans is caused by a direct interaction with the microbial surfaces followed by membrane permeabilization.

  12. Membrane Potential Controls the Efficacy of Catecholamine-induced β1-Adrenoceptor Activity.

    PubMed

    Birk, Alexandra; Rinne, Andreas; Bünemann, Moritz

    2015-11-01

    G protein-coupled receptors (GPCRs) are membrane-located proteins and, therefore, are exposed to changes in membrane potential (V(M)) in excitable tissues. These changes have been shown to alter receptor activation of certain Gi-and Gq-coupled GPCRs. By means of a combination of whole-cell patch-clamp and Förster resonance energy transfer (FRET) in single cells, we demonstrate that the activation of the Gs-coupled β1-adrenoreceptor (β1-AR) by the catecholamines isoprenaline (Iso) and adrenaline (Adr) is regulated by V(M). This voltage-dependence is also transmitted to G protein and arrestin 3 signaling. Voltage-dependence of β2-AR activation, however, was weak compared with β1-AR voltage-dependence. Drug efficacy is a major target of β1-AR voltage-dependence as depolarization attenuated receptor activation, even under saturating concentrations of agonists, with significantly faster kinetics than the deactivation upon agonist withdrawal. Also the efficacy of the endogenous full agonist adrenaline was reduced by depolarization. This is a unique finding since reports of natural full agonists at other voltage-dependent GPCRs only show alterations in affinity during depolarization. Based on a Boltzmann function fit to the relationship of V(M) and receptor-arrestin 3 interaction we determined the voltage-dependence with highest sensitivity in the physiological range of membrane potential. Our data suggest that under physiological conditions voltage regulates the activity of agonist-occupied β1-adrenoceptors on a very fast time scale.

  13. The Immunosuppressive Activity of Amniotic Membrane Mesenchymal Stem Cells on T Lymphocytes

    PubMed Central

    Alikarami, Fatemeh; Yari, Fatemeh; Amirizadeh, Naser; Nikougoftar, Mahin; Jalili, Mohammad Ali

    2015-01-01

    Background: Mesenchymal Stem Cells (MSCs) are isolated from different sources like placenta. The placenta and its membranes like Amniotic Membrane (AM) are readily available and easy to work with. There is only limited knowledge on the immunomodulatory properties of human Amniotic Membrane-derived Mesenchymal Stem Cells (hAM-MSCs). The aim of this study was to survey the suppressive activity of hAM-MSCs on T lymphocytes in vitro. Methods: Human AMs were obtained after caesarean section births from healthy women. After enzymatic digestion, cells were cultured and hAM-MSCs were obtained. In addition, human T lymphocytes were isolated and co-cultured with hAM-MSCs for 72 hr in the presence or absence of phytohemagglutinin (PHA). Subsequently, proliferation of T cells was analyzed using BrdU and subsequently flow cytometry technique. Besides, the production of IL-4 and IFN-γ was examined by ELISA method. Additionally, the expression of activation markers (CD38, HLA-DR) was studied on T lymphocytes by flow cytometry technique. Results: It was revealed that hAM-MSCs could significantly suppress the proliferation of T lymphocytes (p≤0.01) and significantly decrease the production of IFN-γ by T cells (p<0.05). hAM-MSCs also down regulated the expression of activation markers on the surface of T lymphocytes, CD38 and HLA-DR. The difference was significant between the case and control samples (p<0.05). All the comparisons were carried out between the case (Tcell+PHA+hAM-MSCs) and control (Tcell+PHA) groups. Conclusion: In conclusion, hAM-MSCs could inhibit the (mitogen-activated) T cells even in the absence of blood monocytes. Besides, hAM-MSCs-mediated inhibition of T lymphocytes was combined with down regulation of activation markers. PMID:26306147

  14. A protein chip membrane-capture assay for botulinum neurotoxin activity

    SciTech Connect

    Marconi, Severine; Ferracci, Geraldine; Berthomieu, Maelys; Kozaki, Shunji; Miquelis, Raymond; Boucraut, Jose; Seagar, Michael

    2008-12-15

    Botulinum neurotoxins A and B (BoNT/A and B) are neuromuscular blocking agents which inhibit neurotransmission by cleaving the intra-cellular presynaptic SNARE proteins SNAP-25 and VAMP2, localized respectively in plasma membrane and synaptic vesicles. These neurotoxins are both dangerous pathogens and powerful therapeutic agents with numerous clinical and cosmetic applications. Consequently there is a need for in vitro assays of their biological activity to screen for potential inhibitors and to replace the widely used in vivo mouse assay. Surface plasmon resonance (SPR) was used to measure membrane vesicle capture by antibodies against SNAP-25 and VAMP2. Substrate cleavage by BoNTs modified capture providing a method to assay toxin activity. Firstly using synaptic vesicles as a substrate, a comparison of the EC{sub 50}s for BoNT/B obtained by SPR, ELISA or flow cytometry indicated similar sensitivity although SPR assays were more rapid. Sonication of brain or neuronal cultures generated plasma membrane fragments with accessible intra-cellular epitopes adapted to measurement of BoNT/A activity. SPR responses were proportional to antigen concentration permitting detection of as little as 4 pM SNAP-25 in crude lysates. BoNT/A activity was assayed using monoclonal antibodies that specifically recognize a SNAP-25 epitope generated by the proteolytic action of the toxin. Incubation of intact primary cultured neurons with BoNT/A yielded an EC{sub 50} of 0.5 pM. The SPR biosensor method was sensitive enough to monitor BoNT/A and B activity in cells cultured in a 96-well format providing an alternative to experimental animals for toxicological assays.

  15. Broad spectrum antibacterial and antifungal polymeric paint materials: synthesis, structure-activity relationship, and membrane-active mode of action.

    PubMed

    Hoque, Jiaul; Akkapeddi, Padma; Yadav, Vikas; Manjunath, Goutham B; Uppu, Divakara S S M; Konai, Mohini M; Yarlagadda, Venkateswarlu; Sanyal, Kaustuv; Haldar, Jayanta

    2015-01-28

    Microbial attachment and subsequent colonization onto surfaces lead to the spread of deadly community-acquired and hospital-acquired (nosocomial) infections. Noncovalent immobilization of water insoluble and organo-soluble cationic polymers onto a surface is a facile approach to prevent microbial contamination. In the present study, we described the synthesis of water insoluble and organo-soluble polymeric materials and demonstrated their structure-activity relationship against various human pathogenic bacteria including drug-resistant strains such as methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant enterococci (VRE), and beta lactam-resistant Klebsiella pneumoniae as well as pathogenic fungi such as Candida spp. and Cryptococcus spp. The polymer coated surfaces completely inactivated both bacteria and fungi upon contact (5 log reduction with respect to control). Linear polymers were more active and found to have a higher killing rate than the branched polymers. The polymer coated surfaces also exhibited significant activity in various complex mammalian fluids such as serum, plasma, and blood and showed negligible hemolysis at an amount much higher than minimum inhibitory amounts (MIAs). These polymers were found to have excellent compatibility with other medically relevant polymers (polylactic acid, PLA) and commercial paint. The cationic hydrophobic polymer coatings disrupted the lipid membrane of both bacteria and fungi and thus showed a membrane-active mode of action. Further, bacteria did not develop resistance against these membrane-active polymers in sharp contrast to conventional antibiotics and lipopeptides, thus the polymers hold great promise to be used as coating materials for developing permanent antimicrobial paint. PMID:25541751

  16. Broad spectrum antibacterial and antifungal polymeric paint materials: synthesis, structure-activity relationship, and membrane-active mode of action.

    PubMed

    Hoque, Jiaul; Akkapeddi, Padma; Yadav, Vikas; Manjunath, Goutham B; Uppu, Divakara S S M; Konai, Mohini M; Yarlagadda, Venkateswarlu; Sanyal, Kaustuv; Haldar, Jayanta

    2015-01-28

    Microbial attachment and subsequent colonization onto surfaces lead to the spread of deadly community-acquired and hospital-acquired (nosocomial) infections. Noncovalent immobilization of water insoluble and organo-soluble cationic polymers onto a surface is a facile approach to prevent microbial contamination. In the present study, we described the synthesis of water insoluble and organo-soluble polymeric materials and demonstrated their structure-activity relationship against various human pathogenic bacteria including drug-resistant strains such as methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant enterococci (VRE), and beta lactam-resistant Klebsiella pneumoniae as well as pathogenic fungi such as Candida spp. and Cryptococcus spp. The polymer coated surfaces completely inactivated both bacteria and fungi upon contact (5 log reduction with respect to control). Linear polymers were more active and found to have a higher killing rate than the branched polymers. The polymer coated surfaces also exhibited significant activity in various complex mammalian fluids such as serum, plasma, and blood and showed negligible hemolysis at an amount much higher than minimum inhibitory amounts (MIAs). These polymers were found to have excellent compatibility with other medically relevant polymers (polylactic acid, PLA) and commercial paint. The cationic hydrophobic polymer coatings disrupted the lipid membrane of both bacteria and fungi and thus showed a membrane-active mode of action. Further, bacteria did not develop resistance against these membrane-active polymers in sharp contrast to conventional antibiotics and lipopeptides, thus the polymers hold great promise to be used as coating materials for developing permanent antimicrobial paint.

  17. Ocimum sanctum essential oil and its active principles exert their antifungal activity by disrupting ergosterol biosynthesis and membrane integrity.

    PubMed

    Khan, Amber; Ahmad, Aijaz; Akhtar, Feroz; Yousuf, Snowber; Xess, Immaculata; Khan, Luqman A; Manzoor, Nikhat

    2010-12-01

    The increasing incidence of drug-resistant pathogens and host toxicity of existing antifungals attracts attention toward the efficacy of natural products as antifungals in mucocutaneous infections and combinational therapies. The composition and antifungal activity of the essential oil obtained from Ocimum sanctum (OSEO) was studied. On GC-MS analysis, OSEO showed a high content of methyl chavicol (44.63%) and linalool (21.84%). Antifungal activity of OSEO and its two main constituents was determined against sixty clinical and five standard laboratory isolates of Candida. OSEO, methyl chavicol and linalool showed inhibitory activity toward all tested strains. The mechanism of their fungicidal action was assessed by studying their effect on the plasma membrane using flow cytometry, confocal imaging and determination of the levels of ergosterol, a fungal-specific sterol. Propidium iodide rapidly penetrated a majority of yeast cells when they were treated with OSEO concentrations just above MIC, implying that fungicidal activity resulted from extensive lesions of the plasma membrane. OSEO and its components also caused a considerable reduction in the amount of ergosterol. The present study indicates that OSEO, methyl chavicol and linalool have significant antifungal activity against Candida, including azole-resistant strains, advocating further investigation for clinical applications in the treatment of fungal infections. PMID:20868749

  18. Total nitrogen removal in a hybrid, membrane-aerated activated sludge process.

    PubMed

    Downing, Leon S; Nerenberg, Robert

    2008-08-01

    The hybrid (suspended and attached growth) membrane biofilm process (HMBP) is a novel method to achieve total nitrogen removal from wastewater. Air-filled hollow-fiber membranes are incorporated into an activated sludge tank, and a nitrifying biofilm develops on the membranes, producing nitrite and nitrate. By suppressing bulk aeration, the bulk liquid becomes anoxic, and the nitrate/nitrite can be reduced with influent BOD. The key feature that distinguishes the HMBP from other membrane-aerated processes is that it is hybrid; heterotrophic bacteria are kept mainly in suspension by maintaining low bulk liquid BOD concentrations. We investigated the HMBP's performance under a variety of BOD and ammonium loadings, and determined the dominant mechanisms of nitrogen removal. Suspended solids increased with the BOD loadings, maintaining low bulk liquid BOD concentrations. As a result, nitrification rates were insensitive to the BOD loadings, remaining at 1gNm(-2)day(-1) for BOD loadings ranging from 4 to 17gBODm(-2)day(-1). Nitrification rates decreased during short-term spikes in bulk liquid BOD concentrations. Shortcut nitrogen removal was confirmed using microsensor measurements, showing that nitrite was the dominant form of oxidized nitrogen produced by the biofilm. Fluorescence in situ hybridization (FISH) showed that ammonia oxidizing bacteria (AOB) were dominant throughout the biofilm, while nitrite oxidizing bacteria (NOB) were only present in the deeper regions of the biofilm, where the oxygen concentration was above 2mg/L. Denitrification occurred mainly in the suspended phase, instead of in the biofilm, decreasing the potential for biofouling. When influent BOD concentrations were sufficiently high, full denitrification occurred, with total nitrogen (TN) removal approaching 100%. These results suggest that the process is well-suited for achieving concurrent BOD and TN removal in activated sludge.

  19. Cdc42p and Rho1p are sequentially activated and mechanistically linked to vacuole membrane fusion

    SciTech Connect

    Logan, Michael R.; Jones, Lynden; Eitzen, Gary

    2010-03-26

    Small monomeric GTPases act as molecular switches, regulating many biological functions via activation of membrane localized signaling cascades. Activation of their switch function is controlled by GTP binding and hydrolysis. Two Rho GTPases, Cdc42p and Rho1p, are localized to the yeast vacuole where they regulate membrane fusion. Here, we define a method to directly examine vacuole membrane Cdc42p and Rho1p activation based on their affinity to probes derived from effectors. Cdc42p and Rho1p showed unique temporal activation which aligned with distinct subreactions of in vitro vacuole fusion. Cdc42p was rapidly activated in an ATP-independent manner while Rho1p activation was kinetically slower and required ATP. Inhibitors that are known to block vacuole membrane fusion were examined for their effect on Cdc42p and Rho1p activation. Rdi1p, which inhibits the dissociation of GDP from Rho proteins, blocked both Cdc42p and Rho1p activation. Ligands of PI(4,5)P{sub 2} specifically inhibited Rho1p activation while pre-incubation with U73122, which targets Plc1p function, increased Rho1p activation. These results define unique activation mechanisms for Cdc42p and Rho1p, which may be linked to the vacuole membrane fusion mechanism.

  20. Membrane-lipid therapy in operation: the HSP co-inducer BGP-15 activates stress signal transduction pathways by remodeling plasma membrane rafts.

    PubMed

    Gombos, Imre; Crul, Tim; Piotto, Stefano; Güngör, Burcin; Török, Zsolt; Balogh, Gábor; Péter, Mária; Slotte, J Peter; Campana, Federica; Pilbat, Ana-Maria; Hunya, Akos; Tóth, Noémi; Literati-Nagy, Zsuzsanna; Vígh, László; Glatz, Attila; Brameshuber, Mario; Schütz, Gerhard J; Hevener, Andrea; Febbraio, Mark A; Horváth, Ibolya; Vígh, László

    2011-01-01

    Aging and pathophysiological conditions are linked to membrane changes which modulate membrane-controlled molecular switches, causing dysregulated heat shock protein (HSP) expression. HSP co-inducer hydroxylamines such as BGP-15 provide advanced therapeutic candidates for many diseases since they preferentially affect stressed cells and are unlikely have major side effects. In the present study in vitro molecular dynamic simulation, experiments with lipid monolayers and in vivo ultrasensitive fluorescence microscopy showed that BGP-15 alters the organization of cholesterol-rich membrane domains. Imaging of nanoscopic long-lived platforms using the raft marker glycosylphosphatidylinositol-anchored monomeric green fluorescent protein diffusing in the live Chinese hamster ovary (CHO) cell plasma membrane demonstrated that BGP-15 prevents the transient structural disintegration of rafts induced by fever-type heat stress. Moreover, BGP-15 was able to remodel cholesterol-enriched lipid platforms reminiscent of those observed earlier following non-lethal heat priming or membrane stress, and were shown to be obligate for the generation and transmission of stress signals. BGP-15 activation of HSP expression in B16-F10 mouse melanoma cells involves the Rac1 signaling cascade in accordance with the previous observation that cholesterol affects the targeting of Rac1 to membranes. Finally, in a human embryonic kidney cell line we demonstrate that BGP-15 is able to inhibit the rapid heat shock factor 1 (HSF1) acetylation monitored during the early phase of heat stress, thereby promoting a prolonged duration of HSF1 binding to heat shock elements. Taken together, our results indicate that BGP-15 has the potential to become a new class of pharmaceuticals for use in 'membrane-lipid therapy' to combat many various protein-misfolding diseases associated with aging.

  1. Long hydrophilic-and-cationic polymers: a different pathway toward preferential activity against bacterial over mammalian membranes.

    PubMed

    Yang, Xin; Hu, Kan; Hu, Guantai; Shi, Danyao; Jiang, Yunjiang; Hui, Liwei; Zhu, Rui; Xie, Yuntao; Yang, Lihua

    2014-09-01

    We show that simply converting the hydrophobic moiety of an antimicrobial peptide (AMP) or synthetic mimic of AMPs (SMAMP) into a hydrophilic one could be a different pathway toward membrane-active antimicrobials preferentially acting against bacteria over host cells. Our biostatistical analysis on natural AMPs indicated that shorter AMPs tend to be more hydrophobic, and the hydrophilic-and-cationic mutants of a long AMP experimentally demonstrated certain membrane activity against bacteria. To isolate the effects of antimicrobials' hydrophobicity and systematically examine whether hydrophilic-and-cationic mutants could inherit the membrane activity of their parent AMPs/SMAMPs, we constructed a minimal prototypical system based on methacrylate-based polymer SMAMPs and compared the antibacterial membrane activity and hemolytic toxicity of analogues with and without the hydrophobic moiety. Antibacterial assays showed that the hydrophobic moiety of polymer SMAMPs consistently promoted the antibacterial activity but diminished in effectiveness for long polymers, and the resultant long hydrophilic-and-cationic polymers were also membrane active against bacteria. What distinguished these long mutants from their parent SMAMPs were their drastically reduced hemolytic toxicities and, as a result, strikingly enhanced selectivity. Similar toxicity reduction was observed with the hydrophilic-and-cationic mutants of long AMPs. Taken together, our results suggest that long hydrophilic-and-cationic polymers could offer preferential membrane activity against bacteria over host cells, which may have implications in future antimicrobial development.

  2. A Placental Polypeptide Activator of a Membranous Protein Kinase and Its Relation to Histone 1

    NASA Astrophysics Data System (ADS)

    Abdel-Ghany, M.; Riegler, C.; Racker, E.

    1984-12-01

    Crude transforming growth factor preparations of placenta contain a polypeptide that is required for the activity of a protein kinase that has been purified from plasma membrane preparations of Ehrlich ascites tumor cells. The kinase activator has been separated from transforming growth factor β by reversed-phase HPLC and affinity chromatography. Like the transforming growth factor, it is heat stable and trypsin labile, but it is not inactivated by dithiothreitol. In sodium dodecyl sulfate/polyacrylamide gel electrophoresis the purified preparation shows a major double band at about 31,000 daltons. Comparisons of electrophoretic mobility, protein kinase stimulatory activity, and cross-reactivity with an antibody against histone 1 suggest that the placental activator is identical with histone 1.

  3. [Analysis of membrane expression of the CD63 human basophil activation marker. Applications to allergologic diagnosis].

    PubMed

    Sainte-Laudy, J; Vallon, C; Guérin, J C

    1994-06-01

    On the basis of the CD 63 bi-modal expression on the membrane of activated basophils, we set up a flow cytometric method for the analysis of human basophils activation by an anti-IgE and anti-CD 63 double labelling. We demonstrated that the statistical characteristics of the percentages of activation obtained by an anti-IgE stimulation allowed the use of this method for pharmacological studies. The percentages of activation were of the same order of magnitude than those obtained by histamine release. CD 63 expression was also observed for a low affinity allergen such as the sulfonyl-HSA conjugate used for sulfites hypersensibility diagnosis, healthy donors being negative. This method, which can be automatized may represent an interesting candidate in the field of hapten hypersensitivity which lacks of reliable diagnostical methods. PMID:7524523

  4. Removal of CO dehydrogenase from Pseudomonas carboxydovorans cytoplasmic membranes, rebinding of CO dehydrogenase to depleted membranes, and restoration of respiratory activities.

    PubMed Central

    Jacobitz, S; Meyer, O

    1989-01-01

    In Pseudomonas carboxydovorans, CO dehydrogenase and hydrogenase were found in association with the cytoplasmic membrane in a weakly bound and a tightly bound pool. The pools could be experimentally distinguished on the basis of resistance to removal by washes in low-ionic-strength buffer. The tightly bound pool of the enzymes could be differentially solubilized under conditions leaving the electron transport system intact and with the nondenaturing zwitterionic detergent 3-(3-cholamidopropyl) dimethylammonio 1-propane-sulfonic acid (CHAPS) and the nonionic detergent dodecyl beta-D-maltoside. In vitro reconstitution of depleted membranes with the corresponding supernatants containing CO dehydrogenase led to binding of the enzyme and to reactivation of respiratory activities with CO. The reconstitution reaction required cations with effectiveness which increased with increasing ionic charge: monovalent (Li+), divalent (Mg2+, Mn2+), or trivalent (Cr3+, La3+). Reconstitution of depleted membranes with CO dehydrogenase was specific for CO-grown bacteria. Cytoplasmic membranes from H2- or heterotrophically grown Pseudomonas carboxydovorans had no affinity for CO dehydrogenase at all, indicating the absence of the physiological electron acceptor of the enzyme, which presumably is cytochrome b561, or another membrane anchor. PMID:2808305

  5. Membrane binding events in the initiation and propagation phases of tissue factor-initiated zymogen activation under flow.

    PubMed

    Haynes, Laura M; Dubief, Yves C; Mann, Kenneth G

    2012-02-17

    This study investigates the dynamics of zymogen activation when both extrinsic tenase and prothrombinase are assembled on an appropriate membrane. Although the activation of prothrombin by surface-localized prothrombinase is clearly mediated by flow-induced dilutional effects, we find that when factor X is activated in isolation by surface-localized extrinsic tenase, it exhibits characteristics of diffusion-mediated activation in which diffusion of substrate to the catalytically active region is rate-limiting. When prothrombin and factor X are activated coincident with each other, competition for available membrane binding sites masks the diffusion-limiting effects of factor X activation. To verify the role of membrane binding in the activation of factor X by extrinsic tenase under flow conditions, we demonstrate that bovine lactadherin competes for both factor X and Xa binding sites, limiting factor X activation and forcing the release of bound factor Xa from the membrane at a venous shear rate (100 s(-1)). Finally, we present steady-state models of prothrombin and factor X activation under flow showing that zymogen and enzyme membrane binding events further regulate the coagulation process in an open system representative of the vasculature geometry.

  6. Membrane-bound complement regulatory activity is decreased on vaccinia virus-infected cells.

    PubMed Central

    Baranyi, L; Okada, N; Baranji, K; Takizawa, H; Okada, H

    1994-01-01

    Decay accelerating factor (DAF), membrane cofactor protein (MCP), complement receptor 1 and mouse Crry are cell surface-bound complement regulatory proteins capable of inhibiting C3 convertase activity on cell membranes, and therefore provide a substantial protection from attack by homologous complement activated either by the classical or by the alternative pathway. Decrease in complement regulatory activity might lead to spontaneous complement deposition and subsequent cell injury. MoAb 5I2 can inhibit the complement regulatory activity of molecules on rat cells, resulting in deposition of homologous complement. The antigen recognized by 5I2 MoAb in rats is homologous to mouse Crry. Fifteen to 20 h after infection with vaccinia virus, in vitro cultured KDH-8 rat hepatoma cells show a strong decrease in expression of Crry-like antigen, and proved to be sensitive to complement deposition when 1:5 diluted normal rat serum was added to the culture medium as a source of complement. Addition of complement to the cultured KDH-8 cells infected with a very low dose of vaccinia virus (1 plaque-forming unit (PFU)/1000 cells) substantially reduced spreading of virus infection in the cell culture, while inactivation of complement by heat or zymosan treatment abrogated the protective effect. PMID:7923872

  7. Hypoosmotic- and pressure-induced membrane stretch activate TRPC5 channels

    PubMed Central

    Gomis, Ana; Soriano, Sergio; Belmonte, Carlos; Viana, Félix

    2008-01-01

    Transient receptor potential (TRP) channels mediate a wide array of sensory functions. We investigated the role of TRPC5, a poorly characterized channel widely expressed in the central and peripheral nervous system, as a potential osmosensory protein. Here we show that hypoosmotic stimulation activates TRPC5 channels resulting in a large calcium influx. The response to osmotically induced membrane stretch is blocked by GsMTx-4, an inhibitor of stretch activated ion channels. Direct hypoosmotic activation of TRPC5 is independent of phospholipase C function. However, the osmotic response is inhibited in a cell line in which PIP2 levels are reduced by regulated overexpression of a lipid phosphatase. The response was restored by increasing intracellular PIP2 levels through the patch pipette. The mechano-sensitivity of the channel was probed in the whole-cell configuration by application of steps of positive pressure through the patch pipette. Pressure-induced membrane stretch also activated TRPC5 channels, suggesting its role as a transducer of osmo-mechanical stimuli. We also demonstrated the expression of TRPC5 in sensory neurones which together with the osmo-mechanical characteristics of TRPC5 channels suggest its putative role in mechanosensory transduction events. PMID:18832422

  8. Recombinant human epidermal growth factor precursor is a glycosylated membrane protein with biological activity.

    PubMed Central

    Mroczkowski, B; Reich, M; Chen, K; Bell, G I; Cohen, S

    1989-01-01

    NIH 3T3 cells were transfected with cDNA corresponding to human kidney prepro-epidermal growth factor (preproEGF) under control of the inducible mouse metallothionein promoter. The synthesis of recombinant human EGF precursor by these cells has provided us with a model system for analysis of the structure and activity of this precursor. In transfected cells, the precursor was present as an intrinsic 170-kilodalton membrane protein as well as a soluble protein in the extracellular medium; both forms were N glycosylated. Glycosylation of the EGF precursor was determined by (i) the direct incorporation of [3H]mannose and [3H]glucosamine, (ii) metabolic labeling in the presence or absence of glycosylation inhibitors, (iii) enzymatic cleavage of the precursor by N-glycanase or endoglycosidase II, and (iv) lectin chromatography. Recombinant human preproEGF was purified by affinity chromatography, using wheat germ lectin and antibodies to human EGF. The intact precursor was biologically active. Purified preparations of preproEGF (i) competed with 125I-labeled EGF for binding to the EGF receptor in intact fibroblast cells, (ii) activated the intrinsic tyrosine kinase activity of the EGF receptor in membrane preparations, and (iii) sustained the growth of a mouse keratinocyte cell line that is dependent on EGF for growth. These results suggest that proteolytic processing of the precursor may not be essential for its biological function. Images PMID:2789334

  9. CARBONIC ANHYDRASE ACTIVITY OF INTEGRAL-FUNCTIONAL COMPLEXES OF THYLAKOID MEMBRANES OF SPINACH CHLOROPLASTS.

    PubMed

    Semenihin, A V; Zolotareva, O K

    2015-01-01

    Isolated thylakoid membranes were disrupted by treatment with nonionic detergents digitonin or dodecyl maltoside. Solubilized polypeptide complexes were separated by native gel charge shift electrophoresis. The position of ATP-synthase complex and its isolated catalytic part (CF1) within gel was determined using the color reaction for ATPase activity. Due to the presence of cytochromes, the red band in unstained gels corresponded to the cytochrome b6f complex. Localization of the cytochrome b6f complex, ATP synthase and coupling CF1 in the native gel was confirmed by their subunit composition determined after SDS-electrophoretic analysis. Carbonic anhydrase (CA) activity in polypeptide zones of PS II, cytochrome b6f complex, and ATP-synthase CF1 was identified in native gels using indicator bromothymol blue. CA activity of isolated CF1 in solution was determined by infrared gas analysis as the rate of bicarbonate dehydration. The water-soluble acetazolamide, an inhibitor of CA, unlike lipophilic ethoxyzolamide inhibited CA activity of CF1 Thus, it was shown for the first time that ATP-synthase has a component which is capable of catalyzing the interconversion of forms of carbonic acid associated with proton exchange. The data obtained suggest the presence of multiple forms of carbonic anhydrase in the thylakoid membranes of spinach chloroplasts and confirm their involvement in the proton transfer to the ATP synthase. PMID:26502699

  10. Activation of Plant Plasma Membrane Ca2+-Permeable Channels by Race-Specific Fungal Elicitors.

    PubMed Central

    Gelli, A.; Higgins, V. J.; Blumwald, E.

    1997-01-01

    The response of plant cells to invading pathogens is regulated by fluctuations in cytosolic Ca2+ levels that are mediated by Ca2+-permeable channels located at the plasma membrane of the host cell. The mechanisms by which fungal elicitors can induce Ca2+ uptake by the host cell were examined by the application of conventional patch-clamp techniques. Whole-cell and single-channel experiments on tomato (Lycopersicon esculentum L.) protoplasts revealed a race-specific fungal elicitor-induced activation of a plasma membrane Ca2+-permeable channel. The presence of the fungal elicitor resulted in a greater probability of channel opening. Guanosine 5[prime]-[[beta]-thio]diphosphate, a GDP analog that locks heterotrimeric G-proteins into their inactivated state, abolished the channel activation induced by the fungal elicitor, whereas guanosine 5[prime][[gamma]-thio]triphosphate, a nonhydrolyzable GTP analog that locks heterotrimeric G-proteins into their activated state, produced an effect similar to that observed with the fungal elicitor. Mastoparan, which stimulates GTPase activity, mimicked the effect of GTP[[gamma

  11. Para-aminobenzamidine linked regenerated cellulose membranes for plasminogen activator purification: Effect of spacer arm length and ligand density

    PubMed Central

    Fasoli, Ezio; Reyes, Yiaslin Ruiz; Guzman, Osiris Martinez; Rosado, Alexandra; Cruz, Vivian Rodriguez; Borges, Amaris; Martinez, Edmarie; Bansal, Vibha

    2013-01-01

    Despite membrane-based separations offering superior alternative to packed bed chromatographic processes, there has been a substantial lacuna in their actual application to separation processes. One of the major reasons behind this is the lack of availability of appropriately modified or end-group modifiable membranes. In this paper, an affinity membrane was developed using a commercially available serine protease inhibitor, para-aminobenzamidine (pABA). The membrane modification was optimized for protein binding capacity by varying: i) the length of the spacer arm (SA; 5-atoms, 7-atoms, and 14-atoms) linking the ligand to membrane surface; ii) the affinity ligand (pABA) density on membrane surface (5–25 nmoles per cm2). Resulting membranes were tested for their ability to bind plasminogen activators (PAs) from mono- and multi- component systems in batch mode. The membrane containing pABA linked through 7-atoms SA but similar ligand density as in the case of 5- or 14- atoms long SA was found to bind up to 1.6-times higher amounts of PA per nmole of immobilized ligand from conditioned HeLa cell culture media. However, membranes with similar ligand densities but different lengths of SA, showed comparable binding capacities in monocomponent system. In addition, the length of SA did not affect the selectivity of the ligand for PA. A clear inverse linear correlation was observed between ligand density and binding capacity until the point of PA binding optima was reached (11±1.0 nmoles per cm2) in mono- and multi- component systems for 7- as well as 14- atoms SA. Up to 200-fold purification was achieved in a single step separation of PA from HeLa conditioned media using these affinity membranes. The issues of ligand leaching and reuse of the membranes were also investigated. An extensive regeneration procedure allowed the preservation of approximately 95% of the PA binding capacity of the membranes even after five cycles of use. PMID:23703544

  12. Oriented Circular Dichroism: A Method to Characterize Membrane-Active Peptides in Oriented Lipid Bilayers.

    PubMed

    Bürck, Jochen; Wadhwani, Parvesh; Fanghänel, Susanne; Ulrich, Anne S

    2016-02-16

    The structures of membrane-bound polypeptides are intimately related to their functions and may change dramatically with the lipid environment. Circular dichroism (CD) is a rapid analytical method that requires relatively low amounts of material and no labeling. Conventional CD is routinely used to monitor the secondary structure of peptides and proteins in solution, for example, in the presence of ligands and other binding partners. In the case of membrane-active peptides and transmembrane proteins, these measurements can be applied to, and remain limited to, samples containing detergent micelles or small sonicated lipid vesicles. Such traditional CD analysis reveals only secondary structures. With the help of an oriented circular dichroism (OCD) setup, however, based on the preparation of macroscopically oriented lipid bilayers, it is possible to address the membrane alignment of a peptide in addition to its conformation. This approach has been mostly used for α-helical peptides so far, but other structural elements are conceivable as well. OCD analysis relies on Moffitt's theory, which predicts that the electronic transition dipole moments of the backbone amide bonds in helical polypeptides are polarized either parallel or perpendicular to the helix axis. The interaction of the electric field vector of the circularly polarized light with these transitions results in an OCD spectrum of a membrane-bound α-helical peptide, which exhibits a characteristic line shape and reflects the angle between the helix axis and the bilayer normal. For parallel alignment of a peptide helix with respect to the membrane surface (S-state), the corresponding "fingerprint" CD band around 208 nm will exhibit maximum negative amplitude. If the helix changes its alignment via an obliquely tilted (T-state) to a fully inserted transmembrane orientation (I-state), the ellipticity at 208 nm decreases and the value approaches zero due to the decreased interactions between the field and the

  13. Backside calibration potentiometry: ion activity measurements with selective supported liquid membranes by calibrating from the inner side of the membrane.

    PubMed

    Malon, Adam; Bakker, Eric; Pretsch, Ernö

    2007-01-15

    In direct potentiometry, the magnitude of the measured potentials is used to determine the composition of the sample. While this places rather formidable demands on the required reproducibility of the associated potential measurements, typically on the order of microvolts, in vitro clinical analyses of blood samples are today successfully performed with direct potentiometry using ion-selective electrodes (ISEs). Unfortunately, most other analytical situations do not permit the sensor to be recalibrated every few minutes, as in environmental monitoring or in vivo measurements, and direct potentiometry is often bound to fail as an accurate method in these circumstances. This paper introduces a novel direction for potentiometric sensing, termed backside calibration potentiometry. Chemical asymmetries across thin supported liquid ISE membranes are assessed by determining the direction of potential drift upon changing the stirring rate on either side of the membrane. Disappearance of this drift indicates the disappearance of concentration gradients across the membrane and is used to determine the sample composition if the solution composition at the backside of the membrane and the interfering ion concentration in the sample are known. For practical determinations, the concentration of either the primary or the interfering ion is varied in the reference solution until the stirring effect disappears. The procedure is demonstrated with a Ca2+-selective membrane using Ba2+ as the dominant interfering ion. Another example includes the determination of Pb2+ in environmental samples where the pH is adjusted to a known level. At pH 4.0, H+ turns out to be the dominant interfering ion. The practical applicability of the method is shown with different environmental water samples, for which the results obtained with the novel method are compared with those obtained by traditional calibration using standard additions. The limitations of the novel method in terms of accuracy and

  14. Polyurethane Ionophore-Based Thin Layer Membranes for Voltammetric Ion Activity Sensing.

    PubMed

    Cuartero, Maria; Crespo, Gaston A; Bakker, Eric

    2016-06-01

    We report on a plasticized polyurethane ionophore-based thin film material (of hundreds of nanometer thickness) for simultaneous voltammetric multianalyte ion activity detection triggered by the oxidation/reduction of an underlying poly(3-octylthiophene) film. This material provides excellent mechanical, physical, and chemical robustness compared to other polymers. Polyurethane films did not exhibit leaching of lipophilic additives after rinsing with a direct water jet and exhibited resistance to detachment from the underlying electrode surface, resulting in a voltammetric current response with less than <1.5% RSD variation (n = 50). In contrast, plasticized poly(vinyl chloride), polystyrene, and poly(acrylate) ionophore-based membranes of the same thickness and composition exhibited a significant deterioration of the signal after identical treatment. While previously reported works emphasized fundamental advancement of multi-ion detection with multi-ionophore-based thin films, polyurethane thin membranes allow one to achieve real world measurements without sacrificing analytical performance. Indeed, polyurethane membranes are demonstrated to be useful for the simultaneous determination of potassium and lithium in undiluted human serum and blood with attractive precision. PMID:27187779

  15. Electrode porosity and effective electrocatalyst activity in electrode-membrane-assemblies (MEAs) of PEMFCs

    SciTech Connect

    Fischer, A.; Wendt, H.

    1996-12-31

    New production technologies of membrane-electrode-assemblies for PEWCs which ensure almost complete catalyst utilization by {open_quotes}wetting{close_quotes} the internal catalyst surface with the ionomeric electrolyte, allow for a reduction of Pt-loadings from prior 4 mg cm{sup -2} to now less than 0.5 mg cm{sup -2}. Such electrodes are not thicker than from 5 to 10 {mu}m. Little has been published hitherto about the detailed micromorphology of such electrodes and the role of electrode porosity on electrode performance. It is well known, that the porosity of thicker fuel cell electrodes, e.g. of PAFC or AFC electrodes is decisive for their performance. Therefore the issue of this investigation is to measure and to modify the porosity of electrodes prepared by typical MEA production procedures and to investigate the influence of this porosity on the effective catalyst activity for cathodic reduction of oxygen from air in membrane cells. It may be anticipated that any mass transfer hindrance of gaseous reactants into porous electrodes would manifest itself rather in the conversion of dilute gases than in the conversion of pure gases (e.g. neat oxygen). Therefore in this investigation the performance of membrane cell cathodes with non pressurized air had been compared to that with neat oxygen at cathodes which had a relatively low Pt-loading of 0.15 mg cm{sup -2}.

  16. Rapid screening of membrane protein activity: electrophysiological analysis of OmpF reconstituted in proteoliposomes.

    PubMed

    Kreir, Mohamed; Farre, Cecilia; Beckler, Matthias; George, Michael; Fertig, Niels

    2008-04-01

    Solvent-free planar lipid bilayers were formed in an automatic manner by bursting of giant unilamellar vesicles (GUVs) after gentle suction application through micron-sized apertures in a borosilicate glass substrate. Incubation of GUVs with the purified ion channel protein of interest yielded proteoliposomes. These proteoliposomes allow for immediate recording of channel activity after GUV sealing. This approach reduces the time-consuming, laborious and sometimes difficult protein reconstitution processes normally performed after bilayer formation. Bilayer recordings are attractive for investigations of membrane proteins not accessible to patch clamp analysis, like e.g. proteins from organelles. In the presented work, we show the example of the outer membrane protein OmpF from Escherichia coli. We reconstituted OmpF in proteoliposomes and observed the characteristic trimeric conductance levels and the typical gating induced by pH and transmembrane voltage. Moreover, OmpF is the main entrance for beta-lactam antibiotics and we investigated translocation processes of antibiotics and modulation of OmpF by spermine. We suggest that the rapid formation of porin containing lipid bilayers is of potential for the efficient electrophysiological characterization of the OmpF protein, for studying membrane permeation processes and for the rapid screening of antibiotics. PMID:18369514

  17. Barrier properties of poly(vinyl alcohol) membranes containing carbon nanotubes or activated carbon.

    PubMed

    Surdo, Erin M; Khan, Iftheker A; Choudhury, Atif A; Saleh, Navid B; Arnold, William A

    2011-04-15

    Carbon nanotube addition has been shown to improve the mechanical properties of some polymers. Because of their unique adsorptive properties, carbon nanotubes may also improve the barrier performance of polymers used in contaminant containment. This study compares the barrier performance of poly(vinyl alcohol) (PVA) membranes containing single-walled carbon nanotubes (SWCNTs) to that for PVA containing powdered activated carbon (PAC). Raw and surface-functionalized versions of each sorbent were tested for their abilities to adsorb 1,2,4-trichlorobenzene and Cu(2+), representing the important hydrophobic organic and heavy metal contaminant classes, as they diffused across the PVA. In both cases, PAC (for 1,2,4-trichlorobenzene) and functionalized PAC (for Cu(2+)) outperformed SWCNTs on a per mass basis by trapping more of the contaminants within the barrier membrane. Kinetics of sorption are important in evaluating barrier properties, and poor performance of SWCNT-containing membranes as 1,2,4-TCB barriers is attributed to kinetic limitations. PMID:21349636

  18. Effect of powdered activated carbon on integrated submerged membrane bioreactor-nanofiltration process for wastewater reclamation.

    PubMed

    Woo, Yun Chul; Lee, Jeong Jun; Shim, Wang-Geun; Shon, Ho Kyong; Tijing, Leonard D; Yao, Minwei; Kim, Han-Seung

    2016-06-01

    The aim of this study was to determine the effect of powdered activated carbon (PAC) on the overall performance of a submerged membrane bioreactor (SMBR) system integrated with nanofiltration (NF) for wastewater reclamation. It was found that the trans-membrane pressure of SMBR increased continuously while that of the SMBR with PAC was more stable, mainly because water could still pass through the PACs and membrane even though foulants adhered on the PAC surface. The presence of PAC was able to mitigate fouling in SMBR as well as in NF. SMBR-NF with PAC obtained a higher flux of 8.1 LMH compared to that without PAC (6.6 LMH). In addition, better permeate quality was obtained with SMBR-NF integrated process added with PAC. The present results suggest that the addition of PAC in integrated SMBR-NF process could possibly lead to satisfying water quality and can be operated for a long-term duration. PMID:26879205

  19. cAmp activation of apical membrane Cl(-) channels: theoretical considerations for impedance analysis.

    PubMed

    Păunescu, T G; Helman, S I

    2001-08-01

    Transepithelial electrical impedance analysis provides a sensitive method to evaluate the conductances and capacitances of apical and basolateral plasma membranes of epithelial cells. Impedance analysis is complicated, due not only to the anatomical arrangement of the cells and their paracellular shunt pathways, but also in particular to the existence of audio frequency-dependent capacitances or dispersions. In this paper we explore implications and consequences of anatomically related Maxwell-Wagner and Cole-Cole dielectric dispersions that impose limitations, approximations, and pitfalls of impedance analysis when tissues are studied under widely ranging spontaneous rates of transport, and in particular when apical membrane sodium and chloride channels are activated by adenosine 3',5'-cyclic monophosphate (cAMP) in A6 epithelia. We develop the thesis that capacitive relaxation processes of any origin lead not only to dependence on frequency of the impedance locus, but also to the appearance of depressed semicircles in Nyquist transepithelial impedance plots, regardless of the tightness or leakiness of the paracellular shunt pathways. Frequency dependence of capacitance precludes analysis of data in traditional ways, where capacitance is assumed constant, and is especially important when apical and/or basolateral membranes exhibit one or more dielectric dispersions.

  20. Flux enhancement with powdered activated carbon addition in the membrane anaerobic bioreactor

    SciTech Connect

    Park, H.; Choo, K.H.; Lee, C.H.

    1999-10-01

    The effect of powdered activated carbon (PAC) addition on the performance of a membrane-coupled anaerobic bioreactor (MCAB) was investigated in terms of membrane filterability and treatability through a series of batch and continuous microfiltration (MF) experiments. In both batch and continuous MF of the digestion broth, a flux improvement with PAC addition was achieved, especially when a higher shear rate and/or a higher PAC dose were applied. Both the fouling and cake layer resistances decreased continuously with increasing the PAC dose up to 5 g/L. PAC played an important role in substantially reducing the biomass cake resistance due to its incompressible nature and higher backtransport velocities. PAC might have a scouring effect for removing the deposited biomass cake from the membrane surface while sorbing and/or coagulating dissolved organics and colloidal particles in the broth. The chemical oxygen demand and color in the effluent were much removed with PAC addition, and the system was also more stable against shock loading.

  1. Leveraging electrokinetics for the active control of dendritic fullerene-1 release across a nanochannel membrane.

    PubMed

    Bruno, Giacomo; Geninatti, Thomas; Hood, R Lyle; Fine, Daniel; Scorrano, Giovanni; Schmulen, Jeffrey; Hosali, Sharath; Ferrari, Mauro; Grattoni, Alessandro

    2015-03-12

    General adoption of advanced treatment protocols such as chronotherapy will hinge on progress in drug delivery technologies that provide precise temporal control of therapeutic release. Such innovation is also crucial to future medicine approaches such as telemedicine. Here we present a nanofluidic membrane technology capable of achieving active and tunable control of molecular transport through nanofluidic channels. Control was achieved through application of an electric field between two platinum electrodes positioned on either surface of a 5.7 nm nanochannel membrane designed for zero-order drug delivery. Two electrode configurations were tested: laser-cut foils and electron beam deposited thin-films, configurations capable of operating at low voltage (≤1.5 V), and power (100 nW). Temporal, reproducible tuning and interruption of dendritic fullerene 1 (DF-1) transport was demonstrated over multi-day release experiments. Conductance tests showed limiting currents in the low applied potential range, implying ionic concentration polarization (ICP) at the interface between the membrane's micro- and nanochannels, even in concentrated solutions (≤1 M NaCl). The ability of this nanotechnology platform to facilitate controlled delivery of molecules and particles has broad applicability to next-generation therapeutics for numerous pathologies, including autoimmune diseases, circadian dysfunction, pain, and stress, among others.

  2. Retaining activity of enzymes after capture and extraction within a single-drop of biological fluid using immunoaffinity membranes.

    PubMed

    Shimazaki, Youji; Sato, Yuki

    2016-05-15

    The purpose of this study was the measurement of enzyme activity within a single-drop of biological fluid after micropurification. Esterase and lactate dehydrogenase (LDH) retained their enzymatic activities after being captured by membrane-immobilized antibodies, which were prepared by non-denaturing two-dimensional electrophoresis, transferred to polyvinylidene difluoride and then stained by Ponceau S. The activities of both enzymes were also measured after being captured by antibodies and biotinylated antibodies bound to membrane-immobilized protein A or avidin, respectively. After esterase and LDH were captu