A Large Eddy Simulation Study for upstream wind energy conditioning
NASA Astrophysics Data System (ADS)
Sharma, V.; Calaf, M.; Parlange, M. B.
2013-12-01
The wind energy industry is increasingly focusing on optimal power extraction strategies based on layout design of wind farms and yaw alignment algorithms. Recent field studies by Mikkelsen et al. (Wind Energy, 2013) have explored the possibility of using wind lidar technology installed at hub height to anticipate incoming wind direction and strength for optimizing yaw alignment. In this work we study the benefits of using remote sensing technology for predicting the incoming flow by using large eddy simulations of a wind farm. The wind turbines are modeled using the classic actuator disk concept with rotation, together with a new algorithm that permits the turbines to adapt to varying flow directions. This allows for simulations of a more realistic atmospheric boundary layer driven by a time-varying geostrophic wind. Various simulations are performed to investigate possible improvement in power generation by utilizing upstream data. Specifically, yaw-correction of the wind-turbine is based on spatio-temporally averaged wind values at selected upstream locations. Velocity and turbulence intensity are also considered at those locations. A base case scenario with the yaw alignment varying according to wind data measured at the wind turbine's hub is also used for comparison. This reproduces the present state of the art where wind vanes and cup anemometers installed behind the rotor blades are used for alignment control.
Large Eddy Simulation Study for Fluid Disintegration and Mixing
NASA Technical Reports Server (NTRS)
Bellan, Josette; Taskinoglu, Ezgi
2011-01-01
A new modeling approach is based on the concept of large eddy simulation (LES) within which the large scales are computed and the small scales are modeled. The new approach is expected to retain the fidelity of the physics while also being computationally efficient. Typically, only models for the small-scale fluxes of momentum, species, and enthalpy are used to reintroduce in the simulation the physics lost because the computation only resolves the large scales. These models are called subgrid (SGS) models because they operate at a scale smaller than the LES grid. In a previous study of thermodynamically supercritical fluid disintegration and mixing, additional small-scale terms, one in the momentum and one in the energy conservation equations, were identified as requiring modeling. These additional terms were due to the tight coupling between dynamics and real-gas thermodynamics. It was inferred that if these terms would not be modeled, the high density-gradient magnitude regions, experimentally identified as a characteristic feature of these flows, would not be accurately predicted without the additional term in the momentum equation; these high density-gradient magnitude regions were experimentally shown to redistribute turbulence in the flow. And it was also inferred that without the additional term in the energy equation, the heat flux magnitude could not be accurately predicted; the heat flux to the wall of combustion devices is a crucial quantity that determined necessary wall material properties. The present work involves situations where only the term in the momentum equation is important. Without this additional term in the momentum equation, neither the SGS-flux constant-coefficient Smagorinsky model nor the SGS-flux constant-coefficient Gradient model could reproduce in LES the pressure field or the high density-gradient magnitude regions; the SGS-flux constant- coefficient Scale-Similarity model was the most successful in this endeavor although not
Study of Hydrokinetic Turbine Arrays with Large Eddy Simulation
NASA Astrophysics Data System (ADS)
Sale, Danny; Aliseda, Alberto
2014-11-01
Marine renewable energy is advancing towards commercialization, including electrical power generation from ocean, river, and tidal currents. The focus of this work is to develop numerical simulations capable of predicting the power generation potential of hydrokinetic turbine arrays-this includes analysis of unsteady and averaged flow fields, turbulence statistics, and unsteady loadings on turbine rotors and support structures due to interaction with rotor wakes and ambient turbulence. The governing equations of large-eddy-simulation (LES) are solved using a finite-volume method, and the presence of turbine blades are approximated by the actuator-line method in which hydrodynamic forces are projected to the flow field as a body force. The actuator-line approach captures helical wake formation including vortex shedding from individual blades, and the effects of drag and vorticity generation from the rough seabed surface are accounted for by wall-models. This LES framework was used to replicate a previous flume experiment consisting of three hydrokinetic turbines tested under various operating conditions and array layouts. Predictions of the power generation, velocity deficit and turbulence statistics in the wakes are compared between the LES and experimental datasets.
Applied large eddy simulation.
Tucker, Paul G; Lardeau, Sylvain
2009-07-28
Large eddy simulation (LES) is now seen more and more as a viable alternative to current industrial practice, usually based on problem-specific Reynolds-averaged Navier-Stokes (RANS) methods. Access to detailed flow physics is attractive to industry, especially in an environment in which computer modelling is bound to play an ever increasing role. However, the improvement in accuracy and flow detail has substantial cost. This has so far prevented wider industrial use of LES. The purpose of the applied LES discussion meeting was to address questions regarding what is achievable and what is not, given the current technology and knowledge, for an industrial practitioner who is interested in using LES. The use of LES was explored in an application-centred context between diverse fields. The general flow-governing equation form was explored along with various LES models. The errors occurring in LES were analysed. Also, the hybridization of RANS and LES was considered. The importance of modelling relative to boundary conditions, problem definition and other more mundane aspects were examined. It was to an extent concluded that for LES to make most rapid industrial impact, pragmatic hybrid use of LES, implicit LES and RANS elements will probably be needed. Added to this further, highly industrial sector model parametrizations will be required with clear thought on the key target design parameter(s). The combination of good numerical modelling expertise, a sound understanding of turbulence, along with artistry, pragmatism and the use of recent developments in computer science should dramatically add impetus to the industrial uptake of LES. In the light of the numerous technical challenges that remain it appears that for some time to come LES will have echoes of the high levels of technical knowledge required for safe use of RANS but with much greater fidelity.
Mesoscale Ocean Large Eddy Simulations
NASA Astrophysics Data System (ADS)
Pearson, Brodie; Fox-Kemper, Baylor; Bachman, Scott; Bryan, Frank
2015-11-01
The highest resolution global climate models (GCMs) can now resolve the largest scales of mesoscale dynamics in the ocean. This has the potential to increase the fidelity of GCMs. However, the effects of the smallest, unresolved, scales of mesoscale dynamics must still be parametrized. One such family of parametrizations are mesoscale ocean large eddy simulations (MOLES), but the effects of including MOLES in a GCM are not well understood. In this presentation, several MOLES schemes are implemented in a mesoscale-resolving GCM (CESM), and the resulting flow is compared with that produced by more traditional sub-grid parametrizations. Large eddy simulation (LES) is used to simulate flows where the largest scales of turbulent motion are resolved, but the smallest scales are not resolved. LES has traditionally been used to study 3D turbulence, but recently it has also been applied to idealized 2D and quasi-geostrophic (QG) turbulence. The MOLES presented here are based on 2D and QG LES schemes.
Large Eddy Simulations in Astrophysics
NASA Astrophysics Data System (ADS)
Schmidt, Wolfram
2015-12-01
In this review, the methodology of large eddy simulations (LES) is introduced and applications in astrophysics are discussed. As theoretical framework, the scale decomposition of the dynamical equations for neutral fluids by means of spatial filtering is explained. For cosmological applications, the filtered equations in comoving coordinates are also presented. To obtain a closed set of equations that can be evolved in LES, several subgrid-scale models for the interactions between numerically resolved and unresolved scales are discussed, in particular the subgrid-scale turbulence energy equation model. It is then shown how model coefficients can be calculated, either by dynamic procedures or, a priori, from high-resolution data. For astrophysical applications, adaptive mesh refinement is often indispensable. It is shown that the subgrid-scale turbulence energy model allows for a particularly elegant and physically well-motivated way of preserving momentum and energy conservation in adaptive mesh refinement (AMR) simulations. Moreover, the notion of shear-improved models for in-homogeneous and non-stationary turbulence is introduced. Finally, applications of LES to turbulent combustion in thermonuclear supernovae, star formation and feedback in galaxies, and cosmological structure formation are reviewed.
Temporal Large-Eddy Simulation
NASA Technical Reports Server (NTRS)
Pruett, C. D.; Thomas, B. C.
2004-01-01
In 1999, Stolz and Adams unveiled a subgrid-scale model for LES based upon approximately inverting (defiltering) the spatial grid-filter operator and termed .the approximate deconvolution model (ADM). Subsequently, the utility and accuracy of the ADM were demonstrated in a posteriori analyses of flows as diverse as incompressible plane-channel flow and supersonic compression-ramp flow. In a prelude to the current paper, a parameterized temporal ADM (TADM) was developed and demonstrated in both a priori and a posteriori analyses for forced, viscous Burger's flow. The development of a time-filtered variant of the ADM was motivated-primarily by the desire for a unifying theoretical and computational context to encompass direct numerical simulation (DNS), large-eddy simulation (LES), and Reynolds averaged Navier-Stokes simulation (RANS). The resultant methodology was termed temporal LES (TLES). To permit exploration of the parameter space, however, previous analyses of the TADM were restricted to Burger's flow, and it has remained to demonstrate the TADM and TLES methodology for three-dimensional flow. For several reasons, plane-channel flow presents an ideal test case for the TADM. Among these reasons, channel flow is anisotropic, yet it lends itself to highly efficient and accurate spectral numerical methods. Moreover, channel-flow has been investigated extensively by DNS, and a highly accurate data base of Moser et.al. exists. In the present paper, we develop a fully anisotropic TADM model and demonstrate its utility in simulating incompressible plane-channel flow at nominal values of Re(sub tau) = 180 and Re(sub tau) = 590 by the TLES method. The TADM model is shown to perform nearly as well as the ADM at equivalent resolution, thereby establishing TLES as a viable alternative to LES. Moreover, as the current model is suboptimal is some respects, there is considerable room to improve TLES.
The effect of atmospheric stability on wind-turbine wakes: A large-eddy simulation study
NASA Astrophysics Data System (ADS)
Abkar, Mahdi; Porté-Agel, Fernando
2014-06-01
In this study, large-eddy simulation is used to investigate the influence of atmospheric stability on wind-turbine wakes. In the simulations, tuning-free Lagrangian scale- dependent dynamic models are used to model the subgrid-scale turbulent fluxes, while the turbine-induced forces are parameterized with an actuator-disk model. Emphasis is placed on studying the structure and characteristics of turbine wake in the cases where the incident flow to the turbine has the same mean velocity at the hub height but different thermal stability condition. The simulation results show that the atmospheric stability has a significant effect on the spatial distribution of the mean velocity deficit and turbulent fluxes in the wake region. In particular, in the convective boundary layer, the wake recovers faster, and the locations of the maximum turbulence intensity and turbulent stresses are closer to the turbine compared with the neutral and stable cases.
A posterirori study of models for large eddy simulations of drop-laden flows
NASA Technical Reports Server (NTRS)
Leboissetier, A.; Okong'o, N. A.; Bellan, J.
2003-01-01
Large Eddy Simulation (LES) is conducted of a three-dimensional temporal mixing layer whose stream is initially laden with liquid drops which may evaporate during the simulation. The gas-phase equations are written in Eulerian frame for two perfect gas species (carrier gas and vapor emanating from the drops), while the liquid-phase equations are written in a Lagrangian frame.
Sea salt aerosol deposition in the coastal zone: A large eddy simulation study
NASA Astrophysics Data System (ADS)
Liang, Tinghao; Chamecki, Marcelo; Yu, Xiping
2016-11-01
Inland deposition of sea salt aerosol (SSA) particles emitted over the ocean is studied via numerical and theoretical models. The focus is on the large particles that contribute most to the total mass deposition. Large eddy simulations of idealized sea wind are used to investigate the development of the particle plume over land for different particle sizes and to validate some of the assumptions in the theoretical model. An existing theoretical modeling framework for particle dispersion in the atmospheric boundary layer is adapted to the problem of SSA deposition and it is shown to be adequate for the large particles of interest here. The decay of monodisperse SSA particle deposition flux with distance from the shoreline is shown to have a power-law behavior far from the shoreline. A complete model for predicting mass deposition as a function of distance is formulated and shown to present reasonable agreement with existing data.
Large Eddy Simulation of a Turbulent Jet
NASA Technical Reports Server (NTRS)
Webb, A. T.; Mansour, Nagi N.
2001-01-01
Here we present the results of a Large Eddy Simulation of a non-buoyant jet issuing from a circular orifice in a wall, and developing in neutral surroundings. The effects of the subgrid scales on the large eddies have been modeled with the dynamic large eddy simulation model applied to the fully 3D domain in spherical coordinates. The simulation captures the unsteady motions of the large-scales within the jet as well as the laminar motions in the entrainment region surrounding the jet. The computed time-averaged statistics (mean velocity, concentration, and turbulence parameters) compare well with laboratory data without invoking an empirical entrainment coefficient as employed by line integral models. The use of the large eddy simulation technique allows examination of unsteady and inhomogeneous features such as the evolution of eddies and the details of the entrainment process.
Field experimental study of the Smagorinsky model and application to large eddy simulation
NASA Astrophysics Data System (ADS)
Kleissl, Jan
Large-eddy simulation (LES) has become an indispensable tool for prediction of turbulent atmospheric boundary layer (ABL) flow. In LES, a subgrid-scale (SGS) model accounts for the dynamics of the unresolved scales of motion. The most widely used SGS model is an eddy-viscosity closure, the Smagorinsky model, which includes a parameter that must be prescribed in some fashion, the Smagorinsky constant cs. In this dissertation, cs is measured in a specifically designed field experiment. And, the ability of so-called dynamic SGS models to predict c s is studied based on the data obtained, as well as in numerical simulations. In the field study, two vertically separated horizontal arrays of 3d-sonic anemometers are placed in the atmospheric surface layer. Results indicate that cs is reduced when the integral scale of turbulence is small compared to the grid or filter scale, such as near the ground and in stable atmospheric conditions. The field data are processed further to test whether dynamic SGS models can predict the correct coefficient values. In the scale-invariant dynamic model (Germano et al. 1991), the coefficient is derived from various data test-filtered at a larger scale assuming that cs is the same as at scale Delta. The results show that cs is significantly underpredicted whenever Delta is larger than the large-scale limit of the inertial range. The scale-dependent dynamic model (Porte-Agel et al. 2000b) uses a second test-filter to deduce the dependence of cs on filtering scale. This model provides excellent predictions of cs and its dependence upon stability and height. Large eddy simulations of flow over a homogeneous surface with a diurnal heat flux forcing are conducted to study the prediction of c s over a wide range of stabilities in a numerical framework. The scale-invariant and scale-dependent Lagrangian dynamic SGS model are tested and compared to the field data. Consistent with the field studies, the prediction of cs from the scale
NASA Astrophysics Data System (ADS)
Calaf, Marc; Parlange, Marc B.; Meneveau, Charles
2011-12-01
Wind harvesting is fast becoming an important alternative source of energy. As wind farms become larger, they begin to attain scales at which two-way interactions with the atmospheric boundary layer (ABL) must be taken into account. Several studies have shown that there is a quantifiable effect of wind farms on the local meteorology, mainly through changes in the land-atmosphere fluxes of heat and moisture. In particular, the observed trends suggest that wind farms increase fluxes at the surface and this could be due to increased turbulence in the wakes. Conversely, simulations and laboratory experiments show that underneath wind farms, the friction velocity is decreased due to extraction of momentum by the wind turbines, a factor that could decrease scalar fluxes at the surface. In order to study this issue in more detail, a suite of large eddy simulations of an infinite (fully developed) wind turbine array boundary layer, including scalar transport from the ground surface without stratification, is performed. Results show an overall increase in the scalar fluxes of about 10%-15% when wind turbines are present in the ABL, and that the increase does not strongly depend upon wind farm loading as described by the turbines' thrust coefficient and the wind turbines spacings. A single-column analysis including scalar transport shows that the presence of wind farms can be expected to increase slightly the scalar transport from the bottom surface and that this slight increase is due to a delicate balance between two strong opposing trends.
Underwater Oil Plume Intrusion from Deepwater Blowouts - A Large-Eddy Simulation Study
NASA Astrophysics Data System (ADS)
Yang, D.; Chen, B.; Chamecki, M.; Meneveau, C. V.
2015-12-01
The interaction of buoyancy-driven hydrocarbon plumes with the stably stratified deep-ocean environment plays a crucial role in the formation of underwater oil intrusions. As gas bubbles and oil droplets are released from an underwater oil well blowout, they induce a strong buoyancy flux that lifts entrained sea water to form an upward plume. Towards higher elevations, the stratification-induced negative buoyancy increases and eventually exceeds the gas/oil-induced buoyancy, causing the plume to decelerate and a large fraction of entrained sea water to peel off from the rising plume to form a fountain-like downward outer plume. During this peeling process, weakly buoyant particles (e.g. small oil droplets) are trapped and fall together with the detrained fluid, and then migrate horizontally at the equilibrium buoyancy depth, forming underwater oil intrusion layers. In this study, the complex plume dynamics and oil intrusion are studied using a large-eddy simulation (LES) model. The LES model captures the essential characteristics of the plume structure and the peeling/intrusion processes, and yields good agreement with prior laboratory experiments. Applying to the Deepwater Horizon oil well blowout condition, the LES model shows considerable underwater trapping and intrusion of oil droplets under various conditions, with the trapping rate significantly affected by the diameter of the oil droplet. This study is supported by Gulf of Mexico Research Initiative RFP-II research grant.
A nested large-eddy simulation study of the Ora del Garda wind in the Alps
NASA Astrophysics Data System (ADS)
Giovannini, Lorenzo; Laiti, Lavinia; Zardi, Dino
2015-04-01
High-resolution numerical simulations performed with the Weather Research and Forecasting (WRF) model are analyzed to investigate the atmospheric boundary layer (ABL) structures associated with the development of a lake-breeze and valley-wind coupled system developing in the southeastern Italian Alps, the so-called "Ora del Garda" wind. Five domains were nested for the simulations: three mesoscale domains, forced by reanalysis data field, are used to drive the finest two domains, in which the large-eddy technique is used, achieving a final horizontal resolution of 80 m. Model results complement an existing dataset composed of a series of measurement flights and surface observations. The flights explored specific valley sections at key locations in the study area, namely over the lake's shore, at half valley and at the end of the valley where the breeze blows. Model results display a good agreement with the experimental dataset. In particular, the surface diurnal cycles of radiation, wind, air temperature and sensible heat flux are satisfactorily reproduced, despite some discrepancies in the timing of thermally-driven circulation onset and offset. The typical structure of the valley ABL, characterized by shallow or even absent mixed layers surmounted by slightly stable layers extending up to the lateral crest level, is also well reproduced in the simulated fields. Moreover, the simulations confirm characteristic local-scale features of the thermally-driven wind field suggested by the analysis of the airborne dataset as well as from previous observations in the area. For example, the model shows the development of inhomogeneities in the cross-valley thermal field, caused by the propagation of the lake breeze and by the different heating between the sidewalls of the valley, as well as the formation of a hydraulic jump in the area where the Ora del Garda flows down into an adjacent valley from an elevated saddle.
Influence of atmospheric stability on wind-turbine wakes: A large-eddy simulation study
NASA Astrophysics Data System (ADS)
Abkar, Mahdi; Porté-Agel, Fernando
2014-05-01
In this study, large-eddy simulation is combined with a turbine model to investigate the influence of atmospheric stability on wind-turbine wakes. In the simulations, subgrid-scale turbulent fluxes are parameterized using tuning-free Lagrangian scale-dependent dynamic models. These models optimize the local value of the model coefficients based on the dynamics of the resolved scales. The turbine-induced forces are parameterized with an actuator-disk model with rotation. In this technique, blade-element theory is used to calculate the lift and drag forces acting on the blades. Emphasis is placed on the structure and characteristics of wind-turbine wakes in the cases where the incident flows to the turbine have the same mean velocity at the hub height but different stability conditions. The simulation results show that atmospheric stability has a significant effect on the spatial distribution of the mean velocity deficit and turbulent fluxes in the wake region. In particular, the magnitude of the velocity deficit increases with increasing stability in the atmosphere. In addition, the locations of the maximum turbulence intensity and turbulent stresses are closer to the turbine in convective boundary layer compared with neutral and stable ones. Detailed analysis of the resolved turbulent kinetic energy (TKE) budget inside the wake reveals also that the thermal stratification of the incoming wind considerably affects the magnitude and spatial distribution of the turbulent production, transport term and dissipation rate (transfer of energy to the subgrid scales). It is also shown that the near-wake region can be extended to a farther distance downstream in stable condition compared with neutral and unstable counterparts. In order to isolate the effect of atmospheric stability, additional simulations of neutrally-stratified atmospheric boundary layers are performed with the same turbulence intensity at hub height as convective and stable ones. The results show that the
Influence of atmospheric stability on wind-turbine wakes: A large-eddy simulation study
NASA Astrophysics Data System (ADS)
Abkar, Mahdi; Porté-Agel, Fernando
2015-03-01
In this study, large-eddy simulation is combined with a turbine model to investigate the influence of atmospheric thermal stability on wind-turbine wakes. The simulation results show that atmospheric stability has a significant effect on the spatial distribution of the mean velocity deficit and turbulence statistics in the wake region as well as the wake meandering characteristics downwind of the turbine. In particular, the enhanced turbulence level associated with positive buoyancy under the convective condition leads to a relatively larger flow entrainment and, thus, a faster wake recovery. For the particular cases considered in this study, the growth rate of the wake is about 2.4 times larger for the convective case than for the stable one. Consistent with this result, for a given distance downwind of the turbine, wake meandering is also stronger under the convective condition compared with the neutral and stable cases. It is also shown that, for all the stability cases, the growth rate of the wake and wake meandering in the vertical direction is smaller compared with the ones in the lateral direction. This is mainly related to the different turbulence levels of the incoming wind in the different directions, together with the anisotropy imposed by the presence of the ground. It is also found that the wake velocity deficit is well characterized by a modified version of a recently proposed analytical model that is based on mass and momentum conservation and the assumption of a self-similar Gaussian distribution of the velocity deficit. Specifically, using a two-dimensional elliptical (instead of axisymmetric) Gaussian distribution allows to account for the different lateral and vertical growth rates, particularly in the convective case, where the non-axisymmetry of the wake is stronger. Detailed analysis of the resolved turbulent kinetic energy budget in the wake reveals also that thermal stratification considerably affects the magnitude and spatial distribution
NASA Astrophysics Data System (ADS)
Jones, Sam; Jemcov, Aleksandar; Corke, Thomas
2016-11-01
An Embedded Large Eddy Simulation (ELES) approach is used to simulate the flow path through a high pressure turbine stage that includes the entry duct, stationary inlet and exit guide vanes, and a rotor. The flowfield around the rotor is simulated using LES. A Reynolds Averaged Simulation (RAS) is used for the rest of the flow domain. The interface between RAS and LES domains uses the RAS turbulence quantities as a means of obtaining length scales that are used in computing the vorticity required to trigger a proper energy cascade within the LES part of the flow field. The objective is to resolve the unsteady vortical motions that eminate from the gap between the rotor tip and duct walls that are presumably under-resolved in a RAS approach. A comparative analysis between RAS and ELES approaches for this turbomachinery problem is then presented. APS Fellow.
Large-Eddy Simulation and Multigrid Methods
Falgout,R D; Naegle,S; Wittum,G
2001-06-18
A method to simulate turbulent flows with Large-Eddy Simulation on unstructured grids is presented. Two kinds of dynamic models are used to model the unresolved scales of motion and are compared with each other on different grids. Thereby the behavior of the models is shown and additionally the feature of adaptive grid refinement is investigated. Furthermore the parallelization aspect is addressed.
Regional Bowen ratio controls on afternoon moist convection: A large eddy simulation study
NASA Astrophysics Data System (ADS)
Kang, Song-Lak
2016-12-01
This study examines the effect of the regional Bowen ratio β, the ratio of the domain-averaged surface sensible heat flux (SHF) to latent heat flux (LHF), on afternoon moist convection. With a temporally evolving but spatially uniform surface available energy over a mesoscale domain under a weak capping inversion, we run large eddy simulation of the afternoon convective boundary layer (CBL). We first prescribe a small β of 0.56 (a wet surface) and then the reversed large β of 1.80 (a dry surface) by switching the SHF and LHF fields. The perturbation fields of the fluxes are prescribed with the Fourier spectra of κ- 3 (κ is horizontal wave number; strong mesoscale heterogeneity) and κ0 (homogeneity). The large β cases have strong vertical buoyancy fluxes and produce more vigorous updrafts. In the heterogeneous, large β surface case, with the removal of convective inhibition over a mesoscale subdomain of large SHF, deep convection develops. In the heterogeneous, small β surface case, convective clouds develop but do not progress into precipitating convection. In the homogeneous surface cases, randomly distributed shallow clouds develop with significantly more and thicker clouds in the large β case. (Co)spectral analyses confirm the more vigorous turbulent thermals in the large β cases and reveal that the moisture advection by the surface heterogeneity-induced mesoscale flows makes the correlation between mesoscale temperature and moisture perturbations change from negative to positive, which facilitates the mesoscale pool of high relative humidity air just above the CBL top, a necessary condition for deep convection.
A Numerical Study of Self-Similarity in a Turbulent Plane Wake Using Large-Eddy Simulation
NASA Technical Reports Server (NTRS)
Ghosal, Sandip; Rogers, Michael M.
1996-01-01
Turbulent wakes are known to develop self-similarly sufficiently far downstream from obstacles that generate them. It has long been assumed that the spreading rate of the wake in the self-similar regime is independent of the details of the body generating the wake, being dependent only on the total drag (or momentum deficit). This assumption seems to be in contradiction with some recent experiments. In this study we attempt to complement these experimental investigations through a numerical study of a time-developing wake. A numerical study has the advantage of eliminating many of the uncontrolled factors present in experiments and allowing precise control of initial conditions. Large-eddy simulations employing the recently developed dynamic localization model are used to extend previous results from direct numerical simulations. The large-eddy simulation results are compared to the direct numerical simulation database, wherever such comparisons are feasible, as a check of the method. Like the experiments, the large-eddy simulations suggest that non-unique self-similar states, characterized by different spreading rates and turbulent statistics, are possible and that they can be maintained for significant time periods. The study also demonstrates the predictive capability of the dynamic localization subgrid model.
Large eddy simulation of cavitating flows
NASA Astrophysics Data System (ADS)
Gnanaskandan, Aswin; Mahesh, Krishnan
2014-11-01
Large eddy simulation on unstructured grids is used to study hydrodynamic cavitation. The multiphase medium is represented using a homogeneous equilibrium model that assumes thermal equilibrium between the liquid and the vapor phase. Surface tension effects are ignored and the governing equations are the compressible Navier Stokes equations for the liquid/vapor mixture along with a transport equation for the vapor mass fraction. A characteristic-based filtering scheme is developed to handle shocks and material discontinuities in non-ideal gases and mixtures. A TVD filter is applied as a corrector step in a predictor-corrector approach with the predictor scheme being non-dissipative and symmetric. The method is validated for canonical one dimensional flows and leading edge cavitation over a hydrofoil, and applied to study sheet to cloud cavitation over a wedge. This work is supported by the Office of Naval Research.
Study of tip clearance flow in a turbomachinery cascade using large eddy simulation
NASA Astrophysics Data System (ADS)
You, Donghyun
In liquid handling systems like pumps and ducted propulsors, low pressure events in the vicinity and downstream of the rotor tip gap can induce tip-leakage cavitation which leads to noise, vibration, performance loss, and erosions of blade and casing wall. In order to analyze the dynamics of the tip-clearance flow and determine the underlying mechanism for the low pressure events, a newly developed large-eddy simulation (LES) solver which combines an immersed-boundary method with a generalized curvilinear structured grid has been employed. An analysis of the LES results has been performed to understand the mean flow field, turbulence characteristics, vortex dynamics, and pressure fluctuations in the turbomachinery cascade with tip gap. In the cascade passage, the tip-leakage jet, which is generated by the pressure difference between the pressure and suction sides of the blade tip, is found to produce highly enhanced vorticity magnitude and significant levels of turbulent kinetic energy. Based on the understanding of the flow field, a guideline for reducing viscous loss in the cascade is provided. Analyses of the energy spectra and space-time correlations of the velocity fluctuations suggest that the tip-leakage vortex is subject to pitchwise wandering motion. The largest pressure drop and most intense pressure fluctuations due to the formation of the tip-leakage vortex are found at the location where the strongest portion of the tip-leakage vortex is found. Present study suggests that the tip-leakage vortex needs to be controlled in its origin to reduce cavitation in the present configuration. The effects of tip-gap size on the end-wall vortical structures and on the velocity and pressure fields have been investigated. The present analysis indicates that the mechanism for the generation of the vorticity and turbulent kinetic energy is mostly unchanged by the tip-gap size variation. However, larger tip-gap sizes are found to be more inductive to tip
Large Eddy Simulation of Turbulent Combustion
2006-03-15
Application to an HCCI Engine . Proceedings of the 4th Joint Meeting of the U.S. Sections of the Combustion Institute, 2005. [34] K. Fieweger...LARGE EDDY SIMULATION OF TURBULENT COMBUSTION Principle Investigator: Heinz Pitsch Flow Physics and Computation Department of Mechanical Engineering ...burners and engines found in modern, industrially relevant equipment. In the course of this transition of LES from a scientifically interesting method
Parametric Study of Decay of Homogeneous Isotropic Turbulence Using Large Eddy Simulation
NASA Technical Reports Server (NTRS)
Swanson, R. C.; Rumsey, Christopher L.; Rubinstein, Robert; Balakumar, Ponnampalam; Zang, Thomas A.
2012-01-01
Numerical simulations of decaying homogeneous isotropic turbulence are performed with both low-order and high-order spatial discretization schemes. The turbulent Mach and Reynolds numbers for the simulations are 0.2 and 250, respectively. For the low-order schemes we use either second-order central or third-order upwind biased differencing. For higher order approximations we apply weighted essentially non-oscillatory (WENO) schemes, both with linear and nonlinear weights. There are two objectives in this preliminary effort to investigate possible schemes for large eddy simulation (LES). One is to explore the capability of a widely used low-order computational fluid dynamics (CFD) code to perform LES computations. The other is to determine the effect of higher order accuracy (fifth, seventh, and ninth order) achieved with high-order upwind biased WENO-based schemes. Turbulence statistics, such as kinetic energy, dissipation, and skewness, along with the energy spectra from simulations of the decaying turbulence problem are used to assess and compare the various numerical schemes. In addition, results from the best performing schemes are compared with those from a spectral scheme. The effects of grid density, ranging from 32 cubed to 192 cubed, on the computations are also examined. The fifth-order WENO-based scheme is found to be too dissipative, especially on the coarser grids. However, with the seventh-order and ninth-order WENO-based schemes we observe a significant improvement in accuracy relative to the lower order LES schemes, as revealed by the computed peak in the energy dissipation and by the energy spectrum.
Large-eddy simulation studies of sea spray in the hurricane atmospheric boundary layer
NASA Astrophysics Data System (ADS)
Kelly, Mark
The growth and maintenance of hurricanes is highly dependent upon the exchange of heat and momentum between the ocean and atmosphere. Because sea spray can significantly affect this ocean-air exchange, accurate hurricane models need to account for spray effects. We incorporate sea spray into large-eddy simulations (LES) to explore its role in the atmospheric boundary layer (ABL) of hurricanes, allowing us to assess the validity of and offer improvements to the simple spray parameterizations currently used in hurricane models. We investigate thermodynamic feedback between spray and surface heat fluxes, and examine the effects of spray upon the dynamics of the hurricane boundary layer. Results of preliminary LES, which use a bulk representation of the dominant range of spray sizes and a simplified diagnostic phase change scheme, indicate an appreciable amount of spray-air heat transfer---consistent with theory---and demonstrate a form of spray-induced thermodynamic feedback. The LES model of the hurricane atmospheric boundary layer (HABL) is adapted to account for variations in spray generation due to wave-breaking, momentum transfer between air and spray in both the vertical (liquid loading and stratification) and horizontal (drag), and dissipative heating in an emulsion-like two-phase environment. These modifications are accompanied by extension of the phase change and spray generation schemes to account for different droplet sizes, and implementation of a moving three-dimensional boundary. Collective inclusion of all these pieces of modeled physics in the LES provides results which offer a better view of the limitations of current spray-flux models, and motivates a simpler and improved alternative model. The refined results of the 'full' LES-HABL model are consistent with early simulations, and underscore the significance of boundary-layer scale thermodynamic balance, spray-induced fluxes, and wind-dependent thermodynamic feedback.
Turbulence topologies predicted using large eddy simulations
NASA Astrophysics Data System (ADS)
Wang, Bing-Chen; Bergstrom, Donald J.; Yin, Jing; Yee, Eugene
In this paper, turbulence topologies related to the invariants of the resolved velocity gradient and strain rate tensors are studied based on large eddy simulation. The numerical results presented in the paper were obtained using two dynamic models, namely, the conventional dynamic model of Lilly and a recently developed dynamic nonlinear subgrid scale (SGS) model. In contrast to most of the previous research investigations which have mainly focused on isotropic turbulence, the present study examines the influence of near-wall anisotropy on the flow topologies. The SGS effect on the so-called SGS dissipation of the discriminant is examined and it is shown that the SGS stress contributes to the deviation of the flow topology of real turbulence from that of the ideal restricted Euler flow. The turbulence kinetic energy (TKE) transfer between the resolved and subgrid scales of motion is studied, and the forward and backward scatters of TKE are quantified in the invariant phase plane. Some interesting phenomenological results have also been obtained, including a wing-shaped contour pattern for the density of the resolved enstrophy generation and the near-wall dissipation shift of the peak location (mode) in the joint probability density function of the invariants of the resolved strain rate tensor. The newly observed turbulence phenomenologies are believed to be important and an effort has been made to explain them on an analytical basis.
Large eddy simulation in the ocean
NASA Astrophysics Data System (ADS)
Scotti, Alberto
2010-12-01
Large eddy simulation (LES) is a relative newcomer to oceanography. In this review, both applications of traditional LES to oceanic flows and new oceanic LES still in an early stage of development are discussed. The survey covers LES applied to boundary layer flows, traditionally an area where LES has provided considerable insight into the physics of the flow, as well as more innovative applications, where new SGS closure schemes need to be developed. The merging of LES with large-scale models is also briefly reviewed.
Large Eddy Simulation of Powered Fontan Hemodynamics
Delorme, Y.; Anupindi, K.; Kerlo, A.E.; Shetty, D.; Rodefeld, M.; Chen, J.; Frankel, S.
2012-01-01
Children born with univentricular heart disease typically must undergo three open heart surgeries within the first 2–3 years of life to eventually establish the Fontan circulation. In that case the single working ventricle pumps oxygenated blood to the body and blood returns to the lungs flowing passively through the Total Cavopulmonary Connection (TCPC) rather than being actively pumped by a subpulmonary ventricle. The TCPC is a direct surgical connection between the superior and inferior vena cava and the left and right pulmonary arteries. We have postulated that a mechanical pump inserted into this circulation providing a 3–5 mmHg pressure augmentation will reestablish bi-ventricular physiology serving as a bridge-to-recovery, bridge-to-transplant or destination therapy as a “biventricular Fontan” circulation. The Viscous Impeller Pump (VIP) has been proposed by our group as such an assist device. It is situated in the center of the 4-way TCPC intersection and spins pulling blood from the vena cavae and pushing it into the pulmonary arteries. We hypothesized that Large Eddy Simulation (LES) using high-order numerical methods are needed to capture unsteady powered and unpowered Fontan hemodynamics. Inclusion of a mechanical pump into the CFD further complicates matters due to the need to account for rotating machinery. In this study, we focus on predictions from an in-house high-order LES code (WenoHemo™) for unpowered and VIP-powered idealized TCPC hemodynamics with quantitative comparisons to Stereoscopic Particle Imaging Velocimetry (SPIV) measurements. Results are presented for both instantaneous flow structures and statistical data. Simulations show good qualitative and quantitative agreement with measured data. PMID:23177085
Large eddy simulation of powered Fontan hemodynamics.
Delorme, Y; Anupindi, K; Kerlo, A E; Shetty, D; Rodefeld, M; Chen, J; Frankel, S
2013-01-18
Children born with univentricular heart disease typically must undergo three open heart surgeries within the first 2-3 years of life to eventually establish the Fontan circulation. In that case the single working ventricle pumps oxygenated blood to the body and blood returns to the lungs flowing passively through the Total Cavopulmonary Connection (TCPC) rather than being actively pumped by a subpulmonary ventricle. The TCPC is a direct surgical connection between the superior and inferior vena cava and the left and right pulmonary arteries. We have postulated that a mechanical pump inserted into this circulation providing a 3-5 mmHg pressure augmentation will reestablish bi-ventricular physiology serving as a bridge-to-recovery, bridge-to-transplant or destination therapy as a "biventricular Fontan" circulation. The Viscous Impeller Pump (VIP) has been proposed by our group as such an assist device. It is situated in the center of the 4-way TCPC intersection and spins pulling blood from the vena cavae and pushing it into the pulmonary arteries. We hypothesized that Large Eddy Simulation (LES) using high-order numerical methods are needed to capture unsteady powered and unpowered Fontan hemodynamics. Inclusion of a mechanical pump into the CFD further complicates matters due to the need to account for rotating machinery. In this study, we focus on predictions from an in-house high-order LES code (WenoHemo(TM)) for unpowered and VIP-powered idealized TCPC hemodynamics with quantitative comparisons to Stereoscopic Particle Imaging Velocimetry (SPIV) measurements. Results are presented for both instantaneous flow structures and statistical data. Simulations show good qualitative and quantitative agreement with measured data.
Developing large eddy simulation for turbomachinery applications.
Eastwood, Simon J; Tucker, Paul G; Xia, Hao; Klostermeier, Christian
2009-07-28
For jets, large eddy resolving simulations are compared for a range of numerical schemes with no subgrid scale (SGS) model and for a range of SGS models with the same scheme. There is little variation in results for the different SGS models, and it is shown that, for schemes which tend towards having dissipative elements, the SGS model can be abandoned, giving what can be termed numerical large eddy simulation (NLES). More complex geometries are investigated, including coaxial and chevron nozzle jets. A near-wall Reynolds-averaged Navier-Stokes (RANS) model is used to cover over streak-like structures that cannot be resolved. Compressor and turbine flows are also successfully computed using a similar NLES-RANS strategy. Upstream of the compressor leading edge, the RANS layer is helpful in preventing premature separation. Capturing the correct flow over the turbine is particularly challenging, but nonetheless the RANS layer is helpful. In relation to the SGS model, for the flows considered, evidence suggests issues such as inflow conditions, problem definition and transition are more influential.
A Large-eddy Simulation Study of Vertical Axis Wind Turbine Wakes in the Atmospheric Boundary Layer
NASA Astrophysics Data System (ADS)
Shamsoddin, Sina; Porté-Agel, Fernando
2016-04-01
Vertical axis wind turbines (VAWTs) offer some advantages over their horizontal axis counterparts, and are being considered as a viable alternative to conventional horizontal axis wind turbines (HAWTs). Nevertheless, a relative shortage of scientific, academic and technical investigations of VAWTs is observed in the wind energy community with respect to HAWTs. Having this in mind, in this work, we aim to study the wake of a single VAWT, placed in the atmospheric boundary layer, using large-eddy simulation (LES) coupled with actuator line model (ALM). It is noteworthy that this is the first time that such a study is being performed. To do this, for a typical 1 MW VAWT design, first, the variation of power coefficient with both the chord length of the blades and the tip-speed ratio is analyzed using LES-ALM, and an optimum combination of chord length and tip-speed ratio is obtained. Subsequently, the wake of a VAWT with these optimum specifications is thoroughly examined by showing different relevant mean and turbulent wake flow statistics. Keywords: vertical axis wind turbine (VAWT); VAWT wake; Atmospheric Boundary Layer (ABL); large eddy simulation (LES); actuator line model (ALM); turbulence.
Scalar excursions in large-eddy simulations
NASA Astrophysics Data System (ADS)
Matheou, Georgios; Dimotakis, Paul E.
2016-12-01
The range of values of scalar fields in turbulent flows is bounded by their boundary values, for passive scalars, and by a combination of boundary values, reaction rates, phase changes, etc., for active scalars. The current investigation focuses on the local conservation of passive scalar concentration fields and the ability of the large-eddy simulation (LES) method to observe the boundedness of passive scalar concentrations. In practice, as a result of numerical artifacts, this fundamental constraint is often violated with scalars exhibiting unphysical excursions. The present study characterizes passive-scalar excursions in LES of a shear flow and examines methods for diagnosis and assesment of the problem. The analysis of scalar-excursion statistics provides support of the main hypothesis of the current study that unphysical scalar excursions in LES result from dispersive errors of the convection-term discretization where the subgrid-scale model (SGS) provides insufficient dissipation to produce a sufficiently smooth scalar field. In the LES runs three parameters are varied: the discretization of the convection terms, the SGS model, and grid resolution. Unphysical scalar excursions decrease as the order of accuracy of non-dissipative schemes is increased, but the improvement rate decreases with increasing order of accuracy. Two SGS models are examined, the stretched-vortex and a constant-coefficient Smagorinsky. Scalar excursions strongly depend on the SGS model. The excursions are significantly reduced when the characteristic SGS scale is set to double the grid spacing in runs with the stretched-vortex model. The maximum excursion and volume fraction of excursions outside boundary values show opposite trends with respect to resolution. The maximum unphysical excursions increase as resolution increases, whereas the volume fraction decreases. The reason for the increase in the maximum excursion is statistical and traceable to the number of grid points (sample size
Large Eddy Simulation of turbulent shear flows
NASA Technical Reports Server (NTRS)
Moin, P.; Mansour, N. N.; Reynolds, W. C.; Ferziger, J. H.
1979-01-01
The conceptual foundation underlying Large Eddy Simulation (LES) is summarized, and the numerical methods developed for simulation of the time-developing turbulent mixing layer and turbulent plane Poiseuille flow are discussed. Computational results show that the average Reynolds stress profile nearly attains the equilibrium shape which balances the downstream mean pressure gradient in the regions away from the walls. In the vicinity of the walls, viscous stresses are shown to be significant; together with the Reynolds stresses, these stresses balance the mean pressure gradient. It is stressed that the subgrid scale contribution to the total Reynolds stress is significant only in the vicinity of the walls. The continued development of LES is urged.
Large eddy simulations in 2030 and beyond
Piomelli, U
2014-01-01
Since its introduction, in the early 1970s, large eddy simulations (LES) have advanced considerably, and their application is transitioning from the academic environment to industry. Several landmark developments can be identified over the past 40 years, such as the wall-resolved simulations of wall-bounded flows, the development of advanced models for the unresolved scales that adapt to the local flow conditions and the hybridization of LES with the solution of the Reynolds-averaged Navier–Stokes equations. Thanks to these advancements, LES is now in widespread use in the academic community and is an option available in most commercial flow-solvers. This paper will try to predict what algorithmic and modelling advancements are needed to make it even more robust and inexpensive, and which areas show the most promise. PMID:25024415
Large eddy simulations in 2030 and beyond.
Piomelli, U
2014-08-13
Since its introduction, in the early 1970s, large eddy simulations (LES) have advanced considerably, and their application is transitioning from the academic environment to industry. Several landmark developments can be identified over the past 40 years, such as the wall-resolved simulations of wall-bounded flows, the development of advanced models for the unresolved scales that adapt to the local flow conditions and the hybridization of LES with the solution of the Reynolds-averaged Navier-Stokes equations. Thanks to these advancements, LES is now in widespread use in the academic community and is an option available in most commercial flow-solvers. This paper will try to predict what algorithmic and modelling advancements are needed to make it even more robust and inexpensive, and which areas show the most promise.
Statistical Ensemble of Large Eddy Simulations
NASA Technical Reports Server (NTRS)
Carati, Daniele; Rogers, Michael M.; Wray, Alan A.; Mansour, Nagi N. (Technical Monitor)
2001-01-01
A statistical ensemble of large eddy simulations (LES) is run simultaneously for the same flow. The information provided by the different large scale velocity fields is used to propose an ensemble averaged version of the dynamic model. This produces local model parameters that only depend on the statistical properties of the flow. An important property of the ensemble averaged dynamic procedure is that it does not require any spatial averaging and can thus be used in fully inhomogeneous flows. Also, the ensemble of LES's provides statistics of the large scale velocity that can be used for building new models for the subgrid-scale stress tensor. The ensemble averaged dynamic procedure has been implemented with various models for three flows: decaying isotropic turbulence, forced isotropic turbulence, and the time developing plane wake. It is found that the results are almost independent of the number of LES's in the statistical ensemble provided that the ensemble contains at least 16 realizations.
Autonomic Closure for Large Eddy Simulation
NASA Astrophysics Data System (ADS)
King, Ryan; Hamlington, Peter; Dahm, Werner J. A.
2015-11-01
A new autonomic subgrid-scale closure has been developed for large eddy simulation (LES). The approach poses a supervised learning problem that captures nonlinear, nonlocal, and nonequilibrium turbulence effects without specifying a predefined turbulence model. By solving a regularized optimization problem on test filter scale quantities, the autonomic approach identifies a nonparametric function that represents the best local relation between subgrid stresses and resolved state variables. The optimized function is then applied at the grid scale to determine unknown LES subgrid stresses by invoking scale similarity in the inertial range. A priori tests of the autonomic approach on homogeneous isotropic turbulence show that the new approach is amenable to powerful optimization and machine learning methods and is successful for a wide range of filter scales in the inertial range. In these a priori tests, the autonomic closure substantially improves upon the dynamic Smagorinsky model in capturing the instantaneous, statistical, and energy transfer properties of the subgrid stress field.
Large-eddy simulation of propeller noise
NASA Astrophysics Data System (ADS)
Keller, Jacob; Mahesh, Krishnan
2016-11-01
We will discuss our ongoing work towards developing the capability to predict far field sound from the large-eddy simulation of propellers. A porous surface Ffowcs-Williams and Hawkings (FW-H) acoustic analogy, with a dynamic endcapping method (Nitzkorski and Mahesh, 2014) is developed for unstructured grids in a rotating frame of reference. The FW-H surface is generated automatically using Delaunay triangulation and is representative of the underlying volume mesh. The approach is validated for tonal trailing edge sound from a NACA 0012 airfoil. LES of flow around a propeller at design advance ratio is compared to experiment and good agreement is obtained. Results for the emitted far field sound will be discussed. This work is supported by ONR.
Large eddy simulation applications in gas turbines.
Menzies, Kevin
2009-07-28
The gas turbine presents significant challenges to any computational fluid dynamics techniques. The combination of a wide range of flow phenomena with complex geometry is difficult to model in the context of Reynolds-averaged Navier-Stokes (RANS) solvers. We review the potential for large eddy simulation (LES) in modelling the flow in the different components of the gas turbine during a practical engineering design cycle. We show that while LES has demonstrated considerable promise for reliable prediction of many flows in the engine that are difficult for RANS it is not a panacea and considerable application challenges remain. However, for many flows, especially those dominated by shear layer mixing such as in combustion chambers and exhausts, LES has demonstrated a clear superiority over RANS for moderately complex geometries although at significantly higher cost which will remain an issue in making the calculations relevant within the design cycle.
Large Eddy Simulation of Cirrus Clouds
NASA Technical Reports Server (NTRS)
Wu, Ting; Cotton, William R.
1999-01-01
The Regional Atmospheric Modeling System (RAMS) with mesoscale interactive nested-grids and a Large-Eddy Simulation (LES) version of RAMS, coupled to two-moment microphysics and a new two-stream radiative code were used to investigate the dynamic, microphysical, and radiative aspects of the November 26, 1991 cirrus event. Wu (1998) describes the results of that research in full detail and is enclosed as Appendix 1. The mesoscale nested grid simulation successfully reproduced the large scale circulation as compared to the Mesoscale Analysis and Prediction System's (MAPS) analyses and other observations. Three cloud bands which match nicely to the three cloud lines identified in an observational study (Mace et al., 1995) are predicted on Grid #2 of the nested grids, even though the mesoscale simulation predicts a larger west-east cloud width than what was observed. Large-eddy simulations (LES) were performed to study the dynamical, microphysical, and radiative processes in the 26 November 1991 FIRE 11 cirrus event. The LES model is based on the RAMS version 3b developed at Colorado State University. It includes a new radiation scheme developed by Harrington (1997) and a new subgrid scale model developed by Kosovic (1996). The LES model simulated a single cloud layer for Case 1 and a two-layer cloud structure for Case 2. The simulations demonstrated that latent heat release can play a significant role in the formation and development of cirrus clouds. For the thin cirrus in Case 1, the latent heat release was insufficient for the cirrus clouds to become positively buoyant. However, in some special cases such as Case 2, positively buoyant cells can be embedded within the cirrus layers. These cells were so active that the rising updraft induced its own pressure perturbations that affected the cloud evolution. Vertical profiles of the total radiative and latent heating rates indicated that for well developed, deep, and active cirrus clouds, radiative cooling and latent
Large eddy simulation of trailing edge noise
NASA Astrophysics Data System (ADS)
Keller, Jacob; Nitzkorski, Zane; Mahesh, Krishnan
2015-11-01
Noise generation is an important engineering constraint to many marine vehicles. A significant portion of the noise comes from propellers and rotors, specifically due to flow interactions at the trailing edge. Large eddy simulation is used to investigate the noise produced by a turbulent 45 degree beveled trailing edge and a NACA 0012 airfoil. A porous surface Ffowcs-Williams and Hawkings acoustic analogy is combined with a dynamic endcapping method to compute the sound. This methodology allows for the impact of incident flow noise versus the total noise to be assessed. LES results for the 45 degree beveled trailing edge are compared to experiment at M = 0 . 1 and Rec = 1 . 9 e 6 . The effect of boundary layer thickness on sound production is investigated by computing using both the experimental boundary layer thickness and a thinner boundary layer. Direct numerical simulation results of the NACA 0012 are compared to available data at M = 0 . 4 and Rec = 5 . 0 e 4 for both the hydrodynamic field and the acoustic field. Sound intensities and directivities are investigated and compared. Finally, some of the physical mechanisms of far-field noise generation, common to the two configurations, are discussed. Supported by Office of Naval research.
ENDLESS: a multi-scale large-eddy simulation approach to study oil plumes in the ocean mixed layer
NASA Astrophysics Data System (ADS)
Chen, B.; Yang, D.; Meneveau, C. V.; Chamecki, M.
2015-12-01
Large-eddy simulation (LES) has proven to be a valuable tool in producing high-fidelity simulations of environmental and geophysical turbulent flows. For simulations of the ocean mixed layer (OML), a grid size of a few meters is required and the typical horizontal domain sizes of LES are restricted to hundreds meters or a few kilometers at most. Oil plumes being transported in the OML experience the action of Langmuir turbulence, Ekman transport and submesoscale quasi-geostrophic eddies. As a consequence, oil plumes display complex features on scales from a few meters to tens kilometers. Therefore, accurately reproducing all the relevant scales in computer simulations is a challenging task. In this study, the Extended Nonperiodic Domain LES for Scalar transport (ENDLESS) is proposed as an economic multi-scale approach to tackle this problem with current computing power. The basic idea is to simulate the Langmuir turbulence on a small horizontal domain while simulating the oil plume over an effectively large extended domain. In particular, scalar fields are adaptively added and removed to efficiently enclose the oil plume with minimum computational cost for tracking the evolution of nonhomogeneous plumes. This approach also permits the superposition of larger-scale quasi two-dimensional motions on the oil advection, allowing for coupling with regional circulation models. Validation cases and sample applications are also discussed.
Large-eddy simulations with wall models
NASA Technical Reports Server (NTRS)
Cabot, W.
1995-01-01
The near-wall viscous and buffer regions of wall-bounded flows generally require a large expenditure of computational resources to be resolved adequately, even in large-eddy simulation (LES). Often as much as 50% of the grid points in a computational domain are devoted to these regions. The dense grids that this implies also generally require small time steps for numerical stability and/or accuracy. It is commonly assumed that the inner wall layers are near equilibrium, so that the standard logarithmic law can be applied as the boundary condition for the wall stress well away from the wall, for example, in the logarithmic region, obviating the need to expend large amounts of grid points and computational time in this region. This approach is commonly employed in LES of planetary boundary layers, and it has also been used for some simple engineering flows. In order to calculate accurately a wall-bounded flow with coarse wall resolution, one requires the wall stress as a boundary condition. The goal of this work is to determine the extent to which equilibrium and boundary layer assumptions are valid in the near-wall regions, to develop models for the inner layer based on such assumptions, and to test these modeling ideas in some relatively simple flows with different pressure gradients, such as channel flow and flow over a backward-facing step. Ultimately, models that perform adequately in these situations will be applied to more complex flow configurations, such as an airfoil.
Large Eddy Simulation of Transitional Boundary Layer
NASA Astrophysics Data System (ADS)
Sayadi, Taraneh; Moin, Parviz
2009-11-01
A sixth order compact finite difference code is employed to investigate compressible Large Eddy Simulation (LES) of subharmonic transition of a spatially developing zero pressure gradient boundary layer, at Ma = 0.2. The computational domain extends from Rex= 10^5, where laminar blowing and suction excites the most unstable fundamental and sub-harmonic modes, to fully turbulent stage at Rex= 10.1x10^5. Numerical sponges are used in the neighborhood of external boundaries to provide non-reflective conditions. Our interest lies in the performance of the dynamic subgrid scale (SGS) model [1] in the transition process. It is observed that in early stages of transition the eddy viscosity is much smaller than the physical viscosity. As a result the amplitudes of selected harmonics are in very good agreement with the experimental data [2]. The model's contribution gradually increases during the last stages of transition process and the dynamic eddy viscosity becomes fully active and dominant in the turbulent region. Consistent with this trend the skin friction coefficient versus Rex diverges from its laminar profile and converges to the turbulent profile after an overshoot. 1. Moin P. et. al. Phys Fluids A, 3(11), 2746-2757, 1991. 2. Kachanov Yu. S. et. al. JFM, 138, 209-247, 1983.
Churchfield, Matthew J; Li, Ye; Moriarty, Patrick J
2013-02-28
This paper presents our initial work in performing large-eddy simulations of tidal turbine array flows. First, a horizontally periodic precursor simulation is performed to create turbulent flow data. Then those data are used as inflow into a tidal turbine array two rows deep and infinitely wide. The turbines are modelled using rotating actuator lines, and the finite-volume method is used to solve the governing equations. In studying the wakes created by the turbines, we observed that the vertical shear of the inflow combined with wake rotation causes lateral wake asymmetry. Also, various turbine configurations are simulated, and the total power production relative to isolated turbines is examined. We found that staggering consecutive rows of turbines in the simulated configurations allows the greatest efficiency using the least downstream row spacing. Counter-rotating consecutive downstream turbines in a non-staggered array shows a small benefit. This work has identified areas for improvement. For example, using a larger precursor domain would better capture elongated turbulent structures, and including salinity and temperature equations would account for density stratification and its effect on turbulence. Additionally, the wall shear stress modelling could be improved, and more array configurations could be examined.
Churchfield, M. J.; Li, Y.; Moriarty, P. J.
2012-07-01
This paper presents our initial work in performing large-eddy simulations of tidal turbine array flows. First, a horizontally-periodic precursor simulation is performed to create turbulent flow data. Then that data is used as inflow into a tidal turbine array two rows deep and infinitely wide. The turbines are modeled using rotating actuator lines, and the finite-volume method is used to solve the governing equations. In studying the wakes created by the turbines, we observed that the vertical shear of the inflow combined with wake rotation causes lateral wake asymmetry. Also, various turbine configurations are simulated, and the total power production relative to isolated turbines is examined. Staggering consecutive rows of turbines in the simulated configurations allows the greatest efficiency using the least downstream row spacing. Counter-rotating consecutive downstream turbines in a non-staggered array shows a small benefit. This work has identified areas for improvement, such as the use of a larger precursor domain to better capture elongated turbulent structures, the inclusion of salinity and temperature equations to account for density stratification and its effect on turbulence, improved wall shear stress modelling, and the examination of more array configurations.
Churchfield, M. J.; Li, Y.; Moriarty, P. J.
2011-07-01
This paper presents our initial work in performing large-eddy simulations of tidal turbine array flows. First, a horizontally-periodic precursor simulation is performed to create turbulent flow data. Then that data is used to determine the inflow into a tidal turbine array two rows deep and infinitely wide. The turbines are modeled using rotating actuator lines, and the finite-volume method is used to solve the governing equations. In studying the wakes created by the turbines, we observed that the vertical shear of the inflow combined with wake rotation causes lateral wake asymmetry. Also, various turbine configurations are simulated, and the total power production relative to isolated turbines is examined. Staggering consecutive rows of turbines in the simulated configurations allows the greatest efficiency using the least downstream row spacing. Counter-rotating consecutive downstream turbines in a non-staggered array shows a small benefit. This work has identified areas for improvement, such as the use of a larger precursor domain to better capture elongated turbulent structures, the inclusion of salinity and temperature equations to account for density stratification and its effect on turbulence, improved wall shear stress modeling, and the examination of more array configurations.
Application of large-eddy simulation to the study of pulsatile flow in a modeled arterial stenosis.
Mittal, R; Simmons, S P; Udaykumar, H S
2001-08-01
The technique of large-eddy simulation (LES) has been applied to the study of pulsatile flow through a modeled arterial stenosis. A simple stenosis model has been used that consists of a one-sided 50 percent semicircular constriction in a planar channel. The inlet volume flux is varied sinusoidally in time in a manner similar to the laminar flow simulations of Tutty (1992). LES is used to compute flow at a peak Reynolds number of 2000 and a Strouhal number of 0.024. At this Reynolds number, the flow downstream of the stenosis transitions to turbulence and exhibits all the classic features of post-stenotic flow as described by Khalifa and Giddens (1981) and Lieber and Giddens (1990). These include the periodic shedding of shear layer vortices and transition to turbulence downstream of the stenosis. Computed frequency spectra indicate that the vortex shedding occurs at a distinct high frequency, and the potential implication of this for noninvasive diagnosis of arterial stenoses is discussed. A variety of statistics have been also extracted and a number of other physical features of the flow are described in order to demonstrate the usefulness of LES for the study of post-stenotic flows.
Large eddy simulations of laminar separation bubble
NASA Astrophysics Data System (ADS)
Cadieux, Francois
The flow over blades and airfoils at moderate angles of attack and Reynolds numbers ranging from ten thousand to a few hundred thousands undergoes separation due to the adverse pressure gradient generated by surface curvature. In many cases, the separated shear layer then transitions to turbulence and reattaches, closing off a recirculation region -- the laminar separation bubble. To avoid body-fitted mesh generation problems and numerical issues, an equivalent problem for flow over a flat plate is formulated by imposing boundary conditions that lead to a pressure distribution and Reynolds number that are similar to those on airfoils. Spalart & Strelet (2000) tested a number of Reynolds-averaged Navier-Stokes (RANS) turbulence models for a laminar separation bubble flow over a flat plate. Although results with the Spalart-Allmaras turbulence model were encouraging, none of the turbulence models tested reliably recovered time-averaged direct numerical simulation (DNS) results. The purpose of this work is to assess whether large eddy simulation (LES) can more accurately and reliably recover DNS results using drastically reduced resolution -- on the order of 1% of DNS resolution which is commonly achievable for LES of turbulent channel flows. LES of a laminar separation bubble flow over a flat plate are performed using a compressible sixth-order finite-difference code and two incompressible pseudo-spectral Navier-Stokes solvers at resolutions corresponding to approximately 3% and 1% of the chosen DNS benchmark by Spalart & Strelet (2000). The finite-difference solver is found to be dissipative due to the use of a stability-enhancing filter. Its numerical dissipation is quantified and found to be comparable to the average eddy viscosity of the dynamic Smagorinsky model, making it difficult to separate the effects of filtering versus those of explicit subgrid-scale modeling. The negligible numerical dissipation of the pseudo-spectral solvers allows an unambiguous
Large-Eddy Simulations of Dust Devils and Convective Vortices
NASA Astrophysics Data System (ADS)
Spiga, Aymeric; Barth, Erika; Gu, Zhaolin; Hoffmann, Fabian; Ito, Junshi; Jemmett-Smith, Bradley; Klose, Martina; Nishizawa, Seiya; Raasch, Siegfried; Rafkin, Scot; Takemi, Tetsuya; Tyler, Daniel; Wei, Wei
2016-11-01
In this review, we address the use of numerical computations called Large-Eddy Simulations (LES) to study dust devils, and the more general class of atmospheric phenomena they belong to (convective vortices). We describe the main elements of the LES methodology. We review the properties, statistics, and variability of dust devils and convective vortices resolved by LES in both terrestrial and Martian environments. The current challenges faced by modelers using LES for dust devils are also discussed in detail.
NASA Astrophysics Data System (ADS)
Chamecki, M.; Pan, Y.; Nepf, H. M.; Follett, E.
2014-12-01
Flexible plants bend in response to fluid motion and this reconfiguration mechanism allows plants to minimize the increase of drag force with increasing velocity, ensuring survival in flow-dominated habitats. The effect of reconfiguration on the flow field can be modeled by introducing a drag coefficient that decreases with increasing velocity. Typically, a power-law decrease of the drag coefficient with increasing velocity is used, and the negative exponent is known as the Vogel number. In practice, the Vogel number is a function of canopy rigidity and flow conditions. In this work we show that accounting for the effect of reconfiguration is required for large-eddy simulation (LES) models to reproduce the skewness of the streamwise and vertical velocity components and the distribution of sweeps and ejections observed in a large cornfield. Additional LES runs are conducted to investigate the structure of turbulence in different reconfiguration regimes, with mean vertical momentum flux constrained by measurements. The change of the Vogel number has negligible effects on LES predictions of the total vertical momentum flux and the components of turbulent kinetic energy, but produces profound changes in the mechanisms of momentum transport. This work demonstrates the necessity to model the effect of reconfiguration in LES studies of canopy flows. It also highlights the impacts of reconfiguration on the structure of turbulence and the dynamics of momentum fluxes, as well as any other process that depends on velocity fluctuations above and within the canopy region.
NASA Technical Reports Server (NTRS)
Senocak, I.; Ackerman, A. S.; Kirkpatrick, M. P.; Stevens, D. E.; Mansour, N. N.
2004-01-01
Large-eddy simulation (LES) is a widely used technique in armospheric modeling research. In LES, large, unsteady, three dimensional structures are resolved and small structures that are not resolved on the computational grid are modeled. A filtering operation is applied to distinguish between resolved and unresolved scales. We present two near-surface models that have found use in atmospheric modeling. We also suggest a simpler eddy viscosity model that adopts Prandtl's mixing length model (Prandtl 1925) in the vicinity of the surface and blends with the dynamic Smagotinsky model (Germano et al, 1991) away from the surface. We evaluate the performance of these surface models by simulating a neutraly stratified atmospheric boundary layer.
Finecasting for renewable energy with large-eddy simulation
NASA Astrophysics Data System (ADS)
Jonker, Harmen; Verzijlbergh, Remco
2016-04-01
We present results of a single, continuous Large-Eddy Simulation of actual weather conditions during the timespan of a full year, made possible through recent computational developments (Schalkwijk et al, MWR, 2015). The simulation is coupled to a regional weather model in order to provide an LES dataset that is representative of the daily weather of the year 2012 around Cabauw, the Netherlands. This location is chosen such that LES results can be compared with both the regional weather model and observations from the Cabauw observational supersite. The run was made possible by porting our Large-Eddy Simulation program to run completely on the GPU (Schalkwijk et al, BAMS, 2012). GPU adaptation allows us to reach much improved time-to-solution ratios (i.e. simulation speedup versus real time). As a result, one can perform runs with a much longer timespan than previously feasible. The dataset resulting from the LES run provides many avenues for further study. First, it can provide a more statistical approach to boundary-layer turbulence than the more common case-studies by simulating a diverse but representative set of situations, as well as the transition between situations. This has advantages in designing and evaluating parameterizations. In addition, we discuss the opportunities of high-resolution forecasts for the renewable energy sector, e.g. wind and solar energy production.
On integrating large eddy simulation and laboratory turbulent flow experiments.
Grinstein, Fernando F
2009-07-28
Critical issues involved in large eddy simulation (LES) experiments relate to the treatment of unresolved subgrid scale flow features and required initial and boundary condition supergrid scale modelling. The inherently intrusive nature of both LES and laboratory experiments is noted in this context. Flow characterization issues becomes very challenging ones in validation and computational laboratory studies, where potential sources of discrepancies between predictions and measurements need to be clearly evaluated and controlled. A special focus of the discussion is devoted to turbulent initial condition issues.
Large-Eddy Simulation of Wind-Plant Aerodynamics: Preprint
Churchfield, M. J.; Lee, S.; Moriarty, P. J.; Martinez, L. A.; Leonardi, S.; Vijayakumar, G.; Brasseur, J. G.
2012-01-01
In this work, we present results of a large-eddy simulation of the 48 multi-megawatt turbines composing the Lillgrund wind plant. Turbulent inflow wind is created by performing an atmospheric boundary layer precursor simulation and turbines are modeled using a rotating, variable-speed actuator line representation. The motivation for this work is that few others have done wind plant large-eddy simulations with a substantial number of turbines, and the methods for carrying out the simulations are varied. We wish to draw upon the strengths of the existing simulations and our growing atmospheric large-eddy simulation capability to create a sound methodology for performing this type of simulation. We have used the OpenFOAM CFD toolbox to create our solver.
NASA Astrophysics Data System (ADS)
Ooi, Seng-Keat
2005-11-01
Lock-exchange gravity current flows produced by the instantaneous release of a heavy fluid are investigated using 3-D well resolved Large Eddy Simulation simulations at Grashof numbers up to 8*10^9. It is found the 3-D simulations correctly predict a constant front velocity over the initial slumping phase and a front speed decrease proportional to t-1/3 (the time t is measured from the release) over the inviscid phase, in agreement with theory. The evolution of the current in the simulations is found to be similar to that observed experimentally by Hacker et al. (1996). The effect of the dynamic LES model on the solutions is discussed. The energy budget of the current is discussed and the contribution of the turbulent dissipation to the total dissipation is analyzed. The limitations of less expensive 2D simulations are discussed; in particular their failure to correctly predict the spatio-temporal distributions of the bed shear stresses which is important in determining the amount of sediment the gravity current can entrain in the case in advances of a loose bed.
NASA Astrophysics Data System (ADS)
Kumar, Vijayant
Large-eddy simulation (LES) studies of the atmospheric boundary layer (ABL) have historically modeled the daytime (convective), nighttime (stable) and dawn/dusk windy (neutral) regimes separately under the assumption of a quasi-steady ABL. The real-world ABL however, continuously transitions between the different stability regimes and development of an LES capable of simulating the entire diurnal evolution of the ABL is needed. We have developed an LES tool (The JHU-LES code) with the new-generation Lagrangian dynamic models capable of dynamic adjustment of the subgrid-scale stresses thereby, making it apt for LES over entire diurnal cycles of the ABL. Preliminary LES studies demonstrate that the JHU-LES code reproduces well-known features of the quasi-steady convective and stable boundary layers, such as the well-known spectral scalings for production and inertial subranges. LES of the entire 24-hour diurnal evolution of the atmospheric boundary layer is then performed and compared successfully to field observations (HATS dataset). Important features of the diurnal ABL such as entrainment-based growth of the CBL, development of the stable boundary layer and evolution of the nocturnal low-level jet are well reproduced. The advantages of using a local Obukhov length-scale to normalize the results are highlighted. To investigate the role of surface boundary conditions and geostrophic wind forcing, LES investigations of multi-day evolution of the ABL flow are then performed with several combinations of surface boundary conditions (imposed temperature and heat flux) and geostrophic forcing (constant, time-varying, time and height varying). The variable geostrophic forcing significantly improves the agreement of LES results with surface flux observations but shows poor agreement with daytime surface fluxes and, daytime and nighttime mean profiles. The LES setup using an imposed surface temperature almost always yields better results than cases where the heat flux is
NASA Astrophysics Data System (ADS)
Margairaz, Fabien; Giometto, Marco; Parlange, Marc; Calaf, Marc
2015-11-01
The performance of dealiasing schemes and their computational cost on a pseudo-spectral code are analyzed. Dealiasing is required to limit the error that occurs when two discretized variables are multiplied, polluting the accuracy of the result. In this work three different dealiasing methods are explored: the 2/3 rule, the 3/2 rule, and a high order Fourier smoothing based method. We compare the cost of the traditionally accepted 3/2 rule (Canuto et al., 1988), where an expansion of the computational domain to a larger grid is required, to the cost of the other two techniques that do not require this expansion. This analysis is performed in the framework of Large-Eddy Simulations (LES) of incompressible flows using the constant Smagorinsky sub-grid model with a wall damping function and a wall model based on the log-law. A highly efficient LES code parallelized using a 2D pencil decomposition has been developed. The code employs the traditional pseudo-spectral approach to integrate the incompressible Navier-Stokes equations. Several simulations of a neutral atmospheric boundary layer using different degrees of numerical resolution are considered. Results show a net difference in computational cost between the different techniques without relevant changes in statistics.
Large Eddy Simulations and Turbulence Modeling for Film Cooling
NASA Technical Reports Server (NTRS)
Acharya, Sumanta
1999-01-01
The objective of the research is to perform Direct Numerical Simulations (DNS) and Large Eddy Simulations (LES) for film cooling process, and to evaluate and improve advanced forms of the two equation turbulence models for turbine blade surface flow analysis. The DNS/LES were used to resolve the large eddies within the flow field near the coolant jet location. The work involved code development and applications of the codes developed to the film cooling problems. Five different codes were developed and utilized to perform this research. This report presented a summary of the development of the codes and their applications to analyze the turbulence properties at locations near coolant injection holes.
Large eddy simulation of a wing-body junction flow
NASA Astrophysics Data System (ADS)
Ryu, Sungmin; Emory, Michael; Campos, Alejandro; Duraisamy, Karthik; Iaccarino, Gianluca
2014-11-01
We present numerical simulations of the wing-body junction flow experimentally investigated by Devenport & Simpson (1990). Wall-junction flows are common in engineering applications but relevant flow physics close to the corner region is not well understood. Moreover, performance of turbulence models for the body-junction case is not well characterized. Motivated by the insufficient investigations, we have numerically investigated the case with Reynolds-averaged Naiver-Stokes equation (RANS) and Large Eddy Simulation (LES) approaches. The Vreman model applied for the LES and SST k- ω model for the RANS simulation are validated focusing on the ability to predict turbulence statistics near the junction region. Moreover, a sensitivity study of the form of the Vreman model will also be presented. This work is funded under NASA Cooperative Agreement NNX11AI41A (Technical Monitor Dr. Stephen Woodruff)
Large-Eddy Simulation of Wind-Plant Aerodynamics
Churchfield, M. J.; Lee, S.; Moriarty, P. J.; Martinez, L. A.; Leonardi, S.; Vijayakumar, G.; Brasseur, J. G.
2012-01-01
In this work, we present results of a large-eddy simulation of the 48 multi-megawatt turbines composing the Lillgrund wind plant. Turbulent inflow wind is created by performing an atmospheric boundary layer precursor simulation, and turbines are modeled using a rotating, variable-speed actuator line representation. The motivation for this work is that few others have done large-eddy simulations of wind plants with a substantial number of turbines, and the methods for carrying out the simulations are varied. We wish to draw upon the strengths of the existing simulations and our growing atmospheric large-eddy simulation capability to create a sound methodology for performing this type of simulation. We used the OpenFOAM CFD toolbox to create our solver. The simulated time-averaged power production of the turbines in the plant agrees well with field observations, except with the sixth turbine and beyond in each wind-aligned. The power produced by each of those turbines is overpredicted by 25-40%. A direct comparison between simulated and field data is difficult because we simulate one wind direction with a speed and turbulence intensity characteristic of Lillgrund, but the field observations were taken over a year of varying conditions. The simulation shows the significant 60-70% decrease in the performance of the turbines behind the front row in this plant that has a spacing of 4.3 rotor diameters in this direction. The overall plant efficiency is well predicted. This work shows the importance of using local grid refinement to simultaneously capture the meter-scale details of the turbine wake and the kilometer-scale turbulent atmospheric structures. Although this work illustrates the power of large-eddy simulation in producing a time-accurate solution, it required about one million processor-hours, showing the significant cost of large-eddy simulation.
NASA Astrophysics Data System (ADS)
Kanani-Sühring, Farah; Raasch, Siegfried
2017-02-01
By means of large-eddy simulation, we investigate the transport of a passive scalar in the lee of forest patches under neutral atmospheric conditions in flat terrain. We found a pronounced local enhancement of scalar concentration and scalar flux in the lee zone of the forest, while further downstream above the unforested surface, the scalar transport adjusted to an equilibrium with the underlying surface conditions. By means of a term-by-term analysis of the scalar transport equation, we determined the local accumulation of the scalar to be caused by the convergence of: (1) mean and turbulent streamwise transport, (2) mean vertical transport. However, the relative importance of each transport mechanism for the accumulation process was found to depend strongly on forest density. Based on systematic parameter changes, we found concentrations to significantly increase with increasing forest density and with decreasing wind speed, while fluxes were invariant to wind speed and showed a similar relation to forest density as for the concentrations. Despite the scalar sources—ground and/or canopy sources—a local flux enhancement was present in the lee zone. Finally, we provide a first step towards localizing enhanced concentrations and fluxes at micrometeorological sites.
Large-eddy simulation using the finite element method
McCallen, R.C.; Gresho, P.M.; Leone, J.M. Jr.; Kollmann, W.
1993-10-01
In a large-eddy simulation (LES) of turbulent flows, the large-scale motion is calculated explicitly (i.e., approximated with semi-empirical relations). Typically, finite difference or spectral numerical schemes are used to generate an LES; the use of finite element methods (FEM) has been far less prominent. In this study, we demonstrate that FEM in combination with LES provides a viable tool for the study of turbulent, separating channel flows, specifically the flow over a two-dimensional backward-facing step. The combination of these methodologies brings together the advantages of each: LES provides a high degree of accuracy with a minimum of empiricism for turbulence modeling and FEM provides a robust way to simulate flow in very complex domains of practical interest. Such a combination should prove very valuable to the engineering community.
Large-eddy simulation of turbulent circular jet flows
Jones, S. C.; Sotiropoulos, F.; Sale, M. J.
2002-07-01
This report presents a numerical method for carrying out large-eddy simulations (LES) of turbulent free shear flows and an application of a method to simulate the flow generated by a nozzle discharging into a stagnant reservoir. The objective of the study was to elucidate the complex features of the instantaneous flow field to help interpret the results of recent biological experiments in which live fish were exposed to the jet shear zone. The fish-jet experiments were conducted at the Pacific Northwest National Laboratory (PNNL) under the auspices of the U.S. Department of Energy’s Advanced Hydropower Turbine Systems program. The experiments were designed to establish critical thresholds of shear and turbulence-induced loads to guide the development of innovative, fish-friendly hydropower turbine designs.
Large eddy simulation of sheet to cloud cavitation
NASA Astrophysics Data System (ADS)
Bhatt, Mrugank; Mahesh, Krishnan
2016-11-01
Large eddy simulation is used to study sheet to cloud cavitation. A homogeneous mixture model is employed to represent the multiphase mixture of water and water vapor. A novel predictor-corrector method is used to numerically solve the compressible Navier-Stokes equations for the liquid/vapor mixture along with a transport equation for the vapor mass fraction. The algorithm is implemented on an unstructured grid and a parallel platform, with a fully coupled implicit time advancement of both viscous and advection terms. Simulation of sheet to cloud cavitation over a wedge at a Reynolds number, Re = 200, 000 and cavitation number, σ = 2 . 1 is performed. A propagating condensation shock similar to the one observed in the experiments of Harish et al. is observed in the computed flow field. Results will be presented and the flow physics will be discussed. This work is supported by the Office of Naval Research.
NASA Astrophysics Data System (ADS)
Stap, F. A.; Hasekamp, O. P.; Emde, C.; Röckmann, T.
2016-11-01
We investigate the effect of cloud contamination and 3-D radiative transfer effects on aerosol retrievals from multiangle photopolarimetric measurements in the vicinity of clouds. To this end multiangle, multiwavelength photopolarimetric observations are simulated using a 3-D radiative transfer model for scenes with realistic cloud properties, based on a large eddy simulation. Spatial resolutions of 2 × 2, 4 × 4, and 6 × 6 km2 have been considered. It is found that a goodness-of-fit criterion efficiently filters out cloud contamination. However, it does not filter out all scenes that are affected by 3-D radiative effects, resulting in small biases in the retrieved aerosol optical thickness (AOT) and single-scattering albedo (SSA). We also found that measurements at higher spatial resolution (2 × 2 km2) do not result in retrievals closer to clouds compared to measurements at coarser spatial resolutions (4 × 4 and 6 × 6 km2). If cloud parameters are fitted simultaneously with aerosol parameters using a 1-D radiative transfer model and the Independent Pixel Approximation, more successful retrievals are obtained in partially cloudy scenes and in the vicinity of clouds. This effect is most apparent at 6 × 6 km2 and only marginal at 2 × 2 km2 resolution. The retrieved aerosol AOT and SSA from the simultaneous aerosol and cloud retrievals still have a small bias, like the aerosol-only retrievals. We conclude that in order to substantially improve aerosol retrievals in the vicinity of clouds, a retrieval algorithm is needed that takes into account 3-D radiative transfer effects.
Large Eddy Simulation of Vertical Axis Wind Turbine Wakes
NASA Astrophysics Data System (ADS)
Shamsoddin, Sina; Porté-Agel, Fernando
2014-05-01
In this study, large-eddy simulation (LES) is combined with a turbine model to investigate the wake behind a vertical-axis wind turbine (VAWT) in a three dimensional turbulent flow. Two methods are used to model the subgrid-scale (SGS) stresses: (a) the Smagorinsky model, and (b) the modulated gradient model. To parameterize the effects of the VAWT on the flow, two VAWT models are developed: (a) the actuator surface model (ASM), in which the time-averaged turbine-induced forces are distributed on a surface swept by the turbine blades, i.e. the actuator surface, and (b) the actuator line model (ALM), in which the instantaneous blade forces are only spatially distributed on lines representing the blades, i.e. the actuator lines. This is the first time that LES is applied and validated for simulation of VAWT wakes by using either the ASM or the ALM techniques. In both models, blade-element theory is used to calculate the lift and drag forces on the blades. The results are compared with flow measurements in the wake of a model straight-bladed VAWT, carried out in the Institute de Méchanique et Statistique de la Turbulence (IMST) water channel. Different combinations of SGS models with VAWT models are studied and a fairly good overall agreement between simulation results and measurement data is observed. In general, the ALM is found to better capture the unsteady-periodic nature of the wake and shows a better agreement with the experimental data compared with the ASM. The modulated gradient model is also found to be a more reliable SGS stress modeling technique, compared with the Smagorinsky model, and it yields reasonable predictions of the mean flow and turbulence characteristics of a VAWT wake using its theoretically-determined model coefficient. Keywords: Vertical-axis wind turbines (VAWTs); VAWT wake; Large-eddy simulation; Actuator surface model; Actuator line model; Smagorinsky model; Modulated gradient model
NASA's Large-Eddy Simulation Research for Jet Noise Applications
NASA Technical Reports Server (NTRS)
DeBonis, James R.
2009-01-01
Research into large-eddy simulation (LES) for application to jet noise is described. The LES efforts include in-house code development and application at NASA Glenn along with NASA Research Announcement sponsored work at Stanford University and Florida State University. Details of the computational methods used and sample results for jet flows are provided.
Mind the gap: a guideline for large eddy simulation.
George, William K; Tutkun, Murat
2009-07-28
This paper briefly reviews some of the fundamental ideas of turbulence as they relate to large eddy simulation (LES). Of special interest is how our thinking about the so-called 'spectral gap' has evolved over the past decade, and what this evolution implies for LES applications.
Large Eddy Simulation of Supersonic Inlet Flows
1998-04-01
SIMULATION OF SUPERSONIC INLET FLOWS 6. AUTHOR(S) PROF. PARVIZ MOIN PROF. SANJIVA K. LELE 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) STANFORD... Parviz Moin and Sanjiva K. Lele Stanford University Mechanical Engineering, Flow Physics & Computation Division Stanford, CA 94305-3030 Prepared...monitor. I am thankful to Professor Sanjiva Lele and Profes- sor Parviz Moin, and Keith Lucas for useful discussions! I am grateful to Professor Peter
Large-eddy simulation in complex domains using the finite element method
McCallen, R.C.; Kornblum, B.T.; Kollman, W.
1996-11-12
Finite element methods (FEM) are demonstrated in combination with large-eddy simulations (LES) as a valuable tool for the study of turbulent, separating channel flows, specifically the flow over a backward facing step.
NASA Astrophysics Data System (ADS)
Dipankar, A.; Stevens, B. B.; Zängl, G.; Pondkule, M.; Brdar, S.
2014-12-01
The effect of clouds on large scale dynamics is represented in climate models through parameterization of various processes, of which the parameterization of shallow and deep convection are particularly uncertain. The atmospheric boundary layer, which controls the coupling to the surface, and which defines the scale of shallow convection, is typically 1 km in depth. Thus, simulations on a O(100 m) grid largely obviate the need for such parameterizations. By crossing this threshold of O(100m) grid resolution one can begin thinking of large-eddy simulation (LES), wherein the sub-grid scale parameterization have a sounder theoretical foundation. Substantial initiatives have been taken internationally to approach this threshold. For example, Miura et al., 2007 and Mirakawa et al., 2014 approach this threshold by doing global simulations, with (gradually) decreasing grid resolution, to understand the effect of cloud-resolving scales on the general circulation. Our strategy, on the other hand, is to take a big leap forward by fixing the resolution at O(100 m), and gradually increasing the domain size. We believe that breaking this threshold would greatly help in improving the parameterization schemes and reducing the uncertainty in climate predictions. To take this forward, the German Federal Ministry of Education and Research has initiated a project on HD(CP)2 that aims for a limited area LES at resolution O(100 m) using the new unified modeling system ICON (Zängl et al., 2014). In the talk, results from the HD(CP)2 evaluation simulation will be shown that targets high resolution simulation over a small domain around Jülich, Germany. This site is chosen because high resolution HD(CP)2 Observational Prototype Experiment took place in this region from 1.04.2013 to 31.05.2013, in order to critically evaluate the model. Nesting capabilities of ICON is used to gradually increase the resolution from the outermost domain, which is forced from the COSMO-DE data, to the
Large-Eddy Simulations of Flows in Complex Terrain
NASA Astrophysics Data System (ADS)
Kosovic, B.; Lundquist, K. A.
2011-12-01
Large-eddy simulation as a methodology for numerical simulation of turbulent flows was first developed to study turbulent flows in atmospheric by Lilly (1967). The first LES were carried by Deardorff (1970) who used these simulations to study atmospheric boundary layers. Ever since, LES has been extensively used to study canonical atmospheric boundary layers, in most cases flat plate boundary layers under the assumption of horizontal homogeneity. Carefully designed LES of canonical convective and neutrally stratified and more recently stably stratified atmospheric boundary layers have contributed significantly to development of better understanding of these flows and their parameterizations in large scale models. These simulations were often carried out using codes specifically designed and developed for large-eddy simulations of horizontally homogeneous flows with periodic lateral boundary conditions. Recent developments in multi-scale numerical simulations of atmospheric flows enable numerical weather prediction (NWP) codes such as ARPS (Chow and Street, 2009), COAMPS (Golaz et al., 2009) and Weather Research and Forecasting model, to be used nearly seamlessly across a wide range of atmospheric scales from synoptic down to turbulent scales in atmospheric boundary layers. Before we can with confidence carry out multi-scale simulations of atmospheric flows, NWP codes must be validated for accurate performance in simulating flows over complex or inhomogeneous terrain. We therefore carry out validation of WRF-LES for simulations of flows over complex terrain using data from Askervein Hill (Taylor and Teunissen, 1985, 1987) and METCRAX (Whiteman et al., 2008) field experiments. WRF's nesting capability is employed with a one-way nested inner domain that includes complex terrain representation while the coarser outer nest is used to spin up fully developed atmospheric boundary layer turbulence and thus represent accurately inflow to the inner domain. LES of a
Constrained Large Eddy Simulation of Separated Turbulent Flows
NASA Astrophysics Data System (ADS)
Xia, Zhenhua; Shi, Yipeng; Wang, Jianchun; Xiao, Zuoli; Yang, Yantao; Chen, Shiyi
2011-11-01
Constrained Large-eddy Simulation (CLES) has been recently proposed to simulate turbulent flows with massive separation. Different from traditional large eddy simulation (LES) and hybrid RANS/LES approaches, the CLES simulates the whole flow domain by large eddy simulation while enforcing a RANS Reynolds stress constraint on the subgrid-scale (SGS) stress models in the near-wall region. Algebraic eddy-viscosity models and one-equation Spalart-Allmaras (S-A) model have been used to constrain the Reynolds stress. The CLES approach is validated a posteriori through simulation of flow past a circular cylinder and periodic hill flow at high Reynolds numbers. The simulation results are compared with those from RANS, DES, DDES and other available hybrid RANS/LES methods. It is shown that the capability of the CLES method in predicting separated flows is comparable to that of DES. Detailed discussions are also presented about the effects of the RANS models as constraint in the near-wall layers. Our results demonstrate that the CLES method is a promising alternative towards engineering applications.
Toward the large-eddy simulations of compressible turbulent flows
NASA Technical Reports Server (NTRS)
Erlebacher, G.; Hussaini, M. Y.; Speziale, C. G.; Zang, T. A.
1987-01-01
New subgrid-scale models for the large-eddy simulation of compressible turbulent flows are developed based on the Favre-filtered equations of motion for an ideal gas. A compressible generalization of the linear combination of the Smagorinsky model and scale-similarity model (in terms of Favre-filtered fields) is obtained for the subgrid-scale stress tensor. An analogous thermal linear combination model is also developed for the subgrid-scale heat flux vector. The three dimensionless constants associated with these subgrid-scale models are obtained by correlating with the results of direct numerical simulations of compressible isotropic turbulence performed on a 96 to the third power grid using Fourier collocation methods. Extensive comparisons between the direct and modeled subgrid-scale fields are provided in order to validate the models. Future applications of these compressible subgrid-scale models to the large-eddy simulation of supersonic aerodynamic flows are discussed briefly.
Toward the large-eddy simulation of compressible turbulent flows
NASA Technical Reports Server (NTRS)
Erlebacher, G.; Hussaini, M. Y.; Speziale, C. G.; Zang, T. A.
1990-01-01
New subgrid-scale models for the large-eddy simulation of compressible turbulent flows are developed and tested based on the Favre-filtered equations of motion for an ideal gas. A compressible generalization of the linear combination of the Smagorinsky model and scale-similarity model, in terms of Favre-filtered fields, is obtained for the subgrid-scale stress tensor. An analogous thermal linear combination model is also developed for the subgrid-scale heat flux vector. The two dimensionless constants associated with these subgrid-scale models are obtained by correlating with the results of direct numerical simulations of compressible isotropic turbulence performed on a 96(exp 3) grid using Fourier collocation methods. Extensive comparisons between the direct and modeled subgrid-scale fields are provided in order to validate the models. A large-eddy simulation of the decay of compressible isotropic turbulence (conducted on a coarse 32(exp 3) grid) is shown to yield results that are in excellent agreement with the fine grid direct simulation. Future applications of these compressible subgrid-scale models to the large-eddy simulation of more complex supersonic flows are discussed briefly.
Large eddy simulation of the atmosphere on various scales.
Cullen, M J P; Brown, A R
2009-07-28
Numerical simulations of the atmosphere are routinely carried out on various scales for purposes ranging from weather forecasts for local areas a few hours ahead to forecasts of climate change over periods of hundreds of years. Almost without exception, these forecasts are made with space/time-averaged versions of the governing Navier-Stokes equations and laws of thermodynamics, together with additional terms representing internal and boundary forcing. The calculations are a form of large eddy modelling, because the subgrid-scale processes have to be modelled. In the global atmospheric models used for long-term predictions, the primary method is implicit large eddy modelling, using discretization to perform the averaging, supplemented by specialized subgrid models, where there is organized small-scale activity, such as in the lower boundary layer and near active convection. Smaller scale models used for local or short-range forecasts can use a much smaller averaging scale. This allows some of the specialized subgrid models to be dropped in favour of direct simulations. In research mode, the same models can be run as a conventional large eddy simulation only a few orders of magnitude away from a direct simulation. These simulations can then be used in the development of the subgrid models for coarser resolution models.
Toward large eddy simulation of turbulent flow over an airfoil
NASA Technical Reports Server (NTRS)
Choi, Haecheon
1993-01-01
The flow field over an airfoil contains several distinct flow characteristics, e.g. laminar, transitional, turbulent boundary layer flow, flow separation, unstable free shear layers, and a wake. This diversity of flow regimes taxes the presently available Reynolds averaged turbulence models. Such models are generally tuned to predict a particular flow regime, and adjustments are necessary for the prediction of a different flow regime. Similar difficulties are likely to emerge when the large eddy simulation technique is applied with the widely used Smagorinsky model. This model has not been successful in correctly representing different turbulent flow fields with a single universal constant and has an incorrect near-wall behavior. Germano et al. (1991) and Ghosal, Lund & Moin have developed a new subgrid-scale model, the dynamic model, which is very promising in alleviating many of the persistent inadequacies of the Smagorinsky model: the model coefficient is computed dynamically as the calculation progresses rather than input a priori. The model has been remarkably successful in prediction of several turbulent and transitional flows. We plan to simulate turbulent flow over a '2D' airfoil using the large eddy simulation technique. Our primary objective is to assess the performance of the newly developed dynamic subgrid-scale model for computation of complex flows about aircraft components and to compare the results with those obtained using the Reynolds average approach and experiments. The present computation represents the first application of large eddy simulation to a flow of aeronautical interest and a key demonstration of the capabilities of the large eddy simulation technique.
Large eddy simulation of mechanical mixing in anaerobic digesters.
Wu, Binxin
2012-03-01
A comprehensive study of anaerobic digestion requires an advanced turbulence model technique to accurately predict mixing flow patterns because the digestion process that involves mass transfer between anaerobes and their substrates is primarily dependent on detailed information about the fine structure of turbulence in the digesters. This study presents a large eddy simulation (LES) of mechanical agitation of non-Newtonian fluids in anaerobic digesters, in which the sliding mesh method is used to characterize the impeller rotation. The three subgrid scale (SGS) models investigated are: (i) Smagorinsky-Lilly model, (ii) wall-adapting local eddy-viscosity model, and (iii) kinetic energy transport (KET) model. The simulation results show that the three SGS models produce very similar flow fields. A comparison of the simulated and measured axial velocities indicates that the LES profile shapes are in general agreement with the experimental data but they differ markedly in velocity magnitudes. A check of impeller power and flow numbers demonstrates that all the SGS models give excellent predictions, with the KET model performing the best. Moreover, the performance of six Reynolds-averaged Navier-Stokes turbulence models are assessed and compared with the LES results.
Large eddy simulations of a turbulent thermal plume
NASA Astrophysics Data System (ADS)
Yan, Zhenghua H.
2007-04-01
Large eddy simulations of a three-dimensional turbulent thermal plume in an open environment have been carried out using a self-developed parallel computational fluid dynamics code SMAFS (smoke movement and flame spread) to study the thermal plume’s dynamics including its puffing, self-preserving and air entrainment. In the simulation, the sub-grid stress was modeled using both the standard Smagorinsky and the buoyancy modified Smagorinsky models, which were compared. The sub-grid scale (SGS) scalar flux in the filtered enthalpy transport equation was modeled based on a simple gradient transport hypothesis with constant SGS Prandtl number. The effect of the Smagorinsky model constant and the SGS Prandtl number were examined. The computation results were compared with experimental measurements, thermal plume theory and empirical correlations, showing good agreement. It is found that both the buoyancy modification and the SGS turbulent Prandtl number have little influence on simulation. However, the SGS model constant C s has a significant effect on the prediction of plume spreading, although it does not affect much the prediction of puffing.
Large eddy simulation of a pumped- storage reservoir
NASA Astrophysics Data System (ADS)
Launay, Marina; Leite Ribeiro, Marcelo; Roman, Federico; Armenio, Vincenzo
2016-04-01
The last decades have seen an increasing number of pumped-storage hydropower projects all over the world. Pumped-storage schemes move water between two reservoirs located at different elevations to store energy and to generate electricity following the electricity demand. Thus the reservoirs can be subject to important water level variations occurring at the daily scale. These new cycles leads to changes in the hydraulic behaviour of the reservoirs. Sediment dynamics and sediment budgets are modified, sometimes inducing problems of erosion and deposition within the reservoirs. With the development of computer performances, the use of numerical techniques has become popular for the study of environmental processes. Among numerical techniques, Large Eddy Simulation (LES) has arisen as an alternative tool for problems characterized by complex physics and geometries. This work uses the LES-COAST Code, a LES model under development in the framework of the Seditrans Project, for the simulation of an Upper Alpine Reservoir of a pumped-storage scheme. Simulations consider the filling (pump mode) and emptying (turbine mode) of the reservoir. The hydraulic results give a better understanding of the processes occurring within the reservoir. They are considered for an assessment of the sediment transport processes and of their consequences.
Large-Eddy simulation of pulsatile blood flow.
Paul, Manosh C; Mamun Molla, Md; Roditi, Giles
2009-01-01
Large-Eddy simulation (LES) is performed to study pulsatile blood flow through a 3D model of arterial stenosis. The model is chosen as a simple channel with a biological type stenosis formed on the top wall. A sinusoidal non-additive type pulsation is assumed at the inlet of the model to generate time dependent oscillating flow in the channel and the Reynolds number of 1200, based on the channel height and the bulk velocity, is chosen in the simulations. We investigate in detail the transition-to-turbulent phenomena of the non-additive pulsatile blood flow downstream of the stenosis. Results show that the high level of flow recirculation associated with complex patterns of transient blood flow have a significant contribution to the generation of the turbulent fluctuations found in the post-stenosis region. The importance of using LES in modelling pulsatile blood flow is also assessed in the paper through the prediction of its sub-grid scale contributions. In addition, some important results of the flow physics are achieved from the simulations, these are presented in the paper in terms of blood flow velocity, pressure distribution, vortices, shear stress, turbulent fluctuations and energy spectra, along with their importance to the relevant medical pathophysiology.
Large eddy simulation of a plane turbulent wall jet
NASA Astrophysics Data System (ADS)
Dejoan, A.; Leschziner, M. A.
2005-02-01
The mean-flow and turbulence properties of a plane wall jet, developing in a stagnant environment, are studied by means of large eddy simulation. The Reynolds number, based on the inlet velocity Uo and the slot height b, is Re=9600, corresponding to recent well-resolved laser Doppler velocimetry and pulsed hot wire measurements of Eriksson et al. The relatively low Reynolds number and the high numerical resolution adopted (8.4 million nodes) allow all scales larger than about 10 Kolmogorov lengths to be captured. Of particular interest are the budgets for turbulence energy and Reynolds stresses, not available from experiments, and their inclusion sheds light on the processes which play a role in the interaction between the near-wall layer and the outer shear layer. Profiles of velocity and turbulent Reynolds stresses in the self-similar region are presented in inner and outer scaling and compared to experimental data. Included are further results for skin friction, evolution of integral quantities and third-order moments. Good agreement is observed, in most respects, between the simulated flow and the corresponding experiment. The budgets demonstrate, among a number of mechanisms, the decisive role played by turbulent transport (via the third moments) in the interaction region, across which information is transmitted between the near-wall layer and the outer layer.
NASA Astrophysics Data System (ADS)
Guda, Venkata Subba Sai Satish
There have been several advancements in the aerospace industry in areas of design such as aerodynamics, designs, controls and propulsion; all aimed at one common goal i.e. increasing efficiency --range and scope of operation with lesser fuel consumption. Several methods of flow control have been tried. Some were successful, some failed and many were termed as impractical. The low Reynolds number regime of 104 - 105 is a very interesting range. Flow physics in this range are quite different than those of higher Reynolds number range. Mid and high altitude UAV's, MAV's, sailplanes, jet engine fan blades, inboard helicopter rotor blades and wind turbine rotors are some of the aerodynamic applications that fall in this range. The current study deals with using dynamic roughness as a means of flow control over a NACA 0012 airfoil at low Reynolds numbers. Dynamic 3-D surface roughness elements on an airfoil placed near the leading edge aim at increasing the efficiency by suppressing the effects of leading edge separation like leading edge stall by delaying or totally eliminating flow separation. A numerical study of the above method has been carried out by means of a Large Eddy Simulation, a mathematical model for turbulence in Computational Fluid Dynamics, owing to the highly unsteady nature of the flow. A user defined function has been developed for the 3-D dynamic roughness element motion. Results from simulations have been compared to those from experimental PIV data. Large eddy simulations have relatively well captured the leading edge stall. For the clean cases, i.e. with the DR not actuated, the LES was able to reproduce experimental results in a reasonable fashion. However DR simulation results show that it fails to reattach the flow and suppress flow separation compared to experiments. Several novel techniques of grid design and hump creation are introduced through this study.
Large-eddy simulation of trans- and supercritical injection
NASA Astrophysics Data System (ADS)
Müller, H.; Niedermeier, C. A.; Jarczyk, M.; Pfitzner, M.; Hickel, S.; Adams, N. A.
2016-07-01
In a joint effort to develop a robust numerical tool for the simulation of injection, mixing, and combustion in liquid rocket engines at high pressure, a real-gas thermodynamics model has been implemented into two computational fluid dynamics (CFD) codes, the density-based INCA and a pressure-based version of OpenFOAM. As a part of the validation process, both codes have been used to perform large-eddy simulations (LES) of trans- and supercritical nitrogen injection. Despite the different code architecture and the different subgrid scale turbulence modeling strategy, both codes yield similar results. The agreement with the available experimental data is good.
Model consistency in large eddy simulation of turbulent channel flows
NASA Technical Reports Server (NTRS)
Piomelli, Ugo; Ferziger, Joel H.; Moin, Parviz
1988-01-01
Combinations of filters and subgrid scale stress models for large eddy simulation of the Navier-Stokes equations are examined by a priori tests and numerical simulations. The structure of the subgrid scales is found to depend strongly on the type of filter used, and consistency between model and filter is essential to ensure accurate results. The implementation of consistent combinations of filter and model gives more accurate turbulence statistics than those obtained in previous investigations in which the models were chosen independently from the filter. Results and limitations of the a priori test are discussed. The effect of grid refinement is also examined.
Laminar flow transition: A large-eddy simulation approach
NASA Technical Reports Server (NTRS)
Biringen, S.
1982-01-01
A vectorized, semi-implicit code was developed for the solution of the time-dependent, three dimensional equations of motion in plane Poiseuille flow by the large-eddy simulation technique. The code is tested by comparing results with those obtained from the solutions of the Orr-Sommerfeld equation. Comparisons indicate that finite-differences employed along the cross-stream direction act as an implicit filter. This removes the necessity of explicit filtering along this direction (where a nonhomogeneous mesh is used) for the simulation of laminar flow transition into turbulence in which small scale turbulence will be accounted for by a subgrid scale turbulence model.
Applications of large eddy simulation methods to gyrokinetic turbulence
Bañón Navarro, A. Happel, T.; Teaca, B. [Applied Mathematics Research Centre, Coventry University, Coventry CV1 5FB; Max-Planck für Sonnensystemforschung, Max-Planck-Str. 2, D-37191 Katlenburg-Lindau; Max-Planck Jenko, F. [Max-Planck-Institut für Plasmaphysik, EURATOM Association, D-85748 Garching; Max-Planck Hammett, G. W. [Max-Planck Collaboration: ASDEX Upgrade Team
2014-03-15
The large eddy simulation (LES) approach—solving numerically the large scales of a turbulent system and accounting for the small-scale influence through a model—is applied to nonlinear gyrokinetic systems that are driven by a number of different microinstabilities. Comparisons between modeled, lower resolution, and higher resolution simulations are performed for an experimental measurable quantity, the electron density fluctuation spectrum. Moreover, the validation and applicability of LES is demonstrated through a series of diagnostics based on the free energetics of the system.
Unphysical scalar excursions in large-eddy simulations
NASA Astrophysics Data System (ADS)
Matheou, Georgios; Dimotakis, Paul
2016-11-01
The range of physically realizable values of passive scalar fields in any flow is bounded by their boundary values. The current investigation focuses on the local conservation of passive scalar concentration fields in turbulent flows and the ability of the large-eddy simulation (LES) method to observe the boundedness of passive scalar concentrations. In practice, as a result of numerical artifacts, this fundamental constraint is often violated with scalars exhibiting unphysical excursions. The present study characterizes passive-scalar excursions in LES of a turbulent shear flow and examines methods for error diagnosis. Typically, scalar-excursion errors are diagnosed as violations of global boundedness, i.e., detecting scalar-concentration values outside boundary/initial condition bounds. To quantify errors in mixed-fluid regions, a local scalar excursion error metric is defined with respect to the local non-diffusive limit. Analysis of such errors shows that unphysical scalar excursions in LES result from dispersive errors of the convection-term discretization where the subgrid-scale model (SGS) provides insufficient dissipation to produce a sufficiently smooth scalar field. Local scalar excursion errors are found not to be correlated with the local scalar-gradient magnitude. This work is supported by AFOSR, DOE, and Caltech.
Large eddy simulations of in-cylinder turbulent flows.
NASA Astrophysics Data System (ADS)
Banaeizadeh, Araz; Afshari, Asghar; Schock, Harold; Jaberi, Farhad
2007-11-01
A high-order numerical model is developed and tested for large eddy simulation (LES) of turbulent flows in internal combustion (IC) engines. In this model, the filtered compressible Navier-Stokes equations in curvilinear coordinate systems are solved via a generalized high-order multi-block compact differencing scheme. The LES model has been applied to three flow configurations: (1) a fixed poppet valve in a sudden expansion, (2) a simple piston-cylinder assembly with a stationary open valve and harmonically moving flat piston, (3) a laboratory single-cylinder engine with three moving intake and exhaust valves. The first flow configuration is considered for studying the flow around the valves in IC engines. The second flow configuration is closer to that in IC engines but is based on a single stationary intake/exhaust valve and relatively simple geometry. It is considered in this work for better understating of the effects of moving piston on the large-scale unsteady vortical fluid motions in the cylinder and for further validation of our LES model. The third flow configuration includes all the complexities involve in a realistic single-cylinder IC engine. The predicted flow statistics by LES show good comparison with the available experimental data.
On the Computation of Sound by Large-Eddy Simulations
NASA Technical Reports Server (NTRS)
Piomelli, Ugo; Streett, Craig L.; Sarkar, Sutanu
1997-01-01
The effect of the small scales on the source term in Lighthill's acoustic analogy is investigated, with the objective of determining the accuracy of large-eddy simulations when applied to studies of flow-generated sound. The distribution of the turbulent quadrupole is predicted accurately, if models that take into account the trace of the SGS stresses are used. Its spatial distribution is also correct, indicating that the low-wave-number (or frequency) part of the sound spectrum can be predicted well by LES. Filtering, however, removes the small-scale fluctuations that contribute significantly to the higher derivatives in space and time of Lighthill's stress tensor T(sub ij). The rms fluctuations of the filtered derivatives are substantially lower than those of the unfiltered quantities. The small scales, however, are not strongly correlated, and are not expected to contribute significantly to the far-field sound; separate modeling of the subgrid-scale density fluctuations might, however, be required in some configurations.
NASA Astrophysics Data System (ADS)
Huang, G.; Newchurch, M.; Kuang, S.; Wang, L.; Ouwersloot, H.
2014-12-01
We investigate the diurnal variation of mixed-layer ozone in Huntsville AL, Southeast United States on September, 6, 2013 during the SEAC4RS field campaign. The dynamics and chemistry of the mixed layer are studied with a Large-Eddy Simulation model coupled with a chemical module and Ozone DIAL observations. In this study, we will present calculations of ozone entrainment fluxes using continuous observation by co-located ozone DIAL and Compact Wind Aerosol Lidar (CWAL) at the campus of University of Alabama in Huntsville (UAH). As a part of Tropospheric Ozone Lidar NETwork (TOLNET), UAH ozone DIAL can provide continuous ozone observation in the altitude range from 125 m AGL to 12 km, with 10-min temporal resolution and 150 - 550 m vertical resolution. We also perform an ozone budget study using the Dutch Atmospheric Large-Eddy Simulation (DALES), reasonable approximations of dry deposition, in conjunction with ozone entrainment observations. In this case study, the enhancement of ozone in the mixed layer results from the local emissions of NOx and VOCs. The NOx and VOCs emitted at surface entered into mixed layer by atmospheric turbulence and produced ozone within the whole mixed layer. Simultaneously, non-turbulent air in the residual layer, which is at top of the morning mixed layer, participates in convective mixing through entrainment processes. The clean air in the residual layer decreases the ozone enhancement rate in the mixed layer. After the mixed layer reaches its stable height at 1700m, the large-scale subsidence not only decreases PBL growth but also enhances the entrainment process. The PBL NOx and VOCs mix into the free troposphere through detrainment before producing ozone by photochemical reaction. We have following conclusions from this case study: 1) the relationship between boundary layer height and PBL ozone is complicated. Higher PBL height does not always mean lower PBL ozone. 2) The LES calculation results illuminate the interaction between
Domain nesting for multi-scale large eddy simulation
NASA Astrophysics Data System (ADS)
Fuka, Vladimir; Xie, Zheng-Tong
2016-04-01
The need to simulate city scale areas (O(10 km)) with high resolution within street canyons in certain areas of interests necessitates different grid resolutions in different part of the simulated area. General purpose computational fluid dynamics codes typically employ unstructured refined grids while mesoscale meteorological models more often employ nesting of computational domains. ELMM is a large eddy simulation model for the atmospheric boundary layer. It employs orthogonal uniform grids and for this reason domain nesting was chosen as the approach for simulations in multiple scales. Domains are implemented as sets of MPI processes which communicate with each other as in a normal non-nested run, but also with processes from another (outer/inner) domain. It should stressed that the duration of solution of time-steps in the outer and in the inner domain must be synchronized, so that the processes do not have to wait for the completion of their boundary conditions. This can achieved by assigning an appropriate number of CPUs to each domain, and to gain high efficiency. When nesting is applied for large eddy simulation, the inner domain receives inflow boundary conditions which lack turbulent motions not represented by the outer grid. ELMM remedies this by optional adding of turbulent fluctuations to the inflow using the efficient method of Xie and Castro (2008). The spatial scale of these fluctuations is in the subgrid-scale of the outer grid and their intensity will be estimated from the subgrid turbulent kinetic energy in the outer grid.
Contrail Formation in Aircraft Wakes Using Large-Eddy Simulations
NASA Technical Reports Server (NTRS)
Paoli, R.; Helie, J.; Poinsot, T. J.; Ghosal, S.
2002-01-01
In this work we analyze the issue of the formation of condensation trails ("contrails") in the near-field of an aircraft wake. The basic configuration consists in an exhaust engine jet interacting with a wing-tip training vortex. The procedure adopted relies on a mixed Eulerian/Lagrangian two-phase flow approach; a simple micro-physics model for ice growth has been used to couple ice and vapor phases. Large eddy simulations have carried out at a realistic flight Reynolds number to evaluate the effects of turbulent mixing and wake vortex dynamics on ice-growth characteristics and vapor thermodynamic properties.
Large eddy simulation of the flow in a transpired channel
NASA Technical Reports Server (NTRS)
Piomelli, Ugo; Moin, Parviz; Ferziger, Joel
1989-01-01
The flow in a transpired channel has been computed by large eddy simulation. The numerical results compare very well with experimental data. Blowing decreases the wall shear stress and enhances turbulent fluctuations, while suction has the opposite effect. The wall layer thickness normalized by the local wall shear velocity and kinematic viscosity increases on the blowing side of the channel and decreases on the suction side. Suction causes more rapid decay of the spectra, larger mean streak spacing and higher two-point correlations. On the blowing side, the wall layer structures lie at a steeper angle to the wall, whereas on the suction side this angle is shallower.
Cosmological fluid mechanics with adaptively refined large eddy simulations
NASA Astrophysics Data System (ADS)
Schmidt, W.; Almgren, A. S.; Braun, H.; Engels, J. F.; Niemeyer, J. C.; Schulz, J.; Mekuria, R. R.; Aspden, A. J.; Bell, J. B.
2014-06-01
We investigate turbulence generated by cosmological structure formation by means of large eddy simulations using adaptive mesh refinement. In contrast to the widely used implicit large eddy simulations, which resolve a limited range of length-scales and treat the effect of turbulent velocity fluctuations below the grid scale solely by numerical dissipation, we apply a subgrid-scale model for the numerically unresolved fraction of the turbulence energy. For simulations with adaptive mesh refinement, we utilize a new methodology that allows us to adjust the scale-dependent energy variables in such a way that the sum of resolved and unresolved energies is globally conserved. We test our approach in simulations of randomly forced turbulence, a gravitationally bound cloud in a wind, and the Santa Barbara cluster. To treat inhomogeneous turbulence, we introduce an adaptive Kalman filtering technique that separates turbulent velocity fluctuations on resolved length-scales from the non-turbulent bulk flow. From the magnitude of the fluctuating component and the subgrid-scale turbulence energy, a total turbulent velocity dispersion of several 100 km s-1 is obtained for the Santa Barbara cluster, while the low-density gas outside the accretion shocks is nearly devoid of turbulence. The energy flux through the turbulent cascade and the dissipation rate predicted by the subgrid-scale model correspond to dynamical time-scales around 5 Gyr, independent of numerical resolution.
Time-Domain Filtering for Spatial Large-Eddy Simulation
NASA Technical Reports Server (NTRS)
Pruett, C. David
1997-01-01
An approach to large-eddy simulation (LES) is developed whose subgrid-scale model incorporates filtering in the time domain, in contrast to conventional approaches, which exploit spatial filtering. The method is demonstrated in the simulation of a heated, compressible, axisymmetric jet, and results are compared with those obtained from fully resolved direct numerical simulation. The present approach was, in fact, motivated by the jet-flow problem and the desire to manipulate the flow by localized (point) sources for the purposes of noise suppression. Time-domain filtering appears to be more consistent with the modeling of point sources; moreover, time-domain filtering may resolve some fundamental inconsistencies associated with conventional space-filtered LES approaches.
Model consistency in the large eddy simulation of turbulent channel flows
NASA Technical Reports Server (NTRS)
Moin, Parviz; Ferziger, Joel H.; Piomelli, Ugo
1987-01-01
Various combinations of filters and subgrid scale stress models for large eddy simulation of the Navier-Stokes equations are studied by a priori tests and numerical simulations. Consistency between model and filter is found to be essential to ensure accurate results. Results and limitations of the a priori test are discussed. The effect of grid refinement is also examined.
Large Eddy Simulation of Cryogenic Injection Processes at Supercritical Pressure
NASA Technical Reports Server (NTRS)
Oefelein, Joseph C.; Garcia, Roberto (Technical Monitor)
2002-01-01
This paper highlights results from the first of a series of hierarchical simulations aimed at assessing the modeling requirements for application of the large eddy simulation technique to cryogenic injection and combustion processes in liquid rocket engines. The focus is on liquid-oxygen-hydrogen coaxial injectors at a condition where the liquid-oxygen is injected at a subcritical temperature into a supercritical environment. For this situation a diffusion dominated mode of combustion occurs in the presence of exceedingly large thermophysical property gradients. Though continuous, these gradients approach the behavior of a contact discontinuity. Significant real gas effects and transport anomalies coexist locally in colder regions of the flow, with ideal gas and transport characteristics occurring within the flame zone. The current focal point is on the interfacial region between the liquid-oxygen core and the coaxial hydrogen jet where the flame anchors itself.
Implicit large eddy simulation of shock-driven material mixing.
Grinstein, F F; Gowardhan, A A; Ristorcelli, J R
2013-11-28
Under-resolved computer simulations are typically unavoidable in practical turbulent flow applications exhibiting extreme geometrical complexity and a broad range of length and time scales. An important unsettled issue is whether filtered-out and subgrid spatial scales can significantly alter the evolution of resolved larger scales of motion and practical flow integral measures. Predictability issues in implicit large eddy simulation of under-resolved mixing of material scalars driven by under-resolved velocity fields and initial conditions are discussed in the context of shock-driven turbulent mixing. The particular focus is on effects of resolved spectral content and interfacial morphology of initial conditions on transitional and late-time turbulent mixing in the fundamental planar shock-tube configuration.
Large-Eddy Simulation Code Developed for Propulsion Applications
NASA Technical Reports Server (NTRS)
DeBonis, James R.
2003-01-01
A large-eddy simulation (LES) code was developed at the NASA Glenn Research Center to provide more accurate and detailed computational analyses of propulsion flow fields. The accuracy of current computational fluid dynamics (CFD) methods is limited primarily by their inability to properly account for the turbulent motion present in virtually all propulsion flows. Because the efficiency and performance of a propulsion system are highly dependent on the details of this turbulent motion, it is critical for CFD to accurately model it. The LES code promises to give new CFD simulations an advantage over older methods by directly computing the large turbulent eddies, to correctly predict their effect on a propulsion system. Turbulent motion is a random, unsteady process whose behavior is difficult to predict through computer simulations. Current methods are based on Reynolds-Averaged Navier- Stokes (RANS) analyses that rely on models to represent the effect of turbulence within a flow field. The quality of the results depends on the quality of the model and its applicability to the type of flow field being studied. LES promises to be more accurate because it drastically reduces the amount of modeling necessary. It is the logical step toward improving turbulent flow predictions. In LES, the large-scale dominant turbulent motion is computed directly, leaving only the less significant small turbulent scales to be modeled. As part of the prediction, the LES method generates detailed information on the turbulence itself, providing important information for other applications, such as aeroacoustics. The LES code developed at Glenn for propulsion flow fields is being used to both analyze propulsion system components and test improved LES algorithms (subgrid-scale models, filters, and numerical schemes). The code solves the compressible Favre-filtered Navier- Stokes equations using an explicit fourth-order accurate numerical scheme, it incorporates a compressible form of
Computing transitional flows using wall-modeled large eddy simulation
NASA Astrophysics Data System (ADS)
Bodart, Julien; Larsson, Johan
2012-11-01
To be applicable to complex aerodynamic flows at realistic Reynolds numbers, large eddy simulation (LES) must be combined with a model for the inner part of the boundary layer. Aerodynamic flows are, in general, sensitive to the location of boundary layer transition. While traditional LES can predict the transition location and process accurately, existing wall-modeled LES approaches can not. In the present work, the behavior of the wall-model is locally adapted using a sensor in the LES-resolved part of boundary layer. This sensor estimates whether the boundary layer is turbulent or not, in a way that does not rely on any homogeneous direction. The proposed method is validated on controlled transition scenarios on a flat plat boundary layer, and finally applied to the flow around a multi-element airfoil at realistic Reynolds number.
Smoothed particle hydrodynamics method from a large eddy simulation perspective
NASA Astrophysics Data System (ADS)
Di Mascio, A.; Antuono, M.; Colagrossi, A.; Marrone, S.
2017-03-01
The Smoothed Particle Hydrodynamics (SPH) method, often used for the modelling of the Navier-Stokes equations by a meshless Lagrangian approach, is revisited from the point of view of Large Eddy Simulation (LES). To this aim, the LES filtering procedure is recast in a Lagrangian framework by defining a filter that moves with the positions of the fluid particles at the filtered velocity. It is shown that the SPH smoothing procedure can be reinterpreted as a sort of LES Lagrangian filtering, and that, besides the terms coming from the LES convolution, additional contributions (never accounted for in the SPH literature) appear in the equations when formulated in a filtered fashion. Appropriate closure formulas are derived for the additional terms and a preliminary numerical test is provided to show the main features of the proposed LES-SPH model.
Large Eddy Simulation of FDA's Idealized Medical Device.
Delorme, Yann T; Anupindi, Kameswararao; Frankel, Steven H
2013-12-01
A hybrid large eddy simulation (LES) and immersed boundary method (IBM) computational approach is used to make quantitative predictions of flow field statistics within the Food and Drug Administration's (FDA) idealized medical device. An in-house code is used, hereafter (W enoHemo(™) ), that combines high-order finite-difference schemes on structured staggered Cartesian grids with an IBM to facilitate flow over or through complex stationary or rotating geometries and employs a subgrid-scale (SGS) turbulence model that more naturally handles transitional flows [2]. Predictions of velocity and wall shear stress statistics are compared with previously published experimental measurements from Hariharan et al. [6] for the four Reynolds numbers considered.
Synthetic turbulence, fractal interpolation, and large-eddy simulation.
Basu, Sukanta; Foufoula-Georgiou, Efi; Porté-Agel, Fernando
2004-08-01
Fractal interpolation has been proposed in the literature as an efficient way to construct closure models for the numerical solution of coarse-grained Navier-Stokes equations. It is based on synthetically generating a scale-invariant subgrid-scale field and analytically evaluating its effects on large resolved scales. In this paper, we propose an extension of previous work by developing a multiaffine fractal interpolation scheme and demonstrate that it preserves not only the fractal dimension but also the higher-order structure functions and the non-Gaussian probability density function of the velocity increments. Extensive a priori analyses of atmospheric boundary layer measurements further reveal that this multiaffine closure model has the potential for satisfactory performance in large-eddy simulations. The pertinence of this newly proposed methodology in the case of passive scalars is also discussed.
Large Eddy Simulation of Vertical Axis Wind Turbines
NASA Astrophysics Data System (ADS)
Hezaveh, Seyed Hossein
Due to several design advantages and operational characteristics, particularly in offshore farms, vertical axis wind turbines (VAWTs) are being reconsidered as a complementary technology to horizontal axial turbines (HAWTs). However, considerable gaps remain in our understanding of VAWT performance since they have been significantly less studied than HAWTs. This thesis examines the performance of isolated VAWTs based on different design parameters and evaluates their characteristics in large wind farms. An actuator line model (ALM) is implemented in an atmospheric boundary layer large eddy simulation (LES) code, with offline coupling to a high-resolution blade-scale unsteady Reynolds-averaged Navier-Stokes (URANS) model. The LES captures the turbine-to-farm scale dynamics, while the URANS captures the blade-to-turbine scale flow. The simulation results are found to be in good agreement with existing experimental datasets. Subsequently, a parametric study of the flow over an isolated VAWT is carried out by varying solidities, height-to-diameter aspect ratios, and tip speed ratios. The analyses of the wake area and power deficits yield an improved understanding of the evolution of VAWT wakes, which in turn enables a more informed selection of turbine designs for wind farms. One of the most important advantages of VAWTs compared to HAWTs is their potential synergistic interactions that increase their performance when placed in close proximity. Field experiments have confirmed that unlike HAWTs, VAWTs can enhance and increase the total power production when placed near each other. Based on these experiments and using ALM-LES, we also present and test new approaches for VAWT farm configuration. We first design clusters with three turbines then configure farms consisting of clusters of VAWTs rather than individual turbines. The results confirm that by using a cluster design, the average power density of wind farms can be increased by as much as 60% relative to regular
Film cooling from inclined cylindrical holes using large eddy simulations
NASA Astrophysics Data System (ADS)
Peet, Yulia V.
2006-12-01
The goal of the present study is to investigate numerically the physics of the flow, which occurs during the film cooling from inclined cylindrical holes, Film cooling is a technique used in gas turbine industry to reduce heat fluxes to the turbine blade surface. Large Eddy Simulation (LES) is performed modeling a realistic film cooling configuration, which consists of a large stagnation-type reservoir, feeding an array of discrete cooling holes (film holes) flowing into a flat plate turbulent boundary layer. Special computational methodology is developed for this problem, involving coupled simulations using multiple computational codes. A fully compressible LES code is used in the area above the flat plate, while a low Mach number LES code is employed in the plenum and film holes. The motivation for using different codes comes from the essential difference in the nature of the flow in these different regions. Flowfield is analyzed inside the plenum, film hole and a crossflow region. Flow inside the plenum is stagnating, except for the region close to the exit, where it accelerates rapidly to turn into the hole. The sharp radius of turning at the trailing edge of the plenum pipe connection causes the flow to separate from the downstream wall of the film hole. After coolant injection occurs, a complex flowfield is formed consisting of coherent vortical structures responsible for bringing hot crossflow fluid in contact with the walls of either the film hole or the blade, thus reducing cooling protection. Mean velocity and turbulent statistics are compared to experimental measurements, yielding good agreement for the mean flowfield and satisfactory agreement for the turbulence quantities. LES results are used to assess the applicability of basic assumptions of conventional eddy viscosity turbulence models used with Reynolds-averaged (RANS) approach, namely the isotropy of an eddy viscosity and thermal diffusivity. It is shown here that these assumptions do not hold
Large-eddy simulation of unidirectional turbulent flow over dunes
NASA Astrophysics Data System (ADS)
Omidyeganeh, Mohammad
We performed large eddy simulation of the flow over a series of two- and three-dimensional dune geometries at laboratory scale using the Lagrangian dynamic eddy-viscosity subgrid-scale model. First, we studied the flow over a standard 2D transverse dune geometry, then bedform three-dimensionality was imposed. Finally, we investigated the turbulent flow over barchan dunes. The results are validated by comparison with simulations and experiments for the 2D dune case, while the results of the 3D dunes are validated qualitatively against experiments. The flow over transverse dunes separates at the dune crest, generating a shear layer that plays a crucial role in the transport of momentum and energy, as well as the generation of coherent structures. Spanwise vortices are generated in the separated shear; as they are advected, they undergo lateral instabilities and develop into horseshoe-like structures and finally reach the surface. The ejection that occurs between the legs of the vortex creates the upwelling and downdrafting events on the free surface known as "boils". The three-dimensional separation of flow at the crestline alters the distribution of wall pressure, which may cause secondary flow across the stream. The mean flow is characterized by a pair of counter-rotating streamwise vortices, with core radii of the order of the flow depth. Staggering the crestlines alters the secondary motion; two pairs of streamwise vortices appear (a strong one, centred about the lobe, and a weaker one, coming from the previous dune, centred around the saddle). The flow over barchan dunes presents significant differences to that over transverse dunes. The flow near the bed, upstream of the dune, diverges from the centerline plane; the flow close to the centerline plane separates at the crest and reattaches on the bed. Away from the centerline plane and along the horns, flow separation occurs intermittently. The flow in the separation bubble is routed towards the horns and leaves
Improved engine wall models for Large Eddy Simulation (LES)
NASA Astrophysics Data System (ADS)
Plengsaard, Chalearmpol
Improved wall models for Large Eddy Simulation (LES) are presented in this research. The classical Werner-Wengle (WW) wall shear stress model is used along with near-wall sub-grid scale viscosity. A sub-grid scale turbulent kinetic energy is employed in a model for the eddy viscosity. To gain better heat flux results, a modified classical variable-density wall heat transfer model is also used. Because no experimental wall shear stress results are available in engines, the fully turbulent developed flow in a square duct is chosen to validate the new wall models. The model constants in the new wall models are set to 0.01 and 0.8, respectively and are kept constant throughout the investigation. The resulting time- and spatially-averaged velocity and temperature wall functions from the new wall models match well with the law-of-the-wall experimental data at Re = 50,000. In order to study the effect of hot air impinging walls, jet impingement on a flat plate is also tested with the new wall models. The jet Reynolds number is equal to 21,000 and a fixed jet-to-plate spacing of H/D = 2.0. As predicted by the new wall models, the time-averaged skin friction coefficient agrees well with experimental data, while the computed Nusselt number agrees fairly well when r/D > 2.0. Additionally, the model is validated using experimental data from a Caterpillar engine operated with conventional diesel combustion. Sixteen different operating engine conditions are simulated. The majority of the predicted heat flux results from each thermocouple location follow similar trends when compared with experimental data. The magnitude of peak heat fluxes as predicted by the new wall models is in the range of typical measured values in diesel combustion, while most heat flux results from previous LES wall models are over-predicted. The new wall models generate more accurate predictions and agree better with experimental data.
Refinement of a mesoscale model for large eddy simulation
NASA Astrophysics Data System (ADS)
Gasset, Nicolas
With the advent of wind energy technology, several methods have become mature and are seen today as standard for predicting and forecasting the wind. However, their results are still site dependent, and the increasing sizes of both modern wind turbines and wind farms tackle limits of existing methods. Some triggered processes extend to the junction between microscales and mesoscales.The main objectives of this thesis are thus to identify, implement and evaluate an approach allowing for microscale and mesoscale ABL flow modelling considering the various challenges of modern wind energy applications. A literature review of ABL flow modelling from microscales to mesoscales first provides an overview of the specificities and abilities of existing methods. The combined mesoscale/large eddy simulation (LES) modelling appears to be the most promising approach, and the Compressible Community Mesoscale Model (MC2) is elected as the basis of the method in which the components required for LES are added and implemented. A detailed description of the mathematical model and the numerical aspects of the various components of the LES-capable MC2 are then presented so that a complete view of the proposed approach along with the specificities of its implementation are provided. This further allows to introduce the enhancements and new components of the method (separation of volumetric and deviatoric Reynolds tensor terms, vertical staggering, subgrid scale models, 3D turbulent diffusion, 3D turbulent kinetic energy equation), as well as the adaptation of its operating mode to allow for LES (initialization, large scale geostrophic forcing, surface and lateral boundaries). Finally, fundamental aspects and new components of the proposed approach are evaluated based on theoretical 1D Ekman boundary layer and 3D unsteady shear and buoyancy driven homogeneous surface full ABL cases. The model behaviour at high resolution as well as the components required for LES in MC2 are all finely
Large-Eddy Simulation of Maritime Deep Tropical Convection
NASA Astrophysics Data System (ADS)
Khairoutdinov, Marat F.; Krueger, Steve K.; Moeng, Chin-Hoh; Bogenschutz, Peter A.; Randall, David A.
2009-04-01
This study represents an attempt to apply Large-Eddy Simulation (LES) resolution to simulate deep tropical convection in near equilibrium for 24 hours over an area of about 205 × 205 km2, which is comparable to that of a typical horizontal grid cell in a global climate model. The simulation is driven by large-scale thermodynamic tendencies derived from mean conditions during the GATE Phase III field experiment. The LES uses 2048 × 2048 × 256 grid points with horizontal grid spacing of 100 m and vertical grid spacing ranging from 50 m in the boundary layer to 100 m in the free troposphere. The simulation reaches a near equilibrium deep convection regime in 12 hours. The simulated vertical cloud distribution exhibits a tri-modal vertical distribution of deep, middle and shallow clouds similar to that often observed in Tropics. A sensitivity experiment in which cold pools are suppressed by switching off the evaporation of precipitation results in much lower amounts of shallow and congestus clouds. Unlike the benchmark LES where the new deep clouds tend to appear along the edges of spreading cold pools, the deep clouds in the no-cold-pool experiment tend to reappear at the sites of the previous deep clouds and tend to be surrounded by extensive areas of sporadic shallow clouds. The vertical velocity statistics of updraft and downdraft cores below 6 km height are compared to aircraft observations made during GATE. The comparison shows generally good agreement, and strongly suggests that the LES simulation can be used as a benchmark to represent the dynamics of tropical deep convection on scales ranging from large turbulent eddies to mesoscale convective systems. The effect of horizontal grid resolution is examined by running the same case with progressively larger grid sizes of 200, 400, 800, and 1600 m. These runs show a reasonable agreement with the benchmark LES in statistics such as convective available potential energy, convective inhibition, cloud fraction
Inviscid Wall-Modeled Large Eddy Simulations for Improved Efficiency
NASA Astrophysics Data System (ADS)
Aikens, Kurt; Craft, Kyle; Redman, Andrew
2015-11-01
The accuracy of an inviscid flow assumption for wall-modeled large eddy simulations (LES) is examined because of its ability to reduce simulation costs. This assumption is not generally applicable for wall-bounded flows due to the high velocity gradients found near walls. In wall-modeled LES, however, neither the viscous near-wall region or the viscous length scales in the outer flow are resolved. Therefore, the viscous terms in the Navier-Stokes equations have little impact on the resolved flowfield. Zero pressure gradient flat plate boundary layer results are presented for both viscous and inviscid simulations using a wall model developed previously. The results are very similar and compare favorably to those from another wall model methodology and experimental data. Furthermore, the inviscid assumption reduces simulation costs by about 25% and 39% for supersonic and subsonic flows, respectively. Future research directions are discussed as are preliminary efforts to extend the wall model to include the effects of unresolved wall roughness. This work used the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by National Science Foundation grant number ACI-1053575. Computational resources on TACC Stampede were provided under XSEDE allocation ENG150001.
Large Eddy Simulations of Colorless Distributed Combustion Systems
NASA Astrophysics Data System (ADS)
Abdulrahman, Husam F.; Jaberi, Farhad; Gupta, Ashwani
2014-11-01
Development of efficient and low-emission colorless distributed combustion (CDC) systems for gas turbine applications require careful examination of the role of various flow and combustion parameters. Numerical simulations of CDC in a laboratory-scale combustor have been conducted to carefully examine the effects of these parameters on the CDC. The computational model is based on a hybrid modeling approach combining large eddy simulation (LES) with the filtered mass density function (FMDF) equations, solved with high order numerical methods and complex chemical kinetics. The simulated combustor operates based on the principle of high temperature air combustion (HiTAC) and has shown to significantly reduce the NOx, and CO emissions while improving the reaction pattern factor and stability without using any flame stabilizer and with low pressure drop and noise. The focus of the current work is to investigate the mixing of air and hydrocarbon fuels and the non-premixed and premixed reactions within the combustor by the LES/FMDF with the reduced chemical kinetic mechanisms for the same flow conditions and configurations investigated experimentally. The main goal is to develop better CDC with higher mixing and efficiency, ultra-low emission levels and optimum residence time. The computational results establish the consistency and the reliability of LES/FMDF and its Lagrangian-Eulerian numerical methodology.
Unsteady RANS and Large Eddy simulations of multiphase diesel injection
NASA Astrophysics Data System (ADS)
Philipp, Jenna; Green, Melissa; Akih-Kumgeh, Benjamin
2015-11-01
Unsteady Reynolds Averaged Navier-Stokes (URANS) and Large Eddy Simulations (LES) of two-phase flow and evaporation of high pressure diesel injection into a quiescent, high temperature environment is investigated. Unsteady RANS and LES are turbulent flow simulation approaches used to determine complex flow fields. The latter allows for more accurate predictions of complex phenomena such as turbulent mixing and physio-chemical processes associated with diesel combustion. In this work we investigate a high pressure diesel injection using the Euler-Lagrange method for multiphase flows as implemented in the Star-CCM+ CFD code. A dispersed liquid phase is represented by Lagrangian particles while the multi-component gas phase is solved using an Eulerian method. Results obtained from the two approaches are compared with respect to spray penetration depth and air entrainment. They are also compared with experimental data taken from the Sandia Engine Combustion Network for ``Spray A''. Characteristics of primary and secondary atomization are qualitatively evaluated for all simulation modes.
Large eddy simulation of incompressible turbulent channel flow
NASA Technical Reports Server (NTRS)
Moin, P.; Reynolds, W. C.; Ferziger, J. H.
1978-01-01
The three-dimensional, time-dependent primitive equations of motion were numerically integrated for the case of turbulent channel flow. A partially implicit numerical method was developed. An important feature of this scheme is that the equation of continuity is solved directly. The residual field motions were simulated through an eddy viscosity model, while the large-scale field was obtained directly from the solution of the governing equations. An important portion of the initial velocity field was obtained from the solution of the linearized Navier-Stokes equations. The pseudospectral method was used for numerical differentiation in the horizontal directions, and second-order finite-difference schemes were used in the direction normal to the walls. The large eddy simulation technique is capable of reproducing some of the important features of wall-bounded turbulent flows. The resolvable portions of the root-mean square wall pressure fluctuations, pressure velocity-gradient correlations, and velocity pressure-gradient correlations are documented.
Large eddy simulation for aerodynamics: status and perspectives.
Sagaut, Pierre; Deck, Sébastien
2009-07-28
The present paper provides an up-to-date survey of the use of large eddy simulation (LES) and sequels for engineering applications related to aerodynamics. Most recent landmark achievements are presented. Two categories of problem may be distinguished whether the location of separation is triggered by the geometry or not. In the first case, LES can be considered as a mature technique and recent hybrid Reynolds-averaged Navier-Stokes (RANS)-LES methods do not allow for a significant increase in terms of geometrical complexity and/or Reynolds number with respect to classical LES. When attached boundary layers have a significant impact on the global flow dynamics, the use of hybrid RANS-LES remains the principal strategy to reduce computational cost compared to LES. Another striking observation is that the level of validation is most of the time restricted to time-averaged global quantities, a detailed analysis of the flow unsteadiness being missing. Therefore, a clear need for detailed validation in the near future is identified. To this end, new issues, such as uncertainty and error quantification and modelling, will be of major importance. First results dealing with uncertainty modelling in unsteady turbulent flow simulation are presented.
Assessment of dynamic closure for premixed combustion large eddy simulation
NASA Astrophysics Data System (ADS)
Langella, Ivan; Swaminathan, Nedunchezhian; Gao, Yuan; Chakraborty, Nilanjan
2015-09-01
Turbulent piloted Bunsen flames of stoichiometric methane-air mixtures are computed using the large eddy simulation (LES) paradigm involving an algebraic closure for the filtered reaction rate. This closure involves the filtered scalar dissipation rate of a reaction progress variable. The model for this dissipation rate involves a parameter βc representing the flame front curvature effects induced by turbulence, chemical reactions, molecular dissipation, and their interactions at the sub-grid level, suggesting that this parameter may vary with filter width or be a scale-dependent. Thus, it would be ideal to evaluate this parameter dynamically by LES. A procedure for this evaluation is discussed and assessed using direct numerical simulation (DNS) data and LES calculations. The probability density functions of βc obtained from the DNS and LES calculations are very similar when the turbulent Reynolds number is sufficiently large and when the filter width normalised by the laminar flame thermal thickness is larger than unity. Results obtained using a constant (static) value for this parameter are also used for comparative evaluation. Detailed discussion presented in this paper suggests that the dynamic procedure works well and physical insights and reasonings are provided to explain the observed behaviour.
Progress in the Variational Multiscale Formulation of Large Eddy Simulation
NASA Astrophysics Data System (ADS)
Wang, Zhen; Oberai, Assad
2007-11-01
In the variational multiscale (VMS) formulation of large eddy simulation subgrid models are introduced in the variational (or weak) formulation of the Navier Stokes equations and a-priori scale separation is accomplished using projection operators to create coarse and fine scales. This separation also leads to two sets of evolution equations: one for the coarse scales and another for the fine scales. The coarse scale equations are solved numerically while the fine scale equations are solved analytically to obtain an expression for the fine scales in terms of the coarse scales and hence achieve closure. Till date, the VMS formulation has lead to accurate results in the simulation of canonical turbulent flow problems. It has been implemented using spectral, finite element and finite volume methods. In this talk, for the incompressible Navier Stokes equations, we willpresent some new ideas for modeling the fine scales within the context of the VMS formulation and discuss their impact on the coarse scale solution. We will present a simple residual-based approximation for the fine scales that accurately models the cross-stress term and demonstrate that when this term is append with an eddy viscosity model for the Reynolds stress, a new mixed-model is obtained. The application of these ideas will be illustrated through some simple numerical examples.
Analysis of errors occurring in large eddy simulation.
Geurts, Bernard J
2009-07-28
We analyse the effect of second- and fourth-order accurate central finite-volume discretizations on the outcome of large eddy simulations of homogeneous, isotropic, decaying turbulence at an initial Taylor-Reynolds number Re(lambda)=100. We determine the implicit filter that is induced by the spatial discretization and show that a higher order discretization also induces a higher order filter, i.e. a low-pass filter that keeps a wider range of flow scales virtually unchanged. The effectiveness of the implicit filtering is correlated with the optimal refinement strategy as observed in an error-landscape analysis based on Smagorinsky's subfilter model. As a point of reference, a finite-volume method that is second-order accurate for both the convective and the viscous fluxes in the Navier-Stokes equations is used. We observe that changing to a fourth-order accurate convective discretization leads to a higher value of the Smagorinsky coefficient C(S) required to achieve minimal total error at given resolution. Conversely, changing only the viscous flux discretization to fourth-order accuracy implies that optimal simulation results are obtained at lower values of C(S). Finally, a fully fourth-order discretization yields an optimal C(S) that is slightly lower than the reference fully second-order method.
High-Accuracy Near-Surface Large-Eddy Simulation with Planar Topography
2015-08-03
SECURITY CLASSIFICATION OF: Large-eddy simulation (LES) has been plagued by an inability to predict the law-of-the-wall (LOTW) in mean velocity in the...Simulation with Planar Topography” Report Title Large-eddy simulation (LES) has been plagued by an inability to predict the law-of-the-wall (LOTW) in mean
Large eddy simulations and direct numerical simulations of high speed turbulent reacting flows
NASA Technical Reports Server (NTRS)
Givi, Peyman; Madnia, Cyrus K.; Steinberger, Craig J.
1990-01-01
This research is involved with the implementation of advanced computational schemes based on large eddy simulations (LES) and direct numerical simulations (DNS) to study the phenomenon of mixing and its coupling with chemical reactions in compressible turbulent flows. In the efforts related to LES, a research program to extend the present capabilities of this method was initiated for the treatment of chemically reacting flows. In the DNS efforts, the focus is on detailed investigations of the effects of compressibility, heat release, and non-equilibrium kinetics modelings in high speed reacting flows. Emphasis was on the simulations of simple flows, namely homogeneous compressible flows, and temporally developing high speed mixing layers.
Large Eddy Simulation of Turbulent Flow in a Ribbed Pipe
NASA Astrophysics Data System (ADS)
Kang, Changwoo; Yang, Kyung-Soo
2011-11-01
Turbulent flow in a pipe with periodically wall-mounted ribs has been investigated by large eddy simulation with a dynamic subgrid-scale model. The value of Re considered is 98,000, based on hydraulic diameter and mean bulk velocity. An immersed boundary method was employed to implement the ribs in the computational domain. The spacing of the ribs is the key parameter to produce the d-type, intermediate and k-type roughness flows. The mean velocity profiles and turbulent intensities obtained from the present LES are in good agreement with the experimental measurements currently available. Turbulence statistics, including budgets of the Reynolds stresses, were computed, and analyzed to elucidate turbulence structures, especially around the ribs. In particular, effects of the ribs are identified by comparing the turbulence structures with those of smooth pipe flow. The present investigation is relevant to the erosion/corrosion that often occurs around a protruding roughness in a pipe system. This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2010-0008457).
A family of dynamic models for large-eddy simulation
NASA Technical Reports Server (NTRS)
Carati, D.; Jansen, K.; Lund, T.
1995-01-01
Since its first application, the dynamic procedure has been recognized as an effective means to compute rather than prescribe the unknown coefficients that appear in a subgrid-scale model for Large-Eddy Simulation (LES). The dynamic procedure is usually used to determine the nondimensional coefficient in the Smagorinsky (1963) model. In reality the procedure is quite general and it is not limited to the Smagorinsky model by any theoretical or practical constraints. The purpose of this note is to consider a generalized family of dynamic eddy viscosity models that do not necessarily rely on the local equilibrium assumption built into the Smagorinsky model. By invoking an inertial range assumption, it will be shown that the coefficients in the new models need not be nondimensional. This additional degree of freedom allows the use of models that are scaled on traditionally unknown quantities such as the dissipation rate. In certain cases, the dynamic models with dimensional coefficients are simpler to implement, and allow for a 30% reduction in the number of required filtering operations.
Large eddy simulation modelling of combustion for propulsion applications.
Fureby, C
2009-07-28
Predictive modelling of turbulent combustion is important for the development of air-breathing engines, internal combustion engines, furnaces and for power generation. Significant advances in modelling non-reactive turbulent flows are now possible with the development of large eddy simulation (LES), in which the large energetic scales of the flow are resolved on the grid while modelling the effects of the small scales. Here, we discuss the use of combustion LES in predictive modelling of propulsion applications such as gas turbine, ramjet and scramjet engines. The LES models used are described in some detail and are validated against laboratory data-of which results from two cases are presented. These validated LES models are then applied to an annular multi-burner gas turbine combustor and a simplified scramjet combustor, for which some additional experimental data are available. For these cases, good agreement with the available reference data is obtained, and the LES predictions are used to elucidate the flow physics in such devices to further enhance our knowledge of these propulsion systems. Particular attention is focused on the influence of the combustion chemistry, turbulence-chemistry interaction, self-ignition, flame holding burner-to-burner interactions and combustion oscillations.
Numerical methods for large eddy simulation of acoustic combustion instabilities
NASA Astrophysics Data System (ADS)
Wall, Clifton T.
Acoustic combustion instabilities occur when interaction between the combustion process and acoustic modes in a combustor results in periodic oscillations in pressure, velocity, and heat release. If sufficiently large in amplitude, these instabilities can cause operational difficulties or the failure of combustor hardware. In many situations, the dominant instability is the result of the interaction between a low frequency acoustic mode of the combustor and the large scale hydrodynamics. Large eddy simulation (LES), therefore, is a promising tool for the prediction of these instabilities, since both the low frequency acoustic modes and the large scale hydrodynamics are well resolved in LES. Problems with the tractability of such simulations arise, however, due to the difficulty of solving the compressible Navier-Stokes equations efficiently at low Mach number and due to the large number of acoustic periods that are often required for such instabilities to reach limit cycles. An implicit numerical method for the solution of the compressible Navier-Stokes equations has been developed which avoids the acoustic CFL restriction, allowing for significant efficiency gains at low Mach number, while still resolving the low frequency acoustic modes of interest. In the limit of a uniform grid the numerical method causes no artificial damping of acoustic waves. New, non-reflecting boundary conditions have also been developed for use with the characteristic-based approach of Poinsot and Lele (1992). The new boundary conditions are implemented in a manner which allows for significant reduction of the computational domain of an LES by eliminating the need to perform LES in regions where one-dimensional acoustics significantly affect the instability but details of the hydrodynamics do not. These new numerical techniques have been demonstrated in an LES of an experimental combustor. The new techniques are shown to be an efficient means of performing LES of acoustic combustion
Large-eddy simulation of combustion dynamics in swirling flows
NASA Astrophysics Data System (ADS)
Stone, Christopher Pritchard
The impact of premixer swirl number, S, and overall fuel equivalence ratio, phi, on the stability of a model swirl-stabilized, lean-premixed gas turbine combustor has been numerically investigated using a massively-parallel Large-Eddy Simulations Combustion Dynamics model. Through the use of a premixed combustion model, unsteady vortex-flame and acoustic-flame interactions are captured. It is observed that for flows with swirl intensity high enough to form Vortex-Breakdown (i.e., a phenomena associated with a large region of reverse or recirculating flow along the axis of rotation), the measured rms pressure amplitude (p') are attenuated significantly (over 6.6 dB reduction) compared to flows without this phenomena. The reduced p' amplitudes are accompanied by reduced longitudinal flame-front oscillations and reduced coherence in the shed vortices. Similar p' reduction levels are achieved through changes in the operating equivalence ratio, phi. Compared to the leanest equivalence ratio simulated (phi = 0.52), p' at a stoichiometric mixture is reduced by 6.0 dB. Methodologies for active control based on modulation of the inlet Swirl number (S, a measure of the intensity of swirl) and phi are also investigated. Open-loop control through S variation is demonstrated for a lean mixture with a significant reduction in the fluctuating mass-flow-rate and p' after a convective time-delay. A partially-premixed combustion model, which allows for variations in the local phi, is used to model both temporal and spatial variations in phi. It is found that the response time to changes in phi are much faster than those for changes in S. Also, it is shown that spatial variations in phi (or unmixedness) actually lead to p' attenuation in the current combustor configuration.
NASA Technical Reports Server (NTRS)
Zhang, Zhibo; Ackerman, Andrew S.; Feingold, Graham; Platnick, Steven; Pincus, Robert; Xue, Huiwen
2012-01-01
This study investigates effects of drizzle and cloud horizontal inhomogeneity on cloud effective radius (re) retrievals from the Moderate Resolution Imaging Spectroradiometer (MODIS). In order to identify the relative importance of various factors, we developed a MODIS cloud property retrieval simulator based on the combination of large-eddy simulations (LES) and radiative transfer computations. The case studies based on synthetic LES cloud fields indicate that at high spatial resolution (100 m) 3-D radiative transfer effects, such as illumination and shadowing, can induce significant differences between retrievals ofre based on reflectance at 2.1 m (re,2.1) and 3.7 m (re,3.7). It is also found that 3-D effects tend to have stronger impact onre,2.1 than re,3.7, leading to positive difference between the two (re,3.72.1) from illumination and negative re,3.72.1from shadowing. The cancellation of opposing 3-D effects leads to overall reasonable agreement betweenre,2.1 and re,3.7 at high spatial resolution as far as domain averages are concerned. At resolutions similar to MODIS, however, re,2.1 is systematically larger than re,3.7when averaged over the LES domain, with the difference exhibiting a threshold-like dependence on bothre,2.1and an index of the sub-pixel variability in reflectance (H), consistent with MODIS observations. In the LES cases studied, drizzle does not strongly impact reretrievals at either wavelength. It is also found that opposing 3-D radiative transfer effects partly cancel each other when cloud reflectance is aggregated from high spatial resolution to MODIS resolution, resulting in a weaker net impact of 3-D radiative effects onre retrievals. The large difference at MODIS resolution between re,3.7 and re,2.1 for highly inhomogeneous pixels with H 0.4 can be largely attributed to what we refer to as the plane-parallelrebias, which is attributable to the impact of sub-pixel level horizontal variability of cloud optical thickness onre retrievals
NASA Technical Reports Server (NTRS)
Bardino, J.; Ferziger, J. H.; Reynolds, W. C.
1983-01-01
The physical bases of large eddy simulation and subgrid modeling are studied. A subgrid scale similarity model is developed that can account for system rotation. Large eddy simulations of homogeneous shear flows with system rotation were carried out. Apparently contradictory experimental results were explained. The main effect of rotation is to increase the transverse length scales in the rotation direction, and thereby decrease the rates of dissipation. Experimental results are shown to be affected by conditions at the turbulence producing grid, which make the initial states a function of the rotation rate. A two equation model is proposed that accounts for effects of rotation and shows good agreement with experimental results. In addition, a Reynolds stress model is developed that represents the turbulence structure of homogeneous shear flows very well and can account also for the effects of system rotation.
Large eddy simulation of mixing between hot and cold sodium flows - comparison with experiments
Simoneau, J.P.; Noe, H.; Menant, B.
1995-09-01
The large eddy simulation is becoming a potential powerful tool for the calculation of turbulent flows. In nuclear liquid metal cooled fast reactors, the knowledge of the turbulence characteristics is of great interest for the prediction and the analysis of thermal stripping phenomena. The objective of this paper is to give a contribution in the evaluation of the large eddy simulation technique is an individual case. The problem chosen is the case of the mixing between hot and cold sodium flows. The computations are compared with available sodium tests. This study shows acceptable qualitative results but the simple model used is not able to predict the turbulence characteristics. More complex models including larger domains around the fluctuating zone and fluctuating boundary conditions could be necessary. Validation works are continuing.
Large-Eddy Simulation on turbulent flow and plume dispersion over a 2-dimensional hill
NASA Astrophysics Data System (ADS)
Nakayama, H.; Nagai, H.
2010-05-01
The dispersion analysis of airborne contaminants including radioactive substances from industrial or nuclear facilities is an important issue for air quality maintenance and safety assessment. In Japan, many nuclear power plants are located at complex coastal terrains. In these cases, terrain effects on the turbulent flow and plume dispersion should be investigated. In this study, we perform Large-Eddy Simulation (LES) of turbulent flow and plume dispersion over a 2-dimensional hill flow and investigate the characteristics of mean and fluctuating concentrations.
Large eddy simulation of soot evolution in an aircraft combustor
NASA Astrophysics Data System (ADS)
Mueller, Michael E.; Pitsch, Heinz
2013-11-01
An integrated kinetics-based Large Eddy Simulation (LES) approach for soot evolution in turbulent reacting flows is applied to the simulation of a Pratt & Whitney aircraft gas turbine combustor, and the results are analyzed to provide insights into the complex interactions of the hydrodynamics, mixing, chemistry, and soot. The integrated approach includes detailed models for soot, combustion, and the unresolved interactions between soot, chemistry, and turbulence. The soot model is based on the Hybrid Method of Moments and detailed descriptions of soot aggregates and the various physical and chemical processes governing their evolution. The detailed kinetics of jet fuel oxidation and soot precursor formation is described with the Radiation Flamelet/Progress Variable model, which has been modified to account for the removal of soot precursors from the gas-phase. The unclosed filtered quantities in the soot and combustion models, such as source terms, are closed with a novel presumed subfilter PDF approach that accounts for the high subfilter spatial intermittency of soot. For the combustor simulation, the integrated approach is combined with a Lagrangian parcel method for the liquid spray and state-of-the-art unstructured LES technology for complex geometries. Two overall fuel-to-air ratios are simulated to evaluate the ability of the model to make not only absolute predictions but also quantitative predictions of trends. The Pratt & Whitney combustor is a Rich-Quench-Lean combustor in which combustion first occurs in a fuel-rich primary zone characterized by a large recirculation zone. Dilution air is then added downstream of the recirculation zone, and combustion continues in a fuel-lean secondary zone. The simulations show that large quantities of soot are formed in the fuel-rich recirculation zone, and, furthermore, the overall fuel-to-air ratio dictates both the dominant soot growth process and the location of maximum soot volume fraction. At the higher fuel
A perspective on large eddy simulation of problems in the nuclear industry
Hassan, Y.A.; Pruitt, J.M.; Steininger, D.A.
1995-12-01
Because of the complex nature of coolant flow in nuclear reactors, current subchannel methods for light water reactor analysis are insufficient. The large eddy simulation method has been proposed as a computational tool for subchannel analysis. In large eddy simulation, large flow structures are computed while small scales are modeled, thereby decreasing computational time as compared with direct numerical simulation methods. Large eddy simulation has been used in complex geometry calculations providing good results in tube bundle cross-flow situations in steam generators. It is proposed that the large eddy simulation method be extended from single- to two-phase flow calculations to help in the prediction of the thermal diffusion of energy between adjacent subchannels.
NASA Astrophysics Data System (ADS)
Heinze, Rieke; Mironov, Dmitrii; Raasch, Siegfried
2016-03-01
A detailed analysis of the pressure-scrambling terms (i.e., the pressure-strain and pressure gradient-scalar covariances) in the Reynolds-stress and scalar-flux budgets for cloud-topped boundary layers (CTBLs) is performed using high-resolution large-eddy simulation (LES). Two CTBLs are simulated — one with trade wind shallow cumuli, and the other with nocturnal marine stratocumuli. The pressure-scrambling terms are decomposed into contributions due to turbulence-turbulence interactions, mean velocity shear, buoyancy, and Coriolis effects. Commonly used models of these contributions, including a simple linear model most often used in geophysical applications and a more sophisticated two-component-limit (TCL) nonlinear model, are tested against the LES data. The decomposition of the pressure-scrambling terms shows that the turbulence-turbulence and buoyancy contributions are most significant for cloud-topped boundary layers. The Coriolis contribution is negligible. The shear contribution is generally of minor importance inside the cloudy layers, but it is the leading-order contribution near the surface. A comparison of models of the pressure-scrambling terms with the LES data suggests that the more complex TCL model is superior to the simple linear model only for a few contributions. The linear model is able to reproduce the principal features of the pressure-scrambling terms reasonably well. It can be applied in the second-order turbulence modeling of cloud-topped boundary layer flows, provided some uncertainties are tolerated.
Large eddy simulations and direct numerical simulations of high speed turbulent reacting flows
NASA Technical Reports Server (NTRS)
Givi, Peyman; Madnia, C. K.; Steinberger, C. J.; Tsai, A.
1991-01-01
This research is involved with the implementations of advanced computational schemes based on large eddy simulations (LES) and direct numerical simulations (DNS) to study the phenomenon of mixing and its coupling with chemical reactions in compressible turbulent flows. In the efforts related to LES, a research program was initiated to extend the present capabilities of this method for the treatment of chemically reacting flows, whereas in the DNS efforts, focus was on detailed investigations of the effects of compressibility, heat release, and nonequilibrium kinetics modeling in high speed reacting flows. The efforts to date were primarily focussed on simulations of simple flows, namely, homogeneous compressible flows and temporally developing hign speed mixing layers. A summary of the accomplishments is provided.
Hybrid Reynolds-Averaged/Large-Eddy Simulations of a Coaxial Supersonic Free-Jet Experiment
NASA Technical Reports Server (NTRS)
Baurle, Robert A.; Edwards, Jack R.
2010-01-01
Reynolds-averaged and hybrid Reynolds-averaged/large-eddy simulations have been applied to a supersonic coaxial jet flow experiment. The experiment was designed to study compressible mixing flow phenomenon under conditions that are representative of those encountered in scramjet combustors. The experiment utilized either helium or argon as the inner jet nozzle fluid, and the outer jet nozzle fluid consisted of laboratory air. The inner and outer nozzles were designed and operated to produce nearly pressure-matched Mach 1.8 flow conditions at the jet exit. The purpose of the computational effort was to assess the state-of-the-art for each modeling approach, and to use the hybrid Reynolds-averaged/large-eddy simulations to gather insight into the deficiencies of the Reynolds-averaged closure models. The Reynolds-averaged simulations displayed a strong sensitivity to choice of turbulent Schmidt number. The initial value chosen for this parameter resulted in an over-prediction of the mixing layer spreading rate for the helium case, but the opposite trend was observed when argon was used as the injectant. A larger turbulent Schmidt number greatly improved the comparison of the results with measurements for the helium simulations, but variations in the Schmidt number did not improve the argon comparisons. The hybrid Reynolds-averaged/large-eddy simulations also over-predicted the mixing layer spreading rate for the helium case, while under-predicting the rate of mixing when argon was used as the injectant. The primary reason conjectured for the discrepancy between the hybrid simulation results and the measurements centered around issues related to the transition from a Reynolds-averaged state to one with resolved turbulent content. Improvements to the inflow conditions were suggested as a remedy to this dilemma. Second-order turbulence statistics were also compared to their modeled Reynolds-averaged counterparts to evaluate the effectiveness of common turbulence closure
NASA Astrophysics Data System (ADS)
Lu, Miao-Ling; Seinfeld, John H.
2006-01-01
Through three-dimensional large-eddy simulations of marine stratocumulus we explore the factors that control the cloud spectral relative dispersion (ratio of cloud droplet spectral width to the mean radius of the distribution) as a function of aerosol number concentration and the extent to which the relative dispersion either enhances or mitigates the Twomey effect. We find that relative dispersion decreases with increasing aerosol number concentration (for aerosol number concentrations less than about 1000 cm-3) because smaller droplets resulting from higher aerosol number concentrations inhibit precipitation and lead to (1) less spectral broadening by suppressed collision and coalescence processes and (2) more spectral narrowing by droplet condensational growth at higher updraft velocity because reduced drizzle latent heating at cloud top results in increased boundary layer turbulent kinetic energy production by buoyancy and thereby stronger turbulence. Increased spectral broadening owing to increased cloud-top entrainment mixing, also as a result of increased boundary layer turbulence, is relatively insignificant compared with outcomes 1 and 2. The coefficient k, an important parameter that relates cloud droplet effective radius and volume mean radius in large-scale models, is a function of skewness and relative dispersion of the distribution and is negatively correlated with relative dispersion. Increasing k with increasing aerosol number concentration leads to maximum enhancement of the cloud susceptibility (the change of cloud optical depth due to change of cloud droplet number concentration) over that attributable to the Twomey effect alone by about 4.2% and 39% for simulated FIRE and ASTEX cases, respectively.
Large eddy simulation of Rayleigh-Taylor instability using the arbitrary Lagrangian-Eulerian method
NASA Astrophysics Data System (ADS)
Darlington, Rebecca Mattson
This research addresses the application of a large eddy simulation (LES) to Arbitrary Lagrangian Eulerian (ALE) simulations of Rayleigh-Taylor instability. First, ALE simulations of simplified Rayleigh-Taylor instability are studied. The advantages of ALE over Eulerian simulations are shown. Next, the behavior of the LES is examined in a more complicated ALE simulation of Rayleigh-Taylor instability. The effects of eddy viscosity and stochastic backscatter are examined. The LES is also coupled with ALE to increase grid resolution in areas where it is needed. Finally, the methods studied above are applied to two sets of experimental simulations. In these simulations, ALE allows the mesh to follow expanding experimental targets, while LES can be used to mimic the effect of unresolved instability modes.
Large eddy simulation of Rayleigh-Taylor instability using the arbitrary Lagrangian-Eulerian method
Darlington, Rebecca Mattson
1999-12-01
This research addresses the application of a large eddy simulation (LES) to Arbitrary Lagrangian Eulerian (ALE) simulations of Rayleigh-Taylor instability. First, ALE simulations of simplified Rayleigh-Taylor instability are studied. The advantages of ALE over Eulerian simulations are shown. Next, the behavior of the LES is examined in a more complicated ALE simulation of Rayleigh-Taylor instability. The effects of eddy viscosity and stochastic backscatter are examined. The LES is also coupled with ALE to increase grid resolution in areas where it is needed. Finally, the methods studied above are applied to two sets of experimental simulations. In these simulations, ALE allows the mesh to follow expanding experimental targets, while LES can be used to mimic the effect of unresolved instability modes.
Large-eddy simulation of flow in a plane, asymmetric diffuser
NASA Technical Reports Server (NTRS)
Kaltenbach, Hans-Jakob
1993-01-01
Recent improvements in subgrid-scale modeling as well as increases in computer power make it feasible to investigate flows using large-eddy simulation (LES) which have been traditionally studied with techniques based on Reynolds averaging. However, LES has not yet been applied to many flows of immediate technical interest. Preliminary results from LES of a plane diffuser flow are described. The long term goal of this work is to investigate flow separation as well as separation control in ducts and ramp-like geometries.
Wind turbine wakes in forest and neutral plane wall boundary layer large-eddy simulations
NASA Astrophysics Data System (ADS)
Schröttle, Josef; Piotrowski, Zbigniew; Gerz, Thomas; Englberger, Antonia; Dörnbrack, Andreas
2016-09-01
Wind turbine wake flow characteristics are studied in a strongly sheared and turbulent forest boundary layer and a neutral plane wall boundary layer flow. The reference simulations without wind turbine yield similar results as earlier large-eddy simulations by Shaw and Schumann (1992) and Porte-Agel et al. (2000). To use the fields from the homogeneous turbulent boundary layers on the fly as inflow fields for the wind turbine wake simulations, a new and efficient methodology was developed for the multiscale geophysical flow solver EULAG. With this method fully developed turbulent flow fields can be achieved upstream of the wind turbine which are independent of the wake flow. The large-eddy simulations reproduce known boundary-layer statistics as mean wind profile, momentum flux profile, and eddy dissipation rate of the plane wall and the forest boundary layer. The wake velocity deficit is more asymmetric above the forest and recovers faster downstream compared to the velocity deficit in the plane wall boundary layer. This is due to the inflection point in the mean streamwise velocity profile with corresponding turbulent coherent structures of high turbulence intensity in the strong shear flow above the forest.
Sunset decay of the convective turbulence with Large-Eddy Simulation under realistic conditions
NASA Astrophysics Data System (ADS)
Rizza, U.; Miglietta, M. M.; Degrazia, G. A.; Acevedo, O. C.; Marques Filho, E. P.
2013-10-01
Large-Eddy Simulation is performed for a single day from the Cooperative Atmosphere-Surface Exchange Study (CASES-99) field program. This study investigates an observed case of evening transition boundary layer over land. Parameters of the ambient atmosphere in the LES-decay studies conducted so far were typically prescribed in an idealized form. To provide suitable data under the wide range of the PBL weather conditions, the LES should be able to adequately reproduce the PBL turbulence dynamics including-if possible-baroclinicity, radiation, large scale advection and not only be related to a decreasing surface heating. In addition LES-decay studies usually assume that the sensible heat flux decreases instantaneously or with a very short time scale. The main purpose of this investigation is to study the decay of boundary-layer average turbulent kinetic energy at sunset with Large-Eddy Simulation that is forced with realistic environment conditions. This allows investigating the Turbulent Kinetic Energy decay over the realistic time scale that is observed in the atmosphere. During the intermediate and last stage of decay of the boundary-layer average Turbulent Kinetic Energy the exponents of the decay power law t go from 2 to 6, as evidenced by experimental results and recent analytical modeling in the surface layer.
Large Eddy Simulations of Severe Convection Induced Turbulence
NASA Technical Reports Server (NTRS)
Ahmad, Nash'at; Proctor, Fred
2011-01-01
Convective storms can pose a serious risk to aviation operations since they are often accompanied by turbulence, heavy rain, hail, icing, lightning, strong winds, and poor visibility. They can cause major delays in air traffic due to the re-routing of flights, and by disrupting operations at the airports in the vicinity of the storm system. In this study, the Terminal Area Simulation System is used to simulate five different convective events ranging from a mesoscale convective complex to isolated storms. The occurrence of convection induced turbulence is analyzed from these simulations. The validation of model results with the radar data and other observations is reported and an aircraft-centric turbulence hazard metric calculated for each case is discussed. The turbulence analysis showed that large pockets of significant turbulence hazard can be found in regions of low radar reflectivity. Moderate and severe turbulence was often found in building cumulus turrets and overshooting tops.
Discussion of the potential and limitations of direct and large-eddy simulations
NASA Technical Reports Server (NTRS)
Hussaini, M. Y.; Speziale, Charles G.; Zang, Thomas A.
1989-01-01
The full text of the discussion paper presented at the Whither Turbulence Workshop on the potential and limitations of direct and large-eddy simulations is provided. Particular emphasis is placed on discussing the role of numerics and mathematical theory in direct simulations of both compressible and incompressible flows. A variety of unresolved issues with large-eddy simulations such as their implementation in high-order finite difference codes, problems with defiltering, and modifications to accommodate integrations to solid boundaries are elaborated on. These as well as other points are discussed in detail along with the authors' views concerning the prospects for future research.
An Examination of Parameters Affecting Large Eddy Simulations of Flow Past a Square Cylinder
NASA Technical Reports Server (NTRS)
Mankbadi, M. R.; Georgiadis, N. J.
2014-01-01
Separated flow over a bluff body is analyzed via large eddy simulations. The turbulent flow around a square cylinder features a variety of complex flow phenomena such as highly unsteady vortical structures, reverse flow in the near wall region, and wake turbulence. The formation of spanwise vortices is often times artificially suppressed in computations by either insufficient depth or a coarse spanwise resolution. As the resolution is refined and the domain extended, the artificial turbulent energy exchange between spanwise and streamwise turbulence is eliminated within the wake region. A parametric study is performed highlighting the effects of spanwise vortices where the spanwise computational domain's resolution and depth are varied. For Re=22,000, the mean and turbulent statistics computed from the numerical large eddy simulations (NLES) are in good agreement with experimental data. Von-Karman shedding is observed in the wake of the cylinder. Mesh independence is illustrated by comparing a mesh resolution of 2 million to 16 million. Sensitivities to time stepping were minimized and sampling frequency sensitivities were nonpresent. While increasing the spanwise depth and resolution can be costly, this practice was found to be necessary to eliminating the artificial turbulent energy exchange.
NASA Technical Reports Server (NTRS)
Givi, Peyman; Jaberi, Farhad A.
2001-01-01
The basic objective of this work is to assess the influence of gravity on "the compositional and the spatial structures" of transitional and turbulent diffusion flames via large eddy simulation (LES), and direct numerical simulation (DNS). The DNS is conducted for appraisal of the various closures employed in LES, and to study the effect of buoyancy on the small scale flow features. The LES is based on our "filtered mass density function"' (FMDF) model. The novelty of the methodology is that it allows for reliable simulations with inclusion of "realistic physics." It also allows for detailed analysis of the unsteady large scale flow evolution and compositional flame structure which is not usually possible via Reynolds averaged simulations.
Large-eddy simulation of a turbulent flow over a heavy vehicle with drag reduction devices
NASA Astrophysics Data System (ADS)
Lee, Sangseung; Kim, Myeongkyun; You, Donghyun
2015-11-01
Aerodynamic drag contributes to a considerable amount of energy loss of heavy vehicles. To reduce the energy loss, drag reduction devices such as side skirts and boat tails, are often installed to the side and the rear of a heavy vehicle. In the present study, turbulent flow around a heavy vehicle with realistic geometric details is simulated using large-eddy simulation (LES), which is capable of providing unsteady flow physics responsible for aerodynamic in sufficient detail. Flow over a heavy vehicle with and without a boat tail and side skirts as drag reduction devices is simulated. The simulation results are validated against accompanying in-house experimental measurements. Effects of a boat tail and side skirts on drag reduction are discussed in detail. Supported by the Korea Agency for Infrastructure Technology Advancement (KAIA) Grant NTIS 1615007940.
Wall-Resolved Large-Eddy Simulation of Flow Separation Over NASA Wall-Mounted Hump
NASA Technical Reports Server (NTRS)
Uzun, Ali; Malik, Mujeeb R.
2017-01-01
This paper reports the findings from a study that applies wall-resolved large-eddy simulation to investigate flow separation over the NASA wall-mounted hump geometry. Despite its conceptually simple flow configuration, this benchmark problem has proven to be a challenging test case for various turbulence simulation methods that have attempted to predict flow separation arising from the adverse pressure gradient on the aft region of the hump. The momentum-thickness Reynolds number of the incoming boundary layer has a value that is near the upper limit achieved by recent direct numerical simulation and large-eddy simulation of incompressible turbulent boundary layers. The high Reynolds number of the problem necessitates a significant number of grid points for wall-resolved calculations. The present simulations show a significant improvement in the separation-bubble length prediction compared to Reynolds-Averaged Navier-Stokes calculations. The current simulations also provide good overall prediction of the skin-friction distribution, including the relaminarization observed over the front portion of the hump due to the strong favorable pressure gradient. We discuss a number of problems that were encountered during the course of this work and present possible solutions. A systematic study regarding the effect of domain span, subgrid-scale model, tunnel back pressure, upstream boundary layer conditions and grid refinement is performed. The predicted separation-bubble length is found to be sensitive to the span of the domain. Despite the large number of grid points used in the simulations, some differences between the predictions and experimental observations still exist (particularly for Reynolds stresses) in the case of the wide-span simulation, suggesting that additional grid resolution may be required.
Large-eddy simulation of supercritical fluid flow and combustion
NASA Astrophysics Data System (ADS)
Huo, Hongfa
The present study focuses on the modeling and simulation of injection, mixing, and combustion of real fluids at supercritical conditions. The objectives of the study are: (1) to establish a unified theoretical framework that can be used to study the turbulent combustion of real fluids; (2) to implement the theoretical framework and conduct numerical studies with the aim of improving the understanding of the flow and combustion dynamics at conditions representative of contemporary liquid-propellant rocket engine operation; (3) to identify the key design parameters and the flow variables which dictate the dynamics characteristics of swirl- and shear- coaxial injectors. The theoretical and numerical framework is validated by simulating the Sandia Flame D. The calculated axial and radial profiles of velocity, temperature, and mass fractions of major species are in reasonably good agreement with the experimental measurements. The conditionally averaged mass fraction profiles agree very well with the experimental results at different axial locations. The validated model is first employed to examine the flow dynamics of liquid oxygen in a pressure swirl injector at supercritical conditions. Emphasis is placed on analyzing the effects of external excitations on the dynamic response of the injector. The high-frequency fluctuations do not significantly affect the flow field as they are dissipated shortly after being introduced into the flow. However, the lower-frequency fluctuations are amplified by the flow. As a result, the film thickness and the spreading angle at the nozzle exit fluctuate strongly for low-frequency external excitations. The combustion of gaseous oxygen/gaseous hydrogen in a high-pressure combustion chamber for a shear coaxial injector is simulated to assess the accuracy and the credibility of the computer program when applied to a sub-scale model of a combustor. The predicted heat flux profile is compared with the experimental and numerical studies. The
The Jefferson Project: Large-eddy simulations of a watershed
NASA Astrophysics Data System (ADS)
Watson, C.; Cipriani, J.; Praino, A. P.; Treinish, L. A.; Tewari, M.; Kolar, H.
2015-12-01
The Jefferson Project is a new endeavor at Lake George, NY by IBM Research, Rensselaer Polytechnic Institute (RPI) and The Fund for Lake George. Lake George is an oligotrophic lake - one of low nutrients - and a 30-year study recently published by RPI's Darrin Fresh Water Institute highlighted the renowned water quality is declining from the injection of salt (from runoff), algae, and invasive species. In response, the Jefferson Project is developing a system to provide extensive data on relevant physical, chemical and biological parameters that drive ecosystem function. The system will be capable of real-time observations and interactive modeling of the atmosphere, watershed hydrology, lake circulation and food web dynamics. In this presentation, we describe the development of the operational forecast system used to simulate the atmosphere in the model stack, Deep ThunderTM (a configuration of the ARW-WRF model). The model performs 48-hr forecasts twice daily in a nested configuration, and in this study we present results from ongoing tests where the innermost domains are dx = 333-m and 111-m. We discuss the model's ability to simulate boundary layer processes, lake surface conditions (an input into the lake model), and precipitation (an input into the hydrology model) during different weather regimes, and the challenges of data assimilation and validation at this scale. We also explore the potential for additional nests over select regions of the watershed to better capture turbulent boundary layer motions.
Large eddy simulation of combustion instability in a tripropellant air heater
NASA Astrophysics Data System (ADS)
Yuan, Lei; Shen, Chibing
2016-12-01
This research is motivated by the issue associated with high frequency combustion instability. Large eddy simulation was performed to investigate spontaneous combustion instability in an air/LO2/C2H5OH tripropellant air heater. The simulation predicts self-excited transverse oscillations. Overall behavior of combustion instability including pressure time histories, mode shapes, Rayleigh index and unsteady response of the injector were studied in detail. Special emphasis was given to the flame behavior, droplet trajectories, pressure evolutions, and formation of large-scale vortical structures during combustion instability in present air heater. Furthermore, in contrast to previous investigations, a new process is identified in the simulation that may feed energy into the acoustic mode and drive combustion instability.
Large eddy simulation of a particle-laden turbulent plane jet.
Jin, Han-Hui; Luo, Kun; Fan, Jian-Ren; Cen, Ke-Fa
2003-01-01
Gas-solid two-phase turbulent plane jet is applied to many natural situations and in engineering systems. To predict the particle dispersion in the gas jet is of great importance in industrial applications and in the designing of engineering systems. A large eddy simulation of the two-phase plane jet was conducted to investigate the particle dispersion patterns. The particles with Stokes numbers equal to 0.0028, 0.3, 2.5, 28 (corresponding to particle diameter 1 microm, 10 microm, 30 microm, 100 microm, respectively) in Re = 11 300 gas flow were studied. The simulation results of gas phase motion agreed well with previous experimental results. And the simulation results of the solid particles motion showed that particles with different Stokes number have different spatial dispersion; and that particles with intermediate Stokes number have the largest dispersion ratio.
Large Eddy Simulation of complex sidearms subject to solar radiation and surface cooling.
Dittko, Karl A; Kirkpatrick, Michael P; Armfield, Steven W
2013-09-15
Large Eddy Simulation (LES) is used to model two lake sidearms subject to heating from solar radiation and cooling from a surface flux. The sidearms are part of Lake Audrey, NJ, USA and Lake Alexandrina, SA, Australia. The simulation domains are created using bathymetry data and the boundary is modelled with an Immersed Boundary Method. We investigate the cooling and heating phases with separate quasi-steady state simulations. Differential heating occurs in the cavity due to the changing depth. The resulting temperature gradients drive lateral flows. These flows are the dominant transport process in the absence of wind. Study in this area is important in water quality management as the lateral circulation can carry particles and various pollutants, transporting them to and mixing them with the main lake body.
Modelling artificial sea salt emission in large eddy simulations
Maalick, Z.; Korhonen, H.; Kokkola, H.; Kühn, T.; Romakkaniemi, S.
2014-01-01
We study the dispersion of sea salt particles from artificially injected sea spray at a cloud-resolving scale. Understanding of how different aerosol processes affect particle dispersion is crucial when designing emission sources for marine cloud brightening. Compared with previous studies, we include for the first time an explicit treatment of aerosol water, which takes into account condensation, evaporation and their effect on ambient temperature. This enables us to capture the negative buoyancy caused by water evaporation from aerosols. Additionally, we use a higher model resolution to capture aerosol loss through coagulation near the source point. We find that, with a seawater flux of 15 kg s−1, the cooling due to evaporation can be as much as 1.4 K, causing a delay in particle dispersion of 10–20 min. This delay enhances particle scavenging by a factor of 1.14 compared with simulations without aerosol water. We further show that both cooling and particle dispersion depend on the model resolution, with a maximum particle scavenging efficiency of 20% within 5 h after emission at maximum resolution of 50 m. Based on these results, we suggest further regional high-resolution studies which model several injection periods over several weeks. PMID:25404679
Modelling artificial sea salt emission in large eddy simulations.
Maalick, Z; Korhonen, H; Kokkola, H; Kühn, T; Romakkaniemi, S
2014-12-28
We study the dispersion of sea salt particles from artificially injected sea spray at a cloud-resolving scale. Understanding of how different aerosol processes affect particle dispersion is crucial when designing emission sources for marine cloud brightening. Compared with previous studies, we include for the first time an explicit treatment of aerosol water, which takes into account condensation, evaporation and their effect on ambient temperature. This enables us to capture the negative buoyancy caused by water evaporation from aerosols. Additionally, we use a higher model resolution to capture aerosol loss through coagulation near the source point. We find that, with a seawater flux of 15 kg s(-1), the cooling due to evaporation can be as much as 1.4 K, causing a delay in particle dispersion of 10-20 min. This delay enhances particle scavenging by a factor of 1.14 compared with simulations without aerosol water. We further show that both cooling and particle dispersion depend on the model resolution, with a maximum particle scavenging efficiency of 20% within 5 h after emission at maximum resolution of 50 m. Based on these results, we suggest further regional high-resolution studies which model several injection periods over several weeks.
NASA Technical Reports Server (NTRS)
Jaberi, Farhad A.; Givi, Peyman
2003-01-01
The influence of gravity on the spatial and the compositional structures of transitional and turbulent hydrocarbon diffusion flames are studies via large eddy simulation (LES) and direct numerical simulation (DNS) of round and planar jets. The subgrid-scale (SGS) closures in LES are based on the filtered mass density function (FMDF) methodology. The FMDF represents the joint probability density function (PDF) of the SGS scalars, and is obtained by solving its transport equation. The fundamental advantage of LES/FMDF is that it accounts for the effects of chemical reaction and buoyancy exactly. The methodology is employed for capturing some of the fundamental influences of gravity in equilibrium flames via realistic chemical kinetic schemes. Some preliminary investigation of the gravity effects in non-equilibrium flames is also conducted, but with idealized chemical kinetics models.
Large-eddy simulations of turbulent flow for grid-to-rod fretting in nuclear reactors
Bakosi, J.; Christon, M. A.; Lowrie, R. B.; ...
2013-07-12
The grid-to-rod fretting (GTRF) problem in pressurized water reactors is a flow-induced vibration problem that results in wear and failure of the fuel rods in nuclear assemblies. In order to understand the fluid dynamics of GTRF and to build an archival database of turbulence statistics for various configurations, implicit large-eddy simulations of time-dependent single-phase turbulent flow have been performed in 3 × 3 and 5 × 5 rod bundles with a single grid spacer. To assess the computational mesh and resolution requirements, a method for quantitative assessment of unstructured meshes with no-slip walls is described. The calculations have been carriedmore » out using Hydra-TH, a thermal-hydraulics code developed at Los Alamos for the Consortium for Advanced Simulation of Light water reactors, a United States Department of Energy Innovation Hub. Hydra-TH uses a second-order implicit incremental projection method to solve the singlephase incompressible Navier-Stokes equations. The simulations explicitly resolve the large scale motions of the turbulent flow field using first principles and rely on a monotonicity-preserving numerical technique to represent the unresolved scales. Each series of simulations for the 3 × 3 and 5 × 5 rod-bundle geometries is an analysis of the flow field statistics combined with a mesh-refinement study and validation with available experimental data. Our primary focus is the time history and statistics of the forces loading the fuel rods. These hydrodynamic forces are believed to be the key player resulting in rod vibration and GTRF wear, one of the leading causes for leaking nuclear fuel which costs power utilities millions of dollars in preventive measures. As a result, we demonstrate that implicit large-eddy simulation of rod-bundle flows is a viable way to calculate the excitation forces for the GTRF problem.« less
Large-eddy simulations of turbulent flow for grid-to-rod fretting in nuclear reactors
Bakosi, J.; Christon, M. A.; Lowrie, R. B.; Pritchett-Sheats, L. A.; Nourgaliev, R. R.
2013-07-12
The grid-to-rod fretting (GTRF) problem in pressurized water reactors is a flow-induced vibration problem that results in wear and failure of the fuel rods in nuclear assemblies. In order to understand the fluid dynamics of GTRF and to build an archival database of turbulence statistics for various configurations, implicit large-eddy simulations of time-dependent single-phase turbulent flow have been performed in 3 × 3 and 5 × 5 rod bundles with a single grid spacer. To assess the computational mesh and resolution requirements, a method for quantitative assessment of unstructured meshes with no-slip walls is described. The calculations have been carried out using Hydra-TH, a thermal-hydraulics code developed at Los Alamos for the Consortium for Advanced Simulation of Light water reactors, a United States Department of Energy Innovation Hub. Hydra-TH uses a second-order implicit incremental projection method to solve the singlephase incompressible Navier-Stokes equations. The simulations explicitly resolve the large scale motions of the turbulent flow field using first principles and rely on a monotonicity-preserving numerical technique to represent the unresolved scales. Each series of simulations for the 3 × 3 and 5 × 5 rod-bundle geometries is an analysis of the flow field statistics combined with a mesh-refinement study and validation with available experimental data. Our primary focus is the time history and statistics of the forces loading the fuel rods. These hydrodynamic forces are believed to be the key player resulting in rod vibration and GTRF wear, one of the leading causes for leaking nuclear fuel which costs power utilities millions of dollars in preventive measures. As a result, we demonstrate that implicit large-eddy simulation of rod-bundle flows is a viable way to calculate the excitation forces for the GTRF problem.
Towards large eddy and direct simulation of complex turbulent flows
NASA Technical Reports Server (NTRS)
Moin, Parviz
1991-01-01
Recent advances in the methodology for direct numerical simulation of turbulent flows and some of the current applications are reviewed. It is argued that high-order finite difference schemes yield solutions with comparable accuracy to the spectral methods with the same number of degrees of freedom. The effects of random inflow conditions on the downstream evolution of turbulence are discussed.
Wind Energy-Related Atmospheric Boundary Layer Large-Eddy Simulation Using OpenFOAM: Preprint
Churchfield, M.J.; Vijayakumar, G.; Brasseur, J.G.; Moriarty, P.J.
2010-08-01
This paper develops and evaluates the performance of a large-eddy simulation (LES) solver in computing the atmospheric boundary layer (ABL) over flat terrain under a variety of stability conditions, ranging from shear driven (neutral stratification) to moderately convective (unstable stratification).
Large eddy simulation of wire-wrapped fuel pins I: Hydrodynamics in a periodic array.
Fischer, P.; Lottes, J.; Siegel, A.; Palmiotti, G.
2007-01-01
We present large-eddy simulations of flow in a wire-wrapped fuel assembly at subchannel Reynolds numbers of Re{sub h} = 4684-29184. The domain consists of a single pin in a hexagonally periodic array, corresponding to two interior subchannels. Periodic boundary conditions are also used in the axial direction over a single wire-wrap period.
2013-12-24
helicopter rotor blades, wind turbine blades, pitching and flapping airfoils and wings , and rotating turbomachinery blades. For instance, helicopter...of turbulent flow over a pitching airfoil at realistic Reynolds and Mach numbers is performed. Numerical stability at high Reynolds number...Approved for Public Release; Distribution Unlimited Large-Eddy Simulation Analysis of Unsteady Separation Over a Pitching Airfoil at High Reynolds
Scale-Similar Models for Large-Eddy Simulations
NASA Technical Reports Server (NTRS)
Sarghini, F.
1999-01-01
Scale-similar models employ multiple filtering operations to identify the smallest resolved scales, which have been shown to be the most active in the interaction with the unresolved subgrid scales. They do not assume that the principal axes of the strain-rate tensor are aligned with those of the subgrid-scale stress (SGS) tensor, and allow the explicit calculation of the SGS energy. They can provide backscatter in a numerically stable and physically realistic manner, and predict SGS stresses in regions that are well correlated with the locations where large Reynolds stress occurs. In this paper, eddy viscosity and mixed models, which include an eddy-viscosity part as well as a scale-similar contribution, are applied to the simulation of two flows, a high Reynolds number plane channel flow, and a three-dimensional, nonequilibrium flow. The results show that simulations without models or with the Smagorinsky model are unable to predict nonequilibrium effects. Dynamic models provide an improvement of the results: the adjustment of the coefficient results in more accurate prediction of the perturbation from equilibrium. The Lagrangian-ensemble approach [Meneveau et al., J. Fluid Mech. 319, 353 (1996)] is found to be very beneficial. Models that included a scale-similar term and a dissipative one, as well as the Lagrangian ensemble averaging, gave results in the best agreement with the direct simulation and experimental data.
Nesting Large-Eddy Simulations Within Mesoscale Simulations for Wind Energy Applications
NASA Astrophysics Data System (ADS)
Lundquist, J. K.; Mirocha, J. D.; Chow, F. K.; Kosovic, B.; Lundquist, K. A.
2008-12-01
With increasing demand for more accurate atmospheric simulations for wind turbine micrositing, for operational wind power forecasting, and for more reliable turbine design, simulations of atmospheric flow with resolution of tens of meters or higher are required. These time-dependent large-eddy simulations (LES) account for complex terrain and resolve individual atmospheric eddies on length scales smaller than turbine blades. These small-domain high-resolution simulations are possible with a range of commercial and open- source software, including the Weather Research and Forecasting (WRF) model. In addition to "local" sources of turbulence within an LES domain, changing weather conditions outside the domain can also affect flow, suggesting that a mesoscale model provide boundary conditions to the large-eddy simulations. Nesting a large-eddy simulation within a mesoscale model requires nuanced representations of turbulence. Our group has improved the Weather and Research Forecating model's (WRF) LES capability by implementing the Nonlinear Backscatter and Anisotropy (NBA) subfilter stress model following Kosoviæ (1997) and an explicit filtering and reconstruction technique to compute the Resolvable Subfilter-Scale (RSFS) stresses (following Chow et al, 2005). We have also implemented an immersed boundary method (IBM) in WRF to accommodate complex terrain. These new models improve WRF's LES capabilities over complex terrain and in stable atmospheric conditions. We demonstrate approaches to nesting LES within a mesoscale simulation for farms of wind turbines in hilly regions. Results are sensitive to the nesting method, indicating that care must be taken to provide appropriate boundary conditions, and to allow adequate spin-up of turbulence in the LES domain. This work is performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
Large-eddy simulation of a turbulent mixing layer
NASA Technical Reports Server (NTRS)
Mansour, N. N.; Ferziger, J. H.; Reynolds, W. C.
1978-01-01
The three dimensional, time dependent (incompressible) vorticity equations were used to simulate numerically the decay of isotropic box turbulence and time developing mixing layers. The vorticity equations were spatially filtered to define the large scale turbulence field, and the subgrid scale turbulence was modeled. A general method was developed to show numerical conservation of momentum, vorticity, and energy. The terms that arise from filtering the equations were treated (for both periodic boundary conditions and no stress boundary conditions) in a fast and accurate way by using fast Fourier transforms. Use of vorticity as the principal variable is shown to produce results equivalent to those obtained by use of the primitive variable equations.
Comparison between experiments and Large-Eddy Simulations of tip spiral structure and geometry
NASA Astrophysics Data System (ADS)
Ivanell, S.; Leweke, T.; Sarmast, S.; Quaranta, H. U.; Mikkelsen, R. F.; Sørensen, J. N.
2015-06-01
Results from Large-Eddy Simulations using the actuator line technique have been validated against experimental results. The experimental rotor wake, which forms the basis for the comparison, was studied in a recirculating free-surface water channel, where a helical vortex was generated by a single-bladed rotor mounted on a shaft. An investigation of how the experimental blade geometry and aerofoil characteristics affect the results was performed. Based on this, an adjustment of the pitch setting was introduced, which is still well within the limits of the experimental uncertainty. Excellent agreement between the experimental and the numerical results was achieved concerning the circulation, wake expansion and pitch of the helical tip vortex. A disagreement was found regarding the root vortex position and the axial velocity along the centre line of the tip vortex. This work establishes a good base for further studies of more fundamental stability parameters of helical rotor wakes.
Large eddy simulation of high frequency oscillating flow in an asymmetric branching airway model.
Nagels, Martin A; Cater, John E
2009-11-01
The implementation of artificial ventilation schemes is necessary when respiration fails. One approach involves the application of high frequency oscillatory ventilation (HFOV) to the respiratory system. Oscillatory airflow in the upper bronchial tree can be characterized by Reynolds numbers as high as 10(4), hence, the flow presents turbulent features. In this study, transitional and turbulent flow within an asymmetric bifurcating model of the upper airway during HFOV are studied using large eddy simulation (LES) methods. The flow, characterized by a peak Reynolds number of 8132, is analysed using a validated LES model of a three-dimensional branching geometry. The pressures, velocities, and vorticity within the flow are presented and compared with prior models for branching flow systems. The results demonstrate how pendelluft occurs at asymmetric branches within the respiratory system. These results may be useful in optimising treatments using HFOV methods.
High Speed Jet Noise Prediction Using Large Eddy Simulation
NASA Technical Reports Server (NTRS)
Lele, Sanjiva K.
2002-01-01
Current methods for predicting the noise of high speed jets are largely empirical. These empirical methods are based on the jet noise data gathered by varying primarily the jet flow speed, and jet temperature for a fixed nozzle geometry. Efforts have been made to correlate the noise data of co-annular (multi-stream) jets and for the changes associated with the forward flight within these empirical correlations. But ultimately these emipirical methods fail to provide suitable guidance in the selection of new, low-noise nozzle designs. This motivates the development of a new class of prediction methods which are based on computational simulations, in an attempt to remove the empiricism of the present day noise predictions.
Large-eddy simulations of a propelled submarine model
NASA Astrophysics Data System (ADS)
Posa, Antonio; Balaras, Elias
2015-11-01
The influence of the propeller on the wake as well as the evolution of the turbulent boundary layers over an appended notional submarine geometry (DARPA SUBOFF) is reported. The present approach utilizes a wall-resolved LES, coupled with an immersed boundary formulation, to simulate the flow model scale Reynolds numbers (Re = 1 . 2 e + 06 , based on the free-stream velocity and the length of the body). Cylindrical coordinates are adopted, and the computational grid is composed of 3.5 billion nodes. Our approach has been validated on the appended submarine body in towed conditions (without propeller), by comparisons to wind tunnel experiments in the literature. The comparison with the towed configuration shows profound modifications in the boundary layer over the stern surface, due to flow acceleration, with higher values of turbulent kinetic energy in the inner layer and lower values in the outer layer. This behavior was found tied to a different topology of the coherent structures between propelled and towed cases. The wake is also highly affected, and the momentum deficit displays a non-monotonic evolution downstream. An axial peak of turbulent kinetic energy replaces the bimodal distribution of the stresses in the wake, observed in the towed configuration. Supported by ONR Grant N000141110455, monitored by Dr. Ki-Han Kim.
NASA Technical Reports Server (NTRS)
Baurle, R. A.
2015-01-01
Steady-state and scale-resolving simulations have been performed for flow in and around a model scramjet combustor flameholder. The cases simulated corresponded to those used to examine this flowfield experimentally using particle image velocimetry. A variety of turbulence models were used for the steady-state Reynolds-averaged simulations which included both linear and non-linear eddy viscosity models. The scale-resolving simulations used a hybrid Reynolds-averaged / large eddy simulation strategy that is designed to be a large eddy simulation everywhere except in the inner portion (log layer and below) of the boundary layer. Hence, this formulation can be regarded as a wall-modeled large eddy simulation. This effort was undertaken to formally assess the performance of the hybrid Reynolds-averaged / large eddy simulation modeling approach in a flowfield of interest to the scramjet research community. The numerical errors were quantified for both the steady-state and scale-resolving simulations prior to making any claims of predictive accuracy relative to the measurements. The steady-state Reynolds-averaged results showed a high degree of variability when comparing the predictions obtained from each turbulence model, with the non-linear eddy viscosity model (an explicit algebraic stress model) providing the most accurate prediction of the measured values. The hybrid Reynolds-averaged/large eddy simulation results were carefully scrutinized to ensure that even the coarsest grid had an acceptable level of resolution for large eddy simulation, and that the time-averaged statistics were acceptably accurate. The autocorrelation and its Fourier transform were the primary tools used for this assessment. The statistics extracted from the hybrid simulation strategy proved to be more accurate than the Reynolds-averaged results obtained using the linear eddy viscosity models. However, there was no predictive improvement noted over the results obtained from the explicit
Conjugate heat transfer with Large Eddy Simulation for gas turbine components
NASA Astrophysics Data System (ADS)
Duchaine, Florent; Mendez, Simon; Nicoud, Franck; Corpron, Alban; Moureau, Vincent; Poinsot, Thierry
2009-06-01
CHT (Conjugate Heat Transfer) is a main design constraint for GT (gas turbines). Most existing CHT tools are developed for chained, steady phenomena. A fully parallel environment for CHT has been developed and applied to two configurations of interest for the design of GT. A reactive Large Eddy Simulations code and a solid conduction solver exchange data via a supervisor. A flame/wall interaction is used to assess the precision and the order of the coupled solutions. A film-cooled turbine vane is then studied. Thermal conduction in the blade implies lower wall temperature than adiabatic results and CHT reproduces the experimental cooling efficiency. To cite this article: F. Duchaine et al., C. R. Mecanique 337 (2009).
Large Eddy Simulation for Oscillating Airfoils with Large Pitching and Surging Motions
NASA Astrophysics Data System (ADS)
Kocher, Alexander; Cumming, Reed; Tran, Steven; Sahni, Onkar
2016-11-01
Many applications of interest involve unsteady aerodynamics due to time varying flow conditions (e.g. in the case of flapping wings, rotorcrafts and wind turbines). In this study, we formulate and apply large eddy simulation (LES) to investigate flow over airfoils at a moderate mean angle of attack with large pitching and surging motions. Current LES methodology entails three features: i) a combined subgrid scale model in the context of stabilized finite element methods, ii) local variational Germano identity (VGI) along with Lagrangian averaging, and iii) arbitrary Lagrangian-Eulerian (ALE) description over deforming unstructured meshes. Several cases are considered with different types of motions including surge only, pitch only and a combination of the two. The flow structures from these cases are analyzed and the numerical results are compared to experimental data when available.
Improving prediction of aerosol deposition in an idealized mouth using large-Eddy simulation.
Matida, Edgar A; Finlay, Warren H; Breuer, Michael; Lange, Carlos F
2006-01-01
Monodisperse aerosol deposition in an idealized mouth geometry with a relatively small inlet diameter (D (in) = 3.0 mm) was studied numerically using a standard Large Eddy Simulation (LES). A steady inhalation flow rate of Q = 32.2 L/min was used. Thousands of particles (2.5, 3.7, and 5.0 microm in diameter and rho (f) = 912.0 kg/m(3) density) were released separately in the computational domain and aerosol deposition was determined. The total aerosol deposition results in this idealized mouth were in relatively good agreement when compared with measured data obtained in separate experiments, showing considerable improvement over the standard RANS/EIM (Reynolds Averaged Navier-Stokes/Eddy Interaction Model) approach.
Using Large Eddy Simulation for understanding vented gas explosions in the presence of obstacles.
Di Sarli, Valeria; Di Benedetto, Almerinda; Russo, Gennaro
2009-09-30
In this work, a validated Large Eddy Simulation model of unsteady premixed flame propagation is used to study the phenomenology underlying vented gas explosions in the presence of obstacles. Computations are run of deflagrating flames in a small-scale combustion chamber closed at the bottom end and open at the opposite face. A single obstacle is centred inside the chamber. Methane-air mixtures of various compositions (ranging from lean to stoichiometric and rich), and obstacles with different area blockage ratios (30, 50 and 70%) and shapes (circular, rectangular and square cross-section in the flow direction) are investigated. All cases are initialized from stagnation. The competition between combustion rate and venting rate allows explaining both number and intensity of the overpressure peaks observed.
2007-03-30
NOTES 14. ABSTRACT A thorough investigation of leading edge heat transfer on a model geometry has been performed using Large-eddy simulation (LES...investigation of leading edge heat transfer on a model geometry has been performed using Large-eddy simulation (LES), with support from the current and a...and length scale appropriate for turbine blade heat-transfer and study the heat-transfer augmentation in idealized geometry and its interaction with
NASA Astrophysics Data System (ADS)
Silvis, Maurits H.; Remmerswaal, Ronald A.; Verstappen, Roel
2017-01-01
We study the construction of subgrid-scale models for large-eddy simulation of incompressible turbulent flows. In particular, we aim to consolidate a systematic approach of constructing subgrid-scale models, based on the idea that it is desirable that subgrid-scale models are consistent with the mathematical and physical properties of the Navier-Stokes equations and the turbulent stresses. To that end, we first discuss in detail the symmetries of the Navier-Stokes equations, and the near-wall scaling behavior, realizability and dissipation properties of the turbulent stresses. We furthermore summarize the requirements that subgrid-scale models have to satisfy in order to preserve these important mathematical and physical properties. In this fashion, a framework of model constraints arises that we apply to analyze the behavior of a number of existing subgrid-scale models that are based on the local velocity gradient. We show that these subgrid-scale models do not satisfy all the desired properties, after which we explain that this is partly due to incompatibilities between model constraints and limitations of velocity-gradient-based subgrid-scale models. However, we also reason that the current framework shows that there is room for improvement in the properties and, hence, the behavior of existing subgrid-scale models. We furthermore show how compatible model constraints can be combined to construct new subgrid-scale models that have desirable properties built into them. We provide a few examples of such new models, of which a new model of eddy viscosity type, that is based on the vortex stretching magnitude, is successfully tested in large-eddy simulations of decaying homogeneous isotropic turbulence and turbulent plane-channel flow.
Large-Eddy Simulation of Boundary Layer Transition on Swept Wings
NASA Technical Reports Server (NTRS)
Huai, Xiaoli; Joslin, Ronald D.; Piomelli, Ugo
1993-01-01
The large-eddy simulation of the spatial evolution of a stationary crossflow vortex packet in a three-dimensional boundary layer was performed. Although a coarse grid was used (compared to that required by a direct numerical simulation) the essential features of the disturbance evolution, such as the spanwise disturbance spreading and the vortex rollover, were captured accurately. The eddy viscosity became significant only in the late nonlinear stages of the simulation.
NASA Technical Reports Server (NTRS)
Piomelli, Ugo; Zang, Thomas A.; Speziale, Charles G.; Lund, Thomas S.
1990-01-01
An eddy viscosity model based on the renormalization group theory of Yakhot and Orszag (1986) is applied to the large-eddy simulation of transition in a flat-plate boundary layer. The simulation predicts with satisfactory accuracy the mean velocity and Reynolds stress profiles, as well as the development of the important scales of motion. The evolution of the structures characteristic of the nonlinear stages of transition is also predicted reasonably well.
A Review of Modern Developments in Large Eddy Simulation of Turbulent Reactive Flows
2001-08-01
Simulating fire whirls. Combustion , Theory, and Modelling 4, 123-138. Bilger, R. W. (2000). Future progress in turbulent combustion research. Prog...421. Kim, W.-W., Menon, S., and Mongia , H. C. (1999). Large-eddy simulation of a gas turbine combustor flow. Combust . Sci. and Tech. 143, 25-62...state of progress on LES of turbu- 82 PEYMAN GIVI lent combustion at that time. But with all of the enthusiasm for DNS in the combustion community, the
Large eddy simulations of coal jet flame ignition using the direct quadrature method of moments
NASA Astrophysics Data System (ADS)
Pedel, Julien
The Direct Quadrature Method of Moments (DQMOM) was implemented in the Large Eddy Simulation (LES) tool ARCHES to model coal particles. LES coupled with DQMOM was first applied to nonreacting particle-laden turbulent jets. Simulation results were compared to experimental data and accurately modeled a wide range of particle behaviors, such as particle jet waviness, spreading, break up, particle clustering and segregation, in different configurations. Simulations also accurately predicted the mean axial velocity along the centerline for both the gas phase and the solid phase, thus demonstrating the validity of the approach to model particles in turbulent flows. LES was then applied to the prediction of pulverized coal flame ignition. The stability of an oxy-coal flame as a function of changing primary gas composition (CO2 and O2) was first investigated. Flame stability was measured using optical measurements of the flame standoff distance in a 40 kW pilot facility. Large Eddy Simulations (LES) of the facility provided valuable insight into the experimentally observed data and the importance of factors such as heterogeneous reactions, radiation or wall temperature. The effects of three parameters on the flame stand-off distance were studied and simulation predictions were compared to experimental data using the data collaboration method. An additional validation study of the ARCHES LES tool was then performed on an air-fired pulverized coal jet flame ignited by a preheated gas flow. The simulation results were compared qualitatively and quantitatively to experimental observations for different inlet stoichiometric ratios. LES simulations were able to capture the various combustion regimes observed during flame ignition and to accurately model the flame stand-off distance sensitivity to the stoichiometric ratio. Gas temperature and coal burnout predictions were also examined and showed good agreement with experimental data. Overall, this research shows that high
Large-eddy simulation of curved-geometry flows using contravariant components of velocity
NASA Astrophysics Data System (ADS)
Yuan, Weixing; Xu, Hongyi; Khalid, Mahmood
2011-01-01
The current large-eddy simulation (LES) research makes use of the contravariant components as the dependent variables on a staggered grid system for the discretisation of the governing equations in curvilinear coordinates. This technology provides a possibility to investigate efficiently turbulent flows in complex geometries. To test and validate the recently developed in-house LES code, LESSGA (Large-Eddy Simulation on a Staggered Grid Arrangement), numerical simulations were performed for turbulent flows in a concentric annular pipe and transitional flows past an airfoil. In this article, the computed results of flows in a concentric annular pipe with a radius ratio of a = R inner/Router = 0.5 at ? and flows past an SD7003 airfoil at Rec = 60,000 and angle of attack α = 4° are compared with available experimental and DNS data. Technical difficulties experienced are also discussed.
Large-eddy simulation of a boundary layer with concave streamwise curvature
NASA Technical Reports Server (NTRS)
Lund, Thomas S.
1994-01-01
Turbulence modeling continues to be one of the most difficult problems in fluid mechanics. Existing prediction methods are well developed for certain classes of simple equilibrium flows, but are still not entirely satisfactory for a large category of complex non-equilibrium flows found in engineering practice. Direct and large-eddy simulation (LES) approaches have long been believed to have great potential for the accurate prediction of difficult turbulent flows, but the associated computational cost has been prohibitive for practical problems. This remains true for direct simulation but is no longer clear for large-eddy simulation. Advances in computer hardware, numerical methods, and subgrid-scale modeling have made it possible to conduct LES for flows or practical interest at Reynolds numbers in the range of laboratory experiments. The objective of this work is to apply ES and the dynamic subgrid-scale model to the flow of a boundary layer over a concave surface.
Large-Eddy Simulations of Strongly Precipitating, Shallow, Stratocumulus-Topped Boundary Layers.
NASA Astrophysics Data System (ADS)
Stevens, Bjorn; Cotton, William R.; Feingold, Graham; Moeng, Chin-Hoh
1998-12-01
Large-eddy simulations that incorporate a size-resolving representation of cloud water are used to study the effect of heavy drizzle on PBL structure. Simulated surface precipitation rates average about 1 mm day1. Heavily drizzling simulations are compared to nondrizzling simulations under two nocturnal PBL regimes-one primarily driven by buoyancy and the other driven equally by buoyancy and shear. Drizzle implies a net latent heating in the cloud that leads to sharp reductions in both entrainment and the production of turbulent kinetic energy by buoyancy (particularly in downdrafts). Drizzle, which evaporates below cloud base, promotes a cooler and moister subcloud layer that further inhibits deep mixing. The cooling and moistening is in quantitative agreement with some observations and is shown to favor the formation of cumuli rising out of the subcloud layer. The cumuli, which are local in space and time, are responsible for most of the heat and moisture transport. They also appear to generate a larger-scale circulation that differs dramatically from the regularity typically found in nonprecipitating stratocumulus. Time-averaged turbulent fluxes of heat and moisture increase in the presence of precipitation, suggesting that drizzle (and drizzle-induced stratification) should not necessarily be taken as a sign of decoupling. Because drizzle primarily affects the vertical distribution of buoyancy, shear production of turbulent kinetic energy mitigates some of the effects described above. Based on large-eddy simulation the authors hypothesize that shallow, well-mixed, radiatively driven stratocumulus cannot persist in the presence of heavy drizzle. In accord with some simpler models, the simulated case with heavy precipitation promotes a reduction in both liquid-water path and entrainment. However, the simulations suggest that time-integrated cloud fraction may increase as a result of drizzle because thinner precipitating clouds may persist longer if the boundary
NASA Astrophysics Data System (ADS)
Lantz, Jonas; Ebbers, Tino; Karlsson, Matts
2012-11-01
In this study, turbulent kinetic energy (TKE) in an aortic coarctation was studied using both a numerical technique (large eddy simulation, LES) and in vivo measurements using magnetic resonance imaging (MRI). High levels of TKE are undesirable, as kinetic energy is extracted from the mean flow to feed the turbulent fluctuations. The patient underwent surgery to widen the coarctation, and the flow before and after surgery was computed and compared to MRI measurements. The resolution of the MRI was about 7 × 7 voxels in axial cross-section while 50x50 mesh cells with increased resolution near the walls was used in the LES simulation. In general, the numerical simulations and MRI measurements showed that the aortic arch had no or very low levels of TKE, while elevated values were found downstream the coarctation. It was also found that TKE levels after surgery were lowered, indicating that the diameter of the constriction was increased enough to decrease turbulence effects. In conclusion, both the numerical simulation and MRI measurements gave very similar results, thereby validating the simulations and suggesting that MRI measured TKE can be used as an initial estimation in clinical practice, while LES results can be used for detailed quantification and further research of aortic flows.
Large-Eddy Simulations of Plasma Flow Control on a GOE735 Wind Turbine Airfoil
NASA Astrophysics Data System (ADS)
Czulak, Alexander; Franck, Jennifer
2015-11-01
Active flow control using plasma actuation was studied for the GOE735 airfoil and compared to non-actuated baseline cases using numerical simulations. This investigation considers two-dimensional simulations at a Reynolds number of 1,000 using direct numerical simulation (DNS) as well as three-dimensional simulations at a Reynolds number of 50,000 and 100,000 using large-eddy simulation (LES). Plasma actuation is applied in terms of a source term within the boundary layer close to the airfoil surface. Angles of attack of 0°, 5° and 15° were considered, and control is shown to be effective at increasing the lift coefficient, decreasing the drag coefficient and reducing the root mean squared deviation of both lift and drag. An analysis of the flow physics reveals that the actuated cases delay the point of separation, reduce the wake width and diminish the size and strength of the shed vortices. For this particular airfoil, there are significant differences in Reynolds number in terms of the baseline flow, control effectiveness and performance factors such as lift and drag.
NASA Astrophysics Data System (ADS)
Le, Trung; Khosronejad, Ali; Bartelt, Nicole; Woldeamlak, Solomon; Peterson, Bonnie; Dewall, Petronella; Sotiropoulos, Fotis; Saint Anthony Falls Laboratory, University of Minnesota Team; Minnesota Department of Transportation Team
2015-11-01
We study the dynamics of a river confluence on Mississippi River branch in the city of Minneapolis, Minnesota, United States. Field measurements by Acoustic Doppler Current Profiler using on-board GPS tracking were carried out for five campaigns in the summer of 2014 and 2015 to collect both river bed elevation data and flow fields. Large Eddy Simulation is carried out to simulate the flow field with the total of 100 million grid points for the domain length of 3.2 km. The simulation results agree well with field measurements at measured cross-sections. The results show the existence of wake mode on the mixing interface of two branches near the upstream junction corner. The mutual interaction between the shear layers emanating from the river banks leading to the formation of large scale energetic structures that leads to ``switching'' side of the flow coherent structures. Our result here is a feasibility study for the use of eddy-resolving simulations in predicting complex flow dynamics in medium-size natural rivers. This work is funded by Minnesota Dept. Transportation and Minnesota Institute of Supercomputing.
Analysis on Turbulent Flows using Large-eddy Simulation on the Seaside Complex Terrain
NASA Astrophysics Data System (ADS)
Kamio, T.; Iida, M.; Arakawa, C.
2014-12-01
The purpose of this study is the Large-eddy Simulation (LES) of the turbulent wind on the complex terrain, and the first results of the simulation are described. The authors tried to apply the LES code, which was developed as an atmospheric simulator in Japan Agency for the Marine-Earth Science and Technology (JAMSTEC), to the wind prediction for the wind energy. On the wind simulation, the highest problem would be the boundary conditions, and the case in this paper was simplified one. The case study in this paper is the west wind on a complex terrain site, which is the wind from sea for the site. The steady flow was employed for the inlet condition, because the wind on the sea is the low turbulent wind, and almost all the turbulence would be generated by the roughness of the ground surface. The wall function was employed as the surface condition on the ground surface. The computational domain size was about 8 × 3 × 2.5 km3, and the minimum cell size was about 10 × 10 × 3 m3. The computational results, the vertical profile of the averaged wind speed and the turbulence intensity, agreed with the measurement by the meteorological masts. Moreover, the authors tried the analysis of the turbulence characteristics. The power spectrum density model, and the cross spectrum analyses gave the knowledge of the turbulent characteristics on the complex terrain and the hints for the domain and grid of the numerical analysis.
Mean-state acceleration of cloud-resolving models and large eddy simulations
Jones, C. R.; Bretherton, C. S.; Pritchard, M. S.
2015-10-29
In this study, large eddy simulations and cloud-resolving models (CRMs) are routinely used to simulate boundary layer and deep convective cloud processes, aid in the development of moist physical parameterization for global models, study cloud-climate feedbacks and cloud-aerosol interaction, and as the heart of superparameterized climate models. These models are computationally demanding, placing practical constraints on their use in these applications, especially for long, climate-relevant simulations. In many situations, the horizontal-mean atmospheric structure evolves slowly compared to the turnover time of the most energetic turbulent eddies. We develop a simple scheme to reduce this time scale separation to accelerate themore » evolution of the mean state. Using this approach we are able to accelerate the model evolution by a factor of 2–16 or more in idealized stratocumulus, shallow and deep cumulus convection without substantial loss of accuracy in simulating mean cloud statistics and their sensitivity to climate change perturbations. As a culminating test, we apply this technique to accelerate the embedded CRMs in the Superparameterized Community Atmosphere Model by a factor of 2, thereby showing that the method is robust and stable to realistic perturbations across spatial and temporal scales typical in a GCM.« less
Mean-state acceleration of cloud-resolving models and large eddy simulations
Jones, C. R.; Bretherton, C. S.; Pritchard, M. S.
2015-10-29
In this study, large eddy simulations and cloud-resolving models (CRMs) are routinely used to simulate boundary layer and deep convective cloud processes, aid in the development of moist physical parameterization for global models, study cloud-climate feedbacks and cloud-aerosol interaction, and as the heart of superparameterized climate models. These models are computationally demanding, placing practical constraints on their use in these applications, especially for long, climate-relevant simulations. In many situations, the horizontal-mean atmospheric structure evolves slowly compared to the turnover time of the most energetic turbulent eddies. We develop a simple scheme to reduce this time scale separation to accelerate the evolution of the mean state. Using this approach we are able to accelerate the model evolution by a factor of 2–16 or more in idealized stratocumulus, shallow and deep cumulus convection without substantial loss of accuracy in simulating mean cloud statistics and their sensitivity to climate change perturbations. As a culminating test, we apply this technique to accelerate the embedded CRMs in the Superparameterized Community Atmosphere Model by a factor of 2, thereby showing that the method is robust and stable to realistic perturbations across spatial and temporal scales typical in a GCM.
Direct-Numerical and Large-Eddy Simulations of a Non-Equilibrium Turbulent Kolmogorov Flow
NASA Technical Reports Server (NTRS)
Woodruff, S. L.; Shebalin, J. V.; Hussaini, M. Y.
1999-01-01
A non-equilibrium form of turbulent Kolmogorov flow is set up by making an instantaneous change in the amplitude of the spatially-periodic forcing. It is found that the response of the flow to this instantaneous change becomes more dramatic as the wavenumber of the forcing is increased, and, at the same time, that the faithfulness with which the large-eddy-simulation results agree with the direct-numerical results decreases.
Large-eddy simulation of bubble-driven plume in stably stratified flow.
NASA Astrophysics Data System (ADS)
Yang, Di; Chen, Bicheng; Socolofsky, Scott; Chamecki, Marcelo; Meneveau, Charles
2015-11-01
The interaction between a bubble-driven plume and stratified water column plays a vital role in many environmental and engineering applications. As the bubbles are released from a localized source, they induce a positive buoyancy flux that generates an upward plume. As the plume rises, it entrains ambient water, and when the plume rises to a higher elevation where the stratification-induced negative buoyancy is sufficient, a considerable fraction of the entrained fluid detrains, or peels, to form a downward outer plume and a lateral intrusion layer. In the case of multiphase plumes, the intrusion layer may also trap weakly buoyant particles (e.g., oil droplets in the case of a subsea accidental blowout). In this study, the complex plume dynamics is studied using large-eddy simulation (LES), with the flow field simulated by hybrid pseudospectral/finite-difference scheme, and the bubble and dye concentration fields simulated by finite-volume scheme. The spatial and temporal characteristics of the buoyant plume are studied, with a focus on the effects of different bubble buoyancy levels. The LES data provide useful mean plume statistics for evaluating the accuracy of 1-D engineering models for entrainment and peeling fluxes. Based on the insights learned from the LES, a new continuous peeling model is developed and tested. Study supported by the Gulf of Mexico Research Initiative (GoMRI).
Large Eddy Simulations and an Analysis of the Flow Field of a Radially Lobed Nozzle
NASA Astrophysics Data System (ADS)
Amini, Noushin; Sekaran, Aarthi
2015-11-01
Lobed nozzles have been a subject of regained interest over the past couple of decades owing to their established mixing capabilities. Despite experimental (Hu et al., 1999 and Hu et al., 2008) and limited numerical studies (Boulenouar et al. 2011 and Cooper et al., 2005), the exact nature of the jet ensuing from this nozzle is yet to be completely understood. The present numerical study is intended to complement prior experimental investigation, involving the analysis of the flow field downstream of a six lobed nozzle (Amini et al., 2012). Preliminary results (presented at DFD 2014, Amin and Sekaran), which involved three dimensional simulations of the full domain via URANS and Large Eddy Simulations (LES) were used to assess the domain extents and simulation technique. Based on these results it was seen that LES were able to capture the region of interest satisfactorily and a qualitative corroboration with previous studies was obtained. The study is thus extended to analyzing the flow originating from within the nozzle, following it downstream in order to confirm the vortical interaction mechanisms inside the lobed nozzle.
Underlying mechanism of numerical instability in large-eddy simulation of turbulent flows
NASA Astrophysics Data System (ADS)
Ida, Masato; Taniguchi, Nobuyuki
2004-04-01
This paper extends our recent theoretical work concerning the feasibility of stable and accurate computation of turbulence using a large eddy simulation [
General-relativistic Large-eddy Simulations of Binary Neutron Star Mergers
NASA Astrophysics Data System (ADS)
Radice, David
2017-03-01
The flow inside remnants of binary neutron star (NS) mergers is expected to be turbulent, because of magnetohydrodynamics instability activated at scales too small to be resolved in simulations. To study the large-scale impact of these instabilities, we develop a new formalism, based on the large-eddy simulation technique, for the modeling of subgrid-scale turbulent transport in general relativity. We apply it, for the first time, to the simulation of the late-inspiral and merger of two NSs. We find that turbulence can significantly affect the structure and survival time of the merger remnant, as well as its gravitational-wave (GW) and neutrino emissions. The former will be relevant for GW observation of merging NSs. The latter will affect the composition of the outflow driven by the merger and might influence its nucleosynthetic yields. The accretion rate after black hole formation is also affected. Nevertheless, we find that, for the most likely values of the turbulence mixing efficiency, these effects are relatively small and the GW signal will be affected only weakly by the turbulence. Thus, our simulations provide a first validation of all existing post-merger GW models.
Large-eddy and unsteady RANS simulations of a shock-accelerated heavy gas cylinder
Morgan, B. E.; Greenough, J. A.
2015-04-08
Two-dimensional numerical simulations of the Richtmyer–Meshkov unstable “shock-jet” problem are conducted using both large-eddy simulation (LES) and unsteady Reynolds-averaged Navier–Stokes (URANS) approaches in an arbitrary Lagrangian–Eulerian hydrodynamics code. Turbulence statistics are extracted from LES by running an ensemble of simulations with multimode perturbations to the initial conditions. Detailed grid convergence studies are conducted, and LES results are found to agree well with both experiment and high-order simulations conducted by Shankar et al. (Phys Fluids 23, 024102, 2011). URANS results using a k–L approach are found to be highly sensitive to initialization of the turbulence lengthscale L and to the timemore » at which L becomes resolved on the computational mesh. As a result, it is observed that a gradient diffusion closure for turbulent species flux is a poor approximation at early times, and a new closure based on the mass-flux velocity is proposed for low-Reynolds-number mixing.« less
Large-eddy and unsteady RANS simulations of a shock-accelerated heavy gas cylinder
Morgan, B. E.; Greenough, J. A.
2015-04-08
Two-dimensional numerical simulations of the Richtmyer–Meshkov unstable “shock-jet” problem are conducted using both large-eddy simulation (LES) and unsteady Reynolds-averaged Navier–Stokes (URANS) approaches in an arbitrary Lagrangian–Eulerian hydrodynamics code. Turbulence statistics are extracted from LES by running an ensemble of simulations with multimode perturbations to the initial conditions. Detailed grid convergence studies are conducted, and LES results are found to agree well with both experiment and high-order simulations conducted by Shankar et al. (Phys Fluids 23, 024102, 2011). URANS results using a k–L approach are found to be highly sensitive to initialization of the turbulence lengthscale L and to the time at which L becomes resolved on the computational mesh. As a result, it is observed that a gradient diffusion closure for turbulent species flux is a poor approximation at early times, and a new closure based on the mass-flux velocity is proposed for low-Reynolds-number mixing.
Large eddy simulation of a stenosed artery using a femoral artery pulsatile flow profile.
Barber, Tracie J; Simmons, Anne
2011-07-01
Computational fluid dynamics simulation of stenosed arteries allows the analysis of quantities including wall shear stress, velocity, and pressure; detailed in vivo measurement is difficult yet the analysis of the fluid dynamics related to stenosis is important in understanding the likely causes and ongoing effects on the integrity of the vessel. In this study, a three-dimensional Large Eddy Simulation is conducted of a 50% occluded vessel, with a typical femoral artery profile used as the transient inlet conditions. The fluid is assumed to be homogenous, Newtonian and incompressible and the walls are assumed rigid. The stenosis is axisymmetric, however the three-dimensional study allows for a flow field that is not axisymmetric and results show significant three-dimensionality. High values of wall shear stress and oscillatory values of wall shear stress (varying in both space time) are observed. The results of the study give insight into the time-varying flow structures for a mildly stenosed artery and indicate that three-dimensional simulations may be important to gain a complete understanding of the flow field.
Large Eddy/Reynolds-Averaged Navier-Stokes Simulations of CUBRC Base Heating Experiments
NASA Technical Reports Server (NTRS)
Salazar, Giovanni; Edwards, Jack R.; Amar, Adam J.
2012-01-01
ven with great advances in computational techniques and computing power during recent decades, the modeling of unsteady separated flows, such as those encountered in the wake of a re-entry vehicle, continues to be one of the most challenging problems in CFD. Of most interest to the aerothermodynamics community is accurately predicting transient heating loads on the base of a blunt body, which would result in reduced uncertainties and safety margins when designing a re-entry vehicle. However, the prediction of heat transfer can vary widely depending on the turbulence model employed. Therefore, selecting a turbulence model which realistically captures as much of the flow physics as possible will result in improved results. Reynolds Averaged Navier Stokes (RANS) models have become increasingly popular due to their good performance with attached flows, and the relatively quick turnaround time to obtain results. However, RANS methods cannot accurately simulate unsteady separated wake flows, and running direct numerical simulation (DNS) on such complex flows is currently too computationally expensive. Large Eddy Simulation (LES) techniques allow for the computation of the large eddies, which contain most of the Reynolds stress, while modeling the smaller (subgrid) eddies. This results in models which are more computationally expensive than RANS methods, but not as prohibitive as DNS. By complimenting an LES approach with a RANS model, a hybrid LES/RANS method resolves the larger turbulent scales away from surfaces with LES, and switches to a RANS model inside boundary layers. As pointed out by Bertin et al., this type of hybrid approach has shown a lot of promise for predicting turbulent flows, but work is needed to verify that these models work well in hypersonic flows. The very limited amounts of flight and experimental data available presents an additional challenge for researchers. Recently, a joint study by NASA and CUBRC has focused on collecting heat transfer data
Investigation of Turbulent Tip Leakage Vortex in an Axial Water Jet Pump with Large Eddy Simulation
NASA Technical Reports Server (NTRS)
Hah, Chunill; Katz, Joseph
2012-01-01
Detailed steady and unsteady numerical studies were performed to investigate tip clearance flow in an axial water jet pump. The primary objective is to understand physics of unsteady tip clearance flow, unsteady tip leakage vortex, and cavitation inception in an axial water jet pump. Steady pressure field and resulting steady tip leakage vortex from a steady flow analysis do not seem to explain measured cavitation inception correctly. The measured flow field near the tip is unsteady and measured cavitation inception is highly transient. Flow visualization with cavitation bubbles shows that the leakage vortex is oscillating significantly and many intermittent vortex ropes are present between the suction side of the blade and the tip leakage core vortex. Although the flow field is highly transient, the overall flow structure is stable and a characteristic frequency seems to exist. To capture relevant flow physics as much as possible, a Reynolds-averaged Navier-Stokes (RANS) calculation and a Large Eddy Simulation (LES) were applied for the current investigation. The present study reveals that several vortices from the tip leakage vortex system cross the tip gap of the adjacent blade periodically. Sudden changes in local pressure field inside tip gap due to these vortices create vortex ropes. The instantaneous pressure filed inside the tip gap is drastically different from that of the steady flow simulation. Unsteady flow simulation which can calculate unsteady vortex motion is necessary to calculate cavitation inception accurately even at design flow condition in such a water jet pump.
Atmospheric stability effects on wind farm performance using large-eddy simulation
NASA Astrophysics Data System (ADS)
Archer, C. L.; Ghaisas, N.; Xie, S.
2014-12-01
Atmospheric stability has been recently found to have significant impacts on wind farm performance, especially since offshore and onshore wind farms are known to operate often under non-neutral conditions. Recent field observations have revealed that changes in stability are accompanied by changes in wind speed, direction, and turbulent kinetic energy (TKE). In order to isolate the effects of stability, large-eddy simulations (LES) are performed under neutral, stable, and unstable conditions, keeping the wind speed and direction unchanged at a fixed height. The Lillgrund wind farm, comprising of 48 turbines, is studied in this research with the Simulator for Offshore/Onshore Wind Farm Applications (SOWFA) developed by the National Renewable Energy Laboratory. Unlike most previous numerical simulations, this study does not impose periodic boundary conditions and therefore is ideal for evaluating the effects of stability in large, but finite, wind farms. Changes in power generation, velocity deficit, rate of wake recovery, TKE, and surface temperature are quantified as a function of atmospheric stability. The sensitivity of these results to wind direction is also discussed.
Dynamic dose assessment by Large Eddy Simulation of the near-range atmospheric dispersion.
Vervecken, Lieven; Camps, Johan; Meyers, Johan
2015-03-01
In order to improve the simulation of the near-range atmospheric dispersion of radionuclides, computational fluid dynamics is becoming increasingly popular. In the current study, Large-Eddy Simulation is used to examine the time-evolution of the turbulent dispersion of radioactive gases in the atmospheric boundary layer, and it is coupled to a gamma dose rate model that is based on the point-kernel method with buildup factors. In this way, the variability of radiological dose rate from cloud shine due to instantaneous turbulent mixing processes can be evaluated. The steady release in an open field of (41)Ar and (133)Xe for 4 different release heights is studied, thus covering radionuclides that decay with a high-energy gamma and a low-energy gamma, respectively. Based on these simulations, the variability of dose rates at ground level for different averaging times in the dose measurements is analyzed. It is observed that turbulent variability in the wind field can lead to dose estimates that are underestimated by up to a factor of four when conventional long-term measurements are used to estimate the dose from short-term exposures.
Large eddy simulations and direct numerical simulations of high speed turbulent reacting flows
NASA Technical Reports Server (NTRS)
Givi, P.; Madnia, C. K.; Steinberger, C. J.; Frankel, S. H.; Vidoni, T. J.
1991-01-01
The main objective is to extend the boundaries within which large eddy simulations (LES) and direct numerical simulations (DNS) can be applied in computational analyses of high speed reacting flows. In the efforts related to LES, we were concerned with developing reliable subgrid closures for modeling of the fluctuation correlations of scalar quantities in reacting turbulent flows. In the work on DNS, we focused our attention to further investigation of the effects of exothermicity in compressible turbulent flows. In our previous work, in the first year of this research, we have considered only 'simple' flows. Currently, we are in the process of extending our analyses for the purpose of modeling more practical flows of current interest at LaRC. A summary of our accomplishments during the third six months of the research is presented.
Large eddy simulations and direct numerical simulations of high speed turbulent reacting flows
NASA Technical Reports Server (NTRS)
Givi, P.; Madnia, C. K.; Steinberger, C. J.; Frankel, S. H.
1992-01-01
The basic objective of this research is to extend the capabilities of Large Eddy Simulations (LES) and Direct Numerical Simulations (DNS) for the computational analyses of high speed reacting flows. In the efforts related to LES, we were primarily involved with assessing the performance of the various modern methods based on the Probability Density Function (PDF) methods for providing closures for treating the subgrid fluctuation correlations of scalar quantities in reacting turbulent flows. In the work on DNS, we concentrated on understanding some of the relevant physics of compressible reacting flows by means of statistical analysis of the data generated by DNS of such flows. In the research conducted in the second year of this program, our efforts focused on the modeling of homogeneous compressible turbulent flows by PDF methods, and on DNS of non-equilibrium reacting high speed mixing layers. Some preliminary work is also in progress on PDF modeling of shear flows, and also on LES of such flows.
Large eddy simulation of a turbulent non-reacting spray jet
Hu, Bing; Banerjee, S; Liu, K; Rajamohan, D; Deur, J M; Xue, Qingluan; Som, Sibendu; Senecal, Peter Kelly; Pomraning, Eric
2015-01-01
We performed Large Eddy Simulation (LES) of a turbulent non-reacting n-Heptane spray jet, referred to as Spray H in the Engine Combustion Network (ECN), and executed a data analysis focused on key LES metrics such as fraction of resolved turbulent kinetic energy and similarity index. In the simulation, we used the dynamic structure model for the sub-grid stress, and the Lagrangian-based spray-parcel models coupled with the blob-injection model. The finest mesh-cell size used was characterized by an Adaptive Mesh Refinement (AMR) cell size of 0.0625 mm. To obtain ensemble statistics, we performed 28 numerical realizations of the simulation. Demonstrated by the comparison with experimental data in a previous study [7], this LES has accurately predicted global quantities, such as liquid and vapor penetrations. The analysis in this work shows that 14 realizations of LES are sufficient to provide a reasonable representation of the average flow behavior that is benchmarked against the 28-realization ensemble. With the current mesh, numerical schemes, and sub-grid scale turbulence model, more than 95% of the turbulent kinetic energy is directly resolved in the flow regions of interest. The large-scale flow structures inferred from a statistical analysis reveal a region of disorganized flow around the peripheral region of the spray jet, which appears to be linked to the entrainment process.
Large-Eddy Simulation of a Shock Train in a Duct with Side Walls
NASA Astrophysics Data System (ADS)
Morgan, Brandon; Duraisamy, Karthik; Lele, Sanjiva
2012-11-01
Large-eddy simulation (LES) is utilized to investigate the three-dimensionality of a shock train in a constant-area isolator model with fully resolved side walls (M∞ = 1.61, Reθ ~ 1660). Flow conditions and geometry are selected to match experimental conditions investigated by Carroll (1988); although Reynolds number is reduced to ensure adequate mesh resolution. Simulations with spanwise periodic boundary conditions are first performed, the results of which are compared to experiment and validated with a three-level grid refinement study. The same shock train interaction is then simulated in a three-dimensional, low-aspect ratio rectangular duct geometry with particular emphasis placed on characterizing secondary corner flows and the effects of these corner flows on the location and structure of the shock train. It is found, for instance, that location of the initial shock is particularly sensitive to the effects of spanwise confinement. Most significantly, it is observed that the same pressure ratio which results in a stable shock train with periodic boundary conditions may result in isolator unstart when side-wall effects are fully resolved.
On the large-eddy simulation of transitional wall-bounded flows
NASA Technical Reports Server (NTRS)
Piomelli, Ugo; Zang, Thomas A.; Speziale, Charles G.; Hussaini, M. Y.
1989-01-01
The structure of the subgrid scale fields in plane channel flow has been studied at various stages of the transition process to turbulence. The residual stress and subgrid scale dissipation calculated using velocity fields generated by direct numerical simulations of the Navier-Stokes equations are significantly different from their counterparts in turbulent flows. The subgrid scale dissipation changes sign over extended areas of the channel, indicating energy flow from the small scales to the large scales. This reversed energy cascade becomes less pronounced at the later stages of transition. Standard residual stress models of the Smagorinsky type are excessively dissipative. Rescaling the model constant improves the prediction of the total (integrated) subgrid scale dissipation, but not that of the local one. Despite the somewhat excessive dissipation of the rescaled Smagorinsky model, the results of a large eddy simulation of transition on a flat-plate boundary layer compare quite well with those of a direct simulation, and require only a small fraction of the computational effort. The inclusion of non-dissipative models, which could lead to further improvements, is proposed.
A minimum dissipation scalar transport model for large-eddy simulation of turbulent flows
NASA Astrophysics Data System (ADS)
Abkar, Mahdi; Bae, Hyun J.; Moin, Parviz
2016-11-01
Minimum-dissipation models are a simple alternative to the Smagorinsky-type approaches to parameterize the sub-filter scale turbulent fluxes in large-eddy simulation. A recently derived minimum-dissipation model for sub-filter stress tensor is the AMD model and has many desirable properties. It is more cost effective than the dynamic Smagorinsky model, it appropriately switches off in laminar and transitional flows, and it is consistent with the theoretic sub-filter stress tensor on both isotropic and anisotropic grids. In this study, an extension of this approach to modeling the sub-filter scalar flux is proposed. The performance of the AMD model is tested in the simulation of a high Reynolds number, rough wall, boundary layer flow with a constant and uniform surface scalar flux. The simulation results obtained from the AMD model show good agreement with well-established empirical correlations and theoretical predictions of the resolved flow statistics. In particular, the AMD model is capable to accurately predict the expected surface-layer similarity profiles and power spectra for both velocity and scalar concentration.
Minimum-dissipation scalar transport model for large-eddy simulation of turbulent flows
NASA Astrophysics Data System (ADS)
Abkar, Mahdi; Bae, Hyun J.; Moin, Parviz
2016-08-01
Minimum-dissipation models are a simple alternative to the Smagorinsky-type approaches to parametrize the subfilter turbulent fluxes in large-eddy simulation. A recently derived model of this type for subfilter stress tensor is the anisotropic minimum-dissipation (AMD) model [Rozema et al., Phys. Fluids 27, 085107 (2015), 10.1063/1.4928700], which has many desirable properties. It is more cost effective than the dynamic Smagorinsky model, it appropriately switches off in laminar and transitional flows, and it is consistent with the exact subfilter stress tensor on both isotropic and anisotropic grids. In this study, an extension of this approach to modeling the subfilter scalar flux is proposed. The performance of the AMD model is tested in the simulation of a high-Reynolds-number rough-wall boundary-layer flow with a constant and uniform surface scalar flux. The simulation results obtained from the AMD model show good agreement with well-established empirical correlations and theoretical predictions of the resolved flow statistics. In particular, the AMD model is capable of accurately predicting the expected surface-layer similarity profiles and power spectra for both velocity and scalar concentration.
Large eddy simulation of wind-induced interunit dispersion around multistory buildings.
Ai, Z T; Mak, C M
2016-04-01
Previous studies regarding interunit dispersion used Reynolds-averaged Navier-Stokes (RANS) models and thus obtained only mean dispersion routes and re-entry ratios. Given that the envelope flow around a building is highly fluctuating, mean values could be insufficient to describe interunit dispersion. This study investigates the wind-induced interunit dispersion around multistory buildings using the large eddy simulation (LES) method. This is the first time interunit dispersion has been investigated transiently using a LES model. The quality of the selected LES model is seriously assured through both experimental validation and sensitivity analyses. Two aspects are paid special attention: (i) comparison of dispersion routes with those provided by previous RANS simulations and (ii) comparison of timescales with those of natural ventilation and the survival times of pathogens. The LES results reveal larger dispersion scopes than the RANS results. Such larger scopes could be caused by the fluctuating and stochastic nature of envelope flows, which, however, is canceled out by the inherent Reynolds-averaged treatment of RANS models. The timescales of interunit dispersion are comparable with those of natural ventilation. They are much shorter than the survival time of most pathogens under ordinary physical environments, indicating that interunit dispersion is a valid route for disease transmission.
Large-eddy simulation of oxygen transport and depletion in waterbodies
NASA Astrophysics Data System (ADS)
Scalo, Carlo; Piomelli, Ugo; Boegman, Leon
2010-11-01
Dissolved oxygen (DO) in water plays an important role in lake and marine ecosystems. Agricultural runoff may spur excessive plant growth on the water surface; when the plants die they sink to the bottom of the water bodies and decompose, consuming oxygen. Significant environmental (and economic) damage may result from the loss of aquatic life caused by the oxygen depletion. The study of DO transport and depletion dynamics in water bodies has, therefore, become increasingly important. We study this phenomenon by large-eddy simulations performed at laboratory scale. The equations governing the transport of momentum and of a scalar (the DO) in the fluid are coupled to a biochemical model for DO depletion in the permeable sediment bed [Higashino et al., Water Res. (38) 1, 2004)], and to an equation for the fluid transpiration in the porous medium. The simulations are in good agreement with previous calculations and experiments. We show that the results are sensitive to the biochemical and fluid dynamical properties of the sediment, which are very difficult to determine experimentally.
ENDLESS: An extended nonperiodic domain large-eddy simulation approach for scalar plumes
NASA Astrophysics Data System (ADS)
Chen, Bicheng; Yang, Di; Meneveau, Charles; Chamecki, Marcelo
2016-05-01
Large-eddy simulation (LES) has proven to be a valuable tool for high-fidelity modeling of environmental and geophysical turbulent flows. An important application of LES is to study the transport of effluents (e.g. oils from a subsea blowout) in the ocean mixed layer (OML). Oil plumes being transported in the OML experience the action of shear-generated turbulence, Langmuir circulations, Ekman transport and submesoscale quasi-geostrophic eddies. To resolve such turbulent processes, grid sizes of a few meters are desirable while horizontal domain sizes of LES are typically restricted from hundreds of meters to a few kilometers, for LES to remain practically affordable. Yet transported oil plumes evolve to large scales extending to tens or even hundreds of kilometers. In this study, the Extended Nonperiodic Domain LES for Scalar transport (ENDLESS) is proposed as a multi-scale approach to tackle this challenge while being computationally affordable. The basic idea is to simulate the shear turbulence and Langmuir circulations on a small horizontal domain with periodic boundary conditions while the resulting transport velocity field is replicated periodically following adaptively the large-scale plume as it evolves spatially towards much larger scales. This approach also permits the superposition of larger-scale quasi two-dimensional flow motions on the oil advection, allowing for coupling with regional circulation models. A validation case and two sample applications to oil plume evolution in the OML are presented in order to demonstrate key features and computational speedup associated with the ENDLESS method.
Maurer, K. D.; Bohrer, G.; Kenny, W. T.; ...
2015-04-30
Surface roughness parameters, namely the roughness length and displacement height, are an integral input used to model surface fluxes. However, most models assume these parameters to be a fixed property of plant functional type and disregard the governing structural heterogeneity and dynamics. In this study, we use large-eddy simulations to explore, in silico, the effects of canopy-structure characteristics on surface roughness parameters. We performed a virtual experiment to test the sensitivity of resolved surface roughness to four axes of canopy structure: (1) leaf area index, (2) the vertical profile of leaf density, (3) canopy height, and (4) canopy gap fraction.more » We found roughness parameters to be highly variable, but uncovered positive relationships between displacement height and maximum canopy height, aerodynamic canopy height and maximum canopy height and leaf area index, and eddy-penetration depth and gap fraction. We also found negative relationships between aerodynamic canopy height and gap fraction, as well as between eddy-penetration depth and maximum canopy height and leaf area index. We generalized our model results into a virtual "biometric" parameterization that relates roughness length and displacement height to canopy height, leaf area index, and gap fraction. Using a decade of wind and canopy-structure observations in a site in Michigan, we tested the effectiveness of our model-driven biometric parameterization approach in predicting the friction velocity over heterogeneous and disturbed canopies. We compared the accuracy of these predictions with the friction-velocity predictions obtained from the common simple approximation related to canopy height, the values calculated with large-eddy simulations of the explicit canopy structure as measured by airborne and ground-based lidar, two other parameterization approaches that utilize varying canopy-structure inputs, and the annual and decadal means of the surface roughness parameters at
NASA Astrophysics Data System (ADS)
Maurer, K. D.; Bohrer, G.; Kenny, W. T.; Ivanov, V. Y.
2015-04-01
Surface roughness parameters, namely the roughness length and displacement height, are an integral input used to model surface fluxes. However, most models assume these parameters to be a fixed property of plant functional type and disregard the governing structural heterogeneity and dynamics. In this study, we use large-eddy simulations to explore, in silico, the effects of canopy-structure characteristics on surface roughness parameters. We performed a virtual experiment to test the sensitivity of resolved surface roughness to four axes of canopy structure: (1) leaf area index, (2) the vertical profile of leaf density, (3) canopy height, and (4) canopy gap fraction. We found roughness parameters to be highly variable, but uncovered positive relationships between displacement height and maximum canopy height, aerodynamic canopy height and maximum canopy height and leaf area index, and eddy-penetration depth and gap fraction. We also found negative relationships between aerodynamic canopy height and gap fraction, as well as between eddy-penetration depth and maximum canopy height and leaf area index. We generalized our model results into a virtual "biometric" parameterization that relates roughness length and displacement height to canopy height, leaf area index, and gap fraction. Using a decade of wind and canopy-structure observations in a site in Michigan, we tested the effectiveness of our model-driven biometric parameterization approach in predicting the friction velocity over heterogeneous and disturbed canopies. We compared the accuracy of these predictions with the friction-velocity predictions obtained from the common simple approximation related to canopy height, the values calculated with large-eddy simulations of the explicit canopy structure as measured by airborne and ground-based lidar, two other parameterization approaches that utilize varying canopy-structure inputs, and the annual and decadal means of the surface roughness parameters at the site
New approximate boundary conditions for large eddy simulations of wall-bounded flows
NASA Technical Reports Server (NTRS)
Piomelli, Ugo; Ferziger, Joel; Moin, Parviz; Kim, John
1989-01-01
Two new approximate boundary conditions have been applied to the large eddy simulation of channel flow with and without transpiration. These new boundary conditions give more accurate results than those previously in use, and allow significant reduction of the required CPU time over simulations in which no-slip conditions are applied. Mean velocity profiles and turbulence intensities compare well both with experimental data and with the results of resolved simulations. The influence of the approximate boundary conditions remains confined near the point of application and does not affect the turbulence statistics in the core of the flow.
DG-FDF solver for large eddy simulation of compressible flows
NASA Astrophysics Data System (ADS)
Sammak, Shervin; Brazell, Michael; Mavriplis, Dimitri; Givi, Peyman
2016-11-01
A new computational scheme is developed for large eddy simulation (LES) of compressible turbulent flows with the filtered density function (FDF) subgrid scale closure. This is a hybrid scheme, combining the discontinuous Galerkin (DG) Eulerian solver with a Lagrangian Monte Carlo FDF simulator. The methodology is shown to be suitable for LES, as a larger portion of the resolved energy is captured as the order of spectral approximation increases. Simulations are conducted of both subsonic and supersonic flows. The consistency and the overall performance of the DG-FDF solver are demonstrated, together with its shock capturing capabilities.
A survey of modelling methods for high-fidelity wind farm simulations using large eddy simulation.
Breton, S-P; Sumner, J; Sørensen, J N; Hansen, K S; Sarmast, S; Ivanell, S
2017-04-13
Large eddy simulations (LES) of wind farms have the capability to provide valuable and detailed information about the dynamics of wind turbine wakes. For this reason, their use within the wind energy research community is on the rise, spurring the development of new models and methods. This review surveys the most common schemes available to model the rotor, atmospheric conditions and terrain effects within current state-of-the-art LES codes, of which an overview is provided. A summary of the experimental research data available for validation of LES codes within the context of single and multiple wake situations is also supplied. Some typical results for wind turbine and wind farm flows are presented to illustrate best practices for carrying out high-fidelity LES of wind farms under various atmospheric and terrain conditions.This article is part of the themed issue 'Wind energy in complex terrains'.
NASA Astrophysics Data System (ADS)
Liu, Zhongqiu; Li, Linmin; Li, Baokuan; Jiang, Maofa
2014-07-01
The current study developed a coupled computational model to simulate the transient fluid flow, solidification, and particle transport processes in a slab continuous-casting mold. Transient flow of molten steel in the mold is calculated using the large eddy simulation. An enthalpy-porosity approach is used for the analysis of solidification processes. The transport of bubble and non-metallic inclusion inside the liquid pool is calculated using the Lagrangian approach based on the transient flow field. A criterion of particle entrapment in the solidified shell is developed using the user-defined functions of FLUENT software (ANSYS, Inc., Canonsburg, PA). The predicted results of this model are compared with the measurements of the ultrasonic testing of the rolled steel plates and the water model experiments. The transient asymmetrical flow pattern inside the liquid pool exhibits quite satisfactory agreement with the corresponding measurements. The predicted complex instantaneous velocity field is composed of various small recirculation zones and multiple vortices. The transport of particles inside the liquid pool and the entrapment of particles in the solidified shell are not symmetric. The Magnus force can reduce the entrapment ratio of particles in the solidified shell, especially for smaller particles, but the effect is not obvious. The Marangoni force can play an important role in controlling the motion of particles, which increases the entrapment ratio of particles in the solidified shell obviously.
Large eddy simulation of tip-leakage flow in an axial flow fan
NASA Astrophysics Data System (ADS)
Park, Keuntae; Choi, Haecheon; Choi, Seokho; Sa, Yongcheol; Kwon, Oh-Kyoung
2016-11-01
An axial flow fan with a shroud generates a complicated tip-leakage flow by the interaction of the axial flow with the fan blades and shroud near the blade tips. In this study, large eddy simulation is performed for tip-leakage flow in a forward-swept axial flow fan inside an outdoor unit of an air-conditioner, operating at the design condition of the Reynolds number of 547,000 based on the radius of blade tip and the tip velocity. A dynamic global model is used for a subgrid-scale model, and an immersed boundary method in a non-inertial reference frame is adopted. The present simulation clearly reveals the generation and evolution of tip-leakage vortex near the blade tip by the leakage flow. At the inception of the leakage vortex near the leading edge of the suction-side of the blade tip, the leakage vortex is composed of unsteady multiple vortices containing high-frequency fluctuations. As the leakage vortex develops downstream along a slant line toward the following blade, large and meandering movements of the leakage vortex are observed. Thus low-frequency broad peaks of velocity and pressure occur near the pressure surface. Supported by the KISTI Supercomputing Center (KSC-2016-C3-0027).
Large-eddy simulation of propeller wake at design operating conditions
NASA Astrophysics Data System (ADS)
Kumar, Praveen; Mahesh, Krishnan
2016-11-01
Understanding the propeller wake is crucial for efficient design and optimized performance. The dynamics of the propeller wake are also central to physical phenomena such as cavitation and acoustics. Large-eddy simulation is used to study the evolution of the wake of a five-bladed marine propeller from near to far field at design operating condition. The computed mean loads and phase-averaged flow field show good agreement with experiments. The propeller wake consisting of tip and hub vortices undergoes streamtube contraction, which is followed by the onset of instabilities as evident from the oscillations of the tip vortices. Simulation results reveal a mutual induction mechanism of instability where instead of the tip vortices interacting among themselves, they interact with the smaller vortices generated by the roll-up of the blade trailing edge wake in the near wake. Phase-averaged and ensemble-averaged flow fields are analyzed to explain the flow physics. This work is supported by ONR.
From large-eddy simulation to multi-UAVs sampling of shallow cumulus clouds
NASA Astrophysics Data System (ADS)
Lamraoui, Fayçal; Roberts, Greg; Burnet, Frédéric
2016-04-01
In-situ sampling of clouds that can provide simultaneous measurements at satisfying spatio-temporal resolutions to capture 3D small scale physical processes continues to present challenges. This project (SKYSCANNER) aims at bringing together cloud sampling strategies using a swarm of unmanned aerial vehicles (UAVs) based on Large-eddy simulation (LES). The multi-UAV-based field campaigns with a personalized sampling strategy for individual clouds and cloud fields will significantly improve the understanding of the unresolved cloud physical processes. An extensive set of LES experiments for case studies from ARM-SGP site have been performed using MesoNH model at high resolutions down to 10 m. The carried out simulations led to establishing a macroscopic model that quantifies the interrelationship between micro- and macrophysical properties of shallow convective clouds. Both the geometry and evolution of individual clouds are critical to multi-UAV cloud sampling and path planning. The preliminary findings of the current project reveal several linear relationships that associate many cloud geometric parameters to cloud related meteorological variables. In addition, the horizontal wind speed indicates a proportional impact on cloud number concentration as well as triggering and prolonging the occurrence of cumulus clouds. In the framework of the joint collaboration that involves a Multidisciplinary Team (including institutes specializing in aviation, robotics and atmospheric science), this model will be a reference point for multi-UAVs sampling strategies and path planning.
Large-eddy simulation of particle-laden atmospheric boundary layer
NASA Astrophysics Data System (ADS)
Ilie, Marcel; Smith, Stefan Llewellyn
2008-11-01
Pollen dispersion in the atmospheric boundary layer (ABL) is numerically investigated using a hybrid large-eddy simulation (LES) Lagrangian approach. Interest in prediction of pollen dispersion stems from two reasons, the allergens in the pollen grains and increasing genetic manipulation of plants leading to the problem of cross pollination. An efficient Eulerian-Lagrangian particle dispersion algorithm for the prediction of pollen dispersion in the atmospheric boundary layer is outlined. The volume fraction of the dispersed phase is assumed to be small enough such that particle-particle collisions are negligible and properties of the carrier flow are not modified. Only the effect of turbulence on particle motion has to be taken into account (one-way coupling). Hence the continuous phase can be treated separate from the particulate phase. The continuous phase is determined by LES in the Eulerian frame of reference whereas the dispersed phase is simulated in a Lagrangian frame of reference. Numerical investigations are conducted for the convective, neutral and stable boundary layer as well different topographies. The results of the present study indicate that particles with small diameter size follow the flow streamlines, behaving as tracers, while particles with large diameter size tend to follow trajectories which are independent of the flow streamlines. Particles of ellipsoidal shape travel faster than the ones of spherical shape.
Scale-adaptive subgrid-scale modelling for large-eddy simulation of turbulent flows
NASA Astrophysics Data System (ADS)
Yu, Changping; Xiao, Zuoli; Li, Xinliang
2017-03-01
The proportionality between the subgrid-scale (SGS) drain rate of kinetic energy and the viscous dissipation rate of the resolved motions is studied a priori by filtering a given fully resolved field and evaluating a generic form of the hypothesized energy spectrum. The ratio of the SGS drain to the resolved dissipation, on which a balance condition for the SGS dissipation across an arbitrary grid scale is founded, is shown to be independent of the turbulence Reynolds number, and can be described by a function in terms of the averaged mesh Reynolds number. Such a balance condition can serve as a physical constraint in the SGS modeling to account for the scale effects of the model coefficient(s). Scale-adaptive dynamic Smagorinsky-Lilly model and mixed nonlinear model are formulated for large-eddy simulation of transitional and/or turbulent flows in such a way that the constraint is satisfied. The newly proposed scale-adaptive dynamic SGS models are validated in simulations of homogeneous isotropic turbulence and turbulent channel flow, and prove to be superior over traditional dynamic SGS models.
Investigation of particle-laden flow in a straight duct using large eddy simulation
Fairweather, M.; Yao, J.
2007-07-01
A particle-laden turbulent flow in a square duct is predicted using large eddy simulation (LES). The simulation is performed for a Reynolds number of 35,500, and correctly predicts the existence of secondary flows and their effects on the mean flow. The results are also in good qualitative agreement with experimental data obtained at different Reynolds numbers. One-way coupling is assumed between solid particles and the fluid, and a particle equation of motion, including Stokes drag, lift, buoyancy and gravity force terms, solved using a Lagrangian particle tracking technique. Three sizes of particle (1, 50 and 100 {mu}m) are considered, and results demonstrate that size has a significant effect on particle dispersion and deposition in the duct flow. As particle size increases, therefore, they tend to settle on the floor of the duct, with less dispersion in the fluid phase. The study demonstrates the usefulness of LES for nuclear waste processing applications since secondary flows occur in many practically-relevant flows, and since it is desirable that the two-phase waste mixture is kept as homogeneous as possible to prevent, or at least discourage, the settling out of solid particles to form a bed which can promote pipe blockages. (authors)
Investigations of Subsonic Compressible Boundary Layer Flows using Hybrid Large Eddy Simulations
NASA Astrophysics Data System (ADS)
Taylor, Sara Jo
The objective of this thesis is to investigate the spatially developing turbulent compressible boundary layer on a flat plate using the Spalart-Allmaras Detached Eddy Simulation (SA-DES) model [22] and the Nichols-Nelson hybrid Reynolds-Averaged Navier-Stokes/Large Eddy Simulation (RANS/LES) model [13] which have been implemented into the Wind-US 3.0 computational fluid dynamics code [30]; both of the hybrid approaches involve RANS modeling in the near-wall region and LES treatment in the outer region. Generation of unsteady turbulent inflow data is achieved via the prescribed energy spectrum method. The studies illustrated dependence on Reynolds number based on momentum thickness, Reθ, ranging from 3018 to 19430, and dependence on Mach number,
Wall-modeled large-eddy simulation of transonic airfoil buffet at high Reynolds number
NASA Astrophysics Data System (ADS)
Fukushima, Yuma; Kawai, Soshi
2016-11-01
In this study, we conduct the wall-modeled large-eddy simulation (LES) of transonic buffet phenomena over the OAT15A supercritical airfoil at high Reynolds number. The transonic airfoil buffet involves shock-turbulent boundary layer interactions and shock vibration associated with the flow separation downstream of the shock wave. The wall-modeled LES developed by Kawai and Larsson PoF (2012) is tuned on the K supercomputer for high-fidelity simulation. We first show the capability of the present wall-modeled LES on the transonic airfoil buffet phenomena and then investigate the detailed flow physics of unsteadiness of shock waves and separated boundary layer interaction phenomena. We also focus on the sustaining mechanism of the buffet phenomena, including the source of the pressure waves propagated from the trailing edge and the interactions between the shock wave and the generated sound waves. This work was supported in part by MEXT as a social and scientific priority issue to be tackled by using post-K computer. Computer resources of the K computer was provided by the RIKEN Advanced Institute for Computational Science (Project ID: hp150254).
Large-eddy simulation of airflow and heat transfer in a general ward of hospital
NASA Astrophysics Data System (ADS)
Hasan, Md. Farhad; Himika, Taasnim Ahmed; Molla, Md. Mamun
2016-07-01
In this paper, a very popular alternative computational technique, the Lattice Boltzmann Method (LBM) has been used for Large-Eddy Simulation (LES) of airflow and heat transfer in general ward of hospital. Different Reynolds numbers have been used to study the airflow pattern. In LES, Smagorinsky turbulence model has been considered and a discussion has been conducted in brief. A code validation has been performed comparing the present results with benchmark results for lid-driven cavity problem and the results are found to agree very well. LBM is demonstrated through simulation in forced convection inside hospital ward with six beds with a partition in the middle, which acted like a wall. Changes in average rate of heat transfer in terms of average Nusselt numbers have also been recorded in tabular format and necessary comparison has been showed. It was found that partition narrowed the path for airflow and once the air overcame this barrier, it got free space and turbulence appeared. For higher turbulence, the average rate of heat transfer increased and patients near the turbulence zone released maximum heat and felt more comfortable.
Lantz, Jonas; Gårdhagen, Roland; Karlsson, Matts
2012-10-01
In this study, large-eddy simulation (LES) is employed to calculate the disturbed flow field and the wall shear stress (WSS) in a subject specific human aorta. Velocity and geometry measurements using magnetic resonance imaging (MRI) are taken as input to the model to provide accurate boundary conditions and to assure the physiological relevance. In total, 50 consecutive cardiac cycles were simulated from which a phase average was computed to get a statistically reliable result. A decomposition similar to Reynolds decomposition is introduced, where the WSS signal is divided into a pulsating part (due to the mass flow rate) and a fluctuating part (originating from the disturbed flow). Oscillatory shear index (OSI) is plotted against time-averaged WSS in a novel way, and locations on the aortic wall where elevated values existed could easily be found. In general, high and oscillating WSS values were found in the vicinity of the branches in the aortic arch, while low and oscillating WSS were present in the inner curvature of the descending aorta. The decomposition of WSS into a pulsating and a fluctuating part increases the understanding of how WSS affects the aortic wall, which enables both qualitative and quantitative comparisons.
On the large eddy simulation of turbulent flows in complex geometry
NASA Technical Reports Server (NTRS)
Ghosal, Sandip
1993-01-01
Application of the method of Large Eddy Simulation (LES) to a turbulent flow consists of three separate steps. First, a filtering operation is performed on the Navier-Stokes equations to remove the small spatial scales. The resulting equations that describe the space time evolution of the 'large eddies' contain the subgrid-scale (sgs) stress tensor that describes the effect of the unresolved small scales on the resolved scales. The second step is the replacement of the sgs stress tensor by some expression involving the large scales - this is the problem of 'subgrid-scale modeling'. The final step is the numerical simulation of the resulting 'closed' equations for the large scale fields on a grid small enough to resolve the smallest of the large eddies, but still much larger than the fine scale structures at the Kolmogorov length. In dividing a turbulent flow field into 'large' and 'small' eddies, one presumes that a cut-off length delta can be sensibly chosen such that all fluctuations on a scale larger than delta are 'large eddies' and the remainder constitute the 'small scale' fluctuations. Typically, delta would be a length scale characterizing the smallest structures of interest in the flow. In an inhomogeneous flow, the 'sensible choice' for delta may vary significantly over the flow domain. For example, in a wall bounded turbulent flow, most statistical averages of interest vary much more rapidly with position near the wall than far away from it. Further, there are dynamically important organized structures near the wall on a scale much smaller than the boundary layer thickness. Therefore, the minimum size of eddies that need to be resolved is smaller near the wall. In general, for the LES of inhomogeneous flows, the width of the filtering kernel delta must be considered to be a function of position. If a filtering operation with a nonuniform filter width is performed on the Navier-Stokes equations, one does not in general get the standard large eddy
Large Eddy Simulation and Field Experiments of Pollen Transport in the Atmospheric Boundary Layer
NASA Astrophysics Data System (ADS)
Chamecki, M.; Meneveau, C.; Parlange, M. B.; van Hout, R.
2006-12-01
Dispersion of airborne pollen by the wind has been a subject of interest for botanists and allergists for a long time. More recently, the development of genetically modified crops and questions about cross-pollination and subsequent contamination of natural plant populations has brought even more interest to this field. A critical question is how far from the source field pollen grains will be advected. Clearly the answer depends on the aerodynamic properties of the pollen, geometrical properties of the field, topography, local vegetation, wind conditions, atmospheric stability, etc. As a consequence, field experiments are well suited to provide some information on pollen transport mechanisms but are limited to specific field and weather conditions. Numerical simulations do not have this drawback and can be a useful tool to study pollen dispersal in a variety of configurations. It is well known that the dispersion of particles in turbulent fields is strongly affected by the large scale coherent structures. Large Eddy Simulation (LES) is a technique that allows us to study the typical distances reached by pollen grains and, at the same time, resolve the larger coherent structures present in the atmospheric boundary layer. The main objective of this work is to simulate the dispersal of pollen grains in the atmospheric surface layer using LES. Pollen concentrations are simulated by an advection-diffusion equation including gravitational settling. Of extreme importance is the specification of the bottom boundary conditions characterizing the pollen source over the canopy and the deposition process everywhere else. In both cases we make use of the theoretical profile for suspended particles derived by Kind (1992). Field experiments were performed to study the applicability of the theoretical profile to pollen grains and the results are encouraging. Airborne concentrations as well as ground deposition from the simulations are compared to experimental data to validate the
Large-Eddy Simulation of the Evolving Stable Boundary Layer Over Flat Terrain
Townsend, R
2002-01-02
The stable boundary layer (SBL) in the atmosphere is of considerable interest because it is often the worse case scenario for air pollution studies and health effect assessments associated with the accidental release of toxic material. Traditional modeling approaches used in such studies do not simulate the non-steady character of the velocity field, and hence often overpredict concentrations while underpredicting spatial coverage of potentially harmful concentrations of airborne material. The challenge for LES is to be able to resolve the rather small energy-containing eddies of the SBL while still maintaining an adequate domain size. This requires that the subgrid-scale (SGS) parameterization of turbulence incorporate an adequate representation of turbulent energy transfer. Recent studies have shown that both upscale and downscale energy transfer can occur simultaneously, but that overall the net transfer is downscale. Including the upscale transfer of turbulent energy (energy backscatter) is particularly important near the ground and under stably-stratified conditions. The goal of this research is to improve the ability to realistically simulate the SBL. The large-eddy simulation (LES) approach with its subgrid-scale (SGS) turbulence model does a better job of capturing the temporally and spatially varying features of the SBL than do Reynolds-averaging models. The scientific objectives of this research are: (1) to characterize features of the evolving SBL structure for a range of meteorological conditions (wind speed and surface cooling), (2) to simulate realistically the transfer of energy between resolved and subgrid scales, and (3) to apply results to improve simulation of dispersion in the SBL.
NASA Astrophysics Data System (ADS)
Anupindi, Kameswararao; Delorme, Yann; Shetty, Dinesh A.; Frankel, Steven H.
2013-12-01
Computational fluid dynamics (CFD) simulations are becoming a reliable tool to understand hemodynamics, disease progression in pathological blood vessels and to predict medical device performance. Immersed boundary method (IBM) emerged as an attractive methodology because of its ability to efficiently handle complex moving and rotating geometries on structured grids. However, its application to study blood flow in complex, branching, patient-specific anatomies is scarce. This is because of the dominance of grid nodes in the exterior of the fluid domain over the useful grid nodes in the interior, rendering an inevitable memory and computational overhead. In order to alleviate this problem, we propose a novel multiblock based IBM that preserves the simplicity and effectiveness of the IBM on structured Cartesian meshes and enables handling of complex, anatomical geometries at a reduced memory overhead by minimizing the grid nodes in the exterior of the fluid domain. As pathological and medical device hemodynamics often involve complex, unsteady transitional or turbulent flow fields, a scale resolving turbulence model such as large eddy simulation (LES) is used in the present work. The proposed solver (here after referred as WenoHemo), is developed by enhancing an existing in-house high-order incompressible flow solver that was previously validated for its numerics and several LES models by Shetty et al. (2010) [33]. In the present work, WenoHemo is systematically validated for additional numerics introduced, such as IBM and the multiblock approach, by simulating laminar flow over a sphere and laminar flow over a backward facing step respectively. Then, we validate the entire solver methodology by simulating laminar and transitional flow in abdominal aortic aneurysm (AAA). Finally, we perform blood flow simulations in the challenging clinically relevant thoracic aortic aneurysm (TAA), to gain insights into the type of fluid flow patterns that exist in pathological
Optimization of a Turbine Blade Trailing Edge using Large Eddy Simulations
NASA Astrophysics Data System (ADS)
Blonigan, Patrick; Talnikar, Chaitanya; Bodart, Julien; Pierce, Brian; Bose, Sanjeeb; Wang, Qiqi
2014-11-01
As for many turbomachinery components, heat transfer and pressure loss are the key quantities influencing the design of turbine blades. To compute correct heat transfer and pressure loss data, flow features such as boundary layer transition and flow separation must be captured accurately. While traditional Computation Fluid Dynamics models such as Reynolds Averaged Navier-Stokes (RANS) struggle to capture these features accurately, Large Eddy Simulation (LES) is able to. This talk discusses an optimization study of a turbine blade trailing edge. The design of turbine blades involves two classical competing objectives: minimizing pressure loss and minimizing heat transfer to the blade. This trade-off is especially apparent for the design of the blade's trailing edge. The study was conducted using a novel Bayesian optimization technique developed by the authors. The optimization algorithm is combined with a massively parallel LES solver and the results for a number of trailing edge designs including the optimal geometry will be presented and their implications for turbine blade design will be discussed.
Large Eddy Simulation of Motion-Induced Contaminant Transports in Room Compartments
NASA Astrophysics Data System (ADS)
Choi, Jung-Il; Edwards, Jack
2011-11-01
Large eddy simulation (LES) of contaminant transports due to complex human and door motions is conducted for characterizing the effect of the motion-induced wakes on the contaminant transports in room compartments where a contaminated and clean room are connected by a vestibule. We utilize a LES technique with an immersed-boundary method for moving objects (Choi et al., JCP 2007; Choi and Edwards, Indoor Air 2008) and extend the technique to include Eulerian descriptions of gas-phase contaminant transport as well as thermal energy transfer. We demonstrate details of contaminant transport due to human- and door-motion induced wake development during a short-duration event involving the movement of a person (or persons) from a contaminated room, through a vestibule, into a clean room. Parametric studies that capture the effects of human walking pattern, door operation, over-pressure level, and vestibule size are systematically conducted. The results of parameteric studies will be shown in the final presentation. Supported by DARPA/SPO program (HR0011-05-C-0157) and WCU program (R31-10049) of NRF.
Recent advances in large-eddy simulation of spray and coal combustion
NASA Astrophysics Data System (ADS)
Zhou, L. X.
2013-07-01
Large-eddy simulation (LES) is under its rapid development and is recognized as a possible second generation of CFD methods used in engineering. Spray and coal combustion is widely used in power, transportation, chemical and metallurgical, iron and steel making, aeronautical and astronautical engineering, hence LES of spray and coal two-phase combustion is particularly important for engineering application. LES of two-phase combustion attracts more and more attention; since it can give the detailed instantaneous flow and flame structures and more exact statistical results than those given by the Reynolds averaged modeling (RANS modeling). One of the key problems in LES is to develop sub-grid scale (SGS) models, including SGS stress models and combustion models. Different investigators proposed or adopted various SGS models. In this paper the present author attempts to review the advances in studies on LES of spray and coal combustion, including the studies done by the present author and his colleagues. Different SGS models adopted by different investigators are described, some of their main results are summarized, and finally some research needs are discussed.
Large-Eddy Simulation of Shock-Wave Boundary Layer Interaction and its Control Using Sparkjet
NASA Astrophysics Data System (ADS)
Yang, Guang; Yao, Yufeng; Fang, Jian; Gan, Tian; Lu, Lipeng
2016-06-01
Large-eddy simulation (LES) of an oblique shock-wave generated by an 8° sharp wedge impinging onto a spatially-developing Mach 2.3 turbulent boundary layer and their interactions has been carried out in this study. The Reynolds number based on the incoming flow property and the boundary layer displacement thickness at the impinging point without shock-wave is 20,000. The detailed numerical approaches are described and the inflow turbulence is generated using the digital filter method to avoid artificial temporal or streamwise periodicity. Numerical results are compared with the available wind tunnel PIV measurements of the same flow conditions. Further LES study on the control of flow separation due to the strong shock-viscous interaction is also conducted by using an active control actuator “SparkJet” concept. The single-pulsed characteristics of the control device are obtained and compared with the experiments. Instantaneous flowfield shows that the “SparkJet” promotes the flow mixing in the boundary layer and enhances its ability to resist the flow separation. The time and spanwise averaged skin friction coefficient distribution demonstrates that the separation bubble length is reduced by maximum 35% with the control exerted.
Large-eddy simulation of cavitating nozzle flow and primary jet break-up
NASA Astrophysics Data System (ADS)
Ã-rley, F.; Trummler, T.; Hickel, S.; Mihatsch, M. S.; Schmidt, S. J.; Adams, N. A.
2015-08-01
We employ a barotropic two-phase/two-fluid model to study the primary break-up of cavitating liquid jets emanating from a rectangular nozzle, which resembles a high aspect-ratio slot flow. All components (i.e., gas, liquid, and vapor) are represented by a homogeneous mixture approach. The cavitating fluid model is based on a thermodynamic-equilibrium assumption. Compressibility of all phases enables full resolution of collapse-induced pressure wave dynamics. The thermodynamic model is embedded into an implicit large-eddy simulation (LES) environment. The considered configuration follows the general setup of a reference experiment and is a generic reproduction of a scaled-up fuel injector or control valve as found in an automotive engine. Due to the experimental conditions, it operates, however, at significantly lower pressures. LES results are compared to the experimental reference for validation. Three different operating points are studied, which differ in terms of the development of cavitation regions and the jet break-up characteristics. Observed differences between experimental and numerical data in some of the investigated cases can be caused by uncertainties in meeting nominal parameters by the experiment. The investigation reveals that three main mechanisms promote primary jet break-up: collapse-induced turbulent fluctuations near the outlet, entrainment of free gas into the nozzle, and collapse events inside the jet near the liquid-gas interface.
Large eddy simulation of particle-laden flow in a duct with a 90° bend
NASA Astrophysics Data System (ADS)
Njobuenwu, D. O.; Fairweather, M.
2011-12-01
Large eddy simulation (LES) of particle-laden turbulent flow is studied for a square duct with a 90° bend and a radius of curvature of 1.5 times the duct width, and for a Reynolds number based on the bulk flow velocity of 100,000. A Lagrangian particle tracking technique is used to study the motion of particles experiencing drag, shear lift, buoyancy and gravitational forces in the flow. LES predictions capture important physical aspects of these flows known to occur in practice, unlike alternative Reynolds-averaged Navier-Stokes (RANS) approaches, such as flow separation in the boundary layers around the bend entrance on the concave wall of the bend, and around the bend exit on the convex wall. The LES predicted flow and particle statistics are generally in good agreement with both experimental data used for validation purposes and RANS solutions, with r.m.s. fluctuating velocity predictions from the LES in particular being superior to values derived using the RANS technique.
Large-eddy simulation of cavitating nozzle flow and primary jet break-up
Örley, F. Trummler, T.; Mihatsch, M. S.; Schmidt, S. J.; Adams, N. A.; Hickel, S.
2015-08-15
We employ a barotropic two-phase/two-fluid model to study the primary break-up of cavitating liquid jets emanating from a rectangular nozzle, which resembles a high aspect-ratio slot flow. All components (i.e., gas, liquid, and vapor) are represented by a homogeneous mixture approach. The cavitating fluid model is based on a thermodynamic-equilibrium assumption. Compressibility of all phases enables full resolution of collapse-induced pressure wave dynamics. The thermodynamic model is embedded into an implicit large-eddy simulation (LES) environment. The considered configuration follows the general setup of a reference experiment and is a generic reproduction of a scaled-up fuel injector or control valve as found in an automotive engine. Due to the experimental conditions, it operates, however, at significantly lower pressures. LES results are compared to the experimental reference for validation. Three different operating points are studied, which differ in terms of the development of cavitation regions and the jet break-up characteristics. Observed differences between experimental and numerical data in some of the investigated cases can be caused by uncertainties in meeting nominal parameters by the experiment. The investigation reveals that three main mechanisms promote primary jet break-up: collapse-induced turbulent fluctuations near the outlet, entrainment of free gas into the nozzle, and collapse events inside the jet near the liquid-gas interface.
Large-eddy simulation of flow through a plane, asymmetric diffuser
NASA Technical Reports Server (NTRS)
Kaltenbach, Hans-Jakob
1994-01-01
A challenge for traditional turbulence modeling, based on the Reynolds averaged Navier-Stokes equations, remains the accurate prediction of 'mild', adverse pressure-gradient driven separation from a smooth surface. With this study we want to explore the capability of large-eddy simulation to predict the separation which occurs on the deflected wall of an asymmetric, plane diffuser with opening angle of 10 deg. The flow through the plane diffuser exhibits some additional interesting physical phenomena which make it a challenging test case. In addition to 'mild' separation about halfway down the deflected ramp, the flow is characterized by a small backflow zone with stalled fluid in the rear part of the expanding section. The turbulent flow entering the diffuser is subject to combined adverse and radial pressure gradients stemming from the convex curvature. Finally the flow recovers into a developed, turbulent channel flow in the outlet section. Obi et al. provide measurements of mean flow, Reynolds stresses, and pressure recovery, which were obtained by means of LDV in a wind tunnel. The objective of this study is to investigate whether LES with the standard dynamic model is able to accurately predict the flow in the one-sided diffuser and to explore the resolution requirements and associated costs.
Large eddy simulation of LDL surface concentration in a subject specific human aorta.
Lantz, Jonas; Karlsson, Matts
2012-02-02
The development of atherosclerosis is correlated to the accumulation of lipids in the arterial wall, which, in turn, may be caused by the build-up of low-density lipoproteins (LDL) on the arterial surface. The goal of this study was to model blood flow within a subject specific human aorta, and to study how the LDL surface concentration changed during a cardiac cycle. With measured velocity profiles as boundary conditions, a scale-resolving technique (large eddy simulation, LES) was used to compute the pulsatile blood flow that was in the transitional regime. The relationship between wall shear stress (WSS) and LDL surface concentration was investigated, and it was found that the accumulation of LDL correlated well with WSS. In general, regions of low WSS corresponded to regions of increased LDL concentration and vice versa. The instantaneous LDL values changed significantly during a cardiac cycle; during systole the surface concentration was low due to increased convective fluid transport, while in diastole there was an increased accumulation of LDL on the surface. Therefore, the near-wall velocity was investigated at four representative locations, and it was concluded that in regions with disturbed flow the LDL concentration had significant temporal changes, indicating that LDL accumulation is sensitive to not only the WSS but also near-wall flow.
Large-eddy simulations of viscoelastic isotropic turbulence with the FENE-P fluid
NASA Astrophysics Data System (ADS)
Pinho, Fernando T.; Ferreira, Pedro O.; B. da Silva, Carlos; Idmec/Feup Collaboration
2016-11-01
A new subgrid-scale (SGS) model developed for large-eddy simulations (LES) of dilute polymer solutions described by the Finitely Extensible Nonlinear Elastic constitutive equation closed with the Peterlin approximation (FENE-P), is presented. The filtered conformation tensor evolution equation uses the self-similarity of the polymer stretching terms, and the global equilibrium of the trace of the conformation tensor, while the SGS stresses are modelled with the classical Smagorinsky model. The new closure is assessed in direct numerical simulations (DNS) of forced isotropic turbulence using classical a-priori tests, and in a-posteriori (LES) showing excellent agreement with all the exact (filtered DNS) results.
Grid-point requirements for large eddy simulation: Chapman's estimates revisited
NASA Astrophysics Data System (ADS)
Choi, Haecheon; Moin, Parviz
2012-01-01
Resolution requirements for large eddy simulation (LES), estimated by Chapman [AIAA J. 17, 1293 (1979)], are modified using accurate formulae for high Reynolds number boundary layer flow. The new estimates indicate that the number of grid points (N) required for wall-modeled LES is proportional to ReLx , but a wall-resolving LES requires N ˜ReLx 13 /7 , where Lx is the flat-plate length in the streamwise direction. On the other hand, direct numerical simulation, resolving the Kolmogorov length scale, requires N ˜ReLx 37 /14 .
Numerical modelling of odour dispersion around a cubical obstacle using large eddy simulation.
Dourado, Harerton Oliveira; Santos, Jane Meri; Reis, Neyval C; Mavroidis, Ilias
2012-01-01
In the present work two different large eddy simulation (LES) approaches, namely the Dynamic Smagorinsky model and the Wale model, are used to simulate the air flow and pollutant dispersion around a cubical obstacle. Results are compared with wind tunnel data (WT) and with results from the Smagorinsky LES model. Overall agreement was good between the different LES approaches and the WT results, both for the mean and fluctuating flow and concentration patterns. LES models can provide good estimates of concentration fluctuation intensity and enable the calculation of the intermittency factor. The model results indicate that LES is a viable tool for odour impact assessment.
Large eddy simulation using high-resolution and high-order methods.
Drikakis, D; Hahn, M; Mosedale, A; Thornber, B
2009-07-28
Restrictions on computing power make direct numerical simulation too expensive for complex flows; thus, the development of accurate large eddy simulation (LES) methods, which are industrially applicable and efficient, is required. This paper reviews recent findings about the leading order dissipation rate associated with high-resolution methods and improvements to the standard schemes for use in highly turbulent flows. Results from implicit LES are presented for a broad range of flows and numerical schemes, ranging from the second-order monotone upstream-centered schemes for conservation laws to very high-order (up to ninth-order) weighted essentially non-oscillatory schemes.
Large-eddy simulation of wind-turbine wakes: Evaluation of turbine parameterizations
NASA Astrophysics Data System (ADS)
Porté-Agel, F.; Wu, Y.-T.; Lu, H.; Chamorro, L.
2010-09-01
Large-eddy simulation (LES) offers a great potential to study the effects of turbulent atmospheric boundary layer flow on the performance of wind turbines and wind farms. The accuracy of the simulations, however, hinges on our ability to parameterize subgrid-scale (SGS) turbulent fluxes as well as turbine-induced forces. In this study, we investigate the performance of LES in simulations of wind-turbine wakes in neutrally stratified boundary layer flows. The subgrid-scale stress tensor is parameterized using the scale-dependent Lagrangian dynamic model (Stoll and Porte-Agel, 2006). This model optimizes the local value of the Smagorinsky coefficient based on the dynamics of the resolved scales. The turbine-induced lift and drag forces are parameterized using two types of models: an actuator disk model (ADM) that distributes the force loading uniformly on the rotor disk; and an actuator line model (ALM) that distributes the forces on lines that follow the position of the blades. Simulation results are compared to wind-tunnel measurements collected with hot-wire anemometry in the wake of a miniature 3-blade wind turbine at the St. Anthony Falls Laboratory atmospheric boundary layer wind tunnel. In general, the characteristics of the wakes simulated with the proposed LES framework are in good agreement with the measurements. The ALM is better able to capture vortical structures such as helicoidal tip vortices, which are induced by the blades in the near-wake region. Our results also show that accounting for rotation in the ADM leads to a more realistic turbine wake structure.
Large-eddy simulation of wind-turbine wakes: Evaluation of turbine parameterizations
NASA Astrophysics Data System (ADS)
Porte-Agel, Fernando; Wu, Yu-Tin; Lu, Hao; Chamorro, Leonardo
2010-05-01
Large-eddy simulation (LES) offers a great potential to study the effects of turbulent atmospheric boundary layer flow on the performance of wind turbines and wind farms. The accuracy of the simulations, however, hinges on our ability to parameterize subgrid-scale (SGS) turbulent fluxes as well as turbine-induced forces. In this study, we investigate the performance of LES in simulations of wind-turbine wakes in neutrally stratified boundary layer flows. The subgrid-scale stress tensor is parameterized using the scale-dependent Lagrangian dynamic model (Stoll and Porte-Agel, 2006). This model optimizes the local value of the Smagorinsky coefficient based on the dynamics of the resolved scales. The turbine-induced lift and drag forces are parameterized using two types of models: an actuator disk model (ADM) that distributes the force loading uniformly on the rotor disk; and an actuator line model (ALM) that distributes the forces on lines that follow the position of the blades. Simulation results are compared to wind-tunnel measurements collected with hot-wire anemometry in the wake of a miniature 3-blade wind turbine at the St. Anthony Falls Laboratory atmospheric boundary layer wind tunnel. In general, the characteristics of the wakes simulated with the proposed LES framework are in good agreement with the measurements. The ALM is better able to capture vortical structures such as helicoidal tip vortices, which are induced by the blades in the near-wake region. Our results also show that accounting for rotation in the ADM leads to a more realistic turbine wake structure.
Large-Eddy Simulation-Based Retrieval of Dissipation from Coherent Doppler Lidar Data
NASA Astrophysics Data System (ADS)
Krishnamurthy, Raghavendra; Calhoun, Ronald; Fernando, Harindra
2010-07-01
Accurate estimation of dissipation rate is important in understanding and analyzing turbulent flows found in environment and engineering processes. Many previous studies have focused on measuring the local dissipation rate at a single point or averaged dissipation rate over a suitable area. Since coherent Doppler lidar is capable of providing multi-point measurements covering a large spatial extent, it is well-suited for examining the distribution of dissipation in the atmosphere. In this paper, an approach is presented that is based on retrieving the dissipation rate from coherent Doppler lidar data using large-eddy simulation. Two Coherent Doppler lidars performed range height indicator (RHI) scans of a vertical/cross-barrier plane during the Terrain-induced Rotor Experiment (T-REX). Two-dimensional velocity vectors were retrieved using a least squares method. The velocity vectors retrieved from co-planar RHI scans are used to estimate subgrid scale (SGS) quantities through a known SGS parameterization. For the T-REX datasets analyzed, the dissipation rate was found to increase in the presence of rotors, subrotors, and, as expected, in regions of high wind shear. Owing to the presence of sharper gradients in subrotors, their dissipation rate is generally larger than that of rotors.
NASA Astrophysics Data System (ADS)
Drewry, D. T.; Albertson, J. D.
2002-12-01
There are outstanding questions surrounding the measurement and modeling of carbon and water fluxes over complex landscapes. Typically, forest fluxes are measured with the eddy covariance technique from a single tower. A unique study over a loblolly pine stand in the Duke Forest yielded high frequency velocity, temperature, water vapor and carbon dioxide fluxes from a network of six instrumented towers, simultaneously. In this talk we explore the canopy-atmosphere dynamics active during this experiment through the use of a Large Eddy Simulation (LES) code. The LES includes a numerical representation of the plant canopy structure, a biophysical process sub-model, and mixes the sources and sinks through the boundary layer with a filtered form of the Navier-Stokes equations. Through this combination of a spatially distributed dataset and a 3D model of canopy flows and processes we investigate the relative influences of canopy structure and meteorological forcing on observed and modeled fluxes. This work has implications for our understanding of the effects of canopy turbulence on eddy covariance flux measurements.
Progress-variable approach for large-eddy simulation of turbulent combustion
NASA Astrophysics Data System (ADS)
Pierce, Charles David
A new approach to chemistry modeling for large eddy simulation of turbulent reacting flows is developed. Instead of solving transport equations for all of the numerous species in a typical chemical mechanism and modeling the unclosed chemical source terms, the present study adopts an indirect mapping approach, whereby all of the detailed chemical processes are mapped to a reduced system of tracking scalars. Presently, only two such scalars are considered: a mixture fraction variable, which tracks the mixing of fuel and oxidizer, and a progress variable, which tracks the global extent-of-reaction of the local mixture. The mapping functions, which describe all of the detailed chemical processes with respect to the tracking variables, are determined by solving quasi-steady diffusion-reaction equations with complex chemical kinetics and multicomponent mass diffusion. The performance of the new model is compared to fast chemistry and steady flamelet models for predicting velocity, species concentration, and temperature fields in a methane-fueled coaxial jet combustor for which experimental data are available. The progress-variable approach is able to capture the unsteady, lifted flame dynamics observed in the experiment, and to obtain good agreement with the experimental data and significantly outperform the fast chemistry and steady flamelet models, which both predict an attached flame.
Prediction of wall shear-stress fluctuations in wall-modeled large-eddy simulation
NASA Astrophysics Data System (ADS)
Park, George; Howland, Michael; Lozano-Duran, Adrian; Moin, Parviz
2016-11-01
Wall-modeled large-eddy simulation (WMLES) is emerging as a viable and affordable tool for predicting mean flow statistics in high Reynolds number turbulent boundary layers. Recently, we examined the performance of two RANS-based wall models in prediction of wall pressure and shear stress fluctuations which are important in flow/structure interaction problems. Whereas the pressure statistics were predicted with reasonable accuracy, the magnitude of wall shear stress fluctuations was severely underestimated. The present study expands on this finding to characterize in more detail the capabilities of wall models for predicting τw'. Predictions of several wall models in high Reynolds number channel flows (Reτ = 2000) will be presented. Additionally, a recent empirical inner-outer model for τw' is reconstructed using channel flow DNS database , and it is coupled to WMLES to assess its performance as a predictive model in LES. The majority of this work was carried out during the 16th biannual Center for Turbulence Research (CTR) summer program, 2016. George Park was partially supported through NASA under the Subsonic Fixed-Wing Program (Grant No. NNX11AI60A).
Properties of young contrails - a parametrisation based on large eddy simulations
NASA Astrophysics Data System (ADS)
Unterstrasser, S.
2015-10-01
Contrail-cirrus is probably the largest climate forcing of aviation. The evolution of contrail-cirrus and their radiative impact depends on a multitude of atmospheric parameters, but also on the geometric and microphysical properties of the young contrails evolving into contrail-cirrus. The early evolution of contrails (t < 5 min) is dominated by an interplay of ice microphysics and wake vortex dynamics. Young contrails may undergo a fast vertical expansion due to a descent of the wake vortices and may lose a substantial fraction of their ice crystals due to adiabatic heating. The geometric depth H and total ice crystal number N of young contrails are highly variable and depend on many environmental and aircraft parameters. Both properties, H and N, affect the later properties of the evolving contrail-cirrus, as they control the extent of shear-induced spreading and sedimentation losses. In this study, we provide parametrisations of H and N after 5 min taking into account the effects of temperature, relative humidity, thermal stratification and aircraft type (mass, wing span, fuel burn). The parametrisations rely on a large data set of recent large-eddy simulations of young contrails. They are suited to be incorporated in larger-scale models in order to refine the present day contrail initialisations by considering the processes that strongly affect the contrail evolution during the vortex phase.
Properties of young contrails - a parametrisation based on large-eddy simulations
NASA Astrophysics Data System (ADS)
Unterstrasser, Simon
2016-02-01
Contrail-cirrus is probably the largest climate forcing from aviation. The evolution of contrail-cirrus and its radiative impact depends not only on a multitude of atmospheric parameters, but also on the geometric and microphysical properties of the young contrails evolving into contrail-cirrus. The early evolution of contrails (t < 5 min) is dominated by an interplay of ice microphysics and wake vortex dynamics. Young contrails may undergo a fast vertical expansion due to a descent of the wake vortices and may lose a substantial fraction of their ice crystals due to adiabatic heating. The geometric depth H and total ice crystal number N of young contrails are highly variable and depend on many environmental and aircraft parameters. Both properties, H and N, affect the later properties of the evolving contrail-cirrus, as they control the extent of shear-induced spreading and sedimentation losses. In this study, we provide parametrisations of H and N after 5 min taking into account the effects of temperature, relative humidity, thermal stratification and aircraft type (mass, wing span, fuel burn). The parametrisations rely on a large data set of recent large-eddy simulations of young contrails. They are suited to be incorporated in larger-scale models in order to refine the present-day contrail initialisations by considering the processes that strongly affect the contrail evolution during the vortex phase.
Large-eddy simulation of transitional flows using a co-located grid
NASA Astrophysics Data System (ADS)
Langari, Mostafa; Yang, Zhiyin; Page, Gary J.
2013-04-01
A large-eddy simulation (LES) of a transitional separated flow over a plate with a semi-circular leading at low (<0.2%) and high (5.6%) free-stream turbulence (FST) has been performed, using a co-located grid with the Rhie-Chow pressure smoothing. A numerical trip is used to produce a high FST level and a dynamic subgrid-scale model is also employed in the current study. The entire transition process leading to breakdown to turbulence has been shown clearly by the flow visualisations using instantaneous spanwise vorticities, and the differences between the low- and high-FST cases are clearly visible. Coherent structures are also visualised using isosurfaces of the Q-criterion, and for the high-FST case, the spanwise-oriented quasi-two-dimensional rolls, which are clearly present in the low-FST case, are not visible anymore. Detailed quantitative comparisons between the present LES results and experimental data and the previous LES results at low FST using a staggered grid have been done and a good agreement has been obtained, indicating that the current LES using a co-located grid with pressure smoothing can also predict transitional flows accurately.
Modifications to WRFs dynamical core to improve the treatment of moisture for large-eddy simulations
Xiao, Heng; Endo, Satoshi; Wong, May; ...
2015-10-29
Yamaguchi and Feingold (2012) note that the cloud fields in their large-eddy simulations (LESs) of marine stratocumulus using the Weather Research and Forecasting (WRF) model exhibit a strong sensitivity to time stepping choices. In this study, we reproduce and analyze this sensitivity issue using two stratocumulus cases, one marine and one continental. Results show that (1) the sensitivity is associated with spurious motions near the moisture jump between the boundary layer and the free atmosphere, and (2) these spurious motions appear to arise from neglecting small variations in water vapor mixing ratio (qv) in the pressure gradient calculation in themore » acoustic sub-stepping portion of the integration procedure. We show that this issue is remedied in the WRF dynamical core by replacing the prognostic equation for the potential temperature θ with one for the moist potential temperature θm=θ(1+1.61qv), which allows consistent treatment of moisture in the calculation of pressure during the acoustic sub-steps. With this modification, the spurious motions and the sensitivity to the time stepping settings (i.e., the dynamic time step length and number of acoustic sub-steps) are eliminated in both of the example stratocumulus cases. In conclusion, this modification improves the applicability of WRF for LES applications, and possibly other models using similar dynamical core formulations, and also permits the use of longer time steps than in the original code.« less
Modifications to WRFs dynamical core to improve the treatment of moisture for large-eddy simulations
Xiao, Heng; Endo, Satoshi; Wong, May; Skamarock, William C.; Klemp, Joseph B.; Fast, Jerome D.; Gustafson, Jr., William I.; Vogelmann, Andrew; Wang, Hailong; Liu, Yangang; Lin, Wuyin
2015-10-29
Yamaguchi and Feingold (2012) note that the cloud fields in their large-eddy simulations (LESs) of marine stratocumulus using the Weather Research and Forecasting (WRF) model exhibit a strong sensitivity to time stepping choices. In this study, we reproduce and analyze this sensitivity issue using two stratocumulus cases, one marine and one continental. Results show that (1) the sensitivity is associated with spurious motions near the moisture jump between the boundary layer and the free atmosphere, and (2) these spurious motions appear to arise from neglecting small variations in water vapor mixing ratio (qv) in the pressure gradient calculation in the acoustic sub-stepping portion of the integration procedure. We show that this issue is remedied in the WRF dynamical core by replacing the prognostic equation for the potential temperature θ with one for the moist potential temperature θm=θ(1+1.61qv), which allows consistent treatment of moisture in the calculation of pressure during the acoustic sub-steps. With this modification, the spurious motions and the sensitivity to the time stepping settings (i.e., the dynamic time step length and number of acoustic sub-steps) are eliminated in both of the example stratocumulus cases. In conclusion, this modification improves the applicability of WRF for LES applications, and possibly other models using similar dynamical core formulations, and also permits the use of longer time steps than in the original code.
NASA Astrophysics Data System (ADS)
Xiao, Heng; Endo, Satoshi; Wong, May; Skamarock, William C.; Klemp, Joseph B.; Fast, Jerome D.; Gustafson, William I.; Vogelmann, Andrew M.; Wang, Hailong; Liu, Yangang; Lin, Wuyin
2015-12-01
Yamaguchi and Feingold (2012) note that the cloud fields in their large-eddy simulations (LESs) of marine stratocumulus using the Weather Research and Forecasting (WRF) model exhibit a strong sensitivity to time stepping choices. In this study, we reproduce and analyze this sensitivity issue using two stratocumulus cases, one marine and one continental. Results show that (1) the sensitivity is associated with spurious motions near the moisture jump between the boundary layer and the free atmosphere, and (2) these spurious motions appear to arise from neglecting small variations in water vapor mixing ratio (qv) in the pressure gradient calculation in the acoustic substepping portion of the integration procedure. We show that this issue is remedied in the WRF dynamical core by replacing the prognostic equation for the potential temperature θ with one for the moist potential temperature θm=θ(1 + 1.61qv), which allows consistent treatment of moisture in the calculation of pressure during the acoustic substeps. With this modification, the spurious motions and the sensitivity to the time stepping settings (i.e., the dynamic time step length and number of acoustic sub-steps) are eliminated in both of the example stratocumulus cases. This modification improves the applicability of WRF for LES applications, and possibly other models using similar dynamical core formulations, and also permits the use of longer time steps than in the original code.
An investigation of the dynamics of marine propeller tip vortices using large-eddy simulations
NASA Astrophysics Data System (ADS)
Schroeder, Seth; Balaras, Elias
2012-11-01
The ability to capture the dynamics of tip vortices, which are generated by marine propellers, is of major interest to naval hydrodynamics designers. The tip vortex of a propeller has a direct impact on performance and acoustics. Additionally, the tip vortex is a major source of erosion damage on downstream components such as rudders and stators. In the present study we utilize large-eddy simulations to compute the flow around a generic, 7-bladed, right-handed submarine propeller in open water testing configuration. We considered three different advance coefficients at Reynolds number (based on the radius and advance speed) of the order of 300,000. The governing equations are discretized on a structured grid in cylindrical coordinates and the boundary conditions on the surface of the propeller, which is not aligned with the grid lines, are introduced using an immersed boundary method. Approximately 1 billion points is used in the computation box. Tip vortices are identified by low pressure areas and the second invariant of the velocity gradient tensor (Q-criterium). In general, the vortex core radius contracts with the acceleration in the wake, and then maintains a constant radius for a certain distance before becoming unstable. Stability is affected by the advance ratio. Work supported by ONR.
Effect of stable stratification on dispersion within urban street canyons: A large-eddy simulation
NASA Astrophysics Data System (ADS)
Li, Xian-Xiang; Britter, Rex; Norford, Leslie K.
2016-11-01
This study employs a validated large-eddy simulation (LES) code with high tempo-spatial resolution to investigate the effect of a stably stratified roughness sublayer (RSL) on scalar transport within an urban street canyon. The major effect of stable stratification on the flow and turbulence inside the street canyon is that the flow slows down in both streamwise and vertical directions, a stagnant area near the street level emerges, and the vertical transport of momentum is weakened. Consequently, the transfer of heat between the street canyon and overlying atmosphere also gets weaker. The pollutant emitted from the street level 'pools' within the lower street canyon, and more pollutant accumulates within the street canyon with increasing stability. Under stable stratification, the dominant mechanism for pollutant transport within the street canyon has changed from ejections (flow carries high-concentration pollutant upward) to unorganized motions (flow carries high-concentration pollutant downward), which is responsible for the much lower dispersion efficiency under stable stratifications.
NASA Technical Reports Server (NTRS)
Han, Jongil; Lin, Yuh-Lang; Arya, S. Pal; Proctor, Fred H.
1999-01-01
The effects of ambient turbulence on decay and descent of aircraft wake vortices are studied using a validated, three-dimensional: large-eddy simulation model. Numerical simulations are performed in order to isolate the effect of ambient turbulence on the wake vortex decay rate within a neutrally-stratified atmosphere. Simulations are conducted for a range of turbulence intensities, by injecting wake vortex pairs into an approximately homogeneous and isotropic turbulence field. The decay rate of the vortex circulation increases clearly with increasing ambient turbulence level, which is consistent with field observations. Based on the results from the numerical simulations, simple decay models are proposed as functions of dimensionless ambient turbulence intensity (eta) and dimensionless time (T) for the circulation averaged over a range of radial distances. With good agreement with the numerical results, a Gaussian type of vortex decay model is proposed for weak turbulence: while an exponential type of Tortex decay model can be applied for strong turbulence. A relationship for the vortex descent based on above vortex decay model is also proposed. Although the proposed models are based on simulations assuming neutral stratification, the model predictions are compared to Lidar vortex measurements observed during stable, neutral, and unstable atmospheric conditions. In the neutral and unstable atmosphere, the model predictions appear to be in reasonable agreement with the observational data, while in the stably-stratified atmosphere, they largely underestimate the observed circulation decay with consistent overestimation of the observed vortex descent. The underestimation of vortex decay during stably-stratified conditions suggests that stratification has an important influence on vortex decay when ambient levels of turbulence are weak.
Discontinuous Galerkin methodology for Large-Eddy Simulations of wind turbine airfoils
NASA Astrophysics Data System (ADS)
Frére, A.; Sørensen, N. N.; Hillewaert, K.; Winckelmans, G.
2016-09-01
This paper aims at evaluating the potential of the Discontinuous Galerkin (DG) methodology for Large-Eddy Simulation (LES) of wind turbine airfoils. The DG method has shown high accuracy, excellent scalability and capacity to handle unstructured meshes. It is however not used in the wind energy sector yet. The present study aims at evaluating this methodology on an application which is relevant for that sector and focuses on blade section aerodynamics characterization. To be pertinent for large wind turbines, the simulations would need to be at low Mach numbers (M ≤ 0.3) where compressible approaches are often limited and at large Reynolds numbers (Re ≥ 106) where wall-resolved LES is still unaffordable. At these high Re, a wall-modeled LES (WMLES) approach is thus required. In order to first validate the LES methodology, before the WMLES approach, this study presents airfoil flow simulations at low and high Reynolds numbers and compares the results to state-of-the-art models used in industry, namely the panel method (XFOIL with boundary layer modeling) and Reynolds Averaged Navier-Stokes (RANS). At low Reynolds number (Re = 6 x 104), involving laminar boundary layer separation and transition in the detached shear layer, the Eppler 387 airfoil is studied at two angles of attack. The LES results agree slightly better with the experimental chordwise pressure distribution than both XFOIL and RANS results. At high Reynolds number (Re = 1.64 x 106), the NACA4412 airfoil is studied close to stall condition. In this case, although the wall model approach used for the WMLES is very basic and not supposed to handle separation nor adverse pressure gradients, all three methods provide equivalent accuracy on averaged quantities. The present work is hence considered as a strong step forward in the use of LES at high Reynolds numbers.
NASA Astrophysics Data System (ADS)
Shinn, Aaron F.
Computational Fluid Dynamics (CFD) simulations can be very computationally expensive, especially for Large Eddy Simulations (LES) and Direct Numerical Simulations (DNS) of turbulent ows. In LES the large, energy containing eddies are resolved by the computational mesh, but the smaller (sub-grid) scales are modeled. In DNS, all scales of turbulence are resolved, including the smallest dissipative (Kolmogorov) scales. Clusters of CPUs have been the standard approach for such simulations, but an emerging approach is the use of Graphics Processing Units (GPUs), which deliver impressive computing performance compared to CPUs. Recently there has been great interest in the scientific computing community to use GPUs for general-purpose computation (such as the numerical solution of PDEs) rather than graphics rendering. To explore the use of GPUs for CFD simulations, an incompressible Navier-Stokes solver was developed for a GPU. This solver is capable of simulating unsteady laminar flows or performing a LES or DNS of turbulent ows. The Navier-Stokes equations are solved via a fractional-step method and are spatially discretized using the finite volume method on a Cartesian mesh. An immersed boundary method based on a ghost cell treatment was developed to handle flow past complex geometries. The implementation of these numerical methods had to suit the architecture of the GPU, which is designed for massive multithreading. The details of this implementation will be described, along with strategies for performance optimization. Validation of the GPU-based solver was performed for fundamental bench-mark problems, and a performance assessment indicated that the solver was over an order-of-magnitude faster compared to a CPU. The GPU-based Navier-Stokes solver was used to study film-cooling flows via Large Eddy Simulation. In modern gas turbine engines, the film-cooling method is used to protect turbine blades from hot combustion gases. Therefore, understanding the physics of
NASA Technical Reports Server (NTRS)
Kirkpatrick, M. P.; Mansour, N. N.; Ackerman, A. S.; Stevens, D. E.
2003-01-01
The use of large eddy simulation, or LES, to study the atmospheric boundary layer dates back to the early 1970s when Deardor (1972) used a three-dimensional simulation to determine velocity and temperature scales in the convective boundary layer. In 1974 he applied LES to the problem of mixing layer entrainment (Deardor 1974) and in 1980 to the cloud-topped boundary layer (Deardor 1980b). Since that time the LES approach has been applied to atmospheric boundary layer problems by numerous authors. While LES has been shown to be relatively robust for simple cases such as a clear, convective boundary layer (Mason 1989), simulation of the cloud-topped boundary layer has proved more of a challenge. The combination of small length scales and anisotropic turbulence coupled with cloud microphysics and radiation effects places a heavy burden on the turbulence model, especially in the cloud-top region. Consequently, over the past few decades considerable effort has been devoted to developing turbulence models that are better able to parameterize these processes. Much of this work has involved taking parameterizations developed for neutral boundary layers and deriving corrections to account for buoyancy effects associated with the background stratification and local buoyancy sources due to radiative and latent heat transfer within the cloud (see Lilly 1962; Deardor 1980a; Mason 1989; MacVean & Mason 1990, for example). In this paper we hope to contribute to this effort by presenting a number of turbulence models in which the model coefficients are calculated dynamically during the simulation rather than being prescribed a priori.
Large Eddy Simulation of a Cavitating Multiphase Flow for Liquid Injection
NASA Astrophysics Data System (ADS)
Cailloux, M.; Helie, J.; Reveillon, J.; Demoulin, F. X.
2015-12-01
This paper presents a numerical method for modelling a compressible multiphase flow that involves phase transition between liquid and vapour in the context of gasoline injection. A discontinuous compressible two fluid mixture based on the Volume of Fluid (VOF) implementation is employed to represent the phases of liquid, vapour and air. The mass transfer between phases is modelled by standard models such as Kunz or Schnerr-Sauer but including the presence of air in the gas phase. Turbulence is modelled using a Large Eddy Simulation (LES) approach to catch instationnarities and coherent structures. Eventually the modelling approach matches favourably experimental data concerning the effect of cavitation on atomisation process.
Active Control of Combustion Instability in a Ramjet Using Large-Eddy Simulations
1992-09-01
INSTABILITY IN A RAMJET USING LARGE-EDDY SIMULATIONS S. Menon N.TIS CR.A,1i ()TiC TAB September 1992 1 , o -d 6 y ... . ... .. Prepared for t.Cft OFFICE OF...pressure oscillations initially show a large-aznplitude, low- frequency oscillatio that eventually decays o that a high-frequency oscillation at around...injec- tion were recently presented (M o ., 199•1) TP-276/02-91 10 4.1 Acsntlc Fedback Cesto l Active control through acoustic forcing was demonstrated
Nadiga, B T; Livescu, D
2007-04-01
We demonstrate, in the context of implicit-filtering large eddy simulations (LESs) of geostrophic turbulence, that while the attractor of a well-resolved statistically stationary turbulent flow can be reached in a coarsely resolved LES that is forced by the subgrid scale (SGS) terms diagnosed from the well-resolved computation, the attractor is generically unstable: the coarsely resolved LES system forced by the diagnosed SGS eddy terms has multiple attractors. This points to the importance of interpreting the diagnosed SGS forcing terms in a well-resolved computation or experiment from a combined physical-numerical point of view rather than from a purely physical point of view.
A normal stress subgrid-scale eddy viscosity model in large eddy simulation
NASA Technical Reports Server (NTRS)
Horiuti, K.; Mansour, N. N.; Kim, John J.
1993-01-01
The Smagorinsky subgrid-scale eddy viscosity model (SGS-EVM) is commonly used in large eddy simulations (LES) to represent the effects of the unresolved scales on the resolved scales. This model is known to be limited because its constant must be optimized in different flows, and it must be modified with a damping function to account for near-wall effects. The recent dynamic model is designed to overcome these limitations but is compositionally intensive as compared to the traditional SGS-EVM. In a recent study using direct numerical simulation data, Horiuti has shown that these drawbacks are due mainly to the use of an improper velocity scale in the SGS-EVM. He also proposed the use of the subgrid-scale normal stress as a new velocity scale that was inspired by a high-order anisotropic representation model. The testing of Horiuti, however, was conducted using DNS data from a low Reynolds number channel flow simulation. It was felt that further testing at higher Reynolds numbers and also using different flows (other than wall-bounded shear flows) were necessary steps needed to establish the validity of the new model. This is the primary motivation of the present study. The objective is to test the new model using DNS databases of high Reynolds number channel and fully developed turbulent mixing layer flows. The use of both channel (wall-bounded) and mixing layer flows is important for the development of accurate LES models because these two flows encompass many characteristic features of complex turbulent flows.
NASA Astrophysics Data System (ADS)
Nichkoohi, Ali Lohrasbi; Tousi, Abolghasem Mesgarpour
2014-10-01
Today, with nonstop improvement in computational power, Large-Eddy Simulation (LES) is a high demanding research tool for predicting engineering flows. Such flows on high pressure condition like diesel engines is extensively employed in ground and marine transportation, oblige the designer to control and predict toxic pollutants, while maintaining or improving their high thermal efficiency. This becomes one of the main challenging issues in decades. In the present work, numerical investigation of diffusion flame dynamics is performed in the near-field of high-Reynolds jet flow on high pressure condition encountered in diesel engine applications. This work discusses the implementation of Partially Stirred Reactor (PaSR) combustion model by the approaches of large eddy simulation (LES). The simulation results show that LES, in comparison with Reynolds-Averaged Navier-Stokes (RANS) simulation predicts and captures transient phenomena very well. These phenomena such as unsteadiness and curvature are inherent in the near-field of high Reynolds diffusion flame. The outcomes of this research are compared and validated by other researchers' results. Detailed comparisons of the statistics show good agreement with the corresponding experiments.
NASA Astrophysics Data System (ADS)
Cheng, Wan; Samtaney, Ravi
2013-11-01
We present results of large eddy simulation (LES) for a smooth-wall, zero-pressure-gradient turbulent boundary layer. We employ the stretched vortex sub-grid-scale model in the simulations augmented by a wall model. Our wall model is based on the virtual-wall model introduced by Chung & Pullin (J. Fluid Mech 2009). An essential component of their wall model is an ODE governing the local wall-normal velocity gradient obtained using inner-scaling ansatz. We test two variants of the wall model based on different similarity laws: one is based on a log-law and the other on a power-law. The specific form of the power law scaling utilized is that proposed by George & Castillo (Appl. Mech. Rev. 1997), dubbed the ``GC Law''. Turbulent inflow conditions are generated by a recycling method, and applying scaling laws corresponding to the two variants of the wall model, and a uniform way to determine the inlet friction velocity. For Reynolds number based on momentum thickness, Reθ , ranging from 104 to 1012 it is found that the velocity profiles generally follow the log law form rather than the power law. For large Reynolds number asymptotic behavior, LES based on different scaling laws the boundary layer thickness and turbulent intensities do not show much difference. Supported by a KAUST funded project on large eddy simulation of turbulent flows. The IBM Blue Gene P Shaheen at KAUST was utilized for the simulations.
NASA Technical Reports Server (NTRS)
Givi, Peyman; Madnia, Cyrus K.; Steinberger, C. J.; Frankel, S. H.
1992-01-01
The principal objective is to extend the boundaries within which large eddy simulations (LES) and direct numerical simulations (DNS) can be applied in computational analyses of high speed reacting flows. A summary of work accomplished during the last six months is presented.
NASA Astrophysics Data System (ADS)
Miller, Daniel J.; Zhang, Zhibo; Ackerman, Andrew S.; Platnick, Steven; Baum, Bryan A.
2016-04-01
Passive optical retrievals of cloud liquid water path (LWP), like those implemented for Moderate Resolution Imaging Spectroradiometer (MODIS), rely on cloud vertical profile assumptions to relate optical thickness (τ) and effective radius (re) retrievals to LWP. These techniques typically assume that shallow clouds are vertically homogeneous; however, an adiabatic cloud model is plausibly more realistic for shallow marine boundary layer cloud regimes. In this study a satellite retrieval simulator is used to perform MODIS-like satellite retrievals, which in turn are compared directly to the large-eddy simulation (LES) output. This satellite simulator creates a framework for rigorous quantification of the impact that vertical profile features have on LWP retrievals, and it accomplishes this while also avoiding sources of bias present in previous observational studies. The cloud vertical profiles from the LES are often more complex than either of the two standard assumptions, and the favored assumption was found to be sensitive to cloud regime (cumuliform/stratiform). Confirming previous studies, drizzle and cloud top entrainment of dry air are identified as physical features that bias LWP retrievals away from adiabatic and toward homogeneous assumptions. The mean bias induced by drizzle-influenced profiles was shown to be on the order of 5-10 g/m2. In contrast, the influence of cloud top entrainment was found to be smaller by about a factor of 2. A theoretical framework is developed to explain variability in LWP retrievals by introducing modifications to the adiabatic re profile. In addition to analyzing bispectral retrievals, we also compare results with the vertical profile sensitivity of passive polarimetric retrieval techniques.
Sen, Baris Ali; Menon, Suresh
2010-01-15
A large eddy simulation (LES) sub-grid model is developed based on the artificial neural network (ANN) approach to calculate the species instantaneous reaction rates for multi-step, multi-species chemical kinetics mechanisms. The proposed methodology depends on training the ANNs off-line on a thermo-chemical database representative of the actual composition and turbulence (but not the actual geometrical problem) of interest, and later using them to replace the stiff ODE solver (direct integration (DI)) to calculate the reaction rates in the sub-grid. The thermo-chemical database is tabulated with respect to the thermodynamic state vector without any reduction in the number of state variables. The thermo-chemistry is evolved by stand-alone linear eddy mixing (LEM) model simulations under both premixed and non-premixed conditions, where the unsteady interaction of turbulence with chemical kinetics is included as a part of the training database. The proposed methodology is tested in LES and in stand-alone LEM studies of three distinct test cases with different reduced mechanisms and conditions. LES of premixed flame-turbulence-vortex interaction provides direct comparison of the proposed ANN method against DI and ANNs trained on thermo-chemical database created using another type of tabulation method. It is shown that the ANN trained on the LEM database can capture the correct flame physics with accuracy comparable to DI, which cannot be achieved by ANN trained on a laminar premix flame database. A priori evaluation of the ANN generality within and outside its training domain is carried out using stand-alone LEM simulations as well. Results in general are satisfactory, and it is shown that the ANN provides considerable amount of memory saving and speed-up with reasonable and reliable accuracy. The speed-up is strongly affected by the stiffness of the reduced mechanism used for the computations, whereas the memory saving is considerable regardless. (author)
A Year-Long Large-Eddy Simulation of the Weather over the Cabauw Site
NASA Astrophysics Data System (ADS)
Siebesma, P.
2015-12-01
Results are presented of two large-eddy simulation (LES) runs of the entire year 2012 centered at the Cabauw observational supersite in the Netherlands. The LES is coupled to a regional weather model that provides the large-scale information. The simulations provide three-dimensional continuous time series of LES-generated turbulence and clouds, which can be compared in detail to the extensive observational dataset of Cabauw. The LES dataset is available from the authors on request. This type of LES setup has a number of advantages. First, it can provide a more statistical approach to the study of turbulent atmospheric flow than the more common case studies, since a diverse but representative set of conditions is covered, including numerous transitions. This has advantages in the design and evaluation of parameterizations. Second, the setup can provide valuable information on the quality of the LES model when applied to such a wide range of conditions. Last, it also provides the possibility to emulate observation techniques. This might help detect limitations and potential problems of a variety of measurement techniques. The LES runs are evaluated through a comparison with observations from the observational supersite and with results from the ''parent'' large-scale model. The long time series that are generated, in combination with information on the spatial structure, provide a novel opportunity to study time scales ranging from seconds to seasons. This facilitates a study of the power spectrum of horizontal and vertical wind speed variance to identify the dominant variance-containing time scales.
NASA Technical Reports Server (NTRS)
Menon, Suresh
2003-01-01
This report summarizes the progress made in the first 8 to 9 months of this research. The Lattice Boltzmann Equation (LBE) methodology for Large-eddy Simulations (LES) of microblowing has been validated using a jet-in-crossflow test configuration. In this study, the flow intake is also simulated to allow the interaction to occur naturally. The Lattice Boltzmann Equation Large-eddy Simulations (LBELES) approach is capable of capturing not only the flow features associated with the flow, such as hairpin vortices and recirculation behind the jet, but also is able to show better agreement with experiments when compared to previous RANS predictions. The LBELES is shown to be computationally very efficient and therefore, a viable method for simulating the injection process. Two strategies have been developed to simulate multi-hole injection process as in the experiment. In order to allow natural interaction between the injected fluid and the primary stream, the flow intakes for all the holes have to be simulated. The LBE method is computationally efficient but is still 3D in nature and therefore, there may be some computational penalty. In order to study a large number or holes, a new 1D subgrid model has been developed that will simulate a reduced form of the Navier-Stokes equation in these holes.
Large eddy simulations and direct numerical simulations of high speed turbulent reacting flows
NASA Technical Reports Server (NTRS)
Givi, P.; Frankel, S. H.; Adumitroaie, V.; Sabini, G.; Madnia, C. K.
1993-01-01
The primary objective of this research is to extend current capabilities of Large Eddy Simulations (LES) and Direct Numerical Simulations (DNS) for the computational analyses of high speed reacting flows. Our efforts in the first two years of this research have been concentrated on a priori investigations of single-point Probability Density Function (PDF) methods for providing subgrid closures in reacting turbulent flows. In the efforts initiated in the third year, our primary focus has been on performing actual LES by means of PDF methods. The approach is based on assumed PDF methods and we have performed extensive analysis of turbulent reacting flows by means of LES. This includes simulations of both three-dimensional (3D) isotropic compressible flows and two-dimensional reacting planar mixing layers. In addition to these LES analyses, some work is in progress to assess the extent of validity of our assumed PDF methods. This assessment is done by making detailed companions with recent laboratory data in predicting the rate of reactant conversion in parallel reacting shear flows. This report provides a summary of our achievements for the first six months of the third year of this program.
Effects of Eddy Viscosity on Time Correlations in Large Eddy Simulation
NASA Technical Reports Server (NTRS)
He, Guowei; Rubinstein, R.; Wang, Lian-Ping; Bushnell, Dennis M. (Technical Monitor)
2001-01-01
Subgrid-scale (SGS) models for large. eddy simulation (LES) have generally been evaluated by their ability to predict single-time statistics of turbulent flows such as kinetic energy and Reynolds stresses. Recent application- of large eddy simulation to the evaluation of sound sources in turbulent flows, a problem in which time, correlations determine the frequency distribution of acoustic radiation, suggest that subgrid models should also be evaluated by their ability to predict time correlations in turbulent flows. This paper compares the two-point, two-time Eulerian velocity correlation evaluated from direct numerical simulation (DNS) with that evaluated from LES, using a spectral eddy viscosity, for isotropic homogeneous turbulence. It is found that the LES fields are too coherent, in the sense that their time correlations decay more slowly than the corresponding time. correlations in the DNS fields. This observation is confirmed by theoretical estimates of time correlations using the Taylor expansion technique. Tile reason for the slower decay is that the eddy viscosity does not include the random backscatter, which decorrelates fluid motion at large scales. An effective eddy viscosity associated with time correlations is formulated, to which the eddy viscosity associated with energy transfer is a leading order approximation.
Sen, Baris Ali; Menon, Suresh; Hawkes, Evatt R.
2010-03-15
Large eddy simulation (LES) of a non-premixed, temporally evolving, syngas/air flame is performed with special emphasis on speeding-up the sub-grid chemistry computations using an artificial neural networks (ANN) approach. The numerical setup for the LES is identical to a previous direct numerical simulation (DNS) study, which reported considerable local extinction and reignition physics, and hence, offers a challenging test case. The chemical kinetics modeling with ANN is based on a recent approach, and replaces the stiff ODE solver (DI) to predict the species reaction rates in the subgrid linear eddy mixing (LEM) model based LES (LEMLES). In order to provide a comprehensive evaluation of the current approach, additional information on conditional statistics of some of the key species and temperature are extracted from the previous DNS study and are compared with the LEMLES using ANN (ANN-LEMLES, hereafter). The results show that the current approach can detect the correct extinction and reignition physics with reasonable accuracy compared to the DNS. The syngas flame structure and the scalar dissipation rate statistics obtained by the current ANN-LEMLES are provided to further probe the flame physics. It is observed that, in contrast to H{sub 2}, CO exhibits a smooth variation within the region enclosed by the stoichiometric mixture fraction. The probability density functions (PDFs) of the scalar dissipation rates calculated based on the mixture fraction and CO demonstrate that the mean value of the PDF is insensitive to extinction and reignition. However, this is not the case for the scalar dissipation rate calculated by the OH mass fraction. Overall, ANN provides considerable computational speed-up and memory saving compared to DI, and can be used to investigate turbulent flames in a computationally affordable manner. (author)
Modeling flow around bluff bodies and predicting urban dispersion using large eddy simulation.
Tseng, Yu-Heng; Meneveau, Charles; Parlange, Marc B
2006-04-15
Modeling air pollutant transport and dispersion in urban environments is especially challenging due to complex ground topography. In this study, we describe a large eddy simulation (LES) tool including a new dynamic subgrid closure and boundary treatment to model urban dispersion problems. The numerical model is developed, validated, and extended to a realistic urban layout. In such applications fairly coarse grids must be used in which each building can be represented using relatively few grid-points only. By carrying out LES of flow around a square cylinder and of flow over surface-mounted cubes, the coarsest resolution required to resolve the bluff body's cross section while still producing meaningful results is established. Specifically, we perform grid refinement studies showing that at least 6-8 grid points across the bluff body are required for reasonable results. The performance of several subgrid models is also compared. Although effects of the subgrid models on the mean flow are found to be small, dynamic Lagrangian models give a physically more realistic subgrid-scale (SGS) viscosity field. When scale-dependence is taken into consideration, these models lead to more realistic resolved fluctuating velocities and spectra. These results set the minimum grid resolution and subgrid model requirements needed to apply LES in simulations of neutral atmospheric boundary layer flow and scalar transport over a realistic urban geometry. The results also illustrate the advantages of LES over traditional modeling approaches, particularly its ability to take into account the complex boundary details and the unsteady nature of atmospheric boundary layer flow. Thus LES can be used to evaluate probabilities of extreme events (such as probabilities of exceeding threshold pollutant concentrations). Some comments about computer resources required for LES are also included.
Numerical errors in the computation of subfilter scalar variance in large eddy simulations
NASA Astrophysics Data System (ADS)
Kaul, C. M.; Raman, V.; Balarac, G.; Pitsch, H.
2009-05-01
Subfilter scalar variance is a key quantity for scalar mixing at the small scales of a turbulent flow and thus plays a crucial role in large eddy simulation of combustion. While prior studies have mainly focused on the physical aspects of modeling subfilter variance, the current work discusses variance models in conjunction with the numerical errors due to their implementation using finite-difference methods. A priori tests on data from direct numerical simulation of homogeneous turbulence are performed to evaluate the numerical implications of specific model forms. Like other subfilter quantities, such as kinetic energy, subfilter variance can be modeled according to one of two general methodologies. In the first of these, an algebraic equation relating the variance to gradients of the filtered scalar field is coupled with a dynamic procedure for coefficient estimation. Although finite-difference methods substantially underpredict the gradient of the filtered scalar field, the dynamic method is shown to mitigate this error through overestimation of the model coefficient. The second group of models utilizes a transport equation for the subfilter variance itself or for the second moment of the scalar. Here, it is shown that the model formulation based on the variance transport equation is consistently biased toward underprediction of the subfilter variance. The numerical issues in the variance transport equation stem from discrete approximations to chain-rule manipulations used to derive convection, diffusion, and production terms associated with the square of the filtered scalar. These approximations can be avoided by solving the equation for the second moment of the scalar, suggesting that model's numerical superiority.
Large eddy simulations of a transcritical round jet submitted to transverse acoustic modulation
NASA Astrophysics Data System (ADS)
Gonzalez-Flesca, M.; Schmitt, T.; Ducruix, S.; Candel, S.
2016-05-01
This article reports numerical computations of a turbulent round jet of transcritical fluid (low temperature nitrogen injected under high pressure conditions) surrounded by the same fluid at rest under supercritical conditions (high temperature and high pressure) and submitted to transverse acoustic modulations. The numerical framework relies on large eddy simulation in combination with a real-gas description of thermodynamics and transport properties. A stationary acoustic field is obtained by modulating the normal acoustic velocity at the lateral boundaries of the computational domain. This study specifically focuses on the interaction of the jet with the acoustic field to investigate how the round transcritical jet changes its shape and mixes with the surrounding fluid. Different modulation amplitudes and frequencies are used to sweep a range of conditions. When the acoustic field is established in the domain, the jet length is notably reduced and the jet is flattened in the spanwise direction. Two regimes of oscillation are identified: for low Strouhal numbers a large amplitude motion is observed, while for higher Strouhal numbers the jet oscillates with a small amplitude around the injector axis. The minimum length is obtained for a Strouhal number of 0.3 and the jet length increases with increasing Strouhal numbers after reaching this minimum value. The mechanism of spanwise deformation is shown to be linked with dynamical effects resulting from reduction of the pressure in the transverse direction in relation with increased velocities on the two sides of the jet. A propagative wave is then introduced in the domain leading to similar effects on the jet, except that a bending is also observed in the acoustic propagation direction. A kinematic model, combining hydrodynamic and acoustic contributions, is derived in a second stage to represent the motion of the jet centerline. This model captures details of the numerical simulations quite well. These various
NASA Astrophysics Data System (ADS)
El-Asrag, Hossam A.; Braun, Markus; Masri, Assaad R.
2016-07-01
The paper presents Large Eddy Simulations (LESs) for the Sydney ethanol piloted turbulent dilute spray flames ETF2, ETF6, and ETF7. The Flamelet Generated Manifold (FGM) approach is employed to predict mixing and burning of the evaporating fuel droplets. A methodology to match the experimental inflow spray profiles is presented. The spray statistical time-averaged results show reasonable agreement with mean and RMS data. The Particle Size Distribution (PSD) shows a good match downstream of the nozzle exit and up to x/D = 10. At x/D = 20 and 30 the PSD is under-predicted for droplets with mean diameter D10 > 20μm and over-predicted for the smaller size droplets. The simulations reasonably predict the reported mean flame structure and length. The effect of increasing the carrier velocity (ETF2-ETF7) or decreasing the liquid fuel injection mass flow rate (ETF2-ETF6) is found to result in a leaner, shorter flame and stronger spray-flow interactions. Higher tendency to local extinction is observed for ETF7 which is closer to blow-off compared to ETF2 and has higher scalar dissipation rates, higher range of Stokes number, and faster droplet response. The possible sources of LES-FGM deviations from the measurements are discussed and highlighted. In particular, the spray time-averaged statistical error contribution is quantified and the impact of the inflow uncertainty is studied. Sensitivity analysis to the pre-vaporized nozzle fuel mass fraction show that such small inflow perturbations (by ± 2% for the ETF2 flame) have a strong impact on the flame structure, and the droplets' dynamics. Conditional scatter plots show that the flame exhibits wide range of mixing conditions and bimodal mixing lines particularly at upstream locations (x/D < 20), where the injected droplets are still penetrating the centerline. This is relaxed further downstream as droplets gradually evaporate and burn in a diffusion like mode.
Large-eddy simulation of dense gas dispersion over a simplified urban area
NASA Astrophysics Data System (ADS)
Wingstedt, E. M. M.; Osnes, A. N.; Åkervik, E.; Eriksson, D.; Reif, B. A. Pettersson
2017-03-01
Dispersion of neutral and dense gas over a simplified urban area, comprising four cubes, has been investigated by the means of large-eddy simulations (LES). The results have been compared to wind tunnel experiments and both mean and fluctuating quantities of velocity and concentration are in very good agreement. High-quality inflow profiles are necessary to achieve physically realistic LES results. In this study, profiles matching the atmospheric boundary layer flow in the wind tunnel, are generated by means of a separate precursor simulation. Emission of dense gas dramatically alters the flow in the near source region and introduces an upstream dispersion. The resulting dispersion patterns of neutral and dense gas differ significantly, where the plume in the latter case is wider and shallower. The dense gas is highly affected by the cube array, which seems to act as a barrier, effectively deflecting the plume. This leads to higher concentrations outside of the array than inside. On the contrary, the neutral gas plume has a Gaussian-type shape, with highest concentrations along the centreline. It is found that the dense gas reduces the vertical and spanwise turbulent momentum transport and, as a consequence, the turbulence kinetic energy. The reduction coincides with the area where the gradient Richardson number exceeds its critical value, i.e. where the flow may be characterized as stably stratified. Interestingly, this region does not correspond to where the concentration of dense gas is the highest (close to the ground), as this is also where the largest velocity gradients are to be found. Instead there is a layer in the middle of the dense gas cloud where buoyancy is dynamically dominant.
Cut-cell method based large-eddy simulation of tip-leakage flow
NASA Astrophysics Data System (ADS)
Pogorelov, Alexej; Meinke, Matthias; Schröder, Wolfgang
2015-07-01
The turbulent low Mach number flow through an axial fan at a Reynolds number of 9.36 × 105 based on the outer casing diameter is investigated by large-eddy simulation. A finite-volume flow solver in an unstructured hierarchical Cartesian setup for the compressible Navier-Stokes equations is used. To account for sharp edges, a fully conservative cut-cell approach is applied. A newly developed rotational periodic boundary condition for Cartesian meshes is introduced such that the simulations are performed just for a 72° segment, i.e., the flow field over one out of five axial blades is resolved. The focus of this numerical analysis is on the development of the vortical flow structures in the tip-gap region. A detailed grid convergence study is performed on four computational grids with 50 × 106, 250 × 106, 1 × 109, and 1.6 × 109 cells. Results of the instantaneous and the mean fan flow field are thoroughly analyzed based on the solution with 1 × 109 cells. High levels of turbulent kinetic energy and pressure fluctuations are generated by a tip-gap vortex upstream of the blade, the separating vortices inside the tip gap, and a counter-rotating vortex on the outer casing wall. An intermittent interaction of the turbulent wake, generated by the tip-gap vortex, with the downstream blade, leads to a cyclic transition with high pressure fluctuations on the suction side of the blade and a decay of the tip-gap vortex. The disturbance of the tip-gap vortex results in an unsteady behavior of the turbulent wake causing the intermittent interaction. For this interaction and the cyclic transition, two dominant frequencies are identified which perfectly match with the characteristic frequencies in the experimental sound power level and therefore explain their physical origin.
VS-FMDF and EPVS-FMDF for large eddy simulation of turbulent flows
NASA Astrophysics Data System (ADS)
Nik, Mehdi B.
The first part of this dissertation is concerned with implementation of the joint “velocity-scalar filtered mass density function” (VS-FMDF) methodology for large eddy simulation (LES) of Sandia Flame D. This is a turbulent piloted non-premixed methane jet flame. In VS-FMDF, the effects of the subgrid scale chemical reaction and convection appear in closed forms. The modeled transport equation for the VS-FMDF is solved by a hybrid finite-difference/Monte Carlo scheme. For this flame (which exhibits little local extinction), a flamelet model is employed to relate the instantaneous composition to the mixture fraction. The LES predictions are compared with experimental data. It is shown that the methodology captures important features of the flame as observed experimentally. In the second part of this dissertation, the joint “energy-pressure-velocity-scalar filtered mass density function” (EPVS-FMDF) is developed as a new subgrid scale (SGS) model for LES of high-speed turbulent flows. In this model, the effects of compressibility are taken into account by including two additional thermodynamic variables: the pressure and the internal energy. The EPVS-FMDF is obtained by solving its modeled transport equation, in which the effect of convection appears in a closed form. The modeled EPVS-FMDF is employed for LES of a temporally developing mixing layer. Keywords: Large eddy simulation, filtered density function, turbulent reacting flows.
NASA Astrophysics Data System (ADS)
Li, Wenhai; Alabi, Ken; Ladeinde, Foluso; Lou, Zhipeng
2016-11-01
In this study, three turbulence-chemistry interaction models: the flamelet, eddy-breakup (EBU), and laminar chemistry models, are compared in the large-eddy simulation (LES) of high speed combustion. It is the case that the simple models still find extensive applications, with fairly acceptable results in many instances. The standard flamelet model developed for low Mach number flows has been modified to account for compressibility effects in supersonic combustion. The comparison exercise has been based on the bluff-body flames that occur under high-speed conditions.
Large-eddy simulation of a backward facing step flow using a least-squares spectral element method
NASA Technical Reports Server (NTRS)
Chan, Daniel C.; Mittal, Rajat
1996-01-01
We report preliminary results obtained from the large eddy simulation of a backward facing step at a Reynolds number of 5100. The numerical platform is based on a high order Legendre spectral element spatial discretization and a least squares time integration scheme. A non-reflective outflow boundary condition is in place to minimize the effect of downstream influence. Smagorinsky model with Van Driest near wall damping is used for sub-grid scale modeling. Comparisons of mean velocity profiles and wall pressure show good agreement with benchmark data. More studies are needed to evaluate the sensitivity of this method on numerical parameters before it is applied to complex engineering problems.
Sub-grid scale modeling for large eddy simulations in analysis of shock-turbulence interactions
NASA Astrophysics Data System (ADS)
Buckingham, A. C.; Grun, J.
1992-12-01
We continue to study the influence of dynamic shock wave interactions on turbulence. The interactions may significantly increase turbulent energy and Reynolds stress. Strong support for tensor amplification is supplied by the sharp, transiently distorted strain field in the immediate neighborhood of the shock. Beyond this, there develops a gradual decay to a new, more modestly amplified state relative to the pre-shocked level. Practical interest is centered on the significantly altered, albeit shock localized, post-shock turbulent kinetic energy, eddy transport, eddy component mixing and diffusion, wall shear, and heat transfer. In the shock interaction and post-shock region, compressible two dimensional large eddy simulations (LES) are applied. A compressibility modified Smagorinsky model is adapted to represent the non-resolved sub-grid scales. Favre mass-weighted average space and time discretized compressible Navier-Stokes equations are used to represent the explicitly resolved grid scale motions. Predicted amplification levels, modal energy partition, shock translational to turbulence kinetic energy transfer, and viscoelastic response of turbulence to shock interaction are examined in comparison with available experimental evidence. A two-band dynamic eddy viscosity model representing the unresolved subgrid scale field is a possible replacement for the Smagorinsky model. Improvement is sought for predictions in the near wall region, under the influence of stochastic subgrid scale backscatter, and in the neighborhood of the shock. Wall-bounded supersonic compression comer flow experiments and hypersonic cylindrical shock wave turbulence interaction experiments are used as trial cases for test and comparison of the two classes of subgrid scale models.
Large eddy simulation of interacting barchan dunes in a steady, unidirectional flow
NASA Astrophysics Data System (ADS)
Omidyeganeh, Mohammad; Piomelli, Ugo; Christensen, Kenneth T.; Best, James L.
2013-12-01
Barchan dunes are bed forms found in many sedimentary environments with a limited supply of sediment, and may occur in isolation or in more complex dune fields. Barchans have a crescentic planform morphology with horns elongated in the downflow direction. To study flow over barchan dunes, we performed large eddy simulations in a channel with different interdune spacings at a flow Reynolds number, Re∞≃26,000 (based on the free stream velocity and channel height). The largest interdune spacing (2.38λ, where λ is the wavelength of the barchan dune) presents similar characteristics to a solitary dune in isolation, indicating that, at this distance, the sheltering effect of the upstream dune is rather weak. Barchan dunes induce two counterrotating streamwise vortices, one along each of the horns, which direct high-momentum fluid toward the symmetry plane and low-momentum fluid near the bed away from the centerline. The flow close to the centerline plane separates at the crest, but away from the centerline plane, and along the horns, flow separation occurs intermittently. The flow in the separation bubble is directed toward the horns and leaves the dune at its tips. The internal boundary layer developing on the bed downstream of the reattachment region develops similarly for various interdune spacings; the development slows down 14.5 dune heights downstream. The turbulent kinetic energy budgets show the importance of pressure transport and mean flow advection in transferring energy from the overlying wake layer to the internal boundary layer over the stoss side. For closely spaced dunes, the bed shear stress is 30% larger than at the largest spacing, and instantaneous coherent high- and low-speed streaks are shorter but stronger. Coherent eddies in the separated shear layer are generated more frequently for smaller interdune spacing, where they move farther away from the bed, toward the free surface, and remain located between the horns.
NASA Astrophysics Data System (ADS)
Maurer, K. D.; Bohrer, G.; Ivanov, V. Y.
2014-11-01
Surface roughness parameters are at the core of every model representation of the coupling and interactions between land-surface and atmosphere, and are used in every model of surface fluxes. However, most models assume these parameters to be a fixed property of plant functional type and do not vary them in response to spatial or temporal changes to canopy structure. In part, this is due to the difficulty of reducing the complexity of canopy structure and its spatiotemporal dynamic and heterogeneity to less than a handful of parameters describing its effects of atmosphere-surface interactions. In this study we use large-eddy simulations to explore, in silico, the effects of canopy structure characteristics on surface roughness parameters. We performed a virtual experiment to test the sensitivity of resolved surface roughness to four axes of canopy structure: (1) leaf area index, (2) the vertical profile of leaf density, (3) canopy height, and (4) canopy gap fraction. We found roughness parameters to be highly variable, but were able to find positive relationships between displacement height and maximum canopy height, aerodynamic canopy height and maximum canopy height and leaf area index, and eddy-penetration depth and gap fraction. We also found negative relationships between aerodynamic canopy height and gap fraction, and between eddy-penetration depth and maximum canopy height and leaf area index. Using a decade of wind and canopy structure observations in a site in Michigan, we tested the effectiveness of our model-resolved parameters in predicting the frictional velocity over heterogeneous and disturbed canopies. We compared it with three other semi-empirical models and with a decade of meteorological observations. We found that parameterizations with fixed representations of roughness performed relatively well. Nonetheless, some empirical approaches that incorporate seasonal and inter-annual changes to the canopy structure performed even better than models
Large-Eddy Simulations of Trade Wind Cumuli: Investigation of Aerosol Indirect Effects.
NASA Astrophysics Data System (ADS)
Xue, Huiwen; Feingold, Graham
2006-06-01
The effects of aerosol on warm trade cumulus clouds are investigated using a large-eddy simulation with size-resolved cloud microphysics. It is shown that, as expected, increases in aerosols cause a reduction in precipitation and an increase in the cloud-averaged liquid water path (LWP). However, for the case under study, cloud fraction, cloud size, cloud-top height, and depth decrease in response to increasing aerosol concentration, contrary to accepted hypotheses associated with the second aerosol indirect effect. It is found that the complex responses of clouds to aerosols are determined by competing effects of precipitation and droplet evaporation associated with entrainment. As aerosol concentration increases, precipitation suppression tends to maintain the clouds and lead to higher cloud LWP, whereas cloud droplets become smaller and evaporate more readily, which tends to dissipate the clouds and leads to lower cloud fraction, cloud size, and depth. An additional set of experiments with higher surface latent heat flux, and hence higher LWP and drizzle rate, was also performed. Changes in cloud properties due to aerosols have the same trends as in the base runs, although the magnitudes of the changes are larger. Evidence for significant stabilization (or destabilization) of the subcloud layer due to drizzle is not found, mainly because drizzling clouds cover only a small fraction of the domain. It is suggested that cloud fraction may only increase with increasing aerosol loading for larger clouds that are less susceptible to entrainment and evaporation. Finally, it is noted that at any given aerosol concentration the dynamical variability in bulk cloud parameters such as LWP tends to be larger than the aerosol-induced changes in these parameters, indicating that the second aerosol indirect effect may be hard to measure in this cloud type. The variability in cloud optical depth is, however, dominated by changes in aerosol, rather than dynamics.
Large Eddy Simulation of Pollen Transport in the Atmospheric Boundary Layer
NASA Astrophysics Data System (ADS)
Chamecki, Marcelo; Meneveau, Charles; Parlange, Marc B.
2007-11-01
The development of genetically modified crops and questions about cross-pollination and contamination of natural plant populations enhanced the importance of understanding wind dispersion of airborne pollen. The main objective of this work is to simulate the dispersal of pollen grains in the atmospheric surface layer using large eddy simulation. Pollen concentrations are simulated by an advection-diffusion equation including gravitational settling. Of great importance is the specification of the bottom boundary conditions characterizing the pollen source over the canopy and the deposition process everywhere else. The velocity field is discretized using a pseudospectral approach. However the application of the same discretization scheme to the pollen equation generates unphysical solutions (i.e. negative concentrations). The finite-volume bounded scheme SMART is used for the pollen equation. A conservative interpolation scheme to determine the velocity field on the finite volume surfaces was developed. The implementation is validated against field experiments of point source and area field releases of pollen.
Large-eddy simulation of flow around an airfoil on a structured mesh
NASA Technical Reports Server (NTRS)
Kaltenbach, Hans-Jakob; Choi, Haecheon
1995-01-01
The diversity of flow characteristics encountered in a flow over an airfoil near maximum lift taxes the presently available statistical turbulence models. This work describes our first attempt to apply the technique of large-eddy simulation to a flow of aeronautical interest. The challenge for this simulation comes from the high Reynolds number of the flow as well as the variety of flow regimes encountered, including a thin laminar boundary layer at the nose, transition, boundary layer growth under adverse pressure gradient, incipient separation near the trailing edge, and merging of two shear layers at the trailing edge. The flow configuration chosen is a NACA 4412 airfoil near maximum lift. The corresponding angle of attack was determined independently by Wadcock (1987) and Hastings & Williams (1984, 1987) to be close to 12 deg. The simulation matches the chord Reynolds number U(sub infinity)c/v = 1.64 x 10(exp 6) of Wadcock's experiment.
Large-Eddy Simulations and Lidar Measurements of Vortex-Pair Breakup in Aircraft Wakes
NASA Technical Reports Server (NTRS)
Lewellen, D. C.; Lewellen, W. S.; Poole, L. R.; DeCoursey, R. J.; Hansen, G. M.; Hostetler, C. A.; Kent, G. S.
1998-01-01
Results of large-eddy simulations of an aircraft wake are compared with results from ground-based lidar measurements made at NASA Langley Research Center during the Subsonic Assessment Near-Field Interaction Flight Experiment field tests. Brief reviews of the design of the field test for obtaining the evolution of wake dispersion behind a Boeing 737 and of the model developed for simulating such wakes are given. Both the measurements and the simulations concentrate on the period from a few seconds to a few minutes after the wake is generated, during which the essentially two-dimensional vortex pair is broken up into a variety of three-dimensional eddies. The model and experiment show similar distinctive breakup eddies induced by the mutual interactions of the vortices, after perturbation by the atmospheric motions.
Estimating the effective Reynolds number in implicit large-eddy simulation.
Zhou, Ye; Grinstein, Fernando F; Wachtor, Adam J; Haines, Brian M
2014-01-01
In implicit large-eddy simulation (ILES), energy-containing large scales are resolved, and physics capturing numerics are used to spatially filter out unresolved scales and to implicitly model subgrid scale effects. From an applied perspective, it is highly desirable to estimate a characteristic Reynolds number (Re)-and therefore a relevant effective viscosity-so that the impact of resolution on predicted flow quantities and their macroscopic convergence can usefully be characterized. We argue in favor of obtaining robust Re estimates away from the smallest scales of the simulated flow-where numerically controlled dissipation takes place and propose a theoretical basis and framework to determine such measures. ILES examples include forced turbulence as a steady flow case, the Taylor-Green vortex to address transition and decaying turbulence, and simulations of a laser-driven reshock experiment illustrating a fairly complex turbulence problem of current practical interest.
Shetty, Dinesh A.; Frankel, Steven H.
2013-01-01
Computational fluid dynamics (CFD) simulations are becoming a reliable tool to understand hemodynamics, disease progression in pathological blood vessels and to predict medical device performance. Immersed boundary method (IBM) emerged as an attractive methodology because of its ability to efficiently handle complex moving and rotating geometries on structured grids. However, its application to study blood flow in complex, branching, patient-specific anatomies is scarce. This is because of the dominance of grid nodes in the exterior of the fluid domain over the useful grid nodes in the interior, rendering an inevitable memory and computational overhead. In order to alleviate this problem, we propose a novel multiblock based IBM that preserves the simplicity and effectiveness of the IBM on structured Cartesian meshes and enables handling of complex, anatomical geometries at a reduced memory overhead by minimizing the grid nodes in the exterior of the fluid domain. As pathological and medical device hemodynamics often involve complex, unsteady transitional or turbulent flow fields, a scale resolving turbulence model such as large eddy simulation (LES) is used in the present work. The proposed solver (here after referred as WenoHemo), is developed by enhancing an existing in-house high order incompressible flow solver that was previously validated for its numerics and several LES models by Shetty et al. [Journal of Computational Physics 2010; 229 (23), 8802-8822]. In the present work, WenoHemo is systematically validated for additional numerics introduced, such as IBM and the multiblock approach, by simulating laminar flow over a sphere and laminar flow over a backward facing step respectively. Then, we validate the entire solver methodology by simulating laminar and transitional flow in abdominal aortic aneurysm (AAA). Finally, we perform blood flow simulations in the challenging clinically relevant thoracic aortic aneurysm (TAA), to gain insights into the type of
Anupindi, Kameswararao; Delorme, Yann; Shetty, Dinesh A; Frankel, Steven H
2013-12-01
Computational fluid dynamics (CFD) simulations are becoming a reliable tool to understand hemodynamics, disease progression in pathological blood vessels and to predict medical device performance. Immersed boundary method (IBM) emerged as an attractive methodology because of its ability to efficiently handle complex moving and rotating geometries on structured grids. However, its application to study blood flow in complex, branching, patient-specific anatomies is scarce. This is because of the dominance of grid nodes in the exterior of the fluid domain over the useful grid nodes in the interior, rendering an inevitable memory and computational overhead. In order to alleviate this problem, we propose a novel multiblock based IBM that preserves the simplicity and effectiveness of the IBM on structured Cartesian meshes and enables handling of complex, anatomical geometries at a reduced memory overhead by minimizing the grid nodes in the exterior of the fluid domain. As pathological and medical device hemodynamics often involve complex, unsteady transitional or turbulent flow fields, a scale resolving turbulence model such as large eddy simulation (LES) is used in the present work. The proposed solver (here after referred as WenoHemo), is developed by enhancing an existing in-house high order incompressible flow solver that was previously validated for its numerics and several LES models by Shetty et al. [Journal of Computational Physics 2010; 229 (23), 8802-8822]. In the present work, WenoHemo is systematically validated for additional numerics introduced, such as IBM and the multiblock approach, by simulating laminar flow over a sphere and laminar flow over a backward facing step respectively. Then, we validate the entire solver methodology by simulating laminar and transitional flow in abdominal aortic aneurysm (AAA). Finally, we perform blood flow simulations in the challenging clinically relevant thoracic aortic aneurysm (TAA), to gain insights into the type of
NASA Astrophysics Data System (ADS)
Liu, S.; Shao, Y.; Hintz, M.
2011-12-01
In this study, we present a fully coupled large-eddy atmosphere and land-surface simulation model (LES-ALM) which integrates a radiation parameterization, a large-eddy flow model for the atmospheric boundary layer with explicit consideration of the canopy drag effect, and a land surface model to investigate the atmosphere and land surface interactions over heterogeneous areas. A 12-hour model simulation is carried out and the model performance is validated with the field measurements collected during the FLUXPAT experiment of the German SFB/TR32 project "Patterns in Soil-Vegetation-Atmosphere System: Monitoring, Modeling and Data Assimilation". The simulated surface fluxes, near-surface atmospheric state variables, soil temperature, and the vertical profiles of atmospheric boundary layer quantities are compared with the data. There is a good agreement between the model simulations and the observation at both footprint- and domain-averaged scales. This suggests that the fully coupled model can be used as a tool for studying the complex atmosphere and land-surface interactions.
NASA Astrophysics Data System (ADS)
Cerminara, Matteo; Esposti Ongaro, Tomaso; Neri, Augusto
2016-10-01
In the framework of the IAVCEI (International Association of Volcanology and Chemistry of the Earth Interior) intercomparison study on volcanic plume models, we present three-dimensional (3D) numerical simulations carried out with the ASHEE (ASH Equilibrium Eulerian) model. The ASHEE model solves the compressible balance equations of mass, momentum, and enthalpy of a gas-particle mixture and is able to describe the kinematic decoupling for particles characterized by Stokes number (i.e., the ratio between the particle equilibrium time and the flow characteristic time) lower than 0.2 (or particles smaller than about 1 mm). The computational fluid dynamic model is designed to accurately simulate a turbulent flow field using a Large Eddy Simulation approach, and is thus suited to analyze the role of particle non-equilibrium in the dynamics of turbulent volcanic plumes. The two reference scenarios analyzed correspond to a weak (mass eruption rate = 1.5 * 106 kg/s) and a strong volcanic plume (mass eruption rate = 1.5 * 109 kg/s) in absence of wind. For each scenario, we compare the 3D results, averaged in space and time, with theoretical results obtained from integral plume models. Such an approach enables quantitative evaluation of the effects of grid resolution and the subgrid-scale turbulence model, and the influence of gas-particle non-equilibrium processes on the large-scale plume dynamics. We thus demonstrate that the uncertainty on the numerical solution associated with such effects can be significant (of the order of 20%), but still lower than that typically associated with input data and integral model approximations. In the Weak Plume case, 3D results are consistent with the predictions of integral models in the jet and plume regions, with an entrainment coefficient around 0.10 in the plume region. In the Strong Plume case, the self-similarity assumption is less appropriate and the entrainment coefficient in the plume region is more unstable, with an average
Modeling Persistent Contrails in a Large Eddy Simulation and a Global Climate Model
NASA Astrophysics Data System (ADS)
Naiman, A. D.; Lele, S. K.; Wilkerson, J. T.; Jacobson, M. Z.
2009-12-01
Two models of aircraft condensation trail (contrail) evolution have been developed: a high resolution, three-dimensional Large Eddy Simulation (LES) and a simple, low-cost Subgrid Contrail Model (SCM). The LES model was used to simulate contrail development from one second to twenty minutes after emission by the passing aircraft. The LES solves the incompressible Navier-Stokes equations with a Boussinesq approximation for buoyancy forces on an unstructured periodic grid. The numerical scheme uses a second-order finite volume spatial discretization and an implicit fractional-step method for time advancement. Lagrangian contrail particles grow according to a microphysical model of ice deposition and sublimation. The simulation is initialized with the wake of a commercial jet superimposed on a decaying turbulence field. The ambient atmosphere is stable and has a supersaturated relative humidity with respect to ice. Grid resolution is adjusted during the simulation, allowing higher resolution of flow structures than previous studies. We present results of a parametric study in which ambient turbulence levels, vertical wind shear, and aircraft type were varied. We find that higher levels of turbulence and shear promote mixing of aircraft exhaust with supersaturated ambient air, resulting in faster growth of ice and wider dispersion of the exhaust plume. The SCM was developed as a parameterization of contrail dynamics intended for use within a global model that examines the effect of commercial aviation on climate. The SCM provides an analytic solution to the changes in size and shape of a contrail cross-section over time due to global model grid-scale vertical wind shear and turbulence parameters. The model was derived from the physical equations of motion of a plume in a sheared, turbulent environment. Approximations based on physical reasoning and contrail observations allowed these equations to be reduced to simple ordinary differential equations in time with exact
Large-eddy simulation of a three-dimensional compressible tornado vortex
NASA Astrophysics Data System (ADS)
Xia, Jianjun
Large-Eddy simulation (LES) has become a very useful tool for investigating tornadoes, one of the more spectacular and destructive phenomena of nature. A new three-dimensional, unsteady, compressible model is generated to determine how significant the differences between compressible and incompressible LES simulations may be in some extremely violent tornadoes. In particular, this study seeks to determine how high the Mach number within the tornado may become before significant changes occur due to compressibility, and what the major effects of these changes may be expected to be. After developing and verifying the compressible LES model, three different patterns of tornadic corner flows cataloged by local swirl ratio are simulated under quasisteady conditions for different Mach numbers. Simulation comparisons have demonstrated that the compressibility effects are different for different corner flow structures. At peak average Mach numbers less than approximately 0.5, the compressibility effects are not very significant and may be accounted for to leading order by an appropriate isentropic transformation applied to the incompressible results. As the maximum Mach number is increased to more than 1.0, the compressibility effects for low-swirl-ratio corner flows are dramatic, with significant increase in peak vertical velocity and the height of the vortex breakdown above the surface. The effects are much weaker for medium swirl conditions, and expected to be still weaker for high swirl corner flow where the effects are essentially limited to influencing the secondary vortices. In general, compressibility effects would not change the basic dynamics of tornadic corner flows even if Mach numbers greater than one are achieved. This study also shows that during the sharp temporal overshoot in near-surface intensity that can sometimes occur during a tornado's evolution, the maximum pressure drop will tend to be restricted by supersonic velocities, and thus limit the
Martian dust devil statistics from high-resolution large-eddy simulations
NASA Astrophysics Data System (ADS)
Nishizawa, Seiya; Odaka, Masatsugu; Takahashi, Yoshiyuki O.; Sugiyama, Ko-ichiro; Nakajima, Kensuke; Ishiwatari, Masaki; Takehiro, Shin-ichi; Yashiro, Hisashi; Sato, Yousuke; Tomita, Hirofumi; Hayashi, Yoshi-Yuki
2016-05-01
Dust devils are one of the key elements in the Martian atmospheric circulation. In order to examine their statistics, we conducted high-resolution (up to 5 m) and wide-domain (about 20 × 20 km2) large-eddy simulations of the Martian daytime convective layer. Large numbers of dust devils developed spontaneously in the simulations, which enabled us to represent a quantitative consideration of Martian dust devil frequency distributions. We clarify the distributions of size and intensity, a topic of debate, and conclude that the maximum vertical vorticity of an individual dust devil has an exponential distribution, while the radius and circulation have power law distributions. A grid refinement experiment shows that the rate parameter of the vorticity distribution and the exponent of the circulation distribution are robust. The mode of the size distribution depends on the resolution, and it is suggested that the mode is less than 5 m.
Implicit Large Eddy Simulation of a wingtip vortex at Rec =1.2x106
NASA Astrophysics Data System (ADS)
Lombard, Jean-Eloi; Moxey, Dave; Sherwin, Spencer; SherwinLab Team
2015-11-01
We present recent developments in numerical methods for performing a Large Eddy Simulation (LES) of the formation and evolution of a wingtip vortex. The development of these vortices in the near wake, in combination with the large Reynolds numbers present in these cases, make these types of test cases particularly challenging to investigate numerically. To demonstrate the method's viability, we present results from numerical simulations of flow over a NACA 0012 profile wingtip at Rec = 1.2 x106 and compare them against experimental data, which is to date the highest Reynolds number achieved for a LES that has been correlated with experiments for this test case. Our model correlates favorably with experiment, both for the characteristic jetting in the primary vortex and pressure distribution on the wing surface. The proposed method is of general interest for the modeling of transitioning vortex dominated flows over complex geometries. McLaren Racing/Royal Academy of Engineering Research Chair.
Large eddy simulations as a parameterization tool for canopy-structure X VOC-flux interactions
NASA Astrophysics Data System (ADS)
Kenny, William; Bohrer, Gil; Chatziefstratiou, Efthalia
2015-04-01
We have been working to develop a new post-processing model - High resolution VOC Atmospheric Chemistry in Canopies (Hi-VACC) - which resolves the dispersion and chemistry of reacting chemical species given their emission rates from the vegetation and soil, driven by high resolution meteorological forcing and wind fields from various high resolution atmospheric regional and large-eddy simulations. Hi-VACC reads in fields of pressure, temperature, humidity, air density, short-wave radiation, wind (3-D u, v and w components) and sub-grid-scale turbulence that were simulated by a high resolution atmospheric model. This meteorological forcing data is provided as snapshots of 3-D fields. We have tested it using a number of RAMS-based Forest Large Eddy Simulation (RAFLES) runs. This can then be used for parameterization of the effects of canopy structure on VOC fluxes. RAFLES represents both drag and volume restriction by the canopy over an explicit 3-D domain. We have used these features to show the effects of canopy structure on fluxes of momentum, heat, and water in heterogeneous environments at the tree-crown scale by modifying the canopy structure representing it as both homogeneous and realistically heterogeneous. We combine this with Hi-VACC's capabilities to model dispersion and chemistry of reactive VOCs to parameterize the fluxes of these reactive species with respect to canopy structure. The high resolution capabilities of Hi-VACC coupled with RAFLES allows for sensitivity analysis to determine important structural considerations in sub-grid-scale parameterization of these phenomena in larger models.
Large Eddy Simulation of Transonic Flow Field in NASA Rotor 37
NASA Technical Reports Server (NTRS)
Hah, Chunill
2009-01-01
The current paper reports on numerical investigations on the flow characteristics in a transonic axial compressor, NASA Rotor 37. The flow field was used previously as a CFD blind test case conducted by American Society of Mechanical Engineers in 1994. Since the CFD blind-test exercise, many numerical studies on the flow field in the NASA Rotor 37 have been reported. Although steady improvements have been reported in both numerical procedure and turbulence closure, it is believed that all the important aspects of the flow field have not been fully explained with numerical studies based on the Reynolds Averaged Navier-Stokes (RANS) solution. Experimental data show large dip in total pressure distribution near the hub at downstream of the rotor at 100% rotor speed. Most original numerical solutions from the blind test exercise did not predict this total pressure deficit correctly. This total pressure deficit at the rotor exit was attributed to a hub corner flow separation by the author. Several subsequent numerical studies with different turbulence closure model also calculated this dip in total pressure rise. Also, several studies attributed this total pressure deficit to a small leakage flow coming from the hub in the test article. As the experimental study cannot be repeated, either explanation cannot be validated. The primary purpose of the current investigation is to investigate the transonic flow field with both RANS and a Large Eddy Simulation (LES). The RANS approach gives similar results presented at the original blind test exercise. Although the RANS calculates higher overall total pressure rise, the total pressure deficit near the hub is calculated correctly. The numerical solution shows that the total pressure deficit is due to a hub corner flow separation. The calculated pressure rise from the LES agrees better with the measured total pressure rise especially near the casing area where the passage shock interacts with the tip clearance vortex and flow
Large-eddy simulations of wind farm production and long distance wakes
NASA Astrophysics Data System (ADS)
Eriksson, O.; Nilsson, K.; Breton, S.-P.; Ivanell, S.
2015-06-01
The future development of offshore wind power will include many wind farms built in the same areas. It is known that wind farms produce long distance wakes, which means that we will see more occasions of farm to farm interaction, namely one wind farm operating in the wake of another wind farm. This study investigates how to perform accurate power predictions on large wind farms and how to assess the long distance wakes generated by these farms. The focus of this paper is the production's and wake's sensitivity to the extension of the grid as well as the turbulence when using Large-eddy simulations (LES) with pregenerated Mann turbulence. The aim is to determine an optimal grid which minimizes blockage effects and ensures constant resolution in the entire wake region at the lowest computational cost. The simulations are first performed in the absence of wind turbines in order to assess how the atmospheric turbulence and wind profile are evolving downstream (up to 12,000 m behind the position where the turbulence is imposed). In the second step, 10 turbines are added in the domain (using an actuator disc method) and their production is analyzed alongside the mean velocities in the domain. The blockage effects are tested using grids with different vertical extents. An equidistant region is used in order to ensure high resolution in the wake region. The importance of covering the entire wake structure inside the equidistant region is analyzed by decreasing the size of this region. In this step, the importance of the lateral size of the Mann turbulence box is also analyzed. In the results it can be seen that the flow is acceptably preserved through the empty domain if a larger turbulence box is used. The relative production is increased (due to blockage effects) for the last turbines using a smaller vertical domain, increased for a lower or narrower equidistant region (due to the smearing of the wake in the stretched area) and decreased when using a smaller turbulence
Large Eddy Simulation of Wake Vortices in the Convective Boundary Layer
NASA Technical Reports Server (NTRS)
Lin, Yuh-Lang; Han, Jongil; Zhang, Jing; Ding, Feng; Arya, S. Pal; Proctor, Fred H.
2000-01-01
The behavior of wake vortices in a convective boundary layer is investigated using a validated large eddy simulation model. Our results show that the vortices are largely deformed due to strong turbulent eddy motion while a sinusoidal Crow instability develops. Vortex rising is found to be caused by the updrafts (thermals) during daytime convective conditions and increases with increasing nondimensional turbulence intensity eta. In the downdraft region of the convective boundary layer, vortex sinking is found to be accelerated proportional to increasing eta, with faster speed than that in an ideal line vortex pair in an inviscid fluid. Wake vortices are also shown to be laterally transported over a significant distance due to large turbulent eddy motion. On the other hand, the decay rate of the, vortices in the convective boundary layer that increases with increasing eta, is larger in the updraft region than in the downdraft region because of stronger turbulence in the updraft region.
Artificial Fluid Properties for Large-Eddy Simulation of Compressible Turbulent Mixing
Cook, A W
2007-01-08
An alternative methodology is described for Large-Eddy Simulation of flows involving shocks, turbulence and mixing. In lieu of filtering the governing equations, it is postulated that the large-scale behavior of an ''LES'' fluid, i.e., a fluid with artificial properties, will be similar to that of a real fluid, provided the artificial properties obey certain constraints. The artificial properties consist of modifications to the shear viscosity, bulk viscosity, thermal conductivity and species diffusivity of a fluid. The modified transport coefficients are designed to damp out high wavenumber modes, close to the resolution limit, without corrupting lower modes. Requisite behavior of the artificial properties is discussed and results are shown for a variety of test problems, each designed to exercise different aspects of the models. When combined with a 10th-order compact scheme, the overall method exhibits excellent resolution characteristics for turbulent mixing, while capturing shocks and material interfaces in crisp fashion.
Large-Eddy Simulation: Current Capabilities, Recommended Practices, and Future Research
NASA Technical Reports Server (NTRS)
Georgiadis, Nicholas J.; Rizzetta, Donald P.; Fureby, Christer
2009-01-01
This paper presents the results of an activity by the Large Eddy Simulation (LES) Working Group of the AIAA Fluid Dynamics Technical Committee to (1) address the current capabilities of LES, (2) outline recommended practices and key considerations for using LES, and (3) identify future research needs to advance the capabilities and reliability of LES for analysis of turbulent flows. To address the current capabilities and future needs, a survey comprised of eleven questions was posed to LES Working Group members to assemble a broad range of perspectives on important topics related to LES. The responses to these survey questions are summarized with the intent not to be a comprehensive dictate on LES, but rather the perspective of one group on some important issues. A list of recommended practices is also provided, which does not treat all aspects of a LES, but provides guidance on some of the key areas that should be considered.
Explicit filtering and exact reconstruction of the sub-filter stresses in large eddy simulation
NASA Astrophysics Data System (ADS)
Bull, Jonathan R.; Jameson, Antony
2016-02-01
Explicit filtering has the effect of reducing numerical or aliasing errors near the grid scale in large eddy simulation (LES). We use a differential filter, namely the inverse Helmholtz operator, which is readily applied to unstructured meshes. The filter is invertible, which allows the sub-filter scale (SFS) stresses to be exactly reconstructed in terms of the filtered solution. Unlike eddy viscosity models, the method of filtering and reconstruction avoids making any physical assumptions and is therefore valid in any flow regime. The sub-grid scale (SGS) stresses are not recoverable by reconstruction, but the second-order finite element method used here is an adequate source of numerical dissipation in lieu of an SGS model. Results for incompressible turbulent channel flow at Reτ = 180 are presented which show that explicit filtering and exact SFS reconstruction is a significant improvement over the standard LES approach of implicit filtering and eddy-viscosity SGS modelling.
NASA Astrophysics Data System (ADS)
Park, Hyun Wook; Moon, Kiyoung; Oztekin, Ezgi; McDermott, Randall; Lee, Changhoon; Choi, Jung-Il
2012-11-01
Necessity of the near-wall treatments for the large eddy simulation (LES) without resolving viscous layer is well known for providing a smooth transition from molecular to turbulent transport near wall region. We propose a simple but efficient approach based on modeling of wall shear stress and heat flux that enable accurate predictions of Nusselt number correlations for equilibrium boundary layers. The wall shear stress is directly modeled with Werner and Wengle (1991)'s power law model and wall heat flux is modeled with analogous wall laws between velocity and temperature with Kader (1981)'s empirical correlation. We perform the wall-modeled LES of turbulent convective heat transfer in a channel for various Prandtl numbers. The results show good agreement with the available experimental and numerical data. Supported by WCU (R31-10049) and EDISON (2012-0006663) program of NRF.
Large-eddy simulation of a three-stream MILD combustion system
NASA Astrophysics Data System (ADS)
Zhang, Jian; Ihme, Matthias; He, Guowei
2011-11-01
Large-eddy simulations (LES) of a three-stream burner system are performed. This burner is operated in the so-called moderate and intense low-oxygen dilution (MILD) combustion regime. An extended flamelet/progress variable (FPV) model is utilized, in which an additional scalar is introduced in order to account for the mixing between the three reactant streams. LES-calculations of three different operating conditions are performed, corresponding to increased levels of oxygen-dilution in the vitiated coflow. The extended FPV model accurately predicts effects of the oxygen-dilution on the flame-structure and heat- release, and model-predictions for temperature and major and minor species are in good agreements with the measurements.
Development of the Large Eddy Simulation Approach for Modeling Turbulent Flow
NASA Astrophysics Data System (ADS)
Schmidt, R. C.; Smith, T. M.; DesJardin, P. E.; Voth, T. E.; Christon, M. A.
2002-03-01
This report describes research and development of the large eddy simulation (LES) turbulence modeling approach conducted as part of Sandia's laboratory directed research and development (LDRD) program. The emphasis of the work described here has been toward developing the capability to perform accurate and computationally affordable LES calculations of engineering problems using unstructured-grid codes, in wall-bounded geometries and for problems with coupled physics. Specific contributions documented here include (1) the implementation and testing of LES models in Sandia codes, including tests of a new conserved scalar--laminar flamelet SGS combustion model that does not assume statistical independence between the mixture fraction and the scalar dissipation rate, (2) the development and testing of statistical analysis and visualization utility software developed for Exodus II unstructured grid LES, and (3) the development and testing of a novel new LES near-wall subgrid model based on the one-dimensional Turbulence (ODT) model.
Soot prediction by Large-Eddy Simulation of complex geometry combustion chambers
NASA Astrophysics Data System (ADS)
Lecocq, Guillaume; Hernández, Ignacio; Poitou, Damien; Riber, Eléonore; Cuenot, Bénédicte
2013-01-01
This article is dedicated to the modeling of soot production in Large-Eddy Simulations (LES) of complex geometries. Such computations impose a trade-off between accuracy and CPU cost which limits the choice of soot models to semi-empirical ones. As the presence of acetylene is a necessary condition for soot inception, the Leung et al. model that accounts for this feature is chosen and used in this work. However, acetylene concentration is not provided by the reduced chemistries used in LES of complex geometries and a methodology has been developed to predict this key species through a tabulation technique. With this methodology, the model of Leung et al. is first tested and validated against measured laminar premixed flames. Then, the soot prediction method is applied to the LES of the combustion chamber of a helicopter engine.
Effect of submerged vegetation on solute transport in an open channel using large eddy simulation
NASA Astrophysics Data System (ADS)
Lu, J.; Dai, HC
2016-11-01
Existence of vegetation plays a significant effect on the flow velocity distributions, turbulence structures and solute mixing in an open channel. This paper has implemented a 3D large eddy simulation model for the flow and scalar transport in the open channel with vegetation. The model can produce a typical turbulence characteristics and concentration distribution with vegetation. The scalar transport mechanism is quantitatively explained by the turbulent Schmidt number, Reynolds flux, coherent structures and quadrant conditional analysis. A dominance of ejection-sweeping events occurs in the process of the momentum and scalar flux transport. The spectral analysis is used to identify the Kelvin-Helmholtz frequency. The turbulence characteristics of the length scale of vortexes, Kelvin-Helmholtz frequency and Reynolds stress etc. are analyzed with the vegetation density. The model quantitatively predicts the trend of decreasing in the concentration distribution along the flow direction with the increasing of vegetation density.
NASA Astrophysics Data System (ADS)
Thiesset, Fabien; Maurice, Guillaume; Halter, Fabien; Mazellier, Nicolas; Chauveau, Christian; Gökalp, Iskender
2016-05-01
We propose a model for assessing the unresolved wrinkling factor in the large eddy simulation of turbulent premixed combustion. It relies essentially on a power-law dependence of the wrinkling factor on the filter size and an original expression for the 'active' corrugating strain rate. The latter is written as the turbulent strain multiplied by an efficiency function that accounts for viscous effects and the kinematic constraint of Peters. This yields functional expressions for the fractal dimension and the inner cut-off length scale, the latter being (i) filter-size independent and (ii) consistent with the Damköhler asymptotic behaviours at both large and small Karlovitz numbers. A new expression for the wrinkling factor that incorporates finite Reynolds number effects is further proposed. Finally, the model is successfully assessed on an experimental filtered database.
A dynamic hybrid subgrid-scale modeling framework for large eddy simulations
NASA Astrophysics Data System (ADS)
Maulik, Romit; San, Omer
2016-11-01
We put forth a dynamic modeling framework for sub-grid parameterization of large eddy simulation of turbulent flows based upon the use of the approximate deconvolution (AD) procedure to compute the eddy viscosity constant self-adaptively from the resolved flow quantities. In our proposed framework, the test filtering process of the standard dynamic model is replaced by the AD procedure and a posteriori error analysis is performed. The robustness of the model has been tested considering the Burgers, Kraichnan, Kolmogorov turbulence problems. Our numerical assessments for solving these canonical decaying turbulence problems show that the proposed approach could be used as a viable tool to address the turbulence closure problem due to its flexibility.
Large eddy simulation of flows around ground vehicles and other bluff bodies.
Krajnovic, Sinisa
2009-07-28
A brief review of large eddy simulation (LES) applications for different bluff-body flows performed by the author and his co-workers is presented. Examples of flows range from simple cube flows characterized by sharp edge separation over a three-dimensional hill where LES relies on good near-wall resolution, to complex flows of a tall, finite cylinder that contains several flow regimes that cause different challenges to LES. The second part of the paper is devoted to flows around ground vehicles at moderate Reynolds numbers. Although the present review proves the applicability of LES for various bluff-body flows, an increase of the Reynolds number towards the operational speeds of ground vehicles requires accurate near-wall modelling for a successful LES.
Preliminary large-eddy simulations of flow around a NACA 4412 airfoil using unstructured grids
NASA Technical Reports Server (NTRS)
Jansen, Kenneth
1995-01-01
Large-eddy simulation (LES) has matured to the point where application to complex flows is desirable. The extension to higher Reynolds numbers leads to an impractical number of grid points with existing structured-grid methods. Furthermore, most real world flows are rather difficult to represent geometrically with structured grids. Unstructured-grid methods offer a release from both of these constraints. However, just as it took many years for structured-grid methods to be well understood and reliable tools for LES, unstructured-grid methods must be carefully studied before we can expect them to attain their full potential. In the past two years, important building blocks have been put into place making possible a careful study of LES on unstructured grids. The first building block was an efficient mesh generator which allowed the placement of points according to smooth variation of physical length scales. This variation of length scales is in all three directions independently, which allows a large reduction in points when compared to structured-grid methods, which can only vary length scales in one direction at a time. The second building block was the development of a dynamic model appropriate for unstructured grids. The principle obstacle was the development of an unstructured-grid filtering operator. In the past year, some of the new filters developed by Jansen have been implemented into a highly parallelized finite element code based on the Galerkin/least-squares finite element method. We have chosen the NACA 4412 airfoil at maximum lift as the first simulation for a variety of reasons. First, it is a problem of significant interest since it would be the first LES of an aircraft component. Second, this flow has been the subject of three experimental studies. The third reason for considering this flow is the variety of flow features which provide an important test of the dynamic model. Only the dynamic model can be expected to perform satisfactorily in this
Large-Eddy Simulation on Turbulent Flow and Plume Dispersion over A 2-Dimensional Hill
NASA Astrophysics Data System (ADS)
Nakayama, H.; Nagai, H.
2009-09-01
The dispersion analysis of airborne contaminant including radioactive substances from industrial or nuclear facilities is the important issue for maintenance of air quality or safety assessment. Many studies on the plume dispersion behavior in the simulated atmospheric boundary layer flow over flat plain have been conducted mainly by wind tunnel experiments. However, many nuclear power plants are located at complex coastal terrains in Japan. In this case, topographical effects on the turbulent flow and plume dispersion should be investigated. Therefore, we perform Large-Eddy Simulations (LES) on turbulent flows and plume dispersions. As the first step of this study, we try it for a 2-dimensional hill flow and investigate the characteristics of mean and fluctuation concentrations. In order to produce a realistic turbulent boundary layer flow, we set up two computational domains. One is the driver region for generating the spatially-developing boundary layer flow and the other is the main computational region for plume dispersion over a 2-dimensional hill. Near the inlet of the driver region, roughness blocks for generating a thick turbulent boundary layer are placed. The inflow turbulence data obtained in the driver region are imposed at the inlet of the main computational domain at each time step. The sizes of driver and main computational regions are 46.25H×6.25H×25.0H and 37.5H×6.25H×25.0H (H: the height of a 2-dimensional hill) in x-, y- and z-directions, respectively. Here, x, y and z indicate streamwise, spanwise and vertical directions, respectively. The number of grid points of driver and main computational regions are 400×100×90 and 400×100×90 in x, y and z directions, respectively. A 2-dimensional hill model has 5.45H length and are placed at a distance of 10.4H downstream from the inlet of the main computational region. A release point of a tracer gas is located at a distance of 9.09H upstream from a 2-dimensional hill top and elevated with the
Large-eddy Simulation of the Nighttime Stable Atmospheric Boundary Layer
NASA Astrophysics Data System (ADS)
Zhou, Bowen
A stable atmospheric boundary layer (ABL) develops over land at night due to radiative surface cooling. The state of turbulence in the stable boundary layer (SBL) is determined by the competing forcings of shear production and buoyancy destruction. When both forcings are comparable in strength, the SBL falls into an intermittently turbulent state, where intense turbulent bursts emerge sporadically from an overall quiescent background. This usually occurs on clear nights with weak winds when the SBL is strongly stable. Although turbulent bursts are generally short-lived (half an hour or less), their impact on the SBL is significant since they are responsible for most of the turbulent mixing. The nighttime SBL can be modeled with large-eddy simulation (LES). LES is a turbulence-resolving numerical approach which separates the large-scale energy-containing eddies from the smaller ones based on application of a spatial filter. While the large eddies are explicitly resolved, the small ones are represented by a subfilter-scale (SFS) stress model. Simulation of the SBL is more challenging than the daytime convective boundary layer (CBL) because nighttime turbulent motions are limited by buoyancy stratification, thus requiring fine grid resolution at the cost of immense computational resources. The intermittently turbulent SBL adds additional levels of complexity, requiring the model to not only sustain resolved turbulence during quiescent periods, but also to transition into a turbulent state under appropriate conditions. As a result, LES of the strongly stable SBL potentially requires even finer grid resolution, and has seldom been attempted. This dissertation takes a different approach. By improving the SFS representation of turbulence with a more sophisticated model, intermittently turbulent SBL is simulated, to our knowledge, for the first time in the LES literature. The turbulence closure is the dynamic reconstruction model (DRM), applied under an explicit filtering
Large-eddy simulation of flows over idealized urban areas in thermal stratification
NASA Astrophysics Data System (ADS)
Chan, Mr.; Liu, Dr.
2012-04-01
Large-eddy simulation (LES) equipped with the one-equation subgrid-scale model was employed to investigate the mean wind and turbulence over idealized two-dimensional (2D) street canyons in various thermal stratifications. The prevailing wind is driven by a background pressure gradient above the roof level that is perpendicular to the axis of street canyons. The building-height-to-street-width (aspect) ratio is kept unity so the flows fall into the skimming flow regime. Cyclic boundary conditions are assigned to the domain inlet and outlet, simulating the infinite horizontally homogenous building structures. The buoyancy force is modeled by Boussinesq approximation. Building geometry is the key factor governing the wind flow behaviors aloft. Its effects on the flow structures in isothermal conditions are widely studied. Whereas, thermal stratification, which is caused by the temperature difference between the urban fabrics and the prevailing wind, plays another important role in the wind flow behaviors. The presence of buoyancy force drives/suppresses convective flows that substantially modify the vertical transport processes. In stable stratification, e.g. nighttime, a cooler urban surface favors subsidence that reduces turbulence intensities subsequently. While in unstable stratification, e.g. daytime, a hotter urban surface induces buoyancy and convective current that in turn promotes turbulence. In isothermal conditions, it is well known that the mean flows exhibit a log-law region over an aerodynamically smooth surface where the mean wind profile is in a logarithmic form (law of the wall). The logarithmic wind profile is also observed over homogenously rough surfaces, such as the idealized two-dimensional street canyons used in this study. However, in thermal stratification (both stable and unstable), the mean wind profile deviates from the isothermal one whose extent depends on the intensity of thermal stratification compared with the mean wind (measured by
Large eddy simulation for atmospheric boundary layer flow over flat and complex terrains
NASA Astrophysics Data System (ADS)
Han, Yi; Stoellinger, Michael; Naughton, Jonathan
2016-09-01
In this work, we present Large Eddy Simulation (LES) results of atmospheric boundary layer (ABL) flow over complex terrain with neutral stratification using the OpenFOAM-based simulator for on/offshore wind farm applications (SOWFA). The complete work flow to investigate the LES for the ABL over real complex terrain is described including meteorological-tower data analysis, mesh generation and case set-up. New boundary conditions for the lateral and top boundaries are developed and validated to allow inflow and outflow as required in complex terrain simulations. The turbulent inflow data for the terrain simulation is generated using a precursor simulation of a flat and neutral ABL. Conditionally averaged met-tower data is used to specify the conditions for the flat precursor simulation and is also used for comparison with the simulation results of the terrain LES. A qualitative analysis of the simulation results reveals boundary layer separation and recirculation downstream of a prominent ridge that runs across the simulation domain. Comparisons of mean wind speed, standard deviation and direction between the computed results and the conditionally averaged tower data show a reasonable agreement.
Large eddy simulation of surface pressure fluctuations generated by elevated gusts
NASA Astrophysics Data System (ADS)
Cain, Jericho E.
Wind gusts cause substantial damage to wind turbines. If these damaging winds could be detected prior to their interaction with the turbine, the turbine rotor can be decoupled from the generator and gearing system to prevent damage during the gust event. This would significantly reduce wind turbine repair costs. Wind gusts can also create unsafe conditions for aircraft landing. A ground based detection system that monitored elevated wind gusts can provide new information for pilots to use when determining whether or not it is safe to land. In addition, the ability to monitor elevated gust events would provide a new probe to study features in the atmospheric boundary layer. Previous research indicates that elevated velocity events, such as gusts, may trigger pressure fluctuations on the ground. If that is true, it should be possible to monitor elevated wind gusts by measuring these pressure fluctuations. The goal of this project is to develop a ground based detector that monitors the behavior of pressure fluctuations on the ground for indicators that a gust event may be taking place at higher altitudes. In order to recognize these indicators from the pressure measurements on the ground, cross-correlation analysis between the time evolution of the frequency structures corresponding to elevated wind gusts and the pressure on the ground below were investigated. The data for these analysis was generated using a large eddy simulation. This numerical approach was chosen because the nature of the cross-correlation analysis demanded full field wind velocities and pressures at several altitudes. Collecting this data outdoors would be impractical. Correlation coefficients between 0.75 - 0.90 were found. These high correlations indicate that the two signals are causally related. Several common features of the pressures caused by elevated gusts were identified. These features were used to develop a tracking program that monitors fast moving high amplitude pressure fluctuations
NASA Astrophysics Data System (ADS)
Basu, Sukanta; Lacser, Avraham
2017-01-01
In several recent large-eddy simulation studies, the lowest grid level was located well within the roughness sublayer. Monin-Obukhov similarity-based boundary conditions cannot be used under this scenario, and in this note we elaborate on this fundamental problem and suggest potential solutions.
NASA Astrophysics Data System (ADS)
Wang, Haifeng; Popov, Pavel; Hiremath, Varun; Lantz, Steven; Viswanathan, Sharadha; Pope, Stephen
2010-11-01
A large-eddy simulation (LES)/probability density function (PDF) code is developed and applied to the study of local extinction and re-ignition in Sandia Flame E. The modified Curl mixing model is used to account for the sub-filter scalar mixing; the ARM1 mechanism is used for the chemical reaction; and the in- situ adaptive tabulation (ISAT) algorithm is used to accelerate the chemistry calculations. Calculations are performed on different grids to study the resolution requirement for this flame. Then, with sufficient grid resolution, full-scale LES/PDF calculations are performed to study the flame characteristics and the turbulence-chemistry interactions. Sensitivity to the mixing frequency model is explored in order to understand the behavior of sub-filter scalar mixing in the context of LES. The simulation results are compared to the experimental data to demonstrate the capability of the code. Comparison is also made to previous RANS/PDF simulations.
Large eddy simulation model for wind-driven sea circulation in coastal areas
NASA Astrophysics Data System (ADS)
Petronio, A.; Roman, F.; Nasello, C.; Armenio, V.
2013-12-01
In the present paper a state-of-the-art large eddy simulation model (LES-COAST), suited for the analysis of water circulation and mixing in closed or semi-closed areas, is presented and applied to the study of the hydrodynamic characteristics of the Muggia bay, the industrial harbor of the city of Trieste, Italy. The model solves the non-hydrostatic, unsteady Navier-Stokes equations, under the Boussinesq approximation for temperature and salinity buoyancy effects, using a novel, two-eddy viscosity Smagorinsky model for the closure of the subgrid-scale momentum fluxes. The model employs: a simple and effective technique to take into account wind-stress inhomogeneity related to the blocking effect of emerged structures, which, in turn, can drive local-scale, short-term pollutant dispersion; a new nesting procedure to reconstruct instantaneous, turbulent velocity components, temperature and salinity at the open boundaries of the domain using data coming from large-scale circulation models (LCM). Validation tests have shown that the model reproduces field measurement satisfactorily. The analysis of water circulation and mixing in the Muggia bay has been carried out under three typical breeze conditions. Water circulation has been shown to behave as in typical semi-closed basins, with an upper layer moving along the wind direction (apart from the anti-cyclonic veering associated with the Coriolis force) and a bottom layer, thicker and slower than the upper one, moving along the opposite direction. The study has shown that water vertical mixing in the bay is inhibited by a large level of stable stratification, mainly associated with vertical variation in salinity and, to a minor extent, with temperature variation along the water column. More intense mixing, quantified by sub-critical values of the gradient Richardson number, is present in near-coastal regions where upwelling/downwelling phenomena occur. The analysis of instantaneous fields has detected the presence of
Investigation of natural gas plume dispersion using mobile observations and large eddy simulations
NASA Astrophysics Data System (ADS)
Caulton, Dana R.; Li, Qi; Golston, Levi; Pan, Da; Bou-Zeid, Elie; Fitts, Jeff; Lane, Haley; Lu, Jessica; Zondlo, Mark A.
2016-04-01
Recent work suggests the distribution of methane emissions from fracking operations is skewed with a small percentage of emitters contributing a large proportion of the total emissions. These sites are known as 'super-emitters.' The Marcellus shale, the most productive natural gas shale field in the United States, has received less intense focus for well-level emissions and is here used as a test site for targeted analysis between current standard trace-gas advection practices and possible improvements via advanced modeling techniques. The Marcellus shale is topographically complex, making traditional techniques difficult to implement and evaluate. For many ground based mobile studies, the inverse Gaussian plume method (IGM) is used to produce emission rates. This method is best applied to well-mixed plumes from strong point sources and may not currently be well-suited for use with disperse weak sources, short-time frame measurements or data collected in complex terrain. To assess the quality of IGM results and to improve source-strength estimations, a robust study that combines observational data with a hierarchy of models of increasing complexity will be presented. The field test sites were sampled with multiple passes using a mobile lab as well as a stationary tower. This mobile lab includes a Garmin GPS unit, Vaisala weather station (WTX520), LICOR 7700 CH4 open path sensor and LICOR 7500 CO2/H2O open path sensor. The sampling tower was constructed consisting of a Metek uSonic-3 Class A sonic anemometer, and an additional LICOR 7700 and 7500. Data were recorded for at least one hour at these sites. The modeling will focus on large eddy simulations (LES) of the wind and CH4 concentration fields for these test sites. The LES model used 2 m horizontal and 1 m vertical resolution and was integrated in time for 45 min for various test sites under stable, neutral and unstable conditions. It is here considered as the reference to which various IGM approaches can be
Subfilter Scale Combustion Modelling for Large Eddy Simulation of Turbulent Premixed Flames
NASA Astrophysics Data System (ADS)
Shahbazian, Nasim
Large eddy simulation (LES) is a powerful computational tool for modelling turbulent combustion processes. However, for reactive flows, LES is still under significant development. In particular, for turbulent premixed flames, a considerable complication of LES is that the flame thickness is generally much smaller than the LES filter width such that the flame front and chemical reactions cannot be resolved on the grid. Accurate and robust subfilter-scale (SFS) models of the unresolved turbulence-chemistry interactions are therefore required and studies are needed to evaluate and improve them. In this thesis, a detailed comparison and evaluation of five different SFS models for turbulence- chemistry interactions in LES of premixed flames is presented. These approaches include both flamelet- and non-flamelet-based models, coupled with simple or tabulated chemistry. The mod- elling approaches considered herein are: algebraic- and transport-equation variants of the flame surface density (FSD) model, the presumed conditional moment (PCM) with flame prolongation of intrinsic low-dimensional manifold (FPI) tabulated chemistry, or PCM-FPI approach, evaluated with two different presumed probability density function (PDF) models; and conditional source-term estimation (CSE) approach. The predicted LES solutions are compared to the existing laboratory-scale experimental observation of Bunsen-type turbulent premixed methane-air flames, corresponding to lean and stoichiometric conditions lying from the upper limit of the flamelet regime to well within the thin reaction zones regime of the standard regimes diagram. Direct comparison of different SFS approaches allows investigation of stability and performance of the models, while the weaknesses and strengths of each approach are identified. Evaluation of algebraic and transported FSD models highlights the importance of non-equilibrium transport in turbulent premixed flames. The effect of the PDF type for the reaction progress
Subfilter scale combustion modelling for large eddy simulation of turbulent premixed flames
NASA Astrophysics Data System (ADS)
Shahbazian, Nasim
Large eddy simulation (LES) is a powerful computational tool for modelling turbulent combustion processes. However, for reactive flows, LES is still under significant development. In particular, for turbulent premixed flames, a considerable complication of LES is that the flame thickness is generally much smaller than the LES filter width such that the flame front and chemical reactions cannot be resolved on the grid. Accurate and robust subfilter-scale (SFS) models of the unresolved turbulence-chemistry interactions are therefore required and studies are needed to evaluate and improve them. In this thesis, a detailed comparison and evaluation of five different SFS models for turbulence-chemistry interactions in LES of premixed flames is presented. These approaches include both flamelet- and non-flamelet-based models, coupled with simple or tabulated chemistry. The modelling approaches considered herein are: algebraic- and transport-equation variants of the flame surface density (FSD) model, the presumed conditional moment (PCM) with flame prolongation of intrinsic low-dimensional manifold (FPI) tabulated chemistry, or PCM-FPI approach, evaluated with two different presumed probability density function (PDF) models; and conditional source-term estimation (CSE) approach. The predicted LES solutions are compared to the existing laboratory-scale experimental observation of Bunsen-type turbulent premixed methane-air flames, corresponding to lean and stoichiometric conditions lying from the upper limit of the flamelet regime to well within the thin reaction zones regime of the standard regimes diagram. Direct comparison of different SFS approaches allows investigation of stability and performance of the models, while the weaknesses and strengths of each approach are identified. Evaluation of algebraic and transported FSD models highlights the importance of non-equilibrium transport in turbulent premixed flames. The effect of the PDF type for the reaction progress
Hybrid Large-Eddy/Reynolds-Averaged Simulation of a Supersonic Cavity Using VULCAN
NASA Technical Reports Server (NTRS)
Quinlan, Jesse; McDaniel, James; Baurle, Robert A.
2013-01-01
Simulations of a supersonic recessed-cavity flow are performed using a hybrid large-eddy/Reynolds-averaged simulation approach utilizing an inflow turbulence recycling procedure and hybridized inviscid flux scheme. Calorically perfect air enters a three-dimensional domain at a free stream Mach number of 2.92. Simulations are performed to assess grid sensitivity of the solution, efficacy of the turbulence recycling, and the effect of the shock sensor used with the hybridized inviscid flux scheme. Analysis of the turbulent boundary layer upstream of the rearward-facing step for each case indicates excellent agreement with theoretical predictions. Mean velocity and pressure results are compared to Reynolds-averaged simulations and experimental data for each case and indicate good agreement on the finest grid. Simulations are repeated on a coarsened grid, and results indicate strong grid density sensitivity. Simulations are performed with and without inflow turbulence recycling on the coarse grid to isolate the effect of the recycling procedure, which is demonstrably critical to capturing the relevant shear layer dynamics. Shock sensor formulations of Ducros and Larsson are found to predict mean flow statistics equally well.
Large eddy simulation and direct numerical simulation of high speed turbulent reacting flows
NASA Technical Reports Server (NTRS)
Adumitroaie, V.; Frankel, S. H.; Madnia, C. K.; Givi, P.
1993-01-01
The objective of this research is to make use of Large Eddy Simulation (LES) and Direct Numerical Simulation (DNS) for the computational analyses of high speed reacting flows. Our efforts in the first phase of this research conducted within the past three years have been directed in several issues pertaining to intricate physics of turbulent reacting flows. In our previous 5 semi-annual reports submitted to NASA LaRC, as well as several technical papers in archival journals, the results of our investigations have been fully described. In this progress report which is different in format as compared to our previous documents, we focus only on the issue of LES. The reason for doing so is that LES is the primary issue of interest to our Technical Monitor and that our other findings were needed to support the activities conducted under this prime issue. The outcomes of our related investigations, nevertheless, are included in the appendices accompanying this report. The relevance of the materials in these appendices are, therefore, discussed only briefly within the body of the report. Here, results are presented of a priori and a posterior analyses for validity assessments of assumed Probability Density Function (PDF) methods as potential subgrid scale (SGS) closures for LES of turbulent reacting flows. Simple non-premixed reacting systems involving an isothermal reaction of the type A + B yields Products under both chemical equilibrium and non-equilibrium conditions are considered. A priori analyses are conducted of a homogeneous box flow, and a spatially developing planar mixing layer to investigate the performance of the Pearson Family of PDF's as SGS models. A posteriori analyses are conducted of the mixing layer using a hybrid one-equation Smagorinsky/PDF SGS closure. The Smagorinsky closure augmented by the solution of the subgrid turbulent kinetic energy (TKE) equation is employed to account for hydrodynamic fluctuations, and the PDF is employed for modeling the
Large eddy simulation and direct numerical simulation of high speed turbulent reacting flows
NASA Astrophysics Data System (ADS)
Adumitroaie, V.; Frankel, S. H.; Madnia, C. K.; Givi, P.
The objective of this research is to make use of Large Eddy Simulation (LES) and Direct Numerical Simulation (DNS) for the computational analyses of high speed reacting flows. Our efforts in the first phase of this research conducted within the past three years have been directed in several issues pertaining to intricate physics of turbulent reacting flows. In our previous 5 semi-annual reports submitted to NASA LaRC, as well as several technical papers in archival journals, the results of our investigations have been fully described. In this progress report which is different in format as compared to our previous documents, we focus only on the issue of LES. The reason for doing so is that LES is the primary issue of interest to our Technical Monitor and that our other findings were needed to support the activities conducted under this prime issue. The outcomes of our related investigations, nevertheless, are included in the appendices accompanying this report. The relevance of the materials in these appendices are, therefore, discussed only briefly within the body of the report. Here, results are presented of a priori and a posterior analyses for validity assessments of assumed Probability Density Function (PDF) methods as potential subgrid scale (SGS) closures for LES of turbulent reacting flows. Simple non-premixed reacting systems involving an isothermal reaction of the type A + B yields Products under both chemical equilibrium and non-equilibrium conditions are considered. A priori analyses are conducted of a homogeneous box flow, and a spatially developing planar mixing layer to investigate the performance of the Pearson Family of PDF's as SGS models. A posteriori analyses are conducted of the mixing layer using a hybrid one-equation Smagorinsky/PDF SGS closure. The Smagorinsky closure augmented by the solution of the subgrid turbulent kinetic energy (TKE) equation is employed to account for hydrodynamic fluctuations, and the PDF is employed for modeling the
NASA Astrophysics Data System (ADS)
Witte, M.; Chuang, P. Y.; Wang, L. P.; Ayala, O.
2014-12-01
Drizzle occurs frequently in shallow, warm boundary layer clouds. For example, in stratocumulus it occurs approximately 1/3 of the time in full cloud cover conditions (Wood 2012). Drizzle affects moisture and energy budgets, and cloud albedo, morphology and lifetime. At the cloud scale, processes that control drizzle formation include turbulence production via radiative cooling and/or shear, entrainment, and surface moisture fluxes. At the micro-scale, collision-coalescence is the primary process relevant to warm drizzle formation. Differential gravitational sedimentation and turbulent air motions cause cloud droplets to collide, creating drops much larger than can be formed by condensation alone. Other factors, such as preferential concentration and entrainment mixing may also be relevant. The process is typically subdivided into three regimes: autoconversion (small drops self-collide), accretion (large drops collect small drops), and hydrometeor self-collection (large drops self-collide). Of these regimes, autoconversion is the rate-limiting step in existing analytical representations. This study (i) evaluates whether our best theoretical understanding of collision-coalescence in the autoconversion regime can replicate observations, with a broader goal of (ii) exploring which cloud-scale factors are most important for drizzle initiation. A state-of-the-art turbulent collisional growth model is applied to a bin microphysics scheme within a large-eddy simulation such that the full range of cloud drop growth mechanisms are represented (i.e. CCN activation, condensation, collision-coalescence, mixing, etc.) at realistic atmospheric conditions. We compare cloud drop spectra produced by the LES with observations to assess the quality and limits of our theoretical knowledge. The comparison will be performed over a range of observational cases that span a range of drizzle rates. These cases differ in their radiative cooling rates, shear, cloud-top temperature and
Large eddy simulation of unsteady wind farm behavior using advanced actuator disk models
NASA Astrophysics Data System (ADS)
Moens, Maud; Duponcheel, Matthieu; Winckelmans, Gregoire; Chatelain, Philippe
2014-11-01
The present project aims at improving the level of fidelity of unsteady wind farm scale simulations through an effort on the representation and the modeling of the rotors. The chosen tool for the simulations is a Fourth Order Finite Difference code, developed at Universite catholique de Louvain; this solver implements Large Eddy Simulation (LES) approaches. The wind turbines are modeled as advanced actuator disks: these disks are coupled with the Blade Element Momentum method (BEM method) and also take into account the turbine dynamics and controller. A special effort is made here to reproduce the specific wake behaviors. Wake decay and expansion are indeed initially governed by vortex instabilities. This is an information that cannot be obtained from the BEM calculations. We thus aim at achieving this by matching the large scales of the actuator disk flow to high fidelity wake simulations produced using a Vortex Particle-Mesh method. It is obtained by adding a controlled excitation at the disk. We apply this tool to the investigation of atmospheric turbulence effects on the power production and on the wake behavior at a wind farm level. A turbulent velocity field is then used as inflow boundary condition for the simulations. We gratefully acknowledge the support of GDF Suez for the fellowship of Mrs Maud Moens.
Large eddy simulation for predicting turbulent heat transfer in gas turbines.
Tafti, Danesh K; He, Long; Nagendra, K
2014-08-13
Blade cooling technology will play a critical role in the next generation of propulsion and power generation gas turbines. Accurate prediction of blade metal temperature can avoid the use of excessive compressed bypass air and allow higher turbine inlet temperature, increasing fuel efficiency and decreasing emissions. Large eddy simulation (LES) has been established to predict heat transfer coefficients with good accuracy under various non-canonical flows, but is still limited to relatively simple geometries and low Reynolds numbers. It is envisioned that the projected increase in computational power combined with a drop in price-to-performance ratio will make system-level simulations using LES in complex blade geometries at engine conditions accessible to the design process in the coming one to two decades. In making this possible, two key challenges are addressed in this paper: working with complex intricate blade geometries and simulating high-Reynolds-number (Re) flows. It is proposed to use the immersed boundary method (IBM) combined with LES wall functions. A ribbed duct at Re=20 000 is simulated using the IBM, and a two-pass ribbed duct is simulated at Re=100 000 with and without rotation (rotation number Ro=0.2) using LES with wall functions. The results validate that the IBM is a viable alternative to body-conforming grids and that LES with wall functions reproduces experimental results at a much lower computational cost.
Large-eddy Simulation of the Near-lip of a Jet
NASA Astrophysics Data System (ADS)
Bohr, Elaine; Yaworski, Michael; Jansen, Kenneth
2003-11-01
A M=0.6, Re=1.0 million cold jet flow with complex geometry is simulated to obtain high-fidelity near-field data and accurate dynamic information on the flow. Large Eddy Simulation (LES) on an unstructured grid is optimal for near-nozzle flow simulation. The modeled problem is a single-stream jet exiting a nozzle which can have tabs. It is too costly to simulate the full problem so the meshed domain is a representative sector of the flow with limited stream-wise extent. The jet flow is simulated using a stable, accurate, finite element method with hierarchic spatial basis, generalized-alpha method and 2nd order time integrator which yields accurate well controlled stabilization. A RANS solution is used as the inflow condition where velocity and temperature are specified for the jet and the entrainment. As RANS only gives averaged quantities the inflow boundary condition needs to be completed by specifying the fluctuations using scaled plane extraction boundary condition (SPEBC). The solution is rescaled from an internal downstream position using self-similarity flow profiles in turbulent boundary layers. This talk will show the need for SPEBC and present preliminary results.
Large eddy simulation for predicting turbulent heat transfer in gas turbines
Tafti, Danesh K.; He, Long; Nagendra, K.
2014-01-01
Blade cooling technology will play a critical role in the next generation of propulsion and power generation gas turbines. Accurate prediction of blade metal temperature can avoid the use of excessive compressed bypass air and allow higher turbine inlet temperature, increasing fuel efficiency and decreasing emissions. Large eddy simulation (LES) has been established to predict heat transfer coefficients with good accuracy under various non-canonical flows, but is still limited to relatively simple geometries and low Reynolds numbers. It is envisioned that the projected increase in computational power combined with a drop in price-to-performance ratio will make system-level simulations using LES in complex blade geometries at engine conditions accessible to the design process in the coming one to two decades. In making this possible, two key challenges are addressed in this paper: working with complex intricate blade geometries and simulating high-Reynolds-number (Re) flows. It is proposed to use the immersed boundary method (IBM) combined with LES wall functions. A ribbed duct at Re=20 000 is simulated using the IBM, and a two-pass ribbed duct is simulated at Re=100 000 with and without rotation (rotation number Ro=0.2) using LES with wall functions. The results validate that the IBM is a viable alternative to body-conforming grids and that LES with wall functions reproduces experimental results at a much lower computational cost. PMID:25024418
Large eddy simulation of bluff body stabilized premixed and partially premixed combustion
NASA Astrophysics Data System (ADS)
Porumbel, Ionut
Large Eddy Simulation (LES) of bluff body stabilized premixed and partially premixed combustion close to the flammability limit is carried out in this thesis. The main goal of the thesis is the study of the equivalence ratio effect on flame stability and dynamics in premixed and partially premixed flames. An LES numerical algorithm able to handle the entire range of combustion regimes and equivalence ratios is developed for this purpose. The algorithm has no ad-hoc adjustable model parameters and is able to respond automatically to variations in the inflow conditions, without user intervention. Algorithm validation is achieved by conducting LES of reactive and non-reactive flow. Comparison with experimental data shows good agreement for both mean and unsteady flow properties. In the reactive flow, two scalar closure models, Eddy Break-Up (EBULES) and Linear Eddy Mixing (LEMLES), are used and compared. Over important regions, the flame lies in the Broken Reaction Zone regime. Here, the EBU model assumptions fail. In LEMLES, the reaction-diffusion equation is not filtered, but resolved on a linear domain and the model maintains validity. The flame thickness predicted by LEMLES is smaller and the flame is faster to respond to turbulent fluctuations, resulting in a more significant wrinkling of the flame surface when compared to EBULES. As a result, LEMLES captures better the subtle effects of the flame-turbulence interaction, the flame structure shows higher complexity, and the far field spreading of the wake is closer to the experimental observations. Three premixed (φ = 0.6, 0.65, and 0.75) cases are simulated. As expected, for the leaner case (φ = 0.6) the flame temperature is lower, the heat release is reduced and vorticity is stronger. As a result, the flame in this case is found to be unstable. In the rich case (φ = 0.75), the flame temperature is higher, and the spreading rate of the wake is increased due to the higher amount of heat release. The ignition
Pal, Abhro; Anupindi, Kameswararao; Delorme, Yann; Ghaisas, Niranjan; Shetty, Dinesh A; Frankel, Steven H
2014-07-01
In the present study, we performed large eddy simulation (LES) of axisymmetric, and 75% stenosed, eccentric arterial models with steady inflow conditions at a Reynolds number of 1000. The results obtained are compared with the direct numerical simulation (DNS) data (Varghese et al., 2007, "Direct Numerical Simulation of Stenotic Flows. Part 1. Steady Flow," J. Fluid Mech., 582, pp. 253-280). An inhouse code (WenoHemo) employing high-order numerical methods for spatial and temporal terms, along with a 2nd order accurate ghost point immersed boundary method (IBM) (Mark, and Vanwachem, 2008, "Derivation and Validation of a Novel Implicit Second-Order Accurate Immersed Boundary Method," J. Comput. Phys., 227(13), pp. 6660-6680) for enforcing boundary conditions on curved geometries is used for simulations. Three subgrid scale (SGS) models, namely, the classical Smagorinsky model (Smagorinsky, 1963, "General Circulation Experiments With the Primitive Equations," Mon. Weather Rev., 91(10), pp. 99-164), recently developed Vreman model (Vreman, 2004, "An Eddy-Viscosity Subgrid-Scale Model for Turbulent Shear Flow: Algebraic Theory and Applications," Phys. Fluids, 16(10), pp. 3670-3681), and the Sigma model (Nicoud et al., 2011, "Using Singular Values to Build a Subgrid-Scale Model for Large Eddy Simulations," Phys. Fluids, 23(8), 085106) are evaluated in the present study. Evaluation of SGS models suggests that the classical constant coefficient Smagorinsky model gives best agreement with the DNS data, whereas the Vreman and Sigma models predict an early transition to turbulence in the poststenotic region. Supplementary simulations are performed using Open source field operation and manipulation (OpenFOAM) ("OpenFOAM," http://www.openfoam.org/) solver and the results are inline with those obtained with WenoHemo.
Requirements for large-eddy simulation of surface wind gusts in a mountain valley
NASA Astrophysics Data System (ADS)
Revell, Michael J.; Purnell, Don; Lauren, Michael K.
1996-09-01
During the passage of a front, data from a light-weight cup anemometer and wind vane, sited in a steep-walled glacial valley of the Mt Cook region of the Southern Alps of New Zealand, were analysed to derive a power spectrum of the wind velocity for periods between 0.5 and 16 min. The energy spectrum roughly followed a -5/3 power law over the range of periods from 0.5 4 min — as might be expected in the case of an inertial subrange of eddies. However, any inertial subrange clearly does not extend to periods longer than this. We suggest that the observed eddies were generated in a turbulent wake associated with flow separation at the ridge crests, and large eddies are shed at periods of 4 8 min or more. A compressible fluid-dynamic model, with a Smagorinsky turbulence closure scheme and a “law of the wall” at the surface, was used to calculate flow over a cross section through this area in neutrally stratified conditions. A range of parameters was explored to assess some of the requirements for simulating surface wind gusts in mountainous terrain in New Zealand. In order to approximate the observed wind spectrum at Tasman aerodrome, Mount Cook, we found the model must be three-dimensional, with a horizontal resolution better than 250 m and with a Reynolds-stress eddy viscosity of less than 5 m2 s-1. In two-dimensional simulations, the eddies were too big in size and in amplitude and at the surface this was associated with reversed flow extending too far downstream. In contrast the three-dimensional simulations gave a realistic gusting effect associated with large scale “cat's paws” (a bigger variety of those commonly seen over water downstream of moderate hills), with reversed flow only at the steep part of the lee slope. The simulations were uniformly improved by better resolution, at all tested resolutions down to 250 m mesh size. The spectra of large eddies simulated in steep terrain were not very sensitive to the details of the eddy stress formulation
Development of an advanced actuator disk model for Large-Eddy Simulation of wind farms
NASA Astrophysics Data System (ADS)
Moens, Maud; Duponcheel, Matthieu; Winckelmans, Gregoire; Chatelain, Philippe
2015-11-01
This work aims at improving the fidelity of the wind turbine modelling for Large-Eddy Simulation (LES) of wind farms, in order to accurately predict the loads, the production, and the wake dynamics. In those simulations, the wind turbines are accounted for through actuator disks. i.e. a body-force term acting over the regularised disk swept by the rotor. These forces are computed using the Blade Element theory to estimate the normal and tangential components (based on the local simulated flow and the blade characteristics). The local velocities are modified using the Glauert tip-loss factor in order to account for the finite number of blades; the computation of this correction is here improved thanks to a local estimation of the effective upstream velocity at every point of the disk. These advanced actuator disks are implemented in a 4th order finite difference LES solver and are compared to a classical Blade Element Momentum method and to high fidelity wake simulations performed using a Vortex Particle-Mesh method in uniform and turbulent flows.
Lorteau, Mathieu Cléro, Franck Vuillot, François
2015-07-15
In the framework of jet noise computation, a numerical simulation of a subsonic turbulent hot jet is performed using large-eddy simulation. A geometrical tripping is used in order to trigger the turbulence at the nozzle exit. In a first part, the validity of the simulation is assessed by comparison with experimental measurements. The mean and rms velocity fields show good agreement, so do the azimuthal composition of the near pressure field and the far field spectra. Discrepancies remain close to the nozzle exit which lead to a limited overestimation of the pressure levels in both near and far fields, especially near the 90{sup ∘} angular sector. Two point correlation analyses are then applied to the data obtained from the simulation. These enable to link the downstream acoustic radiation, which is the main direction of radiation, to pressure waves developing in the shear layer and propagating toward the potential core end. The intermittency of the downstream acoustic radiation is evidenced and related to the coherent structures developing in the shear layer.
Large Eddy Simulation of Airfoil Self-Noise at High Reynolds Number
NASA Astrophysics Data System (ADS)
Kocheemoolayil, Joseph; Lele, Sanjiva
2015-11-01
The trailing edge noise section (Category 1) of the Benchmark Problems for Airframe Noise Computations (BANC) workshop features five canonical problems. No first-principles based approach free of empiricism and tunable coefficients has successfully predicted trailing edge noise for the five configurations to date. Our simulations predict trailing edge noise accurately for all five configurations. The simulation database is described in detail, highlighting efforts undertaken to validate the results through systematic comparison with dedicated experiments and establish insensitivity to grid resolution, domain size, alleatory uncertainties such as the tripping mechanism used to force transition to turbulence and epistemic uncertainties such as models for unresolved near-wall turbulence. Ongoing efforts to extend the predictive capability to non-canonical configurations featuring flow separation are summarized. A novel, large-span calculation that predicts the flow past a wind turbine airfoil in deep stall with unprecedented accuracy is presented. The simulations predict airfoil noise in the near-stall regime accurately. While the post-stall noise predictions leave room for improvement, significant uncertainties in the experiment might preclude a fair comparison in this regime. We thank Cascade Technologies Inc. for providing access to the CharLES toolkit - a massively-parallel, unstructured large eddy simulation framework.
Large Eddy Simulation of the Diurnal Cycle in Southeast Pacific Stratocumulus
Caldwell, P; Bretherton, C
2008-03-03
This paper describes a series of 6 day large eddy simulations of a deep, sometimes drizzling stratocumulus-topped boundary layer based on forcings from the East Pacific Investigation of Climate (EPIC) 2001 field campaign. The base simulation was found to reproduce the observed mean boundary layer properties quite well. The diurnal cycle of liquid water path was also well captured, although good agreement appears to result partially from compensating errors in the diurnal cycles of cloud base and cloud top due to overentrainment around midday. At other times of the day, entrainment is found to be proportional to the vertically-integrated buoyancy flux. Model stratification matches observations well; turbulence profiles suggest that the boundary layer is always at least somewhat decoupled. Model drizzle appears to be too sensitive to liquid water path and subcloud evaporation appears to be too weak. Removing the diurnal cycle of subsidence had little effect on simulated cloud albedo. Simulations with changed droplet concentration and drizzle susceptibility showed large liquid water path differences at night, but differences were quite small at midday. Droplet concentration also had a significant impact on entrainment, primarily through droplet sedimentation feedback rather than through drizzle processes.
Large eddy simulation of dilute bubbly turbulent flows for aerating hydrofoils
NASA Astrophysics Data System (ADS)
Hajit, Mohammad; Sotiropoulos, Fotis
2014-11-01
We have proposed a formulation for the large eddy simulation of dilute bubbly flows by converting the governing equations to a more loosely-coupled form. This formulation provides an efficient numerical procedure for two-way coupling of bubbly flows at low gas holdups. Subgrid-scale turbulence modeling is based on the dynamic procedure of Germano for the liquid phase and the Jakobson approach for the gas phase. Wall-modeling is implemented using the method of Cabot & Moin. Our approach is employed to simulate flow over aerating hydrofoils at different angles of attack. A structured body-fitted C-grid is employed for domain discretization. Validation of our computational code, for C-grids, is carried out by simulating single-phase flows over a NACA0012 airfoil (20° AOA) with laminar flow and an E387 airfoil (6° AOA) with turbulent flow. Comparisons with available computational and experimental data in terms of time averaged drag coefficient, lift coefficient, separation bubble length, and reattachment point proves the validity of our computational code. The aerating hydrofoil simulation utilizes a NACA0015 hydrofoil, for which experiments were carried out at Saint Anthony Falls Laboratory. Comparisons between computational and experimental datasets show promising results. This work is supported by the U.S. Dept. of Energy and the Hydro Reasearch Foundation.
Large Eddy Simulation of wind turbines using the actuator line model and immersed boundary method
NASA Astrophysics Data System (ADS)
Santoni, Christian; Carrasquillo-Solís, Kenneth; Leonardi, Stefano
2014-11-01
Despite the growth of the energy extracted from wind turbines, the flow physics is still not fully understood even under ideal operational conditions. Large Eddy Simulations of the turbulent flow past a wind turbine in a channel have been performed. The numerical setup reproduces the experiment performed in a wind tunnel at the Norwegian University of Science and Technology (NUST). The code is based on a finite difference scheme with a fractional step and Runge-Kutta, which couples the actuator line model (ALM) and the Immersed Boundary Method (IBM). Two simulations were performed, one neglecting the tower and nacelle resulting in the rotating blades only, the other modeling both the rotating blades as well as the tower and nacelle with IBM. Results relative to the simulation with tower and nacelle have a very good agreement with experiments. Profiles of turbulent kinetic energy shows that the effect of the tower and nacelle is not confined to the hub region but extend to the entire rotor. In addition we placed the wind turbine over an undulated topography to understand how it affects the performances and wake of a wind turbine. Comparison with the results obtained for the smooth wall show an interaction between the rough wall and the wake. The numerical simulations were performed on XSEDE TACC under Grant No. CTS070066. The present work is supported by the National Science Foundation (NSF), Grant IIA-1243482 (WINDINSPIRE).
Requirements for Large Eddy Simulation Computations of Variable-Speed Power Turbine Flows
NASA Technical Reports Server (NTRS)
Ameri, Ali A.
2016-01-01
Variable-speed power turbines (VSPTs) operate at low Reynolds numbers and with a wide range of incidence angles. Transition, separation, and the relevant physics leading to them are important to VSPT flow. Higher fidelity tools such as large eddy simulation (LES) may be needed to resolve the flow features necessary for accurate predictive capability and design of such turbines. A survey conducted for this report explores the requirements for such computations. The survey is limited to the simulation of two-dimensional flow cases and endwalls are not included. It suggests that a grid resolution necessary for this type of simulation to accurately represent the physics may be of the order of Delta(x)+=45, Delta(x)+ =2 and Delta(z)+=17. Various subgrid-scale (SGS) models have been used and except for the Smagorinsky model, all seem to perform well and in some instances the simulations worked well without SGS modeling. A method of specifying the inlet conditions such as synthetic eddy modeling (SEM) is necessary to correctly represent the inlet conditions.
Large-eddy simulations of impinging jets at high Reynolds numbers
NASA Astrophysics Data System (ADS)
Wu, Wen; Piomelli, Ugo
2013-11-01
We have performed large-eddy simulations of an impinging jet with embedded azimuthal vortices. We used a hybrid approach in which the near-wall layer is modelled using the RANS equations with the Spalart-Allmaras model, while away from the wall Lagrangian-averaged dynamic eddy-viscosity modelled LES is used. This method allowed us to reach Reynolds numbers that would be prohibitively expensive for wall-resolving LES. First, we compared the results of the hybrid calculation with a wall-resolved one at moderate Reynolds number, Re = 66 , 000 (based on jet diameter and velocity). The mean velocity and Reynolds stresses were in good agreement between the simulations, and, in particular, the generation of secondary vorticity at the wall and its liftup were captured well. The simulation cost was reduced by 86%. We then carried out simulations at Re = 266 , 000 and 1.3 million. The effect of Reynolds number on vortex development will be discussed. Canada Research Chair in Computational Turbulence, HPCVL-Sun Microsystems Chair in Computational Science and Engineering.
Observations and Large-Eddy Simulations of Wave-Induced Boundary-Layer Separation
NASA Astrophysics Data System (ADS)
Grubisic, V.; Serafin, S.; Strauss, L.
2011-12-01
Wave-induced boundary-layer separation in flow over orography has received significant attention in recent years, especially in relation to the formation of atmospheric rotors. Traditionally depicted as horizontal eddies in the lee of mountain ranges, rotors are characterized by intense turbulence and pose a known threat to aviation. This study focuses on the first observationally documented case of wave-induced boundary-layer separation, which occurred on Jan 26 2006 in the lee of the Medicine Bow Mountains in SE Wyoming. Observations from the University of Wyoming King Air (UWKA) aircraft, in particular, the remote sensing measurements with the dual-Doppler Wyoming Cloud Radar (WCR), indicate strong wave activity, downslope winds in excess of 30 m s-1 within 200 m above the ground, and near-surface flow reversal in the lee of the mountain range. The fine resolution of WCR data (on the order of 40x40 m2 for two-dimensional velocity fields) reveals fine-scale coherent vortical structures which are embedded within the rotor zone and whose intensity contributes to the severity of turbulence therein. A series of semi-idealized three-dimensional large-eddy simulations of the Medicine Bow case was carried out using the CM1 model. Simulations represent the flow of an air mass with invariant profiles of wind speed and potential temperature over an isolated mountain ridge: the atmospheric soundings match the available observations and the ridge has the same size and shape as the Medicine Bow range. Model runs consider a simplified two-dimensional geometry where the complex topographic obstacle is represented as a smooth linear mountain ridge, but they are fully three-dimensional allowing for realistic turbulence dynamics. The simulated flow field is strikingly similar to the observed, with the simulations reproducing strong downslope flow detaching from the ground, with a patch of considerably lower wind intensities and embedded reverse flow further downstream. The near
Large-eddy simulations of turbulent flows in internal combustion engines
NASA Astrophysics Data System (ADS)
Banaeizadeh, Araz
The two-phase compressible scalar filtered mass density function (FMDF) model is further developed and employed for large-eddy simulations (LES) of turbulent spray combustion in internal combustion (IC) engines. In this model, the filtered compressible Navier-Stokes equations are solved in a generalized curvilinear coordinate system with high-order, multi-block, compact differencing schemes for the turbulent velocity and pressure. However, turbulent mixing and combustion are computed with a new two-phase compressible scalar FMDF model. The spray and droplet dispersion/evaporation are modeled with a Lagrangian method. A new Lagrangian-Eulerian-Lagrangian computational method is employed for solving the flow, spray and scalar equation. The pressure effect in the energy equation, as needed in compressible flows, is included in the FMDF formulation. The performance of the new compressible LES/FMDF model is assessed by simulating the flow field and scalar mixing in a rapid compression machine (RCM), in a shock tube and in a supersonic co-axial jet. Consistency of temperatures predicted by the Eulerian finite-difference (FD) and Lagrangian Monte Carlo (MC) parts of the LES/FMDF model are established by including the pressure on the FMDF. It is shown that the LES/FMDF model is able to correctly capture the scalar mixing in both compressible subsonic and supersonic flows. Using the new two-phase LES/FMDF model, fluid dynamics, heat transfer, spray and combustion in the RCM with flat and crevice piston are studied. It is shown that the temperature distribution in the RCM with crevice piston is more uniform than the RCM with flat piston. The fuel spray characteristics and the spray parameters affecting the fuel mixing inside the RCM in reacting and non-reacting flows are also studied. The predicted liquid penetration and flame lift-off lengths for respectively non-reacting and reacting sprays are found to compare well with the available experimental data. Temperatures and
A dynamic regularized gradient model of the subgrid-scale scalar flux for large eddy simulations
NASA Astrophysics Data System (ADS)
Balarac, G.; Le Sommer, J.; Meunier, X.; Vollant, A.
2013-07-01
Accurate predictions of scalar fields advected by a turbulent flow is needed for various industrial and geophysical applications. In the framework of large-eddy simulation (LES), a subgrid-scale (SGS) model for the subgrid-scale scalar flux has to be used. The gradient model (GM), which is derived from a Taylor series expansions of the filtering operation, is a well-known approach to model SGS scalar fluxes. This model is known to lead to high correlation level with the SGS scalar flux. However, this type of model cannot be used in practical LES because it does not lead to enough global scalar variance transfer from the large to the small scales. In this work, a regularization of the GM is proposed based on a physical interpretation of this model. The impact of the resolved velocity field on the resolved scalar gradient is decomposed into compressional, stretching, and rotational effects. It is shown that rotational effect is not associated with transfers of variance across scales. Conversely, the compressional effect is shown to lead to forward transfer, whereas the stretching effect leads to back-scatter of scalar variance. The proposed regularization is to neglect the stretching effect in the model formulation. The accuracy of this regularized gradient model (RGM) is tested in comparison with direct numerical simulations and compared with other classic SGS models. The accuracy of the RGM is evaluated in term of structural and functional performances, i.e., the model ability to locally approximate the SGS unknown term and to reproduce its global effect on tracer variance, respectively. It is found that the RGM associated with a dynamic procedure exhibits good performances in comparison with the standard dynamic eddy diffusivity model and the standard gradient model. In particular, the dynamic regularized gradient model (DRGM) provides a better prediction of scalar variance transfers than the standard gradient model. The DRGM is then evaluated in a series of large-eddy
Large Eddy Simulation of Turbulent Flow and Dispersion in Urban Areas and Forest Canopies
Chan, S T
2004-04-09
Under the sponsorship of the U.S. DOE and DHS, we have developed a CFD model for simulating flow and dispersion of chemical and biological agents released in the urban environment. Our model, FEM3MP (Chan and Stevens, 2000), is based on solving the three-dimensional, time-dependent, incompressible Navier-Stokes equations on massively parallel computer platforms. The model uses the finite element method for accurate representation of complex building shapes and variable terrain, together with a semi-implicit projection method and modern iterative solvers for efficient time integration (Gresho and Chan, 1998). Physical processes treated include turbulence modeling via the RANS (Reynolds Averaged Navier-Stokes) and LES (Large Eddy Simulation) approaches, atmospheric stability, aerosols, UV radiation decay, surface energy budget, and vegetative canopies, etc. Predictions from our model are continuously being verified and validated against data from wind tunnel (Chan and Stevens, 2000; Chan, et al., 2001) and field experiments (Chan, et al., 2002, 2003; Lee, et al., 2002; Humphreys, et al., 2003; and Calhoun, et al., 2004). Discussed below are several examples to illustrate the use of FEM3MP in simulating flow and dispersion in urban areas and forest canopies, with model results compared against available field measurements.
Unsteady adjoint for large eddy simulation of a coupled turbine stator-rotor system
NASA Astrophysics Data System (ADS)
Talnikar, Chaitanya; Wang, Qiqi; Laskowski, Gregory
2016-11-01
Unsteady fluid flow simulations like large eddy simulation are crucial in capturing key physics in turbomachinery applications like separation and wake formation in flow over a turbine vane with a downstream blade. To determine how sensitive the design objectives of the coupled system are to control parameters, an unsteady adjoint is needed. It enables the computation of the gradient of an objective with respect to a large number of inputs in a computationally efficient manner. In this paper we present unsteady adjoint solutions for a coupled turbine stator-rotor system. As the transonic fluid flows over the stator vane, the boundary layer transitions to turbulence. The turbulent wake then impinges on the rotor blades, causing early separation. This coupled system exhibits chaotic dynamics which causes conventional adjoint solutions to diverge exponentially, resulting in the corruption of the sensitivities obtained from the adjoint solutions for long-time simulations. In this presentation, adjoint solutions for aerothermal objectives are obtained through a localized adjoint viscosity injection method which aims to stabilize the adjoint solution and maintain accurate sensitivities. Preliminary results obtained from the supercomputer Mira will be shown in the presentation.
Large-Eddy Simulation of Transition to Turbulence in Boundary Layers
NASA Technical Reports Server (NTRS)
Huai, Xiao-Li; Joslin, Ronald D.; Piomelli, Ugo
1997-01-01
Large-eddy simulation results for laminar-to-turbulent transition in a spatially developing boundary layer are presented. The disturbances are ingested into a laminar flow through an unsteady suction-and-blowing strip. The filtered, three-dimensional time- dependent Navier-Stokes equations are integrated numerically using spectral, high-order finite-difference, and three-stage low-storage Runge-Kutta methods. The buffer-domain technique is used for the outflow boundary condition. The localized dynamic model used to parameterize the subgrid-scale stresses begins to have a significant impact at the beginning of the nonlinear transition (or intermittency) region. The flow structures commonly found in experiments are also observed in the present simulation; the computed linear instability modes and secondary instability lambda-vortex structures are in agreement with the experiments, and the streak-like-structures and turbulent statistics compare with both the experiments and the theory. The physics captured in the present LES are consistent with the experiments and the full Navier-Stokes simulation (DNS), at a significant fraction of the DNS cost. A comparison of the results obtained with several SGS models shows that the localized model gives accurate results both in a statistical sense and in terms of predicting the dynamics of the energy-carrying eddies, without ad hoc adjustments.
On the properties of energy stable flux reconstruction schemes for implicit large eddy simulation
NASA Astrophysics Data System (ADS)
Vermeire, B. C.; Vincent, P. E.
2016-12-01
We begin by investigating the stability, order of accuracy, and dispersion and dissipation characteristics of the extended range of energy stable flux reconstruction (E-ESFR) schemes in the context of implicit large eddy simulation (ILES). We proceed to demonstrate that subsets of the E-ESFR schemes are more stable than collocation nodal discontinuous Galerkin methods recovered with the flux reconstruction approach (FRDG) for marginally-resolved ILES simulations of the Taylor-Green vortex. These schemes are shown to have reduced dissipation and dispersion errors relative to FRDG schemes of the same polynomial degree and, simultaneously, have increased Courant-Friedrichs-Lewy (CFL) limits. Finally, we simulate turbulent flow over an SD7003 aerofoil using two of the most stable E-ESFR schemes identified by the aforementioned Taylor-Green vortex experiments. Results demonstrate that subsets of E-ESFR schemes appear more stable than the commonly used FRDG method, have increased CFL limits, and are suitable for ILES of complex turbulent flows on unstructured grids.
Wall-Modeled Large-Eddy Simulation of Turbulent Flow Past an Airfoil
NASA Astrophysics Data System (ADS)
Gao, Wei; Zhang, Wei; Samtaney, Ravi
2015-11-01
We present wall-modeled large-eddy simulations (WMLES) for turbulent flows incompressible past an airfoil. The virtual wall model, originally developed by Chung & Pullin (J. of Fluid Mech., 2009), is extended to generalized curvilinear coordinates and implemented using a body-fitted structured C-grid for airfoils. This model dynamically couples the outer resolved region with the wall region, and imposes a slip velocity boundary condition for the filtered velocity field on the ``virtual'' wall. The virtual wall model is combined with the stretched spiral vortex sub-grid scale model in a self-consistent framework, which is tested in WMLES of flow past a NACA0012 airfoil at different Reynolds number (Re) and angle of attack. The numerical results show that the wall model is able to accurately predict mean flow characteristics, including the formation of the separation bubble. Some high-order turbulence quantities are also compared with the direct numerical simulation results (Re =104) of flow past the same airfoil. We will present verification test cases to quantify the effectiveness of the wall model in both attached and separated flow regimes. Supported by the KAUST Office of Competitive Research Funds under Award No. URF/1/1394-01. The IBM Blue Gene/P Shaheen at KAUST was utilized for the simulations.
Large Eddy Simulation of a cooling impinging jet to a turbulent crossflow
NASA Astrophysics Data System (ADS)
Georgiou, Michail; Papalexandris, Miltiadis
2015-11-01
In this talk we report on Large Eddy Simulations of a cooling impinging jet to a turbulent channel flow. The impinging jet enters the turbulent stream in an oblique direction. This type of flow is relevant to the so-called ``Pressurized Thermal Shock'' phenomenon that can occur in pressurized water reactors. First we elaborate on issues related to the set-up of the simulations of the flow of interest such as, imposition of turbulent inflows, choice of subgrid-scale model and others. Also, the issue of the commutator error due to the anisotropy of the spatial cut-off filter induced by non-uniform grids is being discussed. In the second part of the talk we present results of our simulations. In particular, we focus on the high-shear and recirculation zones that are developed and on the characteristics of the temperature field. The budget for the mean kinetic energy of the resolved-scale turbulent velocity fluctuations is also discussed and analyzed. Financial support has been provided by Bel V, a subsidiary of the Federal Agency for Nuclear Control of Belgium.
A High-Resolution Capability for Large-Eddy Simulation of Jet Flows
NASA Technical Reports Server (NTRS)
DeBonis, James R.
2011-01-01
A large-eddy simulation (LES) code that utilizes high-resolution numerical schemes is described and applied to a compressible jet flow. The code is written in a general manner such that the accuracy/resolution of the simulation can be selected by the user. Time discretization is performed using a family of low-dispersion Runge-Kutta schemes, selectable from first- to fourth-order. Spatial discretization is performed using central differencing schemes. Both standard schemes, second- to twelfth-order (3 to 13 point stencils) and Dispersion Relation Preserving schemes from 7 to 13 point stencils are available. The code is written in Fortran 90 and uses hybrid MPI/OpenMP parallelization. The code is applied to the simulation of a Mach 0.9 jet flow. Four-stage third-order Runge-Kutta time stepping and the 13 point DRP spatial discretization scheme of Bogey and Bailly are used. The high resolution numerics used allows for the use of relatively sparse grids. Three levels of grid resolution are examined, 3.5, 6.5, and 9.2 million points. Mean flow, first-order turbulent statistics and turbulent spectra are reported. Good agreement with experimental data for mean flow and first-order turbulent statistics is shown.
Large-eddy simulation of charged particle flows to model sandstorms
NASA Astrophysics Data System (ADS)
Rahman, Mustafa; Cheng, Wan; Samtaney, Ravi
2016-11-01
Intense electric fields and lightning have been observed in sandstorms. It is proposed to investigate the physical mechanisms essential for production and sustenance of large-scale electric fields in sandstorms. Our central hypothesis is that the turbulent transport of charged sand particles is a necessary condition to attain sustained large-scale electric fields in sandstorms. Our investigation relies on simulating turbulent two-phase (air and suspended sand particles) flows in which the flow of air is governed by the filtered Navier-Stokes equations with a subgrid-scale model in a Large-Eddy-Simulation setting, while dust particles are modeled using the Eulerian approach using a version of the Direct Quadrature Method of Moments. For the fluid phase, the LES of incompressible turbulent boundary layer employs stretched spiral vortex subgrid-scale model and a virtual wall model similar to the work of Cheng, Pullin & Samtaney. We will quantify the effects of different sand particle distributions, and turbulent intensities on the root-mean-square of the generated electric fields. Supported by KAUST OCRF under Award Number URF/1/1704-01-01. The supercomputer Shaheen at KAUST is used for all simulations.
NASA Technical Reports Server (NTRS)
Morgan, Philip E.
2004-01-01
This final report contains reports of research related to the tasks "Scalable High Performance Computing: Direct and Lark-Eddy Turbulent FLow Simulations Using Massively Parallel Computers" and "Devleop High-Performance Time-Domain Computational Electromagnetics Capability for RCS Prediction, Wave Propagation in Dispersive Media, and Dual-Use Applications. The discussion of Scalable High Performance Computing reports on three objectives: validate, access scalability, and apply two parallel flow solvers for three-dimensional Navier-Stokes flows; develop and validate a high-order parallel solver for Direct Numerical Simulations (DNS) and Large Eddy Simulation (LES) problems; and Investigate and develop a high-order Reynolds averaged Navier-Stokes turbulence model. The discussion of High-Performance Time-Domain Computational Electromagnetics reports on five objectives: enhancement of an electromagnetics code (CHARGE) to be able to effectively model antenna problems; utilize lessons learned in high-order/spectral solution of swirling 3D jets to apply to solving electromagnetics project; transition a high-order fluids code, FDL3DI, to be able to solve Maxwell's Equations using compact-differencing; develop and demonstrate improved radiation absorbing boundary conditions for high-order CEM; and extend high-order CEM solver to address variable material properties. The report also contains a review of work done by the systems engineer.
Numerical analysis of blood flow through an elliptic stenosis using large eddy simulation.
Jabir, E; Lal, S Anil
2016-08-01
The presence of a stenosis caused by the abnormal narrowing of the lumen in the artery tree can cause significant variations in flow parameters of blood. The original flow, which is believed to be laminar in most situations, may turn out to turbulent by the geometric perturbation created by the stenosis. Flow may evolve to fully turbulent or it may relaminarise back according to the intensity of the perturbation. This article reports the numerical simulation of flow through an eccentrically located asymmetric stenosis having elliptical cross section using computational fluid dynamics. Large eddy simulation technique using dynamic Smagorinsky sub-grid scale model is applied to capture the turbulent features of flow. Analysis is carried out for two situations: steady inflow as ideal condition and pulsatile inflow corresponding to the actual physiological condition in common carotid artery. The spatially varying pulsatile inflow waveforms are mathematically derived from instantaneous mass flow measurements available in the literature. Carreau viscosity model is used to estimate the effect of non-Newtonian nature of blood. The present simulations for steady and pulsatile conditions show that post-stenotic flow field undergoes transition to turbulence in all cases. The characteristics of mean and turbulent flow fields have been presented and discussed in detail.
Coupled large eddy simulation and discrete element model of bedload motion
NASA Astrophysics Data System (ADS)
Furbish, D.; Schmeeckle, M. W.
2011-12-01
We combine a three-dimensional large eddy simulation of turbulence to a three-dimensional discrete element model of turbulence. The large eddy simulation of the turbulent fluid is extended into the bed composed of non-moving particles by adding resistance terms to the Navier-Stokes equations in accordance with the Darcy-Forchheimer law. This allows the turbulent velocity and pressure fluctuations to penetrate the bed of discrete particles, and this addition of a porous zone results in turbulence structures above the bed that are similar to previous experimental and numerical results for hydraulically-rough beds. For example, we reproduce low-speed streaks that are less coherent than those over smooth-beds due to the episodic outflow of fluid from the bed. Local resistance terms are also added to the Navier-Stokes equations to account for the drag of individual moving particles. The interaction of the spherical particles utilizes a standard DEM soft-sphere Hertz model. We use only a simple drag model to calculate the fluid forces on the particles. The model reproduces an exponential distribution of bedload particle velocities that we have found experimentally using high-speed video of a flat bed of moving sand in a recirculating water flume. The exponential distribution of velocity results from the motion of many particles that are nearly constantly in contact with other bed particles and come to rest after short distances, in combination with a relatively few particles that are entrained further above the bed and have velocities approaching that of the fluid. Entrainment and motion "hot spots" are evident that are not perfectly correlated with the local, instantaneous fluid velocity. Zones of the bed that have recently experienced motion are more susceptible to motion because of the local configuration of particle contacts. The paradigm of a characteristic saltation hop length in riverine bedload transport has infused many aspects of geomorphic thought, including
NASA Astrophysics Data System (ADS)
Martínez-Tossas, Luis A.; Churchfield, Matthew J.; Meneveau, Charles
2015-06-01
In this work we report on results from a detailed comparative numerical study from two Large Eddy Simulation (LES) codes using the Actuator Line Model (ALM). The study focuses on prediction of wind turbine wakes and their breakdown when subject to uniform inflow. Previous studies have shown relative insensitivity to subgrid modeling in the context of a finite-volume code. The present study uses the low dissipation pseudo-spectral LES code from Johns Hopkins University (LESGO) and the second-order, finite-volume OpenFOAMcode (SOWFA) from the National Renewable Energy Laboratory. When subject to uniform inflow, the loads on the blades are found to be unaffected by subgrid models or numerics, as expected. The turbulence in the wake and the location of transition to a turbulent state are affected by the subgrid-scale model and the numerics.
Martinez-Tossas, Luis A.; Churchfield, Matthew J.; Meneveau, Charles
2015-06-18
In this work we report on results from a detailed comparative numerical study from two Large Eddy Simulation (LES) codes using the Actuator Line Model (ALM). The study focuses on prediction of wind turbine wakes and their breakdown when subject to uniform inflow. Previous studies have shown relative insensitivity to subgrid modeling in the context of a finite-volume code. The present study uses the low dissipation pseudo-spectral LES code from Johns Hopkins University (LESGO) and the second-order, finite-volume OpenFOAMcode (SOWFA) from the National Renewable Energy Laboratory. When subject to uniform inflow, the loads on the blades are found to be unaffected by subgrid models or numerics, as expected. The turbulence in the wake and the location of transition to a turbulent state are affected by the subgrid-scale model and the numerics.
Martinez-Tossas, Luis A.; Churchfield, Matthew J.; Meneveau, Charles
2015-06-18
In this work we report on results from a detailed comparative numerical study from two Large Eddy Simulation (LES) codes using the Actuator Line Model (ALM). The study focuses on prediction of wind turbine wakes and their breakdown when subject to uniform inflow. Previous studies have shown relative insensitivity to subgrid modeling in the context of a finite-volume code. The present study uses the low dissipation pseudo-spectral LES code from Johns Hopkins University (LESGO) and the second-order, finite-volume OpenFOAMcode (SOWFA) from the National Renewable Energy Laboratory. When subject to uniform inflow, the loads on the blades are found to bemore » unaffected by subgrid models or numerics, as expected. The turbulence in the wake and the location of transition to a turbulent state are affected by the subgrid-scale model and the numerics.« less
Larsson, Johan; Wang, Qiqi
2014-01-01
In this paper, we try to look into the future to envision how large eddy and detached eddy simulations will be used in the engineering design process about 20–30 years from now. Some key challenges specific to the engineering design process are identified, and some of the critical outstanding problems and promising research directions are discussed. PMID:25024421
Larsson, Johan; Wang, Qiqi
2014-08-13
In this paper, we try to look into the future to envision how large eddy and detached eddy simulations will be used in the engineering design process about 20-30 years from now. Some key challenges specific to the engineering design process are identified, and some of the critical outstanding problems and promising research directions are discussed.
Large Eddy Simulations to determine the role of dispersive stresses in the urban canopy layer
NASA Astrophysics Data System (ADS)
Christen, Andreas; Giometto, Marco; Parlange, Marc
2013-04-01
Urban-scale weather and air pollution forecasting models need to realistically predict conditions in the urban canopy layer (UCL) - the atmosphere in-between buildings where people live and most activities take place. Nevertheless, for performance reasons, forecasting models cannot resolve every detail of the flow field around individual buildings and obstacles in a city. In common urban canopy parameterizations (UCPs), exchange processes between the UCL and the overlying atmosphere - including momentum transfer - are simplified to one-dimensional bulk flow representations, where the time-averaged flow field is also horizontally averaged over a larger spatial subset of the urban canopy. In the spatial averaging process of RANS equations, additional covariance terms arise in the time-averaged momentum balance, called 'dispersive stresses'. Physically, a dispersive stress can be explained as spatial correlation between the mean horizontal flow and mean vertical flow around buildings at a given height layer. Due to lack of knowledge on the role of dispersive fluxes, they are neglected in all current UCPs and transfer formulations. Only limited CFD studies for idealized cubical arrays show that dispersive fluxes are relevant and important to properly describe the overall momentum transfer in those specific rigid canopies. The current contribution determines the role of dispersive stresses to the overall momentum transfer for a more realistic urban canopy by means of large eddy simulation (LES). LES takes into account the unsteadiness that characterizes canopy layer flows, offering indisputably superior performances in predicting momentum exchange with respect to traditional methods, in particular when the effects of canopy elements play a major role. LES also showed to be able to properly represent the flow in areas of strong separation and in wakes, features that are strongly present in urban canopies, where most RANS and URANS models fail due to their under
Lu, Chunsong; Liu, Yangang; Zhang, Guang J.; Wu, Xianghua; Endo, Satoshi; Cao, Le; Li, Yueqing; Guo, Xiaohao
2016-02-01
This work examines the relationships of entrainment rate to vertical velocity, buoyancy, and turbulent dissipation rate by applying stepwise principal component regression to observational data from shallow cumulus clouds collected during the Routine AAF [Atmospheric Radiation Measurement (ARM) Aerial Facility] Clouds with Low Optical Water Depths (CLOWD) Optical Radiative Observations (RACORO) field campaign over the ARM Southern Great Plains (SGP) site near Lamont, Oklahoma. The cumulus clouds during the RACORO campaign simulated using a large eddy simulation (LES) model are also examined with the same approach. The analysis shows that a combination of multiple variables can better represent entrainment rate in both the observations and LES than any single-variable fitting. Three commonly used parameterizations are also tested on the individual cloud scale. A new parameterization is therefore presented that relates entrainment rate to vertical velocity, buoyancy and dissipation rate; the effects of treating clouds as ensembles and humid shells surrounding cumulus clouds on the new parameterization are discussed. Physical mechanisms underlying the relationships of entrainment rate to vertical velocity, buoyancy and dissipation rate are also explored.
A dynamic wall model for Large-Eddy simulations of wind turbine dedicated airfoils
NASA Astrophysics Data System (ADS)
J, Calafell; O, Lehmkuhl; A, Carmona; D, Pérez-Segarra C.; A, Oliva
2014-06-01
This work aims at modelling the flow behavior past a wind turbine dedicated airfoil at high Reynolds number and large angle of attack (AoA). The DU-93-W-210 airfoil has been selected. To do this, Large Eddy Simulations (LES) have been performed. Momentum equations have been solved with a parallel unstructured symmetry preserving formulation while the wall-adapting local-eddy viscosity model within a variational multi-scale framework (VMS- WALE) is used as the subgrid-scales model. Since LES calculations are still very expensive at high Reynolds Number, specially at the near-wall region, a dynamic wall model has been implemented in order to overcome this limitation. The model has been validated with a very unresolved Channel Flow case at Reτ = 2000. Afterwards, the model is also tested with the Ahmed Car case, that from the flow physics point of view is more similar to an stalled airfoil than the Channel Flow is, including flow features as boundary layer detachment and recirculations. This case has been selected because experimental results of mean velocity profiles are available. Finally, a flow around a DU-93-W-210 airfoil is computed at Re = 3 x 106 and with an AoA of 15°. Numerical results are presented in comparison with Direct Numerical Simulation (DNS) or experimental data for all cases.
A new statistical model for subgrid dispersion in large eddy simulations of particle-laden flows
NASA Astrophysics Data System (ADS)
Muela, Jordi; Lehmkuhl, Oriol; Pérez-Segarra, Carles David; Oliva, Asensi
2016-09-01
Dispersed multiphase turbulent flows are present in many industrial and commercial applications like internal combustion engines, turbofans, dispersion of contaminants, steam turbines, etc. Therefore, there is a clear interest in the development of models and numerical tools capable of performing detailed and reliable simulations about these kind of flows. Large Eddy Simulations offer good accuracy and reliable results together with reasonable computational requirements, making it a really interesting method to develop numerical tools for particle-laden turbulent flows. Nonetheless, in multiphase dispersed flows additional difficulties arises in LES, since the effect of the unresolved scales of the continuous phase over the dispersed phase is lost due to the filtering procedure. In order to solve this issue a model able to reconstruct the subgrid velocity seen by the particles is required. In this work a new model for the reconstruction of the subgrid scale effects over the dispersed phase is presented and assessed. This innovative methodology is based in the reconstruction of statistics via Probability Density Functions (PDFs).
New subgrid-scale models for large-eddy simulation of Rayleigh-Bénard convection
NASA Astrophysics Data System (ADS)
Dabbagh, F.; Trias, F. X.; Gorobets, A.; Oliva, A.
2016-09-01
At the crossroad between flow topology analysis and the theory of turbulence, a new eddy-viscosity model for Large-eddy simulation has been recently proposed by Trias et al.[PoF, 27, 065103 (2015)]. The S3PQR-model has the proper cubic near-wall behaviour and no intrinsic limitations for statistically inhomogeneous flows. In this work, the new model has been tested for an air turbulent Rayleigh-Benard convection in a rectangular cell of aspect ratio unity and n span-wise open-ended distance. To do so, direct numerical simulation has been carried out at two Rayleigh numbers Ra = 108 and 1010, to assess the model performance and investigate a priori the effect of the turbulent Prandtl number. Using an approximate formula based on the Taylor series expansion, the turbulent Prandtl number has been calculated and revealed a constant and Ra-independent value across the bulk region equals to 0.55. It is found that the turbulent components of eddy-viscosity and eddy-diffusivity are positively prevalent to maintain a turbulent wind essentially driven by the mean buoyant force at the sidewalls. On the other hand, the new eddy-viscosity model is preliminary tested for the case of Ra = 108 and showed overestimation of heat flux within the boundary layer but fairly good prediction of turbulent kinetics at this moderate turbulent flow.
Lu, Chunsong; Liu, Yangang; Zhang, Guang J.; ...
2016-02-01
This work examines the relationships of entrainment rate to vertical velocity, buoyancy, and turbulent dissipation rate by applying stepwise principal component regression to observational data from shallow cumulus clouds collected during the Routine AAF [Atmospheric Radiation Measurement (ARM) Aerial Facility] Clouds with Low Optical Water Depths (CLOWD) Optical Radiative Observations (RACORO) field campaign over the ARM Southern Great Plains (SGP) site near Lamont, Oklahoma. The cumulus clouds during the RACORO campaign simulated using a large eddy simulation (LES) model are also examined with the same approach. The analysis shows that a combination of multiple variables can better represent entrainment ratemore » in both the observations and LES than any single-variable fitting. Three commonly used parameterizations are also tested on the individual cloud scale. A new parameterization is therefore presented that relates entrainment rate to vertical velocity, buoyancy and dissipation rate; the effects of treating clouds as ensembles and humid shells surrounding cumulus clouds on the new parameterization are discussed. Physical mechanisms underlying the relationships of entrainment rate to vertical velocity, buoyancy and dissipation rate are also explored.« less
A time and space correlated turbulence synthesis method for Large Eddy Simulations
NASA Astrophysics Data System (ADS)
Castro, Hugo G.; Paz, Rodrigo R.
2013-02-01
In the present work the problem of generating synthesized turbulence at inflow boundaries of the simulation domain is addressed in the context of the Large Eddy Simulation (LES) method. To represent adequately certain statistical properties of a turbulent process, we propose a synthesized turbulence method which is based on previous works (Huang et al., 2010; Smirnov et al., 2001) [15,28]. For this purpose, time and space correlations are introduced strictly in the mathematical formulation of the synthetic turbulence inflow data. It is demonstrated that the proposed approach inherits the properties of the methods on which it is based while presents some particular advantages as well. The strategy of imposing conditions on the inlet velocity field through turbulence synthesis is implemented in the parallel multiphysics code called PETSc-FEM (http://www.cimec.org.ar/petscfem) primarily targeted to calculations throughout finite elements on general unstructured 2D and 3D grids. We present several numerical tests in order to validate and evaluate the method describing the dynamic phenomena that take place in “real-life” problems, such as a swirling turbulent flow inside a diffuser and the airflow around a vehicle model inside a wind tunnel at high Reynolds number.
Large-eddy simulation of nitrogen injection at trans- and supercritical conditions
NASA Astrophysics Data System (ADS)
Müller, Hagen; Niedermeier, Christoph A.; Matheis, Jan; Pfitzner, Michael; Hickel, Stefan
2016-01-01
Large-eddy simulations (LESs) of cryogenic nitrogen injection into a warm environment at supercritical pressure are performed and real-gas thermodynamics models and subgrid-scale (SGS) turbulence models are evaluated. The comparison of different SGS models — the Smagorinsky model, the Vreman model, and the adaptive local deconvolution method — shows that the representation of turbulence on the resolved scales has a notable effect on the location of jet break-up, whereas the particular modeling of unresolved scales is less important for the overall mean flow field evolution. More important are the models for the fluid's thermodynamic state. The injected fluid is either in a supercritical or in a transcritical state and undergoes a pseudo-boiling process during mixing. Such flows typically exhibit strong density gradients that delay the instability growth and can lead to a redistribution of turbulence kinetic energy from the radial to the axial flow direction. We evaluate novel volume-translation methods on the basis of the cubic Peng-Robinson equation of state in the framework of LES. At small extra computational cost, their application considerably improves the simulation results compared to the standard formulation. Furthermore, we found that the choice of inflow temperature is crucial for the reproduction of the experimental results and that heat addition within the injector can affect the mean flow field in comparison to results with an adiabatic injector.
Large Eddy Simulation of Surface Pressure Fluctuations on a Stalled Airfoil
NASA Astrophysics Data System (ADS)
Lele, Sanjiva; Kocheemoolayil, Joseph
2016-11-01
The surface pressure fluctuations beneath the separated flow over a turbine blade are believed to be responsible for a phenomenon known as Other Amplitude Modulation (OAM) of wind turbine noise. Developing the capability to predict stall noise from first-principles is a pacing item within the context of critically evaluating this conjecture. We summarize the progress made towards using large eddy simulations to predict stall noise. Successful prediction of pressure fluctuations on the airfoil surface beneath the suction side boundary layer is demonstrated in the near-stall and post-stall regimes. Previously unavailable two-point statistics necessary for characterizing the surface pressure fluctuations more completely are documented. The simulation results indicate that the space-time characteristics of pressure fluctuations on the airfoil surface change drastically in the near-stall and post-stall regimes. The changes are not simple enough to be accounted for by straight-forward scaling laws. The eddies responsible for surface pressure fluctuations and hence far-field noise are significantly more coherent across the span of the airfoil in the post-stall regime relative to the more canonical attached configurations.
NASA Astrophysics Data System (ADS)
Rahman, Mustafa; Samtaney, Ravi
2015-11-01
We present results of solid particles suspension and transport in a fully-developed turbulent boundary layer flow using large-eddy simulation of the incompressible Navier-Stokes equations. We adopt the Eulerian-Eulerian approach to simulating particle laden flow with a large number of particles, in which the particles are characterized by statistical descriptors. For the particulate phase, the direct quadrature method of moments (DQMOM) is chosen in which the weights and abscissas of the quadrature approximation are tracked directly rather than the moments themselves. The underlying approach in modeling the turbulence of fluid phase utilizes the stretched spiral vortex subgrid-scale model and a virtual wall model similar to the work proposed by Inoue & Pullin (J. Fluid Mech. 2011). The solver is verified against simple analytical solutions and the computational results are found to be in a good agreement with these. The capability of the new numerical solver will be exercised to investigate turbulent transport of sand in sandstorms. Finally, the adequacy and limitations of the solver will be discussed. Supported by the KAUST Office of Competitive Research Funds under Award No. URF/1/1704-01.
Large-eddy simulation of heat transfer from impinging slot jets
Cziesla, T.; Tandogan, E.; Mitra, N.K.
1997-07-01
Impinging jet flows have become a well-established object of investigation in recent years because of their increasing significance in both fundamental and applied fluid mechanics. Examples of a wide range of applications, are the drying of textiles, film, and paper; annealing of glass; processing of some metals and glass; cooling of gas turbine components and the outer wall of combustors and electronic equipment; and freezing of tissue. Here Nusselt number distributions are presented for impinging jet flow of an array of slot nozzles (rectangular jets). The tools to calculate the present turbulent flow are large-eddy simulation (LES) using a dynamic subgrid stress model and the direct numerical simulation (DNS). The numerical code has been validated by comparing computed Nusselt number distributions on the impingement plate for two-dimensional flow with experimental results. A comparison between LES using a logarithmic law of the wall and the DNS shows good agreement of Nusselt number in the Reynolds number range of 600--3,000. The velocity profile at the feed tube exit strongly influences the maximum heat transfer at the stagnation point.
Large-eddy simulation of flow past a real-life stream restoration structure
NASA Astrophysics Data System (ADS)
Kang, Seokkoo; Sotiropoulos, Fotis
2011-11-01
We carry out high-resolution large-eddy simulation (LES) of flow around a rock vane, which is a widely used stream restoration structure. Mean velocities and turbulence statistics collected downstream of the rock vane installed in a laboratory flume are compared with the LES results. The comparisons demonstrate that the LES is able to accurately predict the measured mean velocities and turbulence statistics. The simulation shows that the rock vane effectively directs the oncoming flow away from the structure and creates a reduced velocity region in the downstream region. The computed results also reveal that the rock vane creates strong secondary helical flow that directs the near-bed flow toward the sidewall to which the rock vane is attached. This finding points to the conclusion that the downstream secondary flow can create deposition of sediments near the sidewall in a mobile bed condition, which can serve as an important mechanism for protecting near-bank scour in natural streams. This work was supported by National Center for Earth-surface Dynamics (NCED), ECORIVER21 project in South Korea, National Cooperative Highway Research Program (NCHRP) and Minnesota Supercomputing Institue (MSI).
Parallel distributed, reciprocal Monte Carlo radiation in coupled, large eddy combustion simulations
NASA Astrophysics Data System (ADS)
Hunsaker, Isaac L.
Radiation is the dominant mode of heat transfer in high temperature combustion environments. Radiative heat transfer affects the gas and particle phases, including all the associated combustion chemistry. The radiative properties are in turn affected by the turbulent flow field. This bi-directional coupling of radiation turbulence interactions poses a major challenge in creating parallel-capable, high-fidelity combustion simulations. In this work, a new model was developed in which reciprocal monte carlo radiation was coupled with a turbulent, large-eddy simulation combustion model. A technique wherein domain patches are stitched together was implemented to allow for scalable parallelism. The combustion model runs in parallel on a decomposed domain. The radiation model runs in parallel on a recomposed domain. The recomposed domain is stored on each processor after information sharing of the decomposed domain is handled via the message passing interface. Verification and validation testing of the new radiation model were favorable. Strong scaling analyses were performed on the Ember cluster and the Titan cluster for the CPU-radiation model and GPU-radiation model, respectively. The model demonstrated strong scaling to over 1,700 and 16,000 processing cores on Ember and Titan, respectively.
Large-eddy simulation of nitrogen injection at trans- and supercritical conditions
Müller, Hagen; Pfitzner, Michael; Niedermeier, Christoph A.; Matheis, Jan; Hickel, Stefan
2016-01-15
Large-eddy simulations (LESs) of cryogenic nitrogen injection into a warm environment at supercritical pressure are performed and real-gas thermodynamics models and subgrid-scale (SGS) turbulence models are evaluated. The comparison of different SGS models — the Smagorinsky model, the Vreman model, and the adaptive local deconvolution method — shows that the representation of turbulence on the resolved scales has a notable effect on the location of jet break-up, whereas the particular modeling of unresolved scales is less important for the overall mean flow field evolution. More important are the models for the fluid’s thermodynamic state. The injected fluid is either in a supercritical or in a transcritical state and undergoes a pseudo-boiling process during mixing. Such flows typically exhibit strong density gradients that delay the instability growth and can lead to a redistribution of turbulence kinetic energy from the radial to the axial flow direction. We evaluate novel volume-translation methods on the basis of the cubic Peng-Robinson equation of state in the framework of LES. At small extra computational cost, their application considerably improves the simulation results compared to the standard formulation. Furthermore, we found that the choice of inflow temperature is crucial for the reproduction of the experimental results and that heat addition within the injector can affect the mean flow field in comparison to results with an adiabatic injector.
A velocity divergence constraint for large-eddy simulation of low-Mach flows
NASA Astrophysics Data System (ADS)
McDermott, Randall J.
2014-10-01
The velocity divergence (rate of fluid volumetric expansion) is a flow field quantity of fundamental importance in low-Mach flows. It directly affects the local mass density and therefore the local temperature through the equation of state. In this paper, starting from the conservative form of the sensible enthalpy transport equation, we derive a discrete divergence constraint for use in large-eddy simulation (LES) of low-Mach flows. The result accounts for numerical transport of mass and energy, which is difficult to eliminate in relatively coarse, engineering LES calculations when total variation diminishing (TVD) scalar transport schemes are employed. Without the correction terms derived here, unresolved (numerical) mixing of gas species with different heat capacities or molecular weights may lead to erroneous mixture temperatures and ultimately to an imbalance in the energy budget. The new formulation is implemented in a publicly available LES code called the Fire Dynamics Simulator (FDS). Accuracy of the flow solver for transport is demonstrated using the method of manufactured solutions. The conservation properties of the present scheme are demonstrated on two simple energy budget test cases, one involving a small fire in a compartment with natural ventilation and another involving mixing of two gases with different thermal properties.
NASA Technical Reports Server (NTRS)
White, Jeffrey A.; Baurle, Robert A.; Fisher, Travis C.; Quinlan, Jesse R.; Black, William S.
2012-01-01
The 2nd-order upwind inviscid flux scheme implemented in the multi-block, structured grid, cell centered, finite volume, high-speed reacting flow code VULCAN has been modified to reduce numerical dissipation. This modification was motivated by the desire to improve the codes ability to perform large eddy simulations. The reduction in dissipation was accomplished through a hybridization of non-dissipative and dissipative discontinuity-capturing advection schemes that reduces numerical dissipation while maintaining the ability to capture shocks. A methodology for constructing hybrid-advection schemes that blends nondissipative fluxes consisting of linear combinations of divergence and product rule forms discretized using 4th-order symmetric operators, with dissipative, 3rd or 4th-order reconstruction based upwind flux schemes was developed and implemented. A series of benchmark problems with increasing spatial and fluid dynamical complexity were utilized to examine the ability of the candidate schemes to resolve and propagate structures typical of turbulent flow, their discontinuity capturing capability and their robustness. A realistic geometry typical of a high-speed propulsion system flowpath was computed using the most promising of the examined schemes and was compared with available experimental data to demonstrate simulation fidelity.
Large eddy simulation of flows in industrial compressors: a path from 2015 to 2035
Gourdain, N.; Sicot, F.; Duchaine, F.; Gicquel, L.
2014-01-01
A better understanding of turbulent unsteady flows is a necessary step towards a breakthrough in the design of modern compressors. Owing to high Reynolds numbers and very complex geometry, the flow that develops in such industrial machines is extremely hard to predict. At this time, the most popular method to simulate these flows is still based on a Reynolds-averaged Navier–Stokes approach. However, there is some evidence that this formalism is not accurate for these components, especially when a description of time-dependent turbulent flows is desired. With the increase in computing power, large eddy simulation (LES) emerges as a promising technique to improve both knowledge of complex physics and reliability of flow solver predictions. The objective of the paper is thus to give an overview of the current status of LES for industrial compressor flows as well as to propose future research axes regarding the use of LES for compressor design. While the use of wall-resolved LES for industrial multistage compressors at realistic Reynolds number should not be ready before 2035, some possibilities exist to reduce the cost of LES, such as wall modelling and the adaptation of the phase-lag condition. This paper also points out the necessity to combine LES to techniques able to tackle complex geometries. Indeed LES alone, i.e. without prior knowledge of such flows for grid construction or the prohibitive yet ideal use of fully homogeneous meshes to predict compressor flows, is quite limited today. PMID:25024422
Wall-Resolved Large-Eddy Simulation of Turbulent Flow Past a NACA0012 Airfoil
NASA Astrophysics Data System (ADS)
Gao, Wei; Zhang, Wei; Samtaney, Ravi
2014-11-01
Large-eddy simulation (LES) of turbulent flow past a NACA0012 airfoil is performed at angle of attack (AoA) 3o and Rec = 2 . 3 ×104 . The filtered incompressible Navier-Stokes equations are spatially discretized using an energy conservative fourth-order scheme developed by Morinishi et al. (J. of Comput. Phys., 1998), and the subgrid-scale (SGS) tensor is modeled by the stretched-vortex SGS model developed by Pullin and co-workers (Phys. of Fluids, 2000, J. of Fluid Mech., 2009). An extension of the original stretched-vortex SGS model is utilized to resolve the streak-like structures in the near-wall flow regions. The mean velocity and turbulence intensity profiles on airfoil surface and in wake are validated against experimental data reported in Dong-Ha Kim et al. (AIAA, 2009). To further verify our LES capacity, some high-order turbulence quantities are also compared with the DNS results produced by our in-house DNS code. The effect of grid-refinement on the wall-resolved LES approach is also discussed. Supported by KAUST OCRF funded CRG project on simulation of turbulent flows over bluff bodies and airfoils.
Large eddy simulation of the gas-particle turbulent wake flow.
Luo, Kun; Jin, Han-hui; Fan, Jian-ren; Cen, Ke-fa
2004-01-01
To find out the detailed characteristics of the coherent structures and associated particle dispersion in free shear flow, large eddy simulation method was adopted to investigate a two-dimensional particle-laden wake flow. The well-known Sub-grid Scale mode introduced by Smagorinsky was employed to simulate the gas flow field and Lagrangian approach was used to trace the particles. The results showed that the typical large-scale vortex structures exhibit a stable counter rotating arrangement of opposite sign, and alternately form from the near wall region, shed and move towards the downstream positions of the wake with the development of the flow. For particle dispersion, the Stokes number of particles is a key parameter. At the Stokes numbers of 1.4 and 3.8 the particles concentrate highly in the outer boundary regions. While the particles congregate densely in the vortex core regions at the Stokes number of 0.15, and the particles at Stokes number of 15 assemble in the vortex braid regions and the rib regions between the adjoining vortex structures.
Large eddy simulation of flows in industrial compressors: a path from 2015 to 2035.
Gourdain, N; Sicot, F; Duchaine, F; Gicquel, L
2014-08-13
A better understanding of turbulent unsteady flows is a necessary step towards a breakthrough in the design of modern compressors. Owing to high Reynolds numbers and very complex geometry, the flow that develops in such industrial machines is extremely hard to predict. At this time, the most popular method to simulate these flows is still based on a Reynolds-averaged Navier-Stokes approach. However, there is some evidence that this formalism is not accurate for these components, especially when a description of time-dependent turbulent flows is desired. With the increase in computing power, large eddy simulation (LES) emerges as a promising technique to improve both knowledge of complex physics and reliability of flow solver predictions. The objective of the paper is thus to give an overview of the current status of LES for industrial compressor flows as well as to propose future research axes regarding the use of LES for compressor design. While the use of wall-resolved LES for industrial multistage compressors at realistic Reynolds number should not be ready before 2035, some possibilities exist to reduce the cost of LES, such as wall modelling and the adaptation of the phase-lag condition. This paper also points out the necessity to combine LES to techniques able to tackle complex geometries. Indeed LES alone, i.e. without prior knowledge of such flows for grid construction or the prohibitive yet ideal use of fully homogeneous meshes to predict compressor flows, is quite limited today.
NASA Astrophysics Data System (ADS)
Sotiropoulos, Fotis; Khosronejad, Ali
2016-02-01
Sand waves arise in subaqueous and Aeolian environments as the result of the complex interaction between turbulent flows and mobile sand beds. They occur across a wide range of spatial scales, evolve at temporal scales much slower than the integral scale of the transporting turbulent flow, dominate river morphodynamics, undermine streambank stability and infrastructure during flooding, and sculpt terrestrial and extraterrestrial landscapes. In this paper, we present the vision for our work over the last ten years, which has sought to develop computational tools capable of simulating the coupled interactions of sand waves with turbulence across the broad range of relevant scales: from small-scale ripples in laboratory flumes to mega-dunes in large rivers. We review the computational advances that have enabled us to simulate the genesis and long-term evolution of arbitrarily large and complex sand dunes in turbulent flows using large-eddy simulation and summarize numerous novel physical insights derived from our simulations. Our findings explain the role of turbulent sweeps in the near-bed region as the primary mechanism for destabilizing the sand bed, show that the seeds of the emergent structure in dune fields lie in the heterogeneity of the turbulence and bed shear stress fluctuations over the initially flatbed, and elucidate how large dunes at equilibrium give rise to energetic coherent structures and modify the spectra of turbulence. We also discuss future challenges and our vision for advancing a data-driven simulation-based engineering science approach for site-specific simulations of river flooding.
Hu, L H; Huo, R; Yang, D
2009-07-15
The dispersion of fire-induced buoyancy driven plume in and above an idealized street canyon of 18 m (width) x 18 m (height) x 40 m (length) with a wind flow perpendicular to its axis was investigated by Fire Dynamics Simulator (FDS), Large Eddy Simulation (LES). Former studies, such as that by Oka [T.R. Oke, Street design and urban canopy layer climate, Energy Build. 11 (1988) 103-113], Gayev and Savory [Y.A. Gayev, E. Savory, Influence of street obstructions on flow processes within street canyons. J. Wind Eng. Ind. Aerodyn. 82 (1999) 89-103], Xie et al. [S. Xie, Y. Zhang, L. Qi, X. Tang, Spatial distribution of traffic-related pollutant concentrations in street canyons. Atmos. Environ. 37 (2003) 3213-3224], Baker et al. [J. Baker, H. L. Walker, X. M. Cai, A study of the dispersion and transport of reactive pollutants in and above street canyons--a large eddy simulation, Atmos. Environ. 38 (2004) 6883-6892] and Baik et al. [J.-J. Baik, Y.-S. Kang, J.-J. Kim, Modeling reactive pollutant dispersion in an urban street canyon, Atmos. Environ. 41 (2007) 934-949], focus on the flow pattern and pollutant dispersion in the street canyon with no buoyancy effect. Results showed that with the increase of the wind flow velocity, the dispersion pattern of a buoyant plume fell into four regimes. When the wind flow velocity increased up to a certain critical level, the buoyancy driven upward rising plume was re-entrained back into the street canyon. This is a dangerous situation as the harmful fire smoke will accumulate to pollute the environment and thus threaten the safety of the people in the street canyon. This critical re-entrainment wind velocity, as an important parameter to be concerned, was further revealed to increase asymptotically with the heat/buoyancy release rate of the fire.
Zhong, Jian; Cai, Xiao-Ming; Bloss, William James
2015-05-01
This study investigates the dispersion and transport of reactive pollutants in a deep urban street canyon with an aspect ratio of 2 under neutral meteorological conditions using large-eddy simulation. The spatial variation of pollutants is significant due to the existence of two unsteady vortices. The deviation of species abundance from chemical equilibrium for the upper vortex is greater than that for the lower vortex. The interplay of dynamics and chemistry is investigated using two metrics: the photostationary state defect, and the inferred ozone production rate. The latter is found to be negative at all locations within the canyon, pointing to a systematic negative offset to ozone production rates inferred by analogous approaches in environments with incomplete mixing of emissions. This study demonstrates an approach to quantify parameters for a simplified two-box model, which could support traffic management and urban planning strategies and personal exposure assessment.
NASA Technical Reports Server (NTRS)
Canuto, V. M.
1994-01-01
The Reynolds numbers that characterize geophysical and astrophysical turbulence (Re approximately equals 10(exp 8) for the planetary boundary layer and Re approximately equals 10(exp 14) for the Sun's interior) are too large to allow a direct numerical simulation (DNS) of the fundamental Navier-Stokes and temperature equations. In fact, the spatial number of grid points N approximately Re(exp 9/4) exceeds the computational capability of today's supercomputers. Alternative treatments are the ensemble-time average approach, and/or the volume average approach. Since the first method (Reynolds stress approach) is largely analytical, the resulting turbulence equations entail manageable computational requirements and can thus be linked to a stellar evolutionary code or, in the geophysical case, to general circulation models. In the volume average approach, one carries out a large eddy simulation (LES) which resolves numerically the largest scales, while the unresolved scales must be treated theoretically with a subgrid scale model (SGS). Contrary to the ensemble average approach, the LES+SGS approach has considerable computational requirements. Even if this prevents (for the time being) a LES+SGS model to be linked to stellar or geophysical codes, it is still of the greatest relevance as an 'experimental tool' to be used, inter alia, to improve the parameterizations needed in the ensemble average approach. Such a methodology has been successfully adopted in studies of the convective planetary boundary layer. Experienc e with the LES+SGS approach from different fields has shown that its reliability depends on the healthiness of the SGS model for numerical stability as well as for physical completeness. At present, the most widely used SGS model, the Smagorinsky model, accounts for the effect of the shear induced by the large resolved scales on the unresolved scales but does not account for the effects of buoyancy, anisotropy, rotation, and stable stratification. The
Large Eddy Simulation of the Effects of Plasma Actuation Strength on Film Cooling Efficiency
NASA Astrophysics Data System (ADS)
Li, Guozhan; Chen, Fu; Li, Linxi; Song, Yanping
2016-11-01
In this article, numerical investigation of the effects of different plasma actuation strengths on the film cooling flow characteristics has been conducted using large eddy simulation (LES). For this numerical research, the plasma actuator is placed downstream of the trailing edge of the film cooling hole and a phenomenological model is employed to provide the electric field generated by it, resulting in the body forces. Our results show that as the plasma actuation strength grows larger, under the downward effect of the plasma actuation, the jet trajectory near the cooling hole stays closer to the wall and the recirculation region observably reduces in size. Meanwhile, the momentum injection effect of the plasma actuation also actively alters the distributions of the velocity components downstream of the cooling hole. Consequently, the influence of the plasma actuation strength on the Reynolds stress downstream of the cooling hole is remarkable. Furthermore, the plasma actuation weakens the strength of the kidney shaped vortex and prevents the jet from lifting off the wall. Therefore, with the increase of the strength of the plasma actuation, the coolant core stays closer to the wall and tends to split into two distinct regions. So the centerline film cooling efficiency is enhanced, and it is increased by 55% at most when the plasma actuation strength is 10.
Large Eddy Simulations on Vertical Axis Hydrokinetic Turbines and flow phenomena analysis
NASA Astrophysics Data System (ADS)
Guillaud, N.; Balarac, G.; Goncalvès, E.; Zanette, J.
2016-11-01
Large Eddy Simulations have been performed on a Vertical Axis Hydrokinetic Turbine (VAHT) at various tip speed ratios. The turbine power coefficient and the flow through the turbine show good agreement with experimental data. To better understand the evolution of the VAHT power coefficient through the tip speed ratios the contribution of the VAHT main regions to the global power coefficient has been evaluated. At the optimal tip speed ratio (λ = 2) blade tip vortex and blade/arm connection drag generate losses and decrease the efficiency of the regions around the blade tip and blade/arm connection. The region around the blade tip is the most degraded. When the tip speed ratio decreases to λ = 1, deep dynamic stall with the presence of a Leading Edge Vortex is observed at early angular positions and leads to the power coefficient drop. The power coefficient drop around the blade tip and the blade/arm connection happens at higher angular position than on the middle part of the blade. For a tip speed ratio higher than optimal, the region around the blade/arm connection shows the highest decrease in efficiency. Despite its small height compared to the blade this region is responsible for about 36% of the VAHT power coefficient decrease at λ = 2.5.
Large-eddy simulations of a turbulent Coanda jet on a circulation control airfoil
NASA Astrophysics Data System (ADS)
Nishino, Takafumi; Hahn, Seonghyeon; Shariff, Karim
2010-12-01
Large-eddy simulations are performed of a turbulent Coanda jet separating from a rounded trailing edge of a simplified circulation control airfoil model. The freestream Reynolds number based on the airfoil chord is 0.49×106, the jet Reynolds number based on the jet slot height is 4470, and the ratio of the peak jet velocity to the freestream velocity is 3.96. Three different grid resolutions are used to show that their effect is very small on the mean surface pressure distribution, which agrees very well with experiments, as well as on the mean velocity profiles over the Coanda surface. It is observed that the Coanda jet becomes fully turbulent just downstream of the jet exit, accompanied by asymmetric alternating vortex shedding behind a thin (but blunt) jet blade splitting the jet and the external flow. A number of "backward-tilted" hairpin vortices (i.e., the head of each hairpin being located upstream of the legs) are observed around the outer edge of the jet over the Coanda surface. These hairpins create strong upwash between the legs and weak downwash around them, contributing to turbulent mixing of the high-momentum jet below the hairpins and the low-momentum external flow above them. The probability density distribution of velocity fluctuations is shown to be highly asymmetric in this region, consistent with the observation that the hairpin vortices create strong upwash and weak downwash. Turbulent structures inside the jet, its spreading rate, and self-similarity are also discussed.
Subgrid-scale models for large-eddy simulation of rotating turbulent flows
NASA Astrophysics Data System (ADS)
Silvis, Maurits; Trias, Xavier; Abkar, Mahdi; Bae, Hyunji Jane; Lozano-Duran, Adrian; Verstappen, Roel
2016-11-01
This paper discusses subgrid models for large-eddy simulation of anisotropic flows using anisotropic grids. In particular, we are looking into ways to model not only the subgrid dissipation, but also transport processes, since these are expected to play an important role in rotating turbulent flows. We therefore consider subgrid-scale models of the form τ = - 2νt S +μt (SΩ - ΩS) , where the eddy-viscosity νt is given by the minimum-dissipation model, μt represents a transport coefficient; S is the symmetric part of the velocity gradient and Ω the skew-symmetric part. To incorporate the effect of mesh anisotropy the filter length is taken in such a way that it minimizes the difference between the turbulent stress in physical and computational space, where the physical space is covered by an anisotropic mesh and the computational space is isotropic. The resulting model is successfully tested for rotating homogeneous isotropic turbulence and rotating plane-channel flows. The research was largely carried out during the CTR SP 2016. M.S, and R.V. acknowledge the financial support to attend this Summer Program.
The emerging role of large eddy simulation in industrial practice: challenges and opportunities.
Hutton, A G
2009-07-28
That class of methods for treating turbulence gathered under the banner of large eddy simulation is poised to enter mainstream engineering practice. There is a growing body of evidence that such methods offer a significant stretch in industrial capability over solely Reynolds-averaged Navier-Stokes (RANS)-based modelling. A key enabling development will be the adaptation of innovative processor architectures, resulting from the huge investment in the gaming industry, to engineering analysis. This promises to reduce the computational burden to practicable levels. However, there are many lessons to be learned from the history of the past three decades. These lessons should be analysed in order to inform, if not modulate, the unfolding of this next cycle in the development of industrial modelling capability. This provides the theme for this paper, which is written very much from the standpoint of the informed practitioner rather than the innovator; someone with a strong motivation to improve significantly the competence with which industrial turbulent flows are treated. It is asserted that the reliable deployment of the methodology in the industrial context will prove to be a knowledge-based discipline, as was the case with RANS-based modelling, if not more so. The community at large should collectively make great efforts to put in place that knowledge base from which best practice advice can be derived at the very start of this cycle of advancement and continue to enrich it as the cycle progresses.
Large-Eddy Simulations of Noise Generation in Supersonic Jets at Realistic Engine Temperatures
NASA Astrophysics Data System (ADS)
Liu, Junhui; Corrigan, Andrew; Kailasanath, K.; Taylor, Brian
2015-11-01
Large-eddy simulations (LES) have been carried out to investigate the noise generation in highly heated supersonic jets at temperatures similar to those observed in high-performance jet engine exhausts. It is found that the exhaust temperature of high-performance jet engines can range from 1000K at an intermediate power to above 2000K at a maximum afterburning power. In low-temperature jets, the effects of the variation of the specific heat ratio as well as the radial temperature profile near the nozzle exit are small and are ignored, but it is not clear whether those effects can be also ignored in highly heated jets. The impact of the variation of the specific heat ratio is assessed by comparing LES results using a variable specific heat ratio with those using a constant specific heat ratio. The impact on both the flow field and the noise distributions are investigated. Because the total temperature near the nozzle wall can be substantially lower than the nozzle total temperature either due to the heating loss through the nozzle wall or due to the cooling applied near the wall, this lower wall temperature may impact the temperature in the shear layer, and thus impact the noise generation. The impact of the radial temperature profile on the jet noise generation is investigated by comparing results of lower nozzle wall temperatures with those of the adiabatic wall condition.
Yaw control for power optimization of an array of turbines: large eddy simulations
NASA Astrophysics Data System (ADS)
Ciri, Umberto; Rotea, Mario; Leonardi, Stefano
2016-11-01
Nowadays, advanced control systems are highly sought for the efficient operation of large clusters of wind turbines. The main objective is to mitigate wake interactions thus increasing annual energy production and/or limiting fatigue loads. Several control strategies have been proposed: generator torque, blade pitch angle and turbine yaw angle. Specifically, the introduction of a misalignment between the rotor plane and the wind direction (i.e. a non-zero yaw angle) causes the wake to laterally displace. Consequently, this phenomenon can potentially be exploited to avoid or reduce waked operations in aligned turbines configurations. However, the successful use of this strategy requires proper coordination between the individual machines in order to identify the optimal yaw angles. Because of the complex mechanisms which are expected to occur in this kind of flow, modeling inaccuracies may have a major impact on the results. As a consequence, a model-free approach is pursued, namely a Nested Extremum Seeking Control, coupled with Large-Eddy Simulations to assess the impact on performances of this control strategy, devise optimal settings and identify key interactions. This work is supported by NSF Award IIP 1362033, NSF IR/D program(while Dr. Rotea is serving at the NSF), NSF Grant N. 1243482. TACC is acknowledged for computational resources.
Large-eddy simulation of heavy particle dispersion in wall-bounded turbulent flows
NASA Astrophysics Data System (ADS)
Salvetti, M. V.
2015-03-01
Capabilities and accuracy issues in Lagrangian tracking of heavy particles in velocity fields obtained from large-eddy simulations (LES) of wall-bounded turbulent flows are reviewed. In particular, it is shown that, if no subgrid scale (SGS) model is added to the particle motion equations, particle preferential concentration and near-wall accumulation are significantly underestimated. Results obtained with SGS modeling for the particle motion equations based on approximate deconvolution are briefly recalled. Then, the error purely due to filtering in particle tracking in LES flow fields is singled out and analyzed. The statistical properties of filtering errors are characterized in turbulent channel flow both from an Eulerian and a Lagrangian viewpoint. Implications for stochastic SGS modeling in particle motion equations are briefly outlined. The author is retracting this article due to a significant overlap in content from three previously published papers [Phys. Fluids 20, 040603 (2008); Phys. Fluids 24, 045103 (2012); Acta Mech. 201(1-4), 277 (2008)], which constitutes dual publication. The author would like to apologize for any inconvenience this has caused. The article is retracted from the scientific record with effect from 12 January 2017.
Large-eddy simulations of stratification layer erosion by a jet
NASA Astrophysics Data System (ADS)
Obabko, Aleksandr; Merzari, Elia; Tomboulides, Ananias; Aithal, Shashi; Fischer, Paul
2014-11-01
Following Fukushima disaster, the OECD/NEA has chosen the PANDA experiment for 2014 benchmark exercise where predictive capabilities of computational fluid dynamics (CFD) tools are tested for multispecies convection in notorious regime of transition from turbulent to laminar flow and from forced to natural convection. Accurate prediction of these phenomena will beneficial for a range of applications including reactor thermal-hydraulics where it will further our understanding of reactor behavior during accidents and help design safer and more efficient reactors for a carbon-free energy option. In fact, the convection and mixing flow in the containment played an important role in the Fukushima accident as the buoyant hydrogen gas mixed with oxygen and detonated resulting in significant destruction and radioactive pollution. Here we present the three-dimensional large-eddy (LES) simulations of the PANDA experiment with the spectral-element open-source code Nek5000. The results are compared and contrasted for a range of parameters using Boussinesq and low-Mach number approximations. Partially funded by DOE NE NEAMS Program and used ALCF resources supported by the DOE Office of Science under Contract DE-AC02-06CH11357.
Large-eddy simulation of turbulent cavitating flow in a micro channel
Egerer, Christian P. Hickel, Stefan; Schmidt, Steffen J.; Adams, Nikolaus A.
2014-08-15
Large-eddy simulations (LES) of cavitating flow of a Diesel-fuel-like fluid in a generic throttle geometry are presented. Two-phase regions are modeled by a parameter-free thermodynamic equilibrium mixture model, and compressibility of the liquid and the liquid-vapor mixture is taken into account. The Adaptive Local Deconvolution Method (ALDM), adapted for cavitating flows, is employed for discretizing the convective terms of the Navier-Stokes equations for the homogeneous mixture. ALDM is a finite-volume-based implicit LES approach that merges physically motivated turbulence modeling and numerical discretization. Validation of the numerical method is performed for a cavitating turbulent mixing layer. Comparisons with experimental data of the throttle flow at two different operating conditions are presented. The LES with the employed cavitation modeling predicts relevant flow and cavitation features accurately within the uncertainty range of the experiment. The turbulence structure of the flow is further analyzed with an emphasis on the interaction between cavitation and coherent motion, and on the statistically averaged-flow evolution.
High-order Hybridized Discontinuous Galerkin methods for Large-Eddy Simulation
NASA Astrophysics Data System (ADS)
Fernandez, Pablo; Nguyen, Ngoc-Cuong; Peraire, Jaime
2016-11-01
With the increase in computing power, Large-Eddy Simulation emerges as a promising technique to improve both knowledge of complex flow physics and reliability of flow predictions. Most LES works, however, are limited to simple geometries and low Reynolds numbers due to high computational cost. While most existing LES codes are based on 2nd-order finite volume schemes, the efficient and accurate prediction of complex turbulent flows may require a paradigm shift in computational approach. This drives a growing interest in the development of Discontinuous Galerkin (DG) methods for LES. DG methods allow for high-order, conservative implementations on complex geometries, and offer opportunities for improved sub-grid scale modeling. Also, high-order DG methods are better-suited to exploit modern HPC systems. In the spirit of making them more competitive, researchers have recently developed the hybridized DG methods that result in reduced computational cost and memory footprint. In this talk we present an overview of high-order hybridized DG methods for LES. Numerical accuracy, computational efficiency, and SGS modeling issues are discussed. Numerical results up to Re=460k show rapid grid convergence and excellent agreement with experimental data at moderate computational cost.
Dynamic non-equilibrium wall-modeling for large eddy simulation at high Reynolds numbers
NASA Astrophysics Data System (ADS)
Kawai, Soshi; Larsson, Johan
2013-01-01
A dynamic non-equilibrium wall-model for large-eddy simulation at arbitrarily high Reynolds numbers is proposed and validated on equilibrium boundary layers and a non-equilibrium shock/boundary-layer interaction problem. The proposed method builds on the prior non-equilibrium wall-models of Balaras et al. [AIAA J. 34, 1111-1119 (1996)], 10.2514/3.13200 and Wang and Moin [Phys. Fluids 14, 2043-2051 (2002)], 10.1063/1.1476668: the failure of these wall-models to accurately predict the skin friction in equilibrium boundary layers is shown and analyzed, and an improved wall-model that solves this issue is proposed. The improvement stems directly from reasoning about how the turbulence length scale changes with wall distance in the inertial sublayer, the grid resolution, and the resolution-characteristics of numerical methods. The proposed model yields accurate resolved turbulence, both in terms of structure and statistics for both the equilibrium and non-equilibrium flows without the use of ad hoc corrections. Crucially, the model accurately predicts the skin friction, something that existing non-equilibrium wall-models fail to do robustly.
Application of monotone integrated large eddy simulation to Rayleigh-Taylor mixing.
Youngs, David L
2009-07-28
Rayleigh-Taylor (RT) instability occurs when a dense fluid rests on top of a light fluid in a gravitational field. It also occurs in an equivalent situation (in the absence of gravity) when an interface between fluids of different density is accelerated by a pressure gradient, e.g. in inertial confinement fusion implosions. Engineering models (Reynolds-averaged Navier-Stokes models) are needed to represent the effect of mixing in complex applications. However, large eddy simulation (LES) currently makes an essential contribution to understanding the mixing process and calibration or validation of the engineering models. In this paper, three cases are used to illustrate the current role of LES: (i) mixing at a plane boundary, (ii) break-up of a layer of dense fluid due to RT instability, and (iii) mixing in a simple spherical implosion. A monotone integrated LES approach is preferred because of the need to treat discontinuities in the flow, i.e. the initial density discontinuities or shock waves. Of particular interest is the influence of initial conditions and how this needs to be allowed for in engineering modelling. It is argued that loss of memory of the initial conditions is unlikely to occur in practical applications.
Quantifying turbulent wall shear stress in a stenosed pipe using large eddy simulation.
Gårdhagen, Roland; Lantz, Jonas; Carlsson, Fredrik; Karlsson, Matts
2010-06-01
Large eddy simulation was applied for flow of Re=2000 in a stenosed pipe in order to undertake a thorough investigation of the wall shear stress (WSS) in turbulent flow. A decomposition of the WSS into time averaged and fluctuating components is proposed. It was concluded that a scale resolving technique is required to completely describe the WSS pattern in a subject specific vessel model, since the poststenotic region was dominated by large axial and circumferential fluctuations. Three poststenotic regions of different WSS characteristics were identified. The recirculation zone was subject to a time averaged WSS in the retrograde direction and large fluctuations. After reattachment there was an antegrade shear and smaller fluctuations than in the recirculation zone. At the reattachment the fluctuations were the largest, but no direction dominated over time. Due to symmetry the circumferential time average was always zero. Thus, in a blood vessel, the axial fluctuations would affect endothelial cells in a stretched state, whereas the circumferential fluctuations would act in a relaxed direction.
Large eddy simulation of the FDA benchmark nozzle for a Reynolds number of 6500.
Janiga, Gábor
2014-04-01
This work investigates the flow in a benchmark nozzle model of an idealized medical device proposed by the FDA using computational fluid dynamics (CFD). It was in particular shown that a proper modeling of the transitional flow features is particularly challenging, leading to large discrepancies and inaccurate predictions from the different research groups using Reynolds-averaged Navier-Stokes (RANS) modeling. In spite of the relatively simple, axisymmetric computational geometry, the resulting turbulent flow is fairly complex and non-axisymmetric, in particular due to the sudden expansion. The resulting flow cannot be well predicted with simple modeling approaches. Due to the varying diameters and flow velocities encountered in the nozzle, different typical flow regions and regimes can be distinguished, from laminar to transitional and to weakly turbulent. The purpose of the present work is to re-examine the FDA-CFD benchmark nozzle model at a Reynolds number of 6500 using large eddy simulation (LES). The LES results are compared with published experimental data obtained by Particle Image Velocimetry (PIV) and an excellent agreement can be observed considering the temporally averaged flow velocities. Different flow regimes are characterized by computing the temporal energy spectra at different locations along the main axis.
Large-eddy simulation of street canyons and urban microclimate using Uintah:MPMICE
NASA Astrophysics Data System (ADS)
Nemati Hayati, A.; Stoll, R., II; Harman, T.; Pardyjak, E.
2014-12-01
Urban microclimate plays an important role in urban water use, energy use, pollutant transport, and the general comfort and well-being of urban inhabitants. The microclimate interacts locally with urban morphology, water levels, properties of urban surfaces, and vegetation cover all of which contribute significantly to the strong spatial variability observed in urban areas. Considerable parts of urban open spaces take the form of street canyons. These urban street canyons play a remarkable role in creating urban microclimates. Within street canyons themselves, a wide variety of phenomena contribute to complex flow patterns. These include various flow structures such as wake fields, circulation zones, isolated roughness flow, wake interference and skimming flows. In addition, heat fluxes from the buildings and the surrounding area enhance the complexity of the flow field inside the canyon. Here, we introduce Uintah:MPMICE for the simulation of fluid structure interactions in urban flows. Uintah:MPMICE has been developed in a massively parallel computational infrastructure, uses material points to represent buildings, and the large-eddy simulation (LES) technique to represent momentum and scalar transport. To validate Uintah:MPMICE, simulations of typical street canyons are compared against published wind tunnel particle imaging velocimetry (PIV) data for the cases of step-up and step-down street canyons. Our findings show promising results in capturing major flow features, namely wake fields, recirculation zones, wake interference, vortex structures, and flow separation in street canyons. LES results demonstrate the ability of the simulations to predict flow topology details such as secondary circulation zones and wall-originating elevated shear layers in step-up and step-down cases, respectively. Furthermore, mean flow and variance statistics indicate sensitivity to inlet boundary conditions; upstream turbulence generation method, in particular, has a significant
Large Eddy Simulation of a Near Sonic Turbulent Jet and Its Radiated Noise
NASA Technical Reports Server (NTRS)
Constantinescu, G. S.; Lele, S. K.
2001-01-01
In this paper numerical simulations are used to calculate the turbulence dynamics simultaneously with the sound field for a high-speed near-sonic (Ma=0.9) compressible jet at two Reynolds numbers of 3,600 and 72,000. LES (Large Eddy Simulation) in conjunction with accurate numerical schemes is used to calculate the unsteady flow and sound in the near field of the jet. It is shown that the jet mean parameters, mean velocity fields and turbulence statistics are in good agreement with experimental data and results from other simulations. The sound in the near-field is calculated directly from the simulations. The calculations are shown to capture the peak in the dilatation and pressure spectra around a Strouhal number St=0.25-0.3, in agreement with typical jet-noise spectra measured in experiments. Dilatation contours in the near-field show the formation of acoustic waves with a dominant wavelength of 3.2-4 jet diameters, corresponding to the peak in the dilatation spectra. As expected, the non-compact noise sources are found to be most dominant in the region corresponding to the end of the potential core. The contribution of the LES model to the radiated noise appears to be weak and does not contaminate the sound field with spurious high-frequency noise. However, the frequency spectra of the sound show a rapid falloff away from the peak frequency. This is attributed to the quasi-laminar state of the shear-layers in the region prior to potential core closure, and a possible effect of insufficient azimuthal resolution at the observed location. Further analysis of the effect of the LES model, especially at high frequencies, is needed.
Refined subgrid-scale model for large-eddy simulation of helical turbulence.
Yu, Changping; Xiao, Zuoli
2013-01-01
A refined two-term helical subgrid-scale (SGS) stress model with respect to that suggested by Li et al. [Phys. Rev. E 74, 026310 (2006)] is designed for large-eddy simulation (LES) of helical turbulence. The model coefficients in the new model are verified a priori to be scale invariant in inertial range, which proves that our model is local in scale. A dynamic method based on minimizing the residual resolved energy and helicity dissipations is suggested to simultaneously evaluate the coefficients of the mixed SGS model as the simulation progresses. In addition, an SGS helicity dissipation (or helicity flux) constraint condition is proposed to optimize the mixed two-term model. Both techniques are first tested and validated in the LES of forced isotropic helical turbulence. The statistical results are analyzed and compared with those obtained from the dynamic Smagorinsky model, the traditional dynamic mixed model, and the direct numerical simulation. It is found that the introduction of this dynamic procedure can help overcome the drawback of the traditional dynamic method which can not capture the negative helicity fluxes and SGS dissipations. The probability density functions of the energy flux and the conditioned helicity flux and SGS stress demonstrate that the helicity flux constrained dynamic SGS model can effectively predict the real SGS helical effects on the resolved scales, such as backscatters of energy and helicity, accurate helicity dissipation rate, and so on. The present models are also applied to the simulation of freely decaying isotropic turbulence with no apparent improvement observed in comparison with the traditional SGS models. The underlying reasons for these issues are addressed in detail.
Spatial large-eddy simulations of contrail formation in the wake of an airliner
NASA Astrophysics Data System (ADS)
Paoli, R.
2015-12-01
Contrails and contrail-cirrus are the most uncertain contributors to aviation radiative forcing. In order to reduce this uncertainty one needs to gain more knowledge on the physicochemical processes occurring in the aircraft plume, which eventually lead to the transformation of contrails into cirrus. To that end, the accurate prediction of the number of activated particles and their spatial and size distributions at the end of the jet regime may be helpful to initialize simulations in the following vortex regime. We present the results from spatial large-eddy simulations (LES) of contrail formation in the near-field wake of a generic (but full-scale) airliner that is representative of those used in long-haul flights in current fleets. The flow around the aircraft has been computed using a RANS code taking into account the full geometry that include the engines and the aerodynamic set-up for cruise conditions. The data have been reconstructed at a plane closely behind the trailing edge of the wing and used as inflow boundary conditions for the LES. We employ fully compressible 3D LES coupled to Lagrangian microphysical module that tracks parcels of ice particles individually. The ice microphysical model is simple yet it contains the basic thermodynamic ingredients to model soot activation and water vapor deposition. Compared to one-dimensional models or even RANS, LES allow for more accurate predictions of the mixing between exhaust and ambient air. Hence, the number of activated particles and the ice growth rate can be also determined with higher accuracy. This is particularly crucial for particles located at the edge of the jet that experience large gradients of temperature and humidity. The results of the fully coupled LES (where the gas phase and the particles are solved together) are compared to offline simulations where the ice microphysics model is run using thermodynamic data from pre-calculated particle trajectories extracted from inert LES (where ice
Large-eddy simulation of 3D turbulent flow past a complete marine hydrokinetic turbine
NASA Astrophysics Data System (ADS)
Kang, S.; Sotiropoulos, F.
2011-12-01
A high-resolution computational framework was recently developed by Kang et al (Adv. Water Resour., submitted) for simulating three-dimensional (3D), turbulent flow past real-life, complete marine hydrokinetic (MHK) turbine configurations. In this model the complex turbine geometry is resolved by employing the curvilinear immersed boundary (CURVIB) method, which solves the 3D unsteady incompressible Navier-Stokes equations in generalized curvilinear domains with embedded arbitrarily complex, moving and/or stationary immersed boundaries (Ge and Sotiropoulos, 2007). Turbulence is simulated using the large-eddy simulation (LES) approach adapted in the context of the CURVIB method, with a wall model based on solving the simplified boundary layer equations used to reconstruct boundary conditions near all solid surfaces (Kang et al., 2011). The model can resolve the flow patterns generated by the rotor and all stationary components of the turbine as well as the interactions of the flow structures with the channel bed. We apply this model to carry out LES of the flow past the model-size hydrokinetic turbine deployed in the St. Anthony Falls Laboratory main channel. The mean velocities and second-order turbulence statistics measured in the downstream wake using acoustic Doppler velocimetry (ADV) are compared with the LES results. The comparisons show that the computed mean velocities and turbulent stresses are in good agreement with the measurements. The high-resolution LES data are used to explore physically important downstream flow characteristics such as the time-averaged wake structure, recovery of cross-sectionally averaged power potential, near-bed scour potential, etc. This work is supported by Verdant Power.
Joint-constraint model for large-eddy simulation of helical turbulence.
Yu, Changping; Xiao, Zuoli; Shi, Yipeng; Chen, Shiyi
2014-04-01
A three-term mixed subgrid-scale (SGS) stress model is proposed for large-eddy simulation (LES) of helical turbulence. The new model includes a Smagorinsky-Lilly term, a velocity gradient term, and a symmetric vorticity gradient term. The model coefficients are determined by minimizing the mean square error between the realistic and modeled Leonard stresses under a joint constraint of kinetic energy and helicity fluxes. The model formulated as such is referred to as joint-constraint dynamic three-term model (JCD3TM). First, the new model is evaluated a priori using the direct numerical simulation (DNS) data of homogeneous isotropic turbulence with helical forcing. It is shown that the SGS dissipation fractions from all three terms in JCD3TM have the properties of length-scale invariance in inertial subrange. JCD3TM can predict the SGS stresses, energy flux, and helicity flux more accurately than the dynamic Smagorinsky model (DSM) and dynamic mixed helical model (DMHM) in both pointwise and statistical senses. Then, the performance of JCD3TM is tested a posteriori in LESs of both forced and freely decaying helical isotropic turbulence. It is found that JCD3TM possesses certain features of superiority over the other two models in predicting the energy spectrum, helicity spectrum, high-order statistics, etc. It is also noteworthy that JCD3TM is capable of simulating the evolutions of both energy and helicity spectra more precisely than other models in decaying helical turbulence. We claim that the present SGS model can capture the main helical features of turbulent motions and may serve as a useful tool for LES of helical turbulent flows.
NASA Astrophysics Data System (ADS)
Barsamian, Hagop Raffi
2000-10-01
This dissertation presents modifications and improvements to the dynamic subgrid scale model and introduces a new wall model. These are applied to the large eddy simulation technique in curvilinear coordinates. They are then validated and tested in three-dimensional complex geometries. The large eddy simulation method captures many scales of turbulence up to the grid size. A closure model is used to simulate subgrid turbulence. The Smagorinsky and dynamic subgrid models are presented and tested. The dynamic model overcomes many of the deficiencies of the Smagorinsky subgrid scale model. Spatial and temporal low-pass filters have been introduced in the dynamic subgrid scale model for numerical stability. No practical differences have been observed between the Smagorinsky and dynamic models. Several near-wall models are considered for the large eddy simulation technique. A local averaging technique makes these models applicable to complex geometries. A new model is introduced which overcomes planar averaging near the wall and captures ejection and sweep effects. Special treatment of inlet boundary conditions was introduced. These models have been implemented in a large eddy simulation computer program that uses a strongly conservative curvilinear coordinate formulation. The covariant projections are used as the dependent variables in a staggered methodology. The body fitted grids are advantageous in complex geometry descriptions. Results are validated in a lid driven cavity flow at Reynolds number of 10000. A single tube in a channel is simulated to show the applicability of the models to complex geometries with attachment and separation as well as end-wall effects. The shedding effect was captured and turbulence characteristics were acceptable. One million nodes were used in a large eddy simulation of a three-dimensional tube bundle at Reynolds number of 21700. Results are presented in the form of visualization and compared with available experimental data. The
Large Eddy Simulation of an n-Dodecane Spray Flame Under Different Ambient Oxygen Conditions
Pei, Yuanjiang; Hu, Bing; Som, Sibendu
2015-01-01
An n-dodecane spray flame was simulated using a dynamic structure large eddy simulation (LES) model coupled with a detailed chemistry combustion model to understand the ignition processes and the quasi-steady state flame structure at different ambient oxygen concentrations, 13\\%, 15\\% and 21\\% at ambient temperature of 900 K and ambient density of 22.8 kg/m3, which are typical diesel-engine relevant conditions with different levels of exhaust gas recirculation (EGR). The liquid spray was treated with a traditional Lagrangian method. A 103-species skeletal mechanism was used for n-dodecane chemical kinetic model. It is observed that the main ignitions occur in rich mixture and the flames are thickened around 35 to 40 mm off the spray axis due to the enhanced turbulence induced by the strong recirculation upstream just behind the head of the flames at different oxygen concentrations. At 1 ms after start of injection, the soot production is dominated by the broader region of high temperature in rich mixture instead of the stronger oxidation of the high peak temperature. Multiple realizations were performed for the 15\\% O$_2$ condition to understand the realization to realization variation and to establish best practices for ensemble-averaging diesel spray flames. Two indexes are defined. The structure-similarity index analysis suggests at least 5 realizations are needed to obtain 99\\% similarity for mixture fraction if average of 16 realizations are used as the target at 0.8 ms. However, this scenario may be different for different scalars of interest. It is found that 2 realizations would be enough to reach 99\\% of similarity for temperature, while 8 and 14 realizations are required to achieve 99\\% similarity for soot and OH mass fraction, respectively. Similar findings are noticed at 1 ms. More realizations are needed for the magnitude-similarity index for the similar level of similarity as the structure-similarity index.
NASA Astrophysics Data System (ADS)
Colucci, Paul John
A methodology termed the "filtered density function" (FDF) is developed and implemented for large eddy simulation (LES) of chemically reacting turbulent flows. In this methodology, the effects of the unresolved scalar fluctuations are taken into account by considering the probability density function (PDF) of the subgrid scale (SGS) scalar quantities. The transport equation governing the evolution of the FDF is derived in which the effect of chemical reaction appears in a closed form. The influences of scalar mixing and convection within the subgrid are modeled. The generalization to variable density flows is made through consideration of the filtered mass density function (FMDF). The FDF and FMDF transport equations are solved numerically via a Lagrangian Monte Carlo scheme in which the solutions of equivalent stochastic differential equations (SDEs) are obtained. The consistency of the approach, the convergence of the Monte Carlo solution, and the performance of the closures employed in the FDF and FMDF transport equations are assessed by comparisons with results obtained by direct numerical simulation (DNS) and by conventional LES procedures in which the first two SGS scalar moments are obtained by a finite difference method (LES-FD). In non-reacting flows, the Monte Carlo solution yields results similar to those via LES-FD for the first two SGS moments. The advantage of the methodology is demonstrated by its use in LES of reacting flows. In the absence of a closure for the SGS scalar fluctuations, the LES-FD results are significantly different from those based on DNS. Comparatively, the FDF and FMDF yield much better agreement with filtered DNS results. The methodology is also tested by comparative assessments against experimental data for a heat releasing hydrogen-fluorine reacting mixing layer.
Wall-resolved large-eddy simulation of flow past a circular cylinder
NASA Astrophysics Data System (ADS)
Cheng, W.; Pullin, D. I.; Samtaney, R.
2016-11-01
Wall-resolved large-eddy simulations (LES) about a smooth-walled circular cylinder are described over a range of Reynolds number from ReD = 3 . 9 ×103 (subcritical) to above the drag crisis, ReD = 8 . 5 ×105 (supercritical), where D is the cylinder diameter. The span-wise domain is 3 D for ReD <=105 and D otherwise. The numerical method is a fourth-order finite-difference discretization on a standard curvilinear O-grid. The stretched-vortex sub-grid scale model is used in the whole domain, including regions of large-scale separated flow. For ReD <=105 , calculations of the skin-friction coefficient versus polar angle θ along the cylinder surface and its dependence on ReD are well captured in comparison with experimental data. Proper separation behavior is observed. For high ReD , a fine mesh 8192 × 1024 × 256 is used. It is found that a blowing/suction-type perturbation of the wall-normal velocity along a span-wise strip, with angular position at θ = 50 -60o , is then required in order to produce flow separation in accordance with experiment at Reynolds numbers in the drag-crisis regime. Results presented will focus on the skin-friction behavior and details of flow separation. Supported partially by KAUST OCRF Award No. URF/1/1394-01 and partially by NSF award CBET 1235605. The Cray XC40, Shaheen, at KAUST was utilized for all simulations.
Large-Eddy Simulation of Coherent Flow Structures within a Cubical Canopy
NASA Astrophysics Data System (ADS)
Inagaki, Atsushi; Castillo, Marieta Cristina L.; Yamashita, Yoshimi; Kanda, Manabu; Takimoto, Hiroshi
2012-02-01
Instantaneous flow structures "within" a cubical canopy are investigated via large-eddy simulation. The main topics of interest are, (1) large-scale coherent flow structures within a cubical canopy, (2) how the structures are coupled with the turbulent organized structures (TOS) above them, and (3) the classification and quantification of representative instantaneous flow patterns within a street canyon in relation to the coherent structures. We use a large numerical domain (2,560 m × 2,560 m × 1,710 m) with a fine spatial resolution (2.5 m), thereby simulating a complete daytime atmospheric boundary layer (ABL), as well as explicitly resolving a regular array of cubes (40 m in height) at the surface. A typical urban ABL is numerically modelled. In this situation, the constant heat supply from roof and floor surfaces sustains a convective mixed layer as a whole, but strong wind shear near the canopy top maintains the surface layer nearly neutral. The results reveal large coherent structures in both the velocity and temperature fields "within" the canopy layer. These structures are much larger than the cubes, and their shapes and locations are shown to be closely related to the TOS above them. We classify the instantaneous flow patterns in a cavity, specifically focusing on two characteristic flow patterns: flushing and cavity-eddy events. Flushing indicates a strong upward motion, while a cavity eddy is characterized by a dominant vortical motion within a single cavity. Flushing is clearly correlated with the TOS above, occurring frequently beneath low-momentum streaks. The instantaneous momentum and heat transport within and above a cavity due to flushing and cavity-eddy events are also quantified.
Pei, Yuanjiang; Som, Sibendu; Pomraning, Eric; ...
2015-10-14
An n-dodecane spray flame (Spray A from Engine Combustion Network) was simulated using a δ function combustion model along with a dynamic structure large eddy simulation (LES) model to evaluate its performance at engine-relevant conditions and to understand the transient behavior of this turbulent flame. The liquid spray was treated with a traditional Lagrangian method and the gas-phase reaction was modeled using a δ function combustion model. A 103-species skeletal mechanism was used for the n-dodecane chemical kinetic model. Significantly different flame structures and ignition processes are observed for the LES compared to those of Reynolds-averaged Navier—Stokes (RANS) predictions. Themore » LES data suggests that the first ignition initiates in a lean mixture and propagates to a rich mixture, and the main ignition happens in the rich mixture, preferably less than 0.14 in mixture fraction space. LES was observed to have multiple ignition spots in the mixing layer simultaneously while the main ignition initiates in a clearly asymmetric fashion. The temporal flame development also indicates the flame stabilization mechanism is auto-ignition controlled. Soot predictions by LES present much better agreement with experiments compared to RANS, both qualitatively and quantitatively. Multiple realizations for LES were performed to understand the realization to realization variation and to establish best practices for ensemble-averaging diesel spray flames. The relevance index analysis suggests that an average of 5 and 6 realizations can reach 99% of similarity to the target average of 16 realizations on the mixture fraction and temperature fields, respectively. In conclusion, more realizations are necessary for the hydroxide (OH) and soot mass fractions due to their high fluctuations.« less
Pei, Yuanjiang; Som, Sibendu; Pomraning, Eric; Senecal, Peter K.; Skeen, Scott A.; Manin, Julien; Pickett, Lyle M.
2015-10-14
An n-dodecane spray flame (Spray A from Engine Combustion Network) was simulated using a δ function combustion model along with a dynamic structure large eddy simulation (LES) model to evaluate its performance at engine-relevant conditions and to understand the transient behavior of this turbulent flame. The liquid spray was treated with a traditional Lagrangian method and the gas-phase reaction was modeled using a δ function combustion model. A 103-species skeletal mechanism was used for the n-dodecane chemical kinetic model. Significantly different flame structures and ignition processes are observed for the LES compared to those of Reynolds-averaged Navier—Stokes (RANS) predictions. The LES data suggests that the first ignition initiates in a lean mixture and propagates to a rich mixture, and the main ignition happens in the rich mixture, preferably less than 0.14 in mixture fraction space. LES was observed to have multiple ignition spots in the mixing layer simultaneously while the main ignition initiates in a clearly asymmetric fashion. The temporal flame development also indicates the flame stabilization mechanism is auto-ignition controlled. Soot predictions by LES present much better agreement with experiments compared to RANS, both qualitatively and quantitatively. Multiple realizations for LES were performed to understand the realization to realization variation and to establish best practices for ensemble-averaging diesel spray flames. The relevance index analysis suggests that an average of 5 and 6 realizations can reach 99% of similarity to the target average of 16 realizations on the mixture fraction and temperature fields, respectively. In conclusion, more realizations are necessary for the hydroxide (OH) and soot mass fractions due to their high fluctuations.
Large-eddy simulation of biogenic VOC chemistry during the DISCOVER-AQ 2011 campaign
NASA Astrophysics Data System (ADS)
Li, Yang; Barth, Mary C.; Chen, Gao; Patton, Edward G.; Kim, Si-Wan; Wisthaler, Armin; Mikoviny, Tomas; Fried, Alan; Clark, Richard; Steiner, Allison L.
2016-07-01
Biogenic volatile organic compounds (BVOCs) are oxidized quickly in the atmosphere to form oxygenated VOC (OVOC) and play crucial roles in the formation of ozone and secondary organic aerosols. We use the National Center for Atmospheric Research's large-eddy simulation model and Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality 2011 flight data to understand the role of boundary layer turbulence on the atmospheric chemistry of key BVOC species and their oxidation products. We simulate three distinct convective environments during the campaign, representing fair weather conditions (case 1: 1 July), a convective event dominated by southwesterly flow (case 2: 11 July), and a polluted event with high temperature and convection (case 3: 29 July). Isoprene segregation is greatest in the lower boundary layer under warm and convective conditions, reaching up to a 10% reduction in the isoprene-OH reaction rate. Under warm and convective conditions, the BVOC lifetimes lengthen due to increased isoprene emission, elevated initial chemical concentrations, and OH competition. Although turbulence-driven segregation has less influence on the OVOC species, convection mixes more OVOC into the upper atmospheric boundary layer (ABL) and increases the total OH reactivity. Production and loss rates of ozone above 2 km in all the three cases indicate in situ ozone formation in addition to vertical convective transport of ozone from the surface and aloft, consistent with the increased contribution of OH reactivity from OVOC. Together, these results show that total OH reactivity in the ABL increases under warmer and stronger convective conditions due to enhanced isoprene emission and the OVOC contribution to ozone formation.
NASA Astrophysics Data System (ADS)
Rapaka, Narsimha R.; Sarkar, Sutanu
2016-10-01
A sharp-interface Immersed Boundary Method (IBM) is developed to simulate density-stratified turbulent flows in complex geometry using a Cartesian grid. The basic numerical scheme corresponds to a central second-order finite difference method, third-order Runge-Kutta integration in time for the advective terms and an alternating direction implicit (ADI) scheme for the viscous and diffusive terms. The solver developed here allows for both direct numerical simulation (DNS) and large eddy simulation (LES) approaches. Methods to enhance the mass conservation and numerical stability of the solver to simulate high Reynolds number flows are discussed. Convergence with second-order accuracy is demonstrated in flow past a cylinder. The solver is validated against past laboratory and numerical results in flow past a sphere, and in channel flow with and without stratification. Since topographically generated internal waves are believed to result in a substantial fraction of turbulent mixing in the ocean, we are motivated to examine oscillating tidal flow over a triangular obstacle to assess the ability of this computational model to represent nonlinear internal waves and turbulence. Results in laboratory-scale (order of few meters) simulations show that the wave energy flux, mean flow properties and turbulent kinetic energy agree well with our previous results obtained using a body-fitted grid (BFG). The deviation of IBM results from BFG results is found to increase with increasing nonlinearity in the wave field that is associated with either increasing steepness of the topography relative to the internal wave propagation angle or with the amplitude of the oscillatory forcing. LES is performed on a large scale ridge, of the order of few kilometers in length, that has the same geometrical shape and same non-dimensional values for the governing flow and environmental parameters as the laboratory-scale topography, but significantly larger Reynolds number. A non-linear drag law
Large eddy simulation of flow development and noise generation of free and swirling jets
NASA Astrophysics Data System (ADS)
Wan, Zhen-Hua; Zhou, Lin; Yang, Hai-Hua; Sun, De-Jun
2013-12-01
Large eddy simulation is performed for investigating the local and far-field behaviors of free and swirling jets at moderate Reynolds number. By solving compressible boundary layer equations, the inflow profiles with different swirl number are calculated, and then their stability characteristics are analyzed based on linear stability theory. The amplification rates of swirling jets are higher than the free one, particularly for higher or negative azimuthal wavenumber modes. Multiple unstable modes are superimposed to construct inflow forcing. The quantities of flow and acoustic are presented and compared against the results of existed experiments and other computations, besides, the comparisons are also made among themselves. For swirling jets, the spreadings of jet half-width and vorticity thickness at the initial and transition stage are enhanced, but they are surpassed by the free jet at turbulent mixing stage. In all cases, the development of mixing layer initially is greatly influenced by frequencies f0 and f0/2 associated with upstream forcing. As the swirl intensity is increased, the growth rates of fluctuation quantities on the centerline and the nozzle lip line are raised, but the peak levels on the centerline are reduced substantially. In swirling jets, the strength of vortex pairing is decreased, and the pairing noise is weakened correspondingly. The overall sound pressure levels are lower than that of the free jet at all observation angles (ϕ), and about 3 decibels (dB) is reduced at ϕ ≃ 30° in the strong swirling case at a distance of 60 radii. The Fourier analyses of pressure and acoustic sources show that the modes are varied greatly, which suggests that the noise reduction should be corresponding to the change of instability waves.
Numerical investigations of submerged vortices in a model pump sump by using Large Eddy Simulation
NASA Astrophysics Data System (ADS)
Yamade, Y.; Kato, C.; Nagahara, T.; Matsui, Jun
2016-11-01
Submerged vortices in a model pump sump and their flow structures were investigated numerically. The model pump sump is composed of a 2,500 mm-long water channel with rectangular cross section of 150 mm (channel width) by 100 mm (water height) and a vertical suction pipe with 100 mm diameter installed at its downstream end. At the upstream end of the channel, a uniform velocity of 0.37 m/s is given. In order to capture appearances and disappearances of submerged vortices in the pump sump, large eddy simulations (LES) are performed. The computational grids for the LES are composed of 2 billion hexahedral elements with 0.255 mm resolution. These grids can resolve the streamwise vortices in the approaching turbulent boundary layers that develops on the channel walls. However, it is not sufficiently fine to capture the vortex cores of the submerged vortices. The LES succeeded to capture appearances of the submerged vortices. By performing LES with several different sets of the wall boundary conditions, we have clearly identified, to the best of our knowledge for the first time, the origin of the submerged vortices. Computations that used a simplified computational model, where the computational domain was localized to the region close to the vortex core, were also performed to predict correctly the vortex core and to investigate dynamics of the vortices. The grid resolution in the simplified computational model was 0.03 mm. We successfully computed the size of vortex core in the simplified computational model. For this model, we also investigated the conditions under which a vortex appears by changing inlet tangential velocity.
Wake meandering statistics of a model wind turbine: Insights gained by large eddy simulations
NASA Astrophysics Data System (ADS)
Foti, Daniel; Yang, Xiaolei; Guala, Michele; Sotiropoulos, Fotis
2016-08-01
Wind tunnel measurements in the wake of an axial flow miniature wind turbine provide evidence of large-scale motions characteristic of wake meandering [Howard et al., Phys. Fluids 27, 075103 (2015), 10.1063/1.4923334]. A numerical investigation of the wake, using immersed boundary large eddy simulations able to account for all geometrical details of the model wind turbine, is presented here to elucidate the three-dimensional structure of the wake and the mechanisms controlling near and far wake instabilities. Similar to the findings of Kang et al. [Kang et al., J. Fluid Mech. 744, 376 (2014), 10.1017/jfm.2014.82], an energetic coherent helical hub vortex is found to form behind the turbine nacelle, which expands radially outward downstream of the turbine and ultimately interacts with the turbine tip shear layer. Starting from the wake meandering filtering used by Howard et al., a three-dimensional spatiotemporal filtering process is developed to reconstruct a three-dimensional meandering profile in the wake of the turbine. The counterwinding hub vortex undergoes a spiral vortex breakdown and the rotational component of the hub vortex persists downstream, contributing to the rotational direction of the wake meandering. Statistical characteristics of the wake meandering profile, along with triple decomposition of the flow field separating the coherent and incoherent turbulent fluctuations, are used to delineate the near and far wake flow structures and their interactions. In the near wake, the nacelle leads to mostly incoherent turbulence, while in the far wake, turbulent coherent structures, especially the azimuthal velocity component, dominate the flow field.
Non-Markovian closure models for large eddy simulations using the Mori-Zwanzig formalism
NASA Astrophysics Data System (ADS)
Parish, Eric J.; Duraisamy, Karthik
2017-01-01
This work uses the Mori-Zwanzig (M-Z) formalism, a concept originating from nonequilibrium statistical mechanics, as a basis for the development of coarse-grained models of turbulence. The mechanics of the generalized Langevin equation (GLE) are considered, and insight gained from the orthogonal dynamics equation is used as a starting point for model development. A class of subgrid models is considered which represent nonlocal behavior via a finite memory approximation [Stinis, arXiv:1211.4285 (2012)], the length of which is determined using a heuristic that is related to the spectral radius of the Jacobian of the resolved variables. The resulting models are intimately tied to the underlying numerical resolution and are capable of approximating non-Markovian effects. Numerical experiments on the Burgers equation demonstrate that the M-Z-based models can accurately predict the temporal evolution of the total kinetic energy and the total dissipation rate at varying mesh resolutions. The trajectory of each resolved mode in phase space is accurately predicted for cases where the coarse graining is moderate. Large eddy simulations (LESs) of homogeneous isotropic turbulence and the Taylor-Green Vortex show that the M-Z-based models are able to provide excellent predictions, accurately capturing the subgrid contribution to energy transfer. Last, LESs of fully developed channel flow demonstrate the applicability of M-Z-based models to nondecaying problems. It is notable that the form of the closure is not imposed by the modeler, but is rather derived from the mathematics of the coarse graining, highlighting the potential of M-Z-based techniques to define LES closures.
NASA Astrophysics Data System (ADS)
Sato, Yousuke; Nishizawa, Seiya; Yashiro, Hisashi; Miyamoto, Yoshiaki; Kajikawa, Yoshiyuki; Tomita, Hirofumi
2015-12-01
This study investigated the impact of several cloud microphysical schemes on the trade wind cumulus in the large eddy simulation model. To highlight the differences due to the cloud microphysical component, we developed a fully compressible large eddy simulation model, which excluded the implicit scheme and approximations as much as possible. The three microphysical schemes, the one-moment bulk, two-moment bulk, and spectral bin schemes were used for sensitivity experiments in which the other components were fixed. Our new large eddy simulation model using a spectral bin scheme successfully reproduced trade wind cumuli, and reliable model performance was confirmed. Results of the sensitivity experiments indicated that precipitation simulated by the one-moment bulk scheme started earlier, and its total amount was larger than that of the other models. By contrast, precipitation simulated by the two-moment scheme started late, and its total amount was small. These results support those of a previous study. The analyses revealed that the expression of two processes, (1) the generation of cloud particles and (2) the conversion from small droplets to raindrops, were crucial to the results. The fast conversion from cloud to rain and the large amount of newly generated cloud particles at the cloud base led to evaporative cooling and subsequent stabilization in the sub-cloud layer. The latent heat released at higher layers by the condensation of cloud particles resulted in the development of the boundary layer top height.
Wei, Wenli; Bai, Yu; Liu, Yuling
2016-01-01
This paper is concerned with the simulation and experimental study of hydraulic characteristics in a pilot Carrousel oxidation ditch for the optimization of submerged depth ratio of surface aerators. The simulation was based on the large eddy simulation with the Smagorinsky model, and the velocity was monitored in the ditches with an acoustic Doppler velocimeter method. Comparisons of the simulated velocities and experimental ones show a good agreement, which validates that the accuracy of this simulation is good. The best submerged depth ratio of 2/3 for surface aerators was obtained according to the analysis of the flow field structure, the ratio of gas and liquid in the bottom layer of a ditch, the average velocity of mixture and the flow region with a velocity easily causing sludge deposition under the four operation conditions with submerged depth ratios of 1/3, 1/2, 2/3 and 3/4 for surface aerators. The research result can provide a reference for the design of Carrousel oxidation ditches.
NASA Astrophysics Data System (ADS)
Sorbjan, Zbigniew
2017-02-01
Gradient-based similarity functions, evaluated based on data generated by a large-eddy simulation model of the stably stratified boundary layer, are compared with analogous similarity functions, derived from field observations in the surface layer during the Surface Heat Budget of the Arctic Ocean (SHEBA) experiment in the Arctic. The comparison is performed in terms of explicit and implicit local scaling systems, for the temperature and momentum fluxes, standard deviations of the vertical velocity and of temperature, as well as dissipation rates for the turbulent kinetic energy and for the temperature variance. The comparison shows the best agreement of the SHEBA-based similarity functions with analogous functions evaluated using the large-eddy simulation data in the range of the Richardson number 0.01<{ Ri}< 0.1.
NASA Astrophysics Data System (ADS)
Tonttila, J.; Romakkaniemi, S.; Kokkola, H.; Maalick, Z.; Korhonen, H.; Liqing, H.
2015-12-01
A new cloud-resolving model setup for studying aerosol-cloud interactions, with a special emphasis on partitioning and wet deposition of semi-volatile aerosol species, is presented. The model is based on modified versions of two well-established model components: the Large-Eddy Simulator (LES) UCLALES, and the sectional aerosol model SALSA, previously employed in the ECHAM climate model family. Implementation of the UCLALES-SALSA is described in detail. As the basis for this work, SALSA has been extended to include a sectional representation of the size distributions of cloud droplets and precipitation. Microphysical processes operating on clouds and precipitation have also been added. Given our main motivation, the cloud droplet size bins are defined according to the dry particle diameter. The droplet wet diameter is solved dynamically through condensation equations, but represents an average droplet diameter inside each size bin. This approach allows for accurate tracking of the aerosol properties inside clouds, but minimizes the computational cost. Since the actual cloud droplet diameter is not fully resolved inside the size bins, processes such as precipitation formation rely on parameterizations. For realistic growth of drizzle drops to rain, which is critical for the aerosol wet deposition, the precipitation size bins are defined according to the actual drop size. With these additions, the implementation of the SALSA model replaces most of the microphysical and thermodynamical components within the LES. The cloud properties and aerosol-cloud interactions simulated by the model are analysed and evaluated against detailed cloud microphysical boxmodel results and in-situ aerosol-cloud interaction observations from the Puijo measurement station in Kuopio, Finland. The ability of the model to reproduce the impacts of wet deposition on the aerosol population is demonstrated.
2014-09-06
train formation and reactant mixing in a model Chemical Oxygen Iodine Laser (COIL) unit. The configuration consists of a converging-diverging nozzle, a...appear to influence the mixing process in the lasing cavity significantly. 15. SUBJECT TERMS Large-eddy simulation, chemical oxygen iodine lasers...model Chemical Oxygen Iodine Laser (COIL) unit. The configuration consists of a converging-diverging nozzle, a lasing cavity, and a diffuser. The
A New Class of Hybrid Schemes Based on Large Eddy Simulation and Low-Dimensional Stochastic Models
2006-06-01
solutions are extended from the bulk flow to the wall. The hybrid approach reproduces very well velocity profiles normal to the wall, which are...of 3D LES with 1D solutions based on the ODT, with ODT elements embedded within the LES computational domain. The solutions require the coupling of...combustion, large-eddy simulations; reacting flows , the One-Dimensional Turbulence (ODT) model, subgrid scale modeling 16. SECURITY CLASSIFICATION OF: 17
Large-Eddy Simulations of Wind Turbine Wakes Subject to Different Atmospheric Stabilities
NASA Astrophysics Data System (ADS)
Churchfield, M.; Lundquist, J. K.; Lee, S.; Clifton, A.
2014-12-01
As a byproduct of energy extraction, wind turbines create a low-speed, turbulent wake that propagate downwind. When wind turbines are situated in a group, as in a wind plant, the interactions of these wakes with other turbines are important because wake effects decrease the efficiency of the wind plant, and they increase mechanical loads on individual turbines. Wakes propagate downstream differently depending on the inflow conditions, and these conditions are heavily dominated by atmospheric stability. For example, we know that wakes are more persistent in stable conditions than in unstable conditions. Also, stable conditions often have significant wind veer which skews wakes laterally. Different levels of turbulence intensity are associated with different atmospheric stability levels, and turbulence intensity acts to diffuse wakes and to cause wake meandering. Wake physics are complex, and to understand them better, a high-resolution representation of the flow is necessary. Measurements are difficult with current sensing equipment because of the sheer size of wakes and the unsteady atmospheric environment in which they are found. Numerical simulations complement measurements and provide a high-resolution representation of the entire three-dimensional, unsteady flow field. In this work, we use large-eddy simulation (LES), the highest fidelity type of computational fluid dynamics (CFD) feasible for high-Reynolds-number wake flow. LES directly resolves the larger, energy-containing turbulent scales and models the effects of the subgrid scales that the computational mesh cannot resolve. Our solver is based on the OpenFOAM open-source CFD toolbox. Turbines are modeled using rotating actuator lines. Here, we present our LES of the wake behind a modern 1.5 MW turbine subject to different inflow atmospheric stability. We will present results of wakes subject to stable (strongly and weakly stable), neutral, and unstable conditions. We are particularly interested in how
Large eddy simulation of the unsteady flow-field in an idealized human mouth-throat configuration.
Cui, X G; Gutheil, E
2011-11-10
The present study concerns the simulation and analysis of the flow field in the upper human respiratory system in order to gain an improved understanding of the complex flow field with respect to the process affecting drug delivery for medical treatment of the human air system. For this purpose, large eddy simulation (LES) is chosen because of its powerful performance in the transitional range of laminar and turbulent flow fields. The average gas velocity in a constricted tube is compared with experimental data (Ahmed and Giddens, 1983) and numerical data from Reynolds-averaged Navier-Stokes (RANS) equations coupled with low Reynolds number (LRN) κ-ω model (Zhang and Kleinstreuer, 2003) and LRN shear-stress transport κ-ω model (Jayaraju et al., 2007), for model validation. The present study emphasizes on the instantaneous flow field, where the simulations capture different scales of secondary vortices in different flow zones including recirculation zones, the laryngeal jet zone, the mixing zone, and the wall shear layer. It is observed that the laryngeal jet tail breaks up, and the unsteady motion of laryngeal jet is coupled with the unsteady distribution of secondary vortices in the jet boundary. The present results show that it is essential to study the unsteady flow field since it strongly affects the particle flow in the human upper respiratory system associated with drug delivery for medical treatment.
NASA Astrophysics Data System (ADS)
Puhales, Franciano Scremin; Rizza, Umberto; Degrazia, Gervásio Annes; Acevedo, Otávio Costa
2013-02-01
In this work a parametrization for the transport terms of the turbulent kinetic energy (TKE) budget equation, valid for a convective boundary layer (CBL) is presented. This is a hard task to accomplish from experimental data, especially because of the difficulty associated to the measurements of pressure turbulent fluctuations, which are necessary to determine the pressure correlation TKE transport term. Thus, employing a large eddy simulation (LES) a full diurnal planetary boundary layer (PBL) cycle was simulated. In this simulation a forcing obtained from experimental data is used, so that the numerical experiment represents a more realistic case than a stationary PBL. For this study all terms of the TKE budget equation were determined for a CBL. From these data, polynomials that describe the TKE transport terms’ vertical profiles were adjusted. The polynomials found are a good description of the LES data, and from them it is shown that a simple formulation that directly relates the transport terms to the TKE magnitude has advantages on other parameterizations commonly used in CBL numerical models. Furthermore, the present study shows that the TKE turbulent transport term dominates over the TKE transport by pressure perturbations and that for most of the CBL these two terms have opposite signs.
Large eddy simulation of smooth-wall, transitional and fully rough-wall channel flow
NASA Astrophysics Data System (ADS)
Saito, Namiko; Pullin, Dale I.; Inoue, Michio
2012-07-01
Large eddy simulation (LES) is reported for both smooth and rough-wall channel flows at resolutions for which the roughness is subgrid. The stretched vortex, subgrid-scale model is combined with an existing wall-model that calculates the local friction velocity dynamically while providing a Dirichlet-like slip velocity at a slightly raised wall. This wall model is presently extended to include the effects of subgrid wall roughness by the incorporation of the Hama's roughness function Δ U^+(k_{sinfty }^+) that depends on some geometric roughness height ks∞ scaled in inner variables. Presently Colebrook's empirical roughness function is used but the model can utilize any given function of an arbitrary number of inner-scaled, roughness length parameters. This approach requires no change to the interior LES and can handle both smooth and rough walls. The LES is applied to fully turbulent, smooth, and rough-wall channel flow in both the transitional and fully rough regimes. Both roughness and Reynolds number effects are captured for Reynolds numbers Reb based on the bulk flow speed in the range 104-1010 with the equivalent Reτ, based on the wall-drag velocity uτ varying from 650 to 108. Results include a Moody-like diagram for the friction factor f = f(Reb, ɛ), ɛ = ks∞/δ, mean velocity profiles, and turbulence statistics. In the fully rough regime, at sufficiently large Reb, the mean velocity profiles show collapse in outer variables onto a roughness modified, universal, velocity-deficit profile. Outer-flow stream-wise turbulence intensities scale well with uτ for both smooth and rough-wall flow, showing a log-like profile. The infinite Reynolds number limits of both smooth and rough-wall flows are explored. An assumption that, for smooth-wall flow, the turbulence intensities scaled on uτ are bounded above by the sum of a logarithmic profile plus a finite function across the whole channel suggests that the infinite Reb limit is inviscid slip flow without
NASA Astrophysics Data System (ADS)
Liu, Zhongqiu; Li, Baokuan
2017-03-01
Euler-Euler simulations of transient horizontal gas-liquid flow in a continuous-casting mold are presented. The predictions were compared with previous experimental measurements by two-channel laser Doppler velocimeter. Simulations were performed to understand the sensitivity to different turbulence closure models [k-ɛ, shear stress transport (SST), Reynolds stress model (RSM), and large-eddy simulation (LES)] and different interfacial forces (drag, lift, virtual mass, wall lubrication, and turbulent dispersion). It was found that the LES model showed better agreement than the other turbulence models in predicting the velocity components of the liquid phase. Furthermore, an appropriate drag force coefficient model, lift force coefficient model, and virtual mass force coefficient were chosen. Meanwhile, the wall lubrication force and turbulent dispersion force did not have much effect on the current gas-liquid two-phase system. This work highlights the importance of choosing an appropriate bubble size in accordance with experiment. Finally, coupled with the optimized interfacial force models and bubble size, LES with a dynamic subgrid model was used to calculate the transient two-phase turbulent flow inside the mold. More instantaneous details of the two-phase flow characteristics in the mold were captured by LES, including multiscale vortex structures, fluctuation characteristics, and the vorticity distribution. The LES model can also be used to describe the time-averaged gas-liquid flow field, giving reasonably good agreement with mean experimental data. Thus, LES can be used effectively to study transient two-phase flow inside molds.
Hu, L H; Xu, Y; Zhu, W; Wu, L; Tang, F; Lu, K H
2011-09-15
The dispersion of buoyancy driven smoke soot and carbon monoxide (CO) gas, which was ejected out from side building into an urban street canyon with aspect ratio of 1 was investigated by large eddy simulation (LES) under a perpendicular wind flow. Strong buoyancy effect, which has not been revealed before, on such pollution dispersion in the street canyon was studied. The buoyancy release rate was 5 MW. The wind speed concerned ranged from 1 to 7.5m/s. The characteristics of flow pattern, distribution of smoke soot and temperature, CO concentration were revealed by the LES simulation. Dimensionless Froude number (Fr) was firstly introduced here to characterize the pollutant dispersion with buoyancy effect counteracting the wind. It was found that the flow pattern can be well categorized into three regimes. A regular characteristic large vortex was shown for the CO concentration contour when the wind velocity was higher than the critical re-entrainment value. A new formula was theoretically developed to show quantitatively that the critical re-entrainment wind velocities, u(c), for buoyancy source at different floors, were proportional to -1/3 power of the characteristic height. LES simulation results agreed well with theoretical analysis. The critical Froude number was found to be constant of 0.7.
Large-eddy simulation of the diurnal variation of wake flows in a finite-size wind farm
NASA Astrophysics Data System (ADS)
Abkar, Mahdi; Sharifi, Ahmad; Porté-Agel, Fernando
2015-06-01
In this study, large-eddy simulation (LES) is used to study the evolution of the wind-turbine wakes and their effects on power losses inside an idealized finite-size wind farm in the course of a full diurnal cycle. In the LES, turbulent subgrid-scale stresses are modeled using tuning-free Lagrangian scale-dependent dynamic models, while the turbine-induced forces are parameterized using a dynamic actuator disk model with rotation. The simulation results show a strong effect of atmospheric stability on the wind farm wakes and associated power losses. During the night, the relatively low turbulence intensity of the ambient ABL flow results in a relatively slow rate of entrainment of momentum into the wake and, consequently, a slow wake recovery. In contrast, during the day the positive buoyancy flux and associated turbulence production lead to a relatively high turbulence level in the background ABL flow, which enhances turbulent mixing and wake recovery. As a result, the averaged power deficit in the wind farm is found to increase with increasing thermal stability. In particular for that day, the averaged power deficit increased from 28% under the most convective condition to about 57% under the most stable condition.
NASA Astrophysics Data System (ADS)
Tuan, L.; Abd Razak, A.; Zaki, S. A.; Mohammad, A. F.; Hassan, M. K.
2015-09-01
Similar to most tropical countries, Malaysia have low wind speed and airflow characteristics to provide an effective natural ventilation system for comfortable living especially in terrace houses. Even so, by designing them with suitable threshold height/width, H/W, ratio may help reduce heat sink, or even the accumulation of contaminants within the setback distance. Through this study, the downstream building of these terrace houses will be investigated due to the effects from an upstream building. With the use of Large-Eddy Simulation (LES) method, the formation of the vortex within the threshold H/W ratio will be clearly simulated and allow the observation of flow regimes developed by each model. With increasing threshold H/W ratios the models will exhibit some wake interference flow and skimming flow which will determine the negative or positive effect of ventilation from the upstream building towards the downstream building. The airflow characteristics of the downstream house will also be analysed and the most effective layout in providing a better air circulation may be determined. Improving the natural ventilation of such houses could significantly reduce these negative effects such as the accumulation of dust, smoke or bacteria. In turn, with the alarming rate of depletion in natural resources and its effects to the environment, this study can significantly reduce energy usage for ventilation and space cooling.
Large-eddy simulations of Richtmyer Meshkov instability in a converging geometry
Lombardini, Manuel; Deiterding, Ralf
2010-01-01
The Richtmyer-Meshkov instability (RMI) refers to the baroclinic generation of vorticity at a perturbed density interface when impacted by a shock wave. It is often thought of as the impulsive limit of the Rayleigh-Taylor instability. While the RMI has been widely covered in planar geometries, the present simulations investigate the mixing of materials resulting from the interaction of an imploding cylindrical shock wave with a concentric interface, perturbed in both axial and azimuthal directions, which separates outside air from SF{sub 6} (initially 5 times denser) confined in a 90{sup o} wedge. Two incident shocks of Mach numbers M{sub i} = 1.3 and 2.0 at initial impact are tested. These canonical simulations support recent work on understanding the compressible turbulent mixing in converging geometries relevant to both inertial confinement fusion and core-collapse supernova dynamics. Initial irregularities in the density interface form the misalignment between density and pressure gradients required to initiate a first RMI. A second RMI occurs after the initial shock has converged down the wedge, reflected off the axis and reshocks the distorted interface. Reshock interactions of decreasing intensity follow successively. Due to the converging geometry, the accelerated or decelerated motion of the interface also generates Rayleigh-Taylor instabilities. Secondary Kelvin-Helmholtz instabilities develop along the sides of the interpenetrating fingering structures. The energetic reshock produces a large dynamical range of turbulent scales, requiring the utilization of large-eddy simulation (LES). We employed the stretched-vortex subgrid-scale model of turbulent and scalar transport based on an explicit structural modeling of small-scale dynamics. The imploding nature of the flow is particularly suitable for the use of adaptive mesh refinement (AMR) provided by the parallel block-structured AMR framework AMROC. The Favre-filtered Navier-Stokes equations are solved on
NASA Astrophysics Data System (ADS)
Vinkovic, Ivana; Aguirre, Cesar; Simoëns, Serge
A large-eddy simulation (LES) with the dynamic Smagorinsky Germano subgrid scale (SGS) model is used to study the passive scalar dispersion in a turbulent boundary layer. Instead of resolving the passive scalar transport equation, fluid particles containing scalar are tracked in a Lagrangian way. The Lagrangian velocity of each fluid particle is considered to have a large-scale part (directly computed by the LES) and a small-scale part. The movement of fluid elements containing scalar at a subgrid level is given by a three-dimensional Langevin model. The stochastic model is written in terms of SGS statistics at a mesh level. The results of the LES are compared with the wind-tunnel experiments of Fackrell and Robins (1982, Journal of Fluid Mechanics, 117, 1 26) and with the LES results of Sykes and Henn (1992, Atmospheric Environment A, 26, 3127 3144), who used a completely Eulerian approach with a non-dynamic SGS model. Our simulations predict the quantitative features of the experiments of Fackrell and Robins (1982, Journal Fluid Mechanics, 117, 1 26). Moreover, by using the Lagrangian approach, scalar fluxes are computed with no additional modeling assumptions and show good agreement with the experimental data. A classic mean-gradient model of the scalar flux is calculated from the computed results. The agreement between the directly computed fluxes and the classic mean-gradient model calculation is remarkable.
NASA Technical Reports Server (NTRS)
Bruno, John
1984-01-01
The results of an investigation into the feasibility of using the MPP for direct and large eddy simulations of the Navier-Stokes equations is presented. A major part of this study was devoted to the implementation of two of the standard numerical algorithms for CFD. These implementations were not run on the Massively Parallel Processor (MPP) since the machine delivered to NASA Goddard does not have sufficient capacity. Instead, a detailed implementation plan was designed and from these were derived estimates of the time and space requirements of the algorithms on a suitably configured MPP. In addition, other issues related to the practical implementation of these algorithms on an MPP-like architecture were considered; namely, adaptive grid generation, zonal boundary conditions, the table lookup problem, and the software interface. Performance estimates show that the architectural components of the MPP, the Staging Memory and the Array Unit, appear to be well suited to the numerical algorithms of CFD. This combined with the prospect of building a faster and larger MMP-like machine holds the promise of achieving sustained gigaflop rates that are required for the numerical simulations in CFD.
NASA Astrophysics Data System (ADS)
Scalo, C.; Boegman, L.; Piomelli, U.
2013-04-01
We have tested a dissolved oxygen (DO) transport model based on large-eddy simulation (LES) of a transitional oscillatory flow observed in the bottom boundary layer of Lake Alpnach, Switzerland. The transition from a quasi-laminar to a fully turbulent state makes this flow difficult to study with a Reynolds-averaged Navier-Stokes equation (RANSE) model. By resolving the full range of governing transport processes, LES provides a reliable prediction of the sediment-oxygen uptake (SOU). The model biogeochemical and flow parameters have been calibrated against DO and velocity measurements from published in situ data at the earliest phase available in the cycle. The fully developed flow thus obtained is used as an initial condition for the imposed oscillatory forcing. Numerical predictions show that transport in the outer layer is in equilibrium with the main current throughout most of the cycle and that nonequilibrium effects are limited to the diffusive sublayer response to the external forcing. During flow deceleration, the concentration boundary layer slowly expands as turbulence decays; later, during re-transition, mixing is restored by rapid and intense turbulent production events enhancing the SOU with a well-defined time lag. An algebraic model for the SOU is proposed for eventual inclusion in RANSE biogeochemical management-type models developed based on parameterizations used in turbulent mass transfer and with the support of published numerical data and the present simulation. The only input parameters required are the sediment oxidation rate, bulk temperature and DO concentration, and friction velocity.
Power-law versus log-law in wall-bounded turbulence: A large-eddy simulation perspective
NASA Astrophysics Data System (ADS)
Cheng, W.; Samtaney, R.
2014-01-01
The debate whether the mean streamwise velocity in wall-bounded turbulent flows obeys a log-law or a power-law scaling originated over two decades ago, and continues to ferment in recent years. As experiments and direct numerical simulation can not provide sufficient clues, in this study we present an insight into this debate from a large-eddy simulation (LES) viewpoint. The LES organically combines state-of-the-art models (the stretched-vortex model and inflow rescaling method) with a virtual-wall model derived under different scaling law assumptions (the log-law or the power-law by George and Castillo ["Zero-pressure-gradient turbulent boundary layer," Appl. Mech. Rev. 50, 689 (1997)]). Comparison of LES results for Reθ ranging from 105 to 1011 for zero-pressure-gradient turbulent boundary layer flows are carried out for the mean streamwise velocity, its gradient and its scaled gradient. Our results provide strong evidence that for both sets of modeling assumption (log law or power law), the turbulence gravitates naturally towards the log-law scaling at extremely large Reynolds numbers.
The nonlinear large-eddy simulation method applied to Sc ≈1 and Sc ≫1 passive-scalar mixing
NASA Astrophysics Data System (ADS)
Burton, Gregory C.
2008-03-01
The nonlinear large-eddy simulation (nLES) method is extended here to simulations of Sc ≈1 and Sc ≫1 turbulent mixing of passive-scalar fields. These are the first LES studies to reproduce the instantaneous structure of the scalar-energy field ϕ¯2(x,t) at viscous-convective scales in the high Schmidt-number regime. The simulations employ a refinement of the nLES method with multifractal modeling first proposed by G. C. Burton and W. J. A. Dahm [Phys. Fluids 17, 075111 (2005)]. In this approach, the nonlinear inertial stresses uiuj¯ in the filtered Navier-Stokes equation and the nonlinear scalar fluxes ujϕ¯ in the filtered advection-diffusion equation are calculated directly, using multifractal models for the subgrid velocity and scalar fields, ujsgs and ϕsgs. Resolved energy levels are controlled by a new adaptive backscatter limiter that adjusts locally to changing flow conditions consistent with the mechanism governing energy transfer in actual hydrodynamic turbulence. No artificial viscosity or diffusivity closures are applied and no explicit de-aliasing is performed. The nLES approach is shown to simulate accurately Sc ≈1 mixing for flows between Reλ≈35 and 4100, the highest Reλ tested. Characteristics of the resulting scalar field are examined, including the turbulence-to-scalar time-scale ratio and total scalar variance ⟨ϕ'2⟩, indicating good agreement with prior studies. Simulations between Sc =8 and 8192 produce the first scalar-energy spectra from an LES that exhibit k-1 scaling in the viscous-convective range, consistent with the analytical prediction of G. K. Batchelor [J. Fluid Mech. 5, 113 (1959)]. The simulations indicate decreasing scalar anisotropy and increasing intermittency with increasing Schmidt number, also consistent with prior studies.
NASA Astrophysics Data System (ADS)
Huang, Zhi-wei; He, Guo-qiang; Qin, Fei; Cao, Dong-gang; Wei, Xiang-geng; Shi, Lei
2016-10-01
This study reports combustion characteristics of a rocket-based combined-cycle engine combustor operating at ramjet mode numerically. Compressible large eddy simulation with liquid kerosene sprayed and vaporized is used to study the intrinsic unsteadiness of combustion in such a propulsion system. Results for the pressure oscillation amplitude and frequency in the combustor as well as the wall pressure distribution along the flow-path, are validated using experimental data, and they show acceptable agreement. Coupled with reduced chemical kinetics of kerosene, results are compared with the simultaneously obtained Reynolds-Averaged Navier-Stokes results, and show significant differences. A flow field analysis is also carried out for further study of the turbulent flame structures. Mixture fraction is used to determine the most probable flame location in the combustor at stoichiometric condition. Spatial distributions of the Takeno flame index, scalar dissipation rate, and heat release rate reveal that different combustion modes, such as premixed and non-premixed modes, coexisted at different sections of the combustor. The RBCC combustor is divided into different regions characterized by their non-uniform features. Flame stabilization mechanism, i.e., flame propagation or fuel auto-ignition, and their relative importance, is also determined at different regions in the combustor.
NASA Astrophysics Data System (ADS)
Yang, Zhengjun; Wang, Fujun; Zhou, Peijian
2012-09-01
The current research of large eddy simulation (LES) of turbulent flow in pumps mainly concentrates in applying conventional subgrid-scale (SGS) model to simulate turbulent flow, which aims at obtaining the flow field in pump. The selection of SGS model is usually not considered seriously, so the accuracy and efficiency of the simulation cannot be ensured. Three SGS models including Smagorinsky-Lilly model, dynamic Smagorinsky model and dynamic mixed model are comparably studied by using the commercial CFD code Fluent combined with its user define function. The simulations are performed for the turbulent flow in a centrifugal pump impeller. The simulation results indicate that the mean flows predicted by the three SGS models agree well with the experimental data obtained from the test that detailed measurements of the flow inside the rotating passages of a six-bladed shrouded centrifugal pump impeller performed using particle image velocimetry (PIV) and laser Doppler velocimetry (LDV). The comparable results show that dynamic mixed model gives the most accurate results for mean flow in the centrifugal pump impeller. The SGS stress of dynamic mixed model is decompose into the scale similar part and the eddy viscous part. The scale similar part of SGS stress plays a significant role in high curvature regions, such as the leading edge and training edge of pump blade. It is also found that the dynamic mixed model is more adaptive to compute turbulence in the pump impeller. The research results presented is useful to improve the computational accuracy and efficiency of LES for centrifugal pumps, and provide important reference for carrying out simulation in similar fluid machineries.
Yue, Qing; Kahn, Brian; Xiao, Heng; Schreier, Mathias; Fetzer, E. J.; Teixeira, J.; Suselj, Kay
2013-08-16
Cloud top entrainment instability (CTEI) is a hypothesized positive feedback between entrainment mixing and evaporative cooling near the cloud top. Previous theoretical and numerical modeling studies have shown that the persistence or breakup of marine boundary layer (MBL) clouds may be sensitive to the CTEI parameter. Collocated thermodynamic profile and cloud observations obtained from the Atmospheric Infrared Sounder (AIRS) and Moderate Resolution Imaging Spectroradiometer (MODIS) instruments are used to quantify the relationship between the CTEI parameter and the cloud-topped MBL transition from stratocumulus to trade cumulus in the northeastern Pacific Ocean. Results derived from AIRS and MODIS are compared with numerical results from the UCLA large eddy simulation (LES) model for both well-mixed and decoupled MBLs. The satellite and model results both demonstrate a clear correlation between the CTEI parameter and MBL cloud fraction. Despite fundamental differences between LES steady state results and the instantaneous snapshot type of observations from satellites, significant correlations for both the instantaneous pixel-scale observations and the long-term averaged spatial patterns between the CTEI parameter and MBL cloud fraction are found from the satellite observations and are consistent with LES results. This suggests the potential of using AIRS and MODIS to quantify global and temporal characteristics of the cloud-topped MBL transition.
Large-eddy Simulation of Heat and Water Vapor Transfer in CT-Based Human Airway Models
NASA Astrophysics Data System (ADS)
Wu, Dan; Tawhai, Merryn; Hoffman, Eric; Lin, Ching-Long
2014-11-01
We propose a novel imaging-based thermodynamic model to study local heat and mass transfers in the human airways. Both 3D and 1D CFD models are developed and validated. Large-eddy simulation (LES) is adopted to solve 3D incompressible Navier-Stokes equations with Boussinesq approximation along with temperature and water vapor transport equations and energy-flux based wall boundary condition. The 1D model provides initial and boundary conditions to the 3D model. The computed tomography (CT) lung images of three healthy subjects with sinusoidal waveforms and minute ventilations of 6, 15 and 30 L/min are considered. Between 1D and 3D models and between subjects, the average temperature and water vapor distributions are similar, but their regional distributions are significantly different. In particular, unlike the 1D model, the heat and water vapor transfers in the 3D model are elevated at the bifurcations during inspiration. Moreover, the correlations of Nusselt number (Nu) and Sherwood number (Sh) with local Reynolds number and airway diameter are proposed. In conclusion, use of the subject-specific lung model is essential for accurate prediction of local thermal impacts on airway epithelium. Supported in part by NIH grants R01-HL094315, U01-HL114494 and S10-RR022421.
Large-eddy simulation and deduced scaling analysis of Rayleigh Bénard convection up to Ra = 109**
NASA Astrophysics Data System (ADS)
Peng, S.-H.; Hanjalic, K.; Davidson, L.
Large-eddy simulation of turbulent Rayleigh Bénard (RB) convection has been performed for a 6:1:6 open-ended domain for Rayleigh numbers ranging from 6.3 × 105 to 109 at Prandtl number of Pr = 0.71. The scaling analysis based on the LES data shows that the heat transfer follows a single relation of Nu = 0.162 Ra0.286, which is consistent with the scaling law for the hard turbulence regime reported in several earlier experimental and DNS studies. The present LES also supports some earlier experimental and DNS findings that most of characteristic parameters can be scaled reasonably well with Ra number in the considered Ra number range using a single relation. Nonetheless, it is found that the scaling of several quantities shows a sensible offset from a single relation, and could be fitted better with the separate scaling relations for the soft and hard convective turbulence transitioned at about Ra = 4 × 107. It has been argued that the transition, reflected in the scaling relation, may be attributed to the increasing ‘containing effect’ of the plume leaving the horizontal wall on the plume approaching the wall at large Ra numbers in the near-wall region. **This paper is a modified version from the paper presented at the Forth International Symposium of Turbulence and Shear Flow Phenomena (Williamsburg, Virginia, 27 29 June 2005).
On the evaluation of the sub-filter scalar variance and dissipation rate in large eddy simulation
NASA Astrophysics Data System (ADS)
Balarac, Guillaume; Pitsch, Heinz; Raman, Venkatramanan
2007-11-01
In large-eddy simulations, the energy containing scales of the turbulence are resolved and the small scales have to be modeled. This is very important for flows with combustion, where the heat release typically correlates well with the rate of molecular mixing on the smallest scales. The mixture fraction describing mixing between fuel and oxidizer plays a central role in turbulent non-premixed combustion modeling. In particular, the sub-filter mixture fraction variance and the mixture fraction dissipation rate describe molecular mixing. Models for these quantities have been proposed in the past, but the performance of these models is often not of satisfactory accuracy given their importance for predicting the heat release. In the present work, a model based on a Taylor series expansion is proposed following the approach of Clark et al. [J. Fluid Mech., 1979]. The model is tested in an a priori study, and effects of expansion order and filter kernel are assessed. The results are discussed based on the notion of ``irreducible error'' recently introduced by Moreau et al. [Phys. Fluids, 2006]. The model is compared with the dynamic model and the results are analyzed to understand the validity of assumptions made in the dynamic procedure. Further numerical issues related to LES using implicit filtering are discussed.
NASA Astrophysics Data System (ADS)
Sengupta, Kaustav; Jacobs, Gustaaf; Mashayek, Farzad
2008-11-01
We present an investigation into the particle-laden flow in a dump-combustor configuration. An accurate prediction of particle dispersion within the combustors is necessary for improved design of spray combustion. The instantaneous local particle concentration and turbulent mixing provide insights into the physio-chemical processes that would be encountered in a reacting scenario. The principal difficulty in prediction of particle transport in the dilute flow regime, lies in the accurate description of the underlying complex, turbulent gas flow field featuring reattaching shear layers. Here, we present large-eddy simulations (LESs) of a particle-laden flow over an unconfined and confined backward-facing step at Reynolds numbers of 5000 and 28,000, respectively, using a spectral multidomain LES methodology. The LES captures the carrier flow accurately, while being computationally affordable. One-way coupled equations are considered and particles with different Stokes numbers are studied. The inlet turbulence is modeled using a novel stochastic model that reproduces the second order moments of the fully developed flow upstream of the step. The effects of the turbulent recirculating flow behind the step on particle dispersion are investigated in detail.
NASA Astrophysics Data System (ADS)
Ghasemi, A.; Roussinova, V.; Barron, R. M.; Balachandar, R.
2016-08-01
Large eddy simulation (LES) is carried out to study the vortex dynamics in the near-field of a starting turbulent square jet as well as its evolution into a developed steady jet. Simulations are conducted at Reynolds numbers (Re = UjD/υ) of 8000 and 45 000 based on the nozzle hydraulic diameter (" separators=" D ) and jet velocity (Uj). A Reynolds stress model was used to simulate the internal flow in the nozzle which provided the inlet conditions for the LES of the jet. To validate the simulations, turbulence statistics are compared with experimental results available for a steady square jet. Evaluation of the probability density function, skewness, and flatness of the centerline streamwise velocity (Uc) shows deviation from the Gaussian distribution in the near-field. Evolution of the self-induced deformation of the leading vortex ring is investigated to further clarify the role of axis-switching. The axis-switching is initiated earlier at low Reynolds number while the completion of the axis-switching process occurred at the same dimensionless time for both Reynolds numbers. The role of pressure distribution on vortex ring deformation is investigated. It is shown that the influence of pressure-induced azimuthal instability tends to deform a two-dimensional vortex ring topology into a three-dimensional one and revert back to a two-dimensional character again. The break-down and diffusion of the tip of the vortex are also studied. Evolution of the shear layer from a starting jet to a developed jet is studied in terms of the vorticity field. For a starting jet, entrainment is shown to occur in the presence of corner hairpin vortices.
Large-eddy simulation, fuel rod vibration and grid-to-rod fretting in pressurized water reactors
NASA Astrophysics Data System (ADS)
Christon, Mark A.; Lu, Roger; Bakosi, Jozsef; Nadiga, Balasubramanya T.; Karoutas, Zeses; Berndt, Markus
2016-10-01
Grid-to-rod fretting (GTRF) in pressurized water reactors is a flow-induced vibration phenomenon that results in wear and fretting of the cladding material on fuel rods. GTRF is responsible for over 70% of the fuel failures in pressurized water reactors in the United States. Predicting the GTRF wear and concomitant interval between failures is important because of the large costs associated with reactor shutdown and replacement of fuel rod assemblies. The GTRF-induced wear process involves turbulent flow, mechanical vibration, tribology, and time-varying irradiated material properties in complex fuel assembly geometries. This paper presents a new approach for predicting GTRF induced fuel rod wear that uses high-resolution implicit large-eddy simulation to drive nonlinear transient dynamics computations. The GTRF fluid-structure problem is separated into the simulation of the turbulent flow field in the complex-geometry fuel-rod bundles using implicit large-eddy simulation, the calculation of statistics of the resulting fluctuating structural forces, and the nonlinear transient dynamics analysis of the fuel rod. Ultimately, the methods developed here, can be used, in conjunction with operational management, to improve reactor core designs in which fuel rod failures are minimized or potentially eliminated. Robustness of the behavior of both the structural forces computed from the turbulent flow simulations and the results from the transient dynamics analyses highlight the progress made towards achieving a predictive simulation capability for the GTRF problem.
Large-eddy simulation, fuel rod vibration and grid-to-rod fretting in pressurized water reactors
Christon, Mark A.; Lu, Roger; Bakosi, Jozsef; Nadiga, Balasubramanya T.; Karoutas, Zeses; Berndt, Markus
2016-10-01
Grid-to-rod fretting (GTRF) in pressurized water reactors is a flow-induced vibration phenomenon that results in wear and fretting of the cladding material on fuel rods. GTRF is responsible for over 70% of the fuel failures in pressurized water reactors in the United States. Predicting the GTRF wear and concomitant interval between failures is important because of the large costs associated with reactor shutdown and replacement of fuel rod assemblies. The GTRF-induced wear process involves turbulent flow, mechanical vibration, tribology, and time-varying irradiated material properties in complex fuel assembly geometries. This paper presents a new approach for predicting GTRF induced fuel rod wear that uses high-resolution implicit large-eddy simulation to drive nonlinear transient dynamics computations. The GTRF fluid–structure problem is separated into the simulation of the turbulent flow field in the complex-geometry fuel-rod bundles using implicit large-eddy simulation, the calculation of statistics of the resulting fluctuating structural forces, and the nonlinear transient dynamics analysis of the fuel rod. Ultimately, the methods developed here, can be used, in conjunction with operational management, to improve reactor core designs in which fuel rod failures are minimized or potentially eliminated. Furthermore, robustness of the behavior of both the structural forces computed from the turbulent flow simulations and the results from the transient dynamics analyses highlight the progress made towards achieving a predictive simulation capability for the GTRF problem.
Large-eddy simulation, fuel rod vibration and grid-to-rod fretting in pressurized water reactors
Christon, Mark A.; Lu, Roger; Bakosi, Jozsef; ...
2016-10-01
Grid-to-rod fretting (GTRF) in pressurized water reactors is a flow-induced vibration phenomenon that results in wear and fretting of the cladding material on fuel rods. GTRF is responsible for over 70% of the fuel failures in pressurized water reactors in the United States. Predicting the GTRF wear and concomitant interval between failures is important because of the large costs associated with reactor shutdown and replacement of fuel rod assemblies. The GTRF-induced wear process involves turbulent flow, mechanical vibration, tribology, and time-varying irradiated material properties in complex fuel assembly geometries. This paper presents a new approach for predicting GTRF induced fuelmore » rod wear that uses high-resolution implicit large-eddy simulation to drive nonlinear transient dynamics computations. The GTRF fluid–structure problem is separated into the simulation of the turbulent flow field in the complex-geometry fuel-rod bundles using implicit large-eddy simulation, the calculation of statistics of the resulting fluctuating structural forces, and the nonlinear transient dynamics analysis of the fuel rod. Ultimately, the methods developed here, can be used, in conjunction with operational management, to improve reactor core designs in which fuel rod failures are minimized or potentially eliminated. Furthermore, robustness of the behavior of both the structural forces computed from the turbulent flow simulations and the results from the transient dynamics analyses highlight the progress made towards achieving a predictive simulation capability for the GTRF problem.« less
NASA Technical Reports Server (NTRS)
Schowalter, D. G.; DeCroix, D. S.; Lin, Y. L.; Arya, S. P.; Kaplan, M. L.
1996-01-01
It was found that the homogeneity of the surface drag coefficient plays an important role in the large scale structure of turbulence in large-eddy simulation of the convective atmospheric boundary layer. Particularly when a ground surface temperature was specified, large horizontal anisotropies occurred when the drag coefficient depended upon local velocities and heat fluxes. This was due to the formation of streamwise roll structures in the boundary layer. In reality, these structures have been found to form when shear is approximately balanced by buoyancy. The present cases, however, were highly convective. The formation was caused by particularly low values of the drag coefficient at the entrance to thermal plume structures.
Zhou, Ye; Thornber, Ben
2016-04-12
Here, the implicit large-eddy simulation (ILES) has been utilized as an effective approach for calculating many complex flows at high Reynolds number flows. Richtmyer–Meshkov instability (RMI) induced flow can be viewed as a homogeneous decaying turbulence (HDT) after the passage of the shock. In this article, a critical evaluation of three methods for estimating the effective Reynolds number and the effective kinematic viscosity is undertaken utilizing high-resolution ILES data. Effective Reynolds numbers based on the vorticity and dissipation rate, or the integral and inner-viscous length scales, are found to be the most self-consistent when compared to the expected phenomenology and wind tunnel experiments.
NASA Technical Reports Server (NTRS)
Ovchinnikov, Mikhail; Ackerman, Andrew S.; Avramov, Alexander; Cheng, Anning; Fan, Jiwen; Fridlind, Ann M.; Ghan, Steven; Harrington, Jerry; Hoose, Corinna; Korolev, Alexei; McFarquhar, Greg M.; Morrison, Hugh; Paukert, Marco; Savre, Julien; Shipway, Ben J.; Shupe, Matthew D.; Solomon, Amy; Sulia, Kara
2014-01-01
Large-eddy simulations of mixed-phase Arctic clouds by 11 different models are analyzed with the goal of improving understanding and model representation of processes controlling the evolution of these clouds. In a case based on observations from the Indirect and Semi-Direct Aerosol Campaign (ISDAC), it is found that ice number concentration, Ni, exerts significant influence on the cloud structure. Increasing Ni leads to a substantial reduction in liquid water path (LWP), in agreement with earlier studies. In contrast to previous intercomparison studies, all models here use the same ice particle properties (i.e., mass-size, mass-fall speed, and mass-capacitance relationships) and a common radiation parameterization. The constrained setup exposes the importance of ice particle size distributions (PSDs) in influencing cloud evolution. A clear separation in LWP and IWP predicted by models with bin and bulk microphysical treatments is documented and attributed primarily to the assumed shape of ice PSD used in bulk schemes. Compared to the bin schemes that explicitly predict the PSD, schemes assuming exponential ice PSD underestimate ice growth by vapor deposition and overestimate mass-weighted fall speed leading to an underprediction of IWP by a factor of two in the considered case. Sensitivity tests indicate LWP and IWP are much closer to the bin model simulations when a modified shape factor which is similar to that predicted by bin model simulation is used in bulk scheme. These results demonstrate the importance of representation of ice PSD in determining the partitioning of liquid and ice and the longevity of mixed-phase clouds.
NASA Astrophysics Data System (ADS)
Sjöqvist, Lars; Henriksson, Markus; Fedina, Ekaterina; Fureby, Christer
2010-10-01
The exhaust from jet engines introduces extreme turbulence levels in local environments around aircrafts. This may degrade the performance of electro-optical missile warning and laser-based DIRCM systems used to protect aircrafts against heat-seeking missiles. Full scale trials using real engines are expensive and difficult to perform motivating numerical simulations of the turbulence properties within the jet engine exhaust. Large Eddy Simulations (LES) is a computational fluid dynamics method that can be used to calculate spatial and temporal refractive index dynamics of the turbulent flow in the engine exhaust. From LES simulations the instantaneous refractive index in each grid point can be derived and interpolated to phase screens for numerical laser beam propagation or used to estimate aberration effects from optical path differences. The high computation load of LES limits the available data in terms of the computational volume and number of time steps. In addition the phase screen method used in laser beam propagation may also be too slow. For this reason extraction of statistical parameters from the turbulence field and statistical beam propagation methods are studied. The temporal variation of the refractive index is used to define a spatially varying structure constant. Ray-tracing through the mean refractive index field provides integrated static aberrations and the path integrated structure constant. These parameters can be used in classical statistical parameterised models describing propagation through turbulence. One disadvantage of using the structure constant description is that the temporal information is lost. Methods for studying the variation of optical aberrations based on models of Zernike coefficients are discussed. The results of the propagation calculations using the different methods are compared to each other and to available experimental data. Advantages and disadvantages of the different methods are briefly discussed.
Lacaze, Guilhem; Oefelein, Joseph
2015-03-01
Large-eddy-simulation (LES) is quickly becoming a method of choice for studying complex thermo-physics in a wide range of propulsion and power systems. It provides a means to study coupled turbulent combustion and flow processes in parameter spaces that are unattainable using direct-numerical-simulation (DNS), with a degree of fidelity that can be far more accurate than conventional engineering methods such as the Reynolds-averaged Navier-Stokes (RANS) approx- imation. However, development of predictive LES is complicated by the complex interdependence of different type of errors coming from numerical methods, algorithms, models and boundary con- ditions. On the other hand, control of accuracy has become a critical aspect in the development of predictive LES for design. The objective of this project is to create a framework of metrics aimed at quantifying the quality and accuracy of state-of-the-art LES in a manner that addresses the myriad of competing interdependencies. In a typical simulation cycle, only 20% of the computational time is actually usable. The rest is spent in case preparation, assessment, and validation, because of the lack of guidelines. This work increases confidence in the accuracy of a given solution while min- imizing the time obtaining the solution. The approach facilitates control of the tradeoffs between cost, accuracy, and uncertainties as a function of fidelity and methods employed. The analysis is coupled with advanced Uncertainty Quantification techniques employed to estimate confidence in model predictions and calibrate model's parameters. This work has provided positive conse- quences on the accuracy of the results delivered by LES and will soon have a broad impact on research supported both by the DOE and elsewhere.
NASA Technical Reports Server (NTRS)
El-Hady, Nabil M.
1993-01-01
The laminar-turbulent breakdown of a boundary-layer flow along a hollow cylinder at Mach 4.5 is investigated with large-eddy simulation. The subgrid scales are modeled dynamically, where the model coefficients are determined from the local resolved field. The behavior of the dynamic-model coefficients is investigated through both an a priori test with direct numerical simulation data for the same case and a complete large-eddy simulation. Both formulations proposed by Germano et al. and Lilly are used for the determination of unique coefficients for the dynamic model and their results are compared and assessed. The behavior and the energy cascade of the subgrid-scale field structure are investigated at various stages of the transition process. The investigations are able to duplicate a high-speed transition phenomenon observed in experiments and explained only recently by the direct numerical simulations of Pruett and Zang, which is the appearance of 'rope-like' waves. The nonlinear evolution and breakdown of the laminar boundary layer and the structure of the flow field during the transition process were also investigated.
NASA Astrophysics Data System (ADS)
Zhou, Zheyu; Hsu, Tian-Jian; Cox, Daniel; Liu, Xiaofeng
2017-01-01
To understand the interaction between wave-breaking induced turbulent coherent structures and suspended sediment transport, we report a Large-Eddy Simulation (LES) study of wave-breaking processes over a near-prototype scale barred beach. The numerical model is implemented using the open-source CFD toolbox, OpenFOAM®, in which the incompressible three-dimensional filtered Navier-Stokes equations for the water and air phases are solved with a finite volume scheme. A volume of fluid (VOF) method is used to capture the evolution of the water-air interface. The numerical model is validated with measured free surface elevation, turbulence-averaged flow velocity, turbulent intensity, and for the first time, the intermittency of breaking wave turbulence. Simulation results confirm that as the obliquely descending eddies (ODEs) approach the bottom, significant bottom shear stress is generated. Remarkably, the collapse of ODEs onto the bed can also cause drastic spatial and temporal changes of dynamic pressure on the bottom. By allowing sediment to be suspended from the bar crest, intermittently high sediment suspension events and their correlation with high turbulence and/or high bottom shear stress events are investigated. The simulated intermittency of sediment suspension is similar to previous field and large wave flume observations. Coherent suspension events account for only 10% of the record but account for about 50% of the sediment load. Model results suggest that about 60%˜70% of coherent bottom stress events are associated with surface-generated turbulence. Nearly all the coherent sand suspension events are associated with coherent turbulence events due to wave-breaking turbulence approaching the bed.
NASA Astrophysics Data System (ADS)
Shah, S.; Bou-Zeid, E.
2013-12-01
Understanding and parameterizing turbulent fluxes in statically-stable atmospheric boundary layers (SABLs), where buoyant forces destroy turbulent kinetic energy, remains a challenging yet very important problem in geophysical fluid dynamics. The complexities of these flows are further exacerbated by the increased sensitivity to unsteadiness and surface variability. To address the role of these exacerbating factors, direct numerical simulations and large eddy simulations are performed. Under the highest stabilities, global intermittency (the almost compete decay of turbulence and then its regeneration) is observed. The intermittent bursts are important to study under these conditions since they become the main agent of vertical transport in the SABL. Under more moderate stabilities, continuous turbulence is maintained, but it is significantly damped compared to neutral flows. This reduction of the TKE under stable conditions is very well known; however, in this study, we show that it is mainly triggered by reduced mechanical production associated with reduced transport of Reynolds stresses from aloft toward the surface, rather than by direct destruction of TKE by buoyancy. Variability of surface temperature is shown to result in excepted flow patterns: TKE is potentially higher under the more stable patches due to advection, and the subsidence and lofting of air over the different patches can counteract the effect of spatial TKE variability on the vertical fluxes. Re_f = 600. (a) Surface Richardson number (R_{i0;t}) versus non-dimensional time (tf) for different stabilities. (b) Non-dimensional volume integrated turbulent kinetic energy per unit area (E). (c) Friction velocity (u_*) and its variation with time and stability. (d) Variation of the angle (Beta) between the geostrophic wind direction and the surface shear stress direction with time and stability. Colormap of the TKE from a heterogeneous surface temperature LES, showing the effect of advection.
Ovchinnikov, Mikhail; Ackerman, Andrew; Avramov, Alex; Cheng, Anning; Fan, Jiwen; Fridlind, Ann; Ghan, Steven J.; Harrington, Jerry Y.; Hoose, Corinna; Korolev, Alexei; McFarquhar, Greg; Morrison, H.; Paukert, Marco; Savre, Julien; Shipway, Ben; Shupe, Matthew D.; Solomon, Amy; Sulia, Kara
2014-03-14
Large-eddy simulations of mixed-phase Arctic clouds by 11 different models are analyzed with the goal of improving understanding and model representation of processes controlling the evolution of these clouds. In a case based on observations from the Indirect and Semi-Direct Aerosol Campaign (ISDAC), it is found that ice number concentration, Ni, exerts significant influence on the cloud structure. Increasing Ni leads to a substantial reduction in liquid water path (LWP) and potential cloud dissipation, in agreement with earlier studies. By comparing simulations with the same microphysics coupled to different dynamical cores as well as the same dynamics coupled to different microphysics schemes, it is found that the ice water path (IWP) is mainly controlled by ice microphysics, while the inter-model differences in LWP are largely driven by physics and numerics of the dynamical cores. In contrast to previous intercomparisons, all models here use the same ice particle properties (i.e., mass-size, mass-fall speed, and mass-capacitance relationships) and a common radiation parameterization. The constrained setup exposes the importance of ice particle size distributions (PSD) in influencing cloud evolution. A clear separation in LWP and IWP predicted by models with bin and bulk microphysical treatments is documented and attributed primarily to the assumed shape of ice PSD used in bulk schemes. Compared to the bin schemes that explicitly predict the PSD, schemes assuming exponential ice PSD underestimate ice growth by vapor deposition and overestimate mass-weighted fall speed leading to an underprediction of IWP by a factor of two in the considered case.
NASA Astrophysics Data System (ADS)
Allaerts, Dries; Meyers, Johan
2015-06-01
Under conventionally neutral conditions, the boundary layer is frequently capped by an inversion layer, which counteracts vertical entrainment of kinetic energy. Very large wind farms are known to depend on vertical entrainment to transport energy from above the farm towards the turbines. In this study, large eddy simulations of an infinite wind-turbine array in a conventionally neutral atmospheric boundary layer are performed. By carefully selecting the initial potential-temperature profile, the influence of the height and the strength of a capping inversion on the power output of a wind farm is investigated. Results indicate that both the height and the strength have a significant effect on the boundary layer flow, and that the height of the neutral boundary layer is effectively controlled by the capping inversion. In addition, it is shown that the vertical entrainment rate decreases for increasing inversion strength or height. In our infinite wind-farm simulations, varying the inversion characteristics leads to differences in power extraction on the order of 13% ± 0.2% (for increasing the strength from 2.5 to 10 K), and 31% ± 0.4% (for increasing the height from 500 to 1500 m). A detailed analysis of the mean kinetic-energy equation is included, showing that the variation in power extraction originates from the work done by the driving pressure gradient related to the boundary layer height and the geostrophic angle, while entrainment of kinetic energy from the free atmosphere does not play a significant role. Also, the effect of inversion strength on power extraction is energetically not related to different amounts of energy entrained, but explained by a difference in boundary layer growth, leading to higher boundary layers for lower inversion strengths. We further present a simple analytical model that allows to obtain wind-farm power output and driving power for the fully developed regime as function of Rossby number and boundary layer height.
NASA Astrophysics Data System (ADS)
Deiterding, Ralf; Fragner, Moritz M.
2015-11-01
Numerical investigations in order to determine the forces induced by side wind onto a train geometry are generally not sufficiently accurate to be used as a predictive tool for regulatory safety assessment. Especially for larger yaw angles, the turbulent cross-wind flow is characterized by highly instationary behavior, driven primarily by vortex shedding on the roof and underside geometric details, i.e., the bogie and wheel systems. While industry-typical Reynolds-averaged turbulence models are not well suited for this scenario, better results are obtained when large eddy simulation (LES) techniques are applied. Here, we employ a recently self-developed weakly compressible lattice Boltzmann method (LBM) with Smagorinsky LES model on hierarchically adaptive block-structured Cartesian meshes. Using a train front-car of 1:25 scale at yaw angle 30° and Re = 250 , 000 as main test case, we compare the LBM results with incompressible large eddy and detached eddy simulations on unstructured boundary-layer type meshes using the OpenFOAM package. It is found that time averaged force and moment predictions from our LBM code compare better to available wind tunnel data, while mesh adaptation and explicit nature of the LBM approach reduce the computational costs considerably.
NASA Astrophysics Data System (ADS)
Steeneveld, G. J.; Masbou, M.; van Heerwaarden, C. C.; Mohr, C.; Schneider, W.; Müller, M.; Bott, A.; Holtslag, A. A. M.
2010-07-01
Fog is a hazardous weather phenomenon with a large impact on the environment and human life. In particular the transportation sector is vulnerable to fog; but fog is also important for agriculture, for leaf-wetness duration in particular, and for humans with asthma or related diseases. In addition, fog and low level clouds govern to a large extent the radiation balance of the polar regions in summer, and as such fog also influences the regional climate. Hence a thorough understanding of the fog governing processes is essential. However, due to the complexity and small scale nature of the relevant physical processes, the current understanding is relatively poor, as is our ability to forecast fog. In order to improve our knowledge, and to identify key deficiencies in the current state of the art fog forecasting models, we present an experiment in which the synergy between models of different complexity and observations is used to evaluate model skill. Therefore, an observed case study (Cabauw; The Netherlands) of a well developed radiation fog will be innovatively run with a large eddy simulation model which allows us to evaluate the key issue of turbulent mixing. In addition, operational and research column models (PAFOG; Duynkerke, 1991) will be employed to evaluate their skill on the local scale, while at the limited area models WRF-NMMFOG (Mueller et al 2010) and COSMO-FOG will be evaluated on their skill for the regional scale. Special focus will be given to the representation of the boundary-layer vertical structure and turbulence in the latter two model types versus the LES results with its solid physical ground.
NASA Technical Reports Server (NTRS)
Mankbadi, M. R.; Georgiadis, N. J.; DeBonis, J. R.
2015-01-01
The objective of this work is to compare a high-order solver with a low-order solver for performing large-eddy simulations (LES) of a compressible mixing layer. The high-order method is the Wave-Resolving LES (WRLES) solver employing a Dispersion Relation Preserving (DRP) scheme. The low-order solver is the Wind-US code, which employs the second-order Roe Physical scheme. Both solvers are used to perform LES of the turbulent mixing between two supersonic streams at a convective Mach number of 0.46. The high-order and low-order methods are evaluated at two different levels of grid resolution. For a fine grid resolution, the low-order method produces a very similar solution to the high-order method. At this fine resolution the effects of numerical scheme, subgrid scale modeling, and filtering were found to be negligible. Both methods predict turbulent stresses that are in reasonable agreement with experimental data. However, when the grid resolution is coarsened, the difference between the two solvers becomes apparent. The low-order method deviates from experimental results when the resolution is no longer adequate. The high-order DRP solution shows minimal grid dependence. The effects of subgrid scale modeling and spatial filtering were found to be negligible at both resolutions. For the high-order solver on the fine mesh, a parametric study of the spanwise width was conducted to determine its effect on solution accuracy. An insufficient spanwise width was found to impose an artificial spanwise mode and limit the resolved spanwise modes. We estimate that the spanwise depth needs to be 2.5 times larger than the largest coherent structures to capture the largest spanwise mode and accurately predict turbulent mixing.
NASA Technical Reports Server (NTRS)
Mankbadi, Mina R.; Georgiadis, Nicholas J.; DeBonis, James R.
2015-01-01
The objective of this work is to compare a high-order solver with a low-order solver for performing Large-Eddy Simulations (LES) of a compressible mixing layer. The high-order method is the Wave-Resolving LES (WRLES) solver employing a Dispersion Relation Preserving (DRP) scheme. The low-order solver is the Wind-US code, which employs the second-order Roe Physical scheme. Both solvers are used to perform LES of the turbulent mixing between two supersonic streams at a convective Mach number of 0.46. The high-order and low-order methods are evaluated at two different levels of grid resolution. For a fine grid resolution, the low-order method produces a very similar solution to the highorder method. At this fine resolution the effects of numerical scheme, subgrid scale modeling, and filtering were found to be negligible. Both methods predict turbulent stresses that are in reasonable agreement with experimental data. However, when the grid resolution is coarsened, the difference between the two solvers becomes apparent. The low-order method deviates from experimental results when the resolution is no longer adequate. The high-order DRP solution shows minimal grid dependence. The effects of subgrid scale modeling and spatial filtering were found to be negligible at both resolutions. For the high-order solver on the fine mesh, a parametric study of the spanwise width was conducted to determine its effect on solution accuracy. An insufficient spanwise width was found to impose an artificial spanwise mode and limit the resolved spanwise modes. We estimate that the spanwise depth needs to be 2.5 times larger than the largest coherent structures to capture the largest spanwise mode and accurately predict turbulent mixing.
NASA Astrophysics Data System (ADS)
Ferreira, Pedro O.; Pinho, Fernando T.; da Silva, Carlos B.
2016-12-01
A new subgrid-scale (SGS) model developed for large-eddy simulations (LES) of dilute polymer solutions, described by the finitely extensible nonlinear elastic constitutive equation closed with the Peterlin approximation, is presented. In this distortion similarity model (DSIM) the filtered conformation tensor evolution equation is based on the self-similarity of the polymer stretching terms, and on a global equilibrium of the trace of the conformation tensor, which is proportional to the elastic energy stored in the polymer molecules, while the SGS stresses are modelled with the classical Smagorinsky model. The DSIM closure is assessed in direct numerical simulations (DNS) of forced isotropic turbulence using classical a priori tests, and in a posteriori (LES) showing very good agreement with all the exact (filtered DNS) results. The DSIM model is simple to implement and computationally inexpensive and represents a major step forward in the numerical simulation of turbulent flows of Newtonian fluids with polymer additives.
NASA Astrophysics Data System (ADS)
Orlandi, Emiliano; Corbetta, Gabriele; Heus, Thijs; Neggers, Roel; Crewell, Susanne
2016-04-01
As large-scale models for weather and climate have coarse spatial resolutions, they cannot resolve clouds within a vertical grid column and thus rely on parameterizations, leading to uncertainty in the representation of clouds and the way they overlap in the vertical. The uncertainty in the cloud overlap parameterizations remains a significant source of error in the Earth's radiation budget in general circulation models (GCMs). Most studies concerning cloud overlap mainly focused on either large ensemble of cloud types or deep convective cloud fields. Cumuliform boundary layer cloud fields have been less researched despite the fact that their irregularity in shape and in spatial distribution at subgrid scales can impact the cloud overlap significantly. In this study, high-resolution ground-based measurements are used to assess the realism of fine-scale numerical simulations of shallow cumulus cloud fields. The overlap statistics of cumuli as produced by i) local large-eddy simulations (LES) as well as ii) the big-domain ICON at cloud resolving resolutions are confronted with CloudNet datasets at the Jülich ObservatorY for Cloud Evolution (JOYCE). Cloud fraction masks are derived for five different cases during the April-August 2013 period, using gridded time-height datasets at various temporal and vertical resolutions. The overlap ratio (R), i.e. the ratio between cloud fraction by volume and by area, is studied as a function of the vertical resolution. Good agreement is found between R derived from observations and simulations. Simulated and observed decorrelation lengths are smaller (< 300 m) than previously reported (> 1 km). A similar diurnal variation in the overlap efficiency is found in observations and simulations. The inefficient overlap we found at sub-grid vertical scales has the potential of significantly affecting the vertical transfer of radiation, yet few GCMs take such overlap at small, unresolved scales into account. A better understanding of the
NASA Astrophysics Data System (ADS)
Cuchiara, Gustavo; Rappenglück, Bernhard
2016-04-01
The transition from the convective boundary layer during the daytime to the stable stratified boundary layer during nighttime after sunset plays an important role in the transport and dispersion of atmospheric pollutants. However, our knowledge regarding this transition and its feedback on the structure of the subsequent nocturnal boundary layer is still restricted. This also prevents forecast models from accurate prediction of the onset and development of the nighttime boundary layer, which determines the redistribution of pollutants within the nocturnal surface layer and the residual layer aloft. In the present study, the well-known case of day 33 of the Wangara experiment is resimulated using the Weather Research and Forecasting (WRF) model in an idealized single-column mode to assess the performance of a frequently used planetary boundary layer (PBL) scheme, the Yonsei University (YSU) PBL scheme. These results are compared with two large eddy simulations (LES) for the same case study imposing different surface fluxes: one using previous surface fluxes calculated for the Wangara experiment and a second one using output from the WRF model. The results show a reasonable agreement of the PBL scheme in WRF with the LES. Overall, all the simulations presented a cold bias of ~3 Kelvin for the potential temperature and underestimation of the wind speed, especially after the transition to nighttime conditions (biases were up to 4 ms-1). Finally, an alternative set of eddy diffusivity equations was tested to represent the transition characteristics of a sunset period, with a stable layer below and a new parameterization for the convective decay regime typically observed in the RL aloft. This set of equations led to a gradual decrease of the eddy diffusivity, which replaces the instantaneous collapse of traditional diagnostics for eddy diffusivities. More appreciable changes were observed in air temperature, wind speed and specific humidity (up to 0.5 K, 0.6 ms-1, and 0
Hybrid Reynolds-Averaged/Large-Eddy Simulations of a Co-Axial Supersonic Free-Jet Experiment
NASA Technical Reports Server (NTRS)
Baurle, R. A.; Edwards, J. R.
2009-01-01
Reynolds-averaged and hybrid Reynolds-averaged/large-eddy simulations have been applied to a supersonic coaxial jet flow experiment. The experiment utilized either helium or argon as the inner jet nozzle fluid, and the outer jet nozzle fluid consisted of laboratory air. The inner and outer nozzles were designed and operated to produce nearly pressure-matched Mach 1.8 flow conditions at the jet exit. The purpose of the computational effort was to assess the state-of-the-art for each modeling approach, and to use the hybrid Reynolds-averaged/large-eddy simulations to gather insight into the deficiencies of the Reynolds-averaged closure models. The Reynolds-averaged simulations displayed a strong sensitivity to choice of turbulent Schmidt number. The baseline value chosen for this parameter resulted in an over-prediction of the mixing layer spreading rate for the helium case, but the opposite trend was noted when argon was used as the injectant. A larger turbulent Schmidt number greatly improved the comparison of the results with measurements for the helium simulations, but variations in the Schmidt number did not improve the argon comparisons. The hybrid simulation results showed the same trends as the baseline Reynolds-averaged predictions. The primary reason conjectured for the discrepancy between the hybrid simulation results and the measurements centered around issues related to the transition from a Reynolds-averaged state to one with resolved turbulent content. Improvements to the inflow conditions are suggested as a remedy to this dilemma. Comparisons between resolved second-order turbulence statistics and their modeled Reynolds-averaged counterparts were also performed.
NASA Astrophysics Data System (ADS)
Awad, Esam; Toorman, Erik; Lacor, Chris
2009-06-01
In this study, the performance of the horizontal large eddy simulation module, developed at the University of Leuven (HLES-KULeuven module) is assessed. A comparison between different subgrid scale models has been carried out. The study is concerned with the non-rotating and unstratified flows. The results of the simulation for an oscillatory backward facing (BFS) flow are presented in case of an expanding flume based on a one-length scale approach and a two-length scale approach. Three subgrid scale (SGS) models have been tested: Smagorinsky SGS model (Smagorinsky, J., (1963). General circulation experiments with the primitive equations, I. the basic experiments. Monthly Weather Review, 91(3), 99-164), Uittenbogaard SGS model (Uittenbogaard, R.E., and van Vossen, B., (2004). Subgrid-scale model for quasi-2D turbulence in shallow water. Shallow Flows. Jirka and Uijttewaal (Eds.), Taylor & Francis Group, London, ISBN 90 5809 700 5) and a proposed two-length scale approach. The first two models are considered to be a one-length scale models. A simulation without a subgrid scale model for the horizontal mixing has also been conducted. In all simulations, a quadratic friction model parameterizes the dissipation produced by the 3D-subdepth scale turbulence. The two-length scale concept uses a newly mixing length formulation for the quasi-2D turbulence and doesn't depend on the filter width in contrast to the one-length scale approach, in which the mixing length is function of the filter width. The outputs of the HLES-KULeuven module have been compared with the experimental data taken from Stelling, G.S., and Wang, L.X., (1984). Experiments and computations on separating flow in an expanding flume. Dept. Civil Engineering, Delft University of Technology, Report 2-84.). The two-length scale approach has been validated with experimental data from SERC Flood Channel Facility at HR Wallingford. In general, there is a qualitative agreement with the experimental data. It has
NASA Technical Reports Server (NTRS)
Okong'o, Nora; Bellan, Josette
2005-01-01
Models for large eddy simulation (LES) are assessed on a database obtained from direct numerical simulations (DNS) of supercritical binary-species temporal mixing layers. The analysis is performed at the DNS transitional states for heptane/nitrogen, oxygen/hydrogen and oxygen/helium mixing layers. The incorporation of simplifying assumptions that are validated on the DNS database leads to a set of LES equations that requires only models for the subgrid scale (SGS) fluxes, which arise from filtering the convective terms in the DNS equations. Constant-coefficient versions of three different models for the SGS fluxes are assessed and calibrated. The Smagorinsky SGS-flux model shows poor correlations with the SGS fluxes, while the Gradient and Similarity models have high correlations, as well as good quantitative agreement with the SGS fluxes when the calibrated coefficients are used.
NASA Astrophysics Data System (ADS)
Guo, Li; Zhang, Xing; He, Guowei
2016-02-01
The flows past a circular cylinder at Reynolds number 3900 are simulated using large-eddy simulation (LES) and the far-field sound is calculated from the LES results. A low dissipation energy-conserving finite volume scheme is used to discretize the incompressible Navier-Stokes equations. The dynamic global coefficient version of the Vreman's subgrid scale (SGS) model is used to compute the sub-grid stresses. Curle's integral of Lighthill's acoustic analogy is used to extract the sound radiated from the cylinder. The profiles of mean velocity and turbulent fluctuations obtained are consistent with the previous experimental and computational results. The sound radiation at far field exhibits the characteristic of a dipole and directivity. The sound spectra display the -5/3 power law. It is shown that Vreman's SGS model in company with dynamic procedure is suitable for LES of turbulence generated noise.
Singer, M; Mirocha, J; Lundquist, J; Cleve, J
2010-03-03
Flow dynamics in large wind projects are influenced by the turbines located within. The turbine wakes, regions characterized by lower wind speeds and higher levels of turbulence than the surrounding free stream flow, can extend several rotor diameters downstream, and may meander and widen with increasing distance from the turbine. Turbine wakes can also reduce the power generated by downstream turbines and accelerate fatigue and damage to turbine components. An improved understanding of wake formation and transport within wind parks is essential for maximizing power output and increasing turbine lifespan. Moreover, the influence of wakes from large wind projects on neighboring wind farms, agricultural activities, and local climate are all areas of concern that can likewise be addressed by wake modeling. This work describes the formulation and application of an actuator disk model for studying flow dynamics of both individual turbines and arrays of turbines within wind projects. The actuator disk model is implemented in the Weather Research and Forecasting (WRF) model, which is an open-source atmospheric simulation code applicable to a wide range of scales, from mesoscale to large-eddy simulation. Preliminary results demonstrate the applicability of the actuator disk model within WRF to a moderately high-resolution large-eddy simulation study of a small array of turbines.
A wall-layer model for large-eddy simulations of turbulent flows with/out pressure gradient
NASA Astrophysics Data System (ADS)
Duprat, C.; Balarac, G.; Métais, O.; Congedo, P. M.; Brugière, O.
2011-01-01
In this work, modeling of the near-wall region in turbulent flows is addressed. A new wall-layer model is proposed with the goal to perform high-Reynolds number large-eddy simulations of wall bounded flows in the presence of a streamwise pressure gradient. The model applies both in the viscous sublayer and in the inertial region, without any parameter to switch from one region to the other. An analytical expression for the velocity field as a function of the distance from the wall is derived from the simplified thin-boundary equations and by using a turbulent eddy coefficient with a damping function. This damping function relies on a modified van Driest formula to define the mixing-length taking into account the presence of a streamwise pressure gradient. The model is first validated by a priori comparisons with direct numerical simulation data of various flows with and without streamwise pressure gradient and with eventual flow separation. Large-eddy simulations are then performed using the present wall model as wall boundary condition. A plane channel flow and the flow over a periodic arrangement of hills are successively considered. The present model predictions are compared with those obtained using the wall models previously proposed by Spalding, Trans. ASME, J. Appl. Mech 28, 243 (2008) and Manhart et al., Theor. Comput. Fluid Dyn. 22, 243 (2008). It is shown that the new wall model allows for a good prediction of the mean velocity profile both with and without streamwise pressure gradient. It is shown than, conversely to the previous models, the present model is able to predict flow separation even when a very coarse grid is used.
NASA Astrophysics Data System (ADS)
Lampitella, P.; Colombo, E.; Inzoli, F.
2014-04-01
The paper presents a consistent large eddy simulation (LES) framework which is particularly suited for implicitly filtered LES with unstructured finite volume (FV) codes. From the analysis of the subgrid-scale (SGS) stress tensor arising in this new LES formulation, a novel form of scale-similar SGS model is proposed and combined with a classical eddy viscosity term. The constants in the resulting mixed model are then computed trough a new, cheaper, dynamic procedure based on a consistent redefinition of the Germano identity within the new LES framework. The dynamic mixed model is implemented in a commercial, unstructured, finite volume solver and numerical tests are performed on the turbulent pipe flow at Reτ = 320-1142, showing the flexibility and improvements of the approach over classical modeling strategies. Some limitations of the proposed implementation are also highlighted.
NASA Astrophysics Data System (ADS)
Bakhtaoui, M.; Merahi, L.
2017-01-01
The reliability of the filtered on the Hall-Vinen-Bekarevich-Khalatnikov (HVBK) model without mutual friction force is now investigated via some large eddy simulations of freely decaying isotropic superfluid turbulence. The filtered HVBK model is solved using a fully pseudo-spectral method, which is an extension of the classical Rogallo's method to the two-fluid model. Furthermore, in this paper, we analyze the evolution of various terms constituting the HVBK momentum equations using the balance equation for the energy-spectrum function. Our results are presented in both cases with and without mutual friction force. LES predictions have shown that this mutual friction decreases the energy dissipation of the normal part and the energy transfer is more significant when this force is taken into account.
NASA Astrophysics Data System (ADS)
Calderer, Antoni; Guo, Xin; Shen, Lian; Sotiropoulos, Fotis
2014-06-01
We develop a computational framework for simulating the coupled interaction of complex floating structures with large-scale ocean waves and atmospheric turbulent winds. The near-field approach features a partitioned fluid-structure interaction model (FSI) combining the curvilinear immersed boundary (CURVIB) method of Borazjani and Sotiropoulos (J. Comput. Phys. 2008) and the two-phase flow level set formulation of Kang and Sotiropoulos (Adv. in Water Res. 2012) and is capable of solving complex free-surface flows interacting non-linearly with complex real life floating structures. The near-field solver is coupled with a large-scale wave and wind model based on the two-fluid approach of Yang and Shen (J. Comput. Phys. 2011) which integrates a viscous Navier-Stokes solver with undulatory boundaries for the motion of the air and an efficient potential-flow based wave solver. The large-scale turbulent wind is incorporated from the far-field solver to the near-field solver by feeding into the latter inlet boundary conditions. The wave field is incorporated to the near-field solver by using the pressure-forcing method of Guo and Shen (J. Comput. Phys. 2009) which has been appropriately adapted to the level set method. The algorithm for coupling the two codes has been validated for a variety of wave cases including a broadband spectrum showing excellent agreement when compared to theoretical results. Finally, the capabilities of the numerical framework are demonstrated by carrying out large eddy simulation (LES) of a floating wind turbine interacting with realistic ocean wind and wave conditions.