Science.gov

Sample records for large-scale chemical modification

  1. An example of deep crustal brines effecting large-scale chemical modification of the crust during assembly of the Paleoproterozoic Columbia supercontinent

    NASA Astrophysics Data System (ADS)

    Glassley, W. E.; Korstgard, J. A.; Sørensen, K.

    2009-12-01

    The Nagssugtoqidian Mobile Belt (NMB) is a 300 km wide, 800 km long orogenic zone in central Greenland. It is part of the >20,000 km long complex of orogenic belts that formed between 1.7 and 2.0 Gya during assembly of the first supercontinent, Columbia,. The NMB is composed of several major crustal-scale shear zones that intervene between coherent blocks of high-grade metamorphic rocks. By combining detailed field, laboratory and aeromagnetic studies along the most northern of the shear zones (the Nordre Stromfjord Shear Zone - NSSZ), we have been able to document large scale chemical modification of the crust caused by the invasion of brines generated during continent-continent collision. The tectonic framework for this process is the following: 1. At 1,923 +/- 20 Mya: Emplacement of a calc-alkaline complex within and on ca. 2.8 Gya continental crust. The basal cumulate portion of the complex is well preserved and records invasion of multiple magma pulses. Coeval pillow basalts and cogenetic porphyritic mafics are also present. 2. 1,900 to 1,800 Mya: Tectonic emplacement of mafic and ultramafic rocks under high pressure (>2.5 GPa), eclogite facies conditions. The emplacement of these lenses probably occurred prior to or during thrust stacking associated with continent-continent collision. The age of the high pressure metamorphism makes these the oldest known eclogite facies metamorphic rocks in the world. 3. 1760 to 1720 Mya: Development of the transcurrent NSSZ, with displacements in excess of a hundred kilometers. Profound chemical enrichment of potassium and phosphorus along the entire length of the NSSZ unequivocally demonstrates that the shear zone was the focus of massive fluid movement. Detailed analysis of phase relationships documents a P-T path identical in form to that of Alpine metamorphic rocks, but displaced toward higher temperatures. These observations provide compelling evidence that assembly of this segment of Columbia involved subduction of

  2. Metal ion implantation for large scale surface modification

    SciTech Connect

    Brown, I.G.

    1992-10-01

    Intense energetic beams of metal ions can be produced by using a metal vapor vacuum arc as the plasma discharge from which the ion beam is formed. We have developed a number of ion sources of this kind and have built a metal ion implantation facility which can produce repetitively pulsed ion beams with mean ion energy up to several hundred key, pulsed beam current of more than an ampere, and time averaged current of several tens of milliamperes delivered onto a downstream target. We've also done some preliminary work on scaling up this technology to very large size. For example, a 50-cm diameter (2000 cm[sup 2]) set of beam formation electrodes was used to produce a pulsed titanium beam with ion current over 7 amperes at a mean ion energy of 100 key. Separately, a dc embodiment has been used to produce a dc titanium ion beam with current over 600 mA, power supply limited in this work, and up to 6 amperes of dc plasma ion current was maintained for over an hour. In a related program we've developed a plasma immersion method for applying thin metallic and compound films in which the added species is atomically mixed to the substrate. By adding a gas flow to the process, well-bonded compound films can also be formed; metallic films and multilayers as well as oxides and nitrides with mixed transition zones some hundreds of angstroms thick have been synthesized. Here we outline these parallel metal-plasma-based research programs and describe the hardware that we've developed and some of the surface modification research that we've done with it.

  3. Large Scale Chemical Cross-linking Mass Spectrometry Perspectives

    PubMed Central

    Zybailov, Boris L.; Glazko, Galina V.; Jaiswal, Mihir; Raney, Kevin D.

    2014-01-01

    The spectacular heterogeneity of a complex protein mixture from biological samples becomes even more difficult to tackle when one’s attention is shifted towards different protein complex topologies, transient interactions, or localization of PPIs. Meticulous protein-by-protein affinity pull-downs and yeast-two-hybrid screens are the two approaches currently used to decipher proteome-wide interaction networks. Another method is to employ chemical cross-linking, which gives not only identities of interactors, but could also provide information on the sites of interactions and interaction interfaces. Despite significant advances in mass spectrometry instrumentation over the last decade, mapping Protein-Protein Interactions (PPIs) using chemical cross-linking remains time consuming and requires substantial expertise, even in the simplest of systems. While robust methodologies and software exist for the analysis of binary PPIs and also for the single protein structure refinement using cross-linking-derived constraints, undertaking a proteome-wide cross-linking study is highly complex. Difficulties include i) identifying cross-linkers of the right length and selectivity that could capture interactions of interest; ii) enrichment of the cross-linked species; iii) identification and validation of the cross-linked peptides and cross-linked sites. In this review we examine existing literature aimed at the large-scale protein cross-linking and discuss possible paths for improvement. We also discuss short-length cross-linkers of broad specificity such as formaldehyde and diazirine-based photo-cross-linkers. These cross-linkers could potentially capture many types of interactions, without strict requirement for a particular amino-acid to be present at a given protein-protein interface. How these shortlength, broad specificity cross-linkers be applied to proteome-wide studies? We will suggest specific advances in methodology, instrumentation and software that are needed to

  4. GPU-accelerated Chemical Similarity Assessment for Large Scale Databases

    PubMed Central

    Maggioni, Marco; Santambrogio, Marco Domenico; Liang, Jie

    2016-01-01

    The assessment of chemical similarity between molecules is a basic operation in chemoinformatics, a computational area concerning with the manipulation of chemical structural information. Comparing molecules is the basis for a wide range of applications such as searching in chemical databases, training prediction models for virtual screening or aggregating clusters of similar compounds. However, currently available multimillion databases represent a challenge for conventional chemoinformatics algorithms raising the necessity for faster similarity methods. In this paper, we extensively analyze the advantages of using many-core architectures for calculating some commonly-used chemical similarity coefficients such as Tanimoto, Dice or Cosine. Our aim is to provide a wide-breath proof-of-concept regarding the usefulness of GPU architectures to chemoinformatics, a class of computing problems still uncovered. In our work, we present a general GPU algorithm for all-to-all chemical comparisons considering both binary fingerprints and floating point descriptors as molecule representation. Subsequently, we adopt optimization techniques to minimize global memory accesses and to further improve efficiency. We test the proposed algorithm on different experimental setups, a laptop with a low-end GPU and a desktop with a more performant GPU. In the former case, we obtain a 4-to-6-fold speed-up over a single-core implementation for fingerprints and a 4-to-7-fold speed-up for descriptors. In the latter case, we respectively obtain a 195-to-206-fold speed-up and a 100-to-328-fold speed-up. PMID:27774113

  5. GPU-accelerated Chemical Similarity Assessment for Large Scale Databases.

    PubMed

    Maggioni, Marco; Santambrogio, Marco Domenico; Liang, Jie

    2011-01-01

    The assessment of chemical similarity between molecules is a basic operation in chemoinformatics, a computational area concerning with the manipulation of chemical structural information. Comparing molecules is the basis for a wide range of applications such as searching in chemical databases, training prediction models for virtual screening or aggregating clusters of similar compounds. However, currently available multimillion databases represent a challenge for conventional chemoinformatics algorithms raising the necessity for faster similarity methods. In this paper, we extensively analyze the advantages of using many-core architectures for calculating some commonly-used chemical similarity coefficients such as Tanimoto, Dice or Cosine. Our aim is to provide a wide-breath proof-of-concept regarding the usefulness of GPU architectures to chemoinformatics, a class of computing problems still uncovered. In our work, we present a general GPU algorithm for all-to-all chemical comparisons considering both binary fingerprints and floating point descriptors as molecule representation. Subsequently, we adopt optimization techniques to minimize global memory accesses and to further improve efficiency. We test the proposed algorithm on different experimental setups, a laptop with a low-end GPU and a desktop with a more performant GPU. In the former case, we obtain a 4-to-6-fold speed-up over a single-core implementation for fingerprints and a 4-to-7-fold speed-up for descriptors. In the latter case, we respectively obtain a 195-to-206-fold speed-up and a 100-to-328-fold speed-up.

  6. Chemical modification

    Treesearch

    R. M. Rowell

    2004-01-01

    Wood is a hygroscopic resource that was designed to perform, in nature, in a wet environment. Nature is programmed to recycle wood in a timely way through biological, thermal, aqueous, photochemical, chemical, and mechanical degradations. In simple terms, nature builds wood from carbon dioxide and water and has all the tools to recycle it back to the starting chemicals...

  7. Research on human reliability of large-scale chemical production system

    NASA Astrophysics Data System (ADS)

    Miao, Yongchun; Kang, Rongxue

    2017-05-01

    Based on the elaboration of the theoretical basis of large-scale chemical production system and human reliability analysis(HRA), this paper builds the evaluation model of human reliability for large-scale production system by using analytic hierarchy process and fuzzy evaluation method, and deeply understands the importance and the internal mechanism of the human reliability elements in large-scale chemical production system. Moreover, with the specific production system to construct and analyze the model, this paper reveals the correlation between human reliability and the production system, and verifies the validity of the model. The results show that a large-scale chemical production system has a membership degree of 0.360, and its human reliability belongs to the moderate level.

  8. Mining Large Scale Tandem Mass Spectrometry Data for Protein Modifications Using Spectral Libraries.

    PubMed

    Horlacher, Oliver; Lisacek, Frederique; Müller, Markus

    2016-03-04

    Experimental improvements in post-translational modification (PTM) detection by tandem mass spectrometry (MS/MS) has allowed the identification of vast numbers of PTMs. Open modification searches (OMSs) of MS/MS data, which do not require prior knowledge of the modifications present in the sample, further increased the diversity of detected PTMs. Despite much effort, there is still a lack of functional annotation of PTMs. One possibility to narrow the annotation gap is to mine MS/MS data deposited in public repositories and to correlate the PTM presence with biological meta-information attached to the data. Since the data volume can be quite substantial and contain tens of millions of MS/MS spectra, the data mining tools must be able to cope with big data. Here, we present two tools, Liberator and MzMod, which are built using the MzJava class library and the Apache Spark large scale computing framework. Liberator builds large MS/MS spectrum libraries, and MzMod searches them in an OMS mode. We applied these tools to a recently published set of 25 million spectra from 30 human tissues and present tissue specific PTMs. We also compared the results to the ones obtained with the OMS tool MODa and the search engine X!Tandem.

  9. Modification in drag of turbulent boundary layers resulting from manipulation of large-scale structures

    NASA Technical Reports Server (NTRS)

    Corke, T. C.; Guezennec, Y.; Nagib, H. M.

    1981-01-01

    The effects of placing a parallel-plate turbulence manipulator in a boundary layer are documented through flow visualization and hot wire measurements. The boundary layer manipulator was designed to manage the large scale structures of turbulence leading to a reduction in surface drag. The differences in the turbulent structure of the boundary layer are summarized to demonstrate differences in various flow properties. The manipulator inhibited the intermittent large scale structure of the turbulent boundary layer for at least 70 boundary layer thicknesses downstream. With the removal of the large scale, the streamwise turbulence intensity levels near the wall were reduced. The downstream distribution of the skin friction was also altered by the introduction of the manipulator.

  10. UV/ozone-oxidized large-scale graphene platform with large chemical enhancement in surface-enhanced Raman scattering.

    PubMed

    Huh, Sung; Park, Jaesung; Kim, Young Soo; Kim, Kwang S; Hong, Byung Hee; Nam, Jwa-Min

    2011-12-27

    We fabricated a highly oxidized large-scale graphene platform using chemical vapor deposition (CVD) and UV/ozone-based oxidation methods. This platform offers a large-scale surface-enhanced Raman scattering (SERS) substrate with large chemical enhancement in SERS and reproducible SERS signals over a centimeter-scale graphene surface. After UV-induced ozone generation, ozone molecules were reacted with graphene to produce oxygen-containing groups on graphene and induced the p-type doping of the graphene. These modifications introduced the structural disorder and defects on the graphene surface and resulted in a large chemical mechanism-based signal enhancement from Raman dye molecules [rhodamine B (RhB), rhodamine 6G (R6G), and crystal violet (CV) in this case] on graphene. Importantly, the enhancement factors were increased from ∼10(3) before ozone treatment to ∼10(4), which is the largest chemical enhancement factor ever on graphene, after 5 min ozone treatment due to both high oxidation and p-doping effects on graphene surface. Over a centimeter-scale area of this UV/ozone-oxidized graphene substrate, strong SERS signals were repeatedly and reproducibly detected. In a UV/ozone-based micropattern, UV/ozone-treated areas were highly Raman-active while nontreated areas displayed very weak Raman signals.

  11. Isotopic backmixing in a large-scale enrichment column in a chemical enrichment method

    SciTech Connect

    Takeda, K.; Nishigaki, Y.; Onitsuka, H. )

    1990-03-01

    The Asahi chemical enrichment pilot plant with four large-scale 1-mm-diam enrichment columns has been operated using the super process since June 1987. Uranium with 3.3% enrichment was recovered in April 1988, and higher efficiencies have been observed in the pilot plant than in the bench-scale plant, which has 0.1-mm-diam enrichment columns. A possible reason is that the isotopic backmixing in the pilot plant is much smaller than in the bench-scale plant. Quantitative and statistical studies imply that both the extracolumn volume ratio and wall effect contribute to the smaller backmixing.

  12. Rapid visualization and large-scale profiling of bacterial lipoproteins with chemical reporters

    PubMed Central

    Rangan, Kavita J.; Yang, Yu-Ying; Charron, Guillaume; Hang, Howard C.

    2011-01-01

    Lipoproteins are a largely uncharacterized class of proteins in bacteria. In this study, metabolic labeling of bacteria with fatty acid chemical reporters allowed rapid profiling of lipid-modified proteins. We identified many candidate lipoproteins in Escherichia coli and detected a novel modification on YjgF. This chemical approach should facilitate future characterization of lipoproteins. PMID:20230003

  13. Biologically inspired large scale chemical sensor arrays and embedded data processing

    NASA Astrophysics Data System (ADS)

    Marco, S.; Gutiérrez-Gálvez, A.; Lansner, A.; Martinez, D.; Rospars, J. P.; Beccherelli, R.; Perera, A.; Pearce, T.; Vershure, P.; Persaud, K.

    2013-05-01

    Biological olfaction outperforms chemical instrumentation in specificity, response time, detection limit, coding capacity, time stability, robustness, size, power consumption, and portability. This biological function provides outstanding performance due, to a large extent, to the unique architecture of the olfactory pathway, which combines a high degree of redundancy, an efficient combinatorial coding along with unmatched chemical information processing mechanisms. The last decade has witnessed important advances in the understanding of the computational primitives underlying the functioning of the olfactory system. EU Funded Project NEUROCHEM (Bio-ICT-FET- 216916) has developed novel computing paradigms and biologically motivated artefacts for chemical sensing taking inspiration from the biological olfactory pathway. To demonstrate this approach, a biomimetic demonstrator has been built featuring a large scale sensor array (65K elements) in conducting polymer technology mimicking the olfactory receptor neuron layer, and abstracted biomimetic algorithms have been implemented in an embedded system that interfaces the chemical sensors. The embedded system integrates computational models of the main anatomic building blocks in the olfactory pathway: the olfactory bulb, and olfactory cortex in vertebrates (alternatively, antennal lobe and mushroom bodies in the insect). For implementation in the embedded processor an abstraction phase has been carried out in which their processing capabilities are captured by algorithmic solutions. Finally, the algorithmic models are tested with an odour robot with navigation capabilities in mixed chemical plumes

  14. Ensuring Adequate Health and Safety Information for Decision Makers during Large-Scale Chemical Releases

    NASA Astrophysics Data System (ADS)

    Petropoulos, Z.; Clavin, C.; Zuckerman, B.

    2015-12-01

    The 2014 4-Methylcyclohexanemethanol (MCHM) spill in the Elk River of West Virginia highlighted existing gaps in emergency planning for, and response to, large-scale chemical releases in the United States. The Emergency Planning and Community Right-to-Know Act requires that facilities with hazardous substances provide Material Safety Data Sheets (MSDSs), which contain health and safety information on the hazardous substances. The MSDS produced by Eastman Chemical Company, the manufacturer of MCHM, listed "no data available" for various human toxicity subcategories, such as reproductive toxicity and carcinogenicity. As a result of incomplete toxicity data, the public and media received conflicting messages on the safety of the contaminated water from government officials, industry, and the public health community. Two days after the governor lifted the ban on water use, the health department partially retracted the ban by warning pregnant women to continue avoiding the contaminated water, which the Centers for Disease Control and Prevention deemed safe three weeks later. The response in West Virginia represents a failure in risk communication and calls to question if government officials have sufficient information to support evidence-based decisions during future incidents. Research capabilities, like the National Science Foundation RAPID funding, can provide a solution to some of the data gaps, such as information on environmental fate in the case of the MCHM spill. In order to inform policy discussions on this issue, a methodology for assessing the outcomes of RAPID and similar National Institutes of Health grants in the context of emergency response is employed to examine the efficacy of research-based capabilities in enhancing public health decision making capacity. The results of this assessment highlight potential roles rapid scientific research can fill in ensuring adequate health and safety data is readily available for decision makers during large-scale

  15. SureChEMBL: a large-scale, chemically annotated patent document database

    PubMed Central

    Papadatos, George; Davies, Mark; Dedman, Nathan; Chambers, Jon; Gaulton, Anna; Siddle, James; Koks, Richard; Irvine, Sean A.; Pettersson, Joe; Goncharoff, Nicko; Hersey, Anne; Overington, John P.

    2016-01-01

    SureChEMBL is a publicly available large-scale resource containing compounds extracted from the full text, images and attachments of patent documents. The data are extracted from the patent literature according to an automated text and image-mining pipeline on a daily basis. SureChEMBL provides access to a previously unavailable, open and timely set of annotated compound-patent associations, complemented with sophisticated combined structure and keyword-based search capabilities against the compound repository and patent document corpus; given the wealth of knowledge hidden in patent documents, analysis of SureChEMBL data has immediate applications in drug discovery, medicinal chemistry and other commercial areas of chemical science. Currently, the database contains 17 million compounds extracted from 14 million patent documents. Access is available through a dedicated web-based interface and data downloads at: https://www.surechembl.org/. PMID:26582922

  16. Progress in Large-Scale Production of Graphene. Part 1: Chemical Methods

    NASA Astrophysics Data System (ADS)

    Li, Yuan; Chopra, Nitin

    2015-01-01

    Graphene is a two-dimensional nanomaterial that has unique electrical, mechanical, thermal, and optical properties. For realizing the practical applications of graphene, one of the major challenges lies in cost-effective production of graphene-based nanomaterials at a large scale. Significant research efforts have been demonstrated in regard to scalable manufacturing of graphene and show strong potential for their commercialization and industrialization. Here, we review the state-of-the-art techniques developed for the scalable production of graphene. This review mainly discusses the top-down techniques including exfoliation of bulk graphite and chemical reduction of graphene oxide. Critical comparison for graphene quality, structure, and yields for different techniques is discussed and specific examples are described in detail.

  17. A Turn-Key Approach for Large-Scale Identification of Complex Posttranslational Modifications

    PubMed Central

    2015-01-01

    The conjugation of complex post-translational modifications (PTMs) such as glycosylation and Small Ubiquitin-like Modification (SUMOylation) to a substrate protein can substantially change the resulting peptide fragmentation pattern compared to its unmodified counterpart, making current database search methods inappropriate for the identification of tandem mass (MS/MS) spectra from such modified peptides. Traditionally it has been difficult to develop new algorithms to identify these atypical peptides because of the lack of a large set of annotated spectra from which to learn the altered fragmentation pattern. Using SUMOylation as an example, we propose a novel approach to generate large MS/MS training data from modified peptides and derive an algorithm that learns properties of PTM-specific fragmentation from such training data. Benchmark tests on data sets of varying complexity show that our method is 80–300% more sensitive than current state-of-the-art approaches. The core concepts of our method are readily applicable to developing algorithms for the identifications of peptides with other complex PTMs. PMID:24437954

  18. The Chemical Validation and Standardization Platform (CVSP): large-scale automated validation of chemical structure datasets.

    PubMed

    Karapetyan, Karen; Batchelor, Colin; Sharpe, David; Tkachenko, Valery; Williams, Antony J

    2015-01-01

    There are presently hundreds of online databases hosting millions of chemical compounds and associated data. As a result of the number of cheminformatics software tools that can be used to produce the data, subtle differences between the various cheminformatics platforms, as well as the naivety of the software users, there are a myriad of issues that can exist with chemical structure representations online. In order to help facilitate validation and standardization of chemical structure datasets from various sources we have delivered a freely available internet-based platform to the community for the processing of chemical compound datasets. The chemical validation and standardization platform (CVSP) both validates and standardizes chemical structure representations according to sets of systematic rules. The chemical validation algorithms detect issues with submitted molecular representations using pre-defined or user-defined dictionary-based molecular patterns that are chemically suspicious or potentially requiring manual review. Each identified issue is assigned one of three levels of severity - Information, Warning, and Error - in order to conveniently inform the user of the need to browse and review subsets of their data. The validation process includes validation of atoms and bonds (e.g., making aware of query atoms and bonds), valences, and stereo. The standard form of submission of collections of data, the SDF file, allows the user to map the data fields to predefined CVSP fields for the purpose of cross-validating associated SMILES and InChIs with the connection tables contained within the SDF file. This platform has been applied to the analysis of a large number of data sets prepared for deposition to our ChemSpider database and in preparation of data for the Open PHACTS project. In this work we review the results of the automated validation of the DrugBank dataset, a popular drug and drug target database utilized by the community, and ChEMBL 17 data set

  19. Synthetically chemical-electrical mechanism for controlling large scale reversible deformation of liquid metal objects

    NASA Astrophysics Data System (ADS)

    Zhang, Jie; Sheng, Lei; Liu, Jing

    2014-11-01

    Reversible deformation of a machine holds enormous promise across many scientific areas ranging from mechanical engineering to applied physics. So far, such capabilities are still hard to achieve through conventional rigid materials or depending mainly on elastomeric materials, which however own rather limited performances and require complicated manipulations. Here, we show a basic strategy which is fundamentally different from the existing ones to realize large scale reversible deformation through controlling the working materials via the synthetically chemical-electrical mechanism (SCHEME). Such activity incorporates an object of liquid metal gallium whose surface area could spread up to five times of its original size and vice versa under low energy consumption. Particularly, the alterable surface tension based on combination of chemical dissolution and electrochemical oxidation is ascribed to the reversible shape transformation, which works much more flexible than many former deformation principles through converting electrical energy into mechanical movement. A series of very unusual phenomena regarding the reversible configurational shifts are disclosed with dominant factors clarified. This study opens a generalized way to combine the liquid metal serving as shape-variable element with the SCHEME to compose functional soft machines, which implies huge potential for developing future smart robots to fulfill various complicated tasks.

  20. Synthetically chemical-electrical mechanism for controlling large scale reversible deformation of liquid metal objects

    PubMed Central

    Zhang, Jie; Sheng, Lei; Liu, Jing

    2014-01-01

    Reversible deformation of a machine holds enormous promise across many scientific areas ranging from mechanical engineering to applied physics. So far, such capabilities are still hard to achieve through conventional rigid materials or depending mainly on elastomeric materials, which however own rather limited performances and require complicated manipulations. Here, we show a basic strategy which is fundamentally different from the existing ones to realize large scale reversible deformation through controlling the working materials via the synthetically chemical-electrical mechanism (SCHEME). Such activity incorporates an object of liquid metal gallium whose surface area could spread up to five times of its original size and vice versa under low energy consumption. Particularly, the alterable surface tension based on combination of chemical dissolution and electrochemical oxidation is ascribed to the reversible shape transformation, which works much more flexible than many former deformation principles through converting electrical energy into mechanical movement. A series of very unusual phenomena regarding the reversible configurational shifts are disclosed with dominant factors clarified. This study opens a generalized way to combine the liquid metal serving as shape-variable element with the SCHEME to compose functional soft machines, which implies huge potential for developing future smart robots to fulfill various complicated tasks. PMID:25408295

  1. Large-scale chemical assembly of atomically thin transistors and circuits

    NASA Astrophysics Data System (ADS)

    Zhao, Mervin; Ye, Yu; Han, Yimo; Xia, Yang; Zhu, Hanyu; Wang, Siqi; Wang, Yuan; Muller, David A.; Zhang, Xiang

    2016-11-01

    Next-generation electronics calls for new materials beyond silicon, aiming at increased functionality, performance and scaling in integrated circuits. In this respect, two-dimensional gapless graphene and semiconducting transition-metal dichalcogenides have emerged as promising candidates due to their atomic thickness and chemical stability. However, difficulties with precise spatial control during their assembly currently impede actual integration into devices. Here, we report on the large-scale, spatially controlled synthesis of heterostructures made of single-layer semiconducting molybdenum disulfide contacting conductive graphene. Transmission electron microscopy studies reveal that the single-layer molybdenum disulfide nucleates at the graphene edges. We demonstrate that such chemically assembled atomic transistors exhibit high transconductance (10 µS), on-off ratio (˜106) and mobility (˜17 cm2 V-1 s-1). The precise site selectivity from atomically thin conducting and semiconducting crystals enables us to exploit these heterostructures to assemble two-dimensional logic circuits, such as an NMOS inverter with high voltage gain (up to 70).

  2. Target-Based Drug Repositioning Using Large-Scale Chemical-Protein Interactome Data.

    PubMed

    Sawada, Ryusuke; Iwata, Hiroaki; Mizutani, Sayaka; Yamanishi, Yoshihiro

    2015-12-28

    Drug repositioning, or the identification of new indications for known drugs, is a useful strategy for drug discovery. In this study, we developed novel computational methods to predict potential drug targets and new drug indications for systematic drug repositioning using large-scale chemical-protein interactome data. We explored the target space of drugs (including primary targets and off-targets) based on chemical structure similarity and phenotypic effect similarity by making optimal use of millions of compound-protein interactions. On the basis of the target profiles of drugs, we constructed statistical models to predict new drug indications for a wide range of diseases with various molecular features. The proposed method outperformed previous methods in terms of interpretability, applicability, and accuracy. Finally, we conducted a comprehensive prediction of the drug-target-disease association network for 8270 drugs and 1401 diseases and showed biologically meaningful examples of newly predicted drug targets and drug indications. The predictive model is useful to understand the mechanisms of the predicted drug indications.

  3. Synthetically chemical-electrical mechanism for controlling large scale reversible deformation of liquid metal objects.

    PubMed

    Zhang, Jie; Sheng, Lei; Liu, Jing

    2014-11-19

    Reversible deformation of a machine holds enormous promise across many scientific areas ranging from mechanical engineering to applied physics. So far, such capabilities are still hard to achieve through conventional rigid materials or depending mainly on elastomeric materials, which however own rather limited performances and require complicated manipulations. Here, we show a basic strategy which is fundamentally different from the existing ones to realize large scale reversible deformation through controlling the working materials via the synthetically chemical-electrical mechanism (SCHEME). Such activity incorporates an object of liquid metal gallium whose surface area could spread up to five times of its original size and vice versa under low energy consumption. Particularly, the alterable surface tension based on combination of chemical dissolution and electrochemical oxidation is ascribed to the reversible shape transformation, which works much more flexible than many former deformation principles through converting electrical energy into mechanical movement. A series of very unusual phenomena regarding the reversible configurational shifts are disclosed with dominant factors clarified. This study opens a generalized way to combine the liquid metal serving as shape-variable element with the SCHEME to compose functional soft machines, which implies huge potential for developing future smart robots to fulfill various complicated tasks.

  4. Interaction chromatography for characterization and large-scale fractionation of chemically heterogeneous copolymers

    NASA Astrophysics Data System (ADS)

    Han, Junwon

    The remarkable development of polymer synthesis techniques to make complex polymers with controlled chain architectures has inevitably demanded the advancement of polymer characterization tools to analyze the molecular dispersity in polymeric materials beyond size exclusion chromatography (SEC). In particular, man-made synthetic copolymers that consist of more than one monomer type are disperse mixtures of polymer chains that have distributions in terms of both chemical heterogeneity and chain length (molar mass). While the molecular weight distribution has been quite reliably estimated by the SEC, it is still challenging to properly characterize the chemical composition distribution in the copolymers. Here, I have developed and applied adsorption-based interaction chromatography (IC) techniques as a promising tool to characterize and fractionate polystyrene-based block, random and branched copolymers in terms of their chemical heterogeneity. The first part of this thesis is focused on the adsorption-desorption based purification of PS-b-PMMA diblock copolymers using nanoporous silica. The liquid chromatography analysis and large scale purification are discussed for the PS-b-PMMA block copolymers that have been synthesized by sequential anionic polymerization. SEC and IC are compared to critically analyze the contents of PS homopolymers in the as-synthesized block copolymers. In addition, I have developed an IC technique to provide faster and more reliable information on the chemical heterogeneity in the as-synthesized block copolymers. Finally, a large scale (multi-gram) separation technique is developed to obtain "homopolymer-free" block copolymers via a simple chromatographic filtration technique. By taking advantage of the large specific surface area of nanoporous silica (≈300m 2/g), large scale purification of neat PS-b-PMMA has successfully been achieved by controlling adsorption and desorption of the block copolymers on the silica gel surface using a

  5. SureChEMBL: a large-scale, chemically annotated patent document database.

    PubMed

    Papadatos, George; Davies, Mark; Dedman, Nathan; Chambers, Jon; Gaulton, Anna; Siddle, James; Koks, Richard; Irvine, Sean A; Pettersson, Joe; Goncharoff, Nicko; Hersey, Anne; Overington, John P

    2016-01-04

    SureChEMBL is a publicly available large-scale resource containing compounds extracted from the full text, images and attachments of patent documents. The data are extracted from the patent literature according to an automated text and image-mining pipeline on a daily basis. SureChEMBL provides access to a previously unavailable, open and timely set of annotated compound-patent associations, complemented with sophisticated combined structure and keyword-based search capabilities against the compound repository and patent document corpus; given the wealth of knowledge hidden in patent documents, analysis of SureChEMBL data has immediate applications in drug discovery, medicinal chemistry and other commercial areas of chemical science. Currently, the database contains 17 million compounds extracted from 14 million patent documents. Access is available through a dedicated web-based interface and data downloads at: https://www.surechembl.org/. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  6. Large-scale production of megakaryocytes from human pluripotent stem cells by chemically defined forward programming

    PubMed Central

    Moreau, Thomas; Evans, Amanda L.; Vasquez, Louella; Tijssen, Marloes R.; Yan, Ying; Trotter, Matthew W.; Howard, Daniel; Colzani, Maria; Arumugam, Meera; Wu, Wing Han; Dalby, Amanda; Lampela, Riina; Bouet, Guenaelle; Hobbs, Catherine M.; Pask, Dean C.; Payne, Holly; Ponomaryov, Tatyana; Brill, Alexander; Soranzo, Nicole; Ouwehand, Willem H.; Pedersen, Roger A.; Ghevaert, Cedric

    2016-01-01

    The production of megakaryocytes (MKs)—the precursors of blood platelets—from human pluripotent stem cells (hPSCs) offers exciting clinical opportunities for transfusion medicine. Here we describe an original approach for the large-scale generation of MKs in chemically defined conditions using a forward programming strategy relying on the concurrent exogenous expression of three transcription factors: GATA1, FLI1 and TAL1. The forward programmed MKs proliferate and differentiate in culture for several months with MK purity over 90% reaching up to 2 × 105 mature MKs per input hPSC. Functional platelets are generated throughout the culture allowing the prospective collection of several transfusion units from as few as 1 million starting hPSCs. The high cell purity and yield achieved by MK forward programming, combined with efficient cryopreservation and good manufacturing practice (GMP)-compatible culture, make this approach eminently suitable to both in vitro production of platelets for transfusion and basic research in MK and platelet biology. PMID:27052461

  7. Study of wavelength-shifting chemicals for use in large-scale water Cherenkov detectors

    SciTech Connect

    Sweany, M; Bernstein, A; Dazeley, S; Dunmore, J; Felde, J; Svoboda, R; Tripathi, S M

    2011-09-21

    Cherenkov detectors employ various methods to maximize light collection at the photomultiplier tubes (PMTs). These generally involve the use of highly reflective materials lining the interior of the detector, reflective materials around the PMTs, or wavelength-shifting sheets around the PMTs. Recently, the use of water-soluble wavelength-shifters has been explored to increase the measurable light yield of Cherenkov radiation in water. These wave-shifting chemicals are capable of absorbing light in the ultravoilet and re-emitting the light in a range detectable by PMTs. Using a 250 L water Cherenkov detector, we have characterized the increase in light yield from three compounds in water: 4-Methylumbelliferone, Carbostyril-124, and Amino-G Salt. We report the gain in PMT response at a concentration of 1 ppm as: 1.88 {+-} 0.02 for 4-Methylumbelliferone, stable to within 0.5% over 50 days, 1.37 {+-} 0.03 for Carbostyril-124, and 1.20 {+-} 0.02 for Amino-G Salt. The response of 4-Methylumbelliferone was modeled, resulting in a simulated gain within 9% of the experimental gain at 1 ppm concentration. Finally, we report an increase in neutron detection performance of a large-scale (3.5 kL) gadolinium-doped water Cherenkov detector at a 4-Methylumbelliferone concentration of 1 ppm.

  8. An Efficient Approach for Preprocessing Data from a Large-Scale Chemical Sensor Array

    PubMed Central

    Leo, Marco; Distante, Cosimo; Bernabei, Mara; Persaud, Krishna

    2014-01-01

    In this paper, an artificial olfactory system (Electronic Nose) that mimics the biological olfactory system is introduced. The device consists of a Large-Scale Chemical Sensor Array (16, 384 sensors, made of 24 different kinds of conducting polymer materials) that supplies data to software modules, which perform advanced data processing. In particular, the paper concentrates on the software components consisting, at first, of a crucial step that normalizes the heterogeneous sensor data and reduces their inherent noise. Cleaned data are then supplied as input to a data reduction procedure that extracts the most informative and discriminant directions in order to get an efficient representation in a lower dimensional space where it is possible to more easily find a robust mapping between the observed outputs and the characteristics of the odors in input to the device. Experimental qualitative proofs of the validity of the procedure are given by analyzing data acquired for two different pure analytes and their binary mixtures. Moreover, a classification task is performed in order to explore the possibility of automatically recognizing pure compounds and to predict binary mixture concentrations. PMID:25254304

  9. TALEN-mediated modification of the bovine genome for large-scale production of human serum albumin.

    PubMed

    Moghaddassi, Shaida; Eyestone, Will; Bishop, Colin E

    2014-01-01

    As an initial step towards creating genetically modified cattle as a biopharming source of recombinant human serum albumin (rHSA), we report modification of the bovine albumin (bA) locus by transcription activator-like effector nuclease (TALEN)-stimulated homology-directed repair (HDR). Pedigreed bovine fibroblasts were co-transfected with TALENs and an 11.5-kb human serum albumin (HSA) minigene donor construct, designed to simultaneously disrupt and replace bovine serum albumin (BSA) expression with controlled rHSA expression in both the liver and the milk. Targeted integration of the HSA minigene was confirmed in transfected fibroblasts at a frequency of approximately 11% and transgenic bovine embryos were produced from targeted fibroblasts using somatic cell nuclear transfer (SCNT). The research delineated here lays the foundation for the future generation of transgenic rHSA cattle with the potential to provide a large-scale, reliable, and quality-controlled source of rHSA.

  10. Large-Scale Chemical Similarity Networks for Target Profiling of Compounds Identified in Cell-Based Chemical Screens

    PubMed Central

    Lo, Yu-Chen; Senese, Silvia; Li, Chien-Ming; Hu, Qiyang; Huang, Yong; Damoiseaux, Robert; Torres, Jorge Z.

    2015-01-01

    Target identification is one of the most critical steps following cell-based phenotypic chemical screens aimed at identifying compounds with potential uses in cell biology and for developing novel disease therapies. Current in silico target identification methods, including chemical similarity database searches, are limited to single or sequential ligand analysis that have limited capabilities for accurate deconvolution of a large number of compounds with diverse chemical structures. Here, we present CSNAP (Chemical Similarity Network Analysis Pulldown), a new computational target identification method that utilizes chemical similarity networks for large-scale chemotype (consensus chemical pattern) recognition and drug target profiling. Our benchmark study showed that CSNAP can achieve an overall higher accuracy (>80%) of target prediction with respect to representative chemotypes in large (>200) compound sets, in comparison to the SEA approach (60–70%). Additionally, CSNAP is capable of integrating with biological knowledge-based databases (Uniprot, GO) and high-throughput biology platforms (proteomic, genetic, etc) for system-wise drug target validation. To demonstrate the utility of the CSNAP approach, we combined CSNAP's target prediction with experimental ligand evaluation to identify the major mitotic targets of hit compounds from a cell-based chemical screen and we highlight novel compounds targeting microtubules, an important cancer therapeutic target. The CSNAP method is freely available and can be accessed from the CSNAP web server (http://services.mbi.ucla.edu/CSNAP/). PMID:25826798

  11. Large-scale chemical similarity networks for target profiling of compounds identified in cell-based chemical screens.

    PubMed

    Lo, Yu-Chen; Senese, Silvia; Li, Chien-Ming; Hu, Qiyang; Huang, Yong; Damoiseaux, Robert; Torres, Jorge Z

    2015-03-01

    Target identification is one of the most critical steps following cell-based phenotypic chemical screens aimed at identifying compounds with potential uses in cell biology and for developing novel disease therapies. Current in silico target identification methods, including chemical similarity database searches, are limited to single or sequential ligand analysis that have limited capabilities for accurate deconvolution of a large number of compounds with diverse chemical structures. Here, we present CSNAP (Chemical Similarity Network Analysis Pulldown), a new computational target identification method that utilizes chemical similarity networks for large-scale chemotype (consensus chemical pattern) recognition and drug target profiling. Our benchmark study showed that CSNAP can achieve an overall higher accuracy (>80%) of target prediction with respect to representative chemotypes in large (>200) compound sets, in comparison to the SEA approach (60-70%). Additionally, CSNAP is capable of integrating with biological knowledge-based databases (Uniprot, GO) and high-throughput biology platforms (proteomic, genetic, etc) for system-wise drug target validation. To demonstrate the utility of the CSNAP approach, we combined CSNAP's target prediction with experimental ligand evaluation to identify the major mitotic targets of hit compounds from a cell-based chemical screen and we highlight novel compounds targeting microtubules, an important cancer therapeutic target. The CSNAP method is freely available and can be accessed from the CSNAP web server (http://services.mbi.ucla.edu/CSNAP/).

  12. Modification of input datasets for the Ensemble Streamflow Prediction based on large-scale climatic indices and weather generator

    NASA Astrophysics Data System (ADS)

    Šípek, Václav; Daňhelka, Jan

    2015-09-01

    Ensemble Streamflow Prediction (ESP) provides an efficient tool for seasonal hydrological forecasts. In this study, we propose a new modification of input data series for the ESP system used for the runoff volume prediction with a lead of one month. These series are not represented by short historical weather datasets but by longer generated synthetic weather data series. Before their submission to the hydrological model, their number is restricted by relations among observed meteorological variables (average monthly precipitation and temperature) and large-scale climatic patterns and indices (e.g. North Atlantic Oscillation, sea level pressure values and two geopotential heights). This modification was tested over a four-year testing period using the river basin in central Europe. The LARS-WG weather generator proved to be a suitable tool for the extension of the historical weather records. The modified ESP approach proved to be more efficient in the majority of months compared both to the original ESP method and reference forecast (based on probability distribution of historical discharges). The improvement over traditional ESP was most obvious in the narrower forecast interval of the expected runoff volume. The inefficient forecasts of the modified ESP scheme (compared to traditional ESP) were conditioned by an insufficient restriction of input synthetic weather datasets by the climate forecast.

  13. Modification of the large-scale features of high Reynolds number wall turbulence by passive surface obtrusions

    NASA Astrophysics Data System (ADS)

    Monty, J. P.; Allen, J. J.; Lien, K.; Chong, M. S.

    2011-12-01

    A high Reynolds number boundary-layer wind-tunnel facility at New Mexico State University was fitted with a regularly distributed braille surface. The surface was such that braille dots were closely packed in the streamwise direction and sparsely spaced in the spanwise direction. This novel surface had an unexpected influence on the flow: the energy of the very large-scale features of wall turbulence (approximately six-times the boundary-layer thickness in length) became significantly attenuated, even into the logarithmic region. To the author's knowledge, this is the first experimental study to report a modification of `superstructures' in a rough-wall turbulent boundary layer. The result gives rise to the possibility that flow control through very small, passive surface roughness may be possible at high Reynolds numbers, without the prohibitive drag penalty anticipated heretofore. Evidence was also found for the uninhibited existence of the near-wall cycle, well known to smooth-wall-turbulence researchers, in the spanwise space between roughness elements.

  14. Industrial microbial enzymes: their discovery by screening and use in large-scale production of useful chemicals in Japan.

    PubMed

    Ogawa, Jun; Shimizu, Sakayu

    2002-08-01

    The application of microbial enzymes to large-scale organic synthesis is currently attracting much attention, and has been uniquely developed especially in Japan. The discovery of new microbial enzymes through extensive and persistent screening has brought about many new and simple routes for synthetic processes. The application of these enzymes in so-called 'hybrid processes' of enzymatic and chemical reactions, provide one possible way to solve environmental problems.

  15. Color and chemical properties of oil used for deep frying on a large scale.

    PubMed

    Totani, Nagao; Tateishi, Sayuri; Chiue, Hiroko; Mori, Terutosi

    2012-01-01

    Acid value (AV), polar compound content (PC), carbonyl value (CV) and Gardner color of oil used for deep-frying in kitchens at a supermarket, lunch chain store, restaurant, eating house, and hospital were analyzed. All AVs obtained but one (3.38) were within the limit set by the Food Sanitation Act of Japan (AV ≤ 3, peroxide value ≤ 30). However, some oil samples had a PC over 25%, which is beyond the limit legislated by some European countries. When the relation between the Gardner color and the AV, PC, or CV of the oil was investigated, well correlated logarithmic regression curves were obtained from the oil of all kitchens except the hospital kitchen. However, the use of lard-containing canola oil without oil replenishment in the eating house increased color values rapidly. All of the values obtained from pure vegetable oil used almost daily were plotted on a graph. It was found that kitchen-by-kitchen differences in fryer, vegetable oil, frying temperature, heating time, and amounts and kinds of foods fried did not influence the relation between Gardner color value versus AV, PC or CV. In conclusion, frying vegetable oil used in large-scale kitchens without official inspection can be better controlled with Gardner color determination by the operators and administrators. This would improve the quality of the oil ingested by facility patrons.

  16. Nutrient Uptake and Metabolism Along a Large Scale Tropical Physical-Chemical Gradient

    NASA Astrophysics Data System (ADS)

    Tromboni, F.; Neres-Lima, V.; Saltarelli, W. A.; Miwa, A. C. P.; Cunha, D. G. F.

    2016-12-01

    Nutrient spiraling is a whole-system approach for estimating nutrient uptake that can be used to assess aquatic ecosystems' responses to environmental change and anthropogenic impacts. Historically research on nutrient dynamic uptake in streams has focused on single nutrient dynamics and only rarely the stoichiometric uptake has been considered and linked to carbon metabolism driven by autotrophic and heterotrophic production. We investigated the relationship between uptake of phosphate (PO43-), nitrate (NO3-) ammonium (NH4+) and total dissolve nitrogen (DIN)/ PO43-; and gross primary production (GPP), respiration (R), and net ecosystem productivity (NEP) in six relatively pristine streams with differences regarding canopy cover and physical characteristics, located in a large scale gradient from tropical Atlantic Forest to an Atlantic forest/Cerrado (Brazilian Savanna) transition. We carried out whole stream instantaneous additions of PO43-, NO3- and NH4+ added to each stream in combination, using the TASCC (Tracer Additions for Spiraling Curve Characterization) method. Metabolism measurements were performed in the same streams right after uptake was measured, using one-station open channel method and re-aeration estimations for those sites. We found different background concentrations in the streams located in the Atlantic forest compared with the transition area with Cerrado. In general PO43- and NO3- uptake increased with the decreasing of canopy cover, while a positive relation with background concentration better explained NH4+uptake. DIN/PO43- uptake increased with increasing R and NEP. Little work on functional characteristics of pristine streams has been conducted in this region and this work provides an initial characterization on nitrogen and phosphorus dynamics as well as their stoichiometric uptake in streams.

  17. Chemical ordering suppresses large-scale electronic phase separation in doped manganites

    NASA Astrophysics Data System (ADS)

    Zhu, Yinyan; Du, Kai; Niu, Jiebin; Lin, Lingfang; Wei, Wengang; Liu, Hao; Lin, Hanxuan; Zhang, Kai; Yang, Tieying; Kou, Yunfang; Shao, Jian; Gao, Xingyu; Xu, Xiaoshan; Wu, Xiaoshan; Dong, Shuai; Yin, Lifeng; Shen, Jian

    2016-04-01

    For strongly correlated oxides, it has been a long-standing issue regarding the role of the chemical ordering of the dopants on the physical properties. Here, using unit cell by unit cell superlattice growth technique, we determine the role of chemical ordering of the Pr dopant in a colossal magnetoresistant (La1-yPry)1-xCaxMnO3 (LPCMO) system, which has been well known for its large length-scale electronic phase separation phenomena. Our experimental results show that the chemical ordering of Pr leads to marked reduction of the length scale of electronic phase separations. Moreover, compared with the conventional Pr-disordered LPCMO system, the Pr-ordered LPCMO system has a metal-insulator transition that is ~100 K higher because the ferromagnetic metallic phase is more dominant at all temperatures below the Curie temperature.

  18. Chemical ordering suppresses large-scale electronic phase separation in doped manganites

    PubMed Central

    Zhu, Yinyan; Du, Kai; Niu, Jiebin; Lin, Lingfang; Wei, Wengang; Liu, Hao; Lin, Hanxuan; Zhang, Kai; Yang, Tieying; Kou, Yunfang; Shao, Jian; Gao, Xingyu; Xu, Xiaoshan; Wu, Xiaoshan; Dong, Shuai; Yin, Lifeng; Shen, Jian

    2016-01-01

    For strongly correlated oxides, it has been a long-standing issue regarding the role of the chemical ordering of the dopants on the physical properties. Here, using unit cell by unit cell superlattice growth technique, we determine the role of chemical ordering of the Pr dopant in a colossal magnetoresistant (La1−yPry)1−xCaxMnO3 (LPCMO) system, which has been well known for its large length-scale electronic phase separation phenomena. Our experimental results show that the chemical ordering of Pr leads to marked reduction of the length scale of electronic phase separations. Moreover, compared with the conventional Pr-disordered LPCMO system, the Pr-ordered LPCMO system has a metal–insulator transition that is ∼100 K higher because the ferromagnetic metallic phase is more dominant at all temperatures below the Curie temperature. PMID:27053071

  19. Large-scale dynamics of directed self-assembly defects on chemically pre-patterned surface

    NASA Astrophysics Data System (ADS)

    Yoshimoto, Kenji; Taniguchi, Takashi

    2013-03-01

    Morphological defects of block copolymers are dynamically formed during the annealing step of directed self­ assembly (DSA) process. Understanding the dynamics of such defects is crucial to manufacture defect-free wafers, however it is not well-understood due to difficulties in in-situ measurements. In order to provide some insights into this problem, we have performed dynamic simulations of symmetric diblock copolymers on chemically pre-patterned surface. A simplified model, so-called the Ohta-Kawasaki (OK) model was employed in this study, whose free energy and chemical potential were expressed as a function of the local order parameters. Time evolution of the local order parameters were calculated numerically and iteratively from the equation of continuity. As a test case, the two-dimensional (2D) dynamic simulations were performed including thermal fluctuations. The time evolution of the lamella defects was successfully characterized as a function of the interactive strength between the diblock copolymers and the chemically pre-patterned surface. In the three­ dimensional (3D) dynamic simulations, some complicated morphologies formed on the chemically pre-patterned surface were found to be similar to those obtained from Monte Carlo simulations. Our preliminary simulation data prove that for small χNs, dynamic simulations of diblock copolymers with OK model could be a powerful method to predict DSA defects with reasonable accuracy and with small computational cost.

  20. Estimation Source Parameters of Large-Scale Chemical Surface Explosions and Recent Underground Nuclear Tests

    NASA Astrophysics Data System (ADS)

    Gitterman, Y.; Kim, S.; Hofstetter, R.

    2013-12-01

    Large-scale surface explosions were conducted by the Geophysical Institute of Israel at Sayarim Military Range (SMR), Negev desert: 82 tons of strong HE explosives in August 2009, and 10&100 tons of ANFO explosives in January 2011. The main goal was to provide strong controlled sources in different wind conditions, for calibration of IMS infrasound stations. Numerous dense observations of blast waves were provided by high-pressure, acoustic and seismic sensors at near-source (< 1 km) and close local (1-40 km) distances. The rarely reported Secondary Shock (SS) phenomenon was clearly observed at the all sensors. A novel empirical relationship for the new air-blast parameter - SS time delay - versus distance (both scaled by the cubic root of estimated TNT equivalent charge) was developed and analyzed. The scaled SS delays were found clearly separated for 2009 and 2011 shots, thus demonstrating dependence on the type of explosives with different detonation velocity. Additional acoustic and seismic records from very large (> 2000 tons) ANFO surface shots at White Sands Military Range (WSMR) were analyzed for SS time delay. The Secondary Shocks were revealed on the records in the range 1.5-60 km and showed consistency with the SMR data, thus extending the charge and distance range for the developed SS delay relationship. Obtained results suggest that measured SS delays can provide important information about an explosion source character, and can be used as a new simple cost-effective yield estimator for explosions with known type of explosives. The new results are compared with analogous available data of surface nuclear explosions. Special distinctions in air-blast waves are revealed and analyzed, resulting from the different source phenomenology (energy release). Two underground nuclear explosions conducted by North Korea in 2009 and 2013 were recorded by several stations of Israel Seismic Network. Pronounced minima (spectral nulls) at 1.2-1.3 Hz were revealed in the

  1. Generation of low-frequency electric and magnetic fields during large- scale chemical and nuclear explosions

    SciTech Connect

    Adushkin, V.V.; Dubinya, V.A.; Karaseva, V.A.; Soloviev, S.P.; Surkov, V.V.

    1995-06-01

    We discuss the main parameters of the electric field in the surface layer of the atmosphere and the results of the investigations of the natural electric field variations. Experimental investigations of the electromagnetic field for explosions in air are presented. Electromagnetic signals generated by underground nuclear and chemical explosions are discussed and explosions for 1976--1991 are listed. Long term anomalies of the earth`s electromagnetic field in the vicinity of underground explosions were also investigated. Study of the phenomenon of the irreversible shock magnetization showed that in the zone nearest to the explosion the quasistatic magnetic field decreases in inverse proportion to the distance.

  2. Electronic Properties of Large-scale Graphene Chemical Vapor Synthesized on Nickel and on Sapphire

    NASA Astrophysics Data System (ADS)

    Cao, Helin; Zhang, Liyuan; Chen, Yong; Yu, Qingkai; Li, Hao

    2009-03-01

    We have studied the electronic transport properties of large area few-layer graphene/graphitic films grown by two different chemical vapor based methods. The first type of samples (metal-transfer graphene) is synthesized by carbon segregation from Ni, then transferred to SiO2/Si substrates. The second type of samples is synthesized by direct chemical vapor deposition (CVD) on sapphire. We measured these samples under variable temperatures (from 2K to 300 K) and transverse magnet fields (from 0 to 7 T). For both types of samples, we found a negative magnetoresistance at low field, and carrier mobilities on the order of several hundreds of cm^2/V-s. For metal-transfer graphene in particular, we were able to measure a moderate field effect response, using the highly doped Si substrate as back gate. The observed magnetoresistance shows characteristic features of weak localization, from which we extract various carrier scattering lengths in the metal-transfer graphene samples. Comparison with those measured in mechanically exfoliated graphene suggests possibly different carrier scattering mechanisms for graphene materials prepared with different methods.

  3. Chemical Protein Modification through Cysteine.

    PubMed

    Gunnoo, Smita B; Madder, Annemieke

    2016-04-01

    The modification of proteins with non-protein entities is important for a wealth of applications, and methods for chemically modifying proteins attract considerable attention. Generally, modification is desired at a single site to maintain homogeneity and to minimise loss of function. Though protein modification can be achieved by targeting some natural amino acid side chains, this often leads to ill-defined and randomly modified proteins. Amongst the natural amino acids, cysteine combines advantageous properties contributing to its suitability for site-selective modification, including a unique nucleophilicity, and a low natural abundance--both allowing chemo- and regioselectivity. Native cysteine residues can be targeted, or Cys can be introduced at a desired site in a protein by means of reliable genetic engineering techniques. This review on chemical protein modification through cysteine should appeal to those interested in modifying proteins for a range of applications.

  4. Ferromagnetic inks facilitate large scale paper recycling and reduce bleach chemical consumption.

    PubMed

    Zeltner, Martin; Toedtli, Laura M; Hild, Nora; Fuhrer, Roland; Rossier, Michaël; Gerber, Lukas C; Raso, Renzo A; Grass, Robert N; Stark, Wendelin J

    2013-04-23

    Deinking is a fundamental part of paper recycling. As the global paper consumption rises and exceeds even the annual paper production, recycling of this raw material is of high importance. Magnetic ink based on carbon coated magnetic nanoparticles enables an alternative approach to state of the art paper deinking. Magnetic deinking comprises three steps (preselection, washing, and magnetic separation of fibers). Preseparation of printed from nonprinted scraps of paper is feasible and reduces the paper mass which has to be fed into a deinking process. A consecutive washing process removes surficial magnetic ink that can be collected by application of a permanent magnet. Still, printed parts are subjected to a further continuous magnetic deinking step, where magnetic and nonmagnetic paper fibers can be separated. Magnetic deinking of a model print allows recovery of more than 80% of bright fibers without any harsh chemical treatment and the re-collection of more than 82% of magnetic ink.

  5. Chemical modification of semiconductor surfaces

    NASA Technical Reports Server (NTRS)

    Finklea, H. O.

    1981-01-01

    Results of research on the chemical modification of TiO2 powders in the gas phase and the examination of the modified powders by infrared absorption spectroscopy are comprehensively summarized. The range of information obtainable by IR spectroscopy of chemically modified semiconductors, and a definition of the optimum reaction conditions for synthesizing a monolayer of methylsilanes using vapor phase reaction conditions were considered.

  6. [Physical, chemical and biological study of dust from large-scale pig farms].

    PubMed

    Raszyk, J

    1986-04-01

    Dust deposition in 16 halls of two large pig-fattening farms with dry or wet feeding systems was analyzed. In the halls with wet feeding the samples contained maximally 28 dust particles up to 10 micron and 17 particles up to 5 micron per cm3 of air, in the halls with dry feeding 220 particles smaller than 10 micron and 205 particles smaller than 5 micron per cm3 of air. The total amino acid content in the dust deposition was 17.440 +/- 1.820 g per 100 g of sample and the content of nitrogen compounds (N X X 6.25, %), was 24.170 +/- 2.910. The contents of chemical elements were as follows (mg per kg): zinc 448 +/- 151; manganese 109.9 +/- 49.5; copper 40.5 +/- 12.1; lead 4.77 +/- +/- 4.79; chromium 1.64 +/- 1.47; cadmium 1.61 +/- 1.62; mercury 0.36 +/- 0.39. Chlorinated carbohydrates and triazine and diazine herbicides were present in the following amounts (mg per kg): HCB 0.0023 +/- 0.0021; Lindane 0.0058 +/- 0.0079; DDE 0.0048 +/- +/- 0.0024; DDT 0.0065 +/- 0.0015; Simazine 0.060 +/- 0.020; Atrazine 0.083 +/- 0.059; Prometryn 0.093 +/- 0.040; Chloridazon 0.036 +/- 0.008; Terbutryn 0.085 +/- 0.029. The content of aflatoxin B1 was 12.89 +/- 9.31 micrograms per kg and the maximum amount of polychlorinated biphenyls was 8 mg per kg. Nitrovin was found out only in the dust of two halls: 4.0 and 7.9 mg per kg. The dust deposition also contained 21 genera and species of moulds, six species of mites, numerous saprophytic bacteria and, in some cases, Staphylococcus aureus. For the time being, no viruses have been detected in the dust samples.

  7. Chemical modification of wood

    Treesearch

    Roger M. Rowell

    2007-01-01

    After millions of years of evolution, wood was designed to perform in a wet environment, and nature is programmed to recycle it, in a timely way, back to the basic building blocks of carbon dioxide and water through biological, thermal, aqueous, photochemical, chemical, and mechanical degradation. The properties of wood are, for the most part, a result of the chemistry...

  8. Synthesis of large scale graphene oxide using plasma enhanced chemical vapor deposition method and its application in humidity sensing

    SciTech Connect

    Liu, Yang; Chen, Yuming

    2016-03-14

    Large scale graphene oxide (GO) is directly synthesized on copper (Cu) foil by plasma enhanced chemical vapor deposition method under 500 °C and even lower temperature. Compared to the modified Hummer's method, the obtained GO sheet in this article is large, and it is scalable according to the Cu foil size. The oxygen-contained groups in the GO are introduced through the residual gas of methane (99.9% purity). To prevent the Cu surface from the bombardment of the ions in the plasma, we use low intensity discharge. Our experiment reveals that growth temperature has important influence on the carbon to oxygen ratio (C/O ratio) in the GO; and it also affects the amount of π-π* bonds between carbon atoms. Preliminary experiments on a 6 mm × 12 mm GO based humidity sensor prove that the synthesized GO reacts well to the humidity change. Our GO synthesis method may provide another channel for obtaining large scale GO in gas sensing or other applications.

  9. Chemical Modification of Polysaccharides

    PubMed Central

    Cumpstey, Ian

    2013-01-01

    This review covers methods for modifying the structures of polysaccharides. The introduction of hydrophobic, acidic, basic, or other functionality into polysaccharide structures can alter the properties of materials based on these substances. The development of chemical methods to achieve this aim is an ongoing area of research that is expected to become more important as the emphasis on using renewable starting materials and sustainable processes increases in the future. The methods covered in this review include ester and ether formation using saccharide oxygen nucleophiles, including enzymatic reactions and aspects of regioselectivity; the introduction of heteroatomic nucleophiles into polysaccharide chains; the oxidation of polysaccharides, including oxidative glycol cleavage, chemical oxidation of primary alcohols to carboxylic acids, and enzymatic oxidation of primary alcohols to aldehydes; reactions of uronic-acid-based polysaccharides; nucleophilic reactions of the amines of chitosan; and the formation of unsaturated polysaccharide derivatives. PMID:24151557

  10. Large-Scale Fabrication of Boron Nitride Nanotubes via a Facile Chemical Vapor Reaction Route and Their Cathodoluminescence Properties

    NASA Astrophysics Data System (ADS)

    Zhong, Bo; Huang, Xiaoxiao; Wen, Guangwu; Yu, Hongming; Zhang, Xiaodong; Zhang, Tao; Bai, Hongwei

    2011-12-01

    Cylinder- and bamboo-shaped boron nitride nanotubes (BNNTs) have been synthesized in large scale via a facile chemical vapor reaction route using ammonia borane as a precursor. The structure and chemical composition of the as-synthesized BNNTs are extensively characterized by X-ray diffraction, scanning electron microscopy, high-resolution transmission electron microscopy, and selected-area electron diffraction. The cylinder-shaped BNNTs have an average diameter of about 100 nm and length of hundreds of microns, while the bamboo-shaped BNNTs are 100-500 nm in diameter with length up to tens of microns. The formation mechanism of the BNNTs has been explored on the basis of our experimental observations and a growth model has been proposed accordingly. Ultraviolet-visible and cathodoluminescence spectroscopic analyses are performed on the BNNTs. Strong ultraviolet emissions are detected on both morphologies of BNNTs. The band gap of the BNNTs are around 5.82 eV and nearly unaffected by tube morphology. There exist two intermediate bands in the band gap of BNNTs, which could be distinguishably assigned to structural defects and chemical impurities.

  11. Large-scale synthesis of copper nanoparticles by chemically controlled reduction for applications of inkjet-printed electronics

    NASA Astrophysics Data System (ADS)

    Lee, Youngil; Choi, Jun-rak; Jong Lee, Kwi; Stott, Nathan E.; Kim, Donghoon

    2008-10-01

    Copper nanoparticles are being given considerable attention as of late due to their interesting properties and potential applications in many areas of industry. One such exploitable use is as the major constituent of conductive inks and pastes used for printing various electronic components. In this study, copper nanoparticles were synthesized through a relatively large-scale (5 l), high-throughput (0.2 M) process. This facile method occurs through the chemical reduction of copper sulfate with sodium hypophosphite in ethylene glycol within the presence of a polymer surfactant (PVP), which was included to prevent aggregation and give dispersion stability to the resulting colloidal nanoparticles. Reaction yields were determined to be quantitative while particle dispersion yields were between 68 and 73%. The size of the copper nanoparticles could be controlled between 30 and 65 nm by varying the reaction time, reaction temperature, and relative ratio of copper sulfate to the surfactant. Field emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM) images of the particles revealed a spherical shape within the reported size regime, and x-ray analysis confirmed the formation of face-centered cubic (FCC) metallic copper. Furthermore, inkjet printing nanocopper inks prepared from the polymer-stabilized copper nanoparticles onto polyimide substrates resulted in metallic copper traces with low electrical resistivities (>=3.6 µΩ cm, or >=2.2 times the resistivity of bulk copper) after a relatively low-temperature sintering process (200 °C for up to 60 min).

  12. Natural background levels and threshold values of chemical species in three large-scale groundwater bodies in Northern Italy.

    PubMed

    Molinari, Antonio; Guadagnini, Laura; Marcaccio, Marco; Guadagnini, Alberto

    2012-05-15

    We analyze natural background levels (NBLs) and threshold values (TVs) of spatially distributed chemical species (NH(4), B and As) which may be a potential pressure and concern in three large scale alluvial and fluvio-deltaic aquifers at different depths of the Apennines and Po river plains in Emilia-Romagna, Northern Italy. Our results are based on statistical methodologies designed to separate the natural and anthropogenic contributions in monitored concentrations by modeling the empirical distribution of the detected concentration with a mixture of probability density functions. Available chemical observations are taken over a 20 years period and are associated with different depths and cover planar investigation scales of the order of hundreds of kilometers. High concentration values detected for NH(4) and B appear to be related to high natural background levels. Due to interaction with the host rock in different geochemical environments we observed that concentration vary in time and space (including in depth) consistently with the hydrogeochemical features and the occurrence of natural attenuation mechanisms in the analyzed reservoirs. Conversely, estimated As NBLs are not consistent with the conceptual model of the hydrogeochemical behavior of the systems analyzed and experimental evidences of As content in aquifer cores. This is due to the inability of these techniques to incorporate the complex dynamics of the processes associated with the specific hydrogeochemical setting. Statistical analyses performed upon aggregating the concentration data according to different time observation windows allow identifying temporal dynamics of NBLs and TVs of target compounds within the observation time frame. Our results highlight the benefit of a dynamic monitoring process and analysis of well demarcated groundwater bodies to update the associated NBLs as a function of the temporal dependence of natural processes occurring in the subsurface. Monitoring protocols could

  13. Large-scale synthesis of copper nanoparticles by chemically controlled reduction for applications of inkjet-printed electronics.

    PubMed

    Lee, Youngil; Choi, Jun-Rak; Lee, Kwi Jong; Stott, Nathan E; Kim, Donghoon

    2008-10-15

    Copper nanoparticles are being given considerable attention as of late due to their interesting properties and potential applications in many areas of industry. One such exploitable use is as the major constituent of conductive inks and pastes used for printing various electronic components. In this study, copper nanoparticles were synthesized through a relatively large-scale (5 l), high-throughput (0.2 M) process. This facile method occurs through the chemical reduction of copper sulfate with sodium hypophosphite in ethylene glycol within the presence of a polymer surfactant (PVP), which was included to prevent aggregation and give dispersion stability to the resulting colloidal nanoparticles. Reaction yields were determined to be quantitative while particle dispersion yields were between 68 and 73%. The size of the copper nanoparticles could be controlled between 30 and 65 nm by varying the reaction time, reaction temperature, and relative ratio of copper sulfate to the surfactant. Field emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM) images of the particles revealed a spherical shape within the reported size regime, and x-ray analysis confirmed the formation of face-centered cubic (FCC) metallic copper. Furthermore, inkjet printing nanocopper inks prepared from the polymer-stabilized copper nanoparticles onto polyimide substrates resulted in metallic copper traces with low electrical resistivities (≥3.6 µΩ cm, or ≥2.2 times the resistivity of bulk copper) after a relatively low-temperature sintering process (200 °C for up to 60 min).

  14. Large-Scale Synthesis of Carbon Nanomaterials by Catalytic Chemical Vapor Deposition: A Review of the Effects of Synthesis Parameters and Magnetic Properties

    PubMed Central

    Qi, Xiaosi; Qin, Chuan; Zhong, Wei; Au, Chaktong; Ye, Xiaojuan; Du, Youwei

    2010-01-01

    The large-scale production of carbon nanomaterials by catalytic chemical vapor deposition is reviewed in context with their microwave absorbing ability. Factors that influence the growth as well as the magnetic properties of the carbon nanomaterials are discussed. PMID:28883324

  15. Applications of Neutron Scattering in the Chemical Industry: Proton Dynamics of Highly Dispersed Materials, Characterization of Fuel Cell Catalysts, and Catalysts from Large-Scale Chemical Processes

    NASA Astrophysics Data System (ADS)

    Albers, Peter W.; Parker, Stewart F.

    The attractiveness of neutron scattering techniques for the detailed characterization of materials of high degrees of dispersity and structural complexity as encountered in the chemical industry is discussed. Neutron scattering picks up where other analytical methods leave off because of the physico-chemical properties of finely divided products and materials whose absorption behavior toward electromagnetic radiation and electrical conductivity causes serious problems. This is demonstrated by presenting typical applications from large-scale production technology and industrial catalysis. These include the determination of the proton-related surface chemistry of advanced materials that are used as reinforcing fillers in the manufacture of tires, where interrelations between surface chemistry, rheological properties, improved safety, and significant reduction of fuel consumption are the focus of recent developments. Neutron scattering allows surface science studies of the dissociative adsorption of hydrogen on nanodispersed, supported precious metal particles of fuel cell catalysts under in situ loading at realistic gas pressures of about 1 bar. Insight into the occupation of catalytically relevant surface sites provides valuable information about the catalyst in the working state and supplies essential scientific input for tailoring better catalysts by technologists. The impact of deactivation phenomena on industrial catalysts by coke deposition, chemical transformation of carbonaceous deposits, and other processes in catalytic hydrogenation processes that result in significant shortening of the time of useful operation in large-scale plants can often be traced back in detail to surface or bulk properties of catalysts or materials of catalytic relevance. A better understanding of avoidable or unavoidable aspects of catalyst deactivation phenomena under certain in-process conditions and the development of effective means for reducing deactivation leads to more energy

  16. Chemical biology approaches for studying posttranslational modifications.

    PubMed

    Yang, Aerin; Cho, Kyukwang; Park, Hee-Sung

    2017-09-13

    Posttranslational modification (PTM) is a key mechanism for regulating diverse protein functions, and thus critically affects many essential biological processes. Critical for systematic study of the effects of PTMs is the ability to obtain recombinant proteins with defined and homogenous modifications. To this end, various synthetic and chemical biology approaches, including genetic code expansion and protein chemical modification methods, have been developed. These methods have proven effective for generating site-specific authentic modifications or structural mimics, and have demonstrated their value for in vitro and in vivo functional studies of diverse PTMs. This review will discuss recent advances in chemical biology strategies and their application to various PTM studies.

  17. A review of approaches to estimate wildfire plume injection height within large-scale atmospheric chemical transport models

    NASA Astrophysics Data System (ADS)

    Paugam, R.; Wooster, M.; Freitas, S.; Martin, M. Val

    2016-01-01

    Landscape fires produce smoke containing a very wide variety of chemical species, both gases and aerosols. For larger, more intense fires that produce the greatest amounts of emissions per unit time, the smoke tends initially to be transported vertically or semi-vertically close by the source region, driven by the intense heat and convective energy released by the burning vegetation. The column of hot smoke rapidly entrains cooler ambient air, forming a rising plume within which the fire emissions are transported. The characteristics of this plume, and in particular the height to which it rises before releasing the majority of the smoke burden into the wider atmosphere, are important in terms of how the fire emissions are ultimately transported, since for example winds at different altitudes may be quite different. This difference in atmospheric transport then may also affect the longevity, chemical conversion, and fate of the plumes chemical constituents, with for example very high plume injection heights being associated with extreme long-range atmospheric transport. Here we review how such landscape-scale fire smoke plume injection heights are represented in larger-scale atmospheric transport models aiming to represent the impacts of wildfire emissions on component of the Earth system. In particular we detail (i) satellite Earth observation data sets capable of being used to remotely assess wildfire plume height distributions and (ii) the driving characteristics of the causal fires. We also discuss both the physical mechanisms and dynamics taking place in fire plumes and investigate the efficiency and limitations of currently available injection height parameterizations. Finally, we conclude by suggesting some future parameterization developments and ideas on Earth observation data selection that may be relevant to the instigation of enhanced methodologies aimed at injection height representation.

  18. A review of approaches to estimate wildfire plume injection height within large scale atmospheric chemical transport models - Part 1

    NASA Astrophysics Data System (ADS)

    Paugam, R.; Wooster, M.; Freitas, S. R.; Martin, M. Val

    2015-03-01

    Landscape fires produce smoke containing a very wide variety of chemical species, both gases and aerosols. For larger, more intense fires that produce the greatest amounts of emissions per unit time, the smoke tends initially to be transported vertically or semi-vertically close by the source region, driven by the intense heat and convective energy released by the burning vegetation. The column of hot smoke rapidly entrains cooler ambient air, forming a rising plume within which the fire emissions are transported. This characteristics of this plume, and in particular the height to which it rises before releasing the majority of the smoke burden into the wider atmosphere, are important in terms of how the fire emissions are ultimately transported, since for example winds at different altitudes maybe quite different. This difference in atmospheric transport then may also affect the longevity, chemical conversion and fate of the plumes chemical consituents, with for example very high plume injection heights being associated with extreme long-range atmospheric transport. Here we review how such landscape-scale fire smoke plume injection heights are represented in larger scale atmospheric transport models aiming to represent the impacts of wildfire emissions on component of the Earth system. The use of satellite Earth observation (EO) data is commonly used for this, and detail the EO datasets capable of being used to remotely assess wildfire plume height distributions and the driving characteristics of the causal fires. We also discus both the physical mechanisms and dynamics taking place in fire plumes, and investigate the efficiency and limitations of currently available injection height parameterizations. Finally, we conclude by suggestion some future parameterization developments and ideas on EO data selection that maybe relevant to the instigation of enhanced methodologies aimed at injection height representation.

  19. Large scale dynamic systems

    NASA Technical Reports Server (NTRS)

    Doolin, B. F.

    1975-01-01

    Classes of large scale dynamic systems were discussed in the context of modern control theory. Specific examples discussed were in the technical fields of aeronautics, water resources and electric power.

  20. Toward Large Scale Parallelization for Molecular Dynamics of Small Chemical Systems: A Combined Parallel Tempering and Domain Decomposition Approach.

    PubMed

    Slim, Henk A; Wilson, Mark R

    2008-10-14

    A combined parallel tempering (replica exchange) and domain decomposition approach is presented, which allows for the effective use of large numbers of processor cores (>256) on modest sized simulations of chemical systems (∼5000 sites). The approach is implemented in the gbmoldd molecular dynamics program for the simulation of coarse-grained molecular systems composed of combinations of isotropic and/or anisotropic particles. Benchmark results are presented for two test systems: a C24 united atom chain and a coarse-grained system of spherocylinders.

  1. Elucidating the modes of action for bioactive compounds in a cell-specific manner by large-scale chemically-induced transcriptomics

    PubMed Central

    Iwata, Michio; Sawada, Ryusuke; Iwata, Hiroaki; Kotera, Masaaki; Yamanishi, Yoshihiro

    2017-01-01

    The identification of the modes of action of bioactive compounds is a major challenge in chemical systems biology of diseases. Genome-wide expression profiling of transcriptional responses to compound treatment for human cell lines is a promising unbiased approach for the mode-of-action analysis. Here we developed a novel approach to elucidate the modes of action of bioactive compounds in a cell-specific manner using large-scale chemically-induced transcriptome data acquired from the Library of Integrated Network-based Cellular Signatures (LINCS), and analyzed 16,268 compounds and 68 human cell lines. First, we performed pathway enrichment analyses of regulated genes to reveal active pathways among 163 biological pathways. Next, we explored potential target proteins (including primary targets and off-targets) with cell-specific transcriptional similarity using chemical–protein interactome. Finally, we predicted new therapeutic indications for 461 diseases based on the target proteins. We showed the usefulness of the proposed approach in terms of prediction coverage, interpretation, and large-scale applicability, and validated the new prediction results experimentally by an in vitro cellular assay. The approach has a high potential for advancing drug discovery and repositioning. PMID:28071740

  2. A facile chemical-mechanical polishing lift-off transfer process toward large scale Cu(In,Ga)Se2 thin-film solar cells on arbitrary substrates

    NASA Astrophysics Data System (ADS)

    Tseng, Kuan-Chun; Yen, Yu-Ting; Thomas, Stuart R.; Tsai, Hung-Wei; Hsu, Cheng-Hung; Tsai, Wen-Chi; Shen, Chang-Hong; Shieh, Jia-Min; Wang, Zhiming M.; Chueh, Yu-Lun

    2016-02-01

    The fabrication of Cu(In,Ga)Se2 (CIGS) solar cells on flexible substrates is a non-trivial task due to thermal and ion diffusion related issues. In order to circumvent these issues, we have developed a chemical-mechanical polishing lift-off (CMPL) transfer process, enabling the direct transfer of CIGS solar cells from conventional soda-lime glass (SLG) onto arbitrary flexible substrates up to 4 cm2 in size. The structural and compositional nature of the pre- and post-transferred films is examined using electron microscopy, X-ray diffraction analysis, Raman and photoluminescence spectroscopy. We demonstrate the fabrication of solar cells on a range of flexible substrates while being able to maintain 75% cell efficiency (η) when compared to pre-transferred solar cells. The results obtained in this work suggest that our transfer process offers a highly promising approach toward large scale fabrication of CIGS-based solar cells on a wide variety of flexible substrates, suitable for use in the large scale CIGS photovoltaic industry.The fabrication of Cu(In,Ga)Se2 (CIGS) solar cells on flexible substrates is a non-trivial task due to thermal and ion diffusion related issues. In order to circumvent these issues, we have developed a chemical-mechanical polishing lift-off (CMPL) transfer process, enabling the direct transfer of CIGS solar cells from conventional soda-lime glass (SLG) onto arbitrary flexible substrates up to 4 cm2 in size. The structural and compositional nature of the pre- and post-transferred films is examined using electron microscopy, X-ray diffraction analysis, Raman and photoluminescence spectroscopy. We demonstrate the fabrication of solar cells on a range of flexible substrates while being able to maintain 75% cell efficiency (η) when compared to pre-transferred solar cells. The results obtained in this work suggest that our transfer process offers a highly promising approach toward large scale fabrication of CIGS-based solar cells on a wide

  3. CIIPro: a new read-across portal to fill data gaps using public large-scale chemical and biological data.

    PubMed

    Russo, Daniel P; Kim, Marlene T; Wang, Wenyi; Pinolini, Daniel; Shende, Sunil; Strickland, Judy; Hartung, Thomas; Zhu, Hao

    2016-10-14

    We have developed a public Chemical In vitro-In vivo Profiling (CIIPro) portal, which can automatically extract in vitro biological data from public resources (i.e. PubChem) for user-supplied compounds. For compounds with in vivo target activity data (e.g. animal toxicity testing results), the integrated cheminformatics algorithm will optimize the extracted biological data using in vitro-in vivo correlations. The resulting in vitro biological data for target compounds can be used for read-across risk assessment of target compounds. Additionally, the CIIPro portal can identify the most similar compounds based on their optimized bioprofiles. The CIIPro portal provides new powerful assessment capabilities to the scientific community and can be easily integrated with other cheminformatics tools.

  4. Chemical modification of wood : a short review

    Treesearch

    Roger M. Rowell

    2006-01-01

    For most markets for wood, it is used without any treatments or modifications. When wood is used in adverse environments, it may be treated with chemicals to help prevent decay, improve water resistance, reduce the effects of ultraviolet radiation or increase fire retardancy. Many of these treatments involve the use of toxic or corrosive chemicals that can harm the...

  5. Chemical modification of surface properties

    SciTech Connect

    Koel, B.E.; Windham, R.G.

    1987-01-01

    Chemically tailoring materials to have new and unique surface properties has enormous potential in a wide variety of applications for interfacial phenomena in materials science and catalysis. Recent work from our laboratory on model systems designed to explain how changes in geometric and electronic structure of metal surfaces affect surface chemistry are discussed. Specifically, the influence of potassium and bismuth coadsorption with small molecules on a Pt(111) single crystal surface will be described. We will also discuss the chemical reactivity of palladium metal monolayers and thin films which have been recently reported to have dramatically altered geometric and electronic structure. 31 refs., 3 figs.

  6. Development of a novel fingerprint for chemical reactions and its application to large-scale reaction classification and similarity.

    PubMed

    Schneider, Nadine; Lowe, Daniel M; Sayle, Roger A; Landrum, Gregory A

    2015-01-26

    Fingerprint methods applied to molecules have proven to be useful for similarity determination and as inputs to machine-learning models. Here, we present the development of a new fingerprint for chemical reactions and validate its usefulness in building machine-learning models and in similarity assessment. Our final fingerprint is constructed as the difference of the atom-pair fingerprints of products and reactants and includes agents via calculated physicochemical properties. We validated the fingerprints on a large data set of reactions text-mined from granted United States patents from the last 40 years that have been classified using a substructure-based expert system. We applied machine learning to build a 50-class predictive model for reaction-type classification that correctly predicts 97% of the reactions in an external test set. Impressive accuracies were also observed when applying the classifier to reactions from an in-house electronic laboratory notebook. The performance of the novel fingerprint for assessing reaction similarity was evaluated by a cluster analysis that recovered 48 out of 50 of the reaction classes with a median F-score of 0.63 for the clusters. The data sets used for training and primary validation as well as all python scripts required to reproduce the analysis are provided in the Supporting Information.

  7. Chemical vapour deposition enhanced by atmospheric microwave plasmas: a large-scale industrial process or the next nanomanufacturing tool?

    NASA Astrophysics Data System (ADS)

    Belmonte, T.; Gries, T.; Cardoso, R. P.; Arnoult, G.; Kosior, F.; Henrion, G.

    2011-04-01

    This paper describes several specific aspects of atmospheric plasma deposition carried out with a microwave resonant cavity. Deposition over a wide substrate is first studied. We show that high deposition rates (several hundreds of μm h-1) are due to localization of fluxes on the substrate by convection when slightly turbulent flows are used. Next, we describe possible routes to localize deposition over a nanometre-sized area. Scaling down atmospheric plasma deposition is possible and two strategies to reach nanometre scales are described. Finally, we study self-organization of SiO2 nanodots deposited by chemical vapour deposition at atmospheric pressure enhanced by an Ar-O2 micro-afterglow operating at high temperature (>1200 K). When the film being deposited is thin enough (~500 nm) nanodots are obtained and they can be assembled into threads to create patterned surfaces. When the coating becomes thicker (~1 µm), and for relatively high content in HMDSO, SiO2 walls forming hexagonal cells are obtained.

  8. Large scale air pollution estimation method combining land use regression and chemical transport modeling in a geostatistical framework.

    PubMed

    Akita, Yasuyuki; Baldasano, Jose M; Beelen, Rob; Cirach, Marta; de Hoogh, Kees; Hoek, Gerard; Nieuwenhuijsen, Mark; Serre, Marc L; de Nazelle, Audrey

    2014-04-15

    In recognition that intraurban exposure gradients may be as large as between-city variations, recent air pollution epidemiologic studies have become increasingly interested in capturing within-city exposure gradients. In addition, because of the rapidly accumulating health data, recent studies also need to handle large study populations distributed over large geographic domains. Even though several modeling approaches have been introduced, a consistent modeling framework capturing within-city exposure variability and applicable to large geographic domains is still missing. To address these needs, we proposed a modeling framework based on the Bayesian Maximum Entropy method that integrates monitoring data and outputs from existing air quality models based on Land Use Regression (LUR) and Chemical Transport Models (CTM). The framework was applied to estimate the yearly average NO2 concentrations over the region of Catalunya in Spain. By jointly accounting for the global scale variability in the concentration from the output of CTM and the intraurban scale variability through LUR model output, the proposed framework outperformed more conventional approaches.

  9. Self-Reported Household Impacts of Large-Scale Chemical Contamination of the Public Water Supply, Charleston, West Virginia, USA

    PubMed Central

    Schade, Charles P.; Wright, Nasandra; Gupta, Rahul; Latif, David A.; Jha, Ayan; Robinson, John

    2015-01-01

    A January 2014 industrial accident contaminated the public water supply of approximately 300,000 homes in and near Charleston, West Virginia (USA) with low levels of a strongly-smelling substance consisting principally of 4-methylcyclohexane methanol (MCHM). The ensuing state of emergency closed schools and businesses. Hundreds of people sought medical care for symptoms they related to the incident. We surveyed 498 households by telephone to assess the episode’s health and economic impact as well as public perception of risk communication by responsible officials. Thirty two percent of households (159/498) reported someone with illness believed to be related to the chemical spill, chiefly dermatological or gastrointestinal symptoms. Respondents experienced more frequent symptoms of psychological distress during and within 30 days of the emergency than 90 days later. Sixty-seven respondent households (13%) had someone miss work because of the crisis, missing a median of 3 days of work. Of 443 households reporting extra expenses due to the crisis, 46% spent less than $100, while 10% spent over $500 (estimated average about $206). More than 80% (401/485) households learned of the spill the same day it occurred. More than 2/3 of households complied fully with “do not use” orders that were issued; only 8% reported drinking water against advice. Household assessments of official communications varied by source, with local officials receiving an average “B” rating, whereas some federal and water company communication received a “D” grade. More than 90% of households obtained safe water from distribution centers or stores during the emergency. We conclude that the spill had major economic impact with substantial numbers of individuals reporting incident-related illnesses and psychological distress. Authorities were successful supplying emergency drinking water, but less so with risk communication. PMID:25951197

  10. Self-reported household impacts of large-scale chemical contamination of the public water supply, Charleston, West Virginia, USA.

    PubMed

    Schade, Charles P; Wright, Nasandra; Gupta, Rahul; Latif, David A; Jha, Ayan; Robinson, John

    2015-01-01

    A January 2014 industrial accident contaminated the public water supply of approximately 300,000 homes in and near Charleston, West Virginia (USA) with low levels of a strongly-smelling substance consisting principally of 4-methylcyclohexane methanol (MCHM). The ensuing state of emergency closed schools and businesses. Hundreds of people sought medical care for symptoms they related to the incident. We surveyed 498 households by telephone to assess the episode's health and economic impact as well as public perception of risk communication by responsible officials. Thirty two percent of households (159/498) reported someone with illness believed to be related to the chemical spill, chiefly dermatological or gastrointestinal symptoms. Respondents experienced more frequent symptoms of psychological distress during and within 30 days of the emergency than 90 days later. Sixty-seven respondent households (13%) had someone miss work because of the crisis, missing a median of 3 days of work. Of 443 households reporting extra expenses due to the crisis, 46% spent less than $100, while 10% spent over $500 (estimated average about $206). More than 80% (401/485) households learned of the spill the same day it occurred. More than 2/3 of households complied fully with "do not use" orders that were issued; only 8% reported drinking water against advice. Household assessments of official communications varied by source, with local officials receiving an average "B" rating, whereas some federal and water company communication received a "D" grade. More than 90% of households obtained safe water from distribution centers or stores during the emergency. We conclude that the spill had major economic impact with substantial numbers of individuals reporting incident-related illnesses and psychological distress. Authorities were successful supplying emergency drinking water, but less so with risk communication.

  11. A facile chemical-mechanical polishing lift-off transfer process toward large scale Cu(In,Ga)Se2 thin-film solar cells on arbitrary substrates.

    PubMed

    Tseng, Kuan-Chun; Yen, Yu-Ting; Thomas, Stuart R; Tsai, Hung-Wei; Hsu, Cheng-Hung; Tsai, Wen-Chi; Shen, Chang-Hong; Shieh, Jia-Min; Wang, Zhiming M; Chueh, Yu-Lun

    2016-03-07

    The fabrication of Cu(In,Ga)Se2 (CIGS) solar cells on flexible substrates is a non-trivial task due to thermal and ion diffusion related issues. In order to circumvent these issues, we have developed a chemical-mechanical polishing lift-off (CMPL) transfer process, enabling the direct transfer of CIGS solar cells from conventional soda-lime glass (SLG) onto arbitrary flexible substrates up to 4 cm(2) in size. The structural and compositional nature of the pre- and post-transferred films is examined using electron microscopy, X-ray diffraction analysis, Raman and photoluminescence spectroscopy. We demonstrate the fabrication of solar cells on a range of flexible substrates while being able to maintain 75% cell efficiency (η) when compared to pre-transferred solar cells. The results obtained in this work suggest that our transfer process offers a highly promising approach toward large scale fabrication of CIGS-based solar cells on a wide variety of flexible substrates, suitable for use in the large scale CIGS photovoltaic industry.

  12. Functionalized polymers by chemical surface modification

    NASA Astrophysics Data System (ADS)

    Moloney, Mark G.

    2008-09-01

    Surface-modified polymers are of substantial importance in many diverse aspects of modern technology, and whilst there are a number of existing physical and chemical methods for surface modification of polymers, the frequent requirement for significant infrastructure, harsh reaction conditions and limitation to specific polymer types led us to consider alternative chemical methods. A desirable alternative would be that amenable to a large range of polymers, permitting direct chemical modification under mild conditions and using inexpensive reagents. We report here that functionalized diarylcarbenes are excellent reactive intermediates suitable for direct surface modification of a range of organic and inorganic materials, and we have illustrated that this can be used for the introduction of visible and fluorescent chromophores, biocidal and biocompatible function.

  13. Distributed chemical computing using ChemStar: an open source java remote method invocation architecture applied to large scale molecular data from PubChem.

    PubMed

    Karthikeyan, M; Krishnan, S; Pandey, Anil Kumar; Bender, Andreas; Tropsha, Alexander

    2008-04-01

    We present the application of a Java remote method invocation (RMI) based open source architecture to distributed chemical computing. This architecture was previously employed for distributed data harvesting of chemical information from the Internet via the Google application programming interface (API; ChemXtreme). Due to its open source character and its flexibility, the underlying server/client framework can be quickly adopted to virtually every computational task that can be parallelized. Here, we present the server/client communication framework as well as an application to distributed computing of chemical properties on a large scale (currently the size of PubChem; about 18 million compounds), using both the Marvin toolkit as well as the open source JOELib package. As an application, for this set of compounds, the agreement of log P and TPSA between the packages was compared. Outliers were found to be mostly non-druglike compounds and differences could usually be explained by differences in the underlying algorithms. ChemStar is the first open source distributed chemical computing environment built on Java RMI, which is also easily adaptable to user demands due to its "plug-in architecture". The complete source codes as well as calculated properties along with links to PubChem resources are available on the Internet via a graphical user interface at http://moltable.ncl.res.in/chemstar/.

  14. Thermo-Flow Structure and Epitaxial Uniformity in Large-Scale Metalorganic Chemical Vapor Deposition Reactors with Rotating Susceptor and Inlet Flow Control

    NASA Astrophysics Data System (ADS)

    Soong, Chyi-Yeou; Chyuan, Chung-Hsing; Tzong, Ruey-Yau

    1998-10-01

    The transport phenomena in large-scale metalorganic chemical vapor deposition (MOCVD) reactors with a rotating susceptor are investigated by numerical simulation of thin-film epitaxial growth of gallium arsenide. We are mainly concerned with the thermo-flow structure, its influence on epitaxial growth rate, and the means of improving epilayer flatness. The effects of susceptor rotation and thermo-flow conditions on gas flow, temperature and concentration fields are studied. The present results show the flow structure and transport characteristics in various flow regimes. A parameter map and the associated correlations of boundary curves of the flow-mode transition are proposed. It is demonstrated that the epilayer flatness can be tuned either by properly controlling the vortex strength in a rotation-dominated flow regime and/or by employing an inlet flow control technique proposed in the present work.

  15. Comparison of the effects in the rock mass of large-scale chemical and nuclear explosions. Final technical report, June 9, 1994--October 9, 1994

    SciTech Connect

    Spivak, A.A.

    1995-04-01

    It was found that in the first approximation the mechanical effect of underground nuclear explosion is analogous to the effect of chemical explosion. Really qualitative analysis shows that accompanying mechanical effects of nuclear and chemical explosions are the same: in the both cases explosion consequences are characterized by formation of the camouplet cavity (crater after explosion near free surface), destruction of the rock massif near explosion centre, creation of the stress wave, which forms seismoexplosive effect a long distance from explosion epicentre. Qualitative likeness of underground nuclear explosions and chemical explosions is the base of modelling the mechanical effects of the underground nuclear explosion. In this paper we`ll compare two explosions: nuclear (15-04-84) and chemical (27.06.95) with large power. These explosions were realized at the same geological conditions at Degelen test area, which is a part of the Semipalatinsk Test Site. In the case of the nuclear explosion, the charge was disposed in the face of the deep horizontal gallery. The charge of the chemical explosion was a semisphere from explosives at the rock massif surface. In the both case rock massif behavior after explosions was investigated at underground conditions (in the case of chemical explosion -- in the long underground excavation from explosion epicentre). Mechanical effects from the nuclear and chemical explosions were investigated with the same methods. The changes in geological medium after a large-scale explosive actions will be analyzed in detail too. Investigations of the influence of tectonic energy on the mechanical effects after underground nuclear, explosions represents the main interest. In this paper we`ll discuss this question on the data from underground nuclear explosion, realized 08.09.89 in the deep well at the Balapan test area, at the Semipalatinsk Test Site.

  16. Large scale scientific computing

    SciTech Connect

    Deuflhard, P. ); Engquist, B. )

    1987-01-01

    This book presents papers on large scale scientific computing. It includes: Initial value problems of ODE's and parabolic PDE's; Boundary value problems of ODE's and elliptic PDE's; Hyperbolic PDE's; Inverse problems; Optimization and optimal control problems; and Algorithm adaptation on supercomputers.

  17. Fertilizer nitrogen, soil chemical properties, and their determinacy on rice yield: Evidence from 92 paddy fields of a large-scale farm in the Kanto Region of Japan

    NASA Astrophysics Data System (ADS)

    Li, D.; Nanseki, T.; Chomei, Y.; Yokota, S.

    2017-07-01

    Rice, a staple crop in Japan, is at risk of decreasing production and its yield highly depends on soil fertility. This study aimed to investigate determinants of rice yield, from the perspectives of fertilizer nitrogen and soil chemical properties. The data were sampled in 2014 and 2015 from 92 peat soil paddy fields on a large-scale farm located in the Kanto Region of Japan. The rice variety used was the most widely planted Koshihikari in Japan. Regression analysis indicated that fertilizer nitrogen significantly affected the yield, with a significant sustained effect to the subsequent year. Twelve soil chemical properties, including pH, cation exchange capacity, content of pyridine base elements, phosphoric acid, and silicic acid, were estimated. In addition to silicic acid, magnesia, in forms of its exchangeable content, saturation, and ratios to potassium and lime, positively affected the yield, while phosphoric acid negatively affected the yield. We assessed the soil chemical properties by soil quality index and principal component analysis. Positive effects were identified for both approaches, with the former performing better in explaining the rice yield. For soil quality index, the individual standardized soil properties and margins for improvement were indicated for each paddy field. Finally, multivariate regression on the principal components identified the most significant properties.

  18. Chemical Modification of Nanotubes for Composites

    NASA Technical Reports Server (NTRS)

    Samulski, Edward T.

    2003-01-01

    In the production of mesoscopically-engineered materials based on single-walled carbon nanotubes (SWNTs), monitoring the stages of chemical modification will be an important step in the fabrication of usable composite materials. In our research program we developed tools for studying high-temperature composites with a long-term goal of having such instrumentation available for SWNT composite analyses.

  19. Large-Scale Disasters

    NASA Astrophysics Data System (ADS)

    Gad-El-Hak, Mohamed

    "Extreme" events - including climatic events, such as hurricanes, tornadoes, and drought - can cause massive disruption to society, including large death tolls and property damage in the billions of dollars. Events in recent years have shown the importance of being prepared and that countries need to work together to help alleviate the resulting pain and suffering. This volume presents a review of the broad research field of large-scale disasters. It establishes a common framework for predicting, controlling and managing both manmade and natural disasters. There is a particular focus on events caused by weather and climate change. Other topics include air pollution, tsunamis, disaster modeling, the use of remote sensing and the logistics of disaster management. It will appeal to scientists, engineers, first responders and health-care professionals, in addition to graduate students and researchers who have an interest in the prediction, prevention or mitigation of large-scale disasters.

  20. How much can we learn about the function of bacterial rRNA modification by mining large-scale experimental datasets?

    PubMed

    Sergiev, Petr V; Golovina, Anna Y; Sergeeva, Olga V; Osterman, Ilya A; Nesterchuk, Mikhail V; Bogdanov, Alexey A; Dontsova, Olga A

    2012-07-01

    Modification of ribosomal RNA is ubiquitous among living organisms. Its functional role is well established for only a limited number of modified nucleotides. There are examples of rRNA modification involvement in the gene expression regulation in the cell. There is a need for large data set analysis in the search for potential functional partners for rRNA modification. In this study, we extracted phylogenetic profile, genome neighbourhood, co-expression and phenotype profile and co-purification data regarding Escherichia coli rRNA modification enzymes from public databases. Results were visualized as graphs using Cytoscape and analysed. Majority linked genes/proteins belong to translation apparatus. Among co-purification partners of rRNA modification enzymes are several candidates for experimental validation. Phylogenetic profiling revealed links of pseudouridine synthetases with RF2, RsmH with translation factors IF2, RF1 and LepA and RlmM with RdgC. Genome neighbourhood connections revealed several putative functionally linked genes, e.g. rlmH with genes coding for cell wall biosynthetic proteins and others. Comparative analysis of expression profiles (Gene Expression Omnibus) revealed two main associations, a group of genes expressed during fast growth and association of rrmJ with heat shock genes. This study might be used as a roadmap for further experimental verification of predicted functional interactions.

  1. How much can we learn about the function of bacterial rRNA modification by mining large-scale experimental datasets?

    PubMed Central

    Sergiev, Petr V.; Golovina, Anna Y.; Sergeeva, Olga V.; Osterman, Ilya A.; Nesterchuk, Mikhail V.; Bogdanov, Alexey A.; Dontsova, Olga A.

    2012-01-01

    Modification of ribosomal RNA is ubiquitous among living organisms. Its functional role is well established for only a limited number of modified nucleotides. There are examples of rRNA modification involvement in the gene expression regulation in the cell. There is a need for large data set analysis in the search for potential functional partners for rRNA modification. In this study, we extracted phylogenetic profile, genome neighbourhood, co-expression and phenotype profile and co-purification data regarding Escherichia coli rRNA modification enzymes from public databases. Results were visualized as graphs using Cytoscape and analysed. Majority linked genes/proteins belong to translation apparatus. Among co-purification partners of rRNA modification enzymes are several candidates for experimental validation. Phylogenetic profiling revealed links of pseudouridine synthetases with RF2, RsmH with translation factors IF2, RF1 and LepA and RlmM with RdgC. Genome neighbourhood connections revealed several putative functionally linked genes, e.g. rlmH with genes coding for cell wall biosynthetic proteins and others. Comparative analysis of expression profiles (Gene Expression Omnibus) revealed two main associations, a group of genes expressed during fast growth and association of rrmJ with heat shock genes. This study might be used as a roadmap for further experimental verification of predicted functional interactions. PMID:22411911

  2. Large Scale Nonlinear Programming.

    DTIC Science & Technology

    1978-06-15

    KEY WORDS (Conhinu. as, t.n.t.. aid. if nic••iary aid ld.ntify by block n,a,b.r) L. In,~~~ IP!CIE LARGE SCALE OPTIMIZATION APPLICATIONS OF NONLINEAR ... NONLINEAR PROGRAMMING by Garth P. McCormick 1. Introduction The general mathematical programming ( optimization ) problem can be stated in the following form...because the difficulty in solving a general nonlinear optimization problem has a~ much to do with the nature of the functions involved as it does with the

  3. Elucidating the Physical and Chemical Structural Changes of Proteins on Clay Mineral Surfaces using Large-scale Molecular Dynamics Simulations in Tandem with NMR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Andersen, A.; Govind, N.; Washton, N.; Reardon, P.; Chacon, S. S.; Burton, S.; Lipton, A.; Kleber, M.; Qafoku, N. P.

    2014-12-01

    Carbon cycling among the three major Earth's pools, i.e., atmosphere, terrestrial systems and oceans, has received increased attention because the concentration of CO2 in the atmosphere has increased significantly in recent years reaching concentrations greater than 400 ppm that have never been recorded before, warming the planet and changing the climate. Within the terrestrial system, soil organic matter (SOM) represents an important sub-pool of carbon. The associations of SOM with soil mineral interfaces and particles, creating micro-aggregates, are believed to regulate the bioavailability of the associated organic carbon by protecting it from transformations and mineralization to carbon dioxide. Nevertheless, the molecular scale interactions of different types of SOM with a variety of soil minerals and the controls on the extent and rate of SOM transformation and mineralization are not well documented in the current literature. Given the importance of SOM fate and persistence in soils and the current knowledge gaps, the application of atomistic scale simulations to study SOM/mineral associations in abiotic model systems offers rich territory for original and impactful science. Molecular modeling and simulation of SOM is a burgeoning and challenging avenue for aiding the characterization of these complex compounds and chemical systems and for studying their interactions in self-assembled aggregates composed of different organic matter compounds and with mineral surfaces of different types and common in soils, which are thought to contribute to their reactive properties including recalcitrance potential and resistance to mineralization. Here, we will discuss our large-scale molecular dynamics simulation efforts to explore the interaction of proteins with clay minerals (i.e., phyllosilicates such as kaolinite, smectite and micas), including the potential physical and chemical structural changes of proteins, protein adsorption by polar and permanently charged

  4. Large scale analysis of co-existing post-translational modifications in histone tails reveals global fine structure of cross-talk.

    PubMed

    Schwämmle, Veit; Aspalter, Claudia-Maria; Sidoli, Simone; Jensen, Ole N

    2014-07-01

    Mass spectrometry (MS) is a powerful analytical method for the identification and quantification of co-existing post-translational modifications in histone proteins. One of the most important challenges in current chromatin biology is to characterize the relationships between co-existing histone marks, the order and hierarchy of their deposition, and their distinct biological functions. We developed the database CrossTalkDB to organize observed and reported co-existing histone marks as revealed by MS experiments of histone proteins and their derived peptides. Statistical assessment revealed sample-specific patterns for the co-frequency of histone post-translational modifications. We implemented a new method to identify positive and negative interplay between pairs of methylation and acetylation marks in proteins. Many of the detected features were conserved between different cell types or exist across species, thereby revealing general rules for cross-talk between histone marks. The observed features are in accordance with previously reported examples of cross-talk. We observed novel types of interplay among acetylated residues, revealing positive cross-talk between nearby acetylated sites but negative cross-talk for distant ones, and for discrete methylation states at Lys-9, Lys-27, and Lys-36 of histone H3, suggesting a more differentiated functional role of methylation beyond the general expectation of enhanced activity at higher methylation states.

  5. Changes in the distribution of the grey mangrove Avicennia marina (Forsk.) using large scale aerial color infrared photographs: are the changes related to habitat modification for mosquito control?

    NASA Astrophysics Data System (ADS)

    Jones, J.; Dale, P. E. R.; Chandica, A. L.; Breitfuss, M. J.

    2004-09-01

    Runnelling, a method of habitat modification used for mosquito management in intertidal saltmarshes in Australia, alters marsh hydrology. The objective of this research was to assess if runnelling had affected the distribution of the grey mangrove ( Avicennia marina (Forsk.)) at a study site in southeast Queensland. Since runnelling is carried out in diverse marshes a second aim was to assess differences in mangrove colonisation in the two main saltmarsh species in the area. These are marine couch [ Sporobolus virginicus (L.) Kunth.] and samphire [ Sarcocornia quinqueflora (Bunge ex Ung.-Stern.)]. Runnels at the study site were in an area dominated by Sporobolus. The mangrove area was measured by classifying digital color infrared (CIR) data obtained from aerial photographs acquired in 1982, which was 3 years before runnelling, and in 1987, 1991 and 1999, 2-14 years after. Changes in the spatial extent of A. marina were identified using difference images produced from post-classification change detection. The results showed that runnels did not significantly influence the distribution of A. marina at the study site. At a more detailed level differences in A. marina establishment in the Sporobolus and Sarcocornia areas were determined from counts of trees on the aerial photographs. There was a greater proportion of mangroves in Sarcocornia than Sporobolus and this increased over time. This may be related to differences in density between the plant species, to grapsid crab activity or to other edaphic conditions. There may be implications for runnelling in Sarcocornia marshes. The large increase observed in A. marina in the area generally is likely to be related to factors such as catchment modification or tidal/sea-level changes. It is concluded that runnelling has not led to mangrove establishment in the Sporobolus dominated saltmarsh.

  6. Studies on purothionin by chemical modifications.

    PubMed

    Wada, K; Ozaki, Y; Matsubara, H; Yoshizumi, H

    1982-01-01

    Purothionin from wheat flour was chemically modified by acetic or succinic anhydride under specific conditions. The complete modification of all amino groups of purothionin caused a large change in the net charge of the molecule, leading to the loss of the toxicity to mice and yeast. The sole tyrosyl residue in purothionin was nitrated by tetranitromethane at neutral pH or iodinated by the lactoperoxidase method. The nitro- and diiodo-derivatives of purothionin showed considerably reduced toxicity. Based on these modification studies we conclude that the positive charges of lysyl residues have an important role in the interaction with the negatively charged cell surface, and that the emergence of the toxicity of purothionin depends on a certain state of the tyrosyl residue.

  7. Large scale tracking algorithms

    SciTech Connect

    Hansen, Ross L.; Love, Joshua Alan; Melgaard, David Kennett; Karelitz, David B.; Pitts, Todd Alan; Zollweg, Joshua David; Anderson, Dylan Z.; Nandy, Prabal; Whitlow, Gary L.; Bender, Daniel A.; Byrne, Raymond Harry

    2015-01-01

    Low signal-to-noise data processing algorithms for improved detection, tracking, discrimination and situational threat assessment are a key research challenge. As sensor technologies progress, the number of pixels will increase signi cantly. This will result in increased resolution, which could improve object discrimination, but unfortunately, will also result in a significant increase in the number of potential targets to track. Many tracking techniques, like multi-hypothesis trackers, suffer from a combinatorial explosion as the number of potential targets increase. As the resolution increases, the phenomenology applied towards detection algorithms also changes. For low resolution sensors, "blob" tracking is the norm. For higher resolution data, additional information may be employed in the detection and classfication steps. The most challenging scenarios are those where the targets cannot be fully resolved, yet must be tracked and distinguished for neighboring closely spaced objects. Tracking vehicles in an urban environment is an example of such a challenging scenario. This report evaluates several potential tracking algorithms for large-scale tracking in an urban environment.

  8. Large scale traffic simulations

    SciTech Connect

    Nagel, K.; Barrett, C.L. |; Rickert, M. |

    1997-04-01

    Large scale microscopic (i.e. vehicle-based) traffic simulations pose high demands on computational speed in at least two application areas: (i) real-time traffic forecasting, and (ii) long-term planning applications (where repeated {open_quotes}looping{close_quotes} between the microsimulation and the simulated planning of individual person`s behavior is necessary). As a rough number, a real-time simulation of an area such as Los Angeles (ca. 1 million travellers) will need a computational speed of much higher than 1 million {open_quotes}particle{close_quotes} (= vehicle) updates per second. This paper reviews how this problem is approached in different projects and how these approaches are dependent both on the specific questions and on the prospective user community. The approaches reach from highly parallel and vectorizable, single-bit implementations on parallel supercomputers for Statistical Physics questions, via more realistic implementations on coupled workstations, to more complicated driving dynamics implemented again on parallel supercomputers. 45 refs., 9 figs., 1 tab.

  9. Gold Nanowires and Their Chemical Modifications

    NASA Astrophysics Data System (ADS)

    Häkkinen, Hannu; Barnett, Robert N.; Landman, Uzi

    2000-03-01

    Atomic structure, electronic structure, and ballistic transport in thin gold nanowires at their final stages before break-up, recently imaged by high-resolution electron microscopy,(H. Ohnishi et al., Nature 395), 780 (1998) are investigated with density functional simulations.(H. Häkkinen et al., J. Phys. Chem. B 103), 8814 (1999) We discuss stretching mechanisms leading to elongated chain-like structures showing dimerization akin to a Peierls transition and retaining conductance close to unity for stretching lengths that exceed considerably a typical interatomic bond length. We also demonstrate a chemical modification of the wire via adsorption of a methyl thiol molecule and discuss its effects on the structure and conductance.

  10. On the spot ethical decision-making in CBRN (chemical, biological, radiological or nuclear event) response: approaches to on the spot ethical decision-making for first responders to large-scale chemical incidents.

    PubMed

    Rebera, Andrew P; Rafalowski, Chaim

    2014-09-01

    First responders to chemical, biological, radiological, or nuclear (CBRN) events face decisions having significant human consequences. Some operational decisions are supported by standard operating procedures, yet these may not suffice for ethical decisions. Responders will be forced to weigh their options, factoring-in contextual peculiarities; they will require guidance on how they can approach novel (indeed unique) ethical problems: they need strategies for "on the spot" ethical decision making. The primary aim of this paper is to examine how first responders should approach on the spot ethical decision-making amid the stress and uncertainty of a CBRN event. Drawing on the long-term professional CBRN experience of one of the authors, this paper sets out a series of practical ethical dilemmas potentially arising in the context of a large-scale chemical incident. We propose a broadly consequentialist approach to on the spot ethical decision-making, but one which incorporates ethical values and rights as "side-constraints".

  11. Progressive chemical modification of clastic sediments with burial

    NASA Astrophysics Data System (ADS)

    Curtis, C. D.

    1987-03-01

    The porosity of clastic sediments at deposition varies very approximately between about 45% (sands) and 85% (muds). With burial, consolidation takes place as pore water is progressively eliminated. It would be misleading, however, to attribute alterations in sediment bulk properties to physical processes alone. Very significant mineralogical changes occur and these start soon after burial, especially in mudrocks. Striking heterogeneities such as thin, laterally continuous cemented horizons or discrete concretions are commonly introduced. These shallow burial processes are predominently the result of microbial activity. Thermodynamically unstable mixtures of organic matter and various oxidants [dissolved oxygen, sulphate, nitrate, particulate Fe(III) and Mn(IV)] provide both substrate and energy source for a variety of different microbial ecosystems. Mineralogical consequences include both leaching and the precipitation of carbonate, sulphide, phosphate and silica cements. The type and extent of mineral modification depends strongly on depositional environment variables such as rate of sedimentation and water composition. At greater depths, large scale modification of detrital clay minerals (particularly the smectite-I/S-illite transformation) takes place. Recent work of various kinds, however, has demonstrated that these changes may not be solid state transformations: clay mineral dissolution, transport and precipitation occur much more widely than was formerly supposed. In sandstones, authigenic precipitation of clay minerals from pore solution is much more obviouis. Systematic patterns of precipitation, alteration and replacement have been documented in many sedimentary basins. Porosity and permeability are reduced by cementation and, sometimes, enhanced by mineral dissolution. Whereas the general nature of these chemical reactions is fairly well understood, it is not yet possible to predict with certainty the scale or distribution of mineralogical consequences

  12. Ambient Large-Scale Template-Mediated Synthesis of High-Aspect Ratio Single-Crystalline, Chemically Doped Rare-Earth Phosphate Nanowires for Bioimaging

    SciTech Connect

    Zhang, F.; Wong, S.

    2009-12-30

    A simple and effective template-mediated protocol has been developed for the large-scale, room-temperature preparation of high-aspect-ratio, single-crystalline Tb-doped CePO{sub 4} nanowires, measuring {approx}12 nm in diameter and over 10 {mu}m in length. Moreover, we also isolated sheaf-like bundles of nanostructures. The synthesis mechanism likely involved a crystal splitting step. The resulting nanowires demonstrated an intense redox-sensitive green photoluminescence, which was exploited, in addition to their inherently high biocompatibility and low toxicity, for potential applications in biological imaging and labeling of cells.

  13. Chemical methods for encoding and decoding of posttranslational modifications

    PubMed Central

    Chuh, Kelly N.; Batt, Anna R.; Pratt, Matthew R.

    2016-01-01

    A large array of posttranslational modifications can dramatically change the properties of proteins and influence different aspects of their biological function such as enzymatic activity, binding interactions, and proteostasis. Despite the significant knowledge that has been gained about the function of posttranslational modifications using traditional biological techniques, the analysis of the site-specific effects of a particular modification, the identification of the full compliment of modified proteins in the proteome, and the detection of new types of modifications remains challenging. Over the years, chemical methods have contributed significantly in both of these areas of research. This review highlights several posttranslational modifications where chemistry-based approaches have made significant contributions to our ability to both prepare homogeneously modified proteins and identify and characterize particular modifications in complex biological settings. As the number and chemical diversity of documented posttranslational modifications continues to rise, we believe that chemical strategies will be essential to advance the field in years to come. PMID:26933738

  14. Chemical and structural effects of base modifications in messenger RNA

    NASA Astrophysics Data System (ADS)

    Harcourt, Emily M.; Kietrys, Anna M.; Kool, Eric T.

    2017-01-01

    A growing number of nucleobase modifications in messenger RNA have been revealed through advances in detection and RNA sequencing. Although some of the biochemical pathways that involve modified bases have been identified, research into the world of RNA modification -- the epitranscriptome -- is still in an early phase. A variety of chemical tools are being used to characterize base modifications, and the structural effects of known base modifications on RNA pairing, thermodynamics and folding are being determined in relation to their putative biological roles.

  15. Surface chemical modification of waxy maize starch nanocrystals.

    PubMed

    Angellier, Hélène; Molina-Boisseau, Sonia; Belgacem, Mohamed Naceur; Dufresne, Alain

    2005-03-15

    The surface of waxy maize starch nanocrystals obtained from sulfuric acid hydrolysis of native waxy maize starch granules was chemically modified using two different reagents, namely, alkenyl succinic anhydride and phenyl isocyanate. The occurrence of chemical modification was evaluated by FTIR and X-ray photoelectron spectroscopies. Contact angle measurements from which the surface energy of the materials under investigation was deduced showed that chemical modification led to more hydrophobic particles. Chemical modification altered the morphology of particles, as shown by observation by transmission electron microscopy, but not their crystallinity (X-ray diffraction analysis).

  16. Regional and large-scale patterns in Amazon forest structure and function are mediated by variations in soil physical and chemical properties

    NASA Astrophysics Data System (ADS)

    A, Quesada, C.; Lloyd, J.

    2009-04-01

    Forest structure and dynamics have been noted to vary across the Amazon Basin in an east-west gradient in a pattern which coincides with variations in soil fertility and geology. This has resulted in the hypothesis that soil fertility may play an important role in explaining Basin-wide variations in forest biomass, growth and stem turnover rates. To test this hypothesis and assess the importance of edaphic properties in affect forest structure and dynamics, soil and plant samples were collected in a total of 59 different forest plots across the Amazon Basin. Samples were analysed for exchangeable cations, C, N, pH with various P fractions also determined. Physical properties were also examined and an index of soil physical quality developed. Overall, forest structure and dynamics were found to be strongly and quantitatively related to edaphic conditions. Tree turnover rates emerged to be mostly influenced by soil physical properties whereas forest growth rates were mainly related to a measure of available soil phosphorus, although also dependent on rainfall amount and distribution. On the other hand, large scale variations in forest biomass could not be explained by any of the edaphic properties measured, nor by variation in climate. A new hypothesis of self-maintaining forest dynamic feedback mechanisms initiated by edaphic conditions is proposed. It is further suggested that this is a major factor determining forest disturbance levels, species composition and forest productivity on a Basin wide scale.

  17. A review of the chemical modification techniques of starch.

    PubMed

    Masina, Nonhlanhla; Choonara, Yahya E; Kumar, Pradeep; du Toit, Lisa C; Govender, Mershen; Indermun, Sunaina; Pillay, Viness

    2017-02-10

    Starch is a naturally occurring storage copolymer with unique physicochemical properties. There are, however, some key structural properties of starch that can be modified in order to functionalize the copolymer to meet specific requirements. Specifically, the chemical modification of starch provides a variety of physicochemical benefits, some of which have been used previously to functionalize preformed drug delivery systems. Of the three main chemical modification methods reviewed (namely: oxidation, esterification and etherification), surface chemical oxidation introduces more pertinent physicochemical properties that increase overall drug delivery system efficacy and applicability. Surface oxidation evidently is the more preferable chemical modification method of pre-formed starch particles and has the greatest potential for further development when compared to the other reviewed chemical modification methods. The use of modified starch in clinical trials as well as the potential future implications of these systems is also included in this review.

  18. Large-scale structural optimization

    NASA Technical Reports Server (NTRS)

    Sobieszczanski-Sobieski, J.

    1983-01-01

    Problems encountered by aerospace designers in attempting to optimize whole aircraft are discussed, along with possible solutions. Large scale optimization, as opposed to component-by-component optimization, is hindered by computational costs, software inflexibility, concentration on a single, rather than trade-off, design methodology and the incompatibility of large-scale optimization with single program, single computer methods. The software problem can be approached by placing the full analysis outside of the optimization loop. Full analysis is then performed only periodically. Problem-dependent software can be removed from the generic code using a systems programming technique, and then embody the definitions of design variables, objective function and design constraints. Trade-off algorithms can be used at the design points to obtain quantitative answers. Finally, decomposing the large-scale problem into independent subproblems allows systematic optimization of the problems by an organization of people and machines.

  19. Large-scale circuit simulation

    NASA Astrophysics Data System (ADS)

    Wei, Y. P.

    1982-12-01

    The simulation of VLSI (Very Large Scale Integration) circuits falls beyond the capabilities of conventional circuit simulators like SPICE. On the other hand, conventional logic simulators can only give the results of logic levels 1 and 0 with the attendent loss of detail in the waveforms. The aim of developing large-scale circuit simulation is to bridge the gap between conventional circuit simulation and logic simulation. This research is to investigate new approaches for fast and relatively accurate time-domain simulation of MOS (Metal Oxide Semiconductors), LSI (Large Scale Integration) and VLSI circuits. New techniques and new algorithms are studied in the following areas: (1) analysis sequencing (2) nonlinear iteration (3) modified Gauss-Seidel method (4) latency criteria and timestep control scheme. The developed methods have been implemented into a simulation program PREMOS which could be used as a design verification tool for MOS circuits.

  20. Large Scale Dynamos in Stars

    NASA Astrophysics Data System (ADS)

    Vishniac, Ethan T.

    2015-01-01

    We show that a differentially rotating conducting fluid automatically creates a magnetic helicity flux with components along the rotation axis and in the direction of the local vorticity. This drives a rapid growth in the local density of current helicity, which in turn drives a large scale dynamo. The dynamo growth rate derived from this process is not constant, but depends inversely on the large scale magnetic field strength. This dynamo saturates when buoyant losses of magnetic flux compete with the large scale dynamo, providing a simple prediction for magnetic field strength as a function of Rossby number in stars. Increasing anisotropy in the turbulence produces a decreasing magnetic helicity flux, which explains the flattening of the B/Rossby number relation at low Rossby numbers. We also show that the kinetic helicity is always a subdominant effect. There is no kinematic dynamo in real stars.

  1. Very Large Scale Integration (VLSI).

    ERIC Educational Resources Information Center

    Yeaman, Andrew R. J.

    Very Large Scale Integration (VLSI), the state-of-the-art production techniques for computer chips, promises such powerful, inexpensive computing that, in the future, people will be able to communicate with computer devices in natural language or even speech. However, before full-scale VLSI implementation can occur, certain salient factors must be…

  2. Galaxy clustering on large scales.

    PubMed Central

    Efstathiou, G

    1993-01-01

    I describe some recent observations of large-scale structure in the galaxy distribution. The best constraints come from two-dimensional galaxy surveys and studies of angular correlation functions. Results from galaxy redshift surveys are much less precise but are consistent with the angular correlations, provided the distortions in mapping between real-space and redshift-space are relatively weak. The galaxy two-point correlation function, rich-cluster two-point correlation function, and galaxy-cluster cross-correlation function are all well described on large scales ( greater, similar 20h-1 Mpc, where the Hubble constant, H0 = 100h km.s-1.Mpc; 1 pc = 3.09 x 10(16) m) by the power spectrum of an initially scale-invariant, adiabatic, cold-dark-matter Universe with Gamma = Omegah approximately 0.2. I discuss how this fits in with the Cosmic Background Explorer (COBE) satellite detection of large-scale anisotropies in the microwave background radiation and other measures of large-scale structure in the Universe. PMID:11607400

  3. Hot spot formation and chemical reaction initiation in shocked HMX crystals with nanovoids: a large-scale reactive molecular dynamics study.

    PubMed

    Zhou, Tingting; Lou, Jianfeng; Zhang, Yangeng; Song, Huajie; Huang, Fenglei

    2016-07-14

    We report million-atom reactive molecular dynamic simulations of shock initiation of β-cyclotetramethylene tetranitramine (β-HMX) single crystals containing nanometer-scale spherical voids. Shock induced void collapse and subsequent hot spot formation as well as chemical reaction initiation are observed which depend on the void size and impact strength. For an impact velocity of 1 km s(-1) and a void radius of 4 nm, the void collapse process includes three stages; the dominant mechanism is the convergence of upstream molecules toward the centerline and the downstream surface of the void forming flowing molecules. Hot spot formation also undergoes three stages, and the principal mechanism is kinetic energy transforming to thermal energy due to the collision of flowing molecules on the downstream surface. The high temperature of the hot spot initiates a local chemical reaction, and the breakage of the N-NO2 bond plays the key role in the initial reaction mechanism. The impact strength and void size have noticeable effects on the shock dynamical process, resulting in a variation of the predominant mechanisms leading to void collapse and hot spot formation. Larger voids or stronger shocks result in more intense hot spots and, thus, more violent chemical reactions, promoting more reaction channels and generating more reaction products in a shorter duration. The reaction products are mainly concentrated in the developed hot spot, indicating that the chemical reactivity of the hmx crystal is greatly enhanced by void collapse. The detailed information derived from this study can aid a thorough understanding of the role of void collapse in hot spot formation and the chemical reaction initiation of explosives.

  4. Regioselective chemical modification of monoclonal antibodies

    DOEpatents

    Ranadive, G.; Rozenzweig, H.S.; Epperly, M.; Bloomer, W.

    1993-05-04

    A method is presented of selectively modifying an immunoglobulin having at least one Fab region and at least one Fc region. Each region has an isoelectric point where the isoelectric point of the Fab fragment of the immunoglobulin is different from the isoelectric point of the Fc fragment of the immunoglobulin. The method comprises of a modification of the immunoglobulin at a pH between the respective isoelectric points of the Fab and Fc fragments of the immunoglobulin.

  5. Regioselective chemical modification of monoclonal antibodies

    DOEpatents

    Ranadive, Girish; Rosenzweig, Howard S.; Epperly, Michael; Bloomer, William

    1993-01-01

    A method of selectively modifying an immunoglobulin having at least one Fab region and at least one Fc region, each region having an isoelectric point wherein said isoelectric point of the Fab fragment of said immunoglobulin is different than the isoelectric point of the Fc fragment of the immunoglobulin, said method comprising modification of the immunoglobulin at a pH between the respective isoelectric points of the Fab and Fc fragments of the immunoglobulin.

  6. Large-scale micro- and nanopatterns of Cu(In,Ga)Se2 thin film solar cells by mold-assisted chemical-etching process.

    PubMed

    Wang, Yi-Chung; Cheng, Hsiang-Ying; Yen, Yu-Ting; Wu, Tsung-Ta; Hsu, Cheng-Hung; Tsai, Hung-Wei; Shen, Chang-Hong; Shieh, Jia-Min; Chueh, Yu-Lun

    2015-04-28

    A reactive mold-assisted chemical etching (MACE) process through an easy-to-make agarose stamp soaked in bromine methanol etchant to rapidly imprint larger area micro- and nanoarrays on CIGS substrates was demonstrated. Interestingly, by using the agarose stamp during the MACE process with and without additive containing oil and triton, CIGS microdome and microhole arrays can be formed on the CIGS substrate. Detailed formation mechanisms of microstructures and the chemical composition variation after the etching process were investigated. In addition, various microand nanostructures were also demonstrated by this universal approach. The microstructure arrays integrated into standard CIGS solar cells with thinner thickness can still achieve an efficiency of 11.22%, yielding an enhanced efficiency of ∼18% compared with that of their planar counterpart due to an excellent absorption behavior confirmed by the simulation results, which opens up a promising way for the realization of high-efficiency micro- or nanostructured thin-film solar cells. Finally, the complete dissolution of agarose stamp into hot water demonstrates an environmentally friendly method by the mold-assisted chemical etching process through an easy-to-make agarose stamp.

  7. Chemical and structural effects of base modifications in messenger RNA

    PubMed Central

    Harcourt, Emily M.; Kietrys, Anna M.; Kool, Eric T.

    2017-01-01

    A growing number of nucleobase modifications in messenger RNA have been revealed through advances in detection and RNA sequencing. Although some of the biochemical pathways that involve modified bases have been identified, research into the world of RNA modification — the epitranscriptome — is still in an early phase. A variety of chemical tools are being used to characterize base modifications, and the structural effects of known base modifications on RNA pairing, thermodynamics and folding are being determined in relation to their putative biological roles. PMID:28102265

  8. Large-scale synthesis of monodisperse SiC nanoparticles with adjustable size, stoichiometric ratio and properties by fluidized bed chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Liu, Rongzheng; Liu, Malin; Chang, Jiaxing

    2017-02-01

    A facile fluidized bed chemical vapor deposition method was proposed for the synthesis of monodisperse SiC nanoparticles by using the single precursor of hexamethyldisilane (HMDS). SiC nanoparticles with average particle size from 10 to 200 nm were obtained by controlling the temperature and the gas ratio. An experimental chemical vapor deposition phase diagram of SiC in the HMDS-Ar-H2 system was obtained and three regions of SiC-Si, SiC and SiC-C can be distinguished. The BET surface area and the photoluminescence properties of the SiC nanoparticles can be adjusted by changing the nanoparticle size. For the SiC nanospheres with free carbon, a novel hierarchical structure with 5 8 nm SiC nanoparticles embedded into the graphite matrix was obtained. The advantages of fluidized bed technology for the preparation of SiC nanoparticles were proposed based on the features of homogenous reaction zone, narrow temperature distribution, ultra-short reactant residence time and mass production.

  9. Chemical modification of E. coli glutamine synthetase

    SciTech Connect

    DiIanni, C.L.; Colanduoni, J.A.; Collins, R.; Villafranca, J.J.

    1986-05-01

    Thiourea trioxide partially inactivates E. coli glutamine synthetase (GS) (approx.25%) by reacting only with lysine residues, producing homoarginine. Thiourea dioxide totally inactivates GS by reacting with both lysine and histidine residues. The K/sub m/ values for thiourea trioxide modified enzyme are 0.21 mM for ATP and 10 mM for glutamate which are about threefold higher than for native GS. Using (/sup 14/C) thiourea trioxide, 2.3 +/- 0.2 moles of reagent were incorporated per monomer. The same number of homoarginine residues were found by amino acid analysis. Modification of GS with hydroxylamine results in total inactivation resulting from reaction with histidine. Fluorescence titrations indicate that substrate binding to the modified enzyme is weaker than to the native enzyme. EPR spectra of bound Mn/sup 2 +/ indicate that metal ion binding is unaffected by hydroxylamine modification. However, metal ion binding is weaker to the modified enzyme. Protection from hydroxylamine inactivation is observed with ATP + Glutamate, AMPPNP + Glutamate, and MgCl/sub 2/.

  10. Chemical Methods for Encoding and Decoding of Posttranslational Modifications.

    PubMed

    Chuh, Kelly N; Batt, Anna R; Pratt, Matthew R

    2016-01-21

    A large array of posttranslational modifications can dramatically change the properties of proteins and influence different aspects of their biological function such as enzymatic activity, binding interactions, and proteostasis. Despite the significant knowledge that has been gained about the function of posttranslational modifications using traditional biological techniques, the analysis of the site-specific effects of a particular modification, the identification of the full complement of modified proteins in the proteome, and the detection of new types of modifications remains challenging. Over the years, chemical methods have contributed significantly in both of these areas of research. This review highlights several posttranslational modifications where chemistry-based approaches have made significant contributions to our ability to both prepare homogeneously modified proteins and identify and characterize particular modifications in complex biological settings. As the number and chemical diversity of documented posttranslational modifications continues to rise, we believe that chemical strategies will be essential to advance the field in years to come. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Chemical modifications of renewable cellulosic materials

    USDA-ARS?s Scientific Manuscript database

    In agriculture, there is a fair amount of byproducts and waste materials. These materials typically contain significant portions of cellulose and hemicellulose. A good opportunity is to take advantage of these relatively cheap renewable materials, carry out chemical reactions, and increase their v...

  12. Modification of the upper atmosphere with chemicals found in rocket exhaust

    SciTech Connect

    Bernhardt, P.A.; Zinn, J.; Mendillo, M.; Baumgardner, J.

    1982-01-01

    Rockets, burning above 200 km altitude, release exhaust vapors which react chemically with the plasma comprising the F-region ionosphere. The two major types of atmospheric modification produced by rocket exhaust are: (1) the formation of large scale ionospheric holes, and (2) the enhancement of the airglow emissions. The ionospheric holes are regions tens of kilometers in diameter where the plasma concentration can be reduced by a factor of ten or more. Plasma instabilities may produce irregularities at the edges of the holes. Communication and navigation systems relying on radio propagation through the modified ionosphere may be affected. Airglow enhancements are a result of excited neutral species being produced by chemical reactions between the rocket exhaust and the ionospheric plasma. For example, the 630 nm line from atomic oxygen may increase twenty-fold in intensity over the ambient level. This paper reviews experimental observations and theoretical treatments of ionospheric modification produced by gas releases in the upper atmosphere. Recent experimental measurements of the ionospheric modification by an ATLAS-F launch vehicle are presented. The plans for future experiments are discussed.

  13. Investigating the presence of post-perovskite and large-scale chemical variations in Earth's lower mantle using tomographic-geodynamic model comparisons.

    NASA Astrophysics Data System (ADS)

    Koelemeijer, Paula; Ritsema, Jeroen; Deuss, Arwen; Davies, Rhodri; Schuberth, Bernhard

    2016-04-01

    Tomographic models of the Earth's mantle consistently image two large provinces of low shear-wave velocities (LLSVPs) in the lowermost mantle beneath Africa and the Pacific. Seismic studies also find an increase in the ratio of shear-wave velocity (Vs) to compressional-wave velocity (Vp) variations, accompanied by a significant negative correlation between shear-wave and bulk-sound velocity (Vc) variations, both of which are also observed in the recent SP12RTS model. The LLSVPs have consequently been suggested to represent intrinsically dense piles of thermochemical material. Alternatively, they have been interpreted as poorly imaged clusters of thermal plumes, with the deep mantle post-perovskite (pPv) phase invoked as explanation for the high Vs/Vp ratios and Vs-Vc anti-correlation. Geodynamical calculations of thermal plumes and thermochemical piles predict a fundamentally different style of mantle convection, interface topographies and CMB heat flow. However, to interpret tomographic images using these high-resolution models, the limited resolving power of seismic tomography has to be accounted for. Here, we interpret the observed seismic characteristics of SP12RTS by comparing the velocity structures to synthetic tomography images derived from 3D mantle convection models. As in previous studies, geodynamic models are converted to seismic velocities using mineral physics constraints and subsequently convolved with the tomographic resolution operator. In contrast to these studies, where generally only the shear-wave velocity structure has been compared, we use both the Vs and Vp resolution operator of SP12RTS to allow direct comparisons of the resulting velocity ratios and correlations. We use geodynamic models with and without pPv and/or chemical variations to investigate the cause of the high Vs/Vp ratio and Vs-Vs anti-correlation. Although the tomographic filtering significantly affects the synthetic tomography images, we demonstrate that the patterns

  14. Chemical modification of antifungal polyene macrolide antibiotics

    NASA Astrophysics Data System (ADS)

    Solovieva, S. E.; Olsufyeva, E. N.; Preobrazhenskaya, M. N.

    2011-02-01

    The review summarizes advances in the methods for the synthesis of polyene antibiotics (amphotericin B, partricin A, etc.) and investigations of the structure-activity relationship made in the last 15 years. State-of-the-art approaches based on the combination of the chemical synthesis and genetic engineering are considered. Emphasis is given to the design of semisynthetic antifungal agents against chemotherapy-resistant pathogens having the highest therapeutic indices. Recent results of research on the mechanisms of action of polyenes are outlined.

  15. Chemical modifications of liquid natural rubber

    NASA Astrophysics Data System (ADS)

    Azhar, Nur Hanis Adila; Rasid, Hamizah Md; Yusoff, Siti Fairus M.

    2016-11-01

    Liquid natural rubber (LNR) was synthesized via photosentisized degradation of natural rubber (NR). LNR was modified into epoxidized liquid natural rubber (LENR) and hydroxylated liquid natural rubber (LNR-OH) using Na2WO4/CH3COOH/H2O2 catalytic system. Chemical structures of LNR and modified LNRs were characterized using Attenuated Total Reflectance Fourier Transform Infrared (ATR-FTIR) and 1H Nuclear Magnetic Resonance (NMR) spectroscopies. Integration of 1H NMR was used to calculate the epoxy content (%) of LENR. 1H NMR detected the formation of LNR-OH after prolonged heating and increased of catalyst in oxidation reaction.

  16. Adsorption and Chemical Modification of Phenols on a Silver Surface.

    PubMed

    Sánchez-Cortés; García-Ramos

    2000-11-01

    The adsorption of phenols of different natures on silver colloidal particles is studied here by surface-enhanced Raman spectroscopy (SERS). The studied compounds can be classified in three groups: (a) cinnamic acic derivatives: caffeic and isoferulic acids; (b) catechol; and (c) the phenols derived from benzoic acid: m- and p-hydroxybenzoic acids and salicylic, vanillic, and gallic acids. The interest of these compounds lies in the fact that they are naturally occurring molecules with significant importance in relation to plant metabolism, soil chemistry, and vegetal food stability. In addition, many of these compounds have antioxidant properties derived from their high affinity toward atmospheric oxygen. They exhibit high reactivity that may be enhanced in the presence of a metal surface such as those employed for SERS spectroscopy. From the SERS results it can be deduced that a clear chemical change of caffeic and gallic acid and catechol occurred. The chemical modification consists mainly of polymerization connected to existence in the molecule of o-diphenol moieties. In the case of m-hydroxybenzoic acid the chemical change may occur at low pH at which a reorientation of the molecule on the surface takes place, while in the o-hydroxybenzoic acid the only chemical change seems to be the internal H bond breakdown induced by the complexation with the metal. Finally, isoferulic and p-hydroxybenzoic acids do not show any chemical modification upon adsorption on the metal, which takes place through the carboxylate group adopting the molecule a standing up orientation. The case of vanillic acid is not so clear, although possible chemical modification is also possible for this adsorbate. From the results found in this work it can be inferred that the factors influencing possible chemical modification are the chemical structure of the adsorbate and its orientation and interaction with the surface. Copyright 2000 Academic Press.

  17. Cosmology with Large Scale Structure

    NASA Astrophysics Data System (ADS)

    Ho, Shirley; Cuesta, A.; Ross, A.; Seo, H.; DePutter, R.; Padmanabhan, N.; White, M.; Myers, A.; Bovy, J.; Blanton, M.; Hernandez, C.; Mena, O.; Percival, W.; Prada, F.; Ross, N. P.; Saito, S.; Schneider, D.; Skibba, R.; Smith, K.; Slosar, A.; Strauss, M.; Verde, L.; Weinberg, D.; Bachall, N.; Brinkmann, J.; da Costa, L. A.

    2012-01-01

    The Sloan Digital Sky Survey I-III surveyed 14,000 square degrees, and delivered over a trillion pixels of imaging data. I present cosmological results from this unprecedented data set which contains over a million galaxies distributed between redshift of 0.45 to 0.70. With such a large volume of data set, high precision cosmological constraints can be obtained given a careful control and understanding of observational systematics. I present a novel treatment of observational systematics and its application to the clustering signals from the data set. I will present cosmological constraints on dark components of the Universe and tightest constraints of the non-gaussianity of early Universe to date utilizing Large Scale Structure.

  18. Large scale biomimetic membrane arrays.

    PubMed

    Hansen, Jesper S; Perry, Mark; Vogel, Jörg; Groth, Jesper S; Vissing, Thomas; Larsen, Marianne S; Geschke, Oliver; Emneús, Jenny; Bohr, Henrik; Nielsen, Claus H

    2009-10-01

    To establish planar biomimetic membranes across large scale partition aperture arrays, we created a disposable single-use horizontal chamber design that supports combined optical-electrical measurements. Functional lipid bilayers could easily and efficiently be established across CO(2) laser micro-structured 8 x 8 aperture partition arrays with average aperture diameters of 301 +/- 5 microm. We addressed the electro-physical properties of the lipid bilayers established across the micro-structured scaffold arrays by controllable reconstitution of biotechnological and physiological relevant membrane peptides and proteins. Next, we tested the scalability of the biomimetic membrane design by establishing lipid bilayers in rectangular 24 x 24 and hexagonal 24 x 27 aperture arrays, respectively. The results presented show that the design is suitable for further developments of sensitive biosensor assays, and furthermore demonstrate that the design can conveniently be scaled up to support planar lipid bilayers in large square-centimeter partition arrays.

  19. Challenges for Large Scale Simulations

    NASA Astrophysics Data System (ADS)

    Troyer, Matthias

    2010-03-01

    With computational approaches becoming ubiquitous the growing impact of large scale computing on research influences both theoretical and experimental work. I will review a few examples in condensed matter physics and quantum optics, including the impact of computer simulations in the search for supersolidity, thermometry in ultracold quantum gases, and the challenging search for novel phases in strongly correlated electron systems. While only a decade ago such simulations needed the fastest supercomputers, many simulations can now be performed on small workstation clusters or even a laptop: what was previously restricted to a few experts can now potentially be used by many. Only part of the gain in computational capabilities is due to Moore's law and improvement in hardware. Equally impressive is the performance gain due to new algorithms - as I will illustrate using some recently developed algorithms. At the same time modern peta-scale supercomputers offer unprecedented computational power and allow us to tackle new problems and address questions that were impossible to solve numerically only a few years ago. While there is a roadmap for future hardware developments to exascale and beyond, the main challenges are on the algorithmic and software infrastructure side. Among the problems that face the computational physicist are: the development of new algorithms that scale to thousands of cores and beyond, a software infrastructure that lifts code development to a higher level and speeds up the development of new simulation programs for large scale computing machines, tools to analyze the large volume of data obtained from such simulations, and as an emerging field provenance-aware software that aims for reproducibility of the complete computational workflow from model parameters to the final figures. Interdisciplinary collaborations and collective efforts will be required, in contrast to the cottage-industry culture currently present in many areas of computational

  20. Physical and Chemical Modification of Starches - A Review.

    PubMed

    Din, Zia-Ud-; Xiong, Hanguo; Fei, Peng

    2015-11-03

    The development of green material in the last decade has been increased which tends to reduce the impact of human on the environment. Starch as an agro-sourced polymer has become much popular recently due to its characteristics such as wide availability, low cost and total compostability without toxic residues. Starch is the most abundant organic compound found in nature after cellulose. Starches are inherently unsuitable for most applications and, therefore, must be modified physically and/or chemically to enhance their positive attributes and/or to minimize their defects. Modification of starches is generally carried out by using physical methods that are simple and inexpensive due to the absence of chemical agents. On the other hand, chemical modification involves the exploitation of hydroxyl group present in the starches that brings about the desired results for the utilization of starches for specific applications. All these techniques have the tendency to produce starches with altered physicochemical properties and modified structural attributes for various food and non-food applications. This paper reviews the recent knowledge and developments using physical modification methods, some chemical modification methods and a combination of both to produce a novel molecule with substantial applications, in food industry along with future perspectives.

  1. Large-scale PACS implementation.

    PubMed

    Carrino, J A; Unkel, P J; Miller, I D; Bowser, C L; Freckleton, M W; Johnson, T G

    1998-08-01

    The transition to filmless radiology is a much more formidable task than making the request for proposal to purchase a (Picture Archiving and Communications System) PACS. The Department of Defense and the Veterans Administration have been pioneers in the transformation of medical diagnostic imaging to the electronic environment. Many civilian sites are expected to implement large-scale PACS in the next five to ten years. This presentation will related the empirical insights gleaned at our institution from a large-scale PACS implementation. Our PACS integration was introduced into a fully operational department (not a new hospital) in which work flow had to continue with minimal impact. Impediments to user acceptance will be addressed. The critical components of this enormous task will be discussed. The topics covered during this session will include issues such as phased implementation, DICOM (digital imaging and communications in medicine) standard-based interaction of devices, hospital information system (HIS)/radiology information system (RIS) interface, user approval, networking, workstation deployment and backup procedures. The presentation will make specific suggestions regarding the implementation team, operating instructions, quality control (QC), training and education. The concept of identifying key functional areas is relevant to transitioning the facility to be entirely on line. Special attention must be paid to specific functional areas such as the operating rooms and trauma rooms where the clinical requirements may not match the PACS capabilities. The printing of films may be necessary for certain circumstances. The integration of teleradiology and remote clinics into a PACS is a salient topic with respect to the overall role of the radiologists providing rapid consultation. A Web-based server allows a clinician to review images and reports on a desk-top (personal) computer and thus reduce the number of dedicated PACS review workstations. This session

  2. Large scale cluster computing workshop

    SciTech Connect

    Dane Skow; Alan Silverman

    2002-12-23

    Recent revolutions in computer hardware and software technologies have paved the way for the large-scale deployment of clusters of commodity computers to address problems heretofore the domain of tightly coupled SMP processors. Near term projects within High Energy Physics and other computing communities will deploy clusters of scale 1000s of processors and be used by 100s to 1000s of independent users. This will expand the reach in both dimensions by an order of magnitude from the current successful production facilities. The goals of this workshop were: (1) to determine what tools exist which can scale up to the cluster sizes foreseen for the next generation of HENP experiments (several thousand nodes) and by implication to identify areas where some investment of money or effort is likely to be needed. (2) To compare and record experimences gained with such tools. (3) To produce a practical guide to all stages of planning, installing, building and operating a large computing cluster in HENP. (4) To identify and connect groups with similar interest within HENP and the larger clustering community.

  3. Large-Scale Sequence Comparison.

    PubMed

    Lal, Devi; Verma, Mansi

    2017-01-01

    There are millions of sequences deposited in genomic databases, and it is an important task to categorize them according to their structural and functional roles. Sequence comparison is a prerequisite for proper categorization of both DNA and protein sequences, and helps in assigning a putative or hypothetical structure and function to a given sequence. There are various methods available for comparing sequences, alignment being first and foremost for sequences with a small number of base pairs as well as for large-scale genome comparison. Various tools are available for performing pairwise large sequence comparison. The best known tools either perform global alignment or generate local alignments between the two sequences. In this chapter we first provide basic information regarding sequence comparison. This is followed by the description of the PAM and BLOSUM matrices that form the basis of sequence comparison. We also give a practical overview of currently available methods such as BLAST and FASTA, followed by a description and overview of tools available for genome comparison including LAGAN, MumMER, BLASTZ, and AVID.

  4. Large Scale Homing in Honeybees

    PubMed Central

    Pahl, Mario; Zhu, Hong; Tautz, Jürgen; Zhang, Shaowu

    2011-01-01

    Honeybee foragers frequently fly several kilometres to and from vital resources, and communicate those locations to their nest mates by a symbolic dance language. Research has shown that they achieve this feat by memorizing landmarks and the skyline panorama, using the sun and polarized skylight as compasses and by integrating their outbound flight paths. In order to investigate the capacity of the honeybees' homing abilities, we artificially displaced foragers to novel release spots at various distances up to 13 km in the four cardinal directions. Returning bees were individually registered by a radio frequency identification (RFID) system at the hive entrance. We found that homing rate, homing speed and the maximum homing distance depend on the release direction. Bees released in the east were more likely to find their way back home, and returned faster than bees released in any other direction, due to the familiarity of global landmarks seen from the hive. Our findings suggest that such large scale homing is facilitated by global landmarks acting as beacons, and possibly the entire skyline panorama. PMID:21602920

  5. Large Scale Magnetostrictive Valve Actuator

    NASA Technical Reports Server (NTRS)

    Richard, James A.; Holleman, Elizabeth; Eddleman, David

    2008-01-01

    Marshall Space Flight Center's Valves, Actuators and Ducts Design and Development Branch developed a large scale magnetostrictive valve actuator. The potential advantages of this technology are faster, more efficient valve actuators that consume less power and provide precise position control and deliver higher flow rates than conventional solenoid valves. Magnetostrictive materials change dimensions when a magnetic field is applied; this property is referred to as magnetostriction. Magnetostriction is caused by the alignment of the magnetic domains in the material s crystalline structure and the applied magnetic field lines. Typically, the material changes shape by elongating in the axial direction and constricting in the radial direction, resulting in no net change in volume. All hardware and testing is complete. This paper will discuss: the potential applications of the technology; overview of the as built actuator design; discuss problems that were uncovered during the development testing; review test data and evaluate weaknesses of the design; and discuss areas for improvement for future work. This actuator holds promises of a low power, high load, proportionally controlled actuator for valves requiring 440 to 1500 newtons load.

  6. Basic biotechnologies essential for the Japanese chemical industry in the 1990's and beyond. Bioreactors, large-scale mammalian cell culture, recombinant DNAs, functional protein systems, and bio-electronic devices

    SciTech Connect

    Fujimura, R.K.

    1992-01-01

    The purpose of the program is to induce private company laboratories to do research considered essential for the development of new technologies. One group of projects initially funded under the program was in the field of biotechnology. More specifically, the biotechnology projects were aimed at developing technologies for the chemical industry for the decade of the 1990's. Various projects dealt with bioreactors, large-scale cell culture, and recombinant DNA. These initial biotechnology projects have now been completed. The report reviews their accomplishments and assesses their possible impact on the Japanese chemical industry. A new project on functional protein complexes was added in 1989. Progress on the nine-year project is also reviewed. Finally, an assessment is provided of the biotechnology components of an unrelated group of projects being administered by the Research and Development Association for Future Electron Devices. The relevant components in the program involve bio-electronic devices and functional protein complexes. The objectives are to mimic biological systems for use in microsensors, information transmission and processing, artificial tissues and organs, robotics, and artificial intelligence.

  7. Material design of plasma-enhanced chemical vapour deposition SiCH films for low-k cap layers in the further scaling of ultra-large-scale integrated devices-Cu interconnects

    NASA Astrophysics Data System (ADS)

    Shimizu, Hideharu; Nagano, Shuji; Uedono, Akira; Tajima, Nobuo; Momose, Takeshi; Shimogaki, Yukihiro

    2013-10-01

    Cap layers for Cu interconnects in ultra-large-scale integrated devices (ULSIs), with a low dielectric constant (k-value) and strong barrier properties against Cu and moisture diffusion, are required for the future further scaling of ULSIs. There is a trade-off, however, between reducing the k-value and maintaining strong barrier properties. Using quantum mechanical simulations and other theoretical computations, we have designed ideal dielectrics: SiCH films with Si-C2H4-Si networks. Such films were estimated to have low porosity and low k; thus they are the key to realizing a cap layer with a low k and strong barrier properties against diffusion. For fabricating these ideal SiCH films, we designed four novel precursors: isobutyl trimethylsilane, diisobutyl dimethylsilane, 1, 1-divinylsilacyclopentane and 5-silaspiro [4,4] noname, based on quantum chemical calculations, because such fabrication is difficult by controlling only the process conditions in plasma-enhanced chemical vapor deposition (PECVD) using conventional precursors. We demonstrated that SiCH films prepared using these newly designed precursors had large amounts of Si-C2H4-Si networks and strong barrier properties. The pore structure of these films was then analyzed by positron annihilation spectroscopy, revealing that these SiCH films actually had low porosity, as we designed. These results validate our material and precursor design concepts for developing a PECVD process capable of fabricating a low-k cap layer.

  8. Material design of plasma-enhanced chemical vapour deposition SiCH films for low-k cap layers in the further scaling of ultra-large-scale integrated devices-Cu interconnects.

    PubMed

    Shimizu, Hideharu; Nagano, Shuji; Uedono, Akira; Tajima, Nobuo; Momose, Takeshi; Shimogaki, Yukihiro

    2013-10-01

    Cap layers for Cu interconnects in ultra-large-scale integrated devices (ULSIs), with a low dielectric constant (k-value) and strong barrier properties against Cu and moisture diffusion, are required for the future further scaling of ULSIs. There is a trade-off, however, between reducing the k-value and maintaining strong barrier properties. Using quantum mechanical simulations and other theoretical computations, we have designed ideal dielectrics: SiCH films with Si-C2H4-Si networks. Such films were estimated to have low porosity and low k; thus they are the key to realizing a cap layer with a low k and strong barrier properties against diffusion. For fabricating these ideal SiCH films, we designed four novel precursors: isobutyl trimethylsilane, diisobutyl dimethylsilane, 1, 1-divinylsilacyclopentane and 5-silaspiro [4,4] noname, based on quantum chemical calculations, because such fabrication is difficult by controlling only the process conditions in plasma-enhanced chemical vapor deposition (PECVD) using conventional precursors. We demonstrated that SiCH films prepared using these newly designed precursors had large amounts of Si-C2H4-Si networks and strong barrier properties. The pore structure of these films was then analyzed by positron annihilation spectroscopy, revealing that these SiCH films actually had low porosity, as we designed. These results validate our material and precursor design concepts for developing a PECVD process capable of fabricating a low-k cap layer.

  9. Chemical modification of alginic acid by ultrasonic irradiation

    NASA Astrophysics Data System (ADS)

    Murdzheva, Dilyana; Denev, Panteley

    2016-03-01

    Abstract: Chemical modification of alginic acid has been done by ultrasonic irradiation to obtain its methylated, ethylated and isopropylated derivatives. The influence of ultrasonic frequency and power on esterification process of alginic acid has been investigated. Alginate derivatives have been characterized by degree of esterification (DE) and IR-FT spectroscopy. It has been found that 45 kHz ultrasonic frequency accelerated modification process as reduced the reaction time from 16 hours to 2 hours. The obtained results showed that ultrasound irradiation increased the reaction efficiency in methanol and depended on the ratio of the M/G.

  10. [Chemical approaches for trapping protein thiols and their oxidative modification].

    PubMed

    Huang, Chu-Sen; Zhu, Wei-Ping; Xu, Yu-Fang; Qian, Xu-Hong

    2012-03-01

    Redox signal transduction, especially the oxidative modification of proein thiols, correlates with many diseases and becomes an expanding research area. However, there was rare method for quick and specific detection of protein thiols and their oxidative modification in living cells. In this article, we review the current chemical strategies for the detection and quantification of protein thiols and related cysteine oxidation. We also look into the future of the development of fluorescent probes for protein thiols and their potential application in the research of reactive cysteine proteomes and early detection of redox-related diseases.

  11. Methane emissions on large scales

    NASA Astrophysics Data System (ADS)

    Beswick, K. M.; Simpson, T. W.; Fowler, D.; Choularton, T. W.; Gallagher, M. W.; Hargreaves, K. J.; Sutton, M. A.; Kaye, A.

    with previous results from the area, indicating that this method of data analysis provided good estimates of large scale methane emissions.

  12. Large Scale Nanolaminate Deformable Mirror

    SciTech Connect

    Papavasiliou, A; Olivier, S; Barbee, T; Miles, R; Chang, K

    2005-11-30

    This work concerns the development of a technology that uses Nanolaminate foils to form light-weight, deformable mirrors that are scalable over a wide range of mirror sizes. While MEMS-based deformable mirrors and spatial light modulators have considerably reduced the cost and increased the capabilities of adaptive optic systems, there has not been a way to utilize the advantages of lithography and batch-fabrication to produce large-scale deformable mirrors. This technology is made scalable by using fabrication techniques and lithography that are not limited to the sizes of conventional MEMS devices. Like many MEMS devices, these mirrors use parallel plate electrostatic actuators. This technology replicates that functionality by suspending a horizontal piece of nanolaminate foil over an electrode by electroplated nickel posts. This actuator is attached, with another post, to another nanolaminate foil that acts as the mirror surface. Most MEMS devices are produced with integrated circuit lithography techniques that are capable of very small line widths, but are not scalable to large sizes. This technology is very tolerant of lithography errors and can use coarser, printed circuit board lithography techniques that can be scaled to very large sizes. These mirrors use small, lithographically defined actuators and thin nanolaminate foils allowing them to produce deformations over a large area while minimizing weight. This paper will describe a staged program to develop this technology. First-principles models were developed to determine design parameters. Three stages of fabrication will be described starting with a 3 x 3 device using conventional metal foils and epoxy to a 10-across all-metal device with nanolaminate mirror surfaces.

  13. Large-Scale Information Systems

    SciTech Connect

    D. M. Nicol; H. R. Ammerlahn; M. E. Goldsby; M. M. Johnson; D. E. Rhodes; A. S. Yoshimura

    2000-12-01

    Large enterprises are ever more dependent on their Large-Scale Information Systems (LSLS), computer systems that are distinguished architecturally by distributed components--data sources, networks, computing engines, simulations, human-in-the-loop control and remote access stations. These systems provide such capabilities as workflow, data fusion and distributed database access. The Nuclear Weapons Complex (NWC) contains many examples of LSIS components, a fact that motivates this research. However, most LSIS in use grew up from collections of separate subsystems that were not designed to be components of an integrated system. For this reason, they are often difficult to analyze and control. The problem is made more difficult by the size of a typical system, its diversity of information sources, and the institutional complexities associated with its geographic distribution across the enterprise. Moreover, there is no integrated approach for analyzing or managing such systems. Indeed, integrated development of LSIS is an active area of academic research. This work developed such an approach by simulating the various components of the LSIS and allowing the simulated components to interact with real LSIS subsystems. This research demonstrated two benefits. First, applying it to a particular LSIS provided a thorough understanding of the interfaces between the system's components. Second, it demonstrated how more rapid and detailed answers could be obtained to questions significant to the enterprise by interacting with the relevant LSIS subsystems through simulated components designed with those questions in mind. In a final, added phase of the project, investigations were made on extending this research to wireless communication networks in support of telemetry applications.

  14. Recent advances in the chemical modification of unsaturated polymers

    NASA Technical Reports Server (NTRS)

    Schulz, D. N.; Turner, S. R.; Golub, M. A.

    1982-01-01

    The present discussion has the objective to update the most comprehensive reviews on the considered subject and to fill in the gaps of less complete, but more modern treatments. Only simple chemical functionalization or structural modification of unsaturated polymers are covered, and the literature of diene polymer modification since 1974 is emphasized. Attention is given to hydrogenation, halogenation and hydrohalogenation, cyclization, cis-trans isomerization, epoxidation, ene and other cycloaddition reactions, sulfonation, carboxylation, phosphonylation, sulfenyl chloride addition, carbene addition, metalation, and silylation. It is pointed out that modern synthetic reagents and catalysts have been advantageously employed to improve process and/or product quality. Synthetic techniques have been refined to allow the selective modification of specific polymer microstructures or blocks.

  15. Recent advances in the chemical modification of unsaturated polymers

    NASA Technical Reports Server (NTRS)

    Schulz, D. N.; Turner, S. R.; Golub, M. A.

    1982-01-01

    The present discussion has the objective to update the most comprehensive reviews on the considered subject and to fill in the gaps of less complete, but more modern treatments. Only simple chemical functionalization or structural modification of unsaturated polymers are covered, and the literature of diene polymer modification since 1974 is emphasized. Attention is given to hydrogenation, halogenation and hydrohalogenation, cyclization, cis-trans isomerization, epoxidation, ene and other cycloaddition reactions, sulfonation, carboxylation, phosphonylation, sulfenyl chloride addition, carbene addition, metalation, and silylation. It is pointed out that modern synthetic reagents and catalysts have been advantageously employed to improve process and/or product quality. Synthetic techniques have been refined to allow the selective modification of specific polymer microstructures or blocks.

  16. Chemical modification of oxalate decarboxylase to improve adsorption capacity.

    PubMed

    Lin, Rihui; He, Junbin; Wu, Jia; Cai, Xinghua; Long, Han; Chen, Shengfeng; Liu, Haiqian

    2017-05-01

    In order to enhance the adsorption capacity of oxalate decarboxylase (Oxdc) on calcium oxalate monohydrate crystals and improve the application performance of Oxdc, chemical modification of Oxdc with ethylenediaminetetraacetic dianhydride (EDTAD) was investigated in this work. The sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and liquid chromatography tandem mass spectrometry (LC/MS) analysis results demonstrated that Oxdc and EDTAD have been covalently bound, and suggested that the chemical modification occurred at the free amino of the side chain and the α-amine of the N-terminus of Oxdc. Fluorescene and circular dichroic measurement showed that the structure and conformation of Oxdc were tinily altered after modification by EDTAD. The optimum pH of EDTAD-modified Oxdc was shifted to the alkaline side about 1.5 unit and it has a higher thermostability. The analysis of kinetic parameters indicated that the EDTAD-modified Oxdc showed a higher affinity towards the substrate. Through modification the adsorption capacity of Oxdc onto CaOx monohydrate crystals was increased by 42.42%. Copyright © 2017. Published by Elsevier B.V.

  17. Chemical posttranslational modification of phage-displayed peptides.

    PubMed

    Ng, Simon; Tjhung, Katrina F; Paschal, Beth M; Noren, Christopher J; Derda, Ratmir

    2015-01-01

    Phage-displayed peptide library has fueled the discovery of novel ligands for diverse targets. A new type of phage libraries that displays not only linear and disulfide-constrained cyclic peptides but moieties that cannot be encoded genetically or incorporated easily by bacterial genetic machinery has emerged recently. Chemical posttranslational modification of phage library is one of the simplest approaches to encode nonnatural moieties. It confers the library with new functionality and makes it possible to select and evolve molecules with properties not found in the peptides, for instance, glycopeptides recognized by carbohydrate-binding protein and peptides with photoswitching capability. To this end, we describe the newly emerging techniques to chemically modify the phage library and quantify the efficiency of the reaction with a biotin-capture assay. Finally, we provide the methods to construct N-terminal Ser peptide library that allows site-selective modification of phage.

  18. Engineering small interfering RNAs by strategic chemical modification.

    PubMed

    Bramsen, Jesper B; Kjems, Jørgen

    2013-01-01

    Synthetic small interfering RNAs (siRNAs) have revolutionized functional genomics in mammalian cell cultures due to their reliability, efficiency, and ease of use. This success, however, has not fully translated into siRNA applications in vivo and in siRNA therapeutics where initial optimism has been dampened by a lack of efficient delivery strategies and reports of siRNA off-target effects and immunogenicity. Encouragingly, most aspects of siRNA behavior can be addressed by careful engineering of siRNAs incorporating beneficial chemical modifications into discrete nucleotide positions during siRNA synthesis. Here, we review the literature (Subheadings 1 -3) and provide a quick guide (Subheading 4) to how the performance of siRNA can be improved by chemical modification to suit specific applications in vitro and in vivo.

  19. Surface chemical modification of fullerene by mechanochemical treatment

    NASA Astrophysics Data System (ADS)

    Todorović Marković, B.; Jokanović, V.; Jovanović, S.; Kleut, D.; Dramićanin, M.; Marković, Z.

    2009-06-01

    In this study different encapsulating agents have been used for chemical modification of fullerenes. Fullerenes have reacted with tetrahydrofuran, sodium dodecyl sulfate, sodium dodecylbenzene sulfonate and ethylene vinyl acetate-ethylene vinyl versatate at room temperature under mechanical milling. The obtained powder has been dispersed in water by ultrasonication. The fullerene based colloids have been characterized by UV-vis, FTIR, Raman spectroscopy and atomic force microscopy. FTIR and Raman analysis have shown the presence of C 60 after surface functionalization.

  20. Chemical modification: the key to clinical application of RNA interference?

    PubMed Central

    Corey, David R.

    2007-01-01

    RNA interference provides a potent and specific method for controlling gene expression in human cells. To translate this potential into a broad new family of therapeutics, it is necessary to optimize the efficacy of the RNA-based drugs. As discussed in this Review, it might be possible to achieve this optimization using chemical modifications that improve their in vivo stability, cellular delivery, biodistribution, pharmacokinetics, potency, and specificity. PMID:18060019

  1. Improving Recent Large-Scale Pulsar Surveys

    NASA Astrophysics Data System (ADS)

    Cardoso, Rogerio Fernando; Ransom, S.

    2011-01-01

    Pulsars are unique in that they act as celestial laboratories for precise tests of gravity and other extreme physics (Kramer 2004). There are approximately 2000 known pulsars today, which is less than ten percent of pulsars in the Milky Way according to theoretical models (Lorimer 2004). Out of these 2000 known pulsars, approximately ten percent are known millisecond pulsars, objects used for their period stability for detailed physics tests and searches for gravitational radiation (Lorimer 2008). As the field and instrumentation progress, pulsar astronomers attempt to overcome observational biases and detect new pulsars, consequently discovering new millisecond pulsars. We attempt to improve large scale pulsar surveys by examining three recent pulsar surveys. The first, the Green Bank Telescope 350MHz Drift Scan, a low frequency isotropic survey of the northern sky, has yielded a large number of candidates that were visually inspected and identified, resulting in over 34.000 thousands candidates viewed, dozens of detections of known pulsars, and the discovery of a new low-flux pulsar, PSRJ1911+22. The second, the PALFA survey, is a high frequency survey of the galactic plane with the Arecibo telescope. We created a processing pipeline for the PALFA survey at the National Radio Astronomy Observatory in Charlottesville- VA, in addition to making needed modifications upon advice from the PALFA consortium. The third survey examined is a new GBT 820MHz survey devoted to find new millisecond pulsars by observing the target-rich environment of unidentified sources in the FERMI LAT catalogue. By approaching these three pulsar surveys at different stages, we seek to improve the success rates of large scale surveys, and hence the possibility for ground-breaking work in both basic physics and astrophysics.

  2. Selective Chemical Labeling of Natural T Modifications in DNA

    PubMed Central

    2015-01-01

    We present a chemical method to selectively tag and enrich thymine modifications, 5-formyluracil (5-fU) and 5-hydroxymethyluracil (5-hmU), found naturally in DNA. Inherent reactivity differences have enabled us to tag 5-fU chemoselectively over its C modification counterpart, 5-formylcytosine (5-fC). We rationalized the enhanced reactivity of 5-fU compared to 5-fC via ab initio quantum mechanical calculations. We exploited this chemical tagging reaction to provide proof of concept for the enrichment of 5-fU containing DNA from a pool that contains 5-fC or no modification. We further demonstrate that 5-hmU can be chemically oxidized to 5-fU, providing a strategy for the enrichment of 5-hmU. These methods will enable the mapping of 5-fU and 5-hmU in genomic DNA, to provide insights into their functional role and dynamics in biology. PMID:25946119

  3. Large-scale synthesis of peptides.

    PubMed

    Andersson, L; Blomberg, L; Flegel, M; Lepsa, L; Nilsson, B; Verlander, M

    2000-01-01

    Recent advances in the areas of formulation and delivery have rekindled the interest of the pharmaceutical community in peptides as drug candidates, which, in turn, has provided a challenge to the peptide industry to develop efficient methods for the manufacture of relatively complex peptides on scales of up to metric tons per year. This article focuses on chemical synthesis approaches for peptides, and presents an overview of the methods available and in use currently, together with a discussion of scale-up strategies. Examples of the different methods are discussed, together with solutions to some specific problems encountered during scale-up development. Finally, an overview is presented of issues common to all manufacturing methods, i.e., methods used for the large-scale purification and isolation of final bulk products and regulatory considerations to be addressed during scale-up of processes to commercial levels. Copyright 2000 John Wiley & Sons, Inc. Biopolymers (Pept Sci) 55: 227-250, 2000

  4. Large scale DNA microsequencing device

    DOEpatents

    Foote, Robert S.

    1999-01-01

    A microminiature sequencing apparatus and method provide means for simultaneously obtaining sequences of plural polynucleotide strands. The apparatus comprises a microchip into which plural channels have been etched using standard lithographic procedures and chemical wet etching. The channels include a reaction well and a separating section. Enclosing the channels is accomplished by bonding a transparent cover plate over the apparatus. A first oligonucleotide strand is chemically affixed to the apparatus through an alkyl chain. Subsequent nucleotides are selected by complementary base pair bonding. A target nucleotide strand is used to produce a family of labelled sequencing strands in each channel which are separated in the separating section. During or following separation the sequences are determined using appropriate detection means.

  5. Large scale DNA microsequencing device

    DOEpatents

    Foote, Robert S.

    1997-01-01

    A microminiature sequencing apparatus and method provide means for simultaneously obtaining sequences of plural polynucleotide strands. The apparatus comprises a microchip into which plural channels have been etched using standard lithographic procedures and chemical wet etching. The channels include a reaction well and a separating section. Enclosing the channels is accomplished by bonding a transparent cover plate over the apparatus. A first oligonucleotide strand is chemically affixed to the apparatus through an alkyl chain. Subsequent nucleotides are selected by complementary base pair bonding. A target nucleotide strand is used to produce a family of labelled sequencing strands in each channel which are separated in the separating section. During or following separation the sequences are determined using appropriate detection means.

  6. Large scale DNA microsequencing device

    DOEpatents

    Foote, R.S.

    1999-08-31

    A microminiature sequencing apparatus and method provide means for simultaneously obtaining sequences of plural polynucleotide strands. The apparatus comprises a microchip into which plural channels have been etched using standard lithographic procedures and chemical wet etching. The channels include a reaction well and a separating section. Enclosing the channels is accomplished by bonding a transparent cover plate over the apparatus. A first oligonucleotide strand is chemically affixed to the apparatus through an alkyl chain. Subsequent nucleotides are selected by complementary base pair bonding. A target nucleotide strand is used to produce a family of labelled sequencing strands in each channel which are separated in the separating section. During or following separation the sequences are determined using appropriate detection means. 11 figs.

  7. Large scale DNA microsequencing device

    DOEpatents

    Foote, R.S.

    1997-08-26

    A microminiature sequencing apparatus and method provide a means for simultaneously obtaining sequences of plural polynucleotide strands. The apparatus cosists of a microchip into which plural channels have been etched using standard lithographic procedures and chemical wet etching. The channels include a reaction well and a separating section. Enclosing the channels is accomplished by bonding a transparent cover plate over the apparatus. A first oligonucleotide strand is chemically affixed to the apparatus through an alkyl chain. Subsequent nucleotides are selected by complementary base pair bonding. A target nucleotide strand is used to produce a family of labelled sequencing strands in each channel which are separated in the separating section. During or following separation the sequences are determined using appropriate detection means. 17 figs.

  8. Needs, opportunities, and options for large scale systems research

    SciTech Connect

    Thompson, G.L.

    1984-10-01

    The Office of Energy Research was recently asked to perform a study of Large Scale Systems in order to facilitate the development of a true large systems theory. It was decided to ask experts in the fields of electrical engineering, chemical engineering and manufacturing/operations research for their ideas concerning large scale systems research. The author was asked to distribute a questionnaire among these experts to find out their opinions concerning recent accomplishments and future research directions in large scale systems research. He was also requested to convene a conference which included three experts in each area as panel members to discuss the general area of large scale systems research. The conference was held on March 26--27, 1984 in Pittsburgh with nine panel members, and 15 other attendees. The present report is a summary of the ideas presented and the recommendations proposed by the attendees.

  9. Chemical modification of the cocoa shell surface using diazonium salts.

    PubMed

    Fioresi, Flavia; Vieillard, Julien; Bargougui, Radhouane; Bouazizi, Nabil; Fotsing, Patrick Nkuigue; Woumfo, Emmanuel Djoufac; Brun, Nicolas; Mofaddel, Nadine; Le Derf, Franck

    2017-05-15

    The outer portion of the cocoa bean, also known as cocoa husk or cocoa shell (CS), is an agrowaste material from the cocoa industry. Even though raw CS is used as food additive, garden mulch, and soil conditioner or even burnt for fuel, this biomass material has hardly ever been investigated for further modification. This article proposes a strategy of chemical modification of cocoa shell to add value to this natural material. The study investigates the grafting of aryl diazonium salt on cocoa shell. Different diazonium salts were grafted on the shell surface and characterized by infrared spectroscopy and scanning electronic microscopy imaging. Strategies were developed to demonstrate the spontaneous grafting of aryl diazonium salt on cocoa shell and to elucidate that lignin is mainly involved in immobilizing the phenyl layer. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Chemical modification of chitosan for efficient gene therapy.

    PubMed

    Jiang, Hu-Lin; Cui, Peng-Fei; Xie, Rong-Lin; Cho, Chong-Su

    2014-01-01

    Gene therapy involves the introduction of foreign genetic material into cells in order to exert a therapeutic effect. Successful gene therapy relies on effective vector system. Viral vectors are highly efficient in transfecting cells, but the undesirable complications limit their therapeutic applications. As a natural biopolymer, chitosan has been considered to be a good gene carrier candidate due to its ideal character which combines biocompatibility, low toxicity with high cationic density together. However, the low cell specificity and low transfection efficiency of chitosan as a gene carrier need to be overcome before undertaking clinical trials. This chapter is principally on those endeavors such as chemical modifications using cell-specific ligands and stimuli-response groups as well as penetrating modifications that have been done to increase the performances of chitosan in gene therapy. © 2014 Elsevier Inc. All rights reserved.

  11. Chemical modification of arginine residues in the lactose repressor

    SciTech Connect

    Whitson, P.A.; Matthews, K.S.

    1987-10-06

    The lactose repressor protein was chemically modified with 2,3-butanedione and phenylglyoxal. Arginine reaction was quantitated by either amino aced analysis or incorporation of /sup 14/C-labeled phenylglyoxal. Inducer binding activity was unaffected by the modification of arginine residues, while both operator and nonspecific DNA binding activities were diminished, although to differing degrees. The correlation of the decrease in DNA binding activities with the modification of approx. 1-2 equiv of arginine per monomer suggests increased reactivity of a functionally essential residue(s). For both reagents, operator DNA binding activity was protected by the presence of calf thymus DNA, and the extent of reaction with phenylglyoxal was simultaneously diminished. This protection presumably results from steric restriction of reagent access to an arginine(s) that is (are) essential for DNA binding interactions. These experiments suggest that there is (are) an essential reactive arginine(s) critical for repressor binding to DNA.

  12. Chemical modification of proteins by lipids in diabetes.

    PubMed

    Baynes, John W

    2003-09-01

    Advanced glycation and lipoxidation end-products (AGE/ALE) increase in tissue proteins with age and at an accelerated rate in diabetes. This Review focuses on the nature and source of AGEs/ALEs and the factors affecting their formation in tissue and plasma proteins. Lipids are identified as an important source of chemical modification of proteins in diabetes, and the role of diabetes, dyslipidemia and renal disease in formation of AGEs/ALEs is reviewed. The article concludes with a discussion of ELISA assays for AGEs/ALEs and the merits of measuring AGEs/ALEs in the clinical laboratory.

  13. Chemical modification of proteins during peroxidation of phospholipids.

    PubMed

    Januszewski, Andrzej S; Alderson, Nathan L; Jenkins, Alicia J; Thorpe, Suzanne R; Baynes, John W

    2005-07-01

    Chemical modification of proteins by advanced glycation and lipoxidation end products is implicated in the pathogenesis of macrovascular disease in aging and diabetes. To identify biomarkers of the lipoxidative modification of protein, we studied the oxidation of phospholipids in the presence of the model protein RNase A and compared protein-bound products formed in these reactions with those formed during oxidation of plasma proteins. Metal-catalyzed oxidation of 1-palmitoyl-2-arachidonoyl-phosphatidylcholine or 1-palmitoyl-2-linoleoyl-phosphatidylcholine in the presence of RNase led to the loss of amino groups in RNase and the incorporation of phosphate, hexanoate, pentanedioate, nonanedioate, and palmitate into protein. Protein-bound palmitate and phosphate correlated strongly with one another, and protein-bound pentanedioate and nonanedioate, derived from arachidonate and linoleate, respectively, accounted for approximately 20% of the cross-linking of lipid phosphorus to protein. Similar results were obtained on oxidation of total plasma or isolated LDL. We conclude that alkanedioic acids are quantitatively important linkers of oxidized phospholipids to proteins and that measurement of protein-bound phosphate and long-chain fatty acids may be useful for assessing long-term lipid peroxidative damage to proteins in vivo. Analyses of plasma proteins from control and diabetic patients indicated significant increases in lipoxidative modification of protein in diabetic compared with control subjects.

  14. Large-Scale Reform Comes of Age

    ERIC Educational Resources Information Center

    Fullan, Michael

    2009-01-01

    This article reviews the history of large-scale education reform and makes the case that large-scale or whole system reform policies and strategies are becoming increasingly evident. The review briefly addresses the pre 1997 period concluding that while the pressure for reform was mounting that there were very few examples of deliberate or…

  15. Automating large-scale reactor systems

    SciTech Connect

    Kisner, R.A.

    1985-01-01

    This paper conveys a philosophy for developing automated large-scale control systems that behave in an integrated, intelligent, flexible manner. Methods for operating large-scale systems under varying degrees of equipment degradation are discussed, and a design approach that separates the effort into phases is suggested. 5 refs., 1 fig.

  16. Numerical Modeling for Large Scale Hydrothermal System

    NASA Astrophysics Data System (ADS)

    Sohrabi, Reza; Jansen, Gunnar; Malvoisin, Benjamin; Mazzini, Adriano; Miller, Stephen A.

    2017-04-01

    Moderate-to-high enthalpy systems are driven by multiphase and multicomponent processes, fluid and rock mechanics, and heat transport processes, all of which present challenges in developing realistic numerical models of the underlying physics. The objective of this work is to present an approach, and some initial results, for modeling and understanding dynamics of the birth of large scale hydrothermal systems. Numerical modeling of such complex systems must take into account a variety of coupled thermal, hydraulic, mechanical and chemical processes, which is numerically challenging. To provide first estimates of the behavior of this deep complex systems, geological structures must be constrained, and the fluid dynamics, mechanics and the heat transport need to be investigated in three dimensions. Modeling these processes numerically at adequate resolution and reasonable computation times requires a suite of tools that we are developing and/or utilizing to investigate such systems. Our long-term goal is to develop 3D numerical models, based on a geological models, which couples mechanics with the hydraulics and thermal processes driving hydrothermal system. Our first results from the Lusi hydrothermal system in East Java, Indonesia provide a basis for more sophisticated studies, eventually in 3D, and we introduce a workflow necessary to achieve these objectives. Future work focuses with the aim and parallelization suitable for High Performance Computing (HPC). Such developments are necessary to achieve high-resolution simulations to more fully understand the complex dynamics of hydrothermal systems.

  17. Chemically defined media modifications to lower tryptophan oxidation of biopharmaceuticals.

    PubMed

    Hazeltine, Laurie B; Knueven, Kristine M; Zhang, Yan; Lian, Zhirui; Olson, Donald J; Ouyang, Anli

    2016-01-01

    Oxidation of biopharmaceuticals is a major product quality issue with potential impacts on activity and immunogenicity. At Eli Lilly and Company, high tryptophan oxidation was observed for two biopharmaceuticals in development produced in Chinese hamster ovary cells. A switch from historical hydrolysate-containing media to chemically defined media with a reformulated basal powder was thought to be responsible, so mitigation efforts focused on media modification. Shake flask studies identified that increasing tryptophan, copper, and manganese and decreasing cysteine concentrations were individual approaches to lower tryptophan oxidation. When amino acid and metal changes were combined, the modified formulation had a synergistic impact that led to substantially less tryptophan oxidation for both biopharmaceuticals. Similar results were achieved in shake flasks and benchtop bioreactors, demonstrating the potential to implement these modifications at manufacturing scale. The modified formulation did not negatively impact cell growth and viability, product titer, purity, charge variants, or glycan profile. A potential mechanism of action is presented for each amino acid or metal factor based on its role in oxidation chemistry. This work served not only to mitigate the tryptophan oxidation issue in two Lilly biopharmaceuticals in development, but also to increase our knowledge and appreciation for the impact of media components on product quality.

  18. Chemical modification of hemoglobin improves biocatalytic oxidation of PAHs.

    PubMed

    Torres, E; Vazquez-Duhalt, R

    2000-07-14

    Chemical modifications on human hemoglobin were performed with the aim to change both surface and active-site hydrophobicities. The modifications included covalent coupling of poly(ethylene)glycol (5000 MW) on free amino groups and the methyl esterification of free carboxylic groups. The modified hemoglobin was assayed for the oxidation of 11 polycyclic aromatic hydrocarbons (PAHs) and 2 organosulfur aromatic compounds. Acenaphthene, anthracene, azulene, benzo(a)pyrene, fluoranthene, fluorene, phenanthrene, and pyrene were transformed to their respective quinones, while for chrysene and biphenyl no biocatalytic reaction could be detected. Dibenzothiophene and thianthrene were oxidized to form sulfoxides. The doubly modified hemoglobin, PEG-Met-hemoglobin, showed up to 10 times higher activity than the unmodified protein. The kinetic constants show that the PEG-Met-hemoglobin has a significantly higher catalytic efficiency. The equilibrium substrate binding constants for unmodified and PEG-Met-modified hemoglobis and hemoglobin show that this catalytic enhancement could be attributed to the affinity increase for hydrophobic substrates in the modified protein. Copyright 2000 Academic Press.

  19. Chemical modification of chitosan under high-intensity ultrasound.

    PubMed

    Cravotto, Giancarlo; Tagliapietra, Silvia; Robaldo, Bruna; Trotta, Michele

    2005-01-01

    Chitosan (CTS), a biocompatible, biodegradable, non-toxic polymer, dissolves in water only if pH is lowered under 6.5, when a substantial fraction of the amino groups is protonated. Its range of application has been much extended by partially depolymerising it or converting it to water-soluble derivatives. Working under high-intensity ultrasound at 17.8-18.5 kHz, using either a simple horn or a cup horn, we achieved a controlled depolymerization of CTS, also prepared in high yields several derivatives that can be useful intermediates for further chemical modification, as well as several water-soluble derivatives that lend themselves to a host of industrial applications. Compared to conventional methods, all these reactions went to completion in considerably shorter times at lower temperatures.

  20. Surface Modification of Nitinol by Chemical and Electrochemical Etching

    NASA Astrophysics Data System (ADS)

    Yang, Zhendi; Wei, Xiaojin; Cao, Peng; Gao, Wei

    2013-07-01

    In this paper, Nitinol, an equiatomic binary alloy of nickel and titanium, was surface modified for its potential biomedical applications by chemical and electrochemical etching. The main objective of the surface modification is to reduce the nickel content on the surface of Nitinol and simultaneously to a rough surface microstructure. As a result, better biocompatibility and better cell attachment would be achieved. The effect of the etching parameters was investigated, using scanning electron microscopy (SEM) equipped with energy dispersive X-ray spectrometry (EDX) and X-ray photoelectron spectrometry (XPS). The corrosion property of modified Nitinol surfaces was investigated by electrochemical work station. After etching, the Ni content in the surface layer has been reduced and the oxidation of Ti has been enhanced.

  1. Acoustic Studies of the Large Scale Ocean Circulation

    NASA Technical Reports Server (NTRS)

    Menemenlis, Dimitris

    1999-01-01

    Detailed knowledge of ocean circulation and its transport properties is prerequisite to an understanding of the earth's climate and of important biological and chemical cycles. Results from two recent experiments, THETIS-2 in the Western Mediterranean and ATOC in the North Pacific, illustrate the use of ocean acoustic tomography for studies of the large scale circulation. The attraction of acoustic tomography is its ability to sample and average the large-scale oceanic thermal structure, synoptically, along several sections, and at regular intervals. In both studies, the acoustic data are compared to, and then combined with, general circulation models, meteorological analyses, satellite altimetry, and direct measurements from ships. Both studies provide complete regional descriptions of the time-evolving, three-dimensional, large scale circulation, albeit with large uncertainties. The studies raise serious issues about existing ocean observing capability and provide guidelines for future efforts.

  2. Large-scale analysis of neurite growth dynamics on micropatterned substrates†‡

    PubMed Central

    Wissner-Gross, Zachary D.; Scott, Mark A.; Ku, David; Ramaswamy, Priya

    2011-01-01

    During both development and regeneration of the nervous system, neurons display complex growth dynamics, and several neurites compete to become the neuron’s single axon. Numerous mathematical and biophysical models have been proposed to explain this competition, which remain experimentally unverified. Large-scale, precise, and repeatable measurements of neurite dynamics have been difficult to perform, since neurons have varying numbers of neurites, which themselves have complex morphologies. To overcome these challenges using a minimal number of primary neurons, we generated repeatable neuronal morphologies on a large scale using laser-patterned micron-wide stripes of adhesive proteins on an otherwise highly non-adherent substrate. By analyzing thousands of quantitative time-lapse measurements of highly reproducible neurite growth dynamics, we show that total neurite growth accelerates until neurons polarize, that immature neurites compete even at very short lengths, and that neuronal polarity exhibits a distinct transition as neurites grow. Proposed neurite growth models agree only partially with our experimental observations. We further show that simple yet specific modifications can significantly improve these models, but still do not fully predict the complex neurite growth behavior. Our high-content analysis puts significant and nontrivial constraints on possible mechanistic models of neurite growth and specification. The methodology presented here could also be employed in large-scale chemical and target-based screens on a variety of complex and subtle phenotypes for therapeutic discoveries using minimal numbers of primary neurons. PMID:20976322

  3. Large Scale Metal Additive Techniques Review

    SciTech Connect

    Nycz, Andrzej; Adediran, Adeola I; Noakes, Mark W; Love, Lonnie J

    2016-01-01

    In recent years additive manufacturing made long strides toward becoming a main stream production technology. Particularly strong progress has been made in large-scale polymer deposition. However, large scale metal additive has not yet reached parity with large scale polymer. This paper is a review study of the metal additive techniques in the context of building large structures. Current commercial devices are capable of printing metal parts on the order of several cubic feet compared to hundreds of cubic feet for the polymer side. In order to follow the polymer progress path several factors are considered: potential to scale, economy, environment friendliness, material properties, feedstock availability, robustness of the process, quality and accuracy, potential for defects, and post processing as well as potential applications. This paper focuses on current state of art of large scale metal additive technology with a focus on expanding the geometric limits.

  4. Large-scale regions of antimatter

    SciTech Connect

    Grobov, A. V. Rubin, S. G.

    2015-07-15

    Amodified mechanism of the formation of large-scale antimatter regions is proposed. Antimatter appears owing to fluctuations of a complex scalar field that carries a baryon charge in the inflation era.

  5. Chemical composition and physicochemical properties of barley dietary fiber by chemical modification.

    PubMed

    Park, Ka Hwa; Lee, Kwang Yeon; Lee, Hyeon Gyu

    2013-09-01

    Chemical modification of dietary fiber (DF), extracted from whole grain barley, was carried out to obtain cross-linked (CL) DF, carboxymethyl (CM) DF, and hydroxypropyl (HP) DF. The DF components, physicochemical properties, and subsequent influence on the in vitro digestibility of wheat starch gels were comparatively investigated. The redistribution of fiber components from chemically modified DF was observed. An increase in the total DF (TDF) content of CL- and HP-DF was observed, which was mainly due to an increase of insoluble DF. Carboxymethylation led to an appreciable increase of soluble DF (1.17-6.20%) but TDF contents slightly decreased. Chemical modification of barley DF led to increases in arabinose (7.1-11.5%) and xylose (10.7-17.5%), but glucose contents decreased (67.4-79.9%). The treatments, especially carboxymethylation, effectively (P<0.05) increased hydration properties (e.g. water solubility, swelling power, and water absorption index). Substitution of 5% wheat starch with CL-, and HP-DF led to decreased in vitro digestibility in comparison to the control starch. Our results suggest that chemical modification improve the DF characteristics of barley and to exploit its potential application as a functional ingredient in fiber-rich products.

  6. Chemical Modification in the Design of Immobilized Enzyme Biocatalysts: Drawbacks and Opportunities.

    PubMed

    Rueda, Nazzoly; Dos Santos, Jose C S; Ortiz, Claudia; Torres, Rodrigo; Barbosa, Oveimar; Rodrigues, Rafael C; Berenguer-Murcia, Ángel; Fernandez-Lafuente, Roberto

    2016-06-01

    Chemical modification of enzymes and immobilization used to be considered as separate ways to improve enzyme properties. This review shows how the coupled use of both tools may greatly improve the final biocatalyst performance. Chemical modification of a previously immobilized enzyme is far simpler and easier to control than the modification of the free enzyme. Moreover, if protein modification is performed to improve its immobilization (enriching the enzyme in reactive groups), the final features of the immobilized enzyme may be greatly improved. Chemical modification may be directed to improve enzyme stability, but also to improve selectivity, specificity, activity, and even cell penetrability. Coupling of immobilization and chemical modification with site-directed mutagenesis is a powerful instrument to obtain fully controlled modification. Some new ideas such as photoreceptive enzyme modifiers that change their physical properties under UV exposition are discussed. © 2016 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. The Large -scale Distribution of Galaxies

    NASA Astrophysics Data System (ADS)

    Flin, Piotr

    A review of the Large-scale structure of the Universe is given. A connection is made with the titanic work by Johannes Kepler in many areas of astronomy and cosmology. A special concern is made to spatial distribution of Galaxies, voids and walls (cellular structure of the Universe). Finaly, the author is concluding that the large scale structure of the Universe can be observed in much greater scale that it was thought twenty years ago.

  8. Areal variation and chemical modification of weathered shale infiltration characteristics

    SciTech Connect

    Luxmoore, R.J.; Spalding, B.P.; Munro, I.M.

    1981-07-01

    Spatial variability of infiltration into a weathered shale subsoil was evaluated at a site proximal to one used for shallow land burial of low-level radioactive waste at Oak Ridge National Laboratory. Double-ring infiltometers were installed at 48 locations on a 2- by 2-m grid after the removal of 1 to 2 m of soil (Litz-Sequoia association, Typic Hapludults). Infiltration rates were measured before and during the 0- to 20- and 239- to 259-day periods following treatment with solutions of NaOH, KOH, NaF, NaAlO/sub 2/, and Na/sub 2/SiO/sub 3/ at rates of 151 equivalents/m/sup 2/. None of these chemical treatments significantly altered infiltration rate, indicating that chemical modification of soil exchange properties may be achieved without inducing hydrologic disturbance in these subsoils. A semivariogram analysis of infiltration data showed that areal variability was random; any spatial patterning must therefore occur at a smaller scale than 2 m.

  9. Large-scale cortical networks and cognition.

    PubMed

    Bressler, S L

    1995-03-01

    The well-known parcellation of the mammalian cerebral cortex into a large number of functionally distinct cytoarchitectonic areas presents a problem for understanding the complex cortical integrative functions that underlie cognition. How do cortical areas having unique individual functional properties cooperate to accomplish these complex operations? Do neurons distributed throughout the cerebral cortex act together in large-scale functional assemblages? This review examines the substantial body of evidence supporting the view that complex integrative functions are carried out by large-scale networks of cortical areas. Pathway tracing studies in non-human primates have revealed widely distributed networks of interconnected cortical areas, providing an anatomical substrate for large-scale parallel processing of information in the cerebral cortex. Functional coactivation of multiple cortical areas has been demonstrated by neurophysiological studies in non-human primates and several different cognitive functions have been shown to depend on multiple distributed areas by human neuropsychological studies. Electrophysiological studies on interareal synchronization have provided evidence that active neurons in different cortical areas may become not only coactive, but also functionally interdependent. The computational advantages of synchronization between cortical areas in large-scale networks have been elucidated by studies using artificial neural network models. Recent observations of time-varying multi-areal cortical synchronization suggest that the functional topology of a large-scale cortical network is dynamically reorganized during visuomotor behavior.

  10. Chemical modification of sputtered amorphous-carbon surfaces

    NASA Astrophysics Data System (ADS)

    Leezenberg, Pieter B.; Johnston, William H.; Tyndall, George W.

    2001-03-01

    Methods to chemically passivate the surfaces of amorphous-carbon films (a-C) produced by dc magnetron sputtering were studied. The chemical composition of carbon surfaces produced via sputtering are dependent upon the environment to which the carbon is exposed immediately following deposition. When the sputtered film is vented to ambient conditions, free radicals produced at the surface during the deposition process are quenched by reaction with oxygen and/or water to form an oxidized, hydrophilic surface. If the sputtered carbon film is, however, exposed to a reactive gas prior to venting to ambient, the chemical nature of the resulting surface can be modified substantially. Specifically, a less highly oxidized and much more hydrophobic carbon surface is produced when the surface free radicals are quenched via either an addition reaction (demonstrated with a fluorinated olefin) or a hydrogen abstraction reaction (demonstrated with two alkyl amines). Chemical modification of amorphous-carbon films can also be accomplished by performing the sputtering in a reactive plasma formed from mixtures of argon with molecular hydrogen, amines, and perfluorocarbons. The elemental composition of these films, and the relative reactivity of the surfaces formed, were investigated via x-ray photoelectron spectroscopy and contact-angle goniometry, respectively. In the case of sputtering with a mixture of argon and hydrogen, increasing the hydrogen flow results in an increase in the amount of hydrogen incorporated into the carbon film and a decrease in the surface free energy. Sputtering in diethylamine produces an amorphous-carbon film into which nitrogen is incorporated. The free energies of the a-C:N surfaces produced in this process are similar to those of the a-C:H films. Sputtering in a fluorocarbon vapor results in the incorporation of fluorine into the film structure and the formation of very low free-energy surfaces. Increasing the concentration of the fluorocarbon in the

  11. Survey on large scale system control methods

    NASA Technical Reports Server (NTRS)

    Mercadal, Mathieu

    1987-01-01

    The problem inherent to large scale systems such as power network, communication network and economic or ecological systems were studied. The increase in size and flexibility of future spacecraft has put those dynamical systems into the category of large scale systems, and tools specific to the class of large systems are being sought to design control systems that can guarantee more stability and better performance. Among several survey papers, reference was found to a thorough investigation on decentralized control methods. Especially helpful was the classification made of the different existing approaches to deal with large scale systems. A very similar classification is used, even though the papers surveyed are somehow different from the ones reviewed in other papers. Special attention is brought to the applicability of the existing methods to controlling large mechanical systems like large space structures. Some recent developments are added to this survey.

  12. Large-scale nanophotonic phased array.

    PubMed

    Sun, Jie; Timurdogan, Erman; Yaacobi, Ami; Hosseini, Ehsan Shah; Watts, Michael R

    2013-01-10

    Electromagnetic phased arrays at radio frequencies are well known and have enabled applications ranging from communications to radar, broadcasting and astronomy. The ability to generate arbitrary radiation patterns with large-scale phased arrays has long been pursued. Although it is extremely expensive and cumbersome to deploy large-scale radiofrequency phased arrays, optical phased arrays have a unique advantage in that the much shorter optical wavelength holds promise for large-scale integration. However, the short optical wavelength also imposes stringent requirements on fabrication. As a consequence, although optical phased arrays have been studied with various platforms and recently with chip-scale nanophotonics, all of the demonstrations so far are restricted to one-dimensional or small-scale two-dimensional arrays. Here we report the demonstration of a large-scale two-dimensional nanophotonic phased array (NPA), in which 64 × 64 (4,096) optical nanoantennas are densely integrated on a silicon chip within a footprint of 576 μm × 576 μm with all of the nanoantennas precisely balanced in power and aligned in phase to generate a designed, sophisticated radiation pattern in the far field. We also show that active phase tunability can be realized in the proposed NPA by demonstrating dynamic beam steering and shaping with an 8 × 8 array. This work demonstrates that a robust design, together with state-of-the-art complementary metal-oxide-semiconductor technology, allows large-scale NPAs to be implemented on compact and inexpensive nanophotonic chips. In turn, this enables arbitrary radiation pattern generation using NPAs and therefore extends the functionalities of phased arrays beyond conventional beam focusing and steering, opening up possibilities for large-scale deployment in applications such as communication, laser detection and ranging, three-dimensional holography and biomedical sciences, to name just a few.

  13. The large-scale distribution of galaxies

    NASA Technical Reports Server (NTRS)

    Geller, Margaret J.

    1989-01-01

    The spatial distribution of galaxies in the universe is characterized on the basis of the six completed strips of the Harvard-Smithsonian Center for Astrophysics redshift-survey extension. The design of the survey is briefly reviewed, and the results are presented graphically. Vast low-density voids similar to the void in Bootes are found, almost completely surrounded by thin sheets of galaxies. Also discussed are the implications of the results for the survey sampling problem, the two-point correlation function of the galaxy distribution, the possibility of detecting large-scale coherent flows, theoretical models of large-scale structure, and the identification of groups and clusters of galaxies.

  14. Chemical modifications of therapeutic proteins induced by residual ethylene oxide.

    PubMed

    Chen, Louise; Sloey, Christopher; Zhang, Zhongqi; Bondarenko, Pavel V; Kim, Hyojin; Ren, Da; Kanapuram, Sekhar

    2015-02-01

    Ethylene oxide (EtO) is widely used in sterilization of drug product primary containers and medical devices. The impact of residual EtO on protein therapeutics is of significant interest in the biopharmaceutical industry. The potential for EtO to modify individual amino acids in proteins has been previously reported. However, specific identification of EtO adducts in proteins and the effect of residual EtO on the stability of therapeutic proteins has not been reported to date. This paper describes studies of residual EtO with two therapeutic proteins, a PEGylated form of the recombinant human granulocyte colony-stimulating factor (Peg-GCSF) and recombinant human erythropoietin (EPO) formulated with human serum albumin (HSA). Peg-GCSF was filled in an EtO sterilized delivery device and incubated at accelerated stress conditions. Glu-C peptide mapping and LC-MS analyses revealed residual EtO reacted with Peg-GCSF and resulted in EtO modifications at two methionine residues (Met-127 and Met-138). In addition, tryptic peptide mapping and LC-MS analyses revealed residual EtO in plastic vials reacted with HSA in EPO formulation at Met-328 and Cys-34. This paper details the work conducted to understand the effects of residual EtO on the chemical stability of protein therapeutics. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  15. The workshop on iterative methods for large scale nonlinear problems

    SciTech Connect

    Walker, H.F.; Pernice, M.

    1995-12-01

    The aim of the workshop was to bring together researchers working on large scale applications with numerical specialists of various kinds. Applications that were addressed included reactive flows (combustion and other chemically reacting flows, tokamak modeling), porous media flows, cardiac modeling, chemical vapor deposition, image restoration, macromolecular modeling, and population dynamics. Numerical areas included Newton iterative (truncated Newton) methods, Krylov subspace methods, domain decomposition and other preconditioning methods, large scale optimization and optimal control, and parallel implementations and software. This report offers a brief summary of workshop activities and information about the participants. Interested readers are encouraged to look into an online proceedings available at http://www.usi.utah.edu/logan.proceedings. In this, the material offered here is augmented with hypertext abstracts that include links to locations such as speakers` home pages, PostScript copies of talks and papers, cross-references to related talks, and other information about topics addresses at the workshop.

  16. Robust large-scale parallel nonlinear solvers for simulations.

    SciTech Connect

    Bader, Brett William; Pawlowski, Roger Patrick; Kolda, Tamara Gibson

    2005-11-01

    This report documents research to develop robust and efficient solution techniques for solving large-scale systems of nonlinear equations. The most widely used method for solving systems of nonlinear equations is Newton's method. While much research has been devoted to augmenting Newton-based solvers (usually with globalization techniques), little has been devoted to exploring the application of different models. Our research has been directed at evaluating techniques using different models than Newton's method: a lower order model, Broyden's method, and a higher order model, the tensor method. We have developed large-scale versions of each of these models and have demonstrated their use in important applications at Sandia. Broyden's method replaces the Jacobian with an approximation, allowing codes that cannot evaluate a Jacobian or have an inaccurate Jacobian to converge to a solution. Limited-memory methods, which have been successful in optimization, allow us to extend this approach to large-scale problems. We compare the robustness and efficiency of Newton's method, modified Newton's method, Jacobian-free Newton-Krylov method, and our limited-memory Broyden method. Comparisons are carried out for large-scale applications of fluid flow simulations and electronic circuit simulations. Results show that, in cases where the Jacobian was inaccurate or could not be computed, Broyden's method converged in some cases where Newton's method failed to converge. We identify conditions where Broyden's method can be more efficient than Newton's method. We also present modifications to a large-scale tensor method, originally proposed by Bouaricha, for greater efficiency, better robustness, and wider applicability. Tensor methods are an alternative to Newton-based methods and are based on computing a step based on a local quadratic model rather than a linear model. The advantage of Bouaricha's method is that it can use any existing linear solver, which makes it simple to write

  17. Feasibility of large-scale aquatic microcosms. Final report

    SciTech Connect

    Pease, T.; Wyman, R.L.; Logan, D.T.; Logan, C.M.; Lispi, D.R.

    1982-02-01

    Microcosms have been used to study a number of fundamental ecological principles and more recently to investigate the effects of man-made perturbations on ecosystems. In this report the feasibility of using large-scale microcosms to access aquatic impacts of power generating facilities is evaluated. Aquatic problems of concern to utilities are outlined, and various research approaches, including large and small microcosms, bioassays, and other laboratory experiments, are discussed. An extensive critical review and synthesis of the literature on recent microcosm research, which includes a comparison of the factors influencing physical, chemical, and biological processes in small vs large microcosms and in microcosms vs nature, led the authors to conclude that large-scale microcosms offer several advantages over other study techniques for particular types of problems. A hypothetical large-scale facility simulating a lake ecosystem is presented to illustrate the size, cost, and complexity of such facilities. The rationale for designing a lake-simulating large-scale microcosm is presented.

  18. Large scale dynamics of protoplanetary discs

    NASA Astrophysics Data System (ADS)

    Béthune, William

    2017-08-01

    Planets form in the gaseous and dusty disks orbiting young stars. These protoplanetary disks are dispersed in a few million years, being accreted onto the central star or evaporated into the interstellar medium. To explain the observed accretion rates, it is commonly assumed that matter is transported through the disk by turbulence, although the mechanism sustaining turbulence is uncertain. On the other side, irradiation by the central star could heat up the disk surface and trigger a photoevaporative wind, but thermal effects cannot account for the observed acceleration and collimation of the wind into a narrow jet perpendicular to the disk plane. Both issues can be solved if the disk is sensitive to magnetic fields. Weak fields lead to the magnetorotational instability, whose outcome is a state of sustained turbulence. Strong fields can slow down the disk, causing it to accrete while launching a collimated wind. However, the coupling between the disk and the neutral gas is done via electric charges, each of which is outnumbered by several billion neutral molecules. The imperfect coupling between the magnetic field and the neutral gas is described in terms of "non-ideal" effects, introducing new dynamical behaviors. This thesis is devoted to the transport processes happening inside weakly ionized and weakly magnetized accretion disks; the role of microphysical effects on the large-scale dynamics of the disk is of primary importance. As a first step, I exclude the wind and examine the impact of non-ideal effects on the turbulent properties near the disk midplane. I show that the flow can spontaneously organize itself if the ionization fraction is low enough; in this case, accretion is halted and the disk exhibits axisymmetric structures, with possible consequences on planetary formation. As a second step, I study the launching of disk winds via a global model of stratified disk embedded in a warm atmosphere. This model is the first to compute non-ideal effects from

  19. Management of large-scale technology

    NASA Technical Reports Server (NTRS)

    Levine, A.

    1985-01-01

    Two major themes are addressed in this assessment of the management of large-scale NASA programs: (1) how a high technology agency was a decade marked by a rapid expansion of funds and manpower in the first half and almost as rapid contraction in the second; and (2) how NASA combined central planning and control with decentralized project execution.

  20. Large-scale multimedia modeling applications

    SciTech Connect

    Droppo, J.G. Jr.; Buck, J.W.; Whelan, G.; Strenge, D.L.; Castleton, K.J.; Gelston, G.M.

    1995-08-01

    Over the past decade, the US Department of Energy (DOE) and other agencies have faced increasing scrutiny for a wide range of environmental issues related to past and current practices. A number of large-scale applications have been undertaken that required analysis of large numbers of potential environmental issues over a wide range of environmental conditions and contaminants. Several of these applications, referred to here as large-scale applications, have addressed long-term public health risks using a holistic approach for assessing impacts from potential waterborne and airborne transport pathways. Multimedia models such as the Multimedia Environmental Pollutant Assessment System (MEPAS) were designed for use in such applications. MEPAS integrates radioactive and hazardous contaminants impact computations for major exposure routes via air, surface water, ground water, and overland flow transport. A number of large-scale applications of MEPAS have been conducted to assess various endpoints for environmental and human health impacts. These applications are described in terms of lessons learned in the development of an effective approach for large-scale applications.

  1. Evaluating Large-Scale Interactive Radio Programmes

    ERIC Educational Resources Information Center

    Potter, Charles; Naidoo, Gordon

    2009-01-01

    This article focuses on the challenges involved in conducting evaluations of interactive radio programmes in South Africa with large numbers of schools, teachers, and learners. It focuses on the role such large-scale evaluation has played during the South African radio learning programme's development stage, as well as during its subsequent…

  2. Evaluating Large-Scale Interactive Radio Programmes

    ERIC Educational Resources Information Center

    Potter, Charles; Naidoo, Gordon

    2009-01-01

    This article focuses on the challenges involved in conducting evaluations of interactive radio programmes in South Africa with large numbers of schools, teachers, and learners. It focuses on the role such large-scale evaluation has played during the South African radio learning programme's development stage, as well as during its subsequent…

  3. Large-Scale Measurement of Absolute Protein Glycosylation Stoichiometry.

    PubMed

    Sun, Shisheng; Zhang, Hui

    2015-07-07

    Protein glycosylation is one of the most important protein modifications. Glycosylation site occupancy alteration has been implicated in human diseases and cancers. However, current glycoproteomic methods focus on the identification and quantification of glycosylated peptides and glycosylation sites but not glycosylation occupancy or glycoform stoichiometry. Here we describe a method for large-scale determination of the absolute glycosylation stoichiometry using three independent relative ratios. Using this method, we determined 117 absolute N-glycosylation occupancies in OVCAR-3 cells. Finally, we investigated the possible functions and the determinants for partial glycosylation.

  4. Effect of Chemical Modifications on Aptamer Stability in Serum.

    PubMed

    Kratschmer, Christina; Levy, Matthew

    2017-09-25

    There is increasing interest in the use of aptamers for the development of therapeutics. However, as oligonucleotides, aptamers are susceptible to nuclease degradation; poor serum stability is likely to negatively affect in vivo function. Modified nucleotides have been used to thwart nuclease degradation. However, few studies report the serum stability of selected aptamers. In this study, we examined the effect of various chemical modifications (2'-deoxy, 2'-hydroxyl, 2'-fluoro, and 2'-O-methyl) on the stability of a control oligonucleotide sequence following incubation in frozen human, fresh mouse, and fresh human serum. We also assessed the effect of the 3' inverted dT cap on stability. Surprisingly, we found that fYrR (2'-fluoro RNA) is only roughly as stable as DNA (2'-deoxy). Interestingly, the inclusion of a 3' inverted dT cap had only a modest effect on serum stability, if any. In one instance, the addition of a 3' inverted dT cap rendered a molecule composed of DNA more stable than its fYrR counterpart. By far, fully modified oligonucleotides (100% 2-O-Methyl or 2'-O-methyl A, C, and U in combination with 2'-fluoro G, termed fGmH) had the longest half-lives. These compositions demonstrated little degradation in human serum even after prolonged incubation. Together these results support the need for using fully modified aptamers for in vivo applications and should encourage those in the field to exploit newer polymerase variants capable of directly generating such polymers.

  5. Condition Monitoring of Large-Scale Facilities

    NASA Technical Reports Server (NTRS)

    Hall, David L.

    1999-01-01

    This document provides a summary of the research conducted for the NASA Ames Research Center under grant NAG2-1182 (Condition-Based Monitoring of Large-Scale Facilities). The information includes copies of view graphs presented at NASA Ames in the final Workshop (held during December of 1998), as well as a copy of a technical report provided to the COTR (Dr. Anne Patterson-Hine) subsequent to the workshop. The material describes the experimental design, collection of data, and analysis results associated with monitoring the health of large-scale facilities. In addition to this material, a copy of the Pennsylvania State University Applied Research Laboratory data fusion visual programming tool kit was also provided to NASA Ames researchers.

  6. Large-scale Advanced Propfan (LAP) program

    NASA Technical Reports Server (NTRS)

    Sagerser, D. A.; Ludemann, S. G.

    1985-01-01

    The propfan is an advanced propeller concept which maintains the high efficiencies traditionally associated with conventional propellers at the higher aircraft cruise speeds associated with jet transports. The large-scale advanced propfan (LAP) program extends the research done on 2 ft diameter propfan models to a 9 ft diameter article. The program includes design, fabrication, and testing of both an eight bladed, 9 ft diameter propfan, designated SR-7L, and a 2 ft diameter aeroelastically scaled model, SR-7A. The LAP program is complemented by the propfan test assessment (PTA) program, which takes the large-scale propfan and mates it with a gas generator and gearbox to form a propfan propulsion system and then flight tests this system on the wing of a Gulfstream 2 testbed aircraft.

  7. Large-scale fibre-array multiplexing

    SciTech Connect

    Cheremiskin, I V; Chekhlova, T K

    2001-05-31

    The possibility of creating a fibre multiplexer/demultiplexer with large-scale multiplexing without any basic restrictions on the number of channels and the spectral spacing between them is shown. The operating capacity of a fibre multiplexer based on a four-fibre array ensuring a spectral spacing of 0.7 pm ({approx} 10 GHz) between channels is demonstrated. (laser applications and other topics in quantum electronics)

  8. Modeling Human Behavior at a Large Scale

    DTIC Science & Technology

    2012-01-01

    Discerning intentions in dynamic human action. Trends in Cognitive Sciences , 5(4):171 – 178, 2001. Shirli Bar-David, Israel Bar-David, Paul C. Cross, Sadie...Limits of predictability in human mobility. Science , 327(5968):1018, 2010. S.A. Stouffer. Intervening opportunities: a theory relating mobility and...Modeling Human Behavior at a Large Scale by Adam Sadilek Submitted in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy

  9. Large-Scale Aerosol Modeling and Analysis

    DTIC Science & Technology

    2008-09-30

    aerosol species up to six days in advance anywhere on the globe. NAAPS and COAMPS are particularly useful for forecasts of dust storms in areas...impact cloud processes globally. With increasing dust storms due to climate change and land use changes in desert regions, the impact of the...bacteria in large-scale dust storms is expected to significantly impact warm ice cloud formation, human health, and ecosystems globally. In Niemi et al

  10. Large-scale instabilities of helical flows

    NASA Astrophysics Data System (ADS)

    Cameron, Alexandre; Alexakis, Alexandros; Brachet, Marc-Étienne

    2016-10-01

    Large-scale hydrodynamic instabilities of periodic helical flows of a given wave number K are investigated using three-dimensional Floquet numerical computations. In the Floquet formalism the unstable field is expanded in modes of different spacial periodicity. This allows us (i) to clearly distinguish large from small scale instabilities and (ii) to study modes of wave number q of arbitrarily large-scale separation q ≪K . Different flows are examined including flows that exhibit small-scale turbulence. The growth rate σ of the most unstable mode is measured as a function of the scale separation q /K ≪1 and the Reynolds number Re. It is shown that the growth rate follows the scaling σ ∝q if an AKA effect [Frisch et al., Physica D: Nonlinear Phenomena 28, 382 (1987), 10.1016/0167-2789(87)90026-1] is present or a negative eddy viscosity scaling σ ∝q2 in its absence. This holds both for the Re≪1 regime where previously derived asymptotic results are verified but also for Re=O (1 ) that is beyond their range of validity. Furthermore, for values of Re above a critical value ReSc beyond which small-scale instabilities are present, the growth rate becomes independent of q and the energy of the perturbation at large scales decreases with scale separation. The nonlinear behavior of these large-scale instabilities is also examined in the nonlinear regime where the largest scales of the system are found to be the most dominant energetically. These results are interpreted by low-order models.

  11. The Large Scale Synthesis of Aligned Plate Nanostructures

    PubMed Central

    Zhou, Yang; Nash, Philip; Liu, Tian; Zhao, Naiqin; Zhu, Shengli

    2016-01-01

    We propose a novel technique for the large-scale synthesis of aligned-plate nanostructures that are self-assembled and self-supporting. The synthesis technique involves developing nanoscale two-phase microstructures through discontinuous precipitation followed by selective etching to remove one of the phases. The method may be applied to any alloy system in which the discontinuous precipitation transformation goes to completion. The resulting structure may have many applications in catalysis, filtering and thermal management depending on the phase selection and added functionality through chemical reaction with the retained phase. The synthesis technique is demonstrated using the discontinuous precipitation of a γ′ phase, (Ni, Co)3Al, followed by selective dissolution of the γ matrix phase. The production of the nanostructure requires heat treatments on the order of minutes and can be performed on a large scale making this synthesis technique of great economic potential. PMID:27439672

  12. The Large Scale Synthesis of Aligned Plate Nanostructures

    NASA Astrophysics Data System (ADS)

    Zhou, Yang; Nash, Philip; Liu, Tian; Zhao, Naiqin; Zhu, Shengli

    2016-07-01

    We propose a novel technique for the large-scale synthesis of aligned-plate nanostructures that are self-assembled and self-supporting. The synthesis technique involves developing nanoscale two-phase microstructures through discontinuous precipitation followed by selective etching to remove one of the phases. The method may be applied to any alloy system in which the discontinuous precipitation transformation goes to completion. The resulting structure may have many applications in catalysis, filtering and thermal management depending on the phase selection and added functionality through chemical reaction with the retained phase. The synthesis technique is demonstrated using the discontinuous precipitation of a γ‧ phase, (Ni, Co)3Al, followed by selective dissolution of the γ matrix phase. The production of the nanostructure requires heat treatments on the order of minutes and can be performed on a large scale making this synthesis technique of great economic potential.

  13. Economically viable large-scale hydrogen liquefaction

    NASA Astrophysics Data System (ADS)

    Cardella, U.; Decker, L.; Klein, H.

    2017-02-01

    The liquid hydrogen demand, particularly driven by clean energy applications, will rise in the near future. As industrial large scale liquefiers will play a major role within the hydrogen supply chain, production capacity will have to increase by a multiple of today’s typical sizes. The main goal is to reduce the total cost of ownership for these plants by increasing energy efficiency with innovative and simple process designs, optimized in capital expenditure. New concepts must ensure a manageable plant complexity and flexible operability. In the phase of process development and selection, a dimensioning of key equipment for large scale liquefiers, such as turbines and compressors as well as heat exchangers, must be performed iteratively to ensure technological feasibility and maturity. Further critical aspects related to hydrogen liquefaction, e.g. fluid properties, ortho-para hydrogen conversion, and coldbox configuration, must be analysed in detail. This paper provides an overview on the approach, challenges and preliminary results in the development of efficient as well as economically viable concepts for large-scale hydrogen liquefaction.

  14. Large-Scale Visual Data Analysis

    NASA Astrophysics Data System (ADS)

    Johnson, Chris

    2014-04-01

    Modern high performance computers have speeds measured in petaflops and handle data set sizes measured in terabytes and petabytes. Although these machines offer enormous potential for solving very large-scale realistic computational problems, their effectiveness will hinge upon the ability of human experts to interact with their simulation results and extract useful information. One of the greatest scientific challenges of the 21st century is to effectively understand and make use of the vast amount of information being produced. Visual data analysis will be among our most most important tools in helping to understand such large-scale information. Our research at the Scientific Computing and Imaging (SCI) Institute at the University of Utah has focused on innovative, scalable techniques for large-scale 3D visual data analysis. In this talk, I will present state- of-the-art visualization techniques, including scalable visualization algorithms and software, cluster-based visualization methods and innovate visualization techniques applied to problems in computational science, engineering, and medicine. I will conclude with an outline for a future high performance visualization research challenges and opportunities.

  15. Large-scale neuromorphic computing systems

    NASA Astrophysics Data System (ADS)

    Furber, Steve

    2016-10-01

    Neuromorphic computing covers a diverse range of approaches to information processing all of which demonstrate some degree of neurobiological inspiration that differentiates them from mainstream conventional computing systems. The philosophy behind neuromorphic computing has its origins in the seminal work carried out by Carver Mead at Caltech in the late 1980s. This early work influenced others to carry developments forward, and advances in VLSI technology supported steady growth in the scale and capability of neuromorphic devices. Recently, a number of large-scale neuromorphic projects have emerged, taking the approach to unprecedented scales and capabilities. These large-scale projects are associated with major new funding initiatives for brain-related research, creating a sense that the time and circumstances are right for progress in our understanding of information processing in the brain. In this review we present a brief history of neuromorphic engineering then focus on some of the principal current large-scale projects, their main features, how their approaches are complementary and distinct, their advantages and drawbacks, and highlight the sorts of capabilities that each can deliver to neural modellers.

  16. Chitosan derivatives obtained by chemical modifications for biomedical and environmental applications.

    PubMed

    Alves, N M; Mano, J F

    2008-12-01

    Chitosan is a natural based polymer, obtained by alkaline deacetylation of chitin, which presents excellent biological properties such as biodegradability and immunological, antibacterial and wound-healing activity. Recently, there has been a growing interest in the chemical modification of chitosan in order to improve its solubility and widen its applications. The main chemical modifications of chitosan that have been proposed in the literature are reviewed in this paper. Moreover, these chemical modifications lead to a wide range of derivatives with a broad range of applications. Recent and relevant examples of the distinct applications, with particular emphasis on tissue engineering, drug delivery and environmental applications, are presented.

  17. Complete chemical modification of amine and acid functional groups of peptides and small proteins

    PubMed Central

    Krusemark, Casey J.; Frey, Brian L.; Smith, Lloyd M.; Belshaw, Peter J.

    2013-01-01

    Summary The chemical modification of protein thiols by reduction and alkylation is common in the preparation of proteomic samples for analysis by mass spectrometry (MS). Modification at other functional groups has received less attention in MS-based proteomics. Amine modification (Lys, N-termini) by reductive dimethylation or by acylation (e.g. iTRAQ labeling) has recently gained some popularity in peptide-based approaches (bottom-up MS). Modification at acidic groups (Asp, Glu, C-termini) has been explored very minimally. Here, we describe a sequential labeling strategy that enables complete modification of thiols, amines, and acids on peptides or small intact proteins. This method includes (1) the reduction and alkylation of thiols, (2) the reductive dimethylation of amines, and (3) the amidation of acids with any of several amines. This chemical modification scheme offers several options both for the incorporation of stable isotopes for relative quantification and for improving peptides or proteins as MS analytes. PMID:21604117

  18. Surface chemical and physical modification in stent technology for the treatment of coronary artery disease.

    PubMed

    Nazneen, Feroze; Herzog, Grégoire; Arrigan, Damien W M; Caplice, Noel; Benvenuto, Pasquale; Galvin, Paul; Thompson, Michael

    2012-10-01

    Coronary artery disease (CAD) kills millions of people every year. It results from a narrowing of the arteries (stenosis) supplying blood to the heart. This review discusses the merits and limitations of balloon angioplasty and stent implantation, the most common treatment options for CAD, and the pathophysiology associated with these treatments. The focus of the review is heavily placed on research efforts geared toward the modification of stent surfaces for the improvement of stent-vascular compatibility and the reduction in the occurrence of related pathophysiologies. Such modifications may be chemical or physical, both of which are surveyed here. Chemical modifications may be passive or active, while physical modification of stent surfaces can also provide suitable substrates to manipulate the responses of vascular cells (endothelial, smooth muscle, and fibroblast). The influence of micro- and nanostructured surfaces on the in vitro cell response is discussed. Finally, future perspectives on the combination of chemical and physical modifications of stent surfaces are also presented.

  19. Chemical Posttranslational Modification with Designed Rhodium(II) Catalysts.

    PubMed

    Martin, S C; Minus, M B; Ball, Z T

    2016-01-01

    Natural enzymes use molecular recognition to perform exquisitely selective transformations on nucleic acids, proteins, and natural products. Rhodium(II) catalysts mimic this selectivity, using molecular recognition to allow selective modification of proteins with a variety of functionalized diazo reagents. The rhodium catalysts and the diazo reactivity have been successfully applied to a variety of protein folds, the chemistry succeeds in complex environments such as cell lysate, and a simple protein blot method accurately assesses modification efficiency. The studies with rhodium catalysts provide a new tool to study and probe protein-binding events, as well as a new synthetic approach to protein conjugates for medical, biochemical, or materials applications.

  20. Experimental Simulations of Large-Scale Collisions

    NASA Technical Reports Server (NTRS)

    Housen, Kevin R.

    2002-01-01

    This report summarizes research on the effects of target porosity on the mechanics of impact cratering. Impact experiments conducted on a centrifuge provide direct simulations of large-scale cratering on porous asteroids. The experiments show that large craters in porous materials form mostly by compaction, with essentially no deposition of material into the ejecta blanket that is a signature of cratering in less-porous materials. The ratio of ejecta mass to crater mass is shown to decrease with increasing crater size or target porosity. These results are consistent with the observation that large closely-packed craters on asteroid Mathilde appear to have formed without degradation to earlier craters.

  1. What is a large-scale dynamo?

    NASA Astrophysics Data System (ADS)

    Nigro, G.; Pongkitiwanichakul, P.; Cattaneo, F.; Tobias, S. M.

    2017-01-01

    We consider kinematic dynamo action in a sheared helical flow at moderate to high values of the magnetic Reynolds number (Rm). We find exponentially growing solutions which, for large enough shear, take the form of a coherent part embedded in incoherent fluctuations. We argue that at large Rm large-scale dynamo action should be identified by the presence of structures coherent in time, rather than those at large spatial scales. We further argue that although the growth rate is determined by small-scale processes, the period of the coherent structures is set by mean-field considerations.

  2. Large-scale brightenings associated with flares

    NASA Technical Reports Server (NTRS)

    Mandrini, Cristina H.; Machado, Marcos E.

    1992-01-01

    It is shown that large-scale brightenings (LSBs) associated with solar flares, similar to the 'giant arches' discovered by Svestka et al. (1982) in images obtained by the SSM HXIS hours after the onset of two-ribbon flares, can also occur in association with confined flares in complex active regions. For these events, a clear link between the LSB and the underlying flare is clearly evident from the active-region magnetic field topology. The implications of these findings are discussed within the framework of the interacting loops of flares and the giant arch phenomenology.

  3. Large scale phononic metamaterials for seismic isolation

    SciTech Connect

    Aravantinos-Zafiris, N.; Sigalas, M. M.

    2015-08-14

    In this work, we numerically examine structures that could be characterized as large scale phononic metamaterials. These novel structures could have band gaps in the frequency spectrum of seismic waves when their dimensions are chosen appropriately, thus raising the belief that they could be serious candidates for seismic isolation structures. Different and easy to fabricate structures were examined made from construction materials such as concrete and steel. The well-known finite difference time domain method is used in our calculations in order to calculate the band structures of the proposed metamaterials.

  4. Large-scale planar lightwave circuits

    NASA Astrophysics Data System (ADS)

    Bidnyk, Serge; Zhang, Hua; Pearson, Matt; Balakrishnan, Ashok

    2011-01-01

    By leveraging advanced wafer processing and flip-chip bonding techniques, we have succeeded in hybrid integrating a myriad of active optical components, including photodetectors and laser diodes, with our planar lightwave circuit (PLC) platform. We have combined hybrid integration of active components with monolithic integration of other critical functions, such as diffraction gratings, on-chip mirrors, mode-converters, and thermo-optic elements. Further process development has led to the integration of polarization controlling functionality. Most recently, all these technological advancements have been combined to create large-scale planar lightwave circuits that comprise hundreds of optical elements integrated on chips less than a square inch in size.

  5. Large-Scale PV Integration Study

    SciTech Connect

    Lu, Shuai; Etingov, Pavel V.; Diao, Ruisheng; Ma, Jian; Samaan, Nader A.; Makarov, Yuri V.; Guo, Xinxin; Hafen, Ryan P.; Jin, Chunlian; Kirkham, Harold; Shlatz, Eugene; Frantzis, Lisa; McClive, Timothy; Karlson, Gregory; Acharya, Dhruv; Ellis, Abraham; Stein, Joshua; Hansen, Clifford; Chadliev, Vladimir; Smart, Michael; Salgo, Richard; Sorensen, Rahn; Allen, Barbara; Idelchik, Boris

    2011-07-29

    This research effort evaluates the impact of large-scale photovoltaic (PV) and distributed generation (DG) output on NV Energy’s electric grid system in southern Nevada. It analyzes the ability of NV Energy’s generation to accommodate increasing amounts of utility-scale PV and DG, and the resulting cost of integrating variable renewable resources. The study was jointly funded by the United States Department of Energy and NV Energy, and conducted by a project team comprised of industry experts and research scientists from Navigant Consulting Inc., Sandia National Laboratories, Pacific Northwest National Laboratory and NV Energy.

  6. Colloquium: Large scale simulations on GPU clusters

    NASA Astrophysics Data System (ADS)

    Bernaschi, Massimo; Bisson, Mauro; Fatica, Massimiliano

    2015-06-01

    Graphics processing units (GPU) are currently used as a cost-effective platform for computer simulations and big-data processing. Large scale applications require that multiple GPUs work together but the efficiency obtained with cluster of GPUs is, at times, sub-optimal because the GPU features are not exploited at their best. We describe how it is possible to achieve an excellent efficiency for applications in statistical mechanics, particle dynamics and networks analysis by using suitable memory access patterns and mechanisms like CUDA streams, profiling tools, etc. Similar concepts and techniques may be applied also to other problems like the solution of Partial Differential Equations.

  7. Neutrinos and large-scale structure

    SciTech Connect

    Eisenstein, Daniel J.

    2015-07-15

    I review the use of cosmological large-scale structure to measure properties of neutrinos and other relic populations of light relativistic particles. With experiments to measure the anisotropies of the cosmic microwave anisotropies and the clustering of matter at low redshift, we now have securely measured a relativistic background with density appropriate to the cosmic neutrino background. Our limits on the mass of the neutrino continue to shrink. Experiments coming in the next decade will greatly improve the available precision on searches for the energy density of novel relativistic backgrounds and the mass of neutrinos.

  8. Large-scale Heterogeneous Network Data Analysis

    DTIC Science & Technology

    2012-07-31

    Data for Multi-Player Influence Maximization on Social Networks.” KDD 2012 (Demo).  Po-Tzu Chang , Yen-Chieh Huang, Cheng-Lun Yang, Shou-De Lin, Pu...Jen Cheng. “Learning-Based Time-Sensitive Re-Ranking for Web Search.” SIGIR 2012 (poster)  Hung -Che Lai, Cheng-Te Li, Yi-Chen Lo, and Shou-De Lin...Exploiting and Evaluating MapReduce for Large-Scale Graph Mining.” ASONAM 2012 (Full, 16% acceptance ratio).  Hsun-Ping Hsieh , Cheng-Te Li, and Shou

  9. Chemical Modification of Papain and Subtilisin: An Active Site Comparison

    ERIC Educational Resources Information Center

    St-Vincent, Mireille; Dickman, Michael

    2004-01-01

    An experiment using methyle methanethiosulfonate (MMTS) and phenylmethylsulfonyl flouride (PMSF) to specifically modify the cysteine and serine residues in the active sites of papain and subtilism respectively is demonstrated. The covalent modification of these enzymes and subsequent rescue of papain shows the beginning biochemist that proteins…

  10. Chemical Modification of Papain and Subtilisin: An Active Site Comparison

    ERIC Educational Resources Information Center

    St-Vincent, Mireille; Dickman, Michael

    2004-01-01

    An experiment using methyle methanethiosulfonate (MMTS) and phenylmethylsulfonyl flouride (PMSF) to specifically modify the cysteine and serine residues in the active sites of papain and subtilism respectively is demonstrated. The covalent modification of these enzymes and subsequent rescue of papain shows the beginning biochemist that proteins…

  11. Chemical TOPAZ: Modifications to the heat transfer code TOPAZ: The addition of chemical reaction kinetics and chemical mixtures

    SciTech Connect

    Nichols, A.L. III.

    1990-06-07

    This is a report describing the modifications which have been made to the heat flow code TOPAZ to allow the inclusion of thermally controlled chemical kinetics. This report is broken into parts. The first part is an introduction to the general assumptions and theoretical underpinning that were used to develop the model. The second section describes the changes that have been implemented into the code. The third section is the users manual for the input for the code. The fourth section is a compilation of hints, common errors, and things to be aware of while you are getting started. The fifth section gives a sample problem using the new code. This manual addenda is written with the presumption that most readers are not fluent with chemical concepts. Therefore, we shall in this section endeavor to describe the requirements that must be met before chemistry can occur and how we have modeled the chemistry in the code.

  12. Internationalization Measures in Large Scale Research Projects

    NASA Astrophysics Data System (ADS)

    Soeding, Emanuel; Smith, Nancy

    2017-04-01

    Internationalization measures in Large Scale Research Projects Large scale research projects (LSRP) often serve as flagships used by universities or research institutions to demonstrate their performance and capability to stakeholders and other interested parties. As the global competition among universities for the recruitment of the brightest brains has increased, effective internationalization measures have become hot topics for universities and LSRP alike. Nevertheless, most projects and universities are challenged with little experience on how to conduct these measures and make internationalization an cost efficient and useful activity. Furthermore, those undertakings permanently have to be justified with the Project PIs as important, valuable tools to improve the capacity of the project and the research location. There are a variety of measures, suited to support universities in international recruitment. These include e.g. institutional partnerships, research marketing, a welcome culture, support for science mobility and an effective alumni strategy. These activities, although often conducted by different university entities, are interlocked and can be very powerful measures if interfaced in an effective way. On this poster we display a number of internationalization measures for various target groups, identify interfaces between project management, university administration, researchers and international partners to work together, exchange information and improve processes in order to be able to recruit, support and keep the brightest heads to your project.

  13. Local gravity and large-scale structure

    NASA Technical Reports Server (NTRS)

    Juszkiewicz, Roman; Vittorio, Nicola; Wyse, Rosemary F. G.

    1990-01-01

    The magnitude and direction of the observed dipole anisotropy of the galaxy distribution can in principle constrain the amount of large-scale power present in the spectrum of primordial density fluctuations. This paper confronts the data, provided by a recent redshift survey of galaxies detected by the IRAS satellite, with the predictions of two cosmological models with very different levels of large-scale power: the biased Cold Dark Matter dominated model (CDM) and a baryon-dominated model (BDM) with isocurvature initial conditions. Model predictions are investigated for the Local Group peculiar velocity, v(R), induced by mass inhomogeneities distributed out to a given radius, R, for R less than about 10,000 km/s. Several convergence measures for v(R) are developed, which can become powerful cosmological tests when deep enough samples become available. For the present data sets, the CDM and BDM predictions are indistinguishable at the 2 sigma level and both are consistent with observations. A promising discriminant between cosmological models is the misalignment angle between v(R) and the apex of the dipole anisotropy of the microwave background.

  14. Large-scale Intelligent Transporation Systems simulation

    SciTech Connect

    Ewing, T.; Canfield, T.; Hannebutte, U.; Levine, D.; Tentner, A.

    1995-06-01

    A prototype computer system has been developed which defines a high-level architecture for a large-scale, comprehensive, scalable simulation of an Intelligent Transportation System (ITS) capable of running on massively parallel computers and distributed (networked) computer systems. The prototype includes the modelling of instrumented ``smart`` vehicles with in-vehicle navigation units capable of optimal route planning and Traffic Management Centers (TMC). The TMC has probe vehicle tracking capabilities (display position and attributes of instrumented vehicles), and can provide 2-way interaction with traffic to provide advisories and link times. Both the in-vehicle navigation module and the TMC feature detailed graphical user interfaces to support human-factors studies. The prototype has been developed on a distributed system of networked UNIX computers but is designed to run on ANL`s IBM SP-X parallel computer system for large scale problems. A novel feature of our design is that vehicles will be represented by autonomus computer processes, each with a behavior model which performs independent route selection and reacts to external traffic events much like real vehicles. With this approach, one will be able to take advantage of emerging massively parallel processor (MPP) systems.

  15. Local gravity and large-scale structure

    NASA Technical Reports Server (NTRS)

    Juszkiewicz, Roman; Vittorio, Nicola; Wyse, Rosemary F. G.

    1990-01-01

    The magnitude and direction of the observed dipole anisotropy of the galaxy distribution can in principle constrain the amount of large-scale power present in the spectrum of primordial density fluctuations. This paper confronts the data, provided by a recent redshift survey of galaxies detected by the IRAS satellite, with the predictions of two cosmological models with very different levels of large-scale power: the biased Cold Dark Matter dominated model (CDM) and a baryon-dominated model (BDM) with isocurvature initial conditions. Model predictions are investigated for the Local Group peculiar velocity, v(R), induced by mass inhomogeneities distributed out to a given radius, R, for R less than about 10,000 km/s. Several convergence measures for v(R) are developed, which can become powerful cosmological tests when deep enough samples become available. For the present data sets, the CDM and BDM predictions are indistinguishable at the 2 sigma level and both are consistent with observations. A promising discriminant between cosmological models is the misalignment angle between v(R) and the apex of the dipole anisotropy of the microwave background.

  16. Large-scale Globally Propagating Coronal Waves.

    PubMed

    Warmuth, Alexander

    Large-scale, globally propagating wave-like disturbances have been observed in the solar chromosphere and by inference in the corona since the 1960s. However, detailed analysis of these phenomena has only been conducted since the late 1990s. This was prompted by the availability of high-cadence coronal imaging data from numerous spaced-based instruments, which routinely show spectacular globally propagating bright fronts. Coronal waves, as these perturbations are usually referred to, have now been observed in a wide range of spectral channels, yielding a wealth of information. Many findings have supported the "classical" interpretation of the disturbances: fast-mode MHD waves or shocks that are propagating in the solar corona. However, observations that seemed inconsistent with this picture have stimulated the development of alternative models in which "pseudo waves" are generated by magnetic reconfiguration in the framework of an expanding coronal mass ejection. This has resulted in a vigorous debate on the physical nature of these disturbances. This review focuses on demonstrating how the numerous observational findings of the last one and a half decades can be used to constrain our models of large-scale coronal waves, and how a coherent physical understanding of these disturbances is finally emerging.

  17. Chemical modification of the inner and outer surfaces of Tobacco Mosaic Virus (TMV).

    PubMed

    Bruckman, Michael A; Steinmetz, Nicole F

    2014-01-01

    Viral nanoparticles derived from tobacco mosaic virus (TMV) find applications in various fields. We report the purification and chemical modification of TMV which is a hollow rod-shaped plant viral nanoparticle with modifiable interior and exterior surfaces. We describe methods to isolate TMV from its tobacco plant host for spatially controlled interior and exterior chemical modification and to characterize the resulting TMV hybrid materials.

  18. Large-scale genotoxicity assessments in the marine environment.

    PubMed

    Hose, J E

    1994-12-01

    There are a number of techniques for detecting genotoxicity in the marine environment, and many are applicable to large-scale field assessments. Certain tests can be used to evaluate responses in target organisms in situ while others utilize surrogate organisms exposed to field samples in short-term laboratory bioassays. Genotoxicity endpoints appear distinct from traditional toxicity endpoints, but some have chemical or ecotoxicologic correlates. One versatile end point, the frequency of anaphase aberrations, has been used in several large marine assessments to evaluate genotoxicity in the New York Bight, in sediment from San Francisco Bay, and following the Exxon Valdez oil spill.

  19. Large-scale genotoxicity assessments in the marine environment.

    PubMed Central

    Hose, J E

    1994-01-01

    There are a number of techniques for detecting genotoxicity in the marine environment, and many are applicable to large-scale field assessments. Certain tests can be used to evaluate responses in target organisms in situ while others utilize surrogate organisms exposed to field samples in short-term laboratory bioassays. Genotoxicity endpoints appear distinct from traditional toxicity endpoints, but some have chemical or ecotoxicologic correlates. One versatile end point, the frequency of anaphase aberrations, has been used in several large marine assessments to evaluate genotoxicity in the New York Bight, in sediment from San Francisco Bay, and following the Exxon Valdez oil spill. PMID:7713029

  20. Large-scale genotoxicity assessments in the marine environment

    SciTech Connect

    Hose, J.E.

    1994-12-01

    There are a number of techniques for detecting genotoxicity in the marine environment, and many are applicable to large-scale field assessments. Certain tests can be used to evaluate responses in target organisms in situ while others utilize surrogate organisms exposed to field samples in short-term laboratory bioassays. Genotoxicity endpoints appear distinct from traditional toxicity endpoints, but some have chemical or ecotoxicologic correlates. One versatile end point, the frequency of anaphase aberrations, has been used in several large marine assessments to evaluate genotoxicity in the New York Bight, in sediment from San Francisco Bay, and following the Exxon Valdez oil spill. 31 refs., 2 tabs.

  1. Chemical Modifications that Affect Nutritional and Functional Properties of Proteins.

    ERIC Educational Resources Information Center

    Richardson, T.; Kester, J. J.

    1984-01-01

    Discusses chemical alterations of selected amino acids resulting from environmental effects (photooxidations, pH extremes, thermally induced effects). Also dicusses use of intentional chemical derivatizations of various functional groups in amino acid residue side chains and how recombinant DNA techniques might be useful in structure/function…

  2. Chemical modification : a non-toxic approach to wood preservation

    Treesearch

    Roger M. Rowell

    2006-01-01

    Wood can be chemically modified to reduce the moisture content of the cell wall and increases decay resistance. As the level of bonded chemical increases, the cell wall equilibrium moisture content decreases and the resistance to attack by white-and brown-rot fungi increases. There is a direct relationship between the decrease in cell wall moisture Content and...

  3. Chemical Modifications that Affect Nutritional and Functional Properties of Proteins.

    ERIC Educational Resources Information Center

    Richardson, T.; Kester, J. J.

    1984-01-01

    Discusses chemical alterations of selected amino acids resulting from environmental effects (photooxidations, pH extremes, thermally induced effects). Also dicusses use of intentional chemical derivatizations of various functional groups in amino acid residue side chains and how recombinant DNA techniques might be useful in structure/function…

  4. Chemical modification of the tryptophan residue in adrenocorticotropin.

    PubMed

    Canova-Davis, E; Ramachandran, J

    1976-02-24

    The single tryptophan residue in the pituitary hormone adrenocorticotropin was modified selectively by reaction with a variety of substituted o-nitrophenylsulfenyl chlorides. In addition to quantitative modification of the tryptophan residue, the reaction invariably resulted in partial oxidation of the methionine residue to the sulfoxide. The methionine sulfoxide derivative could be separated from the desired product by partition chromatography on Sephadex G-50 in the solvent system 1-butanol-pyridine-0.1% acetic acid (5:3:11). Thus, the 2,4-dinitrophenylsulfenyl, 2-nitro-4-carboxyphenylsulfenyl, and 2-nitro-4-carbamidophenylsulfenyl derivatives of adrenocorticotropin were prepared and characterized. Modifications in the isolation of adrenocorticotropin from ovine pituitaries are also described. The melanocyte stimulating activities of the native hormone and the analogues are discussed.

  5. Efficient, large scale separation of coal macerals

    SciTech Connect

    Dyrkacz, G.R.; Bloomquist, C.A.A.

    1988-01-01

    The authors believe that the separation of macerals by continuous flow centrifugation offers a simple technique for the large scale separation of macerals. With relatively little cost (/approximately/ $10K), it provides an opportunity for obtaining quite pure maceral fractions. Although they have not completely worked out all the nuances of this separation system, they believe that the problems they have indicated can be minimized to pose only minor inconvenience. It cannot be said that this system completely bypasses the disagreeable tedium or time involved in separating macerals, nor will it by itself overcome the mental inertia required to make maceral separation an accepted necessary fact in fundamental coal science. However, they find their particular brand of continuous flow centrifugation is considerably faster than sink/float separation, can provide a good quality product with even one separation cycle, and permits the handling of more material than a conventional sink/float centrifuge separation.

  6. Primer design for large scale sequencing.

    PubMed Central

    Haas, S; Vingron, M; Poustka, A; Wiemann, S

    1998-01-01

    We have developed PRIDE, a primer design program that automatically designs primers in single contigs or whole sequencing projects to extend the already known sequence and to double strand single-stranded regions. The program is fully integrated into the Staden package (GAP4) and accessible with a graphical user interface. PRIDE uses a fuzzy logic-based system to calculate primer qualities. The computational performance of PRIDE is enhanced by using suffix trees to store the huge amount of data being produced. A test set of 110 sequencing primers and 11 PCR primer pairs has been designed on genomic templates, cDNAs and sequences containing repetitive elements to analyze PRIDE's success rate. The high performance of PRIDE, combined with its minimal requirement of user interaction and its fast algorithm, make this program useful for the large scale design of primers, especially in large sequencing projects. PMID:9611248

  7. Grid sensitivity capability for large scale structures

    NASA Technical Reports Server (NTRS)

    Nagendra, Gopal K.; Wallerstein, David V.

    1989-01-01

    The considerations and the resultant approach used to implement design sensitivity capability for grids into a large scale, general purpose finite element system (MSC/NASTRAN) are presented. The design variables are grid perturbations with a rather general linking capability. Moreover, shape and sizing variables may be linked together. The design is general enough to facilitate geometric modeling techniques for generating design variable linking schemes in an easy and straightforward manner. Test cases have been run and validated by comparison with the overall finite difference method. The linking of a design sensitivity capability for shape variables in MSC/NASTRAN with an optimizer would give designers a powerful, automated tool to carry out practical optimization design of real life, complicated structures.

  8. Large-Scale Organization of Glycosylation Networks

    NASA Astrophysics Data System (ADS)

    Kim, Pan-Jun; Lee, Dong-Yup; Jeong, Hawoong

    2009-03-01

    Glycosylation is a highly complex process to produce a diverse repertoire of cellular glycans that are frequently attached to proteins and lipids. Glycans participate in fundamental biological processes including molecular trafficking and clearance, cell proliferation and apoptosis, developmental biology, immune response, and pathogenesis. N-linked glycans found on proteins are formed by sequential attachments of monosaccharides with the help of a relatively small number of enzymes. Many of these enzymes can accept multiple N-linked glycans as substrates, thus generating a large number of glycan intermediates and their intermingled pathways. Motivated by the quantitative methods developed in complex network research, we investigate the large-scale organization of such N-glycosylation pathways in a mammalian cell. The uncovered results give the experimentally-testable predictions for glycosylation process, and can be applied to the engineering of therapeutic glycoproteins.

  9. Large-scale optimization of neuron arbors

    NASA Astrophysics Data System (ADS)

    Cherniak, Christopher; Changizi, Mark; Won Kang, Du

    1999-05-01

    At the global as well as local scales, some of the geometry of types of neuron arbors-both dendrites and axons-appears to be self-organizing: Their morphogenesis behaves like flowing water, that is, fluid dynamically; waterflow in branching networks in turn acts like a tree composed of cords under tension, that is, vector mechanically. Branch diameters and angles and junction sites conform significantly to this model. The result is that such neuron tree samples globally minimize their total volume-rather than, for example, surface area or branch length. In addition, the arbors perform well at generating the cheapest topology interconnecting their terminals: their large-scale layouts are among the best of all such possible connecting patterns, approaching 5% of optimum. This model also applies comparably to arterial and river networks.

  10. Engineering management of large scale systems

    NASA Technical Reports Server (NTRS)

    Sanders, Serita; Gill, Tepper L.; Paul, Arthur S.

    1989-01-01

    The organization of high technology and engineering problem solving, has given rise to an emerging concept. Reasoning principles for integrating traditional engineering problem solving with system theory, management sciences, behavioral decision theory, and planning and design approaches can be incorporated into a methodological approach to solving problems with a long range perspective. Long range planning has a great potential to improve productivity by using a systematic and organized approach. Thus, efficiency and cost effectiveness are the driving forces in promoting the organization of engineering problems. Aspects of systems engineering that provide an understanding of management of large scale systems are broadly covered here. Due to the focus and application of research, other significant factors (e.g., human behavior, decision making, etc.) are not emphasized but are considered.

  11. Large scale cryogenic fluid systems testing

    NASA Technical Reports Server (NTRS)

    1992-01-01

    NASA Lewis Research Center's Cryogenic Fluid Systems Branch (CFSB) within the Space Propulsion Technology Division (SPTD) has the ultimate goal of enabling the long term storage and in-space fueling/resupply operations for spacecraft and reusable vehicles in support of space exploration. Using analytical modeling, ground based testing, and on-orbit experimentation, the CFSB is studying three primary categories of fluid technology: storage, supply, and transfer. The CFSB is also investigating fluid handling, advanced instrumentation, and tank structures and materials. Ground based testing of large-scale systems is done using liquid hydrogen as a test fluid at the Cryogenic Propellant Tank Facility (K-site) at Lewis' Plum Brook Station in Sandusky, Ohio. A general overview of tests involving liquid transfer, thermal control, pressure control, and pressurization is given.

  12. Large scale preparation of pure phycobiliproteins.

    PubMed

    Padgett, M P; Krogmann, D W

    1987-01-01

    This paper describes simple procedures for the purification of large amounts of phycocyanin and allophycocyanin from the cyanobacterium Microcystis aeruginosa. A homogeneous natural bloom of this organism provided hundreds of kilograms of cells. Large samples of cells were broken by freezing and thawing. Repeated extraction of the broken cells with distilled water released phycocyanin first, then allophycocyanin, and provides supporting evidence for the current models of phycobilisome structure. The very low ionic strength of the aqueous extracts allowed allophycocyanin release in a particulate form so that this protein could be easily concentrated by centrifugation. Other proteins in the extract were enriched and concentrated by large scale membrane filtration. The biliproteins were purified to homogeneity by chromatography on DEAE cellulose. Purity was established by HPLC and by N-terminal amino acid sequence analysis. The proteins were examined for stability at various pHs and exposures to visible light.

  13. Primer design for large scale sequencing.

    PubMed

    Haas, S; Vingron, M; Poustka, A; Wiemann, S

    1998-06-15

    We have developed PRIDE, a primer design program that automatically designs primers in single contigs or whole sequencing projects to extend the already known sequence and to double strand single-stranded regions. The program is fully integrated into the Staden package (GAP4) and accessible with a graphical user interface. PRIDE uses a fuzzy logic-based system to calculate primer qualities. The computational performance of PRIDE is enhanced by using suffix trees to store the huge amount of data being produced. A test set of 110 sequencing primers and 11 PCR primer pairs has been designed on genomic templates, cDNAs and sequences containing repetitive elements to analyze PRIDE's success rate. The high performance of PRIDE, combined with its minimal requirement of user interaction and its fast algorithm, make this program useful for the large scale design of primers, especially in large sequencing projects.

  14. Large Scale Quantum Simulations of Nuclear Pasta

    NASA Astrophysics Data System (ADS)

    Fattoyev, Farrukh J.; Horowitz, Charles J.; Schuetrumpf, Bastian

    2016-03-01

    Complex and exotic nuclear geometries collectively referred to as ``nuclear pasta'' are expected to naturally exist in the crust of neutron stars and in supernovae matter. Using a set of self-consistent microscopic nuclear energy density functionals we present the first results of large scale quantum simulations of pasta phases at baryon densities 0 . 03 < ρ < 0 . 10 fm-3, proton fractions 0 . 05

  15. Jovian large-scale stratospheric circulation

    NASA Technical Reports Server (NTRS)

    West, R. A.; Friedson, A. J.; Appleby, J. F.

    1992-01-01

    An attempt is made to diagnose the annual-average mean meridional residual Jovian large-scale stratospheric circulation from observations of the temperature and reflected sunlight that reveal the morphology of the aerosol heating. The annual mean solar heating, total radiative flux divergence, mass stream function, and Eliassen-Palm flux divergence are shown. The stratospheric radiative flux divergence is dominated the high latitudes by aerosol absorption. Between the 270 and 100 mbar pressure levels, where there is no aerosol heating in the model, the structure of the circulation at low- to midlatitudes is governed by the meridional variation of infrared cooling in association with the variation of zonal mean temperatures observed by IRIS. The principal features of the vertical velocity profile found by Gierasch et al. (1986) are recovered in the present calculation.

  16. Large-scale parametric survival analysis.

    PubMed

    Mittal, Sushil; Madigan, David; Cheng, Jerry Q; Burd, Randall S

    2013-10-15

    Survival analysis has been a topic of active statistical research in the past few decades with applications spread across several areas. Traditional applications usually consider data with only a small numbers of predictors with a few hundreds or thousands of observations. Recent advances in data acquisition techniques and computation power have led to considerable interest in analyzing very-high-dimensional data where the number of predictor variables and the number of observations range between 10(4) and 10(6). In this paper, we present a tool for performing large-scale regularized parametric survival analysis using a variant of the cyclic coordinate descent method. Through our experiments on two real data sets, we show that application of regularized models to high-dimensional data avoids overfitting and can provide improved predictive performance and calibration over corresponding low-dimensional models.

  17. Large-Scale Parametric Survival Analysis†

    PubMed Central

    Mittal, Sushil; Madigan, David; Cheng, Jerry; Burd, Randall S.

    2013-01-01

    Survival analysis has been a topic of active statistical research in the past few decades with applications spread across several areas. Traditional applications usually consider data with only small numbers of predictors with a few hundreds or thousands of observations. Recent advances in data acquisition techniques and computation power has led to considerable interest in analyzing very high-dimensional data where the number of predictor variables and the number of observations range between 104 – 106. In this paper, we present a tool for performing large-scale regularized parametric survival analysis using a variant of cyclic coordinate descent method. Through our experiments on two real data sets, we show that application of regularized models to high-dimensional data avoids overfitting and can provide improved predictive performance and calibration over corresponding low-dimensional models. PMID:23625862

  18. Large scale study of tooth enamel

    SciTech Connect

    Bodart, F.; Deconninck, G.; Martin, M.Th.

    1981-04-01

    Human tooth enamel contains traces of foreign elements. The presence of these elements is related to the history and the environment of the human body and can be considered as the signature of perturbations which occur during the growth of a tooth. A map of the distribution of these traces on a large scale sample of the population will constitute a reference for further investigations of environmental effects. One hundred eighty samples of teeth were first analysed using PIXE, backscattering and nuclear reaction techniques. The results were analysed using statistical methods. Correlations between O, F, Na, P, Ca, Mn, Fe, Cu, Zn, Pb and Sr were observed and cluster analysis was in progress. The techniques described in the present work have been developed in order to establish a method for the exploration of very large samples of the Belgian population.

  19. The challenge of large-scale structure

    NASA Astrophysics Data System (ADS)

    Gregory, S. A.

    1996-03-01

    The tasks that I have assumed for myself in this presentation include three separate parts. The first, appropriate to the particular setting of this meeting, is to review the basic work of the founding of this field; the appropriateness comes from the fact that W. G. Tifft made immense contributions that are not often realized by the astronomical community. The second task is to outline the general tone of the observational evidence for large scale structures. (Here, in particular, I cannot claim to be complete. I beg forgiveness from any workers who are left out by my oversight for lack of space and time.) The third task is to point out some of the major aspects of the field that may represent the clues by which some brilliant sleuth will ultimately figure out how galaxies formed.

  20. Modeling the Internet's large-scale topology

    PubMed Central

    Yook, Soon-Hyung; Jeong, Hawoong; Barabási, Albert-László

    2002-01-01

    Network generators that capture the Internet's large-scale topology are crucial for the development of efficient routing protocols and modeling Internet traffic. Our ability to design realistic generators is limited by the incomplete understanding of the fundamental driving forces that affect the Internet's evolution. By combining several independent databases capturing the time evolution, topology, and physical layout of the Internet, we identify the universal mechanisms that shape the Internet's router and autonomous system level topology. We find that the physical layout of nodes form a fractal set, determined by population density patterns around the globe. The placement of links is driven by competition between preferential attachment and linear distance dependence, a marked departure from the currently used exponential laws. The universal parameters that we extract significantly restrict the class of potentially correct Internet models and indicate that the networks created by all available topology generators are fundamentally different from the current Internet. PMID:12368484

  1. Large-scale sequential quadratic programming algorithms

    SciTech Connect

    Eldersveld, S.K.

    1992-09-01

    The problem addressed is the general nonlinear programming problem: finding a local minimizer for a nonlinear function subject to a mixture of nonlinear equality and inequality constraints. The methods studied are in the class of sequential quadratic programming (SQP) algorithms, which have previously proved successful for problems of moderate size. Our goal is to devise an SQP algorithm that is applicable to large-scale optimization problems, using sparse data structures and storing less curvature information but maintaining the property of superlinear convergence. The main features are: 1. The use of a quasi-Newton approximation to the reduced Hessian of the Lagrangian function. Only an estimate of the reduced Hessian matrix is required by our algorithm. The impact of not having available the full Hessian approximation is studied and alternative estimates are constructed. 2. The use of a transformation matrix Q. This allows the QP gradient to be computed easily when only the reduced Hessian approximation is maintained. 3. The use of a reduced-gradient form of the basis for the null space of the working set. This choice of basis is more practical than an orthogonal null-space basis for large-scale problems. The continuity condition for this choice is proven. 4. The use of incomplete solutions of quadratic programming subproblems. Certain iterates generated by an active-set method for the QP subproblem are used in place of the QP minimizer to define the search direction for the nonlinear problem. An implementation of the new algorithm has been obtained by modifying the code MINOS. Results and comparisons with MINOS and NPSOL are given for the new algorithm on a set of 92 test problems.

  2. Supporting large-scale computational science

    SciTech Connect

    Musick, R., LLNL

    1998-02-19

    Business needs have driven the development of commercial database systems since their inception. As a result, there has been a strong focus on supporting many users, minimizing the potential corruption or loss of data, and maximizing performance metrics like transactions per second, or TPC-C and TPC-D results. It turns out that these optimizations have little to do with the needs of the scientific community, and in particular have little impact on improving the management and use of large-scale high-dimensional data. At the same time, there is an unanswered need in the scientific community for many of the benefits offered by a robust DBMS. For example, tying an ad-hoc query language such as SQL together with a visualization toolkit would be a powerful enhancement to current capabilities. Unfortunately, there has been little emphasis or discussion in the VLDB community on this mismatch over the last decade. The goal of the paper is to identify the specific issues that need to be resolved before large-scale scientific applications can make use of DBMS products. This topic is addressed in the context of an evaluation of commercial DBMS technology applied to the exploration of data generated by the Department of Energy`s Accelerated Strategic Computing Initiative (ASCI). The paper describes the data being generated for ASCI as well as current capabilities for interacting with and exploring this data. The attraction of applying standard DBMS technology to this domain is discussed, as well as the technical and business issues that currently make this an infeasible solution.

  3. Introducing Large-Scale Innovation in Schools

    NASA Astrophysics Data System (ADS)

    Sotiriou, Sofoklis; Riviou, Katherina; Cherouvis, Stephanos; Chelioti, Eleni; Bogner, Franz X.

    2016-08-01

    Education reform initiatives tend to promise higher effectiveness in classrooms especially when emphasis is given to e-learning and digital resources. Practical changes in classroom realities or school organization, however, are lacking. A major European initiative entitled Open Discovery Space (ODS) examined the challenge of modernizing school education via a large-scale implementation of an open-scale methodology in using technology-supported innovation. The present paper describes this innovation scheme which involved schools and teachers all over Europe, embedded technology-enhanced learning into wider school environments and provided training to teachers. Our implementation scheme consisted of three phases: (1) stimulating interest, (2) incorporating the innovation into school settings and (3) accelerating the implementation of the innovation. The scheme's impact was monitored for a school year using five indicators: leadership and vision building, ICT in the curriculum, development of ICT culture, professional development support, and school resources and infrastructure. Based on about 400 schools, our study produced four results: (1) The growth in digital maturity was substantial, even for previously high scoring schools. This was even more important for indicators such as vision and leadership" and "professional development." (2) The evolution of networking is presented graphically, showing the gradual growth of connections achieved. (3) These communities became core nodes, involving numerous teachers in sharing educational content and experiences: One out of three registered users (36 %) has shared his/her educational resources in at least one community. (4) Satisfaction scores ranged from 76 % (offer of useful support through teacher academies) to 87 % (good environment to exchange best practices). Initiatives such as ODS add substantial value to schools on a large scale.

  4. Supporting large-scale computational science

    SciTech Connect

    Musick, R

    1998-10-01

    A study has been carried out to determine the feasibility of using commercial database management systems (DBMSs) to support large-scale computational science. Conventional wisdom in the past has been that DBMSs are too slow for such data. Several events over the past few years have muddied the clarity of this mindset: 1. 2. 3. 4. Several commercial DBMS systems have demonstrated storage and ad-hoc quer access to Terabyte data sets. Several large-scale science teams, such as EOSDIS [NAS91], high energy physics [MM97] and human genome [Kin93] have adopted (or make frequent use of) commercial DBMS systems as the central part of their data management scheme. Several major DBMS vendors have introduced their first object-relational products (ORDBMSs), which have the potential to support large, array-oriented data. In some cases, performance is a moot issue. This is true in particular if the performance of legacy applications is not reduced while new, albeit slow, capabilities are added to the system. The basic assessment is still that DBMSs do not scale to large computational data. However, many of the reasons have changed, and there is an expiration date attached to that prognosis. This document expands on this conclusion, identifies the advantages and disadvantages of various commercial approaches, and describes the studies carried out in exploring this area. The document is meant to be brief, technical and informative, rather than a motivational pitch. The conclusions within are very likely to become outdated within the next 5-7 years, as market forces will have a significant impact on the state of the art in scientific data management over the next decade.

  5. Voids in the Large-Scale Structure

    NASA Astrophysics Data System (ADS)

    El-Ad, Hagai; Piran, Tsvi

    1997-12-01

    Voids are the most prominent feature of the large-scale structure of the universe. Still, their incorporation into quantitative analysis of it has been relatively recent, owing essentially to the lack of an objective tool to identify the voids and to quantify them. To overcome this, we present here the VOID FINDER algorithm, a novel tool for objectively quantifying voids in the galaxy distribution. The algorithm first classifies galaxies as either wall galaxies or field galaxies. Then, it identifies voids in the wall-galaxy distribution. Voids are defined as continuous volumes that do not contain any wall galaxies. The voids must be thicker than an adjustable limit, which is refined in successive iterations. In this way, we identify the same regions that would be recognized as voids by the eye. Small breaches in the walls are ignored, avoiding artificial connections between neighboring voids. We test the algorithm using Voronoi tesselations. By appropriate scaling of the parameters with the selection function, we apply it to two redshift surveys, the dense SSRS2 and the full-sky IRAS 1.2 Jy. Both surveys show similar properties: ~50% of the volume is filled by voids. The voids have a scale of at least 40 h-1 Mpc and an average -0.9 underdensity. Faint galaxies do not fill the voids, but they do populate them more than bright ones. These results suggest that both optically and IRAS-selected galaxies delineate the same large-scale structure. Comparison with the recovered mass distribution further suggests that the observed voids in the galaxy distribution correspond well to underdense regions in the mass distribution. This confirms the gravitational origin of the voids.

  6. The Modification of Biocellular Chemical Reactions by Environmental Physicochemicals

    NASA Astrophysics Data System (ADS)

    Ishido, M.

    Environmental risk factors affect human biological system to different extent from modification of biochemical reaction to cellular catastrophe. There are considerable public concerns about electromagnetic fields and endocrine disruptors. Their risk assessments have not been fully achieved because of their scientific uncertainty: electromagnetic fields just modify the bioreaction in the restricted cells and endocrine disruptors are quite unique in that their expression is dependent on the exposure periods throughout a life. Thus, we here describe their molecular characterization to establish the new risk assessments for environmental physicochemicals.

  7. Importance of the Small-Scale Processes Melting, Plate Boundary Formation and Mineralogy on the Large-Scale, Long-Term Thermo-Chemical Evolution of Earth's Mantle-Plate System

    NASA Astrophysics Data System (ADS)

    Tackley, P.

    2015-12-01

    Seismic observations of the deep Earth reveal the presence of two large low shear velocity provinces (LLSVPs) that are typically inferred to be dense chemically-distinct material, as well as discontinuities that are typically linked to the post-perovskite (pPv) phase transition. Several possible origins of chemically-dense material have been proposed, including recycling of mid-ocean ridge basalt (MORB), primordial differentiation events, crystallisation of a basal magma ocean, or some combination of these creating a basal melange (BAM; Tackley 2012 Earth Sci. Rev.). Each of these possibilities would result in a different composition hence different mineralogy. In order to constrain this we have been running calculations of thermo-chemical mantle evolution over 4.5 billion years that include melting-induced differentiation, plate tectonics induced by strongly temperature-dependent viscosity and plastic yielding, core cooling and compressibility with reasonable assumptions about the pressure-dependence of other material properties. Some of our simulations start from a magma ocean state so initial layering is developed self-consistently. Already-published results (Nakagawa et al., 2009 GCubed, 2010 PEPI, 2012 GCubed) already indicate the importance of exact MORB composition on the amount of MORB segregating above the CMB, which in turn influences mantle thermal structure and the evolution of the core and geodynamo. In more recent results we have been additionally including primordial material. We find that melting-induced differentiation has several first-order effects on the dynamics, including (i) making plate tectonics easier (through stresses associated with lateral variations in crustal thickness) and (ii) reducing heat flux through the CMB (due to the build-up of dense material above the CMB); also (iii) tectonic mode (continuous plate tectonics, episodic lid or stagnant lid) also makes a first-order difference to mantle structure and dynamics. This emphasises

  8. Automated Sequence Preprocessing in a Large-Scale Sequencing Environment

    PubMed Central

    Wendl, Michael C.; Dear, Simon; Hodgson, Dave; Hillier, LaDeana

    1998-01-01

    A software system for transforming fragments from four-color fluorescence-based gel electrophoresis experiments into assembled sequence is described. It has been developed for large-scale processing of all trace data, including shotgun and finishing reads, regardless of clone origin. Design considerations are discussed in detail, as are programming implementation and graphic tools. The importance of input validation, record tracking, and use of base quality values is emphasized. Several quality analysis metrics are proposed and applied to sample results from recently sequenced clones. Such quantities prove to be a valuable aid in evaluating modifications of sequencing protocol. The system is in full production use at both the Genome Sequencing Center and the Sanger Centre, for which combined weekly production is ∼100,000 sequencing reads per week. PMID:9750196

  9. Excimer laser induced surface chemical modification of polytetrafluoroethylene

    NASA Astrophysics Data System (ADS)

    Révész, K.; Hopp, B.; Bor, Z.

    1997-02-01

    Polytetrafluoroethylene has a notoriously non adhesive and non reactive character. Its successful surface photochemical modification was performed by irradiating the polytetrafluoroethylene/liquid triethylamine interface with an ArF excimer laser (λ=193 nm). Due to the photochemical treatment the polytetrafluoroethylene surface became more hydrophilic. The water receding contact angle decreased from 94° to 43°. The reaction cross section was determined from the decrease of the contact angles. It was found to be as high as 6.4×10-18 cm2. XPS measurements evidenced the removal of fluorine from the polytetrafluoroethylene, incorporation of alkyl carbon and nitrogen. Photochemical dissociation path of the triethylamine makes probable that it bonded to the fluoropolymer backbone via the α-carbon atom of an ethyl group. A radical, or a photoinduced electron transfer mechanism was suggested to describe this reaction. A selective area electroless plating of silver was performed after pretreating the sample with patterned photomodification. The increased adhesion of the sample was proved by gluing with epoxy resin. As a result of the surface modification the tensile strength of gluing increased by 210× and reached 24% of the value characteristic for the bulk material.

  10. Chemical reporter for visualizing metabolic cross-talk between carbohydrate metabolism and protein modification.

    PubMed

    Zaro, Balyn W; Chuh, Kelly N; Pratt, Matthew R

    2014-09-19

    Metabolic chemical reporters have been largely used to study posttranslational modifications. Generally, it was assumed that these reporters entered one biosynthetic pathway, resulting in labeling of one type of modification. However, because they are metabolized by cells before their addition onto proteins, metabolic chemical reporters potentially provide a unique opportunity to read-out on both modifications of interest and cellular metabolism. We report here the development of a metabolic chemical reporter 1-deoxy-N-pentynyl glucosamine (1-deoxy-GlcNAlk). This small-molecule cannot be incorporated into glycans; however, treatment of mammalian cells results in labeling of a variety proteins and enables their visualization and identification. Competition of this labeling with sodium acetate and an acetyltransferase inhibitor suggests that 1-deoxy-GlcNAlk can enter the protein acetylation pathway. These results demonstrate that metabolic chemical reporters have the potential to isolate and potentially discover cross-talk between metabolic pathways in living cells.

  11. Chemical Reporter for Visualizing Metabolic Cross-Talk between Carbohydrate Metabolism and Protein Modification

    PubMed Central

    2015-01-01

    Metabolic chemical reporters have been largely used to study posttranslational modifications. Generally, it was assumed that these reporters entered one biosynthetic pathway, resulting in labeling of one type of modification. However, because they are metabolized by cells before their addition onto proteins, metabolic chemical reporters potentially provide a unique opportunity to read-out on both modifications of interest and cellular metabolism. We report here the development of a metabolic chemical reporter 1-deoxy-N-pentynyl glucosamine (1-deoxy-GlcNAlk). This small-molecule cannot be incorporated into glycans; however, treatment of mammalian cells results in labeling of a variety proteins and enables their visualization and identification. Competition of this labeling with sodium acetate and an acetyltransferase inhibitor suggests that 1-deoxy-GlcNAlk can enter the protein acetylation pathway. These results demonstrate that metabolic chemical reporters have the potential to isolate and potentially discover cross-talk between metabolic pathways in living cells. PMID:25062036

  12. Large-scale self-assembled epitaxial growth of highly-ordered three-dimensional micro/nano single-crystalline PbSe pyramid arrays by selective chemical bath deposition

    NASA Astrophysics Data System (ADS)

    Qiu, Jijun; Weng, Binbin; Li, Lin; Li, Xiaomin; Shi, Zhisheng

    2015-05-01

    Highly ordered three-dimensional micro- and nano- PbSe pyramid arrays were synthesized by using selective epitaxial self-assembled chemical bath deposition method. Each pyramid consists of a very sharp (111) tip with six smooth equivalent {100} facets. Every (100) facet forms an angle of about 54.7° with respect to the (111) facet. The structural features including pyramidal size and period could be precisely tailored by pre-patterned Au mask and etching time. Pyramids are self-assembled on the confined positions by the dual functions of one-dimensional and two-dimensional oriented attachment mechanisms along [110] directions on the (111) surface, following the Gibbs-Curie-Wulff minimum energy principle. This method could effectively create large, bottom-up 3D pyramidal surface patterns in a cost-effective and time-saving manner, which has potential applications in infrared photoconductors, solar cells and light emitting enhancement for display, etc.

  13. Chemical modification of corn fiber with ion-exchanging groups

    USDA-ARS?s Scientific Manuscript database

    Pretreated corn fiber was chemically modified with quaternary ammonium group or/and sulfonated with 3-chloro-2-hydroxypropanesulfonic acid under vacuum or at ambient pressure. The soluble fraction was dialyzed through 1 kDa MWCO dialysis tubing and the material retained inside the tubing was filtere...

  14. Chemical modification : a non-toxic approach to wood preservation

    Treesearch

    Roger M. Rowell

    2005-01-01

    Reaction of wood with anhydrides, isocyanates, and epoxides reduces the moisture content of the cell wall and increases the resistance of the modified wood to attack by fungi. As the level of bonded chemical increases. the cell wall equilibrium moisture content decreases and the resistance to attack by white-and brown-rot fungi increases. There is a direct relationship...

  15. Chemical Modification of Soy Flour Protein and its Properties

    Treesearch

    Yuzhi Xu; Chunpeng Wang; Fuxiang Chu; Charles R. Frihart; Linda F. Lorenz; Nicole M. Stark

    2012-01-01

    This work is to examine ways to chemically modify soy proteins flours and analyze the results and determine the adhesive performance. Reaction with acetic anhydride converts amine and hydroxyl groups to amides and esters, respectively that are less polar and can make the adhesive more water resistant.The succinic anhydride reacts with these same groups but the products...

  16. Statistical Measures of Large-Scale Structure

    NASA Astrophysics Data System (ADS)

    Vogeley, Michael; Geller, Margaret; Huchra, John; Park, Changbom; Gott, J. Richard

    1993-12-01

    \\inv Mpc} To quantify clustering in the large-scale distribution of galaxies and to test theories for the formation of structure in the universe, we apply statistical measures to the CfA Redshift Survey. This survey is complete to m_{B(0)}=15.5 over two contiguous regions which cover one-quarter of the sky and include ~ 11,000 galaxies. The salient features of these data are voids with diameter 30-50\\hmpc and coherent dense structures with a scale ~ 100\\hmpc. Comparison with N-body simulations rules out the ``standard" CDM model (Omega =1, b=1.5, sigma_8 =1) at the 99% confidence level because this model has insufficient power on scales lambda >30\\hmpc. An unbiased open universe CDM model (Omega h =0.2) and a biased CDM model with non-zero cosmological constant (Omega h =0.24, lambda_0 =0.6) match the observed power spectrum. The amplitude of the power spectrum depends on the luminosity of galaxies in the sample; bright (L>L(*) ) galaxies are more strongly clustered than faint galaxies. The paucity of bright galaxies in low-density regions may explain this dependence. To measure the topology of large-scale structure, we compute the genus of isodensity surfaces of the smoothed density field. On scales in the ``non-linear" regime, <= 10\\hmpc, the high- and low-density regions are multiply-connected over a broad range of density threshold, as in a filamentary net. On smoothing scales >10\\hmpc, the topology is consistent with statistics of a Gaussian random field. Simulations of CDM models fail to produce the observed coherence of structure on non-linear scales (>95% confidence level). The underdensity probability (the frequency of regions with density contrast delta rho //lineρ=-0.8) depends strongly on the luminosity of galaxies; underdense regions are significantly more common (>2sigma ) in bright (L>L(*) ) galaxy samples than in samples which include fainter galaxies.

  17. Tyrosine-Specific Chemical Modification with in Situ Hemin-Activated Luminol Derivatives.

    PubMed

    Sato, Shinichi; Nakamura, Kosuke; Nakamura, Hiroyuki

    2015-11-20

    Tyrosine-specific chemical modification was achieved using in situ hemin-activated luminol derivatives. Tyrosine residues in peptide and protein were modified effectively with N-methylated luminol derivatives under oxidative conditions in the presence of hemin and H2O2. Both single and double modifications of the tyrosine residue occurred in the reaction of angiotensin II with N-methylated luminol derivative 9. Tyrosine-specific chemical modification of the model protein bovine serum albumin (BSA) revealed that the surface-exposed tyrosine residues were selectively modified with 9. We succeeded in the functionalization of several proteins using azide-conjugated compound 18 using alkyne-conjugated probes by copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) or dibenzocyclooctyne (DBCO)-mediated copper-free click chemistry. This tyrosine-specific modification was orthogonal to conventional lysine modification by N-hydroxysuccinimide (NHS) ester, and dual functionalization by fluorescence modification of tyrosine residues and PEG modification of lysine residues was achieved without affecting the modification efficiency.

  18. Towards large-scale plasma-assisted synthesis of nanowires

    NASA Astrophysics Data System (ADS)

    Cvelbar, U.

    2011-05-01

    Large quantities of nanomaterials, e.g. nanowires (NWs), are needed to overcome the high market price of nanomaterials and make nanotechnology widely available for general public use and applications to numerous devices. Therefore, there is an enormous need for new methods or routes for synthesis of those nanostructures. Here plasma technologies for synthesis of NWs, nanotubes, nanoparticles or other nanostructures might play a key role in the near future. This paper presents a three-dimensional problem of large-scale synthesis connected with the time, quantity and quality of nanostructures. Herein, four different plasma methods for NW synthesis are presented in contrast to other methods, e.g. thermal processes, chemical vapour deposition or wet chemical processes. The pros and cons are discussed in detail for the case of two metal oxides: iron oxide and zinc oxide NWs, which are important for many applications.

  19. Management of large-scale multimedia conferencing

    NASA Astrophysics Data System (ADS)

    Cidon, Israel; Nachum, Youval

    1998-12-01

    The goal of this work is to explore management strategies and algorithms for large-scale multimedia conferencing over a communication network. Since the use of multimedia conferencing is still limited, the management of such systems has not yet been studied in depth. A well organized and human friendly multimedia conference management should utilize efficiently and fairly its limited resources as well as take into account the requirements of the conference participants. The ability of the management to enforce fair policies and to quickly take into account the participants preferences may even lead to a conference environment that is more pleasant and more effective than a similar face to face meeting. We suggest several principles for defining and solving resource sharing problems in this context. The conference resources which are addressed in this paper are the bandwidth (conference network capacity), time (participants' scheduling) and limitations of audio and visual equipment. The participants' requirements for these resources are defined and translated in terms of Quality of Service requirements and the fairness criteria.

  20. Large-scale wind turbine structures

    NASA Technical Reports Server (NTRS)

    Spera, David A.

    1988-01-01

    The purpose of this presentation is to show how structural technology was applied in the design of modern wind turbines, which were recently brought to an advanced stage of development as sources of renewable power. Wind turbine structures present many difficult problems because they are relatively slender and flexible; subject to vibration and aeroelastic instabilities; acted upon by loads which are often nondeterministic; operated continuously with little maintenance in all weather; and dominated by life-cycle cost considerations. Progress in horizontal-axis wind turbines (HAWT) development was paced by progress in the understanding of structural loads, modeling of structural dynamic response, and designing of innovative structural response. During the past 15 years a series of large HAWTs was developed. This has culminated in the recent completion of the world's largest operating wind turbine, the 3.2 MW Mod-5B power plane installed on the island of Oahu, Hawaii. Some of the applications of structures technology to wind turbine will be illustrated by referring to the Mod-5B design. First, a video overview will be presented to provide familiarization with the Mod-5B project and the important components of the wind turbine system. Next, the structural requirements for large-scale wind turbines will be discussed, emphasizing the difficult fatigue-life requirements. Finally, the procedures used to design the structure will be presented, including the use of the fracture mechanics approach for determining allowable fatigue stresses.

  1. Large-scale tides in general relativity

    NASA Astrophysics Data System (ADS)

    Ip, Hiu Yan; Schmidt, Fabian

    2017-02-01

    Density perturbations in cosmology, i.e. spherically symmetric adiabatic perturbations of a Friedmann-Lemaȋtre-Robertson-Walker (FLRW) spacetime, are locally exactly equivalent to a different FLRW solution, as long as their wavelength is much larger than the sound horizon of all fluid components. This fact is known as the "separate universe" paradigm. However, no such relation is known for anisotropic adiabatic perturbations, which correspond to an FLRW spacetime with large-scale tidal fields. Here, we provide a closed, fully relativistic set of evolutionary equations for the nonlinear evolution of such modes, based on the conformal Fermi (CFC) frame. We show explicitly that the tidal effects are encoded by the Weyl tensor, and are hence entirely different from an anisotropic Bianchi I spacetime, where the anisotropy is sourced by the Ricci tensor. In order to close the system, certain higher derivative terms have to be dropped. We show that this approximation is equivalent to the local tidal approximation of Hui and Bertschinger [1]. We also show that this very simple set of equations matches the exact evolution of the density field at second order, but fails at third and higher order. This provides a useful, easy-to-use framework for computing the fully relativistic growth of structure at second order.

  2. Large scale mechanical metamaterials as seismic shields

    NASA Astrophysics Data System (ADS)

    Miniaci, Marco; Krushynska, Anastasiia; Bosia, Federico; Pugno, Nicola M.

    2016-08-01

    Earthquakes represent one of the most catastrophic natural events affecting mankind. At present, a universally accepted risk mitigation strategy for seismic events remains to be proposed. Most approaches are based on vibration isolation of structures rather than on the remote shielding of incoming waves. In this work, we propose a novel approach to the problem and discuss the feasibility of a passive isolation strategy for seismic waves based on large-scale mechanical metamaterials, including for the first time numerical analysis of both surface and guided waves, soil dissipation effects, and adopting a full 3D simulations. The study focuses on realistic structures that can be effective in frequency ranges of interest for seismic waves, and optimal design criteria are provided, exploring different metamaterial configurations, combining phononic crystals and locally resonant structures and different ranges of mechanical properties. Dispersion analysis and full-scale 3D transient wave transmission simulations are carried out on finite size systems to assess the seismic wave amplitude attenuation in realistic conditions. Results reveal that both surface and bulk seismic waves can be considerably attenuated, making this strategy viable for the protection of civil structures against seismic risk. The proposed remote shielding approach could open up new perspectives in the field of seismology and in related areas of low-frequency vibration damping or blast protection.

  3. Food appropriation through large scale land acquisitions

    NASA Astrophysics Data System (ADS)

    Rulli, Maria Cristina; D'Odorico, Paolo

    2014-05-01

    The increasing demand for agricultural products and the uncertainty of international food markets has recently drawn the attention of governments and agribusiness firms toward investments in productive agricultural land, mostly in the developing world. The targeted countries are typically located in regions that have remained only marginally utilized because of lack of modern technology. It is expected that in the long run large scale land acquisitions (LSLAs) for commercial farming will bring the technology required to close the existing crops yield gaps. While the extent of the acquired land and the associated appropriation of freshwater resources have been investigated in detail, the amount of food this land can produce and the number of people it could feed still need to be quantified. Here we use a unique dataset of land deals to provide a global quantitative assessment of the rates of crop and food appropriation potentially associated with LSLAs. We show how up to 300-550 million people could be fed by crops grown in the acquired land, should these investments in agriculture improve crop production and close the yield gap. In contrast, about 190-370 million people could be supported by this land without closing of the yield gap. These numbers raise some concern because the food produced in the acquired land is typically exported to other regions, while the target countries exhibit high levels of malnourishment. Conversely, if used for domestic consumption, the crops harvested in the acquired land could ensure food security to the local populations.

  4. Large scale structure of the sun's corona

    NASA Astrophysics Data System (ADS)

    Kundu, Mukul R.

    Results concerning the large-scale structure of the solar corona obtained by observations at meter-decameter wavelengths are reviewed. Coronal holes observed on the disk at multiple frequencies show the radial and azimuthal geometry of the hole. At the base of the hole there is good correspondence to the chromospheric signature in He I 10,830 A, but at greater heights the hole may show departures from symmetry. Two-dimensional imaging of weak-type III bursts simultaneously with the HAO SMM coronagraph/polarimeter measurements indicate that these bursts occur along elongated features emanating from the quiet sun, corresponding in position angle to the bright coronal streamers. It is shown that the densest regions of streamers and the regions of maximum intensity of type II bursts coincide closely. Non-flare-associated type II/type IV bursts associated with coronal streamer disruption events are studied along with correlated type II burst emissions originating from distant centers on the sun.

  5. Large-scale carbon fiber tests

    NASA Technical Reports Server (NTRS)

    Pride, R. A.

    1980-01-01

    A realistic release of carbon fibers was established by burning a minimum of 45 kg of carbon fiber composite aircraft structural components in each of five large scale, outdoor aviation jet fuel fire tests. This release was quantified by several independent assessments with various instruments developed specifically for these tests. The most likely values for the mass of single carbon fibers released ranged from 0.2 percent of the initial mass of carbon fiber for the source tests (zero wind velocity) to a maximum of 0.6 percent of the initial carbon fiber mass for dissemination tests (5 to 6 m/s wind velocity). Mean fiber lengths for fibers greater than 1 mm in length ranged from 2.5 to 3.5 mm. Mean diameters ranged from 3.6 to 5.3 micrometers which was indicative of significant oxidation. Footprints of downwind dissemination of the fire released fibers were measured to 19.1 km from the fire.

  6. Large-scale clustering of cosmic voids

    NASA Astrophysics Data System (ADS)

    Chan, Kwan Chuen; Hamaus, Nico; Desjacques, Vincent

    2014-11-01

    We study the clustering of voids using N -body simulations and simple theoretical models. The excursion-set formalism describes fairly well the abundance of voids identified with the watershed algorithm, although the void formation threshold required is quite different from the spherical collapse value. The void cross bias bc is measured and its large-scale value is found to be consistent with the peak background split results. A simple fitting formula for bc is found. We model the void auto-power spectrum taking into account the void biasing and exclusion effect. A good fit to the simulation data is obtained for voids with radii ≳30 Mpc h-1 , especially when the void biasing model is extended to 1-loop order. However, the best-fit bias parameters do not agree well with the peak-background results. Being able to fit the void auto-power spectrum is particularly important not only because it is the direct observable in galaxy surveys, but also our method enables us to treat the bias parameters as nuisance parameters, which are sensitive to the techniques used to identify voids.

  7. Large-scale autostereoscopic outdoor display

    NASA Astrophysics Data System (ADS)

    Reitterer, Jörg; Fidler, Franz; Saint Julien-Wallsee, Ferdinand; Schmid, Gerhard; Gartner, Wolfgang; Leeb, Walter; Schmid, Ulrich

    2013-03-01

    State-of-the-art autostereoscopic displays are often limited in size, effective brightness, number of 3D viewing zones, and maximum 3D viewing distances, all of which are mandatory requirements for large-scale outdoor displays. Conventional autostereoscopic indoor concepts like lenticular lenses or parallax barriers cannot simply be adapted for these screens due to the inherent loss of effective resolution and brightness, which would reduce both image quality and sunlight readability. We have developed a modular autostereoscopic multi-view laser display concept with sunlight readable effective brightness, theoretically up to several thousand 3D viewing zones, and maximum 3D viewing distances of up to 60 meters. For proof-of-concept purposes a prototype display with two pixels was realized. Due to various manufacturing tolerances each individual pixel has slightly different optical properties, and hence the 3D image quality of the display has to be calculated stochastically. In this paper we present the corresponding stochastic model, we evaluate the simulation and measurement results of the prototype display, and we calculate the achievable autostereoscopic image quality to be expected for our concept.

  8. Large Scale EOF Analysis of Climate Data

    NASA Astrophysics Data System (ADS)

    Prabhat, M.; Gittens, A.; Kashinath, K.; Cavanaugh, N. R.; Mahoney, M.

    2016-12-01

    We present a distributed approach towards extracting EOFs from 3D climate data. We implement the method in Apache Spark, and process multi-TB sized datasets on O(1000-10,000) cores. We apply this method to latitude-weighted ocean temperature data from CSFR, a 2.2 terabyte-sized data set comprising ocean and subsurface reanalysis measurements collected at 41 levels in the ocean, at 6 hour intervals over 31 years. We extract the first 100 EOFs of this full data set and compare to the EOFs computed simply on the surface temperature field. Our analyses provide evidence of Kelvin and Rossy waves and components of large-scale modes of oscillation including the ENSO and PDO that are not visible in the usual SST EOFs. Further, they provide information on the the most influential parts of the ocean, such as the thermocline, that exist below the surface. Work is ongoing to understand the factors determining the depth-varying spatial patterns observed in the EOFs. We will experiment with weighting schemes to appropriately account for the differing depths of the observations. We also plan to apply the same distributed approach to analysis of analysis of 3D atmospheric climatic data sets, including multiple variables. Because the atmosphere changes on a quicker time-scale than the ocean, we expect that the results will demonstrate an even greater advantage to computing 3D EOFs in lieu of 2D EOFs.

  9. Large scale digital atlases in neuroscience

    NASA Astrophysics Data System (ADS)

    Hawrylycz, M.; Feng, D.; Lau, C.; Kuan, C.; Miller, J.; Dang, C.; Ng, L.

    2014-03-01

    Imaging in neuroscience has revolutionized our current understanding of brain structure, architecture and increasingly its function. Many characteristics of morphology, cell type, and neuronal circuitry have been elucidated through methods of neuroimaging. Combining this data in a meaningful, standardized, and accessible manner is the scope and goal of the digital brain atlas. Digital brain atlases are used today in neuroscience to characterize the spatial organization of neuronal structures, for planning and guidance during neurosurgery, and as a reference for interpreting other data modalities such as gene expression and connectivity data. The field of digital atlases is extensive and in addition to atlases of the human includes high quality brain atlases of the mouse, rat, rhesus macaque, and other model organisms. Using techniques based on histology, structural and functional magnetic resonance imaging as well as gene expression data, modern digital atlases use probabilistic and multimodal techniques, as well as sophisticated visualization software to form an integrated product. Toward this goal, brain atlases form a common coordinate framework for summarizing, accessing, and organizing this knowledge and will undoubtedly remain a key technology in neuroscience in the future. Since the development of its flagship project of a genome wide image-based atlas of the mouse brain, the Allen Institute for Brain Science has used imaging as a primary data modality for many of its large scale atlas projects. We present an overview of Allen Institute digital atlases in neuroscience, with a focus on the challenges and opportunities for image processing and computation.

  10. Towards a unifying, systems biology understanding of large-scale cellular death and destruction caused by poorly liganded iron: Parkinson’s, Huntington’s, Alzheimer’s, prions, bactericides, chemical toxicology and others as examples

    PubMed Central

    2010-01-01

    Exposure to a variety of toxins and/or infectious agents leads to disease, degeneration and death, often characterised by circumstances in which cells or tissues do not merely die and cease to function but may be more or less entirely obliterated. It is then legitimate to ask the question as to whether, despite the many kinds of agent involved, there may be at least some unifying mechanisms of such cell death and destruction. I summarise the evidence that in a great many cases, one underlying mechanism, providing major stresses of this type, entails continuing and autocatalytic production (based on positive feedback mechanisms) of hydroxyl radicals via Fenton chemistry involving poorly liganded iron, leading to cell death via apoptosis (probably including via pathways induced by changes in the NF-κB system). While every pathway is in some sense connected to every other one, I highlight the literature evidence suggesting that the degenerative effects of many diseases and toxicological insults converge on iron dysregulation. This highlights specifically the role of iron metabolism, and the detailed speciation of iron, in chemical and other toxicology, and has significant implications for the use of iron chelating substances (probably in partnership with appropriate anti-oxidants) as nutritional or therapeutic agents in inhibiting both the progression of these mainly degenerative diseases and the sequelae of both chronic and acute toxin exposure. The complexity of biochemical networks, especially those involving autocatalytic behaviour and positive feedbacks, means that multiple interventions (e.g. of iron chelators plus antioxidants) are likely to prove most effective. A variety of systems biology approaches, that I summarise, can predict both the mechanisms involved in these cell death pathways and the optimal sites of action for nutritional or pharmacological interventions. PMID:20967426

  11. Method for chemical surface modification of fumed silica particles

    DOEpatents

    Grabbe, Alexis; Michalske, Terry Arthur; Smith, William Larry

    1999-01-01

    Dehydroxylated, silica-containing, glass surfaces are known to be at least partially terminated by strained siloxane rings. According to the invention, a surface of this kind is exposed to a selected silane compound or mixture of silane compounds under reaction-promoting conditions. The ensuing reaction results in opening of the strained siloxane rings, and termination of surface atoms by chemical species, such as organic or organosilicon species, having desirable properties. These species can be chosen to provide qualities such as hydrophobicity, or improved coupling to a polymeric coating.

  12. Method for chemical surface modification of fumed silica particles

    DOEpatents

    Grabbe, A.; Michalske, T.A.; Smith, W.L.

    1999-05-11

    Dehydroxylated, silica-containing, glass surfaces are known to be at least partially terminated by strained siloxane rings. According to the invention, a surface of this kind is exposed to a selected silane compound or mixture of silane compounds under reaction-promoting conditions. The ensuing reaction results in opening of the strained siloxane rings, and termination of surface atoms by chemical species, such as organic or organosilicon species, having desirable properties. These species can be chosen to provide qualities such as hydrophobicity, or improved coupling to a polymeric coating. 11 figs.

  13. Sensitivity technologies for large scale simulation.

    SciTech Connect

    Collis, Samuel Scott; Bartlett, Roscoe Ainsworth; Smith, Thomas Michael; Heinkenschloss, Matthias; Wilcox, Lucas C.; Hill, Judith C.; Ghattas, Omar; Berggren, Martin Olof; Akcelik, Volkan; Ober, Curtis Curry; van Bloemen Waanders, Bart Gustaaf; Keiter, Eric Richard

    2005-01-01

    Sensitivity analysis is critically important to numerous analysis algorithms, including large scale optimization, uncertainty quantification,reduced order modeling, and error estimation. Our research focused on developing tools, algorithms and standard interfaces to facilitate the implementation of sensitivity type analysis into existing code and equally important, the work was focused on ways to increase the visibility of sensitivity analysis. We attempt to accomplish the first objective through the development of hybrid automatic differentiation tools, standard linear algebra interfaces for numerical algorithms, time domain decomposition algorithms and two level Newton methods. We attempt to accomplish the second goal by presenting the results of several case studies in which direct sensitivities and adjoint methods have been effectively applied, in addition to an investigation of h-p adaptivity using adjoint based a posteriori error estimation. A mathematical overview is provided of direct sensitivities and adjoint methods for both steady state and transient simulations. Two case studies are presented to demonstrate the utility of these methods. A direct sensitivity method is implemented to solve a source inversion problem for steady state internal flows subject to convection diffusion. Real time performance is achieved using novel decomposition into offline and online calculations. Adjoint methods are used to reconstruct initial conditions of a contamination event in an external flow. We demonstrate an adjoint based transient solution. In addition, we investigated time domain decomposition algorithms in an attempt to improve the efficiency of transient simulations. Because derivative calculations are at the root of sensitivity calculations, we have developed hybrid automatic differentiation methods and implemented this approach for shape optimization for gas dynamics using the Euler equations. The hybrid automatic differentiation method was applied to a first

  14. Towards large scale production and separation of carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Alvarez, Noe T.

    Since their discovery, carbon nanotubes (CNTs) have boosted the research and applications of nanotechnology; however, many applications of CNTs are inaccessible because they depend upon large-scale CNT production and separations. Type, chirality and diameter control of CNTs determine many of their physical properties, and such control is still not accesible. This thesis studies the fundamentals for scalable selective reactions of HiPCo CNTs as well as the early phase of routes to an inexpensive approach for large-scale CNT production. In the growth part, this thesis covers a complete wet-chemistry process of catalyst and catalyst support deposition for growth of vertically aligned (VA) CNTs. A wet-chemistry preparation process has significant importance for CNT synthesis through chemical vapor deposition (CVD). CVD is by far, the most suitable and inexpensive process for large-scale CNT production when compared to other common processes such as laser ablation and arc discharge. However, its potential has been limited by low-yielding and difficult preparation processes of catalyst and its support, therefore its competitiveness has been reduced. The wet-chemistry process takes advantage of current nanoparticle technology to deposit the catalyst and the catalyst support as a thin film of nanoparticles, making the protocol simple compared to electron beam evaporation and sputtering processes. In the CNT selective reactions part, this thesis studies UV irradiation of individually dispersed HiPCo CNTs that generates auto-selective reactions in the liquid phase with good control over their diameter and chirality. This technique is ideal for large-scale and continuous-process of separations of CNTs by diameter and type. Additionally, an innovative simple catalyst deposition through abrasion is demonstrated. Simple friction between the catalyst and the substrates deposit a high enough density of metal catalyst particles for successful CNT growth. This simple approach has

  15. Large Scale Flame Spread Environmental Characterization Testing

    NASA Technical Reports Server (NTRS)

    Clayman, Lauren K.; Olson, Sandra L.; Gokoghi, Suleyman A.; Brooker, John E.; Ferkul, Paul V.; Kacher, Henry F.

    2013-01-01

    Under the Advanced Exploration Systems (AES) Spacecraft Fire Safety Demonstration Project (SFSDP), as a risk mitigation activity in support of the development of a large-scale fire demonstration experiment in microgravity, flame-spread tests were conducted in normal gravity on thin, cellulose-based fuels in a sealed chamber. The primary objective of the tests was to measure pressure rise in a chamber as sample material, burning direction (upward/downward), total heat release, heat release rate, and heat loss mechanisms were varied between tests. A Design of Experiments (DOE) method was imposed to produce an array of tests from a fixed set of constraints and a coupled response model was developed. Supplementary tests were run without experimental design to additionally vary select parameters such as initial chamber pressure. The starting chamber pressure for each test was set below atmospheric to prevent chamber overpressure. Bottom ignition, or upward propagating burns, produced rapid acceleratory turbulent flame spread. Pressure rise in the chamber increases as the amount of fuel burned increases mainly because of the larger amount of heat generation and, to a much smaller extent, due to the increase in gaseous number of moles. Top ignition, or downward propagating burns, produced a steady flame spread with a very small flat flame across the burning edge. Steady-state pressure is achieved during downward flame spread as the pressure rises and plateaus. This indicates that the heat generation by the flame matches the heat loss to surroundings during the longer, slower downward burns. One heat loss mechanism included mounting a heat exchanger directly above the burning sample in the path of the plume to act as a heat sink and more efficiently dissipate the heat due to the combustion event. This proved an effective means for chamber overpressure mitigation for those tests producing the most total heat release and thusly was determined to be a feasible mitigation

  16. Chemical Modification of Boron-Doped Diamond Electrodes for Applications to Biosensors and Biosensing.

    PubMed

    Svítková, Jana; Ignat, Teodora; Švorc, Ľubomír; Labuda, Ján; Barek, Jiří

    2016-05-03

    Boron-doped diamond (BDD) is a prospective electrode material that possesses many exceptional properties including wide potential window, low noise, low and stable background current, chemical and mechanical stability, good biocompatibility, and last but not least exceptional resistance to passivation. These characteristics extend its usability in various areas of electrochemistry as evidenced by increasing number of published articles over the past two decades. The idea of chemically modifying BDD electrodes with molecular species attached to the surface for the purpose of creating a rational design has found promising applications in the past few years. BDD electrodes have appeared to be excellent substrate materials for various chemical modifications and subsequent application to biosensors and biosensing. Hence, this article presents modification strategies that have extended applications of BDD electrodes in electroanalytical chemistry. Different methods and steps of surface modification of this electrode material for biosensing and construction of biosensors are discussed.

  17. Knocking down highly-ordered large-scale nanowire arrays.

    PubMed

    Pevzner, Alexander; Engel, Yoni; Elnathan, Roey; Ducobni, Tamir; Ben-Ishai, Moshit; Reddy, Koteeswara; Shpaisman, Nava; Tsukernik, Alexander; Oksman, Mark; Patolsky, Fernando

    2010-04-14

    The large-scale assembly of nanowire elements with controlled and uniform orientation and density at spatially well-defined locations on solid substrates presents one of the most significant challenges facing their integration in real-world electronic applications. Here, we present the universal "knocking-down" approach, based on the controlled in-place planarization of nanowire elements, for the formation of large-scale ordered nanowire arrays. The controlled planarization of the nanowires is achieved by the use of an appropriate elastomer-covered rigid-roller device. After being knocked down, each nanowire in the array can be easily addressed electrically, by a simple single photolithographic step, to yield a large number of nanoelectrical devices with an unprecedented high-fidelity rate. The approach allows controlling, in only two simple steps, all possible array parameters, that is, nanowire dimensions, chemical composition, orientation, and density. The resulting knocked-down arrays can be further used for the creation of massive nanoelectronic-device arrays. More than million devices were already fabricated with yields over 98% on substrate areas of up, but not limited to, to 10 cm(2).

  18. Surface charging, discharging and chemical modification at a sliding contact

    SciTech Connect

    Singh, S. V.; Kusano, Y.; Morgen, P.; Michelsen, P. K.

    2012-04-15

    Electrostatic charging, discharging, and consequent surface modification induced by sliding dissimilar surfaces have been studied. The surface-charge related phenomena were monitored by using a home-built capacitive, non-contact electrical probe, and the surface chemistry was studied by X-ray photoelectron spectroscopy (XPS). The experiments were performed on the disk surface of a ball-on-rotating-disk apparatus; using a glass disk and a Teflon (polytetrafluoroethylene) ball arrangement, and a polyester disks and a diamondlike carbon (DLC) coated steel ball arrangement. The capacitive probe is designed to perform highly resolved measurements, which is sensitive to relative change in charge density on the probed surface. For glass and Teflon arrangement, electrical measurements show that the ball track acquires non-uniform charging. Here not only the increase in charge density, but interestingly, increase in number of highly charged regions on the ball track was resolved. Threefold increase in the number of such highly charged regions per cycle was detected immediately before the gas breakdown-like incidences compared to that of other charge/discharge incidences at a fixed disk rotation speed. We are also able to comment on the behavior and the charge decay time in the ambient air-like condition, once the sliding contact is discontinued. XPS analysis showed a marginal deoxidation effect on the polyester disks due to the charging and discharging of the surfaces. Moreover, these XPS results clearly indicate that the wear and friction (sliding without charging) on the surface can be discarded from inducing such a deoxidation effect.

  19. Large-Scale Graphene Film Deposition for Monolithic Device Fabrication

    NASA Astrophysics Data System (ADS)

    Al-shurman, Khaled

    Since 1958, the concept of integrated circuit (IC) has achieved great technological developments and helped in shrinking electronic devices. Nowadays, an IC consists of more than a million of compacted transistors. The majority of current ICs use silicon as a semiconductor material. According to Moore's law, the number of transistors built-in on a microchip can be double every two years. However, silicon device manufacturing reaches its physical limits. To explain, there is a new trend to shrinking circuitry to seven nanometers where a lot of unknown quantum effects such as tunneling effect can not be controlled. Hence, there is an urgent need for a new platform material to replace Si. Graphene is considered a promising material with enormous potential applications in many electronic and optoelectronics devices due to its superior properties. There are several techniques to produce graphene films. Among these techniques, chemical vapor deposition (CVD) offers a very convenient method to fabricate films for large-scale graphene films. Though CVD method is suitable for large area growth of graphene, the need for transferring a graphene film to silicon-based substrates is required. Furthermore, the graphene films thus achieved are, in fact, not single crystalline. Also, graphene fabrication utilizing Cu and Ni at high growth temperature contaminates the substrate that holds Si CMOS circuitry and CVD chamber as well. So, lowering the deposition temperature is another technological milestone for the successful adoption of graphene in integrated circuits fabrication. In this research, direct large-scale graphene film fabrication on silicon based platform (i.e. SiO2 and Si3N4) at low temperature was achieved. With a focus on low-temperature graphene growth, hot-filament chemical vapor deposition (HF-CVD) was utilized to synthesize graphene film using 200 nm thick nickel film. Raman spectroscopy was utilized to examine graphene formation on the bottom side of the Ni film

  20. Synchronization of coupled large-scale Boolean networks

    SciTech Connect

    Li, Fangfei

    2014-03-15

    This paper investigates the complete synchronization and partial synchronization of two large-scale Boolean networks. First, the aggregation algorithm towards large-scale Boolean network is reviewed. Second, the aggregation algorithm is applied to study the complete synchronization and partial synchronization of large-scale Boolean networks. Finally, an illustrative example is presented to show the efficiency of the proposed results.

  1. The School Principal's Role in Large-Scale Assessment

    ERIC Educational Resources Information Center

    Newton, Paul; Tunison, Scott; Viczko, Melody

    2010-01-01

    This paper reports on an interpretive study in which 25 elementary principals were asked about their assessment knowledge, the use of large-scale assessments in their schools, and principals' perceptions on their roles with respect to large-scale assessments. Principals in this study suggested that the current context of large-scale assessment and…

  2. Synchronization of coupled large-scale Boolean networks

    NASA Astrophysics Data System (ADS)

    Li, Fangfei

    2014-03-01

    This paper investigates the complete synchronization and partial synchronization of two large-scale Boolean networks. First, the aggregation algorithm towards large-scale Boolean network is reviewed. Second, the aggregation algorithm is applied to study the complete synchronization and partial synchronization of large-scale Boolean networks. Finally, an illustrative example is presented to show the efficiency of the proposed results.

  3. Interaction of a cumulus cloud ensemble with the large-scale environment

    NASA Technical Reports Server (NTRS)

    Arakawa, A.; Schubert, W.

    1973-01-01

    Large-scale modification of the environment by cumulus clouds is discussed in terms of entrainment, detrainment, evaporation, and subsidence. Drying, warming, and condensation by vertical displacement of air are considered as well as budget equations for mass, static energy, water vapor, and liquid water.

  4. Conjugate gradient methods with sufficient descent condition for large-scale unconstrained optimization

    NASA Astrophysics Data System (ADS)

    Ling, Mei Mei; Leong, Wah June

    2014-12-01

    In this paper, we make a modification to the standard conjugate gradient method so that its search direction satisfies the sufficient descent condition. We prove that the modified conjugate gradient method is globally convergent under Armijo line search. Numerical results show that the proposed conjugate gradient method is efficient compared to some of its standard counterparts for large-scale unconstrained optimization.

  5. Large scale production of short functionalized carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Kónya, Z.; Vesselenyi, I.; Niesz, K.; Kukovecz, A.; Demortier, A.; Fonseca, A.; Delhalle, J.; Mekhalif, Z.; Nagy, J. B.; Koós, A. A.; Osváth, Z.; Kocsonya, A.; Biró, L. P.; Kiricsi, I.

    2002-07-01

    A simple mechano-chemical modification of multiwall carbon nanotubes is described. The use of ball-milling in specific atmosphere allows us to introduce functional groups like thiol, amine, amide, carbonyl, chlorine, etc. onto carbon nanotubes. The resulted functional groups are characterized using infrared spectroscopy and X-ray photoelectron spectroscopy.

  6. Large-Scale Spacecraft Fire Safety Tests

    NASA Technical Reports Server (NTRS)

    Urban, David; Ruff, Gary A.; Ferkul, Paul V.; Olson, Sandra; Fernandez-Pello, A. Carlos; T'ien, James S.; Torero, Jose L.; Cowlard, Adam J.; Rouvreau, Sebastien; Minster, Olivier; hide

    2014-01-01

    An international collaborative program is underway to address open issues in spacecraft fire safety. Because of limited access to long-term low-gravity conditions and the small volume generally allotted for these experiments, there have been relatively few experiments that directly study spacecraft fire safety under low-gravity conditions. Furthermore, none of these experiments have studied sample sizes and environment conditions typical of those expected in a spacecraft fire. The major constraint has been the size of the sample, with prior experiments limited to samples of the order of 10 cm in length and width or smaller. This lack of experimental data forces spacecraft designers to base their designs and safety precautions on 1-g understanding of flame spread, fire detection, and suppression. However, low-gravity combustion research has demonstrated substantial differences in flame behavior in low-gravity. This, combined with the differences caused by the confined spacecraft environment, necessitates practical scale spacecraft fire safety research to mitigate risks for future space missions. To address this issue, a large-scale spacecraft fire experiment is under development by NASA and an international team of investigators. This poster presents the objectives, status, and concept of this collaborative international project (Saffire). The project plan is to conduct fire safety experiments on three sequential flights of an unmanned ISS re-supply spacecraft (the Orbital Cygnus vehicle) after they have completed their delivery of cargo to the ISS and have begun their return journeys to earth. On two flights (Saffire-1 and Saffire-3), the experiment will consist of a flame spread test involving a meter-scale sample ignited in the pressurized volume of the spacecraft and allowed to burn to completion while measurements are made. On one of the flights (Saffire-2), 9 smaller (5 x 30 cm) samples will be tested to evaluate NASAs material flammability screening tests

  7. Large scale simulations of Brownian suspensions

    NASA Astrophysics Data System (ADS)

    Viera, Marc Nathaniel

    Particle suspensions occur in a wide variety of natural and engineering materials. Some examples are colloids, polymers, paints, and slurries. These materials exhibit complex behavior owing to the forces which act among the particles and are transmitted through the fluid medium. Depending on the application, particle sizes range from large macroscopic molecules of 100mum to smaller colloidal particles in the range of 10nm to 1mum. Particles of this size interact though interparticle forces such as electrostatic and van der Waals, as well as hydrodynamic forces transmitted through the fluid medium. Additionally, the particles are subjected to random thermal fluctuations in the fluid giving rise to Brownian motion. The central objective of our research is to develop efficient numerical algorithms for the large scale dynamic simulation of particle suspensions. While previous methods have incurred a computational cost of O(N3), where N is the number of particles, we have developed a novel algorithm capable of solving this problem in O(N ln N) operations. This has allowed us to perform dynamic simulations with up to 64,000 particles and Monte Carlo realizations of up to 1 million particles. Our algorithm follows a Stokesian dynamics formulation by evaluating many-body hydrodynamic interactions using a far-field multipole expansion combined with a near-field lubrication correction. The breakthrough O(N ln N) scaling is obtained by employing a Particle-Mesh-Ewald (PME) approach whereby near-field interactions are evaluated directly and far-field interactions are evaluated using a grid based velocity computed with FFT's. This approach is readily extended to include the effects of Brownian motion. For interacting particles, the fluctuation-dissipation theorem requires that the individual Brownian forces satisfy a correlation based on the N body resistance tensor R. The accurate modeling of these forces requires the computation of a matrix square root R 1/2 for matrices up

  8. Chemical Modification of the Multi-Target Neuroprotective Compound Fisetin

    PubMed Central

    Chiruta, Chandramouli; Schubert, David; Dargusch, Richard; Maher, Pamela

    2012-01-01

    Many factors are implicated in age-related CNS disorders making it unlikely that modulating only a single factor will provide effective treatment. Perhaps a better approach is to identify small molecules that have multiple biological activities relevant to the maintenance of brain function. Recently, we identified an orally active, neuroprotective and cognition-enhancing molecule, the flavonoid fisetin, that is effective in several animal models of CNS disorders. Fisetin has direct antioxidant activity and can also increase the intracellular levels of glutathione (GSH), the major endogenous antioxidant. In addition, fisetin has both neurotrophic and anti-inflammatory activity. However, its relatively high EC50 in cell based assays, low lipophilicity, high tPSA and poor bioavailability suggest that there is room for medicinal chemical improvement. Here we describe a multi-tiered approach to screening that has allowed us to identify fisetin derivatives with significantly enhanced activity in an in vitro neuroprotection model while at the same time maintaining other key activities. PMID:22192055

  9. Chemical modification of porous silicon mirror for biosensing applications

    NASA Astrophysics Data System (ADS)

    Palestino Escobedo, G.; Legros, R.; de la Mora Mojica, B.; del Río Portilla, J. A.; Pérez López, J. E.; Gergely, C.

    2007-05-01

    Porous silicon (PSi) nanostructures have remarkable optical properties that can be used for biosensing applications. In this paper we report first on the fabrication of heavily doped p-type PSi with pore diameters in the range of 400-4000 nm. The nonspecific and specific binding of the Glucose Oxidase protein (GOX) was then studied onto the PSi mirrorlike substrate. Adsorption of GOX was tuned by the pH of the protein solution (pI = 4.2) depending of the surface charge. PSi matrixes were first stabilized by thermal oxidation and GOX adsorption was performed once directly on the oxidized PSi surface, and also on previously functionalized PSi surfaces. In the latter case the GOX was coupled to the PSi via the S-H group of the 3-(mercaptopropyl)trimethoxysilane (MPTS). The silane-GOX and GOX interactions on the PSi surface were monitored by the Fourier Transformed Infrared spectra that display characteristic bands of the linked molecules. The interference spectrum shows a large blue shift in the Fabry-Perot interference pattern caused by the change in the refractive index of the medium implying a decrease in the effective optical thickness. Quantitative analysis shows that chemically modified PSi samples admit approximately 24% of GOX. Activity assay proved that the protein preserves its catalyst properties under these adsorption conditions.

  10. Large-scale production of pharmaceuticals by marine sponges: sea, cell, or synthesis?

    PubMed

    Sipkema, Detmer; Osinga, Ronald; Schatton, Wolfgang; Mendola, Dominick; Tramper, Johannes; Wijffels, René H

    2005-04-20

    Marine sponges are known to produce an overwhelming array of secondary metabolites with pharmaceutical potential. The technical and economical potential of using marine sponges for large-scale production of these compounds was assessed for two cases: the anticancer molecule halichondrin B from a Lissodendoryx sp., and avarol from Dysidea avara for its antipsoriasis activity. An economic and technical analysis was done for three potential production methods: mariculture, ex situ culture (in tanks), and cell culture. We concluded that avarol produced by mariculture or ex situ culture could become a viable alternative to currently used pharmaceuticals for the treatment of psoriasis. Production of halichondrin B from sponge biomass was found to not be a feasible process, mainly due to the extremely low concentration of the compound in the sponge. Technical feasibility was also analyzed for five alternatives: chemical synthesis, wild harvest, primmorph culture, genetic modification and semi-synthesis. It was concluded that the latter two approaches could prove to be valuable methods for the production of pharmaceuticals, based on chemical structures of secondary metabolites present in trace amounts in marine sponges.

  11. A large-scale crop protection bioassay data set

    PubMed Central

    Gaulton, Anna; Kale, Namrata; van Westen, Gerard J. P.; Bellis, Louisa J.; Bento, A. Patrícia; Davies, Mark; Hersey, Anne; Papadatos, George; Forster, Mark; Wege, Philip; Overington, John P.

    2015-01-01

    ChEMBL is a large-scale drug discovery database containing bioactivity information primarily extracted from scientific literature. Due to the medicinal chemistry focus of the journals from which data are extracted, the data are currently of most direct value in the field of human health research. However, many of the scientific use-cases for the current data set are equally applicable in other fields, such as crop protection research: for example, identification of chemical scaffolds active against a particular target or endpoint, the de-convolution of the potential targets of a phenotypic assay, or the potential targets/pathways for safety liabilities. In order to broaden the applicability of the ChEMBL database and allow more widespread use in crop protection research, an extensive data set of bioactivity data of insecticidal, fungicidal and herbicidal compounds and assays was collated and added to the database. PMID:26175909

  12. A large-scale crop protection bioassay data set

    NASA Astrophysics Data System (ADS)

    Gaulton, Anna; Kale, Namrata; van Westen, Gerard J. P.; Bellis, Louisa J.; Bento, A. Patrícia; Davies, Mark; Hersey, Anne; Papadatos, George; Forster, Mark; Wege, Philip; Overington, John P.

    2015-07-01

    ChEMBL is a large-scale drug discovery database containing bioactivity information primarily extracted from scientific literature. Due to the medicinal chemistry focus of the journals from which data are extracted, the data are currently of most direct value in the field of human health research. However, many of the scientific use-cases for the current data set are equally applicable in other fields, such as crop protection research: for example, identification of chemical scaffolds active against a particular target or endpoint, the de-convolution of the potential targets of a phenotypic assay, or the potential targets/pathways for safety liabilities. In order to broaden the applicability of the ChEMBL database and allow more widespread use in crop protection research, an extensive data set of bioactivity data of insecticidal, fungicidal and herbicidal compounds and assays was collated and added to the database.

  13. Nuclear-pumped lasers for large-scale applications

    SciTech Connect

    Anderson, R.E.; Leonard, E.M.; Shea, R.E.; Berggren, R.R.

    1988-01-01

    Efficient initiation of large-volume chemical lasers may be achieved by neutron induced reactions which produce charged particles in the final state. When a burst mode nuclear reactor is used as the neutron source, both a sufficiently intense neutron flux and a sufficient short initiation pulse may be possible. Proof-of-principle experiments are planned to demonstrate lasing in a direct nuclear-pumped large-volume system: to study the effects of various neutron absorbing materials on laser performance; to study the effects of long initiation pulse lengths; to determine the performance of large-scale optics and the beam quality that may bo obtained; and to assess the performance of alternative designs of burst systems that increase the neutron output and burst repetition rate. 21 refs., 7 figs., 5 tabs.

  14. A large-scale crop protection bioassay data set.

    PubMed

    Gaulton, Anna; Kale, Namrata; van Westen, Gerard J P; Bellis, Louisa J; Bento, A Patrícia; Davies, Mark; Hersey, Anne; Papadatos, George; Forster, Mark; Wege, Philip; Overington, John P

    2015-01-01

    ChEMBL is a large-scale drug discovery database containing bioactivity information primarily extracted from scientific literature. Due to the medicinal chemistry focus of the journals from which data are extracted, the data are currently of most direct value in the field of human health research. However, many of the scientific use-cases for the current data set are equally applicable in other fields, such as crop protection research: for example, identification of chemical scaffolds active against a particular target or endpoint, the de-convolution of the potential targets of a phenotypic assay, or the potential targets/pathways for safety liabilities. In order to broaden the applicability of the ChEMBL database and allow more widespread use in crop protection research, an extensive data set of bioactivity data of insecticidal, fungicidal and herbicidal compounds and assays was collated and added to the database.

  15. Sheltering in buildings from large-scale outdoor releases

    SciTech Connect

    Chan, W.R.; Price, P.N.; Gadgil, A.J.

    2004-06-01

    Intentional or accidental large-scale airborne toxic release (e.g. terrorist attacks or industrial accidents) can cause severe harm to nearby communities. Under these circumstances, taking shelter in buildings can be an effective emergency response strategy. Some examples where shelter-in-place was successful at preventing injuries and casualties have been documented [1, 2]. As public education and preparedness are vital to ensure the success of an emergency response, many agencies have prepared documents advising the public on what to do during and after sheltering [3, 4, 5]. In this document, we will focus on the role buildings play in providing protection to occupants. The conclusions to this article are: (1) Under most circumstances, shelter-in-place is an effective response against large-scale outdoor releases. This is particularly true for release of short duration (a few hours or less) and chemicals that exhibit non-linear dose-response characteristics. (2) The building envelope not only restricts the outdoor-indoor air exchange, but can also filter some biological or even chemical agents. Once indoors, the toxic materials can deposit or sorb onto indoor surfaces. All these processes contribute to the effectiveness of shelter-in-place. (3) Tightening of building envelope and improved filtration can enhance the protection offered by buildings. Common mechanical ventilation system present in most commercial buildings, however, should be turned off and dampers closed when sheltering from an outdoor release. (4) After the passing of the outdoor plume, some residuals will remain indoors. It is therefore important to terminate shelter-in-place to minimize exposure to the toxic materials.

  16. Nanomaterials processing toward large-scale flexible/stretchable electronics

    NASA Astrophysics Data System (ADS)

    Takahashi, Toshitake

    In recent years, there has been tremendous progress in large-scale mechanically flexible electronics, where electrical components are fabricated on non-crystalline substrates such as plastics and glass. These devices are currently serving as the basis for various applications such as flat-panel displays, smart cards, and wearable electronics. In this thesis, a promising approach using chemically synthesized nanomaterials is explored to overcome various obstacles current technology faces in this field. Here, we use chemically synthesized semiconducting nanowires (NWs) including group IV (Si, Ge), III-V (InAs) and II-IV (CdS, CdSe) NWs, and semiconductor-enriched SWNTs (99 % purity), and developed reliable, controllable, and more importantly uniform assembly methods on 4-inch wafer-scale flexible substrates in the form of either parallel NW arrays or SWNT random networks, which act as the active components in thin film transistors (TFTs). Thusly obtained TFTs composed of nanomaterials show respectable electrical and optical properties such as 1) cut-off frequency, ft ~ 1 GHz and maximum frequency of oscillation, fmax ~ 1.8 GHz from InAs parallel NW array TFTs with channel length of ~ 1.5 μm, 2) photodetectors covering visible wavelengths (500-700 nm) using compositionally graded CdSxSe1-x (0 < x < 1) parallel NW arrays, and 3) carrier mobility of ~ 20 cm2/Vs, which is an order of magnitude larger than conventional TFT materials such as a-Si and organic semiconductors, without sacrificing current on/off ratio (Ion/Ioff ~ 104) from SWNT network TFTs. The capability to uniformly assemble nanomaterials over large-scale flexible substrates enables us to use them for more sophisticated applications. Artificial electronic skin (e-skin) is demonstrated by laminating pressure sensitive rubber on top of nanomaterial-based active matrix backplanes. Furthermore, an x-ray imaging device is also achieved by combining organic photodiodes with this backplane technology.

  17. In situ vitrification large-scale operational acceptance test analysis

    SciTech Connect

    Buelt, J.L.; Carter, J.G.

    1986-05-01

    A thermal treatment process is currently under study to provide possible enhancement of in-place stabilization of transuranic and chemically contaminated soil sites. The process is known as in situ vitrification (ISV). In situ vitrification is a remedial action process that destroys solid and liquid organic contaminants and incorporates radionuclides into a glass-like material that renders contaminants substantially less mobile and less likely to impact the environment. A large-scale operational acceptance test (LSOAT) was recently completed in which more than 180 t of vitrified soil were produced in each of three adjacent settings. The LSOAT demonstrated that the process conforms to the functional design criteria necessary for the large-scale radioactive test (LSRT) to be conducted following verification of the performance capabilities of the process. The energy requirements and vitrified block size, shape, and mass are sufficiently equivalent to those predicted by the ISV mathematical model to confirm its usefulness as a predictive tool. The LSOAT demonstrated an electrode replacement technique, which can be used if an electrode fails, and techniques have been identified to minimize air oxidation, thereby extending electrode life. A statistical analysis was employed during the LSOAT to identify graphite collars and an insulative surface as successful cold cap subsidence techniques. The LSOAT also showed that even under worst-case conditions, the off-gas system exceeds the flow requirements necessary to maintain a negative pressure on the hood covering the area being vitrified. The retention of simulated radionuclides and chemicals in the soil and off-gas system exceeds requirements so that projected emissions are one to two orders of magnitude below the maximum permissible concentrations of contaminants at the stack.

  18. Large-scale chemical dissection of mitochondrial function.

    PubMed

    Wagner, Bridget K; Kitami, Toshimori; Gilbert, Tamara J; Peck, David; Ramanathan, Arvind; Schreiber, Stuart L; Golub, Todd R; Mootha, Vamsi K

    2008-03-01

    Mitochondrial oxidative phosphorylation (OXPHOS) is under the control of both mitochondrial (mtDNA) and nuclear genomes and is central to energy homeostasis. To investigate how its function and regulation are integrated within cells, we systematically combined four cell-based assays of OXPHOS physiology with multiplexed measurements of nuclear and mtDNA gene expression across 2,490 small-molecule perturbations in cultured muscle. Mining the resulting compendium revealed, first, that protein synthesis inhibitors can decouple coordination of nuclear and mtDNA transcription; second, that a subset of HMG-CoA reductase inhibitors, combined with propranolol, can cause mitochondrial toxicity, yielding potential clues about the etiology of statin myopathy; and, third, that structurally diverse microtubule inhibitors stimulate OXPHOS transcription while suppressing reactive oxygen species, via a transcriptional mechanism involving PGC-1alpha and ERRalpha, and thus may be useful in treating age-associated degenerative disorders. Our screening compendium can be used as a discovery tool both for understanding mitochondrial biology and toxicity and for identifying novel therapeutics.

  19. Population generation for large-scale simulation

    NASA Astrophysics Data System (ADS)

    Hannon, Andrew C.; King, Gary; Morrison, Clayton; Galstyan, Aram; Cohen, Paul

    2005-05-01

    Computer simulation is used to research phenomena ranging from the structure of the space-time continuum to population genetics and future combat.1-3 Multi-agent simulations in particular are now commonplace in many fields.4, 5 By modeling populations whose complex behavior emerges from individual interactions, these simulations help to answer questions about effects where closed form solutions are difficult to solve or impossible to derive.6 To be useful, simulations must accurately model the relevant aspects of the underlying domain. In multi-agent simulation, this means that the modeling must include both the agents and their relationships. Typically, each agent can be modeled as a set of attributes drawn from various distributions (e.g., height, morale, intelligence and so forth). Though these can interact - for example, agent height is related to agent weight - they are usually independent. Modeling relations between agents, on the other hand, adds a new layer of complexity, and tools from graph theory and social network analysis are finding increasing application.7, 8 Recognizing the role and proper use of these techniques, however, remains the subject of ongoing research. We recently encountered these complexities while building large scale social simulations.9-11 One of these, the Hats Simulator, is designed to be a lightweight proxy for intelligence analysis problems. Hats models a "society in a box" consisting of many simple agents, called hats. Hats gets its name from the classic spaghetti western, in which the heroes and villains are known by the color of the hats they wear. The Hats society also has its heroes and villains, but the challenge is to identify which color hat they should be wearing based on how they behave. There are three types of hats: benign hats, known terrorists, and covert terrorists. Covert terrorists look just like benign hats but act like terrorists. Population structure can make covert hat identification significantly more

  20. Large-scale Fractal Motion of Clouds

    NASA Image and Video Library

    2017-09-27

    waters surrounding the island.) The “swallowed” gulps of clear island air get carried along within the vortices, but these are soon mixed into the surrounding clouds. Landsat is unique in its ability to image both the small-scale eddies that mix clear and cloudy air, down to the 30 meter pixel size of Landsat, but also having a wide enough field-of-view, 180 km, to reveal the connection of the turbulence to large-scale flows such as the subtropical oceanic gyres. Landsat 7, with its new onboard digital recorder, has extended this capability away from the few Landsat ground stations to remote areas such as Alejandro Island, and thus is gradually providing a global dynamic picture of evolving human-scale phenomena. For more details on von Karman vortices, refer to climate.gsfc.nasa.gov/~cahalan. Image and caption courtesy Bob Cahalan, NASA GSFC Instrument: Landsat 7 - ETM+ Credit: NASA/GSFC/Landsat NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Join us on Facebook

  1. Large-scale assembly of colloidal particles

    NASA Astrophysics Data System (ADS)

    Yang, Hongta

    This study reports a simple, roll-to-roll compatible coating technology for producing three-dimensional highly ordered colloidal crystal-polymer composites, colloidal crystals, and macroporous polymer membranes. A vertically beveled doctor blade is utilized to shear align silica microsphere-monomer suspensions to form large-area composites in a single step. The polymer matrix and the silica microspheres can be selectively removed to create colloidal crystals and self-standing macroporous polymer membranes. The thickness of the shear-aligned crystal is correlated with the viscosity of the colloidal suspension and the coating speed, and the correlations can be qualitatively explained by adapting the mechanisms developed for conventional doctor blade coating. Five important research topics related to the application of large-scale three-dimensional highly ordered macroporous films by doctor blade coating are covered in this study. The first topic describes the invention in large area and low cost color reflective displays. This invention is inspired by the heat pipe technology. The self-standing macroporous polymer films exhibit brilliant colors which originate from the Bragg diffractive of visible light form the three-dimensional highly ordered air cavities. The colors can be easily changed by tuning the size of the air cavities to cover the whole visible spectrum. When the air cavities are filled with a solvent which has the same refractive index as that of the polymer, the macroporous polymer films become completely transparent due to the index matching. When the solvent trapped in the cavities is evaporated by in-situ heating, the sample color changes back to brilliant color. This process is highly reversible and reproducible for thousands of cycles. The second topic reports the achievement of rapid and reversible vapor detection by using 3-D macroporous photonic crystals. Capillary condensation of a condensable vapor in the interconnected macropores leads to the

  2. Effects of chemical modification on the conformation and biological activity of peanut agglutinin.

    PubMed

    Nonnenmacher, D; Brossmer, R

    1981-03-27

    The effect of chemical modifications on the biological properties of peanut agglutinin was investigated. The free amino groups were modified with succinic anhydride and 1-isothiocyanato-4-benzenesulfonic acid. Though the extent of modification was 95 and 85%, respectively, these derivatives did not lose their sugar binding capacity. The agglutinating activity with neuraminidase-treated human erythrocytes and various tumor cells was reduced. The mitogenic activity tested with neuraminidase-treated human lymphocytes was also diminished The tyrosine residues were modified with tetranitromethane and further with 4-aminophenyl-alpha-D-glucopyranoside and the negatively charged 2-(4-amino-benzyl)-alpha-D-neuraminic acid. The extent of modification was 30, 28 and 6%, respectively. The agglutinating and mitogenic activities were in this case not severely changed. The influence of all these modifications on the conformation was investigated by means of CD studies in the far and near ultraviolet regions.

  3. Engineering chromatin states: chemical and synthetic biology approaches to investigate histone modification function.

    PubMed

    Pick, Horst; Kilic, Sinan; Fierz, Beat

    2014-08-01

    Patterns of histone post-translational modifications (PTMs) and DNA modifications establish a landscape of chromatin states with regulatory impact on gene expression, cell differentiation and development. These diverse modifications are read out by effector protein complexes, which ultimately determine their functional outcome by modulating the activity state of underlying genes. From genome-wide studies employing high-throughput ChIP-Seq methods as well as proteomic mass spectrometry studies, a large number of PTMs are known and their coexistence patterns and associations with genomic regions have been mapped in a large number of different cell types. Conversely, the molecular interplay between chromatin effector proteins and modified chromatin regions as well as their resulting biological output is less well understood on a molecular level. Within the last decade a host of chemical approaches has been developed with the goal to produce synthetic chromatin with a defined arrangement of PTMs. These methods now permit systematic functional studies of individual histone and DNA modifications, and additionally provide a discovery platform to identify further interacting nuclear proteins. Complementary chemical- and synthetic-biology methods have emerged to directly observe and modulate the modification landscape in living cells and to readily probe the effect of altered PTM patterns on biological processes. Herein, we review current methodologies allowing chemical and synthetic biological engineering of distinct chromatin states in vitro and in vivo with the aim of obtaining a molecular understanding of histone and DNA modification function. This article is part of a Special Issue entitled: Molecular mechanisms of histone modification function. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Chemical modification studies on a lectin from Saccharomyces cerevisiae (baker's yeast).

    PubMed Central

    Kundu, M; Basu, J; Ghosh, A; Chakrabarti, P

    1987-01-01

    The effect of chemical modification on a galactose-specific lectin isolated from a fatty acid auxotroph of Saccharomyces cerevisiae was investigated in order to identify the type of amino acids involved in its agglutinating activity. Modification of 50 free amino groups with succinic anhydride or citraconic anhydride led to an almost complete loss of activity. This could not be protected by the inhibitory sugar methyl alpha-D-galactopyranoside. Treatment with N-bromosuccinimide and N-acetylimidazole, for the modification of tryptophan and tyrosine residues, did not affect lectin activity. Modification of carboxy groups with glycine ethyl ester greatly affected lectin activity, although sugars afford partial protection. Modification of four thiol groups with N-ethylmaleimide was accompanied by a loss of 85% of the agglutinating activity, and two thiol groups were found to be present at the sugar-binding site of the lectin. Modification of 18 arginine residues with cyclohexane-1,2-dione and 26 histidine residues with ethoxyformic anhydride led to a loss of lectin activity. However, in these cases, modification was not protected by the abovementioned inhibitory sugar, suggesting the absence of these groups at the sugar-binding site. In all the cases, immunodiffusion studies with modified lectin showed no gross structural changes which could disrupt antigenic sites of the lectin. Images Fig. 5. PMID:3128265

  5. Chemical Modifications Mark Alternatively Spliced and Uncapped Messenger RNAs in Arabidopsis[OPEN

    PubMed Central

    Vandivier, Lee E.; Silverman, Ian M.; Wang, Li-San

    2015-01-01

    Posttranscriptional chemical modification of RNA bases is a widespread and physiologically relevant regulator of RNA maturation, stability, and function. While modifications are best characterized in short, noncoding RNAs such as tRNAs, growing evidence indicates that mRNAs and long noncoding RNAs (lncRNAs) are likewise modified. Here, we apply our high-throughput annotation of modified ribonucleotides (HAMR) pipeline to identify and classify modifications that affect Watson-Crick base pairing at three different levels of the Arabidopsis thaliana transcriptome (polyadenylated, small, and degrading RNAs). We find this type of modifications primarily within uncapped, degrading mRNAs and lncRNAs, suggesting they are the cause or consequence of RNA turnover. Additionally, modifications within stable mRNAs tend to occur in alternatively spliced introns, suggesting they regulate splicing. Furthermore, these modifications target mRNAs with coherent functions, including stress responses. Thus, our comprehensive analysis across multiple RNA classes yields insights into the functions of covalent RNA modifications in plant transcriptomes. PMID:26561561

  6. Chemical Modifications Mark Alternatively Spliced and Uncapped Messenger RNAs in Arabidopsis.

    PubMed

    Vandivier, Lee E; Campos, Rafael; Kuksa, Pavel P; Silverman, Ian M; Wang, Li-San; Gregory, Brian D

    2015-11-01

    Posttranscriptional chemical modification of RNA bases is a widespread and physiologically relevant regulator of RNA maturation, stability, and function. While modifications are best characterized in short, noncoding RNAs such as tRNAs, growing evidence indicates that mRNAs and long noncoding RNAs (lncRNAs) are likewise modified. Here, we apply our high-throughput annotation of modified ribonucleotides (HAMR) pipeline to identify and classify modifications that affect Watson-Crick base pairing at three different levels of the Arabidopsis thaliana transcriptome (polyadenylated, small, and degrading RNAs). We find this type of modifications primarily within uncapped, degrading mRNAs and lncRNAs, suggesting they are the cause or consequence of RNA turnover. Additionally, modifications within stable mRNAs tend to occur in alternatively spliced introns, suggesting they regulate splicing. Furthermore, these modifications target mRNAs with coherent functions, including stress responses. Thus, our comprehensive analysis across multiple RNA classes yields insights into the functions of covalent RNA modifications in plant transcriptomes. © 2015 American Society of Plant Biologists. All rights reserved.

  7. Surface modification of silicon-containing fluorocarbon films prepared by plasma-enhanced chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Jin, Yoonyoung; Desta, Yohannes; Goettert, Jost; Lee, G. S.; Ajmera, P. K.

    2005-07-01

    Surface modification of silicon-containing fluorocarbon (SiCF) films achieved by wet chemical treatments and through x-ray irradiation is examined. The SiCF films were prepared by plasma-enhanced chemical vapor deposition, using gas precursors of tetrafluoromethane and disilane. As-deposited SiCF film composition was analyzed by x-ray photoelectron spectroscopy. Surface modification of SiCF films utilizing n-lithiodiaminoethane wet chemical treatment is discussed. Sessile water-drop contact angle changed from 95°+/-2° before treatment to 32°+/-2° after treatment, indicating a change in the film surface characteristics from hydrophobic to hydrophilic. For x-ray irradiation on the SiCF film with a dose of 27.4 kJ/cm3, the contact angle of the sessile water drop changed from 95°+/-2° before radiation to 39°+/-3° after x-ray exposure. The effect of x-ray exposure on chemical bond structure of SiCF films is studied using Fourier transform infrared measurements. Electroless Cu deposition was performed to test the applicability of the surface modified films. The x-ray irradiation method offers a unique advantage in making possible surface modification in a localized area of high-aspect-ratio microstructures. Fabrication of a Ti-membrane x-ray mask is introduced here for selective surface modification using x-ray irradiation.

  8. Thermo-chemical structure of the North China Craton from multi-observable probabilistic inversion: extent and causes of cratonic lithosphere modification

    NASA Astrophysics Data System (ADS)

    Guo, Z.; Afonso, J. C.; Qashqai, M.; Yang, Y.; Chen, J.

    2016-12-01

    Although the North China Craton (NCC) is one of the best documented cases of cratonic lithosphere modification, the actual causes, processes, and extent of lithospheric modification still are a matter of debate. Here, we present the first thermo-chemical model of the NCC from the surface down to 350 km by jointly inverting surface wave phase velocity data, geoid height, surface heat flow and absolute elevation with a novel multi-observable probabilistic inversion method. Our model reveals a thin ( 65-100 km) and chemically fertile lithosphere (8790) lithospheric mantle is imaged beneath the central TNCO and Ordos Block, reaching depths > 260 km. This lithospheric "keel" is surrounded to the east by a high-temperature sublithospheric anomaly that originates at depths > 280 km. The spatial distribution of this anomaly and its correlation with the location of recent volcanism in the region suggest that the anomaly represents a deep mantle upwelling being diverted by the cratonic keel and spreading onto regions of shallow lithosphere. Our results indicate that the present-day thermochemical structure beneath the NCC is the result of a complex interaction between a large-scale return flow associated with the subduction of the Pacific slab and the shallow lithospheric structure.

  9. Surface modified MXene Ti3C2 multilayers by aryl diazonium salts leading to large-scale delamination

    NASA Astrophysics Data System (ADS)

    Wang, Hongbing; Zhang, Jianfeng; Wu, Yuping; Huang, Huajie; Li, Gaiye; Zhang, Xin; Wang, Zhuyin

    2016-10-01

    Herein we report a simple and facile method to delaminate MXene Ti3C2 multilayers by the assistance of surface modification using aryl diazonium salts. The basic strategy involved the preparation of layered MAX Ti3AlC2 and the exfoliation of Ti3AlC2 into Ti3C2 multilayers, followed by Na+ intercalation and surface modification using sulfanilic acid diazonium salts. The resulting chemically grafted Ti3C2 flakes were characterized by Fourier transform infrared (FT-IR) spectroscopy and X-ray photoelectron spectroscopy (XPS) to confirm the presence of the surface organic species. Ultraviolet-visible spectroscopy revealed that surface-modified MXene Ti3C2 sheets disperse well in water and the solutions obey Lambert-Beer's law. Scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD) were used to demonstrate the morphology and structure of delaminating MXene Ti3C2 flakes. The results indicated that chemical modification for MXene multilayers by aryl diazonium salts induced swelling that conversely weakened the bonds between MX layers, hence leading to large-scale delamination of multilayered MXene Ti3C2via mild sonication. Advantages of the present approach rely not only on the simplicity and efficiency of the delamination procedure but also on the grafting of aryl groups to MXene surfaces, highly suitable for further applications of the newly discovered two-dimensional materials.

  10. High-throughput solution processing of large-scale graphene.

    PubMed

    Tung, Vincent C; Allen, Matthew J; Yang, Yang; Kaner, Richard B

    2009-01-01

    The electronic properties of graphene, such as high charge carrier concentrations and mobilities, make it a promising candidate for next-generation nanoelectronic devices. In particular, electrons and holes can undergo ballistic transport on the sub-micrometre scale in graphene and do not suffer from the scale limitations of current MOSFET technologies. However, it is still difficult to produce single-layer samples of graphene and bulk processing has not yet been achieved, despite strenuous efforts to develop a scalable production method. Here, we report a versatile solution-based process for the large-scale production of single-layer chemically converted graphene over the entire area of a silicon/SiO(2) wafer. By dispersing graphite oxide paper in pure hydrazine we were able to remove oxygen functionalities and restore the planar geometry of the single sheets. The chemically converted graphene sheets that were produced have the largest area reported to date (up to 20 x 40 microm), making them far easier to process. Field-effect devices have been fabricated by conventional photolithography, displaying currents that are three orders of magnitude higher than previously reported for chemically produced graphene. The size of these sheets enables a wide range of characterization techniques, including optical microscopy, scanning electron microscopy and atomic force microscopy, to be performed on the same specimen.

  11. High-throughput solution processing of large-scale graphene

    NASA Astrophysics Data System (ADS)

    Tung, Vincent C.; Allen, Matthew J.; Yang, Yang; Kaner, Richard B.

    2009-01-01

    The electronic properties of graphene, such as high charge carrier concentrations and mobilities, make it a promising candidate for next-generation nanoelectronic devices. In particular, electrons and holes can undergo ballistic transport on the sub-micrometre scale in graphene and do not suffer from the scale limitations of current MOSFET technologies. However, it is still difficult to produce single-layer samples of graphene and bulk processing has not yet been achieved, despite strenuous efforts to develop a scalable production method. Here, we report a versatile solution-based process for the large-scale production of single-layer chemically converted graphene over the entire area of a silicon/SiO2 wafer. By dispersing graphite oxide paper in pure hydrazine we were able to remove oxygen functionalities and restore the planar geometry of the single sheets. The chemically converted graphene sheets that were produced have the largest area reported to date (up to 20 × 40 µm), making them far easier to process. Field-effect devices have been fabricated by conventional photolithography, displaying currents that are three orders of magnitude higher than previously reported for chemically produced graphene. The size of these sheets enables a wide range of characterization techniques, including optical microscopy, scanning electron microscopy and atomic force microscopy, to be performed on the same specimen.

  12. A method of orbital analysis for large-scale first-principles simulations.

    PubMed

    Ohwaki, Tsukuru; Otani, Minoru; Ozaki, Taisuke

    2014-06-28

    An efficient method of calculating the natural bond orbitals (NBOs) based on a truncation of the entire density matrix of a whole system is presented for large-scale density functional theory calculations. The method recovers an orbital picture for O(N) electronic structure methods which directly evaluate the density matrix without using Kohn-Sham orbitals, thus enabling quantitative analysis of chemical reactions in large-scale systems in the language of localized Lewis-type chemical bonds. With the density matrix calculated by either an exact diagonalization or O(N) method, the computational cost is O(1) for the calculation of NBOs associated with a local region where a chemical reaction takes place. As an illustration of the method, we demonstrate how an electronic structure in a local region of interest can be analyzed by NBOs in a large-scale first-principles molecular dynamics simulation for a liquid electrolyte bulk model (propylene carbonate + LiBF4).

  13. A method of orbital analysis for large-scale first-principles simulations

    NASA Astrophysics Data System (ADS)

    Ohwaki, Tsukuru; Otani, Minoru; Ozaki, Taisuke

    2014-06-01

    An efficient method of calculating the natural bond orbitals (NBOs) based on a truncation of the entire density matrix of a whole system is presented for large-scale density functional theory calculations. The method recovers an orbital picture for O(N) electronic structure methods which directly evaluate the density matrix without using Kohn-Sham orbitals, thus enabling quantitative analysis of chemical reactions in large-scale systems in the language of localized Lewis-type chemical bonds. With the density matrix calculated by either an exact diagonalization or O(N) method, the computational cost is O(1) for the calculation of NBOs associated with a local region where a chemical reaction takes place. As an illustration of the method, we demonstrate how an electronic structure in a local region of interest can be analyzed by NBOs in a large-scale first-principles molecular dynamics simulation for a liquid electrolyte bulk model (propylene carbonate + LiBF4).

  14. Neutrino footprint in large scale structure

    NASA Astrophysics Data System (ADS)

    Garay, Carlos Peña; Verde, Licia; Jimenez, Raul

    2017-03-01

    Recent constrains on the sum of neutrino masses inferred by analyzing cosmological data, show that detecting a non-zero neutrino mass is within reach of forthcoming cosmological surveys. Such a measurement will imply a direct determination of the absolute neutrino mass scale. Physically, the measurement relies on constraining the shape of the matter power spectrum below the neutrino free streaming scale: massive neutrinos erase power at these scales. However, detection of a lack of small-scale power from cosmological data could also be due to a host of other effects. It is therefore of paramount importance to validate neutrinos as the source of power suppression at small scales. We show that, independent on hierarchy, neutrinos always show a footprint on large, linear scales; the exact location and properties are fully specified by the measured power suppression (an astrophysical measurement) and atmospheric neutrinos mass splitting (a neutrino oscillation experiment measurement). This feature cannot be easily mimicked by systematic uncertainties in the cosmological data analysis or modifications in the cosmological model. Therefore the measurement of such a feature, up to 1% relative change in the power spectrum for extreme differences in the mass eigenstates mass ratios, is a smoking gun for confirming the determination of the absolute neutrino mass scale from cosmological observations. It also demonstrates the synergy between astrophysics and particle physics experiments.

  15. Large Scale Reduction of Graphite Oxide Project

    NASA Technical Reports Server (NTRS)

    Calle, Carlos; Mackey, Paul; Falker, John; Zeitlin, Nancy

    2015-01-01

    This project seeks to develop an optical method to reduce graphite oxide into graphene efficiently and in larger formats than currently available. Current reduction methods are expensive, time-consuming or restricted to small, limited formats. Graphene has potential uses in ultracapacitors, energy storage, solar cells, flexible and light-weight circuits, touch screens, and chemical sensors. In addition, graphite oxide is a sustainable material that can be produced from any form of carbon, making this method environmentally friendly and adaptable for in-situ reduction.

  16. Multitree Algorithms for Large-Scale Astrostatistics

    NASA Astrophysics Data System (ADS)

    March, William B.; Ozakin, Arkadas; Lee, Dongryeol; Riegel, Ryan; Gray, Alexander G.

    2012-03-01

    this number every week, resulting in billions of objects. At such scales, even linear-time analysis operations present challenges, particularly since statistical analyses are inherently interactive processes, requiring that computations complete within some reasonable human attention span. The quadratic (or worse) runtimes of straightforward implementations become quickly unbearable. Examples of applications. These analysis subroutines occur ubiquitously in astrostatistical work. We list just a few examples. The need to cross-match objects across different catalogs has led to various algorithms, which at some point perform an AllNN computation. 2-point and higher-order spatial correlations for the basis of spatial statistics, and are utilized in astronomy to compare the spatial structures of two datasets, such as an observed sample and a theoretical sample, for example, forming the basis for two-sample hypothesis testing. Friends-of-friends clustering is often used to identify halos in data from astrophysical simulations. Minimum spanning tree properties have also been proposed as statistics of large-scale structure. Comparison of the distributions of different kinds of objects requires accurate density estimation, for which KDE is the overall statistical method of choice. The prediction of redshifts from optical data requires accurate regression, for which kernel regression is a powerful method. The identification of objects of various types in astronomy, such as stars versus galaxies, requires accurate classification, for which KDA is a powerful method. Overview. In this chapter, we will briefly sketch the main ideas behind recent fast algorithms which achieve, for example, linear runtimes for pairwise-distance problems, or similarly dramatic reductions in computational growth. In some cases, the runtime orders for these algorithms are mathematically provable statements, while in others we have only conjectures backed by experimental observations for the time being

  17. Autonomic Computing Paradigm For Large Scale Scientific And Engineering Applications

    NASA Astrophysics Data System (ADS)

    Hariri, S.; Yang, J.; Zhang, Y.

    2005-12-01

    Large-scale distributed scientific applications are highly adaptive and heterogeneous in terms of their computational requirements. The computational complexity associated with each computational region or domain varies continuously and dramatically both in space and time throughout the whole life cycle of the application execution. Furthermore, the underlying distributed computing environment is similarly complex and dynamic in the availabilities and capacities of the computing resources. These challenges combined together make the current paradigms, which are based on passive components and static compositions, ineffectual. Autonomic Computing paradigm is an approach that efficiently addresses the complexity and dynamism of large scale scientific and engineering applications and realizes the self-management of these applications. In this presentation, we present an Autonomic Runtime Manager (ARM) that supports the development of autonomic applications. The ARM includes two modules: online monitoring and analysis module and autonomic planning and scheduling module. The ARM behaves as a closed-loop control system that dynamically controls and manages the execution of the applications at runtime. It regularly senses the state changes of both the applications and the underlying computing resources. It then uses these runtime information and prior knowledge about the application behavior and its physics to identify the appropriate solution methods as well as the required computing and storage resources. Consequently this approach enables us to develop autonomic applications, which are capable of self-management and self-optimization. We have developed and implemented the autonomic computing paradigms for several large scale applications such as wild fire simulations, simulations of flow through variably saturated geologic formations, and life sciences. The distributed wildfire simulation models the wildfire spread behavior by considering such factors as fuel

  18. Chemical modification of amino acid residues in glycerinated Vorticella stalk and Ca(2+)-induced contractility.

    PubMed

    Kono, R; Ochiai, T; Asai, H

    1997-01-01

    The glycerinated stalk of the peritrich ciliate Vorticella, was treated with various reagents to chemically modify the amino acid residues. The influences of these modifcations on spasmoneme contractility were investigated. First, it was confirmed that the spasmoneme contraction is not inhibited by alteration of SH groups. It was also demonstrated that chemical modification of methionine and tryptophan residues abolishes spasmoneme contractility. The reagents used for chemical modification were N-bromosuccinimide (NBS), chloramine T, and 2-hydroxy-5-nitrobenzyl bromide (HNBB), which abolished spasmoneme contractility at concentrations of 40-50 microM, 200-300 microM, and 4 mM, respectively. These results suggest that, along with Ca2+ binding proteins, there are other as yet to be identified proteins involved in contractility.

  19. Chemical modification of the third strand: differential effects on purine and pyrimidine triple helix formation.

    PubMed

    Mills, Martin; Arimondo, Paola B; Lacroix, Laurent; Garestier, Thérèse; Klump, Horst; Mergny, Jean-Louis

    2002-01-08

    DNA triple helices offer exciting perspectives toward oligonucleotide-directed control of gene expression. Oligonucleotide analogues are routinely used with modifications in either the backbone or the bases to form more stable triple-helical structures or to prevent their degradation in cells. In this article, different chemical modifications are tested in a model system, which sets up a competition between the purine and pyrimidine motifs. For most modifications, the DeltaH degrees of purine triplex formation is close to zero, implying a nearly temperature-independent affinity constant. In contrast, the pyrimidine triplex is strongly favored at lower temperatures. The stabilization induced by modifications previously known to be favorable to the pyrimidine motif was quantified. Interestingly, modifications favorable to the GT motif (propynyl-U and dU replacing T) were also discovered. In a system where two third strands compete for triplex formation, replacement of the GA or GT strand by a pyrimidine strand may be observed at neutral pH upon lowering the temperature. This purine-to-pyrimidine triplex conversion depends on the chemical nature of the triplex-forming strands and the stability of the corresponding triplexes.

  20. Large scale high strain-rate tests of concrete

    NASA Astrophysics Data System (ADS)

    Peroni, M.; Solomos, G.; Viaccoz, B.; Magonette, G.; Kiefer, R.

    2012-08-01

    This work presents the stages of development of some innovative equipment, based on Hopkinson bar techniques, for performing large scale dynamic tests of concrete specimens. The activity is centered at the recently upgraded HOPLAB facility, which is basically a split Hopkinson bar with a total length of approximately 200 m and with bar diameters of 72 mm. Through pre-tensioning and suddenly releasing a steel cable, force pulses of up to 2 MN, 250 μs rise time and 40 ms duration can be generated and applied to the specimen tested. The dynamic compression loading has first been treated and several modifications in the basic configuration have been introduced. Twin incident and transmitter bars have been installed with strong steel plates at their ends where large specimens can be accommodated. A series of calibration and qualification tests has been conducted and the first real tests on concrete cylindrical specimens of 20cm diameter and up to 40cm length have commenced. Preliminary results from the analysis of the recorded signals indicate proper Hopkinson bar testing conditions and reliable functioning of the facility.

  1. Global Wildfire Forecasts Using Large Scale Climate Indices

    NASA Astrophysics Data System (ADS)

    Shen, Huizhong; Tao, Shu

    2016-04-01

    Using weather readings, fire early warning can provided forecast 4-6 hour in advance to minimize fire loss. The benefit would be dramatically enhanced if relatively accurate long-term projection can be also provided. Here we present a novel method for predicting global fire season severity (FSS) at least three months in advance using multiple large-scale climate indices (CIs). The predictive ability is proven effective for various geographic locations and resolution. Globally, as well as in most continents, the El Niño Southern Oscillation (ENSO) is the dominant driving force controlling interannual FSS variability, whereas other CIs also play indispensable roles. We found that a moderate El Niño event is responsible for 465 (272-658 as interquartile range) Tg carbon release and an annual increase of 29,500 (24,500-34,800) deaths from inhalation exposure to air pollutants. Southeast Asia accounts for half of the deaths. Both intercorrelation and interaction of WPs and CIs are revealed, suggesting possible climate-induced modification of fire responses to weather conditions. Our models can benefit fire management in response to climate change.

  2. Ectopically tethered CP190 induces large-scale chromatin decondensation

    NASA Astrophysics Data System (ADS)

    Ahanger, Sajad H.; Günther, Katharina; Weth, Oliver; Bartkuhn, Marek; Bhonde, Ramesh R.; Shouche, Yogesh S.; Renkawitz, Rainer

    2014-01-01

    Insulator mediated alteration in higher-order chromatin and/or nucleosome organization is an important aspect of epigenetic gene regulation. Recent studies have suggested a key role for CP190 in such processes. In this study, we analysed the effects of ectopically tethered insulator factors on chromatin structure and found that CP190 induces large-scale decondensation when targeted to a condensed lacO array in mammalian and Drosophila cells. In contrast, dCTCF alone, is unable to cause such a decondensation, however, when CP190 is present, dCTCF recruits it to the lacO array and mediates chromatin unfolding. The CP190 induced opening of chromatin may not be correlated with transcriptional activation, as binding of CP190 does not enhance luciferase activity in reporter assays. We propose that CP190 may mediate histone modification and chromatin remodelling activity to induce an open chromatin state by its direct recruitment or targeting by a DNA binding factor such as dCTCF.

  3. Silent Encoding of Chemical Post-Translational Modifications in Phage-Displayed Libraries.

    PubMed

    Tjhung, Katrina F; Kitov, Pavel I; Ng, Simon; Kitova, Elena N; Deng, Lu; Klassen, John S; Derda, Ratmir

    2016-01-13

    In vitro selection of chemically modified peptide libraries presented on phage, while a powerful technology, is limited to one chemical post-translational modification (cPTM) per library. We use unique combinations of redundant codons to encode cPTMs with "silent barcodes" to trace multiple modifications within a mixed modified library. As a proof of concept, we produced phage-displayed peptide libraries Ser-[X]4-Gly-Gly-Gly, with Gly and Ser encoded using unique combinations of codons (TCA-[X]4-GGAGGAGGA, AGT-[X]4-GGTGGTGGT, etc., where [X]4 denotes a random NNK library). After separate chemical modification and pooling, mixed-modified libraries can be panned and deep-sequenced to identify the enriched peptide sequence and the accompanying cPTM simultaneously. We panned libraries bearing combinations of modifications (sulfonamide, biotin, mannose) against matched targets (carbonic anhydrase, streptavidin, concanavalin A) to identify desired ligands. Synthesis and validation of sequences identified by deep sequencing revealed that specific cPTMs are significantly enriched in panning against the specific targets. Panning on carbonic anhydrase yielded a potent ligand, sulfonamide-WIVP, with Kd = 6.7 ± 2.1 nM, a 20-fold improvement compared with the control ligand sulfonamide-GGGG. Silent encoding of multiple cPTMs can be readily incorporated into other in vitro display technologies such as bacteriophage T7 or mRNA display.

  4. Clay exfoliation in polymer nanocomposites: Specific chemical reactions and exchange of specialty modifications on clay surface

    NASA Astrophysics Data System (ADS)

    Mittal, Vikas

    2010-06-01

    Due the synergistic improvement in properties, which are better than the individual constituents, polymer nanocomposites have been the subject of intensive research. Surface modification of the filler is necessary to enhance its compatibility with the polymer phase and, hence, achieve nanoscale delamination in the polymer matrix. However, conventional alkyl ammonium surface modifications are only suitable for polar polymers and do not lead to exfoliated nanocomposites with non-polar polymers, such as polyolefins. In the absence of any positive interaction between the filler and polyolefin matrices, it is only the higher basal plane spacing of the filler which can lead to its delamination during shearing with the polymer. However, it is not easy to achieve very high basal plane spacing using conventional surface modifications. It requires specific methods or specialty surface modifications, which can lead to a higher amount of organic matter in the clay interlayers and, thus, higher basal plane spacing or reduced forces of attraction. These include synthesis of long chain length surface modifications, chemical reactions with the reactive surface modifications on the filler surface or polymerization reactions on the filler surface to graft polymer chains, etc. In addition, physical adsorption of the polymer chains or other organic molecules on the surface of pre-modified clay can also lead to its uniform organophilization, which again reduces the forces of attraction between the clay platelets.

  5. Chemical modifications of Achromobacter collagenase and their influence on the enzymic activity.

    PubMed

    Trocheris, I; Herry, P; Keil-Dlouha, V; Keil, B

    1980-10-01

    A study of the influence of chemical modifications on the activity of Achromobacter iophagus collagenase (EC 3.4.24.8) has led to the following conclusions: a modification of 4 out of 80 COOH groups with carbodiimide led to 90% loss of enzymic activity. A 70% inactivation was found after modification of two tyrosines out of 30 with tetranitromethane. The modification of four to six tryptophans out of 16 with 2-hydroxy-5-nitrobenzyl bromide decreased enzyme activity to 36%. This inactivation is accelerated in the presence of collagen. An increase of reagent/enzyme molar ratio led to a modification of 16 tryptophan residues and denaturation of Acahromobacter collagenase. A modification of two arginines out of 18 with 1,2-cyclohexanedione and eight NH2 groups out of 24 with 2,3-dimethyl maleic anhydride does not change the collagenolytic activity. All NH2 groups become available for 2,3-dimethyl maleic anhydride after dissociation of the dimer. A possible analogy of hydrolytic site of collagenase with that of two other known bacterial metalloproteinases (thermolysin and Bacillus subtilis neutral proteinase (EC 3.4.24.4)) is discussed.

  6. Molecular dynamics-based approaches for enhanced sampling of long-time, large-scale conformational changes in biomolecules

    PubMed Central

    2009-01-01

    The rugged energy landscape of biomolecules together with shortcomings of traditional molecular dynamics (MD) simulations require specialized methods for capturing large-scale, long-time configurational changes along with chemical dynamics behavior. In this report, MD-based methods for biomolecules are surveyed, involving modification of the potential, simulation protocol, or algorithm as well as global reformulations. While many of these methods are successful at probing the thermally accessible configuration space at the expense of altered kinetics, more sophisticated approaches like transition path sampling or Markov chain models are required to obtain mechanistic information, reaction pathways, and/or reaction rates. Divide-and-conquer methods for sampling and for piecing together reaction rate information are especially suitable for readily available computer cluster networks. Successful applications to biomolecules remain a challenge. PMID:20948633

  7. Chemical Modification of siRNA Bases to Probe and Enhance RNA Interference

    PubMed Central

    Peacock, Hayden; Kannan, Arunkumar; Beal, Peter A.; Burrows, Cynthia J.

    2011-01-01

    Considerable attention has focused on the use of alternatives to the native ribose and phosphate backbone of small interfering RNAs for therapeutic applications of the RNA interference pathway. In this synopsis, we highlight the less common chemical modifications, namely those of the RNA nucleobases. Base modifications have the potential to lend insight into the mechanism of gene silencing and to lead to novel methods to overcome off-target effects that arise due to deleterious protein binding or mis-targeting of mRNA. PMID:21834582

  8. Chemical modifications at Teflon interfaces induced by MeV ion beams

    NASA Astrophysics Data System (ADS)

    Ingemarsson, P. Anders; Keane, Michael P.; Gelius, Ulrik

    1989-10-01

    The effect of MeV ion beams incident on Teflon surfaces was studied by x-ray photoelectron spectroscopy (XPS). Irradiation with 20-MeV 35Cl4+ was carried out at doses ranging from 1012 to 1014 ions/cm2. Residual gas analysis was performed during irradiation to identify molecular fragments released from the Teflon surface. XPS spectra were recorded before and after ion irradiation. On some substrates, gold thin films were evaporated before and after ion bombardment, respectively, to detect possible modifications in thin-film adhesion. Changes in the XPS spectra were interpreted in terms of chemical and structural shifts, and related to the observed adhesion modifications.

  9. Chemical and physical modifications to poly(dimethylsiloxane) surfaces affect adhesion of Caco-2 cells.

    PubMed

    Wang, Lin; Sun, Bing; Ziemer, Katherine S; Barabino, Gilda A; Carrier, Rebecca L

    2010-06-15

    Polydimethylsiloxane (PDMS) silicone elastomer is extensively used in soft lithography processes to fabricate microscale or nano scale systems for microfluidic or cell culture applications. Though PDMS is biocompatible, it is not an ideal material for cell culture due to its poor cell adhesion properties. In this study, PDMS surfaces were modified to promote intestinal cell adhesion, in the interest of testing feasibility of using microfabricated PDMS systems for high throughput drug screening. Modification techniques included changing chemical composition of PDMS (i.e., varying curing to mixing agent ratio, and oxidization of PDMS surface by oxygen plasma), surface treatment of PDMS by coating with charged molecules (i.e., poly-D-lysine, L-alpha-phosphatidylcholine, and a layer bylayer coating), and deposition of extracellular matrix (ECM) proteins (i.e., laminin, fibronectin, and collagen). The influence of these modifications on PDMS properties, including elastic modulus and surface properties (wettability, chemical composition, topography, and protein adsorption) were characterized. Modification techniques were all found to change PDMS properties and influence the attachment and proliferation of Caco-2 cells over three days of culture to varying degrees. Generally, Caco-2 cells preferred to attach on collagen-coated, fibronectin-coated, and fibronectin-coated oxygen-plasma treated PDMS. The results highlight the importance of considering multiple physical and chemical factors that may be influenced by biomaterial modification and result in altered cell attachment to microfabricated systems, including surface hydrophobicity, chemical composition, stiffness, and topography. This study provides a foundation for further miniaturization, utilizing soft lithography techniques, of Caco-2 cell-based system for high-throughput screening of drug intestinal absorption during lead optimization in drug discovery. The understanding of different surface modifications on

  10. A Note on Solving Large-Scale Zero-One Programming Problems. Research Report 88-4.

    ERIC Educational Resources Information Center

    Adema, Jos J.

    A heuristic for solving large-scale zero-one programming problems is provided. The heuristic is based on the modifications made by H. Crowder et al. (1983) to the standard branch-and-bound strategy. First, the initialization is modified. The modification is only useful if the objective function values for the continuous and the zero-one…

  11. Glutathione release through connexin hemichannels: Implications for chemical modification of pores permeable to large molecules

    PubMed Central

    Tong, Xuhui; Lopez, William; Ramachandran, Jayalakshmi; Ayad, Wafaa A.; Liu, Yu; Lopez-Rodriguez, Angelica; Harris, Andrew L.

    2015-01-01

    Cysteine-scanning mutagenesis combined with thiol reagent modification is a powerful method with which to define the pore-lining elements of channels and the changes in structure that accompany channel gating. Using the Xenopus laevis oocyte expression system and two-electrode voltage clamp, we performed cysteine-scanning mutagenesis of several pore-lining residues of connexin 26 (Cx26) hemichannels, followed by chemical modification using a methanethiosulfonate (MTS) reagent, to help identify the position of the gate. Unexpectedly, we observed that the effect of MTS modification on the currents was reversed within minutes of washout. Such a reversal should not occur unless reducing agents, which can break the disulfide thiol–MTS linkage, have access to the site of modification. Given the permeability to large metabolites of connexin channels, we tested whether cytosolic glutathione (GSH), the primary cell reducing agent, was reaching the modified sites through the connexin pore. Inhibition of gamma-glutamylcysteine synthetase by buthionine sulfoximine decreased the cytosolic GSH concentration in Xenopus oocytes and reduced reversibility of MTS modification, as did acute treatment with tert-butyl hydroperoxide, which oxidizes GSH. Cysteine modification based on thioether linkages (e.g., maleimides) cannot be reversed by reducing agents and did not reverse with washout. Using reconstituted hemichannels in a liposome-based transport-specific fractionation assay, we confirmed that homomeric Cx26 and Cx32 and heteromeric Cx26/Cx32 are permeable to GSH and other endogenous reductants. These results show that, for wide pores, accessibility of cytosolic reductants can lead to reversal of MTS-based thiol modifications. This potential for reversibility of thiol modification applies to on-cell accessibility studies of connexin channels and other channels that are permeable to large molecules, such as pannexin, CALHM, and VRAC. PMID:26324677

  12. Large Scale Turbulent Structures in Supersonic Jets

    NASA Technical Reports Server (NTRS)

    Rao, Ram Mohan; Lundgren, Thomas S.

    1997-01-01

    , turbulent stresses, etc. which will aid in turbulence modeling. This report will be presented in two chapters. The first chapter describes some work on the linear stability of a supersonic round jet and the implications of this for the jet noise problem. The second chapter is an extensive discussion of numerical work using the spectral method which we use to solve the compressible Navier-Stokes equations to study turbulent jet flows. The method uses Fourier expansions in the azimuthal and streamwise direction and a 1-D B-spline basis representation in the radial direction. The B-spline basis is locally supported and this ensures block diagonal matrix equations which can be solved in O(N) steps. This is a modification of a boundary layer code developed by Robert Moser. A very accurate highly resolved Direct Numerical Simulation (DNS) of a turbulent jet flow is produced.

  13. Large Scale Turbulent Structures in Supersonic Jets

    NASA Technical Reports Server (NTRS)

    Rao, Ram Mohan; Lundgren, Thomas S.

    1997-01-01

    velocities, turbulent stresses, etc. which will aid in turbulence modeling. This report will be presented in two chapters. The first chapter describes some work on the linear stability of a supersonic round jet and the implications of this for the jet noise problem. The second chapter is an extensive discussion of numerical work using the spectral method which we use to solve the compressible Navier-Stokes equations to study turbulent jet flows. The method uses Fourier expansions in the azimuthal and streamwise direction and a 1-D B-spline basis representation in the radial direction. The B-spline basis is locally supported and this ensures block diagonal matrix equations which can be solved in O(N) steps. This is a modification of a boundary layer code developed by Robert Moser. A very accurate highly resolved DNS of a turbulent jet flow is produced.

  14. Large-scale electrochromic devices for smart windows and absorbers

    NASA Astrophysics Data System (ADS)

    Meisel, Thomas; Braun, Ruediger

    1992-11-01

    Application of smart windows and absorbers demand electrochromic (EC) devices with long term stability and a large scale production technology. The paper presents recent results on preparation of rigid and flexible EC devices with 0.3 X 0.3 m2 active area in a three layer arrangement (polyaniline/polymeric electrolyte/tungsten trioxide). The main items and risks of processing an EC element are discussed. It is shown, that highly conductive, chemical resistant electrodes (sheet resistance 5 (Omega) /sq., transparency 85%) on flexible PMMA and PC substrates can be prepared by low temperature sputtering of indium tin oxide (ITO). Deposition apparatus and parameters are described. Well known standard techniques for the synthesis of EC films like polyaniline and tungsten trioxide are adapted for large surfaces: polyaniline and tungsten trioxide based EC films on ITO glass have been prepared with chemical and electrochemical preparation techniques. Electrode geometry plays an important role for the homogeneity of the grown film. We succeed in minimizing tolerances in optical density over 0.3 X 0.3 m2 down to 2%. The solid polymer electrolyte essentially determines the performance of the EC device. High transmittance, proper conductivity, and strong adhesion, are the main attributes.

  15. Development of techniques to quantify chemical and mechanical modifications of polymer surfaces: Application to chemical mechanical polishing

    NASA Astrophysics Data System (ADS)

    Diao, Jie

    This thesis is devoted to development of techniques to quantify chemical and mechanical influences during chemical mechanical polishing (CMP) near the surface of a polymer film, poly (biphenyl dianhydride-p-phenylenediamine) (BPDA-PDA). To quantify chemical modifications during CMP, an iterative algorithm has been proposed to extract depth profiles based on Fick's second law of diffusion in a multi-element system from data supplied by angle resolved x-ray photoelectron spectroscopy. It has been demonstrated that the technique can be used to quantify the depth of chemical modification of BPDA-PDA surfaces treated with alkaline solutions. Polymer chains near the surface realign themselves during CMP and polarized infrared spectroscopy is chosen in this thesis to quantify chain orientations induced by CMP to evaluate the mechanical influence. A theoretical framework based on a 4x4 matrix method for spectral simulation together with an oscillator model for BPDA-PDA has been used to obtain quantitative chain orientation information on a post-CMP BPDA-PDA sample by fitting simulated polarized infrared spectra to experimentally generated spectra. Verification of the oscillator model was established from the complex refractive indices of BPDA-PDA films, which were determined using a new method (R/T ratio method) developed in this thesis to extract complex refractive indices of films with biaxial symmetry from polarized transmission and reflection spectra.

  16. Using Web-Based Testing for Large-Scale Assessment.

    ERIC Educational Resources Information Center

    Hamilton, Laura S.; Klein, Stephen P.; Lorie, William

    This paper describes an approach to large-scale assessment that uses tests that are delivered to students over the Internet and that are tailored (adapted) to each student's own level of proficiency. A brief background on large-scale assessment is followed by a description of this new technology and an example. Issues that need to be investigated…

  17. Chemical modification of drug molecules as strategy to reduce interactions with mucus.

    PubMed

    Araújo, Francisca; Martins, Cláudia; Azevedo, Cláudia; Sarmento, Bruno

    2017-09-27

    Many drug molecules possess inadequate physical-chemical characteristics that prevent to surpass the viscous mucus layer present in the surface of mucosal tissues. Due to mucus protective role and its fast turnover, these drug molecules end up being removed from the body before being absorbed and, thus, before exerting any physiologic affect. Envisaging a better pharmacokinetics profile, chemical modifications, to render drug a more mucopenetrating character, have been introduced to drug molecules backbone towards more effective therapies. Mucus penetration increases when drug molecules are provided with net-neutral charge, when they are conjugated with mucolytic agents and through modifications that makes them resistant to enzymes present in mucus, with the overall increase of their hydrophilicity and the decrease of their molecular weight. All of these characteristics act as a whole and influence each other so they must be well thought when drug molecules are being designed for mucosal delivery. Copyright © 2017. Published by Elsevier B.V.

  18. Modification of chemical reactivity of enzymatic hydrolysis lignin by ultrasound treatment in dilute alkaline solutions.

    PubMed

    Ma, Zhuoming; Li, Shujun; Fang, Guizhen; Patil, Nikhil; Yan, Ning

    2016-12-01

    In this study, we have explored various ultrasound treatment conditions for structural modification of enzymatic hydrolysis lignin (EHL) for enhanced chemical reactivity. The key structural modifications were characterized by using a combination of analytical methods, including, Fourier Transform-Infrared spectroscopy (FTIR), Proton Nuclear Magnetic Resonance ((1)H NMR), Gel permeation chromatography (GPC), X-ray photoelectron spectroscopy (XPS), and Folin-Ciocalteu (F-C) method. Chemical reactivity of the modified EHL samples was determined by both 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging activity and their reactivity towards formaldehyde. It was observed that the modified EHL had a higher phenolic hydroxyl group content, a lower molecular weight, a higher reactivity towards formaldehyde, and a greater antioxidant property. The higher reactivity demonstrated by the samples after treatment suggesting that ultrasound is a promising method for modifying enzymatic hydrolysis lignin for value-added applications.

  19. Evaluation of chemically-induced pore surface modifications on rock cores.

    PubMed

    Maddinelli, G; Vitali, R

    1998-01-01

    Chemical modification of pore surface properties due to active components of crude oils could significantly affect production processes. Specific chemical treatments can prevent surface alteration, protecting pores from deposition of heavy oils components. Both relaxation times analysis and nuclear magnetic resonance (NMR) imaging technique are a valuable method for nondestructive monitoring of solid/liquid interface alteration especially if applied to heterogeneous rock cores, which are impossible to study using conventional methods (e.g., Amott tests and dynamic angle contact). In our work, we examined carbonate core plugs subjected to aging treatments in crude oil. Relaxation times measurement, revealing modifications of fluid/surface interactions and imaging, was applied in characterise heterogeneous systems and reveal fluid distribution changes. Nuclear magnetic resonance results were compared with a special microscopy technique (Cryo-SEM) that allows observation of fluids at the pore level, providing a better understanding of the processes involved.

  20. Influence of major-groove chemical modifications of DNA on transcription by bacterial RNA polymerases

    PubMed Central

    Raindlová, Veronika; Janoušková, Martina; Slavíčková, Michaela; Perlíková, Pavla; Boháčová, Soňa; Milisavljevič, Nemanja; Šanderová, Hana; Benda, Martin; Barvík, Ivan; Krásný, Libor; Hocek, Michal

    2016-01-01

    DNA templates containing a set of base modifications in the major groove (5-substituted pyrimidines or 7-substituted 7-deazapurines bearing H, methyl, vinyl, ethynyl or phenyl groups) were prepared by PCR using the corresponding base-modified 2′-deoxyribonucleoside triphosphates (dNTPs). The modified templates were used in an in vitro transcription assay using RNA polymerase from Bacillus subtilis and Escherichia coli. Some modified nucleobases bearing smaller modifications (H, Me in 7-deazapurines) were perfectly tolerated by both enzymes, whereas bulky modifications (Ph at any nucleobase) and, surprisingly, uracil blocked transcription. Some middle-sized modifications (vinyl or ethynyl) were partly tolerated mostly by the E. coli enzyme. In all cases where the transcription proceeded, full length RNA product with correct sequence was obtained indicating that the modifications of the template are not mutagenic and the inhibition is probably at the stage of initiation. The results are promising for the development of bioorthogonal reactions for artificial chemical switching of the transcription. PMID:27001521

  1. Influence of major-groove chemical modifications of DNA on transcription by bacterial RNA polymerases.

    PubMed

    Raindlová, Veronika; Janoušková, Martina; Slavíčková, Michaela; Perlíková, Pavla; Boháčová, Soňa; Milisavljevič, Nemanja; Šanderová, Hana; Benda, Martin; Barvík, Ivan; Krásný, Libor; Hocek, Michal

    2016-04-20

    DNA templates containing a set of base modifications in the major groove (5-substituted pyrimidines or 7-substituted 7-deazapurines bearing H, methyl, vinyl, ethynyl or phenyl groups) were prepared by PCR using the corresponding base-modified 2'-deoxyribonucleoside triphosphates (dNTPs). The modified templates were used in an in vitro transcription assay using RNA polymerase from Bacillus subtilis and Escherichia coli Some modified nucleobases bearing smaller modifications (H, Me in 7-deazapurines) were perfectly tolerated by both enzymes, whereas bulky modifications (Ph at any nucleobase) and, surprisingly, uracil blocked transcription. Some middle-sized modifications (vinyl or ethynyl) were partly tolerated mostly by the E. colienzyme. In all cases where the transcription proceeded, full length RNA product with correct sequence was obtained indicating that the modifications of the template are not mutagenic and the inhibition is probably at the stage of initiation. The results are promising for the development of bioorthogonal reactions for artificial chemical switching of the transcription. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  2. Mechanisation of large-scale agricultural fields in developing countries - a review.

    PubMed

    Onwude, Daniel I; Abdulstter, Rafia; Gomes, Chandima; Hashim, Norhashila

    2016-09-01

    Mechanisation of large-scale agricultural fields often requires the application of modern technologies such as mechanical power, automation, control and robotics. These technologies are generally associated with relatively well developed economies. The application of these technologies in some developing countries in Africa and Asia is limited by factors such as technology compatibility with the environment, availability of resources to facilitate the technology adoption, cost of technology purchase, government policies, adequacy of technology and appropriateness in addressing the needs of the population. As a result, many of the available resources have been used inadequately by farmers, who continue to rely mostly on conventional means of agricultural production, using traditional tools and equipment in most cases. This has led to low productivity and high cost of production among others. Therefore this paper attempts to evaluate the application of present day technology and its limitations to the advancement of large-scale mechanisation in developing countries of Africa and Asia. Particular emphasis is given to a general understanding of the various levels of mechanisation, present day technology, its management and application to large-scale agricultural fields. This review also focuses on/gives emphasis to future outlook that will enable a gradual, evolutionary and sustainable technological change. The study concludes that large-scale-agricultural farm mechanisation for sustainable food production in Africa and Asia must be anchored on a coherent strategy based on the actual needs and priorities of the large-scale farmers. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  3. Chemical Modifications of Antisense Morpholino Oligomers Enhance Their Efficacy against Ebola Virus Infection

    DTIC Science & Technology

    2009-05-01

    2001. Pathogenesis of experimental Ebola Zaire virus infec- tion in BALB/c mice. J. Comp. Pathol. 125:233–242. 13. Han, Z., H. Boshra, J. O. Sunyer, S...Property Organization , Geneva, Switzerland. 38. World Health Organization . 2008. Outbreak news. Ebola haemorrhagic fe- ver, Uganda—end of the outbreak...American Society for Microbiology. All Rights Reserved. Chemical Modifications of Antisense Morpholino Oligomers Enhance Their Efficacy against Ebola Virus

  4. Site-specific Chemical Modification of a Glycoprotein Fragment Expressed in Yeast

    PubMed Central

    Xiao, Junpeng; Tolbert, Thomas J.

    2011-01-01

    Site-specific modification of glycoproteins has wide application in both biochemical and biophysical studies. This method describes the conjugation of synthetic molecules to the N-terminus of a glycoprotein fragment: immunoglobulin G subclass 1 fragment crystallizable (IgG1 Fc) by native chemical ligation. The glycosylated IgG1 Fc is expressed in a glycosylation deficient yeast strain. The N-terminal cysteine is generated by the endogenous yeast protease Kex2 in the yeast secretory pathway. The N-terminal cysteine is then conjugated with a biotin thioester to produce a biotinylated, glycosylated IgG1 Fc using native chemical ligation. PMID:21674341

  5. Structural Modification of Metal Oxide Nanoparticles in Chemical Vapor Synthesis and Related Properties

    NASA Astrophysics Data System (ADS)

    Lee, Jai-Sung; Lee, Chang-Woo; Lee, Kyoung-No

    2011-10-01

    This paper overviews recent studies on structural modification of metal oxide nanoparticles occurring in the process of chemical vapour condensation (CVC) and related peculiar properties. Hollow nanostructure is controlled at specific process conditions where the pressure in the reactor and the evaporation temperature play an important role in terms of kinematical equilibrium during particle formation and decomposition of precursors in the CVC reactor. As a natural consequence, particle properties also rely on a large surface area from the hollow nanostructure. In this review paper, phase transformation, chemical reactivity and microstructural evolution of nanoparticles are discussed based on hollow nanostructure.

  6. Altering the interfacial activation mechanism of a lipase by solid-phase selective chemical modification.

    PubMed

    López-Gallego, Fernando; Abian, Olga; Guisán, Jose Manuel

    2012-09-04

    This study presents a combined protein immobilization, directed mutagenesis, and site-selective chemical modification approach, which was used to create a hyperactivated semisynthetic variant of BTL2. Various alkane chains were tethered at three different positions in order to mimic the lipase interfacial activation exogenously triggered by detergents. Optimum results were obtained when a dodecane chain was introduced at position 320 by solid-phase site-selective chemical modification. The resulting semisynthetic variant showed a 2.5-fold higher activity than the wild-type nonmodified variant in aqueous conditions. Remarkably, this is the maximum hyperactivation ever observed for BTL2 in the presence of detergents such as Triton X-100. We present evidence to suggest that the endogenous dodecane chain hyperactivates the enzyme in a similar fashion as an exogenous detergent molecule. In this way, we also observe a faster irreversible enzyme inhibition and an altered detergent sensitivity profile promoted by the site-selective chemical modification. These findings are also supported by fluorescence studies, which reveal that the structural conformation changes of the semisynthetic variant are different to those of the wild type, an effect that is more pronounced in the presence of detergent. Finally, the optimal immobilized semisynthetic variant was successfully applied to the selective synthesis of oxiran-2-yl butyrate. Significantly, this biocatalyst is 12-fold more efficient than the immobilized wild-type enzyme, producing the S-enantiomer with higher enantiospecificity (ee = 92%).

  7. A quantitative strategy to detect changes in accessibility of protein regions to chemical modification on heterodimerization

    PubMed Central

    Dreger, Mathias; Leung, Bo Wah; Brownlee, George G; Deng, Tao

    2009-01-01

    We describe a method for studying quantitative changes in accessibility of surface lysine residues of the PB1 subunit of the influenza RNA polymerase as a result of association with the PA subunit to form a PB1-PA heterodimer. Our method combines two established methods: (i) the chemical modification of surface lysine residues of native proteins by N-hydroxysuccinimidobiotin (NHS-biotin) and (ii) the stable isotope labeling of amino acids in cell culture (SILAC) followed by tryptic digestion and mass spectrometry. By linking the chemical modification with the SILAC methodology for the first time, we obtain quantitative data on chemical modification allowing subtle changes in accessibility to be described. Five regions in the PB1 monomer showed altered reactivity to NHS-biotin when compared with the [PB1-PA] heterodimer. Mutational analysis of residues in two such regions—at K265 and K481 of PB1, which were about three- and twofold, respectively, less accessible to biotinylation in the PB1-PA heterodimer compared with the PB1 monomer, demonstrated that both K265 and K481 were crucial for polymerase function. This novel assay of quantitative profiling of biotinylation patterns (Q-POP assay) highlights likely conformational changes at important functional sites, as observed here for PB1, and may provide information on protein–protein interaction interfaces. The Q-POP assay should be a generally applicable approach and may detect novel functional sites suitable for targeting by drugs. PMID:19517532

  8. Challenges for large scale ab initio Quantum Monte Carlo

    NASA Astrophysics Data System (ADS)

    Kent, Paul

    2015-03-01

    Ab initio Quantum Monte Carlo is an electronic structure method that is highly accurate, well suited to large scale computation, and potentially systematically improvable in accuracy. Due to increases in computer power, the method has been applied to systems where established electronic structure methods have difficulty reaching the accuracies desired to inform experiment without empiricism, a necessary step in the design of materials and a helpful step in the improvement of cheaper and less accurate methods. Recent applications include accurate phase diagrams of simple materials through to phenomena in transition metal oxides. Nevertheless there remain significant challenges to achieving a methodology that is robust and systematically improvable in practice, as well as capable of exploiting the latest generation of high-performance computers. In this talk I will describe the current state of the art, recent applications, and several significant challenges for continued improvement. Supported through the Predictive Theory and Modeling for Materials and Chemical Science program by the Office of Basic Energy Sciences (BES), Department of Energy (DOE).

  9. SALSA - a Sectional Aerosol module for Large Scale Applications

    NASA Astrophysics Data System (ADS)

    Kokkola, H.; Korhonen, H.; Lehtinen, K. E. J.; Makkonen, R.; Asmi, A.; Järvenoja, S.; Anttila, T.; Partanen, A.-I.; Kulmala, M.; Järvinen, H.; Laaksonen, A.; Kerminen, V.-M.

    2007-12-01

    The sectional aerosol module SALSA is introduced. The model has been designed to be implemented in large scale climate models, which require both accuracy and computational efficiency. We have used multiple methods to reduce the computational burden of different aerosol processes to optimize the model performance without losing physical features relevant to problematics of climate importance. The optimizations include limiting the chemical compounds and physical processes available in different size sections of aerosol particles; division of the size distribution into size sections using size sections of variable width depending on the sensitivity of microphysical processing to the particles sizes; the total amount of size sections to describe the size distribution is kept to the minimum; furthermore, only the relevant microphysical processes affecting each size section are calculated. The ability of the module to describe different microphysical processes was evaluated against explicit microphysical models and several microphysical models used in air quality models. The results from the current module show good consistency when compared to more explicit models. Also, the module was used to simulate a new particle formation event typical in highly polluted conditions with comparable results to a more explicit model setup.

  10. SALSA - a Sectional Aerosol module for Large Scale Applications

    NASA Astrophysics Data System (ADS)

    Kokkola, H.; Korhonen, H.; Lehtinen, K. E. J.; Makkonen, R.; Asmi, A.; Järvenoja, S.; Anttila, T.; Partanen, A.-I.; Kulmala, M.; Järvinen, H.; Laaksonen, A.; Kerminen, V.-M.

    2008-05-01

    The sectional aerosol module SALSA is introduced. The model has been designed to be implemented in large scale climate models, which require both accuracy and computational efficiency. We have used multiple methods to reduce the computational burden of different aerosol processes to optimize the model performance without losing physical features relevant to problematics of climate importance. The optimizations include limiting the chemical compounds and physical processes available in different size sections of aerosol particles; division of the size distribution into size sections using size sections of variable width depending on the sensitivity of microphysical processing to the particles sizes; the total amount of size sections to describe the size distribution is kept to the minimum; furthermore, only the relevant microphysical processes affecting each size section are calculated. The ability of the module to describe different microphysical processes was evaluated against explicit microphysical models and several microphysical models used in air quality models. The results from the current module show good consistency when compared to more explicit models. Also, the module was used to simulate a new particle formation event typical in highly polluted conditions with comparable results to more explicit model setup.

  11. Distribution probability of large-scale landslides in central Nepal

    NASA Astrophysics Data System (ADS)

    Timilsina, Manita; Bhandary, Netra P.; Dahal, Ranjan Kumar; Yatabe, Ryuichi

    2014-12-01

    Large-scale landslides in the Himalaya are defined as huge, deep-seated landslide masses that occurred in the geological past. They are widely distributed in the Nepal Himalaya. The steep topography and high local relief provide high potential for such failures, whereas the dynamic geology and adverse climatic conditions play a key role in the occurrence and reactivation of such landslides. The major geoscientific problems related with such large-scale landslides are 1) difficulties in their identification and delineation, 2) sources of small-scale failures, and 3) reactivation. Only a few scientific publications have been published concerning large-scale landslides in Nepal. In this context, the identification and quantification of large-scale landslides and their potential distribution are crucial. Therefore, this study explores the distribution of large-scale landslides in the Lesser Himalaya. It provides simple guidelines to identify large-scale landslides based on their typical characteristics and using a 3D schematic diagram. Based on the spatial distribution of landslides, geomorphological/geological parameters and logistic regression, an equation of large-scale landslide distribution is also derived. The equation is validated by applying it to another area. For the new area, the area under the receiver operating curve of the landslide distribution probability in the new area is 0.699, and a distribution probability value could explain > 65% of existing landslides. Therefore, the regression equation can be applied to areas of the Lesser Himalaya of central Nepal with similar geological and geomorphological conditions.

  12. Organised convection embedded in a large-scale flow

    NASA Astrophysics Data System (ADS)

    Naumann, Ann Kristin; Stevens, Bjorn; Hohenegger, Cathy

    2017-04-01

    In idealised simulations of radiative convective equilibrium, convection aggregates spontaneously from randomly distributed convective cells into organized mesoscale convection despite homogeneous boundary conditions. Although these simulations apply very idealised setups, the process of self-aggregation is thought to be relevant for the development of tropical convective systems. One feature that idealised simulations usually neglect is the occurrence of a large-scale background flow. In the tropics, organised convection is embedded in a large-scale circulation system, which advects convection in along-wind direction and alters near surface convergence in the convective areas. A large-scale flow also modifies the surface fluxes, which are expected to be enhanced upwind of the convective area if a large-scale flow is applied. Convective clusters that are embedded in a large-scale flow therefore experience an asymmetric component of the surface fluxes, which influences the development and the pathway of a convective cluster. In this study, we use numerical simulations with explicit convection and add a large-scale flow to the established setup of radiative convective equilibrium. We then analyse how aggregated convection evolves when being exposed to wind forcing. The simulations suggest that convective line structures are more prevalent if a large-scale flow is present and that convective clusters move considerably slower than advection by the large-scale flow would suggest. We also study the asymmetric component of convective aggregation due to enhanced surface fluxes, and discuss the pathway and speed of convective clusters as a function of the large-scale wind speed.

  13. Thermal stability of Trichoderma reesei c30 cellulase and aspergillus niger; -glucosidase after ph and chemical modification

    SciTech Connect

    Woodward, J.; Whaley, K.S.; Zachry, G.S.; Wohlpart, D.L.

    1981-01-01

    Treatment of Trichoderma reesei C30 cellulase at pH 10.0 for 1 h at room temperature increased its pH and thermal stability. Chemical modification of the free epsilon-amino groups of cellulase at pH 10.0 resulted in no further increase in stability. Such chemical modification, however, decreased the thermal stability of the cellulose-cellulase complex. On the contrary, the chemical modification of Aspergillus niger glucosidase with glutaraldehyde at pH 8.0 increased the thermal stability of this enzyme.

  14. Thermal stability of Trichoderma reesei C30 cellulase and Aspergillus niger. beta. -glucosidase after pH and chemical modification

    SciTech Connect

    Woodward, J.; Whaley, K.S.; Zachry, G.S.; Wohlpart, D.L.

    1981-01-01

    Treatment of Trichoderma reesei C30 cellulase at pH 10.0 for 1 h at room temperature increased its pH and thermal stability. Chemical modification of the free epsilon-amino groups of cellulase at pH 10.0 resulted in no further increase in stability. Such chemical modification, however, decreased the thermal stability of the cellulose-cellulase complex. On the contrary, the chemical modification of Aspergillus niger ..beta..-glucosidase with glutaraldehyde at pH 8.0 increased the thermal stability of this enzyme.

  15. Design of a V/STOL propulsion system for a large-scale fighter model

    NASA Technical Reports Server (NTRS)

    Willis, W. S.

    1981-01-01

    Modifications were made to the existing Large-Scale STOL fighter model to simulate a V/STOL configuration. Modifications include the substitutions of two dimensional lift/cruise exhaust nozzles in the nacelles, and the addition of a third J97 engine in the fuselage to suppy a remote exhaust nozzle simulating a Remote Augmented Lift System. A preliminary design of the inlet and exhaust ducting for the third engine was developed and a detailed design was completed of the hot exhaust ducting and remote nozzle.

  16. Dissection of the DNA Mimicry of the Bacteriophage T7 Ocr Protein using Chemical Modification

    PubMed Central

    Stephanou, Augoustinos S.; Roberts, Gareth A.; Cooper, Laurie P.; Clarke, David J.; Thomson, Andrew R.; MacKay, C. Logan; Nutley, Margaret; Cooper, Alan; Dryden, David T.F.

    2009-01-01

    The homodimeric Ocr (overcome classical restriction) protein of bacteriophage T7 is a molecular mimic of double-stranded DNA and a highly effective competitive inhibitor of the bacterial type I restriction/modification system. The surface of Ocr is replete with acidic residues that mimic the phosphate backbone of DNA. In addition, Ocr also mimics the overall dimensions of a bent 24-bp DNA molecule. In this study, we attempted to delineate these two mechanisms of DNA mimicry by chemically modifying the negative charges on the Ocr surface. Our analysis reveals that removal of about 46% of the carboxylate groups per Ocr monomer results in an ∼ 50-fold reduction in binding affinity for a methyltransferase from a model type I restriction/modification system. The reduced affinity between Ocr with this degree of modification and the methyltransferase is comparable with the affinity of DNA for the methyltransferase. Additional modification to remove ∼ 86% of the carboxylate groups further reduces its binding affinity, although the modified Ocr still binds to the methyltransferase via a mechanism attributable to the shape mimicry of a bent DNA molecule. Our results show that the electrostatic mimicry of Ocr increases the binding affinity for its target enzyme by up to ∼ 800-fold. PMID:19523474

  17. Purification,characterization and chemical modification studies on a translation inhibitor protein from Luffa cylindrica.

    PubMed

    Singh, Ranjit C; Alam, Anis; Singh, Vinod

    2003-02-01

    A ribosome-inactivating protein (RIP), luffin has been isolated from the seeds of Luffa cylindrica of Cucurbitaceae family by ammonium sulfate fractionation followed by cation exchange and gel-filtration chromatography. Extensive physico-chemical, immunological and biological characterizations were carried out on luffin and compared with that of gelonin. The molecular mass of luffin was -28 kDa as determined by gel-filtration chromatography and SDS-PAGE. The epsilon-NH2 group(s) of luffin were sequentially modified by N-succinimidyl 6-[3-(2-pyridyldithio) propionamido] hexanoate (LC-SPDP), N-succinimidyl-3-(2-pyridylthio)propionate (SPDP) and 2-iminothiolane (2IT) and their effect on immunoreactivity and ribosome inactivating property was evaluated. Modification of single amino group resulted in about 80% inhibition of immunoreactivity and more than 90% loss of protein synthesis inhibition activity. Modification of 2-3 amino groups further hampered both immunoreactivity and protein-synthesis inhibition property LC-SPDP modification played more pronounced effects on immunoreactivity and RIP activity than that of SPDP. However, 2IT modification retained both the immunoreactivity and RIP activity of luffin-LC-SPDP substantially. SPDP showed more pronounced effect on immunoreactivity and RIP activity as compared to 2IT. Therefore, it seems that the positive charge on lysine residues plays an important role in immunological as well as protein synthesis inhibitory effect of luffin.

  18. Enhancing surface free energy and hydrophilicity through chemical modification of microstructured titanium implant surfaces.

    PubMed

    Rupp, F; Scheideler, L; Olshanska, N; de Wild, M; Wieland, M; Geis-Gerstorfer, J

    2006-02-01

    Roughness-induced hydrophobicity, well-known from natural plant surfaces and intensively studied toward superhydrophobic surfaces, has currently been identified on microstructured titanium implant surfaces. Studies indicate that microstructuring by sandblasting and acid etching (SLA) enhances the osteogenic properties of titanium. The undesired initial hydrophobicity, however, presumably decelerates primary interactions with the aqueous biosystem. To improve the initial wettability and to retain SLA microstructure, a novel surface modification was tested. This modification differs from SLA by its preparation after acid etching, which was done under protective gas conditions following liquid instead of dry storage. We hypothesized that this modification should have increased wettability due to the prevention of contaminations that occurs during air contact. The main outcome of dynamic wettability measurements was that the novel modification shows increased surface free energy (SFE) and increased hydrophilicity with initial water contact angles of 0 degrees compared to 139.9 degrees for SLA. This hydrophilization was kept even after any drying. Reduced hydrocarbon contaminations were identified to play a possible role in altered surface thermodynamics. Such surfaces aim to retain the hydrophilicity and natural high surface energy of the Ti dioxide surface until surgical implants' insertion and are compared in this in vitro study with structural surface variants of titanium to compare roughness and chemically induced wettability.

  19. Dissection of the DNA mimicry of the bacteriophage T7 Ocr protein using chemical modification.

    PubMed

    Stephanou, Augoustinos S; Roberts, Gareth A; Cooper, Laurie P; Clarke, David J; Thomson, Andrew R; MacKay, C Logan; Nutley, Margaret; Cooper, Alan; Dryden, David T F

    2009-08-21

    The homodimeric Ocr (overcome classical restriction) protein of bacteriophage T7 is a molecular mimic of double-stranded DNA and a highly effective competitive inhibitor of the bacterial type I restriction/modification system. The surface of Ocr is replete with acidic residues that mimic the phosphate backbone of DNA. In addition, Ocr also mimics the overall dimensions of a bent 24-bp DNA molecule. In this study, we attempted to delineate these two mechanisms of DNA mimicry by chemically modifying the negative charges on the Ocr surface. Our analysis reveals that removal of about 46% of the carboxylate groups per Ocr monomer results in an approximately 50-fold reduction in binding affinity for a methyltransferase from a model type I restriction/modification system. The reduced affinity between Ocr with this degree of modification and the methyltransferase is comparable with the affinity of DNA for the methyltransferase. Additional modification to remove approximately 86% of the carboxylate groups further reduces its binding affinity, although the modified Ocr still binds to the methyltransferase via a mechanism attributable to the shape mimicry of a bent DNA molecule. Our results show that the electrostatic mimicry of Ocr increases the binding affinity for its target enzyme by up to approximately 800-fold.

  20. Laser and chemical surface modifications of titanium grade 2 for medical application

    NASA Astrophysics Data System (ADS)

    Kwaśniak, P.; Pura, J.; Zwolińska, M.; Wieciński, P.; Skarżyński, H.; Olszewski, L.; Marczak, J.; Garbacz, H.; Kurzydłowski, K. J.

    2015-05-01

    The article presents combined, chemical and physical approach to titanium surface functionalization designed for biomedical applications. The topography modification has been obtained by employing the double laser beam interference technique and chemical etching. In the outcome, clean and smooth Ti surface as well as periodic striated topography with the roughness range from nano- to micrometers were created. The obtained structures were characterized in terms of shape, roughness, chemical composition, mechanical properties and microstructures. In order to achieve all information, numerous of research methods have been used: scanning electron microscopy, atomic force microscopy, optical profilometry and microhardness measurements. Demonstrated methodology can be used as an effective tool for manufacturing controlled surface structures improving the bone-implants interactions.

  1. Cooperative enhancement of deoxyribozyme activity by chemical modification and added cationic copolymer

    PubMed Central

    Saito, Ken; Shimada, Naohiko; Maruyama, Atushi

    2016-01-01

    Abstract Deoxyribozymes (DNAzymes) having RNA-cleaving activity have widely been explored as tools for therapeutic and diagnostic purposes. Both the chemical cleaving step and the turnover step should be improved for enhancing overall activity of DNAzymes. We have shown that cationic copolymer enhanced DNAzyme activity by increasing turnover efficacy. In this paper, effects of the copolymer on DNAzymes modified with locked nucleic acids (LNA) or 2′-O-methylated (2′-OMe) nucleic acids were studied. The copolymer increased activity of these chemically modified DNAzymes. More than 30-fold enhancement in multiple-turnover catalytic activity was observed with 2′-OMe-modified DNAzyme in the presence of the copolymer. DNAzyme catalytic activity was successfully enhanced by cooperation of the added copolymer and chemical modification of DNAzyme. PMID:27877894

  2. Chemical modification of jute fibers for the production of green-composites.

    PubMed

    Corrales, F; Vilaseca, F; Llop, M; Gironès, J; Méndez, J A; Mutjè, P

    2007-06-18

    Natural fiber reinforced composites is an emerging area in polymer science. Fibers derived from annual plants are considered a potential substitute for non-renewable synthetic fibers like glass and carbon fibers. The hydrophilic nature of natural fibers affects negatively its adhesion to hydrophobic polymeric matrices. To improve the compatibility between both components a surface modification has been proposed. The aim of the study is the chemical modification of jute fibers using a fatty acid derivate (oleoyl chloride) to confer hydrophobicity and resistance to biofibers. This reaction was applied in swelling and non-swelling solvents, pyridine and dichloromethane, respectively. The formation of ester groups, resulting from the reaction of oleoyl chloride with hydroxyl group of cellulose were studied by elemental analysis (EA) and Fourier Transform infrared spectroscopy (FTIR). The characterization methods applied has proved the chemical interaction between the cellulosic material and the coupling agent. The extent of the reactions evaluated by elemental analysis was calculated using two ratios. Finally electron microscopy was applied to evaluate the surface changes of cellulose fibers after modification process.

  3. Large-scale epitaxial growth kinetics of graphene: A kinetic Monte Carlo study

    SciTech Connect

    Jiang, Huijun; Hou, Zhonghuai

    2015-08-28

    Epitaxial growth via chemical vapor deposition is considered to be the most promising way towards synthesizing large area graphene with high quality. However, it remains a big theoretical challenge to reveal growth kinetics with atomically energetic and large-scale spatial information included. Here, we propose a minimal kinetic Monte Carlo model to address such an issue on an active catalyst surface with graphene/substrate lattice mismatch, which facilitates us to perform large scale simulations of the growth kinetics over two dimensional surface with growth fronts of complex shapes. A geometry-determined large-scale growth mechanism is revealed, where the rate-dominating event is found to be C{sub 1}-attachment for concave growth-front segments and C{sub 5}-attachment for others. This growth mechanism leads to an interesting time-resolved growth behavior which is well consistent with that observed in a recent scanning tunneling microscopy experiment.

  4. Modified gravity and large scale flows, a review

    NASA Astrophysics Data System (ADS)

    Mould, Jeremy

    2017-02-01

    Large scale flows have been a challenging feature of cosmography ever since galaxy scaling relations came on the scene 40 years ago. The next generation of surveys will offer a serious test of the standard cosmology.

  5. Learning networks for sustainable, large-scale improvement.

    PubMed

    McCannon, C Joseph; Perla, Rocco J

    2009-05-01

    Large-scale improvement efforts known as improvement networks offer structured opportunities for exchange of information and insights into the adaptation of clinical protocols to a variety of settings.

  6. Amplification of large-scale magnetic field in nonhelical magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Kumar, Rohit; Verma, Mahendra K.

    2017-09-01

    It is typically assumed that the kinetic and magnetic helicities play a crucial role in the growth of large-scale dynamo. In this paper, we demonstrate that helicity is not essential for the amplification of large-scale magnetic field. For this purpose, we perform nonhelical magnetohydrodynamic (MHD) simulation, and show that the large-scale magnetic field can grow in nonhelical MHD when random external forcing is employed at scale 1/10 the box size. The energy fluxes and shell-to-shell transfer rates computed using the numerical data show that the large-scale magnetic energy grows due to the energy transfers from the velocity field at the forcing scales.

  7. An Adaptive Multiscale Finite Element Method for Large Scale Simulations

    DTIC Science & Technology

    2015-09-28

    the method . Using the above definitions , the weak statement of the non-linear local problem at the kth 4 DISTRIBUTION A: Distribution approved for...AFRL-AFOSR-VA-TR-2015-0305 An Adaptive Multiscale Finite Element Method for Large Scale Simulations Carlos Duarte UNIVERSITY OF ILLINOIS CHAMPAIGN...14-07-2015 4. TITLE AND SUBTITLE An Adaptive Multiscale Generalized Finite Element Method for Large Scale Simulations 5a.  CONTRACT NUMBER 5b

  8. Physico-chemical Modification of the Fibrous Filter Nozzles for Purification Processes of Water and Air

    NASA Astrophysics Data System (ADS)

    Bordunov, S. V.; Galtseva, O. V.; Natalinova, N. M.; Rogachev, A. A.; Zhang, Ruizhi

    2017-01-01

    A set of experiments to study physical and chemical modification of the surface of fibers is conducted to expand the area of their application for purification of water, gas and air (including that in conditions of space). The possibility of modification of filter nozzles in the process of fiber formation by particles of coal of BAU type, copper sulfide and silver chloride is experimentally shown. The fraction of the copper sulfide powder less than 50 microns in size was crushed in a spherical mill; it was deposited on fiber at air temperature of 50° C and powder consumption of 0.5 g/l of air. The resulting material contained 6–18 CuS particles per 1 cm of the fiber length. An effective bactericidal fibrous material can be produced using rather cheap material – CuS and relatively cheap natural compounds of sulphides and oxides of heavy metals.

  9. Selective chemical modification of silicon nitride/silicon oxide nanostructures to develop label-free biosensors.

    PubMed

    Bañuls, María-José; González-Pedro, Victoria; Barrios, Carlos A; Puchades, Rosa; Maquieira, Angel

    2010-02-15

    The selective introduction of functional groups on the surface of silicon nitride/silicon oxide nanostructures was studied. Chemical strategies based on organosilane, Si-H and N-H reactivities were assayed. Among these strategies, the use of glutaraldehyde to selectively immobilize biomolecules only on the silicon nitride part of the chip surface was the most effective for the covalent attachment of proteins, maintaining also their bioavailability. The biomolecule surface coverage results up to 80% and the modification is selective versus silicon oxide; the biomolecule attaching only to silicon nitride and leaving the silicon oxide area of the device unmodified. The effectiveness of our novel selective surface modification procedure is also supported by comparing experimental and numerical calculations of the optical performance of a label-free optical ring resonator based on Si(3)N(4)/SiO(2) slot-waveguides.

  10. Reversible tuning of two-dimensional electron gases in oxide heterostructures by chemical surface modification

    NASA Astrophysics Data System (ADS)

    Lee, H.; Campbell, N.; Ryu, S.; Chang, W.; Irwin, J.; Lindemann, S.; Mahanthappa, M. K.; Rzchowski, M. S.; Eom, C. B.

    2016-11-01

    Reversible control over the electrical properties of the two-dimensional electron gas (2DEG) in oxide heterostructures is a key capability enabling practical applications. Herein, we report an efficient method to reversibly tune the charge carrier density of the 2DEG by surface modification. We demonstrate both increasing and decreasing the carrier density of the LaAlO3/SrTiO3 2DEG interface via application of functional phosphonic acids with molecular dipoles pointing either toward or away from the interface, respectively. In addition, in the case of the enhanced 2DEG, we recovered the initial conduction properties by exposing the samples to a basic solution. The tuning processes were highly reversible over repetitive cycles. These results reveal that the surface modification is an efficient way to tune the carrier density of 2DEG in oxide heterostructures. This simple chemical approach offers a vast range of fabrication possibilities in versatile electronic device applications.

  11. Chemical modification of coating of Pinus halepensis pollen by ozone exposure.

    PubMed

    Naas, Oumsaad; Mendez, Maxence; Quijada, Melesio; Gosselin, Sylvie; Farah, Jinane; Choukri, Ali; Visez, Nicolas

    2016-07-01

    Pollen coating, located on the exine, includes an extractible lipid fraction. The modification of the pollen coating by air pollutants may have implications on the interactions of pollen with plant stigmas and human cells. Pinus halepensis pollen was exposed to ozone in vitro and the pollen coating was extracted with organic solvent and analyzed by GC-MS. Ozone has induced chemical changes in the coating as observed with an increase in dicarboxylic acids, short-chain fatty acids and aldehydes. 4-Hydroxybenzaldehyde was identified as the main reaction product and its formation was shown to occur both on native pollen and on defatted pollen. 4-Hydroxybenzaldehyde is very likely formed via the ozonolysis of acid coumaric-like monomers constitutive of the sporopollenin. Modification of pollen coating by air pollutants should be accounted for in further studies on effect of pollution on germination and on allergenicity.

  12. Surface modification via wet chemical etching of single-crystalline silicon for photovoltaic application.

    PubMed

    Reshak, A H; Shahimin, M M; Shaari, S; Johan, N

    2013-11-01

    The potential of solar cells have not been fully tapped due to the lack of energy conversion efficiency. There are three important mechanisms in producing high efficiency cells to harvest solar energy; reduction of light reflectance, enhancement of light trapping in the cell and increment of light absorption. The current work represent studies conducted in surface modification of single-crystalline silicon solar cells using wet chemical etching techniques. Two etching types are applied; alkaline etching (KOH:IPA:DI) and acidic etching (HF:HNO3:DI). The alkaline solution resulted in anisotropic profile that leads to the formation of inverted pyramids. While acidic solution formed circular craters along the front surface of silicon wafer. This surface modification will leads to the reduction of light reflectance via texturizing the surface and thereby increases the short circuit current and conversion rate of the solar cells.

  13. Carrier mobility of MoS2 nanoribbons with edge chemical modification.

    PubMed

    Xiao, Jin; Long, Mengqiu; Li, Mingjun; Li, Xinmei; Xu, Hui; Chan, Kwoksum

    2015-03-14

    We have investigated the electronic structures and carrier mobilities of MoS2 monolayer sheets and armchair nanoribbons with chemical modification using the density functional theory combined with the Boltzmann transport method with relaxation time approximation. It is shown that the hole mobility (96.62 cm(2) V(-1) s(-1)) in monolayer sheets is about twice that of the electron mobility (43.96 cm(2) V(-1) s(-1)). The charge mobilities in MoS2 armchair nanoribbons can be regulated by edge modification owing to the changing electronic structures. In pristine armchair nanoribbons, the electron and hole mobilities are about 30 cm(2) V(-1) s(-1) and 25 cm(2) V(-1) s(-1), respectively. When the edges are terminated by H or F atoms, the hole mobility will enhance obviously even 10 times that in pristine ribbons, and the electron mobility is comparable with that in MoS2 sheets.

  14. Physical, Chemical and Biochemical Modifications of Protein-Based Films and Coatings: An Extensive Review

    PubMed Central

    Zink, Joël; Wyrobnik, Tom; Prinz, Tobias; Schmid, Markus

    2016-01-01

    Protein-based films and coatings are an interesting alternative to traditional petroleum-based materials. However, their mechanical and barrier properties need to be enhanced in order to match those of the latter. Physical, chemical, and biochemical methods can be used for this purpose. The aim of this article is to provide an overview of the effects of various treatments on whey, soy, and wheat gluten protein-based films and coatings. These three protein sources have been chosen since they are among the most abundantly used and are well described in the literature. Similar behavior might be expected for other protein sources. Most of the modifications are still not fully understood at a fundamental level, but all the methods discussed change the properties of the proteins and resulting products. Mastering these modifications is an important step towards the industrial implementation of protein-based films. PMID:27563881

  15. Large-scale studies of marked birds in North America

    USGS Publications Warehouse

    Tautin, J.; Metras, L.; Smith, G.

    1999-01-01

    The first large-scale, co-operative, studies of marked birds in North America were attempted in the 1950s. Operation Recovery, which linked numerous ringing stations along the east coast in a study of autumn migration of passerines, and the Preseason Duck Ringing Programme in prairie states and provinces, conclusively demonstrated the feasibility of large-scale projects. The subsequent development of powerful analytical models and computing capabilities expanded the quantitative potential for further large-scale projects. Monitoring Avian Productivity and Survivorship, and Adaptive Harvest Management are current examples of truly large-scale programmes. Their exemplary success and the availability of versatile analytical tools are driving changes in the North American bird ringing programme. Both the US and Canadian ringing offices are modifying operations to collect more and better data to facilitate large-scale studies and promote a more project-oriented ringing programme. New large-scale programmes such as the Cornell Nest Box Network are on the horizon.

  16. A study of MLFMA for large-scale scattering problems

    NASA Astrophysics Data System (ADS)

    Hastriter, Michael Larkin

    This research is centered in computational electromagnetics with a focus on solving large-scale problems accurately in a timely fashion using first principle physics. Error control of the translation operator in 3-D is shown. A parallel implementation of the multilevel fast multipole algorithm (MLFMA) was studied as far as parallel efficiency and scaling. The large-scale scattering program (LSSP), based on the ScaleME library, was used to solve ultra-large-scale problems including a 200lambda sphere with 20 million unknowns. As these large-scale problems were solved, techniques were developed to accurately estimate the memory requirements. Careful memory management is needed in order to solve these massive problems. The study of MLFMA in large-scale problems revealed significant errors that stemmed from inconsistencies in constants used by different parts of the algorithm. These were fixed to produce the most accurate data possible for large-scale surface scattering problems. Data was calculated on a missile-like target using both high frequency methods and MLFMA. This data was compared and analyzed to determine possible strategies to increase data acquisition speed and accuracy through multiple computation method hybridization.

  17. Crucial roles of reactive chemical species in modification of respiratory syncytial virus by nitrogen gas plasma.

    PubMed

    Sakudo, Akikazu; Toyokawa, Yoichi; Imanishi, Yuichiro; Murakami, Tomoyuki

    2017-05-01

    The exact mechanisms by which nanoparticles, especially those composed of soft materials, are modified by gas plasma remain unclear. Here, we used respiratory syncytial virus (RSV), which has a diameter of 80-350nm, as a model system to identify important factors for gas plasma modification of nanoparticles composed of soft materials. Nitrogen gas plasma, generated by applying a short high-voltage pulse using a static induction (SI) thyristor power supply produced reactive chemical species (RCS) and caused virus inactivation. The plasma treatment altered the viral genomic RNA, while treatment with a relatively low concentration of hydrogen peroxide, which is a neutral chemical species among RCS, effectively inactivated the virus. Furthermore, a zero dimensional kinetic global model of the reaction scheme during gas plasma generation identified the production of various RCS, including neutral chemical species. Our findings suggest the nitrogen gas plasma generates RCS, including neutral species that damage the viral genomic RNA, leading to virus inactivation. Thus, RCS generated by gas plasma appears to be crucial for virus inactivation, suggesting this may constitute an important factor in terms of the efficient modification of nanoparticles composed of soft materials.

  18. Robust Chemical Synthesis of Membrane Proteins through a General Method of Removable Backbone Modification.

    PubMed

    Zheng, Ji-Shen; He, Yao; Zuo, Chao; Cai, Xiao-Ying; Tang, Shan; Wang, Zhipeng A; Zhang, Long-Hua; Tian, Chang-Lin; Liu, Lei

    2016-03-16

    Chemical protein synthesis can provide access to proteins with post-translational modifications or site-specific labelings. Although this technology is finding increasing applications in the studies of water-soluble globular proteins, chemical synthesis of membrane proteins remains elusive. In this report, a general and robust removable backbone modification (RBM) method is developed for the chemical synthesis of membrane proteins. This method uses an activated O-to-N acyl transfer auxiliary to install in the Fmoc solid-phase peptide synthesis process a RBM group with switchable reactivity toward trifluoroacetic acid. The method can be applied to versatile membrane proteins because the RBM group can be placed at any primary amino acid. With RBM, the membrane proteins and their segments behave almost as if they were water-soluble peptides and can be easily handled in the process of ligation, purification, and mass characterizations. After the full-length protein is assembled, the RBM group can be readily removed by trifluoroacetic acid. The efficiency and usefulness of the new method has been demonstrated by the successful synthesis of a two-transmembrane-domain protein (HCV p7 ion channel) with site-specific isotopic labeling and a four-transmembrane-domain protein (multidrug resistance transporter EmrE). This method enables practical synthesis of small- to medium-sized membrane proteins or membrane protein domains for biochemical and biophysical studies.

  19. DNA-osmium complexes: recent developments in the operative chemical analysis of DNA epigenetic modifications.

    PubMed

    Okamoto, Akimitsu

    2014-09-01

    The development of a reaction for the detection of one epigenetic modification in a long DNA strand is a chemically and biologically challenging research subject. Herein, we report and discuss the formation of 5-methylcytosine-osmium complexes that are used as the basis for a bisulfite-free chemical assay for DNA methylation analysis. Osmium in the oxidized state reacts with C5-methylated pyrimidines in the presence of a bipyridine ligand to give a stable ternary complex. On the basis of this reaction, an adenine derivative with a tethered bipyridine moiety has been designed for sequence-specific osmium complex formation. Osmium complexation is then achieved by hybridization of a short DNA molecule containing this functional nucleotide to a target DNA sequence and results in the formation of a cross-linked structure. This novel concept of methylation-specific reaction, based on a straightforward chemical process, expands the range of methods available for the analysis of epigenetic modifications. Advantages of the described method include amplification-insensitive detection, 5-hydroxymethylcytosine complexation, and visualization through methylation-specific in situ hybridization.

  20. Chemical modifications and bioconjugate reactions of nanomaterials for sensing, imaging, drug delivery and therapy.

    PubMed

    Biju, Vasudevanpillai

    2014-02-07

    As prepared nanomaterials of metals, semiconductors, polymers and carbon often need surface modifications such as ligand exchange, and chemical and bioconjugate reactions for various biosensor, bioanalytical, bioimaging, drug delivery and therapeutic applications. Such surface modifications help us to control the physico-chemical, toxicological and pharmacological properties of nanomaterials. Furthermore, introduction of various reactive functional groups on the surface of nanomaterials allows us to conjugate a spectrum of contrast agents, antibodies, peptides, ligands, drugs and genes, and construct multifunctional and hybrid nanomaterials for the targeted imaging and treatment of cancers. This tutorial review is intended to provide an introduction to newcomers about how chemical and bioconjugate reactions transform the surface of nanomaterials such as silica nanoparticles, gold nanoparticles, gold quantum clusters, semiconductor quantum dots, carbon nanotubes, fullerene and graphene, and accordingly formulate them for applications such as biosensing, bioimaging, drug and gene delivery, chemotherapy, photodynamic therapy and photothermal therapy. Nonetheless, controversial reports and our growing concerns about toxicity and pharmacokinetics of nanomaterials suggest the need for not only rigorous in vivo experiments in animal models but also novel nanomaterials for practical applications in the clinical settings. Further reading of original and review articles cited herein is necessary to buildup in-depth knowledge about the chemistry, bioconjugate chemistry and biological applications of individual nanomaterials.

  1. Novel fluorinated block copolymers by selective chemical modification: Chemistry and thermodynamics

    NASA Astrophysics Data System (ADS)

    Davidock, Drew Alan

    Many applications of polymers utilize multi-component systems. Regardless of whether the components are physically linked together or not, the properties that they possess are directly influenced by their self-assembly behavior. To exploit the full potential of such materials, strict control of the polymer-polymer phase behavior is required. The objective of this dissertation was to study polymer-polymer phase behavior by using post-polymerization chemical modification to vary the incompatibility between the components, altering their self-assembly behavior. Initially in this work, the modification chemistries were developed and refined. Model 4,1-polyisoprene-block-1,2-polybutadiene (PI- b-PB) copolymers were used as the parent material. A selective hydrogenation of the PB block was performed using a homogeneous Ru catalyst to yield a saturated hydrocarbon. The PI block was then modified to various extents by the controlled addition of a difluorocarbene (CF2), generated by the thermal decomposition of hexafluoropropylene oxide (HFPO). The effect of these chemical modifications on the self-assembly behavior of a series of PI-PB copolymers was studied. Small-angle x-ray scattering (SAXS) was used to determine the equilibrium morphologies and domain spacings. Effective interaction parameters (chieff) were determined from the temperature- and composition-dependent domain spacings, and were found to increase by a factor of approximately 370 upon complete modification. The experimental morphological map was constructed, and it was found that the gyroid phase appears to be stable into the strong segregation regime, in contrast to expectations based on self-consistent field theory. The modification of block copolymers for the creation of a universal blend compatibilizer was also explored. By changing the chemical nature of one or both blocks, their affinity for various homopolymers can be altered. The compatibilization of blends of polystyrene (PS) and poly

  2. [Bio-based pharmaceutical polymers, possibility of their chemical modification and the applicability of modified polymers].

    PubMed

    Sebe, István; Szabó, Barnabás; Zelkó, Romána

    2012-01-01

    Different types of polymers are widely used in biomedical, pharmaceutical and cosmetic purposes. Their applications are curbed, if the polymers can not break down by the body or if the polymer itself is harmful or decompose to harmful material. Authors provide an overview of different types of pharmaceutical polymers of various sources, of the structural characterization and possibilities of their chemical modification and of the classical and instrumental analytical examination methods. The paper deals with the limitations of the use of biopolymers, as well.

  3. Microstructural modification of nc-Si/SiOx films during plasma-enhanced chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Zhang, X. W.

    2005-07-01

    Nanocrystalline-silicon embedded silicon oxide films are prepared by plasma-enhanced chemical vapor deposition (PECVD) at 300 °C without post-heat treatment. Measurements of XPS, IR, XRD, and HREM are performed. Microstructural modifications are found occurring throughout the film deposition. The silica network with a high oxide state is suggested to be formed directly under the abduction of the former deposited layer, rather than processing repeatedly from the original low-oxide state of silica. Nanocrystalline silicon particles with a size of 6-10 nm are embedded in the SiOx film matrix, indicating the potential application in Si-based optoelectronic integrity.

  4. Ultra-large-scale syntheses of monodisperse nanocrystals

    NASA Astrophysics Data System (ADS)

    Park, Jongnam; An, Kwangjin; Hwang, Yosun; Park, Je-Geun; Noh, Han-Jin; Kim, Jae-Young; Park, Jae-Hoon; Hwang, Nong-Moon; Hyeon, Taeghwan

    2004-12-01

    The development of nanocrystals has been intensively pursued, not only for their fundamental scientific interest, but also for many technological applications. The synthesis of monodisperse nanocrystals (size variation <5%) is of key importance, because the properties of these nanocrystals depend strongly on their dimensions. For example, the colour sharpness of semiconductor nanocrystal-based optical devices is strongly dependent on the uniformity of the nanocrystals, and monodisperse magnetic nanocrystals are critical for the next-generation multi-terabit magnetic storage media. For these monodisperse nanocrystals to be used, an economical mass-production method needs to be developed. Unfortunately, however, in most syntheses reported so far, only sub-gram quantities of monodisperse nanocrystals were produced. Uniform-sized nanocrystals of CdSe (refs 10,11) and Au (refs 12,13) have been produced using colloidal chemical synthetic procedures. In addition, monodisperse magnetic nanocrystals such as Fe (refs 14,15), Co (refs 16-18), γ-Fe2O3 (refs 19,20), and Fe3O4 (refs 21,22) have been synthesized by using various synthetic methods. Here, we report on the ultra-large-scale synthesis of monodisperse nanocrystals using inexpensive and non-toxic metal salts as reactants. We were able to synthesize as much as 40 g of monodisperse nanocrystals in a single reaction, without a size-sorting process. Moreover, the particle size could be controlled simply by varying the experimental conditions. The current synthetic procedure is very general and nanocrystals of many transition metal oxides were successfully synthesized using a very similar procedure.

  5. Chemical modification of carbohydrates in tissue sections may unmask mucin antigens.

    PubMed

    Kirkeby, S

    2013-01-01

    Expression of mucins in cells and tissues is of great diagnostic and prognostic importance, and immunohistochemistry frequently is used to detect them. Reports concerning mucin localization in sections sometimes are conflicting, however, partly because immunogenic regions of the mucin molecule may be masked and thus not available for binding to an antibody. We modified carbohydrates in tissue sections chemically to enhance the binding of monoclonal mucin antibodies and of the lectin, Vicia villosa B4, to human tissue. The immunohistochemical localization of MUC1 and the simple mucin-type antigens, Tn and sialyl-Tn, was influenced by oxidation with periodic acid and by β-elimination before incubation. In some epithelial cells the staining was prevented by these procedures while in other cells it was evident. It appears that chemical modification can either destroy some antigen binding sites or unmask cryptic antigen binding sites in the mucin molecule and thereby make them accessible for immunohistochemical detection.

  6. The evolution of adenoviral vectors through genetic and chemical surface modifications.

    PubMed

    Capasso, Cristian; Garofalo, Mariangela; Hirvinen, Mari; Cerullo, Vincenzo

    2014-02-17

    A long time has passed since the first clinical trial with adenoviral (Ad) vectors. Despite being very promising, Ad vectors soon revealed their limitations in human clinical trials. The pre-existing immunity, the marked liver tropism and the high toxicity of first generation Ad (FG-Ad) vectors have been the main challenges for the development of new approaches. Significant effort toward the development of genetically and chemically modified adenoviral vectors has enabled researchers to create more sophisticated vectors for gene therapy, with an improved safety profile and a higher transduction ability of different tissues. In this review, we will describe the latest findings in the high-speed, evolving field of genetic and chemical modifications of adenoviral vectors, a field in which different disciplines, such as biomaterial research, virology and immunology, co-operate synergistically to create better gene therapy tools for modern challenges.

  7. Chemical modification approaches for improved performance of Na-ion battery electrodes

    NASA Astrophysics Data System (ADS)

    Byles, Bryan; Clites, Mallory; Pomerantseva, Ekaterina

    2015-08-01

    Na-ion batteries have received considerable attention in recent years but still face performance challenges such as limited cycle lifetime and low capacities at high current rates. In this work, we propose novel combinations of preand post-synthesis treatments to modify known Na-ion battery electrode materials to achieve enhanced electrochemical performance. We work with two model metal oxide materials to demonstrate the effectiveness of the different treatments. First, wet chemical preintercalation is combined with post-synthesis aging, hydrothermal treatment, and annealing of α-V2O5, resulting in enhanced capacity retention in a Na-ion battery system. The hydrothermal treatment resulted in an increased specific capacity of nearly 300 mAh/g. Second, post-synthesis acid leaching is performed on α- MnO2, also resulting in improved electrochemical capacity. The chemical, structural, and morphological changes brought about by the modifications are fully characterized.

  8. Chemical modification of cellulose by in situ reactive extrusion in ionic liquid.

    PubMed

    Zhang, Yue; Li, Haifeng; Li, Xinda; Gibril, Magdi E; Yu, Muhuo

    2014-01-01

    In order to prepare the spinning solution of cellulose with high concentration in environmentally friendly solvent, cellulose was chemically modified by in situ reactive extrusion with several chemicals, such as urea, phthalic anhydride (PA), maleic anhydride (MA) and butyl glycidyl ether (BGE) and with ionic liquid namely 1-N-butyl-3-methylimidazolium chloride (BMIMCl) as reaction medium. These four modifiers all in situ grafted onto cellulose and the modification effectiveness was found to decrease in the sequence, MA>PA>BGE>urea. The formation of side chain on cellulose backbone destroyed the regularity of cellulose chains and the hydrogen bond network efficiently. The concentration of modified cellulose in spinning solution can be up to 14-25%, comparing with 9% for unmodified cellulose in BMIMCl. The high solid content results in high efficiency and less energy consumption of fiber production and solvent recycle. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Multilayer Graphene with Chemical Modification as Transparent Conducting Electrodes in Organic Light-Emitting Diode.

    PubMed

    Xu, Yilin; Yu, Haojian; Wang, Cong; Cao, Jin; Chen, Yigang; Ma, Zhongquan; You, Ying; Wan, Jixiang; Fang, Xiaohong; Chen, Xiaoyuan

    2017-12-01

    Graphene is a promising candidate for the replacement of the typical transparent electrode indium tin oxide in optoelectronic devices. Currently, the application of polycrystalline graphene films grown by chemical vapor deposition is limited for their low electrical conductivity due to the poor transfer technique. In this work, we developed a new method of preparing tri-layer graphene films with chemical modification and explored the influence of doping and patterning process on the performance of the graphene films as transparent electrodes. In order to demonstrate the application of the tri-layer graphene films in optoelectronics, we fabricated the organic light-emitting diodes (OLEDs) based on them and found that plasma etching is feasible with certain influence on the quality of the graphene films and the performance of the OLEDs.

  10. Chemical Modification of Polyhydroxyalkanoates (PHAs) for the Preparation of Hybrid Biomaterials.

    PubMed

    Bassas-Galià, Mònica; Gonzalez, Adolfo; Micaux, Fabrice; Gaillard, Vanessa; Piantini, Umberto; Schintke, Silvia; Zinn, Manfred; Mathieu, Marc

    2015-01-01

    Polyhydroxyalkanoates (PHAs) are biopolyesters produced by bacteria as intracellular granules under metabolic stress conditions. Many carbon sources such as alkanes, alkenes, alcohols, sugars, fatty acids can be used as feedstock and thus a wide variety of polyesters and monomer units can be potentially synthetized. The work presented here describes the process to chemically modify such biopolymers in order to render them readily available for the preparation of bio-molecular conjugates as promising new classes of biocompatible biomaterials. Such hybrid biomaterials belong to the rapidly growing class of biocompatible polymers, which are of great interest for medical and therapeutic applications. In this work, the biosynthesis of a new PHA homopolymer and the chemical modification, an epoxidation reaction, are described.

  11. The Evolution of Adenoviral Vectors through Genetic and Chemical Surface Modifications

    PubMed Central

    Capasso, Cristian; Garofalo, Mariangela; Hirvinen, Mari; Cerullo, Vincenzo

    2014-01-01

    A long time has passed since the first clinical trial with adenoviral (Ad) vectors. Despite being very promising, Ad vectors soon revealed their limitations in human clinical trials. The pre-existing immunity, the marked liver tropism and the high toxicity of first generation Ad (FG-Ad) vectors have been the main challenges for the development of new approaches. Significant effort toward the development of genetically and chemically modified adenoviral vectors has enabled researchers to create more sophisticated vectors for gene therapy, with an improved safety profile and a higher transduction ability of different tissues. In this review, we will describe the latest findings in the high-speed, evolving field of genetic and chemical modifications of adenoviral vectors, a field in which different disciplines, such as biomaterial research, virology and immunology, co-operate synergistically to create better gene therapy tools for modern challenges. PMID:24549268

  12. Chemical modification of cysteine and tyrosine residues in formyltetrahydrofolate synthetase from Clostridium thermoaceticum

    SciTech Connect

    Elliott, J.I.; Ljungdahl, L.G.

    1982-04-01

    The chemical modification of cysteine and tyrosine residues in formyltetrahydrofolate synthetase from Clostridium thermoaceticum has been examined relative to enzymatic activity and reactivity of these groups in the native protein. 4,4'-Dipyridyl disulfide, dansylaziridine, and fluorescein mercuric acetate all reacted with just one of six sulfhydryls per enzyme subunit, resulting in activities of 100, 95 and 70%, respectively. The K/sub m/ values for MgATP, formate, and tetrahydrofolate were unaltered in the modified enzymes. ATP did produce a 2.5-fold reduction in the rate of reaction between the enzyme and 4,4'-dipyridyl disulfide. Tetranitromethane reacted most rapidly with a single sulfhydryl group per subunit to produce a 20 to 30% loss in activity. Subsequent additions of tetranitromethane modified 2.2 tyrosines per subunit which was proportional to the loss of the remaining enzymatic activity. Folic acid, a competitive inhibitor, protected against modification of the tyrosines and the associated activity losses; however, the oxidation of the single sulfhydryl group and the initial 20 to 30% activity loss were unaffected. In the presence of folic acid, higher concentrations of tetranitromethane produced a loss of the remaining activity proportional to the modification of 1.2 tyrosines per subunit. It is proposed that at least 1 tyrosine critical for enzymatic activity is located at or near the folic acid/tetrahydrofolate binding site.

  13. Altering protein surface charge with chemical modification modulates protein-gold nanoparticle aggregation

    NASA Astrophysics Data System (ADS)

    Jamison, Jennifer A.; Bryant, Erika L.; Kadali, Shyam B.; Wong, Michael S.; Colvin, Vicki L.; Matthews, Kathleen S.; Calabretta, Michelle K.

    2011-02-01

    Gold nanoparticles (AuNP) can interact with a wide range of molecules including proteins. Whereas significant attention has focused on modifying the nanoparticle surface to regulate protein-AuNP assembly or influence the formation of the protein "corona," modification of the protein surface as a mechanism to modulate protein-AuNP interaction has been less explored. Here, we examine this possibility utilizing three small globular proteins—lysozyme with high isoelectric point (pI) and established interactions with AuNP; α-lactalbumin with similar tertiary fold to lysozyme but low pI; and myoglobin with a different globular fold and an intermediate pI. We first chemically modified these proteins to alter their charged surface functionalities, and thereby shift protein pI, and then applied multiple methods to assess protein-AuNP assembly. At pH values lower than the anticipated pI of the modified protein, AuNP exposure elicits changes in the optical absorbance of the protein-NP solutions and other properties due to aggregate formation. Above the expected pI, however, protein-AuNP interaction is minimal, and both components remain isolated, presumably because both species are negatively charged. These data demonstrate that protein modification provides a powerful tool for modulating whether nanoparticle-protein interactions result in material aggregation. The results also underscore that naturally occurring protein modifications found in vivo may be critical in defining nanoparticle-protein corona compositions.

  14. Chemical modification of cysteine and tyrosine residues in formyltetrahydrofolate synthetase from Clostridium thermoaceticum

    SciTech Connect

    Elliott, J.I.; Ljungdahl, L.G.

    1982-04-01

    The chemical modification of cysteine and tyrosine residues in formyltetrahydrofolate synthetase from Clostridium thermoaceticum has been examined relative to enzymatic activity and reactivity of these groups in the native protein. 4,4'-Dipyridyl disulfide, dansylaziridine, and fluorescein mercuric acetate all reacted with just one of six sulfhydryls per enzyme subunit, resulting in activities of 100, 95 and 70%, respectively. The K/sub m/ values for MgATP, formate, and tetrahydrofolate were unaltered in the modified enzymes. ATP did produce a 2.5-fold reduction in the rate of reaction between the enzyme and 4,4'-dipyridyl disulfide. Tetranitromethane reacted most rapidly with a single sulfhydryl group per subunit to produce a 20 to 30% loss in activity. Subsequent additions of tetranitromethane modified 2.2 tyrosines per subunit which was proportional to the loss of the remaining enzymatic activity. Folic acid, a competitive inhibitor, protected against modification of the tyrosines and the associated activity losses; however, the oxidation of the single sulfhydryl group and the initial 20 to 30% activity loss were unaffected. In the presence of folic acid, higher concentrations of tetranitromethane produced a loss of the remaining activity proportional to the modification of 1.2 tyrosines per subunit. It is proposed that at least 1 tyrosine critical for enzymatic activity is located at or near the folic acid/tetrahydrofolate binding site.

  15. EINSTEIN'S SIGNATURE IN COSMOLOGICAL LARGE-SCALE STRUCTURE

    SciTech Connect

    Bruni, Marco; Hidalgo, Juan Carlos; Wands, David

    2014-10-10

    We show how the nonlinearity of general relativity generates a characteristic nonGaussian signal in cosmological large-scale structure that we calculate at all perturbative orders in a large-scale limit. Newtonian gravity and general relativity provide complementary theoretical frameworks for modeling large-scale structure in ΛCDM cosmology; a relativistic approach is essential to determine initial conditions, which can then be used in Newtonian simulations studying the nonlinear evolution of the matter density. Most inflationary models in the very early universe predict an almost Gaussian distribution for the primordial metric perturbation, ζ. However, we argue that it is the Ricci curvature of comoving-orthogonal spatial hypersurfaces, R, that drives structure formation at large scales. We show how the nonlinear relation between the spatial curvature, R, and the metric perturbation, ζ, translates into a specific nonGaussian contribution to the initial comoving matter density that we calculate for the simple case of an initially Gaussian ζ. Our analysis shows the nonlinear signature of Einstein's gravity in large-scale structure.

  16. Recursive architecture for large-scale adaptive system

    NASA Astrophysics Data System (ADS)

    Hanahara, Kazuyuki; Sugiyama, Yoshihiko

    1994-09-01

    'Large scale' is one of major trends in the research and development of recent engineering, especially in the field of aerospace structural system. This term expresses the large scale of an artifact in general, however, it also implies the large number of the components which make up the artifact in usual. Considering a large scale system which is especially used in remote space or deep-sea, such a system should be adaptive as well as robust by itself, because its control as well as maintenance by human operators are not easy due to the remoteness. An approach to realizing this large scale, adaptive and robust system is to build the system as an assemblage of components which are respectively adaptive by themselves. In this case, the robustness of the system can be achieved by using a large number of such components and suitable adaptation as well as maintenance strategies. Such a system gathers many research's interest and their studies such as decentralized motion control, configurating algorithm and characteristics of structural elements are reported. In this article, a recursive architecture concept is developed and discussed towards the realization of large scale system which consists of a number of uniform adaptive components. We propose an adaptation strategy based on the architecture and its implementation by means of hierarchically connected processing units. The robustness and the restoration from degeneration of the processing unit are also discussed. Two- and three-dimensional adaptive truss structures are conceptually designed based on the recursive architecture.

  17. The Influence of Large-scale Environments on Galaxy Properties

    NASA Astrophysics Data System (ADS)

    Wei, Yu-qing; Wang, Lei; Dai, Cai-ping

    2017-07-01

    The star formation properties of galaxies and their dependence on environments play an important role for understanding the formation and evolution of galaxies. Using the galaxy sample of the Sloan Digital Sky Survey (SDSS), different research groups have studied the physical properties of galaxies and their large-scale environments. Here, using the filament catalog from Tempel et al. and the galaxy catalog of large-scale structure classification from Wang et al., and taking the influence of the galaxy morphology, high/low local density environment, and central (satellite) galaxy into consideration, we have found that the properties of galaxies are correlated with their residential large-scale environments: the SSFR (specific star formation rate) and SFR (star formation rate) strongly depend on the large-scale environment for spiral galaxies and satellite galaxies, but this dependence is very weak for elliptical galaxies and central galaxies, and the influence of large-scale environments on galaxies in low density region is more sensitive than that in high density region. The above conclusions remain valid even for the galaxies with the same mass. In addition, the SSFR distributions derived from the catalogs of Tempel et al. and Wang et al. are not entirely consistent.

  18. Scanning Probe Surface Modification: Chemical Conversion of Terminal Functional Groups on Organosilane Self-Assembled Monolayers

    NASA Astrophysics Data System (ADS)

    Sugimura, Hiroyuki; Saito, Nagahiro; Hayashi, Kazuyuki; Maeda, Noriya; Takai, Osamu

    2003-12-01

    Minute patterns have been fabricated on organosilane self-assembled monolayers (SAMs) based on scanning probe surface modification. An SAM was prepared on Si substrates from an organosilane precursor. First, using an atomic force microscope (AFM) with a conductive probe, current was injected from the probe into the SAM-covered Si substrate so that the SAM was locally degraded at the probe-contacting point. The patterning could be conducted in air while, in vacuum at the order of 10-6 Torr, or in an atmosphere purged with nitrogen, no detectable patterns were fabricated. The presence of adsorbed water at the probe/sample junction was confirmed to be crucial for the patterning of the SAM/Si. Its mechanism was, thus, ascribed to electrochemical reactions of the SAM with adsorbed water. Furthermore, we demonstrated the chemical conversion of terminal functional groups on the SAM by the current injecting AFM. The results were confirmed through surface potential imaging by Kelvin probe force microscopy and a chemical labeling method. An SAM terminated with -CH3 groups was found to be converted to a COOH-terminated SAM due to anodic oxidation. The tip-induced electrochemical reduction from -NO to -NH2 was successfully conducted as well. Both the oxidation and reduction reactions have been shown applicable to scanning probe surface modification.

  19. Physico-chemical modifications of conjugated linoleic acid for ruminal protection and oxidative stability

    PubMed Central

    Moon, Hyun-Seuk; Lee, Hong-Gu; Chung, Chung-Soo; Choi, Yun-Jaie; Cho, Chong-Su

    2008-01-01

    Conjugated linoleic acid (CLA) is a mixture of positional and geometric isomers of octadecadienoic acid [linoleic acid (LA), 18:2n-6]. Although ruminant milk and meat products represent the largest natural source of CLA and therefore, their concentration in ruminant lipids are of interest to human health, chemical or physical modifications of CLA should be needed as a means to enhance oxidative stability, to improve post-ruminal bioavailability, and to increase the clinical application. In fact, CLA are rapidly decomposed to form furan fatty acids when its are oxidized in air, and the effectiveness of dietary supplements of CLA may be related to the extent that their metabolisms by rumen bacteria are avoided. For these reasons, many scientists have examined the effect of manufacturing and protection on the stability of CLA in ruminants and food products. In this review, physico-chemical modifications of CLA for ruminal protection such as calcium salt (Ca), formaldehyde protection (FP), lipid encapsulation (LE), and amide linkage (AL), and for oxidative stability such as green tea catechin (GTC), cyclodextrin (CD), arginine (Arg), amylase, and PEGylation are proposed. PMID:18513443

  20. Engineering specific chemical modification sites into a collagen-like protein from Streptococcus pyogenes.

    PubMed

    Stoichevska, Violet; Peng, Yong Y; Vashi, Aditya V; Werkmeister, Jerome A; Dumsday, Geoff J; Ramshaw, John A M

    2017-03-01

    Recombinant bacterial collagens provide a new opportunity for safe biomedical materials. They are readily expressed in Escherichia coli in good yield and can be readily purified by simple approaches. However, recombinant proteins are limited in that direct secondary modification during expression is generally not easily achieved. Thus, inclusion of unusual amino acids, cyclic peptides, sugars, lipids, and other complex functions generally needs to be achieved chemically after synthesis and extraction. In the present study, we have illustrated that bacterial collagens that have had their sequences modified to include cysteine residue(s), which are not normally present in bacterial collagen-like sequences, enable a range of specific chemical modification reactions to be produced. Various model reactions were shown to be effective for modifying the collagens. The ability to include alkyne (or azide) functions allows the extensive range of substitutions that are available via "click" chemistry to be accessed. When bifunctional reagents were used, some crosslinking occurred to give higher molecular weight polymeric proteins, but gels were not formed. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 806-813, 2017.

  1. Chemical modification of glycerinated stalks shows tyrosine residues essential for spasmoneme contraction of Vorticella sp.

    PubMed

    Fang, Jie; Zhang, Bei; Chen, Ning; Asai, Hiroshi

    2004-05-01

    Chemical modification of glycerinated stalks of Vorticella with TNM is used to investigate the role of tyrosine residues in the Ca(2+)-induced contraction of the spasmoneme. Tetranitromethane (TNM) is often employed as a specific reagent for the nitration of tyrosine residues in a protein at neutral and slightly alkaline pHs although TNM can also oxidize cysteine residues in the acidic and neutral pH range. Prior incubation with Ca(2+) of stalks to be treated with TNM can protect the spasmoneme from irreversible denaturation. On the other hand, TNM treatment in the absence of free Ca(2+) causes an irreversible denaturation of the spasmoneme. It was revealed by us that an isolated Ca(2+)-binding protein called spasmin could not bind with Ca(2+) after TNM treatment, even if the treatment was performed in the presence of Ca(2+). In an additional experiment, we confirmed that the chemical modification of cysteine residues in the spasmoneme with N-7-dimethyl-amino-4methyl- coumarinyl- maleimide (DACM) has no effect on the contractibility. These results suggest that tyrosine residues in spasmin are essential for spasmoneme contraction and are protected from TNM in the presence of Ca(2+) when spasmin binds with its receptor protein in the spasmoneme.

  2. Physico-chemical modifications of conjugated linoleic acid for ruminal protection and oxidative stability.

    PubMed

    Moon, Hyun-Seuk; Lee, Hong-Gu; Chung, Chung-Soo; Choi, Yun-Jaie; Cho, Chong-Su

    2008-06-01

    Conjugated linoleic acid (CLA) is a mixture of positional and geometric isomers of octadecadienoic acid [linoleic acid (LA), 18:2n-6]. Although ruminant milk and meat products represent the largest natural source of CLA and therefore, their concentration in ruminant lipids are of interest to human health, chemical or physical modifications of CLA should be needed as a means to enhance oxidative stability, to improve post-ruminal bioavailability, and to increase the clinical application. In fact, CLA are rapidly decomposed to form furan fatty acids when its are oxidized in air, and the effectiveness of dietary supplements of CLA may be related to the extent that their metabolisms by rumen bacteria are avoided. For these reasons, many scientists have examined the effect of manufacturing and protection on the stability of CLA in ruminants and food products. In this review, physico-chemical modifications of CLA for ruminal protection such as calcium salt (Ca), formaldehyde protection (FP), lipid encapsulation (LE), and amide linkage (AL), and for oxidative stability such as green tea catechin (GTC), cyclodextrin (CD), arginine (Arg), amylase, and PEGylation are proposed.

  3. Effect of surface chemical modification of bioceramic on phenotype of human bone-derived cells.

    PubMed

    Zreiqat, H; Evans, P; Howlett, C R

    1999-03-15

    In the search for methods to improve the biocompatibility of prosthetic materials, attention has recently been directed toward the potential use of surface chemical modification and its influence on cellular behavior. This in vitro study investigates the effect of surface chemistry modification of bioceramics on human bone-derived cells (HBDCs) grown on biomaterial surfaces for 2 weeks. Cells were cultured on either alumina (Al2O3), alumina doped with magnesium ions ([Mg]-Al2O3), or hydroxyapatite (HAP), as well as tissue culture polystyrene (TCPS). Expression of alkaline phosphatase (ALP), thrombospondin (Tsp), osteopontin (OP), osteocalcin (OC), osteonectin (ON/SPARC), type I collagen (Col I), and bone sialoprotein (BSP) were determined in terms of mRNAs and proteins. Protein levels for ALP, OP, OC, and BSP were significantly (p < 0. 05) greater at day 5 in HBDCs cultured on [Mg]-Al2O3 compared to those cells grown on Al2O3. At day 14 the levels of ALP, Tsp, Col I, OP, ON/SPARC, and BSP rose significantly (p < 0.05) above those occurring in HBDCs grown on Al2O3, HAP, and TCPS. This suggests that HBDCs from the same patient respond to differences in the surface chemical groups. This study confirms that the chemistry of a substratum, which facilitates cellular adhesion, will enhance cellular differentiation. Copyright 1999 John Wiley & Sons, Inc.

  4. Chemical modification of the bifunctional human serum pseudocholinesterase. Effect on the pseudocholinesterase and aryl acylamidase activities.

    PubMed

    Boopathy, R; Balasubramanian, A S

    1985-09-02

    The effect of chemical modification on the pseudocholinesterase and aryl acylamidase activities of purified human serum pseudocholinesterase was examined in the absence and presence of butyrylcholine iodide, the substrate of pseudocholinesterase. Modification by 2-hydroxy-5-nitrobenzyl bromide, N-bromosuccinimide, diethylpyrocarbonate and trinitrobenzenesulfonic acid caused a parallel inactivation of both pseudocholinesterase and aryl acylamidase activities that could be prevented by butyrylcholine iodide. With phenylglyoxal and 2,4-pentanedione as modifiers there was a selective activation of pseudocholinesterase alone with no effect on aryl acylamidase. This activation could be prevented by butyrylcholine iodide. N-Ethylmaleimide and p-hydroxy-mercuribenzoate when used for modification did not have any effect on the enzyme activities. The results suggested essential tryptophan, lysine and histidine residues at a common catalytic site for pseudocholinesterase and aryl acylamidase and an arginine residue (or residues) exclusively for pseudocholinesterase. The use of N-acetylimidazole, tetranitromethane and acetic anhydride as modifiers indicated a biphasic change in both pseudocholinesterase and aryl acylamidase activities. At low concentrations of the modifiers a stimulation in activities and at high concentrations an inactivation was observed. Butyrylcholine iodide or propionylcholine chloride selectively protected the inactivation phase without affecting the activation phase. Protection by the substrates at the inactivation phase resulted in not only a reversal of the enzyme inactivation but also an activation. Spectral studies and hydroxylamine treatment showed that tyrosine residues were modified during the activation phase. The results suggested that the modified tyrosine residues responsible for the activation were not involved in the active site of pseudocholinesterase or aryl acylamidase and that they were more amenable for modification in comparison to

  5. Simultaneous effect of modified gravity and primordial non-Gaussianity in large scale structure observations

    SciTech Connect

    Mirzatuny, Nareg; Khosravi, Shahram; Baghram, Shant; Moshafi, Hossein E-mail: khosravi@mail.ipm.ir E-mail: hosseinmoshafi@iasbs.ac.ir

    2014-01-01

    In this work we study the simultaneous effect of primordial non-Gaussianity and the modification of the gravity in f(R) framework on large scale structure observations. We show that non-Gaussianity and modified gravity introduce a scale dependent bias and growth rate functions. The deviation from ΛCDM in the case of primordial non-Gaussian models is in large scales, while the growth rate deviates from ΛCDM in small scales for modified gravity theories. We show that the redshift space distortion can be used to distinguish positive and negative f{sub NL} in standard background, while in f(R) theories they are not easily distinguishable. The galaxy power spectrum is generally enhanced in presence of non-Gaussianity and modified gravity. We also obtain the scale dependence of this enhancement. Finally we define galaxy growth rate and galaxy growth rate bias as new observational parameters to constrain cosmology.

  6. Recent Progress in Chemical Modifications of Chlorophylls and Bacteriochlorophylls for the Applications in Photodynamic Therapy.

    PubMed

    Staron, Jakub; Boron, Bożena; Karcz, Dariusz; Szczygieł, Małgorzata; Fiedor, Leszek

    2015-01-01

    Since photodynamic therapy emerged as a promising cancer treatment, the development of photosensitizers has gained great interest. In this context, the photosynthetic pigments, chlorophylls and bacteriochlorophylls, as excellent natural photosensitizers, attracted much attention. In effect, several (bacterio) chlorophyll-based phototherapeutic agents have been developed and (or are about to) enter the clinics. The aim of this review article is to give a survey of the advances in the synthetic chemistry of these pigments which have been made over the last decade, and which are pertinent to the application of their derivatives as photosensitizers for photodynamic therapy (PDT). The review focuses on the synthetic strategies undertaken to obtain novel derivatives of (bacterio)chlorophylls with both enhanced photosensitizing and tumorlocalizing properties, and also improved photo- and chemical stability. These include modifications of the C- 17-ester moiety, the isocyclic ring, the central binding pocket, and the derivatization of peripheral functionalities at the C-3 and C-7 positions with carbohydrate-, peptide-, and nanoparticle moieties or other residues. The effects of these modifications on essential features of the pigments are discussed, such as the efficiency of reactive oxygen species generation, photostability, phototoxicity and interactions with living organisms. The review is divided into several sections. In the first part, the principles of PDT and photosensitizer action are briefly described. Then the relevant photophysical features of (bacterio)chlorophylls and earlier approaches to their modification are summarized. Next, a more detailed overview of the progress in synthetic methods is given, followed by a discussion of the effects of these modifications on the photophysics of the pigments and on their biological activity.

  7. [Effect of chemical modification of lipase on the regulation of its lipolytic activity in reversed micelles].

    PubMed

    Pavlenko, I M; Kliachko, N L; Levashov, A V

    2005-01-01

    Hydrophilized and hydrophobized forms of the lipase from Mucor miehei were obtained by its chemical modification with cellobiose and N-hydroxysuccinimidyl palmitate with a modification degree of 4 in both cases. A comparative analysis of the regulation of the catalytic activities of the native and modified lipases was carried out in the system of reversed micelles of OT aerosol (AOT) in isooctane. The level of catalytic activity of all the lipase preparations in the micellar medium was found to be higher than that in aqueous solution. The chemical modification of lipase did not result in a change in the regulation of the oligomeric composition of the enzyme controlled by the degree of micelle hydration omega0 (micelle size). The kcat dependences on omega0 for each lipase preparation exhibit two maxima, corresponding to the functioning of lipase monomers and tetramers. The changes in the hydrophilic-lipophilic balance of the lipase surface significantly affect the character of the regulation of enzyme activity due to changes in the surfactant concentration (the number of micelles). The lipase hydrophobization results in a decrease in the enzyme activation effect with an increase in the AOT concentration in comparison with the native lipase. The lipase hydrophilization dramatically decreases the activity of lipase tetramer when the AOT concentration is increased. The catalytic activity of the monomer of hydrophilized lipase is practically independent of the AOT concentration. Kinetic data indicate a mixed type of activation of both oligomeric forms of the native and the hydrophobized lipase by AOT molecules and the noncompetitive type of the activation and AOT inhibition of the monomer and the tetramer of the hydrophilized lipase, respectively. The English version of the paper: Russian Journal of Bioorganic Chemistry, 2005, vol. 31, no. 6; see also http://www.maik.ru.

  8. Modification of wheat starch with succinic acid/acetanhydride and azelaic acid/acetanhydride mixtures. II. Chemical and physical properties.

    PubMed

    Ačkar, Durđica; Subarić, Drago; Babić, Jurislav; Miličević, Borislav; Jozinović, Antun

    2014-08-01

    The aim of this research was to investigate the influence of modification with succinic acid/acetanhydride and azelaic acid/acetanhydride mixtures on chemical and physical properties of wheat starch. Starch was isolated from two wheat varieties and modified with mixtures of succinic acid and acetanhydride and azelaic acid and acetanhydride in 4, 6 and 8% (w/w). Total starch content, resistant starch content, degree of modification, changes in FT-IR spectra, colour, gel texture and freeze-thaw stability were determined. Results showed that resistant starch content increased by both investigated modifications, and degree of modification increased proportionally to amount of reagents used. FT-IR analysis of modified starches showed peak around 1,740 cm(-1), characteristic for carbonyl group of ester. Total colour difference caused by modifications was detectable by trained people. Adhesiveness significantly increased, while freeze-thaw stability decreased by both investigated modifications.

  9. Large-Scale Spray Releases: Initial Aerosol Test Results

    SciTech Connect

    Schonewill, Philip P.; Gauglitz, Phillip A.; Bontha, Jagannadha R.; Daniel, Richard C.; Kurath, Dean E.; Adkins, Harold E.; Billing, Justin M.; Burns, Carolyn A.; Davis, James M.; Enderlin, Carl W.; Fischer, Christopher M.; Jenks, Jeromy WJ; Lukins, Craig D.; MacFarlan, Paul J.; Shutthanandan, Janani I.; Smith, Dennese M.

    2012-12-01

    One of the events postulated in the hazard analysis at the Waste Treatment and Immobilization Plant (WTP) and other U.S. Department of Energy (DOE) nuclear facilities is a breach in process piping that produces aerosols with droplet sizes in the respirable range. The current approach for predicting the size and concentration of aerosols produced in a spray leak involves extrapolating from correlations reported in the literature. These correlations are based on results obtained from small engineered spray nozzles using pure liquids with Newtonian fluid behavior. The narrow ranges of physical properties on which the correlations are based do not cover the wide range of slurries and viscous materials that will be processed in the WTP and across processing facilities in the DOE complex. Two key technical areas were identified where testing results were needed to improve the technical basis by reducing the uncertainty due to extrapolating existing literature results. The first technical need was to quantify the role of slurry particles in small breaches where the slurry particles may plug and result in substantially reduced, or even negligible, respirable fraction formed by high-pressure sprays. The second technical need was to determine the aerosol droplet size distribution and volume from prototypic breaches and fluids, specifically including sprays from larger breaches with slurries where data from the literature are scarce. To address these technical areas, small- and large-scale test stands were constructed and operated with simulants to determine aerosol release fractions and generation rates from a range of breach sizes and geometries. The properties of the simulants represented the range of properties expected in the WTP process streams and included water, sodium salt solutions, slurries containing boehmite or gibbsite, and a hazardous chemical simulant. The effect of anti-foam agents was assessed with most of the simulants. Orifices included round holes and

  10. Toward Improved Support for Loosely Coupled Large Scale Simulation Workflows

    SciTech Connect

    Boehm, Swen; Elwasif, Wael R; Naughton, III, Thomas J; Vallee, Geoffroy R

    2014-01-01

    High-performance computing (HPC) workloads are increasingly leveraging loosely coupled large scale simula- tions. Unfortunately, most large-scale HPC platforms, including Cray/ALPS environments, are designed for the execution of long-running jobs based on coarse-grained launch capabilities (e.g., one MPI rank per core on all allocated compute nodes). This assumption limits capability-class workload campaigns that require large numbers of discrete or loosely coupled simulations, and where time-to-solution is an untenable pacing issue. This paper describes the challenges related to the support of fine-grained launch capabilities that are necessary for the execution of loosely coupled large scale simulations on Cray/ALPS platforms. More precisely, we present the details of an enhanced runtime system to support this use case, and report on initial results from early testing on systems at Oak Ridge National Laboratory.

  11. Seismic safety in conducting large-scale blasts

    NASA Astrophysics Data System (ADS)

    Mashukov, I. V.; Chaplygin, V. V.; Domanov, V. P.; Semin, A. A.; Klimkin, M. A.

    2017-09-01

    In mining enterprises to prepare hard rocks for excavation a drilling and blasting method is used. With the approach of mining operations to settlements the negative effect of large-scale blasts increases. To assess the level of seismic impact of large-scale blasts the scientific staff of Siberian State Industrial University carried out expertise for coal mines and iron ore enterprises. Determination of the magnitude of surface seismic vibrations caused by mass explosions was performed using seismic receivers, an analog-digital converter with recording on a laptop. The registration results of surface seismic vibrations during production of more than 280 large-scale blasts at 17 mining enterprises in 22 settlements are presented. The maximum velocity values of the Earth’s surface vibrations are determined. The safety evaluation of seismic effect was carried out according to the permissible value of vibration velocity. For cases with exceedance of permissible values recommendations were developed to reduce the level of seismic impact.

  12. PKI security in large-scale healthcare networks.

    PubMed

    Mantas, Georgios; Lymberopoulos, Dimitrios; Komninos, Nikos

    2012-06-01

    During the past few years a lot of PKI (Public Key Infrastructures) infrastructures have been proposed for healthcare networks in order to ensure secure communication services and exchange of data among healthcare professionals. However, there is a plethora of challenges in these healthcare PKI infrastructures. Especially, there are a lot of challenges for PKI infrastructures deployed over large-scale healthcare networks. In this paper, we propose a PKI infrastructure to ensure security in a large-scale Internet-based healthcare network connecting a wide spectrum of healthcare units geographically distributed within a wide region. Furthermore, the proposed PKI infrastructure facilitates the trust issues that arise in a large-scale healthcare network including multi-domain PKI infrastructures.

  13. Large-scale velocity structures in turbulent thermal convection.

    PubMed

    Qiu, X L; Tong, P

    2001-09-01

    A systematic study of large-scale velocity structures in turbulent thermal convection is carried out in three different aspect-ratio cells filled with water. Laser Doppler velocimetry is used to measure the velocity profiles and statistics over varying Rayleigh numbers Ra and at various spatial positions across the whole convection cell. Large velocity fluctuations are found both in the central region and near the cell boundary. Despite the large velocity fluctuations, the flow field still maintains a large-scale quasi-two-dimensional structure, which rotates in a coherent manner. This coherent single-roll structure scales with Ra and can be divided into three regions in the rotation plane: (1) a thin viscous boundary layer, (2) a fully mixed central core region with a constant mean velocity gradient, and (3) an intermediate plume-dominated buffer region. The experiment reveals a unique driving mechanism for the large-scale coherent rotation in turbulent convection.

  14. Large-scale simulations of complex physical systems

    NASA Astrophysics Data System (ADS)

    Belić, A.

    2007-04-01

    Scientific computing has become a tool as vital as experimentation and theory for dealing with scientific challenges of the twenty-first century. Large scale simulations and modelling serve as heuristic tools in a broad problem-solving process. High-performance computing facilities make possible the first step in this process - a view of new and previously inaccessible domains in science and the building up of intuition regarding the new phenomenology. The final goal of this process is to translate this newly found intuition into better algorithms and new analytical results. In this presentation we give an outline of the research themes pursued at the Scientific Computing Laboratory of the Institute of Physics in Belgrade regarding large-scale simulations of complex classical and quantum physical systems, and present recent results obtained in the large-scale simulations of granular materials and path integrals.

  15. Large-scale simulations of complex physical systems

    SciTech Connect

    Belic, A.

    2007-04-23

    Scientific computing has become a tool as vital as experimentation and theory for dealing with scientific challenges of the twenty-first century. Large scale simulations and modelling serve as heuristic tools in a broad problem-solving process. High-performance computing facilities make possible the first step in this process - a view of new and previously inaccessible domains in science and the building up of intuition regarding the new phenomenology. The final goal of this process is to translate this newly found intuition into better algorithms and new analytical results.In this presentation we give an outline of the research themes pursued at the Scientific Computing Laboratory of the Institute of Physics in Belgrade regarding large-scale simulations of complex classical and quantum physical systems, and present recent results obtained in the large-scale simulations of granular materials and path integrals.

  16. A relativistic signature in large-scale structure

    NASA Astrophysics Data System (ADS)

    Bartolo, Nicola; Bertacca, Daniele; Bruni, Marco; Koyama, Kazuya; Maartens, Roy; Matarrese, Sabino; Sasaki, Misao; Verde, Licia; Wands, David

    2016-09-01

    In General Relativity, the constraint equation relating metric and density perturbations is inherently nonlinear, leading to an effective non-Gaussianity in the dark matter density field on large scales-even if the primordial metric perturbation is Gaussian. Intrinsic non-Gaussianity in the large-scale dark matter overdensity in GR is real and physical. However, the variance smoothed on a local physical scale is not correlated with the large-scale curvature perturbation, so that there is no relativistic signature in the galaxy bias when using the simplest model of bias. It is an open question whether the observable mass proxies such as luminosity or weak lensing correspond directly to the physical mass in the simple halo bias model. If not, there may be observables that encode this relativistic signature.

  17. Magnetic Helicity and Large Scale Magnetic Fields: A Primer

    NASA Astrophysics Data System (ADS)

    Blackman, Eric G.

    2015-05-01

    Magnetic fields of laboratory, planetary, stellar, and galactic plasmas commonly exhibit significant order on large temporal or spatial scales compared to the otherwise random motions within the hosting system. Such ordered fields can be measured in the case of planets, stars, and galaxies, or inferred indirectly by the action of their dynamical influence, such as jets. Whether large scale fields are amplified in situ or a remnant from previous stages of an object's history is often debated for objects without a definitive magnetic activity cycle. Magnetic helicity, a measure of twist and linkage of magnetic field lines, is a unifying tool for understanding large scale field evolution for both mechanisms of origin. Its importance stems from its two basic properties: (1) magnetic helicity is typically better conserved than magnetic energy; and (2) the magnetic energy associated with a fixed amount of magnetic helicity is minimized when the system relaxes this helical structure to the largest scale available. Here I discuss how magnetic helicity has come to help us understand the saturation of and sustenance of large scale dynamos, the need for either local or global helicity fluxes to avoid dynamo quenching, and the associated observational consequences. I also discuss how magnetic helicity acts as a hindrance to turbulent diffusion of large scale fields, and thus a helper for fossil remnant large scale field origin models in some contexts. I briefly discuss the connection between large scale fields and accretion disk theory as well. The goal here is to provide a conceptual primer to help the reader efficiently penetrate the literature.

  18. Large Scale Processes and Extreme Floods in Brazil

    NASA Astrophysics Data System (ADS)

    Ribeiro Lima, C. H.; AghaKouchak, A.; Lall, U.

    2016-12-01

    Persistent large scale anomalies in the atmospheric circulation and ocean state have been associated with heavy rainfall and extreme floods in water basins of different sizes across the world. Such studies have emerged in the last years as a new tool to improve the traditional, stationary based approach in flood frequency analysis and flood prediction. Here we seek to advance previous studies by evaluating the dominance of large scale processes (e.g. atmospheric rivers/moisture transport) over local processes (e.g. local convection) in producing floods. We consider flood-prone regions in Brazil as case studies and the role of large scale climate processes in generating extreme floods in such regions is explored by means of observed streamflow, reanalysis data and machine learning methods. The dynamics of the large scale atmospheric circulation in the days prior to the flood events are evaluated based on the vertically integrated moisture flux and its divergence field, which are interpreted in a low-dimensional space as obtained by machine learning techniques, particularly supervised kernel principal component analysis. In such reduced dimensional space, clusters are obtained in order to better understand the role of regional moisture recycling or teleconnected moisture in producing floods of a given magnitude. The convective available potential energy (CAPE) is also used as a measure of local convection activities. We investigate for individual sites the exceedance probability in which large scale atmospheric fluxes dominate the flood process. Finally, we analyze regional patterns of floods and how the scaling law of floods with drainage area responds to changes in the climate forcing mechanisms (e.g. local vs large scale).

  19. Deciphering histone code of transcriptional regulation in malaria parasites by large-scale data mining.

    PubMed

    Chen, Haifen; Lonardi, Stefano; Zheng, Jie

    2014-06-01

    Histone modifications play a major role in the regulation of gene expression. Accumulated evidence has shown that histone modifications mediate biological processes such as transcription cooperatively. This has led to the hypothesis of 'histone code' which suggests that combinations of different histone modifications correspond to unique chromatin states and have distinct functions. In this paper, we propose a framework based on association rule mining to discover the potential regulatory relations between histone modifications and gene expression in Plasmodium falciparum. Our approach can output rules with statistical significance. Some of the discovered rules are supported by literature of experimental results. Moreover, we have also discovered de novo rules which can guide further research in epigenetic regulation of transcription. Based on our association rules we build a model to predict gene expression, which outperforms a published Bayesian network model for gene expression prediction by histone modifications. The results of our study reveal mechanisms for histone modifications to regulate transcription in large-scale. Among our findings, the cooperation among histone modifications provides new evidence for the hypothesis of histone code. Furthermore, the rules output by our method can be used to predict the change of gene expression. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. [Issues of large scale tissue culture of medicinal plant].

    PubMed

    Lv, Dong-Mei; Yuan, Yuan; Zhan, Zhi-Lai

    2014-09-01

    In order to increase the yield and quality of the medicinal plant and enhance the competitive power of industry of medicinal plant in our country, this paper analyzed the status, problem and countermeasure of the tissue culture of medicinal plant on large scale. Although the biotechnology is one of the most efficient and promising means in production of medicinal plant, it still has problems such as stability of the material, safety of the transgenic medicinal plant and optimization of cultured condition. Establishing perfect evaluation system according to the characteristic of the medicinal plant is the key measures to assure the sustainable development of the tissue culture of medicinal plant on large scale.

  1. The CLASSgal code for relativistic cosmological large scale structure

    NASA Astrophysics Data System (ADS)

    Di Dio, Enea; Montanari, Francesco; Lesgourgues, Julien; Durrer, Ruth

    2013-11-01

    We present accurate and efficient computations of large scale structure observables, obtained with a modified version of the CLASS code which is made publicly available. This code includes all relativistic corrections and computes both the power spectrum Cl(z1,z2) and the corresponding correlation function ξ(θ,z1,z2) of the matter density and the galaxy number fluctuations in linear perturbation theory. For Gaussian initial perturbations, these quantities contain the full information encoded in the large scale matter distribution at the level of linear perturbation theory. We illustrate the usefulness of our code for cosmological parameter estimation through a few simple examples.

  2. Corridors Increase Plant Species Richness at Large Scales

    SciTech Connect

    Damschen, Ellen I.; Haddad, Nick M.; Orrock,John L.; Tewksbury, Joshua J.; Levey, Douglas J.

    2006-09-01

    Habitat fragmentation is one of the largest threats to biodiversity. Landscape corridors, which are hypothesized to reduce the negative consequences of fragmentation, have become common features of ecological management plans worldwide. Despite their popularity, there is little evidence documenting the effectiveness of corridors in preserving biodiversity at large scales. Using a large-scale replicated experiment, we showed that habitat patches connected by corridors retain more native plant species than do isolated patches, that this difference increases over time, and that corridors do not promote invasion by exotic species. Our results support the use of corridors in biodiversity conservation.

  3. Large-Scale Graph Processing Analysis using Supercomputer Cluster

    NASA Astrophysics Data System (ADS)

    Vildario, Alfrido; Fitriyani; Nugraha Nurkahfi, Galih

    2017-01-01

    Graph implementation is widely use in various sector such as automotive, traffic, image processing and many more. They produce graph in large-scale dimension, cause the processing need long computational time and high specification resources. This research addressed the analysis of implementation large-scale graph using supercomputer cluster. We impelemented graph processing by using Breadth-First Search (BFS) algorithm with single destination shortest path problem. Parallel BFS implementation with Message Passing Interface (MPI) used supercomputer cluster at High Performance Computing Laboratory Computational Science Telkom University and Stanford Large Network Dataset Collection. The result showed that the implementation give the speed up averages more than 30 times and eficiency almost 90%.

  4. Survey of decentralized control methods. [for large scale dynamic systems

    NASA Technical Reports Server (NTRS)

    Athans, M.

    1975-01-01

    An overview is presented of the types of problems that are being considered by control theorists in the area of dynamic large scale systems with emphasis on decentralized control strategies. Approaches that deal directly with decentralized decision making for large scale systems are discussed. It is shown that future advances in decentralized system theory are intimately connected with advances in the stochastic control problem with nonclassical information pattern. The basic assumptions and mathematical tools associated with the latter are summarized, and recommendations concerning future research are presented.

  5. Clearing and Labeling Techniques for Large-Scale Biological Tissues

    PubMed Central

    Seo, Jinyoung; Choe, Minjin; Kim, Sung-Yon

    2016-01-01

    Clearing and labeling techniques for large-scale biological tissues enable simultaneous extraction of molecular and structural information with minimal disassembly of the sample, facilitating the integration of molecular, cellular and systems biology across different scales. Recent years have witnessed an explosive increase in the number of such methods and their applications, reflecting heightened interest in organ-wide clearing and labeling across many fields of biology and medicine. In this review, we provide an overview and comparison of existing clearing and labeling techniques and discuss challenges and opportunities in the investigations of large-scale biological systems. PMID:27239813

  6. The Evolution of Baryons in Cosmic Large Scale Structure

    NASA Astrophysics Data System (ADS)

    Snedden, Ali; Arielle Phillips, Lara; Mathews, Grant James; Coughlin, Jared; Suh, In-Saeng; Bhattacharya, Aparna

    2015-01-01

    The environments of galaxies play a critical role in their formation and evolution. We study these environments using cosmological simulations with star formation and supernova feedback included. From these simulations, we parse the large scale structure into clusters, filaments and voids using a segmentation algorithm adapted from medical imaging. We trace the star formation history, gas phase and metal evolution of the baryons in the intergalactic medium as function of structure. We find that our algorithm reproduces the baryon fraction in the intracluster medium and that the majority of star formation occurs in cold, dense filaments. We present the consequences this large scale environment has for galactic halos and galaxy evolution.

  7. Large scale purification of RNA nanoparticles by preparative ultracentrifugation.

    PubMed

    Jasinski, Daniel L; Schwartz, Chad T; Haque, Farzin; Guo, Peixuan

    2015-01-01

    Purification of large quantities of supramolecular RNA complexes is of paramount importance due to the large quantities of RNA needed and the purity requirements for in vitro and in vivo assays. Purification is generally carried out by liquid chromatography (HPLC), polyacrylamide gel electrophoresis (PAGE), or agarose gel electrophoresis (AGE). Here, we describe an efficient method for the large-scale purification of RNA prepared by in vitro transcription using T7 RNA polymerase by cesium chloride (CsCl) equilibrium density gradient ultracentrifugation and the large-scale purification of RNA nanoparticles by sucrose gradient rate-zonal ultracentrifugation or cushioned sucrose gradient rate-zonal ultracentrifugation.

  8. The effect of chemical modification with pyromellitic anhydride on structure, function, and thermal stability of horseradish peroxidase.

    PubMed

    Hassani, Leila

    2012-06-01

    The stability of enzymes remains a critical issue in biotechnology. Compared with the strategies for obtaining stable enzymes, chemical modification is a simple and effective technique. In the present study, chemical modification of horseradish peroxidase (HRP) was carried out with pyromellitic anhydride. HRP has achieved a prominent position in the pharmaceutical, chemical, and biotechnological industries. In this study, the effect of chemical modification on thermal stability, structure, and function of the enzyme was studied by fluorescence, circular dichroism, and absorbance measurements. The results indicated a decrease in compactness of the structure and a considerable enhancement in thermal stability of HRP below 60 °C. It seems the charge replacement and introduction of the bulky group bring about the observed structural and the functional changes.

  9. The effect of chemical modification on the physico-chemical characteristics of halloysite: FTIR, XRF, and XRD studies

    NASA Astrophysics Data System (ADS)

    Szczepanik, Beata; Słomkiewicz, Piotr; Garnuszek, Magdalena; Czech, Kamil; Banaś, Dariusz; Kubala-Kukuś, Aldona; Stabrawa, Ilona

    2015-03-01

    The effect of chemical modification of halloysite from a Polish strip mine "Dunino" on the chemical composition and structure of this clay mineral was studied using infrared spectroscopy (ATR FT-IR), wavelength dispersive X-ray fluorescence (WDXRF), and X-ray powder diffraction (XRPD) methods. The results obtained by the WDXRF technique confirm that the content of silica and alumina was the highest for bleached halloysite samples and the lowest for acid-treated halloysite. A higher content of Fe2O3 in comparison to halloysite samples coming from other countries was observed for raw halloysite samples. XRPD diffraction pattern obtained for raw halloysite confirmed the presence of halloysite, kaolinite, hematite, and calcite minerals in the sample. Bleaching the halloysite removes (or significantly reduces) the content of other minerals present in the raw halloysite. The FT-IR spectra of the studied halloysite samples show in the 3700-3600 cm-1 region well-defined hydroxyl stretching bands characteristic for the kaolin-group minerals and bands associated with the vibrations of the aluminium-silicon skeleton in the 1400-1000 cm-1 region. Modifying halloysite with 4-chloro-aniline causes successive incorporation of amine into the BH sample.

  10. Semiconductor Nanocrystal Quantum Dot Synthesis Approaches Towards Large-Scale Industrial Production for Energy Applications

    NASA Astrophysics Data System (ADS)

    Hu, Michael Z.; Zhu, Ting

    2015-12-01

    This paper reviews the experimental synthesis and engineering developments that focused on various green approaches and large-scale process production routes for quantum dots. Fundamental process engineering principles were illustrated. In relation to the small-scale hot injection method, our discussions focus on the non-injection route that could be scaled up with engineering stir-tank reactors. In addition, applications that demand to utilize quantum dots as "commodity" chemicals are discussed, including solar cells and solid-state lightings.

  11. Semiconductor Nanocrystal Quantum Dot Synthesis Approaches Towards Large-Scale Industrial Production for Energy Applications.

    PubMed

    Hu, Michael Z; Zhu, Ting

    2015-12-01

    This paper reviews the experimental synthesis and engineering developments that focused on various green approaches and large-scale process production routes for quantum dots. Fundamental process engineering principles were illustrated. In relation to the small-scale hot injection method, our discussions focus on the non-injection route that could be scaled up with engineering stir-tank reactors. In addition, applications that demand to utilize quantum dots as "commodity" chemicals are discussed, including solar cells and solid-state lightings.

  12. Semiconductor nanocrystal quantum dot synthesis approaches towards large-scale industrial production for energy applications

    DOE PAGES

    Hu, Michael Z.; Zhu, Ting

    2015-12-04

    This study reviews the experimental synthesis and engineering developments that focused on various green approaches and large-scale process production routes for quantum dots. Fundamental process engineering principles were illustrated. In relation to the small-scale hot injection method, our discussions focus on the non-injection route that could be scaled up with engineering stir-tank reactors. In addition, applications that demand to utilize quantum dots as "commodity" chemicals are discussed, including solar cells and solid-state lightings.

  13. FEASIBILITY OF LARGE-SCALE OCEAN CO2 SEQUESTRATION

    SciTech Connect

    Dr. Peter Brewer; Dr. James Barry

    2002-09-30

    We have continued to carry out creative small-scale experiments in the deep ocean to investigate the science underlying questions of possible future large-scale deep-ocean CO{sub 2} sequestration as a means of ameliorating greenhouse gas growth rates in the atmosphere. This project is closely linked to additional research funded by the DoE Office of Science, and to support from the Monterey Bay Aquarium Research Institute. The listing of project achievements here over the past year reflects these combined resources. Within the last project year we have: (1) Published a significant workshop report (58 pages) entitled ''Direct Ocean Sequestration Expert's Workshop'', based upon a meeting held at MBARI in 2001. The report is available both in hard copy, and on the NETL web site. (2) Carried out three major, deep ocean, (3600m) cruises to examine the physical chemistry, and biological consequences, of several liter quantities released on the ocean floor. (3) Carried out two successful short cruises in collaboration with Dr. Izuo Aya and colleagues (NMRI, Osaka, Japan) to examine the fate of cold (-55 C) CO{sub 2} released at relatively shallow ocean depth. (4) Carried out two short cruises in collaboration with Dr. Costas Tsouris, ORNL, to field test an injection nozzle designed to transform liquid CO{sub 2} into a hydrate slurry at {approx}1000m depth. (5) In collaboration with Prof. Jill Pasteris (Washington University) we have successfully accomplished the first field test of a deep ocean laser Raman spectrometer for probing in situ the physical chemistry of the CO{sub 2} system. (6) Submitted the first major paper on biological impacts as determined from our field studies. (7) Submitted a paper on our measurements of the fate of a rising stream of liquid CO{sub 2} droplets to Environmental Science & Technology. (8) Have had accepted for publication in Eos the first brief account of the laser Raman spectrometer success. (9) Have had two papers submitted for the

  14. The Large-Scale Structure of Scientific Method

    ERIC Educational Resources Information Center

    Kosso, Peter

    2009-01-01

    The standard textbook description of the nature of science describes the proposal, testing, and acceptance of a theoretical idea almost entirely in isolation from other theories. The resulting model of science is a kind of piecemeal empiricism that misses the important network structure of scientific knowledge. Only the large-scale description of…

  15. A bibliographical surveys of large-scale systems

    NASA Technical Reports Server (NTRS)

    Corliss, W. R.

    1970-01-01

    A limited, partly annotated bibliography was prepared on the subject of large-scale system control. Approximately 400 references are divided into thirteen application areas, such as large societal systems and large communication systems. A first-author index is provided.

  16. Mixing Metaphors: Building Infrastructure for Large Scale School Turnaround

    ERIC Educational Resources Information Center

    Peurach, Donald J.; Neumerski, Christine M.

    2015-01-01

    The purpose of this analysis is to increase understanding of the possibilities and challenges of building educational infrastructure--the basic, foundational structures, systems, and resources--to support large-scale school turnaround. Building educational infrastructure often exceeds the capacity of schools, districts, and state education…

  17. Firebrands and spotting ignition in large-scale fires

    Treesearch

    Eunmo Koo; Patrick J. Pagni; David R. Weise; John P. Woycheese

    2010-01-01

    Spotting ignition by lofted firebrands is a significant mechanism of fire spread, as observed in many largescale fires. The role of firebrands in fire propagation and the important parameters involved in spot fire development are studied. Historical large-scale fires, including wind-driven urban and wildland conflagrations and post-earthquake fires are given as...

  18. Large Scale Survey Data in Career Development Research

    ERIC Educational Resources Information Center

    Diemer, Matthew A.

    2008-01-01

    Large scale survey datasets have been underutilized but offer numerous advantages for career development scholars, as they contain numerous career development constructs with large and diverse samples that are followed longitudinally. Constructs such as work salience, vocational expectations, educational expectations, work satisfaction, and…

  19. Measurement, Sampling, and Equating Errors in Large-Scale Assessments

    ERIC Educational Resources Information Center

    Wu, Margaret

    2010-01-01

    In large-scale assessments, such as state-wide testing programs, national sample-based assessments, and international comparative studies, there are many steps involved in the measurement and reporting of student achievement. There are always sources of inaccuracies in each of the steps. It is of interest to identify the source and magnitude of…

  20. US National Large-scale City Orthoimage Standard Initiative

    USGS Publications Warehouse

    Zhou, G.; Song, C.; Benjamin, S.; Schickler, W.

    2003-01-01

    The early procedures and algorithms for National digital orthophoto generation in National Digital Orthophoto Program (NDOP) were based on earlier USGS mapping operations, such as field control, aerotriangulation (derived in the early 1920's), the quarter-quadrangle-centered (3.75 minutes of longitude and latitude in geographic extent), 1:40,000 aerial photographs, and 2.5 D digital elevation models. However, large-scale city orthophotos using early procedures have disclosed many shortcomings, e.g., ghost image, occlusion, shadow. Thus, to provide the technical base (algorithms, procedure) and experience needed for city large-scale digital orthophoto creation is essential for the near future national large-scale digital orthophoto deployment and the revision of the Standards for National Large-scale City Digital Orthophoto in National Digital Orthophoto Program (NDOP). This paper will report our initial research results as follows: (1) High-precision 3D city DSM generation through LIDAR data processing, (2) Spatial objects/features extraction through surface material information and high-accuracy 3D DSM data, (3) 3D city model development, (4) Algorithm development for generation of DTM-based orthophoto, and DBM-based orthophoto, (5) True orthophoto generation by merging DBM-based orthophoto and DTM-based orthophoto, and (6) Automatic mosaic by optimizing and combining imagery from many perspectives.

  1. DESIGN OF LARGE-SCALE AIR MONITORING NETWORKS

    EPA Science Inventory

    The potential effects of air pollution on human health have received much attention in recent years. In the U.S. and other countries, there are extensive large-scale monitoring networks designed to collect data to inform the public of exposure risks to air pollution. A major crit...

  2. Large-Scale Environmental Influences on Aquatic Animal Health

    EPA Science Inventory

    In the latter portion of the 20th century, North America experienced numerous large-scale mortality events affecting a broad diversity of aquatic animals. Short-term forensic investigations of these events have sometimes characterized a causative agent or condition, but have rare...

  3. DESIGN OF LARGE-SCALE AIR MONITORING NETWORKS

    EPA Science Inventory

    The potential effects of air pollution on human health have received much attention in recent years. In the U.S. and other countries, there are extensive large-scale monitoring networks designed to collect data to inform the public of exposure risks to air pollution. A major crit...

  4. Developing and Understanding Methods for Large-Scale Nonlinear Optimization

    DTIC Science & Technology

    2006-07-24

    algorithms for large-scale uncon- strained and constrained optimization problems, including limited-memory methods for problems with -2- many thousands...34Published in peer-reviewed journals" E. Eskow, B. Bader, R. Byrd, S. Crivelli, T. Head-Gordon, V. Lamberti and R. Schnabel, "An optimization approach to the

  5. Probabilistic Cuing in Large-Scale Environmental Search

    ERIC Educational Resources Information Center

    Smith, Alastair D.; Hood, Bruce M.; Gilchrist, Iain D.

    2010-01-01

    Finding an object in our environment is an important human ability that also represents a critical component of human foraging behavior. One type of information that aids efficient large-scale search is the likelihood of the object being in one location over another. In this study we investigated the conditions under which individuals respond to…

  6. Assuring Quality in Large-Scale Online Course Development

    ERIC Educational Resources Information Center

    Parscal, Tina; Riemer, Deborah

    2010-01-01

    Student demand for online education requires colleges and universities to rapidly expand the number of courses and programs offered online while maintaining high quality. This paper outlines two universities respective processes to assure quality in large-scale online programs that integrate instructional design, eBook custom publishing, Quality…

  7. Improving the Utility of Large-Scale Assessments in Canada

    ERIC Educational Resources Information Center

    Rogers, W. Todd

    2014-01-01

    Principals and teachers do not use large-scale assessment results because the lack of distinct and reliable subtests prevents identifying strengths and weaknesses of students and instruction, the results arrive too late to be used, and principals and teachers need assistance to use the results to improve instruction so as to improve student…

  8. Research directions in large scale systems and decentralized control

    NASA Technical Reports Server (NTRS)

    Tenney, R. R.

    1980-01-01

    Control theory provides a well established framework for dealing with automatic decision problems and a set of techniques for automatic decision making which exploit special structure, but it does not deal well with complexity. The potential exists for combining control theoretic and knowledge based concepts into a unified approach. The elements of control theory are diagrammed, including modern control and large scale systems.

  9. Efficient On-Demand Operations in Large-Scale Infrastructures

    ERIC Educational Resources Information Center

    Ko, Steven Y.

    2009-01-01

    In large-scale distributed infrastructures such as clouds, Grids, peer-to-peer systems, and wide-area testbeds, users and administrators typically desire to perform "on-demand operations" that deal with the most up-to-date state of the infrastructure. However, the scale and dynamism present in the operating environment make it challenging to…

  10. Ecosystem resilience despite large-scale altered hydro climatic conditions

    USDA-ARS?s Scientific Manuscript database

    Climate change is predicted to increase both drought frequency and duration, and when coupled with substantial warming, will establish a new hydroclimatological paradigm for many regions. Large-scale, warm droughts have recently impacted North America, Africa, Europe, Amazonia, and Australia result...

  11. The Large-Scale Structure of Scientific Method

    ERIC Educational Resources Information Center

    Kosso, Peter

    2009-01-01

    The standard textbook description of the nature of science describes the proposal, testing, and acceptance of a theoretical idea almost entirely in isolation from other theories. The resulting model of science is a kind of piecemeal empiricism that misses the important network structure of scientific knowledge. Only the large-scale description of…

  12. Large-Scale Assessments and Educational Policies in Italy

    ERIC Educational Resources Information Center

    Damiani, Valeria

    2016-01-01

    Despite Italy's extensive participation in most large-scale assessments, their actual influence on Italian educational policies is less easy to identify. The present contribution aims at highlighting and explaining reasons for the weak and often inconsistent relationship between international surveys and policy-making processes in Italy.…

  13. Large-Scale Innovation and Change in UK Higher Education

    ERIC Educational Resources Information Center

    Brown, Stephen

    2013-01-01

    This paper reflects on challenges universities face as they respond to change. It reviews current theories and models of change management, discusses why universities are particularly difficult environments in which to achieve large scale, lasting change and reports on a recent attempt by the UK JISC to enable a range of UK universities to employ…

  14. Current Scientific Issues in Large Scale Atmospheric Dynamics

    NASA Technical Reports Server (NTRS)

    Miller, T. L. (Compiler)

    1986-01-01

    Topics in large scale atmospheric dynamics are discussed. Aspects of atmospheric blocking, the influence of transient baroclinic eddies on planetary-scale waves, cyclogenesis, the effects of orography on planetary scale flow, small scale frontal structure, and simulations of gravity waves in frontal zones are discussed.

  15. Large-Scale Assessments and Educational Policies in Italy

    ERIC Educational Resources Information Center

    Damiani, Valeria

    2016-01-01

    Despite Italy's extensive participation in most large-scale assessments, their actual influence on Italian educational policies is less easy to identify. The present contribution aims at highlighting and explaining reasons for the weak and often inconsistent relationship between international surveys and policy-making processes in Italy.…

  16. Large scale fire whirls: Can their formation be predicted?

    Treesearch

    J. Forthofer; Bret Butler

    2010-01-01

    Large scale fire whirls have not traditionally been recognized as a frequent phenomenon on wildland fires. However, there are anecdotal data suggesting that they can and do occur with some regularity. This paper presents a brief summary of this information and an analysis of the causal factors leading to their formation.

  17. Large-Scale Environmental Influences on Aquatic Animal Health

    EPA Science Inventory

    In the latter portion of the 20th century, North America experienced numerous large-scale mortality events affecting a broad diversity of aquatic animals. Short-term forensic investigations of these events have sometimes characterized a causative agent or condition, but have rare...

  18. International Large-Scale Assessments: What Uses, What Consequences?

    ERIC Educational Resources Information Center

    Johansson, Stefan

    2016-01-01

    Background: International large-scale assessments (ILSAs) are a much-debated phenomenon in education. Increasingly, their outcomes attract considerable media attention and influence educational policies in many jurisdictions worldwide. The relevance, uses and consequences of these assessments are often the focus of research scrutiny. Whilst some…

  19. Extracting Useful Semantic Information from Large Scale Corpora of Text

    ERIC Educational Resources Information Center

    Mendoza, Ray Padilla, Jr.

    2012-01-01

    Extracting and representing semantic information from large scale corpora is at the crux of computer-assisted knowledge generation. Semantic information depends on collocation extraction methods, mathematical models used to represent distributional information, and weighting functions which transform the space. This dissertation provides a…

  20. Large-Scale Innovation and Change in UK Higher Education

    ERIC Educational Resources Information Center

    Brown, Stephen

    2013-01-01

    This paper reflects on challenges universities face as they respond to change. It reviews current theories and models of change management, discusses why universities are particularly difficult environments in which to achieve large scale, lasting change and reports on a recent attempt by the UK JISC to enable a range of UK universities to employ…

  1. Mixing Metaphors: Building Infrastructure for Large Scale School Turnaround

    ERIC Educational Resources Information Center

    Peurach, Donald J.; Neumerski, Christine M.

    2015-01-01

    The purpose of this analysis is to increase understanding of the possibilities and challenges of building educational infrastructure--the basic, foundational structures, systems, and resources--to support large-scale school turnaround. Building educational infrastructure often exceeds the capacity of schools, districts, and state education…

  2. Individual Skill Differences and Large-Scale Environmental Learning

    ERIC Educational Resources Information Center

    Fields, Alexa W.; Shelton, Amy L.

    2006-01-01

    Spatial skills are known to vary widely among normal individuals. This project was designed to address whether these individual differences are differentially related to large-scale environmental learning from route (ground-level) and survey (aerial) perspectives. Participants learned two virtual environments (route and survey) with limited…

  3. Newton Methods for Large Scale Problems in Machine Learning

    ERIC Educational Resources Information Center

    Hansen, Samantha Leigh

    2014-01-01

    The focus of this thesis is on practical ways of designing optimization algorithms for minimizing large-scale nonlinear functions with applications in machine learning. Chapter 1 introduces the overarching ideas in the thesis. Chapters 2 and 3 are geared towards supervised machine learning applications that involve minimizing a sum of loss…

  4. Large-Scale Machine Learning for Classification and Search

    ERIC Educational Resources Information Center

    Liu, Wei

    2012-01-01

    With the rapid development of the Internet, nowadays tremendous amounts of data including images and videos, up to millions or billions, can be collected for training machine learning models. Inspired by this trend, this thesis is dedicated to developing large-scale machine learning techniques for the purpose of making classification and nearest…

  5. Global smoothing and continuation for large-scale molecular optimization

    SciTech Connect

    More, J.J.; Wu, Zhijun

    1995-10-01

    We discuss the formulation of optimization problems that arise in the study of distance geometry, ionic systems, and molecular clusters. We show that continuation techniques based on global smoothing are applicable to these molecular optimization problems, and we outline the issues that must be resolved in the solution of large-scale molecular optimization problems.

  6. Large-scale Eucalyptus energy farms and power cogeneration

    Treesearch

    Robert C. Noroña

    1983-01-01

    A thorough evaluation of all factors possibly affecting a large-scale planting of eucalyptus is foremost in determining the cost effectiveness of the planned operation. Seven basic areas of concern must be analyzed:1. Species Selection 2. Site Preparation 3. Planting 4. Weed Control 5....

  7. Probabilistic Cuing in Large-Scale Environmental Search

    ERIC Educational Resources Information Center

    Smith, Alastair D.; Hood, Bruce M.; Gilchrist, Iain D.

    2010-01-01

    Finding an object in our environment is an important human ability that also represents a critical component of human foraging behavior. One type of information that aids efficient large-scale search is the likelihood of the object being in one location over another. In this study we investigated the conditions under which individuals respond to…

  8. Lessons from Large-Scale Renewable Energy Integration Studies: Preprint

    SciTech Connect

    Bird, L.; Milligan, M.

    2012-06-01

    In general, large-scale integration studies in Europe and the United States find that high penetrations of renewable generation are technically feasible with operational changes and increased access to transmission. This paper describes other key findings such as the need for fast markets, large balancing areas, system flexibility, and the use of advanced forecasting.

  9. The large scale microwave background anisotropy in decaying particle cosmology

    SciTech Connect

    Panek, M.

    1987-06-01

    We investigate the large-scale anisotropy of the microwave background radiation in cosmological models with decaying particles. The observed value of the quadrupole moment combined with other constraints gives an upper limit on the redshift of the decay z/sub d/ < 3-5. 12 refs., 2 figs.

  10. Large-scale search for dark-matter axions

    SciTech Connect

    Kinion, D; van Bibber, K

    2000-08-30

    We review the status of two ongoing large-scale searches for axions which may constitute the dark matter of our Milky Way halo. The experiments are based on the microwave cavity technique proposed by Sikivie, and marks a ''second-generation'' to the original experiments performed by the Rochester-Brookhaven-Fermilab collaboration, and the University of Florida group.

  11. Resilience of Florida Keys coral communities following large scale disturbances

    EPA Science Inventory

    The decline of coral reefs in the Caribbean over the last 40 years has been attributed to multiple chronic stressors and episodic large-scale disturbances. This study assessed the resilience of coral communities in two different regions of the Florida Keys reef system between 199...

  12. Large Scale Survey Data in Career Development Research

    ERIC Educational Resources Information Center

    Diemer, Matthew A.

    2008-01-01

    Large scale survey datasets have been underutilized but offer numerous advantages for career development scholars, as they contain numerous career development constructs with large and diverse samples that are followed longitudinally. Constructs such as work salience, vocational expectations, educational expectations, work satisfaction, and…

  13. The Role of Plausible Values in Large-Scale Surveys

    ERIC Educational Resources Information Center

    Wu, Margaret

    2005-01-01

    In large-scale assessment programs such as NAEP, TIMSS and PISA, students' achievement data sets provided for secondary analysts contain so-called "plausible values." Plausible values are multiple imputations of the unobservable latent achievement for each student. In this article it has been shown how plausible values are used to: (1)…

  14. Large-scale silicon optical switches for optical interconnection

    NASA Astrophysics Data System (ADS)

    Qiao, Lei; Tang, Weijie; Chu, Tao

    2016-11-01

    Large-scale optical switches are greatly demanded in building optical interconnections in data centers and high performance computers (HPCs). Silicon optical switches have advantages of being compact and CMOS process compatible, which can be easily monolithically integrated. However, there are difficulties to construct large ports silicon optical switches. One of them is the non-uniformity of the switch units in large scale silicon optical switches, which arises from the fabrication error and causes confusion in finding the unit optimum operation points. In this paper, we proposed a method to detect the optimum operating point in large scale switch with limited build-in power monitors. We also propose methods for improving the unbalanced crosstalk of cross/bar states in silicon electro-optical MZI switches and insertion losses. Our recent progress in large scale silicon optical switches, including 64 × 64 thermal-optical and 32 × 32 electro-optical switches will be introduced. To the best our knowledge, both of them are the largest scale silicon optical switches in their sections, respectively. The switches were fabricated on 340-nm SOI substrates with CMOS 180- nm processes. The crosstalk of the 32 × 32 electro-optic switch was -19.2dB to -25.1 dB, while the value of the 64 × 64 thermal-optic switch was -30 dB to -48.3 dB.

  15. Assuring Quality in Large-Scale Online Course Development

    ERIC Educational Resources Information Center

    Parscal, Tina; Riemer, Deborah

    2010-01-01

    Student demand for online education requires colleges and universities to rapidly expand the number of courses and programs offered online while maintaining high quality. This paper outlines two universities respective processes to assure quality in large-scale online programs that integrate instructional design, eBook custom publishing, Quality…

  16. Computational Complexity, Efficiency and Accountability in Large Scale Teleprocessing Systems.

    DTIC Science & Technology

    1980-12-01

    COMPLEXITY, EFFICIENCY AND ACCOUNTABILITY IN LARGE SCALE TELEPROCESSING SYSTEMS DAAG29-78-C-0036 STANFORD UNIVERSITY JOHN T. GILL MARTIN E. BELLMAN...solve but easy to check. Ve have also suggested howy sucb random tapes can be simulated by determin- istically generating "pseudorandom" numbers by a

  17. Large-Scale Assessment and English Language Learners with Disabilities

    ERIC Educational Resources Information Center

    Liu, Kristin K.; Ward, Jenna M.; Thurlow, Martha L.; Christensen, Laurene L.

    2017-01-01

    This article highlights a set of principles and guidelines, developed by a diverse group of specialists in the field, for appropriately including English language learners (ELLs) with disabilities in large-scale assessments. ELLs with disabilities make up roughly 9% of the rapidly increasing ELL population nationwide. In spite of the small overall…

  18. Large-scale silviculture experiments of western Oregon and Washington.

    Treesearch

    Nathan J. Poage; Paul D. Anderson

    2007-01-01

    We review 12 large-scale silviculture experiments (LSSEs) in western Washington and Oregon with which the Pacific Northwest Research Station of the USDA Forest Service is substantially involved. We compiled and arrayed information about the LSSEs as a series of matrices in a relational database, which is included on the compact disc published with this report and...

  19. Newton Methods for Large Scale Problems in Machine Learning

    ERIC Educational Resources Information Center

    Hansen, Samantha Leigh

    2014-01-01

    The focus of this thesis is on practical ways of designing optimization algorithms for minimizing large-scale nonlinear functions with applications in machine learning. Chapter 1 introduces the overarching ideas in the thesis. Chapters 2 and 3 are geared towards supervised machine learning applications that involve minimizing a sum of loss…

  20. Efficient On-Demand Operations in Large-Scale Infrastructures

    ERIC Educational Resources Information Center

    Ko, Steven Y.

    2009-01-01

    In large-scale distributed infrastructures such as clouds, Grids, peer-to-peer systems, and wide-area testbeds, users and administrators typically desire to perform "on-demand operations" that deal with the most up-to-date state of the infrastructure. However, the scale and dynamism present in the operating environment make it challenging to…

  1. Large-Scale Machine Learning for Classification and Search

    ERIC Educational Resources Information Center

    Liu, Wei

    2012-01-01

    With the rapid development of the Internet, nowadays tremendous amounts of data including images and videos, up to millions or billions, can be collected for training machine learning models. Inspired by this trend, this thesis is dedicated to developing large-scale machine learning techniques for the purpose of making classification and nearest…

  2. Moon-based Earth Observation for Large Scale Geoscience Phenomena

    NASA Astrophysics Data System (ADS)

    Guo, Huadong; Liu, Guang; Ding, Yixing

    2016-07-01

    The capability of Earth observation for large-global-scale natural phenomena needs to be improved and new observing platform are expected. We have studied the concept of Moon as an Earth observation in these years. Comparing with manmade satellite platform, Moon-based Earth observation can obtain multi-spherical, full-band, active and passive information,which is of following advantages: large observation range, variable view angle, long-term continuous observation, extra-long life cycle, with the characteristics of longevity ,consistency, integrity, stability and uniqueness. Moon-based Earth observation is suitable for monitoring the large scale geoscience phenomena including large scale atmosphere change, large scale ocean change,large scale land surface dynamic change,solid earth dynamic change,etc. For the purpose of establishing a Moon-based Earth observation platform, we already have a plan to study the five aspects as follows: mechanism and models of moon-based observing earth sciences macroscopic phenomena; sensors' parameters optimization and methods of moon-based Earth observation; site selection and environment of moon-based Earth observation; Moon-based Earth observation platform; and Moon-based Earth observation fundamental scientific framework.

  3. Large-scale societal changes and intentionality - an uneasy marriage.

    PubMed

    Bodor, Péter; Fokas, Nikos

    2014-08-01

    Our commentary focuses on juxtaposing the proposed science of intentional change with facts and concepts pertaining to the level of large populations or changes on a worldwide scale. Although we find a unified evolutionary theory promising, we think that long-term and large-scale, scientifically guided - that is, intentional - social change is not only impossible, but also undesirable.

  4. Large-scale screening by the automated Wassermann reaction

    PubMed Central

    Wagstaff, W.; Firth, R.; Booth, J. R.; Bowley, C. C.

    1969-01-01

    In view of the drawbacks in the use of the Kahn test for large-scale screening of blood donors, mainly those of human error through work overload and fatiguability, an attempt was made to adapt an existing automated complement-fixation technique for this purpose. This paper reports the successful results of that adaptation. PMID:5776559

  5. International Large-Scale Assessments: What Uses, What Consequences?

    ERIC Educational Resources Information Center

    Johansson, Stefan

    2016-01-01

    Background: International large-scale assessments (ILSAs) are a much-debated phenomenon in education. Increasingly, their outcomes attract considerable media attention and influence educational policies in many jurisdictions worldwide. The relevance, uses and consequences of these assessments are often the focus of research scrutiny. Whilst some…

  6. Cosmic strings and the large-scale structure

    NASA Technical Reports Server (NTRS)

    Stebbins, Albert

    1988-01-01

    A possible problem for cosmic string models of galaxy formation is presented. If very large voids are common and if loop fragmentation is not much more efficient than presently believed, then it may be impossible for string scenarios to produce the observed large-scale structure with Omega sub 0 = 1 and without strong environmental biasing.

  7. Extracting Useful Semantic Information from Large Scale Corpora of Text

    ERIC Educational Resources Information Center

    Mendoza, Ray Padilla, Jr.

    2012-01-01

    Extracting and representing semantic information from large scale corpora is at the crux of computer-assisted knowledge generation. Semantic information depends on collocation extraction methods, mathematical models used to represent distributional information, and weighting functions which transform the space. This dissertation provides a…

  8. Large scale structure of the sun's radio corona

    NASA Technical Reports Server (NTRS)

    Kundu, M. R.

    1986-01-01

    Results of studies of large scale structures of the corona at long radio wavelengths are presented, using data obtained with the multifrequency radioheliograph of the Clark Lake Radio Observatory. It is shown that features corresponding to coronal streamers and coronal holes are readily apparent in the Clark Lake maps.

  9. Resilience of Florida Keys coral communities following large scale disturbances

    EPA Science Inventory

    The decline of coral reefs in the Caribbean over the last 40 years has been attributed to multiple chronic stressors and episodic large-scale disturbances. This study assessed the resilience of coral communities in two different regions of the Florida Keys reef system between 199...

  10. Effect of chemical modification on molecular structure and functional properties of Musa AAB starch.

    PubMed

    Koteswara Reddy, Chagam; Vidya, P V; Haripriya, Sundaramoorthy

    2015-11-01

    Starch extracted from Musa AAB (poovan banana) was subjected to acetylation, acid-thinning and oxidation. The effect of the treatments on molecular structure and functional properties of starch were analysed. Chemical composition revealed that non-starch components were reduced after chemical treatment. Amylose content of starch decreased on acetylation from 24.16% to 20.90%, whereas it increased to 24.50% and 25.5% on oxidation and acid-thinning, respectively. X-ray diffraction pattern of modified starches showed B-type crystalline structure with peaks at 2θ=5.5°, 15.0°, 17.1° and 23.5°; which were parallel with the pattern observed in case of native starch. Swelling capacity of starch granules was found to reduce by acid-thinning and oxidation but acetylation induced to increase it. The percentage of colour (L*, a* and b*), solubility and water absorption capacities varied significantly from native starch after chemical modification. Changes in gelatinisation temperatures and enthalpy value of starches were observed in modified starches and it is varied according to reaction conditions. Pasting properties of the starches was increased by acetylation and oxidation while acid-thinning reduced it (P<0.05).

  11. Physical and chemical basics of modification of poly(vinyl chloride) by means of polyisocyanate

    NASA Astrophysics Data System (ADS)

    Islamov, Anvar; Fakhrutdinova, Venera; Abdrakhmanova, Lyailya

    2016-01-01

    This research presents data relating to polyvinyl chloride (PVC) modification by means of reactive oligomer and measures technological, physical and mechanical properties of the modified composites. Polyisocyanate (PIC) has been chosen as the modifying reactive oligomer. It has been shown that insertion of the oligomer has a double effect on PVC. Primarily, PIC produces a plasticizing effect on PVC and in particular leads to an increase in thermal stability and melt flow index at the stage of processing. In addition, the molded PVC composites possess higher strength properties and lower deformability when exposed to temperature because of chemical transformations of PIC in polymer matrix and, as the result, the formation of cross-linked systems takes place. In this case, semi-interpenetrating structures are formed based on cross-linked products of PIC chemical transformations homogeneously distributed in the PVC matrix. It has been determined by means of IR-spectroscopy that the basic products of PIC curing are compounds with urea and biuret groups which leads to modifying effect on PVC especially: increase in strength, thermal and mechanical properties, and chemical resistance.

  12. Improving dry carbon nanotube actuators by chemical modifications, material hybridization, and proper engineering

    NASA Astrophysics Data System (ADS)

    Biso, Maurizio; Ansaldo, Alberto; Ricci, Davide

    2013-04-01

    Low voltage, dry electrochemical actuators can be prepared by using a gel made of carbon nanotubes and ionic liquid.1 Their performance can be significantly improved by combining physical and chemical modifications with a proper engineering. We demonstrated that multi walled carbon nanotubes can be effectively used for actuators preparation;2 we achieved interesting performance improvements by chemically cross linking carbon nanotubes using both aromatic and aliphatic diamines;3 we introduced a novel hybrid material, made by in-situ chemical polymerization of pyrrole on carbon nanotubes, that further boosts actuation by taking advantage of the peculiar properties of both materials in terms of maximum strain and conductivity;4 we investigated the influence of actuator thickness showing that the generated strain at high frequency is strongly enhanced when thickness is reduced. To overcome limitations set by bimorphs, we designed a novel actuator in which a metal spring, embedded in the solid electrolyte of a bimorph device, is used as a non-actuating counter plate resulting in a three electrode device capable of both linear and bending motion. Finally, we propose a way to model actuators performance in terms of purely material-dependent parameters instead of geometry-dependent ones.5

  13. A method of orbital analysis for large-scale first-principles simulations

    SciTech Connect

    Ohwaki, Tsukuru; Otani, Minoru; Ozaki, Taisuke

    2014-06-28

    An efficient method of calculating the natural bond orbitals (NBOs) based on a truncation of the entire density matrix of a whole system is presented for large-scale density functional theory calculations. The method recovers an orbital picture for O(N) electronic structure methods which directly evaluate the density matrix without using Kohn-Sham orbitals, thus enabling quantitative analysis of chemical reactions in large-scale systems in the language of localized Lewis-type chemical bonds. With the density matrix calculated by either an exact diagonalization or O(N) method, the computational cost is O(1) for the calculation of NBOs associated with a local region where a chemical reaction takes place. As an illustration of the method, we demonstrate how an electronic structure in a local region of interest can be analyzed by NBOs in a large-scale first-principles molecular dynamics simulation for a liquid electrolyte bulk model (propylene carbonate + LiBF{sub 4})

  14. Pre-slow-roll initial conditions: Large scale power suppression and infrared aspects during inflation

    NASA Astrophysics Data System (ADS)

    Lello, Louis; Boyanovsky, Daniel; Holman, Richard

    2014-03-01

    If the large-scale anomalies in the temperature power spectrum of the cosmic microwave background are of primordial origin, they may herald modifications to the slow-roll inflationary paradigm on the largest scales. We study the possibility that the origin of the large-scale power suppression is a modification of initial conditions during slow roll as a result of a pre-slow-roll phase during which the inflaton evolves rapidly. This stage is manifest in a potential in the equations for the Gaussian fluctuations during slow roll and modifies the power spectra of scalar perturbations via an initial condition transfer function T(k). We provide a general analytical study of its large- and small-scale properties and analyze the impact of these initial conditions on the infrared aspects of typical test scalar fields. The infrared behavior of massless minimally coupled test scalar field theories leads to the dynamical generation of mass and anomalous dimensions, both depending nonanalytically on T(0). During inflation, all quanta decay into many quanta even of the same field because of the lack of kinematic thresholds. The decay leads to a quantum entangled state of subhorizon and superhorizon quanta with correlations across the horizon. We find the modifications of the decay width and the entanglement entropy from the initial conditions. In all cases, initial conditions from a "fast-roll" stage that lead to a suppression in the scalar power spectrum at large scales also result in a suppression of the dynamically generated masses, anomalous dimensions and decay widths.

  15. Identification of active site residues of Fenugreek β-amylase: chemical modification and in silico approach.

    PubMed

    Srivastava, Garima; Singh, Vinay K; Kayastha, Arvind M

    2014-10-01

    The amino acid sequence of Fenugreek β-amylase is not available in protein data bank. Therefore, an attempt has been made to identify the catalytic amino acid residues of enzyme by employing studies of pH dependence of enzyme catalysis, chemical modification and bioinformatics. Treatment of purified Fenugreek β-amylase with EDAC in presence of glycine methyl ester and sulfhydryl group specific reagents (IAA, NEM and p-CMB), followed a pseudo first-order kinetics and resulted in effective inactivation of enzyme. The reaction with EDAC in presence of NTEE (3-nitro-l-tyrosine ethylester) resulted into modification of two carboxyl groups per molecule of enzyme and presence of one accessible sulfhydryl group at the active site, per molecule of enzyme was ascertained by titration with DTNB. The above results were supported by the prevention of inactivation of enzyme in presence of substrate. Based on MALDI-TOF analysis of purified Fenugreek β-amylase and MASCOT search, β-amylase of Medicago sativa was found to be the best match. To further confirm the amino acid involved in catalysis, homology modelling of β-amylase of M. sativa was performed. The sequence alignment, superimposition of template and target models, along with study of interactions involved in docking of sucrose and maltose at the active site, led to identification of Glu187, Glu381 and Cys344 as active site residues. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  16. Rapid localization of point mutations in PCR products by chemical (HOT) modification.

    PubMed

    Tindall, K R; Whitaker, R A

    1991-01-01

    Our studies of mutational mechanisms in mammalian cells use the AS52 Chinese hamster ovary cell line. AS52 mutants can be selected as 6-thioguanine resistant colonies and mutations are studied at a chromosomally integrated gpt locus. Mutant gpt sequences are amplified using the polymerase chain reaction (PCR) to distinguish deletions from putative point mutations. PCR is efficiently performed from a few thousand lysed cells or from isolated genomic DNA. Amplified mutant PCR fragments carrying putative point mutations are further characterized by localizing the site of the mutation using chemical modification. A heteroduplex molecule consisting of one wild-type and one mutant DNA strand is generated. A base mismatch will be produced at the site of the mutation. Mismatched cytosine or thymine residues are sensitive to modification by hydroxylamine or osmium tetroxide, respectively. The modified DNA heteroduplex is then sensitive to piperidine cleavage. If one strand is 32P-end labeled, then the cleavage product can be separated on a denaturing acrylamide sequencing gel and visualized using autoradiography. Thus, the site of a mutation can be localized to a specific region of the gene, thereby simplifying the DNA sequence analysis and facilitating the rapid generation of mutational sequence spectra.

  17. Development and Structural Modifications of Cholinesterase Reactivators against Chemical Warfare Agents in Last Decade: A Review.

    PubMed

    Sharma, Rahul; Gupta, Bhanushree; Singh, Namrata; Acharya, J R; Musilek, Kamil; Kuca, Kamil; Ghosh, Kallol Kumar

    2015-01-01

    Organophosphate (OP) pesticides and nerve agents are responsible for suicidal and accidental poisonings. The acute toxicity of nerve agents leads to progressive inhibition of the enzyme acetylcholinesterase (AChE) by phosphylation of serine residue at the active site of gorge. The recent massive destruction of Syrian civilians by nerve gas sarin, has again renewed the research attention of global science fraternity towards nerve agents, their mode of action and most prominently their therapeutic treatment. This review is principally focused on nerve agent intoxication. The common approach to deal with OP-intoxication is, application of antimuscarinic drug (atropine), anticonvulsant drug (diazepam) and clinically used oximes (pralidoxime, trimedoxime, obidoxime and asoxime). However, the existing therapeutic approach is arguable and has several failings to cure all kinds of nerve agent poisonings. Considering this issue, numerous oximes have been synthesized and screened through various in-vitro and in-vivo studies in last decade to overcome the downsides. At present, only a few oximes (bis pyridinum-oximes) exhibit sound efficacy against selective OPs. In spite of extensive efforts, till date no oxime is available as a universal antidote against all the classes of OPs. This review is centered on the recent developments and structural modification of AChE reactivators against nerve agent toxicity. In particular, a deeper look has been taken into chemical modifications of the reactivators by incorporation of different structural moieties targeted towards the increased reactivation affinity and improved blood brain barrier (BBB) penetration.

  18. Effect of Light on Chemical Modification of Chloroplast Ferredoxin-NADP Reductase 1

    PubMed Central

    Carrillo, Nestor; Lucero, Héctor A.; Vallejos, Rubén H.

    1980-01-01

    Chemical modification of spinach chloroplasts by phenylglyoxal and dansyl chloride resulted in inhibition of NADP photoreduction. The rate of inactivation was higher with both reagents when modification was carried out in the light with methylviologen or phenazine methosulfate present. Uncouplers prevent the effect of light. Electron transport from water to methylviologen was not affected by the modifiers. The presence of 10 millimolar NADP completely protected the membrane-bound reductase against inactivation by phenylglyoxal. With lower concentrations, protection was higher in the light than in the dark. The apparent dissociation constants of the enzyme-substrate complex for NADP were 0.9 and 0.1 millimolar for the dark and light inactivation, respectively. Inactivation of NADP photoreduction by dansyl chloride was completely prevented by ferredoxin, but only partially by nucleotides. The diaphorase activity was inhibited in chloroplasts modified by phenylglyoxal, but not when modified by dansyl chloride. The results suggest that energizing thylakoid membranes by light induces a conformational change in membrane-bound ferredoxin-NADP reductase, and that the reductase is an allotopic enzyme. PMID:16661221

  19. Surface modification of poly(ethylene terephthalate) fabric via photo-chemical reaction of dimethylaminopropyl methacrylamide

    NASA Astrophysics Data System (ADS)

    Mohamed, Nasser H.; Bahners, Thomas; Wego, Andreas; Gutmann, Jochen S.; Ulbricht, Mathias

    2012-10-01

    Photo-chemical reactions and surface modifications of poly(ethylene terephthalate) (PET) fabrics with the monomer dimethylaminopropyl methacrylamide (DMAPMA) and benzophenone (BP) as photo-initiator using a broad-band UV lamp source were investigated. The tertiary amino groups of the grafted poly(DMAPMA) chains were subsequently quaternized with alkyl bromides of different chain lengths to establish antibacterial activity. The surface composition, structure and morphology of modified PET fabrics were characterized by Fourier transform infrared spectroscopy (FTIR/ATR), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). To evaluate the amount of quaternary and tertiary ammonium groups on the modified surface, PET was dyed with an acid dye which binds to the ammonium groups. Therefore, the color depth is a direct indicator of the amount of ammonium groups. The resulting antibacterial activity of the modified PET fabrics was tested with Escherichia coli. The results of all experiments show that a photochemical modification of PET is possible using DMAPMA, benzophenone and UV light. Also, the quaternization of tertiary amino groups as well as the increase in antibacterial activity of the modified PET by the established quaternary ammonium groups were successful.

  20. Mass Spectrometric Quantification of Histone Post-translational Modifications by a Hybrid Chemical Labeling Method

    PubMed Central

    Maile, Tobias M.; Izrael-Tomasevic, Anita; Cheung, Tommy; Guler, Gulfem D.; Tindell, Charles; Masselot, Alexandre; Liang, Jun; Zhao, Feng; Trojer, Patrick; Classon, Marie; Arnott, David

    2015-01-01

    Mass spectrometry is a powerful alternative to antibody-based methods for the analysis of histone post-translational modifications (marks). A key development in this approach was the deliberate propionylation of histones to improve sequence coverage across the lysine-rich and hydrophilic tails that bear most modifications. Several marks continue to be problematic however, particularly di- and tri-methylated lysine 4 of histone H3 which we found to be subject to substantial and selective losses during sample preparation and liquid chromatography-mass spectrometry. We developed a new method employing a “one-pot” hybrid chemical derivatization of histones, whereby an initial conversion of free lysines to their propionylated forms under mild aqueous conditions is followed by trypsin digestion and labeling of new peptide N termini with phenyl isocyanate. High resolution mass spectrometry was used to collect qualitative and quantitative data, and a novel web-based software application (Fishtones) was developed for viewing and quantifying histone marks in the resulting data sets. Recoveries of 53 methyl, acetyl, and phosphoryl marks on histone H3.1 were improved by an average of threefold overall, and over 50-fold for H3K4 di- and tri-methyl marks. The power of this workflow for epigenetic research and drug discovery was demonstrated by measuring quantitative changes in H3K4 trimethylation induced by small molecule inhibitors of lysine demethylases and siRNA knockdown of epigenetic modifiers ASH2L and WDR5. PMID:25680960