Sample records for large-scale climate models

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Gang

    Mid-latitude extreme weather events are responsible for a large part of climate-related damage. Yet large uncertainties remain in climate model projections of heat waves, droughts, and heavy rain/snow events on regional scales, limiting our ability to effectively use these projections for climate adaptation and mitigation. These uncertainties can be attributed to both the lack of spatial resolution in the models, and to the lack of a dynamical understanding of these extremes. The approach of this project is to relate the fine-scale features to the large scales in current climate simulations, seasonal re-forecasts, and climate change projections in a very widemore » range of models, including the atmospheric and coupled models of ECMWF over a range of horizontal resolutions (125 to 10 km), aqua-planet configuration of the Model for Prediction Across Scales and High Order Method Modeling Environments (resolutions ranging from 240 km – 7.5 km) with various physics suites, and selected CMIP5 model simulations. The large scale circulation will be quantified both on the basis of the well tested preferred circulation regime approach, and very recently developed measures, the finite amplitude Wave Activity (FAWA) and its spectrum. The fine scale structures related to extremes will be diagnosed following the latest approaches in the literature. The goal is to use the large scale measures as indicators of the probability of occurrence of the finer scale structures, and hence extreme events. These indicators will then be applied to the CMIP5 models and time-slice projections of a future climate.« less

  2. On the limitations of General Circulation Climate Models

    NASA Technical Reports Server (NTRS)

    Stone, Peter H.; Risbey, James S.

    1990-01-01

    General Circulation Models (GCMs) by definition calculate large-scale dynamical and thermodynamical processes and their associated feedbacks from first principles. This aspect of GCMs is widely believed to give them an advantage in simulating global scale climate changes as compared to simpler models which do not calculate the large-scale processes from first principles. However, it is pointed out that the meridional transports of heat simulated GCMs used in climate change experiments differ from observational analyses and from other GCMs by as much as a factor of two. It is also demonstrated that GCM simulations of the large scale transports of heat are sensitive to the (uncertain) subgrid scale parameterizations. This leads to the question whether current GCMs are in fact superior to simpler models for simulating temperature changes associated with global scale climate change.

  3. The influence of large-scale wind power on global climate.

    PubMed

    Keith, David W; Decarolis, Joseph F; Denkenberger, David C; Lenschow, Donald H; Malyshev, Sergey L; Pacala, Stephen; Rasch, Philip J

    2004-11-16

    Large-scale use of wind power can alter local and global climate by extracting kinetic energy and altering turbulent transport in the atmospheric boundary layer. We report climate-model simulations that address the possible climatic impacts of wind power at regional to global scales by using two general circulation models and several parameterizations of the interaction of wind turbines with the boundary layer. We find that very large amounts of wind power can produce nonnegligible climatic change at continental scales. Although large-scale effects are observed, wind power has a negligible effect on global-mean surface temperature, and it would deliver enormous global benefits by reducing emissions of CO(2) and air pollutants. Our results may enable a comparison between the climate impacts due to wind power and the reduction in climatic impacts achieved by the substitution of wind for fossil fuels.

  4. Model simulations and proxy-based reconstructions for the European region in the past millennium (Invited)

    NASA Astrophysics Data System (ADS)

    Zorita, E.

    2009-12-01

    One of the objectives when comparing simulations of past climates to proxy-based climate reconstructions is to asses the skill of climate models to simulate climate change. This comparison may accomplished at large spatial scales, for instance the evolution of simulated and reconstructed Northern Hemisphere annual temperature, or at regional or point scales. In both approaches a 'fair' comparison has to take into account different aspects that affect the inevitable uncertainties and biases in the simulations and in the reconstructions. These efforts face a trade-off: climate models are believed to be more skillful at large hemispheric scales, but climate reconstructions are these scales are burdened by the spatial distribution of available proxies and by methodological issues surrounding the statistical method used to translate the proxy information into large-spatial averages. Furthermore, the internal climatic noise at large hemispheric scales is low, so that the sampling uncertainty tends to be also low. On the other hand, the skill of climate models at regional scales is limited by the coarse spatial resolution, which hinders a faithful representation of aspects important for the regional climate. At small spatial scales, the reconstruction of past climate probably faces less methodological problems if information from different proxies is available. The internal climatic variability at regional scales is, however, high. In this contribution some examples of the different issues faced when comparing simulation and reconstructions at small spatial scales in the past millennium are discussed. These examples comprise reconstructions from dendrochronological data and from historical documentary data in Europe and climate simulations with global and regional models. These examples indicate that the centennial climate variations can offer a reasonable target to assess the skill of global climate models and of proxy-based reconstructions, even at small spatial scales. However, as the focus shifts towards higher frequency variability, decadal or multidecadal, the need for larger simulation ensembles becomes more evident. Nevertheless,the comparison at these time scales may expose some lines of research on the origin of multidecadal regional climate variability.

  5. Scale and modeling issues in water resources planning

    USGS Publications Warehouse

    Lins, H.F.; Wolock, D.M.; McCabe, G.J.

    1997-01-01

    Resource planners and managers interested in utilizing climate model output as part of their operational activities immediately confront the dilemma of scale discordance. Their functional responsibilities cover relatively small geographical areas and necessarily require data of relatively high spatial resolution. Climate models cover a large geographical, i.e. global, domain and produce data at comparatively low spatial resolution. Although the scale differences between model output and planning input are large, several techniques have been developed for disaggregating climate model output to a scale appropriate for use in water resource planning and management applications. With techniques in hand to reduce the limitations imposed by scale discordance, water resource professionals must now confront a more fundamental constraint on the use of climate models-the inability to produce accurate representations and forecasts of regional climate. Given the current capabilities of climate models, and the likelihood that the uncertainty associated with long-term climate model forecasts will remain high for some years to come, the water resources planning community may find it impractical to utilize such forecasts operationally.

  6. Paleoclimate diagnostics: consistent large-scale temperature responses in warm and cold climates

    NASA Astrophysics Data System (ADS)

    Izumi, Kenji; Bartlein, Patrick; Harrison, Sandy

    2015-04-01

    The CMIP5 model simulations of the large-scale temperature responses to increased raditative forcing include enhanced land-ocean contrast, stronger response at higher latitudes than in the tropics, and differential responses in warm and cool season climates to uniform forcing. Here we show that these patterns are also characteristic of CMIP5 model simulations of past climates. The differences in the responses over land as opposed to over the ocean, between high and low latitudes, and between summer and winter are remarkably consistent (proportional and nearly linear) across simulations of both cold and warm climates. Similar patterns also appear in historical observations and paleoclimatic reconstructions, implying that such responses are characteristic features of the climate system and not simple model artifacts, thereby increasing our confidence in the ability of climate models to correctly simulate different climatic states. We also show the possibility that a small set of common mechanisms control these large-scale responses of the climate system across multiple states.

  7. Large-scale Meteorological Patterns Associated with Extreme Precipitation Events over Portland, OR

    NASA Astrophysics Data System (ADS)

    Aragon, C.; Loikith, P. C.; Lintner, B. R.; Pike, M.

    2017-12-01

    Extreme precipitation events can have profound impacts on human life and infrastructure, with broad implications across a range of stakeholders. Changes to extreme precipitation events are a projected outcome of climate change that warrants further study, especially at regional- to local-scales. While global climate models are generally capable of simulating mean climate at global-to-regional scales with reasonable skill, resiliency and adaptation decisions are made at local-scales where most state-of-the-art climate models are limited by coarse resolution. Characterization of large-scale meteorological patterns associated with extreme precipitation events at local-scales can provide climatic information without this scale limitation, thus facilitating stakeholder decision-making. This research will use synoptic climatology as a tool by which to characterize the key large-scale meteorological patterns associated with extreme precipitation events in the Portland, Oregon metro region. Composite analysis of meteorological patterns associated with extreme precipitation days, and associated watershed-specific flooding, is employed to enhance understanding of the climatic drivers behind such events. The self-organizing maps approach is then used to characterize the within-composite variability of the large-scale meteorological patterns associated with extreme precipitation events, allowing us to better understand the different types of meteorological conditions that lead to high-impact precipitation events and associated hydrologic impacts. A more comprehensive understanding of the meteorological drivers of extremes will aid in evaluation of the ability of climate models to capture key patterns associated with extreme precipitation over Portland and to better interpret projections of future climate at impact-relevant scales.

  8. Cross - Scale Intercomparison of Climate Change Impacts Simulated by Regional and Global Hydrological Models in Eleven Large River Basins

    NASA Technical Reports Server (NTRS)

    Hattermann, F. F.; Krysanova, V.; Gosling, S. N.; Dankers, R.; Daggupati, P.; Donnelly, C.; Florke, M.; Huang, S.; Motovilov, Y.; Buda, S.; hide

    2017-01-01

    Ideally, the results from models operating at different scales should agree in trend direction and magnitude of impacts under climate change. However, this implies that the sensitivity to climate variability and climate change is comparable for impact models designed for either scale. In this study, we compare hydrological changes simulated by 9 global and 9 regional hydrological models (HM) for 11 large river basins in all continents under reference and scenario conditions. The foci are on model validation runs, sensitivity of annual discharge to climate variability in the reference period, and sensitivity of the long-term average monthly seasonal dynamics to climate change. One major result is that the global models, mostly not calibrated against observations, often show a considerable bias in mean monthly discharge, whereas regional models show a better reproduction of reference conditions. However, the sensitivity of the two HM ensembles to climate variability is in general similar. The simulated climate change impacts in terms of long-term average monthly dynamics evaluated for HM ensemble medians and spreads show that the medians are to a certain extent comparable in some cases, but have distinct differences in other cases, and the spreads related to global models are mostly notably larger. Summarizing, this implies that global HMs are useful tools when looking at large-scale impacts of climate change and variability. Whenever impacts for a specific river basin or region are of interest, e.g. for complex water management applications, the regional-scale models calibrated and validated against observed discharge should be used.

  9. Effects of Ensemble Configuration on Estimates of Regional Climate Uncertainties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goldenson, N.; Mauger, G.; Leung, L. R.

    Internal variability in the climate system can contribute substantial uncertainty in climate projections, particularly at regional scales. Internal variability can be quantified using large ensembles of simulations that are identical but for perturbed initial conditions. Here we compare methods for quantifying internal variability. Our study region spans the west coast of North America, which is strongly influenced by El Niño and other large-scale dynamics through their contribution to large-scale internal variability. Using a statistical framework to simultaneously account for multiple sources of uncertainty, we find that internal variability can be quantified consistently using a large ensemble or an ensemble ofmore » opportunity that includes small ensembles from multiple models and climate scenarios. The latter also produce estimates of uncertainty due to model differences. We conclude that projection uncertainties are best assessed using small single-model ensembles from as many model-scenario pairings as computationally feasible, which has implications for ensemble design in large modeling efforts.« less

  10. Association of parameter, software, and hardware variation with large-scale behavior across 57,000 climate models

    PubMed Central

    Knight, Christopher G.; Knight, Sylvia H. E.; Massey, Neil; Aina, Tolu; Christensen, Carl; Frame, Dave J.; Kettleborough, Jamie A.; Martin, Andrew; Pascoe, Stephen; Sanderson, Ben; Stainforth, David A.; Allen, Myles R.

    2007-01-01

    In complex spatial models, as used to predict the climate response to greenhouse gas emissions, parameter variation within plausible bounds has major effects on model behavior of interest. Here, we present an unprecedentedly large ensemble of >57,000 climate model runs in which 10 parameters, initial conditions, hardware, and software used to run the model all have been varied. We relate information about the model runs to large-scale model behavior (equilibrium sensitivity of global mean temperature to a doubling of carbon dioxide). We demonstrate that effects of parameter, hardware, and software variation are detectable, complex, and interacting. However, we find most of the effects of parameter variation are caused by a small subset of parameters. Notably, the entrainment coefficient in clouds is associated with 30% of the variation seen in climate sensitivity, although both low and high values can give high climate sensitivity. We demonstrate that the effect of hardware and software is small relative to the effect of parameter variation and, over the wide range of systems tested, may be treated as equivalent to that caused by changes in initial conditions. We discuss the significance of these results in relation to the design and interpretation of climate modeling experiments and large-scale modeling more generally. PMID:17640921

  11. Simulating the impact of the large-scale circulation on the 2-m temperature and precipitation climatology

    NASA Astrophysics Data System (ADS)

    Bowden, Jared H.; Nolte, Christopher G.; Otte, Tanya L.

    2013-04-01

    The impact of the simulated large-scale atmospheric circulation on the regional climate is examined using the Weather Research and Forecasting (WRF) model as a regional climate model. The purpose is to understand the potential need for interior grid nudging for dynamical downscaling of global climate model (GCM) output for air quality applications under a changing climate. In this study we downscale the NCEP-Department of Energy Atmospheric Model Intercomparison Project (AMIP-II) Reanalysis using three continuous 20-year WRF simulations: one simulation without interior grid nudging and two using different interior grid nudging methods. The biases in 2-m temperature and precipitation for the simulation without interior grid nudging are unreasonably large with respect to the North American Regional Reanalysis (NARR) over the eastern half of the contiguous United States (CONUS) during the summer when air quality concerns are most relevant. This study examines how these differences arise from errors in predicting the large-scale atmospheric circulation. It is demonstrated that the Bermuda high, which strongly influences the regional climate for much of the eastern half of the CONUS during the summer, is poorly simulated without interior grid nudging. In particular, two summers when the Bermuda high was west (1993) and east (2003) of its climatological position are chosen to illustrate problems in the large-scale atmospheric circulation anomalies. For both summers, WRF without interior grid nudging fails to simulate the placement of the upper-level anticyclonic (1993) and cyclonic (2003) circulation anomalies. The displacement of the large-scale circulation impacts the lower atmosphere moisture transport and precipitable water, affecting the convective environment and precipitation. Using interior grid nudging improves the large-scale circulation aloft and moisture transport/precipitable water anomalies, thereby improving the simulated 2-m temperature and precipitation. The results demonstrate that constraining the RCM to the large-scale features in the driving fields improves the overall accuracy of the simulated regional climate, and suggest that in the absence of such a constraint, the RCM will likely misrepresent important large-scale shifts in the atmospheric circulation under a future climate.

  12. Hierarchical stochastic modeling of large river ecosystems and fish growth across spatio-temporal scales and climate models: the Missouri River endangered pallid sturgeon example

    USGS Publications Warehouse

    Wildhaber, Mark L.; Wikle, Christopher K.; Moran, Edward H.; Anderson, Christopher J.; Franz, Kristie J.; Dey, Rima

    2017-01-01

    We present a hierarchical series of spatially decreasing and temporally increasing models to evaluate the uncertainty in the atmosphere – ocean global climate model (AOGCM) and the regional climate model (RCM) relative to the uncertainty in the somatic growth of the endangered pallid sturgeon (Scaphirhynchus albus). For effects on fish populations of riverine ecosystems, cli- mate output simulated by coarse-resolution AOGCMs and RCMs must be downscaled to basins to river hydrology to population response. One needs to transfer the information from these climate simulations down to the individual scale in a way that minimizes extrapolation and can account for spatio-temporal variability in the intervening stages. The goal is a framework to determine whether, given uncertainties in the climate models and the biological response, meaningful inference can still be made. The non-linear downscaling of climate information to the river scale requires that one realistically account for spatial and temporal variability across scale. Our down- scaling procedure includes the use of fixed/calibrated hydrological flow and temperature models coupled with a stochastically parameterized sturgeon bioenergetics model. We show that, although there is a large amount of uncertainty associated with both the climate model output and the fish growth process, one can establish significant differences in fish growth distributions between models, and between future and current climates for a given model.

  13. Simulating the impact of the large-scale circulation on the 2-m temperature and precipitation climatology

    EPA Science Inventory

    The impact of the simulated large-scale atmospheric circulation on the regional climate is examined using the Weather Research and Forecasting (WRF) model as a regional climate model. The purpose is to understand the potential need for interior grid nudging for dynamical downscal...

  14. Cross-scale intercomparison of climate change impacts simulated by regional and global hydrological models in eleven large river basins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hattermann, F. F.; Krysanova, V.; Gosling, S. N.

    Ideally, the results from models operating at different scales should agree in trend direction and magnitude of impacts under climate change. However, this implies that the sensitivity of impact models designed for either scale to climate variability and change is comparable. In this study, we compare hydrological changes simulated by 9 global and 9 regional hydrological models (HM) for 11 large river basins in all continents under reference and scenario conditions. The foci are on model validation runs, sensitivity of annual discharge to climate variability in the reference period, and sensitivity of the long-term average monthly seasonal dynamics to climatemore » change. One major result is that the global models, mostly not calibrated against observations, often show a considerable bias in mean monthly discharge, whereas regional models show a much better reproduction of reference conditions. However, the sensitivity of two HM ensembles to climate variability is in general similar. The simulated climate change impacts in terms of long-term average monthly dynamics evaluated for HM ensemble medians and spreads show that the medians are to a certain extent comparable in some cases with distinct differences in others, and the spreads related to global models are mostly notably larger. Summarizing, this implies that global HMs are useful tools when looking at large-scale impacts of climate change and variability, but whenever impacts for a specific river basin or region are of interest, e.g. for complex water management applications, the regional-scale models validated against observed discharge should be used.« less

  15. Regional modeling of large wildfires under current and potential future climates in Colorado and Wyoming, USA

    USGS Publications Warehouse

    West, Amanda; Kumar, Sunil; Jarnevich, Catherine S.

    2016-01-01

    Regional analysis of large wildfire potential given climate change scenarios is crucial to understanding areas most at risk in the future, yet wildfire models are not often developed and tested at this spatial scale. We fit three historical climate suitability models for large wildfires (i.e. ≥ 400 ha) in Colorado andWyoming using topography and decadal climate averages corresponding to wildfire occurrence at the same temporal scale. The historical models classified points of known large wildfire occurrence with high accuracies. Using a novel approach in wildfire modeling, we applied the historical models to independent climate and wildfire datasets, and the resulting sensitivities were 0.75, 0.81, and 0.83 for Maxent, Generalized Linear, and Multivariate Adaptive Regression Splines, respectively. We projected the historic models into future climate space using data from 15 global circulation models and two representative concentration pathway scenarios. Maps from these geospatial analyses can be used to evaluate the changing spatial distribution of climate suitability of large wildfires in these states. April relative humidity was the most important covariate in all models, providing insight to the climate space of large wildfires in this region. These methods incorporate monthly and seasonal climate averages at a spatial resolution relevant to land management (i.e. 1 km2) and provide a tool that can be modified for other regions of North America, or adapted for other parts of the world.

  16. Improving our fundamental understanding of the role of aerosol-cloud interactions in the climate system.

    PubMed

    Seinfeld, John H; Bretherton, Christopher; Carslaw, Kenneth S; Coe, Hugh; DeMott, Paul J; Dunlea, Edward J; Feingold, Graham; Ghan, Steven; Guenther, Alex B; Kahn, Ralph; Kraucunas, Ian; Kreidenweis, Sonia M; Molina, Mario J; Nenes, Athanasios; Penner, Joyce E; Prather, Kimberly A; Ramanathan, V; Ramaswamy, Venkatachalam; Rasch, Philip J; Ravishankara, A R; Rosenfeld, Daniel; Stephens, Graeme; Wood, Robert

    2016-05-24

    The effect of an increase in atmospheric aerosol concentrations on the distribution and radiative properties of Earth's clouds is the most uncertain component of the overall global radiative forcing from preindustrial time. General circulation models (GCMs) are the tool for predicting future climate, but the treatment of aerosols, clouds, and aerosol-cloud radiative effects carries large uncertainties that directly affect GCM predictions, such as climate sensitivity. Predictions are hampered by the large range of scales of interaction between various components that need to be captured. Observation systems (remote sensing, in situ) are increasingly being used to constrain predictions, but significant challenges exist, to some extent because of the large range of scales and the fact that the various measuring systems tend to address different scales. Fine-scale models represent clouds, aerosols, and aerosol-cloud interactions with high fidelity but do not include interactions with the larger scale and are therefore limited from a climatic point of view. We suggest strategies for improving estimates of aerosol-cloud relationships in climate models, for new remote sensing and in situ measurements, and for quantifying and reducing model uncertainty.

  17. Improving Our Fundamental Understanding of the Role of Aerosol Cloud Interactions in the Climate System

    NASA Technical Reports Server (NTRS)

    Seinfeld, John H.; Bretherton, Christopher; Carslaw, Kenneth S.; Coe, Hugh; DeMott, Paul J.; Dunlea, Edward J.; Feingold, Graham; Ghan, Steven; Guenther, Alex B.; Kahn, Ralph; hide

    2016-01-01

    The effect of an increase in atmospheric aerosol concentrations on the distribution and radiative properties of Earth's clouds is the most uncertain component of the overall global radiative forcing from preindustrial time. General circulation models (GCMs) are the tool for predicting future climate, but the treatment of aerosols, clouds, and aerosol-cloud radiative effects carries large uncertainties that directly affect GCM predictions, such as climate sensitivity. Predictions are hampered by the large range of scales of interaction between various components that need to be captured. Observation systems (remote sensing, in situ) are increasingly being used to constrain predictions, but significant challenges exist, to some extent because of the large range of scales and the fact that the various measuring systems tend to address different scales. Fine-scale models represent clouds, aerosols, and aerosol-cloud interactions with high fidelity but do not include interactions with the larger scale and are therefore limited from a climatic point of view. We suggest strategies for improving estimates of aerosol-cloud relationships in climate models, for new remote sensing and in situ measurements, and for quantifying and reducing model uncertainty.

  18. Improving our fundamental understanding of the role of aerosol-cloud interactions in the climate system

    DOE PAGES

    Seinfeld, John H.; Bretherton, Christopher; Carslaw, Kenneth S.; ...

    2016-05-24

    The effect of an increase in atmospheric aerosol concentrations on the distribution and radiative properties of Earth’s clouds is the most uncertain component of the overall global radiative forcing from pre-industrial time. General Circulation Models (GCMs) are the tool for predicting future climate, but the treatment of aerosols, clouds, and aerosol-cloud radiative effects carries large uncertainties that directly affect GCM predictions, such as climate sensitivity. Predictions are hampered by the large range of scales of interaction between various components that need to be captured. Observation systems (remote sensing, in situ) are increasingly being used to constrain predictions but significant challengesmore » exist, to some extent because of the large range of scales and the fact that the various measuring systems tend to address different scales. Fine-scale models represent clouds, aerosols, and aerosol-cloud interactions with high fidelity but do not include interactions with the larger scale and are therefore limited from a climatic point of view. Lastly, we suggest strategies for improving estimates of aerosol-cloud relationships in climate models, for new remote sensing and in situ measurements, and for quantifying and reducing model uncertainty.« less

  19. Improving our fundamental understanding of the role of aerosol−cloud interactions in the climate system

    PubMed Central

    Seinfeld, John H.; Bretherton, Christopher; Carslaw, Kenneth S.; Coe, Hugh; DeMott, Paul J.; Dunlea, Edward J.; Feingold, Graham; Ghan, Steven; Guenther, Alex B.; Kraucunas, Ian; Molina, Mario J.; Nenes, Athanasios; Penner, Joyce E.; Prather, Kimberly A.; Ramanathan, V.; Ramaswamy, Venkatachalam; Rasch, Philip J.; Ravishankara, A. R.; Rosenfeld, Daniel; Stephens, Graeme; Wood, Robert

    2016-01-01

    The effect of an increase in atmospheric aerosol concentrations on the distribution and radiative properties of Earth’s clouds is the most uncertain component of the overall global radiative forcing from preindustrial time. General circulation models (GCMs) are the tool for predicting future climate, but the treatment of aerosols, clouds, and aerosol−cloud radiative effects carries large uncertainties that directly affect GCM predictions, such as climate sensitivity. Predictions are hampered by the large range of scales of interaction between various components that need to be captured. Observation systems (remote sensing, in situ) are increasingly being used to constrain predictions, but significant challenges exist, to some extent because of the large range of scales and the fact that the various measuring systems tend to address different scales. Fine-scale models represent clouds, aerosols, and aerosol−cloud interactions with high fidelity but do not include interactions with the larger scale and are therefore limited from a climatic point of view. We suggest strategies for improving estimates of aerosol−cloud relationships in climate models, for new remote sensing and in situ measurements, and for quantifying and reducing model uncertainty. PMID:27222566

  20. Data-driven Climate Modeling and Prediction

    NASA Astrophysics Data System (ADS)

    Kondrashov, D. A.; Chekroun, M.

    2016-12-01

    Global climate models aim to simulate a broad range of spatio-temporal scales of climate variability with state vector having many millions of degrees of freedom. On the other hand, while detailed weather prediction out to a few days requires high numerical resolution, it is fairly clear that a major fraction of large-scale climate variability can be predicted in a much lower-dimensional phase space. Low-dimensional models can simulate and predict this fraction of climate variability, provided they are able to account for linear and nonlinear interactions between the modes representing large scales of climate dynamics, as well as their interactions with a much larger number of modes representing fast and small scales. This presentation will highlight several new applications by Multilayered Stochastic Modeling (MSM) [Kondrashov, Chekroun and Ghil, 2015] framework that has abundantly proven its efficiency in the modeling and real-time forecasting of various climate phenomena. MSM is a data-driven inverse modeling technique that aims to obtain a low-order nonlinear system of prognostic equations driven by stochastic forcing, and estimates both the dynamical operator and the properties of the driving noise from multivariate time series of observations or a high-end model's simulation. MSM leads to a system of stochastic differential equations (SDEs) involving hidden (auxiliary) variables of fast-small scales ranked by layers, which interact with the macroscopic (observed) variables of large-slow scales to model the dynamics of the latter, and thus convey memory effects. New MSM climate applications focus on development of computationally efficient low-order models by using data-adaptive decomposition methods that convey memory effects by time-embedding techniques, such as Multichannel Singular Spectrum Analysis (M-SSA) [Ghil et al. 2002] and recently developed Data-Adaptive Harmonic (DAH) decomposition method [Chekroun and Kondrashov, 2016]. In particular, new results by DAH-MSM modeling and prediction of Arctic Sea Ice, as well as decadal predictions of near-surface Earth temperatures will be presented.

  1. Impact of Spatial Soil and Climate Input Data Aggregation on Regional Yield Simulations

    PubMed Central

    Hoffmann, Holger; Zhao, Gang; Asseng, Senthold; Bindi, Marco; Biernath, Christian; Constantin, Julie; Coucheney, Elsa; Dechow, Rene; Doro, Luca; Eckersten, Henrik; Gaiser, Thomas; Grosz, Balázs; Heinlein, Florian; Kassie, Belay T.; Kersebaum, Kurt-Christian; Klein, Christian; Kuhnert, Matthias; Lewan, Elisabet; Moriondo, Marco; Nendel, Claas; Priesack, Eckart; Raynal, Helene; Roggero, Pier P.; Rötter, Reimund P.; Siebert, Stefan; Specka, Xenia; Tao, Fulu; Teixeira, Edmar; Trombi, Giacomo; Wallach, Daniel; Weihermüller, Lutz; Yeluripati, Jagadeesh; Ewert, Frank

    2016-01-01

    We show the error in water-limited yields simulated by crop models which is associated with spatially aggregated soil and climate input data. Crop simulations at large scales (regional, national, continental) frequently use input data of low resolution. Therefore, climate and soil data are often generated via averaging and sampling by area majority. This may bias simulated yields at large scales, varying largely across models. Thus, we evaluated the error associated with spatially aggregated soil and climate data for 14 crop models. Yields of winter wheat and silage maize were simulated under water-limited production conditions. We calculated this error from crop yields simulated at spatial resolutions from 1 to 100 km for the state of North Rhine-Westphalia, Germany. Most models showed yields biased by <15% when aggregating only soil data. The relative mean absolute error (rMAE) of most models using aggregated soil data was in the range or larger than the inter-annual or inter-model variability in yields. This error increased further when both climate and soil data were aggregated. Distinct error patterns indicate that the rMAE may be estimated from few soil variables. Illustrating the range of these aggregation effects across models, this study is a first step towards an ex-ante assessment of aggregation errors in large-scale simulations. PMID:27055028

  2. Impact of Spatial Soil and Climate Input Data Aggregation on Regional Yield Simulations.

    PubMed

    Hoffmann, Holger; Zhao, Gang; Asseng, Senthold; Bindi, Marco; Biernath, Christian; Constantin, Julie; Coucheney, Elsa; Dechow, Rene; Doro, Luca; Eckersten, Henrik; Gaiser, Thomas; Grosz, Balázs; Heinlein, Florian; Kassie, Belay T; Kersebaum, Kurt-Christian; Klein, Christian; Kuhnert, Matthias; Lewan, Elisabet; Moriondo, Marco; Nendel, Claas; Priesack, Eckart; Raynal, Helene; Roggero, Pier P; Rötter, Reimund P; Siebert, Stefan; Specka, Xenia; Tao, Fulu; Teixeira, Edmar; Trombi, Giacomo; Wallach, Daniel; Weihermüller, Lutz; Yeluripati, Jagadeesh; Ewert, Frank

    2016-01-01

    We show the error in water-limited yields simulated by crop models which is associated with spatially aggregated soil and climate input data. Crop simulations at large scales (regional, national, continental) frequently use input data of low resolution. Therefore, climate and soil data are often generated via averaging and sampling by area majority. This may bias simulated yields at large scales, varying largely across models. Thus, we evaluated the error associated with spatially aggregated soil and climate data for 14 crop models. Yields of winter wheat and silage maize were simulated under water-limited production conditions. We calculated this error from crop yields simulated at spatial resolutions from 1 to 100 km for the state of North Rhine-Westphalia, Germany. Most models showed yields biased by <15% when aggregating only soil data. The relative mean absolute error (rMAE) of most models using aggregated soil data was in the range or larger than the inter-annual or inter-model variability in yields. This error increased further when both climate and soil data were aggregated. Distinct error patterns indicate that the rMAE may be estimated from few soil variables. Illustrating the range of these aggregation effects across models, this study is a first step towards an ex-ante assessment of aggregation errors in large-scale simulations.

  3. Signatures of large-scale and local climates on the demography of white-tailed ptarmigan in Rocky Mountain National Park, Colorado, USA.

    PubMed

    Wang, Guiming; Hobbs, N Thompson; Galbraith, Hector; Giesen, Kenneth M

    2002-09-01

    Global climate change may impact wildlife populations by affecting local weather patterns, which, in turn, can impact a variety of ecological processes. However, it is not clear that local variations in ecological processes can be explained by large-scale patterns of climate. The North Atlantic oscillation (NAO) is a large-scale climate phenomenon that has been shown to influence the population dynamics of some animals. Although effects of the NAO on vertebrate population dynamics have been studied, it remains uncertain whether it broadly predicts the impact of weather on species. We examined the ability of local weather data and the NAO to explain the annual variation in population dynamics of white-tailed ptarmigan ( Lagopus leucurus) in Rocky Mountain National Park, USA. We performed canonical correlation analysis on the demographic subspace of ptarmigan and local-climate subspace defined by the empirical orthogonal function (EOF) using data from 1975 to 1999. We found that two subspaces were significantly correlated on the first canonical variable. The Pearson correlation coefficient of the first EOF values of the demographic and local-climate subspaces was significant. The population density and the first EOF of local-climate subspace influenced the ptarmigan population with 1-year lags in the Gompertz model. However, the NAO index was neither related to the first two EOF of local-climate subspace nor to the first EOF of the demographic subspace of ptarmigan. Moreover, the NAO index was not a significant term in the Gompertz model for the ptarmigan population. Therefore, local climate had stronger signature on the demography of ptarmigan than did a large-scale index, i.e., the NAO index. We conclude that local responses of wildlife populations to changing climate may not be adequately explained by models that project large-scale climatic patterns.

  4. Data-based discharge extrapolation: estimating annual discharge for a partially gauged large river basin from its small sub-basins

    NASA Astrophysics Data System (ADS)

    Gong, L.

    2013-12-01

    Large-scale hydrological models and land surface models are by far the only tools for accessing future water resources in climate change impact studies. Those models estimate discharge with large uncertainties, due to the complex interaction between climate and hydrology, the limited quality and availability of data, as well as model uncertainties. A new purely data-based scale-extrapolation method is proposed, to estimate water resources for a large basin solely from selected small sub-basins, which are typically two-orders-of-magnitude smaller than the large basin. Those small sub-basins contain sufficient information, not only on climate and land surface, but also on hydrological characteristics for the large basin In the Baltic Sea drainage basin, best discharge estimation for the gauged area was achieved with sub-basins that cover 2-4% of the gauged area. There exist multiple sets of sub-basins that resemble the climate and hydrology of the basin equally well. Those multiple sets estimate annual discharge for gauged area consistently well with 5% average error. The scale-extrapolation method is completely data-based; therefore it does not force any modelling error into the prediction. The multiple predictions are expected to bracket the inherent variations and uncertainties of the climate and hydrology of the basin. The method can be applied in both un-gauged basins and un-gauged periods with uncertainty estimation.

  5. Drought forecasting in Luanhe River basin involving climatic indices

    NASA Astrophysics Data System (ADS)

    Ren, Weinan; Wang, Yixuan; Li, Jianzhu; Feng, Ping; Smith, Ronald J.

    2017-11-01

    Drought is regarded as one of the most severe natural disasters globally. This is especially the case in Tianjin City, Northern China, where drought can affect economic development and people's livelihoods. Drought forecasting, the basis of drought management, is an important mitigation strategy. In this paper, we evolve a probabilistic forecasting model, which forecasts transition probabilities from a current Standardized Precipitation Index (SPI) value to a future SPI class, based on conditional distribution of multivariate normal distribution to involve two large-scale climatic indices at the same time, and apply the forecasting model to 26 rain gauges in the Luanhe River basin in North China. The establishment of the model and the derivation of the SPI are based on the hypothesis of aggregated monthly precipitation that is normally distributed. Pearson correlation and Shapiro-Wilk normality tests are used to select appropriate SPI time scale and large-scale climatic indices. Findings indicated that longer-term aggregated monthly precipitation, in general, was more likely to be considered normally distributed and forecasting models should be applied to each gauge, respectively, rather than to the whole basin. Taking Liying Gauge as an example, we illustrate the impact of the SPI time scale and lead time on transition probabilities. Then, the controlled climatic indices of every gauge are selected by Pearson correlation test and the multivariate normality of SPI, corresponding climatic indices for current month and SPI 1, 2, and 3 months later are demonstrated using Shapiro-Wilk normality test. Subsequently, we illustrate the impact of large-scale oceanic-atmospheric circulation patterns on transition probabilities. Finally, we use a score method to evaluate and compare the performance of the three forecasting models and compare them with two traditional models which forecast transition probabilities from a current to a future SPI class. The results show that the three proposed models outperform the two traditional models and involving large-scale climatic indices can improve the forecasting accuracy.

  6. How uncertain are climate model projections of water availability indicators across the Middle East?

    PubMed

    Hemming, Debbie; Buontempo, Carlo; Burke, Eleanor; Collins, Mat; Kaye, Neil

    2010-11-28

    The projection of robust regional climate changes over the next 50 years presents a considerable challenge for the current generation of climate models. Water cycle changes are particularly difficult to model in this area because major uncertainties exist in the representation of processes such as large-scale and convective rainfall and their feedback with surface conditions. We present climate model projections and uncertainties in water availability indicators (precipitation, run-off and drought index) for the 1961-1990 and 2021-2050 periods. Ensembles from two global climate models (GCMs) and one regional climate model (RCM) are used to examine different elements of uncertainty. Although all three ensembles capture the general distribution of observed annual precipitation across the Middle East, the RCM is consistently wetter than observations, especially over the mountainous areas. All future projections show decreasing precipitation (ensemble median between -5 and -25%) in coastal Turkey and parts of Lebanon, Syria and Israel and consistent run-off and drought index changes. The Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4) GCM ensemble exhibits drying across the north of the region, whereas the Met Office Hadley Centre work Quantifying Uncertainties in Model ProjectionsAtmospheric (QUMP-A) GCM and RCM ensembles show slight drying in the north and significant wetting in the south. RCM projections also show greater sensitivity (both wetter and drier) and a wider uncertainty range than QUMP-A. The nature of these uncertainties suggests that both large-scale circulation patterns, which influence region-wide drying/wetting patterns, and regional-scale processes, which affect localized water availability, are important sources of uncertainty in these projections. To reduce large uncertainties in water availability projections, it is suggested that efforts would be well placed to focus on the understanding and modelling of both large-scale processes and their teleconnections with Middle East climate and localized processes involved in orographic precipitation.

  7. Integrated approaches to climate-crop modelling: needs and challenges.

    PubMed

    Betts, Richard A

    2005-11-29

    This paper discusses the need for a more integrated approach to modelling changes in climate and crops, and some of the challenges posed by this. While changes in atmospheric composition are expected to exert an increasing radiative forcing of climate change leading to further warming of global mean temperatures and shifts in precipitation patterns, these are not the only climatic processes which may influence crop production. Changes in the physical characteristics of the land cover may also affect climate; these may arise directly from land use activities and may also result from the large-scale responses of crops to seasonal, interannual and decadal changes in the atmospheric state. Climate models used to drive crop models may, therefore, need to consider changes in the land surface, either as imposed boundary conditions or as feedbacks from an interactive climate-vegetation model. Crops may also respond directly to changes in atmospheric composition, such as the concentrations of carbon dioxide (CO2), ozone (03) and compounds of sulphur and nitrogen, so crop models should consider these processes as well as climate change. Changes in these, and the responses of the crops, may be intimately linked with meteorological processes so crop and climate models should consider synergies between climate and atmospheric chemistry. Some crop responses may occur at scales too small to significantly influence meteorology, so may not need to be included as feedbacks within climate models. However, the volume of data required to drive the appropriate crop models may be very large, especially if short-time-scale variability is important. Implementation of crop models within climate models would minimize the need to transfer large quantities of data between separate modelling systems. It should also be noted that crop responses to climate change may interact with other impacts of climate change, such as hydrological changes. For example, the availability of water for irrigation may be affected by changes in runoff as a direct consequence of climate change, and may also be affected by climate-related changes in demand for water for other uses. It is, therefore, necessary to consider the interactions between the responses of several impacts sectors to climate change. Overall, there is a strong case for a much closer coupling between models of climate, crops and hydrology, but this in itself poses challenges arising from issues of scale and errors in the models. A strategy is proposed whereby the pursuit of a fully coupled climate-chemistry-crop-hydrology model is paralleled by continued use of separate climate and land surface models but with a focus on consistency between the models.

  8. Evaluating the fidelity of CMIP5 models in producing large-scale meteorological patterns over the Northwestern United States

    NASA Astrophysics Data System (ADS)

    Lintner, B. R.; Loikith, P. C.; Pike, M.; Aragon, C.

    2017-12-01

    Climate change information is increasingly required at impact-relevant scales. However, most state-of-the-art climate models are not of sufficiently high spatial resolution to resolve features explicitly at such scales. This challenge is particularly acute in regions of complex topography, such as the Pacific Northwest of the United States. To address this scale mismatch problem, we consider large-scale meteorological patterns (LSMPs), which can be resolved by climate models and associated with the occurrence of local scale climate and climate extremes. In prior work, using self-organizing maps (SOMs), we computed LSMPs over the northwestern United States (NWUS) from daily reanalysis circulation fields and further related these to the occurrence of observed extreme temperatures and precipitation: SOMs were used to group LSMPs into 12 nodes or clusters spanning the continuum of synoptic variability over the regions. Here this observational foundation is utilized as an evaluation target for a suite of global climate models from the Fifth Phase of the Coupled Model Intercomparison Project (CMIP5). Evaluation is performed in two primary ways. First, daily model circulation fields are assigned to one of the 12 reanalysis nodes based on minimization of the mean square error. From this, a bulk model skill score is computed measuring the similarity between the model and reanalysis nodes. Next, SOMs are applied directly to the model output and compared to the nodes obtained from reanalysis. Results reveal that many of the models have LSMPs analogous to the reanalysis, suggesting that the models reasonably capture observed daily synoptic states.

  9. Climate and litter quality differently modulate the effects of soil fauna on litter decomposition across biomes

    PubMed Central

    García-Palacios, Pablo; Maestre, Fernando T.; Kattge, Jens; Wall, Diana H.

    2015-01-01

    Climate and litter quality have been identified as major drivers of litter decomposition at large spatial scales. However, the role played by soil fauna remains largely unknown, despite its importance for litter fragmentation and microbial activity. We synthesized litterbag studies to quantify the effect sizes of soil fauna on litter decomposition rates at the global and biome scales, and to assess how climate, litter quality and soil fauna interact to determine such rates. Soil fauna consistently enhanced litter decomposition at both global and biome scales (average increment ~27%). However, climate and litter quality differently modulated the effects of soil fauna on decomposition rates between biomes, from climate-driven biomes to those where climate effects were mediated by changes in litter quality. Our results advocate for the inclusion of biome-specific soil fauna effects on litter decomposition as a mean to reduce the unexplained variation in large-scale decomposition models. PMID:23763716

  10. Tracing Multi-Scale Climate Change at Low Latitude from Glacier Shrinkage

    NASA Astrophysics Data System (ADS)

    Moelg, T.; Cullen, N. J.; Hardy, D. R.; Kaser, G.

    2009-12-01

    Significant shrinkage of glaciers on top of Africa's highest mountain (Kilimanjaro, 5895 m a.s.l.) has been observed between the late 19th century and the present. Multi-year data from our automatic weather station on the largest remaining slope glacier at 5873 m allow us to force and verify a process-based distributed glacier mass balance model. This generates insights into energy and mass fluxes at the glacier-atmosphere interface, their feedbacks, and how they are linked to atmospheric conditions. By means of numerical atmospheric modeling and global climate model simulations, we explore the linkages of the local climate in Kilimanjaro's summit zone to larger-scale climate dynamics - which suggests a causal connection between Indian Ocean dynamics, mesoscale mountain circulation, and glacier mass balance. Based on this knowledge, the verified mass balance model is used for backward modeling of the steady-state glacier extent observed in the 19th century, which yields the characteristics of local climate change between that time and the present (30-45% less precipitation, 0.1-0.3 hPa less water vapor pressure, 2-4 percentage units less cloud cover at present). Our multi-scale approach provides an important contribution, from a cryospheric viewpoint, to the understanding of how large-scale climate change propagates to the tropical free troposphere. Ongoing work in this context targets the millennium-scale relation between large-scale climate and glacier behavior (by downscaling precipitation), and the possible effects of regional anthropogenic activities (land use change) on glacier mass balance.

  11. Evidence for Large Decadal Variability in the Tropical Mean Radiative Energy Budget

    NASA Technical Reports Server (NTRS)

    Wielicki, Bruce A.; Wong, Takmeng; Allan, Richard; Slingo, Anthony; Kiehl, Jeffrey T.; Soden, Brian J.; Gordon, C. T.; Miller, Alvin J.; Yang, Shi-Keng; Randall, David R.; hide

    2001-01-01

    It is widely assumed that variations in the radiative energy budget at large time and space scales are very small. We present new evidence from a compilation of over two decades of accurate satellite data that the top-of-atmosphere (TOA) tropical radiative energy budget is much more dynamic and variable than previously thought. We demonstrate that the radiation budget changes are caused by changes In tropical mean cloudiness. The results of several current climate model simulations fall to predict this large observed variation In tropical energy budget. The missing variability in the models highlights the critical need to Improve cloud modeling in the tropics to support Improved prediction of tropical climate on Inter-annual and decadal time scales. We believe that these data are the first rigorous demonstration of decadal time scale changes In the Earth's tropical cloudiness, and that they represent a new and necessary test of climate models.

  12. Large-scale, high-performance and cloud-enabled multi-model analytics experiments in the context of the Earth System Grid Federation

    NASA Astrophysics Data System (ADS)

    Fiore, S.; Płóciennik, M.; Doutriaux, C.; Blanquer, I.; Barbera, R.; Williams, D. N.; Anantharaj, V. G.; Evans, B. J. K.; Salomoni, D.; Aloisio, G.

    2017-12-01

    The increased models resolution in the development of comprehensive Earth System Models is rapidly leading to very large climate simulations output that pose significant scientific data management challenges in terms of data sharing, processing, analysis, visualization, preservation, curation, and archiving.Large scale global experiments for Climate Model Intercomparison Projects (CMIP) have led to the development of the Earth System Grid Federation (ESGF), a federated data infrastructure which has been serving the CMIP5 experiment, providing access to 2PB of data for the IPCC Assessment Reports. In such a context, running a multi-model data analysis experiment is very challenging, as it requires the availability of a large amount of data related to multiple climate models simulations and scientific data management tools for large-scale data analytics. To address these challenges, a case study on climate models intercomparison data analysis has been defined and implemented in the context of the EU H2020 INDIGO-DataCloud project. The case study has been tested and validated on CMIP5 datasets, in the context of a large scale, international testbed involving several ESGF sites (LLNL, ORNL and CMCC), one orchestrator site (PSNC) and one more hosting INDIGO PaaS services (UPV). Additional ESGF sites, such as NCI (Australia) and a couple more in Europe, are also joining the testbed. The added value of the proposed solution is summarized in the following: it implements a server-side paradigm which limits data movement; it relies on a High-Performance Data Analytics (HPDA) stack to address performance; it exploits the INDIGO PaaS layer to support flexible, dynamic and automated deployment of software components; it provides user-friendly web access based on the INDIGO Future Gateway; and finally it integrates, complements and extends the support currently available through ESGF. Overall it provides a new "tool" for climate scientists to run multi-model experiments. At the time this contribution is being written, the proposed testbed represents the first implementation of a distributed large-scale, multi-model experiment in the ESGF/CMIP context, joining together server-side approaches for scientific data analysis, HPDA frameworks, end-to-end workflow management, and cloud computing.

  13. Integrated approaches to climate–crop modelling: needs and challenges

    PubMed Central

    A. Betts, Richard

    2005-01-01

    This paper discusses the need for a more integrated approach to modelling changes in climate and crops, and some of the challenges posed by this. While changes in atmospheric composition are expected to exert an increasing radiative forcing of climate change leading to further warming of global mean temperatures and shifts in precipitation patterns, these are not the only climatic processes which may influence crop production. Changes in the physical characteristics of the land cover may also affect climate; these may arise directly from land use activities and may also result from the large-scale responses of crops to seasonal, interannual and decadal changes in the atmospheric state. Climate models used to drive crop models may, therefore, need to consider changes in the land surface, either as imposed boundary conditions or as feedbacks from an interactive climate–vegetation model. Crops may also respond directly to changes in atmospheric composition, such as the concentrations of carbon dioxide (CO2), ozone (O3) and compounds of sulphur and nitrogen, so crop models should consider these processes as well as climate change. Changes in these, and the responses of the crops, may be intimately linked with meteorological processes so crop and climate models should consider synergies between climate and atmospheric chemistry. Some crop responses may occur at scales too small to significantly influence meteorology, so may not need to be included as feedbacks within climate models. However, the volume of data required to drive the appropriate crop models may be very large, especially if short-time-scale variability is important. Implementation of crop models within climate models would minimize the need to transfer large quantities of data between separate modelling systems. It should also be noted that crop responses to climate change may interact with other impacts of climate change, such as hydrological changes. For example, the availability of water for irrigation may be affected by changes in runoff as a direct consequence of climate change, and may also be affected by climate-related changes in demand for water for other uses. It is, therefore, necessary to consider the interactions between the responses of several impacts sectors to climate change. Overall, there is a strong case for a much closer coupling between models of climate, crops and hydrology, but this in itself poses challenges arising from issues of scale and errors in the models. A strategy is proposed whereby the pursuit of a fully coupled climate–chemistry–crop–hydrology model is paralleled by continued use of separate climate and land surface models but with a focus on consistency between the models. PMID:16433093

  14. An increase in aerosol burden due to the land-sea warming contrast

    NASA Astrophysics Data System (ADS)

    Hassan, T.; Allen, R.; Randles, C. A.

    2017-12-01

    Climate models simulate an increase in most aerosol species in response to warming, particularly over the tropics and Northern Hemisphere midlatitudes. This increase in aerosol burden is related to a decrease in wet removal, primarily due to reduced large-scale precipitation. Here, we show that the increase in aerosol burden, and the decrease in large-scale precipitation, is related to a robust climate change phenomenon—the land/sea warming contrast. Idealized simulations with two state of the art climate models, the National Center for Atmospheric Research Community Atmosphere Model version 5 (NCAR CAM5) and the Geophysical Fluid Dynamics Laboratory Atmospheric Model 3 (GFDL AM3), show that muting the land-sea warming contrast negates the increase in aerosol burden under warming. This is related to smaller decreases in near-surface relative humidity over land, and in turn, smaller decreases in large-scale precipitation over land—especially in the NH midlatitudes. Furthermore, additional idealized simulations with an enhanced land/sea warming contrast lead to the opposite result—larger decreases in relative humidity over land, larger decreases in large-scale precipitation, and larger increases in aerosol burden. Our results, which relate the increase in aerosol burden to the robust climate projection of enhanced land warming, adds confidence that a warmer world will be associated with a larger aerosol burden.

  15. Linking an ecosystem model and a landscape model to study forest species response to climate warming

    Treesearch

    Hong S. He; David J. Mladenoff; Thomas R. Crow

    1999-01-01

    No single model can address forest change from single tree to regional scales. We discuss a framework linking an ecosystem process model {LINKAGES) with a spatial landscape model (LANDIS) to examine forest species responses to climate warming for a large, heterogeneous landscape in northern Wisconsin, USA. Individual species response at the ecosystem scale was...

  16. Attribution of Large-Scale Climate Patterns to Seasonal Peak-Flow and Prospects for Prediction Globally

    NASA Astrophysics Data System (ADS)

    Lee, Donghoon; Ward, Philip; Block, Paul

    2018-02-01

    Flood-related fatalities and impacts on society surpass those from all other natural disasters globally. While the inclusion of large-scale climate drivers in streamflow (or high-flow) prediction has been widely studied, an explicit link to global-scale long-lead prediction is lacking, which can lead to an improved understanding of potential flood propensity. Here we attribute seasonal peak-flow to large-scale climate patterns, including the El Niño Southern Oscillation (ENSO), Pacific Decadal Oscillation (PDO), North Atlantic Oscillation (NAO), and Atlantic Multidecadal Oscillation (AMO), using streamflow station observations and simulations from PCR-GLOBWB, a global-scale hydrologic model. Statistically significantly correlated climate patterns and streamflow autocorrelation are subsequently applied as predictors to build a global-scale season-ahead prediction model, with prediction performance evaluated by the mean squared error skill score (MSESS) and the categorical Gerrity skill score (GSS). Globally, fair-to-good prediction skill (20% ≤ MSESS and 0.2 ≤ GSS) is evident for a number of locations (28% of stations and 29% of land area), most notably in data-poor regions (e.g., West and Central Africa). The persistence of such relevant climate patterns can improve understanding of the propensity for floods at the seasonal scale. The prediction approach developed here lays the groundwork for further improving local-scale seasonal peak-flow prediction by identifying relevant global-scale climate patterns. This is especially attractive for regions with limited observations and or little capacity to develop flood early warning systems.

  17. An imperative need for global change research in tropical forests.

    PubMed

    Zhou, Xuhui; Fu, Yuling; Zhou, Lingyan; Li, Bo; Luo, Yiqi

    2013-09-01

    Tropical forests play a crucial role in regulating regional and global climate dynamics, and model projections suggest that rapid climate change may result in forest dieback or savannization. However, these predictions are largely based on results from leaf-level studies. How tropical forests respond and feedback to climate change is largely unknown at the ecosystem level. Several complementary approaches have been used to evaluate the effects of climate change on tropical forests, but the results are conflicting, largely due to confounding effects of multiple factors. Although altered precipitation and nitrogen deposition experiments have been conducted in tropical forests, large-scale warming and elevated carbon dioxide (CO2) manipulations are completely lacking, leaving many hypotheses and model predictions untested. Ecosystem-scale experiments to manipulate temperature and CO2 concentration individually or in combination are thus urgently needed to examine their main and interactive effects on tropical forests. Such experiments will provide indispensable data and help gain essential knowledge on biogeochemical, hydrological and biophysical responses and feedbacks of tropical forests to climate change. These datasets can also inform regional and global models for predicting future states of tropical forests and climate systems. The success of such large-scale experiments in natural tropical forests will require an international framework to coordinate collaboration so as to meet the challenges in cost, technological infrastructure and scientific endeavor.

  18. The global gridded crop model intercomparison: Data and modeling protocols for Phase 1 (v1.0)

    DOE PAGES

    Elliott, J.; Müller, C.; Deryng, D.; ...

    2015-02-11

    We present protocols and input data for Phase 1 of the Global Gridded Crop Model Intercomparison, a project of the Agricultural Model Intercomparison and Improvement Project (AgMIP). The project consist of global simulations of yields, phenologies, and many land-surface fluxes using 12–15 modeling groups for many crops, climate forcing data sets, and scenarios over the historical period from 1948 to 2012. The primary outcomes of the project include (1) a detailed comparison of the major differences and similarities among global models commonly used for large-scale climate impact assessment, (2) an evaluation of model and ensemble hindcasting skill, (3) quantification ofmore » key uncertainties from climate input data, model choice, and other sources, and (4) a multi-model analysis of the agricultural impacts of large-scale climate extremes from the historical record.« less

  19. From catchment scale hydrologic processes to numerical models and robust predictions of climate change impacts at regional scales

    NASA Astrophysics Data System (ADS)

    Wagener, T.

    2017-12-01

    Current societal problems and questions demand that we increasingly build hydrologic models for regional or even continental scale assessment of global change impacts. Such models offer new opportunities for scientific advancement, for example by enabling comparative hydrology or connectivity studies, and for improved support of water management decision, since we might better understand regional impacts on water resources from large scale phenomena such as droughts. On the other hand, we are faced with epistemic uncertainties when we move up in scale. The term epistemic uncertainty describes those uncertainties that are not well determined by historical observations. This lack of determination can be because the future is not like the past (e.g. due to climate change), because the historical data is unreliable (e.g. because it is imperfectly recorded from proxies or missing), or because it is scarce (either because measurements are not available at the right scale or there is no observation network available at all). In this talk I will explore: (1) how we might build a bridge between what we have learned about catchment scale processes and hydrologic model development and evaluation at larger scales. (2) How we can understand the impact of epistemic uncertainty in large scale hydrologic models. And (3) how we might utilize large scale hydrologic predictions to understand climate change impacts, e.g. on infectious disease risk.

  20. Large-Scale Ocean Circulation-Cloud Interactions Reduce the Pace of Transient Climate Change

    NASA Technical Reports Server (NTRS)

    Trossman, D. S.; Palter, J. B.; Merlis, T. M.; Huang, Y.; Xia, Y.

    2016-01-01

    Changes to the large scale oceanic circulation are thought to slow the pace of transient climate change due, in part, to their influence on radiative feedbacks. Here we evaluate the interactions between CO2-forced perturbations to the large-scale ocean circulation and the radiative cloud feedback in a climate model. Both the change of the ocean circulation and the radiative cloud feedback strongly influence the magnitude and spatial pattern of surface and ocean warming. Changes in the ocean circulation reduce the amount of transient global warming caused by the radiative cloud feedback by helping to maintain low cloud coverage in the face of global warming. The radiative cloud feedback is key in affecting atmospheric meridional heat transport changes and is the dominant radiative feedback mechanism that responds to ocean circulation change. Uncertainty in the simulated ocean circulation changes due to CO2 forcing may contribute a large share of the spread in the radiative cloud feedback among climate models.

  1. A large-scale integrated karst-vegetation recharge model to understand the impact of climate and land cover change

    NASA Astrophysics Data System (ADS)

    Sarrazin, Fanny; Hartmann, Andreas; Pianosi, Francesca; Wagener, Thorsten

    2017-04-01

    Karst aquifers are an important source of drinking water in many regions of the world, but their resources are likely to be affected by changes in climate and land cover. Karst areas are highly permeable and produce large amounts of groundwater recharge, while surface runoff is typically negligible. As a result, recharge in karst systems may be particularly sensitive to environmental changes compared to other less permeable systems. However, current large-scale hydrological models poorly represent karst specificities. They tend to provide an erroneous water balance and to underestimate groundwater recharge over karst areas. A better understanding of karst hydrology and estimating karst groundwater resources at a large-scale is therefore needed for guiding water management in a changing world. The first objective of the present study is to introduce explicit vegetation processes into a previously developed karst recharge model (VarKarst) to better estimate evapotranspiration losses depending on the land cover characteristics. The novelty of the approach for large-scale modelling lies in the assessment of model output uncertainty, and parameter sensitivity to avoid over-parameterisation. We find that the model so modified is able to produce simulations consistent with observations of evapotranspiration and soil moisture at Fluxnet sites located in carbonate rock areas. Secondly, we aim to determine the model sensitivities to climate and land cover characteristics, and to assess the relative influence of changes in climate and land cover on aquifer recharge. We perform virtual experiments using synthetic climate inputs, and varying the value of land cover parameters. In this way, we can control for variations in climate input characteristics (e.g. precipitation intensity, precipitation frequency) and vegetation characteristics (e.g. canopy water storage capacity, rooting depth), and we can isolate the effect that each of these quantities has on recharge. Our results show that these factors are strongly interacting and are generating non-linear responses in recharge.

  2. Modeling distributional changes in winter precipitation of Canada using Bayesian spatiotemporal quantile regression subjected to different teleconnections

    NASA Astrophysics Data System (ADS)

    Tan, Xuezhi; Gan, Thian Yew; Chen, Shu; Liu, Bingjun

    2018-05-01

    Climate change and large-scale climate patterns may result in changes in probability distributions of climate variables that are associated with changes in the mean and variability, and severity of extreme climate events. In this paper, we applied a flexible framework based on the Bayesian spatiotemporal quantile (BSTQR) model to identify climate changes at different quantile levels and their teleconnections to large-scale climate patterns such as El Niño-Southern Oscillation (ENSO), Pacific Decadal Oscillation (PDO), North Atlantic Oscillation (NAO) and Pacific-North American (PNA). Using the BSTQR model with time (year) as a covariate, we estimated changes in Canadian winter precipitation and their uncertainties at different quantile levels. There were some stations in eastern Canada showing distributional changes in winter precipitation such as an increase in low quantiles but a decrease in high quantiles. Because quantile functions in the BSTQR model vary with space and time and assimilate spatiotemporal precipitation data, the BSTQR model produced much spatially smoother and less uncertain quantile changes than the classic regression without considering spatiotemporal correlations. Using the BSTQR model with five teleconnection indices (i.e., SOI, PDO, PNA, NP and NAO) as covariates, we investigated effects of large-scale climate patterns on Canadian winter precipitation at different quantile levels. Winter precipitation responses to these five teleconnections were found to occur differently at different quantile levels. Effects of five teleconnections on Canadian winter precipitation were stronger at low and high than at medium quantile levels.

  3. On the relationship between large-scale climate modes and regional synoptic patterns that drive Victorian rainfall

    NASA Astrophysics Data System (ADS)

    Verdon-Kidd, D.; Kiem, A. S.

    2008-10-01

    In this paper regional (synoptic) and large-scale climate drivers of rainfall are investigated for Victoria, Australia. A non-linear classification methodology known as self-organizing maps (SOM) is used to identify 20 key regional synoptic patterns, which are shown to capture a range of significant synoptic features known to influence the climate of the region. Rainfall distributions are assigned to each of the 20 patterns for nine rainfall stations located across Victoria, resulting in a clear distinction between wet and dry synoptic types at each station. The influence of large-scale climate modes on the frequency and timing of the regional synoptic patterns is also investigated. This analysis revealed that phase changes in the El Niño Southern Oscillation (ENSO), the Southern Annular Mode (SAM) and/or Indian Ocean Dipole (IOD) are associated with a shift in the relative frequency of wet and dry synoptic types. Importantly, these results highlight the potential to utilise the link between the regional synoptic patterns derived in this study and large-scale climate modes to improve rainfall forecasting for Victoria, both in the short- (i.e. seasonal) and long-term (i.e. decadal/multi-decadal scale). In addition, the regional and large-scale climate drivers identified in this study provide a benchmark by which the performance of Global Climate Models (GCMs) may be assessed.

  4. The Influence of the Green River Lake System on the Local Climate During the Early Eocene Period

    NASA Astrophysics Data System (ADS)

    Elguindi, N.; Thrasher, B.; Sloan, L. C.

    2006-12-01

    Several modeling efforts have attempted to reproduce the climate of the early Eocene North America. However when compared to proxy data, General Circulation Models (GCMs) tend to produce a large-scale cold-bias. Although higher resolution Regional Climate Models (RCMs) that are able to resolve many of the sub-GCM scale forcings improve this cold bias, RCMs are still unable to reproduce the warm climate of the Eocene. From geologic data, we know that the greater Green River and the Uinta basins were intermontane basins with a large lake system during portions of the Eocene. We speculate that the lack of presence of these lakes in previous modeling studies may explain part of the persistent cold-bias of GCMs and RCMs. In this study, we utilize a regional climate model coupled with a 1D-lake model in an attempt to reduce the uncertainties and biases associated with climate simulations over Eocene western North American. Specifically, we include the Green River Lake system in our RCM simulation and compare climates with and without lakes to proxy data.

  5. Ability of an ensemble of regional climate models to reproduce weather regimes over Europe-Atlantic during the period 1961-2000

    NASA Astrophysics Data System (ADS)

    Sanchez-Gomez, Emilia; Somot, S.; Déqué, M.

    2009-10-01

    One of the main concerns in regional climate modeling is to which extent limited-area regional climate models (RCM) reproduce the large-scale atmospheric conditions of their driving general circulation model (GCM). In this work we investigate the ability of a multi-model ensemble of regional climate simulations to reproduce the large-scale weather regimes of the driving conditions. The ensemble consists of a set of 13 RCMs on a European domain, driven at their lateral boundaries by the ERA40 reanalysis for the time period 1961-2000. Two sets of experiments have been completed with horizontal resolutions of 50 and 25 km, respectively. The spectral nudging technique has been applied to one of the models within the ensemble. The RCMs reproduce the weather regimes behavior in terms of composite pattern, mean frequency of occurrence and persistence reasonably well. The models also simulate well the long-term trends and the inter-annual variability of the frequency of occurrence. However, there is a non-negligible spread among the models which is stronger in summer than in winter. This spread is due to two reasons: (1) we are dealing with different models and (2) each RCM produces an internal variability. As far as the day-to-day weather regime history is concerned, the ensemble shows large discrepancies. At daily time scale, the model spread has also a seasonal dependence, being stronger in summer than in winter. Results also show that the spectral nudging technique improves the model performance in reproducing the large-scale of the driving field. In addition, the impact of increasing the number of grid points has been addressed by comparing the 25 and 50 km experiments. We show that the horizontal resolution does not affect significantly the model performance for large-scale circulation.

  6. Climate and litter quality differently modulate the effects of soil fauna on litter decomposition across biomes.

    PubMed

    García-Palacios, Pablo; Maestre, Fernando T; Kattge, Jens; Wall, Diana H

    2013-08-01

    Climate and litter quality have been identified as major drivers of litter decomposition at large spatial scales. However, the role played by soil fauna remains largely unknown, despite its importance for litter fragmentation and microbial activity. We synthesised litterbag studies to quantify the effect sizes of soil fauna on litter decomposition rates at the global and biome scales, and to assess how climate, litter quality and soil fauna interact to determine such rates. Soil fauna consistently enhanced litter decomposition at both global and biome scales (average increment ~ 37%). [corrected]. However, climate and litter quality differently modulated the effects of soil fauna on decomposition rates between biomes, from climate-driven biomes to those where climate effects were mediated by changes in litter quality. Our results advocate for the inclusion of biome-specific soil fauna effects on litter decomposition as a mean to reduce the unexplained variation in large-scale decomposition models. © 2013 John Wiley & Sons Ltd/CNRS.

  7. : “Developing Regional Modeling Techniques Applicable for Simulating Future Climate Conditions in the Carolinas”

    EPA Science Inventory

    Global climate models (GCMs) are currently used to obtain information about future changes in the large-scale climate. However, such simulations are typically done at coarse spatial resolutions, with model grid boxes on the order of 100 km on a horizontal side. Therefore, techniq...

  8. Changing precipitation in western Europe, climate change or natural variability?

    NASA Astrophysics Data System (ADS)

    Aalbers, Emma; Lenderink, Geert; van Meijgaard, Erik; van den Hurk, Bart

    2017-04-01

    Multi-model RCM-GCM ensembles provide high resolution climate projections, valuable for among others climate impact assessment studies. While the application of multiple models (both GCMs and RCMs) provides a certain robustness with respect to model uncertainty, the interpretation of differences between ensemble members - the combined result of model uncertainty and natural variability of the climate system - is not straightforward. Natural variability is intrinsic to the climate system, and a potentially large source of uncertainty in climate change projections, especially for projections on the local to regional scale. To quantify the natural variability and get a robust estimate of the forced climate change response (given a certain model and forcing scenario), large ensembles of climate model simulations of the same model provide essential information. While for global climate models (GCMs) a number of such large single model ensembles exists and have been analyzed, for regional climate models (RCMs) the number and size of single model ensembles is limited, and the predictability of the forced climate response at the local to regional scale is still rather uncertain. We present a regional downscaling of a 16-member single model ensemble over western Europe and the Alps at a resolution of 0.11 degrees (˜12km), similar to the highest resolution EURO-CORDEX simulations. This 16-member ensemble was generated by the GCM EC-EARTH, which was downscaled with the RCM RACMO for the period 1951-2100. This single model ensemble has been investigated in terms of the ensemble mean response (our estimate of the forced climate response), as well as the difference between the ensemble members, which measures natural variability. We focus on the response in seasonal mean and extreme precipitation (seasonal maxima and extremes with a return period up to 20 years) for the near to far future. For most precipitation indices we can reliably determine the climate change signal, given the applied model chain and forcing scenario. However, the analysis also shows how limited the information in single ensemble members is on the local scale forced climate response, even for high levels of global warming when the forced response has emerged from natural variability. Analysis and application of multi-model ensembles like EURO-CORDEX should go hand-in-hand with single model ensembles, like the one presented here, to be able to correctly interpret the fine-scale information in terms of a forced signal and random noise due to natural variability.

  9. Influences of Regional Climate Change on Air Quality Across the Continental U.S. Projected from Downscaling IPCC AR5 Simulations. Chapter 2

    NASA Technical Reports Server (NTRS)

    Nolte, Christopher; Otte, Tanya; Pinder, Robert; Bowden, J.; Herwehe, J.; Faluvegi, Gregory; Shindell, Drew

    2013-01-01

    Projecting climate change scenarios to local scales is important for understanding, mitigating, and adapting to the effects of climate change on society and the environment. Many of the global climate models (GCMs) that are participating in the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5) do not fully resolve regional-scale processes and therefore cannot capture regional-scale changes in temperatures and precipitation. We use a regional climate model (RCM) to dynamically downscale the GCM's large-scale signal to investigate the changes in regional and local extremes of temperature and precipitation that may result from a changing climate. In this paper, we show preliminary results from downscaling the NASA/GISS ModelE IPCC AR5 Representative Concentration Pathway (RCP) 6.0 scenario. We use the Weather Research and Forecasting (WRF) model as the RCM to downscale decadal time slices (1995-2005 and 2025-2035) and illustrate potential changes in regional climate for the continental U.S. that are projected by ModelE and WRF under RCP6.0. The regional climate change scenario is further processed using the Community Multiscale Air Quality modeling system to explore influences of regional climate change on air quality.

  10. Integration of climatic water deficit and fine-scale physiography in process-based modeling of forest landscape resilience to large-scale tree mortality

    NASA Astrophysics Data System (ADS)

    Yang, J.; Weisberg, P.; Dilts, T.

    2016-12-01

    Climate warming can lead to large-scale drought-induced tree mortality events and greatly affect forest landscape resilience. Climatic water deficit (CWD) and its physiographic variations provide a key mechanism in driving landscape dynamics in response to climate change. Although CWD has been successfully applied in niche-based species distribution models, its application in process-based forest landscape models is still scarce. Here we present a framework incorporating fine-scale influence of terrain on ecohydrology in modeling forest landscape dynamics. We integrated CWD with a forest landscape succession and disturbance model (LANDIS-II) to evaluate how tree species distribution might shift in response to different climate-fire scenarios across an elevation-aspect gradient in a semi-arid montane landscape of northeastern Nevada, USA. Our simulations indicated that drought-intolerant tree species such as quaking aspen could experience greatly reduced distributions in the more arid portions of their existing ranges due to water stress limitations under future climate warming scenarios. However, even at the most xeric portions of its range, aspen is likely to persist in certain environmental settings due to unique and often fine-scale combinations of resource availability, species interactions and disturbance regime. The modeling approach presented here allowed identification of these refugia. In addition, this approach helped quantify how the direction and magnitude of fire influences on species distribution would vary across topoclimatic gradients, as well as furthers our understanding on the role of environmental conditions, fire, and inter-specific competition in shaping potential responses of landscape resilience to climate change.

  11. Recent Regional Climate State and Change - Derived through Downscaling Homogeneous Large-scale Components of Re-analyses

    NASA Astrophysics Data System (ADS)

    Von Storch, H.; Klehmet, K.; Geyer, B.; Li, D.; Schubert-Frisius, M.; Tim, N.; Zorita, E.

    2015-12-01

    Global re-analyses suffer from inhomogeneities, as they process data from networks under development. However, the large-scale component of such re-analyses is mostly homogeneous; additional observational data add in most cases to a better description of regional details and less so on large-scale states. Therefore, the concept of downscaling may be applied to homogeneously complementing the large-scale state of the re-analyses with regional detail - wherever the condition of homogeneity of the large-scales is fulfilled. Technically this can be done by using a regional climate model, or a global climate model, which is constrained on the large scale by spectral nudging. This approach has been developed and tested for the region of Europe, and a skillful representation of regional risks - in particular marine risks - was identified. While the data density in Europe is considerably better than in most other regions of the world, even here insufficient spatial and temporal coverage is limiting risk assessments. Therefore, downscaled data-sets are frequently used by off-shore industries. We have run this system also in regions with reduced or absent data coverage, such as the Lena catchment in Siberia, in the Yellow Sea/Bo Hai region in East Asia, in Namibia and the adjacent Atlantic Ocean. Also a global (large scale constrained) simulation has been. It turns out that spatially detailed reconstruction of the state and change of climate in the three to six decades is doable for any region of the world.The different data sets are archived and may freely by used for scientific purposes. Of course, before application, a careful analysis of the quality for the intended application is needed, as sometimes unexpected changes in the quality of the description of large-scale driving states prevail.

  12. Extreme weather: Subtropical floods and tropical cyclones

    NASA Astrophysics Data System (ADS)

    Shaevitz, Daniel A.

    Extreme weather events have a large effect on society. As such, it is important to understand these events and to project how they may change in a future, warmer climate. The aim of this thesis is to develop a deeper understanding of two types of extreme weather events: subtropical floods and tropical cyclones (TCs). In the subtropics, the latitude is high enough that quasi-geostrophic dynamics are at least qualitatively relevant, while low enough that moisture may be abundant and convection strong. Extratropical extreme precipitation events are usually associated with large-scale flow disturbances, strong ascent, and large latent heat release. In the first part of this thesis, I examine the possible triggering of convection by the large-scale dynamics and investigate the coupling between the two. Specifically two examples of extreme precipitation events in the subtropics are analyzed, the 2010 and 2014 floods of India and Pakistan and the 2015 flood of Texas and Oklahoma. I invert the quasi-geostrophic omega equation to decompose the large-scale vertical motion profile to components due to synoptic forcing and diabatic heating. Additionally, I present model results from within the Column Quasi-Geostrophic framework. A single column model and cloud-revolving model are forced with the large-scale forcings (other than large-scale vertical motion) computed from the quasi-geostrophic omega equation with input data from a reanalysis data set, and the large-scale vertical motion is diagnosed interactively with the simulated convection. It is found that convection was triggered primarily by mechanically forced orographic ascent over the Himalayas during the India/Pakistan flood and by upper-level Potential Vorticity disturbances during the Texas/Oklahoma flood. Furthermore, a climate attribution analysis was conducted for the Texas/Oklahoma flood and it is found that anthropogenic climate change was responsible for a small amount of rainfall during the event but the intensity of this event may be greatly increased if it occurs in a future climate. In the second part of this thesis, I examine the ability of high-resolution global atmospheric models to simulate TCs. Specifically, I present an intercomparison of several models' ability to simulate the global characteristics of TCs in the current climate. This is a necessary first step before using these models to project future changes in TCs. Overall, the models were able to reproduce the geographic distribution of TCs reasonably well, with some of the models performing remarkably well. The intensity of TCs varied widely between the models, with some of this difference being due to model resolution.

  13. Modeling responses of large-river fish populations to global climate change through downscaling and incorporation of predictive uncertainty

    USGS Publications Warehouse

    Wildhaber, Mark L.; Wikle, Christopher K.; Anderson, Christopher J.; Franz, Kristie J.; Moran, Edward H.; Dey, Rima; Mader, Helmut; Kraml, Julia

    2012-01-01

    Climate change operates over a broad range of spatial and temporal scales. Understanding its effects on ecosystems requires multi-scale models. For understanding effects on fish populations of riverine ecosystems, climate predicted by coarse-resolution Global Climate Models must be downscaled to Regional Climate Models to watersheds to river hydrology to population response. An additional challenge is quantifying sources of uncertainty given the highly nonlinear nature of interactions between climate variables and community level processes. We present a modeling approach for understanding and accomodating uncertainty by applying multi-scale climate models and a hierarchical Bayesian modeling framework to Midwest fish population dynamics and by linking models for system components together by formal rules of probability. The proposed hierarchical modeling approach will account for sources of uncertainty in forecasts of community or population response. The goal is to evaluate the potential distributional changes in an ecological system, given distributional changes implied by a series of linked climate and system models under various emissions/use scenarios. This understanding will aid evaluation of management options for coping with global climate change. In our initial analyses, we found that predicted pallid sturgeon population responses were dependent on the climate scenario considered.

  14. Regional Climate Change across the Continental U.S. Projected from Downscaling IPCC AR5 Simulations

    NASA Astrophysics Data System (ADS)

    Otte, T. L.; Nolte, C. G.; Otte, M. J.; Pinder, R. W.; Faluvegi, G.; Shindell, D. T.

    2011-12-01

    Projecting climate change scenarios to local scales is important for understanding and mitigating the effects of climate change on society and the environment. Many of the general circulation models (GCMs) that are participating in the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5) do not fully resolve regional-scale processes and therefore cannot capture local changes in temperature and precipitation extremes. We seek to project the GCM's large-scale climate change signal to the local scale using a regional climate model (RCM) by applying dynamical downscaling techniques. The RCM will be used to better understand the local changes of temperature and precipitation extremes that may result from a changing climate. Preliminary results from downscaling NASA/GISS ModelE simulations of the IPCC AR5 Representative Concentration Pathway (RCP) scenario 6.0 will be shown. The Weather Research and Forecasting (WRF) model will be used as the RCM to downscale decadal time slices for ca. 2000 and ca. 2030 and illustrate potential changes in regional climate for the continental U.S. that are projected by ModelE and WRF under RCP6.0.

  15. A conditional approach to determining the effect of anthropogenic climate change on very rare events.

    NASA Astrophysics Data System (ADS)

    Wehner, Michael; Pall, Pardeep; Zarzycki, Colin; Stone, Daithi

    2016-04-01

    Probabilistic extreme event attribution is especially difficult for weather events that are caused by extremely rare large-scale meteorological patterns. Traditional modeling techniques have involved using ensembles of climate models, either fully coupled or with prescribed ocean and sea ice. Ensemble sizes for the latter case ranges from several 100 to tens of thousand. However, even if the simulations are constrained by the observed ocean state, the requisite large-scale meteorological pattern may not occur frequently enough or even at all in free running climate model simulations. We present a method to ensure that simulated events similar to the observed event are modeled with enough fidelity that robust statistics can be determined given the large scale meteorological conditions. By initializing suitably constrained short term ensemble hindcasts of both the actual weather system and a counterfactual weather system where the human interference in the climate system is removed, the human contribution to the magnitude of the event can be determined. However, the change (if any) in the probability of an event of the observed magnitude is conditional not only on the state of the ocean/sea ice system but also on the prescribed initial conditions determined by the causal large scale meteorological pattern. We will discuss the implications of this technique through two examples; the 2013 Colorado flood and the 2014 Typhoon Haiyan.

  16. Linking climate projections to performance: A yield-based decision scaling assessment of a large urban water resources system

    NASA Astrophysics Data System (ADS)

    Turner, Sean W. D.; Marlow, David; Ekström, Marie; Rhodes, Bruce G.; Kularathna, Udaya; Jeffrey, Paul J.

    2014-04-01

    Despite a decade of research into climate change impacts on water resources, the scientific community has delivered relatively few practical methodological developments for integrating uncertainty into water resources system design. This paper presents an application of the "decision scaling" methodology for assessing climate change impacts on water resources system performance and asks how such an approach might inform planning decisions. The decision scaling method reverses the conventional ethos of climate impact assessment by first establishing the climate conditions that would compel planners to intervene. Climate model projections are introduced at the end of the process to characterize climate risk in such a way that avoids the process of propagating those projections through hydrological models. Here we simulated 1000 multisite synthetic monthly streamflow traces in a model of the Melbourne bulk supply system to test the sensitivity of system performance to variations in streamflow statistics. An empirical relation was derived to convert decision-critical flow statistics to climatic units, against which 138 alternative climate projections were plotted and compared. We defined the decision threshold in terms of a system yield metric constrained by multiple performance criteria. Our approach allows for fast and simple incorporation of demand forecast uncertainty and demonstrates the reach of the decision scaling method through successful execution in a large and complex water resources system. Scope for wider application in urban water resources planning is discussed.

  17. The AgMIP GRIDded Crop Modeling Initiative (AgGRID) and the Global Gridded Crop Model Intercomparison (GGCMI)

    NASA Technical Reports Server (NTRS)

    Elliott, Joshua; Muller, Christoff

    2015-01-01

    Climate change is a significant risk for agricultural production. Even under optimistic scenarios for climate mitigation action, present-day agricultural areas are likely to face significant increases in temperatures in the coming decades, in addition to changes in precipitation, cloud cover, and the frequency and duration of extreme heat, drought, and flood events (IPCC, 2013). These factors will affect the agricultural system at the global scale by impacting cultivation regimes, prices, trade, and food security (Nelson et al., 2014a). Global-scale evaluation of crop productivity is a major challenge for climate impact and adaptation assessment. Rigorous global assessments that are able to inform planning and policy will benefit from consistent use of models, input data, and assumptions across regions and time that use mutually agreed protocols designed by the modeling community. To ensure this consistency, large-scale assessments are typically performed on uniform spatial grids, with spatial resolution of typically 10 to 50 km, over specified time-periods. Many distinct crop models and model types have been applied on the global scale to assess productivity and climate impacts, often with very different results (Rosenzweig et al., 2014). These models are based to a large extent on field-scale crop process or ecosystems models and they typically require resolved data on weather, environmental, and farm management conditions that are lacking in many regions (Bondeau et al., 2007; Drewniak et al., 2013; Elliott et al., 2014b; Gueneau et al., 2012; Jones et al., 2003; Liu et al., 2007; M¨uller and Robertson, 2014; Van den Hoof et al., 2011;Waha et al., 2012; Xiong et al., 2014). Due to data limitations, the requirements of consistency, and the computational and practical limitations of running models on a large scale, a variety of simplifying assumptions must generally be made regarding prevailing management strategies on the grid scale in both the baseline and future periods. Implementation differences in these and other modeling choices contribute to significant variation among global-scale crop model assessments in addition to differences in crop model implementations that also cause large differences in site-specific crop modeling (Asseng et al., 2013; Bassu et al., 2014).

  18. Regional climate model sensitivity to domain size

    NASA Astrophysics Data System (ADS)

    Leduc, Martin; Laprise, René

    2009-05-01

    Regional climate models are increasingly used to add small-scale features that are not present in their lateral boundary conditions (LBC). It is well known that the limited area over which a model is integrated must be large enough to allow the full development of small-scale features. On the other hand, integrations on very large domains have shown important departures from the driving data, unless large scale nudging is applied. The issue of domain size is studied here by using the “perfect model” approach. This method consists first of generating a high-resolution climatic simulation, nicknamed big brother (BB), over a large domain of integration. The next step is to degrade this dataset with a low-pass filter emulating the usual coarse-resolution LBC. The filtered nesting data (FBB) are hence used to drive a set of four simulations (LBs for Little Brothers), with the same model, but on progressively smaller domain sizes. The LB statistics for a climate sample of four winter months are compared with BB over a common region. The time average (stationary) and transient-eddy standard deviation patterns of the LB atmospheric fields generally improve in terms of spatial correlation with the reference (BB) when domain gets smaller. The extraction of the small-scale features by using a spectral filter allows detecting important underestimations of the transient-eddy variability in the vicinity of the inflow boundary, which can penalize the use of small domains (less than 100 × 100 grid points). The permanent “spatial spin-up” corresponds to the characteristic distance that the large-scale flow needs to travel before developing small-scale features. The spin-up distance tends to grow in size at higher levels in the atmosphere.

  19. Progressive Mid-latitude Afforestation: Local and Remote Climate Impacts in the Framework of Two Coupled Earth System Models

    NASA Astrophysics Data System (ADS)

    Lague, Marysa

    Vegetation influences the atmosphere in complex and non-linear ways, such that large-scale changes in vegetation cover can drive changes in climate on both local and global scales. Large-scale land surface changes have been shown to introduce excess energy to one hemisphere, causing a shift in atmospheric circulation on a global scale. However, past work has not quantified how the climate response scales with the area of vegetation. Here, we systematically evaluate the response of climate to linearly increasing the area of forest cover over the northern mid-latitudes. We show that the magnitude of afforestation of the northern mid-latitudes determines the climate response in a non-linear fashion, and identify a threshold in vegetation-induced cloud feedbacks - a concept not previously addressed by large-scale vegetation manipulation experiments. Small increases in tree cover drive compensating cloud feedbacks, while latent heat fluxes reach a threshold after sufficiently large increases in tree cover, causing the troposphere to warm and dry, subsequently reducing cloud cover. Increased absorption of solar radiation at the surface is driven by both surface albedo changes and cloud feedbacks. We identify how vegetation-induced changes in cloud cover further feedback on changes in the global energy balance. We also show how atmospheric cross-equatorial energy transport changes as the area of afforestation is incrementally increased (a relationship which has not previously been demonstrated). This work demonstrates that while some climate effects (such as energy transport) of large scale mid-latitude afforestation scale roughly linearly across a wide range of afforestation areas, others (such as the local partitioning of the surface energy budget) are non-linear, and sensitive to the particular magnitude of mid-latitude forcing. Our results highlight the importance of considering both local and remote climate responses to large-scale vegetation change, and explore the scaling relationship between changes in vegetation cover and the resulting climate impacts.

  20. Linking crop yield anomalies to large-scale atmospheric circulation in Europe.

    PubMed

    Ceglar, Andrej; Turco, Marco; Toreti, Andrea; Doblas-Reyes, Francisco J

    2017-06-15

    Understanding the effects of climate variability and extremes on crop growth and development represents a necessary step to assess the resilience of agricultural systems to changing climate conditions. This study investigates the links between the large-scale atmospheric circulation and crop yields in Europe, providing the basis to develop seasonal crop yield forecasting and thus enabling a more effective and dynamic adaptation to climate variability and change. Four dominant modes of large-scale atmospheric variability have been used: North Atlantic Oscillation, Eastern Atlantic, Scandinavian and Eastern Atlantic-Western Russia patterns. Large-scale atmospheric circulation explains on average 43% of inter-annual winter wheat yield variability, ranging between 20% and 70% across countries. As for grain maize, the average explained variability is 38%, ranging between 20% and 58%. Spatially, the skill of the developed statistical models strongly depends on the large-scale atmospheric variability impact on weather at the regional level, especially during the most sensitive growth stages of flowering and grain filling. Our results also suggest that preceding atmospheric conditions might provide an important source of predictability especially for maize yields in south-eastern Europe. Since the seasonal predictability of large-scale atmospheric patterns is generally higher than the one of surface weather variables (e.g. precipitation) in Europe, seasonal crop yield prediction could benefit from the integration of derived statistical models exploiting the dynamical seasonal forecast of large-scale atmospheric circulation.

  1. Extra-Tropical Cyclones at Climate Scales: Comparing Models to Observations

    NASA Astrophysics Data System (ADS)

    Tselioudis, G.; Bauer, M.; Rossow, W.

    2009-04-01

    Climate is often defined as the accumulation of weather, and weather is not the concern of climate models. Justification for this latter sentiment has long been hidden behind coarse model resolutions and blunt validation tools based on climatological maps. The spatial-temporal resolutions of today's climate models and observations are converging onto meteorological scales, however, which means that with the correct tools we can test the largely unproven assumption that climate model weather is correct enough that its accumulation results in a robust climate simulation. Towards this effort we introduce a new tool for extracting detailed cyclone statistics from observations and climate model output. These include the usual cyclone characteristics (centers, tracks), but also adaptive cyclone-centric composites. We have created a novel dataset, the MAP Climatology of Mid-latitude Storminess (MCMS), which provides a detailed 6 hourly assessment of the areas under the influence of mid-latitude cyclones, using a search algorithm that delimits the boundaries of each system from the outer-most closed SLP contour. Using this we then extract composites of cloud, radiation, and precipitation properties from sources such as ISCCP and GPCP to create a large comparative dataset for climate model validation. A demonstration of the potential usefulness of these tools in process-based climate model evaluation studies will be shown.

  2. Web based visualization of large climate data sets

    USGS Publications Warehouse

    Alder, Jay R.; Hostetler, Steven W.

    2015-01-01

    We have implemented the USGS National Climate Change Viewer (NCCV), which is an easy-to-use web application that displays future projections from global climate models over the United States at the state, county and watershed scales. We incorporate the NASA NEX-DCP30 statistically downscaled temperature and precipitation for 30 global climate models being used in the Fifth Assessment Report (AR5) of the Intergovernmental Panel on Climate Change (IPCC), and hydrologic variables we simulated using a simple water-balance model. Our application summarizes very large, complex data sets at scales relevant to resource managers and citizens and makes climate-change projection information accessible to users of varying skill levels. Tens of terabytes of high-resolution climate and water-balance data are distilled to compact binary format summary files that are used in the application. To alleviate slow response times under high loads, we developed a map caching technique that reduces the time it takes to generate maps by several orders of magnitude. The reduced access time scales to >500 concurrent users. We provide code examples that demonstrate key aspects of data processing, data exporting/importing and the caching technique used in the NCCV.

  3. Impact of spectral nudging on the downscaling of tropical cyclones in regional climate simulations

    NASA Astrophysics Data System (ADS)

    Choi, Suk-Jin; Lee, Dong-Kyou

    2016-06-01

    This study investigated the simulations of three months of seasonal tropical cyclone (TC) activity over the western North Pacific using the Advanced Research WRF Model. In the control experiment (CTL), the TC frequency was considerably overestimated. Additionally, the tracks of some TCs tended to have larger radii of curvature and were shifted eastward. The large-scale environments of westerly monsoon flows and subtropical Pacific highs were unreasonably simulated. The overestimated frequency of TC formation was attributed to a strengthened westerly wind field in the southern quadrants of the TC center. In comparison with the experiment with the spectral nudging method, the strengthened wind speed was mainly modulated by large-scale flow that was greater than approximately 1000 km in the model domain. The spurious formation and undesirable tracks of TCs in the CTL were considerably improved by reproducing realistic large-scale atmospheric monsoon circulation with substantial adjustment between large-scale flow in the model domain and large-scale boundary forcing modified by the spectral nudging method. The realistic monsoon circulation took a vital role in simulating realistic TCs. It revealed that, in the downscaling from large-scale fields for regional climate simulations, scale interaction between model-generated regional features and forced large-scale fields should be considered, and spectral nudging is a desirable method in the downscaling method.

  4. Land use and climate affect Black Tern, Northern Harrier, and Marsh Wren abundance in the Prairie Pothole Region of the United States

    USGS Publications Warehouse

    Forcey, Greg M.; Thogmartin, Wayne E.; Linz, George M.; McKann, Patrick C.

    2014-01-01

    Bird populations are influenced by many environmental factors at both large and small scales. Our study evaluated the influences of regional climate and land-use variables on the Northern Harrier (Circus cyaneus), Black Tern (Childonias niger), and Marsh Wren (Cistothorus palustris) in the prairie potholes of the upper Midwest of the United States. These species were chosen because their diverse habitat preference represent the spectrum of habitat conditions present in the Prairie Potholes, ranging from open prairies to dense cattail marshes. We evaluated land-use covariates at three logarithmic spatial scales (1,000 ha, 10,000 ha, and 100,000 ha) and constructed models a priori using information from published habitat associations and climatic influences. The strongest influences on the abundance of each of the three species were the percentage of wetland area across all three spatial scales and precipitation in the year preceding that when bird surveys were conducted. Even among scales ranging over three orders of magnitude the influence of spatial scale was small, as models with the same variables expressed at different scales were often in the best model subset. Examination of the effects of large-scale environmental variables on wetland birds elucidated relationships overlooked in many smaller-scale studies, such as the influences of climate and habitat variables at landscape scales. Given the spatial variation in the abundance of our focal species within the prairie potholes, our model predictions are especially useful for targeting locations, such as northeastern South Dakota and central North Dakota, where management and conservation efforts would be optimally beneficial. This modeling approach can also be applied to other species and geographic areas to focus landscape conservation efforts and subsequent small-scale studies, especially in constrained economic climates.

  5. Combined climate and carbon-cycle effects of large-scale deforestation

    PubMed Central

    Bala, G.; Caldeira, K.; Wickett, M.; Phillips, T. J.; Lobell, D. B.; Delire, C.; Mirin, A.

    2007-01-01

    The prevention of deforestation and promotion of afforestation have often been cited as strategies to slow global warming. Deforestation releases CO2 to the atmosphere, which exerts a warming influence on Earth's climate. However, biophysical effects of deforestation, which include changes in land surface albedo, evapotranspiration, and cloud cover also affect climate. Here we present results from several large-scale deforestation experiments performed with a three-dimensional coupled global carbon-cycle and climate model. These simulations were performed by using a fully three-dimensional model representing physical and biogeochemical interactions among land, atmosphere, and ocean. We find that global-scale deforestation has a net cooling influence on Earth's climate, because the warming carbon-cycle effects of deforestation are overwhelmed by the net cooling associated with changes in albedo and evapotranspiration. Latitude-specific deforestation experiments indicate that afforestation projects in the tropics would be clearly beneficial in mitigating global-scale warming, but would be counterproductive if implemented at high latitudes and would offer only marginal benefits in temperate regions. Although these results question the efficacy of mid- and high-latitude afforestation projects for climate mitigation, forests remain environmentally valuable resources for many reasons unrelated to climate. PMID:17420463

  6. Combined climate and carbon-cycle effects of large-scale deforestation.

    PubMed

    Bala, G; Caldeira, K; Wickett, M; Phillips, T J; Lobell, D B; Delire, C; Mirin, A

    2007-04-17

    The prevention of deforestation and promotion of afforestation have often been cited as strategies to slow global warming. Deforestation releases CO(2) to the atmosphere, which exerts a warming influence on Earth's climate. However, biophysical effects of deforestation, which include changes in land surface albedo, evapotranspiration, and cloud cover also affect climate. Here we present results from several large-scale deforestation experiments performed with a three-dimensional coupled global carbon-cycle and climate model. These simulations were performed by using a fully three-dimensional model representing physical and biogeochemical interactions among land, atmosphere, and ocean. We find that global-scale deforestation has a net cooling influence on Earth's climate, because the warming carbon-cycle effects of deforestation are overwhelmed by the net cooling associated with changes in albedo and evapotranspiration. Latitude-specific deforestation experiments indicate that afforestation projects in the tropics would be clearly beneficial in mitigating global-scale warming, but would be counterproductive if implemented at high latitudes and would offer only marginal benefits in temperate regions. Although these results question the efficacy of mid- and high-latitude afforestation projects for climate mitigation, forests remain environmentally valuable resources for many reasons unrelated to climate.

  7. Combined Climate and Carbon-Cycle Effects of Large-Scale Deforestation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bala, G; Caldeira, K; Wickett, M

    2006-10-17

    The prevention of deforestation and promotion of afforestation have often been cited as strategies to slow global warming. Deforestation releases CO{sub 2} to the atmosphere, which exerts a warming influence on Earth's climate. However, biophysical effects of deforestation, which include changes in land surface albedo, evapotranspiration, and cloud cover also affect climate. Here we present results from several large-scale deforestation experiments performed with a three-dimensional coupled global carbon-cycle and climate model. These are the first such simulations performed using a fully three-dimensional model representing physical and biogeochemical interactions among land, atmosphere, and ocean. We find that global-scale deforestation has amore » net cooling influence on Earth's climate, since the warming carbon-cycle effects of deforestation are overwhelmed by the net cooling associated with changes in albedo and evapotranspiration. Latitude-specific deforestation experiments indicate that afforestation projects in the tropics would be clearly beneficial in mitigating global-scale warming, but would be counterproductive if implemented at high latitudes and would offer only marginal benefits in temperate regions. While these results question the efficacy of mid- and high-latitude afforestation projects for climate mitigation, forests remain environmentally valuable resources for many reasons unrelated to climate.« less

  8. Impacts of Changing Climatic Drivers and Land use features on Future Stormwater Runoff in the Northwest Florida Basin: A Large-Scale Hydrologic Modeling Assessment

    NASA Astrophysics Data System (ADS)

    Khan, M.; Abdul-Aziz, O. I.

    2017-12-01

    Potential changes in climatic drivers and land cover features can significantly influence the stormwater budget in the Northwest Florida Basin. We investigated the hydro-climatic and land use sensitivities of stormwater runoff by developing a large-scale process-based rainfall-runoff model for the large basin by using the EPA Storm Water Management Model (SWMM 5.1). Climatic and hydrologic variables, as well as land use/cover features were incorporated into the model to account for the key processes of coastal hydrology and its dynamic interactions with groundwater and sea levels. We calibrated and validated the model by historical daily streamflow observations during 2009-2012 at four major rivers in the basin. Downscaled climatic drivers (precipitation, temperature, solar radiation) projected by twenty GCMs-RCMs under CMIP5, along with the projected future land use/cover features were also incorporated into the model. The basin storm runoff was then simulated for the historical (2000s = 1976-2005) and two future periods (2050s = 2030-2059, and 2080s = 2070-2099). Comparative evaluation of the historical and future scenarios leads to important guidelines for stormwater management in Northwest Florida and similar regions under a changing climate and environment.

  9. An effective online data monitoring and saving strategy for large-scale climate simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xian, Xiaochen; Archibald, Rick; Mayer, Benjamin

    Large-scale climate simulation models have been developed and widely used to generate historical data and study future climate scenarios. These simulation models often have to run for a couple of months to understand the changes in the global climate over the course of decades. This long-duration simulation process creates a huge amount of data with both high temporal and spatial resolution information; however, how to effectively monitor and record the climate changes based on these large-scale simulation results that are continuously produced in real time still remains to be resolved. Due to the slow process of writing data to disk,more » the current practice is to save a snapshot of the simulation results at a constant, slow rate although the data generation process runs at a very high speed. This study proposes an effective online data monitoring and saving strategy over the temporal and spatial domains with the consideration of practical storage and memory capacity constraints. Finally, our proposed method is able to intelligently select and record the most informative extreme values in the raw data generated from real-time simulations in the context of better monitoring climate changes.« less

  10. An effective online data monitoring and saving strategy for large-scale climate simulations

    DOE PAGES

    Xian, Xiaochen; Archibald, Rick; Mayer, Benjamin; ...

    2018-01-22

    Large-scale climate simulation models have been developed and widely used to generate historical data and study future climate scenarios. These simulation models often have to run for a couple of months to understand the changes in the global climate over the course of decades. This long-duration simulation process creates a huge amount of data with both high temporal and spatial resolution information; however, how to effectively monitor and record the climate changes based on these large-scale simulation results that are continuously produced in real time still remains to be resolved. Due to the slow process of writing data to disk,more » the current practice is to save a snapshot of the simulation results at a constant, slow rate although the data generation process runs at a very high speed. This study proposes an effective online data monitoring and saving strategy over the temporal and spatial domains with the consideration of practical storage and memory capacity constraints. Finally, our proposed method is able to intelligently select and record the most informative extreme values in the raw data generated from real-time simulations in the context of better monitoring climate changes.« less

  11. Application of regional climate models to the Indian winter monsoon over the western Himalayas.

    PubMed

    Dimri, A P; Yasunari, T; Wiltshire, A; Kumar, P; Mathison, C; Ridley, J; Jacob, D

    2013-12-01

    The Himalayan region is characterized by pronounced topographic heterogeneity and land use variability from west to east, with a large variation in regional climate patterns. Over the western part of the region, almost one-third of the annual precipitation is received in winter during cyclonic storms embedded in westerlies, known locally as the western disturbance. In the present paper, the regional winter climate over the western Himalayas is analyzed from simulations produced by two regional climate models (RCMs) forced with large-scale fields from ERA-Interim. The analysis was conducted by the composition of contrasting (wet and dry) winter precipitation years. The findings showed that RCMs could simulate the regional climate of the western Himalayas and represent the atmospheric circulation during extreme precipitation years in accordance with observations. The results suggest the important role of topography in moisture fluxes, transport and vertical flows. Dynamical downscaling with RCMs represented regional climates at the mountain or even event scale. However, uncertainties of precipitation scale and liquid-solid precipitation ratios within RCMs are still large for the purposes of hydrological and glaciological studies. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Uncertainties in Past and Future Global Water Availability

    NASA Astrophysics Data System (ADS)

    Sheffield, J.; Kam, J.

    2014-12-01

    Understanding how water availability changes on inter-annual to decadal time scales and how it may change in the future under climate change are a key part of understanding future stresses on water and food security. Historic evaluations of water availability on regional to global scales are generally based on large-scale model simulations with their associated uncertainties, in particular for long-term changes. Uncertainties are due to model errors and missing processes, parameter uncertainty, and errors in meteorological forcing data. Recent multi-model inter-comparisons and impact studies have highlighted large differences for past reconstructions, due to different simplifying assumptions in the models or the inclusion of physical processes such as CO2 fertilization. Modeling of direct anthropogenic factors such as water and land management also carry large uncertainties in their physical representation and from lack of socio-economic data. Furthermore, there is little understanding of the impact of uncertainties in the meteorological forcings that underpin these historic simulations. Similarly, future changes in water availability are highly uncertain due to climate model diversity, natural variability and scenario uncertainty, each of which dominates at different time scales. In particular, natural climate variability is expected to dominate any externally forced signal over the next several decades. We present results from multi-land surface model simulations of the historic global availability of water in the context of natural variability (droughts) and long-term changes (drying). The simulations take into account the impact of uncertainties in the meteorological forcings and the incorporation of water management in the form of reservoirs and irrigation. The results indicate that model uncertainty is important for short-term drought events, and forcing uncertainty is particularly important for long-term changes, especially uncertainty in precipitation due to reduced gauge density in recent years. We also discuss uncertainties in future projections from these models as driven by bias-corrected and downscaled CMIP5 climate projections, in the context of the balance between climate model robustness and climate model diversity.

  13. Changing Permafrost in the Arctic and its Global Effects in the 21st Century (PAGE21): A very large international and integrated project to measure the impact of permafrost degradation on the climate system

    NASA Astrophysics Data System (ADS)

    Lantuit, Hugues; Boike, Julia; Dahms, Melanie; Hubberten, Hans-Wolfgang

    2013-04-01

    The northern permafrost region contains approximately 50% of the estimated global below-ground organic carbon pool and more than twice as much as is contained in the current atmos-pheric carbon pool. The sheer size of this carbon pool, together with the large amplitude of predicted arctic climate change im-plies that there is a high potential for global-scale feedbacks from arctic climate change if these carbon reservoirs are desta-bilized. Nonetheless, significant gaps exist in our current state of knowledge that prevent us from producing accurate assess-ments of the vulnerability of the arctic permafrost to climate change, or of the implications of future climate change for global greenhouse gas (GHG) emissions. Specifically: • Our understanding of the physical and biogeochemical processes at play in permafrost areas is still insuffi-cient in some key aspects • Size estimates for the high latitude continental carbon and nitrogen stocks vary widely between regions and research groups. • The representation of permafrost-related processes in global climate models still tends to be rudimentary, and is one reason for the frequently poor perform-ances of climate models at high latitudes. The key objectives of PAGE21 are: • to improve our understanding of the processes affect-ing the size of the arctic permafrost carbon and nitro-gen pools through detailed field studies and monitor-ing, in order to quantify their size and their vulnerability to climate change, • to produce, assemble and assess high-quality datasets in order to develop and evaluate representations of permafrost and related processes in global models, • to improve these models accordingly, • to use these models to reduce the uncertainties in feed-backs from arctic permafrost to global change, thereby providing the means to assess the feasibility of stabili-zation scenarios, and • to ensure widespread dissemination of our results in order to provide direct input into the ongoing debate on climate-change mitigation. The concept of PAGE21 is to directly address these questions through a close interaction between monitoring activities, proc-ess studies and modeling on the pertinent temporal and spatial scales. Field sites have been selected to cover a wide range of environmental conditions for the validation of large scale mod-els, the development of permafrost monitoring capabilities, the study of permafrost processes, and for overlap with existing monitoring programs. PAGE21 will contribute to upgrading the project sites with the objective of providing a measurement baseline, both for process studies and for modeling programs. PAGE21 is determined to break down the traditional barriers in permafrost sciences between observational and model-supported site studies and large-scale climate modeling. Our concept for the interaction between site-scale studies and large-scale modeling is to establish and maintain a direct link be-tween these two areas for developing and evaluating, on all spatial scales, the land-surface modules of leading European global climate models taking part in the Coupled Model Inter-comparison Project Phase 5 (CMIP5), designed to inform the IPCC process. The timing of this project is such that the main scientific results from PAGE21, and in particular the model-based assessments will build entirely on new outputs and results from the CMIP5 Climate Model Intercomparison Project designed to inform the IPCC Fifth Assessment Report. However, PAGE21 is designed to leave a legacy that will en-dure beyond the lifetime of the projections that it produces. This legacy will comprise • an improved understanding of the key processes and parameters that determine the vulnerability of arctic permafrost to climate change, • the production of a suite of major European coupled climate models including detailed and validated repre-sentations of permafrost-related processes, that will reduce uncertainties in future climate projections pro-duced well beyond the lifetime of PAGE21, and • the training of a new generation of permafrost scien-tists who will bridge the long-standing gap between permafrost field science and global climate modeling, for the long-term benefit of science and society.

  14. United States Temperature and Precipitation Extremes: Phenomenology, Large-Scale Organization, Physical Mechanisms and Model Representation

    NASA Astrophysics Data System (ADS)

    Black, R. X.

    2017-12-01

    We summarize results from a project focusing on regional temperature and precipitation extremes over the continental United States. Our project introduces a new framework for evaluating these extremes emphasizing their (a) large-scale organization, (b) underlying physical sources (including remote-excitation and scale-interaction) and (c) representation in climate models. Results to be reported include the synoptic-dynamic behavior, seasonality and secular variability of cold waves, dry spells and heavy rainfall events in the observational record. We also study how the characteristics of such extremes are systematically related to Northern Hemisphere planetary wave structures and thus planetary- and hemispheric-scale forcing (e.g., those associated with major El Nino events and Arctic sea ice change). The underlying physics of event onset are diagnostically quantified for different categories of events. Finally, the representation of these extremes in historical coupled climate model simulations is studied and the origins of model biases are traced using new metrics designed to assess the large-scale atmospheric forcing of local extremes.

  15. Quantifying streamflow change caused by forest disturbance at a large spatial scale: A single watershed study

    NASA Astrophysics Data System (ADS)

    Wei, Xiaohua; Zhang, Mingfang

    2010-12-01

    Climatic variability and forest disturbance are commonly recognized as two major drivers influencing streamflow change in large-scale forested watersheds. The greatest challenge in evaluating quantitative hydrological effects of forest disturbance is the removal of climatic effect on hydrology. In this paper, a method was designed to quantify respective contributions of large-scale forest disturbance and climatic variability on streamflow using the Willow River watershed (2860 km2) located in the central part of British Columbia, Canada. Long-term (>50 years) data on hydrology, climate, and timber harvesting history represented by equivalent clear-cutting area (ECA) were available to discern climatic and forestry influences on streamflow by three steps. First, effective precipitation, an integrated climatic index, was generated by subtracting evapotranspiration from precipitation. Second, modified double mass curves were developed by plotting accumulated annual streamflow against annual effective precipitation, which presented a much clearer picture of the cumulative effects of forest disturbance on streamflow following removal of climatic influence. The average annual streamflow changes that were attributed to forest disturbances and climatic variability were then estimated to be +58.7 and -72.4 mm, respectively. The positive (increasing) and negative (decreasing) values in streamflow change indicated opposite change directions, which suggest an offsetting effect between forest disturbance and climatic variability in the study watershed. Finally, a multivariate Autoregressive Integrated Moving Average (ARIMA) model was generated to establish quantitative relationships between accumulated annual streamflow deviation attributed to forest disturbances and annual ECA. The model was then used to project streamflow change under various timber harvesting scenarios. The methodology can be effectively applied to any large-scale single watershed where long-term data (>50 years) are available.

  16. Regional Climate Change across North America in 2030 Projected from RCP6.0

    NASA Astrophysics Data System (ADS)

    Otte, T.; Nolte, C. G.; Faluvegi, G.; Shindell, D. T.

    2012-12-01

    Projecting climate change scenarios to local scales is important for understanding and mitigating the effects of climate change on society and the environment. Many of the general circulation models (GCMs) that are participating in the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5) do not fully resolve regional-scale processes and therefore cannot capture local changes in temperature and precipitation extremes. We seek to project the GCM's large-scale climate change signal to the local scale using a regional climate model (RCM) by applying dynamical downscaling techniques. The RCM will be used to better understand the local changes of temperature and precipitation extremes that may result from a changing climate. In this research, downscaling techniques that we developed with historical data are now applied to GCM fields. Results from downscaling NASA/GISS ModelE2 simulations of the IPCC AR5 Representative Concentration Pathway (RCP) scenario 6.0 will be shown. The Weather Research and Forecasting (WRF) model has been used as the RCM to downscale decadal time slices for ca. 2000 and ca. 2030 over North America and illustrate potential changes in regional climate that are projected by ModelE2 and WRF under RCP6.0. The analysis focuses on regional climate fields that most strongly influence the interactions between climate change and air quality. In particular, an analysis of extreme temperature and precipitation events will be presented.

  17. On the characteristics of aerosol indirect effect based on dynamic regimes in global climate models

    DOE PAGES

    Zhang, Shipeng; Wang, Minghuai; Ghan, Steven J.; ...

    2016-03-04

    Aerosol–cloud interactions continue to constitute a major source of uncertainty for the estimate of climate radiative forcing. The variation of aerosol indirect effects (AIE) in climate models is investigated across different dynamical regimes, determined by monthly mean 500 hPa vertical pressure velocity ( ω 500), lower-tropospheric stability (LTS) and large-scale surface precipitation rate derived from several global climate models (GCMs), with a focus on liquid water path (LWP) response to cloud condensation nuclei (CCN) concentrations. The LWP sensitivity to aerosol perturbation within dynamic regimes is found to exhibit a large spread among these GCMs. It is in regimes of strongmore » large-scale ascent ( ω 500  <  −25 hPa day −1) and low clouds (stratocumulus and trade wind cumulus) where the models differ most. Shortwave aerosol indirect forcing is also found to differ significantly among different regimes. Shortwave aerosol indirect forcing in ascending regimes is close to that in subsidence regimes, which indicates that regimes with strong large-scale ascent are as important as stratocumulus regimes in studying AIE. It is further shown that shortwave aerosol indirect forcing over regions with high monthly large-scale surface precipitation rate (> 0.1 mm day −1) contributes the most to the total aerosol indirect forcing (from 64 to nearly 100 %). Results show that the uncertainty in AIE is even larger within specific dynamical regimes compared to the uncertainty in its global mean values, pointing to the need to reduce the uncertainty in AIE in different dynamical regimes.« less

  18. On the relationship between large-scale climate modes and regional synoptic patterns that drive Victorian rainfall

    NASA Astrophysics Data System (ADS)

    Verdon-Kidd, D. C.; Kiem, A. S.

    2009-04-01

    In this paper regional (synoptic) and large-scale climate drivers of rainfall are investigated for Victoria, Australia. A non-linear classification methodology known as self-organizing maps (SOM) is used to identify 20 key regional synoptic patterns, which are shown to capture a range of significant synoptic features known to influence the climate of the region. Rainfall distributions are assigned to each of the 20 patterns for nine rainfall stations located across Victoria, resulting in a clear distinction between wet and dry synoptic types at each station. The influence of large-scale climate modes on the frequency and timing of the regional synoptic patterns is also investigated. This analysis revealed that phase changes in the El Niño Southern Oscillation (ENSO), the Indian Ocean Dipole (IOD) and/or the Southern Annular Mode (SAM) are associated with a shift in the relative frequency of wet and dry synoptic types on an annual to inter-annual timescale. In addition, the relative frequency of synoptic types is shown to vary on a multi-decadal timescale, associated with changes in the Inter-decadal Pacific Oscillation (IPO). Importantly, these results highlight the potential to utilise the link between the regional synoptic patterns derived in this study and large-scale climate modes to improve rainfall forecasting for Victoria, both in the short- (i.e. seasonal) and long-term (i.e. decadal/multi-decadal scale). In addition, the regional and large-scale climate drivers identified in this study provide a benchmark by which the performance of Global Climate Models (GCMs) may be assessed.

  19. The Saskatchewan River Basin - a large scale observatory for water security research (Invited)

    NASA Astrophysics Data System (ADS)

    Wheater, H. S.

    2013-12-01

    The 336,000 km2 Saskatchewan River Basin (SaskRB) in Western Canada illustrates many of the issues of Water Security faced world-wide. It poses globally-important science challenges due to the diversity in its hydro-climate and ecological zones. With one of the world's more extreme climates, it embodies environments of global significance, including the Rocky Mountains (source of the major rivers in Western Canada), the Boreal Forest (representing 30% of Canada's land area) and the Prairies (home to 80% of Canada's agriculture). Management concerns include: provision of water resources to more than three million inhabitants, including indigenous communities; balancing competing needs for water between different uses, such as urban centres, industry, agriculture, hydropower and environmental flows; issues of water allocation between upstream and downstream users in the three prairie provinces; managing the risks of flood and droughts; and assessing water quality impacts of discharges from major cities and intensive agricultural production. Superimposed on these issues is the need to understand and manage uncertain water futures, including effects of economic growth and environmental change, in a highly fragmented water governance environment. Key science questions focus on understanding and predicting the effects of land and water management and environmental change on water quantity and quality. To address the science challenges, observational data are necessary across multiple scales. This requires focussed research at intensively monitored sites and small watersheds to improve process understanding and fine-scale models. To understand large-scale effects on river flows and quality, land-atmosphere feedbacks, and regional climate, integrated monitoring, modelling and analysis is needed at large basin scale. And to support water management, new tools are needed for operational management and scenario-based planning that can be implemented across multiple scales and multiple jurisdictions. The SaskRB has therefore been developed as a large scale observatory, now a Regional Hydroclimate Project of the World Climate Research Programme's GEWEX project, and is available to contribute to the emerging North American Water Program. State-of-the-art hydro-ecological experimental sites have been developed for the key biomes, and a river and lake biogeochemical research facility, focussed on impacts of nutrients and exotic chemicals. Data are integrated at SaskRB scale to support the development of improved large scale climate and hydrological modelling products, the development of DSS systems for local, provincial and basin-scale management, and the development of related social science research, engaging stakeholders in the research and exploring their values and priorities for water security. The observatory provides multiple scales of observation and modelling required to develop: a) new climate, hydrological and ecological science and modelling tools to address environmental change in key environments, and their integrated effects and feedbacks at large catchment scale, b) new tools needed to support river basin management under uncertainty, including anthropogenic controls on land and water management and c) the place-based focus for the development of new transdisciplinary science.

  20. Sustainable Land Management's potential for climate change adaptation in Mediterranean environments: a regional scale assessment

    NASA Astrophysics Data System (ADS)

    Eekhout, Joris P. C.; de Vente, Joris

    2017-04-01

    Climate change has strong implications for many essential ecosystem services, such as provision of drinking and irrigation water, soil erosion and flood control. Especially large impacts are expected in the Mediterranean, already characterised by frequent floods and droughts. The projected higher frequency of extreme weather events under climate change will lead to an increase of plant water stress, reservoir inflow and sediment yield. Sustainable Land Management (SLM) practices are increasingly promoted as climate change adaptation strategy and to increase resilience against extreme events. However, there is surprisingly little known about their impacts and trade-offs on ecosystem services at regional scales. The aim of this research is to provide insight in the potential of SLM for climate change adaptation, focusing on catchment-scale impacts on soil and water resources. We applied a spatially distributed hydrological model (SPHY), coupled with an erosion model (MUSLE) to the Segura River catchment (15,978 km2) in SE Spain. We run the model for three periods: one reference (1981-2000) and two future scenarios (2031-2050 and 2081-2100). Climate input data for the future scenarios were based on output from 9 Regional Climate Models and for different emission scenarios (RCP 4.5 and RCP 8.5). Realistic scenarios of SLM practices were developed based on a local stakeholder consultation process. The evaluated SLM scenarios focussed on reduced tillage and organic amendments under tree and cereal crops, covering 24% and 15% of the catchment, respectively. In the reference scenario, implementation of SLM at the field-scale led to an increase of the infiltration capacity of the soil and a reduction of surface runoff up to 29%, eventually reducing catchment-scale reservoir inflow by 6%. This led to a reduction of field-scale sediment yield of more than 50% and a reduced catchment-scale sediment flux to reservoirs of 5%. SLM was able to fully mitigate the effect of climate change at the field-scale and partly at the catchment-scale. Therefore, we conclude that large-scale adoption of SLM can effectively contribute to climate change adaptation by increasing the soil infiltration capacity, the soil water retention capacity and soil moisture content in the rootzone, leading to less crop stress. These findings of regional scale impacts of SLM are of high relevance for land-owners, -managers and policy makers to design effective climate change adaptation strategies.

  1. Verification of GCM-generated regional seasonal precipitation for current climate and of statistical downscaling estimates under changing climate conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Busuioc, A.; Storch, H. von; Schnur, R.

    Empirical downscaling procedures relate large-scale atmospheric features with local features such as station rainfall in order to facilitate local scenarios of climate change. The purpose of the present paper is twofold: first, a downscaling technique is used as a diagnostic tool to verify the performance of climate models on the regional scale; second, a technique is proposed for verifying the validity of empirical downscaling procedures in climate change applications. The case considered is regional seasonal precipitation in Romania. The downscaling model is a regression based on canonical correlation analysis between observed station precipitation and European-scale sea level pressure (SLP). Themore » climate models considered here are the T21 and T42 versions of the Hamburg ECHAM3 atmospheric GCM run in time-slice mode. The climate change scenario refers to the expected time of doubled carbon dioxide concentrations around the year 2050. Generally, applications of statistical downscaling to climate change scenarios have been based on the assumption that the empirical link between the large-scale and regional parameters remains valid under a changed climate. In this study, a rationale is proposed for this assumption by showing the consistency of the 2 x CO{sub 2} GCM scenarios in winter, derived directly from the gridpoint data, with the regional scenarios obtained through empirical downscaling. Since the skill of the GCMs in regional terms is already established, it is concluded that the downscaling technique is adequate for describing climatically changing regional and local conditions, at least for precipitation in Romania during winter.« less

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, S.; Wang, Minghuai; Ghan, Steven J.

    Aerosol-cloud interactions continue to constitute a major source of uncertainty for the estimate of climate radiative forcing. The variation of aerosol indirect effects (AIE) in climate models is investigated across different dynamical regimes, determined by monthly mean 500 hPa vertical pressure velocity (ω500), lower-tropospheric stability (LTS) and large-scale surface precipitation rate derived from several global climate models (GCMs), with a focus on liquid water path (LWP) response to cloud condensation nuclei (CCN) concentrations. The LWP sensitivity to aerosol perturbation within dynamic regimes is found to exhibit a large spread among these GCMs. It is in regimes of strong large-scale ascendmore » (ω500 < -25 hPa/d) and low clouds (stratocumulus and trade wind cumulus) where the models differ most. Shortwave aerosol indirect forcing is also found to differ significantly among different regimes. Shortwave aerosol indirect forcing in ascending regimes is as large as that in stratocumulus regimes, which indicates that regimes with strong large-scale ascend are as important as stratocumulus regimes in studying AIE. 42" It is further shown that shortwave aerosol indirect forcing over regions with high monthly large-scale surface precipitation rate (> 0.1 mm/d) contributes the most to the total aerosol indirect forcing (from 64% to nearly 100%). Results show that the uncertainty in AIE is even larger within specific dynamical regimes than that globally, pointing to the need to reduce the uncertainty in AIE in different dynamical regimes.« less

  3. Creation of Synthetic Surface Temperature and Precipitation Ensembles Through A Computationally Efficient, Mixed Method Approach

    NASA Astrophysics Data System (ADS)

    Hartin, C.; Lynch, C.; Kravitz, B.; Link, R. P.; Bond-Lamberty, B. P.

    2017-12-01

    Typically, uncertainty quantification of internal variability relies on large ensembles of climate model runs under multiple forcing scenarios or perturbations in a parameter space. Computationally efficient, standard pattern scaling techniques only generate one realization and do not capture the complicated dynamics of the climate system (i.e., stochastic variations with a frequency-domain structure). In this study, we generate large ensembles of climate data with spatially and temporally coherent variability across a subselection of Coupled Model Intercomparison Project Phase 5 (CMIP5) models. First, for each CMIP5 model we apply a pattern emulation approach to derive the model response to external forcing. We take all the spatial and temporal variability that isn't explained by the emulator and decompose it into non-physically based structures through use of empirical orthogonal functions (EOFs). Then, we perform a Fourier decomposition of the EOF projection coefficients to capture the input fields' temporal autocorrelation so that our new emulated patterns reproduce the proper timescales of climate response and "memory" in the climate system. Through this 3-step process, we derive computationally efficient climate projections consistent with CMIP5 model trends and modes of variability, which address a number of deficiencies inherent in the ability of pattern scaling to reproduce complex climate model behavior.

  4. Hydrological response of karst systems to large-scale climate variability for different catchments of the French karst observatory network INSU/CNRS SNO KARST

    NASA Astrophysics Data System (ADS)

    Massei, Nicolas; Labat, David; Jourde, Hervé; Lecoq, Nicolas; Mazzilli, Naomi

    2017-04-01

    The french karst observatory network SNO KARST is a national initiative from the National Institute for Earth Sciences and Astronomy (INSU) of the National Center for Scientific Research (CNRS). It is also part of the new french research infrastructure for the observation of the critical zone OZCAR. SNO KARST is composed by several karst sites distributed over conterminous France which are located in different physiographic and climatic contexts (Mediterranean, Pyrenean, Jura mountain, western and northwestern shore near the Atlantic or the English Channel). This allows the scientific community to develop advanced research and experiments dedicated to improve understanding of the hydrological functioning of karst catchments. Here we used several sites of SNO KARST in order to assess the hydrological response of karst catchments to long-term variation of large-scale atmospheric circulation. Using NCEP reanalysis products and karst discharge, we analyzed the links between large-scale circulation and karst water resources variability. As karst hydrosystems are highly heterogeneous media, they behave differently across different time-scales : we explore the large-scale/local-scale relationships according to time-scales using a wavelet multiresolution approach of both karst hydrological variables and large-scale climate fields such as sea level pressure (SLP). The different wavelet components of karst discharge in response to the corresponding wavelet component of climate fields are either 1) compared to physico-chemical/geochemical responses at karst springs, or 2) interpreted in terms of hydrological functioning by comparing discharge wavelet components to internal components obtained from precipitation/discharge models using the KARSTMOD conceptual modeling platform of SNO KARST.

  5. Analysis of the Effect of Interior Nudging on Temperature and Precipitation Distributions of Multi-year Regional Climate Simulations

    NASA Astrophysics Data System (ADS)

    Nolte, C. G.; Otte, T. L.; Bowden, J. H.; Otte, M. J.

    2010-12-01

    There is disagreement in the regional climate modeling community as to the appropriateness of the use of internal nudging. Some investigators argue that the regional model should be minimally constrained and allowed to respond to regional-scale forcing, while others have noted that in the absence of interior nudging, significant large-scale discrepancies develop between the regional model solution and the driving coarse-scale fields. These discrepancies lead to reduced confidence in the ability of regional climate models to dynamically downscale global climate model simulations under climate change scenarios, and detract from the usability of the regional simulations for impact assessments. The advantages and limitations of interior nudging schemes for regional climate modeling are investigated in this study. Multi-year simulations using the WRF model driven by reanalysis data over the continental United States at 36km resolution are conducted using spectral nudging, grid point nudging, and for a base case without interior nudging. The means, distributions, and inter-annual variability of temperature and precipitation will be evaluated in comparison to regional analyses.

  6. Assessing Hydrological and Energy Budgets in Amazonia through Regional Downscaling, and Comparisons with Global Reanalysis Products

    NASA Astrophysics Data System (ADS)

    Nunes, A.; Ivanov, V. Y.

    2014-12-01

    Although current global reanalyses provide reasonably accurate large-scale features of the atmosphere, systematic errors are still found in the hydrological and energy budgets of such products. In the tropics, precipitation is particularly challenging to model, which is also adversely affected by the scarcity of hydrometeorological datasets in the region. With the goal of producing downscaled analyses that are appropriate for a climate assessment at regional scales, a regional spectral model has used a combination of precipitation assimilation with scale-selective bias correction. The latter is similar to the spectral nudging technique, which prevents the departure of the regional model's internal states from the large-scale forcing. The target area in this study is the Amazon region, where large errors are detected in reanalysis precipitation. To generate the downscaled analysis, the regional climate model used NCEP/DOE R2 global reanalysis as the initial and lateral boundary conditions, and assimilated NOAA's Climate Prediction Center (CPC) MORPHed precipitation (CMORPH), available at 0.25-degree resolution, every 3 hours. The regional model's precipitation was successfully brought closer to the observations, in comparison to the NCEP global reanalysis products, as a result of the impact of a precipitation assimilation scheme on cumulus-convection parameterization, and improved boundary forcing achieved through a new version of scale-selective bias correction. Water and energy budget terms were also evaluated against global reanalyses and other datasets.

  7. Sources of uncertainty in hydrological climate impact assessment: a cross-scale study

    NASA Astrophysics Data System (ADS)

    Hattermann, F. F.; Vetter, T.; Breuer, L.; Su, Buda; Daggupati, P.; Donnelly, C.; Fekete, B.; Flörke, F.; Gosling, S. N.; Hoffmann, P.; Liersch, S.; Masaki, Y.; Motovilov, Y.; Müller, C.; Samaniego, L.; Stacke, T.; Wada, Y.; Yang, T.; Krysnaova, V.

    2018-01-01

    Climate change impacts on water availability and hydrological extremes are major concerns as regards the Sustainable Development Goals. Impacts on hydrology are normally investigated as part of a modelling chain, in which climate projections from multiple climate models are used as inputs to multiple impact models, under different greenhouse gas emissions scenarios, which result in different amounts of global temperature rise. While the goal is generally to investigate the relevance of changes in climate for the water cycle, water resources or hydrological extremes, it is often the case that variations in other components of the model chain obscure the effect of climate scenario variation. This is particularly important when assessing the impacts of relatively lower magnitudes of global warming, such as those associated with the aspirational goals of the Paris Agreement. In our study, we use ANOVA (analyses of variance) to allocate and quantify the main sources of uncertainty in the hydrological impact modelling chain. In turn we determine the statistical significance of different sources of uncertainty. We achieve this by using a set of five climate models and up to 13 hydrological models, for nine large scale river basins across the globe, under four emissions scenarios. The impact variable we consider in our analysis is daily river discharge. We analyze overall water availability and flow regime, including seasonality, high flows and low flows. Scaling effects are investigated by separately looking at discharge generated by global and regional hydrological models respectively. Finally, we compare our results with other recently published studies. We find that small differences in global temperature rise associated with some emissions scenarios have mostly significant impacts on river discharge—however, climate model related uncertainty is so large that it obscures the sensitivity of the hydrological system.

  8. Regional climate projection of the Maritime Continent using the MIT Regional Climate Model

    NASA Astrophysics Data System (ADS)

    IM, E. S.; Eltahir, E. A. B.

    2014-12-01

    Given that warming of the climate system is unequivocal (IPCC AR5), accurate assessment of future climate is essential to understand the impact of climate change due to global warming. Modelling the climate change of the Maritime Continent is particularly challenge, showing a high degree of uncertainty. Compared to other regions, model agreement of future projections in response to anthropogenic emission forcings is much less. Furthermore, the spatial and temporal behaviors of climate projections seem to vary significantly due to a complex geographical condition and a wide range of scale interactions. For the fine-scale climate information (27 km) suitable for representing the complexity of climate change over the Maritime Continent, dynamical downscaling is performed using the MIT regional climate model (MRCM) during two thirty-year period for reference (1970-1999) and future (2070-2099) climate. Initial and boundary conditions are provided by Community Earth System Model (CESM) simulations under the emission scenarios projected by MIT Integrated Global System Model (IGSM). Changes in mean climate as well as the frequency and intensity of extreme climate events are investigated at various temporal and spatial scales. Our analysis is primarily centered on the different behavior of changes in convective and large-scale precipitation over land vs. ocean during dry vs. wet season. In addition, we attempt to find the added value to downscaled results over the Maritime Continent through the comparison between MRCM and CESM projection. Acknowledgements.This research was supported by the National Research Foundation Singapore through the Singapore MIT Alliance for Research and Technology's Center for Environmental Sensing and Modeling interdisciplinary research program.

  9. Regression-based season-ahead drought prediction for southern Peru conditioned on large-scale climate variables

    NASA Astrophysics Data System (ADS)

    Mortensen, Eric; Wu, Shu; Notaro, Michael; Vavrus, Stephen; Montgomery, Rob; De Piérola, José; Sánchez, Carlos; Block, Paul

    2018-01-01

    Located at a complex topographic, climatic, and hydrologic crossroads, southern Peru is a semiarid region that exhibits high spatiotemporal variability in precipitation. The economic viability of the region hinges on this water, yet southern Peru is prone to water scarcity caused by seasonal meteorological drought. Meteorological droughts in this region are often triggered during El Niño episodes; however, other large-scale climate mechanisms also play a noteworthy role in controlling the region's hydrologic cycle. An extensive season-ahead precipitation prediction model is developed to help bolster the existing capacity of stakeholders to plan for and mitigate deleterious impacts of drought. In addition to existing climate indices, large-scale climatic variables, such as sea surface temperature, are investigated to identify potential drought predictors. A principal component regression framework is applied to 11 potential predictors to produce an ensemble forecast of regional January-March precipitation totals. Model hindcasts of 51 years, compared to climatology and another model conditioned solely on an El Niño-Southern Oscillation index, achieve notable skill and perform better for several metrics, including ranked probability skill score and a hit-miss statistic. The information provided by the developed model and ancillary modeling efforts, such as extending the lead time of and spatially disaggregating precipitation predictions to the local level as well as forecasting the number of wet-dry days per rainy season, may further assist regional stakeholders and policymakers in preparing for drought.

  10. Downscaling large-scale circulation to local winter climate using neural network techniques

    NASA Astrophysics Data System (ADS)

    Cavazos Perez, Maria Tereza

    1998-12-01

    The severe impacts of climate variability on society reveal the increasing need for improving regional-scale climate diagnosis. A new downscaling approach for climate diagnosis is developed here. It is based on neural network techniques that derive transfer functions from the large-scale atmospheric controls to the local winter climate in northeastern Mexico and southeastern Texas during the 1985-93 period. A first neural network (NN) model employs time-lagged component scores from a rotated principal component analysis of SLP, 500-hPa heights, and 1000-500 hPa thickness as predictors of daily precipitation. The model is able to reproduce the phase and, to some decree, the amplitude of large rainfall events, reflecting the influence of the large-scale circulation. Large errors are found over the Sierra Madre, over the Gulf of Mexico, and during El Nino events, suggesting an increase in the importance of meso-scale rainfall processes. However, errors are also due to the lack of randomization of the input data and the absence of local atmospheric predictors such as moisture. Thus, a second NN model uses time-lagged specific humidity at the Earth's surface and at the 700 hPa level, SLP tendency, and 700-500 hPa thickness as input to a self-organizing map (SOM) that pre-classifies the atmospheric fields into different patterns. The results from the SOM classification document that negative (positive) anomalies of winter precipitation over the region are associated with: (1) weaker (stronger) Aleutian low; (2) stronger (weaker) North Pacific high; (3) negative (positive) phase of the Pacific North American pattern; and (4) La Nina (El Nino) events. The SOM atmospheric patterns are then used as input to a feed-forward NN that captures over 60% of the daily rainfall variance and 94% of the daily minimum temperature variance over the region. This demonstrates the ability of artificial neural network models to simulate realistic relationships on daily time scales. The results of this research also reveal that the SOM pre-classification of days with similar atmospheric conditions succeeded in emphasizing the differences of the atmospheric variance conducive to extreme events. This resulted in a downscaling NN model that is highly sensitive to local-scale weather anomalies associated with El Nino and extreme cold events.

  11. Potential climatic impacts and reliability of large-scale offshore wind farms

    NASA Astrophysics Data System (ADS)

    Wang, Chien; Prinn, Ronald G.

    2011-04-01

    The vast availability of wind power has fueled substantial interest in this renewable energy source as a potential near-zero greenhouse gas emission technology for meeting future world energy needs while addressing the climate change issue. However, in order to provide even a fraction of the estimated future energy needs, a large-scale deployment of wind turbines (several million) is required. The consequent environmental impacts, and the inherent reliability of such a large-scale usage of intermittent wind power would have to be carefully assessed, in addition to the need to lower the high current unit wind power costs. Our previous study (Wang and Prinn 2010 Atmos. Chem. Phys. 10 2053) using a three-dimensional climate model suggested that a large deployment of wind turbines over land to meet about 10% of predicted world energy needs in 2100 could lead to a significant temperature increase in the lower atmosphere over the installed regions. A global-scale perturbation to the general circulation patterns as well as to the cloud and precipitation distribution was also predicted. In the later study reported here, we conducted a set of six additional model simulations using an improved climate model to further address the potential environmental and intermittency issues of large-scale deployment of offshore wind turbines for differing installation areas and spatial densities. In contrast to the previous land installation results, the offshore wind turbine installations are found to cause a surface cooling over the installed offshore regions. This cooling is due principally to the enhanced latent heat flux from the sea surface to lower atmosphere, driven by an increase in turbulent mixing caused by the wind turbines which was not entirely offset by the concurrent reduction of mean wind kinetic energy. We found that the perturbation of the large-scale deployment of offshore wind turbines to the global climate is relatively small compared to the case of land-based installations. However, the intermittency caused by the significant seasonal wind variations over several major offshore sites is substantial, and demands further options to ensure the reliability of large-scale offshore wind power. The method that we used to simulate the offshore wind turbine effect on the lower atmosphere involved simply increasing the ocean surface drag coefficient. While this method is consistent with several detailed fine-scale simulations of wind turbines, it still needs further study to ensure its validity. New field observations of actual wind turbine arrays are definitely required to provide ultimate validation of the model predictions presented here.

  12. Multi-model projections of Indian summer monsoon climate changes under A1B scenario

    NASA Astrophysics Data System (ADS)

    Niu, X.; Wang, S.; Tang, J.

    2016-12-01

    As part of the Regional Climate Model Intercomparison Project for Asia, the projections of Indian summer monsoon climate changes are constructed using three global climate models (GCMs) and seven regional climate models (RCMs) during 2041-2060 based on the Intergovernmental Panel on Climate Change A1B emission scenario. For the control climate of 1981-2000, most nested RCMs show advantage over the driving GCM of European Centre/Hamburg Fifth Generation (ECHAM5) in the temporal-spatial distributions of temperature and precipitation over Indian Peninsula. Following the driving GCM of ECHAM5, most nested RCMs produce advanced monsoon onset in the control climate. For future climate widespread summer warming is projected over Indian Peninsula by all climate models, with the Multi-RCMs ensemble mean (MME) temperature increasing of 1°C to 2.5°C and the maximum warming center located in northern Indian Peninsula. While for the precipitation, a large inter-model spread is projected by RCMs, with wetter condition in MME projections and significant increase over southern India. Driven by the same GCM, most RCMs project advanced monsoon onset while delayed onset is found in two Regional Climate Model (RegCM3) projections, indicating uncertainty can be expected in the Indian Summer Monsoon onset. All climate models except Conformal-Cubic Atmospheric Model with equal resolution (referred as CCAMP) and two RegCM3 models project stronger summer monsoon during 2041-2060. The disagreement in precipitation projections by RCMs indicates that the surface climate change on regional scale is not only dominated by the large-scale forcing which is provided by driving GCM but also sensitive to RCM' internal physics.

  13. Statistical downscaling of daily precipitation over Llobregat river basin in Catalonia (Spain) using three downscaling methods.

    NASA Astrophysics Data System (ADS)

    Ballinas, R.; Versini, P.-A.; Sempere, D.; Escaler, I.

    2009-09-01

    Any long-term change in the patterns of average weather in a global or regional scale is called climate change. It may cause a progressive increase of atmospheric temperature and consequently may change the amount, frequency and intensity of precipitation. All these changes of meteorological parameters may modify the water cycle: run-off, infiltration, aquifer recharge, etc. Recent studies in Catalonia foresee changes in hydrological systems caused by climate change. This will lead to alterations in the hydrological cycle that could impact in land use, in the regimen of water extractions, in the hydrological characteristics of the territory and reduced groundwater recharge. Besides, can expect a loss of flow in rivers. In addition to possible increases in the frequency of extreme rainfall, being necessary to modify the design of infrastructure. Because this, it work focuses on studying the impacts of climate change in one of the most important basins in Catalonia, the Llobregat River Basin. The basin is the hub of the province of Barcelona. It is a highly populated and urbanized catchment, where water resources are used for different purposes, as drinking water production, agricultural irrigation, industry and hydro-electrical energy production. In consequence, many companies and communities depend on these resources. To study the impact of climate change in the Llobregat basin, storms (frequency, intensity) mainly, we will need regional climate change information. A regional climate is determined by interactions at large, regional and local scales. The general circulation models (GCMs) are run at too coarse resolution to permit accurate description of these regional and local interactions. So far, they have been unable to provide consistent estimates of climate change on a local scale. Several regionalization techniques have been developed to bridge the gap between the large-scale information provided by GCMs and fine spatial scales required for regional and environmental impact studies. Downscaling methods to assess the effect of large-scale circulations on local parameters have. Statistical downscaling methods are based on the view that regional climate can be conditioned by two factors: large-scale climatic state and regional/local features. Local climate information is derived by first developing a statistical model which relates large-scale variables or "predictors" for which GCMs are trustable to regional or local surface "predictands" for which models are less skilful. The main advantage of these methods is that they are computationally inexpensive, and can be applied to outputs from different GCM experiments. Three statistical downscaling methods are applied: Analogue method, Delta Change and Direct Forcing. These methods have been used to determine daily precipitation projections at rain gauge location to study the intensity, frequency and variability of storms in a context of climate change in the Llobregat River Basin in Catalonia, Spain. This work is part of the European project "Water Change" (included in the LIFE + Environment Policy and Governance program). It deals with Medium and long term water resources modelling as a tool for planning and global change adaptation. Two stakeholders involved in the project provided the historical time series: Catalan Water Agency (ACA) and the State Meteorological Agency (AEMET).

  14. Large-Scale Covariability Between Aerosol and Precipitation Over the 7-SEAS Region: Observations and Simulations

    NASA Technical Reports Server (NTRS)

    Huang, Jingfeng; Hsu, N. Christina; Tsay, Si-Chee; Zhang, Chidong; Jeong, Myeong Jae; Gautam, Ritesh; Bettenhausen, Corey; Sayer, Andrew M.; Hansell, Richard A.; Liu, Xiaohong; hide

    2012-01-01

    One of the seven scientific areas of interests of the 7-SEAS field campaign is to evaluate the impact of aerosol on cloud and precipitation (http://7-seas.gsfc.nasa.gov). However, large-scale covariability between aerosol, cloud and precipitation is complicated not only by ambient environment and a variety of aerosol effects, but also by effects from rain washout and climate factors. This study characterizes large-scale aerosol-cloud-precipitation covariability through synergy of long-term multi ]sensor satellite observations with model simulations over the 7-SEAS region [10S-30N, 95E-130E]. Results show that climate factors such as ENSO significantly modulate aerosol and precipitation over the region simultaneously. After removal of climate factor effects, aerosol and precipitation are significantly anti-correlated over the southern part of the region, where high aerosols loading is associated with overall reduced total precipitation with intensified rain rates and decreased rain frequency, decreased tropospheric latent heating, suppressed cloud top height and increased outgoing longwave radiation, enhanced clear-sky shortwave TOA flux but reduced all-sky shortwave TOA flux in deep convective regimes; but such covariability becomes less notable over the northern counterpart of the region where low ]level stratus are found. Using CO as a proxy of biomass burning aerosols to minimize the washout effect, large-scale covariability between CO and precipitation was also investigated and similar large-scale covariability observed. Model simulations with NCAR CAM5 were found to show similar effects to observations in the spatio-temporal patterns. Results from both observations and simulations are valuable for improving our understanding of this region's meteorological system and the roles of aerosol within it. Key words: aerosol; precipitation; large-scale covariability; aerosol effects; washout; climate factors; 7- SEAS; CO; CAM5

  15. Bridging the Gap Between the iLEAPS and GEWEX Land-Surface Modeling Communities

    NASA Technical Reports Server (NTRS)

    Bonan, Gordon; Santanello, Joseph A., Jr.

    2013-01-01

    Models of Earth's weather and climate require fluxes of momentum, energy, and moisture across the land-atmosphere interface to solve the equations of atmospheric physics and dynamics. Just as atmospheric models can, and do, differ between weather and climate applications, mostly related to issues of scale, resolved or parameterised physics,and computational requirements, so too can the land models that provide the required surface fluxes differ between weather and climate models. Here, however, the issue is less one of scale-dependent parameterisations.Computational demands can influence other minor land model differences, especially with respect to initialisation, data assimilation, and forecast skill. However, the distinction among land models (and their development and application) is largely driven by the different science and research needs of the weather and climate communities.

  16. On unravelling mechanism of interplay between cloud and large scale circulation: a grey area in climate science

    NASA Astrophysics Data System (ADS)

    De, S.; Agarwal, N. K.; Hazra, Anupam; Chaudhari, Hemantkumar S.; Sahai, A. K.

    2018-04-01

    The interaction between cloud and large scale circulation is much less explored area in climate science. Unfolding the mechanism of coupling between these two parameters is imperative for improved simulation of Indian summer monsoon (ISM) and to reduce imprecision in climate sensitivity of global climate model. This work has made an effort to explore this mechanism with CFSv2 climate model experiments whose cloud has been modified by changing the critical relative humidity (CRH) profile of model during ISM. Study reveals that the variable CRH in CFSv2 has improved the nonlinear interactions between high and low frequency oscillations in wind field (revealed as internal dynamics of monsoon) and modulates realistically the spatial distribution of interactions over Indian landmass during the contrasting monsoon season compared to the existing CRH profile of CFSv2. The lower tropospheric wind error energy in the variable CRH simulation of CFSv2 appears to be minimum due to the reduced nonlinear convergence of error to the planetary scale range from long and synoptic scales (another facet of internal dynamics) compared to as observed from other CRH experiments in normal and deficient monsoons. Hence, the interplay between cloud and large scale circulation through CRH may be manifested as a change in internal dynamics of ISM revealed from scale interactive quasi-linear and nonlinear kinetic energy exchanges in frequency as well as in wavenumber domain during the monsoon period that eventually modify the internal variance of CFSv2 model. Conversely, the reduced wind bias and proper modulation of spatial distribution of scale interaction between the synoptic and low frequency oscillations improve the eastward and northward extent of water vapour flux over Indian landmass that in turn give feedback to the realistic simulation of cloud condensates attributing improved ISM rainfall in CFSv2.

  17. Nudging and predictability in regional climate modelling: investigation in a nested quasi-geostrophic model

    NASA Astrophysics Data System (ADS)

    Omrani, Hiba; Drobinski, Philippe; Dubos, Thomas

    2010-05-01

    In this work, we consider the effect of indiscriminate and spectral nudging on the large and small scales of an idealized model simulation. The model is a two layer quasi-geostrophic model on the beta-plane driven at its boundaries by the « global » version with periodic boundary condition. This setup mimics the configuration used for regional climate modelling. The effect of large-scale nudging is studied by using the "perfect model" approach. Two sets of experiments are performed: (1) the effect of nudging is investigated with a « global » high resolution two layer quasi-geostrophic model driven by a low resolution two layer quasi-geostrophic model. (2) similar simulations are conducted with the two layer quasi-geostrophic Limited Area Model (LAM) where the size of the LAM domain comes into play in addition to the first set of simulations. The study shows that the indiscriminate nudging time that minimizes the error at both the large and small scales is reached for a nudging time close to the predictability time, for spectral nudging, the optimum nudging time should tend to zero since the best large scale dynamics is supposed to be given by the driving large-scale fields are generally given at much lower frequency than the model time step(e,g, 6-hourly analysis) with a basic interpolation between the fields, the optimum nudging time differs from zero, however remaining smaller than the predictability time.

  18. Parameterizing a Large-scale Water Balance Model in Regions with Sparse Data: The Tigris-Euphrates River Basins as an Example

    NASA Astrophysics Data System (ADS)

    Flint, A. L.; Flint, L. E.

    2010-12-01

    The characterization of hydrologic response to current and future climates is of increasing importance to many countries around the world that rely heavily on changing and uncertain water supplies. Large-scale models that can calculate a spatially distributed water balance and elucidate groundwater recharge and surface water flows for large river basins provide a basis of estimates of changes due to future climate projections. Unfortunately many regions in the world have very sparse data for parameterization or calibration of hydrologic models. For this study, the Tigris and Euphrates River basins were used for the development of a regional water balance model at 180-m spatial scale, using the Basin Characterization Model, to estimate historical changes in groundwater recharge and surface water flows in the countries of Turkey, Syria, Iraq, Iran, and Saudi Arabia. Necessary input parameters include precipitation, air temperature, potential evapotranspiration (PET), soil properties and thickness, and estimates of bulk permeability from geologic units. Data necessary for calibration includes snow cover, reservoir volumes (from satellite data and historic, pre-reservoir elevation data) and streamflow measurements. Global datasets for precipitation, air temperature, and PET were available at very large spatial scales (50 km) through the world scale databases, finer scale WorldClim climate data, and required downscaling to fine scales for model input. Soils data were available through world scale soil maps but required parameterization on the basis of textural data to estimate soil hydrologic properties. Soil depth was interpreted from geomorphologic interpretation and maps of quaternary deposits, and geologic materials were categorized from generalized geologic maps of each country. Estimates of bedrock permeability were made on the basis of literature and data on driller’s logs and adjusted during calibration of the model to streamflow measurements where available. Results of historical water balance calculations throughout the Tigris and Euphrates River basins will be shown along with details of processing input data to provide spatial continuity and downscaling. Basic water availability analysis for recharge and runoff is readily available from a determinisitic solar radiation energy balance model and a global potential evapotranspiration model and global estimates of precipitation and air temperature. Future climate estimates can be readily applied to the same water and energy balance models to evaluate future water availability for countries around the globe.

  19. The Parallel System for Integrating Impact Models and Sectors (pSIMS)

    NASA Technical Reports Server (NTRS)

    Elliott, Joshua; Kelly, David; Chryssanthacopoulos, James; Glotter, Michael; Jhunjhnuwala, Kanika; Best, Neil; Wilde, Michael; Foster, Ian

    2014-01-01

    We present a framework for massively parallel climate impact simulations: the parallel System for Integrating Impact Models and Sectors (pSIMS). This framework comprises a) tools for ingesting and converting large amounts of data to a versatile datatype based on a common geospatial grid; b) tools for translating this datatype into custom formats for site-based models; c) a scalable parallel framework for performing large ensemble simulations, using any one of a number of different impacts models, on clusters, supercomputers, distributed grids, or clouds; d) tools and data standards for reformatting outputs to common datatypes for analysis and visualization; and e) methodologies for aggregating these datatypes to arbitrary spatial scales such as administrative and environmental demarcations. By automating many time-consuming and error-prone aspects of large-scale climate impacts studies, pSIMS accelerates computational research, encourages model intercomparison, and enhances reproducibility of simulation results. We present the pSIMS design and use example assessments to demonstrate its multi-model, multi-scale, and multi-sector versatility.

  20. Multiresolution comparison of precipitation datasets for large-scale models

    NASA Astrophysics Data System (ADS)

    Chun, K. P.; Sapriza Azuri, G.; Davison, B.; DeBeer, C. M.; Wheater, H. S.

    2014-12-01

    Gridded precipitation datasets are crucial for driving large-scale models which are related to weather forecast and climate research. However, the quality of precipitation products is usually validated individually. Comparisons between gridded precipitation products along with ground observations provide another avenue for investigating how the precipitation uncertainty would affect the performance of large-scale models. In this study, using data from a set of precipitation gauges over British Columbia and Alberta, we evaluate several widely used North America gridded products including the Canadian Gridded Precipitation Anomalies (CANGRD), the National Center for Environmental Prediction (NCEP) reanalysis, the Water and Global Change (WATCH) project, the thin plate spline smoothing algorithms (ANUSPLIN) and Canadian Precipitation Analysis (CaPA). Based on verification criteria for various temporal and spatial scales, results provide an assessment of possible applications for various precipitation datasets. For long-term climate variation studies (~100 years), CANGRD, NCEP, WATCH and ANUSPLIN have different comparative advantages in terms of their resolution and accuracy. For synoptic and mesoscale precipitation patterns, CaPA provides appealing performance of spatial coherence. In addition to the products comparison, various downscaling methods are also surveyed to explore new verification and bias-reduction methods for improving gridded precipitation outputs for large-scale models.

  1. Spatial heterogeneity in ecologically important climate variables at coarse and fine scales in a high-snow mountain landscape.

    PubMed

    Ford, Kevin R; Ettinger, Ailene K; Lundquist, Jessica D; Raleigh, Mark S; Hille Ris Lambers, Janneke

    2013-01-01

    Climate plays an important role in determining the geographic ranges of species. With rapid climate change expected in the coming decades, ecologists have predicted that species ranges will shift large distances in elevation and latitude. However, most range shift assessments are based on coarse-scale climate models that ignore fine-scale heterogeneity and could fail to capture important range shift dynamics. Moreover, if climate varies dramatically over short distances, some populations of certain species may only need to migrate tens of meters between microhabitats to track their climate as opposed to hundreds of meters upward or hundreds of kilometers poleward. To address these issues, we measured climate variables that are likely important determinants of plant species distributions and abundances (snow disappearance date and soil temperature) at coarse and fine scales at Mount Rainier National Park in Washington State, USA. Coarse-scale differences across the landscape such as large changes in elevation had expected effects on climatic variables, with later snow disappearance dates and lower temperatures at higher elevations. However, locations separated by small distances (∼20 m), but differing by vegetation structure or topographic position, often experienced differences in snow disappearance date and soil temperature as great as locations separated by large distances (>1 km). Tree canopy gaps and topographic depressions experienced later snow disappearance dates than corresponding locations under intact canopy and on ridges. Additionally, locations under vegetation and on topographic ridges experienced lower maximum and higher minimum soil temperatures. The large differences in climate we observed over small distances will likely lead to complex range shift dynamics and could buffer species from the negative effects of climate change.

  2. Spatial Heterogeneity in Ecologically Important Climate Variables at Coarse and Fine Scales in a High-Snow Mountain Landscape

    PubMed Central

    Ford, Kevin R.; Ettinger, Ailene K.; Lundquist, Jessica D.; Raleigh, Mark S.; Hille Ris Lambers, Janneke

    2013-01-01

    Climate plays an important role in determining the geographic ranges of species. With rapid climate change expected in the coming decades, ecologists have predicted that species ranges will shift large distances in elevation and latitude. However, most range shift assessments are based on coarse-scale climate models that ignore fine-scale heterogeneity and could fail to capture important range shift dynamics. Moreover, if climate varies dramatically over short distances, some populations of certain species may only need to migrate tens of meters between microhabitats to track their climate as opposed to hundreds of meters upward or hundreds of kilometers poleward. To address these issues, we measured climate variables that are likely important determinants of plant species distributions and abundances (snow disappearance date and soil temperature) at coarse and fine scales at Mount Rainier National Park in Washington State, USA. Coarse-scale differences across the landscape such as large changes in elevation had expected effects on climatic variables, with later snow disappearance dates and lower temperatures at higher elevations. However, locations separated by small distances (∼20 m), but differing by vegetation structure or topographic position, often experienced differences in snow disappearance date and soil temperature as great as locations separated by large distances (>1 km). Tree canopy gaps and topographic depressions experienced later snow disappearance dates than corresponding locations under intact canopy and on ridges. Additionally, locations under vegetation and on topographic ridges experienced lower maximum and higher minimum soil temperatures. The large differences in climate we observed over small distances will likely lead to complex range shift dynamics and could buffer species from the negative effects of climate change. PMID:23762277

  3. Statistical Downscaling in Multi-dimensional Wave Climate Forecast

    NASA Astrophysics Data System (ADS)

    Camus, P.; Méndez, F. J.; Medina, R.; Losada, I. J.; Cofiño, A. S.; Gutiérrez, J. M.

    2009-04-01

    Wave climate at a particular site is defined by the statistical distribution of sea state parameters, such as significant wave height, mean wave period, mean wave direction, wind velocity, wind direction and storm surge. Nowadays, long-term time series of these parameters are available from reanalysis databases obtained by numerical models. The Self-Organizing Map (SOM) technique is applied to characterize multi-dimensional wave climate, obtaining the relevant "wave types" spanning the historical variability. This technique summarizes multi-dimension of wave climate in terms of a set of clusters projected in low-dimensional lattice with a spatial organization, providing Probability Density Functions (PDFs) on the lattice. On the other hand, wind and storm surge depend on instantaneous local large-scale sea level pressure (SLP) fields while waves depend on the recent history of these fields (say, 1 to 5 days). Thus, these variables are associated with large-scale atmospheric circulation patterns. In this work, a nearest-neighbors analog method is used to predict monthly multi-dimensional wave climate. This method establishes relationships between the large-scale atmospheric circulation patterns from numerical models (SLP fields as predictors) with local wave databases of observations (monthly wave climate SOM PDFs as predictand) to set up statistical models. A wave reanalysis database, developed by Puertos del Estado (Ministerio de Fomento), is considered as historical time series of local variables. The simultaneous SLP fields calculated by NCEP atmospheric reanalysis are used as predictors. Several applications with different size of sea level pressure grid and with different temporal domain resolution are compared to obtain the optimal statistical model that better represents the monthly wave climate at a particular site. In this work we examine the potential skill of this downscaling approach considering perfect-model conditions, but we will also analyze the suitability of this methodology to be used for seasonal forecast and for long-term climate change scenario projection of wave climate.

  4. iClimate: a climate data and analysis portal

    NASA Astrophysics Data System (ADS)

    Goodman, P. J.; Russell, J. L.; Merchant, N.; Miller, S. J.; Juneja, A.

    2015-12-01

    We will describe a new climate data and analysis portal called iClimate that facilitates direct comparisons between available climate observations and climate simulations. Modeled after the successful iPlant Collaborative Discovery Environment (www.iplantcollaborative.org) that allows plant scientists to trade and share environmental, physiological and genetic data and analyses, iClimate provides an easy-to-use platform for large-scale climate research, including the storage, sharing, automated preprocessing, analysis and high-end visualization of large and often disparate observational and model datasets. iClimate will promote data exploration and scientific discovery by providing: efficient and high-speed transfer of data from nodes around the globe (e.g. PCMDI and NASA); standardized and customized data/model metrics; efficient subsampling of datasets based on temporal period, geographical region or variable; and collaboration tools for sharing data, workflows, analysis results, and data visualizations with collaborators or with the community at large. We will present iClimate's capabilities, and demonstrate how it will simplify and enhance the ability to do basic or cutting-edge climate research by professionals, laypeople and students.

  5. Modelling the influence of land-use changes on biophysical and biochemical interactions at regional and global scales.

    PubMed

    Devaraju, N; Bala, G; Nemani, R

    2015-09-01

    Land-use changes since the start of the industrial era account for nearly one-third of the cumulative anthropogenic CO2 emissions. In addition to the greenhouse effect of CO2 emissions, changes in land use also affect climate via changes in surface physical properties such as albedo, evapotranspiration and roughness length. Recent modelling studies suggest that these biophysical components may be comparable with biochemical effects. In regard to climate change, the effects of these two distinct processes may counterbalance one another both regionally and, possibly, globally. In this article, through hypothetical large-scale deforestation simulations using a global climate model, we contrast the implications of afforestation on ameliorating or enhancing anthropogenic contributions from previously converted (agricultural) land surfaces. Based on our review of past studies on this subject, we conclude that the sum of both biophysical and biochemical effects should be assessed when large-scale afforestation is used for countering global warming, and the net effect on global mean temperature change depends on the location of deforestation/afforestation. Further, although biochemical effects trigger global climate change, biophysical effects often cause strong local and regional climate change. The implication of the biophysical effects for adaptation and mitigation of climate change in agriculture and agroforestry sectors is discussed. © 2014 John Wiley & Sons Ltd.

  6. Response of wheat yield in Spain to large-scale patterns

    NASA Astrophysics Data System (ADS)

    Hernandez-Barrera, Sara; Rodriguez-Puebla, Concepcion

    2016-04-01

    Crops are vulnerable to extreme climate conditions as drought, heat stress and frost risk. In previous study we have quantified the influence of these climate conditions for winter wheat in Spain (Hernandez-Barrera et al. 2015). The climate extremes respond to large-scale atmospheric and oceanic patterns. Therefore, a question emerges in our investigation: How large-scale patterns affect wheat yield? Obtaining and understanding these relationships require different approaches. In this study, we first obtained the leading mode of observed wheat yield variability to characterize the common variability over different provinces in Spain. Then, the wheat variability is related to different modes of mean sea level pressure, jet stream and sea surface temperature by using Partial Least-Squares, which captures the relevant climate drivers accounting for variations in wheat yield from sowing to harvesting. We used the ERA-Interim reanalysis data and the Extended Reconstructed Sea Surface Temperature (SST) (ERSST v3b). The derived model provides insight about the teleconnections between wheat yield and atmospheric and oceanic circulations, which is considered to project the wheat yield trend under global warming using outputs of twelve climate models corresponding to the Coupled Models Intercomparison Project phase 5 (CMIP5). Hernandez-Barrera S., C. Rodríguez-Puebla and A.J. Challinor. Effects of diurnal temperature range and drought on wheat yield in Spain. Theoretical and Applied Climatology (submitted)

  7. Locally Downscaled and Spatially Customizable Climate Data for Historical and Future Periods for North America

    PubMed Central

    Wang, Tongli; Hamann, Andreas; Spittlehouse, Dave; Carroll, Carlos

    2016-01-01

    Large volumes of gridded climate data have become available in recent years including interpolated historical data from weather stations and future predictions from general circulation models. These datasets, however, are at various spatial resolutions that need to be converted to scales meaningful for applications such as climate change risk and impact assessments or sample-based ecological research. Extracting climate data for specific locations from large datasets is not a trivial task and typically requires advanced GIS and data management skills. In this study, we developed a software package, ClimateNA, that facilitates this task and provides a user-friendly interface suitable for resource managers and decision makers as well as scientists. The software locally downscales historical and future monthly climate data layers into scale-free point estimates of climate values for the entire North American continent. The software also calculates a large number of biologically relevant climate variables that are usually derived from daily weather data. ClimateNA covers 1) 104 years of historical data (1901–2014) in monthly, annual, decadal and 30-year time steps; 2) three paleoclimatic periods (Last Glacial Maximum, Mid Holocene and Last Millennium); 3) three future periods (2020s, 2050s and 2080s); and 4) annual time-series of model projections for 2011–2100. Multiple general circulation models (GCMs) were included for both paleo and future periods, and two representative concentration pathways (RCP4.5 and 8.5) were chosen for future climate data. PMID:27275583

  8. Locally Downscaled and Spatially Customizable Climate Data for Historical and Future Periods for North America.

    PubMed

    Wang, Tongli; Hamann, Andreas; Spittlehouse, Dave; Carroll, Carlos

    2016-01-01

    Large volumes of gridded climate data have become available in recent years including interpolated historical data from weather stations and future predictions from general circulation models. These datasets, however, are at various spatial resolutions that need to be converted to scales meaningful for applications such as climate change risk and impact assessments or sample-based ecological research. Extracting climate data for specific locations from large datasets is not a trivial task and typically requires advanced GIS and data management skills. In this study, we developed a software package, ClimateNA, that facilitates this task and provides a user-friendly interface suitable for resource managers and decision makers as well as scientists. The software locally downscales historical and future monthly climate data layers into scale-free point estimates of climate values for the entire North American continent. The software also calculates a large number of biologically relevant climate variables that are usually derived from daily weather data. ClimateNA covers 1) 104 years of historical data (1901-2014) in monthly, annual, decadal and 30-year time steps; 2) three paleoclimatic periods (Last Glacial Maximum, Mid Holocene and Last Millennium); 3) three future periods (2020s, 2050s and 2080s); and 4) annual time-series of model projections for 2011-2100. Multiple general circulation models (GCMs) were included for both paleo and future periods, and two representative concentration pathways (RCP4.5 and 8.5) were chosen for future climate data.

  9. Climate model biases in jet streams, blocking and storm tracks resulting from missing orographic drag

    NASA Astrophysics Data System (ADS)

    Pithan, Felix; Shepherd, Theodore G.; Zappa, Giuseppe; Sandu, Irina

    2016-07-01

    State-of-the art climate models generally struggle to represent important features of the large-scale circulation. Common model deficiencies include an equatorward bias in the location of the midlatitude westerlies and an overly zonal orientation of the North Atlantic storm track. Orography is known to strongly affect the atmospheric circulation and is notoriously difficult to represent in coarse-resolution climate models. Yet how the representation of orography affects circulation biases in current climate models is not understood. Here we show that the effects of switching off the parameterization of drag from low-level orographic blocking in one climate model resemble the biases of the Coupled Model Intercomparison Project Phase 5 ensemble: An overly zonal wintertime North Atlantic storm track and less European blocking events, and an equatorward shift in the Southern Hemispheric jet and increase in the Southern Annular Mode time scale. This suggests that typical circulation biases in coarse-resolution climate models may be alleviated by improved parameterizations of low-level drag.

  10. Signal to noise quantification of regional climate projections

    NASA Astrophysics Data System (ADS)

    Li, S.; Rupp, D. E.; Mote, P.

    2016-12-01

    One of the biggest challenges in interpreting climate model outputs for impacts studies and adaptation planning is understanding the sources of disagreement among models (which is often used imperfectly as a stand-in for system uncertainty). Internal variability is a primary source of uncertainty in climate projections, especially for precipitation, for which models disagree about even the sign of changes in large areas like the continental US. Taking advantage of a large initial-condition ensemble of regional climate simulations, this study quantifies the magnitude of changes forced by increasing greenhouse gas concentrations relative to internal variability. Results come from a large initial-condition ensemble of regional climate model simulations generated by weather@home, a citizen science computing platform, where the western United States climate was simulated for the recent past (1985-2014) and future (2030-2059) using a 25-km horizontal resolution regional climate model (HadRM3P) nested in global atmospheric model (HadAM3P). We quantify grid point level signal-to-noise not just in temperature and precipitation responses, but also the energy and moisture flux terms that are related to temperature and precipitation responses, to provide important insights regarding uncertainty in climate change projections at local and regional scales. These results will aid modelers in determining appropriate ensemble sizes for different climate variables and help users of climate model output with interpreting climate model projections.

  11. weather@home 2: validation of an improved global-regional climate modelling system

    NASA Astrophysics Data System (ADS)

    Guillod, Benoit P.; Jones, Richard G.; Bowery, Andy; Haustein, Karsten; Massey, Neil R.; Mitchell, Daniel M.; Otto, Friederike E. L.; Sparrow, Sarah N.; Uhe, Peter; Wallom, David C. H.; Wilson, Simon; Allen, Myles R.

    2017-05-01

    Extreme weather events can have large impacts on society and, in many regions, are expected to change in frequency and intensity with climate change. Owing to the relatively short observational record, climate models are useful tools as they allow for generation of a larger sample of extreme events, to attribute recent events to anthropogenic climate change, and to project changes in such events into the future. The modelling system known as weather@home, consisting of a global climate model (GCM) with a nested regional climate model (RCM) and driven by sea surface temperatures, allows one to generate a very large ensemble with the help of volunteer distributed computing. This is a key tool to understanding many aspects of extreme events. Here, a new version of the weather@home system (weather@home 2) with a higher-resolution RCM over Europe is documented and a broad validation of the climate is performed. The new model includes a more recent land-surface scheme in both GCM and RCM, where subgrid-scale land-surface heterogeneity is newly represented using tiles, and an increase in RCM resolution from 50 to 25 km. The GCM performs similarly to the previous version, with some improvements in the representation of mean climate. The European RCM temperature biases are overall reduced, in particular the warm bias over eastern Europe, but large biases remain. Precipitation is improved over the Alps in summer, with mixed changes in other regions and seasons. The model is shown to represent the main classes of regional extreme events reasonably well and shows a good sensitivity to its drivers. In particular, given the improvements in this version of the weather@home system, it is likely that more reliable statements can be made with regards to impact statements, especially at more localized scales.

  12. Evaluating cloud processes in large-scale models: Of idealized case studies, parameterization testbeds and single-column modelling on climate time-scales

    NASA Astrophysics Data System (ADS)

    Neggers, Roel

    2016-04-01

    Boundary-layer schemes have always formed an integral part of General Circulation Models (GCMs) used for numerical weather and climate prediction. The spatial and temporal scales associated with boundary-layer processes and clouds are typically much smaller than those at which GCMs are discretized, which makes their representation through parameterization a necessity. The need for generally applicable boundary-layer parameterizations has motivated many scientific studies, which in effect has created its own active research field in the atmospheric sciences. Of particular interest has been the evaluation of boundary-layer schemes at "process-level". This means that parameterized physics are studied in isolated mode from the larger-scale circulation, using prescribed forcings and excluding any upscale interaction. Although feedbacks are thus prevented, the benefit is an enhanced model transparency, which might aid an investigator in identifying model errors and understanding model behavior. The popularity and success of the process-level approach is demonstrated by the many past and ongoing model inter-comparison studies that have been organized by initiatives such as GCSS/GASS. A red line in the results of these studies is that although most schemes somehow manage to capture first-order aspects of boundary layer cloud fields, there certainly remains room for improvement in many areas. Only too often are boundary layer parameterizations still found to be at the heart of problems in large-scale models, negatively affecting forecast skills of NWP models or causing uncertainty in numerical predictions of future climate. How to break this parameterization "deadlock" remains an open problem. This presentation attempts to give an overview of the various existing methods for the process-level evaluation of boundary-layer physics in large-scale models. This includes i) idealized case studies, ii) longer-term evaluation at permanent meteorological sites (the testbed approach), and iii) process-level evaluation at climate time-scales. The advantages and disadvantages of each approach will be identified and discussed, and some thoughts about possible future developments will be given.

  13. Eco-hydrologic model cascades: Simulating land use and climate change impacts on hydrology, hydraulics and habitats for fish and macroinvertebrates.

    PubMed

    Guse, Björn; Kail, Jochem; Radinger, Johannes; Schröder, Maria; Kiesel, Jens; Hering, Daniel; Wolter, Christian; Fohrer, Nicola

    2015-11-15

    Climate and land use changes affect the hydro- and biosphere at different spatial scales. These changes alter hydrological processes at the catchment scale, which impact hydrodynamics and habitat conditions for biota at the river reach scale. In order to investigate the impact of large-scale changes on biota, a cascade of models at different scales is required. Using scenario simulations, the impact of climate and land use change can be compared along the model cascade. Such a cascade of consecutively coupled models was applied in this study. Discharge and water quality are predicted with a hydrological model at the catchment scale. The hydraulic flow conditions are predicted by hydrodynamic models. The habitat suitability under these hydraulic and water quality conditions is assessed based on habitat models for fish and macroinvertebrates. This modelling cascade was applied to predict and compare the impacts of climate- and land use changes at different scales to finally assess their effects on fish and macroinvertebrates. Model simulations revealed that magnitude and direction of change differed along the modelling cascade. Whilst the hydrological model predicted a relevant decrease of discharge due to climate change, the hydraulic conditions changed less. Generally, the habitat suitability for fish decreased but this was strongly species-specific and suitability even increased for some species. In contrast to climate change, the effect of land use change on discharge was negligible. However, land use change had a stronger impact on the modelled nitrate concentrations affecting the abundances of macroinvertebrates. The scenario simulations for the two organism groups illustrated that direction and intensity of changes in habitat suitability are highly species-dependent. Thus, a joined model analysis of different organism groups combined with the results of hydrological and hydrodynamic models is recommended to assess the impact of climate and land use changes on river ecosystems. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Large-Scale Atmospheric Circulation Patterns Associated with Temperature Extremes as a Basis for Model Evaluation: Methodological Overview and Results

    NASA Astrophysics Data System (ADS)

    Loikith, P. C.; Broccoli, A. J.; Waliser, D. E.; Lintner, B. R.; Neelin, J. D.

    2015-12-01

    Anomalous large-scale circulation patterns often play a key role in the occurrence of temperature extremes. For example, large-scale circulation can drive horizontal temperature advection or influence local processes that lead to extreme temperatures, such as by inhibiting moderating sea breezes, promoting downslope adiabatic warming, and affecting the development of cloud cover. Additionally, large-scale circulation can influence the shape of temperature distribution tails, with important implications for the magnitude of future changes in extremes. As a result of the prominent role these patterns play in the occurrence and character of extremes, the way in which temperature extremes change in the future will be highly influenced by if and how these patterns change. It is therefore critical to identify and understand the key patterns associated with extremes at local to regional scales in the current climate and to use this foundation as a target for climate model validation. This presentation provides an overview of recent and ongoing work aimed at developing and applying novel approaches to identifying and describing the large-scale circulation patterns associated with temperature extremes in observations and using this foundation to evaluate state-of-the-art global and regional climate models. Emphasis is given to anomalies in sea level pressure and 500 hPa geopotential height over North America using several methods to identify circulation patterns, including self-organizing maps and composite analysis. Overall, evaluation results suggest that models are able to reproduce observed patterns associated with temperature extremes with reasonable fidelity in many cases. Model skill is often highest when and where synoptic-scale processes are the dominant mechanisms for extremes, and lower where sub-grid scale processes (such as those related to topography) are important. Where model skill in reproducing these patterns is high, it can be inferred that extremes are being simulated for plausible physical reasons, boosting confidence in future projections of temperature extremes. Conversely, where model skill is identified to be lower, caution should be exercised in interpreting future projections.

  15. Ecological Assimilation of Land and Climate Observations - the EALCO model

    NASA Astrophysics Data System (ADS)

    Wang, S.; Zhang, Y.; Trishchenko, A.

    2004-05-01

    Ecosystems are intrinsically dynamic and interact with climate at a highly integrated level. Climate variables are the main driving factors in controlling the ecosystem physical, physiological, and biogeochemical processes including energy balance, water balance, photosynthesis, respiration, and nutrient cycling. On the other hand, ecosystems function as an integrity and feedback on the climate system through their control on surface radiation balance, energy partitioning, and greenhouse gases exchange. To improve our capability in climate change impact assessment, a comprehensive ecosystem model is required to address the many interactions between climate change and ecosystems. In addition, different ecosystems can have very different responses to the climate change and its variation. To provide more scientific support for ecosystem impact assessment at national scale, it is imperative that ecosystem models have the capability of assimilating the large scale geospatial information including satellite observations, GIS datasets, and climate model outputs or reanalysis. The EALCO model (Ecological Assimilation of Land and Climate Observations) is developed for such purposes. EALCO includes the comprehensive interactions among ecosystem processes and climate, and assimilates a variety of remote sensing products and GIS database. It provides both national and local scale model outputs for ecosystem responses to climate change including radiation and energy balances, water conditions and hydrological cycles, carbon sequestration and greenhouse gas exchange, and nutrient (N) cycling. These results form the foundation for the assessment of climate change impact on ecosystems, their services, and adaptation options. In this poster, the main algorithms for the radiation, energy, water, carbon, and nitrogen simulations were diagrammed. Sample input data layers at Canada national scale were illustrated. Model outputs including the Canada wide spatial distributions of net radiation, evapotranspiration, gross primary production, net primary production, and net ecosystem production were discussed.

  16. Investigation of models for large-scale meteorological prediction experiments

    NASA Technical Reports Server (NTRS)

    Spar, J.

    1981-01-01

    An attempt is made to compute the contributions of various surface boundary conditions to the monthly mean states generated by the 7 layer, 8 x 10 GISS climate model (Hansen et al., 1980), and also to examine the influence of initial conditions on the model climate simulations. Obvious climatic controls as the shape and rotation of the Earth, the solar radiation, and the dry composition of the atmosphere are fixed, and only the surface boundary conditions are altered in the various climate simulations.

  17. Weak hydrological sensitivity to temperature change over land, independent of climate forcing

    NASA Astrophysics Data System (ADS)

    Samset, Bjorn H.

    2017-04-01

    As the global surface temperature changes, so will patterns and rates of precipitation. Theoretically, these changes can be understood in terms of changes to the energy balance of the atmosphere, caused by introducing drivers of climate change such as greenhouse gases, aerosols and altered insolation. Climate models, however, disagree strongly in their prediction of precipitation changes, both for historical and future emission pathways, and per degree of surface warming in idealized experiments. The latter value, often termed the apparent hydrological sensitivity, has also been found to differ substantially between climate drivers. Here, we present the global and regional hydrological sensitivity (HS) to surface temperature changes, for perturbations to CO2, CH4, sulfate and black carbon concentrations, and solar irradiance. Based on results from 10 climate models participating in the Precipitation Driver and Response Model Intercomparison Project (PDRMIP), we show how modeled global mean precipitation increases by 2-3 % per kelvin of global mean surface warming, independent of driver, when the effects of rapid adjustments are removed. Previously reported differences in response between drivers are therefore mainly ascribable to rapid atmospheric adjustment processes. All models show a sharp contrast in behavior over land and over ocean, with a strong surface temperature driven (slow) ocean HS of 3-5 %/K, while the slow land HS is only 0-2 %/K. Separating the response into convective and large-scale cloud processes, we find larger inter-model differences, in particular over land regions. Large-scale precipitation changes are most relevant at high latitudes, while the equatorial HS is dominated by convective precipitation changes. Black carbon stands out as the driver with the largest inter-model slow HS variability, and also the strongest contrast between a weak land and strong sea response. Convective precipitation in the Arctic and large scale precipitation around the Equator are found to be topics where further model investigations and observational constraints may provide rapid improvements to modelling of the precipitation response to future, CO2 dominated climate change.

  18. Coordinated Parameterization Development and Large-Eddy Simulation for Marine and Arctic Cloud-Topped Boundary Layers

    NASA Technical Reports Server (NTRS)

    Bretherton, Christopher S.

    2002-01-01

    The goal of this project was to compare observations of marine and arctic boundary layers with: (1) parameterization systems used in climate and weather forecast models; and (2) two and three dimensional eddy resolving (LES) models for turbulent fluid flow. Based on this comparison, we hoped to better understand, predict, and parameterize the boundary layer structure and cloud amount, type, and thickness as functions of large scale conditions that are predicted by global climate models. The principal achievements of the project were as follows: (1) Development of a novel boundary layer parameterization for large-scale models that better represents the physical processes in marine boundary layer clouds; and (2) Comparison of column output from the ECMWF global forecast model with observations from the SHEBA experiment. Overall the forecast model did predict most of the major precipitation events and synoptic variability observed over the year of observation of the SHEBA ice camp.

  19. Higher climatological temperature sensitivity of soil carbon in cold than warm climates

    NASA Astrophysics Data System (ADS)

    Koven, Charles D.; Hugelius, Gustaf; Lawrence, David M.; Wieder, William R.

    2017-11-01

    The projected loss of soil carbon to the atmosphere resulting from climate change is a potentially large but highly uncertain feedback to warming. The magnitude of this feedback is poorly constrained by observations and theory, and is disparately represented in Earth system models (ESMs). To assess the climatological temperature sensitivity of soil carbon, we calculate apparent soil carbon turnover times that reflect long-term and broad-scale rates of decomposition. Here, we show that the climatological temperature control on carbon turnover in the top metre of global soils is more sensitive in cold climates than in warm climates and argue that it is critical to capture this emergent ecosystem property in global-scale models. We present a simplified model that explains the observed high cold-climate sensitivity using only the physical scaling of soil freeze-thaw state across climate gradients. Current ESMs fail to capture this pattern, except in an ESM that explicitly resolves vertical gradients in soil climate and carbon turnover. An observed weak tropical temperature sensitivity emerges in a different model that explicitly resolves mineralogical control on decomposition. These results support projections of strong carbon-climate feedbacks from northern soils and demonstrate a method for ESMs to capture this emergent behaviour.

  20. Adapting wheat to uncertain future

    NASA Astrophysics Data System (ADS)

    Semenov, Mikhail; Stratonovitch, Pierre

    2015-04-01

    This study describes integration of climate change projections from the Coupled Model Intercomparison Project Phase 5 (CMIP5) multi-model ensemble with the LARS-WG weather generator, which delivers an attractive option for downscaling of large-scale climate projections from global climate models (GCMs) to local-scale climate scenarios for impact assessments. A subset of 18 GCMs from the CMIP5 ensemble and 2 RCPs, RCP4.5 and RCP8.5, were integrated with LARS-WG. Climate sensitivity indexes for temperature and precipitation were computed for all GCMs and for 21 regions in the world. For computationally demanding impact assessments, where it is not practical to explore all possible combinations of GCM × RCP, climate sensitivity indexes could be used to select a subset of GCMs from CMIP5 with contrasting climate sensitivity. This would allow to quantify uncertainty in impacts resulting from the CMIP5 ensemble by conducting fewer simulation experiments. As an example, an in silico design of wheat ideotype optimised for future climate scenarios in Europe was described. Two contrasting GCMs were selected for the analysis, "hot" HadGEM2-ES and "cool" GISS-E2-R-CC, along with 2 RCPs. Despite large uncertainty in climate projections, several wheat traits were identified as beneficial for the high-yielding wheat ideotypes that could be used as targets for wheat improvement by breeders.

  1. Rainfall From Resolved Rather Than Parameterized Processes Better Represents the Present-Day and Climate Change Response of Moderate Rates in the Community Atmosphere Model

    DOE PAGES

    Kooperman, Gabriel J.; Pritchard, Michael S.; O'Brien, Travis A.; ...

    2018-04-01

    Deficiencies in the parameterizations of convection used in global climate models often lead to a distorted representation of the simulated rainfall intensity distribution (i.e., too much rainfall from weak rain rates). While encouraging improvements in high percentile rainfall intensity have been found as the horizontal resolution of the Community Atmosphere Model is increased to ~25 km, we demonstrate no corresponding improvement in the moderate rain rates that generate the majority of accumulated rainfall. Using a statistical framework designed to emphasize links between precipitation intensity and accumulated rainfall beyond just the frequency distribution, we show that CAM cannot realistically simulate moderatemore » rain rates, and cannot capture their intensification with climate change, even as resolution is increased. However, by separating the parameterized convective and large-scale resolved contributions to total rainfall, we find that the intensity, geographic pattern, and climate change response of CAM's large-scale rain rates are more consistent with observations (TRMM 3B42), superparameterization, and theoretical expectations, despite issues with parameterized convection. Increasing CAM's horizontal resolution does improve the representation of total rainfall intensity, but not due to changes in the intensity of large-scale rain rates, which are surprisingly insensitive to horizontal resolution. Rather, improvements occur through an increase in the relative contribution of the large-scale component to the total amount of accumulated rainfall. Analysis of sensitivities to convective timescale and entrainment rate confirm the importance of these parameters in the possible development of scale-aware parameterizations, but also reveal unrecognized trade-offs from the entanglement of precipitation frequency and total amount.« less

  2. Rainfall From Resolved Rather Than Parameterized Processes Better Represents the Present-Day and Climate Change Response of Moderate Rates in the Community Atmosphere Model

    NASA Astrophysics Data System (ADS)

    Kooperman, Gabriel J.; Pritchard, Michael S.; O'Brien, Travis A.; Timmermans, Ben W.

    2018-04-01

    Deficiencies in the parameterizations of convection used in global climate models often lead to a distorted representation of the simulated rainfall intensity distribution (i.e., too much rainfall from weak rain rates). While encouraging improvements in high percentile rainfall intensity have been found as the horizontal resolution of the Community Atmosphere Model is increased to ˜25 km, we demonstrate no corresponding improvement in the moderate rain rates that generate the majority of accumulated rainfall. Using a statistical framework designed to emphasize links between precipitation intensity and accumulated rainfall beyond just the frequency distribution, we show that CAM cannot realistically simulate moderate rain rates, and cannot capture their intensification with climate change, even as resolution is increased. However, by separating the parameterized convective and large-scale resolved contributions to total rainfall, we find that the intensity, geographic pattern, and climate change response of CAM's large-scale rain rates are more consistent with observations (TRMM 3B42), superparameterization, and theoretical expectations, despite issues with parameterized convection. Increasing CAM's horizontal resolution does improve the representation of total rainfall intensity, but not due to changes in the intensity of large-scale rain rates, which are surprisingly insensitive to horizontal resolution. Rather, improvements occur through an increase in the relative contribution of the large-scale component to the total amount of accumulated rainfall. Analysis of sensitivities to convective timescale and entrainment rate confirm the importance of these parameters in the possible development of scale-aware parameterizations, but also reveal unrecognized trade-offs from the entanglement of precipitation frequency and total amount.

  3. Rainfall From Resolved Rather Than Parameterized Processes Better Represents the Present-Day and Climate Change Response of Moderate Rates in the Community Atmosphere Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kooperman, Gabriel J.; Pritchard, Michael S.; O'Brien, Travis A.

    Deficiencies in the parameterizations of convection used in global climate models often lead to a distorted representation of the simulated rainfall intensity distribution (i.e., too much rainfall from weak rain rates). While encouraging improvements in high percentile rainfall intensity have been found as the horizontal resolution of the Community Atmosphere Model is increased to ~25 km, we demonstrate no corresponding improvement in the moderate rain rates that generate the majority of accumulated rainfall. Using a statistical framework designed to emphasize links between precipitation intensity and accumulated rainfall beyond just the frequency distribution, we show that CAM cannot realistically simulate moderatemore » rain rates, and cannot capture their intensification with climate change, even as resolution is increased. However, by separating the parameterized convective and large-scale resolved contributions to total rainfall, we find that the intensity, geographic pattern, and climate change response of CAM's large-scale rain rates are more consistent with observations (TRMM 3B42), superparameterization, and theoretical expectations, despite issues with parameterized convection. Increasing CAM's horizontal resolution does improve the representation of total rainfall intensity, but not due to changes in the intensity of large-scale rain rates, which are surprisingly insensitive to horizontal resolution. Rather, improvements occur through an increase in the relative contribution of the large-scale component to the total amount of accumulated rainfall. Analysis of sensitivities to convective timescale and entrainment rate confirm the importance of these parameters in the possible development of scale-aware parameterizations, but also reveal unrecognized trade-offs from the entanglement of precipitation frequency and total amount.« less

  4. Hydrologic Impacts of Climate Change: Quantification of Uncertainties (Alexander von Humboldt Medal Lecture)

    NASA Astrophysics Data System (ADS)

    Mujumdar, Pradeep P.

    2014-05-01

    Climate change results in regional hydrologic change. The three prominent signals of global climate change, viz., increase in global average temperatures, rise in sea levels and change in precipitation patterns convert into signals of regional hydrologic change in terms of modifications in water availability, evaporative water demand, hydrologic extremes of floods and droughts, water quality, salinity intrusion in coastal aquifers, groundwater recharge and other related phenomena. A major research focus in hydrologic sciences in recent years has been assessment of impacts of climate change at regional scales. An important research issue addressed in this context deals with responses of water fluxes on a catchment scale to the global climatic change. A commonly adopted methodology for assessing the regional hydrologic impacts of climate change is to use the climate projections provided by the General Circulation Models (GCMs) for specified emission scenarios in conjunction with the process-based hydrologic models to generate the corresponding hydrologic projections. The scaling problem arising because of the large spatial scales at which the GCMs operate compared to those required in distributed hydrologic models, and their inability to satisfactorily simulate the variables of interest to hydrology are addressed by downscaling the GCM simulations to hydrologic scales. Projections obtained with this procedure are burdened with a large uncertainty introduced by the choice of GCMs and emission scenarios, small samples of historical data against which the models are calibrated, downscaling methods used and other sources. Development of methodologies to quantify and reduce such uncertainties is a current area of research in hydrology. In this presentation, an overview of recent research carried out by the author's group on assessment of hydrologic impacts of climate change addressing scale issues and quantification of uncertainties is provided. Methodologies developed with conditional random fields, Dempster-Shafer theory, possibility theory, imprecise probabilities and non-stationary extreme value theory are discussed. Specific applications on uncertainty quantification in impacts on streamflows, evaporative water demands, river water quality and urban flooding are presented. A brief discussion on detection and attribution of hydrologic change at river basin scales, contribution of landuse change and likely alterations in return levels of hydrologic extremes is also provided.

  5. The Role of Arctic Sea Ice in Last Millennium Climate Variability: Model-Proxy Comparisons Using Ensemble Members and Novel Model Experiments.

    NASA Astrophysics Data System (ADS)

    Gertler, C. G.; Monier, E.; Prinn, R. G.

    2016-12-01

    Variability in sea ice extent is a prominent feature of forced simulations of the last millennium and reconstructions of paleoclimate using proxy records. The rapid 20th century decline in sea ice extent is most likely due to greenhouse gas forcing, but the accuracy of future projections depend on the characterization of natural variability. Declining sea ice extent affects regional climate and society, but also plays a large role in Arctic amplification, with implications for mid-latitude circulation and even large-scale climate oscillations. To characterize the effects of natural and anthropogenic climate forcing on sea ice and the related changes in large-scale atmospheric circulation, a combination of instrumental record, paleoclimate reconstructions, and general circulation models can be employed to recreate sea ice extents and the corresponding atmosphere-ocean states. Model output from the last millennium ensemble (LME) is compared to a proxy-based sea ice reconstruction and a global proxy network using a variety of statistical and data assimilation techniques. Further model runs using the Community Earth Systems Model (CESM) are performed with the same inputs as LME but forced with experimental sea ice extents, and results are contextualized within the larger ensemble by a variety of metrics.

  6. Driving terrestrial ecosystem models from space

    NASA Technical Reports Server (NTRS)

    Waring, R. H.

    1993-01-01

    Regional air pollution, land-use conversion, and projected climate change all affect ecosystem processes at large scales. Changes in vegetation cover and growth dynamics can impact the functioning of ecosystems, carbon fluxes, and climate. As a result, there is a need to assess and monitor vegetation structure and function comprehensively at regional to global scales. To provide a test of our present understanding of how ecosystems operate at large scales we can compare model predictions of CO2, O2, and methane exchange with the atmosphere against regional measurements of interannual variation in the atmospheric concentration of these gases. Recent advances in remote sensing of the Earth's surface are beginning to provide methods for estimating important ecosystem variables at large scales. Ecologists attempting to generalize across landscapes have made extensive use of models and remote sensing technology. The success of such ventures is dependent on merging insights and expertise from two distinct fields. Ecologists must provide the understanding of how well models emulate important biological variables and their interactions; experts in remote sensing must provide the biophysical interpretation of complex optical reflectance and radar backscatter data.

  7. Forest landscape models, a tool for understanding the effect of the large-scale and long-term landscape processes

    Treesearch

    Hong S. He; Robert E. Keane; Louis R. Iverson

    2008-01-01

    Forest landscape models have become important tools for understanding large-scale and long-term landscape (spatial) processes such as climate change, fire, windthrow, seed dispersal, insect outbreak, disease propagation, forest harvest, and fuel treatment, because controlled field experiments designed to study the effects of these processes are often not possible (...

  8. Describing Ecosystem Complexity through Integrated Catchment Modeling

    NASA Astrophysics Data System (ADS)

    Shope, C. L.; Tenhunen, J. D.; Peiffer, S.

    2011-12-01

    Land use and climate change have been implicated in reduced ecosystem services (ie: high quality water yield, biodiversity, and agricultural yield. The prediction of ecosystem services expected under future land use decisions and changing climate conditions has become increasingly important. Complex policy and management decisions require the integration of physical, economic, and social data over several scales to assess effects on water resources and ecology. Field-based meteorology, hydrology, soil physics, plant production, solute and sediment transport, economic, and social behavior data were measured in a South Korean catchment. A variety of models are being used to simulate plot and field scale experiments within the catchment. Results from each of the local-scale models provide identification of sensitive, local-scale parameters which are then used as inputs into a large-scale watershed model. We used the spatially distributed SWAT model to synthesize the experimental field data throughout the catchment. The approach of our study was that the range in local-scale model parameter results can be used to define the sensitivity and uncertainty in the large-scale watershed model. Further, this example shows how research can be structured for scientific results describing complex ecosystems and landscapes where cross-disciplinary linkages benefit the end result. The field-based and modeling framework described is being used to develop scenarios to examine spatial and temporal changes in land use practices and climatic effects on water quantity, water quality, and sediment transport. Development of accurate modeling scenarios requires understanding the social relationship between individual and policy driven land management practices and the value of sustainable resources to all shareholders.

  9. Topographic Evolution and Climate Aridification during Continental Collision: Insights from Computer Simulations

    PubMed Central

    2015-01-01

    How do the feedbacks between tectonics, sediment transport and climate work to shape the topographic evolution of the Earth? This question has been widely addressed via numerical models constrained with thermochronological and geomorphological data at scales ranging from local to orogenic. Here we present a novel numerical model that aims at reproducing the interaction between these processes at the continental scale. For this purpose, we combine in a single computer program: 1) a thin-sheet viscous model of continental deformation; 2) a stream-power surface-transport approach; 3) flexural isostasy allowing for the formation of large sedimentary foreland basins; and 4) an orographic precipitation model that reproduces basic climatic effects such as continentality and rain shadow. We quantify the feedbacks between these processes in a synthetic scenario inspired by the India-Asia collision and the growth of the Tibetan Plateau. We identify a feedback between erosion and crustal thickening leading locally to a <50% increase in deformation rates in places where orographic precipitation is concentrated. This climatically-enhanced deformation takes place preferentially at the upwind flank of the growing plateau, specially at the corners of the indenter (syntaxes). We hypothesize that this may provide clues for better understanding the mechanisms underlying the intriguing tectonic aneurisms documented in the Himalayas. At the continental scale, however, the overall distribution of topographic basins and ranges seems insensitive to climatic factors, despite these do have important, sometimes counterintuitive effects on the amount of sediments trapped within the continent. The dry climatic conditions that naturally develop in the interior of the continent, for example, trigger large intra-continental sediment trapping at basins similar to the Tarim Basin because they determine its endorheic/exorheic drainage. These complex climatic-drainage-tectonic interactions make the development of steady-state topography at the continental scale unlikely. PMID:26244662

  10. Topographic Evolution and Climate Aridification during Continental Collision: Insights from Computer Simulations.

    PubMed

    Garcia-Castellanos, Daniel; Jiménez-Munt, Ivone

    2015-01-01

    How do the feedbacks between tectonics, sediment transport and climate work to shape the topographic evolution of the Earth? This question has been widely addressed via numerical models constrained with thermochronological and geomorphological data at scales ranging from local to orogenic. Here we present a novel numerical model that aims at reproducing the interaction between these processes at the continental scale. For this purpose, we combine in a single computer program: 1) a thin-sheet viscous model of continental deformation; 2) a stream-power surface-transport approach; 3) flexural isostasy allowing for the formation of large sedimentary foreland basins; and 4) an orographic precipitation model that reproduces basic climatic effects such as continentality and rain shadow. We quantify the feedbacks between these processes in a synthetic scenario inspired by the India-Asia collision and the growth of the Tibetan Plateau. We identify a feedback between erosion and crustal thickening leading locally to a <50% increase in deformation rates in places where orographic precipitation is concentrated. This climatically-enhanced deformation takes place preferentially at the upwind flank of the growing plateau, specially at the corners of the indenter (syntaxes). We hypothesize that this may provide clues for better understanding the mechanisms underlying the intriguing tectonic aneurisms documented in the Himalayas. At the continental scale, however, the overall distribution of topographic basins and ranges seems insensitive to climatic factors, despite these do have important, sometimes counterintuitive effects on the amount of sediments trapped within the continent. The dry climatic conditions that naturally develop in the interior of the continent, for example, trigger large intra-continental sediment trapping at basins similar to the Tarim Basin because they determine its endorheic/exorheic drainage. These complex climatic-drainage-tectonic interactions make the development of steady-state topography at the continental scale unlikely.

  11. Quantifying the Influence of Dynamics Across Scales on Regional Climate Uncertainty in Western North America

    NASA Astrophysics Data System (ADS)

    Goldenson, Naomi L.

    Uncertainties in climate projections at the regional scale are inevitably larger than those for global mean quantities. Here, focusing on western North American regional climate, several approaches are taken to quantifying uncertainties starting with the output of global climate model projections. Internal variance is found to be an important component of the projection uncertainty up and down the west coast. To quantify internal variance and other projection uncertainties in existing climate models, we evaluate different ensemble configurations. Using a statistical framework to simultaneously account for multiple sources of uncertainty, we find internal variability can be quantified consistently using a large ensemble or an ensemble of opportunity that includes small ensembles from multiple models and climate scenarios. The latter offers the advantage of also producing estimates of uncertainty due to model differences. We conclude that climate projection uncertainties are best assessed using small single-model ensembles from as many model-scenario pairings as computationally feasible. We then conduct a small single-model ensemble of simulations using the Model for Prediction Across Scales with physics from the Community Atmosphere Model Version 5 (MPAS-CAM5) and prescribed historical sea surface temperatures. In the global variable resolution domain, the finest resolution (at 30 km) is in our region of interest over western North America and upwind over the northeast Pacific. In the finer-scale region, extreme precipitation from atmospheric rivers (ARs) is connected to tendencies in seasonal snowpack in mountains of the Northwest United States and California. In most of the Cascade Mountains, winters with more AR days are associated with less snowpack, in contrast to the northern Rockies and California's Sierra Nevadas. In snowpack observations and reanalysis of the atmospheric circulation, we find similar relationships between frequency of AR events and winter season snowpack in the western United States. In spring, however, there is not a clear relationship between number of AR days and seasonal mean snowpack across the model ensemble, so caution is urged in interpreting the historical record in the spring season. Finally, the representation of the El Nino Southern Oscillation (ENSO)--an important source of interannual climate predictability in some regions--is explored in a large single-model ensemble using ensemble Empirical Orthogonal Functions (EOFs) to find modes of variance across the entire ensemble at once. The leading EOF is ENSO. The principal components (PCs) of the next three EOFs exhibit a lead-lag relationship with the ENSO signal captured in the first PC. The second PC, with most of its variance in the summer season, is the most strongly cross-correlated with the first. This approach offers insight into how the model considered represents this important atmosphere-ocean interaction. Taken together these varied approaches quantify the implications of climate projections regionally, identify processes that make snowpack water resources vulnerable, and seek insight into how to better simulate the large-scale climate modes controlling regional variability.

  12. Future changes in large-scale transport and stratosphere-troposphere exchange

    NASA Astrophysics Data System (ADS)

    Abalos, M.; Randel, W. J.; Kinnison, D. E.; Garcia, R. R.

    2017-12-01

    Future changes in large-scale transport are investigated in long-term (1955-2099) simulations of the Community Earth System Model - Whole Atmosphere Community Climate Model (CESM-WACCM) under an RCP6.0 climate change scenario. We examine artificial passive tracers in order to isolate transport changes from future changes in emissions and chemical processes. The model suggests enhanced stratosphere-troposphere exchange in both directions (STE), with decreasing tropospheric and increasing stratospheric tracer concentrations in the troposphere. Changes in the different transport processes are evaluated using the Transformed Eulerian Mean continuity equation, including parameterized convective transport. Dynamical changes associated with the rise of the tropopause height are shown to play a crucial role on future transport trends.

  13. Towards an automatic statistical model for seasonal precipitation prediction and its application to Central and South Asian headwater catchments

    NASA Astrophysics Data System (ADS)

    Gerlitz, Lars; Gafurov, Abror; Apel, Heiko; Unger-Sayesteh, Katy; Vorogushyn, Sergiy; Merz, Bruno

    2016-04-01

    Statistical climate forecast applications typically utilize a small set of large scale SST or climate indices, such as ENSO, PDO or AMO as predictor variables. If the predictive skill of these large scale modes is insufficient, specific predictor variables such as customized SST patterns are frequently included. Hence statistically based climate forecast models are either based on a fixed number of climate indices (and thus might not consider important predictor variables) or are highly site specific and barely transferable to other regions. With the aim of developing an operational seasonal forecast model, which is easily transferable to any region in the world, we present a generic data mining approach which automatically selects potential predictors from gridded SST observations and reanalysis derived large scale atmospheric circulation patterns and generates robust statistical relationships with posterior precipitation anomalies for user selected target regions. Potential predictor variables are derived by means of a cellwise correlation analysis of precipitation anomalies with gridded global climate variables under consideration of varying lead times. Significantly correlated grid cells are subsequently aggregated to predictor regions by means of a variability based cluster analysis. Finally for every month and lead time, an individual random forest based forecast model is automatically calibrated and evaluated by means of the preliminary generated predictor variables. The model is exemplarily applied and evaluated for selected headwater catchments in Central and South Asia. Particularly the for winter and spring precipitation (which is associated with westerly disturbances in the entire target domain) the model shows solid results with correlation coefficients up to 0.7, although the variability of precipitation rates is highly underestimated. Likewise for the monsoonal precipitation amounts in the South Asian target areas a certain skill of the model could be detected. The skill of the model for the dry summer season in Central Asia and the transition seasons over South Asia is found to be low. A sensitivity analysis by means on well known climate indices reveals the major large scale controlling mechanisms for the seasonal precipitation climate of each target area. For the Central Asian target areas, both, the El Nino Southern Oscillation and the North Atlantic Oscillation are identified as important controlling factors for precipitation totals during moist spring season. Drought conditions are found to be triggered by a warm ENSO phase in combination with a positive phase of the NAO. For the monsoonal summer precipitation amounts over Southern Asia, the model suggests a distinct negative response to El Nino events.

  14. An integrated model for assessing both crop productivity and agricultural water resources at a large scale

    NASA Astrophysics Data System (ADS)

    Okada, M.; Sakurai, G.; Iizumi, T.; Yokozawa, M.

    2012-12-01

    Agricultural production utilizes regional resources (e.g. river water and ground water) as well as local resources (e.g. temperature, rainfall, solar energy). Future climate changes and increasing demand due to population increases and economic developments would intensively affect the availability of water resources for agricultural production. While many studies assessed the impacts of climate change on agriculture, there are few studies that dynamically account for changes in water resources and crop production. This study proposes an integrated model for assessing both crop productivity and agricultural water resources at a large scale. Also, the irrigation management to subseasonal variability in weather and crop response varies for each region and each crop. To deal with such variations, we used the Markov Chain Monte Carlo technique to quantify regional-specific parameters associated with crop growth and irrigation water estimations. We coupled a large-scale crop model (Sakurai et al. 2012), with a global water resources model, H08 (Hanasaki et al. 2008). The integrated model was consisting of five sub-models for the following processes: land surface, crop growth, river routing, reservoir operation, and anthropogenic water withdrawal. The land surface sub-model was based on a watershed hydrology model, SWAT (Neitsch et al. 2009). Surface and subsurface runoffs simulated by the land surface sub-model were input to the river routing sub-model of the H08 model. A part of regional water resources available for agriculture, simulated by the H08 model, was input as irrigation water to the land surface sub-model. The timing and amount of irrigation water was simulated at a daily step. The integrated model reproduced the observed streamflow in an individual watershed. Additionally, the model accurately reproduced the trends and interannual variations of crop yields. To demonstrate the usefulness of the integrated model, we compared two types of impact assessment of climate change on crop productivity in a watershed. The first was carried out by the large-scale crop model alone. The second was carried out by the integrated model of the large-scale crop model and the H08 model. The former projected that changes in temperature and precipitation due to future climate change would give rise to increasing the water stress in crops. Nevertheless, the latter projected that the increasing amount of agricultural water resources in the watershed would supply sufficient amount of water for irrigation, consequently reduce the water stress. The integrated model demonstrated the importance of taking into account the water circulation in watershed when predicting the regional crop production.

  15. Natural and drought scenarios in an east central Amazon forest: Fidelity of the Community Land Model 3.5 with three biogeochemical models

    NASA Astrophysics Data System (ADS)

    Sakaguchi, Koichi; Zeng, Xubin; Christoffersen, Bradley J.; Restrepo-Coupe, Natalia; Saleska, Scott R.; Brando, Paulo M.

    2011-03-01

    Recent development of general circulation models involves biogeochemical cycles: flows of carbon and other chemical species that circulate through the Earth system. Such models are valuable tools for future projections of climate, but still bear large uncertainties in the model simulations. One of the regions with especially high uncertainty is the Amazon forest where large-scale dieback associated with the changing climate is predicted by several models. In order to better understand the capability and weakness of global-scale land-biogeochemical models in simulating a tropical ecosystem under the present day as well as significantly drier climates, we analyzed the off-line simulations for an east central Amazon forest by the Community Land Model version 3.5 of the National Center for Atmospheric Research and its three independent biogeochemical submodels (CASA', CN, and DGVM). Intense field measurements carried out under Large Scale Biosphere-Atmosphere Experiment in Amazonia, including forest response to drought from a throughfall exclusion experiment, are utilized to evaluate the whole spectrum of biogeophysical and biogeochemical aspects of the models. Our analysis shows reasonable correspondence in momentum and energy turbulent fluxes, but it highlights three processes that are not in agreement with observations: (1) inconsistent seasonality in carbon fluxes, (2) biased biomass size and allocation, and (3) overestimation of vegetation stress to short-term drought but underestimation of biomass loss from long-term drought. Without resolving these issues the modeled feedbacks from the biosphere in future climate projections would be questionable. We suggest possible directions for model improvements and also emphasize the necessity of more studies using a variety of in situ data for both driving and evaluating land-biogeochemical models.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Shipeng; Wang, Minghuai; Ghan, Steven J.

    Aerosol–cloud interactions continue to constitute a major source of uncertainty for the estimate of climate radiative forcing. The variation of aerosol indirect effects (AIE) in climate models is investigated across different dynamical regimes, determined by monthly mean 500 hPa vertical pressure velocity ( ω 500), lower-tropospheric stability (LTS) and large-scale surface precipitation rate derived from several global climate models (GCMs), with a focus on liquid water path (LWP) response to cloud condensation nuclei (CCN) concentrations. The LWP sensitivity to aerosol perturbation within dynamic regimes is found to exhibit a large spread among these GCMs. It is in regimes of strongmore » large-scale ascent ( ω 500  <  −25 hPa day −1) and low clouds (stratocumulus and trade wind cumulus) where the models differ most. Shortwave aerosol indirect forcing is also found to differ significantly among different regimes. Shortwave aerosol indirect forcing in ascending regimes is close to that in subsidence regimes, which indicates that regimes with strong large-scale ascent are as important as stratocumulus regimes in studying AIE. It is further shown that shortwave aerosol indirect forcing over regions with high monthly large-scale surface precipitation rate (> 0.1 mm day −1) contributes the most to the total aerosol indirect forcing (from 64 to nearly 100 %). Results show that the uncertainty in AIE is even larger within specific dynamical regimes compared to the uncertainty in its global mean values, pointing to the need to reduce the uncertainty in AIE in different dynamical regimes.« less

  17. Climatological temperature senstivity of soil carbon turnover: Observations, simple scaling models, and ESMs

    NASA Astrophysics Data System (ADS)

    Koven, C. D.; Hugelius, G.; Lawrence, D. M.; Wieder, W. R.

    2016-12-01

    The projected loss of soil carbon to the atmosphere resulting from climate change is a potentially large but highly uncertain feedback to warming. The magnitude of this feedback is poorly constrained by observations and theory, and is disparately represented in Earth system models. To assess the likely long-term response of soils to climate change, spatial gradients in soil carbon turnover times can identify broad-scale and long-term controls on the rate of carbon cycling as a function of climate and other factors. Here we show that the climatological temperature control on carbon turnover in the top meter of global soils is more sensitive in cold climates than in warm ones. We present a simplified model that explains the high cold-climate sensitivity using only the physical scaling of soil freeze-thaw state across climate gradients. Critically, current Earth system models (ESMs) fail to capture this pattern, however it emerges from an ESM that explicitly resolves vertical gradients in soil climate and turnover. The weak tropical temperature sensitivity emerges from a different model that explicitly resolves mineralogical control on decomposition. These results support projections of strong future carbon-climate feedbacks from northern soils and demonstrate a method for ESMs to capture this emergent behavior.

  18. Planetary boundary layer as an essential component of the earth's climate system

    NASA Astrophysics Data System (ADS)

    Davy, Richard; Esau, Igor

    2015-04-01

    Following the traditional engineering approach proposed by Prandtl, the turbulent planetary boundary layers (PBLs) are considered in the climate science as complex, non-linear, essential but nevertheless subordinated components of the earth's climate system. Correspondingly, the temperature variations, dT - a popular and practically important measure of the climate variability, are seen as the system's response to the external heat forcing, Q, e.g. in the energy balance model of the type dT=Q/C (1). The moderation of this response by non-linear feedbacks embedded in the effective heat capacity, C, are to a large degree overlooked. The effective heat capacity is globally determined by the depth of the ocean mixed layer (on multi-decadal and longer time scales) but regionally, over the continents, C is much smaller and determined (on decadal time scales) by the depth, h, of the PBL. The present understanding of the climatological features of turbulent boundary layers is set by the works of Frankignoul & Hasselmann (1976) and Manabe & Stauffer (1980). The former explained how large-scale climate anomalies could be generated in the case of a large C (in the sea surface temperature) by the delta-correlated stochastic forcing (white noise). The latter demonstrated that the climate response to a given forcing is moderated by the depth, h, so that in the shallow PBL the signal should be significantly amplified. At present there are more than 3000 publications (ISI Web of Knowledge) which detail this understanding but the physical mechanisms, which control the boundary layer depth, and statistical relationships between the turbulent and climatological measures remain either unexplored or incorrectly attributed. In order to identify the climatic role of the PBL, the relationships between the PBL depth, h, - as the integral measure of the turbulent processes and micro-circulations due to the surface heterogeneity - and the climatic variability (variations and trends) of temperature have to be established. These relationships are necessary to complete the model (1) where the relationships between temperature variability, dT, and heat forcing, Q, are intensively studied. We demonstrate that the statistical dependences between dT and h becomes the primary factor in controlling the climate features of the earth's climate system when h is shallow (less than about 500 m). Such conditions are found in the cold (with negative surface heat balance on average) and dry (with large-scale air subsidence) climates. To get those climates and their variations correct, the climate models must be able to reproduce the shallow stably-stratified PBL. We show that the present-day CMIP-5 models are systematically and strongly biased towards producing deeper PBLs (between 20-50% deeper than observed) in this part of the parameter space which leads to large errors (around 15 K) and a damped variability of the surface temperatures under these conditions. More generally, this bias indicates that the models represent the earth's cooling processes incorrectly, which may be a part of the puzzle of the observed "hiatus" (or pause) in global warming. Frankignoul, C. & K. Hasselmann, 1977: Stochastic climate models. Part 2, Application to sea-surface temperature anomalies and thermocline variability, Tellus, 29, 289-305. Manabe, S. & R. Stouffer, 1980: Sensitivity of a Global Climate Model to an increase of CO2 concentration in the atmosphere, Journal of Geophysical Research, 85(C10): 5529-5554.

  19. Extratropical Respones to Amazon Deforestation

    NASA Astrophysics Data System (ADS)

    Badger, A.; Dirmeyer, P.

    2014-12-01

    Land-use change (LUC) is known to impact local climate conditions through modifications of land-atmosphere interactions. Large-scale LUC, such as Amazon deforestation, could have a significant effect on the local and regional climates. The question remains as to what the global impact of large-scale LUC could be, as previous modeling studies have shown non-local responses due to Amazon deforestation. A common shortcoming in many previous modeling studies is the use of prescribed ocean conditions, which can act as a boundary condition to dampen the global response with respect to changes in the mean and variability. Using fully coupled modeling simulations with the Community Earth System Model version 1.2.0, the Amazon rainforest has been replaced with a distribution of representative tropical crops. Through the modifications of local land-atmosphere interactions, a significant change in the region, both at the surface and throughout the atmosphere, can be quantified. Accompanying these local changes are significant changes to the atmospheric circulation across all scales, thus modifying regional climates in other locales. Notable impacts include significant changes in precipitation, surface fluxes, basin-wide sea surface temperatures and ENSO behavior.

  20. Interactive Correlation Analysis and Visualization of Climate Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Kwan-Liu

    The relationship between our ability to analyze and extract insights from visualization of climate model output and the capability of the available resources to make those visualizations has reached a crisis point. The large volume of data currently produced by climate models is overwhelming the current, decades-old visualization workflow. The traditional methods for visualizing climate output also have not kept pace with changes in the types of grids used, the number of variables involved, and the number of different simulations performed with a climate model or the feature-richness of high-resolution simulations. This project has developed new and faster methods formore » visualization in order to get the most knowledge out of the new generation of high-resolution climate models. While traditional climate images will continue to be useful, there is need for new approaches to visualization and analysis of climate data if we are to gain all the insights available in ultra-large data sets produced by high-resolution model output and ensemble integrations of climate models such as those produced for the Coupled Model Intercomparison Project. Towards that end, we have developed new visualization techniques for performing correlation analysis. We have also introduced highly scalable, parallel rendering methods for visualizing large-scale 3D data. This project was done jointly with climate scientists and visualization researchers at Argonne National Laboratory and NCAR.« less

  1. Multi-time-scale hydroclimate dynamics of a regional watershed and links to large-scale atmospheric circulation: Application to the Seine river catchment, France

    NASA Astrophysics Data System (ADS)

    Massei, N.; Dieppois, B.; Hannah, D. M.; Lavers, D. A.; Fossa, M.; Laignel, B.; Debret, M.

    2017-03-01

    In the present context of global changes, considerable efforts have been deployed by the hydrological scientific community to improve our understanding of the impacts of climate fluctuations on water resources. Both observational and modeling studies have been extensively employed to characterize hydrological changes and trends, assess the impact of climate variability or provide future scenarios of water resources. In the aim of a better understanding of hydrological changes, it is of crucial importance to determine how and to what extent trends and long-term oscillations detectable in hydrological variables are linked to global climate oscillations. In this work, we develop an approach associating correlation between large and local scales, empirical statistical downscaling and wavelet multiresolution decomposition of monthly precipitation and streamflow over the Seine river watershed, and the North Atlantic sea level pressure (SLP) in order to gain additional insights on the atmospheric patterns associated with the regional hydrology. We hypothesized that: (i) atmospheric patterns may change according to the different temporal wavelengths defining the variability of the signals; and (ii) definition of those hydrological/circulation relationships for each temporal wavelength may improve the determination of large-scale predictors of local variations. The results showed that the links between large and local scales were not necessarily constant according to time-scale (i.e. for the different frequencies characterizing the signals), resulting in changing spatial patterns across scales. This was then taken into account by developing an empirical statistical downscaling (ESD) modeling approach, which integrated discrete wavelet multiresolution analysis for reconstructing monthly regional hydrometeorological processes (predictand: precipitation and streamflow on the Seine river catchment) based on a large-scale predictor (SLP over the Euro-Atlantic sector). This approach basically consisted in three steps: 1 - decomposing large-scale climate and hydrological signals (SLP field, precipitation or streamflow) using discrete wavelet multiresolution analysis, 2 - generating a statistical downscaling model per time-scale, 3 - summing up all scale-dependent models in order to obtain a final reconstruction of the predictand. The results obtained revealed a significant improvement of the reconstructions for both precipitation and streamflow when using the multiresolution ESD model instead of basic ESD. In particular, the multiresolution ESD model handled very well the significant changes in variance through time observed in either precipitation or streamflow. For instance, the post-1980 period, which had been characterized by particularly high amplitudes in interannual-to-interdecadal variability associated with alternating flood and extremely low-flow/drought periods (e.g., winter/spring 2001, summer 2003), could not be reconstructed without integrating wavelet multiresolution analysis into the model. In accordance with previous studies, the wavelet components detected in SLP, precipitation and streamflow on interannual to interdecadal time-scales could be interpreted in terms of influence of the Gulf-Stream oceanic front on atmospheric circulation.

  2. Assessing global vegetation activity using spatio-temporal Bayesian modelling

    NASA Astrophysics Data System (ADS)

    Mulder, Vera L.; van Eck, Christel M.; Friedlingstein, Pierre; Regnier, Pierre A. G.

    2016-04-01

    This work demonstrates the potential of modelling vegetation activity using a hierarchical Bayesian spatio-temporal model. This approach allows modelling changes in vegetation and climate simultaneous in space and time. Changes of vegetation activity such as phenology are modelled as a dynamic process depending on climate variability in both space and time. Additionally, differences in observed vegetation status can be contributed to other abiotic ecosystem properties, e.g. soil and terrain properties. Although these properties do not change in time, they do change in space and may provide valuable information in addition to the climate dynamics. The spatio-temporal Bayesian models were calibrated at a regional scale because the local trends in space and time can be better captured by the model. The regional subsets were defined according to the SREX segmentation, as defined by the IPCC. Each region is considered being relatively homogeneous in terms of large-scale climate and biomes, still capturing small-scale (grid-cell level) variability. Modelling within these regions is hence expected to be less uncertain due to the absence of these large-scale patterns, compared to a global approach. This overall modelling approach allows the comparison of model behavior for the different regions and may provide insights on the main dynamic processes driving the interaction between vegetation and climate within different regions. The data employed in this study encompasses the global datasets for soil properties (SoilGrids), terrain properties (Global Relief Model based on SRTM DEM and ETOPO), monthly time series of satellite-derived vegetation indices (GIMMS NDVI3g) and climate variables (Princeton Meteorological Forcing Dataset). The findings proved the potential of a spatio-temporal Bayesian modelling approach for assessing vegetation dynamics, at a regional scale. The observed interrelationships of the employed data and the different spatial and temporal trends support our hypothesis. That is, the change of vegetation in space and time may be better understood when modelling vegetation change as both a dynamic and multivariate process. Therefore, future research will focus on a multivariate dynamical spatio-temporal modelling approach. This ongoing research is performed within the context of the project "Global impacts of hydrological and climatic extremes on vegetation" (project acronym: SAT-EX) which is part of the Belgian research programme for Earth Observation Stereo III.

  3. Intercomparison of model response and internal variability across climate model ensembles

    NASA Astrophysics Data System (ADS)

    Kumar, Devashish; Ganguly, Auroop R.

    2017-10-01

    Characterization of climate uncertainty at regional scales over near-term planning horizons (0-30 years) is crucial for climate adaptation. Climate internal variability (CIV) dominates climate uncertainty over decadal prediction horizons at stakeholders' scales (regional to local). In the literature, CIV has been characterized indirectly using projections of climate change from multi-model ensembles (MME) instead of directly using projections from multiple initial condition ensembles (MICE), primarily because adequate number of initial condition (IC) runs were not available for any climate model. Nevertheless, the recent availability of significant number of IC runs from one climate model allows for the first time to characterize CIV directly from climate model projections and perform a sensitivity analysis to study the dominance of CIV compared to model response variability (MRV). Here, we measure relative agreement (a dimensionless number with values ranging between 0 and 1, inclusive; a high value indicates less variability and vice versa) among MME and MICE and find that CIV is lower than MRV for all projection time horizons and spatial resolutions for precipitation and temperature. However, CIV exhibits greater dominance over MRV for seasonal and annual mean precipitation at higher latitudes where signals of climate change are expected to emerge sooner. Furthermore, precipitation exhibits large uncertainties and a rapid decline in relative agreement from global to continental, regional, or local scales for MICE compared to MME. The fractional contribution of uncertainty due to CIV is invariant for precipitation and decreases for temperature as lead time progresses towards the end of the century.

  4. Simulating 2,368 temperate lakes reveals weak coherence in stratification phenology

    USGS Publications Warehouse

    Read, Jordan S.; Winslow, Luke A.; Hansen, Gretchen J. A.; Van Den Hoek, Jamon; Hanson, Paul C.; Bruce, Louise C; Markfort, Corey D.

    2014-01-01

    Changes in water temperatures resulting from climate warming can alter the structure and function of aquatic ecosystems. Lake-specific physical characteristics may play a role in mediating individual lake responses to climate. Past mechanistic studies of lake-climate interactions have simulated generic lake classes at large spatial scales or performed detailed analyses of small numbers of real lakes. Understanding the diversity of lake responses to climate change across landscapes requires a hybrid approach that couples site-specific lake characteristics with broad-scale environmental drivers. This study provides a substantial advancement in lake ecosystem modeling by combining open-source tools with freely available continental-scale data to mechanistically model daily temperatures for 2,368 Wisconsin lakes over three decades (1979-2011). The model accurately predicted observed surface layer temperatures (RMSE: 1.74°C) and the presence/absence of stratification (81.1% agreement). Among-lake coherence was strong for surface temperatures and weak for the timing of stratification, suggesting individual lake characteristics mediate some - but not all - ecologically relevant lake responses to climate.

  5. Heat stress increase under climate change twice as large in cities as in rural areas: A study for a densely populated midlatitude maritime region

    NASA Astrophysics Data System (ADS)

    Wouters, Hendrik; De Ridder, Koen; Poelmans, Lien; Willems, Patrick; Brouwers, Johan; Hosseinzadehtalaei, Parisa; Tabari, Hossein; Vanden Broucke, Sam; van Lipzig, Nicole P. M.; Demuzere, Matthias

    2017-09-01

    Urban areas are usually warmer than their surrounding natural areas, an effect known as the urban heat island effect. As such, they are particularly vulnerable to global warming and associated increases in extreme temperatures. Yet ensemble climate-model projections are generally performed on a scale that is too coarse to represent the evolution of temperatures in cities. Here, for the first time, we combine unprecedented long-term (35 years) urban climate model integrations at the convection-permitting scale (2.8 km resolution) with information from an ensemble of general circulation models to assess temperature-based heat stress for Belgium, a densely populated midlatitude maritime region. We discover that the heat stress increase toward the mid-21st century is twice as large in cities compared to their surrounding rural areas. The exacerbation is driven by the urban heat island itself, its concurrence with heat waves, and urban expansion. Cities experience a heat stress multiplication by a factor 1.4 and 15 depending on the scenario. Remarkably, the future heat stress surpasses everywhere the urban hot spots of today. Our results demonstrate the need to combine information from climate models, acting on different scales, for climate change risk assessment in heterogeneous regions. Moreover, these results highlight the necessity for adaptation to increasing heat stress, especially in urban areas.

  6. Reactivity continuum modeling of leaf, root, and wood decomposition across biomes

    NASA Astrophysics Data System (ADS)

    Koehler, Birgit; Tranvik, Lars J.

    2015-07-01

    Large carbon dioxide amounts are released to the atmosphere during organic matter decomposition. Yet the large-scale and long-term regulation of this critical process in global carbon cycling by litter chemistry and climate remains poorly understood. We used reactivity continuum (RC) modeling to analyze the decadal data set of the "Long-term Intersite Decomposition Experiment," in which fine litter and wood decomposition was studied in eight biome types (224 time series). In 32 and 46% of all sites the litter content of the acid-unhydrolyzable residue (AUR, formerly referred to as lignin) and the AUR/nitrogen ratio, respectively, retarded initial decomposition rates. This initial rate-retarding effect generally disappeared within the first year of decomposition, and rate-stimulating effects of nutrients and a rate-retarding effect of the carbon/nitrogen ratio became more prevalent. For needles and leaves/grasses, the influence of climate on decomposition decreased over time. For fine roots, the climatic influence was initially smaller but increased toward later-stage decomposition. The climate decomposition index was the strongest climatic predictor of decomposition. The similar variability in initial decomposition rates across litter categories as across biome types suggested that future changes in decomposition may be dominated by warming-induced changes in plant community composition. In general, the RC model parameters successfully predicted independent decomposition data for the different litter-biome combinations (196 time series). We argue that parameterization of large-scale decomposition models with RC model parameters, as opposed to the currently common discrete multiexponential models, could significantly improve their mechanistic foundation and predictive accuracy across climate zones and litter categories.

  7. Biodiversity and Climate Modeling Workshop Series: Identifying gaps and needs for improving large-scale biodiversity models

    NASA Astrophysics Data System (ADS)

    Weiskopf, S. R.; Myers, B.; Beard, T. D.; Jackson, S. T.; Tittensor, D.; Harfoot, M.; Senay, G. B.

    2017-12-01

    At the global scale, well-accepted global circulation models and agreed-upon scenarios for future climate from the Intergovernmental Panel on Climate Change (IPCC) are available. In contrast, biodiversity modeling at the global scale lacks analogous tools. While there is great interest in development of similar bodies and efforts for international monitoring and modelling of biodiversity at the global scale, equivalent modelling tools are in their infancy. This lack of global biodiversity models compared to the extensive array of general circulation models provides a unique opportunity to bring together climate, ecosystem, and biodiversity modeling experts to promote development of integrated approaches in modeling global biodiversity. Improved models are needed to understand how we are progressing towards the Aichi Biodiversity Targets, many of which are not on track to meet the 2020 goal, threatening global biodiversity conservation, monitoring, and sustainable use. We brought together biodiversity, climate, and remote sensing experts to try to 1) identify lessons learned from the climate community that can be used to improve global biodiversity models; 2) explore how NASA and other remote sensing products could be better integrated into global biodiversity models and 3) advance global biodiversity modeling, prediction, and forecasting to inform the Aichi Biodiversity Targets, the 2030 Sustainable Development Goals, and the Intergovernmental Platform on Biodiversity and Ecosystem Services Global Assessment of Biodiversity and Ecosystem Services. The 1st In-Person meeting focused on determining a roadmap for effective assessment of biodiversity model projections and forecasts by 2030 while integrating and assimilating remote sensing data and applying lessons learned, when appropriate, from climate modeling. Here, we present the outcomes and lessons learned from our first E-discussion and in-person meeting and discuss the next steps for future meetings.

  8. A Dynamic Evaluation Of A Model And An Estimate Of The Air Quality And Regional Climate Impacts Of Enhanced Solar Power Generation

    NASA Astrophysics Data System (ADS)

    Millstein, D.; Brown, N. J.; Zhai, P.; Menon, S.

    2012-12-01

    We use the WRF/Chem model (Weather Research and Forecasting model with chemistry) and pollutant emissions based on the EPA National Emission Inventories from 2005 and 2008 to model regional climate and air quality over the continental United States. Additionally, 2030 emission scenarios are developed to investigate the effects of future enhancements to solar power generation. Modeling covered 6 summer and 6 winter weeks each year. We model feedback between aerosols and meteorology and thus capture direct and indirect aerosol effects. The grid resolution is 25 km and includes no nesting. Between 2005 and 2008 significant emission reductions were reported in the National Emission Inventory. The 2008 weekday emissions over the continental U.S. of SO2 and NO were reduced from 2005 values by 28% and 16%, respectively. Emission reductions of this magnitude are similar in scale to the potential emission reductions from various energy policy initiatives. By evaluating modeled and observed air quality changes from 2005 to 2008, we analyze how well the model represents the effects of historical emission changes. We also gain insight into how well the model might predict the effects of future emission changes. In addition to direct comparisons of model outputs to ground and satellite observations, we compare observed differences between 2005 and 2008 to corresponding modeled differences. Modeling was extended to future scenarios (2030) to simulate air quality and regional climate effects of large-scale adoption of solar power. The 2030-year was selected to allow time for development of solar generation infrastructure. The 2030 emission scenario was scaled, with separate factors for different economic sectors, from the 2008 National Emissions Inventory. The changes to emissions caused by the introduction of large-scale solar power (here assumed to be 10% of total energy generation) are based on results from a parallel project that used an electricity grid model applied over multiple regions across the country. The regional climate and air quality effects of future large-scale solar power adoption are analyzed in the context of uncertainty quantified by the dynamic evaluation of the historical (2005 and 2008) WRF/Chem simulations.

  9. Assessing the effects of fire disturbances on ecosystems: A scientific agenda for research and management

    USGS Publications Warehouse

    Schmoldt, D.L.; Peterson, D.L.; Keane, R.E.; Lenihan, J.M.; McKenzie, D.; Weise, D.R.; Sandberg, D.V.

    1999-01-01

    A team of fire scientists and resource managers convened 17-19 April 1996 in Seattle, Washington, to assess the effects of fire disturbance on ecosystems. Objectives of this workshop were to develop scientific recommendations for future fire research and management activities. These recommendations included a series of numerically ranked scientific and managerial questions and responses focusing on (1) links among fire effects, fuels, and climate; (2) fire as a large-scale disturbance; (3) fire-effects modeling structures; and (4) managerial concerns, applications, and decision support. At the present time, understanding of fire effects and the ability to extrapolate fire-effects knowledge to large spatial scales are limited, because most data have been collected at small spatial scales for specific applications. Although we clearly need more large-scale fire-effects data, it will be more expedient to concentrate efforts on improving and linking existing models that simulate fire effects in a georeferenced format while integrating empirical data as they become available. A significant component of this effort should be improved communication between modelers and managers to develop modeling tools to use in a planning context. Another component of this modeling effort should improve our ability to predict the interactions of fire and potential climatic change at very large spatial scales. The priority issues and approaches described here provide a template for fire science and fire management programs in the next decade and beyond.

  10. Fire modeling in the Brazilian arc of deforestation through nested coupling of atmosphere, dynamic vegetation, LUCC and fire spread models

    NASA Astrophysics Data System (ADS)

    Tourigny, E.; Nobre, C.; Cardoso, M. F.

    2012-12-01

    Deforestation of tropical forests for logging and agriculture, associated to slash-and-burn practices, is a major source of CO2 emissions, both immediate due to biomass burning and future due to the elimination of a potential CO2 sink. Feedbacks between climate change and LUCC (Land-Use and Land-Cover Change) can potentially increase the loss of tropical forests and increase the rate of CO2 emissions, through mechanisms such as land and soil degradation and the increase in wildfire occurrence and severity. However, current understanding of the processes of fires (including ignition, spread and consequences) in tropical forests and climatic feedbacks are poorly understood and need further research. As the processes of LUCC and associated fires occur at local scales, linking them to large-scale atmospheric processes requires a means of up-scaling higher resolutions processes to lower resolutions. Our approach is to couple models which operate at various spatial and temporal scales: a Global Climate Model (GCM), Dynamic Global Vegetation Model (DGVM) and local-scale LUCC and fire spread model. The climate model resolves large scale atmospheric processes and forcings, which are imposed on the surface DGVM and fed-back to climate. Higher-resolution processes such as deforestation, land use management and associated (as well as natural) fires are resolved at the local level. A dynamic tiling scheme allows to represent local-scale heterogeneity while maintaining computational efficiency of the land surface model, compared to traditional landscape models. Fire behavior is modeled at the regional scale (~500m) to represent the detailed landscape using a semi-empirical fire spread model. The relatively coarse scale (as compared to other fire spread models) is necessary due to the paucity of detailed land-cover information and fire history (particularly in the tropics and developing countries). This work presents initial results of a spatially-explicit fire spread model coupled to the IBIS DGVM model. Our area of study comprises selected regions in and near the Brazilian "arc of deforestation". For model training and evaluation, several areas have been mapped using high-resolution imagery from the Landsat TM/ETM+ sensors (Figure 1). This high resolution reference data is used for local-scale simulations and also to evaluate the accuracy of the global MCD45 burned area product, which will be used in future studies covering the entire "arc of deforestation".; Area of study along the arc of deforestation and cerrado: landsat scenes used and burned area (2010) from MCD45 product.

  11. Modifying a dynamic global vegetation model for simulating large spatial scale land surface water balance

    NASA Astrophysics Data System (ADS)

    Tang, G.; Bartlein, P. J.

    2012-01-01

    Water balance models of simple structure are easier to grasp and more clearly connect cause and effect than models of complex structure. Such models are essential for studying large spatial scale land surface water balance in the context of climate and land cover change, both natural and anthropogenic. This study aims to (i) develop a large spatial scale water balance model by modifying a dynamic global vegetation model (DGVM), and (ii) test the model's performance in simulating actual evapotranspiration (ET), soil moisture and surface runoff for the coterminous United States (US). Toward these ends, we first introduced development of the "LPJ-Hydrology" (LH) model by incorporating satellite-based land covers into the Lund-Potsdam-Jena (LPJ) DGVM instead of dynamically simulating them. We then ran LH using historical (1982-2006) climate data and satellite-based land covers at 2.5 arc-min grid cells. The simulated ET, soil moisture and surface runoff were compared to existing sets of observed or simulated data for the US. The results indicated that LH captures well the variation of monthly actual ET (R2 = 0.61, p < 0.01) in the Everglades of Florida over the years 1996-2001. The modeled monthly soil moisture for Illinois of the US agrees well (R2 = 0.79, p < 0.01) with the observed over the years 1984-2001. The modeled monthly stream flow for most 12 major rivers in the US is consistent R2 > 0.46, p < 0.01; Nash-Sutcliffe Coefficients >0.52) with observed values over the years 1982-2006, respectively. The modeled spatial patterns of annual ET and surface runoff are in accordance with previously published data. Compared to its predecessor, LH simulates better monthly stream flow in winter and early spring by incorporating effects of solar radiation on snowmelt. Overall, this study proves the feasibility of incorporating satellite-based land-covers into a DGVM for simulating large spatial scale land surface water balance. LH developed in this study should be a useful tool for studying effects of climate and land cover change on land surface hydrology at large spatial scales.

  12. Can We Use Single-Column Models for Understanding the Boundary Layer Cloud-Climate Feedback?

    NASA Astrophysics Data System (ADS)

    Dal Gesso, S.; Neggers, R. A. J.

    2018-02-01

    This study explores how to drive Single-Column Models (SCMs) with existing data sets of General Circulation Model (GCM) outputs, with the aim of studying the boundary layer cloud response to climate change in the marine subtropical trade wind regime. The EC-EARTH SCM is driven with the large-scale tendencies and boundary conditions as derived from two different data sets, consisting of high-frequency outputs of GCM simulations. SCM simulations are performed near Barbados Cloud Observatory in the dry season (January-April), when fair-weather cumulus is the dominant low-cloud regime. This climate regime is characterized by a near equilibrium in the free troposphere between the long-wave radiative cooling and the large-scale advection of warm air. In the SCM, this equilibrium is ensured by scaling the monthly mean dynamical tendency of temperature and humidity such that it balances that of the model physics in the free troposphere. In this setup, the high-frequency variability in the forcing is maintained, and the boundary layer physics acts freely. This technique yields representative cloud amount and structure in the SCM for the current climate. Furthermore, the cloud response to a sea surface warming of 4 K as produced by the SCM is consistent with that of the forcing GCM.

  13. Determing Credibility of Regional Simulations of Future Climate

    NASA Astrophysics Data System (ADS)

    Mearns, L. O.

    2009-12-01

    Climate models have been evaluated or validated ever since they were first developed. Establishing that a climate model can reproduce (some) aspects of the current climate of the earth on various spatial and temporal scales has long been a standard procedure for providing confidence in the model's ability to simulate future climate. However, direct links between the successes and failures of models in reproducing the current climate with regard to what future climates the models simulate has been largely lacking. This is to say that the model evaluation process has been largely divorced from the projections of future climate that the models produce. This is evidenced in the separation in the Intergovernmental Panel on Climate Change (IPCC) WG1 report of the chapter on evaluation of models from the chapter on future climate projections. There has also been the assumption of 'one model, one vote, that is, that each model projection is given equal weight in any multi-model ensemble presentation of the projections of future climate. There have been various attempts at determing measures of credibility that would avoid the 'ultrademocratic' assumption of the IPCC. Simple distinctions between models were made by research such as in Giorgi and Mearns (2002), Tebaldi et al., (2005), and Greene et al., (2006). But the metrics used were rather simplistic. More ambitous means of discriminating among the quality of model simulations have been made through the production of complex multivariate metrics, but insufficent work has been produced to verify that the metrics successfully discriminate in meaningful ways. Indeed it has been suggested that we really don't know what a model must successfully model to establish confidence in its regional-scale projections (Gleckler et al., 2008). Perhaps a more process oriented regional expert judgment approach is needed to understand which errors in climate models really matter for the model's response to future forcing. Such an approach is being attempted in the North American Climate Change Assessment Program (NARCCAP) whereby multiple global models are used to drive multiple regional models for the current period and the mid-21st century over the continent. Progress in this endeavor will be reported.

  14. New Perspectives on the Role of Internal Variability in Regional Climate Change and Climate Model Evaluation

    NASA Astrophysics Data System (ADS)

    Deser, C.

    2017-12-01

    Natural climate variability occurs over a wide range of time and space scales as a result of processes intrinsic to the atmosphere, the ocean, and their coupled interactions. Such internally generated climate fluctuations pose significant challenges for the identification of externally forced climate signals such as those driven by volcanic eruptions or anthropogenic increases in greenhouse gases. This challenge is exacerbated for regional climate responses evaluated from short (< 50 years) data records. The limited duration of the observations also places strong constraints on how well the spatial and temporal characteristics of natural climate variability are known, especially on multi-decadal time scales. The observational constraints, in turn, pose challenges for evaluation of climate models, including their representation of internal variability and assessing the accuracy of their responses to natural and anthropogenic radiative forcings. A promising new approach to climate model assessment is the advent of large (10-100 member) "initial-condition" ensembles of climate change simulations with individual models. Such ensembles allow for accurate determination, and straightforward separation, of externally forced climate signals and internal climate variability on regional scales. The range of climate trajectories in a given model ensemble results from the fact that each simulation represents a particular sequence of internal variability superimposed upon a common forced response. This makes clear that nature's single realization is only one of many that could have unfolded. This perspective leads to a rethinking of approaches to climate model evaluation that incorporate observational uncertainty due to limited sampling of internal variability. Illustrative examples across a range of well-known climate phenomena including ENSO, volcanic eruptions, and anthropogenic climate change will be discussed.

  15. Spatially distributed potential evapotranspiration modeling and climate projections.

    PubMed

    Gharbia, Salem S; Smullen, Trevor; Gill, Laurence; Johnston, Paul; Pilla, Francesco

    2018-08-15

    Evapotranspiration integrates energy and mass transfer between the Earth's surface and atmosphere and is the most active mechanism linking the atmosphere, hydrosphsophere, lithosphere and biosphere. This study focuses on the fine resolution modeling and projection of spatially distributed potential evapotranspiration on the large catchment scale as response to climate change. Six potential evapotranspiration designed algorithms, systematically selected based on a structured criteria and data availability, have been applied and then validated to long-term mean monthly data for the Shannon River catchment with a 50m 2 cell size. The best validated algorithm was therefore applied to evaluate the possible effect of future climate change on potential evapotranspiration rates. Spatially distributed potential evapotranspiration projections have been modeled based on climate change projections from multi-GCM ensembles for three future time intervals (2020, 2050 and 2080) using a range of different Representative Concentration Pathways producing four scenarios for each time interval. Finally, seasonal results have been compared to baseline results to evaluate the impact of climate change on the potential evapotranspiration and therefor on the catchment dynamical water balance. The results present evidence that the modeled climate change scenarios would have a significant impact on the future potential evapotranspiration rates. All the simulated scenarios predicted an increase in potential evapotranspiration for each modeled future time interval, which would significantly affect the dynamical catchment water balance. This study addresses the gap in the literature of using GIS-based algorithms to model fine-scale spatially distributed potential evapotranspiration on the large catchment systems based on climatological observations and simulations in different climatological zones. Providing fine-scale potential evapotranspiration data is very crucial to assess the dynamical catchment water balance to setup management scenarios for the water abstractions. This study illustrates a transferable systematic method to design GIS-based algorithms to simulate spatially distributed potential evapotranspiration on the large catchment systems. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Predicting potential global distributions of two Miscanthus grasses: implications for horticulture, biofuel production, and biological invasions.

    PubMed

    Hager, Heather A; Sinasac, Sarah E; Gedalof, Ze'ev; Newman, Jonathan A

    2014-01-01

    In many regions, large proportions of the naturalized and invasive non-native floras were originally introduced deliberately by humans. Pest risk assessments are now used in many jurisdictions to regulate the importation of species and usually include an estimation of the potential distribution in the import area. Two species of Asian grass (Miscanthus sacchariflorus and M. sinensis) that were originally introduced to North America as ornamental plants have since escaped cultivation. These species and their hybrid offspring are now receiving attention for large-scale production as biofuel crops in North America and elsewhere. We evaluated their potential global climate suitability for cultivation and potential invasion using the niche model CLIMEX and evaluated the models' sensitivity to the parameter values. We then compared the sensitivity of projections of future climatically suitable area under two climate models and two emissions scenarios. The models indicate that the species have been introduced to most of the potential global climatically suitable areas in the northern but not the southern hemisphere. The more narrowly distributed species (M. sacchariflorus) is more sensitive to changes in model parameters, which could have implications for modelling species of conservation concern. Climate projections indicate likely contractions in potential range in the south, but expansions in the north, particularly in introduced areas where biomass production trials are under way. Climate sensitivity analysis shows that projections differ more between the selected climate change models than between the selected emissions scenarios. Local-scale assessments are required to overlay suitable habitat with climate projections to estimate areas of cultivation potential and invasion risk.

  17. Future changes in regional precipitation simulated by a half-degree coupled climate model: Sensitivity to horizontal resolution

    DOE PAGES

    Shields, Christine A.; Kiehl, Jeffrey T.; Meehl, Gerald A.

    2016-06-02

    The global fully coupled half-degree Community Climate System Model Version 4 (CCSM4) was integrated for a suite of climate change ensemble simulations including five historical runs, five Representative Concentration Pathway 8.5 [RCP8.5) runs, and a long Pre-Industrial control run. This study focuses on precipitation at regional scales and its sensitivity to horizontal resolution. The half-degree historical CCSM4 simulations are compared to observations, where relevant, and to the standard 1° CCSM4. Both the halfdegree and 1° resolutions are coupled to a nominal 1° ocean. North American and South Asian/Indian monsoon regimes are highlighted because these regimes demonstrate improvements due to highermore » resolution, primarily because of better-resolved topography. Agriculturally sensitive areas are analyzed and include Southwest, Central, and Southeast U.S., Southern Europe, and Australia. Both mean and extreme precipitation is discussed for convective and large-scale precipitation processes. Convective precipitation tends to decrease with increasing resolution and large-scale precipitation tends to increase. Improvements for the half-degree agricultural regions can be found for mean and extreme precipitation in the Southeast U.S., Southern Europe, and Australian regions. Climate change responses differ between the model resolutions for the U.S. Southwest/Central regions and are seasonally dependent in the Southeast and Australian regions. Both resolutions project a clear drying signal across Southern Europe due to increased greenhouse warming. As a result, differences between resolutions tied to the representation of convective and large-scale precipitation play an important role in the character of the climate change and depend on regional influences.« less

  18. Progress in fast, accurate multi-scale climate simulations

    DOE PAGES

    Collins, W. D.; Johansen, H.; Evans, K. J.; ...

    2015-06-01

    We present a survey of physical and computational techniques that have the potential to contribute to the next generation of high-fidelity, multi-scale climate simulations. Examples of the climate science problems that can be investigated with more depth with these computational improvements include the capture of remote forcings of localized hydrological extreme events, an accurate representation of cloud features over a range of spatial and temporal scales, and parallel, large ensembles of simulations to more effectively explore model sensitivities and uncertainties. Numerical techniques, such as adaptive mesh refinement, implicit time integration, and separate treatment of fast physical time scales are enablingmore » improved accuracy and fidelity in simulation of dynamics and allowing more complete representations of climate features at the global scale. At the same time, partnerships with computer science teams have focused on taking advantage of evolving computer architectures such as many-core processors and GPUs. As a result, approaches which were previously considered prohibitively costly have become both more efficient and scalable. In combination, progress in these three critical areas is poised to transform climate modeling in the coming decades.« less

  19. North American extreme temperature events and related large scale meteorological patterns: A review of statistical methods, dynamics, modeling, and trends

    DOE PAGES

    Grotjahn, Richard; Black, Robert; Leung, Ruby; ...

    2015-05-22

    This paper reviews research approaches and open questions regarding data, statistical analyses, dynamics, modeling efforts, and trends in relation to temperature extremes. Our specific focus is upon extreme events of short duration (roughly less than 5 days) that affect parts of North America. These events are associated with large scale meteorological patterns (LSMPs). Methods used to define extreme events statistics and to identify and connect LSMPs to extreme temperatures are presented. Recent advances in statistical techniques can connect LSMPs to extreme temperatures through appropriately defined covariates that supplements more straightforward analyses. A wide array of LSMPs, ranging from synoptic tomore » planetary scale phenomena, have been implicated as contributors to extreme temperature events. Current knowledge about the physical nature of these contributions and the dynamical mechanisms leading to the implicated LSMPs is incomplete. There is a pressing need for (a) systematic study of the physics of LSMPs life cycles and (b) comprehensive model assessment of LSMP-extreme temperature event linkages and LSMP behavior. Generally, climate models capture the observed heat waves and cold air outbreaks with some fidelity. However they overestimate warm wave frequency and underestimate cold air outbreaks frequency, and underestimate the collective influence of low-frequency modes on temperature extremes. Climate models have been used to investigate past changes and project future trends in extreme temperatures. Overall, modeling studies have identified important mechanisms such as the effects of large-scale circulation anomalies and land-atmosphere interactions on changes in extreme temperatures. However, few studies have examined changes in LSMPs more specifically to understand the role of LSMPs on past and future extreme temperature changes. Even though LSMPs are resolvable by global and regional climate models, they are not necessarily well simulated so more research is needed to understand the limitations of climate models and improve model skill in simulating extreme temperatures and their associated LSMPs. Furthermore, the paper concludes with unresolved issues and research questions.« less

  20. Winter and summer simulations with the GLAS climate model

    NASA Technical Reports Server (NTRS)

    Shukla, J.; Straus, D.; Randall, D.; Sud, Y.; Marx, L.

    1981-01-01

    The GLAS climate model is a general circulation model based on the primitive equations in sigma coordinates on a global domain in the presence of orography. The model incorporates parameterizations of the effects of radiation, convection, large scale latent heat release, turbulent and boundary layer fluxes, and ground hydrology. Winter and summer simulations were carried out with this model, and the resulting data are compared to observations.

  1. Greenhouse gas scenario sensitivity and uncertainties in precipitation projections for central Belgium

    NASA Astrophysics Data System (ADS)

    Van Uytven, E.; Willems, P.

    2018-03-01

    Climate change impact assessment on meteorological variables involves large uncertainties as a result of incomplete knowledge on the future greenhouse gas concentrations and climate model physics, next to the inherent internal variability of the climate system. Given that the alteration in greenhouse gas concentrations is the driver for the change, one expects the impacts to be highly dependent on the considered greenhouse gas scenario (GHS). In this study, we denote this behavior as GHS sensitivity. Due to the climate model related uncertainties, this sensitivity is, at local scale, not always that strong as expected. This paper aims to study the GHS sensitivity and its contributing role to climate scenarios for a case study in Belgium. An ensemble of 160 CMIP5 climate model runs is considered and climate change signals are studied for precipitation accumulation, daily precipitation intensities and wet day frequencies. This was done for the different seasons of the year and the scenario periods 2011-2040, 2031-2060, 2051-2081 and 2071-2100. By means of variance decomposition, the total variance in the climate change signals was separated in the contribution of the differences in GHSs and the other model-related uncertainty sources. These contributions were found dependent on the variable and season. Following the time of emergence concept, the GHS uncertainty contribution is found dependent on the time horizon and increases over time. For the most distinct time horizon (2071-2100), the climate model uncertainty accounts for the largest uncertainty contribution. The GHS differences explain up to 18% of the total variance in the climate change signals. The results point further at the importance of the climate model ensemble design, specifically the ensemble size and the combination of climate models, whereupon climate scenarios are based. The numerical noise, introduced at scales smaller than the skillful scale, e.g. at local scale, was not considered in this study.

  2. Hydrometeorological variability on a large french catchment and its relation to large-scale circulation across temporal scales

    NASA Astrophysics Data System (ADS)

    Massei, Nicolas; Dieppois, Bastien; Fritier, Nicolas; Laignel, Benoit; Debret, Maxime; Lavers, David; Hannah, David

    2015-04-01

    In the present context of global changes, considerable efforts have been deployed by the hydrological scientific community to improve our understanding of the impacts of climate fluctuations on water resources. Both observational and modeling studies have been extensively employed to characterize hydrological changes and trends, assess the impact of climate variability or provide future scenarios of water resources. In the aim of a better understanding of hydrological changes, it is of crucial importance to determine how and to what extent trends and long-term oscillations detectable in hydrological variables are linked to global climate oscillations. In this work, we develop an approach associating large-scale/local-scale correlation, enmpirical statistical downscaling and wavelet multiresolution decomposition of monthly precipitation and streamflow over the Seine river watershed, and the North Atlantic sea level pressure (SLP) in order to gain additional insights on the atmospheric patterns associated with the regional hydrology. We hypothesized that: i) atmospheric patterns may change according to the different temporal wavelengths defining the variability of the signals; and ii) definition of those hydrological/circulation relationships for each temporal wavelength may improve the determination of large-scale predictors of local variations. The results showed that the large-scale/local-scale links were not necessarily constant according to time-scale (i.e. for the different frequencies characterizing the signals), resulting in changing spatial patterns across scales. This was then taken into account by developing an empirical statistical downscaling (ESD) modeling approach which integrated discrete wavelet multiresolution analysis for reconstructing local hydrometeorological processes (predictand : precipitation and streamflow on the Seine river catchment) based on a large-scale predictor (SLP over the Euro-Atlantic sector) on a monthly time-step. This approach basically consisted in 1- decomposing both signals (SLP field and precipitation or streamflow) using discrete wavelet multiresolution analysis and synthesis, 2- generating one statistical downscaling model per time-scale, 3- summing up all scale-dependent models in order to obtain a final reconstruction of the predictand. The results obtained revealed a significant improvement of the reconstructions for both precipitation and streamflow when using the multiresolution ESD model instead of basic ESD ; in addition, the scale-dependent spatial patterns associated to the model matched quite well those obtained from scale-dependent composite analysis. In particular, the multiresolution ESD model handled very well the significant changes in variance through time observed in either prepciptation or streamflow. For instance, the post-1980 period, which had been characterized by particularly high amplitudes in interannual-to-interdecadal variability associated with flood and extremely low-flow/drought periods (e.g., winter 2001, summer 2003), could not be reconstructed without integrating wavelet multiresolution analysis into the model. Further investigations would be required to address the issue of the stationarity of the large-scale/local-scale relationships and to test the capability of the multiresolution ESD model for interannual-to-interdecadal forecasting. In terms of methodological approach, further investigations may concern a fully comprehensive sensitivity analysis of the modeling to the parameter of the multiresolution approach (different families of scaling and wavelet functions used, number of coefficients/degree of smoothness, etc.).

  3. Impact of Desiccation of Aral Sea on the Regional Climate of Central Asia Using WRF Model

    NASA Astrophysics Data System (ADS)

    Sharma, Ashish; Huang, Huei-Ping; Zavialov, Peter; Khan, Valentina

    2018-01-01

    This study explores the impacts of the desiccation of the Aral Sea and large-scale climate change on the regional climate of Central Asia in the post-1960 era. A series of climate downscaling experiments for the 1960's and 2000's decades were performed using the Weather Research and Forecast model at 12-km horizontal resolution. To quantify the impacts of the changing surface boundary condition, a set of simulations with an identical lateral boundary condition but different extents of the Aral Sea were performed. It was found that the desiccation of the Aral Sea leads to more snow (and less rain) as desiccated winter surface is relatively much colder than water surface. In summer, desiccation led to substantial warming over the Aral Sea. These impacts were largely confined to within the area covered by the former Aral Sea and its immediate vicinity, although desiccation of the Sea also led to minor cooling over the greater Central Asia in winter. A contrasting set of simulations with an identical surface boundary condition but different lateral boundary conditions produced more identifiable changes in regional climate over the greater Central Asia which was characterized by a warming trend in both winter and summer. Simulations also showed that while the desiccation of the Aral Sea has significant impacts on the local climate over the Sea, the climate over the greater Central Asia on inter-decadal time scale was more strongly influenced by the continental or global-scale climate change on that time scale.

  4. Evaluating synoptic systems in the CMIP5 climate models over the Australian region

    NASA Astrophysics Data System (ADS)

    Gibson, Peter B.; Uotila, Petteri; Perkins-Kirkpatrick, Sarah E.; Alexander, Lisa V.; Pitman, Andrew J.

    2016-10-01

    Climate models are our principal tool for generating the projections used to inform climate change policy. Our confidence in projections depends, in part, on how realistically they simulate present day climate and associated variability over a range of time scales. Traditionally, climate models are less commonly assessed at time scales relevant to daily weather systems. Here we explore the utility of a self-organizing maps (SOMs) procedure for evaluating the frequency, persistence and transitions of daily synoptic systems in the Australian region simulated by state-of-the-art global climate models. In terms of skill in simulating the climatological frequency of synoptic systems, large spread was observed between models. A positive association between all metrics was found, implying that relative skill in simulating the persistence and transitions of systems is related to skill in simulating the climatological frequency. Considering all models and metrics collectively, model performance was found to be related to model horizontal resolution but unrelated to vertical resolution or representation of the stratosphere. In terms of the SOM procedure, the timespan over which evaluation was performed had some influence on model performance skill measures, as did the number of circulation types examined. These findings have implications for selecting models most useful for future projections over the Australian region, particularly for projections related to synoptic scale processes and phenomena. More broadly, this study has demonstrated the utility of the SOMs procedure in providing a process-based evaluation of climate models.

  5. Improving the representation of clouds, radiation, and precipitation using spectral nudging in the Weather Research and Forecasting model

    NASA Astrophysics Data System (ADS)

    Spero, Tanya L.; Otte, Martin J.; Bowden, Jared H.; Nolte, Christopher G.

    2014-10-01

    Spectral nudging—a scale-selective interior constraint technique—is commonly used in regional climate models to maintain consistency with large-scale forcing while permitting mesoscale features to develop in the downscaled simulations. Several studies have demonstrated that spectral nudging improves the representation of regional climate in reanalysis-forced simulations compared with not using nudging in the interior of the domain. However, in the Weather Research and Forecasting (WRF) model, spectral nudging tends to produce degraded precipitation simulations when compared to analysis nudging—an interior constraint technique that is scale indiscriminate but also operates on moisture fields which until now could not be altered directly by spectral nudging. Since analysis nudging is less desirable for regional climate modeling because it dampens fine-scale variability, changes are proposed to the spectral nudging methodology to capitalize on differences between the nudging techniques and aim to improve the representation of clouds, radiation, and precipitation without compromising other fields. These changes include adding spectral nudging toward moisture, limiting nudging to below the tropopause, and increasing the nudging time scale for potential temperature, all of which collectively improve the representation of mean and extreme precipitation, 2 m temperature, clouds, and radiation, as demonstrated using a model-simulated 20 year historical period. Such improvements to WRF may increase the fidelity of regional climate data used to assess the potential impacts of climate change on human health and the environment and aid in climate change mitigation and adaptation studies.

  6. A new framework for climate sensitivity and prediction: a modelling perspective

    NASA Astrophysics Data System (ADS)

    Ragone, Francesco; Lucarini, Valerio; Lunkeit, Frank

    2016-03-01

    The sensitivity of climate models to increasing CO2 concentration and the climate response at decadal time-scales are still major factors of uncertainty for the assessment of the long and short term effects of anthropogenic climate change. While the relative slow progress on these issues is partly due to the inherent inaccuracies of numerical climate models, this also hints at the need for stronger theoretical foundations to the problem of studying climate sensitivity and performing climate change predictions with numerical models. Here we demonstrate that it is possible to use Ruelle's response theory to predict the impact of an arbitrary CO2 forcing scenario on the global surface temperature of a general circulation model. Response theory puts the concept of climate sensitivity on firm theoretical grounds, and addresses rigorously the problem of predictability at different time-scales. Conceptually, these results show that performing climate change experiments with general circulation models is a well defined problem from a physical and mathematical point of view. Practically, these results show that considering one single CO2 forcing scenario is enough to construct operators able to predict the response of climatic observables to any other CO2 forcing scenario, without the need to perform additional numerical simulations. We also introduce a general relationship between climate sensitivity and climate response at different time scales, thus providing an explicit definition of the inertia of the system at different time scales. This technique allows also for studying systematically, for a large variety of forcing scenarios, the time horizon at which the climate change signal (in an ensemble sense) becomes statistically significant. While what we report here refers to the linear response, the general theory allows for treating nonlinear effects as well. These results pave the way for redesigning and interpreting climate change experiments from a radically new perspective.

  7. Temporal and Spatial Variation in Peatland Carbon Cycling and Implications for Interpreting Responses of an Ecosystem-Scale Warming Experiment

    Treesearch

    Natalie A. Griffiths; Paul J. Hanson; Daniel M. Ricciuto; Colleen M. Iversen; Anna M. Jensen; Avni Malhotra; Karis J. McFarlane; Richard J. Norby; Khachik Sargsyan; Stephen D. Sebestyen; Xiaoying Shi; Anthony P. Walker; Eric J. Ward; Jeffrey M. Warren; David J. Weston

    2017-01-01

    We are conducting a large-scale, long-term climate change response experiment in an ombrotrophic peat bog in Minnesota to evaluate the effects of warming and elevated CO2 on ecosystem processes using empirical and modeling approaches. To better frame future assessments of peatland responses to climate change, we characterized and compared spatial...

  8. Climate change: evaluating your local and regional water resources

    USGS Publications Warehouse

    Flint, Lorraine E.; Flint, Alan L.; Thorne, James H.

    2015-01-01

    The BCM is a fine-scale hydrologic model that uses detailed maps of soils, geology, topography, and transient monthly or daily maps of potential evapotranspiration, air temperature, and precipitation to generate maps of recharge, runoff, snow pack, actual evapotranspiration, and climatic water deficit. With these comprehensive environmental inputs and experienced scientific analysis, the BCM provides resource managers with important hydrologic and ecologic understanding of a landscape or basin at hillslope to regional scales. The model is calibrated using historical climate and streamflow data over the range of geologic materials specific to an area. Once calibrated, the model is used to translate climate-change data into hydrologic responses for a defined landscape, to provide managers an understanding of potential ecological risks and threats to water supplies and managed hydrologic systems. Although limited to estimates of unimpaired hydrologic conditions, estimates of impaired conditions, such as agricultural demand, diversions, or reservoir outflows can be incorporated into the calibration of the model to expand its utility. Additionally, the model can be linked to other models, such as groundwater-flow models (that is, MODFLOW) or the integrated hydrologic model (MF-FMP), to provide information about subsurface hydrologic processes. The model can be applied at a relatively small scale, but also can be applied to large-scale national and international river basins.

  9. The Nested Regional Climate Model: An Approach Toward Prediction Across Scales

    NASA Astrophysics Data System (ADS)

    Hurrell, J. W.; Holland, G. J.; Large, W. G.

    2008-12-01

    The reality of global climate change has become accepted and society is rapidly moving to questions of consequences on space and time scales that are relevant to proper planning and development of adaptation strategies. There are a number of urgent challenges for the scientific community related to improved and more detailed predictions of regional climate change on decadal time scales. Two important examples are potential impacts of climate change on North Atlantic hurricane activity and on water resources over the intermountain West. The latter is dominated by complex topography, so that accurate simulations of regional climate variability and change require much finer spatial resolution than is provided with state-of-the-art climate models. Climate models also do not explicitly resolve tropical cyclones, even though these storms have dramatic societal impacts and play an important role in regulating climate. Moreover, the debate over the impact of global warming on tropical cyclones has at times been acrimonious, and the lack of hard evidence has left open opportunities for misinterpretation and justification of pre-existing beliefs. These and similar topics are being assessed at NCAR, in partnership with university colleagues, through the development of a Nested Regional Climate Model (NRCM). This is an ambitious effort to combine a state of the science mesoscale weather model (WRF), a high resolution regional ocean modeling system (ROMS), and a climate model (CCSM) to better simulate the complex, multi-scale interactions intrinsic to atmospheric and oceanic fluid motions that are limiting our ability to predict likely future changes in regional weather statistics and climate. The NRCM effort is attracting a large base of earth system scientists together with societal groups as diverse as the Western Governor's Association and the offshore oil industry. All of these groups require climate data on scales of a few kilometers (or less), so that the NRCM program is producing unique data sets of climate change scenarios of immense interest. In addition, all simulations are archived in a form that will be readily accessible to other researchers, thus enabling a wider group to investigate these important issues.

  10. Decadal-Scale Forecasting of Climate Drivers for Marine Applications.

    PubMed

    Salinger, J; Hobday, A J; Matear, R J; O'Kane, T J; Risbey, J S; Dunstan, P; Eveson, J P; Fulton, E A; Feng, M; Plagányi, É E; Poloczanska, E S; Marshall, A G; Thompson, P A

    Climate influences marine ecosystems on a range of time scales, from weather-scale (days) through to climate-scale (hundreds of years). Understanding of interannual to decadal climate variability and impacts on marine industries has received less attention. Predictability up to 10 years ahead may come from large-scale climate modes in the ocean that can persist over these time scales. In Australia the key drivers of climate variability affecting the marine environment are the Southern Annular Mode, the Indian Ocean Dipole, the El Niño/Southern Oscillation, and the Interdecadal Pacific Oscillation, each has phases that are associated with different ocean circulation patterns and regional environmental variables. The roles of these drivers are illustrated with three case studies of extreme events-a marine heatwave in Western Australia, a coral bleaching of the Great Barrier Reef, and flooding in Queensland. Statistical and dynamical approaches are described to generate forecasts of climate drivers that can subsequently be translated to useful information for marine end users making decisions at these time scales. Considerable investment is still needed to support decadal forecasting including improvement of ocean-atmosphere models, enhancement of observing systems on all scales to support initiation of forecasting models, collection of important biological data, and integration of forecasts into decision support tools. Collaboration between forecast developers and marine resource sectors-fisheries, aquaculture, tourism, biodiversity management, infrastructure-is needed to support forecast-based tactical and strategic decisions that reduce environmental risk over annual to decadal time scales. © 2016 Elsevier Ltd. All rights reserved.

  11. Improving plot- and regional-scale crop models for simulating impacts of climate variability and extremes

    NASA Astrophysics Data System (ADS)

    Tao, F.; Rötter, R.

    2013-12-01

    Many studies on global climate report that climate variability is increasing with more frequent and intense extreme events1. There are quite large uncertainties from both the plot- and regional-scale models in simulating impacts of climate variability and extremes on crop development, growth and productivity2,3. One key to reducing the uncertainties is better exploitation of experimental data to eliminate crop model deficiencies and develop better algorithms that more adequately capture the impacts of extreme events, such as high temperature and drought, on crop performance4,5. In the present study, in a first step, the inter-annual variability in wheat yield and climate from 1971 to 2012 in Finland was investigated. Using statistical approaches the impacts of climate variability and extremes on wheat growth and productivity were quantified. In a second step, a plot-scale model, WOFOST6, and a regional-scale crop model, MCWLA7, were calibrated and validated, and applied to simulate wheat growth and yield variability from 1971-2012. Next, the estimated impacts of high temperature stress, cold damage, and drought stress on crop growth and productivity based on the statistical approaches, and on crop simulation models WOFOST and MCWLA were compared. Then, the impact mechanisms of climate extremes on crop growth and productivity in the WOFOST model and MCWLA model were identified, and subsequently, the various algorithm and impact functions were fitted against the long-term crop trial data. Finally, the impact mechanisms, algorithms and functions in WOFOST model and MCWLA model were improved to better simulate the impacts of climate variability and extremes, particularly high temperature stress, cold damage and drought stress for location-specific and large area climate impact assessments. Our studies provide a good example of how to improve, in parallel, the plot- and regional-scale models for simulating impacts of climate variability and extremes, as needed for better informed decision-making on adaptation strategies. References 1. Coumou, D. & Rahmstorf, S. A decade of extremes. Nature Clim. Change, 2, 491-496 (2012). 2. Rötter, R. P., Carter, T. R., Olesen, J. E. & Porter, J. R. Crop-climate models need an overhaul. Nature Clim. Change, 1, 175-177 (2011). 3. Asseng, S. et al., Uncertainty in simulating wheat yields under climate change. Nature Clim. Change. 10.1038/nclimate1916. (2013). 4. Porter, J.R., & Semenov, M., Crop responses to climatic variation . Trans. R. Soc. B., 360, 2021-2035 (2005). 5. Porter, J.R. & Christensen, S. Deconstructing crop processes and models via identities. Plant, Cell and Environment . doi: 10.1111/pce.12107 (2013). 6. Boogaard, H.L., van Diepen C.A., Rötter R.P., Cabrera J.M. & van Laar H.H. User's guide for the WOFOST 7.1 crop growth simulation model and Control Center 1.5, Alterra, Wageningen, The Netherlands. (1998) 7. Tao, F. & Zhang, Z. Climate change, wheat productivity and water use in the North China Plain: a new super-ensemble-based probabilistic projection. Agric. Forest Meteorol., 170, 146-165. (2013).

  12. Improving the representation of clouds, radiation, and precipitation using spectral nudging in the Weather Research and Forecasting model

    EPA Science Inventory

    Spectral nudging – a scale-selective interior constraint technique – is commonly used in regional climate models to maintain consistency with large-scale forcing while permitting mesoscale features to develop in the downscaled simulations. Several studies have demonst...

  13. Climate Dynamics and Hysteresis at Low and High Obliquity

    NASA Astrophysics Data System (ADS)

    Colose, C.; Del Genio, A. D.; Way, M.

    2017-12-01

    We explore the large-scale climate dynamics at low and high obliquity for an Earth-like planet using the ROCKE-3D (Resolving Orbital and Climate Keys of Earth and Extraterrestrial Environments with Dynamics) 3-D General Circulation model being developed at NASA GISS as part of the Nexus for Exoplanet System Science (NExSS) initiative. We highlight the role of ocean heat storage and transport in determining the seasonal cycle at high obliquity, and describe the large-scale circulation and resulting regional climate patterns using both aquaplanet and Earth topographical boundary conditions. Finally, we contrast the hysteresis structure to varying CO2 concentration for a low and high obliquity planet near the outer edge of the habitable zone. We discuss the prospects for habitability for a high obliquity planet susceptible to global glaciation.

  14. High-resolution downscaling for hydrological management

    NASA Astrophysics Data System (ADS)

    Ulbrich, Uwe; Rust, Henning; Meredith, Edmund; Kpogo-Nuwoklo, Komlan; Vagenas, Christos

    2017-04-01

    Hydrological modellers and water managers require high-resolution climate data to model regional hydrologies and how these may respond to future changes in the large-scale climate. The ability to successfully model such changes and, by extension, critical infrastructure planning is often impeded by a lack of suitable climate data. This typically takes the form of too-coarse data from climate models, which are not sufficiently detailed in either space or time to be able to support water management decisions and hydrological research. BINGO (Bringing INnovation in onGOing water management; ) aims to bridge the gap between the needs of hydrological modellers and planners, and the currently available range of climate data, with the overarching aim of providing adaptation strategies for climate change-related challenges. Producing the kilometre- and sub-daily-scale climate data needed by hydrologists through continuous simulations is generally computationally infeasible. To circumvent this hurdle, we adopt a two-pronged approach involving (1) selective dynamical downscaling and (2) conditional stochastic weather generators, with the former presented here. We take an event-based approach to downscaling in order to achieve the kilometre-scale input needed by hydrological modellers. Computational expenses are minimized by identifying extremal weather patterns for each BINGO research site in lower-resolution simulations and then only downscaling to the kilometre-scale (convection permitting) those events during which such patterns occur. Here we (1) outline the methodology behind the selection of the events, and (2) compare the modelled precipitation distribution and variability (preconditioned on the extremal weather patterns) with that found in observations.

  15. Drought Persistence Errors in Global Climate Models

    NASA Astrophysics Data System (ADS)

    Moon, H.; Gudmundsson, L.; Seneviratne, S. I.

    2018-04-01

    The persistence of drought events largely determines the severity of socioeconomic and ecological impacts, but the capability of current global climate models (GCMs) to simulate such events is subject to large uncertainties. In this study, the representation of drought persistence in GCMs is assessed by comparing state-of-the-art GCM model simulations to observation-based data sets. For doing so, we consider dry-to-dry transition probabilities at monthly and annual scales as estimates for drought persistence, where a dry status is defined as negative precipitation anomaly. Though there is a substantial spread in the drought persistence bias, most of the simulations show systematic underestimation of drought persistence at global scale. Subsequently, we analyzed to which degree (i) inaccurate observations, (ii) differences among models, (iii) internal climate variability, and (iv) uncertainty of the employed statistical methods contribute to the spread in drought persistence errors using an analysis of variance approach. The results show that at monthly scale, model uncertainty and observational uncertainty dominate, while the contribution from internal variability is small in most cases. At annual scale, the spread of the drought persistence error is dominated by the statistical estimation error of drought persistence, indicating that the partitioning of the error is impaired by the limited number of considered time steps. These findings reveal systematic errors in the representation of drought persistence in current GCMs and suggest directions for further model improvement.

  16. Towards Supporting Climate Scientists and Impact Assessment Analysts with the Big Data Europe Platform

    NASA Astrophysics Data System (ADS)

    Klampanos, Iraklis; Vlachogiannis, Diamando; Andronopoulos, Spyros; Cofiño, Antonio; Charalambidis, Angelos; Lokers, Rob; Konstantopoulos, Stasinos; Karkaletsis, Vangelis

    2016-04-01

    The EU, Horizon 2020, project Big Data Europe (BDE) aims to support European companies and institutions in effectively managing and making use of big data in activities critical to their progress and success. BDE focuses on seven areas of societal impact: Health, Food and Agriculture, Energy, Transport, Climate, Social Sciences and Security. By reaching out to partners and stakeholders, BDE aims to elicit data-intensive requirements for, and deliver an ICT platform to cover aspects of publishing and consuming semantically interoperable, large-scale, multi-lingual data assets and knowledge. In this presentation we will describe the first BDE pilot for Climate, focusing on SemaGrow, its core component, which provides data querying and management based on data semantics. Over the last few decades, extended scientific effort in understanding climate change has resulted in a huge volume of model and observational data. Large international global and regional model inter-comparison projects have focused on creating a framework in support of climate model diagnosis, validation, documentation and data access. The application of climate model ensembles, a system consisting of different possible realisations of a climate model, has further significantly increased the amount of climate and weather data generated. The provision of such models satisfies the crucial objective of assessing potential impacts of climate change on well-being for adaptation, prevention and mitigation. One of the methodologies applied by the climate research and impact assessment communities is that of dynamical downscaling. This calculates values of atmospheric variables in smaller spatial and temporal scales, given a global model. On the company or institution level, this process can be greatly improved in terms of querying, data ingestion from various sources and formats, automatic data mapping, etc. The first Climate BDE pilot will facilitate the process of dynamical downscaling by providing a semantics-based interface to climate open data, eg{} to ESGF services, searching, downloading and indexing climate model and observational data, according to user requirements, such as coverage and experimental scenarios, executing dynamical downscaling models on institutional computing resources, and establishing a framework for metadata mappings and data lineage. The objectives of this pilot will be met building on the SemaGrow system and tools, which have been developed as part of the SemaGrow project in order to scale data intensive techniques up to extremely large data volumes and improve real time performance for agricultural experiments and analyses. SemaGrow is a query resolution and ingestion system for data and semantics. It is able to extract semantic features from data, index them and expose APIs to other BDE platform components. Moreover, SemaGrow provides tools for transforming and managing data in various formats (e.g. NetCDF), and their metadata. It can also interface between users and distributed, external data sources via SPARQL endpoints. This has been demonstrated as part of the SemaGrow project, on diverse and large-scale scientific use-cases. SemaGrow is an active data service in agINFRA, a data infrastructure for agriculture. https://github.com/semagrow/semagrow Big Data Europe (http://www.big-data-europe.eu) - grant agreement no.644564. Earth System Grid Federation: http://esgf.llnl.gov http://www.semagrow.eu http://aginfra.eu

  17. Global Climate Models Intercomparison of Anthropogenic Aerosols Effects on Regional Climate over North Pacific

    NASA Astrophysics Data System (ADS)

    Hu, J.; Zhang, R.; Wang, Y.; Ming, Y.; Lin, Y.; Pan, B.

    2015-12-01

    Aerosols can alter atmospheric radiation and cloud physics, which further exert impacts on weather and global climate. With the development and industrialization of the developing Asian countries, anthropogenic aerosols have received considerable attentions and remain to be the largest uncertainty in the climate projection. Here we assess the performance of two stat-of-art global climate models (National Center for Atmospheric Research-Community Atmosphere Model 5 (CAM5) and Geophysical Fluid Dynamics Laboratory Atmosphere Model 3 (AM3)) in simulating the impacts of anthropogenic aerosols on North Pacific storm track region. By contrasting two aerosol scenarios, i.e. present day (PD) and pre-industrial (PI), both models show aerosol optical depth (AOD) enhanced by about 22%, with CAM5 AOD 40% lower in magnitude due to the long range transport of anthropogenic aerosols. Aerosol effects on the ice water path (IWP), stratiform precipitation, convergence and convection strengths in the two models are distinctive in patterns and magnitudes. AM3 shows qualitatively good agreement with long-term satellite observations, while CAM5 overestimates convection and liquid water path resulting in an underestimation of large-scale precipitation and IWP. Due to coarse resolution and parameterization in convection schemes, both models' performance on convection needs to be improved. Aerosols performance on large-scale circulation and radiative budget are also examined in this study.

  18. Web-based Visual Analytics for Extreme Scale Climate Science

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steed, Chad A; Evans, Katherine J; Harney, John F

    In this paper, we introduce a Web-based visual analytics framework for democratizing advanced visualization and analysis capabilities pertinent to large-scale earth system simulations. We address significant limitations of present climate data analysis tools such as tightly coupled dependencies, ineffi- cient data movements, complex user interfaces, and static visualizations. Our Web-based visual analytics framework removes critical barriers to the widespread accessibility and adoption of advanced scientific techniques. Using distributed connections to back-end diagnostics, we minimize data movements and leverage HPC platforms. We also mitigate system dependency issues by employing a RESTful interface. Our framework embraces the visual analytics paradigm via newmore » visual navigation techniques for hierarchical parameter spaces, multi-scale representations, and interactive spatio-temporal data mining methods that retain details. Although generalizable to other science domains, the current work focuses on improving exploratory analysis of large-scale Community Land Model (CLM) and Community Atmosphere Model (CAM) simulations.« less

  19. Elucidating Critical Zone Process Interactions with an Integrated Hydrology Model in a Headwaters Research Catchment

    NASA Astrophysics Data System (ADS)

    Collins, C.; Maxwell, R. M.

    2017-12-01

    Providence Creek (P300) watershed is an alpine headwaters catchment located at the Southern Sierra Critical Zone Observatory (SSCZO). Evidence of groundwater-dependent vegetation and drought-induced tree mortality at P300 along with the effect of subsurface characterization on mountain ecohydrology motivates this study. A hyper resolution integrated hydrology model of this site, along with extensive instrumentation, provides an opportunity to study the effects of lateral groundwater flow on vegetation's tolerance to drought. ParFlow-CLM is a fully integrated surface-subsurface model that is driven with reconstructed meteorology, such as the North American Land Data Assimilation System project phase 2 (NLDAS-2) dataset. However, large-scale data products mute orographic effects on climate at smaller scales. Climate variables often do not behave uniformly in highly heterogeneous mountain regions. Therefore, forcing physically-based integrated hydrologic models—especially of mountain headwaters catchments—with a large-scale data product is a major challenge. Obtaining reliable observations in complex terrain is challenging and while climate data products introduce uncertainties likewise, documented discrepancies between several data products and P300 observations suggest these data products may suffice. To tackle these issues, a suite of simulations was run to parse out (1) the effects of climate data source (data products versus observations) and (2) the effects of climate data spatial variability. One tool for evaluating the effect of climate data on model outputs is the relationship between latent head flux (LH) and evapotranspiration (ET) partitioning with water table depth (WTD). This zone of LH sensitivity to WTD is referred to as the "critical zone." Preliminary results suggest that these critical zone relationships are preserved despite forcing albeit significant shifts in magnitude. These results demonstrate that integrated hydrology models are sensitive to climate data thereby impacting the accuracy of hydrologic modeling of headwaters catchments used for water management and planning purposes and exploring the effects of climate change perturbations.

  20. Challenges in global modeling of wetland extent and wetland methane dynamics

    NASA Astrophysics Data System (ADS)

    Spahni, R.; Melton, J. R.; Wania, R.; Stocker, B. D.; Zürcher, S.; Joos, F.

    2012-12-01

    Global wetlands are known to be climate sensitive, and are the largest natural emitters of methane (CH4). Increased wetland CH4 emissions could act as a positive feedback to future warming. Modelling of global wetland extent and wetland CH4 dynamics remains a challenge. Here we present results from the Wetland and Wetland CH4 Inter-comparison of Models Project (WETCHIMP) that investigated our present ability to simulate large scale wetland characteristics (e.g. wetland type, water table, carbon cycling, gas transport, etc.) and corresponding CH4 emissions. Ten models participated, covering the spectrum from simple to relatively complex, including models tailored either for regional or global simulations. The WETCHIMP experiments showed that while models disagree in spatial and temporal patterns of simulated CH4 emissions and wetland areal extent, they all do agree on a strong positive response to increased carbon dioxide concentrations. WETCHIMP made clear that we currently lack observation data sets that are adequate to evaluate model CH4 soil-atmosphere fluxes at a spatial scale comparable to model grid cells. Thus there are substantial parameter and structural uncertainties in large-scale CH4 emission models. As an illustration of the implications of CH4 emissions on climate we show results of the LPX-Bern model, as one of the models participating in WETCHIMP. LPX-Bern is forced with observed 20th century climate and climate output from an ensemble of five comprehensive climate models for a low and a high emission scenario till 2100 AD. In the high emission scenario increased substrate availability for methanogenesis due to a strong stimulation of net primary productivity, and faster soil turnover leads to an amplification of CH4 emissions with the sharpest increase in peatlands (+180% compared to present). Combined with prescribed anthropogenic CH4 emissions, simulated atmospheric CH4 concentration reaches ~4500 ppbv by 2100 AD, about 800 ppbv more than in standard IPCC scenarios. This represents a significant contribution to radiative forcing of global climate.

  1. Earth System Modeling and Field Experiments in the Arctic-Boreal Zone - Report from a NASA Workshop

    NASA Technical Reports Server (NTRS)

    Sellers, Piers; Rienecker Michele; Randall, David; Frolking, Steve

    2012-01-01

    Early climate modeling studies predicted that the Arctic Ocean and surrounding circumpolar land masses would heat up earlier and faster than other parts of the planet as a result of greenhouse gas-induced climate change, augmented by the sea-ice albedo feedback effect. These predictions have been largely borne out by observations over the last thirty years. However, despite constant improvement, global climate models have greater difficulty in reproducing the current climate in the Arctic than elsewhere and the scatter between projections from different climate models is much larger in the Arctic than for other regions. Biogeochemical cycle (BGC) models indicate that the warming in the Arctic-Boreal Zone (ABZ) could lead to widespread thawing of the permafrost, along with massive releases of CO2 and CH4, and large-scale changes in the vegetation cover in the ABZ. However, the uncertainties associated with these BGC model predictions are even larger than those associated with the physical climate system models used to describe climate change. These deficiencies in climate and BGC models reflect, at least in part, an incomplete understanding of the Arctic climate system and can be related to inadequate observational data or analyses of existing data. A workshop was held at NASA/GSFC, May 22-24 2012, to assess the predictive capability of the models, prioritize the critical science questions; and make recommendations regarding new field experiments needed to improve model subcomponents. This presentation will summarize the findings and recommendations of the workshop, including the need for aircraft and flux tower measurements and extension of existing in-situ measurements to improve process modeling of both the physical climate and biogeochemical cycle systems. Studies should be directly linked to remote sensing investigations with a view to scaling up the improved process models to the Earth System Model scale. Data assimilation and observing system simulation studies should be used to guide the deployment pattern and schedule for inversion studies as well. Synthesis and integration of previously funded Arctic-Boreal projects (e.g., ABLE, BOREAS, ICESCAPE, ICEBRIDGE, ARCTAS) should also be undertaken. Such an effort would include the integration of multiple remotely sensed products from the EOS satellites and other resources.

  2. Forecasting climate change impacts on plant populations over large spatial extents

    DOE PAGES

    Tredennick, Andrew T.; Hooten, Mevin B.; Aldridge, Cameron L.; ...

    2016-10-24

    Plant population models are powerful tools for predicting climate change impacts in one location, but are difficult to apply at landscape scales. Here, we overcome this limitation by taking advantage of two recent advances: remotely sensed, species-specific estimates of plant cover and statistical models developed for spatiotemporal dynamics of animal populations. Using computationally efficient model reparameterizations, we fit a spatiotemporal population model to a 28-year time series of sagebrush (Artemisia spp.) percent cover over a 2.5 × 5 km landscape in southwestern Wyoming while formally accounting for spatial autocorrelation. We include interannual variation in precipitation and temperature as covariates inmore » the model to investigate how climate affects the cover of sagebrush. We then use the model to forecast the future abundance of sagebrush at the landscape scale under projected climate change, generating spatially explicit estimates of sagebrush population trajectories that have, until now, been impossible to produce at this scale. Our broadscale and long-term predictions are rooted in small-scale and short-term population dynamics and provide an alternative to predictions offered by species distribution models that do not include population dynamics. Finally, our approach, which combines several existing techniques in a novel way, demonstrates the use of remote sensing data to model population responses to environmental change that play out at spatial scales far greater than the traditional field study plot.« less

  3. Forecasting climate change impacts on plant populations over large spatial extents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tredennick, Andrew T.; Hooten, Mevin B.; Aldridge, Cameron L.

    Plant population models are powerful tools for predicting climate change impacts in one location, but are difficult to apply at landscape scales. Here, we overcome this limitation by taking advantage of two recent advances: remotely sensed, species-specific estimates of plant cover and statistical models developed for spatiotemporal dynamics of animal populations. Using computationally efficient model reparameterizations, we fit a spatiotemporal population model to a 28-year time series of sagebrush (Artemisia spp.) percent cover over a 2.5 × 5 km landscape in southwestern Wyoming while formally accounting for spatial autocorrelation. We include interannual variation in precipitation and temperature as covariates inmore » the model to investigate how climate affects the cover of sagebrush. We then use the model to forecast the future abundance of sagebrush at the landscape scale under projected climate change, generating spatially explicit estimates of sagebrush population trajectories that have, until now, been impossible to produce at this scale. Our broadscale and long-term predictions are rooted in small-scale and short-term population dynamics and provide an alternative to predictions offered by species distribution models that do not include population dynamics. Finally, our approach, which combines several existing techniques in a novel way, demonstrates the use of remote sensing data to model population responses to environmental change that play out at spatial scales far greater than the traditional field study plot.« less

  4. Forecasting climate change impacts on plant populations over large spatial extents

    USGS Publications Warehouse

    Tredennick, Andrew T.; Hooten, Mevin B.; Aldridge, Cameron L.; Homer, Collin G.; Kleinhesselink, Andrew R.; Adler, Peter B.

    2016-01-01

    Plant population models are powerful tools for predicting climate change impacts in one location, but are difficult to apply at landscape scales. We overcome this limitation by taking advantage of two recent advances: remotely sensed, species-specific estimates of plant cover and statistical models developed for spatiotemporal dynamics of animal populations. Using computationally efficient model reparameterizations, we fit a spatiotemporal population model to a 28-year time series of sagebrush (Artemisia spp.) percent cover over a 2.5 × 5 km landscape in southwestern Wyoming while formally accounting for spatial autocorrelation. We include interannual variation in precipitation and temperature as covariates in the model to investigate how climate affects the cover of sagebrush. We then use the model to forecast the future abundance of sagebrush at the landscape scale under projected climate change, generating spatially explicit estimates of sagebrush population trajectories that have, until now, been impossible to produce at this scale. Our broadscale and long-term predictions are rooted in small-scale and short-term population dynamics and provide an alternative to predictions offered by species distribution models that do not include population dynamics. Our approach, which combines several existing techniques in a novel way, demonstrates the use of remote sensing data to model population responses to environmental change that play out at spatial scales far greater than the traditional field study plot.

  5. Constraints on Oceanic Meridional Transport of Heat and Carbon from Combined Oceanic and Atmospheric Measurements.

    NASA Astrophysics Data System (ADS)

    Resplandy, L.; Keeling, R. F.; Stephens, B. B.; Bent, J. D.; Jacobson, A. R.; Rödenbeck, C.; Khatiwala, S.

    2016-02-01

    The global ocean transports heat northward. The magnitude of this asymmetry between the two hemispheres is a key factor of the climate system through the displacement of tropical precipitation north of the equator and its influence on Arctic temperature and sea-ice extent. These asymmetric influences on heat are however not well constrained by observations or models. We identify a robust link between the ocean heat asymmetry and the large-scale distribution in atmospheric oxygen, using both atmospheric and oceanic observations and a suite of models (oceanic, climate and inverse). Novel aircraft observations from the pole-to-pole HIPPO campaign reveal that the ocean northward heat transport necessary to explain the atmospheric oxygen distribution is in the upper range of previous estimates from hydrographic sections and atmospheric reanalyses. Finally, we evidence a strong link between the oceanic transports of heat and natural carbon. This supports the existence of a strong southward transport of natural carbon at the global scale, a feature present at pre-industrial times and still underlying the anthropogenic signal today. We find that current climate models systematically underestimate these natural large-scale ocean meridional transports of heat and carbon, which bears on future climate projections, in particular concerning Arctic climate, possible shifts in rainfall and carbon sinks partition between the land and the ocean.

  6. Genetic Diversity and Ecological Niche Modelling of Wild Barley: Refugia, Large-Scale Post-LGM Range Expansion and Limited Mid-Future Climate Threats?

    PubMed Central

    Russell, Joanne; van Zonneveld, Maarten; Dawson, Ian K.; Booth, Allan; Waugh, Robbie; Steffenson, Brian

    2014-01-01

    Describing genetic diversity in wild barley (Hordeum vulgare ssp. spontaneum) in geographic and environmental space in the context of current, past and potential future climates is important for conservation and for breeding the domesticated crop (Hordeum vulgare ssp. vulgare). Spatial genetic diversity in wild barley was revealed by both nuclear- (2,505 SNP, 24 nSSR) and chloroplast-derived (5 cpSSR) markers in 256 widely-sampled geo-referenced accessions. Results were compared with MaxEnt-modelled geographic distributions under current, past (Last Glacial Maximum, LGM) and mid-term future (anthropogenic scenario A2, the 2080s) climates. Comparisons suggest large-scale post-LGM range expansion in Central Asia and relatively small, but statistically significant, reductions in range-wide genetic diversity under future climate. Our analyses support the utility of ecological niche modelling for locating genetic diversity hotspots and determine priority geographic areas for wild barley conservation under anthropogenic climate change. Similar research on other cereal crop progenitors could play an important role in tailoring conservation and crop improvement strategies to support future human food security. PMID:24505252

  7. Assessing sufficiency of thermal riverscapes for resilient ...

    EPA Pesticide Factsheets

    Resilient salmon populations require river networks that provide water temperature regimes sufficient to support a diversity of salmonid life histories across space and time. Efforts to protect, enhance and restore watershed thermal regimes for salmon may target specific locations and features within stream networks hypothesized to provide disproportionately high-value functional resilience to salmon populations. These include relatively small-scale features such as thermal refuges, and larger-scale features such as entire watersheds or aquifers that support thermal regimes buffered from local climatic conditions. Quantifying the value of both small and large scale thermal features to salmon populations has been challenged by both the difficulty of mapping thermal regimes at sufficient spatial and temporal resolutions, and integrating thermal regimes into population models. We attempt to address these challenges by using newly-available datasets and modeling approaches to link thermal regimes to salmon populations across scales. We will describe an individual-based modeling approach for assessing sufficiency of thermal refuges for migrating salmon and steelhead in large rivers, as well as a population modeling approach for assessing large-scale climate refugia for salmon in the Pacific Northwest. Many rivers and streams in the Pacific Northwest are currently listed as impaired under the Clean Water Act as a result of high summer water temperatures. Adverse effec

  8. Regional Climate Simulations over North America: Interaction of Local Processes with Improved Large-Scale Flow.

    NASA Astrophysics Data System (ADS)

    Miguez-Macho, Gonzalo; Stenchikov, Georgiy L.; Robock, Alan

    2005-04-01

    The reasons for biases in regional climate simulations were investigated in an attempt to discern whether they arise from deficiencies in the model parameterizations or are due to dynamical problems. Using the Regional Atmospheric Modeling System (RAMS) forced by the National Centers for Environmental Prediction-National Center for Atmospheric Research reanalysis, the detailed climate over North America at 50-km resolution for June 2000 was simulated. First, the RAMS equations were modified to make them applicable to a large region, and its turbulence parameterization was corrected. The initial simulations showed large biases in the location of precipitation patterns and surface air temperatures. By implementing higher-resolution soil data, soil moisture and soil temperature initialization, and corrections to the Kain-Fritch convective scheme, the temperature biases and precipitation amount errors could be removed, but the precipitation location errors remained. The precipitation location biases could only be improved by implementing spectral nudging of the large-scale (wavelength of 2500 km) dynamics in RAMS. This corrected for circulation errors produced by interactions and reflection of the internal domain dynamics with the lateral boundaries where the model was forced by the reanalysis.

  9. Effects of different regional climate model resolution and forcing scales on projected hydrologic changes

    NASA Astrophysics Data System (ADS)

    Mendoza, Pablo A.; Mizukami, Naoki; Ikeda, Kyoko; Clark, Martyn P.; Gutmann, Ethan D.; Arnold, Jeffrey R.; Brekke, Levi D.; Rajagopalan, Balaji

    2016-10-01

    We examine the effects of regional climate model (RCM) horizontal resolution and forcing scaling (i.e., spatial aggregation of meteorological datasets) on the portrayal of climate change impacts. Specifically, we assess how the above decisions affect: (i) historical simulation of signature measures of hydrologic behavior, and (ii) projected changes in terms of annual water balance and hydrologic signature measures. To this end, we conduct our study in three catchments located in the headwaters of the Colorado River basin. Meteorological forcings for current and a future climate projection are obtained at three spatial resolutions (4-, 12- and 36-km) from dynamical downscaling with the Weather Research and Forecasting (WRF) regional climate model, and hydrologic changes are computed using four different hydrologic model structures. These projected changes are compared to those obtained from running hydrologic simulations with current and future 4-km WRF climate outputs re-scaled to 12- and 36-km. The results show that the horizontal resolution of WRF simulations heavily affects basin-averaged precipitation amounts, propagating into large differences in simulated signature measures across model structures. The implications of re-scaled forcing datasets on historical performance were primarily observed on simulated runoff seasonality. We also found that the effects of WRF grid resolution on projected changes in mean annual runoff and evapotranspiration may be larger than the effects of hydrologic model choice, which surpasses the effects from re-scaled forcings. Scaling effects on projected variations in hydrologic signature measures were found to be generally smaller than those coming from WRF resolution; however, forcing aggregation in many cases reversed the direction of projected changes in hydrologic behavior.

  10. Beyond a Climate-Centric View of Plant Distribution: Edaphic Variables Add Value to Distribution Models

    PubMed Central

    Beauregard, Frieda; de Blois, Sylvie

    2014-01-01

    Both climatic and edaphic conditions determine plant distribution, however many species distribution models do not include edaphic variables especially over large geographical extent. Using an exceptional database of vegetation plots (n = 4839) covering an extent of ∼55000 km2, we tested whether the inclusion of fine scale edaphic variables would improve model predictions of plant distribution compared to models using only climate predictors. We also tested how well these edaphic variables could predict distribution on their own, to evaluate the assumption that at large extents, distribution is governed largely by climate. We also hypothesized that the relative contribution of edaphic and climatic data would vary among species depending on their growth forms and biogeographical attributes within the study area. We modelled 128 native plant species from diverse taxa using four statistical model types and three sets of abiotic predictors: climate, edaphic, and edaphic-climate. Model predictive accuracy and variable importance were compared among these models and for species' characteristics describing growth form, range boundaries within the study area, and prevalence. For many species both the climate-only and edaphic-only models performed well, however the edaphic-climate models generally performed best. The three sets of predictors differed in the spatial information provided about habitat suitability, with climate models able to distinguish range edges, but edaphic models able to better distinguish within-range variation. Model predictive accuracy was generally lower for species without a range boundary within the study area and for common species, but these effects were buffered by including both edaphic and climatic predictors. The relative importance of edaphic and climatic variables varied with growth forms, with trees being more related to climate whereas lower growth forms were more related to edaphic conditions. Our study identifies the potential for non-climate aspects of the environment to pose a constraint to range expansion under climate change. PMID:24658097

  11. Beyond a climate-centric view of plant distribution: edaphic variables add value to distribution models.

    PubMed

    Beauregard, Frieda; de Blois, Sylvie

    2014-01-01

    Both climatic and edaphic conditions determine plant distribution, however many species distribution models do not include edaphic variables especially over large geographical extent. Using an exceptional database of vegetation plots (n = 4839) covering an extent of ∼55,000 km2, we tested whether the inclusion of fine scale edaphic variables would improve model predictions of plant distribution compared to models using only climate predictors. We also tested how well these edaphic variables could predict distribution on their own, to evaluate the assumption that at large extents, distribution is governed largely by climate. We also hypothesized that the relative contribution of edaphic and climatic data would vary among species depending on their growth forms and biogeographical attributes within the study area. We modelled 128 native plant species from diverse taxa using four statistical model types and three sets of abiotic predictors: climate, edaphic, and edaphic-climate. Model predictive accuracy and variable importance were compared among these models and for species' characteristics describing growth form, range boundaries within the study area, and prevalence. For many species both the climate-only and edaphic-only models performed well, however the edaphic-climate models generally performed best. The three sets of predictors differed in the spatial information provided about habitat suitability, with climate models able to distinguish range edges, but edaphic models able to better distinguish within-range variation. Model predictive accuracy was generally lower for species without a range boundary within the study area and for common species, but these effects were buffered by including both edaphic and climatic predictors. The relative importance of edaphic and climatic variables varied with growth forms, with trees being more related to climate whereas lower growth forms were more related to edaphic conditions. Our study identifies the potential for non-climate aspects of the environment to pose a constraint to range expansion under climate change.

  12. Mean-state acceleration of cloud-resolving models and large eddy simulations

    DOE PAGES

    Jones, C. R.; Bretherton, C. S.; Pritchard, M. S.

    2015-10-29

    In this study, large eddy simulations and cloud-resolving models (CRMs) are routinely used to simulate boundary layer and deep convective cloud processes, aid in the development of moist physical parameterization for global models, study cloud-climate feedbacks and cloud-aerosol interaction, and as the heart of superparameterized climate models. These models are computationally demanding, placing practical constraints on their use in these applications, especially for long, climate-relevant simulations. In many situations, the horizontal-mean atmospheric structure evolves slowly compared to the turnover time of the most energetic turbulent eddies. We develop a simple scheme to reduce this time scale separation to accelerate themore » evolution of the mean state. Using this approach we are able to accelerate the model evolution by a factor of 2–16 or more in idealized stratocumulus, shallow and deep cumulus convection without substantial loss of accuracy in simulating mean cloud statistics and their sensitivity to climate change perturbations. As a culminating test, we apply this technique to accelerate the embedded CRMs in the Superparameterized Community Atmosphere Model by a factor of 2, thereby showing that the method is robust and stable to realistic perturbations across spatial and temporal scales typical in a GCM.« less

  13. Emerging Cyber Infrastructure for NASA's Large-Scale Climate Data Analytics

    NASA Astrophysics Data System (ADS)

    Duffy, D.; Spear, C.; Bowen, M. K.; Thompson, J. H.; Hu, F.; Yang, C. P.; Pierce, D.

    2016-12-01

    The resolution of NASA climate and weather simulations have grown dramatically over the past few years with the highest-fidelity models reaching down to 1.5 KM global resolutions. With each doubling of the resolution, the resulting data sets grow by a factor of eight in size. As the climate and weather models push the envelope even further, a new infrastructure to store data and provide large-scale data analytics is necessary. The NASA Center for Climate Simulation (NCCS) has deployed the Data Analytics Storage Service (DASS) that combines scalable storage with the ability to perform in-situ analytics. Within this system, large, commonly used data sets are stored in a POSIX file system (write once/read many); examples of data stored include Landsat, MERRA2, observing system simulation experiments, and high-resolution downscaled reanalysis. The total size of this repository is on the order of 15 petabytes of storage. In addition to the POSIX file system, the NCCS has deployed file system connectors to enable emerging analytics built on top of the Hadoop File System (HDFS) to run on the same storage servers within the DASS. Coupled with a custom spatiotemporal indexing approach, users can now run emerging analytical operations built on MapReduce and Spark on the same data files stored within the POSIX file system without having to make additional copies. This presentation will discuss the architecture of this system and present benchmark performance measurements from traditional TeraSort and Wordcount to large-scale climate analytical operations on NetCDF data.

  14. A new climate modeling framework for convection-resolving simulation at continental scale

    NASA Astrophysics Data System (ADS)

    Charpilloz, Christophe; di Girolamo, Salvatore; Arteaga, Andrea; Fuhrer, Oliver; Hoefler, Torsten; Schulthess, Thomas; Schär, Christoph

    2017-04-01

    Major uncertainties remain in our understanding of the processes that govern the water cycle in a changing climate and their representation in weather and climate models. Of particular concern are heavy precipitation events of convective origin (thunderstorms and rain showers). The aim of the crCLIM project [1] is to propose a new climate modeling framework that alleviates the I/O-bottleneck in large-scale, convection-resolving climate simulations and thus to enable new analysis techniques for climate scientists. Due to the large computational costs, convection-resolving simulations are currently restricted to small computational domains or very short time scales, unless the largest available supercomputers system such as hybrid CPU-GPU architectures are used [3]. Hence, the COSMO model has been adapted to run on these architectures for research and production purposes [2]. However, the amount of generated data also increases and storing this data becomes infeasible making the analysis of simulations results impractical. To circumvent this problem and enable high-resolution models in climate we propose a data-virtualization layer (DVL) that re-runs simulations on demand and transparently manages the data for the analysis, that means we trade off computational effort (time) for storage (space). This approach also requires a bit-reproducible version of the COSMO model that produces identical results on different architectures (CPUs and GPUs) [4] that will be coupled with a performance model in order enable optimal re-runs depending on requirements of the re-run and available resources. In this contribution, we discuss the strategy to develop the DVL, a first performance model, the challenge of bit-reproducibility and the first results of the crCLIM project. [1] http://www.c2sm.ethz.ch/research/crCLIM.html [2] O. Fuhrer, C. Osuna, X. Lapillonne, T. Gysi, M. Bianco, and T. Schulthess. "Towards gpu-accelerated operational weather forecasting." In The GPU Technology Conference, GTC. 2013. [3] D. Leutwyler, O. Fuhrer, X. Lapillonne, D. Lüthi, and C. Schär. "Towards European-scale convection-resolving climate simulations with GPUs: a study with COSMO 4.19." Geoscientific Model Development 9, no. 9 (2016): 3393. [4] A. Arteaga, O. Fuhrer, and T. Hoefler. "Designing bit-reproducible portable high-performance applications." In Parallel and Distributed Processing Symposium, 2014 IEEE 28th International, pp. 1235-1244. IEEE, 2014.

  15. Regional assessment of the hydropower potential of rivers in West Africa

    NASA Astrophysics Data System (ADS)

    Kling, Harald; Stanzel, Philipp; Fuchs, Martin

    2016-04-01

    The 15 countries of the Economic Community of West African States (ECOWAS) face a constant shortage of energy supply, which limits sustained economic growth. Currently there are about 50 operational hydropower plants and about 40 more are under construction or refurbishment. The potential for future hydropower development - especially for small-scale plants in rural areas - is assumed to be large, but exact data are missing. This study supports the energy initiatives of the "ECOWAS Centre for Renewable Energy and Energy Efficiency" (ECREEE) by assessing the hydropower potential of all rivers in West Africa. For more than 500,000 river reaches the hydropower potential was computed from channel slope and mean annual discharge. In large areas there is a lack of discharge observations. Therefore, an annual water balance model was used to simulate discharge. The model domain covers 5 Mio km², including e.g. the Niger, Volta, and Senegal River basins. The model was calibrated with observed data of 410 gauges, using precipitation and potential evapotranspiration data as inputs. Historic variations of observed annual discharge between 1950 and 2010 are simulated well by the model. As hydropower plants are investments with a lifetime of several decades we also assessed possible changes in future discharge due to climate change. To this end the water balance model was driven with bias-corrected climate projections of 15 Regional Climate Models for two emission scenarios of the CORDEX-Africa ensemble. The simulation results for the river network were up-scaled to sub-areas and national summaries. This information gives a regional quantification of the hydropower potential, expected climate change impacts, as well as a regional classification for general suitability (or non-suitability) of hydropower plant size - from small-scale to large projects.

  16. A large-scale simulation of climate change effects on flood regime - A case study for the Alabama-Coosa-Tallapoosa River Basin

    NASA Astrophysics Data System (ADS)

    Dullo, T. T.; Gangrade, S.; Marshall, R.; Islam, S. R.; Ghafoor, S. K.; Kao, S. C.; Kalyanapu, A. J.

    2017-12-01

    The damage and cost of flooding are continuously increasing due to climate change and variability, which compels the development and advance of global flood hazard models. However, due to computational expensiveness, evaluation of large-scale and high-resolution flood regime remains a challenge. The objective of this research is to use a coupled modeling framework that consists of a dynamically downscaled suite of eleven Coupled Model Intercomparison Project Phase 5 (CMIP5) climate models, a distributed hydrologic model called DHSVM, and a computational-efficient 2-dimensional hydraulic model called Flood2D-GPU to study the impacts of climate change on flood regime in the Alabama-Coosa-Tallapoosa (ACT) River Basin. Downscaled meteorologic forcings for 40 years in the historical period (1966-2005) and 40 years in the future period (2011-2050) were used as inputs to drive the calibrated DHSVM to generate annual maximum flood hydrographs. These flood hydrographs along with 30-m resolution digital elevation and estimated surface roughness were then used by Flood2D-GPU to estimate high-resolution flood depth, velocities, duration, and regime. Preliminary results for the Conasauga river basin (an upper subbasin within ACT) indicate that seven of the eleven climate projections show an average increase of 25 km2 in flooded area (between historic and future projections). Future work will focus on illustrating the effects of climate change on flood duration and area for the entire ACT basin.

  17. Effects of climate variability on global scale flood risk

    NASA Astrophysics Data System (ADS)

    Ward, P.; Dettinger, M. D.; Kummu, M.; Jongman, B.; Sperna Weiland, F.; Winsemius, H.

    2013-12-01

    In this contribution we demonstrate the influence of climate variability on flood risk. Globally, flooding is one of the worst natural hazards in terms of economic damages; Munich Re estimates global losses in the last decade to be in excess of $240 billion. As a result, scientifically sound estimates of flood risk at the largest scales are increasingly needed by industry (including multinational companies and the insurance industry) and policy communities. Several assessments of global scale flood risk under current and conditions have recently become available, and this year has seen the first studies assessing how flood risk may change in the future due to global change. However, the influence of climate variability on flood risk has as yet hardly been studied, despite the fact that: (a) in other fields (drought, hurricane damage, food production) this variability is as important for policy and practice as long term change; and (b) climate variability has a strong influence in peak riverflows around the world. To address this issue, this contribution illustrates the influence of ENSO-driven climate variability on flood risk, at both the globally aggregated scale and the scale of countries and large river basins. Although it exerts significant and widespread influences on flood peak discharges in many parts of the world, we show that ENSO does not have a statistically significant influence on flood risk once aggregated to global totals. At the scale of individual countries, though, strong relationships exist over large parts of the Earth's surface. For example, we find particularly strong anomalies of flood risk in El Niño or La Niña years (compared to all years) in southern Africa, parts of western Africa, Australia, parts of Central Eurasia (especially for El Niño), the western USA (especially for La Niña), and parts of South America. These findings have large implications for both decadal climate-risk projections and long-term future climate change research. We carried out the research by simulating daily river discharge using a global hydrological model (PCR-GLOBWB), forced with gridded climate reanalysis time-series. From this, we derived peak annual flood volumes for large-scale river basins globally. These were used to force a global inundation model (dynRout) to map inundation extent and depth for return periods between 2 and 1000 years, under El Niño conditions, neutral conditions, and La Niña conditions. Theses flood hazard maps were combined with global datasets on socioeconomic variables such as population and income to represent the socioeconomic exposure to flooding, and depth-damage curves to represent vulnerability.

  18. Comparison of Grid Nudging and Spectral Nudging Techniques for Dynamical Climate Downscaling within the WRF Model

    NASA Astrophysics Data System (ADS)

    Fan, X.; Chen, L.; Ma, Z.

    2010-12-01

    Climate downscaling has been an active research and application area in the past several decades focusing on regional climate studies. Dynamical downscaling, in addition to statistical methods, has been widely used in downscaling as the advanced modern numerical weather and regional climate models emerge. The utilization of numerical models enables that a full set of climate variables are generated in the process of downscaling, which are dynamically consistent due to the constraints of physical laws. While we are generating high resolution regional climate, the large scale climate patterns should be retained. To serve this purpose, nudging techniques, including grid analysis nudging and spectral nudging, have been used in different models. There are studies demonstrating the benefit and advantages of each nudging technique; however, the results are sensitive to many factors such as nudging coefficients and the amount of information to nudge to, and thus the conclusions are controversy. While in a companion work of developing approaches for quantitative assessment of the downscaled climate, in this study, the two nudging techniques are under extensive experiments in the Weather Research and Forecasting (WRF) model. Using the same model provides fair comparability. Applying the quantitative assessments provides objectiveness of comparison. Three types of downscaling experiments were performed for one month of choice. The first type is serving as a base whereas the large scale information is communicated through lateral boundary conditions only; the second is using the grid analysis nudging; and the third is using spectral nudging. Emphases are given to the experiments of different nudging coefficients and nudging to different variables in the grid analysis nudging; while in spectral nudging, we focus on testing the nudging coefficients, different wave numbers on different model levels to nudge.

  19. Large-scale tropospheric transport in the Chemistry-Climate Model Initiative (CCMI) simulations

    NASA Astrophysics Data System (ADS)

    Orbe, Clara; Yang, Huang; Waugh, Darryn W.; Zeng, Guang; Morgenstern, Olaf; Kinnison, Douglas E.; Lamarque, Jean-Francois; Tilmes, Simone; Plummer, David A.; Scinocca, John F.; Josse, Beatrice; Marecal, Virginie; Jöckel, Patrick; Oman, Luke D.; Strahan, Susan E.; Deushi, Makoto; Tanaka, Taichu Y.; Yoshida, Kohei; Akiyoshi, Hideharu; Yamashita, Yousuke; Stenke, Andreas; Revell, Laura; Sukhodolov, Timofei; Rozanov, Eugene; Pitari, Giovanni; Visioni, Daniele; Stone, Kane A.; Schofield, Robyn; Banerjee, Antara

    2018-05-01

    Understanding and modeling the large-scale transport of trace gases and aerosols is important for interpreting past (and projecting future) changes in atmospheric composition. Here we show that there are large differences in the global-scale atmospheric transport properties among the models participating in the IGAC SPARC Chemistry-Climate Model Initiative (CCMI). Specifically, we find up to 40 % differences in the transport timescales connecting the Northern Hemisphere (NH) midlatitude surface to the Arctic and to Southern Hemisphere high latitudes, where the mean age ranges between 1.7 and 2.6 years. We show that these differences are related to large differences in vertical transport among the simulations, in particular to differences in parameterized convection over the oceans. While stronger convection over NH midlatitudes is associated with slower transport to the Arctic, stronger convection in the tropics and subtropics is associated with faster interhemispheric transport. We also show that the differences among simulations constrained with fields derived from the same reanalysis products are as large as (and in some cases larger than) the differences among free-running simulations, most likely due to larger differences in parameterized convection. Our results indicate that care must be taken when using simulations constrained with analyzed winds to interpret the influence of meteorology on tropospheric composition.

  20. Evaluating 20th Century precipitation characteristics between multi-scale atmospheric models with different land-atmosphere coupling

    NASA Astrophysics Data System (ADS)

    Phillips, M.; Denning, A. S.; Randall, D. A.; Branson, M.

    2016-12-01

    Multi-scale models of the atmosphere provide an opportunity to investigate processes that are unresolved by traditional Global Climate Models while at the same time remaining viable in terms of computational resources for climate-length time scales. The MMF represents a shift away from large horizontal grid spacing in traditional GCMs that leads to overabundant light precipitation and lack of heavy events, toward a model where precipitation intensity is allowed to vary over a much wider range of values. Resolving atmospheric motions on the scale of 4 km makes it possible to recover features of precipitation, such as intense downpours, that were previously only obtained by computationally expensive regional simulations. These heavy precipitation events may have little impact on large-scale moisture and energy budgets, but are outstanding in terms of interaction with the land surface and potential impact on human life. Three versions of the Community Earth System Model were used in this study; the standard CESM, the multi-scale `Super-Parameterized' CESM where large-scale parameterizations have been replaced with a 2D cloud-permitting model, and a multi-instance land version of the SP-CESM where each column of the 2D CRM is allowed to interact with an individual land unit. These simulations were carried out using prescribed Sea Surface Temperatures for the period from 1979-2006 with daily precipitation saved for all 28 years. Comparisons of the statistical properties of precipitation between model architectures and against observations from rain gauges were made, with specific focus on detection and evaluation of extreme precipitation events.

  1. New Directions: Understanding Interactions of Air Quality and Climate Change at Regional Scales

    EPA Science Inventory

    The estimates of the short-lived climate forcers’ (SLCFs) impacts and mitigation effects on the radiation balance have large uncertainty because the current global model set-ups and simulations contain simplified parameterizations and do not completely cover the full range of air...

  2. Parameterization Interactions in Global Aquaplanet Simulations

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Ritthik; Bordoni, Simona; Suselj, Kay; Teixeira, João.

    2018-02-01

    Global climate simulations rely on parameterizations of physical processes that have scales smaller than the resolved ones. In the atmosphere, these parameterizations represent moist convection, boundary layer turbulence and convection, cloud microphysics, longwave and shortwave radiation, and the interaction with the land and ocean surface. These parameterizations can generate different climates involving a wide range of interactions among parameterizations and between the parameterizations and the resolved dynamics. To gain a simplified understanding of a subset of these interactions, we perform aquaplanet simulations with the global version of the Weather Research and Forecasting (WRF) model employing a range (in terms of properties) of moist convection and boundary layer (BL) parameterizations. Significant differences are noted in the simulated precipitation amounts, its partitioning between convective and large-scale precipitation, as well as in the radiative impacts. These differences arise from the way the subcloud physics interacts with convection, both directly and through various pathways involving the large-scale dynamics and the boundary layer, convection, and clouds. A detailed analysis of the profiles of the different tendencies (from the different physical processes) for both potential temperature and water vapor is performed. While different combinations of convection and boundary layer parameterizations can lead to different climates, a key conclusion of this study is that similar climates can be simulated with model versions that are different in terms of the partitioning of the tendencies: the vertically distributed energy and water balances in the tropics can be obtained with significantly different profiles of large-scale, convection, and cloud microphysics tendencies.

  3. Quantifying Tropical Glacier Mass Balance Sensitivity to Climate Change Through Regional-Scale Modeling and The Randolph Glacier Inventory

    NASA Astrophysics Data System (ADS)

    Malone, A.

    2017-12-01

    Quantifying mass balance sensitivity to climate change is essential for forecasting glacier evolution and deciphering climate signals embedded in archives of past glacier changes. Ideally, these quantifications result from decades of field measurement, remote sensing, and a hierarchy modeling approach, but in data-sparse regions, such as the Himalayas and tropical Andes, regional-scale modeling rooted in first principles provides a first-order picture. Previous regional-scaling modeling studies have applied a surface energy and mass balance approach in order to quantify equilibrium line altitude sensitivity to climate change. In this study, an expanded regional-scale surface energy and mass balance model is implemented to quantify glacier-wide mass balance sensitivity to climate change for tropical Andean glaciers. Data from the Randolph Glacier Inventory are incorporated, and additional physical processes are included, such as a dynamic albedo and cloud-dependent atmospheric emissivity. The model output agrees well with the limited mass balance records for tropical Andean glaciers. The dominant climate variables driving interannual mass balance variability differ depending on the climate setting. For wet tropical glaciers (annual precipitation >0.75 m y-1), temperature is the dominant climate variable. Different hypotheses for the processes linking wet tropical glacier mass balance variability to temperature are evaluated. The results support the hypothesis that glacier-wide mass balance on wet tropical glaciers is largely dominated by processes at the lowest elevation where temperature plays a leading role in energy exchanges. This research also highlights the transient nature of wet tropical glaciers - the vast majority of tropical glaciers and a vital regional water resource - in an anthropogenic warming world.

  4. Projected Future Vegetation Changes for the Northwest United States and Southwest Canada at a Fine Spatial Resolution Using a Dynamic Global Vegetation Model.

    PubMed

    Shafer, Sarah L; Bartlein, Patrick J; Gray, Elizabeth M; Pelltier, Richard T

    2015-01-01

    Future climate change may significantly alter the distributions of many plant taxa. The effects of climate change may be particularly large in mountainous regions where climate can vary significantly with elevation. Understanding potential future vegetation changes in these regions requires methods that can resolve vegetation responses to climate change at fine spatial resolutions. We used LPJ, a dynamic global vegetation model, to assess potential future vegetation changes for a large topographically complex area of the northwest United States and southwest Canada (38.0-58.0°N latitude by 136.6-103.0°W longitude). LPJ is a process-based vegetation model that mechanistically simulates the effect of changing climate and atmospheric CO2 concentrations on vegetation. It was developed and has been mostly applied at spatial resolutions of 10-minutes or coarser. In this study, we used LPJ at a 30-second (~1-km) spatial resolution to simulate potential vegetation changes for 2070-2099. LPJ was run using downscaled future climate simulations from five coupled atmosphere-ocean general circulation models (CCSM3, CGCM3.1(T47), GISS-ER, MIROC3.2(medres), UKMO-HadCM3) produced using the A2 greenhouse gases emissions scenario. Under projected future climate and atmospheric CO2 concentrations, the simulated vegetation changes result in the contraction of alpine, shrub-steppe, and xeric shrub vegetation across the study area and the expansion of woodland and forest vegetation. Large areas of maritime cool forest and cold forest are simulated to persist under projected future conditions. The fine spatial-scale vegetation simulations resolve patterns of vegetation change that are not visible at coarser resolutions and these fine-scale patterns are particularly important for understanding potential future vegetation changes in topographically complex areas.

  5. Local-scale changes in mean and heavy precipitation in Western Europe, climate change or internal variability?

    NASA Astrophysics Data System (ADS)

    Aalbers, Emma E.; Lenderink, Geert; van Meijgaard, Erik; van den Hurk, Bart J. J. M.

    2018-06-01

    High-resolution climate information provided by e.g. regional climate models (RCMs) is valuable for exploring the changing weather under global warming, and assessing the local impact of climate change. While there is generally more confidence in the representativeness of simulated processes at higher resolutions, internal variability of the climate system—`noise', intrinsic to the chaotic nature of atmospheric and oceanic processes—is larger at smaller spatial scales as well, limiting the predictability of the climate signal. To quantify the internal variability and robustly estimate the climate signal, large initial-condition ensembles of climate simulations conducted with a single model provide essential information. We analyze a regional downscaling of a 16-member initial-condition ensemble over western Europe and the Alps at 0.11° resolution, similar to the highest resolution EURO-CORDEX simulations. We examine the strength of the forced climate response (signal) in mean and extreme daily precipitation with respect to noise due to internal variability, and find robust small-scale geographical features in the forced response, indicating regional differences in changes in the probability of events. However, individual ensemble members provide only limited information on the forced climate response, even for high levels of global warming. Although the results are based on a single RCM-GCM chain, we believe that they have general value in providing insight in the fraction of the uncertainty in high-resolution climate information that is irreducible, and can assist in the correct interpretation of fine-scale information in multi-model ensembles in terms of a forced response and noise due to internal variability.

  6. Local-scale changes in mean and heavy precipitation in Western Europe, climate change or internal variability?

    NASA Astrophysics Data System (ADS)

    Aalbers, Emma E.; Lenderink, Geert; van Meijgaard, Erik; van den Hurk, Bart J. J. M.

    2017-09-01

    High-resolution climate information provided by e.g. regional climate models (RCMs) is valuable for exploring the changing weather under global warming, and assessing the local impact of climate change. While there is generally more confidence in the representativeness of simulated processes at higher resolutions, internal variability of the climate system—`noise', intrinsic to the chaotic nature of atmospheric and oceanic processes—is larger at smaller spatial scales as well, limiting the predictability of the climate signal. To quantify the internal variability and robustly estimate the climate signal, large initial-condition ensembles of climate simulations conducted with a single model provide essential information. We analyze a regional downscaling of a 16-member initial-condition ensemble over western Europe and the Alps at 0.11° resolution, similar to the highest resolution EURO-CORDEX simulations. We examine the strength of the forced climate response (signal) in mean and extreme daily precipitation with respect to noise due to internal variability, and find robust small-scale geographical features in the forced response, indicating regional differences in changes in the probability of events. However, individual ensemble members provide only limited information on the forced climate response, even for high levels of global warming. Although the results are based on a single RCM-GCM chain, we believe that they have general value in providing insight in the fraction of the uncertainty in high-resolution climate information that is irreducible, and can assist in the correct interpretation of fine-scale information in multi-model ensembles in terms of a forced response and noise due to internal variability.

  7. Recent Naval Postgraduate School Publications.

    DTIC Science & Technology

    1982-04-01

    477 p. Haney, R L; et al.; eds. Ocean models for climate research: A workshop Sponsored by the U.S. Committee for the Global Atmos. Hes. Program. Nat... climate variability Oceanus, vol. 21, no. 4, p. 33-39, (1978). Williams, R T A review of theoretical models of atmospheric frontogenesis Chapman Conf...structure in large-scale optimization models Symp. 9 n Computer-Assisted Analysis and Model Simpification, Boulder, Colo., Mar. 24, 1980. Brown, G G

  8. Regional-Scale Climate Change: Observations and Model Simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bradley, Raymond S; Diaz, Henry F

    2010-12-14

    This collaborative proposal addressed key issues in understanding the Earth's climate system, as highlighted by the U.S. Climate Science Program. The research focused on documenting past climatic changes and on assessing future climatic changes based on suites of global and regional climate models. Geographically, our emphasis was on the mountainous regions of the world, with a particular focus on the Neotropics of Central America and the Hawaiian Islands. Mountain regions are zones where large variations in ecosystems occur due to the strong climate zonation forced by the topography. These areas are particularly susceptible to changes in critical ecological thresholds, andmore » we conducted studies of changes in phonological indicators based on various climatic thresholds.« less

  9. State dependence of climatic instability over the past 720,000 years from Antarctic ice cores and climate modeling.

    PubMed

    Kawamura, Kenji; Abe-Ouchi, Ayako; Motoyama, Hideaki; Ageta, Yutaka; Aoki, Shuji; Azuma, Nobuhiko; Fujii, Yoshiyuki; Fujita, Koji; Fujita, Shuji; Fukui, Kotaro; Furukawa, Teruo; Furusaki, Atsushi; Goto-Azuma, Kumiko; Greve, Ralf; Hirabayashi, Motohiro; Hondoh, Takeo; Hori, Akira; Horikawa, Shinichiro; Horiuchi, Kazuho; Igarashi, Makoto; Iizuka, Yoshinori; Kameda, Takao; Kanda, Hiroshi; Kohno, Mika; Kuramoto, Takayuki; Matsushi, Yuki; Miyahara, Morihiro; Miyake, Takayuki; Miyamoto, Atsushi; Nagashima, Yasuo; Nakayama, Yoshiki; Nakazawa, Takakiyo; Nakazawa, Fumio; Nishio, Fumihiko; Obinata, Ichio; Ohgaito, Rumi; Oka, Akira; Okuno, Jun'ichi; Okuyama, Junichi; Oyabu, Ikumi; Parrenin, Frédéric; Pattyn, Frank; Saito, Fuyuki; Saito, Takashi; Saito, Takeshi; Sakurai, Toshimitsu; Sasa, Kimikazu; Seddik, Hakime; Shibata, Yasuyuki; Shinbori, Kunio; Suzuki, Keisuke; Suzuki, Toshitaka; Takahashi, Akiyoshi; Takahashi, Kunio; Takahashi, Shuhei; Takata, Morimasa; Tanaka, Yoichi; Uemura, Ryu; Watanabe, Genta; Watanabe, Okitsugu; Yamasaki, Tetsuhide; Yokoyama, Kotaro; Yoshimori, Masakazu; Yoshimoto, Takayasu

    2017-02-01

    Climatic variabilities on millennial and longer time scales with a bipolar seesaw pattern have been documented in paleoclimatic records, but their frequencies, relationships with mean climatic state, and mechanisms remain unclear. Understanding the processes and sensitivities that underlie these changes will underpin better understanding of the climate system and projections of its future change. We investigate the long-term characteristics of climatic variability using a new ice-core record from Dome Fuji, East Antarctica, combined with an existing long record from the Dome C ice core. Antarctic warming events over the past 720,000 years are most frequent when the Antarctic temperature is slightly below average on orbital time scales, equivalent to an intermediate climate during glacial periods, whereas interglacial and fully glaciated climates are unfavourable for a millennial-scale bipolar seesaw. Numerical experiments using a fully coupled atmosphere-ocean general circulation model with freshwater hosing in the northern North Atlantic showed that climate becomes most unstable in intermediate glacial conditions associated with large changes in sea ice and the Atlantic Meridional Overturning Circulation. Model sensitivity experiments suggest that the prerequisite for the most frequent climate instability with bipolar seesaw pattern during the late Pleistocene era is associated with reduced atmospheric CO 2 concentration via global cooling and sea ice formation in the North Atlantic, in addition to extended Northern Hemisphere ice sheets.

  10. State dependence of climatic instability over the past 720,000 years from Antarctic ice cores and climate modeling

    PubMed Central

    Kawamura, Kenji; Abe-Ouchi, Ayako; Motoyama, Hideaki; Ageta, Yutaka; Aoki, Shuji; Azuma, Nobuhiko; Fujii, Yoshiyuki; Fujita, Koji; Fujita, Shuji; Fukui, Kotaro; Furukawa, Teruo; Furusaki, Atsushi; Goto-Azuma, Kumiko; Greve, Ralf; Hirabayashi, Motohiro; Hondoh, Takeo; Hori, Akira; Horikawa, Shinichiro; Horiuchi, Kazuho; Igarashi, Makoto; Iizuka, Yoshinori; Kameda, Takao; Kanda, Hiroshi; Kohno, Mika; Kuramoto, Takayuki; Matsushi, Yuki; Miyahara, Morihiro; Miyake, Takayuki; Miyamoto, Atsushi; Nagashima, Yasuo; Nakayama, Yoshiki; Nakazawa, Takakiyo; Nakazawa, Fumio; Nishio, Fumihiko; Obinata, Ichio; Ohgaito, Rumi; Oka, Akira; Okuno, Jun’ichi; Okuyama, Junichi; Oyabu, Ikumi; Parrenin, Frédéric; Pattyn, Frank; Saito, Fuyuki; Saito, Takashi; Saito, Takeshi; Sakurai, Toshimitsu; Sasa, Kimikazu; Seddik, Hakime; Shibata, Yasuyuki; Shinbori, Kunio; Suzuki, Keisuke; Suzuki, Toshitaka; Takahashi, Akiyoshi; Takahashi, Kunio; Takahashi, Shuhei; Takata, Morimasa; Tanaka, Yoichi; Uemura, Ryu; Watanabe, Genta; Watanabe, Okitsugu; Yamasaki, Tetsuhide; Yokoyama, Kotaro; Yoshimori, Masakazu; Yoshimoto, Takayasu

    2017-01-01

    Climatic variabilities on millennial and longer time scales with a bipolar seesaw pattern have been documented in paleoclimatic records, but their frequencies, relationships with mean climatic state, and mechanisms remain unclear. Understanding the processes and sensitivities that underlie these changes will underpin better understanding of the climate system and projections of its future change. We investigate the long-term characteristics of climatic variability using a new ice-core record from Dome Fuji, East Antarctica, combined with an existing long record from the Dome C ice core. Antarctic warming events over the past 720,000 years are most frequent when the Antarctic temperature is slightly below average on orbital time scales, equivalent to an intermediate climate during glacial periods, whereas interglacial and fully glaciated climates are unfavourable for a millennial-scale bipolar seesaw. Numerical experiments using a fully coupled atmosphere-ocean general circulation model with freshwater hosing in the northern North Atlantic showed that climate becomes most unstable in intermediate glacial conditions associated with large changes in sea ice and the Atlantic Meridional Overturning Circulation. Model sensitivity experiments suggest that the prerequisite for the most frequent climate instability with bipolar seesaw pattern during the late Pleistocene era is associated with reduced atmospheric CO2 concentration via global cooling and sea ice formation in the North Atlantic, in addition to extended Northern Hemisphere ice sheets. PMID:28246631

  11. Studies of regional-scale climate variability and change. Hidden Markov models and coupled ocean-atmosphere modes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghil, M.; Kravtsov, S.; Robertson, A. W.

    2008-10-14

    This project was a continuation of previous work under DOE CCPP funding, in which we had developed a twin approach of probabilistic network (PN) models (sometimes called dynamic Bayesian networks) and intermediate-complexity coupled ocean-atmosphere models (ICMs) to identify the predictable modes of climate variability and to investigate their impacts on the regional scale. We had developed a family of PNs (similar to Hidden Markov Models) to simulate historical records of daily rainfall, and used them to downscale GCM seasonal predictions. Using an idealized atmospheric model, we had established a novel mechanism through which ocean-induced sea-surface temperature (SST) anomalies might influencemore » large-scale atmospheric circulation patterns on interannual and longer time scales; we had found similar patterns in a hybrid coupled ocean-atmosphere-sea-ice model. The goal of the this continuation project was to build on these ICM results and PN model development to address prediction of rainfall and temperature statistics at the local scale, associated with global climate variability and change, and to investigate the impact of the latter on coupled ocean-atmosphere modes. Our main results from the grant consist of extensive further development of the hidden Markov models for rainfall simulation and downscaling together with the development of associated software; new intermediate coupled models; a new methodology of inverse modeling for linking ICMs with observations and GCM results; and, observational studies of decadal and multi-decadal natural climate results, informed by ICM results.« less

  12. Carbon Cycle Model Linkage Project (CCMLP): Evaluating Biogeochemical Process Models with Atmospheric Measurements and Field Experiments

    NASA Astrophysics Data System (ADS)

    Heimann, M.; Prentice, I. C.; Foley, J.; Hickler, T.; Kicklighter, D. W.; McGuire, A. D.; Melillo, J. M.; Ramankutty, N.; Sitch, S.

    2001-12-01

    Models of biophysical and biogeochemical proceses are being used -either offline or in coupled climate-carbon cycle (C4) models-to assess climate- and CO2-induced feedbacks on atmospheric CO2. Observations of atmospheric CO2 concentration, and supplementary tracers including O2 concentrations and isotopes, offer unique opportunities to evaluate the large-scale behaviour of models. Global patterns, temporal trends, and interannual variability of the atmospheric CO2 concentration and its seasonal cycle provide crucial benchmarks for simulations of regionally-integrated net ecosystem exchange; flux measurements by eddy correlation allow a far more demanding model test at the ecosystem scale than conventional indicators, such as measurements of annual net primary production; and large-scale manipulations, such as the Duke Forest Free Air Carbon Enrichment (FACE) experiment, give a standard to evaluate modelled phenomena such as ecosystem-level CO2 fertilization. Model runs including historical changes of CO2, climate and land use allow comparison with regional-scale monthly CO2 balances as inferred from atmospheric measurements. Such comparisons are providing grounds for some confidence in current models, while pointing to processes that may still be inadequately treated. Current plans focus on (1) continued benchmarking of land process models against flux measurements across ecosystems and experimental findings on the ecosystem-level effects of enhanced CO2, reactive N inputs and temperature; (2) improved representation of land use, forest management and crop metabolism in models; and (3) a strategy for the evaluation of C4 models in a historical observational context.

  13. Simulated Tree Growth across the Northern Hemisphere and the Seasonality of Climate Signals Encoded within Tree-ring Widths

    NASA Astrophysics Data System (ADS)

    Li, X.; St George, S.

    2013-12-01

    Both dendrochronological theory and regional and global networks of tree-ring width measurements indicate that trees can respond to climate variations quite differently from one location to another. To explain these geographical differences at hemispheric scale, we used a process-based model of tree-ring formation (the Vaganov-Shashkin model) to simulate tree growth at over 6000 locations across the Northern Hemisphere. We compared the seasonality and strength of climate signals in the simulated tree-ring records against parallel analysis conducted on a hemispheric network of real tree-ring observations, tested the ability of the model to reproduce behaviors that emerge from large networks of tree-ring widths and used the model outputs to explain why the network exhibits these behaviors. The simulated tree-ring records are consistent with observations with respect to the seasonality and relative strength of the encoded climate signals, and time-related changes in these climate signals can be predicted using the modeled relative growth rate due to temperature or soil moisture. The positive imprint of winter (DJF) precipitation is strongest in simulations from the American Southwest and northern Mexico as well as selected locations in the Mediterranean and central Asia. Summer (JJA) precipitation has higher positive correlations with simulations in the mid-latitudes, but some high-latitude coastal sites exhibit a negative association. The influence of summer temperature is mainly positive at high-latitude or high-altitude sites and negative in the mid-latitudes. The absolute magnitude of climate correlations are generally higher in simulations than in observations, but the pattern and geographical differences remain the same, demonstrating that the model has skill in reproducing tree-ring growth response to climate variability in the Northern Hemisphere. Because the model uses only temperature, precipitation and latitude as input and is not adjusted for species or other biological factors, the fact that the climate response of the simulations largely agrees with the observations may imply that climate, rather than biology, is the main factor that influences large-scale patterns of the climate information recorded by tree rings. Our results also suggest that the Vaganov-Shashkin model could be used to estimate the likely climate response of trees in ';frontier' areas that have not been sampled extensively. Seasonal Climate Correlations of Simulated Tree-ring Records

  14. Impacts of large-scale climatic disturbances on the terrestrial carbon cycle.

    PubMed

    Erbrecht, Tim; Lucht, Wolfgang

    2006-07-27

    The amount of carbon dioxide in the atmosphere steadily increases as a consequence of anthropogenic emissions but with large interannual variability caused by the terrestrial biosphere. These variations in the CO2 growth rate are caused by large-scale climate anomalies but the relative contributions of vegetation growth and soil decomposition is uncertain. We use a biogeochemical model of the terrestrial biosphere to differentiate the effects of temperature and precipitation on net primary production (NPP) and heterotrophic respiration (Rh) during the two largest anomalies in atmospheric CO2 increase during the last 25 years. One of these, the smallest atmospheric year-to-year increase (largest land carbon uptake) in that period, was caused by global cooling in 1992/93 after the Pinatubo volcanic eruption. The other, the largest atmospheric increase on record (largest land carbon release), was caused by the strong El Niño event of 1997/98. We find that the LPJ model correctly simulates the magnitude of terrestrial modulation of atmospheric carbon anomalies for these two extreme disturbances. The response of soil respiration to changes in temperature and precipitation explains most of the modelled anomalous CO2 flux. Observed and modelled NEE anomalies are in good agreement, therefore we suggest that the temporal variability of heterotrophic respiration produced by our model is reasonably realistic. We therefore conclude that during the last 25 years the two largest disturbances of the global carbon cycle were strongly controlled by soil processes rather then the response of vegetation to these large-scale climatic events.

  15. Impacts of large-scale climatic disturbances on the terrestrial carbon cycle

    PubMed Central

    Erbrecht, Tim; Lucht, Wolfgang

    2006-01-01

    Background The amount of carbon dioxide in the atmosphere steadily increases as a consequence of anthropogenic emissions but with large interannual variability caused by the terrestrial biosphere. These variations in the CO2 growth rate are caused by large-scale climate anomalies but the relative contributions of vegetation growth and soil decomposition is uncertain. We use a biogeochemical model of the terrestrial biosphere to differentiate the effects of temperature and precipitation on net primary production (NPP) and heterotrophic respiration (Rh) during the two largest anomalies in atmospheric CO2 increase during the last 25 years. One of these, the smallest atmospheric year-to-year increase (largest land carbon uptake) in that period, was caused by global cooling in 1992/93 after the Pinatubo volcanic eruption. The other, the largest atmospheric increase on record (largest land carbon release), was caused by the strong El Niño event of 1997/98. Results We find that the LPJ model correctly simulates the magnitude of terrestrial modulation of atmospheric carbon anomalies for these two extreme disturbances. The response of soil respiration to changes in temperature and precipitation explains most of the modelled anomalous CO2 flux. Conclusion Observed and modelled NEE anomalies are in good agreement, therefore we suggest that the temporal variability of heterotrophic respiration produced by our model is reasonably realistic. We therefore conclude that during the last 25 years the two largest disturbances of the global carbon cycle were strongly controlled by soil processes rather then the response of vegetation to these large-scale climatic events. PMID:16930463

  16. A Comparison Between Gravity Wave Momentum Fluxes in Observations and Climate Models

    NASA Technical Reports Server (NTRS)

    Geller, Marvin A.; Alexadner, M. Joan; Love, Peter T.; Bacmeister, Julio; Ern, Manfred; Hertzog, Albert; Manzini, Elisa; Preusse, Peter; Sato, Kaoru; Scaife, Adam A.; hide

    2013-01-01

    For the first time, a formal comparison is made between gravity wave momentum fluxes in models and those derived from observations. Although gravity waves occur over a wide range of spatial and temporal scales, the focus of this paper is on scales that are being parameterized in present climate models, sub-1000-km scales. Only observational methods that permit derivation of gravity wave momentum fluxes over large geographical areas are discussed, and these are from satellite temperature measurements, constant-density long-duration balloons, and high-vertical-resolution radiosonde data. The models discussed include two high-resolution models in which gravity waves are explicitly modeled, Kanto and the Community Atmosphere Model, version 5 (CAM5), and three climate models containing gravity wave parameterizations,MAECHAM5, Hadley Centre Global Environmental Model 3 (HadGEM3), and the Goddard Institute for Space Studies (GISS) model. Measurements generally show similar flux magnitudes as in models, except that the fluxes derived from satellite measurements fall off more rapidly with height. This is likely due to limitations on the observable range of wavelengths, although other factors may contribute. When one accounts for this more rapid fall off, the geographical distribution of the fluxes from observations and models compare reasonably well, except for certain features that depend on the specification of the nonorographic gravity wave source functions in the climate models. For instance, both the observed fluxes and those in the high-resolution models are very small at summer high latitudes, but this is not the case for some of the climate models. This comparison between gravity wave fluxes from climate models, high-resolution models, and fluxes derived from observations indicates that such efforts offer a promising path toward improving specifications of gravity wave sources in climate models.

  17. Sensitivity analysis of key components in large-scale hydroeconomic models

    NASA Astrophysics Data System (ADS)

    Medellin-Azuara, J.; Connell, C. R.; Lund, J. R.; Howitt, R. E.

    2008-12-01

    This paper explores the likely impact of different estimation methods in key components of hydro-economic models such as hydrology and economic costs or benefits, using the CALVIN hydro-economic optimization for water supply in California. In perform our analysis using two climate scenarios: historical and warm-dry. The components compared were perturbed hydrology using six versus eighteen basins, highly-elastic urban water demands, and different valuation of agricultural water scarcity. Results indicate that large scale hydroeconomic hydro-economic models are often rather robust to a variety of estimation methods of ancillary models and components. Increasing the level of detail in the hydrologic representation of this system might not greatly affect overall estimates of climate and its effects and adaptations for California's water supply. More price responsive urban water demands will have a limited role in allocating water optimally among competing uses. Different estimation methods for the economic value of water and scarcity in agriculture may influence economically optimal water allocation; however land conversion patterns may have a stronger influence in this allocation. Overall optimization results of large-scale hydro-economic models remain useful for a wide range of assumptions in eliciting promising water management alternatives.

  18. Risk of large-scale fires in boreal forests of Finland under changing climate

    NASA Astrophysics Data System (ADS)

    Lehtonen, I.; Venäläinen, A.; Kämäräinen, M.; Peltola, H.; Gregow, H.

    2016-01-01

    The target of this work was to assess the impact of projected climate change on forest-fire activity in Finland with special emphasis on large-scale fires. In addition, we were particularly interested to examine the inter-model variability of the projected change of fire danger. For this purpose, we utilized fire statistics covering the period 1996-2014 and consisting of almost 20 000 forest fires, as well as daily meteorological data from five global climate models under representative concentration pathway RCP4.5 and RCP8.5 scenarios. The model data were statistically downscaled onto a high-resolution grid using the quantile-mapping method before performing the analysis. In examining the relationship between weather and fire danger, we applied the Canadian fire weather index (FWI) system. Our results suggest that the number of large forest fires may double or even triple during the present century. This would increase the risk that some of the fires could develop into real conflagrations which have become almost extinct in Finland due to active and efficient fire suppression. However, the results reveal substantial inter-model variability in the rate of the projected increase of forest-fire danger, emphasizing the large uncertainty related to the climate change signal in fire activity. We moreover showed that the majority of large fires in Finland occur within a relatively short period in May and June due to human activities and that FWI correlates poorer with the fire activity during this time of year than later in summer when lightning is a more important cause of fires.

  19. Predictors of Drought Recovery across Forest Ecosystems

    NASA Astrophysics Data System (ADS)

    Anderegg, W.

    2016-12-01

    The impacts of climate extremes on terrestrial ecosystems are poorly understood but central for predicting carbon cycle feedbacks to climate change. Coupled climate-carbon cycle models typically assume that vegetation recovery from extreme drought is immediate and complete, which conflicts with basic plant physiological understanding. Here, we discuss what we have learned about forest ecosystem recovery from extreme drought across spatial and temporal scales, drawing on inference from tree rings, eddy covariance data, large scale gross primary productivity products, and ecosystem models. In tree rings, we find pervasive and substantial "legacy effects" of reduced growth and incomplete recovery for 1-4 years after severe drought, and that legacy effects are most prevalent in dry ecosystems, Pinaceae, and species with low hydraulic safety margins. At larger scales, we see relatively rapid recovery of ecosystem fluxes, with strong influences of ecosystem productivity and diversity and longer recovery periods in high latidue forests. In contrast, no or limited legacy effects are simulated in current climate-vegetation models after drought, and we highlight some of the key missing mechanisms in dynamic vegetation models. Our results reveal hysteresis in forest ecosystem carbon cycling and delayed recovery from climate extremes and help advance a predictive understanding of ecosystem recovery.

  20. Use of NARCCAP data to characterize regional climate uncertainty in the impact of global climate change on large river fish population: Missouri River sturgeon example

    NASA Astrophysics Data System (ADS)

    Anderson, C. J.; Wildhaber, M. L.; Wikle, C. K.; Moran, E. H.; Franz, K. J.; Dey, R.

    2012-12-01

    Climate change operates over a broad range of spatial and temporal scales. Understanding the effects of change on ecosystems requires accounting for the propagation of information and uncertainty across these scales. For example, to understand potential climate change effects on fish populations in riverine ecosystems, climate conditions predicted by course-resolution atmosphere-ocean global climate models must first be translated to the regional climate scale. In turn, this regional information is used to force watershed models, which are used to force river condition models, which impact the population response. A critical challenge in such a multiscale modeling environment is to quantify sources of uncertainty given the highly nonlinear nature of interactions between climate variables and the individual organism. We use a hierarchical modeling approach for accommodating uncertainty in multiscale ecological impact studies. This framework allows for uncertainty due to system models, model parameter settings, and stochastic parameterizations. This approach is a hybrid between physical (deterministic) downscaling and statistical downscaling, recognizing that there is uncertainty in both. We use NARCCAP data to determine confidence the capability of climate models to simulate relevant processes and to quantify regional climate variability within the context of the hierarchical model of uncertainty quantification. By confidence, we mean the ability of the regional climate model to replicate observed mechanisms. We use the NCEP-driven simulations for this analysis. This provides a base from which regional change can be categorized as either a modification of previously observed mechanisms or emergence of new processes. The management implications for these categories of change are significantly different in that procedures to address impacts from existing processes may already be known and need adjustment; whereas, an emergent processes may require new management strategies. The results from hierarchical analysis of uncertainty are used to study the relative change in weights of the endangered Missouri River pallid sturgeon (Scaphirhynchus albus) under a 21st century climate scenario.

  1. US forest response to projected climate-related stress: a tolerance perspective.

    PubMed

    Liénard, Jean; Harrison, John; Strigul, Nikolay

    2016-08-01

    Although it is widely recognized that climate change will require a major spatial reorganization of forests, our ability to predict exactly how and where forest characteristics and distributions will change has been rather limited. Current efforts to predict future distribution of forested ecosystems as a function of climate include species distribution models (for fine-scale predictions) and potential vegetation climate envelope models (for coarse-grained, large-scale predictions). Here, we develop and apply an intermediate approach wherein we use stand-level tolerances of environmental stressors to understand forest distributions and vulnerabilities to anticipated climate change. In contrast to other existing models, this approach can be applied at a continental scale while maintaining a direct link to ecologically relevant, climate-related stressors. We first demonstrate that shade, drought, and waterlogging tolerances of forest stands are strongly correlated with climate and edaphic conditions in the conterminous United States. This discovery allows the development of a tolerance distribution model (TDM), a novel quantitative tool to assess landscape level impacts of climate change. We then focus on evaluating the implications of the drought TDM. Using an ensemble of 17 climate change models to drive this TDM, we estimate that 18% of US ecosystems are vulnerable to drought-related stress over the coming century. Vulnerable areas include mostly the Midwest United States and Northeast United States, as well as high-elevation areas of the Rocky Mountains. We also infer stress incurred by shifting climate should create an opening for the establishment of forest types not currently seen in the conterminous United States. © 2016 John Wiley & Sons Ltd.

  2. Large Scale Skill in Regional Climate Modeling and the Lateral Boundary Condition Scheme

    NASA Astrophysics Data System (ADS)

    Veljović, K.; Rajković, B.; Mesinger, F.

    2009-04-01

    Several points are made concerning the somewhat controversial issue of regional climate modeling: should a regional climate model (RCM) be expected to maintain the large scale skill of the driver global model that is supplying its lateral boundary condition (LBC)? Given that this is normally desired, is it able to do so without help via the fairly popular large scale nudging? Specifically, without such nudging, will the RCM kinetic energy necessarily decrease with time compared to that of the driver model or analysis data as suggested by a study using the Regional Atmospheric Modeling System (RAMS)? Finally, can the lateral boundary condition scheme make a difference: is the almost universally used but somewhat costly relaxation scheme necessary for a desirable RCM performance? Experiments are made to explore these questions running the Eta model in two versions differing in the lateral boundary scheme used. One of these schemes is the traditional relaxation scheme, and the other the Eta model scheme in which information is used at the outermost boundary only, and not all variables are prescribed at the outflow boundary. Forecast lateral boundary conditions are used, and results are verified against the analyses. Thus, skill of the two RCM forecasts can be and is compared not only against each other but also against that of the driver global forecast. A novel verification method is used in the manner of customary precipitation verification in that forecast spatial wind speed distribution is verified against analyses by calculating bias adjusted equitable threat scores and bias scores for wind speeds greater than chosen wind speed thresholds. In this way, focusing on a high wind speed value in the upper troposphere, verification of large scale features we suggest can be done in a manner that may be more physically meaningful than verifications via spectral decomposition that are a standard RCM verification method. The results we have at this point are somewhat limited in view of the integrations having being done only for 10-day forecasts. Even so, one should note that they are among very few done using forecast as opposed to reanalysis or analysis global driving data. Our results suggest that (1) running the Eta as an RCM no significant loss of large-scale kinetic energy with time seems to be taking place; (2) no disadvantage from using the Eta LBC scheme compared to the relaxation scheme is seen, while enjoying the advantage of the scheme being significantly less demanding than the relaxation given that it needs driver model fields at the outermost domain boundary only; and (3) the Eta RCM skill in forecasting large scales, with no large scale nudging, seems to be just about the same as that of the driver model, or, in the terminology of Castro et al., the Eta RCM does not lose "value of the large scale" which exists in the larger global analyses used for the initial condition and for verification.

  3. Hope for the Forests? Habitat Resiliency Illustrated in the Face of Climate Change Using Fine-Scale Modeling

    NASA Astrophysics Data System (ADS)

    Flint, L. E.; Flint, A. L.; Weiss, S. B.; Micheli, E. R.

    2010-12-01

    In the face of rapid climate change, fine-scale predictions of landscape change are of extreme interest to land managers that endeavor to develop long term adaptive strategies for maintaining biodiversity and ecosystem services. Global climate model (GCM) outputs, which generally focus on estimated increases in air temperature, are increasingly applied to species habitat distribution models. For sensitive species subject to climate change, habitat models predict significant migration (either northward or towards higher elevations), or complete extinction. Current studies typically rely on large spatial scale GCM projections (> 10 km) of changes in precipitation and air temperature: at this scale, these models necessarily neglect subtleties of topographic shading, geomorphic expression of the landscape, and fine-scale differences in soil properties - data that is readily available at meaningful local scales. Recent advances in modeling take advantage of available soils, geology, and topographic data to construct watershed-scale scenarios using GCM inputs and result in improved correlations of vegetation distribution with temperature. For this study, future climate projections were downscaled to 270-m and applied to a physically-based hydrologic model to calculate future changes in recharge, runoff, and climatic water deficit (CWD) for basins draining into the northern San Francisco Bay. CWD was analyzed for mapped vegetation types to evaluate the range of CWD for historic time periods in comparison to future time periods. For several forest communities (including blue oak woodlands, montane hardwoods, douglas-fir, and coast redwood) existing landscape area exhibiting suitable CWD diminishes by up 80 percent in the next century, with a trend towards increased CWD throughout the region. However, no forest community loses all suitable habitat, with islands of potential habitat primarily remaining on north facing slopes and deeper soils. Creation of new suitable habitat is also predicted throughout the region. Results have direct application to management issues of habitat connectivity, forest land protection and acquisition, and active management solutions such as transplanting or assisted migration. Although this analysis considers only one driver of forest habitat distribution, consideration of hydrologic derivatives at a fine scale explains current forest community distributions and provides a far more informed perspective on potential future forest distributions. Results demonstrate the utility of fine-scale modeling and provide landscape managers and conservation agencies valuable management tools in fine-scale future forest scenarios and a framework for evaluating forest resiliency in a changing climate.

  4. A simple scaling approach to produce climate scenarios of local precipitation extremes for the Netherlands

    NASA Astrophysics Data System (ADS)

    Lenderink, Geert; Attema, Jisk

    2015-08-01

    Scenarios of future changes in small scale precipitation extremes for the Netherlands are presented. These scenarios are based on a new approach whereby changes in precipitation extremes are set proportional to the change in water vapor amount near the surface as measured by the 2m dew point temperature. This simple scaling framework allows the integration of information derived from: (i) observations, (ii) a new unprecedentedly large 16 member ensemble of simulations with the regional climate model RACMO2 driven by EC-Earth, and (iii) short term integrations with a non-hydrostatic model Harmonie. Scaling constants are based on subjective weighting (expert judgement) of the three different information sources taking also into account previously published work. In all scenarios local precipitation extremes increase with warming, yet with broad uncertainty ranges expressing incomplete knowledge of how convective clouds and the atmospheric mesoscale circulation will react to climate change.

  5. Can Regional Climate Models Improve Warm Season Forecasts in the North American Monsoon Region?

    NASA Astrophysics Data System (ADS)

    Dominguez, F.; Castro, C. L.

    2009-12-01

    The goal of this work is to improve warm season forecasts in the North American Monsoon Region. To do this, we are dynamically downscaling warm season CFS (Climate Forecast System) reforecasts from 1982-2005 for the contiguous U.S. using the Weather Research and Forecasting (WRF) regional climate model. CFS is the global coupled ocean-atmosphere model used by the Climate Prediction Center (CPC), a branch of the National Center for Environmental Prediction (NCEP), to provide official U.S. seasonal climate forecasts. Recently, NCEP has produced a comprehensive long-term retrospective ensemble CFS reforecasts for the years 1980-2005. These reforecasts show that CFS model 1) has an ability to forecast tropical Pacific SSTs and large-scale teleconnection patterns, at least as evaluated for the winter season; 2) has greater skill in forecasting winter than summer climate; and 3) demonstrates an increase in skill when a greater number of ensembles members are used. The decrease in CFS skill during the warm season is due to the fact that the physical mechanisms of rainfall at this time are more related to mesoscale processes, such as the diurnal cycle of convection, low-level moisture transport, propagation and organization of convection, and surface moisture recycling. In general, these are poorly represented in global atmospheric models. Preliminary simulations for years with extreme summer climate conditions in the western and central U.S. (specifically 1988 and 1993) show that CFS-WRF simulations can provide a more realistic representation of convective rainfall processes. Thus a RCM can potentially add significant value in climate forecasting of the warm season provided the downscaling methodology incorporates the following: 1) spectral nudging to preserve the variability in the large scale circulation while still permitting the development of smaller-scale variability in the RCM; and 2) use of realistic soil moisture initial condition, in this case provided by the North American Regional Reanalysis. With these conditions, downscaled CFS-WRF reforecast simulations can produce realistic continental-scale patterns of warm season precipitation. This includes a reasonable representation of the North American monsoon in the southwest U.S. and northwest Mexico, which is notoriously difficult to represent in a global atmospheric model. We anticipate that this research will help lead the way toward substantially improved real time operational forecasts of North American summer climate with a RCM.

  6. A High-Resolution WRF Tropical Channel Simulation Driven by a Global Reanalysis

    NASA Astrophysics Data System (ADS)

    Holland, G.; Leung, L.; Kuo, Y.; Hurrell, J.

    2006-12-01

    Since 2003, NCAR has invested in the development and application of Nested Regional Climate Model (NRCM) based on the Weather Research and Forecasting (WRF) model and the Community Climate System Model, as a key component of the Prediction Across Scales Initiative. A prototype tropical channel model has been developed to investigate scale interactions and the influence of tropical convection on large scale circulation and tropical modes. The model was developed based on the NCAR Weather Research and Forecasting Model (WRF), configured as a tropical channel between 30 ° S and 45 ° N, wide enough to allow teleconnection effects over the mid-latitudes. Compared to the limited area domain that WRF is typically applied over, the channel mode alleviates issues with reflection of tropical modes that could result from imposing east/west boundaries. Using a large amount of available computing resources on a supercomputer (Blue Vista) during its bedding in period, a simulation has been completed with the tropical channel applied at 36 km horizontal resolution for 5 years from 1996 to 2000, with large scale circulation provided by the NCEP/NCAR global reanalysis at the north/south boundaries. Shorter simulations of 2 years and 6 months have also been performed to include two-way nests at 12 km and 4 km resolution, respectively, over the western Pacific warm pool, to explicitly resolve tropical convection in the Maritime Continent. The simulations realistically captured the large-scale circulation including the trade winds over the tropical Pacific and Atlantic, the Australian and Asian monsoon circulation, and hurricane statistics. Preliminary analysis and evaluation of the simulations will be presented.

  7. Stream Discharge and Evapotranspiration Responses to Climate Change and Their Associated Uncertainties in a Large Semi-Arid Basin

    NASA Astrophysics Data System (ADS)

    Bassam, S.; Ren, J.

    2017-12-01

    Predicting future water availability in watersheds is very important for proper water resources management, especially in semi-arid regions with scarce water resources. Hydrological models have been considered as powerful tools in predicting future hydrological conditions in watershed systems in the past two decades. Streamflow and evapotranspiration are the two important components in watershed water balance estimation as the former is the most commonly-used indicator of the overall water budget estimation, and the latter is the second biggest component of water budget (biggest outflow from the system). One of the main concerns in watershed scale hydrological modeling is the uncertainties associated with model prediction, which could arise from errors in model parameters and input meteorological data, or errors in model representation of the physics of hydrological processes. Understanding and quantifying these uncertainties are vital to water resources managers for proper decision making based on model predictions. In this study, we evaluated the impacts of different climate change scenarios on the future stream discharge and evapotranspiration, and their associated uncertainties, throughout a large semi-arid basin using a stochastically-calibrated, physically-based, semi-distributed hydrological model. The results of this study could provide valuable insights in applying hydrological models in large scale watersheds, understanding the associated sensitivity and uncertainties in model parameters, and estimating the corresponding impacts on interested hydrological process variables under different climate change scenarios.

  8. Large-scale assessment of present day and future groundwater recharge and its sensitivity to climate variability in Europe's karst regions

    NASA Astrophysics Data System (ADS)

    Hartmann, A. J.; Gleeson, T. P.; Wagener, T.; Wada, Y.

    2016-12-01

    Karst aquifers in Europe are an important source of fresh water contributing up to half of the total drinking water supply in some countries. Karstic groundwater recharge is one of the most important components of the water balance of karst systems as it feeds the karst aquifers. Presently available large-scale hydrological models do not consider karst heterogeneity adequately. Projections of current and potential future groundwater recharge of Europe's karst aquifers are therefore unclear. In this study we compare simulations of present (1991-2010) and future (2080-2099) recharge using two different models to simulate groundwater recharge processes. One model includes karst processes (subsurface heterogeneity, lateral flow and concentrated recharge), while the other is based on the conceptual understanding of common hydrological systems (homogeneous subsurface, saturation excess overland flow). Both models are driven by the bias-corrected 5 GCMs of the ISI-MIP project (RCP8.5). To further assess sensitivity of groundwater recharge to climate variability, we calculate the elasticity of recharge rates to annual precipitation, temperature and average intensity of rainfall events, which is the median change of recharge that corresponds to the median change of these climate variables within the present and future time period, respectively. Our model comparison shows that karst regions over Europe have enhanced recharge rates with greater inter-annual variability compared to those with more homogenous subsurface properties. Furthermore, the heterogeneous representation shows stronger elasticity concerning climate variability than the homogeneous subsurface representation. This difference tends to increase towards the future. Our results suggest that water management in regions with heterogeneous subsurface can expect a higher water availability than estimated by most of the current large-scale simulations, while measures should be taken to prepare for increasingly variable groundwater recharge rates.

  9. Multi-profile analysis of soil moisture within the U.S. Climate Reference Network

    USDA-ARS?s Scientific Manuscript database

    Soil moisture estimates are crucial for hydrologic modeling and agricultural decision-support efforts. These measurements are also pivotal for long-term inquiries regarding the impacts of climate change and the resulting droughts over large spatial and temporal scales. However, it has only been t...

  10. An integrated assessment modeling framework for uncertainty studies in global and regional climate change: the MIT IGSM-CAM (version 1.0)

    NASA Astrophysics Data System (ADS)

    Monier, E.; Scott, J. R.; Sokolov, A. P.; Forest, C. E.; Schlosser, C. A.

    2013-12-01

    This paper describes a computationally efficient framework for uncertainty studies in global and regional climate change. In this framework, the Massachusetts Institute of Technology (MIT) Integrated Global System Model (IGSM), an integrated assessment model that couples an Earth system model of intermediate complexity to a human activity model, is linked to the National Center for Atmospheric Research (NCAR) Community Atmosphere Model (CAM). Since the MIT IGSM-CAM framework (version 1.0) incorporates a human activity model, it is possible to analyze uncertainties in emissions resulting from both uncertainties in the underlying socio-economic characteristics of the economic model and in the choice of climate-related policies. Another major feature is the flexibility to vary key climate parameters controlling the climate system response to changes in greenhouse gases and aerosols concentrations, e.g., climate sensitivity, ocean heat uptake rate, and strength of the aerosol forcing. The IGSM-CAM is not only able to realistically simulate the present-day mean climate and the observed trends at the global and continental scale, but it also simulates ENSO variability with realistic time scales, seasonality and patterns of SST anomalies, albeit with stronger magnitudes than observed. The IGSM-CAM shares the same general strengths and limitations as the Coupled Model Intercomparison Project Phase 3 (CMIP3) models in simulating present-day annual mean surface temperature and precipitation. Over land, the IGSM-CAM shows similar biases to the NCAR Community Climate System Model (CCSM) version 3, which shares the same atmospheric model. This study also presents 21st century simulations based on two emissions scenarios (unconstrained scenario and stabilization scenario at 660 ppm CO2-equivalent) similar to, respectively, the Representative Concentration Pathways RCP8.5 and RCP4.5 scenarios, and three sets of climate parameters. Results of the simulations with the chosen climate parameters provide a good approximation for the median, and the 5th and 95th percentiles of the probability distribution of 21st century changes in global mean surface air temperature from previous work with the IGSM. Because the IGSM-CAM framework only considers one particular climate model, it cannot be used to assess the structural modeling uncertainty arising from differences in the parameterization suites of climate models. However, comparison of the IGSM-CAM projections with simulations of 31 CMIP5 models under the RCP4.5 and RCP8.5 scenarios show that the range of warming at the continental scale shows very good agreement between the two ensemble simulations, except over Antarctica, where the IGSM-CAM overestimates the warming. This demonstrates that by sampling the climate system response, the IGSM-CAM, even though it relies on one single climate model, can essentially reproduce the range of future continental warming simulated by more than 30 different models. Precipitation changes projected in the IGSM-CAM simulations and the CMIP5 multi-model ensemble both display a large uncertainty at the continental scale. The two ensemble simulations show good agreement over Asia and Europe. However, the ranges of precipitation changes do not overlap - but display similar size - over Africa and South America, two continents where models generally show little agreement in the sign of precipitation changes and where CCSM3 tends to be an outlier. Overall, the IGSM-CAM provides an efficient and consistent framework to explore the large uncertainty in future projections of global and regional climate change associated with uncertainty in the climate response and projected emissions.

  11. Changes in extremes due to half a degree warming in observations and models

    NASA Astrophysics Data System (ADS)

    Fischer, E. M.; Schleussner, C. F.; Pfleiderer, P.

    2017-12-01

    Assessing the climate impacts of half-a-degree warming increments is high on the post-Paris science agenda. Discriminating those effects is particularly challenging for climate extremes such as heavy precipitation and heat extremes for which model uncertainties are generally large, and for which internal variability is so important that it can easily offset or strongly amplify the forced local changes induced by half a degree warming. Despite these challenges we provide evidence for large-scale changes in the intensity and frequency of climate extremes due to half a degree warming. We first assess the difference in extreme climate indicators in observational data for the 1960s and 1970s versus the recent past, two periods differ by half a degree. We identify distinct differences for the global and continental-scale occurrence of heat and heavy precipitation extremes. We show that those observed changes in heavy precipitation and heat extremes broadly agree with simulated historical differences and are informative for the projected differences between 1.5 and 2°C warming despite different radiative forcings. We therefore argue that evidence from the observational record can inform the debate about discernible climate impacts in the light of model uncertainty by providing a conservative estimate of the implications of 0.5°C warming. A limitation of using the observational record arises from potential non-linearities in the response of climate extremes to a certain level of warming. We test for potential non-linearities in the response of heat and heavy precipitation extremes in a large ensemble of transient climate simulations. We further quantify differences between a time-window approach in a coupled model large ensemble vs. time-slice experiments using prescribed SST experiments performed in the context of the HAPPI-MIP project. Thereby we provide different lines of evidence that half a degree warming leads to substantial changes in the expected occurrence of heat and heavy precipitation extremes.

  12. Network-based approaches to climate knowledge discovery

    NASA Astrophysics Data System (ADS)

    Budich, Reinhard; Nyberg, Per; Weigel, Tobias

    2011-11-01

    Climate Knowledge Discovery Workshop; Hamburg, Germany, 30 March to 1 April 2011 Do complex networks combined with semantic Web technologies offer the next generation of solutions in climate science? To address this question, a first Climate Knowledge Discovery (CKD) Workshop, hosted by the German Climate Computing Center (Deutsches Klimarechenzentrum (DKRZ)), brought together climate and computer scientists from major American and European laboratories, data centers, and universities, as well as representatives from industry, the broader academic community, and the semantic Web communities. The participants, representing six countries, were concerned with large-scale Earth system modeling and computational data analysis. The motivation for the meeting was the growing problem that climate scientists generate data faster than it can be interpreted and the need to prepare for further exponential data increases. Current analysis approaches are focused primarily on traditional methods, which are best suited for large-scale phenomena and coarse-resolution data sets. The workshop focused on the open discussion of ideas and technologies to provide the next generation of solutions to cope with the increasing data volumes in climate science.

  13. Fractionaly Integrated Flux model and Scaling Laws in Weather and Climate

    NASA Astrophysics Data System (ADS)

    Schertzer, Daniel; Lovejoy, Shaun

    2013-04-01

    The Fractionaly Integrated Flux model (FIF) has been extensively used to model intermittent observables, like the velocity field, by defining them with the help of a fractional integration of a conservative (i.e. strictly scale invariant) flux, such as the turbulent energy flux. It indeed corresponds to a well-defined modelling that yields the observed scaling laws. Generalised Scale Invariance (GSI) enables FIF to deal with anisotropic fractional integrations and has been rather successful to define and model a unique regime of scaling anisotropic turbulence up to planetary scales. This turbulence has an effective dimension of 23/9=2.55... instead of the classical hypothesised 2D and 3D turbulent regimes, respectively for large and small spatial scales. It therefore theoretically eliminates a non plausible "dimension transition" between these two regimes and the resulting requirement of a turbulent energy "mesoscale gap", whose empirical evidence has been brought more and more into question. More recently, GSI-FIF was used to analyse climate, therefore at much larger time scales. Indeed, the 23/9-dimensional regime necessarily breaks up at the outer spatial scales. The corresponding transition range, which can be called "macroweather", seems to have many interesting properties, e.g. it rather corresponds to a fractional differentiation in time with a roughly flat frequency spectrum. Furthermore, this transition yields the possibility to have at much larger time scales scaling space-time climate fluctuations with a much stronger scaling anisotropy between time and space. Lovejoy, S. and D. Schertzer (2013). The Weather and Climate: Emergent Laws and Multifractal Cascades. Cambridge Press (in press). Schertzer, D. et al. (1997). Fractals 5(3): 427-471. Schertzer, D. and S. Lovejoy (2011). International Journal of Bifurcation and Chaos 21(12): 3417-3456.

  14. Characterizing and understanding the climatic determinism of high- to low-frequency variations in precipitation in northwestern France using a coupled wavelet multiresolution/statistical downscaling approach

    NASA Astrophysics Data System (ADS)

    Massei, Nicolas; Dieppois, Bastien; Hannah, David; Lavers, David; Fossa, Manuel; Laignel, Benoit; Debret, Maxime

    2017-04-01

    Geophysical signals oscillate over several time-scales that explain different amount of their overall variability and may be related to different physical processes. Characterizing and understanding such variabilities in hydrological variations and investigating their determinism is one important issue in a context of climate change, as these variabilities can be occasionally superimposed to long-term trend possibly due to climate change. It is also important to refine our understanding of time-scale dependent linkages between large-scale climatic variations and hydrological responses on the regional or local-scale. Here we investigate such links by conducting a wavelet multiresolution statistical dowscaling approach of precipitation in northwestern France (Seine river catchment) over 1950-2016 using sea level pressure (SLP) and sea surface temperature (SST) as indicators of atmospheric and oceanic circulations, respectively. Previous results demonstrated that including multiresolution decomposition in a statistical downscaling model (within a so-called multiresolution ESD model) using SLP as large-scale predictor greatly improved simulation of low-frequency, i.e. interannual to interdecadal, fluctuations observed in precipitation. Building on these results, continuous wavelet transform of simulated precipiation using multiresolution ESD confirmed the good performance of the model to better explain variability at all time-scales. A sensitivity analysis of the model to the choice of the scale and wavelet function used was also tested. It appeared that whatever the wavelet used, the model performed similarly. The spatial patterns of SLP found as the best predictors for all time-scales, which resulted from the wavelet decomposition, revealed different structures according to time-scale, showing possible different determinisms. More particularly, some low-frequency components ( 3.2-yr and 19.3-yr) showed a much wide-spread spatial extentsion across the Atlantic. Moreover, in accordance with other previous studies, the wavelet components detected in SLP and precipitation on interannual to interdecadal time-scales could be interpreted in terms of influence of the Gulf-Stream oceanic front on atmospheric circulation. Current works are now conducted including SST over the Atlantic in order to get further insights into this mechanism.

  15. Towards Cloud-Resolving European-Scale Climate Simulations using a fully GPU-enabled Prototype of the COSMO Regional Model

    NASA Astrophysics Data System (ADS)

    Leutwyler, David; Fuhrer, Oliver; Cumming, Benjamin; Lapillonne, Xavier; Gysi, Tobias; Lüthi, Daniel; Osuna, Carlos; Schär, Christoph

    2014-05-01

    The representation of moist convection is a major shortcoming of current global and regional climate models. State-of-the-art global models usually operate at grid spacings of 10-300 km, and therefore cannot fully resolve the relevant upscale and downscale energy cascades. Therefore parametrization of the relevant sub-grid scale processes is required. Several studies have shown that this approach entails major uncertainties for precipitation processes, which raises concerns about the model's ability to represent precipitation statistics and associated feedback processes, as well as their sensitivities to large-scale conditions. Further refining the model resolution to the kilometer scale allows representing these processes much closer to first principles and thus should yield an improved representation of the water cycle including the drivers of extreme events. Although cloud-resolving simulations are very useful tools for climate simulations and numerical weather prediction, their high horizontal resolution and consequently the small time steps needed, challenge current supercomputers to model large domains and long time scales. The recent innovations in the domain of hybrid supercomputers have led to mixed node designs with a conventional CPU and an accelerator such as a graphics processing unit (GPU). GPUs relax the necessity for cache coherency and complex memory hierarchies, but have a larger system memory-bandwidth. This is highly beneficial for low compute intensity codes such as atmospheric stencil-based models. However, to efficiently exploit these hybrid architectures, climate models need to be ported and/or redesigned. Within the framework of the Swiss High Performance High Productivity Computing initiative (HP2C) a project to port the COSMO model to hybrid architectures has recently come to and end. The product of these efforts is a version of COSMO with an improved performance on traditional x86-based clusters as well as hybrid architectures with GPUs. We present our redesign and porting approach as well as our experience and lessons learned. Furthermore, we discuss relevant performance benchmarks obtained on the new hybrid Cray XC30 system "Piz Daint" installed at the Swiss National Supercomputing Centre (CSCS), both in terms of time-to-solution as well as energy consumption. We will demonstrate a first set of short cloud-resolving climate simulations at the European-scale using the GPU-enabled COSMO prototype and elaborate our future plans on how to exploit this new model capability.

  16. Climate SPHINX: High-resolution present-day and future climate simulations with an improved representation of small-scale variability

    NASA Astrophysics Data System (ADS)

    Davini, Paolo; von Hardenberg, Jost; Corti, Susanna; Subramanian, Aneesh; Weisheimer, Antje; Christensen, Hannah; Juricke, Stephan; Palmer, Tim

    2016-04-01

    The PRACE Climate SPHINX project investigates the sensitivity of climate simulations to model resolution and stochastic parameterization. The EC-Earth Earth-System Model is used to explore the impact of stochastic physics in 30-years climate integrations as a function of model resolution (from 80km up to 16km for the atmosphere). The experiments include more than 70 simulations in both a historical scenario (1979-2008) and a climate change projection (2039-2068), using RCP8.5 CMIP5 forcing. A total amount of 20 million core hours will be used at end of the project (March 2016) and about 150 TBytes of post-processed data will be available to the climate community. Preliminary results show a clear improvement in the representation of climate variability over the Euro-Atlantic following resolution increase. More specifically, the well-known atmospheric blocking negative bias over Europe is definitely resolved. High resolution runs also show improved fidelity in representation of tropical variability - such as the MJO and its propagation - over the low resolution simulations. It is shown that including stochastic parameterization in the low resolution runs help to improve some of the aspects of the MJO propagation further. These findings show the importance of representing the impact of small scale processes on the large scale climate variability either explicitly (with high resolution simulations) or stochastically (in low resolution simulations).

  17. A hydrogeologic framework for characterizing summer streamflow sensitivity to climate warming in the Pacific Northwest, USA

    NASA Astrophysics Data System (ADS)

    Safeeq, M.; Grant, G. E.; Lewis, S. L.; Kramer, M. G.; Staab, B.

    2014-09-01

    Summer streamflows in the Pacific Northwest are largely derived from melting snow and groundwater discharge. As the climate warms, diminishing snowpack and earlier snowmelt will cause reductions in summer streamflow. Most regional-scale assessments of climate change impacts on streamflow use downscaled temperature and precipitation projections from general circulation models (GCMs) coupled with large-scale hydrologic models. Here we develop and apply an analytical hydrogeologic framework for characterizing summer streamflow sensitivity to a change in the timing and magnitude of recharge in a spatially explicit fashion. In particular, we incorporate the role of deep groundwater, which large-scale hydrologic models generally fail to capture, into streamflow sensitivity assessments. We validate our analytical streamflow sensitivities against two empirical measures of sensitivity derived using historical observations of temperature, precipitation, and streamflow from 217 watersheds. In general, empirically and analytically derived streamflow sensitivity values correspond. Although the selected watersheds cover a range of hydrologic regimes (e.g., rain-dominated, mixture of rain and snow, and snow-dominated), sensitivity validation was primarily driven by the snow-dominated watersheds, which are subjected to a wider range of change in recharge timing and magnitude as a result of increased temperature. Overall, two patterns emerge from this analysis: first, areas with high streamflow sensitivity also have higher summer streamflows as compared to low-sensitivity areas. Second, the level of sensitivity and spatial extent of highly sensitive areas diminishes over time as the summer progresses. Results of this analysis point to a robust, practical, and scalable approach that can help assess risk at the landscape scale, complement the downscaling approach, be applied to any climate scenario of interest, and provide a framework to assist land and water managers in adapting to an uncertain and potentially challenging future.

  18. Large Eddy Simulation of Heat Entrainment Under Arctic Sea Ice

    NASA Astrophysics Data System (ADS)

    Ramudu, Eshwan; Gelderloos, Renske; Yang, Di; Meneveau, Charles; Gnanadesikan, Anand

    2018-01-01

    Arctic sea ice has declined rapidly in recent decades. The faster than projected retreat suggests that free-running large-scale climate models may not be accurately representing some key processes. The small-scale turbulent entrainment of heat from the mixed layer could be one such process. To better understand this mechanism, we model the Arctic Ocean's Canada Basin, which is characterized by a perennial anomalously warm Pacific Summer Water (PSW) layer residing at the base of the mixed layer and a summertime Near-Surface Temperature Maximum (NSTM) within the mixed layer trapping heat from solar radiation. We use large eddy simulation (LES) to investigate heat entrainment for different ice-drift velocities and different initial temperature profiles. The value of LES is that the resolved turbulent fluxes are greater than the subgrid-scale fluxes for most of our parameter space. The results show that the presence of the NSTM enhances heat entrainment from the mixed layer. Additionally there is no PSW heat entrained under the parameter space considered. We propose a scaling law for the ocean-to-ice heat flux which depends on the initial temperature anomaly in the NSTM layer and the ice-drift velocity. A case study of "The Great Arctic Cyclone of 2012" gives a turbulent heat flux from the mixed layer that is approximately 70% of the total ocean-to-ice heat flux estimated from the PIOMAS model often used for short-term predictions. Present results highlight the need for large-scale climate models to account for the NSTM layer.

  19. Large-Scale Disasters

    NASA Astrophysics Data System (ADS)

    Gad-El-Hak, Mohamed

    "Extreme" events - including climatic events, such as hurricanes, tornadoes, and drought - can cause massive disruption to society, including large death tolls and property damage in the billions of dollars. Events in recent years have shown the importance of being prepared and that countries need to work together to help alleviate the resulting pain and suffering. This volume presents a review of the broad research field of large-scale disasters. It establishes a common framework for predicting, controlling and managing both manmade and natural disasters. There is a particular focus on events caused by weather and climate change. Other topics include air pollution, tsunamis, disaster modeling, the use of remote sensing and the logistics of disaster management. It will appeal to scientists, engineers, first responders and health-care professionals, in addition to graduate students and researchers who have an interest in the prediction, prevention or mitigation of large-scale disasters.

  20. Effects of large-scale deforestation on precipitation in the monsoon regions: remote versus local effects.

    PubMed

    Devaraju, N; Bala, Govindasamy; Modak, Angshuman

    2015-03-17

    In this paper, using idealized climate model simulations, we investigate the biogeophysical effects of large-scale deforestation on monsoon regions. We find that the remote forcing from large-scale deforestation in the northern middle and high latitudes shifts the Intertropical Convergence Zone southward. This results in a significant decrease in precipitation in the Northern Hemisphere monsoon regions (East Asia, North America, North Africa, and South Asia) and moderate precipitation increases in the Southern Hemisphere monsoon regions (South Africa, South America, and Australia). The magnitude of the monsoonal precipitation changes depends on the location of deforestation, with remote effects showing a larger influence than local effects. The South Asian Monsoon region is affected the most, with 18% decline in precipitation over India. Our results indicate that any comprehensive assessment of afforestation/reforestation as climate change mitigation strategies should carefully evaluate the remote effects on monsoonal precipitation alongside the large local impacts on temperatures.

  1. Satellite orbit and data sampling requirements

    NASA Technical Reports Server (NTRS)

    Rossow, William

    1993-01-01

    Climate forcings and feedbacks vary over a wide range of time and space scales. The operation of non-linear feedbacks can couple variations at widely separated time and space scales and cause climatological phenomena to be intermittent. Consequently, monitoring of global, decadal changes in climate requires global observations that cover the whole range of space-time scales and are continuous over several decades. The sampling of smaller space-time scales must have sufficient statistical accuracy to measure the small changes in the forcings and feedbacks anticipated in the next few decades, while continuity of measurements is crucial for unambiguous interpretation of climate change. Shorter records of monthly and regional (500-1000 km) measurements with similar accuracies can also provide valuable information about climate processes, when 'natural experiments' such as large volcanic eruptions or El Ninos occur. In this section existing satellite datasets and climate model simulations are used to test the satellite orbits and sampling required to achieve accurate measurements of changes in forcings and feedbacks at monthly frequency and 1000 km (regional) scale.

  2. Simulating Forest Carbon Dynamics in Response to Large-scale Fuel Reduction Treatments Under Projected Climate-fire Interactions in the Sierra Nevada Mountains, USA

    NASA Astrophysics Data System (ADS)

    Liang, S.; Hurteau, M. D.

    2016-12-01

    The interaction of warmer, drier climate and increasing large wildfires, coupled with increasing fire severity resulting from fire-exclusion are anticipated to undermine forest carbon (C) stock stability and C sink strength in the Sierra Nevada forests. Treatments, including thinning and prescribed burning, to reduce biomass and restore forest structure have proven effective at reducing fire severity and lessening C loss when treated stands are burned by wildfire. However, the current pace and scale of treatment implementation is limited, especially given recent increases in area burned by wildfire. In this study, we used a forest landscape model (LANDIS-II) to evaluate the role of implementation timing of large-scale fuel reduction treatments in influencing forest C stock and fluxes of Sierra Nevada forests with projected climate and larger wildfires. We ran 90-year simulations using climate and wildfire projections from three general circulation models driven by the A2 emission scenario. We simulated two different treatment implementation scenarios: a `distributed' (treatments implemented throughout the simulation) and an `accelerated' (treatments implemented during the first half century) scenario. We found that across the study area, accelerated implementation had 0.6-10.4 Mg ha-1 higher late-century aboveground biomass (AGB) and 1.0-2.2 g C m-2 yr-1 higher mean C sink strength than the distributed scenario, depending on specific climate-wildfire projections. Cumulative wildfire emissions over the simulation period were 0.7-3.9 Mg C ha-1 higher for distributed implementation relative to accelerated implementation. However, simulations with both implementation practices have considerably higher AGB and C sink strength as well as lower wildfire emission than simulations in the absence of fuel reduction treatments. The results demonstrate the potential for implementing large-scale fuel reduction treatments to enhance forest C stock stability and C sink strength under projected climate-wildfire interactions. Given climate and wildfire would become more stressful since the mid-century, a forward management action would grant us more C benefits.

  3. Constraining Centennial-Scale Ecosystem-Climate Interactions with a Pre-colonial Forest Reconstruction across the Upper Midwest and Northeastern United States

    NASA Astrophysics Data System (ADS)

    Matthes, J. H.; Dietze, M.; Fox, A. M.; Goring, S. J.; McLachlan, J. S.; Moore, D. J.; Poulter, B.; Quaife, T. L.; Schaefer, K. M.; Steinkamp, J.; Williams, J. W.

    2014-12-01

    Interactions between ecological systems and the atmosphere are the result of dynamic processes with system memories that persist from seconds to centuries. Adequately capturing long-term biosphere-atmosphere exchange within earth system models (ESMs) requires an accurate representation of changes in plant functional types (PFTs) through time and space, particularly at timescales associated with ecological succession. However, most model parameterization and development has occurred using datasets than span less than a decade. We tested the ability of ESMs to capture the ecological dynamics observed in paleoecological and historical data spanning the last millennium. Focusing on an area from the Upper Midwest to New England, we examined differences in the magnitude and spatial pattern of PFT distributions and ecotones between historic datasets and the CMIP5 inter-comparison project's large-scale ESMs. We then conducted a 1000-year model inter-comparison using six state-of-the-art biosphere models at sites that bridged regional temperature and precipitation gradients. The distribution of ecosystem characteristics in modeled climate space reveals widely disparate relationships between modeled climate and vegetation that led to large differences in long-term biosphere-atmosphere fluxes for this region. Model simulations revealed that both the interaction between climate and vegetation and the representation of ecosystem dynamics within models were important controls on biosphere-atmosphere exchange.

  4. Solar luminosity variations and the climate of Mars

    NASA Technical Reports Server (NTRS)

    Toon, O. B.; Gierasch, P. J.; Sagan, C.

    1975-01-01

    A simple climatological model of Mars indicates that its climate may be more sensitive to luminosity changes than earth's because of strong positive feedback mechanisms at work on Mars. Mariner 9 photographs of Mars show an abundance of large sinuous channels that point to an epoch of higher atmospheric pressures and abundant liquid water. Such an epoch could have been the result of large-scale solar luminosity variations. The climatological model suggests that other less controversial mechanisms, such as obliquity or polar albedo changes, also could have led to such an epoch.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sakaguchi, Koichi; Leung, Lai-Yung R.; Zhao, Chun

    This study presents a diagnosis of a multi-resolution approach using the Model for Prediction Across Scales - Atmosphere (MPAS-A) for simulating regional climate. Four AMIP experiments are conducted for 1999-2009. In the first two experiments, MPAS-A is configured using global quasi-uniform grids at 120 km and 30 km grid spacing. In the other two experiments, MPAS-A is configured using variable-resolution (VR) mesh with local refinement at 30 km over North America and South America embedded inside a quasi-uniform domain at 120 km elsewhere. Precipitation and related fields in the four simulations are examined to determine how well the VR simulationsmore » reproduce the features simulated by the globally high-resolution model in the refined domain. In previous analyses of idealized aqua-planet simulations, the characteristics of the global high-resolution simulation in moist processes only developed near the boundary of the refined region. In contrast, the AMIP simulations with VR grids are able to reproduce the high-resolution characteristics across the refined domain, particularly in South America. This indicates the importance of finely resolved lower-boundary forcing such as topography and surface heterogeneity for the regional climate, and demonstrates the ability of the MPAS-A VR to replicate the large-scale moisture transport as simulated in the quasi-uniform high-resolution model. Outside of the refined domain, some upscale effects are detected through large-scale circulation but the overall climatic signals are not significant at regional scales. Our results provide support for the multi-resolution approach as a computationally efficient and physically consistent method for modeling regional climate.« less

  6. Examining Chaotic Convection with Super-Parameterization Ensembles

    NASA Astrophysics Data System (ADS)

    Jones, Todd R.

    This study investigates a variety of features present in a new configuration of the Community Atmosphere Model (CAM) variant, SP-CAM 2.0. The new configuration (multiple-parameterization-CAM, MP-CAM) changes the manner in which the super-parameterization (SP) concept represents physical tendency feedbacks to the large-scale by using the mean of 10 independent two-dimensional cloud-permitting model (CPM) curtains in each global model column instead of the conventional single CPM curtain. The climates of the SP and MP configurations are examined to investigate any significant differences caused by the application of convective physical tendencies that are more deterministic in nature, paying particular attention to extreme precipitation events and large-scale weather systems, such as the Madden-Julian Oscillation (MJO). A number of small but significant changes in the mean state climate are uncovered, and it is found that the new formulation degrades MJO performance. Despite these deficiencies, the ensemble of possible realizations of convective states in the MP configuration allows for analysis of uncertainty in the small-scale solution, lending to examination of those weather regimes and physical mechanisms associated with strong, chaotic convection. Methods of quantifying precipitation predictability are explored, and use of the most reliable of these leads to the conclusion that poor precipitation predictability is most directly related to the proximity of the global climate model column state to atmospheric critical points. Secondarily, the predictability is tied to the availability of potential convective energy, the presence of mesoscale convective organization on the CPM grid, and the directive power of the large-scale.

  7. Impact of potential large-scale and medium-scale irrigation on the West African Monsoon and its dependence on location of irrigated area

    NASA Astrophysics Data System (ADS)

    Eltahir, E. A. B.; IM, E. S.

    2014-12-01

    This study investigates the impact of potential large-scale (about 400,000 km2) and medium-scale (about 60,000 km2) irrigation on the climate of West Africa using the MIT Regional Climate Model. A new irrigation module is implemented to assess the impact of location and scheduling of irrigation on rainfall distribution over West Africa. A control simulation (without irrigation) and various sensitivity experiments (with irrigation) are performed and compared to discern the effects of irrigation location, size and scheduling. In general, the irrigation-induced surface cooling due to anomalously wet soil tends to suppress moist convection and rainfall, which in turn induces local subsidence and low level anti-cyclonic circulation. These local effects are dominated by a consistent reduction of local rainfall over the irrigated land, irrespective of its location. However, the remote response of rainfall distribution to irrigation exhibits a significant sensitivity to the latitudinal position of irrigation. The low-level northeasterly flow associated with anti-cyclonic circulation centered over the irrigation area can enhance the extent of low level convergence through interaction with the prevailing monsoon flow, leading to significant increase in rainfall. Despite much reduced forcing of irrigation water, the medium-scale irrigation seems to draw the same response as large-scale irrigation, which supports the robustness of the response to irrigation in our modeling system. Both large-scale and medium-scale irrigation experiments show that an optimal irrigation location and scheduling exists that would lead to a more efficient use of irrigation water. The approach of using a regional climate model to investigate the impact of location and size of irrigation schemes may be the first step in incorporating land-atmosphere interactions in the design of location and size of irrigation projects. However, this theoretical approach is still in early stages of development and further research is needed before any practical application in water resources planning. Acknowledgements.This research was supported by the National Research Foundation Singapore through the Singapore MIT Alliance for Research and Technology's Center for Environmental Sensing and Modeling interdisciplinary research program.

  8. A Summary of the Naval Postgraduate School Research Program.

    DTIC Science & Technology

    1979-09-30

    Research (M. G. Sovereign) 116 Review of COMWTH II Model (M. G. Sovereign and J. K. Arima ) 117 Optimization of Combat Dynamics (J. G. Taylor) 118...Studies (R. L. Elsberry) 291 4 Numerical Models of Ocean Circulation and Climate Interaction--A Review (R. L. Haney) 292 Numerical Studies of the Dynamics... climatic numerical models to investigate the various mechan- isms pertinent to the large-scale interaction between tropi- cal atmosphere and oceans. Among

  9. Climate-driven geographic distribution of the desert locust during recession periods: Subspecies' niche differentiation and relative risks under scenarios of climate change.

    PubMed

    Meynard, Christine N; Gay, Pierre-Emmanuel; Lecoq, Michel; Foucart, Antoine; Piou, Cyril; Chapuis, Marie-Pierre

    2017-11-01

    The desert locust is an agricultural pest that is able to switch from a harmless solitarious stage, during recession periods, to swarms of gregarious individuals that disperse long distances and affect areas from western Africa to India during outbreak periods. Large outbreaks have been recorded through centuries, and the Food and Agriculture Organization keeps a long-term, large-scale monitoring survey database in the area. However, there is also a much less known subspecies that occupies a limited area in Southern Africa. We used large-scale climatic and occurrence data of the solitarious phase of each subspecies during recession periods to understand whether both subspecies climatic niches differ from each other, what is the current potential geographical distribution of each subspecies, and how climate change is likely to shift their potential distribution with respect to current conditions. We evaluated whether subspecies are significantly specialized along available climate gradients by using null models of background climatic differences within and between southern and northern ranges and applying niche similarity and niche equivalency tests. The results point to climatic niche conservatism between the two clades. We complemented this analysis with species distribution modeling to characterize current solitarious distributions and forecast potential recession range shifts under two extreme climate change scenarios at the 2050 and 2090 time horizon. Projections suggest that, at a global scale, the northern clade could contract its solitarious recession range, while the southern clade is likely to expand its recession range. However, local expansions were also predicted in the northern clade, in particular in southern and northern margins of the current geographical distribution. In conclusion, monitoring and management practices should remain in place in northern Africa, while in Southern Africa the potential for the subspecies to pose a threat in the future should be investigated more closely. © 2017 John Wiley & Sons Ltd.

  10. Code modernization and modularization of APEX and SWAT watershed simulation models

    USDA-ARS?s Scientific Manuscript database

    SWAT (Soil and Water Assessment Tool) and APEX (Agricultural Policy / Environmental eXtender) are respectively large and small watershed simulation models derived from EPIC Environmental Policy Integrated Climate), a field-scale agroecology simulation model. All three models are coded in FORTRAN an...

  11. Statistical Compression of Wind Speed Data

    NASA Astrophysics Data System (ADS)

    Tagle, F.; Castruccio, S.; Crippa, P.; Genton, M.

    2017-12-01

    In this work we introduce a lossy compression approach that utilizes a stochastic wind generator based on a non-Gaussian distribution to reproduce the internal climate variability of daily wind speed as represented by the CESM Large Ensemble over Saudi Arabia. Stochastic wind generators, and stochastic weather generators more generally, are statistical models that aim to match certain statistical properties of the data on which they are trained. They have been used extensively in applications ranging from agricultural models to climate impact studies. In this novel context, the parameters of the fitted model can be interpreted as encoding the information contained in the original uncompressed data. The statistical model is fit to only 3 of the 30 ensemble members and it adequately captures the variability of the ensemble in terms of seasonal internannual variability of daily wind speed. To deal with such a large spatial domain, it is partitioned into 9 region, and the model is fit independently to each of these. We further discuss a recent refinement of the model, which relaxes this assumption of regional independence, by introducing a large-scale component that interacts with the fine-scale regional effects.

  12. A Methodology for Integrated, Multiregional Life Cycle Assessment Scenarios under Large-Scale Technological Change.

    PubMed

    Gibon, Thomas; Wood, Richard; Arvesen, Anders; Bergesen, Joseph D; Suh, Sangwon; Hertwich, Edgar G

    2015-09-15

    Climate change mitigation demands large-scale technological change on a global level and, if successfully implemented, will significantly affect how products and services are produced and consumed. In order to anticipate the life cycle environmental impacts of products under climate mitigation scenarios, we present the modeling framework of an integrated hybrid life cycle assessment model covering nine world regions. Life cycle assessment databases and multiregional input-output tables are adapted using forecasted changes in technology and resources up to 2050 under a 2 °C scenario. We call the result of this modeling "technology hybridized environmental-economic model with integrated scenarios" (THEMIS). As a case study, we apply THEMIS in an integrated environmental assessment of concentrating solar power. Life-cycle greenhouse gas emissions for this plant range from 33 to 95 g CO2 eq./kWh across different world regions in 2010, falling to 30-87 g CO2 eq./kWh in 2050. Using regional life cycle data yields insightful results. More generally, these results also highlight the need for systematic life cycle frameworks that capture the actual consequences and feedback effects of large-scale policies in the long term.

  13. Coupled Downscaled Climate Models and Ecophysiological Metrics Forecast Habitat Compression for an Endangered Estuarine Fish

    PubMed Central

    Brown, Larry R.; Komoroske, Lisa M.; Wagner, R. Wayne; Morgan-King, Tara; May, Jason T.; Connon, Richard E.; Fangue, Nann A.

    2016-01-01

    Climate change is driving rapid changes in environmental conditions and affecting population and species’ persistence across spatial and temporal scales. Integrating climate change assessments into biological resource management, such as conserving endangered species, is a substantial challenge, partly due to a mismatch between global climate forecasts and local or regional conservation planning. Here, we demonstrate how outputs of global climate change models can be downscaled to the watershed scale, and then coupled with ecophysiological metrics to assess climate change effects on organisms of conservation concern. We employed models to estimate future water temperatures (2010–2099) under several climate change scenarios within the large heterogeneous San Francisco Estuary. We then assessed the warming effects on the endangered, endemic Delta Smelt, Hypomesus transpacificus, by integrating localized projected water temperatures with thermal sensitivity metrics (tolerance, spawning and maturation windows, and sublethal stress thresholds) across life stages. Lethal temperatures occurred under several scenarios, but sublethal effects resulting from chronic stressful temperatures were more common across the estuary (median >60 days above threshold for >50% locations by the end of the century). Behavioral avoidance of such stressful temperatures would make a large portion of the potential range of Delta Smelt unavailable during the summer and fall. Since Delta Smelt are not likely to migrate to other estuaries, these changes are likely to result in substantial habitat compression. Additionally, the Delta Smelt maturation window was shortened by 18–85 days, revealing cumulative effects of stressful summer and fall temperatures with early initiation of spring spawning that may negatively impact fitness. Our findings highlight the value of integrating sublethal thresholds, life history, and in situ thermal heterogeneity into global change impact assessments. As downscaled climate models are becoming widely available, we conclude that similar assessments at management-relevant scales will improve the scientific basis for resource management decisions. PMID:26796147

  14. Coupled Downscaled Climate Models and Ecophysiological Metrics Forecast Habitat Compression for an Endangered Estuarine Fish.

    PubMed

    Brown, Larry R; Komoroske, Lisa M; Wagner, R Wayne; Morgan-King, Tara; May, Jason T; Connon, Richard E; Fangue, Nann A

    2016-01-01

    Climate change is driving rapid changes in environmental conditions and affecting population and species' persistence across spatial and temporal scales. Integrating climate change assessments into biological resource management, such as conserving endangered species, is a substantial challenge, partly due to a mismatch between global climate forecasts and local or regional conservation planning. Here, we demonstrate how outputs of global climate change models can be downscaled to the watershed scale, and then coupled with ecophysiological metrics to assess climate change effects on organisms of conservation concern. We employed models to estimate future water temperatures (2010-2099) under several climate change scenarios within the large heterogeneous San Francisco Estuary. We then assessed the warming effects on the endangered, endemic Delta Smelt, Hypomesus transpacificus, by integrating localized projected water temperatures with thermal sensitivity metrics (tolerance, spawning and maturation windows, and sublethal stress thresholds) across life stages. Lethal temperatures occurred under several scenarios, but sublethal effects resulting from chronic stressful temperatures were more common across the estuary (median >60 days above threshold for >50% locations by the end of the century). Behavioral avoidance of such stressful temperatures would make a large portion of the potential range of Delta Smelt unavailable during the summer and fall. Since Delta Smelt are not likely to migrate to other estuaries, these changes are likely to result in substantial habitat compression. Additionally, the Delta Smelt maturation window was shortened by 18-85 days, revealing cumulative effects of stressful summer and fall temperatures with early initiation of spring spawning that may negatively impact fitness. Our findings highlight the value of integrating sublethal thresholds, life history, and in situ thermal heterogeneity into global change impact assessments. As downscaled climate models are becoming widely available, we conclude that similar assessments at management-relevant scales will improve the scientific basis for resource management decisions.

  15. Coupled downscaled climate models and ecophysiological metrics forecast habitat compression for an endangered estuarine fish

    USGS Publications Warehouse

    Brown, Larry R.; Komoroske, Lisa M; Wagner, R Wayne; Morgan-King, Tara; May, Jason T.; Connon, Richard E; Fangue, Nann A.

    2016-01-01

    Climate change is driving rapid changes in environmental conditions and affecting population and species’ persistence across spatial and temporal scales. Integrating climate change assessments into biological resource management, such as conserving endangered species, is a substantial challenge, partly due to a mismatch between global climate forecasts and local or regional conservation planning. Here, we demonstrate how outputs of global climate change models can be downscaled to the watershed scale, and then coupled with ecophysiological metrics to assess climate change effects on organisms of conservation concern. We employed models to estimate future water temperatures (2010–2099) under several climate change scenarios within the large heterogeneous San Francisco Estuary. We then assessed the warming effects on the endangered, endemic Delta Smelt, Hypomesus transpacificus, by integrating localized projected water temperatures with thermal sensitivity metrics (tolerance, spawning and maturation windows, and sublethal stress thresholds) across life stages. Lethal temperatures occurred under several scenarios, but sublethal effects resulting from chronic stressful temperatures were more common across the estuary (median >60 days above threshold for >50% locations by the end of the century). Behavioral avoidance of such stressful temperatures would make a large portion of the potential range of Delta Smelt unavailable during the summer and fall. Since Delta Smelt are not likely to migrate to other estuaries, these changes are likely to result in substantial habitat compression. Additionally, the Delta Smelt maturation window was shortened by 18–85 days, revealing cumulative effects of stressful summer and fall temperatures with early initiation of spring spawning that may negatively impact fitness. Our findings highlight the value of integrating sublethal thresholds, life history, and in situ thermal heterogeneity into global change impact assessments. As downscaled climate models are becoming widely available, we conclude that similar assessments at management-relevant scales will improve the scientific basis for resource management decisions.

  16. Objective spatiotemporal proxy-model comparisons of the Asian monsoon for the last millennium

    NASA Astrophysics Data System (ADS)

    Anchukaitis, K. J.; Cook, E. R.; Ammann, C. M.; Buckley, B. M.; D'Arrigo, R. D.; Jacoby, G.; Wright, W. E.; Davi, N.; Li, J.

    2008-12-01

    The Asian monsoon system can be studied using a complementary proxy/simulation approach which evaluates climate models using estimates of past precipitation and temperature, and which subsequently applies the best understanding of the physics of the climate system as captured in general circulation models to evaluate the broad-scale dynamics behind regional paleoclimate reconstructions. Here, we use a millennial-length climate field reconstruction of monsoon season summer (JJA) drought, developed from tree- ring proxies, with coupled climate simulations from NCAR CSM1.4 and CCSM3 to evaluate the cause of large- scale persistent droughts over the last one thousand years. Direct comparisons are made between the external forced response within the climate model and the spatiotemporal field reconstruction. In order to identify patterns of drought associated with internal variability in the climate system, we use a model/proxy analog technique which objectively selects epochs in the model that most closely reproduce those observed in the reconstructions. The concomitant ocean-atmosphere dynamics are then interpreted in order to identify and understand the internal climate system forcing of low frequency monsoon variability. We examine specific periods of extensive or intensive regional drought in the 15th, 17th, and 18th centuries, many of which are coincident with major cultural changes in the region.

  17. The Use of Statistical Downscaling to Project Regional Climate Changes as they Relate to Future Energy Production

    NASA Astrophysics Data System (ADS)

    Werth, D. W.; O'Steen, L.; Chen, K.; Altinakar, M. S.; Garrett, A.; Aleman, S.; Ramalingam, V.

    2010-12-01

    Global climate change has the potential for profound impacts on society, and poses significant challenges to government and industry in the areas of energy security and sustainability. Given that the ability to exploit energy resources often depends on the climate, the possibility of climate change means we cannot simply assume that the untapped potential of today will still exist in the future. Predictions of future climate are generally based on global climate models (GCMs) which, due to computational limitations, are run at spatial resolutions of hundreds of kilometers. While the results from these models can predict climatic trends averaged over large spatial and temporal scales, their ability to describe the effects of atmospheric phenomena that affect weather on regional to local scales is inadequate. We propose the use of several optimized statistical downscaling techniques that can infer climate change at the local scale from coarse resolution GCM predictions, and apply the results to assess future sustainability for two sources of energy production dependent on adequate water resources: nuclear power (through the dissipation of waste heat from cooling towers, ponds, etc.) and hydroelectric power. All methods will be trained with 20th century data, and applied to data from the years 2040-2049 to get the local-scale changes. Models of cooling tower operation and hydropower potential will then use the downscaled data to predict the possible changes in energy production, and the implications of climate change on plant siting, design, and contribution to the future energy grid can then be examined.

  18. Linking Teleconnections and Iowa's Climate

    NASA Astrophysics Data System (ADS)

    Rowe, S. T.; Villarini, G.; Lavers, D. A.; Scoccimarro, E.

    2013-12-01

    In recent years Iowa and the U.S. Midwest has experienced both extreme drought and flood periods. With a drought in 2012 bounded by major floods in 2011 and 2013, the rapid progression from one extreme to the next is on the forefront of the public mind. Given that Iowa is a major agricultural state, extreme weather conditions can have severe socioeconomic consequences. In this research we investigate the large-scale climate processes that occurred concurrently and before a range of dry/wet and cold/hot periods to improve process understanding of these events. It is essential to understand the large-scale climate processes, as these can then provide valuable insight toward the development of long-term climate forecasts for Iowa. In this study monthly and seasonal surface temperature and precipitation over 1950-2012 across Iowa are used. Precipitation and surface temperature data are retrieved from the Parameter-elevation Regressions on Independent Slopes Model (PRISM) Climate Group at Oregon State University. The large-scale atmospheric fields are obtained from the National Center for Environmental Prediction (NCEP) / National Center for Atmospheric Research (NCAR) Reanalysis 1 Project. Precipitation is stratified according to wet, normal, and dry conditions, while temperature according to hot, average, and cold periods. Different stratification criteria based on the precipitation and temperature distributions are examined. Mean sea-level pressure and sea-surface temperature composite maps for the northern hemisphere are then produced for the wet/dry conditions, and cold/hot conditions. Further analyses include correlation, anomalies, and assessment of large-scale planetary wave activity, shedding light on the differences and similarities among the opposite weather conditions. The results of this work will highlight regional weather patterns that are related to the climate over Iowa, providing valuable insight into the mechanisms controlling the occurrence of potentially extreme weather conditions over this area.

  19. Impacts of Near-Term Climate Change on Irrigation Demands and Crop Yields in the Columbia River Basin

    NASA Astrophysics Data System (ADS)

    Rajagopalan, K.; Chinnayakanahalli, K. J.; Stockle, C. O.; Nelson, R. L.; Kruger, C. E.; Brady, M. P.; Malek, K.; Dinesh, S. T.; Barber, M. E.; Hamlet, A. F.; Yorgey, G. G.; Adam, J. C.

    2018-03-01

    Adaptation to a changing climate is critical to address future global food and water security challenges. While these challenges are global, successful adaptation strategies are often generated at regional scales; therefore, regional-scale studies are critical to inform adaptation decision making. While climate change affects both water supply and demand, water demand is relatively understudied, especially at regional scales. The goal of this work is to address this gap, and characterize the direct impacts of near-term (for the 2030s) climate change and elevated CO2 levels on regional-scale crop yields and irrigation demands for the Columbia River basin (CRB). This question is addressed through a coupled crop-hydrology model that accounts for site-specific and crop-specific characteristics that control regional-scale response to climate change. The overall near-term outlook for agricultural production in the CRB is largely positive, with yield increases for most crops and small overall increases in irrigation demand. However, there are crop-specific and location-specific negative impacts as well, and the aggregate regional response of irrigation demands to climate change is highly sensitive to the spatial crop mix. Low-value pasture/hay varieties of crops—typically not considered in climate change assessments—play a significant role in determining the regional response of irrigation demands to climate change, and thus cannot be overlooked. While, the overall near-term outlook for agriculture in the region is largely positive, there may be potential for a negative outlook further into the future, and it is important to consider this in long-term planning.

  20. Wave climate and trends along the eastern Chukchi Arctic Alaska coast

    USGS Publications Warehouse

    Erikson, L.H.; Storlazzi, C.D.; Jensen, R.E.

    2011-01-01

    Due in large part to the difficulty of obtaining measurements in the Arctic, little is known about the wave climate along the coast of Arctic Alaska. In this study, numerical model simulations encompassing 40 years of wave hind-casts were used to assess mean and extreme wave conditions. Results indicate that the wave climate was strongly modulated by large-scale atmospheric circulation patterns and that mean and extreme wave heights and periods exhibited increasing trends in both the sea and swell frequency bands over the time-period studied (1954-2004). Model simulations also indicate that the upward trend was not due to a decrease in the minimum icepack extent. ?? 2011 ASCE.

  1. The Climate Potentials and Side-Effects of Large-Scale terrestrial CO2 Removal - Insights from Quantitative Model Assessments

    NASA Astrophysics Data System (ADS)

    Boysen, L.; Heck, V.; Lucht, W.; Gerten, D.

    2015-12-01

    Terrestrial carbon dioxide removal (tCDR) through dedicated biomass plantations is considered as one climate engineering (CE) option if implemented at large-scale. While the risks and costs are supposed to be small, the effectiveness depends strongly on spatial and temporal scales of implementation. Based on simulations with a dynamic global vegetation model (LPJmL) we comprehensively assess the effectiveness, biogeochemical side-effects and tradeoffs from an earth system-analytic perspective. We analyzed systematic land-use scenarios in which all, 25%, or 10% of natural and/or agricultural areas are converted to tCDR plantations including the assumption that biomass plantations are established once the 2°C target is crossed in a business-as-usual climate change trajectory. The resulting tCDR potentials in year 2100 include the net accumulated annual biomass harvests and changes in all land carbon pools. We find that only the most spatially excessive, and thus undesirable, scenario would be capable to restore the 2° target by 2100 under continuing high emissions (with a cooling of 3.02°C). Large-scale biomass plantations covering areas between 1.1 - 4.2 Gha would produce a climate reduction potential of 0.8 - 1.4°C. tCDR plantations at smaller scales do not build up enough biomass over this considered period and the potentials to achieve global warming reductions are substantially lowered to no more than 0.5-0.6°C. Finally, we demonstrate that the (non-economic) costs for the Earth system include negative impacts on the water cycle and on ecosystems, which are already under pressure due to both land use change and climate change. Overall, tCDR may lead to a further transgression of land- and water-related planetary boundaries while not being able to set back the crossing of the planetary boundary for climate change. tCDR could still be considered in the near-future mitigation portfolio if implemented on small scales on wisely chosen areas.

  2. Projected changes in precipitation intensity and frequency over complex topography: a multi-model perspective

    NASA Astrophysics Data System (ADS)

    Fischer, Andreas; Keller, Denise; Liniger, Mark; Rajczak, Jan; Schär, Christoph; Appenzeller, Christof

    2014-05-01

    Fundamental changes in the hydrological cycle are expected in a future warmer climate. This is of particular relevance for the Alpine region, as a source and reservoir of several major rivers in Europe and being prone to extreme events such as floodings. For this region, climate change assessments based on the ENSEMBLES regional climate models (RCMs) project a significant decrease in summer mean precipitation under the A1B emission scenario by the mid-to-end of this century, while winter mean precipitation is expected to slightly rise. From an impact perspective, projected changes in seasonal means, however, are often insufficient to adequately address the multifaceted challenges of climate change adaptation. In this study, we revisit the full matrix of the ENSEMBLES RCM projections regarding changes in frequency and intensity, precipitation-type (convective versus stratiform) and temporal structure (wet/dry spells and transition probabilities) over Switzerland and surroundings. As proxies for raintype changes, we rely on the model parameterized convective and large-scale precipitation components. Part of the analysis involves a Bayesian multi-model combination algorithm to infer changes from the multi-model ensemble. The analysis suggests a summer drying that evolves altitude-specific: over low-land regions it is associated with wet-day frequency decreases of convective and large-scale precipitation, while over elevated regions it is primarily associated with a decline in large-scale precipitation only. As a consequence, almost all the models project an increase in the convective fraction at elevated Alpine altitudes. The decrease in the number of wet days during summer is accompanied by decreases (increases) in multi-day wet (dry) spells. This shift in multi-day episodes also lowers the likelihood of short dry spell occurrence in all of the models. For spring and autumn the combined multi-model projections indicate higher mean precipitation intensity north of the Alps, while a similar tendency is expected for the winter season over most of Switzerland.

  3. Weak Hydrological Sensitivity to Temperature Change over Land, Independent of Climate Forcing

    NASA Technical Reports Server (NTRS)

    Samset, B. H.; Myhre, G.; Forster, P. M.; Hodnebrog, O.; Andrews, T.; Boucher, O.; Faluvegi, G.; Flaeschner, D.; Kasoar, M.; Kharin, V.; hide

    2018-01-01

    We present the global and regional hydrological sensitivity (HS) to surface temperature changes, for perturbations to CO2, CH4, sulfate and black carbon concentrations, and solar irradiance. Based on results from ten climate models, we show how modeled global mean precipitation increases by 2-3% per kelvin of global mean surface warming, independent of driver, when the effects of rapid adjustments are removed. Previously reported differences in response between drivers are therefore mainly ascribable to rapid atmospheric adjustment processes. All models show a sharp contrast in behavior over land and over ocean, with a strong surface temperature-driven (slow) ocean HS of 3-5%/K, while the slow land HS is only 0-2%/K. Separating the response into convective and large-scale cloud processes, we find larger inter-model differences, in particular over land regions. Large-scale precipitation changes are most relevant at high latitudes, while the equatorial HS is dominated by convective precipitation changes. Black carbon stands out as the driver with the largest inter-model slow HS variability, and also the strongest contrast between a weak land and strong sea response. We identify a particular need for model investigations and observational constraints on convective precipitation in the Arctic, and large-scale precipitation around the Equator.

  4. A review of the South American monsoon history as recorded in stable isotopic proxies over the past two millennia

    NASA Astrophysics Data System (ADS)

    Vuille, M.; Burns, S. J.; Taylor, B. L.; Cruz, F. W.; Bird, B. W.; Abbott, M. B.; Kanner, L. C.; Cheng, H.; Novello, V. F.

    2012-08-01

    We review the history of the South American summer monsoon (SASM) over the past ~2000 yr based on high-resolution stable isotope proxies from speleothems, ice cores and lake sediments. Our review is complemented by an analysis of an isotope-enabled atmospheric general circulation model (GCM) for the past 130 yr. Proxy records from the monsoon belt in the tropical Andes and SE Brazil show a very coherent behavior over the past 2 millennia with significant decadal to multidecadal variability superimposed on large excursions during three key periods: the Medieval Climate Anomaly (MCA), the Little Ice Age (LIA) and the current warm period (CWP). We interpret these three periods as times when the SASM's mean state was significantly weakened (MCA and CWP) and strengthened (LIA), respectively. During the LIA each of the proxy archives considered contains the most negative δ18O values recorded during the entire record length. On the other hand, the monsoon strength is currently rather weak in a 2000-yr historical perspective, rivaled only by the low intensity during the MCA. Our climatic interpretation of these archives is consistent with our isotope-based GCM analysis, which suggests that these sites are sensitive recorders of large-scale monsoon variations. We hypothesize that these centennial-scale climate anomalies were at least partially driven by temperature changes in the Northern Hemisphere and in particular over the North Atlantic, leading to a latitudinal displacement of the ITCZ and a change in monsoon intensity (amount of rainfall upstream over the Amazon Basin). This interpretation is supported by several independent records from different proxy archives and modeling studies. Although ENSO is the main forcing for δ18O variability over tropical South America on interannual time scales, our results suggest that its influence may be significantly modulated by North Atlantic climate variability on longer time scales. Finally, our analyses indicate that isotopic proxies, because of their ability to integrate climatic information on large spatial scales, could complement more traditional proxies such as tree rings or documentary evidence. Future climate reconstruction efforts could potentially benefit from including isotopic proxies as large-scale predictors in order to better constrain past changes in the atmospheric circulation.

  5. First look at changes in flood hazard in the Inter-Sectoral Impact Model Intercomparison Project ensemble

    PubMed Central

    Dankers, Rutger; Arnell, Nigel W.; Clark, Douglas B.; Falloon, Pete D.; Fekete, Balázs M.; Gosling, Simon N.; Heinke, Jens; Kim, Hyungjun; Masaki, Yoshimitsu; Satoh, Yusuke; Stacke, Tobias; Wada, Yoshihide; Wisser, Dominik

    2014-01-01

    Climate change due to anthropogenic greenhouse gas emissions is expected to increase the frequency and intensity of precipitation events, which is likely to affect the probability of flooding into the future. In this paper we use river flow simulations from nine global hydrology and land surface models to explore uncertainties in the potential impacts of climate change on flood hazard at global scale. As an indicator of flood hazard we looked at changes in the 30-y return level of 5-d average peak flows under representative concentration pathway RCP8.5 at the end of this century. Not everywhere does climate change result in an increase in flood hazard: decreases in the magnitude and frequency of the 30-y return level of river flow occur at roughly one-third (20–45%) of the global land grid points, particularly in areas where the hydrograph is dominated by the snowmelt flood peak in spring. In most model experiments, however, an increase in flooding frequency was found in more than half of the grid points. The current 30-y flood peak is projected to occur in more than 1 in 5 y across 5–30% of land grid points. The large-scale patterns of change are remarkably consistent among impact models and even the driving climate models, but at local scale and in individual river basins there can be disagreement even on the sign of change, indicating large modeling uncertainty which needs to be taken into account in local adaptation studies. PMID:24344290

  6. Seasonal prediction of US summertime ozone using statistical analysis of large scale climate patterns.

    PubMed

    Shen, Lu; Mickley, Loretta J

    2017-03-07

    We develop a statistical model to predict June-July-August (JJA) daily maximum 8-h average (MDA8) ozone concentrations in the eastern United States based on large-scale climate patterns during the previous spring. We find that anomalously high JJA ozone in the East is correlated with these springtime patterns: warm tropical Atlantic and cold northeast Pacific sea surface temperatures (SSTs), as well as positive sea level pressure (SLP) anomalies over Hawaii and negative SLP anomalies over the Atlantic and North America. We then develop a linear regression model to predict JJA MDA8 ozone from 1980 to 2013, using the identified SST and SLP patterns from the previous spring. The model explains ∼45% of the variability in JJA MDA8 ozone concentrations and ∼30% variability in the number of JJA ozone episodes (>70 ppbv) when averaged over the eastern United States. This seasonal predictability results from large-scale ocean-atmosphere interactions. Warm tropical Atlantic SSTs can trigger diabatic heating in the atmosphere and influence the extratropical climate through stationary wave propagation, leading to greater subsidence, less precipitation, and higher temperatures in the East, which increases surface ozone concentrations there. Cooler SSTs in the northeast Pacific are also associated with more summertime heatwaves and high ozone in the East. On average, models participating in the Atmospheric Model Intercomparison Project fail to capture the influence of this ocean-atmosphere interaction on temperatures in the eastern United States, implying that such models would have difficulty simulating the interannual variability of surface ozone in this region.

  7. Seasonal prediction of US summertime ozone using statistical analysis of large scale climate patterns

    PubMed Central

    Mickley, Loretta J.

    2017-01-01

    We develop a statistical model to predict June–July–August (JJA) daily maximum 8-h average (MDA8) ozone concentrations in the eastern United States based on large-scale climate patterns during the previous spring. We find that anomalously high JJA ozone in the East is correlated with these springtime patterns: warm tropical Atlantic and cold northeast Pacific sea surface temperatures (SSTs), as well as positive sea level pressure (SLP) anomalies over Hawaii and negative SLP anomalies over the Atlantic and North America. We then develop a linear regression model to predict JJA MDA8 ozone from 1980 to 2013, using the identified SST and SLP patterns from the previous spring. The model explains ∼45% of the variability in JJA MDA8 ozone concentrations and ∼30% variability in the number of JJA ozone episodes (>70 ppbv) when averaged over the eastern United States. This seasonal predictability results from large-scale ocean–atmosphere interactions. Warm tropical Atlantic SSTs can trigger diabatic heating in the atmosphere and influence the extratropical climate through stationary wave propagation, leading to greater subsidence, less precipitation, and higher temperatures in the East, which increases surface ozone concentrations there. Cooler SSTs in the northeast Pacific are also associated with more summertime heatwaves and high ozone in the East. On average, models participating in the Atmospheric Model Intercomparison Project fail to capture the influence of this ocean–atmosphere interaction on temperatures in the eastern United States, implying that such models would have difficulty simulating the interannual variability of surface ozone in this region. PMID:28223483

  8. Characterizing sources of uncertainty from global climate models and downscaling techniques

    USGS Publications Warehouse

    Wootten, Adrienne; Terando, Adam; Reich, Brian J.; Boyles, Ryan; Semazzi, Fred

    2017-01-01

    In recent years climate model experiments have been increasingly oriented towards providing information that can support local and regional adaptation to the expected impacts of anthropogenic climate change. This shift has magnified the importance of downscaling as a means to translate coarse-scale global climate model (GCM) output to a finer scale that more closely matches the scale of interest. Applying this technique, however, introduces a new source of uncertainty into any resulting climate model ensemble. Here we present a method, based on a previously established variance decomposition method, to partition and quantify the uncertainty in climate model ensembles that is attributable to downscaling. We apply the method to the Southeast U.S. using five downscaled datasets that represent both statistical and dynamical downscaling techniques. The combined ensemble is highly fragmented, in that only a small portion of the complete set of downscaled GCMs and emission scenarios are typically available. The results indicate that the uncertainty attributable to downscaling approaches ~20% for large areas of the Southeast U.S. for precipitation and ~30% for extreme heat days (> 35°C) in the Appalachian Mountains. However, attributable quantities are significantly lower for time periods when the full ensemble is considered but only a sub-sample of all models are available, suggesting that overconfidence could be a serious problem in studies that employ a single set of downscaled GCMs. We conclude with recommendations to advance the design of climate model experiments so that the uncertainty that accrues when downscaling is employed is more fully and systematically considered.

  9. Impacts of Large-Scale Circulation on Convection: A 2-D Cloud Resolving Model Study

    NASA Technical Reports Server (NTRS)

    Li, X; Sui, C.-H.; Lau, K.-M.

    1999-01-01

    Studies of impacts of large-scale circulation on convection, and the roles of convection in heat and water balances over tropical region are fundamentally important for understanding global climate changes. Heat and water budgets over warm pool (SST=29.5 C) and cold pool (SST=26 C) were analyzed based on simulations of the two-dimensional cloud resolving model. Here the sensitivity of heat and water budgets to different sizes of warm and cold pools is examined.

  10. The Agricultural Model Intercomparison and Improvement Project (AgMIP): Protocols and Pilot Studies

    NASA Technical Reports Server (NTRS)

    Rosenzweig, C.; Jones, J. W.; Hatfield, J. L.; Ruane, A. C.; Boote, K. J.; Thorburn, P.; Antle, J. M.; Nelson, G. C.; Porter, C.; Janssen, S.; hide

    2012-01-01

    The Agricultural Model Intercomparison and Improvement Project (AgMIP) is a major international effort linking the climate, crop, and economic modeling communities with cutting-edge information technology to produce improved crop and economic models and the next generation of climate impact projections for the agricultural sector. The goals of AgMIP are to improve substantially the characterization of world food security due to climate change and to enhance adaptation capacity in both developing and developed countries. Analyses of the agricultural impacts of climate variability and change require a transdisciplinary effort to consistently link state-of-the-art climate scenarios to crop and economic models. Crop model outputs are aggregated as inputs to regional and global economic models to determine regional vulnerabilities, changes in comparative advantage, price effects, and potential adaptation strategies in the agricultural sector. Climate, Crop Modeling, Economics, and Information Technology Team Protocols are presented to guide coordinated climate, crop modeling, economics, and information technology research activities around the world, along with AgMIP Cross-Cutting Themes that address uncertainty, aggregation and scaling, and the development of Representative Agricultural Pathways (RAPs) to enable testing of climate change adaptations in the context of other regional and global trends. The organization of research activities by geographic region and specific crops is described, along with project milestones. Pilot results demonstrate AgMIP's role in assessing climate impacts with explicit representation of uncertainties in climate scenarios and simulations using crop and economic models. An intercomparison of wheat model simulations near Obregón, Mexico reveals inter-model differences in yield sensitivity to [CO2] with model uncertainty holding approximately steady as concentrations rise, while uncertainty related to choice of crop model increases with rising temperatures. Wheat model simulations with midcentury climate scenarios project a slight decline in absolute yields that is more sensitive to selection of crop model than to global climate model, emissions scenario, or climate scenario downscaling method. A comparison of regional and national-scale economic simulations finds a large sensitivity of projected yield changes to the simulations' resolved scales. Finally, a global economic model intercomparison example demonstrates that improvements in the understanding of agriculture futures arise from integration of the range of uncertainty in crop, climate, and economic modeling results in multi-model assessments.

  11. Climatic effects of large-scale deforestation in Earth System Models

    NASA Astrophysics Data System (ADS)

    Brovkin, V.; Boysen, L.; Pongratz, J.

    2017-12-01

    Processes in terrestrial ecosystems, to a large extent, are controlled by climate and CO2 concentration. In turn, geographical distribution of vegetation cover strongly affects heat, moisture, and momentum fluxes between land surface and atmosphere (biogeophysical effects). Anthropogenic land use and land cover changes (LULCC) are now included into Earth System Models (ESMs) in the form of historical and hypothetical future scenarios as a forcing in the Coupled Model Intercomparison project, phase 6 (CMIP6). A propagation of climatic effects from land to the ocean in ESMs allows to investigate a global climate response to LULCC in addition to analysis of local effects over deforested land. One complication in the analysis of global climatic effects of historical and future LULCC scenarios is their relatively small amplitude. To increase the signal-to-noise ratio, the Land Use Model Intercomparison Project (LUMIP) suggested an idealized deforestation simulation following a prototype of 1%-CO2 increase experiment commonly used in CMIPs. The idealized experiment allows to investigate - in a harmonized way across models - a response of land surface biophysics and climate to a large-scale deforestation of 20 million km2 distributed over the most forested parts of globe. The forest is removed linearly over a period of 50 years, with an additional 30 years with no specified change in forest cover. Boundary conditions such as CO2 concentration and other forcings are kept at the pre-industrial level. We will present results of idealized deforestation experiments and other sensitivity runs with the CMIP6-version of MPI-ESM, which will be part of the later multi-model comparison. A special focus will be put on less well investigated aspects of LULCC that the idealized setup is particularly well suited for studying, such as non-linearities of the model response to the deforestation forcing and detectability of the signal over time.

  12. High-resolution RCMs as pioneers for future GCMs

    NASA Astrophysics Data System (ADS)

    Schar, C.; Ban, N.; Arteaga, A.; Charpilloz, C.; Di Girolamo, S.; Fuhrer, O.; Hoefler, T.; Leutwyler, D.; Lüthi, D.; Piaget, N.; Ruedisuehli, S.; Schlemmer, L.; Schulthess, T. C.; Wernli, H.

    2017-12-01

    Currently large efforts are underway to refine the horizontal resolution of global and regional climate models to O(1 km), with the intent to represent convective clouds explicitly rather than using semi-empirical parameterizations. This refinement will move the governing equations closer to first principles and is expected to reduce the uncertainties of climate models. High resolution is particularly attractive in order to better represent critical cloud feedback processes (e.g. related to global climate sensitivity and extratropical summer convection) and extreme events (such as heavy precipitation events, floods, and hurricanes). The presentation will be illustrated using decade-long simulations at 2 km horizontal grid spacing, some of these covering the European continent on a computational mesh with 1536x1536x60 grid points. To accomplish such simulations, use is made of emerging heterogeneous supercomputing architectures, using a version of the COSMO limited-area weather and climate model that is able to run entirely on GPUs. Results show that kilometer-scale resolution dramatically improves the simulation of precipitation in terms of the diurnal cycle and short-term extremes. The modeling framework is used to address changes of precipitation scaling with climate change. It is argued that already today, modern supercomputers would in principle enable global atmospheric convection-resolving climate simulations, provided appropriately refactored codes were available, and provided solutions were found to cope with the rapidly growing output volume. A discussion will be provided of key challenges affecting the design of future high-resolution climate models. It is suggested that km-scale RCMs should be exploited to pioneer this terrain, at a time when GCMs are not yet available at such resolutions. Areas of interest include the development of new parameterization schemes adequate for km-scale resolution, the exploration of new validation methodologies and data sets, the assessment of regional-scale climate feedback processes, and the development of alternative output analysis methodologies.

  13. Model uncertainties do not affect observed patterns of species richness in the Amazon.

    PubMed

    Sales, Lilian Patrícia; Neves, Olívia Viana; De Marco, Paulo; Loyola, Rafael

    2017-01-01

    Climate change is arguably a major threat to biodiversity conservation and there are several methods to assess its impacts on species potential distribution. Yet the extent to which different approaches on species distribution modeling affect species richness patterns at biogeographical scale is however unaddressed in literature. In this paper, we verified if the expected responses to climate change in biogeographical scale-patterns of species richness and species vulnerability to climate change-are affected by the inputs used to model and project species distribution. We modeled the distribution of 288 vertebrate species (amphibians, birds and mammals), all endemic to the Amazon basin, using different combinations of the following inputs known to affect the outcome of species distribution models (SDMs): 1) biological data type, 2) modeling methods, 3) greenhouse gas emission scenarios and 4) climate forecasts. We calculated uncertainty with a hierarchical ANOVA in which those different inputs were considered factors. The greatest source of variation was the modeling method. Model performance interacted with data type and modeling method. Absolute values of variation on suitable climate area were not equal among predictions, but some biological patterns were still consistent. All models predicted losses on the area that is climatically suitable for species, especially for amphibians and primates. All models also indicated a current East-western gradient on endemic species richness, from the Andes foot downstream the Amazon river. Again, all models predicted future movements of species upwards the Andes mountains and overall species richness losses. From a methodological perspective, our work highlights that SDMs are a useful tool for assessing impacts of climate change on biodiversity. Uncertainty exists but biological patterns are still evident at large spatial scales. As modeling methods are the greatest source of variation, choosing the appropriate statistics according to the study objective is also essential for estimating the impacts of climate change on species distribution. Yet from a conservation perspective, we show that Amazon endemic fauna is potentially vulnerable to climate change, due to expected reductions on suitable climate area. Climate-driven faunal movements are predicted towards the Andes mountains, which might work as climate refugia for migrating species.

  14. Comparison of Ice Cloud Particle Sizes Retrieved from Satellite Data Derived from In Situ Measurements

    NASA Technical Reports Server (NTRS)

    Han, Qingyuan; Rossow, William B.; Chou, Joyce; Welch, Ronald M.

    1997-01-01

    Cloud microphysical parameterizations have attracted a great deal of attention in recent years due to their effect on cloud radiative properties and cloud-related hydrological processes in large-scale models. The parameterization of cirrus particle size has been demonstrated as an indispensable component in the climate feedback analysis. Therefore, global-scale, long-term observations of cirrus particle sizes are required both as a basis of and as a validation of parameterizations for climate models. While there is a global scale, long-term survey of water cloud droplet sizes (Han et al.), there is no comparable study for cirrus ice crystals. This study is an effort to supply such a data set.

  15. Regional Climate Implications of Large-scale Cultivation of Biofuel Crops

    NASA Astrophysics Data System (ADS)

    Rowe, C. M.; Oglesby, R. J.; Hays, C. J.; van Etten, A. R.

    2008-12-01

    Conversion from corn-based ethanol to cellulosic ethanol has the potential to dramatically alter the production of biofuels in the United States and could result in large-scale changes in the agricultural landscape of vast areas of the country. Regions currently dominated by corn production could see widespread planting of switchgrass and other fast-growing, water-efficient sources of cellulose biomass. An often overlooked side effect of these land-cover changes could be a significant alteration of the energy fluxes between the land surface and the atmosphere with profound local, regional, and continental impacts on the climate system. Changes in the surface energy balance result primarily from differences in the seasonality of transpiration from corn versus switchgrass and could be enhanced as a result of a reduced need for irrigation of switchgrass in areas where corn can be produced only under irrigation. Preliminary modeling results using a simple "bucket" land surface model coupled to the WRF mesoscale model have demonstrated increases in summertime average daily maximum temperature of up to 4° C, smaller increases of up to 2° C in nighttime minimum temperatures and reductions in precipitation by up to 25% when corn was changed to switchgrass over the central United States. Improved parameterization of biofuel crops in more sophisticated land surface models will allow us to refine these preliminary estimates and assess the impacts of large-scale conversion to cellulosic biofuel crops, relative to greenhouse gas induced regional climate change.

  16. Simulating the effects of climate change on the distribution of an invasive plant, using a high resolution, local scale, mechanistic approach: challenges and insights.

    PubMed

    Fennell, Mark; Murphy, James E; Gallagher, Tommy; Osborne, Bruce

    2013-04-01

    The growing economic and ecological damage associated with biological invasions, which will likely be exacerbated by climate change, necessitates improved projections of invasive spread. Generally, potential changes in species distribution are investigated using climate envelope models; however, the reliability of such models has been questioned and they are not suitable for use at local scales. At this scale, mechanistic models are more appropriate. This paper discusses some key requirements for mechanistic models and utilises a newly developed model (PSS[gt]) that incorporates the influence of habitat type and related features (e.g., roads and rivers), as well as demographic processes and propagule dispersal dynamics, to model climate induced changes in the distribution of an invasive plant (Gunnera tinctoria) at a local scale. A new methodology is introduced, dynamic baseline benchmarking, which distinguishes climate-induced alterations in species distributions from other potential drivers of change. Using this approach, it was concluded that climate change, based on IPCC and C4i projections, has the potential to increase the spread-rate and intensity of G. tinctoria invasions. Increases in the number of individuals were primarily due to intensification of invasion in areas already invaded or in areas projected to be invaded in the dynamic baseline scenario. Temperature had the largest influence on changes in plant distributions. Water availability also had a large influence and introduced the most uncertainty in the projections. Additionally, due to the difficulties of parameterising models such as this, the process has been streamlined by utilising methods for estimating unknown variables and selecting only essential parameters. © 2012 Blackwell Publishing Ltd.

  17. Hydrologic Effects of Global Climate Change on a Large Drained Pine Forest

    Treesearch

    Devendra M. Amatya; Ge Sun; R. W. Skaggs; G. M Chescheir; J. E. Nettles

    2006-01-01

    A simulation study using a watershed scale forest hydrology model (DRAINWAT) was conducted to evaluate potential effects of climate change on the hydrology of a 3,000 ha managed pine forest in coastal North Carolina. The model was first validated with a five-year (1996-2000) data set fro111 the study site and then run with 50-years (1951-00) of historic weather data...

  18. Assessing Impacts of Climate Change on Food Security Worldwide

    NASA Technical Reports Server (NTRS)

    Rosenzweig, Cynthia E.; Antle, John; Elliott, Joshua

    2015-01-01

    The combination of a warming Earth and an increasing population will likely strain the world's food systems in the coming decades. Experts involved with the Agricultural Model Intercomparison and Improvement Project (AgMIP) focus on quantifying the changes through time. AgMIP, a program begun in 2010, involves about 800 climate scientists, economists, nutritionists, information technology specialists, and crop and livestock experts. In mid-September 2015, the Aspen Global Change Institute convened an AgMIP workshop to draft plans and protocols for assessing global- and regional-scale modeling of crops, livestock, economics, and nutrition across major agricultural regions worldwide. The goal of this Coordinated Global and Regional Integrated Assessments (CGRA) project is to characterize climate effects on large- and small-scale farming systems.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collins, William D; Johansen, Hans; Evans, Katherine J

    We present a survey of physical and computational techniques that have the potential to con- tribute to the next generation of high-fidelity, multi-scale climate simulations. Examples of the climate science problems that can be investigated with more depth include the capture of remote forcings of localized hydrological extreme events, an accurate representation of cloud features over a range of spatial and temporal scales, and parallel, large ensembles of simulations to more effectively explore model sensitivities and uncertainties. Numerical techniques, such as adaptive mesh refinement, implicit time integration, and separate treatment of fast physical time scales are enabling improved accuracy andmore » fidelity in simulation of dynamics and allow more complete representations of climate features at the global scale. At the same time, part- nerships with computer science teams have focused on taking advantage of evolving computer architectures, such as many-core processors and GPUs, so that these approaches which were previously considered prohibitively costly have become both more efficient and scalable. In combination, progress in these three critical areas is poised to transform climate modeling in the coming decades.« less

  20. Probabilistic projections of 21st century climate change over Northern Eurasia

    NASA Astrophysics Data System (ADS)

    Monier, E.; Sokolov, A. P.; Schlosser, C. A.; Scott, J. R.; Gao, X.

    2013-12-01

    We present probabilistic projections of 21st century climate change over Northern Eurasia using the Massachusetts Institute of Technology (MIT) Integrated Global System Model (IGSM), an integrated assessment model that couples an earth system model of intermediate complexity, with a two-dimensional zonal-mean atmosphere, to a human activity model. Regional climate change is obtained by two downscaling methods: a dynamical downscaling, where the IGSM is linked to a three dimensional atmospheric model; and a statistical downscaling, where a pattern scaling algorithm uses climate-change patterns from 17 climate models. This framework allows for key sources of uncertainty in future projections of regional climate change to be accounted for: emissions projections; climate system parameters (climate sensitivity, strength of aerosol forcing and ocean heat uptake rate); natural variability; and structural uncertainty. Results show that the choice of climate policy and the climate parameters are the largest drivers of uncertainty. We also nd that dierent initial conditions lead to dierences in patterns of change as large as when using different climate models. Finally, this analysis reveals the wide range of possible climate change over Northern Eurasia, emphasizing the need to consider all sources of uncertainty when modeling climate impacts over Northern Eurasia.

  1. Probabilistic projections of 21st century climate change over Northern Eurasia

    NASA Astrophysics Data System (ADS)

    Monier, Erwan; Sokolov, Andrei; Schlosser, Adam; Scott, Jeffery; Gao, Xiang

    2013-12-01

    We present probabilistic projections of 21st century climate change over Northern Eurasia using the Massachusetts Institute of Technology (MIT) Integrated Global System Model (IGSM), an integrated assessment model that couples an Earth system model of intermediate complexity with a two-dimensional zonal-mean atmosphere to a human activity model. Regional climate change is obtained by two downscaling methods: a dynamical downscaling, where the IGSM is linked to a three-dimensional atmospheric model, and a statistical downscaling, where a pattern scaling algorithm uses climate change patterns from 17 climate models. This framework allows for four major sources of uncertainty in future projections of regional climate change to be accounted for: emissions projections, climate system parameters (climate sensitivity, strength of aerosol forcing and ocean heat uptake rate), natural variability, and structural uncertainty. The results show that the choice of climate policy and the climate parameters are the largest drivers of uncertainty. We also find that different initial conditions lead to differences in patterns of change as large as when using different climate models. Finally, this analysis reveals the wide range of possible climate change over Northern Eurasia, emphasizing the need to consider these sources of uncertainty when modeling climate impacts over Northern Eurasia.

  2. Accounting for groundwater in stream fish thermal habitat responses to climate change

    USGS Publications Warehouse

    Snyder, Craig D.; Hitt, Nathaniel P.; Young, John A.

    2015-01-01

    Forecasting climate change effects on aquatic fauna and their habitat requires an understanding of how water temperature responds to changing air temperature (i.e., thermal sensitivity). Previous efforts to forecast climate effects on brook trout habitat have generally assumed uniform air-water temperature relationships over large areas that cannot account for groundwater inputs and other processes that operate at finer spatial scales. We developed regression models that accounted for groundwater influences on thermal sensitivity from measured air-water temperature relationships within forested watersheds in eastern North America (Shenandoah National Park, USA, 78 sites in 9 watersheds). We used these reach-scale models to forecast climate change effects on stream temperature and brook trout thermal habitat, and compared our results to previous forecasts based upon large-scale models. Observed stream temperatures were generally less sensitive to air temperature than previously assumed, and we attribute this to the moderating effect of shallow groundwater inputs. Predicted groundwater temperatures from air-water regression models corresponded well to observed groundwater temperatures elsewhere in the study area. Predictions of brook trout future habitat loss derived from our fine-grained models were far less pessimistic than those from prior models developed at coarser spatial resolutions. However, our models also revealed spatial variation in thermal sensitivity within and among catchments resulting in a patchy distribution of thermally suitable habitat. Habitat fragmentation due to thermal barriers therefore may have an increasingly important role for trout population viability in headwater streams. Our results demonstrate that simple adjustments to air-water temperature regression models can provide a powerful and cost-effective approach for predicting future stream temperatures while accounting for effects of groundwater.

  3. The Impact Snow Albedo Feedback over Mountain Regions as Examined through High-Resolution Regional Climate Change Experiments over the Rocky Mountains

    NASA Astrophysics Data System (ADS)

    Letcher, Theodore

    As the climate warms, the snow albedo feedback (SAF) will play a substantial role in shaping the climate response of mid-latitude mountain regions with transient snow cover. One such region is the Rocky Mountains of the western United States where large snow packs accumulate during the winter and persist throughout the spring. In this dissertation, the Weather Research and Forecast model (WRF) configured as a regional climate model is used to investigate the role of the SAF in determining the regional climate response to forced anthropogenic climate change. The regional effects of climate change are investigated by using the pseudo global warming (PGW) framework, which is an experimental configuration in a which a mean climate perturbation is added to the boundary forcing of a regional model, thus preserving the large-scale circulation entering the region through the model boundaries and isolating the mesoscale climate response. Using this framework, the impact of the SAF on the regional energetics and atmospheric dynamics is examined and quantified. Linear feedback analysis is used to quantify the strength of the SAF over the Headwaters region of the Colorado Rockies for a series of high-resolution PGW experiments. This technique is used to test sensitivity of the feedback strength to model resolution and land surface model. Over the Colorado Rockies, and integrated over the entire spring season, the SAF strength is largely insensitive to model resolution, however there are more substantial differences on the sub-seasonal (monthly) timescale. In contrast, the SAF strength over this region is very sensitive to choice of land surface model. These simulations are also used to investigate how spatial and diurnal variability in warming caused by the SAF influences the dynamics of thermally driven mountain-breeze circulations. It is shown that, the SAF causes stronger daytime mountain-breeze circulations by increasing the warming on the mountains slopes thus enhancing the thermal contrast between the mountain slopes and the surrounding lowlands which drives these wind systems. This analysis is extended to investigate the impacts that the SAF has on the large-scale mountain-plain circulation that develops east of the Rockies over the Great Plains. To help isolate the SAF, a more idealized regional climate experiment which isolates the SAF is performed. It was found that SAF may influence thermally driven atmospheric dynamics up-to 200km east of the Mountains where the SAF originates, suggesting broader regional impacts of the SAF which may not be well resolved by coarser resolution global climate models. The implications of these changes on pollution transport and moist convection are also explored using these simulations.

  4. Canary in the coal mine: Historical oxygen decline in the Gulf of St. Lawrence due to large scale climate changes

    NASA Astrophysics Data System (ADS)

    Claret, M.; Galbraith, E. D.; Palter, J. B.; Gilbert, D.; Bianchi, D.; Dunne, J. P.

    2016-02-01

    The regional signature of anthropogenic climate change on the atmosphere and upper ocean is often difficult to discern from observational timeseries, dominated as they are by decadal climate variability. Here we argue that a long-term decline of dissolved oxygen concentrations observed in the Gulf of S. Lawrence (GoSL) is consistent with anthropogenic climate change. Oxygen concentrations in the GoSL have declined markedly since 1930 due primarily to an increase of oxygen-poor North Atlantic Central Waters relative to Labrador Current Waters (Gilbert et al. 2005). We compare these observations to a climate warming simulation using a very high-resolution global coupled ocean-atmospheric climate model. The numerical model (CM2.6), developed by the Geophysical Fluid Dynamics Laboratory, is strongly eddying and includes a biogeochemical module with dissolved oxygen. The warming scenario shows that oxygen in the GoSL decreases and it is associated to changes in western boundary currents and wind patterns in the North Atlantic. We speculate that the large-scale changes behind the simulated decrease in GoSL oxygen have also been at play in the real world over the past century, although they are difficult to resolve in noisy atmospheric data.

  5. Regional climate model simulations indicate limited climatic impacts by operational and planned European wind farms.

    PubMed

    Vautard, Robert; Thais, Françoise; Tobin, Isabelle; Bréon, François-Marie; Devezeaux de Lavergne, Jean-Guy; Colette, Augustin; Yiou, Pascal; Ruti, Paolo Michele

    2014-01-01

    The rapid development of wind energy has raised concerns about environmental impacts. Temperature changes are found in the vicinity of wind farms and previous simulations have suggested that large-scale wind farms could alter regional climate. However, assessments of the effects of realistic wind power development scenarios at the scale of a continent are missing. Here we simulate the impacts of current and near-future wind energy production according to European Union energy and climate policies. We use a regional climate model describing the interactions between turbines and the atmosphere, and find limited impacts. A statistically significant signal is only found in winter, with changes within ±0.3 °C and within 0-5% for precipitation. It results from the combination of local wind farm effects and changes due to a weak, but robust, anticyclonic-induced circulation over Europe. However, the impacts remain much weaker than the natural climate interannual variability and changes expected from greenhouse gas emissions.

  6. Simulations of the future precipitation climate of the Central Andes using a coupled regional climate model

    NASA Astrophysics Data System (ADS)

    Nicholls, S.; Mohr, K. I.

    2014-12-01

    The meridional extent and complex orography of the South American continent contributes to a wide diversity of climate regimes ranging from hyper-arid deserts to tropical rainforests to sub-polar highland regions. Global climate models, although capable of resolving synoptic-scale South American climate features, are inadequate for fully-resolving the strong gradients between climate regimes and the complex orography which define the Tropical Andes given their low spatial and temporal resolution. Recent computational advances now make practical regional climate modeling with prognostic mesoscale atmosphere-ocean coupled models, such as the Coupled Ocean-Atmosphere-Wave-Sediment Transport (COAWST) modeling system, to climate research. Previous work has shown COAWST to reasonably simulate the both the entire 2003-2004 wet season (Dec-Feb) as validated against both satellite and model analysis data. More recently, COAWST simulations have also been shown to sensibly reproduce the entire annual cycle of rainfall (Oct 2003 - Oct 2004) with historical climate model input. Using future global climate model input for COAWST, the present work involves year-long cycle spanning October to October for the years 2031, 2059, and 2087 assuming the most likely regional climate pathway (RCP): RCP 6.0. COAWST output is used to investigate how global climate change impacts the spatial distribution, precipitation rates, and diurnal cycle of precipitation patterns in the Central Andes vary in these yearly "snapshots". Initial results show little change to precipitation coverage or its diurnal cycle, however precipitation amounts did tend drier over the Brazilian Plateau and wetter over the Western Amazon and Central Andes. These results suggest potential adjustments to large-scale climate features (such as the Bolivian High).

  7. High Resolution Model Intercomparison Project (HighResMIP v1.0) for CMIP6

    NASA Astrophysics Data System (ADS)

    Haarsma, Reindert J.; Roberts, Malcolm J.; Vidale, Pier Luigi; Senior, Catherine A.; Bellucci, Alessio; Bao, Qing; Chang, Ping; Corti, Susanna; Fučkar, Neven S.; Guemas, Virginie; von Hardenberg, Jost; Hazeleger, Wilco; Kodama, Chihiro; Koenigk, Torben; Leung, L. Ruby; Lu, Jian; Luo, Jing-Jia; Mao, Jiafu; Mizielinski, Matthew S.; Mizuta, Ryo; Nobre, Paulo; Satoh, Masaki; Scoccimarro, Enrico; Semmler, Tido; Small, Justin; von Storch, Jin-Song

    2016-11-01

    Robust projections and predictions of climate variability and change, particularly at regional scales, rely on the driving processes being represented with fidelity in model simulations. The role of enhanced horizontal resolution in improved process representation in all components of the climate system is of growing interest, particularly as some recent simulations suggest both the possibility of significant changes in large-scale aspects of circulation as well as improvements in small-scale processes and extremes. However, such high-resolution global simulations at climate timescales, with resolutions of at least 50 km in the atmosphere and 0.25° in the ocean, have been performed at relatively few research centres and generally without overall coordination, primarily due to their computational cost. Assessing the robustness of the response of simulated climate to model resolution requires a large multi-model ensemble using a coordinated set of experiments. The Coupled Model Intercomparison Project 6 (CMIP6) is the ideal framework within which to conduct such a study, due to the strong link to models being developed for the CMIP DECK experiments and other model intercomparison projects (MIPs). Increases in high-performance computing (HPC) resources, as well as the revised experimental design for CMIP6, now enable a detailed investigation of the impact of increased resolution up to synoptic weather scales on the simulated mean climate and its variability. The High Resolution Model Intercomparison Project (HighResMIP) presented in this paper applies, for the first time, a multi-model approach to the systematic investigation of the impact of horizontal resolution. A coordinated set of experiments has been designed to assess both a standard and an enhanced horizontal-resolution simulation in the atmosphere and ocean. The set of HighResMIP experiments is divided into three tiers consisting of atmosphere-only and coupled runs and spanning the period 1950-2050, with the possibility of extending to 2100, together with some additional targeted experiments. This paper describes the experimental set-up of HighResMIP, the analysis plan, the connection with the other CMIP6 endorsed MIPs, as well as the DECK and CMIP6 historical simulations. HighResMIP thereby focuses on one of the CMIP6 broad questions, "what are the origins and consequences of systematic model biases?", but we also discuss how it addresses the World Climate Research Program (WCRP) grand challenges.

  8. A probabilistic method for streamflow projection and associated uncertainty analysis in a data sparse alpine region

    NASA Astrophysics Data System (ADS)

    Ren, Weiwei; Yang, Tao; Shi, Pengfei; Xu, Chong-yu; Zhang, Ke; Zhou, Xudong; Shao, Quanxi; Ciais, Philippe

    2018-06-01

    Climate change imposes profound influence on regional hydrological cycle and water security in many alpine regions worldwide. Investigating regional climate impacts using watershed scale hydrological models requires a large number of input data such as topography, meteorological and hydrological data. However, data scarcity in alpine regions seriously restricts evaluation of climate change impacts on water cycle using conventional approaches based on global or regional climate models, statistical downscaling methods and hydrological models. Therefore, this study is dedicated to development of a probabilistic model to replace the conventional approaches for streamflow projection. The probabilistic model was built upon an advanced Bayesian Neural Network (BNN) approach directly fed by the large-scale climate predictor variables and tested in a typical data sparse alpine region, the Kaidu River basin in Central Asia. Results show that BNN model performs better than the general methods across a number of statistical measures. The BNN method with flexible model structures by active indicator functions, which reduce the dependence on the initial specification for the input variables and the number of hidden units, can work well in a data limited region. Moreover, it can provide more reliable streamflow projections with a robust generalization ability. Forced by the latest bias-corrected GCM scenarios, streamflow projections for the 21st century under three RCP emission pathways were constructed and analyzed. Briefly, the proposed probabilistic projection approach could improve runoff predictive ability over conventional methods and provide better support to water resources planning and management under data limited conditions as well as enable a facilitated climate change impact analysis on runoff and water resources in alpine regions worldwide.

  9. Using Unplanned Fires to Help Suppressing Future Large Fires in Mediterranean Forests

    PubMed Central

    Regos, Adrián; Aquilué, Núria; Retana, Javier; De Cáceres, Miquel; Brotons, Lluís

    2014-01-01

    Despite the huge resources invested in fire suppression, the impact of wildfires has considerably increased across the Mediterranean region since the second half of the 20th century. Modulating fire suppression efforts in mild weather conditions is an appealing but hotly-debated strategy to use unplanned fires and associated fuel reduction to create opportunities for suppression of large fires in future adverse weather conditions. Using a spatially-explicit fire–succession model developed for Catalonia (Spain), we assessed this opportunistic policy by using two fire suppression strategies that reproduce how firefighters in extreme weather conditions exploit previous fire scars as firefighting opportunities. We designed scenarios by combining different levels of fire suppression efficiency and climatic severity for a 50-year period (2000–2050). An opportunistic fire suppression policy induced large-scale changes in fire regimes and decreased the area burnt under extreme climate conditions, but only accounted for up to 18–22% of the area to be burnt in reference scenarios. The area suppressed in adverse years tended to increase in scenarios with increasing amounts of area burnt during years dominated by mild weather. Climate change had counterintuitive effects on opportunistic fire suppression strategies. Climate warming increased the incidence of large fires under uncontrolled conditions but also indirectly increased opportunities for enhanced fire suppression. Therefore, to shift fire suppression opportunities from adverse to mild years, we would require a disproportionately large amount of area burnt in mild years. We conclude that the strategic planning of fire suppression resources has the potential to become an important cost-effective fuel-reduction strategy at large spatial scale. We do however suggest that this strategy should probably be accompanied by other fuel-reduction treatments applied at broad scales if large-scale changes in fire regimes are to be achieved, especially in the wider context of climate change. PMID:24727853

  10. Using unplanned fires to help suppressing future large fires in Mediterranean forests.

    PubMed

    Regos, Adrián; Aquilué, Núria; Retana, Javier; De Cáceres, Miquel; Brotons, Lluís

    2014-01-01

    Despite the huge resources invested in fire suppression, the impact of wildfires has considerably increased across the Mediterranean region since the second half of the 20th century. Modulating fire suppression efforts in mild weather conditions is an appealing but hotly-debated strategy to use unplanned fires and associated fuel reduction to create opportunities for suppression of large fires in future adverse weather conditions. Using a spatially-explicit fire-succession model developed for Catalonia (Spain), we assessed this opportunistic policy by using two fire suppression strategies that reproduce how firefighters in extreme weather conditions exploit previous fire scars as firefighting opportunities. We designed scenarios by combining different levels of fire suppression efficiency and climatic severity for a 50-year period (2000-2050). An opportunistic fire suppression policy induced large-scale changes in fire regimes and decreased the area burnt under extreme climate conditions, but only accounted for up to 18-22% of the area to be burnt in reference scenarios. The area suppressed in adverse years tended to increase in scenarios with increasing amounts of area burnt during years dominated by mild weather. Climate change had counterintuitive effects on opportunistic fire suppression strategies. Climate warming increased the incidence of large fires under uncontrolled conditions but also indirectly increased opportunities for enhanced fire suppression. Therefore, to shift fire suppression opportunities from adverse to mild years, we would require a disproportionately large amount of area burnt in mild years. We conclude that the strategic planning of fire suppression resources has the potential to become an important cost-effective fuel-reduction strategy at large spatial scale. We do however suggest that this strategy should probably be accompanied by other fuel-reduction treatments applied at broad scales if large-scale changes in fire regimes are to be achieved, especially in the wider context of climate change.

  11. Continental-scale temperature covariance in proxy reconstructions and climate models

    NASA Astrophysics Data System (ADS)

    Hartl-Meier, Claudia; Büntgen, Ulf; Smerdon, Jason; Zorita, Eduardo; Krusic, Paul; Ljungqvist, Fredrik; Schneider, Lea; Esper, Jan

    2017-04-01

    Inter-continental temperature variability over the past millennium has been reported to be more coherent in climate model simulations than in multi-proxy-based reconstructions, a finding that undermines the representation of spatial variability in either of these approaches. We assess the covariance of summer temperatures among Northern Hemisphere continents by comparing tree-ring based temperature reconstructions with state-of-the-art climate model simulations over the past millennium. We find inter-continental temperature covariance to be larger in tree-ring-only reconstructions compared to those derived from multi-proxy networks, thus enhancing the agreement between proxy- and model-based spatial representations. A detailed comparison of simulated temperatures, however, reveals substantial spread among the models. Over the past millennium, inter-continental temperature correlations are driven by the cooling after major volcanic eruptions in 1257, 1452, 1601, and 1815. The coherence of these synchronizing events appears to be elevated in several climate simulations relative to their own covariance baselines and the proxy reconstructions, suggesting these models overestimate the amplitude of cooling in response to volcanic forcing at large spatial scales.

  12. High-resolution, regional-scale crop yield simulations for the Southwestern United States

    NASA Astrophysics Data System (ADS)

    Stack, D. H.; Kafatos, M.; Medvigy, D.; El-Askary, H. M.; Hatzopoulos, N.; Kim, J.; Kim, S.; Prasad, A. K.; Tremback, C.; Walko, R. L.; Asrar, G. R.

    2012-12-01

    Over the past few decades, there have been many process-based crop models developed with the goal of better understanding the impacts of climate, soils, and management decisions on crop yields. These models simulate the growth and development of crops in response to environmental drivers. Traditionally, process-based crop models have been run at the individual farm level for yield optimization and management scenario testing. Few previous studies have used these models over broader geographic regions, largely due to the lack of gridded high-resolution meteorological and soil datasets required as inputs for these data intensive process-based models. In particular, assessment of regional-scale yield variability due to climate change requires high-resolution, regional-scale, climate projections, and such projections have been unavailable until recently. The goal of this study was to create a framework for extending the Agricultural Production Systems sIMulator (APSIM) crop model for use at regional scales and analyze spatial and temporal yield changes in the Southwestern United States (CA, AZ, and NV). Using the scripting language Python, an automated pipeline was developed to link Regional Climate Model (RCM) output with the APSIM crop model, thus creating a one-way nested modeling framework. This framework was used to combine climate, soil, land use, and agricultural management datasets in order to better understand the relationship between climate variability and crop yield at the regional-scale. Three different RCMs were used to drive APSIM: OLAM, RAMS, and WRF. Preliminary results suggest that, depending on the model inputs, there is some variability between simulated RCM driven maize yields and historical yields obtained from the United States Department of Agriculture (USDA). Furthermore, these simulations showed strong non-linear correlations between yield and meteorological drivers, with critical threshold values for some of the inputs (e.g. minimum and maximum temperature), beyond which the yields were negatively affected. These results are now being used for further regional-scale yield analysis as the aforementioned framework is adaptable to multiple geographic regions and crop types.

  13. Predicting Coupled Ocean-Atmosphere Modes with a Climate Modeling Hierarchy -- Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michael Ghil, UCLA; Andrew W. Robertson, IRI, Columbia Univ.; Sergey Kravtsov, U. of Wisconsin, Milwaukee

    The goal of the project was to determine midlatitude climate predictability associated with tropical-extratropical interactions on interannual-to-interdecadal time scales. Our strategy was to develop and test a hierarchy of climate models, bringing together large GCM-based climate models with simple fluid-dynamical coupled ocean-ice-atmosphere models, through the use of advanced probabilistic network (PN) models. PN models were used to develop a new diagnostic methodology for analyzing coupled ocean-atmosphere interactions in large climate simulations made with the NCAR Parallel Climate Model (PCM), and to make these tools user-friendly and available to other researchers. We focused on interactions between the tropics and extratropics throughmore » atmospheric teleconnections (the Hadley cell, Rossby waves and nonlinear circulation regimes) over both the North Atlantic and North Pacific, and the ocean’s thermohaline circulation (THC) in the Atlantic. We tested the hypothesis that variations in the strength of the THC alter sea surface temperatures in the tropical Atlantic, and that the latter influence the atmosphere in high latitudes through an atmospheric teleconnection, feeding back onto the THC. The PN model framework was used to mediate between the understanding gained with simplified primitive equations models and multi-century simulations made with the PCM. The project team is interdisciplinary and built on an existing synergy between atmospheric and ocean scientists at UCLA, computer scientists at UCI, and climate researchers at the IRI.« less

  14. The influence of lightning activity and anthropogenic factors on large-scale characteristics of natural fires

    NASA Astrophysics Data System (ADS)

    Eliseev, A. V.; Mokhov, I. I.; Chernokulsky, A. V.

    2017-01-01

    A module for simulating of natural fires (NFs) in the climate model of the A.M. Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences (IAP RAS CM), is extended with respect to the influence of lightning activity and population density on the ignition frequency and fire suppression. The IAP RAS CM is used to perform numerical experiments in accordance with the conditions of the project that intercompares climate models, CMIP5 (Coupled Models Intercomparison Project, phase 5). The frequency of lightning flashes was assigned in accordance with the LIS/OTD satellite data. In the calculations performed, anthropogenic ignitions play an important role in NF occurrences, except for regions at subpolar latitudes and, to a lesser degree, tropical and subtropical regions. Taking into account the dependence of fire frequency on lightning activity and population density intensifies the influence of characteristics of natural fires on the climate changes in tropics and subtropics as compared to the version of the IAP RAS CM that does not take the influence of ignition sources on the large-scale characteristics of NFs into consideration.

  15. Large-scale climatic anomalies affect marine predator foraging behaviour and demography.

    PubMed

    Bost, Charles A; Cotté, Cedric; Terray, Pascal; Barbraud, Christophe; Bon, Cécile; Delord, Karine; Gimenez, Olivier; Handrich, Yves; Naito, Yasuhiko; Guinet, Christophe; Weimerskirch, Henri

    2015-10-27

    Determining the links between the behavioural and population responses of wild species to environmental variations is critical for understanding the impact of climate variability on ecosystems. Using long-term data sets, we show how large-scale climatic anomalies in the Southern Hemisphere affect the foraging behaviour and population dynamics of a key marine predator, the king penguin. When large-scale subtropical dipole events occur simultaneously in both subtropical Southern Indian and Atlantic Oceans, they generate tropical anomalies that shift the foraging zone southward. Consequently the distances that penguins foraged from the colony and their feeding depths increased and the population size decreased. This represents an example of a robust and fast impact of large-scale climatic anomalies affecting a marine predator through changes in its at-sea behaviour and demography, despite lack of information on prey availability. Our results highlight a possible behavioural mechanism through which climate variability may affect population processes.

  16. Large-scale climatic anomalies affect marine predator foraging behaviour and demography

    NASA Astrophysics Data System (ADS)

    Bost, Charles A.; Cotté, Cedric; Terray, Pascal; Barbraud, Christophe; Bon, Cécile; Delord, Karine; Gimenez, Olivier; Handrich, Yves; Naito, Yasuhiko; Guinet, Christophe; Weimerskirch, Henri

    2015-10-01

    Determining the links between the behavioural and population responses of wild species to environmental variations is critical for understanding the impact of climate variability on ecosystems. Using long-term data sets, we show how large-scale climatic anomalies in the Southern Hemisphere affect the foraging behaviour and population dynamics of a key marine predator, the king penguin. When large-scale subtropical dipole events occur simultaneously in both subtropical Southern Indian and Atlantic Oceans, they generate tropical anomalies that shift the foraging zone southward. Consequently the distances that penguins foraged from the colony and their feeding depths increased and the population size decreased. This represents an example of a robust and fast impact of large-scale climatic anomalies affecting a marine predator through changes in its at-sea behaviour and demography, despite lack of information on prey availability. Our results highlight a possible behavioural mechanism through which climate variability may affect population processes.

  17. A simplified, data-constrained approach to estimate the permafrost carbon-climate feedback: The PCN Incubation-Panarctic Thermal (PInc-PanTher) Scaling Approach

    NASA Astrophysics Data System (ADS)

    Koven, C. D.; Schuur, E.; Schaedel, C.; Bohn, T. J.; Burke, E.; Chen, G.; Chen, X.; Ciais, P.; Grosse, G.; Harden, J. W.; Hayes, D. J.; Hugelius, G.; Jafarov, E. E.; Krinner, G.; Kuhry, P.; Lawrence, D. M.; MacDougall, A.; Marchenko, S. S.; McGuire, A. D.; Natali, S.; Nicolsky, D.; Olefeldt, D.; Peng, S.; Romanovsky, V. E.; Schaefer, K. M.; Strauss, J.; Treat, C. C.; Turetsky, M. R.

    2015-12-01

    We present an approach to estimate the feedback from large-scale thawing of permafrost soils using a simplified, data-constrained model that combines three elements: soil carbon (C) maps and profiles to identify the distribution and type of C in permafrost soils; incubation experiments to quantify the rates of C lost after thaw; and models of soil thermal dynamics in response to climate warming. We call the approach the Permafrost Carbon Network Incubation-Panarctic Thermal scaling approach (PInc-PanTher). The approach assumes that C stocks do not decompose at all when frozen, but once thawed follow set decomposition trajectories as a function of soil temperature. The trajectories are determined according to a 3-pool decomposition model fitted to incubation data using parameters specific to soil horizon types. We calculate litterfall C inputs required to maintain steady-state C balance for the current climate, and hold those inputs constant. Soil temperatures are taken from the soil thermal modules of ecosystem model simulations forced by a common set of future climate change anomalies under two warming scenarios over the period 2010 to 2100.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiao, Heng; Gustafson, William I.; Wang, Hailong

    Subgrid-scale interactions between turbulence and radiation are potentially important for accurately reproducing marine low clouds in climate models. To better understand the impact of these interactions, the Weather Research and Forecasting (WRF) model is configured for large eddy simulation (LES) to study the stratocumulus-to-trade cumulus (Sc-to-Cu) transition. Using the GEWEX Atmospheric System Studies (GASS) composite Lagrangian transition case and the Atlantic Trade Wind Experiment (ATEX) case, it is shown that the lack of subgrid-scale turbulence-radiation interaction, as is the case in current generation climate models, accelerates the Sc-to-Cu transition. Our analysis suggests that in cloud-topped boundary layers subgrid-scale turbulence-radiation interactionsmore » contribute to stronger production of temperature variance, which in turn leads to stronger buoyancy production of turbulent kinetic energy and helps to maintain the Sc cover.« less

  19. Hydrologic drivers of tree biodiversity: The impact of climate change (Invited)

    NASA Astrophysics Data System (ADS)

    Rodriguez-Iturbe, I.; Konar, M.; Muneepeerakul, R.; Azaele, S.; Bertuzzo, E.; Rinaldo, A.

    2009-12-01

    Biodiversity of forests is of major importance for society. The possible impact of climate change on the characteristics of tree diversity is a topic of crucial importance with relevant implications for conservation campaigns and resource management. Here we present the main results of the expected biodiversity changes in the Mississippi-Missouri River Basin (MMRS) and two of its subregions under different scenarios of possible climate change. A mechanistic neutral metapopulation model is developed to study the main drivers of large scale biodiversity signatures in the MMRS system. The region is divided into 824 Direct Tributary Areas (DTAs), each one characterized by its own habitat capacity. Data for the spatial occurrence of the 231 species present in the system is taken from the US Forest Service Inventory and Analysis Database. The model has permeable boundaries to account for immigration from the regions surrounding the MMRS. The model accounts for key aspects of ecological dynamics (e.g., birth, death, speciation, and migration) and is fundamentally driven by the mean annual precipitation characteristic of each of the DTAs in the system. It is found that such a simple model, with only four parameters, yields an excellent representation of the observed local species richness (LSR), between-community (β) diversity, and species rank-occupancy function. The mean annual rainfall of each DTA is then changed according to the climate scenarios and new habitat capacities are thus obtained throughout the MMRS and its subregions. The resulting large-scale biodiversity signatures are computed and compared with those of the present scenario, showing that there are very important changes arising from the climate change conditions. For the dry scenarios, it is shown that there is a considerable decrease of species richness, both at local and regional scales, and a contraction of species' geographic ranges. These findings link the hydrologic and ecological dynamics of the MMRS under climate change conditions and are important for a comprehensive evaluation of the climate change impacts over the United States.

  20. Do GCM's Predict the Climate.... Or the Low Frequency Weather?

    NASA Astrophysics Data System (ADS)

    Lovejoy, S.; Varon, D.; Schertzer, D. J.

    2011-12-01

    Over twenty-five years ago, a three-regime scaling model was proposed describing the statistical variability of the atmosphere over time scales ranging from weather scales out to ≈ 100 kyrs. Using modern in situ data reanalyses, monthly surface series (at 5ox5o), 8 "multiproxy" (yearly) series of the Northern hemisphere from 1500- 1980, and GRIP and Vostok paleotemperatures at 5.2 and ≈ 100 year resolutions (over the past 91-420 kyrs), we refine the model and show how it can be understood with the help of new developments in nonlinear dynamics, especially multifractals and cascades. In a scaling range, mean fluctuations in state variables such as temperature ΔT ≈ ΔtH the where Δt is the duration. At small (weather) scales the fluctuation exponents are generally H>0; they grow with scale. At longer scales Δt >τw (≈ 10 days) they change sign, the fluctuations decrease with scale; this is the low variability, "low frequency weather" regime the spectrum is a relatively flat "plateau", it's variability is that of the usual idea of "long term weather statistics". Finally for longer times, Δt>τc ≈ 10 - 100 years, again H>0, the variability again increases with scale. This is the true climate regime. These scaling regimes allow us to objectively define the weather as fluctuations over periods <τw, "climate states", as fluctuations at scale τc and "climate change" as the fluctuations at longer periods >τc). We show that the intermediate regime is the result of the weather regime undergoing a "dimensional transition": at temporal scales longer than the typical lifetime of planetary structures (τw), the spatial degrees of freedom are rapidly quenched, only the temporal degrees of freedom are important. This low frequency weather regime has statistical properties well reproduced not only by weather cascade models, but also by control runs (i.e. without climate forcing) of GCM's (including IPSL and ECHAM GCM's). In order for GCM's to go beyond simply predicting this low frequency weather so as to predict the climate, they need appropriate climate forcings and/ or new internal mechanisms of variability. We examine this using wavelet analyses of forced and unforced GCM outputs, including the ECHO-G simulation used in the Millenium project. For example, we find that climate scenarios with large CO2 increases do give rise to a climate regime but that Hc>1 i.e. much larger than that of natural variability which for temperatures has Hc≈0.4. In comparison, the (largely volcanic) forcing of the ECHO-G Millenium simulation is fairly realistic (Hc≈0.4), although it is not clear that this mechanism can explain the even lower frequency variability found in the paleotemperature series, nor is it clear that this is compatible with low frequency solar or orbital forcings.

  1. Solar influence on climate during the past millennium: Results from transient simulations with the NCAR Climate System Model

    PubMed Central

    Ammann, Caspar M.; Joos, Fortunat; Schimel, David S.; Otto-Bliesner, Bette L.; Tomas, Robert A.

    2007-01-01

    The potential role of solar variations in modulating recent climate has been debated for many decades and recent papers suggest that solar forcing may be less than previously believed. Because solar variability before the satellite period must be scaled from proxy data, large uncertainty exists about phase and magnitude of the forcing. We used a coupled climate system model to determine whether proxy-based irradiance series are capable of inducing climatic variations that resemble variations found in climate reconstructions, and if part of the previously estimated large range of past solar irradiance changes could be excluded. Transient simulations, covering the published range of solar irradiance estimates, were integrated from 850 AD to the present. Solar forcing as well as volcanic and anthropogenic forcing are detectable in the model results despite internal variability. The resulting climates are generally consistent with temperature reconstructions. Smaller, rather than larger, long-term trends in solar irradiance appear more plausible and produced modeled climates in better agreement with the range of Northern Hemisphere temperature proxy records both with respect to phase and magnitude. Despite the direct response of the model to solar forcing, even large solar irradiance change combined with realistic volcanic forcing over past centuries could not explain the late 20th century warming without inclusion of greenhouse gas forcing. Although solar and volcanic effects appear to dominate most of the slow climate variations within the past thousand years, the impacts of greenhouse gases have dominated since the second half of the last century. PMID:17360418

  2. Parameterizing atmosphere-land surface exchange for climate models with satellite data: A case study for the Southern Great Plains CART site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, W.

    High-resolution satellite data provide detailed, quantitative descriptions of land surface characteristics over large areas so that objective scale linkage becomes feasible. With the aid of satellite data, Sellers et al. and Wood and Lakshmi examined the linearity of processes scaled up from 30 m to 15 km. If the phenomenon is scale invariant, then the aggregated value of a function or flux is equivalent to the function computed from aggregated values of controlling variables. The linear relation may be realistic for limited land areas having no large surface contrasts to cause significant horizontal exchange. However, for areas with sharp surfacemore » contrasts, horizontal exchange and different dynamics in the atmospheric boundary may induce nonlinear interactions, such as at interfaces of land-water, forest-farm land, and irrigated crops-desert steppe. The linear approach, however, represents the simplest scenario, and is useful for developing an effective scheme for incorporating subgrid land surface processes into large-scale models. Our studies focus on coupling satellite data and ground measurements with a satellite-data-driven land surface model to parameterize surface fluxes for large-scale climate models. In this case study, we used surface spectral reflectance data from satellite remote sensing to characterize spatial and temporal changes in vegetation and associated surface parameters in an area of about 350 {times} 400 km covering the southern Great Plains (SGP) Cloud and Radiation Testbed (CART) site of the US Department of Energy`s Atmospheric Radiation Measurement (ARM) Program.« less

  3. The Spatial Scaling of Global Rainfall Extremes

    NASA Astrophysics Data System (ADS)

    Devineni, N.; Xi, C.; Lall, U.; Rahill-Marier, B.

    2013-12-01

    Floods associated with severe storms are a significant source of risk for property, life and supply chains. These property losses tend to be determined as much by the duration of flooding as by the depth and velocity of inundation. High duration floods are typically induced by persistent rainfall (upto 30 day duration) as seen recently in Thailand, Pakistan, the Ohio and the Mississippi Rivers, France, and Germany. Events related to persistent and recurrent rainfall appear to correspond to the persistence of specific global climate patterns that may be identifiable from global, historical data fields, and also from climate models that project future conditions. A clear understanding of the space-time rainfall patterns for events or for a season will enable in assessing the spatial distribution of areas likely to have a high/low inundation potential for each type of rainfall forcing. In this paper, we investigate the statistical properties of the spatial manifestation of the rainfall exceedances. We also investigate the connection of persistent rainfall events at different latitudinal bands to large-scale climate phenomena such as ENSO. Finally, we present the scaling phenomena of contiguous flooded areas as a result of large scale organization of long duration rainfall events. This can be used for spatially distributed flood risk assessment conditional on a particular rainfall scenario. Statistical models for spatio-temporal loss simulation including model uncertainty to support regional and portfolio analysis can be developed.

  4. Climate Process Team "Representing calving and iceberg dynamics in global climate models"

    NASA Astrophysics Data System (ADS)

    Sergienko, O. V.; Adcroft, A.; Amundson, J. M.; Bassis, J. N.; Hallberg, R.; Pollard, D.; Stearns, L. A.; Stern, A. A.

    2016-12-01

    Iceberg calving accounts for approximately 50% of the ice mass loss from the Greenland and Antarctic ice sheets. By changing a glacier's geometry, calving can also significantly perturb the glacier's stress-regime far upstream of the grounding line. This process can enhance discharge of ice across the grounding line. Once calved, icebergs drift into the open ocean where they melt, injecting freshwater to the ocean and affecting the large-scale ocean circulation. The spatial redistribution of the freshwater flux have strong impact on sea-ice formation and its spatial variability. A Climate Process Team "Representing calving and iceberg dynamics in global climate models" was established in the fall 2014. The major objectives of the CPT are: (1) develop parameterizations of calving processes that are suitable for continental-scale ice-sheet models that simulate the evolution of the Antarctic and Greenland ice sheets; (2) compile the data sets of the glaciological and oceanographic observations that are necessary to test, validate and constrain the developed parameterizations and models; (3) develop a physically based iceberg component for inclusion in the large-scale ocean circulation model. Several calving parameterizations based suitable for various glaciological settings have been developed and implemented in a continental-scale ice sheet model. Simulations of the present-day Antarctic and Greenland ice sheets show that the ice-sheet geometric configurations (thickness and extent) are sensitive to the calving process. In order to guide the development as well as to test calving parameterizations, available observations (of various kinds) have been compiled and organized into a database. Monthly estimates of iceberg distribution around the coast of Greenland have been produced with a goal of constructing iceberg size distribution and probability functions for iceberg occurrence in particular regions. A physically based iceberg model component was used in a GFDL global climate model. The simulation results show that the Antarctic iceberg calving-size distribution affects iceberg trajectories, determines where iceberg meltwater enters the ocean and the increased ice-berg freshwater transport leads to increased sea-ice growth around much of the East Antarctic coastline.

  5. Regional reanalysis without local data: Exploiting the downscaling paradigm

    NASA Astrophysics Data System (ADS)

    von Storch, Hans; Feser, Frauke; Geyer, Beate; Klehmet, Katharina; Li, Delei; Rockel, Burkhardt; Schubert-Frisius, Martina; Tim, Nele; Zorita, Eduardo

    2017-08-01

    This paper demonstrates two important aspects of regional dynamical downscaling of multidecadal atmospheric reanalysis. First, that in this way skillful regional descriptions of multidecadal climate variability may be constructed in regions with little or no local data. Second, that the concept of large-scale constraining allows global downscaling, so that global reanalyses may be completed by additions of consistent detail in all regions of the world. Global reanalyses suffer from inhomogeneities. However, their large-scale componenst are mostly homogeneous; Therefore, the concept of downscaling may be applied to homogeneously complement the large-scale state of the reanalyses with regional detail—wherever the condition of homogeneity of the description of large scales is fulfilled. Technically, this can be done by dynamical downscaling using a regional or global climate model, which's large scales are constrained by spectral nudging. This approach has been developed and tested for the region of Europe, and a skillful representation of regional weather risks—in particular marine risks—was identified. We have run this system in regions with reduced or absent local data coverage, such as Central Siberia, the Bohai and Yellow Sea, Southwestern Africa, and the South Atlantic. Also, a global simulation was computed, which adds regional features to prescribed global dynamics. Our cases demonstrate that spatially detailed reconstructions of the climate state and its change in the recent three to six decades add useful supplementary information to existing observational data for midlatitude and subtropical regions of the world.

  6. Biological communities in San Francisco Bay track large-scale climate forcing over the North Pacific

    NASA Astrophysics Data System (ADS)

    Cloern, James E.; Hieb, Kathryn A.; Jacobson, Teresa; Sansó, Bruno; Di Lorenzo, Emanuele; Stacey, Mark T.; Largier, John L.; Meiring, Wendy; Peterson, William T.; Powell, Thomas M.; Winder, Monika; Jassby, Alan D.

    2010-11-01

    Long-term observations show that fish and plankton populations in the ocean fluctuate in synchrony with large-scale climate patterns, but similar evidence is lacking for estuaries because of shorter observational records. Marine fish and invertebrates have been sampled in San Francisco Bay since 1980 and exhibit large, unexplained population changes including record-high abundances of common species after 1999. Our analysis shows that populations of demersal fish, crabs and shrimp covary with the Pacific Decadal Oscillation (PDO) and North Pacific Gyre Oscillation (NPGO), both of which reversed signs in 1999. A time series model forced by the atmospheric driver of NPGO accounts for two-thirds of the variability in the first principal component of species abundances, and generalized linear models forced by PDO and NPGO account for most of the annual variability of individual species. We infer that synchronous shifts in climate patterns and community variability in San Francisco Bay are related to changes in oceanic wind forcing that modify coastal currents, upwelling intensity, surface temperature, and their influence on recruitment of marine species that utilize estuaries as nursery habitat. Ecological forecasts of estuarine responses to climate change must therefore consider how altered patterns of atmospheric forcing across ocean basins influence coastal oceanography as well as watershed hydrology.

  7. Spatio-temporal trends in crop damage inform recent climate-mediated expansion of a large boreal herbivore into an agro-ecosystem.

    PubMed

    Laforge, Michel P; Michel, Nicole L; Brook, Ryan K

    2017-11-09

    Large-scale climatic fluctuations have caused species range shifts. Moose (Alces alces) have expanded their range southward into agricultural areas previously not considered moose habitat. We found that moose expansion into agro-ecosystems is mediated by broad-scale climatic factors and access to high-quality forage (i.e., crops). We used crop damage records to quantify moose presence across the Canadian Prairies. We regressed latitude of crop damage against North Atlantic Oscillation (NAO) and crop area to test the hypotheses that NAO-mediated wetland recharge and occurrence of more nutritious crop types would result in more frequent occurrences of crop damage by moose at southerly latitudes. We examined local-scale land use by generating a habitat selection model to test our hypothesis that moose selected for areas of high crop cover in agro-ecosystems. We found that crop damage by moose occurred farther south during dry winters and in years with greater coverage of oilseeds. The results of our analyses support our hypothesis that moose movement into cropland is mediated by high-protein crops, but not by thermoregulatory habitat at the scale examined. We conclude that broad-scale climate combined with changing land-use regimes are causal factors in species' range shifts and are important considerations when studying changing animal distributions.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jakob, Christian

    This report summarises an investigation into the relationship of tropical thunderstorms to the atmospheric conditions they are embedded in. The study is based on the use of radar observations at the Atmospheric Radiation Measurement site in Darwin run under the auspices of the DOE Atmospheric Systems Research program. Linking the larger scales of the atmosphere with the smaller scales of thunderstorms is crucial for the development of the representation of thunderstorms in weather and climate models, which is carried out by a process termed parametrisation. Through the analysis of radar and wind profiler observations the project made several fundamental discoveriesmore » about tropical storms and quantified the relationship of the occurrence and intensity of these storms to the large-scale atmosphere. We were able to show that the rainfall averaged over an area the size of a typical climate model grid-box is largely controlled by the number of storms in the area, and less so by the storm intensity. This allows us to completely rethink the way we represent such storms in climate models. We also found that storms occur in three distinct categories based on their depth and that the transition between these categories is strongly related to the larger scale dynamical features of the atmosphere more so than its thermodynamic state. Finally, we used our observational findings to test and refine a new approach to cumulus parametrisation which relies on the stochastic modelling of the area covered by different convective cloud types.« less

  9. Patterns of soil community structure differ by scale and ecosystem type along a large-scale precipitation gradient

    USDA-ARS?s Scientific Manuscript database

    Climate models predict increased variability in precipitation regimes, which will likely increase frequency/duration of drought. Reductions in soil moisture affect physical and chemical characteristics of the soil habitat and can influence soil organisms such as mites and nematodes. These organisms ...

  10. Supporting observation campaigns with high resolution modeling

    NASA Astrophysics Data System (ADS)

    Klocke, Daniel; Brueck, Matthias; Voigt, Aiko

    2017-04-01

    High resolution simulation in support of measurement campaigns offers a promising and emerging way to create large-scale context for small-scale observations of clouds and precipitation processes. As these simulation include the coupling of measured small-scale processes with the circulation, they also help to integrate the research communities from modeling and observations and allow for detailed model evaluations against dedicated observations. In connection with the measurement campaign NARVAL (August 2016 and December 2013) simulations with a grid-spacing of 2.5 km for the tropical Atlantic region (9000x3300 km), with local refinement to 1.2 km for the western part of the domain, were performed using the icosahedral non-hydrostatic (ICON) general circulation model. These simulations are again used to drive large eddy resolving simulations with the same model for selected days in the high definition clouds and precipitation for advancing climate prediction (HD(CP)2) project. The simulations are presented with the focus on selected results showing the benefit for the scientific communities doing atmospheric measurements and numerical modeling of climate and weather. Additionally, an outlook will be given on how similar simulations will support the NAWDEX measurement campaign in the North Atlantic and AC3 measurement campaign in the Arctic.

  11. Impact of lateral boundary conditions on regional analyses

    NASA Astrophysics Data System (ADS)

    Chikhar, Kamel; Gauthier, Pierre

    2017-04-01

    Regional and global climate models are usually validated by comparison to derived observations or reanalyses. Using a model in data assimilation results in a direct comparison to observations to produce its own analyses that may reveal systematic errors. In this study, regional analyses over North America are produced based on the fifth-generation Canadian Regional Climate Model (CRCM5) combined with the variational data assimilation system of the Meteorological Service of Canada (MSC). CRCM5 is driven at its boundaries by global analyses from ERA-interim or produced with the global configuration of the CRCM5. Assimilation cycles for the months of January and July 2011 revealed systematic errors in winter through large values in the mean analysis increments. This bias is attributed to the coupling of the lateral boundary conditions of the regional model with the driving data particularly over the northern boundary where a rapidly changing large scale circulation created significant cross-boundary flows. Increasing the time frequency of the lateral driving and applying a large-scale spectral nudging improved significantly the circulation through the lateral boundaries which translated in a much better agreement with observations.

  12. A Field Guide to Extra-Tropical Cyclones: Comparing Models to Observations

    NASA Astrophysics Data System (ADS)

    Bauer, M.

    2008-12-01

    Climate it is said is the accumulation of weather. And weather is not the concern of climate models. Justification for this latter sentiment has long hidden behind coarse model resolutions and blunt validation tools based on climatological maps and the like. The spatial-temporal resolutions of today's models and observations are converging onto meteorological scales however, which means that with the correct tools we can test the largely unproven assumption that climate model weather is correct enough, or at least lacks perverting biases, such that its accumulation does in fact result in a robust climate prediction. Towards this effort we introduce a new tool for extracting detailed cyclone statistics from climate model output. These include the usual cyclone distribution statistics (maps, histograms), but also adaptive cyclone- centric composites. We have also created a complementary dataset, The MAP Climatology of Mid-latitude Storminess (MCMS), which provides a detailed 6 hourly assessment of the areas under the influence of mid- latitude cyclones based on Reanalysis products. Using this we then extract complimentary composites from sources such as ISCCP and GPCP to create a large comparative dataset for climate model validation. A demonstration of the potential usefulness of these tools will be shown. dime.giss.nasa.gov/mcms/mcms.html

  13. Downscaling GCM Output with Genetic Programming Model

    NASA Astrophysics Data System (ADS)

    Shi, X.; Dibike, Y. B.; Coulibaly, P.

    2004-05-01

    Climate change impact studies on watershed hydrology require reliable data at appropriate spatial and temporal resolution. However, the outputs of the current global climate models (GCMs) cannot be used directly because GCM do not provide hourly or daily precipitation and temperature reliable enough for hydrological modeling. Nevertheless, we can get more reliable data corresponding to future climate scenarios derived from GCM outputs using the so called 'downscaling techniques'. This study applies Genetic Programming (GP) based technique to downscale daily precipitation and temperature values at the Chute-du-Diable basin of the Saguenay watershed in Canada. In applying GP downscaling technique, the objective is to find a relationship between the large-scale predictor variables (NCEP data which provide daily information concerning the observed large-scale state of the atmosphere) and the predictand (meteorological data which describes conditions at the site scale). The selection of the most relevant predictor variables is achieved using the Pearson's coefficient of determination ( R2) (between the large-scale predictor variables and the daily meteorological data). In this case, the period (1961 - 2000) is identified to represent the current climate condition. For the forty years of data, the first 30 years (1961-1990) are considered for calibrating the models while the remaining ten years of data (1991-2000) are used to validate those models. In general, the R2 between the predictor variables and each predictand is very low in case of precipitation compared to that of maximum and minimum temperature. Moreover, the strength of individual predictors varies for every month and for each GP grammar. Therefore, the most appropriate combination of predictors has to be chosen by looking at the output analysis of all the twelve months and the different GP grammars. During the calibration of the GP model for precipitation downscaling, in addition to the mean daily precipitation and daily precipitation variability for each month, monthly average dry and wet-spell lengths are also considered as performance criteria. For the cases of Tmax and Tmin, means and variances of these variables corresponding to each month were considered as performance criteria. The GP downscaling results show satisfactory agreement between the observed daily temperature (Tmax and Tmin) and the simulated temperature. However, the downscaling results for the daily precipitation still require some improvement - suggesting further investigation of other grammars. KEY WORDS: Climate change; GP downscaling; GCM.

  14. Can Regional Climate Models be used in the assessment of vulnerability and risk caused by extreme events?

    NASA Astrophysics Data System (ADS)

    Nunes, Ana

    2015-04-01

    Extreme meteorological events played an important role in catastrophic occurrences observed in the past over densely populated areas in Brazil. This motived the proposal of an integrated system for analysis and assessment of vulnerability and risk caused by extreme events in urban areas that are particularly affected by complex topography. That requires a multi-scale approach, which is centered on a regional modeling system, consisting of a regional (spectral) climate model coupled to a land-surface scheme. This regional modeling system employs a boundary forcing method based on scale-selective bias correction and assimilation of satellite-based precipitation estimates. Scale-selective bias correction is a method similar to the spectral nudging technique for dynamical downscaling that allows internal modes to develop in agreement with the large-scale features, while the precipitation assimilation procedure improves the modeled deep-convection and drives the land-surface scheme variables. Here, the scale-selective bias correction acts only on the rotational part of the wind field, letting the precipitation assimilation procedure to correct moisture convergence, in order to reconstruct South American current climate within the South American Hydroclimate Reconstruction Project. The hydroclimate reconstruction outputs might eventually produce improved initial conditions for high-resolution numerical integrations in metropolitan regions, generating more reliable short-term precipitation predictions, and providing accurate hidrometeorological variables to higher resolution geomorphological models. Better representation of deep-convection from intermediate scales is relevant when the resolution of the regional modeling system is refined by any method to meet the scale of geomorphological dynamic models of stability and mass movement, assisting in the assessment of risk areas and estimation of terrain stability over complex topography. The reconstruction of past extreme events also helps the development of a system for decision-making, regarding natural and social disasters, and reducing impacts. Numerical experiments using this regional modeling system successfully modeled severe weather events in Brazil. Comparisons with the NCEP Climate Forecast System Reanalysis outputs were made at resolutions of about 40- and 25-km of the regional climate model.

  15. Coincident scales of forest feedback on climate and conservation in a diversity hot spot

    PubMed Central

    Webb, Thomas J; Gaston, Kevin J; Hannah, Lee; Ian Woodward, F

    2005-01-01

    The dynamic relationship between vegetation and climate is now widely acknowledged. Climate influences the distribution of vegetation; and through a number of feedback mechanisms vegetation affects climate. This implies that land-use changes such as deforestation will have climatic consequences. However, the spatial scales at which such feedbacks occur remain largely unknown. Here, we use a large database of precipitation and tree cover records for an area of the biodiversity-rich Atlantic forest region in south eastern Brazil to investigate the forest–rainfall feedback at a range of spatial scales from ca 101–104 km2. We show that the strength of the feedback increases up to scales of at least 103 km2, with the climate at a particular locality influenced by the pattern of landcover extending over a large area. Thus, smaller forest fragments, even if well protected, may suffer degradation due to the climate responding to land-use change in the surrounding area. Atlantic forest vertebrate taxa also require large areas of forest to support viable populations. Areas of forest of ca 103 km2 would be large enough to support such populations at the same time as minimizing the risk of climatic feedbacks resulting from deforestation. PMID:16608697

  16. Coincident scales of forest feedback on climate and conservation in a diversity hot spot.

    PubMed

    Webb, Thomas J; Gaston, Kevin J; Hannah, Lee; Ian Woodward, F

    2006-03-22

    The dynamic relationship between vegetation and climate is now widely acknowledged. Climate influences the distribution of vegetation; and through a number of feedback mechanisms vegetation affects climate. This implies that land-use changes such as deforestation will have climatic consequences. However, the spatial scales at which such feedbacks occur remain largely unknown. Here, we use a large database of precipitation and tree cover records for an area of the biodiversity-rich Atlantic forest region in south eastern Brazil to investigate the forest-rainfall feedback at a range of spatial scales from ca 10(1)-10(4) km2. We show that the strength of the feedback increases up to scales of at least 10(3) km2, with the climate at a particular locality influenced by the pattern of landcover extending over a large area. Thus, smaller forest fragments, even if well protected, may suffer degradation due to the climate responding to land-use change in the surrounding area. Atlantic forest vertebrate taxa also require large areas of forest to support viable populations. Areas of forest of ca 10(3) km2 would be large enough to support such populations at the same time as minimizing the risk of climatic feedbacks resulting from deforestation.

  17. Projected future vegetation changes for the northwest United States and southwest Canada at a fine spatial resolution using a dynamic global vegetation model.

    USGS Publications Warehouse

    Shafer, Sarah; Bartlein, Patrick J.; Gray, Elizabeth M.; Pelltier, Richard T.

    2015-01-01

    Future climate change may significantly alter the distributions of many plant taxa. The effects of climate change may be particularly large in mountainous regions where climate can vary significantly with elevation. Understanding potential future vegetation changes in these regions requires methods that can resolve vegetation responses to climate change at fine spatial resolutions. We used LPJ, a dynamic global vegetation model, to assess potential future vegetation changes for a large topographically complex area of the northwest United States and southwest Canada (38.0–58.0°N latitude by 136.6–103.0°W longitude). LPJ is a process-based vegetation model that mechanistically simulates the effect of changing climate and atmospheric CO2 concentrations on vegetation. It was developed and has been mostly applied at spatial resolutions of 10-minutes or coarser. In this study, we used LPJ at a 30-second (~1-km) spatial resolution to simulate potential vegetation changes for 2070–2099. LPJ was run using downscaled future climate simulations from five coupled atmosphere-ocean general circulation models (CCSM3, CGCM3.1(T47), GISS-ER, MIROC3.2(medres), UKMO-HadCM3) produced using the A2 greenhouse gases emissions scenario. Under projected future climate and atmospheric CO2 concentrations, the simulated vegetation changes result in the contraction of alpine, shrub-steppe, and xeric shrub vegetation across the study area and the expansion of woodland and forest vegetation. Large areas of maritime cool forest and cold forest are simulated to persist under projected future conditions. The fine spatial-scale vegetation simulations resolve patterns of vegetation change that are not visible at coarser resolutions and these fine-scale patterns are particularly important for understanding potential future vegetation changes in topographically complex areas.

  18. Projected Future Vegetation Changes for the Northwest United States and Southwest Canada at a Fine Spatial Resolution Using a Dynamic Global Vegetation Model

    PubMed Central

    Shafer, Sarah L.; Bartlein, Patrick J.; Gray, Elizabeth M.; Pelltier, Richard T.

    2015-01-01

    Future climate change may significantly alter the distributions of many plant taxa. The effects of climate change may be particularly large in mountainous regions where climate can vary significantly with elevation. Understanding potential future vegetation changes in these regions requires methods that can resolve vegetation responses to climate change at fine spatial resolutions. We used LPJ, a dynamic global vegetation model, to assess potential future vegetation changes for a large topographically complex area of the northwest United States and southwest Canada (38.0–58.0°N latitude by 136.6–103.0°W longitude). LPJ is a process-based vegetation model that mechanistically simulates the effect of changing climate and atmospheric CO2 concentrations on vegetation. It was developed and has been mostly applied at spatial resolutions of 10-minutes or coarser. In this study, we used LPJ at a 30-second (~1-km) spatial resolution to simulate potential vegetation changes for 2070–2099. LPJ was run using downscaled future climate simulations from five coupled atmosphere-ocean general circulation models (CCSM3, CGCM3.1(T47), GISS-ER, MIROC3.2(medres), UKMO-HadCM3) produced using the A2 greenhouse gases emissions scenario. Under projected future climate and atmospheric CO2 concentrations, the simulated vegetation changes result in the contraction of alpine, shrub-steppe, and xeric shrub vegetation across the study area and the expansion of woodland and forest vegetation. Large areas of maritime cool forest and cold forest are simulated to persist under projected future conditions. The fine spatial-scale vegetation simulations resolve patterns of vegetation change that are not visible at coarser resolutions and these fine-scale patterns are particularly important for understanding potential future vegetation changes in topographically complex areas. PMID:26488750

  19. Changes in Landscape-level Carbon Balance of an Arctic Coastal Plain Tundra Ecosystem Between 1970-2100, in Response to Projected Climate Change

    NASA Astrophysics Data System (ADS)

    Lara, M. J.; McGuire, A. D.; Euskirchen, E. S.; Genet, H.; Sloan, V. L.; Iversen, C. M.; Norby, R. J.; Zhang, Y.; Yuan, F.

    2014-12-01

    Northern permafrost regions are estimated to cover 16% of the global soil area and account for approximately 50% of the global belowground organic carbon pool. However, there are considerable uncertainties regarding the fate of this soil carbon pool with projected climate warming over the next century. In northern Alaska, nearly 65% of the terrestrial surface is composed of polygonal tundra, where geomorphic land cover types such as high-, flat-, and low-center polygons influence local surface hydrology, plant community composition, nutrient and biogeochemical cycling, over small spatial scales. Due to the lack of representation of these fine-scale geomorphic types and ecosystem processes, in large-scale terrestrial ecosystem models, future uncertainties are large for this tundra region. In this study, we use a new version of the terrestrial ecosystem model (TEM), that couples a dynamic vegetation model (in which plant functional types compete for water, nitrogen, and light) with a dynamic soil organic model (in which temperature, moisture, and associated organic/inorganic carbon and nitrogen pools/fluxes vary together in vertically resolved layers) to simulate ecosystem carbon balance. We parameterized and calibrated this model using data specific to the local climate, vegetation, and soil associated with tundra geomorphic types. We extrapolate model results at a 1km2 resolution across the ~1800 km2 Barrow Peninsula using a tundra geomorphology map, describing ten dominant geomorphic tundra types (Lara et al. submitted), to estimate the likely change in landscape-level carbon balance between 1970 and 2100 in response to projected climate change. Preliminary model runs for this region indicated temporal variability in carbon and active layer dynamics, specific to tundra geomorphic type over time. Overall, results suggest that it is important to consider small-scale discrete polygonal tundra geomorphic types that control local structure and function in regional estimates of carbon balance in northern Alaska.

  20. Estimates of the long-term U.S. economic impacts of global climate change-induced drought.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ehlen, Mark Andrew; Loose, Verne W.; Warren, Drake E.

    2010-01-01

    While climate-change models have done a reasonable job of forecasting changes in global climate conditions over the past decades, recent data indicate that actual climate change may be much more severe. To better understand some of the potential economic impacts of these severe climate changes, Sandia economists estimated the impacts to the U.S. economy of climate change-induced impacts to U.S. precipitation over the 2010 to 2050 time period. The economists developed an impact methodology that converts changes in precipitation and water availability to changes in economic activity, and conducted simulations of economic impacts using a large-scale macroeconomic model of themore » U.S. economy.« less

  1. Modeling large-scale human alteration of land surface hydrology and climate

    NASA Astrophysics Data System (ADS)

    Pokhrel, Yadu N.; Felfelani, Farshid; Shin, Sanghoon; Yamada, Tomohito J.; Satoh, Yusuke

    2017-12-01

    Rapidly expanding human activities have profoundly affected various biophysical and biogeochemical processes of the Earth system over a broad range of scales, and freshwater systems are now amongst the most extensively altered ecosystems. In this study, we examine the human-induced changes in land surface water and energy balances and the associated climate impacts using a coupled hydrological-climate model framework which also simulates the impacts of human activities on the water cycle. We present three sets of analyses using the results from two model versions—one with and the other without considering human activities; both versions are run in offline and coupled mode resulting in a series of four experiments in total. First, we examine climate and human-induced changes in regional water balance focusing on the widely debated issue of the desiccation of the Aral Sea in central Asia. Then, we discuss the changes in surface temperature as a result of changes in land surface energy balance due to irrigation over global and regional scales. Finally, we examine the global and regional climate impacts of increased atmospheric water vapor content due to irrigation. Results indicate that the direct anthropogenic alteration of river flow in the Aral Sea basin resulted in the loss of 510 km3 of water during the latter half of the twentieth century which explains about half of the total loss of water from the sea. Results of irrigation-induced changes in surface energy balance suggest a significant surface cooling of up to 3.3 K over 1° grids in highly irrigated areas but a negligible change in land surface temperature when averaged over sufficiently large global regions. Results from the coupled model indicate a substantial change in 2 m air temperature and outgoing longwave radiation due to irrigation, highlighting the non-local (regional and global) implications of irrigation. These results provide important insights on the direct human alteration of land surface water and energy balances, highlighting the need to incorporate human activities such as irrigation into the framework of global climate models and Earth system models for better prediction of future changes under increasing human influence and continuing global climate change.

  2. Rainfall Downscaling Conditional on Upper-air Atmospheric Predictors: Improved Assessment of Rainfall Statistics in a Changing Climate

    NASA Astrophysics Data System (ADS)

    Langousis, Andreas; Mamalakis, Antonis; Deidda, Roberto; Marrocu, Marino

    2015-04-01

    To improve the level skill of Global Climate Models (GCMs) and Regional Climate Models (RCMs) in reproducing the statistics of rainfall at a basin level and at hydrologically relevant temporal scales (e.g. daily), two types of statistical approaches have been suggested. One is the statistical correction of climate model rainfall outputs using historical series of precipitation. The other is the use of stochastic models of rainfall to conditionally simulate precipitation series, based on large-scale atmospheric predictors produced by climate models (e.g. geopotential height, relative vorticity, divergence, mean sea level pressure). The latter approach, usually referred to as statistical rainfall downscaling, aims at reproducing the statistical character of rainfall, while accounting for the effects of large-scale atmospheric circulation (and, therefore, climate forcing) on rainfall statistics. While promising, statistical rainfall downscaling has not attracted much attention in recent years, since the suggested approaches involved complex (i.e. subjective or computationally intense) identification procedures of the local weather, in addition to demonstrating limited success in reproducing several statistical features of rainfall, such as seasonal variations, the distributions of dry and wet spell lengths, the distribution of the mean rainfall intensity inside wet periods, and the distribution of rainfall extremes. In an effort to remedy those shortcomings, Langousis and Kaleris (2014) developed a statistical framework for simulation of daily rainfall intensities conditional on upper air variables, which accurately reproduces the statistical character of rainfall at multiple time-scales. Here, we study the relative performance of: a) quantile-quantile (Q-Q) correction of climate model rainfall products, and b) the statistical downscaling scheme of Langousis and Kaleris (2014), in reproducing the statistical structure of rainfall, as well as rainfall extremes, at a regional level. This is done for an intermediate-sized catchment in Italy, i.e. the Flumendosa catchment, using climate model rainfall and atmospheric data from the ENSEMBLES project (http://ensembleseu.metoffice.com). In doing so, we split the historical rainfall record of mean areal precipitation (MAP) in 15-year calibration and 45-year validation periods, and compare the historical rainfall statistics to those obtained from: a) Q-Q corrected climate model rainfall products, and b) synthetic rainfall series generated by the suggested downscaling scheme. To our knowledge, this is the first time that climate model rainfall and statistically downscaled precipitation are compared to catchment-averaged MAP at a daily resolution. The obtained results are promising, since the proposed downscaling scheme is more accurate and robust in reproducing a number of historical rainfall statistics, independent of the climate model used and the length of the calibration period. This is particularly the case for the yearly rainfall maxima, where direct statistical correction of climate model rainfall outputs shows increased sensitivity to the length of the calibration period and the climate model used. The robustness of the suggested downscaling scheme in modeling rainfall extremes at a daily resolution, is a notable feature that can effectively be used to assess hydrologic risk at a regional level under changing climatic conditions. Acknowledgments The research project is implemented within the framework of the Action «Supporting Postdoctoral Researchers» of the Operational Program "Education and Lifelong Learning" (Action's Beneficiary: General Secretariat for Research and Technology), and is co-financed by the European Social Fund (ESF) and the Greek State. CRS4 highly acknowledges the contribution of the Sardinian regional authorities.

  3. Toward GEOS-6, A Global Cloud System Resolving Atmospheric Model

    NASA Technical Reports Server (NTRS)

    Putman, William M.

    2010-01-01

    NASA is committed to observing and understanding the weather and climate of our home planet through the use of multi-scale modeling systems and space-based observations. Global climate models have evolved to take advantage of the influx of multi- and many-core computing technologies and the availability of large clusters of multi-core microprocessors. GEOS-6 is a next-generation cloud system resolving atmospheric model that will place NASA at the forefront of scientific exploration of our atmosphere and climate. Model simulations with GEOS-6 will produce a realistic representation of our atmosphere on the scale of typical satellite observations, bringing a visual comprehension of model results to a new level among the climate enthusiasts. In preparation for GEOS-6, the agency's flagship Earth System Modeling Framework [JDl] has been enhanced to support cutting-edge high-resolution global climate and weather simulations. Improvements include a cubed-sphere grid that exposes parallelism; a non-hydrostatic finite volume dynamical core, and algorithm designed for co-processor technologies, among others. GEOS-6 represents a fundamental advancement in the capability of global Earth system models. The ability to directly compare global simulations at the resolution of spaceborne satellite images will lead to algorithm improvements and better utilization of space-based observations within the GOES data assimilation system

  4. Plant trait-based models identify direct and indirect effects of climate change on bundles of grassland ecosystem services

    PubMed Central

    Lamarque, Pénélope; Lavorel, Sandra; Mouchet, Maud; Quétier, Fabien

    2014-01-01

    Land use and climate change are primary causes of changes in the supply of ecosystem services (ESs). Although the consequences of climate change on ecosystem properties and associated services are well documented, the cascading impacts of climate change on ESs through changes in land use are largely overlooked. We present a trait-based framework based on an empirical model to elucidate how climate change affects tradeoffs among ESs. Using alternative scenarios for mountain grasslands, we predicted how direct effects of climate change on ecosystems and indirect effects through farmers’ adaptations are likely to affect ES bundles through changes in plant functional properties. ES supply was overall more sensitive to climate than to induced management change, and ES bundles remained stable across scenarios. These responses largely reflected the restricted extent of management change in this constrained system, which was incorporated when scaling up plot level climate and management effects on ecosystem properties to the entire landscape. The trait-based approach revealed how the combination of common driving traits and common responses to changed fertility determined interactions and tradeoffs among ESs. PMID:25225382

  5. Plant trait-based models identify direct and indirect effects of climate change on bundles of grassland ecosystem services.

    PubMed

    Lamarque, Pénélope; Lavorel, Sandra; Mouchet, Maud; Quétier, Fabien

    2014-09-23

    Land use and climate change are primary causes of changes in the supply of ecosystem services (ESs). Although the consequences of climate change on ecosystem properties and associated services are well documented, the cascading impacts of climate change on ESs through changes in land use are largely overlooked. We present a trait-based framework based on an empirical model to elucidate how climate change affects tradeoffs among ESs. Using alternative scenarios for mountain grasslands, we predicted how direct effects of climate change on ecosystems and indirect effects through farmers' adaptations are likely to affect ES bundles through changes in plant functional properties. ES supply was overall more sensitive to climate than to induced management change, and ES bundles remained stable across scenarios. These responses largely reflected the restricted extent of management change in this constrained system, which was incorporated when scaling up plot level climate and management effects on ecosystem properties to the entire landscape. The trait-based approach revealed how the combination of common driving traits and common responses to changed fertility determined interactions and tradeoffs among ESs.

  6. Evolution of Precipitation Extremes in Three Large Ensembles of Climate Simulations - Impact of Spatial and Temporal Resolutions

    NASA Astrophysics Data System (ADS)

    Martel, J. L.; Brissette, F.; Mailhot, A.; Wood, R. R.; Ludwig, R.; Frigon, A.; Leduc, M.; Turcotte, R.

    2017-12-01

    Recent studies indicate that the frequency and intensity of extreme precipitation will increase in future climate due to global warming. In this study, we compare annual maxima precipitation series from three large ensembles of climate simulations at various spatial and temporal resolutions. The first two are at the global scale: the Canadian Earth System Model (CanESM2) 50-member large ensemble (CanESM2-LE) at a 2.8° resolution and the Community Earth System Model (CESM1) 40-member large ensemble (CESM1-LE) at a 1° resolution. The third ensemble is at the regional scale over both Eastern North America and Europe: the Canadian Regional Climate Model (CRCM5) 50-member large ensemble (CRCM5-LE) at a 0.11° resolution, driven at its boundaries by the CanESM-LE. The CRCM5-LE is a new ensemble issued from the ClimEx project (http://www.climex-project.org), a Québec-Bavaria collaboration. Using these three large ensembles, change in extreme precipitations over the historical (1980-2010) and future (2070-2100) periods are investigated. This results in 1 500 (30 years x 50 members for CanESM2-LE and CRCM5-LE) and 1200 (30 years x 40 members for CESM1-LE) simulated years over both the historical and future periods. Using these large datasets, the empirical daily (and sub-daily for CRCM5-LE) extreme precipitation quantiles for large return periods ranging from 2 to 100 years are computed. Results indicate that daily extreme precipitations generally will increase over most land grid points of both domains according to the three large ensembles. Regarding the CRCM5-LE, the increase in sub-daily extreme precipitations will be even more important than the one observed for daily extreme precipitations. Considering that many public infrastructures have lifespans exceeding 75 years, the increase in extremes has important implications on service levels of water infrastructures and public safety.

  7. Remarkable separability of circulation response to Arctic sea ice loss and greenhouse gas forcing

    NASA Astrophysics Data System (ADS)

    McCusker, K. E.; Kushner, P. J.; Fyfe, J. C.; Sigmond, M.; Kharin, V. V.; Bitz, C. M.

    2017-08-01

    Arctic sea ice loss may influence midlatitude climate by changing large-scale circulation. The extent to which climate change can be understood as greenhouse gas-induced changes that are modulated by this loss depends on how additive the responses to the separate influences are. A novel sea ice nudging methodology in a fully coupled climate model reveals that the separate effects of doubled atmospheric carbon dioxide (CO2) concentrations and associated Arctic sea ice loss are remarkably additive and insensitive to the mean climate state. This separability is evident in several fields throughout most of the year, from hemispheric to synoptic scales. The extent to which the regional response to sea ice loss sometimes agrees with and sometimes cancels the response to CO2 is quantified. The separability of the responses might provide a means to better interpret the diverse array of modeling and observational studies of Arctic change and influence.

  8. Combining super-ensembles and statistical emulation to improve a regional climate and vegetation model

    NASA Astrophysics Data System (ADS)

    Hawkins, L. R.; Rupp, D. E.; Li, S.; Sarah, S.; McNeall, D. J.; Mote, P.; Betts, R. A.; Wallom, D.

    2017-12-01

    Changing regional patterns of surface temperature, precipitation, and humidity may cause ecosystem-scale changes in vegetation, altering the distribution of trees, shrubs, and grasses. A changing vegetation distribution, in turn, alters the albedo, latent heat flux, and carbon exchanged with the atmosphere with resulting feedbacks onto the regional climate. However, a wide range of earth-system processes that affect the carbon, energy, and hydrologic cycles occur at sub grid scales in climate models and must be parameterized. The appropriate parameter values in such parameterizations are often poorly constrained, leading to uncertainty in predictions of how the ecosystem will respond to changes in forcing. To better understand the sensitivity of regional climate to parameter selection and to improve regional climate and vegetation simulations, we used a large perturbed physics ensemble and a suite of statistical emulators. We dynamically downscaled a super-ensemble (multiple parameter sets and multiple initial conditions) of global climate simulations using a 25-km resolution regional climate model HadRM3p with the land-surface scheme MOSES2 and dynamic vegetation module TRIFFID. We simultaneously perturbed land surface parameters relating to the exchange of carbon, water, and energy between the land surface and atmosphere in a large super-ensemble of regional climate simulations over the western US. Statistical emulation was used as a computationally cost-effective tool to explore uncertainties in interactions. Regions of parameter space that did not satisfy observational constraints were eliminated and an ensemble of parameter sets that reduce regional biases and span a range of plausible interactions among earth system processes were selected. This study demonstrated that by combining super-ensemble simulations with statistical emulation, simulations of regional climate could be improved while simultaneously accounting for a range of plausible land-atmosphere feedback strengths.

  9. Importance of Anthropogenic Aerosols for Climate Prediction: a Study on East Asian Sulfate Aerosols

    NASA Astrophysics Data System (ADS)

    Bartlett, R. E.; Bollasina, M. A.

    2017-12-01

    Climate prediction is vital to ensure that we are able to adapt to our changing climate. Understandably, the main focus for such prediction is greenhouse gas forcing, as this will be the main anthropogenic driver of long-term global climate change; however, other forcings could still be important. Atmospheric aerosols represent one such forcing, especially in regions with high present-day aerosol loading such as Asia; yet, uncertainty in their future emissions are under-sampled by commonly used climate forcing projections, such as the Representative Concentration Pathways (RCPs). Globally, anthropogenic aerosols exert a net cooling, but their effects show large variation at regional scales. Studies have shown that aerosols impact locally upon temperature, precipitation and hydroclimate, and also upon larger scale atmospheric circulation (for example, the Asian monsoon) with implications for climate remote from aerosol sources. We investigate how future climate could evolve differently given the same greenhouse gas forcing pathway but differing aerosol emissions. Specifically, we use climate modelling experiments (using HadGEM2-ES) of two scenarios based upon RCP2.6 greenhouse gas forcing but with large differences in sulfur dioxide emissions over East Asia. Results show that increased sulfate aerosols (associated with increased sulfur dioxide) lead to large regional cooling through aerosol-radiation and aerosol-cloud interactions. Focussing on dynamical mechanisms, we explore the consequences of this cooling for the Asian summer and winter monsoons. In addition to local temperature and precipitation changes, we find significant changes to large scale atmospheric circulation. Wave-like responses to upper-level atmospheric changes propagate across the northern hemisphere with far-reaching effects on surface climate, for example, cooling over Europe. Within the tropics, we find alterations to zonal circulation (notably, shifts in the Pacific Walker cell) and monsoon systems outside of Asia. These results indicate that anthropogenic aerosols have significant climate impacts against a background of greenhouse gas-induced climate change, and thus represent a key source of uncertainty in near-term climate projection that should be seriously considered in future climate assessments.

  10. Global climate forcing from albedo change caused by large-scale deforestation and reforestation: quantification and attribution of geographic variation

    USDA-ARS?s Scientific Manuscript database

    Large-scale deforestation and reforestation have contributed substantially to historical and contemporary global climate change in part through albedo-induced radiative forcing, with meaningful implications for forest management aiming to mitigate climate change. Associated warming or cooling varies...

  11. Representation of fine scale atmospheric variability in a nudged limited area quasi-geostrophic model: application to regional climate modelling

    NASA Astrophysics Data System (ADS)

    Omrani, H.; Drobinski, P.; Dubos, T.

    2009-09-01

    In this work, we consider the effect of indiscriminate nudging time on the large and small scales of an idealized limited area model simulation. The limited area model is a two layer quasi-geostrophic model on the beta-plane driven at its boundaries by its « global » version with periodic boundary condition. This setup mimics the configuration used for regional climate modelling. Compared to a previous study by Salameh et al. (2009) who investigated the existence of an optimal nudging time minimizing the error on both large and small scale in a linear model, we here use a fully non-linear model which allows us to represent the chaotic nature of the atmosphere: given the perfect quasi-geostrophic model, errors in the initial conditions, concentrated mainly in the smaller scales of motion, amplify and cascade into the larger scales, eventually resulting in a prediction with low skill. To quantify the predictability of our quasi-geostrophic model, we measure the rate of divergence of the system trajectories in phase space (Lyapunov exponent) from a set of simulations initiated with a perturbation of a reference initial state. Predictability of the "global", periodic model is mostly controlled by the beta effect. In the LAM, predictability decreases as the domain size increases. Then, the effect of large-scale nudging is studied by using the "perfect model” approach. Two sets of experiments were performed: (1) the effect of nudging is investigated with a « global » high resolution two layer quasi-geostrophic model driven by a low resolution two layer quasi-geostrophic model. (2) similar simulations are conducted with the two layer quasi-geostrophic LAM where the size of the LAM domain comes into play in addition to the first set of simulations. In the two sets of experiments, the best spatial correlation between the nudge simulation and the reference is observed with a nudging time close to the predictability time.

  12. Effects of large-scale deforestation on precipitation in the monsoon regions: Remote versus local effects

    PubMed Central

    Devaraju, N.; Bala, Govindasamy; Modak, Angshuman

    2015-01-01

    In this paper, using idealized climate model simulations, we investigate the biogeophysical effects of large-scale deforestation on monsoon regions. We find that the remote forcing from large-scale deforestation in the northern middle and high latitudes shifts the Intertropical Convergence Zone southward. This results in a significant decrease in precipitation in the Northern Hemisphere monsoon regions (East Asia, North America, North Africa, and South Asia) and moderate precipitation increases in the Southern Hemisphere monsoon regions (South Africa, South America, and Australia). The magnitude of the monsoonal precipitation changes depends on the location of deforestation, with remote effects showing a larger influence than local effects. The South Asian Monsoon region is affected the most, with 18% decline in precipitation over India. Our results indicate that any comprehensive assessment of afforestation/reforestation as climate change mitigation strategies should carefully evaluate the remote effects on monsoonal precipitation alongside the large local impacts on temperatures. PMID:25733889

  13. A continental-scale hydrology and water quality model for Europe: Calibration and uncertainty of a high-resolution large-scale SWAT model

    NASA Astrophysics Data System (ADS)

    Abbaspour, K. C.; Rouholahnejad, E.; Vaghefi, S.; Srinivasan, R.; Yang, H.; Kløve, B.

    2015-05-01

    A combination of driving forces are increasing pressure on local, national, and regional water supplies needed for irrigation, energy production, industrial uses, domestic purposes, and the environment. In many parts of Europe groundwater quantity, and in particular quality, have come under sever degradation and water levels have decreased resulting in negative environmental impacts. Rapid improvements in the economy of the eastern European block of countries and uncertainties with regard to freshwater availability create challenges for water managers. At the same time, climate change adds a new level of uncertainty with regard to freshwater supplies. In this research we build and calibrate an integrated hydrological model of Europe using the Soil and Water Assessment Tool (SWAT) program. Different components of water resources are simulated and crop yield and water quality are considered at the Hydrological Response Unit (HRU) level. The water resources are quantified at subbasin level with monthly time intervals. Leaching of nitrate into groundwater is also simulated at a finer spatial level (HRU). The use of large-scale, high-resolution water resources models enables consistent and comprehensive examination of integrated system behavior through physically-based, data-driven simulation. In this article we discuss issues with data availability, calibration of large-scale distributed models, and outline procedures for model calibration and uncertainty analysis. The calibrated model and results provide information support to the European Water Framework Directive and lay the basis for further assessment of the impact of climate change on water availability and quality. The approach and methods developed are general and can be applied to any large region around the world.

  14. Weakening of tropical Pacific atmospheric circulation due to anthropogenic forcing

    NASA Astrophysics Data System (ADS)

    Vecchi, Gabriel A.; Soden, Brian J.; Wittenberg, Andrew T.; Held, Isaac M.; Leetmaa, Ants; Harrison, Matthew J.

    2006-05-01

    Since the mid-nineteenth century the Earth's surface has warmed, and models indicate that human activities have caused part of the warming by altering the radiative balance of the atmosphere. Simple theories suggest that global warming will reduce the strength of the mean tropical atmospheric circulation. An important aspect of this tropical circulation is a large-scale zonal (east-west) overturning of air across the equatorial Pacific Ocean-driven by convection to the west and subsidence to the east-known as the Walker circulation. Here we explore changes in tropical Pacific circulation since the mid-nineteenth century using observations and a suite of global climate model experiments. Observed Indo-Pacific sea level pressure reveals a weakening of the Walker circulation. The size of this trend is consistent with theoretical predictions, is accurately reproduced by climate model simulations and, within the climate models, is largely due to anthropogenic forcing. The climate model indicates that the weakened surface winds have altered the thermal structure and circulation of the tropical Pacific Ocean. These results support model projections of further weakening of tropical atmospheric circulation during the twenty-first century.

  15. Hydrologic effects of large southwestern USA wildfires significantly increase regional water supply: fact or fiction?

    NASA Astrophysics Data System (ADS)

    Wine, M. L.; Cadol, D.

    2016-08-01

    In recent years climate change and historic fire suppression have increased the frequency of large wildfires in the southwestern USA, motivating study of the hydrological consequences of these wildfires at point and watershed scales, typically over short periods of time. These studies have revealed that reduced soil infiltration capacity and reduced transpiration due to tree canopy combustion increase streamflow at the watershed scale. However, the degree to which these local increases in runoff propagate to larger scales—relevant to urban and agricultural water supply—remains largely unknown, particularly in semi-arid mountainous watersheds co-dominated by winter snowmelt and the North American monsoon. To address this question, we selected three New Mexico watersheds—the Jemez (1223 km2), Mogollon (191 km2), and Gila (4807 km2)—that together have been affected by over 100 wildfires since 1982. We then applied climate-driven linear models to test for effects of fire on streamflow metrics after controlling for climatic variability. Here we show that, after controlling for climatic and snowpack variability, significantly more streamflow discharged from the Gila watershed for three to five years following wildfires, consistent with increased regional water yield due to enhanced infiltration-excess overland flow and groundwater recharge at the large watershed scale. In contrast, we observed no such increase in discharge from the Jemez watershed following wildfires. Fire regimes represent a key difference between the contrasting responses of the Jemez and Gila watersheds with the latter experiencing more frequent wildfires, many caused by lightning strikes. While hydrologic dynamics at the scale of large watersheds were previously thought to be climatically dominated, these results suggest that if one fifth or more of a large watershed has been burned in the previous three to five years, significant increases in water yield can be expected.

  16. Tropical Oceanic Precipitation Processes Over Warm Pool: 2D and 3D Cloud Resolving Model Simulations

    NASA Technical Reports Server (NTRS)

    Tao, W.-K.; Johnson, D.; Simpson, J.; Einaudi, Franco (Technical Monitor)

    2001-01-01

    Rainfall is a key link in the hydrologic cycle as well as the primary heat source for the atmosphere. The vertical distribution of convective latent-heat release modulates the large-scale circulations of the topics. Furthermore, changes in the moisture distribution at middle and upper levels of the troposphere can affect cloud distributions and cloud liquid water and ice contents. How the incoming solar and outgoing longwave radiation respond to these changes in clouds is a major factor in assessing climate change. Present large-scale weather and climate model simulate processes only crudely, reducing confidence in their predictions on both global and regional scales. One of the most promising methods to test physical parameterizations used in General Circulation Models (GCMs) and climate models is to use field observations together with Cloud Resolving Models (CRMs). The CRMs use more sophisticated and physically realistic parameterizations of cloud microphysical processes, and allow for their complex interactions with solar and infrared radiative transfer processes. The CRMs can reasonably well resolve the evolution, structure, and life cycles of individual clouds and clouds systems. The major objective of this paper is to investigate the latent heating, moisture and momentum budgets associated with several convective systems developed during the TOGA COARE IFA - westerly wind burst event (late December, 1992). The tool for this study is the Goddard Cumulus Ensemble (GCE) model which includes a 3-class ice-phase microphysics scheme.

  17. Drought in the Horn of Africa: attribution of a damaging and repeating extreme event

    NASA Astrophysics Data System (ADS)

    Marthews, Toby; Otto, Friederike; Mitchell, Daniel; Dadson, Simon; Jones, Richard

    2015-04-01

    We have applied detection and attribution techniques to the severe drought that hit the Horn of Africa in 2014. The short rains failed in late 2013 in Kenya, South Sudan, Somalia and southern Ethiopia, leading to a very dry growing season January to March 2014, and subsequently to the current drought in many agricultural areas of the sub-region. We have made use of the weather@home project, which uses publicly-volunteered distributed computing to provide a large ensemble of simulations sufficient to sample regional climate uncertainty. Based on this, we have estimated the occurrence rates of the kinds of the rare and extreme events implicated in this large-scale drought. From land surface model runs based on these ensemble simulations, we have estimated the impacts of climate anomalies during this period and therefore we can reliably identify some factors of the ongoing drought as attributable to human-induced climate change. The UNFCCC's Adaptation Fund is attempting to support projects that bring about an adaptation to "the adverse effects of climate change", but in order to formulate such projects we need a much clearer way to assess how much climate change is human-induced and how much is a consequence of climate anomalies and large-scale teleconnections, which can only be provided by robust attribution techniques.

  18. Reassessing regime shifts in the North Pacific: incremental climate change and commercial fishing are necessary for explaining decadal-scale biological variability.

    PubMed

    Litzow, Michael A; Mueter, Franz J; Hobday, Alistair J

    2014-01-01

    In areas of the North Pacific that are largely free of overfishing, climate regime shifts - abrupt changes in modes of low-frequency climate variability - are seen as the dominant drivers of decadal-scale ecological variability. We assessed the ability of leading modes of climate variability [Pacific Decadal Oscillation (PDO), North Pacific Gyre Oscillation (NPGO), Arctic Oscillation (AO), Pacific-North American Pattern (PNA), North Pacific Index (NPI), El Niño-Southern Oscillation (ENSO)] to explain decadal-scale (1965-2008) patterns of climatic and biological variability across two North Pacific ecosystems (Gulf of Alaska and Bering Sea). Our response variables were the first principle component (PC1) of four regional climate parameters [sea surface temperature (SST), sea level pressure (SLP), freshwater input, ice cover], and PCs 1-2 of 36 biological time series [production or abundance for populations of salmon (Oncorhynchus spp.), groundfish, herring (Clupea pallasii), shrimp, and jellyfish]. We found that the climate modes alone could not explain ecological variability in the study region. Both linear models (for climate PC1) and generalized additive models (for biology PC1-2) invoking only the climate modes produced residuals with significant temporal trends, indicating that the models failed to capture coherent patterns of ecological variability. However, when the residual climate trend and a time series of commercial fishery catches were used as additional candidate variables, resulting models of biology PC1-2 satisfied assumptions of independent residuals and out-performed models constructed from the climate modes alone in terms of predictive power. As measured by effect size and Akaike weights, the residual climate trend was the most important variable for explaining biology PC1 variability, and commercial catch the most important variable for biology PC2. Patterns of climate sensitivity and exploitation history for taxa strongly associated with biology PC1-2 suggest plausible mechanistic explanations for these modeling results. Our findings suggest that, even in the absence of overfishing and in areas strongly influenced by internal climate variability, climate regime shift effects can only be understood in the context of other ecosystem perturbations. © 2013 John Wiley & Sons Ltd.

  19. The Effect of Large Scale Climate Oscillations on the Land Surface Phenology of the Northern Polar Regions and Central Asia

    NASA Astrophysics Data System (ADS)

    de Beurs, K.; Henebry, G. M.; Owsley, B.; Sokolik, I. N.

    2016-12-01

    Land surface phenology metrics allow for the summarization of long image time series into a set of annual observations that describe the vegetated growing season. These metrics have been shown to respond to both large scale climatic and anthropogenic impacts. In this study we assemble a time series (2001 - 2014) of Moderate Resolution Imaging Spectroradiometer (MODIS) Nadir BRDF-Adjusted Reflectance data and land surface temperature data at 0.05º spatial resolution. We then derive land surface phenology metrics focusing on the peak of the growing season by fitting quadratic regression models using NDVI and Accumulated Growing Degree-Days (AGDD) derived from land surface temperature. We link the annual information on the peak timing, the thermal time to peak and the maximum of the growing season with five of the most important large scale climate oscillations: NAO, AO, PDO, PNA and ENSO. We demonstrate several significant correlations between the climate oscillations and the land surface phenology peak metrics for a range of different bioclimatic regions in both dryland Central Asia and the northern Polar Regions. We will then link the correlation results with trends derived by the seasonal Mann-Kendall trend detection method applied to several satellite derived vegetation and albedo datasets.

  20. Climatic and physiographic controls on catchment-scale nitrate loss at different spatial scales: insights from a top-down model development approach

    NASA Astrophysics Data System (ADS)

    Shafii, Mahyar; Basu, Nandita; Schiff, Sherry; Van Cappellen, Philippe

    2017-04-01

    Dramatic increase in nitrogen circulating in the biosphere due to anthropogenic activities has resulted in impairment of water quality in groundwater and surface water causing eutrophication in coastal regions. Understanding the fate and transport of nitrogen from landscape to coastal areas requires exploring the drivers of nitrogen processes in both time and space, as well as the identification of appropriate flow pathways. Conceptual models can be used as diagnostic tools to provide insights into such controls. However, diagnostic evaluation of coupled hydrological-biogeochemical models is challenging. This research proposes a top-down methodology utilizing hydrochemical signatures to develop conceptual models for simulating the integrated streamflow and nitrate responses while taking into account dominant controls on nitrate variability (e.g., climate, soil water content, etc.). Our main objective is to seek appropriate model complexity that sufficiently reproduces multiple hydrological and nitrate signatures. Having developed a suitable conceptual model for a given watershed, we employ it in sensitivity studies to demonstrate the dominant process controls that contribute to the nitrate response at scales of interest. We apply the proposed approach to nitrate simulation in a range of small to large sub-watersheds in the Grand River Watershed (GRW) located in Ontario. Such multi-basin modeling experiment will enable us to address process scaling and investigate the consequences of lumping processes in terms of models' predictive capability. The proposed methodology can be applied to the development of large-scale models that can help decision-making associated with nutrients management at regional scale.

  1. Evaluating sub-seasonal skill in probabilistic forecasts of Atmospheric Rivers and associated extreme events

    NASA Astrophysics Data System (ADS)

    Subramanian, A. C.; Lavers, D.; Matsueda, M.; Shukla, S.; Cayan, D. R.; Ralph, M.

    2017-12-01

    Atmospheric rivers (ARs) - elongated plumes of intense moisture transport - are a primary source of hydrological extremes, water resources and impactful weather along the West Coast of North America and Europe. There is strong demand in the water management, societal infrastructure and humanitarian sectors for reliable sub-seasonal forecasts, particularly of extreme events, such as floods and droughts so that actions to mitigate disastrous impacts can be taken with sufficient lead-time. Many recent studies have shown that ARs in the Pacific and the Atlantic are modulated by large-scale modes of climate variability. Leveraging the improved understanding of how these large-scale climate modes modulate the ARs in these two basins, we use the state-of-the-art multi-model forecast systems such as the North American Multi-Model Ensemble (NMME) and the Subseasonal-to-Seasonal (S2S) database to help inform and assess the probabilistic prediction of ARs and related extreme weather events over the North American and European West Coasts. We will present results from evaluating probabilistic forecasts of extreme precipitation and AR activity at the sub-seasonal scale. In particular, results from the comparison of two winters (2015-16 and 2016-17) will be shown, winters which defied canonical El Niño teleconnection patterns over North America and Europe. We further extend this study to analyze probabilistic forecast skill of AR events in these two basins and the variability in forecast skill during certain regimes of large-scale climate modes.

  2. State of the Art in Large-Scale Soil Moisture Monitoring

    NASA Technical Reports Server (NTRS)

    Ochsner, Tyson E.; Cosh, Michael Harold; Cuenca, Richard H.; Dorigo, Wouter; Draper, Clara S.; Hagimoto, Yutaka; Kerr, Yan H.; Larson, Kristine M.; Njoku, Eni Gerald; Small, Eric E.; hide

    2013-01-01

    Soil moisture is an essential climate variable influencing land atmosphere interactions, an essential hydrologic variable impacting rainfall runoff processes, an essential ecological variable regulating net ecosystem exchange, and an essential agricultural variable constraining food security. Large-scale soil moisture monitoring has advanced in recent years creating opportunities to transform scientific understanding of soil moisture and related processes. These advances are being driven by researchers from a broad range of disciplines, but this complicates collaboration and communication. For some applications, the science required to utilize large-scale soil moisture data is poorly developed. In this review, we describe the state of the art in large-scale soil moisture monitoring and identify some critical needs for research to optimize the use of increasingly available soil moisture data. We review representative examples of 1) emerging in situ and proximal sensing techniques, 2) dedicated soil moisture remote sensing missions, 3) soil moisture monitoring networks, and 4) applications of large-scale soil moisture measurements. Significant near-term progress seems possible in the use of large-scale soil moisture data for drought monitoring. Assimilation of soil moisture data for meteorological or hydrologic forecasting also shows promise, but significant challenges related to model structures and model errors remain. Little progress has been made yet in the use of large-scale soil moisture observations within the context of ecological or agricultural modeling. Opportunities abound to advance the science and practice of large-scale soil moisture monitoring for the sake of improved Earth system monitoring, modeling, and forecasting.

  3. A Review on Regional Convection-Permitting Climate Modeling: Demonstrations, Prospects, and Challenges

    NASA Astrophysics Data System (ADS)

    Prein, A. F.; Langhans, W.; Fosser, G.; Ferrone, A.; Ban, N.; Goergen, K.; Keller, M.; Tölle, M.; Gutjahr, O.; Feser, F.; Brisson, E.; Kollet, S. J.; Schmidli, J.; Van Lipzig, N. P. M.; Leung, L. R.

    2015-12-01

    Regional climate modeling using convection-permitting models (CPMs; horizontal grid spacing <4 km) emerges as a promising framework to provide more reliable climate information on regional to local scales compared to traditionally used large-scale models (LSMs; horizontal grid spacing >10 km). CPMs no longer rely on convection parameterization schemes, which had been identified as a major source of errors and uncertainties in LSMs. Moreover, CPMs allow for a more accurate representation of surface and orography fields. The drawback of CPMs is the high demand on computational resources. For this reason, first CPM climate simulations only appeared a decade ago. We aim to provide a common basis for CPM climate simulations by giving a holistic review of the topic. The most important components in CPMs such as physical parameterizations and dynamical formulations are discussed critically. An overview of weaknesses and an outlook on required future developments is provided. Most importantly, this review presents the consolidated outcome of studies that addressed the added value of CPM climate simulations compared to LSMs. Improvements are evident mostly for climate statistics related to deep convection, mountainous regions, or extreme events. The climate change signals of CPM simulations suggest an increase in flash floods, changes in hail storm characteristics, and reductions in the snowpack over mountains. In conclusion, CPMs are a very promising tool for future climate research. However, coordinated modeling programs are crucially needed to advance parameterizations of unresolved physics and to assess the full potential of CPMs.

  4. A review on regional convection-permitting climate modeling: Demonstrations, prospects, and challenges.

    PubMed

    Prein, Andreas F; Langhans, Wolfgang; Fosser, Giorgia; Ferrone, Andrew; Ban, Nikolina; Goergen, Klaus; Keller, Michael; Tölle, Merja; Gutjahr, Oliver; Feser, Frauke; Brisson, Erwan; Kollet, Stefan; Schmidli, Juerg; van Lipzig, Nicole P M; Leung, Ruby

    2015-06-01

    Regional climate modeling using convection-permitting models (CPMs; horizontal grid spacing <4 km) emerges as a promising framework to provide more reliable climate information on regional to local scales compared to traditionally used large-scale models (LSMs; horizontal grid spacing >10 km). CPMs no longer rely on convection parameterization schemes, which had been identified as a major source of errors and uncertainties in LSMs. Moreover, CPMs allow for a more accurate representation of surface and orography fields. The drawback of CPMs is the high demand on computational resources. For this reason, first CPM climate simulations only appeared a decade ago. In this study, we aim to provide a common basis for CPM climate simulations by giving a holistic review of the topic. The most important components in CPMs such as physical parameterizations and dynamical formulations are discussed critically. An overview of weaknesses and an outlook on required future developments is provided. Most importantly, this review presents the consolidated outcome of studies that addressed the added value of CPM climate simulations compared to LSMs. Improvements are evident mostly for climate statistics related to deep convection, mountainous regions, or extreme events. The climate change signals of CPM simulations suggest an increase in flash floods, changes in hail storm characteristics, and reductions in the snowpack over mountains. In conclusion, CPMs are a very promising tool for future climate research. However, coordinated modeling programs are crucially needed to advance parameterizations of unresolved physics and to assess the full potential of CPMs.

  5. A review on regional convection-permitting climate modeling: Demonstrations, prospects, and challenges

    NASA Astrophysics Data System (ADS)

    Prein, Andreas F.; Langhans, Wolfgang; Fosser, Giorgia; Ferrone, Andrew; Ban, Nikolina; Goergen, Klaus; Keller, Michael; Tölle, Merja; Gutjahr, Oliver; Feser, Frauke; Brisson, Erwan; Kollet, Stefan; Schmidli, Juerg; van Lipzig, Nicole P. M.; Leung, Ruby

    2015-06-01

    Regional climate modeling using convection-permitting models (CPMs; horizontal grid spacing <4 km) emerges as a promising framework to provide more reliable climate information on regional to local scales compared to traditionally used large-scale models (LSMs; horizontal grid spacing >10 km). CPMs no longer rely on convection parameterization schemes, which had been identified as a major source of errors and uncertainties in LSMs. Moreover, CPMs allow for a more accurate representation of surface and orography fields. The drawback of CPMs is the high demand on computational resources. For this reason, first CPM climate simulations only appeared a decade ago. In this study, we aim to provide a common basis for CPM climate simulations by giving a holistic review of the topic. The most important components in CPMs such as physical parameterizations and dynamical formulations are discussed critically. An overview of weaknesses and an outlook on required future developments is provided. Most importantly, this review presents the consolidated outcome of studies that addressed the added value of CPM climate simulations compared to LSMs. Improvements are evident mostly for climate statistics related to deep convection, mountainous regions, or extreme events. The climate change signals of CPM simulations suggest an increase in flash floods, changes in hail storm characteristics, and reductions in the snowpack over mountains. In conclusion, CPMs are a very promising tool for future climate research. However, coordinated modeling programs are crucially needed to advance parameterizations of unresolved physics and to assess the full potential of CPMs.

  6. Global warming precipitation accumulation increases above the current-climate cutoff scale

    PubMed Central

    Sahany, Sandeep; Stechmann, Samuel N.; Bernstein, Diana N.

    2017-01-01

    Precipitation accumulations, integrated over rainfall events, can be affected by both intensity and duration of the storm event. Thus, although precipitation intensity is widely projected to increase under global warming, a clear framework for predicting accumulation changes has been lacking, despite the importance of accumulations for societal impacts. Theory for changes in the probability density function (pdf) of precipitation accumulations is presented with an evaluation of these changes in global climate model simulations. We show that a simple set of conditions implies roughly exponential increases in the frequency of the very largest accumulations above a physical cutoff scale, increasing with event size. The pdf exhibits an approximately power-law range where probability density drops slowly with each order of magnitude size increase, up to a cutoff at large accumulations that limits the largest events experienced in current climate. The theory predicts that the cutoff scale, controlled by the interplay of moisture convergence variance and precipitation loss, tends to increase under global warming. Thus, precisely the large accumulations above the cutoff that are currently rare will exhibit increases in the warmer climate as this cutoff is extended. This indeed occurs in the full climate model, with a 3 °C end-of-century global-average warming yielding regional increases of hundreds of percent to >1,000% in the probability density of the largest accumulations that have historical precedents. The probabilities of unprecedented accumulations are also consistent with the extension of the cutoff. PMID:28115693

  7. Global warming precipitation accumulation increases above the current-climate cutoff scale

    NASA Astrophysics Data System (ADS)

    Neelin, J. David; Sahany, Sandeep; Stechmann, Samuel N.; Bernstein, Diana N.

    2017-02-01

    Precipitation accumulations, integrated over rainfall events, can be affected by both intensity and duration of the storm event. Thus, although precipitation intensity is widely projected to increase under global warming, a clear framework for predicting accumulation changes has been lacking, despite the importance of accumulations for societal impacts. Theory for changes in the probability density function (pdf) of precipitation accumulations is presented with an evaluation of these changes in global climate model simulations. We show that a simple set of conditions implies roughly exponential increases in the frequency of the very largest accumulations above a physical cutoff scale, increasing with event size. The pdf exhibits an approximately power-law range where probability density drops slowly with each order of magnitude size increase, up to a cutoff at large accumulations that limits the largest events experienced in current climate. The theory predicts that the cutoff scale, controlled by the interplay of moisture convergence variance and precipitation loss, tends to increase under global warming. Thus, precisely the large accumulations above the cutoff that are currently rare will exhibit increases in the warmer climate as this cutoff is extended. This indeed occurs in the full climate model, with a 3 °C end-of-century global-average warming yielding regional increases of hundreds of percent to >1,000% in the probability density of the largest accumulations that have historical precedents. The probabilities of unprecedented accumulations are also consistent with the extension of the cutoff.

  8. Global warming precipitation accumulation increases above the current-climate cutoff scale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neelin, J. David; Sahany, Sandeep; Stechmann, Samuel N.

    Precipitation accumulations, integrated over rainfall events, can be affected by both intensity and duration of the storm event. Thus, although precipitation intensity is widely projected to increase under global warming, a clear framework for predicting accumulation changes has been lacking, despite the importance of accumulations for societal impacts. Theory for changes in the probability density function (pdf) of precipitation accumulations is presented with an evaluation of these changes in global climate model simulations. We show that a simple set of conditions implies roughly exponential increases in the frequency of the very largest accumulations above a physical cutoff scale, increasing withmore » event size. The pdf exhibits an approximately power-law range where probability density drops slowly with each order of magnitude size increase, up to a cutoff at large accumulations that limits the largest events experienced in current climate. The theory predicts that the cutoff scale, controlled by the interplay of moisture convergence variance and precipitation loss, tends to increase under global warming. Thus, precisely the large accumulations above the cutoff that are currently rare will exhibit increases in the warmer climate as this cutoff is extended. This indeed occurs in the full climate model, with a 3 °C end-of-century global-average warming yielding regional increases of hundreds of percent to >1,000% in the probability density of the largest accumulations that have historical precedents. The probabilities of unprecedented accumulations are also consistent with the extension of the cutoff.« less

  9. Global warming precipitation accumulation increases above the current-climate cutoff scale.

    PubMed

    Neelin, J David; Sahany, Sandeep; Stechmann, Samuel N; Bernstein, Diana N

    2017-02-07

    Precipitation accumulations, integrated over rainfall events, can be affected by both intensity and duration of the storm event. Thus, although precipitation intensity is widely projected to increase under global warming, a clear framework for predicting accumulation changes has been lacking, despite the importance of accumulations for societal impacts. Theory for changes in the probability density function (pdf) of precipitation accumulations is presented with an evaluation of these changes in global climate model simulations. We show that a simple set of conditions implies roughly exponential increases in the frequency of the very largest accumulations above a physical cutoff scale, increasing with event size. The pdf exhibits an approximately power-law range where probability density drops slowly with each order of magnitude size increase, up to a cutoff at large accumulations that limits the largest events experienced in current climate. The theory predicts that the cutoff scale, controlled by the interplay of moisture convergence variance and precipitation loss, tends to increase under global warming. Thus, precisely the large accumulations above the cutoff that are currently rare will exhibit increases in the warmer climate as this cutoff is extended. This indeed occurs in the full climate model, with a 3 °C end-of-century global-average warming yielding regional increases of hundreds of percent to >1,000% in the probability density of the largest accumulations that have historical precedents. The probabilities of unprecedented accumulations are also consistent with the extension of the cutoff.

  10. Global warming precipitation accumulation increases above the current-climate cutoff scale

    DOE PAGES

    Neelin, J. David; Sahany, Sandeep; Stechmann, Samuel N.; ...

    2017-01-23

    Precipitation accumulations, integrated over rainfall events, can be affected by both intensity and duration of the storm event. Thus, although precipitation intensity is widely projected to increase under global warming, a clear framework for predicting accumulation changes has been lacking, despite the importance of accumulations for societal impacts. Theory for changes in the probability density function (pdf) of precipitation accumulations is presented with an evaluation of these changes in global climate model simulations. We show that a simple set of conditions implies roughly exponential increases in the frequency of the very largest accumulations above a physical cutoff scale, increasing withmore » event size. The pdf exhibits an approximately power-law range where probability density drops slowly with each order of magnitude size increase, up to a cutoff at large accumulations that limits the largest events experienced in current climate. The theory predicts that the cutoff scale, controlled by the interplay of moisture convergence variance and precipitation loss, tends to increase under global warming. Thus, precisely the large accumulations above the cutoff that are currently rare will exhibit increases in the warmer climate as this cutoff is extended. This indeed occurs in the full climate model, with a 3 °C end-of-century global-average warming yielding regional increases of hundreds of percent to >1,000% in the probability density of the largest accumulations that have historical precedents. The probabilities of unprecedented accumulations are also consistent with the extension of the cutoff.« less

  11. The impact of radiatively active water-ice clouds on Martian mesoscale atmospheric circulations

    NASA Astrophysics Data System (ADS)

    Spiga, A.; Madeleine, J.-B.; Hinson, D.; Navarro, T.; Forget, F.

    2014-04-01

    Background and Goals Water ice clouds are a key component of the Martian climate [1]. Understanding the properties of the Martian water ice clouds is crucial to constrain the Red Planet's climate and hydrological cycle both in the present and in the past [2]. In recent years, this statement have become all the more true as it was shown that the radiative effects of water ice clouds is far from being as negligible as hitherto believed; water ice clouds plays instead a key role in the large-scale thermal structure and dynamics of the Martian atmosphere [3, 4, 5]. Nevertheless, the radiative effect of water ice clouds at lower scales than the large synoptic scale (the so-called meso-scales) is still left to be explored. Here we use for the first time mesoscale modeling with radiatively active water ice clouds to address this open question.

  12. Mid-Holocene cluster of large-scale landslides revealed in the Southwestern Alps by 36Cl dating. Insight on an Alpine-scale landslide activity

    NASA Astrophysics Data System (ADS)

    Zerathe, Swann; Lebourg, Thomas; Braucher, Régis; Bourlès, Didier

    2014-04-01

    Although it is generally assumed that the internal structure of a slope (e.g. lithology and rock mass properties, inherited faults and heterogeneities, etc.) is preponderant for the progressive development of large-scale landslides, the ability to identify triggering factors responsible for final slope failures such as glacial debuttressing, seismic activities or climatic changes, especially when considering landslide cluster at an orogen-scale, is still debated. Highlighting in this study the spatial and temporal concordant clustering of deep-seated slope failures in the external Southwestern Alps, we discuss and review the possible causes for such wide-spread slope instabilities at both local and larger (Alpine) scale. High resolution field mapping coupled with electrical resistivity tomography first allows establishing an inventory of large landslides in the Southwestern Alps, determining their structural model, precising their depth limit (100-200 m) as well as the involved rock volumes (>107 m3). We show that they developed in the same geostructural context of thick mudstone layers overlain by faulted limestone and followed a block-spread model of deformation that could evolve in rock-collapse events. Cosmic ray exposure dating (CRE), using both 36Cl and 10Be in coexisting limestone and chert, respectively, has been carried out from the main scarps of six Deep Seated Landslides (DSL) and leads to landslide-failure CRE ages ranging from 3.7 to 4.7 ka. They highlighted: (i) mainly single and fast ruptures and (ii) a possible concomitant initiation with a main peak of activity between 3.3 and 5.1 ka, centered at ca 4.2 ka. Because this region was not affected by historical glaciations events, landslide triggering by glacial unloading can be excluded. The presented data combined with field observations preferentially suggest that these failures were climatically driven and were most likely controlled by high pressure changes in the karstic medium. In effect, the chronicle of failure-ages is concomitant to a well-known climatic pulse, the “4.2 ka” climate event characterized by intense hydrological perturbations associated to the heaviest rainfall period of the entire Holocene. Despite requiring further investigations and discussions, the dating of numerous events across the entire Alps during the middle Holocene period suggests a potential synchronous triggering of several large-scale gravitational-failures induced by the mid-Holocene climatic transition.

  13. Regional climates in the GISS global circulation model - Synoptic-scale circulation

    NASA Technical Reports Server (NTRS)

    Hewitson, B.; Crane, R. G.

    1992-01-01

    A major weakness of current general circulation models (GCMs) is their perceived inability to predict reliably the regional consequences of a global-scale change, and it is these regional-scale predictions that are necessary for studies of human-environmental response. For large areas of the extratropics, the local climate is controlled by the synoptic-scale atmospheric circulation, and it is the purpose of this paper to evaluate the synoptic-scale circulation of the Goddard Institute for Space Studies (GISS) GCM. A methodology for validating the daily synoptic circulation using Principal Component Analysis is described, and the methodology is then applied to the GCM simulation of sea level pressure over the continental United States (excluding Alaska). The analysis demonstrates that the GISS 4 x 5 deg GCM Model II effectively simulates the synoptic-scale atmospheric circulation over the United States. The modes of variance describing the atmospheric circulation of the model are comparable to those found in the observed data, and these modes explain similar amounts of variance in their respective datasets. The temporal behavior of these circulation modes in the synoptic time frame are also comparable.

  14. Human Impacts on the Hydrologic Cycle: Comparing Global Climate Change and Local Water Management

    NASA Astrophysics Data System (ADS)

    Ferguson, I. M.; Maxwell, R. M.

    2010-12-01

    Anthropogenic climate change is significantly altering the hydrologic cycle at global and regional scales, with potentially devastating impacts on water resources. Recent studies demonstrate that hydrologic response to climate change will depend on local-scale feedbacks between groundwater, surface water, and land surface processes. These studies suggest that local water management practices that alter the quantity and distribution of water in the terrestrial system—e.g., groundwater pumping and irrigation—may also feed back across the hydrologic cycle, with impacts on land-atmosphere fluxes and thus weather and climate. Here we use an integrated hydrologic model to compare the impacts of large-scale climate change and local water management practices on water and energy budgets at local and watershed scales. We consider three climate scenarios (hot, hot+wet, and hot+dry) and three management scenarios (pumping only, irrigation only, and pumping+irrigation). Results demonstrate that impacts of local water management on basin-integrated groundwater storage, evapotranspiration, and stream discharge are comparable to those of changing climate conditions. However, impacts of climate change are shown to have a smaller magnitude and greater spatial extent, while impacts of pumping and irrigation are shown to have a greater magnitude but are local to areas where pumping and irrigation occur. These results have important implications regarding the scales of human impacts on both water resources and climate and the sustainability of water resources.

  15. Intraseasonal and Interannual Variability of Mars Present Climate

    NASA Astrophysics Data System (ADS)

    Hollingsworth, Jeffery L.; Bridger, Alison F. C.; Haberle, Robert M.

    1996-01-01

    This is a Final Report for a Joint Research Interchange (JRI) between NASA Ames Research Center and San Jose State University, Department of Meteorology. The focus of this JRI has been to investigate the nature of intraseasonal and interannual variability of Mars'present climate. We have applied a three-dimensional climate model based on the full hydrostatic primitive equations to determine the spatial, but primarily, the temporal structures of the planet's large-scale circulation as it evolves during a given seasonal advance, and, over multi-annual cycles. The particular climate model applies simplified physical parameterizations and is computationally efficient. It could thus easily be integrated in a perpetual season or advancing season configuration, as well as over many Mars years. We have assessed both high and low-frequency components of the circulation (i.e., motions having periods of Omicron(2-10 days) or greater than Omicron(10 days), respectively). Results from this investigation have explored the basic issue whether Mars' climate system is naturally 'chaotic' associated with nonlinear interactions of the large-scale circulation-regardless of any allowance for year-to-year variations in external forcing mechanisms. Titles of papers presented at scientific conferences and a manuscript to be submitted to the scientific literature are provided. An overview of a areas for further investigation is also presented.

  16. Spectral nudging to eliminate the effects of domain position and geometry in regional climate model simulations

    NASA Astrophysics Data System (ADS)

    Miguez-Macho, Gonzalo; Stenchikov, Georgiy L.; Robock, Alan

    2004-07-01

    It is well known that regional climate simulations are sensitive to the size and position of the domain chosen for calculations. Here we study the physical mechanisms of this sensitivity. We conducted simulations with the Regional Atmospheric Modeling System (RAMS) for June 2000 over North America at 50 km horizontal resolution using a 7500 km × 5400 km grid and NCEP/NCAR reanalysis as boundary conditions. The position of the domain was displaced in several directions, always maintaining the U.S. in the interior, out of the buffer zone along the lateral boundaries. Circulation biases developed a large scale structure, organized by the Rocky Mountains, resulting from a systematic shifting of the synoptic wave trains that crossed the domain. The distortion of the large-scale circulation was produced by interaction of the modeled flow with the lateral boundaries of the nested domain and varied when the position of the grid was altered. This changed the large-scale environment among the different simulations and translated into diverse conditions for the development of the mesoscale processes that produce most of precipitation for the Great Plains in the summer season. As a consequence, precipitation results varied, sometimes greatly, among the experiments with the different grid positions. To eliminate the dependence of results on the position of the domain, we used spectral nudging of waves longer than 2500 km above the boundary layer. Moisture was not nudged at any level. This constrained the synoptic scales to follow reanalysis while allowing the model to develop the small-scale dynamics responsible for the rainfall. Nudging of the large scales successfully eliminated the variation of precipitation results when the grid was moved. We suggest that this technique is necessary for all downscaling studies with regional models with domain sizes of a few thousand kilometers and larger embedded in global models.

  17. A Mixed-dimensional Model for Determining the Impact of Permafrost Polygonal Ground Degradation on Arctic Hydrology.

    NASA Astrophysics Data System (ADS)

    Coon, E.; Jan, A.; Painter, S. L.; Moulton, J. D.; Wilson, C. J.

    2017-12-01

    Many permafrost-affected regions in the Arctic manifest a polygonal patterned ground, which contains large carbon stores and is vulnerability to climate change as warming temperatures drive melting ice wedges, polygon degradation, and thawing of the underlying carbon-rich soils. Understanding the fate of this carbon is difficult. The system is controlled by complex, nonlinear physics coupling biogeochemistry, thermal-hydrology, and geomorphology, and there is a strong spatial scale separation between microtopograpy (at the scale of an individual polygon) and the scale of landscape change (at the scale of many thousands of polygons). Physics-based models have come a long way, and are now capable of representing the diverse set of processes, but only on individual polygons or a few polygons. Empirical models have been used to upscale across land types, including ecotypes evolving from low-centered (pristine) polygons to high-centered (degraded) polygon, and do so over large spatial extent, but are limited in their ability to discern causal process mechanisms. Here we present a novel strategy that looks to use physics-based models across scales, bringing together multiple capabilities to capture polygon degradation under a warming climate and its impacts on thermal-hydrology. We use fine-scale simulations on individual polygons to motivate a mixed-dimensional strategy that couples one-dimensional columns representing each individual polygon through two-dimensional surface flow. A subgrid model is used to incorporate the effects of surface microtopography on surface flow; this model is described and calibrated to fine-scale simulations. And critically, a subsidence model that tracks volume loss in bulk ice wedges is used to alter the subsurface structure and subgrid parameters, enabling the inclusion of the feedbacks associated with polygon degradation. This combined strategy results in a model that is able to capture the key features of polygon permafrost degradation, but in a simulation across a large spatial extent of polygonal tundra.

  18. Using historical and projected future climate model simulations as drivers of agricultural and biological models (Invited)

    NASA Astrophysics Data System (ADS)

    Stefanova, L. B.

    2013-12-01

    Climate model evaluation is frequently performed as a first step in analyzing climate change simulations. Atmospheric scientists are accustomed to evaluating climate models through the assessment of model climatology and biases, the models' representation of large-scale modes of variability (such as ENSO, PDO, AMO, etc) and the relationship between these modes and local variability (e.g. the connection between ENSO and the wintertime precipitation in the Southeast US). While these provide valuable information about the fidelity of historical and projected climate model simulations from an atmospheric scientist's point of view, the application of climate model data to fields such as agriculture, ecology and biology may require additional analyses focused on the particular application's requirements and sensitivities. Typically, historical climate simulations are used to determine a mapping between the model and observed climate, either through a simple (additive for temperature or multiplicative for precipitation) or a more sophisticated (such as quantile matching) bias correction on a monthly or seasonal time scale. Plants, animals and humans however are not directly affected by monthly or seasonal means. To assess the impact of projected climate change on living organisms and related industries (e.g. agriculture, forestry, conservation, utilities, etc.), derivative measures such as the heating degree-days (HDD), cooling degree-days (CDD), growing degree-days (GDD), accumulated chill hours (ACH), wet season onset (WSO) and duration (WSD), among others, are frequently useful. We will present a comparison of the projected changes in such derivative measures calculated by applying: (a) the traditional temperature/precipitation bias correction described above versus (b) a bias correction based on the mapping between the historical model and observed derivative measures themselves. In addition, we will present and discuss examples of various application-based climate model evaluations, such as: (a) agricultural crop yield estimates and (b) species population viability estimates modeled using observed climate data vs. historical climate simulations.

  19. Climate change impacts on risks of groundwater pollution by herbicides: a regional scale assessment

    NASA Astrophysics Data System (ADS)

    Steffens, Karin; Moeys, Julien; Lindström, Bodil; Kreuger, Jenny; Lewan, Elisabet; Jarvis, Nick

    2014-05-01

    Groundwater contributes nearly half of the Swedish drinking water supply, which therefore needs to be protected both under present and future climate conditions. Pesticides are sometimes found in Swedish groundwater in concentrations exceeding the EU-drinking water limit and thus constitute a threat. The aim of this study was to assess the present and future risks of groundwater pollution at the regional scale by currently approved herbicides. We identified representative combinations of major crop types and their specific herbicide usage (product, dose and application timing) based on long-term monitoring data from two agricultural catchments in the South-West of Sweden. All these combinations were simulated with the regional version of the pesticide fate model MACRO (called MACRO-SE) for the periods 1970-1999 and 2070-2099 for a major crop production region in South West Sweden. To represent the uncertainty in future climate data, we applied a five-member ensemble based on different climate model projections downscaled with the RCA3-model (Swedish Meteorological and Hydrological Institute). In addition to the direct impacts of changes in the climate, the risks of herbicide leaching in the future will also be affected by likely changes in weed pressure and land use and management practices (e.g. changes in crop rotations and application timings). To assess the relative importance of such factors we performed a preliminary sensitivity analysis which provided us with a hierarchical structure for constructing future herbicide use scenarios for the regional scale model runs. The regional scale analysis gave average concentrations of herbicides leaching to groundwater for a large number of combinations of soils, crops and compounds. The results showed that future scenarios for herbicide use (more autumn-sown crops, more frequent multiple applications on one crop, and a shift from grassland to arable crops such as maize) imply significantly greater risks of herbicide leaching to groundwater in a changing climate, and that these indirect effects outweigh the direct effects of changes in climate driving variables. Due to the large uncertainties in climate change impact assessments, drawing firm conclusions is not possible, but this type of analysis provides indications of likely future concerns and can be used as an early-warning tool to inform the general public, responsible public authorities and decision makers.

  20. What scaling means in wind engineering: Complementary role of the reduced scale approach in a BLWT and the full scale testing in a large climatic wind tunnel

    NASA Astrophysics Data System (ADS)

    Flamand, Olivier

    2017-12-01

    Wind engineering problems are commonly studied by wind tunnel experiments at a reduced scale. This introduces several limitations and calls for a careful planning of the tests and the interpretation of the experimental results. The talk first revisits the similitude laws and discusses how they are actually applied in wind engineering. It will also remind readers why different scaling laws govern in different wind engineering problems. Secondly, the paper focuses on the ways to simplify a detailed structure (bridge, building, platform) when fabricating the downscaled models for the tests. This will be illustrated by several examples from recent engineering projects. Finally, under the most severe weather conditions, manmade structures and equipment should remain operational. What “recreating the climate” means and aims to achieve will be illustrated through common practice in climatic wind tunnel modelling.

  1. Predicted effects of gypsy moth defoliation and climate change on forest carbon dynamics in the New Jersey Pine Barrens

    Treesearch

    Alec M. Kretchun; Robert M. Scheller; Melissa S. Lucash; Kenneth L. Clark; John Hom; Steve Van Tuyl; Michael L. Fine

    2014-01-01

    Disturbance regimes within temperate forests can significantly impact carbon cycling. Additionally, projected climate change in combination with multiple, interacting disturbance effects may disrupt the capacity of forests to act as carbon sinks at large spatial and temporal scales. We used a spatially explicit forest succession and disturbance model, LANDIS-II, to...

  2. Linkages between large-scale climate patterns and the dynamics of Alaskan caribou populations

    Treesearch

    Kyle Joly; David R. Klein; David L. Verbyla; T. Scott Rupp; F. Stuart Chapin

    2011-01-01

    Recent research has linked climate warming to global declines in caribou and reindeer (both Rangifer tarandus) populations. We hypothesize large-scale climate patterns are a contributing factor explaining why these declines are not universal. To test our hypothesis for such relationships among Alaska caribou herds, we calculated the population growth...

  3. An approach for assessing the sensitivity of floods to regional climate change

    NASA Astrophysics Data System (ADS)

    Hughes, James P.; Lettenmaier, Dennis P.; Wood, Eric F.

    1992-06-01

    A high visibility afforded climate change issues is recent years has led to conflicts between and among decision makers and scientists. Decision makers inevitably feel pressure to assess the effect of climate change on the public welfare, while most climate modelers are, to a greater or lesser degree, concerned about the extent to which known inaccuracies in their models limit or preclude the use of modeling results for policy making. The water resources sector affords a good example of the limitations of the use of alternative climate scenarios derived from GCMs for decision making. GCM simulations of precipitation agree poorly between GCMs, and GCM predictions of runoff and evapotranspiration are even more uncertain. Further, water resources managers must be concerned about hydrologic extremes (floods and droughts) which are much more difficult to predict than ``average'' conditions. Most studies of the sensitivity of water resource systems and operating policies to climate change to data have been based on simple perturbations of historic hydroclimatological time series to reflect the difference between large area GCM simulations for an altered climate (e.g., CO2 doubling) and a GCM simulation of present climate. Such approaches are especially limited for assessment of the sensitivity of water resources systems under extreme conditions, conditions, since the distribution of storm inter-arrival times, for instance, is kept identical to that observed in the historic past. Further, such approaches have generally been based on the difference between the GCM altered and present climates for a single grid cell, primarily because the GCM spatial scale is often much larger than the scale at which climate interpretations are desired. The use of single grid cell GCM results is considered inadvisable by many GCM modelers, who feel the spatial scale for which interpretation of GCM results is most reasonable is on the order of several grid cells. In this paper, we demonstrate an alternative approach to assessing the implications of altered climates as predicted by GCMs for extreme (flooding) conditions. The approach is based on the characterization of regional atmospheric circulation patterns through a weather typing procedure, from which a stochastic model of the weather class occurrences is formulated. Weather types are identified through a CART (Classification and Regression Tree) approach. Precipitation occurence/non-occurence at multiple precipitation station is then predicted through a second stage stochastic model. Precipitation amounts are predicted conditional on the weather class identified from the large area circulation information.

  4. Cloud-Scale Numerical Modeling of the Arctic Boundary Layer

    NASA Technical Reports Server (NTRS)

    Krueger, Steven K.

    1998-01-01

    The interactions between sea ice, open ocean, atmospheric radiation, and clouds over the Arctic Ocean exert a strong influence on global climate. Uncertainties in the formulation of interactive air-sea-ice processes in global climate models (GCMs) result in large differences between the Arctic, and global, climates simulated by different models. Arctic stratus clouds are not well-simulated by GCMs, yet exert a strong influence on the surface energy budget of the Arctic. Leads (channels of open water in sea ice) have significant impacts on the large-scale budgets during the Arctic winter, when they contribute about 50 percent of the surface fluxes over the Arctic Ocean, but cover only 1 to 2 percent of its area. Convective plumes generated by wide leads may penetrate the surface inversion and produce condensate that spreads up to 250 km downwind of the lead, and may significantly affect the longwave radiative fluxes at the surface and thereby the sea ice thickness. The effects of leads and boundary layer clouds must be accurately represented in climate models to allow possible feedbacks between them and the sea ice thickness. The FIRE III Arctic boundary layer clouds field program, in conjunction with the SHEBA ice camp and the ARM North Slope of Alaska and Adjacent Arctic Ocean site, will offer an unprecedented opportunity to greatly improve our ability to parameterize the important effects of leads and boundary layer clouds in GCMs.

  5. More robust regional precipitation projection from selected CMIP5 models based on multiple-dimensional metrics

    NASA Astrophysics Data System (ADS)

    Qian, Y.; Wang, L.; Leung, L. R.; Lin, G.; Lu, J.; Gao, Y.; Zhang, Y.

    2017-12-01

    Projecting precipitation changes is challenging because of incomplete understanding of the climate system and biases and uncertainty in climate models. In East Asia where summer precipitation is dominantly influenced by the monsoon circulation and the global models from Coupled Model Intercomparison Project Phase 5 (CMIP5), however, give various projection of precipitation change for 21th century. It is critical for community to know which models' projection are more reliable in response to natural and anthropogenic forcings. In this study we defined multiple-dimensional metrics, measuring the model performance in simulating the present-day of large-scale circulation, regional precipitation and relationship between them. The large-scale circulation features examined in this study include the lower tropospheric southwesterly winds, the western North Pacific subtropical high, the South China Sea Subtropical High, and the East Asian westerly jet in the upper troposphere. Each of these circulation features transport moisture to East Asia, enhancing the moist static energy and strengthening the Meiyu moisture front that is the primary mechanism for precipitation generation in eastern China. Based on these metrics, 30 models in CMIP5 ensemble are classified into three groups. Models in the top performing group projected regional precipitation patterns that are more similar to each other than the bottom or middle performing group and consistently projected statistically significant increasing trends in two of the large-scale circulation indices and precipitation. In contrast, models in the bottom or middle performing group projected small drying or no trends in precipitation. We also find the models that only reasonably reproduce the observed precipitation climatology does not guarantee more reliable projection of future precipitation because good simulation skill could be achieved through compensating errors from multiple sources. Herein the potential for more robust projections of precipitation changes at regional scale is demonstrated through the use of discriminating metric to subsample the multi-model ensemble. The results from this study provides insights for how to select models from CMIP ensemble to project regional climate and hydrological cycle changes.

  6. Regional impacts of Atlantic Forest deforestation on climate and vegetation dynamics

    NASA Astrophysics Data System (ADS)

    Holm, J. A.; Chambers, J. Q.

    2012-12-01

    The Brazilian Atlantic Forest was a large and important forest due to its high biodiversity, endemism, range in climate, and complex geography. The original Atlantic Forest was estimated to cover 150 million hectares, spanning large latitudinal, longitudinal, and elevation gradients. This unique environment helped contribute to a diverse assemblage of plants, mammals, birds, and reptiles. Unfortunately, due to land conversion into agriculture, pasture, urban areas, and increased forest fragmentation, only ~8-10% of the original Atlantic Forest remains. Tropical deforestation in the Americas can have considerable effects on local to global climates, and surrounding vegetation growth and survival. This study uses a fully coupled, global climate model (Community Earth System Model, CESM v.1.0.1) to simulate the full removal of the historical Atlantic Forest, and evaluate the regional climatic and vegetation responses due to deforestation. We used the fully coupled atmosphere and land surface components in CESM, and a partially interacting ocean component. The vegetated grid cell portion of the land surface component, the Community Landscape Model (CLM), is divided into 4 of 16 plant functional types (PFTs) with vertical layers of canopy, leaf area index, soil physical properties, and interacting hydrological features all tracking energy, water, and carbon state and flux variables, making CLM highly capable in predicting the complex nature and outcomes of large-scale deforestation. The Atlantic Forest removal (i.e. deforestation) was conducted my converting all woody stem PFTs to grasses in CLM, creating a land-use change from forest to pasture. By comparing the simulated historical Atlantic Forest (pre human alteration) to a deforested Atlantic Forest (close to current conditions) in CLM and CESM we found that live stem carbon, NPP (gC m-2 yr-1), and other vegetation dynamics inside and outside the Atlantic Forest region were largely altered. In addition to vegetation effects, regional surface air temperature (C°), precipitation (mm day-1), and emitted longwave radiation (W m-2) were highly affected in the location of the removed forest, and throughout surrounding areas of South America. For example climate patterns of increased temperature and decreased precipitation were affected as far as the Amazon Forest region. The use of fully coupled global climate and terrestrial models to study the effects of large-scale forest removal have been rarely applied. This study successfully showed the valuation of an important tropical forest, and the consequences of large deforestation through the reporting of complex earth-atmosphere interactions between vegetation dynamics and climate.

  7. Regional hydro-climatic impacts of contemporary Amazonian deforestation

    NASA Astrophysics Data System (ADS)

    Khanna, Jaya

    More than 17% of the Amazon rainforest has been cleared in the past three decades triggering important climatological and societal impacts. This thesis is devoted to identifying and explaining the regional hydroclimatic impacts of this change employing multidecadal satellite observations and numerical simulations providing an integrated perspective on this topic. The climatological nature of this study motivated the implementation and application of a cloud detection technique to a new geostationary satellite dataset. The resulting sub daily, high spatial resolution, multidecadal time series facilitated the detection of trends and variability in deforestation triggered cloud cover changes. The analysis was complemented by satellite precipitation, reanalysis and ground based datasets and attribution with the variable resolution Ocean-Land-Atmosphere-Model. Contemporary Amazonian deforestation affects spatial scales of hundreds of kilometers. But, unlike the well-studied impacts of a few kilometers scale deforestation, the climatic response to contemporary, large scale deforestation is neither well observed nor well understood. Employing satellite datasets, this thesis shows a transition in the regional hydroclimate accompanying increasing scales of deforestation, with downwind deforested regions receiving 25% more and upwind deforested regions receiving 25% less precipitation from the deforested area mean. Simulations robustly reproduce these shifts when forced with increasing deforestation alone, suggesting a negligible role of large-scale decadal climate variability in causing the shifts. Furthermore, deforestation-induced surface roughness variations are found necessary to reproduce the observed spatial patterns in recent times illustrating the strong scale-sensitivity of the climatic response to Amazonian deforestation. This phenomenon, inconsequential during the wet season, is found to substantially affect the regional hydroclimate in the local dry and parts of transition seasons, hence occurring in atmospheric conditions otherwise less conducive to thermal convection. Evidence of this phenomenon is found at two large scale deforested areas considered in this thesis. Hence, the 'dynamical' mechanism, which affects the seasons most important for regional ecology, emerges as an impactful convective triggering mechanism. The phenomenon studied in this thesis provides context for thinking about the climate of a future, more patchily forested Amazonia, by articulating relationships between climate and spatial scales of deforestation.

  8. Effects of species biological traits and environmental heterogeneity on simulated tree species distribution shifts under climate change.

    PubMed

    Wang, Wen J; He, Hong S; Thompson, Frank R; Spetich, Martin A; Fraser, Jacob S

    2018-09-01

    Demographic processes (fecundity, dispersal, colonization, growth, and mortality) and their interactions with environmental changes are not well represented in current climate-distribution models (e.g., niche and biophysical process models) and constitute a large uncertainty in projections of future tree species distribution shifts. We investigate how species biological traits and environmental heterogeneity affect species distribution shifts. We used a species-specific, spatially explicit forest dynamic model LANDIS PRO, which incorporates site-scale tree species demography and competition, landscape-scale dispersal and disturbances, and regional-scale abiotic controls, to simulate the distribution shifts of four representative tree species with distinct biological traits in the central hardwood forest region of United States. Our results suggested that biological traits (e.g., dispersal capacity, maturation age) were important for determining tree species distribution shifts. Environmental heterogeneity, on average, reduced shift rates by 8% compared to perfect environmental conditions. The average distribution shift rates ranged from 24 to 200myear -1 under climate change scenarios, implying that many tree species may not able to keep up with climate change because of limited dispersal capacity, long generation time, and environmental heterogeneity. We suggest that climate-distribution models should include species demographic processes (e.g., fecundity, dispersal, colonization), biological traits (e.g., dispersal capacity, maturation age), and environmental heterogeneity (e.g., habitat fragmentation) to improve future predictions of species distribution shifts in response to changing climates. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Time-lag effects of global vegetation responses to climate change.

    PubMed

    Wu, Donghai; Zhao, Xiang; Liang, Shunlin; Zhou, Tao; Huang, Kaicheng; Tang, Bijian; Zhao, Wenqian

    2015-09-01

    Climate conditions significantly affect vegetation growth in terrestrial ecosystems. Due to the spatial heterogeneity of ecosystems, the vegetation responses to climate vary considerably with the diverse spatial patterns and the time-lag effects, which are the most important mechanism of climate-vegetation interactive effects. Extensive studies focused on large-scale vegetation-climate interactions use the simultaneous meteorological and vegetation indicators to develop models; however, the time-lag effects are less considered, which tends to increase uncertainty. In this study, we aim to quantitatively determine the time-lag effects of global vegetation responses to different climatic factors using the GIMMS3g NDVI time series and the CRU temperature, precipitation, and solar radiation datasets. First, this study analyzed the time-lag effects of global vegetation responses to different climatic factors. Then, a multiple linear regression model and partial correlation model were established to statistically analyze the roles of different climatic factors on vegetation responses, from which the primary climate-driving factors for different vegetation types were determined. The results showed that (i) both the time-lag effects of the vegetation responses and the major climate-driving factors that significantly affect vegetation growth varied significantly at the global scale, which was related to the diverse vegetation and climate characteristics; (ii) regarding the time-lag effects, the climatic factors explained 64% variation of the global vegetation growth, which was 11% relatively higher than the model ignoring the time-lag effects; (iii) for the area with a significant change trend (for the period 1982-2008) in the global GIMMS3g NDVI (P < 0.05), the primary driving factor was temperature; and (iv) at the regional scale, the variation in vegetation growth was also related to human activities and natural disturbances. Considering the time-lag effects is quite important for better predicting and evaluating the vegetation dynamics under the background of global climate change. © 2015 John Wiley & Sons Ltd.

  10. Simulating large-scale crop yield by using perturbed-parameter ensemble method

    NASA Astrophysics Data System (ADS)

    Iizumi, T.; Yokozawa, M.; Sakurai, G.; Nishimori, M.

    2010-12-01

    Toshichika Iizumi, Masayuki Yokozawa, Gen Sakurai, Motoki Nishimori Agro-Meteorology Division, National Institute for Agro-Environmental Sciences, Japan Abstract One of concerning issues of food security under changing climate is to predict the inter-annual variation of crop production induced by climate extremes and modulated climate. To secure food supply for growing world population, methodology that can accurately predict crop yield on a large scale is needed. However, for developing a process-based large-scale crop model with a scale of general circulation models (GCMs), 100 km in latitude and longitude, researchers encounter the difficulties in spatial heterogeneity of available information on crop production such as cultivated cultivars and management. This study proposed an ensemble-based simulation method that uses a process-based crop model and systematic parameter perturbation procedure, taking maize in U.S., China, and Brazil as examples. The crop model was developed modifying the fundamental structure of the Soil and Water Assessment Tool (SWAT) to incorporate the effect of heat stress on yield. We called the new model PRYSBI: the Process-based Regional-scale Yield Simulator with Bayesian Inference. The posterior probability density function (PDF) of 17 parameters, which represents the crop- and grid-specific features of the crop and its uncertainty under given data, was estimated by the Bayesian inversion analysis. We then take 1500 ensemble members of simulated yield values based on the parameter sets sampled from the posterior PDF to describe yearly changes of the yield, i.e. perturbed-parameter ensemble method. The ensemble median for 27 years (1980-2006) was compared with the data aggregated from the county yield. On a country scale, the ensemble median of the simulated yield showed a good correspondence with the reported yield: the Pearson’s correlation coefficient is over 0.6 for all countries. In contrast, on a grid scale, the correspondence is still high in most grids regardless of the countries. However, the model showed comparatively low reproducibility in the slope areas, such as around the Rocky Mountains in South Dakota, around the Great Xing'anling Mountains in Heilongjiang, and around the Brazilian Plateau. As there is a wide-ranging local climate conditions in the complex terrain, such as the slope of mountain, the GCM grid-scale weather inputs is likely one of major sources of error. The results of this study highlight the benefits of the perturbed-parameter ensemble method in simulating crop yield on a GCM grid scale: (1) the posterior PDF of parameter could quantify the uncertainty of parameter value of the crop model associated with the local crop production aspects; (2) the method can explicitly account for the uncertainty of parameter value in the crop model simulations; (3) the method achieve a Monte Carlo approximation of probability of sub-grid scale yield, accounting for the nonlinear response of crop yield to weather and management; (4) the method is therefore appropriate to aggregate the simulated sub-grid scale yields to a grid-scale yield and it may be a reason for high performance of the model in capturing inter-annual variation of yield.

  11. Large historical growth in global terrestrial gross primary production

    DOE PAGES

    Campbell, J. E.; Berry, J. A.; Seibt, U.; ...

    2017-04-05

    Growth in terrestrial gross primary production (GPP) may provide a negative feedback for climate change. It remains uncertain, however, to what extent biogeochemical processes can suppress global GPP growth. In consequence, model estimates of terrestrial carbon storage and carbon cycle –climate feedbacks remain poorly constrained. Here we present a global, measurement-based estimate of GPP growth during the twentieth century based on long-term atmospheric carbonyl sulphide (COS) records derived from ice core, firn, and ambient air samples. Here, we interpret these records using a model that simulates changes in COS concentration due to changes in its sources and sinks, including amore » large sink that is related to GPP. We find that the COS record is most consistent with climate-carbon cycle model simulations that assume large GPP growth during the twentieth century (31% ± 5%; mean ± 95% confidence interval). Finally, while this COS analysis does not directly constrain estimates of future GPP growth it provides a global-scale benchmark for historical carbon cycle simulations.« less

  12. Large historical growth in global terrestrial gross primary production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campbell, J. E.; Berry, J. A.; Seibt, U.

    Growth in terrestrial gross primary production (GPP) may provide a negative feedback for climate change. It remains uncertain, however, to what extent biogeochemical processes can suppress global GPP growth. In consequence, model estimates of terrestrial carbon storage and carbon cycle –climate feedbacks remain poorly constrained. Here we present a global, measurement-based estimate of GPP growth during the twentieth century based on long-term atmospheric carbonyl sulphide (COS) records derived from ice core, firn, and ambient air samples. Here, we interpret these records using a model that simulates changes in COS concentration due to changes in its sources and sinks, including amore » large sink that is related to GPP. We find that the COS record is most consistent with climate-carbon cycle model simulations that assume large GPP growth during the twentieth century (31% ± 5%; mean ± 95% confidence interval). Finally, while this COS analysis does not directly constrain estimates of future GPP growth it provides a global-scale benchmark for historical carbon cycle simulations.« less

  13. A nonparametric stochastic method for generating daily climate-adjusted streamflows

    NASA Astrophysics Data System (ADS)

    Stagge, J. H.; Moglen, G. E.

    2013-10-01

    A daily stochastic streamflow generation model is presented, which successfully replicates statistics of the historical streamflow record and can produce climate-adjusted daily time series. A monthly climate model relates general circulation model (GCM)-scale climate indicators to discrete climate-streamflow states, which in turn control parameters in a daily streamflow generation model. Daily flow is generated by a two-state (increasing/decreasing) Markov chain, with rising limb increments randomly sampled from a Weibull distribution and the falling limb modeled as exponential recession. When applied to the Potomac River, a 38,000 km2 basin in the Mid-Atlantic United States, the model reproduces the daily, monthly, and annual distribution and dynamics of the historical streamflow record, including extreme low flows. This method can be used as part of water resources planning, vulnerability, and adaptation studies and offers the advantage of a parsimonious model, requiring only a sufficiently long historical streamflow record and large-scale climate data. Simulation of Potomac streamflows subject to the Special Report on Emissions Scenarios (SRES) A1b, A2, and B1 emission scenarios predict a slight increase in mean annual flows over the next century, with the majority of this increase occurring during the winter and early spring. Conversely, mean summer flows are projected to decrease due to climate change, caused by a shift to shorter, more sporadic rain events. Date of the minimum annual flow is projected to shift 2-5 days earlier by the 2070-2099 period.

  14. Normal forms for reduced stochastic climate models

    PubMed Central

    Majda, Andrew J.; Franzke, Christian; Crommelin, Daan

    2009-01-01

    The systematic development of reduced low-dimensional stochastic climate models from observations or comprehensive high-dimensional climate models is an important topic for atmospheric low-frequency variability, climate sensitivity, and improved extended range forecasting. Here techniques from applied mathematics are utilized to systematically derive normal forms for reduced stochastic climate models for low-frequency variables. The use of a few Empirical Orthogonal Functions (EOFs) (also known as Principal Component Analysis, Karhunen–Loéve and Proper Orthogonal Decomposition) depending on observational data to span the low-frequency subspace requires the assessment of dyad interactions besides the more familiar triads in the interaction between the low- and high-frequency subspaces of the dynamics. It is shown below that the dyad and multiplicative triad interactions combine with the climatological linear operator interactions to simultaneously produce both strong nonlinear dissipation and Correlated Additive and Multiplicative (CAM) stochastic noise. For a single low-frequency variable the dyad interactions and climatological linear operator alone produce a normal form with CAM noise from advection of the large scales by the small scales and simultaneously strong cubic damping. These normal forms should prove useful for developing systematic strategies for the estimation of stochastic models from climate data. As an illustrative example the one-dimensional normal form is applied below to low-frequency patterns such as the North Atlantic Oscillation (NAO) in a climate model. The results here also illustrate the short comings of a recent linear scalar CAM noise model proposed elsewhere for low-frequency variability. PMID:19228943

  15. An overview of the South Atlantic Ocean climate variability and air-sea interaction processes

    NASA Astrophysics Data System (ADS)

    Pezzi, L. P.; Parise, C. K.; Souza, R.; Gherardi, D. F.; Camargo, R.; Soares, H. C.; Silveira, I.

    2013-05-01

    The Ocean Modeling Group at the National Institute of Space Research (INPE) in Brazil has been developing several studies to understand the role of the Atlantic ocean on the South America climate. Studies include simulating the dynamics of the Tropical South-Atlantic Ocean and Southern Ocean. This is part of an ongoing international cooperation, in which Brazil participates with in situ observations, numerical modeling and statistical analyses. We have focused on the understanding of the impacts of extreme weather events over the Tropical South Atlantic Ocean and their prediction on different time-scales. One such study is aimed at analyzing the climate signal generated by imposing an extreme condition on the Antarctic sea ice and considering different complexities of the sea ice model. The influence of the Brazil-Malvinas Confluence (BMC) region on the marine atmospheric boundary layer (MABL) is also investigated through in situ data analysis of different cruises and numerical experiments with a regional numerical model. There is also an ongoing investigation that revealed basin-scale interannual climate variation with impacts on the Brazilian Large Marine Ecosystems (LMEs), which are strongly correlated with climate indices such as ENSO, AAO and PDO.

  16. Climatic Impacts of a Volcanic Double Event: 536/540 CE

    NASA Astrophysics Data System (ADS)

    Toohey, M.; Krüger, K.; Sigl, M.; Stordal, F.; Svensen, H.

    2015-12-01

    Volcanic activity in and around the year 536 CE led to the coldest decade of the Common Era, and has been speculatively linked to large-scale societal crises around the world. Using a coupled aerosol-climate model, with eruption parameters constrained by recently re-dated ice core records and historical observations of the aerosol cloud, we reconstruct the radiative forcing resulting from a sequence of two major volcanic eruptions in 536 and 540 CE. Comparing with a reconstruction of volcanic forcing over the past 1200 years, we estimate that the decadal-scale Northern Hemisphere (NH) extra-tropical radiative forcing from this volcanic "double event" was larger than that of any known period. Earth system model simulations including the volcanic forcing are used to explore the temperature and precipitation anomalies associated with the eruptions, and compared to available proxy records, including maximum latewood density (MXD) temperature reconstructions. Special attention is placed on the decadal persistence of the cooling signal in tree rings, and whether the climate model simulations reproduce such long-term climate anomalies. Finally, the climate model results will be used to explore the probability of socioeconomic crisis resulting directly from the volcanic radiative forcing in different regions of the world.

  17. The Quaternary fossil-pollen record and global change

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grimm, E.C.

    Fossil pollen provide one of the most valuable records of vegetation and climate change during the recent geological past. Advantages of the fossil-pollen record are that deposits containing fossil pollen are widespread, especially in areas having natural lakes, that fossil pollen occurs in continuous stratigraphic sequences spanning millennia, and that fossil pollen occurs in quantitative assemblages permitting a multivariate approach for reconstructing past vegetation and climates. Because of stratigraphic continuity, fossil pollen records climate cycles on a wide range of scales, from annual to the 100 ka Milankovitch cycles. Receiving particular emphasis recently are decadal to century scale changes, possiblemore » from the sediments of varved lakes, and late Pleistocene events on a 5--10 ka scale possibly correlating with the Heinrich events in the North Atlantic marine record or the Dansgaard-Oeschger events in the Greenland ice-core record. Researchers have long reconstructed vegetation and climate by qualitative interpretation of the fossil-pollen record. Recently quantitative interpretation has developed with the aid of large fossil-pollen databases and sophisticated numerical models. In addition, fossil pollen are important climate proxy data for validating General Circulation Models, which are used for predicting the possible magnitude future climate change. Fossil-pollen data also contribute to an understanding of ecological issues associated with global climate change, including questions of how and how rapidly ecosystems might respond to abrupt climate change.« less

  18. Modeling the intersections of Food, Energy, and Water in climate-vulnerable Ethiopia with an application to small-scale irrigation

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Sankaranarayanan, S.; Zaitchik, B. F.; Siddiqui, S.

    2017-12-01

    Africa is home to some of the most climate vulnerable populations in the world. Energy and agricultural development have diverse impacts on the region's food security and economic well-being from the household to the national level, particularly considering climate variability and change. Our ultimate goal is to understand coupled Food-Energy-Water (FEW) dynamics across spatial scales in order to quantify the sensitivity of critical human outcomes to FEW development strategies in Ethiopia. We are developing bottom-up and top-down multi-scale models, spanning local, sub-national and national scales to capture the FEW linkages across communities and climatic adaptation zones. The focus of this presentation is the sub-national scale multi-player micro-economic (MME) partial-equilibrium model with coupled food and energy sector for Ethiopia. With fixed large-scale economic, demographic, and resource factors from the national scale computable general equilibrium (CGE) model and inferences of behavior parameters from the local scale agent-based model (ABM), the MME studies how shocks such as drought (crop failure) and development of resilience technologies would influence FEW system at a sub-national scale. The MME model is based on aggregating individual optimization problems for relevant players. It includes production, storage, and consumption of food and energy at spatially disaggregated zones, and transportation in between with endogenously modeled infrastructure. The aggregated players for each zone have different roles such as crop producers, storage managers, and distributors, who make decisions according to their own but interdependent objective functions. The food and energy supply chain across zones is therefore captured. Ethiopia is dominated by rain-fed agriculture with only 2% irrigated farmland. Small-scale irrigation has been promoted as a resilience technology that could potentially play a critical role in food security and economic well-being in Ethiopia, but that also intersects with energy and water consumption. Here, we focus on the energy usage for small-scale irrigation and the collective impact on crop production and water resources across zones in the MME model.

  19. Large scale and cloud-based multi-model analytics experiments on climate change data in the Earth System Grid Federation

    NASA Astrophysics Data System (ADS)

    Fiore, Sandro; Płóciennik, Marcin; Doutriaux, Charles; Blanquer, Ignacio; Barbera, Roberto; Donvito, Giacinto; Williams, Dean N.; Anantharaj, Valentine; Salomoni, Davide D.; Aloisio, Giovanni

    2017-04-01

    In many scientific domains such as climate, data is often n-dimensional and requires tools that support specialized data types and primitives to be properly stored, accessed, analysed and visualized. Moreover, new challenges arise in large-scale scenarios and eco-systems where petabytes (PB) of data can be available and data can be distributed and/or replicated, such as the Earth System Grid Federation (ESGF) serving the Coupled Model Intercomparison Project, Phase 5 (CMIP5) experiment, providing access to 2.5PB of data for the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5). A case study on climate models intercomparison data analysis addressing several classes of multi-model experiments is being implemented in the context of the EU H2020 INDIGO-DataCloud project. Such experiments require the availability of large amount of data (multi-terabyte order) related to the output of several climate models simulations as well as the exploitation of scientific data management tools for large-scale data analytics. More specifically, the talk discusses in detail a use case on precipitation trend analysis in terms of requirements, architectural design solution, and infrastructural implementation. The experiment has been tested and validated on CMIP5 datasets, in the context of a large scale distributed testbed across EU and US involving three ESGF sites (LLNL, ORNL, and CMCC) and one central orchestrator site (PSNC). The general "environment" of the case study relates to: (i) multi-model data analysis inter-comparison challenges; (ii) addressed on CMIP5 data; and (iii) which are made available through the IS-ENES/ESGF infrastructure. The added value of the solution proposed in the INDIGO-DataCloud project are summarized in the following: (i) it implements a different paradigm (from client- to server-side); (ii) it intrinsically reduces data movement; (iii) it makes lightweight the end-user setup; (iv) it fosters re-usability (of data, final/intermediate products, workflows, sessions, etc.) since everything is managed on the server-side; (v) it complements, extends and interoperates with the ESGF stack; (vi) it provides a "tool" for scientists to run multi-model experiments, and finally; and (vii) it can drastically reduce the time-to-solution for these experiments from weeks to hours. At the time the contribution is being written, the proposed testbed represents the first concrete implementation of a distributed multi-model experiment in the ESGF/CMIP context joining server-side and parallel processing, end-to-end workflow management and cloud computing. As opposed to the current scenario based on search & discovery, data download, and client-based data analysis, the INDIGO-DataCloud architectural solution described in this contribution addresses the scientific computing & analytics requirements by providing a paradigm shift based on server-side and high performance big data frameworks jointly with two-level workflow management systems realized at the PaaS level via a cloud infrastructure.

  20. Estimating the impact of mineral aerosols on crop yields in food insecure regions using statistical crop models

    NASA Astrophysics Data System (ADS)

    Hoffman, A.; Forest, C. E.; Kemanian, A.

    2016-12-01

    A significant number of food-insecure nations exist in regions of the world where dust plays a large role in the climate system. While the impacts of common climate variables (e.g. temperature, precipitation, ozone, and carbon dioxide) on crop yields are relatively well understood, the impact of mineral aerosols on yields have not yet been thoroughly investigated. This research aims to develop the data and tools to progress our understanding of mineral aerosol impacts on crop yields. Suspended dust affects crop yields by altering the amount and type of radiation reaching the plant, modifying local temperature and precipitation. While dust events (i.e. dust storms) affect crop yields by depleting the soil of nutrients or by defoliation via particle abrasion. The impact of dust on yields is modeled statistically because we are uncertain which impacts will dominate the response on national and regional scales considered in this study. Multiple linear regression is used in a number of large-scale statistical crop modeling studies to estimate yield responses to various climate variables. In alignment with previous work, we develop linear crop models, but build upon this simple method of regression with machine-learning techniques (e.g. random forests) to identify important statistical predictors and isolate how dust affects yields on the scales of interest. To perform this analysis, we develop a crop-climate dataset for maize, soybean, groundnut, sorghum, rice, and wheat for the regions of West Africa, East Africa, South Africa, and the Sahel. Random forest regression models consistently model historic crop yields better than the linear models. In several instances, the random forest models accurately capture the temperature and precipitation threshold behavior in crops. Additionally, improving agricultural technology has caused a well-documented positive trend that dominates time series of global and regional yields. This trend is often removed before regression with traditional crop models, but likely at the cost of removing climate information. Our random forest models consistently discover the positive trend without removing any additional data. The application of random forests as a statistical crop model provides insight into understanding the impact of dust on yields in marginal food producing regions.

  1. Energy-Water-Land-Climate Nexus: Modeling Impacts from the Asset to Regional Scale

    NASA Astrophysics Data System (ADS)

    Tidwell, V. C.; Bennett, K. E.; Middleton, R. S.; Behery, S.; Macknick, J.; Corning-Padilla, A.; Brinkman, G.; Meng, M.

    2016-12-01

    A critical challenge for the energy-water-land nexus is understanding and modeling the connection between the natural system—including changes in climate, land use/cover, and streamflow—and the engineered system including water for energy, agriculture, and society. Equally important is understanding the linkage across scales; that is, how impacts at the asset level aggregate to influence behavior at the local to regional scale. Toward this need, a case study was conducted featuring multi-sector and multi-scale modeling centered on the San Juan River basin (a watershed that accounts for one-tenth of the Colorado River drainage area). Simulations were driven by statistically downscaled climate data from three global climate models (emission scenario RCP 8.5) and planned growth in regional water demand. The Variable Infiltration Capacity (VIC) hydrologic model was fitted with a custom vegetation mortality sub-model and used to estimate tributary inflows to the San Juan River and estimate reservoir evaporation. San Juan River operations, including releases from Navajo Reservoir, were subsequently modeled using RiverWare to estimate impacts on water deliveries out to the year 2100. Major water demands included two large coal-fired power plants, a local electric utility, river-side irrigation, the Navajo Indian Irrigation Project and instream flows managed for endangered aquatic species. Also tracked were basin exports, including water (downstream flows to the Colorado River and interbasin transfers to the Rio Grande) and interstate electric power transmission. Implications for the larger western electric grid were assessed using PLEXOS, a sub-hourly dispatch, electric production-cost model. Results highlight asset-level interactions at the energy-water-land nexus driven by climate and population dynamics; specifically, growing vulnerabilities to shorted water deliveries. Analyses also explored linkages across geographic scales from the San Juan to the larger Colorado River and Rio Grande basins as well as the western power grid.

  2. Forcing, feedbacks and climate sensitivity in CMIP5 coupled atmosphere-ocean climate models

    DOE PAGES

    Andrews, Timothy; Gregory, Jonathan M.; Webb, Mark J.; ...

    2012-05-15

    We quantify forcing and feedbacks across available CMIP5 coupled atmosphere-ocean general circulation models (AOGCMs) by analysing simulations forced by an abrupt quadrupling of atmospheric carbon dioxide concentration. This is the first application of the linear forcing-feedback regression analysis of Gregory et al. (2004) to an ensemble of AOGCMs. The range of equilibrium climate sensitivity is 2.1–4.7 K. Differences in cloud feedbacks continue to be important contributors to this range. Some models show small deviations from a linear dependence of top-of-atmosphere radiative fluxes on global surface temperature change. We show that this phenomenon largely arises from shortwave cloud radiative effects overmore » the ocean and is consistent with independent estimates of forcing using fixed sea-surface temperature methods. Moreover, we suggest that future research should focus more on understanding transient climate change, including any time-scale dependence of the forcing and/or feedback, rather than on the equilibrium response to large instantaneous forcing.« less

  3. Applying an economical scale-aware PDF-based turbulence closure model in NOAA NCEP GCMs

    NASA Astrophysics Data System (ADS)

    Belochitski, A.; Krueger, S. K.; Moorthi, S.; Bogenschutz, P.; Pincus, R.

    2016-12-01

    A novel unified representation of sub-grid scale (SGS) turbulence, cloudiness, and shallow convection is being implemented into the NOAA NCEP Global Forecasting System (GFS) general circulation model. The approach, known as Simplified High Order Closure (SHOC), is based on predicting a joint PDF of SGS thermodynamic variables and vertical velocity and using it to diagnose turbulent diffusion coefficients, SGS fluxes, condensation and cloudiness. Unlike other similar methods, only one new prognostic variable, turbulent kinetic energy (TKE), needs to be intoduced, making the technique computationally efficient.SHOC is now incorporated into a version of GFS, as well as into the next generation of the NCEP global model - NOAA Environmental Modeling System (NEMS). Turbulent diffusion coefficients computed by SHOC are now used in place of those produced by the boundary layer turbulence and shallow convection parameterizations. Large scale microphysics scheme is no longer used to calculate cloud fraction or the large-scale condensation/deposition. Instead, SHOC provides these variables. Radiative transfer parameterization uses cloudiness computed by SHOC.Outstanding problems include high level tropical cloud fraction being too high in SHOC runs, possibly related to the interaction of SHOC with condensate detrained from deep convection.Future work will consist of evaluating model performance and tuning the physics if necessary, by performing medium-range NWP forecasts with prescribed initial conditions, and AMIP-type climate tests with prescribed SSTs. Depending on the results, the model will be tuned or parameterizations modified. Next, SHOC will be implemented in the NCEP CFS, and tuned and evaluated for climate applications - seasonal prediction and long coupled climate runs. Impact of new physics on ENSO, MJO, ISO, monsoon variability, etc will be examined.

  4. Downscaling of Global Climate Change Estimates to Regional Scales: An Application to Iberian Rainfall in Wintertime.

    NASA Astrophysics Data System (ADS)

    von Storch, Hans; Zorita, Eduardo; Cubasch, Ulrich

    1993-06-01

    A statistical strategy to deduct regional-scale features from climate general circulation model (GCM) simulations has been designed and tested. The main idea is to interrelate the characteristic patterns of observed simultaneous variations of regional climate parameters and of large-scale atmospheric flow using the canonical correlation technique.The large-scale North Atlantic sea level pressure (SLP) is related to the regional, variable, winter (DJF) mean Iberian Peninsula rainfall. The skill of the resulting statistical model is shown by reproducing, to a good approximation, the winter mean Iberian rainfall from 1900 to present from the observed North Atlantic mean SLP distributions. It is shown that this observed relationship between these two variables is not well reproduced in the output of a general circulation model (GCM).The implications for Iberian rainfall changes as the response to increasing atmospheric greenhouse-gas concentrations simulated by two GCM experiments are examined with the proposed statistical model. In an instantaneous `2 C02' doubling experiment, using the simulated change of the mean North Atlantic SLP field to predict Iberian rainfall yields, there is an insignificant increase of area-averaged rainfall of 1 mm/month, with maximum values of 4 mm/month in the northwest of the peninsula. In contrast, for the four GCM grid points representing the Iberian Peninsula, the change is 10 mm/month, with a minimum of 19 mm/month in the southwest. In the second experiment, with the IPCC scenario A ("business as usual") increase Of C02, the statistical-model results partially differ from the directly simulated rainfall changes: in the experimental range of 100 years, the area-averaged rainfall decreases by 7 mm/month (statistical model), and by 9 mm/month (GCM); at the same time the amplitude of the interdecadal variability is quite different.

  5. Summary of results of January climate simulations with the GISS coarse-mesh model

    NASA Technical Reports Server (NTRS)

    Spar, J.; Cohen, C.; Wu, P.

    1981-01-01

    The large scale climates generated by extended runs of the model are relatively independent of the initial atmospheric conditions, if the first few months of each simulation are discarded. The perpetual January simulations with a specified SST field produced excessive snow accumulation over the continents of the Northern Hemisphere. Mass exchanges between the cold (warm) continents and the warm (cold) adjacent oceans produced significant surface pressure changes over the oceans as well as over the land. The effect of terrain and terrain elevation on the amount of precipitation was examined. The evaporation of continental moisture was calculated to cause large increases in precipitation over the continents.

  6. Future potential distribution of the emerging amphibian chytrid fungus under anthropogenic climate change.

    PubMed

    Rödder, Dennis; Kielgast, Jos; Lötters, Stefan

    2010-11-01

    Anthropogenic climate change poses a major threat to global biodiversity with a potential to alter biological interactions at all spatial scales. Amphibians are the most threatened vertebrates and have been subject to increasing conservation attention over the past decade. A particular concern is the pandemic emergence of the parasitic chytrid fungus Batrachochytrium dendrobatidis, which has been identified as the cause of extremely rapid large-scale declines and species extinctions. Experimental and observational studies have demonstrated that the host-pathogen system is strongly influenced by climatic parameters and thereby potentially affected by climate change. Herein we project a species distribution model of the pathogen onto future climatic scenarios generated by the IPCC to examine their potential implications on the pandemic. Results suggest that predicted anthropogenic climate change may reduce the geographic range of B. dendrobatidis and its potential influence on amphibian biodiversity.

  7. Comparing large-scale hydrological model predictions with observed streamflow in the Pacific Northwest: effects of climate and groundwater

    Treesearch

    Mohammad Safeeq; Guillaume S. Mauger; Gordon E. Grant; Ivan Arismendi; Alan F. Hamlet; Se-Yeun Lee

    2014-01-01

    Assessing uncertainties in hydrologic models can improve accuracy in predicting future streamflow. Here, simulated streamflows using the Variable Infiltration Capacity (VIC) model at coarse (1/16°) and fine (1/120°) spatial resolutions were evaluated against observed streamflows from 217 watersheds. In...

  8. Regional climates in the GISS general circulation model: Surface air temperature

    NASA Technical Reports Server (NTRS)

    Hewitson, Bruce

    1994-01-01

    One of the more viable research techniques into global climate change for the purpose of understanding the consequent environmental impacts is based on the use of general circulation models (GCMs). However, GCMs are currently unable to reliably predict the regional climate change resulting from global warming, and it is at the regional scale that predictions are required for understanding human and environmental responses. Regional climates in the extratropics are in large part governed by the synoptic-scale circulation and the feasibility of using this interscale relationship is explored to provide a way of moving to grid cell and sub-grid cell scales in the model. The relationships between the daily circulation systems and surface air temperature for points across the continental United States are first developed in a quantitative form using a multivariate index based on principal components analysis (PCA) of the surface circulation. These relationships are then validated by predicting daily temperature using observed circulation and comparing the predicted values with the observed temperatures. The relationships predict surface temperature accurately over the major portion of the country in winter, and for half the country in summer. These relationships are then applied to the surface synoptic circulation of the Goddard Institute for Space Studies (GISS) GCM control run, and a set of surface grid cell temperatures are generated. These temperatures, based on the larger-scale validated circulation, may now be used with greater confidence at the regional scale. The generated temperatures are compared to those of the model and show that the model has regional errors of up to 10 C in individual grid cells.

  9. Learning and Risk Exposure in a Changing Climate

    NASA Astrophysics Data System (ADS)

    Moore, F.

    2015-12-01

    Climate change is a gradual process most apparent over long time-scales and large spatial scales, but it is experienced by those affected as changes in local weather. Climate change will gradually push the weather people experience outside the bounds of historic norms, resulting in unprecedented and extreme weather events. However, people do have the ability to learn about and respond to a changing climate. Therefore, connecting the weather people experience with their perceptions of climate change requires understanding how people infer the current state of the climate given their observations of weather. This learning process constitutes a first-order constraint on the rate of adaptation and is an important determinant of the dynamic adjustment costs associated with climate change. In this paper I explore two learning models that describe how local weather observations are translated into perceptions of climate change: an efficient Bayesian learning model and a simpler rolling-mean heuristic. Both have a period during which the learner's beliefs about the state of the climate are different from its true state, meaning the learner is exposed to a different range of extreme weather outcomes then they are prepared for. Using the example of surface temperature trends, I quantify this additional exposure to extreme heat events under both learning models and both RCP 8.5 and 2.6. Risk exposure increases for both learning models, but by substantially more for the rolling-mean learner. Moreover, there is an interaction between the learning model and the rate of climate change: the inefficient rolling-mean learner benefits much more from the slower rates of change under RCP 2.6 then the Bayesian. Finally, I present results from an experiment that suggests people are able to learn about a trending climate in a manner consistent with the Bayesian model.

  10. Large-scale Modeling of Nitrous Oxide Production: Issues of Representing Spatial Heterogeneity

    NASA Astrophysics Data System (ADS)

    Morris, C. K.; Knighton, J.

    2017-12-01

    Nitrous oxide is produced from the biological processes of nitrification and denitrification in terrestrial environments and contributes to the greenhouse effect that warms Earth's climate. Large scale modeling can be used to determine how global rate of nitrous oxide production and consumption will shift under future climates. However, accurate modeling of nitrification and denitrification is made difficult by highly parameterized, nonlinear equations. Here we show that the representation of spatial heterogeneity in inputs, specifically soil moisture, causes inaccuracies in estimating the average nitrous oxide production in soils. We demonstrate that when soil moisture is averaged from a spatially heterogeneous surface, net nitrous oxide production is under predicted. We apply this general result in a test of a widely-used global land surface model, the Community Land Model v4.5. The challenges presented by nonlinear controls on nitrous oxide are highlighted here to provide a wider context to the problem of extraordinary denitrification losses in CLM. We hope that these findings will inform future researchers on the possibilities for model improvement of the global nitrogen cycle.

  11. Computational data sciences for assessment and prediction of climate extremes

    NASA Astrophysics Data System (ADS)

    Ganguly, A. R.

    2011-12-01

    Climate extremes may be defined inclusively as severe weather events or large shifts in global or regional weather patterns which may be caused or exacerbated by natural climate variability or climate change. This area of research arguably represents one of the largest knowledge-gaps in climate science which is relevant for informing resource managers and policy makers. While physics-based climate models are essential in view of non-stationary and nonlinear dynamical processes, their current pace of uncertainty reduction may not be adequate for urgent stakeholder needs. The structure of the models may in some cases preclude reduction of uncertainty for critical processes at scales or for the extremes of interest. On the other hand, methods based on complex networks, extreme value statistics, machine learning, and space-time data mining, have demonstrated significant promise to improve scientific understanding and generate enhanced predictions. When combined with conceptual process understanding at multiple spatiotemporal scales and designed to handle massive data, interdisciplinary data science methods and algorithms may complement or supplement physics-based models. Specific examples from the prior literature and our ongoing work suggests how data-guided improvements may be possible, for example, in the context of ocean meteorology, climate oscillators, teleconnections, and atmospheric process understanding, which in turn can improve projections of regional climate, precipitation extremes and tropical cyclones in an useful and interpretable fashion. A community-wide effort is motivated to develop and adapt computational data science tools for translating climate model simulations to information relevant for adaptation and policy, as well as for improving our scientific understanding of climate extremes from both observed and model-simulated data.

  12. Moditored unsaturated soil transport processes as a support for large scale soil and water management

    NASA Astrophysics Data System (ADS)

    Vanclooster, Marnik

    2010-05-01

    The current societal demand for sustainable soil and water management is very large. The drivers of global and climate change exert many pressures on the soil and water ecosystems, endangering appropriate ecosystem functioning. The unsaturated soil transport processes play a key role in soil-water system functioning as it controls the fluxes of water and nutrients from the soil to plants (the pedo-biosphere link), the infiltration flux of precipitated water to groundwater and the evaporative flux, and hence the feed back from the soil to the climate system. Yet, unsaturated soil transport processes are difficult to quantify since they are affected by huge variability of the governing properties at different space-time scales and the intrinsic non-linearity of the transport processes. The incompatibility of the scales between the scale at which processes reasonably can be characterized, the scale at which the theoretical process correctly can be described and the scale at which the soil and water system need to be managed, calls for further development of scaling procedures in unsaturated zone science. It also calls for a better integration of theoretical and modelling approaches to elucidate transport processes at the appropriate scales, compatible with the sustainable soil and water management objective. Moditoring science, i.e the interdisciplinary research domain where modelling and monitoring science are linked, is currently evolving significantly in the unsaturated zone hydrology area. In this presentation, a review of current moditoring strategies/techniques will be given and illustrated for solving large scale soil and water management problems. This will also allow identifying research needs in the interdisciplinary domain of modelling and monitoring and to improve the integration of unsaturated zone science in solving soil and water management issues. A focus will be given on examples of large scale soil and water management problems in Europe.

  13. A review on regional convection-permitting climate modeling: Demonstrations, prospects, and challenges

    DOE PAGES

    Prein, Andreas; Langhans, Wolfgang; Fosser, Giorgia; ...

    2015-05-27

    Regional climate modeling using convection permitting models (CPMs) emerges as a promising framework to provide more reliable climate information on regional to local scales compared to traditionally used large-scale models (LSMs). CPMs do not use convection parameterization schemes, known as a major source of errors and uncertainties, and have more accurate surface and orography elds. The drawback of CPMs is their high demand on computational resources. For this reason, the CPM climate simulations only appeared a decade ago. In this study we aim to provide a common basis for CPM climate simulations by giving a holistic review of the topic.more » The most important components in CPM, such as physical parameterizations and dynamical formulations are discussed, and an outlook on required future developments and computer architectures that would support the application of CPMs is given. Most importantly, this review presents the consolidated outcome of studies that addressed the added value of CPM climate simulations compared to LSMs. Most improvements are found for processes related to deep convection (e.g., precipitation during summer), for mountainous regions, and for the soil-vegetation-atmosphere interactions. The climate change signals of CPM simulations reveal increases in short and extreme rainfall events and an increased ratio of liquid precipitation at the surface (a decrease of hail) potentially leading to more frequent ash oods. Concluding, CPMs are a very promising tool for future climate research. However, coordinated modeling programs are crucially needed to assess their full potential and support their development.« less

  14. Modeling climate change impacts on groundwater resources using transient stochastic climatic scenarios

    NASA Astrophysics Data System (ADS)

    Goderniaux, Pascal; BrouyèRe, Serge; Blenkinsop, Stephen; Burton, Aidan; Fowler, Hayley J.; Orban, Philippe; Dassargues, Alain

    2011-12-01

    Several studies have highlighted the potential negative impact of climate change on groundwater reserves, but additional work is required to help water managers plan for future changes. In particular, existing studies provide projections for a stationary climate representative of the end of the century, although information is demanded for the near future. Such time-slice experiments fail to account for the transient nature of climatic changes over the century. Moreover, uncertainty linked to natural climate variability is not explicitly considered in previous studies. In this study we substantially improve upon the state-of-the-art by using a sophisticated transient weather generator in combination with an integrated surface-subsurface hydrological model (Geer basin, Belgium) developed with the finite element modeling software "HydroGeoSphere." This version of the weather generator enables the stochastic generation of large numbers of equiprobable climatic time series, representing transient climate change, and used to assess impacts in a probabilistic way. For the Geer basin, 30 equiprobable climate change scenarios from 2010 to 2085 have been generated for each of six different regional climate models (RCMs). Results show that although the 95% confidence intervals calculated around projected groundwater levels remain large, the climate change signal becomes stronger than that of natural climate variability by 2085. Additionally, the weather generator's ability to simulate transient climate change enabled the assessment of the likely time scale and associated uncertainty of a specific impact, providing managers with additional information when planning further investment. This methodology constitutes a real improvement in the field of groundwater projections under climate change conditions.

  15. Role of the North Atlantic Ocean in Low Frequency Climate Variability

    NASA Astrophysics Data System (ADS)

    Danabasoglu, G.; Yeager, S. G.; Kim, W. M.; Castruccio, F. S.

    2017-12-01

    The Atlantic Ocean is a unique basin with its extensive, North - South overturning circulation, referred to as the Atlantic meridional overturning circulation (AMOC). AMOC is thought to represent the dynamical memory of the climate system, playing an important role in decadal and longer time scale climate variability as well as prediction of the earth's future climate on these time scales via its large heat and salt transports. This oceanic memory is communicated to the atmosphere primarily through the influence of persistent sea surface temperature (SST) variations. Indeed, many modeling studies suggest that ocean circulation, i.e., AMOC, is largely responsible for the creation of coherent SST variability in the North Atlantic, referred to as Atlantic Multidecadal Variability (AMV). AMV has been linked to many (multi)decadal climate variations in, e.g., Sahel and Brazilian rainfall, Atlantic hurricane activity, and Arctic sea-ice extent. In the absence of long, continuous observations, much of the evidence for the ocean's role in (multi)decadal variability comes from model simulations. Although models tend to agree on the role of the North Atlantic Oscillation in creating the density anomalies that proceed the changes in ocean circulation, model fidelity in representing variability characteristics, mechanisms, and air-sea interactions remains a serious concern. In particular, there is increasing evidence that models significantly underestimate low frequency variability in the North Atlantic compared to available observations. Such model deficiencies can amplify the relative influence of external or stochastic atmospheric forcing in generating (multi)decadal variability, i.e., AMV, at the expense of ocean dynamics. Here, a succinct overview of the current understanding of the (North) Atlantic Ocean's role on the regional and global climate, including some outstanding questions, will be presented. In addition, a few examples of the climate impacts of the AMV via atmospheric teleconnections from a set of coupled simulations, also considering the relative roles of its tropical and extratropical components, will be highlighted.

  16. Multi-Scale Simulations of Past and Future Projections of Hydrology in Lake Tahoe Basin, California-Nevada (Invited)

    NASA Astrophysics Data System (ADS)

    Niswonger, R. G.; Huntington, J. L.; Dettinger, M. D.; Rajagopal, S.; Gardner, M.; Morton, C. G.; Reeves, D. M.; Pohll, G. M.

    2013-12-01

    Water resources in the Tahoe basin are susceptible to long-term climate change and extreme events because it is a middle-altitude, snow-dominated basin that experiences large inter-annual climate variations. Lake Tahoe provides critical water supply for its basin and downstream populations, but changes in water supply are obscured by complex climatic and hydrologic gradients across the high relief, geologically complex basin. An integrated surface and groundwater model of the Lake Tahoe basin has been developed using GSFLOW to assess the effects of climate change and extreme events on surface and groundwater resources. Key hydrologic mechanisms are identified with this model that explains recent changes in water resources of the region. Critical vulnerabilities of regional water-supplies and hazards also were explored. Maintaining a balance between (a) accurate representation of spatial features (e.g., geology, streams, and topography) and hydrologic response (i.e., groundwater, stream, lake, and wetland flows and storages), and (b) computational efficiency, is a necessity for the desired model applications. Potential climatic influences on water resources are analyzed here in simulations of long-term water-availability and flood responses to selected 100-year climate-model projections. GSFLOW is also used to simulate a scenario depicting an especially extreme storm event that was constructed from a combination of two historical atmospheric-river storm events as part of the USGS MultiHazards Demonstration Project. Historical simulated groundwater levels, streamflow, wetlands, and lake levels compare well with measured values for a 30-year historical simulation period. Results are consistent for both small and large model grid cell sizes, due to the model's ability to represent water table altitude, streams, and other hydrologic features at the sub-grid scale. Simulated hydrologic responses are affected by climate change, where less groundwater resources will be available during more frequent droughts. Simulated floods for the region indicate issues related to drainage in the developed areas around Lake Tahoe, and necessary dam releases that create downstream flood risks.

  17. Assessment of climate change impacts on runoff in China using climate elasticity and multiple CMIP5 GCMs

    NASA Astrophysics Data System (ADS)

    Wu, C.; Hu, B. X.; Wang, P.; Xu, K.

    2017-12-01

    The occurrence of climate warming is unequivocal and is expected to alter the temporal-spatial patterns of regional water resources. Based on the long-term (1960-2012) water budget data and climate projections from 28 Global Climate Models (GCMs) of the Coupled Model Intercomparison Project Phase 5 (CMIP5), this study investigated the responses of runoff (R) to future climate variability in China at both grid and catchment scales using the Budyko-based elasticity method. Results indicate a large spatial variation in precipitation (P) elasticity (from 1.2 to 3.3) and potential evaporation (PET) elasticity (from -2.3 to -0.2) across China. The P elasticity is larger in northeast and western China than in southern China, while the opposite occurs for PET elasticity. Climate projections suggest that there is large uncertainty involved among the GCM simulations, but most project a consistent change in P (or PET) over China at the mean annual scale. During the future period of 2071-2100, the mean annual P will likely increase in most parts of China particularly the western regions, while the mean annual PET will likely increase in the whole China especially the southern regions due to future increases in temperature. Moreover, larger increases are projected for higher emission scenarios. Compared with the baseline 1971-2000, the arid regions and humid regions of China will likely become wetter and drier in the period 2071-2100, respectively.

  18. From GCM grid cell to agricultural plot: scale issues affecting modelling of climate impact

    PubMed Central

    Baron, Christian; Sultan, Benjamin; Balme, Maud; Sarr, Benoit; Traore, Seydou; Lebel, Thierry; Janicot, Serge; Dingkuhn, Michael

    2005-01-01

    General circulation models (GCM) are increasingly capable of making relevant predictions of seasonal and long-term climate variability, thus improving prospects of predicting impact on crop yields. This is particularly important for semi-arid West Africa where climate variability and drought threaten food security. Translating GCM outputs into attainable crop yields is difficult because GCM grid boxes are of larger scale than the processes governing yield, involving partitioning of rain among runoff, evaporation, transpiration, drainage and storage at plot scale. This study analyses the bias introduced to crop simulation when climatic data is aggregated spatially or in time, resulting in loss of relevant variation. A detailed case study was conducted using historical weather data for Senegal, applied to the crop model SARRA-H (version for millet). The study was then extended to a 10°N–17° N climatic gradient and a 31 year climate sequence to evaluate yield sensitivity to the variability of solar radiation and rainfall. Finally, a down-scaling model called LGO (Lebel–Guillot–Onibon), generating local rain patterns from grid cell means, was used to restore the variability lost by aggregation. Results indicate that forcing the crop model with spatially aggregated rainfall causes yield overestimations of 10–50% in dry latitudes, but nearly none in humid zones, due to a biased fraction of rainfall available for crop transpiration. Aggregation of solar radiation data caused significant bias in wetter zones where radiation was limiting yield. Where climatic gradients are steep, these two situations can occur within the same GCM grid cell. Disaggregation of grid cell means into a pattern of virtual synoptic stations having high-resolution rainfall distribution removed much of the bias caused by aggregation and gave realistic simulations of yield. It is concluded that coupling of GCM outputs with plot level crop models can cause large systematic errors due to scale incompatibility. These errors can be avoided by transforming GCM outputs, especially rainfall, to simulate the variability found at plot level. PMID:16433096

  19. Observation-based Estimate of Climate Sensitivity with a Scaling Climate Response Function

    NASA Astrophysics Data System (ADS)

    Hébert, Raphael; Lovejoy, Shaun

    2016-04-01

    To properly adress the anthropogenic impacts upon the earth system, an estimate of the climate sensitivity to radiative forcing is essential. Observation-based estimates of climate sensitivity are often limited by their ability to take into account the slower response of the climate system imparted mainly by the large thermal inertia of oceans, they are nevertheless essential to provide an alternative to estimates from global circulation models and increase our confidence in estimates of climate sensitivity by the multiplicity of approaches. It is straightforward to calculate the Effective Climate Sensitivity(EffCS) as the ratio of temperature change to the change in radiative forcing; the result is almost identical to the Transient Climate Response(TCR), but it underestimates the Equilibrium Climate Sensitivity(ECS). A study of global mean temperature is thus presented assuming a Scaling Climate Response Function to deterministic radiative forcing. This general form is justified as there exists a scaling symmetry respected by the dynamics, and boundary conditions, over a wide range of scales and it allows for long-range dependencies while retaining only 3 parameter which are estimated empirically. The range of memory is modulated by the scaling exponent H. We can calculate, analytically, a one-to-one relation between the scaling exponent H and the ratio of EffCS to TCR and EffCS to ECS. The scaling exponent of the power law is estimated by a regression of temperature as a function of forcing. We consider for the analysis 4 different datasets of historical global mean temperature and 100 scenario runs of the Coupled Model Intercomparison Project Phase 5 distributed among the 4 Representative Concentration Pathways(RCP) scenarios. We find that the error function for the estimate on historical temperature is very wide and thus, many scaling exponent can be used without meaningful changes in the fit residuals of historical temperatures; their response in the year 2100 on the other hand, is very broad, especially for a low-emission scenario such as RCP 2.6. CMIP5 scenario runs thus allow for a narrower estimate of H which can then be used to estimate the ECS and TCR from the EffCS estimated from the historical data.

  20. High Resolution Model Intercomparison Project (HighResMIP v1.0) for CMIP6

    DOE PAGES

    Haarsma, Reindert J.; Roberts, Malcolm J.; Vidale, Pier Luigi; ...

    2016-11-22

    Robust projections and predictions of climate variability and change, particularly at regional scales, rely on the driving processes being represented with fidelity in model simulations. The role of enhanced horizontal resolution in improved process representation in all components of the climate system is of growing interest, particularly as some recent simulations suggest both the possibility of significant changes in large-scale aspects of circulation as well as improvements in small-scale processes and extremes. However, such high-resolution global simulations at climate timescales, with resolutions of at least 50 km in the atmosphere and 0.25° in the ocean, have been performed at relativelymore » few research centres and generally without overall coordination, primarily due to their computational cost. Assessing the robustness of the response of simulated climate to model resolution requires a large multi-model ensemble using a coordinated set of experiments. The Coupled Model Intercomparison Project 6 (CMIP6) is the ideal framework within which to conduct such a study, due to the strong link to models being developed for the CMIP DECK experiments and other model intercomparison projects (MIPs). Increases in high-performance computing (HPC) resources, as well as the revised experimental design for CMIP6, now enable a detailed investigation of the impact of increased resolution up to synoptic weather scales on the simulated mean climate and its variability. The High Resolution Model Intercomparison Project (HighResMIP) presented in this paper applies, for the first time, a multi-model approach to the systematic investigation of the impact of horizontal resolution. A coordinated set of experiments has been designed to assess both a standard and an enhanced horizontal-resolution simulation in the atmosphere and ocean. The set of HighResMIP experiments is divided into three tiers consisting of atmosphere-only and coupled runs and spanning the period 1950–2050, with the possibility of extending to 2100, together with some additional targeted experiments. This paper describes the experimental set-up of HighResMIP, the analysis plan, the connection with the other CMIP6 endorsed MIPs, as well as the DECK and CMIP6 historical simulations. Lastly, HighResMIP thereby focuses on one of the CMIP6 broad questions, “what are the origins and consequences of systematic model biases?”, but we also discuss how it addresses the World Climate Research Program (WCRP) grand challenges.« less

  1. Progress in modelling agricultural impacts of and adaptations to climate change.

    PubMed

    Rötter, R P; Hoffmann, M P; Koch, M; Müller, C

    2018-06-01

    Modelling is a key tool to explore agricultural impacts of and adaptations to climate change. Here we report recent progress made especially referring to the large project initiatives MACSUR and AgMIP; in particular, in modelling potential crop impacts from field to global using multi-model ensembles. We identify two main fields where further progress is necessary: a more mechanistic understanding of climate impacts and management options for adaptation and mitigation; and focusing on cropping systems and integrative multi-scale assessments instead of single season and crops, especially in complex tropical and neglected but important cropping systems. Stronger linking of experimentation with statistical and eco-physiological crop modelling could facilitate the necessary methodological advances. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Downscaling ocean conditions: Experiments with a quasi-geostrophic model

    NASA Astrophysics Data System (ADS)

    Katavouta, A.; Thompson, K. R.

    2013-12-01

    The predictability of small-scale ocean variability, given the time history of the associated large-scales, is investigated using a quasi-geostrophic model of two wind-driven gyres separated by an unstable, mid-ocean jet. Motivated by the recent theoretical study of Henshaw et al. (2003), we propose a straightforward method for assimilating information on the large-scale in order to recover the small-scale details of the quasi-geostrophic circulation. The similarity of this method to the spectral nudging of limited area atmospheric models is discussed. Results from the spectral nudging of the quasi-geostrophic model, and an independent multivariate regression-based approach, show that important features of the ocean circulation, including the position of the meandering mid-ocean jet and the associated pinch-off eddies, can be recovered from the time history of a small number of large-scale modes. We next propose a hybrid approach for assimilating both the large-scales and additional observed time series from a limited number of locations that alone are too sparse to recover the small scales using traditional assimilation techniques. The hybrid approach improved significantly the recovery of the small-scales. The results highlight the importance of the coupling between length scales in downscaling applications, and the value of assimilating limited point observations after the large-scales have been set correctly. The application of the hybrid and spectral nudging to practical ocean forecasting, and projecting changes in ocean conditions on climate time scales, is discussed briefly.

  3. Uncertainties in Future Regional Sea Level Trends: How to Deal with the Internal Climate Variability?

    NASA Astrophysics Data System (ADS)

    Becker, M.; Karpytchev, M.; Hu, A.; Deser, C.; Lennartz-Sassinek, S.

    2017-12-01

    Today, the Climate models (CM) are the main tools for forecasting sea level rise (SLR) at global and regional scales. The CM forecasts are accompanied by inherent uncertainties. Understanding and reducing these uncertainties is becoming a matter of increasing urgency in order to provide robust estimates of SLR impact on coastal societies, which need sustainable choices of climate adaptation strategy. These CM uncertainties are linked to structural model formulation, initial conditions, emission scenario and internal variability. The internal variability is due to complex non-linear interactions within the Earth Climate System and can induce diverse quasi-periodic oscillatory modes and long-term persistences. To quantify the effects of internal variability, most studies used multi-model ensembles or sea level projections from a single model ran with perturbed initial conditions. However, large ensembles are not generally available, or too small, and computationally expensive. In this study, we use a power-law scaling of sea level fluctuations, as observed in many other geophysical signals and natural systems, which can be used to characterize the internal climate variability. From this specific statistical framework, we (1) use the pre-industrial control run of the National Center for Atmospheric Research Community Climate System Model (NCAR-CCSM) to test the robustness of the power-law scaling hypothesis; (2) employ the power-law statistics as a tool for assessing the spread of regional sea level projections due to the internal climate variability for the 21st century NCAR-CCSM; (3) compare the uncertainties in predicted sea level changes obtained from a NCAR-CCSM multi-member ensemble simulations with estimates derived for power-law processes, and (4) explore the sensitivity of spatial patterns of the internal variability and its effects on regional sea level projections.

  4. Uncertainties in data-model comparisons: Spatio-temporal scales for past climates

    NASA Astrophysics Data System (ADS)

    Lohmann, G.

    2016-12-01

    Data-model comparisons are hindered by uncertainties like varying reservoir ages or potential seasonality bias of the recorder systems, but also due to the models' difficulty to represent the spatio-temporal variability patterns. For the Holocene we detect a sensitivity to horizontal resolution in the atmosphere, the representation of atmospheric dynamics, as well as the dynamics of the western boundary currents in the ocean. These features can create strong spatial heterogeneity in the North Atlantic and Pacific Oceans over long timescales (unlike a diffusive spatio-temporal scale separation). Futhermore, it is shown that such non-linear mechanisms could create a non-trivial response to seasonal insolation forcing via an atmospheric bridge inducing non-uniform temperature anomalies over the northern continents on multi-millennial time scales. Through the fluctuation-dissipation-theorem, climate variability and sensitivity are ultimately coupled. It is argued that some obvious biases between models and data may be linked to the missing key persistent component of the atmospheric dynamics, the North Atlantic blocking activity. It is shown that blocking is also linked to Atlantic multidecadal ocean variability and to extreme events. Interestingly, several proxies provide a measure of the frequency of extreme events, and a proper representation is a true challenge for climate models. Finally, case studies from deep paleo are presented in which changes in land-sea distribution or subscale parameterizations can cause relatively large effects on surface temperature. Such experiments can explore the phase space of solutions, but show the limitation of past climates to constrain climate sensitivity.

  5. Influence of land use and climate on wetland breeding birds in the Prairie Pothole region of Canada

    USGS Publications Warehouse

    Forcey, G.M.; Linz, G.M.; Thogmartin, W.E.; Bleier, W.J.

    2007-01-01

    Bird populations are influenced by a variety of factors at both small and large scales that range from the presence of suitable nesting habitat, predators, and food supplies to climate conditions and land-use patterns. We evaluated the influences of regional climate and land-use variables on wetland breeding birds in the Canada section of Bird Conservation Region 11 (CA-BCR11), the Prairie Potholes. We used bird abundance data from the North American Breeding Bird Survey, land-use data from the Prairie Farm Rehabilitation Administration, and weather data from the National Climatic Data and Information Archive to model effects of regional environmental variables on bird abundance. Models were constructed a priori using information from published habitat associations in the literature, and fitting was performed with WinBUGS using Markov chain Monte Carlo techniques. Both land-use and climate variables contributed to predicting bird abundance in CA-BCR11, although climate predictors contributed the most to improving model fit. Examination of regional effects of climate and land use on wetland birds in CA-BCR11 revealed relationships with environmental covariates that are often overlooked by small-scale habitat studies. Results from these studies can be used to improve conservation and management planning for regional populations of avifauna. ?? 2007 NRC.

  6. Projected changes over western Canada using convection-permitting regional climate model and the pseudo-global warming method

    NASA Astrophysics Data System (ADS)

    Li, Y.; Kurkute, S.; Chen, L.

    2017-12-01

    Results from the General Circulation Models (GCMs) suggest more frequent and more severe extreme rain events in a climate warmer than the present. However, current GCMs cannot accurately simulate extreme rainfall events of short duration due to their coarse model resolutions and parameterizations. This limitation makes it difficult to provide the detailed quantitative information for the development of regional adaptation and mitigation strategies. Dynamical downscaling using nested Regional Climate Models (RCMs) are able to capture key regional and local climate processes with an affordable computational cost. Recent studies have demonstrated that the downscaling of GCM results with weather-permitting mesoscale models, such as the pseudo-global warming (PGW) technique, could be a viable and economical approach of obtaining valuable climate change information on regional scales. We have conducted a regional climate 4-km Weather Research and Forecast Model (WRF) simulation with one domain covering the whole western Canada, for a historic run (2000-2015) and a 15-year future run to 2100 and beyond with the PGW forcing. The 4-km resolution allows direct use of microphysics and resolves the convection explicitly, thus providing very convincing spatial detail. With this high-resolution simulation, we are able to study the convective mechanisms, specifically the control of convections over the Prairies, the projected changes of rainfall regimes, and the shift of the convective mechanisms in a warming climate, which has never been examined before numerically at such large scale with such high resolution.

  7. Field significance of performance measures in the context of regional climate model evaluation. Part 2: precipitation

    NASA Astrophysics Data System (ADS)

    Ivanov, Martin; Warrach-Sagi, Kirsten; Wulfmeyer, Volker

    2018-04-01

    A new approach for rigorous spatial analysis of the downscaling performance of regional climate model (RCM) simulations is introduced. It is based on a multiple comparison of the local tests at the grid cells and is also known as `field' or `global' significance. The block length for the local resampling tests is precisely determined to adequately account for the time series structure. New performance measures for estimating the added value of downscaled data relative to the large-scale forcing fields are developed. The methodology is exemplarily applied to a standard EURO-CORDEX hindcast simulation with the Weather Research and Forecasting (WRF) model coupled with the land surface model NOAH at 0.11 ∘ grid resolution. Daily precipitation climatology for the 1990-2009 period is analysed for Germany for winter and summer in comparison with high-resolution gridded observations from the German Weather Service. The field significance test controls the proportion of falsely rejected local tests in a meaningful way and is robust to spatial dependence. Hence, the spatial patterns of the statistically significant local tests are also meaningful. We interpret them from a process-oriented perspective. While the downscaled precipitation distributions are statistically indistinguishable from the observed ones in most regions in summer, the biases of some distribution characteristics are significant over large areas in winter. WRF-NOAH generates appropriate stationary fine-scale climate features in the daily precipitation field over regions of complex topography in both seasons and appropriate transient fine-scale features almost everywhere in summer. As the added value of global climate model (GCM)-driven simulations cannot be smaller than this perfect-boundary estimate, this work demonstrates in a rigorous manner the clear additional value of dynamical downscaling over global climate simulations. The evaluation methodology has a broad spectrum of applicability as it is distribution-free, robust to spatial dependence, and accounts for time series structure.

  8. The use of remotely sensed soil moisture data in large-scale models of the hydrological cycle

    NASA Technical Reports Server (NTRS)

    Salomonson, V. V.; Gurney, R. J.; Schmugge, T. J.

    1985-01-01

    Manabe (1982) has reviewed numerical simulations of the atmosphere which provided a framework within which an examination of the dynamics of the hydrological cycle could be conducted. It was found that the climate is sensitive to soil moisture variability in space and time. The challenge arises now to improve the observations of soil moisture so as to provide up-dated boundary condition inputs to large scale models including the hydrological cycle. Attention is given to details regarding the significance of understanding soil moisture variations, soil moisture estimation using remote sensing, and energy and moisture balance modeling.

  9. Sensitivity of tree ring growth to local and large-scale climate variability in a region of Southeastern Brazil

    NASA Astrophysics Data System (ADS)

    Venegas-González, Alejandro; Chagas, Matheus Peres; Anholetto Júnior, Claudio Roberto; Alvares, Clayton Alcarde; Roig, Fidel Alejandro; Tomazello Filho, Mario

    2016-01-01

    We explored the relationship between tree growth in two tropical species and local and large-scale climate variability in Southeastern Brazil. Tree ring width chronologies of Tectona grandis (teak) and Pinus caribaea (Caribbean pine) trees were compared with local (Water Requirement Satisfaction Index—WRSI, Standardized Precipitation Index—SPI, and Palmer Drought Severity Index—PDSI) and large-scale climate indices that analyze the equatorial pacific sea surface temperature (Trans-Niño Index-TNI and Niño-3.4-N3.4) and atmospheric circulation variations in the Southern Hemisphere (Antarctic Oscillation-AAO). Teak trees showed positive correlation with three indices in the current summer and fall. A significant correlation between WRSI index and Caribbean pine was observed in the dry season preceding tree ring formation. The influence of large-scale climate patterns was observed only for TNI and AAO, where there was a radial growth reduction in months preceding the growing season with positive values of the TNI in teak trees and radial growth increase (decrease) during December (March) to February (May) of the previous (current) growing season with positive phase of the AAO in teak (Caribbean pine) trees. The development of a new dendroclimatological study in Southeastern Brazil sheds light to local and large-scale climate influence on tree growth in recent decades, contributing in future climate change studies.

  10. Cyclone Activity in the Arctic From an Ensemble of Regional Climate Models (Arctic CORDEX)

    NASA Astrophysics Data System (ADS)

    Akperov, Mirseid; Rinke, Annette; Mokhov, Igor I.; Matthes, Heidrun; Semenov, Vladimir A.; Adakudlu, Muralidhar; Cassano, John; Christensen, Jens H.; Dembitskaya, Mariya A.; Dethloff, Klaus; Fettweis, Xavier; Glisan, Justin; Gutjahr, Oliver; Heinemann, Günther; Koenigk, Torben; Koldunov, Nikolay V.; Laprise, René; Mottram, Ruth; Nikiéma, Oumarou; Scinocca, John F.; Sein, Dmitry; Sobolowski, Stefan; Winger, Katja; Zhang, Wenxin

    2018-03-01

    The ability of state-of-the-art regional climate models to simulate cyclone activity in the Arctic is assessed based on an ensemble of 13 simulations from 11 models from the Arctic-CORDEX initiative. Some models employ large-scale spectral nudging techniques. Cyclone characteristics simulated by the ensemble are compared with the results forced by four reanalyses (ERA-Interim, National Centers for Environmental Prediction-Climate Forecast System Reanalysis, National Aeronautics and Space Administration-Modern-Era Retrospective analysis for Research and Applications Version 2, and Japan Meteorological Agency-Japanese 55-year reanalysis) in winter and summer for 1981-2010 period. In addition, we compare cyclone statistics between ERA-Interim and the Arctic System Reanalysis reanalyses for 2000-2010. Biases in cyclone frequency, intensity, and size over the Arctic are also quantified. Variations in cyclone frequency across the models are partly attributed to the differences in cyclone frequency over land. The variations across the models are largest for small and shallow cyclones for both seasons. A connection between biases in the zonal wind at 200 hPa and cyclone characteristics is found for both seasons. Most models underestimate zonal wind speed in both seasons, which likely leads to underestimation of cyclone mean depth and deep cyclone frequency in the Arctic. In general, the regional climate models are able to represent the spatial distribution of cyclone characteristics in the Arctic but models that employ large-scale spectral nudging show a better agreement with ERA-Interim reanalysis than the rest of the models. Trends also exhibit the benefits of nudging. Models with spectral nudging are able to reproduce the cyclone trends, whereas most of the nonnudged models fail to do so. However, the cyclone characteristics and trends are sensitive to the choice of nudged variables.

  11. Effects of fire suppression under a changing climate in Pacific Northwest mixed-pine forests

    NASA Astrophysics Data System (ADS)

    Hanan, E. J.; Tague, C.; Bart, R. R.; Kennedy, M. C.; Abatzoglou, J. T.; Kolden, C.; Adam, J. C.

    2017-12-01

    The frequency of large and severe wildfires has increased over recent decades in many regions across the Western U.S., including the Pacific and Inland Northwest. This increase is likely driven in large part by wildfire suppression, which has promoted fuel accumulation in western landscapes. Recent studies also suggest that anthropogenic climate change intensifies wildfire activity by increasing fuel aridity. However, the contribution of these drivers to observed changes in fire regime is not well quantified at regional scales. Understanding the relative influence of climate and fire suppression is crucial for both projecting the effects of climate change on future fire spread, and for developing site-specific fuel management strategies under a new climate paradigm. To quantify the extent to which fire suppression and climate change have contributed to increases in wildfire activity in the Pacific Northwest, we conduct a modeling experiment using the ecohydrologic model RHESSys and the coupled stochastic fire spread model WMFire. Specifically, we use historical climate inputs from GCMs, combined with fire suppression scenarios to gauge the extent to which these drivers promote the spread of severe wildfires in Johnson Creek, a large (565-km2) mixed-pine dominated subcatchment of the Southfork Salmon River; part of the larger Columbia River Basin. We run 500 model iterations for suppressed, intermediate, and unsuppressed fire management scenarios, both with and without climate change in a factorial design, focusing on fire spread surrounding two extreme fire years in Johnson Creek (1998 and 2007). After deriving fire spread "fingerprints" for each combination of possible drivers, we evaluate the extent to which these fingerprints match observations in the fire record. We expect that climate change plays a role in the spread of large and severe wildfires in Johnson Creek, but the magnitude of this effect is mediated by prior suppression. Preliminary results suggest that management strategies aimed at reducing the extent of contiguous even-aged fuels may help curtail climate-driven increases in wildfire severity in Pacific Northwest watersheds.

  12. Exploring The Relation Between Upper Tropospheric (UT) Clouds and Convection

    NASA Astrophysics Data System (ADS)

    Stephens, G. L.; Stubenrauch, C.

    2017-12-01

    The importance of knowing the vertical transports of water vapor and condensate by atmospheric moist convection cannot be overstated. Vertical convective transports have wide-ranging influences on the Earth system, shaping weather, climate, the hydrological cycle and the composition of the atmosphere. These transports also influence the upper tropospheric cloudiness that exerts profound effects on climate. Although there are presently no direct observations to quantify these transports on the large scale, and there are no observations to constrain model assumptions about them, it might be possible to derive useful observations proxies of these transports and their influence. This talk will present results derived from a large community effort that has developed important observations data records that link clouds and convection. Steps to use these observational metrics to examine the relation between convection, UT clouds in both cloud and global scale models are exemplified and important feedbacks between high clouds, radiation and convection will be elucidated.

  13. Urban adaptation can roll back warming of emerging megapolitan regions

    PubMed Central

    Georgescu, Matei; Morefield, Philip E.; Bierwagen, Britta G.; Weaver, Christopher P.

    2014-01-01

    Modeling results incorporating several distinct urban expansion futures for the United States in 2100 show that, in the absence of any adaptive urban design, megapolitan expansion, alone and separate from greenhouse gas-induced forcing, can be expected to raise near-surface temperatures 1–2 °C not just at the scale of individual cities but over large regional swaths of the country. This warming is a significant fraction of the 21st century greenhouse gas-induced climate change simulated by global climate models. Using a suite of regional climate simulations, we assessed the efficacy of commonly proposed urban adaptation strategies, such as green, cool roof, and hybrid approaches, to ameliorate the warming. Our results quantify how judicious choices in urban planning and design cannot only counteract the climatological impacts of the urban expansion itself but also, can, in fact, even offset a significant percentage of future greenhouse warming over large scales. Our results also reveal tradeoffs among different adaptation options for some regions, showing the need for geographically appropriate strategies rather than one size fits all solutions. PMID:24516126

  14. The role of climate on inter-annual variation in stream nitrate fluxes and concentrations.

    PubMed

    Gascuel-Odoux, Chantal; Aurousseau, Pierre; Durand, Patrick; Ruiz, Laurent; Molenat, Jérôme

    2010-11-01

    In recent decades, temporal variations in nitrate fluxes and concentrations in temperate rivers have resulted from the interaction of anthropogenic and climatic factors. The effect of climatic drivers remains unclear, while the relative importance of the drivers seems to be highly site dependent. This paper focuses on 2-6 year variations called meso-scale variations, and analyses the climatic drivers of these variations in a study site characterized by high N inputs from intensive animal farming systems and shallow aquifers with impervious bedrock in a temperate climate. Three approaches are developed: 1) an analysis of long-term records of nitrate fluxes and nitrate concentrations in 30 coastal rivers of Western France, which were well-marked by meso-scale cycles in the fluxes and concentration with a slight hysteresis; 2) a test of the climatic control using a lumped two-box model, which demonstrates that hydrological assumptions are sufficient to explain these meso-scale cycles; and 3) a model of nitrate fluxes and concentrations in two contrasted catchments subjected to recent mitigation measures, which analyses nitrate fluxes and concentrations in relation to N stored in groundwater. In coastal rivers, hydrological drivers (i.e., effective rainfall), and particularly the dynamics of the water table and rather stable nitrate concentration, explain the meso-scale cyclic patterns. In the headwater catchment, agricultural and hydrological drivers can interact according to their settings. The requirements to better distinguish the effect of climate and human changes in integrated water management are addressed: long-term monitoring, coupling the analysis and the modelling of large sets of catchments incorporating different sizes, land uses and environmental factors. Copyright © 2009 Elsevier B.V. All rights reserved.

  15. Future projection of Indian summer monsoon variability under climate change scenario: An assessment from CMIP5 climate models

    NASA Astrophysics Data System (ADS)

    Sharmila, S.; Joseph, S.; Sahai, A. K.; Abhilash, S.; Chattopadhyay, R.

    2015-01-01

    In this study, the impact of enhanced anthropogenic greenhouse gas emissions on the possible future changes in different aspects of daily-to-interannual variability of Indian summer monsoon (ISM) is systematically assessed using 20 coupled models participated in the Coupled Model Inter-comparison Project Phase 5. The historical (1951-1999) and future (2051-2099) simulations under the strongest Representative Concentration Pathway have been analyzed for this purpose. A few reliable models are selected based on their competence in simulating the basic features of present-climate ISM variability. The robust and consistent projections across the selected models suggest substantial changes in the ISM variability by the end of 21st century indicating strong sensitivity of ISM to global warming. On the seasonal scale, the all-India summer monsoon mean rainfall is likely to increase moderately in future, primarily governed by enhanced thermodynamic conditions due to atmospheric warming, but slightly offset by weakened large scale monsoon circulation. It is projected that the rainfall magnitude will increase over core monsoon zone in future climate, along with lengthening of the season due to late withdrawal. On interannual timescales, it is speculated that severity and frequency of both strong monsoon (SM) and weak monsoon (WM) might increase noticeably in future climate. Substantial changes in the daily variability of ISM are also projected, which are largely associated with the increase in heavy rainfall events and decrease in both low rain-rate and number of wet days during future monsoon. On the subseasonal scale, the model projections depict considerable amplification of higher frequency (below 30 day mode) components; although the dominant northward propagating 30-70 day mode of monsoon intraseasonal oscillations may not change appreciably in a warmer climate. It is speculated that the enhanced high frequency mode of monsoon ISOs due to increased GHG induced warming may notably modulate the ISM rainfall in future climate. Both extreme wet and dry episodes are likely to intensify and regionally extend in future climate with enhanced propensity of short active and long break spells. The SM (WM) could also be more wet (dry) in future due to the increment in longer active (break) spells. However, future changes in the spatial pattern during active/break phase of SM and WM are geographically inconsistent among the models. The results point out the growing climate-related vulnerability over Indian subcontinent, and further suggest the requisite of profound adaptation measures and better policy making in future.

  16. REGRESSION MODELS THAT RELATE STREAMS TO WATERSHEDS: COPING WITH NUMEROUS, COLLINEAR PEDICTORS

    EPA Science Inventory

    GIS efforts can produce a very large number of watershed variables (climate, land use/land cover and topography, all defined for multiple areas of influence) that could serve as candidate predictors in a regression model of reach-scale stream features. Invariably, many of these ...

  17. Fire activity as a function of fire–weather seasonal severity and antecedent climate across spatial scales in southern Europe and Pacific western USA

    USGS Publications Warehouse

    Urbieta, Itziar R.; Zavala, Gonzalo; Bedia, Joaquin; Gutierrez, Jose M.; San Miguel-Ayanz, Jesus; Camia, Andrea; Keeley, Jon E.; Moreno, Jose M.

    2015-01-01

    Climate has a strong influence on fire activity, varying across time and space. We analyzed the relationships between fire–weather conditions during the main fire season and antecedent water-balance conditions and fires in two Mediterranean-type regions with contrasted management histories: five southern countries of the European Union (EUMED)(all fires); the Pacific western coast of the USA (California and Oregon, PWUSA)(national forest fires). Total number of fires (≥1 ha), number of large fires (≥100 ha) and area burned were related to mean seasonal fire weather index (FWI), number of days over the 90th percentile of the FWI, and to the standardized precipitation-evapotranspiration index (SPEI) from the preceding 3 (spring) or 8 (autumn through spring) months. Calculations were made at three spatial aggregations in each area, and models related first-difference (year-to-year change) of fires and FWI/climate variables to minimize autocorrelation. An increase in mean seasonal FWI resulted in increases in the three fire variables across spatial scales in both regions. SPEI contributed little to explain fires, with few exceptions. Negative water-balance (dry) conditions from autumn through spring (SPEI8) were generally more important than positive conditions (moist) in spring (SPEI3), both of which contributed positively to fires. The R2 of the models generally improved with increasing area of aggregation. For total number of fires and area burned, the R2 of the models tended to decrease with increasing mean seasonal FWI. Thus, fires were more susceptible to change with climate variability in areas with less amenable conditions for fires (lower FWI) than in areas with higher mean FWI values. The relationships were similar in both regions, albeit weaker in PWUSA, probably due to the wider latitudinal gradient covered in PWUSA than in EUMED. The large variance explained by some of the models indicates that large-scale seasonal forecast could help anticipating fire activity in the investigated areas.

  18. Fire activity as a function of fire-weather seasonal severity and antecedent climate across spatial scales in southern Europe and Pacific western USA

    NASA Astrophysics Data System (ADS)

    Urbieta, Itziar R.; Zavala, Gonzalo; Bedia, Joaquín; Gutiérrez, José M.; San Miguel-Ayanz, Jesús; Camia, Andrea; Keeley, Jon E.; Moreno, José M.

    2015-11-01

    Climate has a strong influence on fire activity, varying across time and space. We analyzed the relationships between fire-weather conditions during the main fire season and antecedent water-balance conditions and fires in two Mediterranean-type regions with contrasted management histories: five southern countries of the European Union (EUMED)(all fires); the Pacific western coast of the USA (California and Oregon, PWUSA)(national forest fires). Total number of fires (≥1 ha), number of large fires (≥100 ha) and area burned were related to mean seasonal fire weather index (FWI), number of days over the 90th percentile of the FWI, and to the standardized precipitation-evapotranspiration index (SPEI) from the preceding 3 (spring) or 8 (autumn through spring) months. Calculations were made at three spatial aggregations in each area, and models related first-difference (year-to-year change) of fires and FWI/climate variables to minimize autocorrelation. An increase in mean seasonal FWI resulted in increases in the three fire variables across spatial scales in both regions. SPEI contributed little to explain fires, with few exceptions. Negative water-balance (dry) conditions from autumn through spring (SPEI8) were generally more important than positive conditions (moist) in spring (SPEI3), both of which contributed positively to fires. The R2 of the models generally improved with increasing area of aggregation. For total number of fires and area burned, the R2 of the models tended to decrease with increasing mean seasonal FWI. Thus, fires were more susceptible to change with climate variability in areas with less amenable conditions for fires (lower FWI) than in areas with higher mean FWI values. The relationships were similar in both regions, albeit weaker in PWUSA, probably due to the wider latitudinal gradient covered in PWUSA than in EUMED. The large variance explained by some of the models indicates that large-scale seasonal forecast could help anticipating fire activity in the investigated areas.

  19. Impact of entrainment on cloud droplet spectra: theory, observations, and modeling

    NASA Astrophysics Data System (ADS)

    Grabowski, W.

    2016-12-01

    Understanding the impact of entrainment and mixing on microphysical properties of warm boundary layer clouds is an important aspect of the representation of such clouds in large-scale models of weather and climate. Entrainment leads to a reduction of the liquid water content in agreement with the fundamental thermodynamics, but its impact on the droplet spectrum is difficult to quantify in observations and modeling. For in-situ (e.g., aircraft) observations, it is impossible to follow air parcels and observe processes that lead to changes of the droplet spectrum in different regions of a cloud. For similar reasons traditional modeling methodologies (e.g., the Eulerian large eddy simulation) are not useful either. Moreover, both observations and modeling can resolve only relatively narrow range of spatial scales. Theory, typically focusing on differences between idealized concepts of homogeneous and inhomogeneous mixing, is also of a limited use for the multiscale turbulent mixing between a cloud and its environment. This presentation will illustrate the above points and argue that the Lagrangian large-eddy simulation with appropriate subgrid-scale scheme may provide key insights and eventually lead to novel parameterizations for large-scale models.

  20. Mid-21st century air quality at the urban scale under the influence of changed climate and emissions - case studies for Paris and Stockholm

    NASA Astrophysics Data System (ADS)

    Markakis, Konstantinos; Valari, Myrto; Engardt, Magnuz; Lacressonniere, Gwendoline; Vautard, Robert; Andersson, Camilla

    2016-02-01

    Ozone, PM10 and PM2.5 concentrations over Paris, France and Stockholm, Sweden were modelled at 4 and 1 km horizontal resolutions respectively for the present and 2050 periods employing decade-long simulations. We account for large-scale global climate change (RCP-4.5) and fine-resolution bottom-up emission projections developed by local experts and quantify their impact on future pollutant concentrations. Moreover, we identify biases related to the implementation of regional-scale emission projections by comparing modelled pollutant concentrations between the fine- and coarse-scale simulations over the study areas. We show that over urban areas with major regional contribution (e.g. the city of Stockholm) the bias related to coarse-scale projections may be significant and lead to policy misclassification. Our results stress the need to better understand the mechanism of bias propagation across the modelling scales in order to design more successful local-scale strategies. We find that the impact of climate change is spatially homogeneous in both regions, implying strong regional influence. The climate benefit for ozone (daily mean and maximum) is up to -5 % for Paris and -2 % for Stockholm city. The climate benefit on PM2.5 and PM10 in Paris is between -5 and -10 %, while for Stockholm we estimate mixed trends of up to 3 % depending on season and size class. In Stockholm, emission mitigation leads to concentration reductions up to 15 % for daily mean and maximum ozone and 20 % for PM. Through a sensitivity analysis we show that this response is entirely due to changes in emissions at the regional scale. On the contrary, over the city of Paris (VOC-limited photochemical regime), local mitigation of NOx emissions increases future ozone concentrations due to ozone titration inhibition. This competing trend between the respective roles of emission and climate change, results in an increase in 2050 daily mean ozone by 2.5 % in Paris. Climate and not emission change appears to be the most influential factor for maximum ozone concentration over the city of Paris, which may be particularly interesting from a health impact perspective.

  1. The limit of irrigation adaption due to the inter-crop conflict of water use under changing climate and landuse

    NASA Astrophysics Data System (ADS)

    Okada, M.; Iizumi, T.; Sakamoto, T.; Kotoku, M.; Sakurai, G.; Nishimori, M.

    2017-12-01

    Replacing rainfed cropping system by irrigated one is assumed to be an effective measure for climate change adaptation in agriculture. However, in many agricultural impact assessments, future irrigation scenarios are externally given and do not consider variations in the availability of irrigation water under changing climate and land use. Therefore, we assess the potential effects of adaption measure expanding irrigated area under climate change by using a large-scale crop-river coupled model, CROVER [Okada et al. 2015, JAMES]. The CROVER model simulates the large-scale terrestrial hydrological cycle and crop growth depending on climate, soil properties, landuse, crop cultivation management, socio-economic water demand, and reservoir operation management. The bias-corrected GCMs outputs under the RCP 8.5 scenario were used. The future expansion of irrigation area was estimated by using the extrapolation method based on the historical change in irrigated and rainfed areas. As the results, the irrigation adaptation has only a limited effect on the rice production in East Asia due to the conflict of water use for irrigation with the other crops, whose farmlands require unsustainable water extraction with the excessively expanding irrigated area. In contrast, the irrigation adaptation benefits maize production in Europe due to the little conflict of water use for irrigation. Our findings suggest the importance of simulating the river water availability and crop production in a single model for the more realistic assessment in the irrigation adaptation potential effects of crop production under changing climate and land use.

  2. Model Sensitivity to North Atlantic Freshwater Forcing at 8.2 Ka

    NASA Technical Reports Server (NTRS)

    Morrill, Carrie; Legrande, Allegra Nicole; Renssen, H.; Bakker, P.; Otto-Bliesner, B. L.

    2013-01-01

    We compared four simulations of the 8.2 ka event to assess climate model sensitivity and skill in responding to North Atlantic freshwater perturbations. All of the simulations used the same freshwater forcing, 2.5 Sv for one year, applied to either the Hudson Bay (northeastern Canada) or Labrador Sea (between Canada's Labrador coast and Greenland). This freshwater pulse induced a decadal-mean slowdown of 10-25%in the Atlantic Meridional Overturning Circulation (AMOC) of the models and caused a large-scale pattern of climate anomalies that matched proxy evidence for cooling in the Northern Hemisphere and a southward shift of the Intertropical Convergence Zone. The multi-model ensemble generated temperature anomalies that were just half as large as those from quantitative proxy reconstructions, however. Also, the duration of AMOC and climate anomalies in three of the simulations was only several decades, significantly shorter than the duration of approx.150 yr in the paleoclimate record. Possible reasons for these discrepancies include incorrect representation of the early Holocene climate and ocean state in the North Atlantic and uncertainties in the freshwater forcing estimates.

  3. Present-day Antarctic climatology of the NCAR Community Climate Model Version 1

    NASA Technical Reports Server (NTRS)

    Tzeng, Ren-Yow; Bromwich, David H.; Parish, Thomas R.

    1993-01-01

    The ability of the NCAR Community Climate Model Version 1 (CCM1) with R 15 resolution to simulate the present-day climate of Antarctica was evaluated using the five-year seasonal cycle output produced by the CCM1 and comparing the model results with observed horizontal syntheses and point data. The results showed that the CCM1 with R 15 resolution can simulate to some extent the dynamics of Antarctic climate on the synoptic scale as well as some mesoscale features. The model can also simulate the phase and the amplitude of the annual and semiannual variation of the temperature, sea level pressure, and zonally averaged zonal (E-W) wind. The main shortcomings of the CCM1 model are associated with the model's anomalously large precipitation amounts at high latitudes, due to the tendency of the scheme to suppress negative moisture values.

  4. Analysis of the ability of large-scale reanalysis data to define Siberian fire danger in preparation for future fire prediction

    NASA Astrophysics Data System (ADS)

    Soja, Amber; Westberg, David; Stackhouse, Paul, Jr.; McRae, Douglas; Jin, Ji-Zhong; Sukhinin, Anatoly

    2010-05-01

    Fire is the dominant disturbance that precipitates ecosystem change in boreal regions, and fire is largely under the control of weather and climate. Fire frequency, fire severity, area burned and fire season length are predicted to increase in boreal regions under current climate change scenarios. Therefore, changes in fire regimes have the potential to compel ecological change, moving ecosystems more quickly towards equilibrium with a new climate. The ultimate goal of this research is to assess the viability of large-scale (1°) data to be used to define fire weather danger and fire regimes, so that large-scale data can be confidently used to predict future fire regimes using large-scale fire weather data, like that available from current Intergovernmental Panel on Climate Change (IPCC) climate change scenarios. In this talk, we intent to: (1) evaluate Fire Weather Indices (FWI) derived using reanalysis and interpolated station data; (2) discuss the advantages and disadvantages of using these distinct data sources; and (3) highlight established relationships between large-scale fire weather data, area burned, active fires and ecosystems burned. Specifically, the Canadian Forestry Service (CFS) Fire Weather Index (FWI) will be derived using: (1) NASA Goddard Earth Observing System version 4 (GEOS-4) large-scale reanalysis and NASA Global Precipitation Climatology Project (GPCP) data; and National Climatic Data Center (NCDC) surface station-interpolated data. Requirements of the FWI are local noon surface-level air temperature, relative humidity, wind speed, and daily (noon-noon) rainfall. GEOS-4 reanalysis and NCDC station-interpolated fire weather indices are generally consistent spatially, temporally and quantitatively. Additionally, increased fire activity coincides with increased FWI ratings in both data products. Relationships have been established between large-scale FWI to area burned, fire frequency, ecosystem types, and these can be use to estimate historic and future fire regimes.

  5. Century long observation constrained global dynamic downscaling and hydrologic implication

    NASA Astrophysics Data System (ADS)

    Kim, H.; Yoshimura, K.; Chang, E.; Famiglietti, J. S.; Oki, T.

    2012-12-01

    It has been suggested that greenhouse gas induced warming climate causes the acceleration of large scale hydrologic cycles, and, indeed, many regions on the Earth have been suffered by hydrologic extremes getting more frequent. However, historical observations are not able to provide enough information in comprehensive manner to understand their long-term variability and/or global distributions. In this study, a century long high resolution global climate data is developed in order to break through existing limitations. 20th Century Reanalysis (20CR) which has relatively low spatial resolution (~2.0°) and longer term availability (140 years) is dynamically downscaled into global T248 (~0.5°) resolution using Experimental Climate Prediction Center (ECPC) Global Spectral Model (GSM) by spectral nudging data assimilation technique. Also, Global Precipitation Climatology Centre (GPCC) and Climate Research Unit (CRU) observational data are adopted to reduce model dependent uncertainty. Downscaled product successfully represents realistic geographical detail keeping low frequency signal in mean state and spatiotemporal variability, while previous bias correction method fails to reproduce high frequency variability. Newly developed data is used to investigate how long-term large scale terrestrial hydrologic cycles have been changed globally and how they have been interacted with various climate modes, such as El-Niño Southern Oscillation (ENSO) and Atlantic Multidecadal Oscillation (AMO). As a further application, it will be used to provide atmospheric boundary condition of multiple land surface models in the Global Soil Wetness Project Phase 3 (GSWP3).

  6. The role of large—scale BECCS in the pursuit of the 1.5°C target: an Earth system model perspective

    NASA Astrophysics Data System (ADS)

    Muri, Helene

    2018-04-01

    The increasing awareness of the many damaging aspects of climate change has prompted research into ways of reducing and reversing the anthropogenic increase in carbon concentrations in the atmosphere. Most emission scenarios stabilizing climate at low levels, such as the 1.5 °C target as outlined by the Paris Agreement, require large-scale deployment of Bio-Energy with Carbon Capture and Storage (BECCS). Here, the potential of large-scale BECCS deployment in contributing towards the 1.5 °C global warming target is evaluated using an Earth system model, as well as associated climate responses and carbon cycle feedbacks. The geographical location of the bioenergy feedstock is shown to be key to the success of such measures in the context of temperature targets. Although net negative emissions were reached sooner, by ∼6 years, and scaled up, land use change emissions and reductions in forest carbon sinks outweigh these effects in one scenario. Re-cultivating mid-latitudes was found to be beneficial, on the other hand, contributing in the right direction towards the 1.5 °C target, only by ‑0.1 °C and ‑54 Gt C in avoided emissions, however. Obstacles remain related to competition for land from nature preservation and food security, as well as the technological availability of CCS.

  7. Declining body size: a third universal response to warming?

    PubMed

    Gardner, Janet L; Peters, Anne; Kearney, Michael R; Joseph, Leo; Heinsohn, Robert

    2011-06-01

    A recently documented correlate of anthropogenic climate change involves reductions in body size, the nature and scale of the pattern leading to suggestions of a third universal response to climate warming. Because body size affects thermoregulation and energetics, changing body size has implications for resilience in the face of climate change. A review of recent studies shows heterogeneity in the magnitude and direction of size responses, exposing a need for large-scale phylogenetically controlled comparative analyses of temporal size change. Integrative analyses of museum data combined with new theoretical models of size-dependent thermoregulatory and metabolic responses will increase both understanding of the underlying mechanisms and physiological consequences of size shifts and, therefore, the ability to predict the sensitivities of species to climate change. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Large-Scale and Global Hydrology. Chapter 92

    NASA Technical Reports Server (NTRS)

    Rodell, Matthew; Beaudoing, Hiroko Kato; Koster, Randal; Peters-Lidard, Christa D.; Famiglietti, James S.; Lakshmi, Venkat

    2016-01-01

    Powered by the sun, water moves continuously between and through Earths oceanic, atmospheric, and terrestrial reservoirs. It enables life, shapes Earths surface, and responds to and influences climate change. Scientists measure various features of the water cycle using a combination of ground, airborne, and space-based observations, and seek to characterize it at multiple scales with the aid of numerical models. Over time our understanding of the water cycle and ability to quantify it have improved, owing to advances in observational capabilities, the extension of the data record, and increases in computing power and storage. Here we present some of the most recent estimates of global and continental ocean basin scale water cycle stocks and fluxes and provide examples of modern numerical modeling systems and reanalyses.Further, we discuss prospects for predicting water cycle variability at seasonal and longer scales, which is complicated by a changing climate and direct human impacts related to water management and agriculture. Changes to the water cycle will be among the most obvious and important facets of climate change, thus it is crucial that we continue to invest in our ability to monitor it.

  9. Distant Influence of Kuroshio Eddies on North Pacific Weather Patterns?

    PubMed

    Ma, Xiaohui; Chang, Ping; Saravanan, R; Montuoro, Raffaele; Hsieh, Jen-Shan; Wu, Dexing; Lin, Xiaopei; Wu, Lixin; Jing, Zhao

    2015-12-04

    High-resolution satellite measurements of surface winds and sea-surface temperature (SST) reveal strong coupling between meso-scale ocean eddies and near-surface atmospheric flow over eddy-rich oceanic regions, such as the Kuroshio and Gulf Stream, highlighting the importance of meso-scale oceanic features in forcing the atmospheric planetary boundary layer (PBL). Here, we present high-resolution regional climate modeling results, supported by observational analyses, demonstrating that meso-scale SST variability, largely confined in the Kuroshio-Oyashio confluence region (KOCR), can further exert a significant distant influence on winter rainfall variability along the U.S. Northern Pacific coast. The presence of meso-scale SST anomalies enhances the diabatic conversion of latent heat energy to transient eddy energy, intensifying winter cyclogenesis via moist baroclinic instability, which in turn leads to an equivalent barotropic downstream anticyclone anomaly with reduced rainfall. The finding points to the potential of improving forecasts of extratropical winter cyclones and storm systems and projections of their response to future climate change, which are known to have major social and economic impacts, by improving the representation of ocean eddy-atmosphere interaction in forecast and climate models.

  10. Hydroclimatic Extremes and Cholera Dynamics in the 21st Century

    NASA Astrophysics Data System (ADS)

    Akanda, A. S.; Jutla, A. S.; Islam, S.

    2012-12-01

    Cholera, an acute water-borne diarrheal illness, has reemerged as a significant health threat across much of the developing world. Despite major advances in the ecological and the microbiological understanding of the causative agent, V. cholerae, the role of the underlying climatic and environmental processes in propagating transmission is not adequately understood. Recent findings suggest a more prominent role of hydroclimatic extremes - droughts and floods - on the unique dual cholera peaks in the Bengal Delta region of South Asia, the native homeland of cholera. Increasing water scarcity and abundance, and coastal sea-level rise, influenced by changing climate patterns and large-scale climatic phenomena, is likely to adversely impact cholera transmission in South Asia. We focus on understanding how associated changes in macro-scale conditions in this region will impact micro-scale processes related to cholera in coming decades. We use the PRECIS Regional Climate Model over the Ganges-Brahmaputra-Meghna (GBM) basin region to simulate detailed high resolution projections of climate patterns for the 21st century. Precipitation outputs are analyzed for the 1980-2040 period to identify the trends and changes in hydroclimatic extremes and potential impacts on cholera dynamics over the next three decades (2010-2040), in relation to the cholera surveillance operations over the past three decades (1980-2010). We find that an increased number of extreme precipitation events with prolonged dry periods in the Ganges basin region will likely adversely affect dry season cholera outbreaks. Increased monsoon precipitation volumes in the Brahmaputra basin catchments are likely to cause record floods and subsequently trigger large epidemics in downstream areas. Our results provide new insight by identifying the changes in the two distinctly different, pre and post monsoon, cholera transmission mechanisms related to large-scale climatic controls that prevail in the region. A quantitative understanding of the changes in seasonal hydroclimatic controls and underlying dominant processes will form the basis for forecasting future epidemic cholera outbreaks in light of changing climate patterns.

  11. Physically Consistent Eddy-resolving State Estimation and Prediction of the Coupled Pan-Arctic Climate System at Daily to Interannual Time Scales Using the Regional Arctic Climate Model (RACM)

    DTIC Science & Technology

    2014-09-30

    large biases aloft manifest themselves as large circulation biases at the surface (Fig. 3). Wintertime sea level pressure ( SLP ) contours align closely...extends Arctic, and the Icelandic low is very weak and shifted eastward from its proper location. Summer SLP biases in RASM_nonudg are smaller than...winter SLP biases, but are still substantial, and are again greatly improved in RASM_nudg. Although the magnitude of SLP biases is somewhat smaller

  12. Using synchronization in multi-model ensembles to improve prediction

    NASA Astrophysics Data System (ADS)

    Hiemstra, P.; Selten, F.

    2012-04-01

    In recent decades, many climate models have been developed to understand and predict the behavior of the Earth's climate system. Although these models are all based on the same basic physical principles, they still show different behavior. This is for example caused by the choice of how to parametrize sub-grid scale processes. One method to combine these imperfect models, is to run a multi-model ensemble. The models are given identical initial conditions and are integrated forward in time. A multi-model estimate can for example be a weighted mean of the ensemble members. We propose to go a step further, and try to obtain synchronization between the imperfect models by connecting the multi-model ensemble, and exchanging information. The combined multi-model ensemble is also known as a supermodel. The supermodel has learned from observations how to optimally exchange information between the ensemble members. In this study we focused on the density and formulation of the onnections within the supermodel. The main question was whether we could obtain syn-chronization between two climate models when connecting only a subset of their state spaces. Limiting the connected subspace has two advantages: 1) it limits the transfer of data (bytes) between the ensemble, which can be a limiting factor in large scale climate models, and 2) learning the optimal connection strategy from observations is easier. To answer the research question, we connected two identical quasi-geostrohic (QG) atmospheric models to each other, where the model have different initial conditions. The QG model is a qualitatively realistic simulation of the winter flow on the Northern hemisphere, has three layers and uses a spectral imple-mentation. We connected the models in the original spherical harmonical state space, and in linear combinations of these spherical harmonics, i.e. Empirical Orthogonal Functions (EOFs). We show that when connecting through spherical harmonics, we only need to connect 28% of the state variables to obtain synchronization. In addition, when connecting through EOFs, we can reduce this percentage even more to 12%. This reduction is caused by the more efficient description of the model state variables when using EOFs. The connected state variables center around the medium scale structures in the model. Small and large scale structures need not be connected in order to obtain synchronization. This could be related to the baroclinic instabilities in the QG model which are located in the medium scale structures of the model. The baroclinic instabilities are the main source of divergence between the two connected models.

  13. Significantly Increased Extreme Precipitation Expected in Europe and North America from Extratropical Storms

    NASA Astrophysics Data System (ADS)

    Hawcroft, M.; Hodges, K.; Walsh, E.; Zappa, G.

    2017-12-01

    For the Northern Hemisphere extratropics, changes in circulation are key to determining the impacts of climate warming. The mechanisms governing these circulation changes are complex, leading to the well documented uncertainty in projections of the future location of the mid-latitude storm tracks simulated by climate models. These storms are the primary source of precipitation for North America and Europe and generate many of the large-scale precipitation extremes associated with flooding and severe economic loss. Here, we show that in spite of the uncertainty in circulation changes, by analysing the behaviour of the storms themselves, we find entirely consistent and robust projections across an ensemble of climate models. In particular, we find that projections of change in the most intensely precipitating storms (above the present day 99th percentile) in the Northern Hemisphere are substantial and consistent across models, with large increases in the frequency of both summer (June-August, +226±68%) and winter (December-February, +186±34%) extreme storms by the end of the century. Regionally, both North America (summer +202±129%, winter +232±135%) and Europe (summer +390±148%, winter +318±114%) are projected to experience large increases in the frequency of intensely precipitating storms. These changes are thermodynamic and driven by surface warming, rather than by changes in the dynamical behaviour of the storms. Such changes in storm behaviour have the potential to have major impacts on society given intensely precipitating storms are responsible for many large-scale flooding events.

  14. Improving Synoptic and Intra-Seasonnal Variability in CFS via a Better Representation of Organized Convection

    NASA Astrophysics Data System (ADS)

    Khouider, B.; Goswami, B. B.; Majda, A.; Krishna, R. P. M. M.; Mukhopadhyay, P.

    2016-12-01

    Improvements in the capability of climate models to realistically capture the synoptic and intra-seasonnal variability, associated with tropical rainfall, are conditioned by improvement in the representation of the subgrid variability due to organized convection and the underlying two-way interactions through multiple scales and thus breaking with the quasi-equilibrium bottleneck. By design, the stochastic multi-cloud model (SMCM) mimics the life cycle of organized tropical convective systems and the interactions of the associated cloud types with each other and with large scales, as it is observed. It is based a lattice particle interaction model for predefined microscopic (subgrid) sites that make random transitions from one cloud type to another conditional to the large scale state. In return the SMCM provides the cloud type area fractions on the form of a Markov chain model which can be run in parallel with the climate model without any significant computational overhead. The SMCM was previously successfully tested in both reduced complexity tropical models and an aquaplanet global atmospheric model. Here, we report for the first time the results of its implementation in the fully coupled NCEP climate model (CFSv2) through the used of prescribed vertical profiles of heating and drying obtained from observations. While many known biases in CFSv2 have been slightly improved there are no noticeable degradation in the simulated mean climatology. Nonetheless, comparison with observations show that the improvements in terms of synoptic and intra-seasonnal variability are spectacular, despite the fact that CFSv2 is one of the best models in this regard. In particular, while CFSv2 exaggerates the intra-seasonnal variance at the expense of the synoptic contribution, the CFS-SMCM shows a good balance between the two as in the observations.

  15. Internal Variability-Generated Uncertainty in East Asian Climate Projections Estimated with 40 CCSM3 Ensembles.

    PubMed

    Yao, Shuai-Lei; Luo, Jing-Jia; Huang, Gang

    2016-01-01

    Regional climate projections are challenging because of large uncertainty particularly stemming from unpredictable, internal variability of the climate system. Here, we examine the internal variability-induced uncertainty in precipitation and surface air temperature (SAT) trends during 2005-2055 over East Asia based on 40 member ensemble projections of the Community Climate System Model Version 3 (CCSM3). The model ensembles are generated from a suite of different atmospheric initial conditions using the same SRES A1B greenhouse gas scenario. We find that projected precipitation trends are subject to considerably larger internal uncertainty and hence have lower confidence, compared to the projected SAT trends in both the boreal winter and summer. Projected SAT trends in winter have relatively higher uncertainty than those in summer. Besides, the lower-level atmospheric circulation has larger uncertainty than that in the mid-level. Based on k-means cluster analysis, we demonstrate that a substantial portion of internally-induced precipitation and SAT trends arises from internal large-scale atmospheric circulation variability. These results highlight the importance of internal climate variability in affecting regional climate projections on multi-decadal timescales.

  16. Changes in interannual climate sensitivities of terrestrial carbon fluxes during the 21st century predicted by CMIP5 Earth System Models

    NASA Astrophysics Data System (ADS)

    Liu, Yongwen; Wang, Tao; Huang, Mengtian; Yao, Yitong; Ciais, Philippe; Piao, Shilong

    2016-03-01

    Terrestrial carbon fluxes are sensitive to climate change, but the interannual climate sensitivity of the land carbon cycle can also change with time. We analyzed the changes in responses of net biome production (NBP), net primary production (NPP), and heterotrophic respiration (Rh) to interannual climate variations over the 21st century in the Earth System Models (ESMs) from the Coupled Model Intercomparison Project 5. Under Representative Concentration Pathway (RCP) 4.5, interannual temperature sensitivities of NBP (γTempNBP), NPP (γTempNPP), and Rh (γTempRh) remain relatively stable at global scale, yet with large differences among ESMs and spatial heterogeneity. Modeled γTempNPP and γTempRh appear to increase in parallel in boreal regions, resulting in unchanged γTempNBP. Tropical γTempNBP decreases in most models, due to decreasing γTempNPP and relatively stable γTempRh. Across models, the changes in γTempNBP can be mainly explained by changes in γTempNPP rather than changes in γTempRh, at both global and regional scales. Interannual precipitation sensitivities of global NBP (γPrecNBP), NPP (γPrecNPP), and Rh (γPrecRh) are predicted not to change significantly, with large differences among ESMs. Across models, the changes in γPrecNBP can be mainly explained by changes in γPrecNPP rather than changes in γPrecRh in temperate regions, but not in other regions. Changes in the interannual climate sensitivities of carbon fluxes are consistent across RCPs 4.5, 6.0, and 8.5 but larger in more intensive scenarios. More effort should be considered to improve terrestrial carbon flux responses to interannual climate variability, e.g., incorporating biogeochemical processes of nutrient limitation, permafrost dynamics, and microbial decomposition.

  17. Projecting 21st Century Snowpack Trends in the Western United States using Variable-Resolution CESM

    NASA Astrophysics Data System (ADS)

    Rhoades, A.; Huang, X.; Zarzycki, C. M.; Ullrich, P. A.

    2015-12-01

    The western USA is integrally reliant upon winter season snowpack, which supplies 3/4 of the region's fresh water and buffers against seasonal aridity on agricultural, ecosystem, and urban water demands. By the end of the 21st century, western USA snowpack (SWE) could decline by 40-70%, snowfall by 25-40%, more winter storms could tend towards rain rather than snow, and the peak timing of snowmelt will shift several weeks earlier in the season. Further, there has been evidence that mountain ranges could face more accelerated warming (elevational dependent warming) due to climate change. These future trends have largely been derived from global climate models (CMIP5) which can't resolve some of the more relatively narrow mountain ranges, like the California Sierra Nevada, in great detail. Therefore, due to the importance of orographic uplift on weather fronts, eastern Pacific sea-surface temperature anomalies, atmospheric river events, and mesoscale convective systems, high-resolution global scale modeling techniques are necessary to properly resolve western USA mountain range climatology. Variable-resolution global climate models (VRGCMs) are a promising next-generation technique to analyze both past and future hydroclimatic trends in the region. VRGCMs serve as a bridge between regional and global models by allowing for high-resolution in areas of interest, eliminate lateral boundary forcings (and resultant model biases), allow for more dynamically inclusive large-scale climate teleconnections, and require smaller simulation times and lower data storage demand (compared to conventional global models). This presentation focuses on validating these next-generation models as well as projecting future climate change scenario impacts on several of the western USA's key hydroclimate metrics (e.g., two-meter surface temperature, snow cover, snow water equivalent, and snowfall) to inform water managers and policy makers and offer resilience to climate change impacts facing the region.

  18. Inter-model variability in hydrological extremes projections for Amazonian sub-basins

    NASA Astrophysics Data System (ADS)

    Andres Rodriguez, Daniel; Garofolo, Lucas; Lázaro de Siqueira Júnior, José; Samprogna Mohor, Guilherme; Tomasella, Javier

    2014-05-01

    Irreducible uncertainties due to knowledge's limitations, chaotic nature of climate system and human decision-making process drive uncertainties in Climate Change projections. Such uncertainties affect the impact studies, mainly when associated to extreme events, and difficult the decision-making process aimed at mitigation and adaptation. However, these uncertainties allow the possibility to develop exploratory analyses on system's vulnerability to different sceneries. The use of different climate model's projections allows to aboard uncertainties issues allowing the use of multiple runs to explore a wide range of potential impacts and its implications for potential vulnerabilities. Statistical approaches for analyses of extreme values are usually based on stationarity assumptions. However, nonstationarity is relevant at the time scales considered for extreme value analyses and could have great implications in dynamic complex systems, mainly under climate change transformations. Because this, it is required to consider the nonstationarity in the statistical distribution parameters. We carried out a study of the dispersion in hydrological extremes projections using climate change projections from several climate models to feed the Distributed Hydrological Model of the National Institute for Spatial Research, MHD-INPE, applied in Amazonian sub-basins. This model is a large-scale hydrological model that uses a TopModel approach to solve runoff generation processes at the grid-cell scale. MHD-INPE model was calibrated for 1970-1990 using observed meteorological data and comparing observed and simulated discharges by using several performance coeficients. Hydrological Model integrations were performed for present historical time (1970-1990) and for future period (2010-2100). Because climate models simulate the variability of the climate system in statistical terms rather than reproduce the historical behavior of climate variables, the performances of the model's runs during the historical period, when feed with climate model data, were tested using descriptors of the Flow Duration Curves. The analyses of projected extreme values were carried out considering the nonstationarity of the GEV distribution parameters and compared with extremes events in present time. Results show inter-model variability in a broad dispersion on projected extreme's values. Such dispersion implies different degrees of socio-economic impacts associated to extreme hydrological events. Despite the no existence of one optimum result, this variability allows the analyses of adaptation strategies and its potential vulnerabilities.

  19. Evaluation of the Absolute Regional Temperature Potential

    NASA Technical Reports Server (NTRS)

    Shindell, D. T.

    2012-01-01

    The Absolute Regional Temperature Potential (ARTP) is one of the few climate metrics that provides estimates of impacts at a sub-global scale. The ARTP presented here gives the time-dependent temperature response in four latitude bands (90-28degS, 28degS-28degN, 28-60degN and 60-90degN) as a function of emissions based on the forcing in those bands caused by the emissions. It is based on a large set of simulations performed with a single atmosphere-ocean climate model to derive regional forcing/response relationships. Here I evaluate the robustness of those relationships using the forcing/response portion of the ARTP to estimate regional temperature responses to the historic aerosol forcing in three independent climate models. These ARTP results are in good accord with the actual responses in those models. Nearly all ARTP estimates fall within +/-20%of the actual responses, though there are some exceptions for 90-28degS and the Arctic, and in the latter the ARTP may vary with forcing agent. However, for the tropics and the Northern Hemisphere mid-latitudes in particular, the +/-20% range appears to be roughly consistent with the 95% confidence interval. Land areas within these two bands respond 39-45% and 9-39% more than the latitude band as a whole. The ARTP, presented here in a slightly revised form, thus appears to provide a relatively robust estimate for the responses of large-scale latitude bands and land areas within those bands to inhomogeneous radiative forcing and thus potentially to emissions as well. Hence this metric could allow rapid evaluation of the effects of emissions policies at a finer scale than global metrics without requiring use of a full climate model.

  20. Geomorphic and climate influences on soil organic carbon concentration at large catchment scales

    NASA Astrophysics Data System (ADS)

    Hancock, G. R.; Martinez, C.; Wells, T.; Dever, C.; Willgoose, G. R.; Bissett, A.

    2013-12-01

    Soils represent the largest terrestrial sink of carbon on Earth. Managing the soil organic carbon (SOC) pool is becoming increasingly important in light of growing concerns over global food security and the climatic effects of anthropogenic CO2 emissions. The development of accurate predictive SOC models are an important step for both land resource managers and policy makers alike. Presently, a number of SOC models are available which incorporate environmental data to produce SOC estimates. The accuracy of these models varies significantly over a range of landscapes due to the highly complex nature of SOC dynamics. Fundamental gaps exist in our understanding of SOC controls. To date, studies of SOC controls, and the subsequent models derived from their findings have focussed mainly on North American and European landscapes. Additionally, SOC studies often focus on the paddock to small catchment scale. Consequently, information about SOC in Australian landscapes and at the larger scale is limited. This study examines controls over SOC across a large catchment of approximately 600 km2 in the Upper Hunter Valley, New South Wales, Australia. The aim was to develop a predictive model for use across a range of catchment sizes and climate. Here it was found that elevation (derived from DEMs) and vegetation (above ground biomass quantified by remote sensing were the primary controls of SOC. SOC was seen to increase with elevation and NDVI. This relationship is believed to be a reflection of rainfall patterns across the study area and plant growth potential. Further, a relationship was observed between SOC and the environmental tracer 137Cs which suggests that SOC and 137Cs move through catchment via similar sediment transport mechanisms. Therefore loss of SOC by erosion and gain by deposition may be necessary to be accounted for in any SOC budget. Model validation indicated that the use of simple linear relationships could predict SOC based on rainfall and vegetation (above ground biomass as quantified by remote sensing). The results suggest that simple landscape and climate models have the potential to predict the spatial distribution of SOC. The findings of this study emphasise the importance of tailoring SOC models to the appropriate scale.

  1. Statistical downscaling of sub-daily (6-hour) temperature in Romania, by means of artificial neural networks

    NASA Astrophysics Data System (ADS)

    Birsan, Marius-Victor; Dumitrescu, Alexandru; Cǎrbunaru, Felicia

    2016-04-01

    The role of statistical downscaling is to model the relationship between large-scale atmospheric circulation and climatic variables on a regional and sub-regional scale, making use of the predictions of future circulation generated by General Circulation Models (GCMs) in order to capture the effects of climate change on smaller areas. The study presents a statistical downscaling model based on a neural network-based approach, by means of multi-layer perceptron networks. Sub-daily temperature data series from 81 meteorological stations over Romania, with full data records are used as predictands. As large-scale predictor, the NCEP/NCAD air temperature data at 850 hPa over the domain 20-30E / 40-50N was used, at a spatial resolution of 2.5×2.5 degrees. The period 1961-1990 was used for calibration, while the validation was realized over the 1991-2010 interval. Further, in order to estimate future changes in air temperature for 2021-2050 and 2071-2100, air temperature data at 850 hPa corresponding to the IPCC A1B scenario was extracted from the CNCM33 model (Meteo-France) and used as predictor. This work has been realized within the research project "Changes in climate extremes and associated impact in hydrological events in Romania" (CLIMHYDEX), code PN II-ID-2011-2-0073, financed by the Romanian Executive Agency for Higher Education Research, Development and Innovation Funding (UEFISCDI).

  2. The relationship between reference canopy conductance and simplified hydraulic architecture

    NASA Astrophysics Data System (ADS)

    Novick, Kimberly; Oren, Ram; Stoy, Paul; Juang, Jehn-Yih; Siqueira, Mario; Katul, Gabriel

    2009-06-01

    Terrestrial ecosystems are dominated by vascular plants that form a mosaic of hydraulic conduits to water movement from the soil to the atmosphere. Together with canopy leaf area, canopy stomatal conductance regulates plant water use and thereby photosynthesis and growth. Although stomatal conductance is coordinated with plant hydraulic conductance, governing relationships across species has not yet been formulated at a practical level that can be employed in large-scale models. Here, combinations of published conductance measurements obtained with several methodologies across boreal to tropical climates were used to explore relationships between canopy conductance rates and hydraulic constraints. A parsimonious hydraulic model requiring sapwood-to-leaf area ratio and canopy height generated acceptable agreement with measurements across a range of biomes (r2=0.75). The results suggest that, at long time scales, the functional convergence among ecosystems in the relationship between water-use and hydraulic architecture eclipses inter-specific variation in physiology and anatomy of the transport system. Prognostic applicability of this model requires independent knowledge of sapwood-to-leaf area. In this study, we did not find a strong relationship between sapwood-to-leaf area and physical or climatic variables that are readily determinable at coarse scales, though the results suggest that climate may have a mediating influence on the relationship between sapwood-to-leaf area and height. Within temperate forests, canopy height alone explained a large amount of the variance in reference canopy conductance (r2=0.68) and this relationship may be more immediately applicable in the terrestrial ecosystem models.

  3. Century Scale Evaporation Trend: An Observational Study

    NASA Technical Reports Server (NTRS)

    Bounoui, Lahouari

    2012-01-01

    Several climate models with different complexity indicate that under increased CO2 forcing, runoff would increase faster than precipitation overland. However, observations over large U.S watersheds indicate otherwise. This inconsistency between models and observations suggests that there may be important feedbacks between climate and land surface unaccounted for in the present generation of models. We have analyzed century-scale observed annual runoff and precipitation time-series over several United States Geological Survey hydrological units covering large forested regions of the Eastern United States not affected by irrigation. Both time-series exhibit a positive long-term trend; however, in contrast to model results, these historic data records show that the rate of precipitation increases at roughly double the rate of runoff increase. We considered several hydrological processes to close the water budget and found that none of these processes acting alone could account for the total water excess generated by the observed difference between precipitation and runoff. We conclude that evaporation has increased over the period of observations and show that the increasing trend in precipitation minus runoff is correlated to observed increase in vegetation density based on the longest available global satellite record. The increase in vegetation density has important implications for climate; it slows but does not alleviate the projected warming associated with greenhouse gases emission.

  4. Low order climate models as a tool for cross-disciplinary collaboration

    NASA Astrophysics Data System (ADS)

    Newton, R.; Pfirman, S. L.; Tremblay, B.; Schlosser, P.

    2014-12-01

    Human impacts on climate are pervasive and significant and project future states cannot be projected without taking human influence into account. We recently helped convene a meeting of climatologists, policy analysts, lawyers and social scientists to discuss the dramatic loss in Arctic summer sea ice. A dialogue emerged around distinct time scales in the integrated human/natural climate system. Climate scientists tended to discuss engineering solutions as though they could be implemented immediately, whereas lags of 2 or more decades were estimated by social scientists for societal shifts and similar lags were cited for deployment by the engineers. Social scientists tended to project new climate states virtually overnight, while climatologists described time scales of decades to centuries for the system to respond to changes in forcing functions. For the conversation to develop, the group had to come to grips with an increasingly complex set of transient effect time scales and lags between decisions, changes in forcing, and system outputs. We use several low-order dynamical system models to explore mismatched timescales, ranges of lags, and uncertainty in cost estimates on climate outcomes, focusing on Arctic-specific issues. In addition to lessons regarding what is/isn't feasible from a policy and engineering perspective, these models provide a useful tool to concretize cross-disciplinary thinking. They are fast and easy to iterate through a large region of the problem space, while including surprising complexity in their evolution. Thus they are appropriate for investigating the implications of policy in an efficient, but not unrealistic physical setting. (Earth System Models, by contrast, can be too resource- and time-intensive for iteratively testing "what if" scenarios in cross-disciplinary collaborations.) Our runs indicate, for example, that the combined social, engineering and climate physics lags make it extremely unlikely that an ice-free summer ecology in the Arctic can be avoided. Further, if prospective remediation strategies are successful, a return to perennial ice conditions between one and two centuries from now is entirely likely, with interesting and large impacts on Northern economies.

  5. Assessing the Dynamic Effects of Climate on Individual Tree Growth Across Time and Space

    NASA Astrophysics Data System (ADS)

    Itter, M.; Finley, A. O.; D'Amato, A. W.; Foster, J. R.; Bradford, J. B.

    2015-12-01

    The relationship between climate variability and an ecosystem process, such as forest growth, is frequently not fixed over time, but changes due to complex interactions between unobserved ecological factors and the process of interest. Climate data and forecasts are frequently spatially and temporally misaligned with ecological observations making inference regarding the effects of climate on ecosystem processes particularly challenging. Here we develop a Bayesian dynamic hierarchical model for annual tree growth increment that allows the effects of climate to evolve over time, applies climate data at a spatial-temporal scale consistent with observations, and controls for individual-level variability commonly encountered in ecological datasets. The model is applied to individual tree data from northern Minnesota using a modified Thornthwaite-type water balance model to transform PRISM temperature and precipitation estimates to physiologically relevant values of actual and potential evapotranspiration (AET, PET), and climatic water deficit. Model results indicate that mean tree growth is most sensitive to AET during the growing season and PET and minimum temperature in the spring prior to growth. The effects of these variables on tree growth, however, are not stationary with significant effects observed in only a subset of years during the 111-year study period. Importantly, significant effects of climate do not result from anomalous climate observations, but follow from large growth deviations unexplained by tree age and size, and time since forest disturbance. Results differ markedly from alternative models that assume the effects of climate are stationary over time or apply climate estimates at the individual scale. Forecasts of future tree growth as a function of climate follow directly from the dynamic hierarchical model allowing for assessment of forest change. Current work is focused on extending the model framework to include regional climate and ecosystem effects for application to a larger tree growth dataset spanning a latitudinal gradient within the US from Maine to Florida.

  6. Regional variability of the frequency distribution of daily precipitation and the synoptic characteristics of heavy precipitation events in present and future climate simulations

    NASA Astrophysics Data System (ADS)

    DeAngelis, Anthony M.

    Changes in the characteristics of daily precipitation in response to global warming may have serious impacts on human life and property. An analysis of precipitation in climate models is performed to evaluate how well the models simulate the present climate and how precipitation may change in the future. Models participating in phase 3 and 5 of the Coupled Model Intercomparison Project (CMIP3 and CMIP5) have substantial biases in their simulation of heavy precipitation intensity over parts of North America during the 20th century. Despite these biases, the large-scale atmospheric circulation accompanying heavy precipitation is either simulated realistically or the strength of the circulation is overestimated. The biases are not related to the large-scale flow in a simple way, pointing toward the importance of other model deficiencies, such as coarse horizontal resolution and convective parameterizations, for the accurate simulation of intense precipitation. Although the models may not sufficiently simulate the intensity of precipitation, their realistic portrayal of the large-scale circulation suggests that projections of future precipitation may be reliable. In the CMIP5 ensemble, the distribution of daily precipitation is projected to undergo substantial changes in response to future atmospheric warming. The regional distribution of these changes was investigated, revealing that dry days and days with heavy-extreme precipitation are projected to increase at the expense of light-moderate precipitation over much of the middle and low latitudes. Such projections have serious implications for future impacts from flood and drought events. In other places, changes in the daily precipitation distribution are characterized by a shift toward either wetter or drier conditions in the future, with heavy-extreme precipitation projected to increase in all but the driest subtropical subsidence regions. Further analysis shows that increases in heavy precipitation in midlatitudes are largely explained by thermodynamics, including increases in atmospheric water vapor. However, in low latitudes and northern high latitudes, changes in vertical velocity accompanying heavy precipitation are also important. The strength of the large-scale atmospheric circulation is projected to change in accordance with vertical velocity in many places, though the circulation patterns, and therefore physical mechanisms that generate heavy precipitation, may remain the same.

  7. Large rainfall changes consistently projected over substantial areas of tropical land

    NASA Astrophysics Data System (ADS)

    Chadwick, Robin; Good, Peter; Martin, Gill; Rowell, David P.

    2016-02-01

    Many tropical countries are exceptionally vulnerable to changes in rainfall patterns, with floods or droughts often severely affecting human life and health, food and water supplies, ecosystems and infrastructure. There is widespread disagreement among climate model projections of how and where rainfall will change over tropical land at the regional scales relevant to impacts, with different models predicting the position of current tropical wet and dry regions to shift in different ways. Here we show that despite uncertainty in the location of future rainfall shifts, climate models consistently project that large rainfall changes will occur for a considerable proportion of tropical land over the twenty-first century. The area of semi-arid land affected by large changes under a higher emissions scenario is likely to be greater than during even the most extreme regional wet or dry periods of the twentieth century, such as the Sahel drought of the late 1960s to 1990s. Substantial changes are projected to occur by mid-century--earlier than previously expected--and to intensify in line with global temperature rise. Therefore, current climate projections contain quantitative, decision-relevant information on future regional rainfall changes, particularly with regard to climate change mitigation policy.

  8. A multimodel approach to interannual and seasonal prediction of Danube discharge anomalies

    NASA Astrophysics Data System (ADS)

    Rimbu, Norel; Ionita, Monica; Patrut, Simona; Dima, Mihai

    2010-05-01

    Interannual and seasonal predictability of Danube river discharge is investigated using three model types: 1) time series models 2) linear regression models of discharge with large-scale climate mode indices and 3) models based on stable teleconnections. All models are calibrated using discharge and climatic data for the period 1901-1977 and validated for the period 1978-2008 . Various time series models, like autoregressive (AR), moving average (MA), autoregressive and moving average (ARMA) or singular spectrum analysis and autoregressive moving average (SSA+ARMA) models have been calibrated and their skills evaluated. The best results were obtained using SSA+ARMA models. SSA+ARMA models proved to have the highest forecast skill also for other European rivers (Gamiz-Fortis et al. 2008). Multiple linear regression models using large-scale climatic mode indices as predictors have a higher forecast skill than the time series models. The best predictors for Danube discharge are the North Atlantic Oscillation (NAO) and the East Atlantic/Western Russia patterns during winter and spring. Other patterns, like Polar/Eurasian or Tropical Northern Hemisphere (TNH) are good predictors for summer and autumn discharge. Based on stable teleconnection approach (Ionita et al. 2008) we construct prediction models through a combination of sea surface temperature (SST), temperature (T) and precipitation (PP) from the regions where discharge and SST, T and PP variations are stable correlated. Forecast skills of these models are higher than forecast skills of the time series and multiple regression models. The models calibrated and validated in our study can be used for operational prediction of interannual and seasonal Danube discharge anomalies. References Gamiz-Fortis, S., D. Pozo-Vazquez, R.M. Trigo, and Y. Castro-Diez, Quantifying the predictability of winter river flow in Iberia. Part I: intearannual predictability. J. Climate, 2484-2501, 2008. Gamiz-Fortis, S., D. Pozo-Vazquez, R.M. Trigo, and Y. Castro-Diez, Quantifying the predictability of winter river flow in Iberia. Part II: seasonal predictability. J. Climate, 2503-2518, 2008. Ionita, M., G. Lohmann, and N. Rimbu, Prediction of spring Elbe river discharge based on stable teleconnections with global temperature and precipitation. J. Climate. 6215-6226, 2008.

  9. Using nudging to improve global-regional dynamic consistency in limited-area climate modeling: What should we nudge?

    NASA Astrophysics Data System (ADS)

    Omrani, Hiba; Drobinski, Philippe; Dubos, Thomas

    2015-03-01

    Regional climate modelling sometimes requires that the regional model be nudged towards the large-scale driving data to avoid the development of inconsistencies between them. These inconsistencies are known to produce large surface temperature and rainfall artefacts. Therefore, it is essential to maintain the synoptic circulation within the simulation domain consistent with the synoptic circulation at the domain boundaries. Nudging techniques, initially developed for data assimilation purposes, are increasingly used in regional climate modeling and offer a workaround to this issue. In this context, several questions on the "optimal" use of nudging are still open. In this study we focus on a specific question which is: What variable should we nudge? in order to maintain the consistencies between the regional model and the driving fields as much as possible. For that, a "Big Brother Experiment", where a reference atmospheric state is known, is conducted using the weather research and forecasting (WRF) model over the Euro-Mediterranean region. A set of 22 3-month simulations is performed with different sets of nudged variables and nudging options (no nudging, indiscriminate nudging, spectral nudging) for summer and winter. The results show that nudging clearly improves the model capacity to reproduce the reference fields. However the skill scores depend on the set of variables used to nudge the regional climate simulations. Nudging the tropospheric horizontal wind is by far the key variable to nudge to simulate correctly surface temperature and wind, and rainfall. To a lesser extent, nudging tropospheric temperature also contributes to significantly improve the simulations. Indeed, nudging tropospheric wind or temperature directly impacts the simulation of the tropospheric geopotential height and thus the synoptic scale atmospheric circulation. Nudging moisture improves the precipitation but the impact on the other fields (wind and temperature) is not significant. As an immediate consequence, nudging tropospheric wind, temperature and moisture in WRF gives by far the best results with respect to the Big-Brother simulation. However, we noticed that a residual bias of the geopotential height persists due to a negative surface pressure anomaly which suggests that surface pressure is the missing quantity to nudge. Nudging the geopotential has no discernible effect. Finally, it should be noted that the proposed strategy ensures a dynamical consistency between the driving field and the simulated small-scale field but it does not ensure the best "observed" fine scale field because of the possible impact of incorrect driving large-scale field.

  10. Exploring precipitation pattern scaling methodologies and robustness among CMIP5 models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kravitz, Ben; Lynch, Cary; Hartin, Corinne

    Pattern scaling is a well-established method for approximating modeled spatial distributions of changes in temperature by assuming a time-invariant pattern that scales with changes in global mean temperature. We compare two methods of pattern scaling for annual mean precipitation (regression and epoch difference) and evaluate which method is better in particular circumstances by quantifying their robustness to interpolation/extrapolation in time, inter-model variations, and inter-scenario variations. Both the regression and epoch-difference methods (the two most commonly used methods of pattern scaling) have good absolute performance in reconstructing the climate model output, measured as an area-weighted root mean square error. We decomposemore » the precipitation response in the RCP8.5 scenario into a CO 2 portion and a non-CO 2 portion. Extrapolating RCP8.5 patterns to reconstruct precipitation change in the RCP2.6 scenario results in large errors due to violations of pattern scaling assumptions when this CO 2-/non-CO 2-forcing decomposition is applied. As a result, the methodologies discussed in this paper can help provide precipitation fields to be utilized in other models (including integrated assessment models or impacts assessment models) for a wide variety of scenarios of future climate change.« less

  11. Exploring precipitation pattern scaling methodologies and robustness among CMIP5 models

    DOE PAGES

    Kravitz, Ben; Lynch, Cary; Hartin, Corinne; ...

    2017-05-12

    Pattern scaling is a well-established method for approximating modeled spatial distributions of changes in temperature by assuming a time-invariant pattern that scales with changes in global mean temperature. We compare two methods of pattern scaling for annual mean precipitation (regression and epoch difference) and evaluate which method is better in particular circumstances by quantifying their robustness to interpolation/extrapolation in time, inter-model variations, and inter-scenario variations. Both the regression and epoch-difference methods (the two most commonly used methods of pattern scaling) have good absolute performance in reconstructing the climate model output, measured as an area-weighted root mean square error. We decomposemore » the precipitation response in the RCP8.5 scenario into a CO 2 portion and a non-CO 2 portion. Extrapolating RCP8.5 patterns to reconstruct precipitation change in the RCP2.6 scenario results in large errors due to violations of pattern scaling assumptions when this CO 2-/non-CO 2-forcing decomposition is applied. As a result, the methodologies discussed in this paper can help provide precipitation fields to be utilized in other models (including integrated assessment models or impacts assessment models) for a wide variety of scenarios of future climate change.« less

  12. Large-scale determinants of intestinal schistosomiasis and intermediate host snail distribution across Africa: does climate matter?

    PubMed

    Stensgaard, Anna-Sofie; Utzinger, Jürg; Vounatsou, Penelope; Hürlimann, Eveline; Schur, Nadine; Saarnak, Christopher F L; Simoonga, Christopher; Mubita, Patricia; Kabatereine, Narcis B; Tchuem Tchuenté, Louis-Albert; Rahbek, Carsten; Kristensen, Thomas K

    2013-11-01

    The geographical ranges of most species, including many infectious disease agents and their vectors and intermediate hosts, are assumed to be constrained by climatic tolerances, mainly temperature. It has been suggested that global warming will cause an expansion of the areas potentially suitable for infectious disease transmission. However, the transmission of infectious diseases is governed by a myriad of ecological, economic, evolutionary and social factors. Hence, a deeper understanding of the total disease system (pathogens, vectors and hosts) and its drivers is important for predicting responses to climate change. Here, we combine a growing degree day model for Schistosoma mansoni with species distribution models for the intermediate host snail (Biomphalaria spp.) to investigate large-scale environmental determinants of the distribution of the African S. mansoni-Biomphalaria system and potential impacts of climatic changes. Snail species distribution models included several combinations of climatic and habitat-related predictors; the latter divided into "natural" and "human-impacted" habitat variables to measure anthropogenic influence. The predictive performance of the combined snail-parasite model was evaluated against a comprehensive compilation of historical S. mansoni parasitological survey records, and then examined for two climate change scenarios of increasing severity for 2080. Future projections indicate that while the potential S. mansoni transmission area expands, the snail ranges are more likely to contract and/or move into cooler areas in the south and east. Importantly, we also note that even though climate per se matters, the impact of humans on habitat play a crucial role in determining the distribution of the intermediate host snails in Africa. Thus, a future contraction in the geographical range size of the intermediate host snails caused by climatic changes does not necessarily translate into a decrease or zero-sum change in human schistosomiasis prevalence. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Will high-resolution global ocean models benefit coupled predictions on short-range to climate timescales?

    NASA Astrophysics Data System (ADS)

    Hewitt, Helene T.; Bell, Michael J.; Chassignet, Eric P.; Czaja, Arnaud; Ferreira, David; Griffies, Stephen M.; Hyder, Pat; McClean, Julie L.; New, Adrian L.; Roberts, Malcolm J.

    2017-12-01

    As the importance of the ocean in the weather and climate system is increasingly recognised, operational systems are now moving towards coupled prediction not only for seasonal to climate timescales but also for short-range forecasts. A three-way tension exists between the allocation of computing resources to refine model resolution, the expansion of model complexity/capability, and the increase of ensemble size. Here we review evidence for the benefits of increased ocean resolution in global coupled models, where the ocean component explicitly represents transient mesoscale eddies and narrow boundary currents. We consider lessons learned from forced ocean/sea-ice simulations; from studies concerning the SST resolution required to impact atmospheric simulations; and from coupled predictions. Impacts of the mesoscale ocean in western boundary current regions on the large-scale atmospheric state have been identified. Understanding of air-sea feedback in western boundary currents is modifying our view of the dynamics in these key regions. It remains unclear whether variability associated with open ocean mesoscale eddies is equally important to the large-scale atmospheric state. We include a discussion of what processes can presently be parameterised in coupled models with coarse resolution non-eddying ocean models, and where parameterizations may fall short. We discuss the benefits of resolution and identify gaps in the current literature that leave important questions unanswered.

  14. An ensemble constrained variational analysis of atmospheric forcing data and its application to evaluate clouds in CAM5: Ensemble 3DCVA and Its Application

    DOE PAGES

    Tang, Shuaiqi; Zhang, Minghua; Xie, Shaocheng

    2016-01-05

    Large-scale atmospheric forcing data can greatly impact the simulations of atmospheric process models including Large Eddy Simulations (LES), Cloud Resolving Models (CRMs) and Single-Column Models (SCMs), and impact the development of physical parameterizations in global climate models. This study describes the development of an ensemble variationally constrained objective analysis of atmospheric large-scale forcing data and its application to evaluate the cloud biases in the Community Atmospheric Model (CAM5). Sensitivities of the variational objective analysis to background data, error covariance matrix and constraint variables are described and used to quantify the uncertainties in the large-scale forcing data. Application of the ensemblemore » forcing in the CAM5 SCM during March 2000 intensive operational period (IOP) at the Southern Great Plains (SGP) of the Atmospheric Radiation Measurement (ARM) program shows systematic biases in the model simulations that cannot be explained by the uncertainty of large-scale forcing data, which points to the deficiencies of physical parameterizations. The SCM is shown to overestimate high clouds and underestimate low clouds. These biases are found to also exist in the global simulation of CAM5 when it is compared with satellite data.« less

  15. An ensemble constrained variational analysis of atmospheric forcing data and its application to evaluate clouds in CAM5: Ensemble 3DCVA and Its Application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, Shuaiqi; Zhang, Minghua; Xie, Shaocheng

    Large-scale atmospheric forcing data can greatly impact the simulations of atmospheric process models including Large Eddy Simulations (LES), Cloud Resolving Models (CRMs) and Single-Column Models (SCMs), and impact the development of physical parameterizations in global climate models. This study describes the development of an ensemble variationally constrained objective analysis of atmospheric large-scale forcing data and its application to evaluate the cloud biases in the Community Atmospheric Model (CAM5). Sensitivities of the variational objective analysis to background data, error covariance matrix and constraint variables are described and used to quantify the uncertainties in the large-scale forcing data. Application of the ensemblemore » forcing in the CAM5 SCM during March 2000 intensive operational period (IOP) at the Southern Great Plains (SGP) of the Atmospheric Radiation Measurement (ARM) program shows systematic biases in the model simulations that cannot be explained by the uncertainty of large-scale forcing data, which points to the deficiencies of physical parameterizations. The SCM is shown to overestimate high clouds and underestimate low clouds. These biases are found to also exist in the global simulation of CAM5 when it is compared with satellite data.« less

  16. Exploiting Synoptic-Scale Climate Processes to Develop Nonstationary, Probabilistic Flood Hazard Projections

    NASA Astrophysics Data System (ADS)

    Spence, C. M.; Brown, C.; Doss-Gollin, J.

    2016-12-01

    Climate model projections are commonly used for water resources management and planning under nonstationarity, but they do not reliably reproduce intense short-term precipitation and are instead more skilled at broader spatial scales. To provide a credible estimate of flood trend that reflects climate uncertainty, we present a framework that exploits the connections between synoptic-scale oceanic and atmospheric patterns and local-scale flood-producing meteorological events to develop long-term flood hazard projections. We demonstrate the method for the Iowa River, where high flow episodes have been found to correlate with tropical moisture exports that are associated with a pressure dipole across the eastern continental United States We characterize the relationship between flooding on the Iowa River and this pressure dipole through a nonstationary Pareto-Poisson peaks-over-threshold probability distribution estimated based on the historic record. We then combine the results of a trend analysis of dipole index in the historic record with the results of a trend analysis of the dipole index as simulated by General Circulation Models (GCMs) under climate change conditions through a Bayesian framework. The resulting nonstationary posterior distribution of dipole index, combined with the dipole-conditioned peaks-over-threshold flood frequency model, connects local flood hazard to changes in large-scale atmospheric pressure and circulation patterns that are related to flooding in a process-driven framework. The Iowa River example demonstrates that the resulting nonstationary, probabilistic flood hazard projection may be used to inform risk-based flood adaptation decisions.

  17. Wildland fire probabilities estimated from weather model-deduced monthly mean fire danger indices

    Treesearch

    Haiganoush K. Preisler; Shyh-Chin Chen; Francis Fujioka; John W. Benoit; Anthony L. Westerling

    2008-01-01

    The National Fire Danger Rating System indices deduced from a regional simulation weather model were used to estimate probabilities and numbers of large fire events on monthly and 1-degree grid scales. The weather model simulations and forecasts are ongoing experimental products from the Experimental Climate Prediction Center at the Scripps Institution of Oceanography...

  18. Climatic and Catchment-Scale Predictors of Chinese Stream Insect Richness Differ between Taxonomic Groups

    PubMed Central

    Tonkin, Jonathan D.; Shah, Deep Narayan; Kuemmerlen, Mathias; Li, Fengqing; Cai, Qinghua; Haase, Peter; Jähnig, Sonja C.

    2015-01-01

    Little work has been done on large-scale patterns of stream insect richness in China. We explored the influence of climatic and catchment-scale factors on stream insect (Ephemeroptera, Plecoptera, Trichoptera; EPT) richness across mid-latitude China. We assessed the predictive ability of climatic, catchment land cover and physical structure variables on genus richness of EPT, both individually and combined, in 80 mid-latitude Chinese streams, spanning a 3899-m altitudinal gradient. We performed analyses using boosted regression trees and explored the nature of their influence on richness patterns. The relative importance of climate, land cover, and physical factors on stream insect richness varied considerably between the three orders, and while important for Ephemeroptera and Plecoptera, latitude did not improve model fit for any of the groups. EPT richness was linked with areas comprising high forest cover, elevation and slope, large catchments and low temperatures. Ephemeroptera favoured areas with high forest cover, medium-to-large catchment sizes, high temperature seasonality, and low potential evapotranspiration. Plecoptera richness was linked with low temperature seasonality and annual mean, and high slope, elevation and warm-season rainfall. Finally, Trichoptera favoured high elevation areas, with high forest cover, and low mean annual temperature, seasonality and aridity. Our findings highlight the variable role that catchment land cover, physical properties and climatic influences have on stream insect richness. This is one of the first studies of its kind in Chinese streams, thus we set the scene for more in-depth assessments of stream insect richness across broader spatial scales in China, but stress the importance of improving data availability and consistency through time. PMID:25909190

  19. Making Scientific Data Available to Adaptation Practitioners - the Wallace Initiative

    NASA Astrophysics Data System (ADS)

    Price, J. T.; Warren, R. F.; Vanderwal, J.; Shoo, L.; Ramirez, J.; Jarvis, A.; Goswami, S.

    2010-12-01

    Conservation strategies have largely been developed under an assumption of a stationary climate. These strategies may fail with changing climates, especially when acting with existing anthropogenic pressures. The Wallace Initiative is a global effort to rapidly assess the potential impacts of climate change on nearly 50,000 plant and animal species. Climate change data from the Community Integrated Assessment System (CIAS) is then used to look at different future climate change scenarios. Governments and conservation organizations have dedicated extensive resources to protect biodiversity. These investments are at risk and efforts will need to take into account a dynamic climate. We used the species models to calculate projected changes in percent species richness - looking at areas likely to be refugia and areas likely to undergo the greatest loss. This information can provide guidance to natural resource managers on how they may need to adapt to climate change to avoid biodiversity loss. Managers will also need to take into account issues with spatial scale. While these models might project a species being “lost” in a 0.5° x 0.5° grid, thermal buffering (e.g., taking into account elevation, slope, aspect, distance to stream and canopy cover) provides guidance on areas that may allow a species to persist at more local scales (1-5 km). This approach may help alleviate the issues of downscaling climate and climate change data in data-poor areas. Understanding the vulnerability of biodiversity requires an understanding of the climate and projected climate changes. Thus, developing long term adaptation options requires robust vulnerability analyses at appropriate scales. These assessments are often hindered by data quality and availability, capacity and an understanding of appropriate scales, methods and tools. The program ClimaScope has been designed to help provide better access to climate data for modelers and practitioners, data that has also been linked to impacts. ClimaScope is a data visualization engine providing easy access to data without running the models. For a selected GCM pattern and emissions scenario, ClimaScope provides maps, charts and data on the projected climate changes with some indication of uncertainty range. Variables available include terrestrial temperature change (maximum, minimum and average), total precipitation, wet-day frequency, and sea-surface temperature. This data can be presented both as observed climate and/or projected climate for a user defined time period. Some of these data have been used in the Wallace Initiative and data from the Wallace Initiative are also available to users. So, practitioners can select family, genus, species, dispersal model, climate model, emission model, and time slice and get maps showing projected range of the species over time. These tools have been designed to help make scientific data more readily available to adaptation practitioners around the world, especially in developing countries.

  20. Cloud-System Resolving Models: Status and Prospects

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo; Moncreiff, Mitch

    2008-01-01

    Cloud-system resolving models (CRM), which are based on the nonhydrostatic equations of motion and typically have a grid-spacing of about a kilometer, originated as cloud-process models in the 1970s. This paper reviews the status and prospects of CRMs across a wide range of issues, such as microphysics and precipitation; interaction between clouds and radiation; and the effects of boundary-layer and surface-processes on cloud systems. Since CRMs resolve organized convection, tropical waves and the large-scale circulation, there is the prospect for several advances in both basic knowledge of scale-interaction requisite to parameterizing mesoscale processes in climate models. In superparameterization, CRMs represent convection, explicitly replacing many of the assumptions necessary in contemporary parameterization. Global CRMs have been run on an experimental basis, giving prospect to a new generation of climate weather prediction in a decade, and climate models due course. CRMs play a major role in the retrieval of surface-rain and latent heating from satellite measurements. Finally, enormous wide dynamic ranges of CRM simulations present new challenges for model validation against observations.

  1. Toward server-side, high performance climate change data analytics in the Earth System Grid Federation (ESGF) eco-system

    NASA Astrophysics Data System (ADS)

    Fiore, Sandro; Williams, Dean; Aloisio, Giovanni

    2016-04-01

    In many scientific domains such as climate, data is often n-dimensional and requires tools that support specialized data types and primitives to be properly stored, accessed, analysed and visualized. Moreover, new challenges arise in large-scale scenarios and eco-systems where petabytes (PB) of data can be available and data can be distributed and/or replicated (e.g., the Earth System Grid Federation (ESGF) serving the Coupled Model Intercomparison Project, Phase 5 (CMIP5) experiment, providing access to 2.5PB of data for the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5). Most of the tools currently available for scientific data analysis in the climate domain fail at large scale since they: (1) are desktop based and need the data locally; (2) are sequential, so do not benefit from available multicore/parallel machines; (3) do not provide declarative languages to express scientific data analysis tasks; (4) are domain-specific, which ties their adoption to a specific domain; and (5) do not provide a workflow support, to enable the definition of complex "experiments". The Ophidia project aims at facing most of the challenges highlighted above by providing a big data analytics framework for eScience. Ophidia provides declarative, server-side, and parallel data analysis, jointly with an internal storage model able to efficiently deal with multidimensional data and a hierarchical data organization to manage large data volumes ("datacubes"). The project relies on a strong background of high performance database management and OLAP systems to manage large scientific data sets. It also provides a native workflow management support, to define processing chains and workflows with tens to hundreds of data analytics operators to build real scientific use cases. With regard to interoperability aspects, the talk will present the contribution provided both to the RDA Working Group on Array Databases, and the Earth System Grid Federation (ESGF) Compute Working Team. Also highlighted will be the results of large scale climate model intercomparison data analysis experiments, for example: (1) defined in the context of the EU H2020 INDIGO-DataCloud project; (2) implemented in a real geographically distributed environment involving CMCC (Italy) and LLNL (US) sites; (3) exploiting Ophidia as server-side, parallel analytics engine; and (4) applied on real CMIP5 data sets available through ESGF.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hinzman, Larry D.; Bolton, William Robert; Young-Robertson, Jessica

    This project improves meso-scale hydrologic modeling in the boreal forest by: (1) demonstrating the importance of capturing the heterogeneity of the landscape using small scale datasets for parameterization for both small and large basins; (2) demonstrating that in drier parts of the landscape and as the boreal forest dries with climate change, modeling approaches must consider the sensitivity of simulations to soil hydraulic parameters - such as residual water content - that are usually held constant. Thus, variability / flexibility in residual water content must be considered for accurate simulation of hydrologic processes in the boreal forest; (3) demonstrating thatmore » assessing climate change impacts on boreal forest hydrology through multiple model integration must account for direct effects of climate change (temperature and precipitation), and indirect effects from climate impacts on landscape characteristics (permafrost and vegetation distribution). Simulations demonstrated that climate change will increase runoff, but will increase ET to a greater extent and result in a drying of the landscape; and (4) vegetation plays a significant role in boreal hydrologic processes in permafrost free areas that have deciduous trees. This landscape type results in a decoupling of ET and precipitation, a tight coupling of ET and temperature, low runoff, and overall soil drying.« less

  3. North American Extreme Temperature Events and Related Large Scale Meteorological Patterns: A Review of Statistical Methods, Dynamics, Modeling, and Trends

    NASA Technical Reports Server (NTRS)

    Grotjahn, Richard; Black, Robert; Leung, Ruby; Wehner, Michael F.; Barlow, Mathew; Bosilovich, Michael G.; Gershunov, Alexander; Gutowski, William J., Jr.; Gyakum, John R.; Katz, Richard W.; hide

    2015-01-01

    The objective of this paper is to review statistical methods, dynamics, modeling efforts, and trends related to temperature extremes, with a focus upon extreme events of short duration that affect parts of North America. These events are associated with large scale meteorological patterns (LSMPs). The statistics, dynamics, and modeling sections of this paper are written to be autonomous and so can be read separately. Methods to define extreme events statistics and to identify and connect LSMPs to extreme temperature events are presented. Recent advances in statistical techniques connect LSMPs to extreme temperatures through appropriately defined covariates that supplement more straightforward analyses. Various LSMPs, ranging from synoptic to planetary scale structures, are associated with extreme temperature events. Current knowledge about the synoptics and the dynamical mechanisms leading to the associated LSMPs is incomplete. Systematic studies of: the physics of LSMP life cycles, comprehensive model assessment of LSMP-extreme temperature event linkages, and LSMP properties are needed. Generally, climate models capture observed properties of heat waves and cold air outbreaks with some fidelity. However they overestimate warm wave frequency and underestimate cold air outbreak frequency, and underestimate the collective influence of low-frequency modes on temperature extremes. Modeling studies have identified the impact of large-scale circulation anomalies and landatmosphere interactions on changes in extreme temperatures. However, few studies have examined changes in LSMPs to more specifically understand the role of LSMPs on past and future extreme temperature changes. Even though LSMPs are resolvable by global and regional climate models, they are not necessarily well simulated. The paper concludes with unresolved issues and research questions.

  4. Ecosystem resilience despite large-scale altered hydro climatic conditions

    USDA-ARS?s Scientific Manuscript database

    Climate change is predicted to increase both drought frequency and duration, and when coupled with substantial warming, will establish a new hydroclimatological paradigm for many regions. Large-scale, warm droughts have recently impacted North America, Africa, Europe, Amazonia, and Australia result...

  5. Discrimination among semi-arid landscape endmembers using the Spectral Angle Mapper (SAM) algorithm

    NASA Technical Reports Server (NTRS)

    Yuhas, Roberta H.; Goetz, Alexander F. H.; Boardman, Joe W.

    1992-01-01

    Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data were acquired during three consecutive seasons of the year (26 Sep. 1989, 22 Mar. 1990, and 7 Aug. 1990) over an area of the High Plains east of Greeley, Colorado. This region contains extensive eolian deposits in the form of stabilized dune complexes (small scale parabolic dunes superimposed on large scale longitudinal and parabolic dunes). Due to the dunes' large scale (2-10 km) and low relief (1-5 m), the scaling relationships that contribute to the evolution of this landscape are nearly impossible to understand without the use of remote sensing. Additionally, climate models indicate that the High Plains could be one of the first areas to experience changes in climate caused by either global warming or cooling. During the past 10,000 years there were at least three periods of extensive sand activity, followed by periods of landscape stability, as shown in the stratigraphic record of this area. Therefore, if the past is an indication of the future, the monitoring of this landscape and its sensitive ecosystem is important for early detection of regional and global climate change.

  6. Projections of the Ganges-Brahmaputra precipitation: downscaled from GCM predictors

    USGS Publications Warehouse

    Pervez, Md Shahriar; Henebry, Geoffrey M.

    2014-01-01

    Downscaling Global Climate Model (GCM) projections of future climate is critical for impact studies. Downscaling enables use of GCM experiments for regional scale impact studies by generating regionally specific forecasts connecting global scale predictions and regional scale dynamics. We employed the Statistical Downscaling Model (SDSM) to downscale 21st century precipitation for two data-sparse hydrologically challenging river basins in South Asia—the Ganges and the Brahmaputra. We used CGCM3.1 by Canadian Center for Climate Modeling and Analysis version 3.1 predictors in downscaling the precipitation. Downscaling was performed on the basis of established relationships between historical Global Summary of Day observed precipitation records from 43 stations and National Center for Environmental Prediction re-analysis large scale atmospheric predictors. Although the selection of predictors was challenging during the set-up of SDSM, they were found to be indicative of important physical forcings in the basins. The precipitation of both basins was largely influenced by geopotential height: the Ganges precipitation was modulated by the U component of the wind and specific humidity at 500 and 1000 h Pa pressure levels; whereas, the Brahmaputra precipitation was modulated by the V component of the wind at 850 and 1000 h Pa pressure levels. The evaluation of the SDSM performance indicated that model accuracy for reproducing precipitation at the monthly scale was acceptable, but at the daily scale the model inadequately simulated some daily extreme precipitation events. Therefore, while the downscaled precipitation may not be the suitable input to analyze future extreme flooding or drought events, it could be adequate for analysis of future freshwater availability. Analysis of the CGCM3.1 downscaled precipitation projection with respect to observed precipitation reveals that the precipitation regime in each basin may be significantly impacted by climate change. Precipitation during and after the monsoon is likely to increase in both basins under the A1B and A2 emission scenarios; whereas, the pre-monsoon precipitation is likely to decrease. Peak monsoon precipitation is likely to shift from July to August, and may impact the livelihoods of large rural populations linked to subsistence agriculture in the basins. Uncertainty analysis of the downscaled precipitation indicated that the uncertainty in the downscaled precipitation was less than the uncertainty in the original CGCM3.1 precipitation; hence, the CGCM3.1 downscaled precipitation was a better input for the regional hydrological impact studies. However, downscaled precipitation from multiple GCMs is suggested for comprehensive impact studies.

  7. Downscaling U.S. public opinion about climate change and the 'Six Americas' to states, cities, and counties

    NASA Astrophysics Data System (ADS)

    Marlon, J. R.; Howe, P. D.; Leiserowitz, A.

    2013-12-01

    For climate change communication to be most effective, messages should be targeted to the characteristics of local audiences. In the U.S., 'Six Americas' have been identified among the public based on their response to the climate change issue. The distribution of these different 'publics' varies between states and communities, yet data about public opinion at the sub-national scale remains scarce. In this presentation, we describe a methodology to statistically downscale results from national-level surveys about the Six Americas, climate literacy, and other aspects of public opinion to smaller areas, including states, metropolitan areas, and counties. The method utilizes multilevel regression with poststratification (MRP) to model public opinion at various scales using a large national-level survey dataset. We present state and county-level estimates of two key beliefs about climate change: belief that climate change is happening, and belief in the scientific consensus about climate change. We further present estimates of how the Six Americas vary across the U.S.

  8. Understanding Climate Variability of Urban Ecosystems Through the Lens of Citizen Science

    NASA Astrophysics Data System (ADS)

    Ripplinger, J.; Jenerette, D.; Wang, J.; Chandler, M.; Ge, C.; Koutzoukis, S.

    2017-12-01

    The Los Angeles megacity is vulnerable to climate warming - a process that locally exacerbates the urban heat island effect as it intensifies with size and density of the built-up area. We know that large-scale drivers play a role, but in order to understand local-scale climate variation, more research is needed on the biophysical and sociocultural processes driving the urban climate system. In this study, we work with citizen scientists to deploy a high-density network of microsensors across a climate gradient to characterize geographic variation in neighborhood meso- and micro-climates. This research asks: How do urbanization, global climate, and vegetation interact across multiple scales to affect local-scale experiences of temperature? Additionally, citizen scientist-led efforts generated research questions focused on examining microclimatic differences among yard groundcover types (rock mulch vs. lawn vs. artificial turf) and also on variation in temperature related to tree cover. Combining sensor measurements with Weather Research and Forecasting (WRF) spatial models and satellite-based temperature, we estimate spatially-explicit maps of land surface temperature and air temperature to illustrate the substantial difference between surface and air urban heat island intensities and the variable degree of coupling between land surface and air temperature in urban areas. Our results show a strong coupling between air temperature variation and landcover for neighborhoods, with significant detectable signatures from tree cover and impervious surface. Temperature covaried most strongly with urbanization intensity at nighttime during peak summer season, when daily mean air temperature ranged from 12.8C to 30.4C across all groundcover types. The combined effects of neighborhood geography and vegetation determine where and how temperature and tree canopy vary within a city. This citizen science-enabled research shows how large-scale climate drivers and urbanization intensity jointly influence the nature and magnitude of coupling between air temperature and tree cover, and demonstrate how urban vegetation provides an important ecosystem service in cities by decreasing the intensity of local urban heat islands.

  9. Methods of testing parameterizations: Vertical ocean mixing

    NASA Technical Reports Server (NTRS)

    Tziperman, Eli

    1992-01-01

    The ocean's velocity field is characterized by an exceptional variety of scales. While the small-scale oceanic turbulence responsible for the vertical mixing in the ocean is of scales a few centimeters and smaller, the oceanic general circulation is characterized by horizontal scales of thousands of kilometers. In oceanic general circulation models that are typically run today, the vertical structure of the ocean is represented by a few tens of discrete grid points. Such models cannot explicitly model the small-scale mixing processes, and must, therefore, find ways to parameterize them in terms of the larger-scale fields. Finding a parameterization that is both reliable and plausible to use in ocean models is not a simple task. Vertical mixing in the ocean is the combined result of many complex processes, and, in fact, mixing is one of the less known and less understood aspects of the oceanic circulation. In present models of the oceanic circulation, the many complex processes responsible for vertical mixing are often parameterized in an oversimplified manner. Yet, finding an adequate parameterization of vertical ocean mixing is crucial to the successful application of ocean models to climate studies. The results of general circulation models for quantities that are of particular interest to climate studies, such as the meridional heat flux carried by the ocean, are quite sensitive to the strength of the vertical mixing. We try to examine the difficulties in choosing an appropriate vertical mixing parameterization, and the methods that are available for validating different parameterizations by comparing model results to oceanographic data. First, some of the physical processes responsible for vertically mixing the ocean are briefly mentioned, and some possible approaches to the parameterization of these processes in oceanographic general circulation models are described in the following section. We then discuss the role of the vertical mixing in the physics of the large-scale ocean circulation, and examine methods of validating mixing parameterizations using large-scale ocean models.

  10. Comparative Synthesis of Current and Future Urban Stormwater Runoff Scenarios in Tampa Bay Basin under a Changing Climate

    NASA Astrophysics Data System (ADS)

    Khan, M.; Abdul-Aziz, O. I.

    2016-12-01

    Changes in climatic regimes and basin characteristics such as imperviousness, roughness and land use types would lead to potential changes in stormwater budget. In this study we quantified reference sensitivities of stormwater runoff to the potential climatic and land use/cover changes by developing a large-scale, mechanistic rainfall-runoff model for the Tampa Bay Basin of Florida using the US EPA Storm Water Management Model (SWMM 5.1). Key processes of urban hydrology, its dynamic interactions with groundwater and sea level, hydro-climatic variables and land use/cover characteristics were incorporated within the model. The model was calibrated and validated with historical streamflow data. We then computed the historical (1970-2000) and potential 2050s stormwater budgets for the Tampa Bay Basin. Climatic scenario projected by the global climate models (GCMs) and the regional climate models (RCMs), along with sea level and land use/cover projections, were utilized to anticipate the future stormwater budget. The comparative assessment of current and future stormwater scenario will aid a proactive management of stormwater runoff under a changing climate in the Tampa Bay Basin and similar urban basins around the world.

  11. Silver hake tracks changes in Northwest Atlantic circulation.

    PubMed

    Nye, Janet A; Joyce, Terrence M; Kwon, Young-Oh; Link, Jason S

    2011-08-02

    Recent studies documenting shifts in spatial distribution of many organisms in response to a warming climate highlight the need to understand the mechanisms underlying species distribution at large spatial scales. Here we present one noteworthy example of remote oceanographic processes governing the spatial distribution of adult silver hake, Merluccius bilinearis, a commercially important fish in the Northeast US shelf region. Changes in spatial distribution of silver hake over the last 40 years are highly correlated with the position of the Gulf Stream. These changes in distribution are in direct response to local changes in bottom temperature on the continental shelf that are responding to the same large scale circulation change affecting the Gulf Stream path, namely changes in the Atlantic meridional overturning circulation (AMOC). If the AMOC weakens, as is suggested by global climate models, silver hake distribution will remain in a poleward position, the extent to which could be forecast at both decadal and multidecadal scales.

  12. The effects of large-scale afforestation and climate change on water allocation in the Macquarie River catchment, NSW, Australia.

    PubMed

    Herron, Natasha; Davis, Richard; Jones, Roger

    2002-08-01

    Widespread afforestation has been proposed as one means of addressing the increasing dryland and stream salinity problem in Australia. However, modelling results presented here suggest that large-scale tree planting will substantially reduce river flows and impose costs on downstream water users if planted in areas of high runoff yield. Streamflow reductions in the Macquarie River, NSW, Australia are estimated for a number of tree planting scenarios and global warming forecasts. The modelling framework includes the Sacramento rainfall-runoff model and IQQM, a streamflow routing tool, as well as various global climate model outputs from which daily rainfall and potential evaporation data files have been generated in OzClim, a climate scenario generator. For a 10% increase in tree cover in the headwaters of the Macquarie, we estimate a 17% reduction in inflows to Burrendong Dam. The drying trend for a mid-range scenario of regional rainfall and potential evaporation caused by a global warming of 0.5 degree C may cause an additional 5% reduction in 2030. These flow reductions will decrease the frequency of bird-breeding events in Macquarie Marshes (a RAMSAR protected wetland) and reduce the security of supply to irrigation areas downstream. Inter-decadal climate variability is predicted to have a very significant influence on catchment hydrologic behaviour. A further 20% reduction in flows from the long-term historical mean is possible, should we move into an extended period of below average rainfall years, such as occurred in eastern Australia between 1890 and 1948. Because current consumptive water use is largely adapted to the wetter conditions of post 1949, a return to prolonged dry periods would cause significant environmental stress given the agricultural and domestic water developments that have been instituted.

  13. Impact of Aerosols on Convective Clouds and Precipitation

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo; Chen, Jen-Ping; Li, Zhanqing; Wang, Chien; Zhang, Chidong

    2011-01-01

    Aerosols are a critical factor in the atmospheric hydrological cycle and radiation budget. As a major reason for clouds to form and a significant attenuator of solar radiation, aerosols affect climate in several ways. Current research suggests that aerosol effects on clouds could further extend to precipitation, both through the formation of cloud particles and by exerting persistent radiative forcing on the climate system that disturbs dynamics. However, the various mechanisms behind these effects, in particular the ones connected to precipitation, are not yet well understood. The atmospheric and climate communities have long been working to gain a better grasp of these critical effects and hence to reduce the significant uncertainties in climate prediction resulting from such a lack of adequate knowledge. The central theme of this paper is to review past efforts and summarize our current understanding of the effect of aerosols on precipitation processes from theoretical analysis of microphysics, observational evidence, and a range of numerical model simulations. In addition, the discrepancy between results simulated by models, as well as that between simulations and observations will be presented. Specifically, this paper will address the following topics: (1) fundamental theories of aerosol effects on microphysics and precipitation processes, (2) observational evidence of the effect of aerosols on precipitation processes, (3) signatures of the aerosol impact on precipitation from large-scale analyses, (4) results from cloud-resolving model simulations, and (5) results from large-scale numerical model simulations. Finally, several future research directions on aerosol - precipitation interactions are suggested.

  14. Final Technical Report for DE-SC0005467

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Broccoli, Anthony J.

    2014-09-14

    The objective of this project is to gain a comprehensive understanding of the key atmospheric mechanisms and physical processes associated with temperature extremes in order to better interpret and constrain uncertainty in climate model simulations of future extreme temperatures. To achieve this objective, we first used climate observations and a reanalysis product to identify the key atmospheric circulation patterns associated with extreme temperature days over North America during the late twentieth century. We found that temperature extremes were associated with distinctive signatures in near-surface and mid-tropospheric circulation. The orientations and spatial scales of these circulation anomalies vary with latitude, season,more » and proximity to important geographic features such as mountains and coastlines. We next examined the associations between daily and monthly temperature extremes and large-scale, recurrent modes of climate variability, including the Pacific-North American (PNA) pattern, the northern annular mode (NAM), and the El Niño-Southern Oscillation (ENSO). The strength of the associations are strongest with the PNA and NAM and weaker for ENSO, and also depend upon season, time scale, and location. The associations are stronger in winter than summer, stronger for monthly than daily extremes, and stronger in the vicinity of the centers of action of the PNA and NAM patterns. In the final stage of this project, we compared climate model simulations of the circulation patterns associated with extreme temperature days over North America with those obtained from observations. Using a variety of metrics and self-organizing maps, we found the multi-model ensemble and the majority of individual models from phase 5 of the Coupled Model Intercomparison Project (CMIP5) generally capture the observed patterns well, including their strength and as well as variations with latitude and season. The results from this project indicate that current models are capable of simulating the large-scale meteorological patterns associated with daily temperature extremes and they suggest that such models can be used to evaluate the extent to which changes in atmospheric circulation will influence future changes in temperature extremes.« less

  15. Modeling Forest Composition and Carbon Dynamics Under Projected Climate-Fire Interactions in the Sierra Nevada, California

    NASA Astrophysics Data System (ADS)

    Liang, S.; Hurteau, M. D.; Westerling, A. L.

    2014-12-01

    The Sierra Nevada Mountains are occupied by a diversity of forest types that sort by elevation. The interaction of changing climate and altered disturbance regimes (e.g. fire) has the potential to drive changes in forest distribution as a function of species-specific response. Quantifying the effects of these drivers on species distributions and productivity under future climate-fire interactions is necessary for informing mitigation and adaptation efforts. In this study, we assimilated forest inventory and soil survey data and species life history traits into a landscape model, LANDIS-II, to quantify the response of forest dynamics to the interaction of climate change and large wildfire frequency in the Sierra Nevada. We ran 100-year simulations forced with historical climate and climate projections from three models (GFDL, CNRM and CCSM3) driven by the A2 emission scenario. We found that non-growing season NPP is greatly enhanced by 15%-150%, depending on the specific climate projection. The greatest increase occurs in subalpine forests. Species-specific response varied as a function of life history characteristics. The distribution of drought and fire-tolerant species, such as ponderosa pine, expanded by 7.3-9.6% from initial conditions, while drought and fire-intolerant species, such as white fir, showed little change in the absence of fire. Changes in wildfire size and frequency influence species distributions by altering the successional stage of burned patches. The range of responses to different climate models demonstrates the sensitivity of these forests to climate variability. The scale of climate projections relative to the scale of forest simulations presents a source of uncertainty, particularly at the ecotone between forest types and for identifying topographically mediated climate refugia. Improving simulations will likely require higher resolution climate projections.

  16. Mid-21st century air quality at the urban scale under the influence of changed climate and emissions: case studies for Paris and Stockholm

    NASA Astrophysics Data System (ADS)

    Markakis, K.; Valari, M.; Engardt, M.; Lacressonnière, G.; Vautard, R.; Andersson, C.

    2015-10-01

    Ozone, PM10 and PM2.5 concentrations over Paris, France and Stockholm, Sweden were modeled at 4 and 1 \\unit{km} horizontal resolutions respectively for the present and 2050 periods employing decade-long simulations. We account for large-scale global climate change (RCP-4.5) and fine resolution bottom-up emission projections developed by local experts and quantify their impact on future pollutant concentrations. Moreover, we identify biases related to the implementation of regional scale emission projections over the study areas by comparing modeled pollutant concentrations between the fine and coarse scale simulations. We show that over urban areas with major regional contribution (e.g., the city of Stockholm) the bias due to coarse emission inventory may be significant and lead to policy misclassification. Our results stress the need to better understand the mechanism of bias propagation across the modeling scales in order to design more successful local-scale strategies. We find that the impact of climate change is spatially homogeneous in both regions, implying strong regional influence. The climate benefit for ozone (daily average and maximum) is up to -5 % for Paris and -2 % for Stockholm city. The joined climate benefit on PM2.5 and PM10 in Paris is between -10 and -5 % while for Stockholm we observe mixed trends up to 3 % depending on season and size class. In Stockholm, emission mitigation leads to concentration reductions up to 15 % for daily average and maximum ozone and 20 % for PM and through a sensitivity analysis we show that this response is entirely due to changes in emissions at the regional scale. On the contrary, over the city of Paris (VOC-limited photochemical regime), local mitigation of NOx emissions increases future ozone concentrations due to ozone titration inhibition. This competing trend between the respective roles of emission and climate change, results in an increase in 2050 daily average ozone by 2.5 % in Paris. Climate and not emission change appears to be the most influential factor for maximum ozone concentration over the city of Paris, which may be particularly interesting in a health impact perspective.

  17. Model uncertainties do not affect observed patterns of species richness in the Amazon

    PubMed Central

    Sales, Lilian Patrícia; Neves, Olívia Viana; De Marco, Paulo

    2017-01-01

    Background Climate change is arguably a major threat to biodiversity conservation and there are several methods to assess its impacts on species potential distribution. Yet the extent to which different approaches on species distribution modeling affect species richness patterns at biogeographical scale is however unaddressed in literature. In this paper, we verified if the expected responses to climate change in biogeographical scale—patterns of species richness and species vulnerability to climate change—are affected by the inputs used to model and project species distribution. Methods We modeled the distribution of 288 vertebrate species (amphibians, birds and mammals), all endemic to the Amazon basin, using different combinations of the following inputs known to affect the outcome of species distribution models (SDMs): 1) biological data type, 2) modeling methods, 3) greenhouse gas emission scenarios and 4) climate forecasts. We calculated uncertainty with a hierarchical ANOVA in which those different inputs were considered factors. Results The greatest source of variation was the modeling method. Model performance interacted with data type and modeling method. Absolute values of variation on suitable climate area were not equal among predictions, but some biological patterns were still consistent. All models predicted losses on the area that is climatically suitable for species, especially for amphibians and primates. All models also indicated a current East-western gradient on endemic species richness, from the Andes foot downstream the Amazon river. Again, all models predicted future movements of species upwards the Andes mountains and overall species richness losses. Conclusions From a methodological perspective, our work highlights that SDMs are a useful tool for assessing impacts of climate change on biodiversity. Uncertainty exists but biological patterns are still evident at large spatial scales. As modeling methods are the greatest source of variation, choosing the appropriate statistics according to the study objective is also essential for estimating the impacts of climate change on species distribution. Yet from a conservation perspective, we show that Amazon endemic fauna is potentially vulnerable to climate change, due to expected reductions on suitable climate area. Climate-driven faunal movements are predicted towards the Andes mountains, which might work as climate refugia for migrating species. PMID:29023503

  18. Data needs and data bases for climate studies

    NASA Technical Reports Server (NTRS)

    Matthews, Elaine

    1986-01-01

    Two complementary global digital data bases of vegetation and land use, compiled at 1 deg resolution from published sources for use in climate studies, are discussed. The data bases were implemented, in several individually tailored formulations, in a series of climate related applications including: land-surface prescriptions in three-dimensional general circulation models, global biogeochemical cycles (CO2, methane), critical-area mapping for satellite monitoring of land-cover change, and large-scale remote sensing of surface reflectance. The climate applications are discussed with reference to data needs, and data availability from traditional and remote sensing sources.

  19. The influence of climate change on Tanzania's hydropower sustainability

    NASA Astrophysics Data System (ADS)

    Sperna Weiland, Frederiek; Boehlert, Brent; Meijer, Karen; Schellekens, Jaap; Magnell, Jan-Petter; Helbrink, Jakob; Kassana, Leonard; Liden, Rikard

    2015-04-01

    Economic costs induced by current climate variability are large for Tanzania and may further increase due to future climate change. The Tanzanian National Climate Change Strategy addressed the need for stabilization of hydropower generation and strengthening of water resources management. Increased hydropower generation can contribute to sustainable use of energy resources and stabilization of the national electricity grid. To support Tanzania the World Bank financed this study in which the impact of climate change on the water resources and related hydropower generation capacity of Tanzania is assessed. To this end an ensemble of 78 GCM projections from both the CMIP3 and CMIP5 datasets was bias-corrected and down-scaled to 0.5 degrees resolution following the BCSD technique using the Princeton Global Meteorological Forcing Dataset as a reference. To quantify the hydrological impacts of climate change by 2035 the global hydrological model PCR-GLOBWB was set-up for Tanzania at a resolution of 3 minutes and run with all 78 GCM datasets. From the full set of projections a probable (median) and worst case scenario (95th percentile) were selected based upon (1) the country average Climate Moisture Index and (2) discharge statistics of relevance to hydropower generation. Although precipitation from the Princeton dataset shows deviations from local station measurements and the global hydrological model does not perfectly reproduce local scale hydrographs, the main discharge characteristics and precipitation patterns are represented well. The modeled natural river flows were adjusted for water demand and irrigation within the water resources model RIBASIM (both historical values and future scenarios). Potential hydropower capacity was assessed with the power market simulation model PoMo-C that considers both reservoir inflows obtained from RIBASIM and overall electricity generation costs. Results of the study show that climate change is unlikely to negatively affect the average potential of future hydropower production; it will likely make hydropower more profitable. Yet, the uncertainty in climate change projections remains large and risks are significant, adaptation strategies should ideally consider a worst case scenario to ensure robust power generation. Overall a diversified power generation portfolio, anchored in hydropower and supported by other renewables and fossil fuel-based energy sources, is the best solution for Tanzania

  20. What We Talk About When We Talk About Drought: Tree-ring Perspectives on Model-Data Comparisons in Hydroclimate Research

    NASA Astrophysics Data System (ADS)

    Cook, B.; Anchukaitis, K. J.

    2017-12-01

    Comparative analyses of paleoclimate reconstructions and climate model simulations can provide valuable insights into past and future climate events. Conducting meaningful and quantitative comparisons, however, can be difficult for a variety of reasons. Here, we use tree-ring based hydroclimate reconstructions to discuss some best practices for paleoclimate-model comparisons, highlighting recent studies that have successfully used this approach. These analyses have improved our understanding of the Medieval-era megadroughts, ocean forcing of large scale drought patterns, and even climate change contributions to future drought risk. Additional work is needed, however, to better reconcile and formalize uncertainties across observed, modeled, and reconstructed variables. In this regard, process based forward models of proxy-systems will likely be a critical tool moving forward.

  1. Aeolian Processes and the Biosphere

    NASA Astrophysics Data System (ADS)

    Ravi, Sujith; D'Odorico, Paolo; Breshears, David D.; Field, Jason P.; Goudie, Andrew S.; Huxman, Travis E.; Li, Junran; Okin, Gregory S.; Swap, Robert J.; Thomas, Andrew D.; Van Pelt, Scott; Whicker, Jeffrey J.; Zobeck, Ted M.

    2011-08-01

    Aeolian processes affect the biosphere in a wide variety of contexts, including landform evolution, biogeochemical cycles, regional climate, human health, and desertification. Collectively, research on aeolian processes and the biosphere is developing rapidly in many diverse and specialized areas, but integration of these recent advances is needed to better address management issues and to set future research priorities. Here we review recent literature on aeolian processes and their interactions with the biosphere, focusing on (1) geography of dust emissions, (2) impacts, interactions, and feedbacks, (3) drivers of dust emissions, and (4) methodological approaches. Geographically, dust emissions are highly spatially variable but also provide connectivity at global scales between sources and effects, with “hot spots” being of particular concern. Recent research reveals that aeolian processes have impacts, interactions, and feedbacks at a variety of scales, including large-scale dust transport and global biogeochemical cycles, climate mediated interactions between atmospheric dust and ecosystems, impacts on human health, impacts on agriculture, and interactions between aeolian processes and dryland vegetation. Aeolian dust emissions are driven largely by, in addition to climate, a combination of soil properties, soil moisture, vegetation and roughness, biological and physical crusts, and disturbances. Aeolian research methods span laboratory and field techniques, modeling, and remote sensing. Together these integrated perspectives on aeolian processes and the biosphere provide insights into management options and aid in identifying research priorities, both of which are increasingly important given that global climate models predict an increase in aridity in many dryland systems of the world.

  2. Long-term wave measurements in a climate change perspective.

    NASA Astrophysics Data System (ADS)

    Pomaro, Angela; Bertotti, Luciana; Cavaleri, Luigi; Lionello, Piero; Portilla-Yandun, Jesus

    2017-04-01

    At present multi-decadal time series of wave data needed for climate studies are generally provided by long term model simulations (hindcasts) covering the area of interest. Examples, among many, at different scales are wave hindcasts adopting the wind fields of the ERA-Interim reanalysis of the European Centre for Medium-Range Weather Forecasts (ECMWF, Reading, U.K.) at the global level and by regional re-analysis as for the Mediterranean Sea (Lionello and Sanna, 2006). Valuable as they are, these estimates are necessarily affected by the approximations involved, the more so because of the problems encountered within modelling processes in small basins using coarse resolution wind fields (Cavaleri and Bertotti, 2004). On the contrary, multi-decadal observed time series are rare. They have the evident advantage of somehow representing the real evolution of the waves, without the shortcomings associated with the limitation of models in reproducing the actual processes and the real variability within the wave fields. Obviously, observed wave time series are not exempt of problems. They represent a very local information, hence their use to describe the wave evolution at large scale is sometimes arguable and, in general, it needs the support of model simulations assessing to which extent the local value is representative of a large scale evolution. Local effects may prevent the identification of trends that are indeed present at large scale. Moreover, a regular maintenance, accurate monitoring and metadata information are crucial issues when considering the reliability of a time series for climate applications. Of course, where available, especially if for several decades, measured data are of great value for a number of reasons and can be valuable clues to delve further into the physics of the processes of interest, especially if considering that waves, as an integrated product of the local climate, if available in an area sensitive to even limited changes of the large scale pattern, can provide related compact and meaningful information. In addition, the availability for the area of interest of a 20-year long dataset of directional spectra (in frequency and direction) offers an independent, but theoretically corresponding and significantly long dataset, allowing to penetrate the wave problem through different perspectives. In particular, we investigate the contribution of the individual wave systems that modulate the variability of waves in the Adriatic Sea. A characterization of wave conditions based on wave spectra in fact brings out a more detailed description of the different wave regimes, their associated meteorological conditions and their variation in time and geographical space.

  3. Large-scale modeled contemporary and future water temperature estimates for 10774 Midwestern U.S. Lakes

    USGS Publications Warehouse

    Winslow, Luke A.; Hansen, Gretchen J. A.; Read, Jordan S.; Notaro, Michael

    2017-01-01

    Climate change has already influenced lake temperatures globally, but understanding future change is challenging. The response of lakes to changing climate drivers is complex due to the nature of lake-atmosphere coupling, ice cover, and stratification. To better understand the diversity of lake responses to climate change and give managers insight on individual lakes, we modelled daily water temperature profiles for 10,774 lakes in Michigan, Minnesota, and Wisconsin for contemporary (1979–2015) and future (2020–2040 and 2080–2100) time periods with climate models based on the Representative Concentration Pathway 8.5, the worst-case emission scenario. In addition to lake-specific daily simulated temperatures, we derived commonly used, ecologically relevant annual metrics of thermal conditions for each lake. We include all supporting lake-specific model parameters, meteorological drivers, and archived code for the model and derived metric calculations. This unique dataset offers landscape-level insight into the impact of climate change on lakes.

  4. Large-scale modeled contemporary and future water temperature estimates for 10774 Midwestern U.S. Lakes

    PubMed Central

    Winslow, Luke A.; Hansen, Gretchen J.A.; Read, Jordan S; Notaro, Michael

    2017-01-01

    Climate change has already influenced lake temperatures globally, but understanding future change is challenging. The response of lakes to changing climate drivers is complex due to the nature of lake-atmosphere coupling, ice cover, and stratification. To better understand the diversity of lake responses to climate change and give managers insight on individual lakes, we modelled daily water temperature profiles for 10,774 lakes in Michigan, Minnesota, and Wisconsin for contemporary (1979–2015) and future (2020–2040 and 2080–2100) time periods with climate models based on the Representative Concentration Pathway 8.5, the worst-case emission scenario. In addition to lake-specific daily simulated temperatures, we derived commonly used, ecologically relevant annual metrics of thermal conditions for each lake. We include all supporting lake-specific model parameters, meteorological drivers, and archived code for the model and derived metric calculations. This unique dataset offers landscape-level insight into the impact of climate change on lakes. PMID:28440790

  5. Large-scale modeled contemporary and future water temperature estimates for 10774 Midwestern U.S. Lakes

    NASA Astrophysics Data System (ADS)

    Winslow, Luke A.; Hansen, Gretchen J. A.; Read, Jordan S.; Notaro, Michael

    2017-04-01

    Climate change has already influenced lake temperatures globally, but understanding future change is challenging. The response of lakes to changing climate drivers is complex due to the nature of lake-atmosphere coupling, ice cover, and stratification. To better understand the diversity of lake responses to climate change and give managers insight on individual lakes, we modelled daily water temperature profiles for 10,774 lakes in Michigan, Minnesota, and Wisconsin for contemporary (1979-2015) and future (2020-2040 and 2080-2100) time periods with climate models based on the Representative Concentration Pathway 8.5, the worst-case emission scenario. In addition to lake-specific daily simulated temperatures, we derived commonly used, ecologically relevant annual metrics of thermal conditions for each lake. We include all supporting lake-specific model parameters, meteorological drivers, and archived code for the model and derived metric calculations. This unique dataset offers landscape-level insight into the impact of climate change on lakes.

  6. Influence of climate on landscape characteristics in safety assessments of repositories for radioactive wastes.

    PubMed

    Becker, J K; Lindborg, T; Thorne, M C

    2014-12-01

    In safety assessments of repositories for radioactive wastes, large spatial and temporal scales have to be considered when developing an approach to risk calculations. A wide range of different types of information may be required. Local to the site of interest, temperature and precipitation data may be used to determine the erosional regime (which may also be conditioned by the vegetation characteristics adopted, based both on climatic and other considerations). However, geomorphological changes may be governed by regional rather than local considerations, e.g. alteration of river base levels, river capture and drainage network reorganisation, or the progression of an ice sheet or valley glacier across the site. The regional climate is in turn governed by the global climate. In this work, a commentary is presented on the types of climate models that can be used to develop projections of climate change for use in post-closure radiological impact assessments of geological repositories for radioactive wastes. These models include both Atmosphere-Ocean General Circulation Models and Earth Models of Intermediate Complexity. The relevant outputs available from these models are identified and consideration is given to how these outputs may be used to inform projections of landscape development. Issues of spatial and temporal downscaling of climate model outputs to meet the requirements of local-scale landscape development modelling are also addressed. An example is given of how climate change and landscape development influence the radiological impact of radionuclides potentially released from the deep geological disposal facility for spent nuclear fuel that SKB (the Swedish Nuclear Fuel and Waste Management Company) proposes to construct at Forsmark, Sweden. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Big Data Challenges in Climate Science: Improving the Next-Generation Cyberinfrastructure

    NASA Technical Reports Server (NTRS)

    Schnase, John L.; Lee, Tsengdar J.; Mattmann, Chris A.; Lynnes, Christopher S.; Cinquini, Luca; Ramirez, Paul M.; Hart, Andre F.; Williams, Dean N.; Waliser, Duane; Rinsland, Pamela; hide

    2016-01-01

    The knowledge we gain from research in climate science depends on the generation, dissemination, and analysis of high-quality data. This work comprises technical practice as well as social practice, both of which are distinguished by their massive scale and global reach. As a result, the amount of data involved in climate research is growing at an unprecedented rate. Climate model intercomparison (CMIP) experiments, the integration of observational data and climate reanalysis data with climate model outputs, as seen in the Obs4MIPs, Ana4MIPs, and CREATE-IP activities, and the collaborative work of the Intergovernmental Panel on Climate Change (IPCC) provide examples of the types of activities that increasingly require an improved cyberinfrastructure for dealing with large amounts of critical scientific data. This paper provides an overview of some of climate science's big data problems and the technical solutions being developed to advance data publication, climate analytics as a service, and interoperability within the Earth System Grid Federation (ESGF), the primary cyberinfrastructure currently supporting global climate research activities.

  8. New Insights on Hydro-Climate Feedback Processes over the Tropical Ocean from TRMM

    NASA Technical Reports Server (NTRS)

    Lau, William K. M.; Wu, H. T.; Li, Xiaofan; Sui, C. H.

    2002-01-01

    In this paper, we study hydro-climate feedback processes over the tropical oceans, by examining the relationships among large scale circulation and Tropical Rainfall Measuring Mission Microwave Imager-Sea Surface Temperature (TMI-SST), and a range of TRMM rain products including rain rate, cloud liquid water, precipitable water, cloud types and areal coverage, and precipitation efficiency. Results show that for a warm event (1998), the 28C threshold of convective precipitation is quite well defined over the tropical oceans. However, for a cold event (1999), the SST threshold is less well defined, especially over the central and eastern Pacific cold tongue, where stratiform rain occurs at much lower than 28 C. Precipitation rates and cloud liquid water are found to be more closely related to the large scale vertical motion than to the underlying SST. While total columnar water vapor is more strongly dependent on SST. For a large domain, over the eastern Pacific, we find that the areal extent of the cloudy region tends to shrink as the SST increases. Examination of the relationship between cloud liquid water and rain rate suggests that the residence time of cloud liquid water tends to be shorter, associated with higher precipitation efficiency in a warmer climate. It is hypothesized that the reduction in cloudy area may be influenced both by the shift in large scale cloud patterns in response to changes in large scale forcings, and possible increase in the cloud liquid water conversion to rain water in a warmer environment. Results of numerical experiments with the Goddard cloud resolving model to test the hypothesis will be discussed.

  9. A general predictive model for estimating monthly ecosystem evapotranspiration

    Treesearch

    Ge Sun; Karrin Alstad; Jiquan Chen; Shiping Chen; Chelcy R. Ford; al. et.

    2011-01-01

    Accurately quantifying evapotranspiration (ET) is essential for modelling regional-scale ecosystem water balances. This study assembled an ET data set estimated from eddy flux and sapflow measurements for 13 ecosystems across a large climatic and management gradient from the United States, China, and Australia. Our objectives were to determine the relationships among...

  10. Scales of variability of black carbon plumes and their dependence on resolution of ECHAM6-HAM

    NASA Astrophysics Data System (ADS)

    Weigum, Natalie; Stier, Philip; Schutgens, Nick; Kipling, Zak

    2015-04-01

    Prediction of the aerosol effect on climate depends on the ability of three-dimensional numerical models to accurately estimate aerosol properties. However, a limitation of traditional grid-based models is their inability to resolve variability on scales smaller than a grid box. Past research has shown that significant aerosol variability exists on scales smaller than these grid-boxes, which can lead to discrepancies between observations and aerosol models. The aim of this study is to understand how a global climate model's (GCM) inability to resolve sub-grid scale variability affects simulations of important aerosol features. This problem is addressed by comparing observed black carbon (BC) plume scales from the HIPPO aircraft campaign to those simulated by ECHAM-HAM GCM, and testing how model resolution affects these scales. This study additionally investigates how model resolution affects BC variability in remote and near-source regions. These issues are examined using three different approaches: comparison of observed and simulated along-flight-track plume scales, two-dimensional autocorrelation analysis, and 3-dimensional plume analysis. We find that the degree to which GCMs resolve variability can have a significant impact on the scales of BC plumes, and it is important for models to capture the scales of aerosol plume structures, which account for a large degree of aerosol variability. In this presentation, we will provide further results from the three analysis techniques along with a summary of the implication of these results on future aerosol model development.

  11. Substantial large-scale feedbacks between natural aerosols and climate

    NASA Astrophysics Data System (ADS)

    Scott, C. E.; Arnold, S. R.; Monks, S. A.; Asmi, A.; Paasonen, P.; Spracklen, D. V.

    2018-01-01

    The terrestrial biosphere is an important source of natural aerosol. Natural aerosol sources alter climate, but are also strongly controlled by climate, leading to the potential for natural aerosol-climate feedbacks. Here we use a global aerosol model to make an assessment of terrestrial natural aerosol-climate feedbacks, constrained by observations of aerosol number. We find that warmer-than-average temperatures are associated with higher-than-average number concentrations of large (>100 nm diameter) particles, particularly during the summer. This relationship is well reproduced by the model and is driven by both meteorological variability and variability in natural aerosol from biogenic and landscape fire sources. We find that the calculated extratropical annual mean aerosol radiative effect (both direct and indirect) is negatively related to the observed global temperature anomaly, and is driven by a positive relationship between temperature and the emission of natural aerosol. The extratropical aerosol-climate feedback is estimated to be -0.14 W m-2 K-1 for landscape fire aerosol, greater than the -0.03 W m-2 K-1 estimated for biogenic secondary organic aerosol. These feedbacks are comparable in magnitude to other biogeochemical feedbacks, highlighting the need for natural aerosol feedbacks to be included in climate simulations.

  12. Phase I of a National Phenological Assessment

    NASA Astrophysics Data System (ADS)

    Betancourt, J. L.; Henebry, G. M.

    2009-12-01

    Phenology is the gateway to climatic effects on both managed and unmanaged ecosystems. Adaptation to climatic variability and change will require integration of phenological data and models with climatic forecasts at seasonal to decadal timescales. We propose a scoping study to identify, formulate, and refine approaches to the first National Phenological Assessment (NPA) for the U.S. The NPA should be viewed as a data product of the USA-National Phenology Network that will help guide future phenological monitoring and research at the national level. We envision three main objectives for the first NPA: 1) Establish a suite of indicators of phenological change (IPCs) at regional to continental scales, following the Heinz Center model for such national assessments; 2) Using sufficiently long and broad-scale time series of IPCs and legacy phenological data, assess phenological responses to what many scientists are calling the early stages of anthropogenic climate change, specifically the abrupt advance in spring onset in the late 1970’s/early 1980’s 3) Project large-scale phenological changes into 21st Century using GCM and RCM model realizations. Toward this end we see the following tasks as critical preliminary work to plan the first NPA: a) Identify, evaluate, and refine IPCs based on indices developed from standard weather observations, streamflow and other hydrological observations (e.g., center of mass, lake freeze/thaw, etc.), plant and animal phenology observations from legacy datasets, remote sensing datastreams, flux tower observations, and GCM and RCM model realizations; b) Evaluate covariability between IPCs, legacy phenological data, and large-scale modes of climate variability to help detection and attribution of supposed secular trends and development of short and long-lead forecasts for phenological variations; c) identify, evaluate, and refine optimal methods for quantifying what constitutes significant statistical and ecological change in phenological indicators, given uncertainties in both data and methods and defined range of natural variability; d) identify, evaluate, and refine key questions of natural resource managers regarding phenological indicators for monitoring and adaptive management of habitats and wildlife, given the spectrum of management objectives on federal, state, and private lands.

  13. Investigating Downscaling Methods and Evaluating Climate Models for Use in Estimating Regional Water Resources in Mountainous Regions under Changing Climatic Conditions

    NASA Technical Reports Server (NTRS)

    Frei, Allan; Nolin, Anne W.; Serreze, Mark C.; Armstrong, Richard L.; McGinnis, David L.; Robinson, David A.

    2004-01-01

    The purpose of this three-year study is to develop and evaluate techniques to estimate the range of potential hydrological impacts of climate change in mountainous areas. Three main objectives are set out in the proposal. (1) To develop and evaluate transfer functions to link tropospheric circulation to regional snowfall. (2) To evaluate a suite of General Circulation Models (GCMs) for use in estimating synoptic scale circulation and the resultant regional snowfall. And (3) to estimate the range of potential hydrological impacts of changing climate in the two case study areas: the Upper Colorado River basin, and the Catskill Mountains of southeastern New York State. Both regions provide water to large populations.

  14. Modeling water scarcity over south Asia: Incorporating crop growth and irrigation models into the Variable Infiltration Capacity (VIC) model

    NASA Astrophysics Data System (ADS)

    Troy, Tara J.; Ines, Amor V. M.; Lall, Upmanu; Robertson, Andrew W.

    2013-04-01

    Large-scale hydrologic models, such as the Variable Infiltration Capacity (VIC) model, are used for a variety of studies, from drought monitoring to projecting the potential impact of climate change on the hydrologic cycle decades in advance. The majority of these models simulates the natural hydrological cycle and neglects the effects of human activities such as irrigation, which can result in streamflow withdrawals and increased evapotranspiration. In some parts of the world, these activities do not significantly affect the hydrologic cycle, but this is not the case in south Asia where irrigated agriculture has a large water footprint. To address this gap, we incorporate a crop growth model and irrigation model into the VIC model in order to simulate the impacts of irrigated and rainfed agriculture on the hydrologic cycle over south Asia (Indus, Ganges, and Brahmaputra basin and peninsular India). The crop growth model responds to climate signals, including temperature and water stress, to simulate the growth of maize, wheat, rice, and millet. For the primarily rainfed maize crop, the crop growth model shows good correlation with observed All-India yields (0.7) with lower correlations for the irrigated wheat and rice crops (0.4). The difference in correlation is because irrigation provides a buffer against climate conditions, so that rainfed crop growth is more tied to climate than irrigated crop growth. The irrigation water demands induce hydrologic water stress in significant parts of the region, particularly in the Indus, with the streamflow unable to meet the irrigation demands. Although rainfall can vary significantly in south Asia, we find that water scarcity is largely chronic due to the irrigation demands rather than being intermittent due to climate variability.

  15. Regional Simulations of Stratospheric Lofting of Smoke Plumes

    NASA Astrophysics Data System (ADS)

    Stenchikov, G. L.; Fromm, M.; Robock, A.

    2006-12-01

    The lifetime and spatial distribution of sooty aerosols from multiple fires that would cause major climate impact were debated in studies of climatic and environmental consequences of a nuclear war in the 1980s. The Kuwait oil fires in 1991 did not show a cumulative effect of multiple smoke plumes on large-scale circulation systems and smoke was mainly dispersed in the middle troposphere. However, recent observations show that smoke from large forest fires can be directly injected into the lower stratosphere by strong pyro-convective storms. Smoke plumes in the upper troposphere can be partially mixed into the lower stratosphere because of the same heating and lofting effect that was simulated in large-scale nuclear winter simulations with interactive aerosols. However nuclear winter simulations were conducted using climate models with grid spacing of more than 100 km, which do not account for the fine-scale dynamic processes. Therefore in this study we conduct fine-scale regional simulations of the aerosol plume using the Regional Atmospheric Modeling System (RAMS) mesoscale model which was modified to account for radiatively interactive tracers. To resolve fine-scale dynamic processes we use horizontal grid spacing of 25 km and 60 vertical layers, and initiate simulations with the NCEP reanalysis fields. We find that dense aerosol layers could be lofted from 1 to a few km per day, but this critically depends on the optical depth of aerosol layer, single scatter albedo, and how fast the plume is being diluted. Kuwaiti plumes from different small-area fires reached only 5-6 km altitude and were probably diffused and diluted in the lower and middle troposphere. A plume of 100 km spatial scale initially developed in the upper troposphere tends to penetrate into the stratosphere. Short-term cloud resolving simulations of such a plume show that aerosol heating intensifies small-scale motions that tend to mix smoke polluted air into the lower stratosphere. Regional simulations allow us to more accurately estimate the rate of lifting and spreading of aerosol clouds. But they do not reveal any dynamic processes that could prevent heating and lofting of absorbing aerosols.

  16. Wavelet-based time series bootstrap model for multidecadal streamflow simulation using climate indicators

    NASA Astrophysics Data System (ADS)

    Erkyihun, Solomon Tassew; Rajagopalan, Balaji; Zagona, Edith; Lall, Upmanu; Nowak, Kenneth

    2016-05-01

    A model to generate stochastic streamflow projections conditioned on quasi-oscillatory climate indices such as Pacific Decadal Oscillation (PDO) and Atlantic Multi-decadal Oscillation (AMO) is presented. Recognizing that each climate index has underlying band-limited components that contribute most of the energy of the signals, we first pursue a wavelet decomposition of the signals to identify and reconstruct these features from annually resolved historical data and proxy based paleoreconstructions of each climate index covering the period from 1650 to 2012. A K-Nearest Neighbor block bootstrap approach is then developed to simulate the total signal of each of these climate index series while preserving its time-frequency structure and marginal distributions. Finally, given the simulated climate signal time series, a K-Nearest Neighbor bootstrap is used to simulate annual streamflow series conditional on the joint state space defined by the simulated climate index for each year. We demonstrate this method by applying it to simulation of streamflow at Lees Ferry gauge on the Colorado River using indices of two large scale climate forcings: Pacific Decadal Oscillation (PDO) and Atlantic Multi-decadal Oscillation (AMO), which are known to modulate the Colorado River Basin (CRB) hydrology at multidecadal time scales. Skill in stochastic simulation of multidecadal projections of flow using this approach is demonstrated.

  17. Compounded effects of heat waves and droughts over the Western Electricity Grid: spatio-temporal scales of impacts and predictability toward mitigation and adaptation.

    NASA Astrophysics Data System (ADS)

    Voisin, N.; Kintner-Meyer, M.; Skaggs, R.; Xie, Y.; Wu, D.; Nguyen, T. B.; Fu, T.; Zhou, T.

    2016-12-01

    Heat waves and droughts are projected to be more frequent and intense. We have seen in the past the effects of each of those extreme climate events on electricity demand and constrained electricity generation, challenging power system operations. Our aim here is to understand the compounding effects under historical conditions. We present a benchmark of Western US grid performance under 55 years of historical climate, and including droughts, using 2010-level of water demand and water management infrastructure, and 2010-level of electricity grid infrastructure and operations. We leverage CMIP5 historical hydrology simulations and force a large scale river routing- reservoir model with 2010-level sectoral water demands. The regulated flow at each water-dependent generating plants is processed to adjust water-dependent electricity generation parameterization in a production cost model, that represents 2010-level power system operations with hourly energy demand of 2010. The resulting benchmark includes a risk distribution of several grid performance metrics (unserved energy, production cost, carbon emission) as a function of inter-annual variability in regional water availability and predictability using large scale climate oscillations. In the second part of the presentation, we describe an approach to map historical heat waves onto this benchmark grid performance using a building energy demand model. The impact of the heat waves, combined with the impact of droughts, is explored at multiple scales to understand the compounding effects. Vulnerabilities of the power generation and transmission systems are highlighted to guide future adaptation.

  18. Examination of Daily Weather in the NCAR CCM

    NASA Astrophysics Data System (ADS)

    Cocke, S. D.

    2006-05-01

    The NCAR CCM is one of the most extensively studied climate models in the scientific community. However, most studies focus primarily on the long term mean behavior, typically monthly or longer time scales. In this study we examine the daily weather in the GCM by performing a series of daily or weekly 10 day forecasts for one year at moderate (T63) and high (T126) resolution. The model is initialized with operational "AVN" and ECMWF analyses, and model performance is compared to that of major operational centers, using conventional skill scores used by the major centers. Such a detailed look at the CCM at shorter time scales may lead to improvements in physical parameterizations, which may in turn lead to improved climate simulations. One finding from this study is that the CCM has a significant drying tendency in the lower troposphere compared to the operational analyses. Another is that the large scale predictability of the GCM is competitive with most of the operational models, particularly in the southern hemisphere.

  19. High-Resolution Subtropical Summer Precipitation Derived from Dynamical Downscaling of the NCEP-DOE Reanalysis: How Much Small-Scale Information Is Added by a Regional Model?

    NASA Technical Reports Server (NTRS)

    Lim, Young-Kwon; Stefanova, Lydia B.; Chan, Steven C.; Schubert, Siegfried D.; OBrien, James J.

    2010-01-01

    This study assesses the regional-scale summer precipitation produced by the dynamical downscaling of analyzed large-scale fields. The main goal of this study is to investigate how much the regional model adds smaller scale precipitation information that the large-scale fields do not resolve. The modeling region for this study covers the southeastern United States (Florida, Georgia, Alabama, South Carolina, and North Carolina) where the summer climate is subtropical in nature, with a heavy influence of regional-scale convection. The coarse resolution (2.5deg latitude/longitude) large-scale atmospheric variables from the National Center for Environmental Prediction (NCEP)/DOE reanalysis (R2) are downscaled using the NCEP Environmental Climate Prediction Center regional spectral model (RSM) to produce precipitation at 20 km resolution for 16 summer seasons (19902005). The RSM produces realistic details in the regional summer precipitation at 20 km resolution. Compared to R2, the RSM-produced monthly precipitation shows better agreement with observations. There is a reduced wet bias and a more realistic spatial pattern of the precipitation climatology compared with the interpolated R2 values. The root mean square errors of the monthly R2 precipitation are reduced over 93 (1,697) of all the grid points in the five states (1,821). The temporal correlation also improves over 92 (1,675) of all grid points such that the domain-averaged correlation increases from 0.38 (R2) to 0.55 (RSM). The RSM accurately reproduces the first two observed eigenmodes, compared with the R2 product for which the second mode is not properly reproduced. The spatial patterns for wet versus dry summer years are also successfully simulated in RSM. For shorter time scales, the RSM resolves heavy rainfall events and their frequency better than R2. Correlation and categorical classification (above/near/below average) for the monthly frequency of heavy precipitation days is also significantly improved by the RSM.

  20. Coupled land surface/hydrologic/atmospheric models

    NASA Technical Reports Server (NTRS)

    Pielke, Roger; Steyaert, Lou; Arritt, Ray; Lahtakia, Mercedes; Smith, Chris; Ziegler, Conrad; Soong, Su Tzai; Avissar, Roni; Wetzel, Peter; Sellers, Piers

    1993-01-01

    The topics covered include the following: prototype land cover characteristics data base for the conterminous United States; surface evapotranspiration effects on cumulus convection and implications for mesoscale models; the use of complex treatment of surface hydrology and thermodynamics within a mesoscale model and some related issues; initialization of soil-water content for regional-scale atmospheric prediction models; impact of surface properties on dryline and MCS evolution; a numerical simulation of heavy precipitation over the complex topography of California; representing mesoscale fluxes induced by landscape discontinuities in global climate models; emphasizing the role of subgrid-scale heterogeneity in surface-air interaction; and problems with modeling and measuring biosphere-atmosphere exchanges of energy, water, and carbon on large scales.

Top